Science.gov

Sample records for mutations uncouple reproductive

  1. Temporal Uncoupling between Energy Acquisition and Allocation to Reproduction in a Herbivorous-Detritivorous Fish.

    PubMed

    Villamarín, Francisco; Magnusson, William E; Jardine, Timothy D; Valdez, Dominic; Woods, Ryan; Bunn, Stuart E

    2016-01-01

    Although considerable knowledge has been gathered regarding the role of fish in cycling and translocation of nutrients across ecosystem boundaries, little information is available on how the energy obtained from different ecosystems is temporally allocated in fish bodies. Although in theory, limitations on energy budgets promote the existence of a trade-off between energy allocated to reproduction and somatic growth, this trade-off has rarely been found under natural conditions. Combining information on RNA:DNA ratios and carbon and nitrogen stable-isotope analyses we were able to achieve novel insights into the reproductive allocation of diamond mullet (Liza alata), a catadromous, widely distributed herbivorous-detritivorous fish. Although diamond mullet were in better condition during the wet season, most reproductive allocation occurred during the dry season when resources are limited and fish have poorer body condition. We found a strong trade-off between reproductive and somatic investment. Values of δ13C from reproductive and somatic tissues were correlated, probably because δ13C in food resources between dry and wet seasons do not differ markedly. On the other hand, data for δ15N showed that gonads are more correlated to muscle, a slow turnover tissue, suggesting long term synthesis of reproductive tissues. In combination, these lines of evidence suggest that L. alata is a capital breeder which shows temporal uncoupling of resource ingestion, energy storage and later allocation to reproduction.

  2. Temporal Uncoupling between Energy Acquisition and Allocation to Reproduction in a Herbivorous-Detritivorous Fish

    PubMed Central

    Villamarín, Francisco; Magnusson, William E.; Jardine, Timothy D.; Valdez, Dominic; Woods, Ryan; Bunn, Stuart E.

    2016-01-01

    Although considerable knowledge has been gathered regarding the role of fish in cycling and translocation of nutrients across ecosystem boundaries, little information is available on how the energy obtained from different ecosystems is temporally allocated in fish bodies. Although in theory, limitations on energy budgets promote the existence of a trade-off between energy allocated to reproduction and somatic growth, this trade-off has rarely been found under natural conditions. Combining information on RNA:DNA ratios and carbon and nitrogen stable-isotope analyses we were able to achieve novel insights into the reproductive allocation of diamond mullet (Liza alata), a catadromous, widely distributed herbivorous-detritivorous fish. Although diamond mullet were in better condition during the wet season, most reproductive allocation occurred during the dry season when resources are limited and fish have poorer body condition. We found a strong trade-off between reproductive and somatic investment. Values of δ13C from reproductive and somatic tissues were correlated, probably because δ13C in food resources between dry and wet seasons do not differ markedly. On the other hand, data for δ15N showed that gonads are more correlated to muscle, a slow turnover tissue, suggesting long term synthesis of reproductive tissues. In combination, these lines of evidence suggest that L. alata is a capital breeder which shows temporal uncoupling of resource ingestion, energy storage and later allocation to reproduction. PMID:26938216

  3. Endocrine uncoupling of the trade-off between reproduction and somatic maintenance in eusocial insects.

    PubMed

    Rodrigues, Marisa A; Flatt, Thomas

    2016-08-01

    In most animals reproduction trades off with somatic maintenance and survival. Physiologically this trade-off is mediated by hormones with opposite effects on reproduction and maintenance. In many insects, this regulation is achieved by an endocrine network that integrates insulin-like/IGF-1 signaling (IIS), juvenile hormone (JH), and the yolk precursor vitellogenin (Vg) (or, more generally, yolk proteins [YPs]). Downregulation of this network promotes maintenance and survival at the expense of reproduction. Remarkably, however, queens of highly eusocial social insects exhibit both enormous reproductive output and longevity, thus escaping the trade-off. Here we argue - based on recent evidence - that the proximate reason for why eusocial insects can decouple this trade-off is that they have evolved a different 'wiring' of the IIS-JH-Vg/YP circuit.

  4. Mutation-selection balance and mixed mating with asexual reproduction.

    PubMed

    Marriage, Tara N; Orive, Maria E

    2012-09-07

    The effects of asexual reproduction on both the number of deleterious mutations per gamete and the mean fitness under mutation-selection balance are investigated. We use two simulation models, considering both finite and infinite populations. The two models incorporate asexual reproduction with varying levels of outcrossing and selfing, degrees of dominance and selection coefficients. The values for mean fitness and number of deleterious mutations per gamete are compared within and among finite and infinite populations to identify the effect of asexual reproduction on levels of load, and how asexual reproduction may interact with genetic drift (population size). Increasing asexual reproduction resulted in an increase in mean fitness and a decrease in the average number of deleterious mutations per gamete for both nearly recessive and additive alleles in both the infinite and finite simulations. Increased mean fitness with increasing asexuality is possibly due to two interacting forces: a greater opportunity for selection to act on heterozygous versus homozygous mutations and the shielding of a proportion of the population from meiotic mutations due to asexual reproduction. The results found here highlight the need to consider asexual reproduction along with mixed mating in models of genetic load and mutation-selection balance.

  5. Mutation Load under Vegetative Reproduction and Cytoplasmic Inheritance

    PubMed Central

    Kondrashov, A. S.

    1994-01-01

    For reasons that remain unclear, even multicellular organisms usually originate from a single cell. Here I consider the balance between deleterious mutations and selection against them in a population with obligate vegetative reproduction, when every offspring is initiated by more than one cell of a parent. The mutation load depends on the genomic deleterious mutation rate U, strictness of selection, number of cells which initiate an offspring n, and the relatedness among the initial cells. The load grows with increasing U, n and strictness of selection, and declines when an offspring is initiated by more closely related cells. If Un >> 1, the load under obligate vegetative reproduction may be substantially higher than under sexual or asexual reproduction, which may account for its rarity. In nature obligate vegetative reproduction seems to be more common and long term in taxa whose cytological features ensure a relatively low load under it. The same model also describes the mutation load under two other modes of inheritance: (1) uniparental transmission of organelles and (2) reproduction by division of multinuclear cells, where each daughter cell receives many nuclei. The load declines substantially when the deleterious mutation rate per organelle genome gets lower or when the number of nuclei in a cell sometimes drops. This may explain the small sizes of organelle genomes in sexual lineages and the presence of karyonic cycles in asexual unicellular multinuclear eukaryotes. PMID:8056318

  6. Insulin resistance uncoupled from dyslipidemia due to C-terminal PIK3R1 mutations

    PubMed Central

    Huang-Doran, Isabel; Tomlinson, Patsy; Payne, Felicity; Gast, Alexandra; Sleigh, Alison; Bottomley, William; Harris, Julie; Daly, Allan; Rocha, Nuno; Rudge, Simon; Clark, Jonathan; Kwok, Albert; Romeo, Stefano; McCann, Emma; Müksch, Barbara; Dattani, Mehul; Zucchini, Stefano; Wakelam, Michael; Foukas, Lazaros C.; Savage, David B.; Murphy, Rinki; O’Rahilly, Stephen; Semple, Robert K.

    2016-01-01

    Obesity-related insulin resistance is associated with fatty liver, dyslipidemia, and low plasma adiponectin. Insulin resistance due to insulin receptor (INSR) dysfunction is associated with none of these, but when due to dysfunction of the downstream kinase AKT2 phenocopies obesity-related insulin resistance. We report 5 patients with SHORT syndrome and C-terminal mutations in PIK3R1, encoding the p85α/p55α/p50α subunits of PI3K, which act between INSR and AKT in insulin signaling. Four of 5 patients had extreme insulin resistance without dyslipidemia or hepatic steatosis. In 3 of these 4, plasma adiponectin was preserved, as in insulin receptor dysfunction. The fourth patient and her healthy mother had low plasma adiponectin associated with a potentially novel mutation, p.Asp231Ala, in adiponectin itself. Cells studied from one patient with the p.Tyr657X PIK3R1 mutation expressed abundant truncated PIK3R1 products and showed severely reduced insulin-stimulated association of mutant but not WT p85α with IRS1, but normal downstream signaling. In 3T3-L1 preadipocytes, mutant p85α overexpression attenuated insulin-induced AKT phosphorylation and adipocyte differentiation. Thus, PIK3R1 C-terminal mutations impair insulin signaling only in some cellular contexts and produce a subphenotype of insulin resistance resembling INSR dysfunction but unlike AKT2 dysfunction, implicating PI3K in the pathogenesis of key components of the metabolic syndrome. PMID:27766312

  7. An ancient founder mutation in PROKR2 impairs human reproduction.

    PubMed

    Avbelj Stefanija, Magdalena; Jeanpierre, Marc; Sykiotis, Gerasimos P; Young, Jacques; Quinton, Richard; Abreu, Ana Paula; Plummer, Lacey; Au, Margaret G; Balasubramanian, Ravikumar; Dwyer, Andrew A; Florez, Jose C; Cheetham, Timothy; Pearce, Simon H; Purushothaman, Radhika; Schinzel, Albert; Pugeat, Michel; Jacobson-Dickman, Elka E; Ten, Svetlana; Latronico, Ana Claudia; Gusella, James F; Dode, Catherine; Crowley, William F; Pitteloud, Nelly

    2012-10-01

    Congenital gonadotropin-releasing hormone (GnRH) deficiency manifests as absent or incomplete sexual maturation and infertility. Although the disease exhibits marked locus and allelic heterogeneity, with the causal mutations being both rare and private, one causal mutation in the prokineticin receptor, PROKR2 L173R, appears unusually prevalent among GnRH-deficient patients of diverse geographic and ethnic origins. To track the genetic ancestry of PROKR2 L173R, haplotype mapping was performed in 22 unrelated patients with GnRH deficiency carrying L173R and their 30 first-degree relatives. The mutation's age was estimated using a haplotype-decay model. Thirteen subjects were informative and in all of them the mutation was present on the same ~123 kb haplotype whose population frequency is ≤10%. Thus, PROKR2 L173R represents a founder mutation whose age is estimated at approximately 9000 years. Inheritance of PROKR2 L173R-associated GnRH deficiency was complex with highly variable penetrance among carriers, influenced by additional mutations in the other PROKR2 allele (recessive inheritance) or another gene (digenicity). The paradoxical identification of an ancient founder mutation that impairs reproduction has intriguing implications for the inheritance mechanisms of PROKR2 L173R-associated GnRH deficiency and for the relevant processes of evolutionary selection, including potential selective advantages of mutation carriers in genes affecting reproduction.

  8. A point mutation in Euglene gracilis chloroplast tRNA{sup Glu} uncouples protein and chlorophyll biosynthesis

    SciTech Connect

    Stange-Thomann, N.; Thomann, H.U.; Lloyd, A.J.; Soell, D.; Lyman, H.

    1994-08-16

    The universal precursor of tetrapyrrole pigments (e.g., chlorophylls and hemes) is 5-aminolevulinic acid (ALA), which in Euglena gracilis chloroplasts is derived via the two-step C{sub 5} pathway from glutamate charged to tRNA{sup Glu}. The first enzyme in this pathway, Glu-tRNA reductase (GluTR) catalyzes the reduction of glutamyl-tRNA{sup Glu} (Glu-tRNA) to glutamate 1-semialdehyde (GSA) with the release of the uncharged tRNA{sup Glu}. The second enzyme, GSA-2, 1-aminomutase, converts GSA to ALA. tRNA{sup Glu} is a specific cofactor for the NADPH-dependent reduction by GluTR, an enzyme that recognizes the tRNA in a sequence-specific manner. This RNA is the normal tRNA{sup Glu}, a dual-function molecule participating both in protein and in ALA and, hence, chlorophyll biosynthesis. A chlorophyll-deficient mutant of E. gracilis (Y{sub 9}ZNaIL) does not synthesize ALA from glutamate, although it contains GluTR and GSA-2,1-aminomutase activity. The tRNA{sup Glu} isolated from the mutant can still be acrylated with glutamate in vitro and in vitro. Furthermore, it supports chloroplast protein synthesis; however, it is a poor substrate for GluTR. Sequence analysis of the tRNA and of its gene revealed a C56 {yields} U mutation in the resulting gene product. C56 is therefore an important identity element for GluTR. Thus, a point mutation in the T loop of tRNA uncouples protein from chlorophyll biosynthesis.

  9. The Slavic NBN Founder Mutation: A Role for Reproductive Fitness?

    PubMed Central

    Seemanova, Eva; Varon, Raymonda; Vejvalka, Jan; Seeman, Pavel; Chrzanowska, Krystyna H.; Digweed, Martin; Resnick, Igor; Kremensky, Ivo; Saar, Kathrin; Hoffmann, Katrin; Dutrannoy, Véronique; Karbasiyan, Mohsen; Ghani, Mehdi; Barić, Ivo; Tekin, Mustafa; Kovacs, Peter; Krawczak, Michael; Reis, André; Sperling, Karl

    2016-01-01

    The vast majority of patients with Nijmegen Breakage Syndrome (NBS) are of Slavic origin and carry a deleterious deletion (c.657del5; rs587776650) in the NBN gene on chromosome 8q21. This mutation is essentially confined to Slavic populations and may thus be considered a Slavic founder mutation. Notably, not a single parenthood of a homozygous c.657del5 carrier has been reported to date, while heterozygous carriers do reproduce but have an increased cancer risk. These observations seem to conflict with the considerable carrier frequency of c.657del5 of 0.5% to 1% as observed in different Slavic populations because deleterious mutations would be eliminated quite rapidly by purifying selection. Therefore, we propose that heterozygous c.657del5 carriers have increased reproductive success, i.e., that the mutation confers heterozygote advantage. In fact, in our cohort study of the reproductive history of 24 NBS pedigrees from the Czech Republic, we observed that female carriers gave birth to more children on average than female non-carriers, while no such reproductive differences were observed for males. We also estimate that c.657del5 likely occurred less than 300 generations ago, thus supporting the view that the original mutation predated the historic split and subsequent spread of the ‘Slavic people’. We surmise that the higher fertility of female c.657del5 carriers reflects a lower miscarriage rate in these women, thereby reflecting the role of the NBN gene product, nibrin, in the repair of DNA double strand breaks and their processing in immune gene rearrangements, telomere maintenance, and meiotic recombination, akin to the previously described role of the DNA repair genes BRCA1 and BRCA2. PMID:27936167

  10. Universal distribution of mutational effects on protein stability, uncoupling of protein robustness from sequence evolution and distinct evolutionary modes of prokaryotic and eukaryotic proteins

    NASA Astrophysics Data System (ADS)

    Faure, Guilhem; Koonin, Eugene V.

    2015-05-01

    Robustness to destabilizing effects of mutations is thought of as a key factor of protein evolution. The connections between two measures of robustness, the relative core size and the computationally estimated effect of mutations on protein stability (ΔΔG), protein abundance and the selection pressure on protein-coding genes (dN/dS) were analyzed for the organisms with a large number of available protein structures including four eukaryotes, two bacteria and one archaeon. The distribution of the effects of mutations in the core on protein stability is universal and indistinguishable in eukaryotes and bacteria, centered at slightly destabilizing amino acid replacements, and with a heavy tail of more strongly destabilizing replacements. The distribution of mutational effects in the hyperthermophilic archaeon Thermococcus gammatolerans is significantly shifted toward strongly destabilizing replacements which is indicative of stronger constraints that are imposed on proteins in hyperthermophiles. The median effect of mutations is strongly, positively correlated with the relative core size, in evidence of the congruence between the two measures of protein robustness. However, both measures show only limited correlations to the expression level and selection pressure on protein-coding genes. Thus, the degree of robustness reflected in the universal distribution of mutational effects appears to be a fundamental, ancient feature of globular protein folds whereas the observed variations are largely neutral and uncoupled from short term protein evolution. A weak anticorrelation between protein core size and selection pressure is observed only for surface residues in prokaryotes but a stronger anticorrelation is observed for all residues in eukaryotic proteins. This substantial difference between proteins of prokaryotes and eukaryotes is likely to stem from the demonstrable higher compactness of prokaryotic proteins.

  11. Universal distribution of mutational effects on protein stability, uncoupling of protein robustness from sequence evolution and distinct evolutionary modes of prokaryotic and eukaryotic proteins.

    PubMed

    Faure, Guilhem; Koonin, Eugene V

    2015-04-30

    Robustness to destabilizing effects of mutations is thought of as a key factor of protein evolution. The connections between two measures of robustness, the relative core size and the computationally estimated effect of mutations on protein stability (ΔΔG), protein abundance and the selection pressure on protein-coding genes (dN/dS) were analyzed for the organisms with a large number of available protein structures including four eukaryotes, two bacteria and one archaeon. The distribution of the effects of mutations in the core on protein stability is universal and indistinguishable in eukaryotes and bacteria, centered at slightly destabilizing amino acid replacements, and with a heavy tail of more strongly destabilizing replacements. The distribution of mutational effects in the hyperthermophilic archaeon Thermococcus gammatolerans is significantly shifted toward strongly destabilizing replacements which is indicative of stronger constraints that are imposed on proteins in hyperthermophiles. The median effect of mutations is strongly, positively correlated with the relative core size, in evidence of the congruence between the two measures of protein robustness. However, both measures show only limited correlations to the expression level and selection pressure on protein-coding genes. Thus, the degree of robustness reflected in the universal distribution of mutational effects appears to be a fundamental, ancient feature of globular protein folds whereas the observed variations are largely neutral and uncoupled from short term protein evolution. A weak anticorrelation between protein core size and selection pressure is observed only for surface residues in prokaryotes but a stronger anticorrelation is observed for all residues in eukaryotic proteins. This substantial difference between proteins of prokaryotes and eukaryotes is likely to stem from the demonstrable higher compactness of prokaryotic proteins.

  12. A gain-of-function mutation of plastidic invertase alters nuclear gene expression with sucrose treatment partially via GENOMES UNCOUPLED1-mediated signaling.

    PubMed

    Maruta, Takanori; Miyazaki, Nozomi; Nosaka, Ryota; Tanaka, Hiroyuki; Padilla-Chacon, Daniel; Otori, Kumi; Kimura, Ayako; Tanabe, Noriaki; Yoshimura, Kazuya; Tamoi, Masahiro; Shigeoka, Shigeru

    2015-05-01

    Plastid gene expression (PGE) is one of the signals that regulate the expression of photosynthesis-associated nuclear genes (PhANGs) via GENOMES UNCOUPLED1 (GUN1)-dependent retrograde signaling. We recently isolated Arabidopsis sugar-inducible cotyledon yellow-192 (sicy-192), a gain-of-function mutant of plastidic invertase, and showed that following the treatment of this mutant with sucrose, the expression of PhANGs as well as PGE decreased, suggesting that the sicy-192 mutation activates a PGE-evoked and GUN1-mediated retrograde pathway. To clarify the relationship between the sicy-192 mutation, PGE, and GUN1-mediated pathway, plastid and nuclear gene expression in a double mutant of sicy-192 and gun1-101, a null mutant of GUN1 was studied. Plastid-encoded RNA polymerase (PEP)-dependent PGE was markedly suppressed in the sicy-192 mutant by the sucrose treatment, but the suppression as well as cotyledon yellow phenotype was not mitigated by GUN1 disruption. Microarray analysis revealed that the altered expression of nuclear genes such as PhANG in the sucrose-treated sicy-192 mutant was largely dependent on GUN1. The present findings demonstrated that the sicy-192 mutation alters nuclear gene expression with sucrose treatment via GUN1, which is possibly followed by inhibiting PEP-dependent PGE, providing a new insight into the role of plastid sugar metabolism in nuclear gene expression.

  13. Uncoupling Flight and Reproduction in Ants: Evolution of Ergatoid Queens in Two Lineages of Megalomyrmex (Hymenoptera: Formicidae)

    PubMed Central

    Peeters, Christian; Adams, Rachelle M. M.

    2016-01-01

    Megalomyrmex Forel (Myrmicinae: Solenopsidini) consists of 44 species with diverse life history strategies. Most species are predatory and may also tend honeydew-producing insects. A morphologically derived group of species are social parasites that consume the brood and fungus garden within fungus-growing ant nests. The reproductive strategies of Megalomyrmex queens are somewhat aligned with these life-style patterns. Predatory species in the leoninus species group are large in body size and have ergatoid (i.e., permanently wingless) queens whereas the social parasitic species are smaller and typically have winged queens. We examined two ergatoid phenotypes of Megalomyrmex foreli Emery and Megalomyrmex wallacei Mann and compared them to winged species, one a social lestobiotic or “thief ant” parasite (Megalomyrmex mondabora Brandão) and the other a predator (Megalomyrmex modestus Emery). Megalomyrmex foreli colonies have a single queen with an enlarged gaster that is morphologically distinct from workers. Megalomyrmex wallacei colonies have several queens that are similar in body size to workers. Queens in both species showed a simplification of the thorax, but there was a dramatic difference in the number of ovarioles. Megalomyrmex foreli had 60–80 ovarioles compared to eight in M. wallacei and M. mondabora and M. modestus had 22–28. Along with flight loss in queens, there is an obligate shift to dependent colony founding (also called budding or fission) consequently influencing dispersal patterns. These constraints in life history traits may help explain the variation in nesting biology among Megalomyrmex species. PMID:27620557

  14. Mutations in the Diageotropica (Dgt) gene uncouple patterned cell division during lateral root initiation from proliferative cell division in the pericycle.

    PubMed

    Ivanchenko, Maria G; Coffeen, Warren C; Lomax, Terri L; Dubrovsky, Joseph G

    2006-05-01

    In angiosperms, root branching requires a continuous re-initiation of new root meristems. Through some unknown mechanism, in most eudicots pericycle cells positioned against the protoxylem change identity and initiate patterned division, leading to formation of lateral root primordia that further develop into lateral roots. This process is auxin-regulated. We have observed that three mutations in the Diageotropica (Dgt) gene in tomato prevent primordium formation. Detailed analysis of one of these mutants, dgt1-1, demonstrated that the mutation does not abolish the proliferative capacity of the xylem-adjacent pericycle in the differentiated root portion. Files of shortened pericycle cells found in dgt1-1 roots were unrelated to primordium formation. Auxin application stimulated this unusual proliferation, leading to formation of a multi-layered xylem-adjacent pericycle, but did not rescue the primordium formation. In contrast to wild type, auxin could not induce any cell divisions in the pericycle of the most distal dgt1-1 root-tip portion. In wild-type roots, the Dgt gene promoter was expressed strongly in lateral root primordia starting from their initiation, and on auxin treatment was induced in the primary root meristem. Auxin level and distribution were altered in dgt1-1 root tissues, as judged by direct auxin measurements, and the tissue-specific expression of an auxin-response reporter was altered in transgenic plants. Together, our data demonstrate that the Dgt gene product, a type-A cyclophilin, is essential for morphogenesis of lateral root primordia, and that the dgt mutations uncouple patterned cell division in lateral root initiation from proliferative cell division in the pericycle.

  15. Mutations in NLRP5 are associated with reproductive wastage and multilocus imprinting disorders in humans

    PubMed Central

    Docherty, Louise E.; Rezwan, Faisal I.; Poole, Rebecca L.; Turner, Claire L. S.; Kivuva, Emma; Maher, Eamonn R.; Smithson, Sarah F.; Hamilton-Shield, Julian P.; Patalan, Michal; Gizewska, Maria; Peregud-Pogorzelski, Jaroslaw; Beygo, Jasmin; Buiting, Karin; Horsthemke, Bernhard; Soellner, Lukas; Begemann, Matthias; Eggermann, Thomas; Baple, Emma; Mansour, Sahar; Temple, I. Karen; Mackay, Deborah J. G.

    2015-01-01

    Human-imprinting disorders are congenital disorders of growth, development and metabolism, associated with disturbance of parent of origin-specific DNA methylation at imprinted loci across the genome. Some imprinting disorders have higher than expected prevalence of monozygotic twinning, of assisted reproductive technology among parents, and of disturbance of multiple imprinted loci, for which few causative trans-acting mutations have been found. Here we report mutations in NLRP5 in five mothers of individuals affected by multilocus imprinting disturbance. Maternal-effect mutations of other human NLRP genes, NLRP7 and NLRP2, cause familial biparental hydatidiform mole and multilocus imprinting disturbance, respectively. Offspring of mothers with NLRP5 mutations have heterogenous clinical and epigenetic features, but cases include a discordant monozygotic twin pair, individuals with idiopathic developmental delay and autism, and families affected by infertility and reproductive wastage. NLRP5 mutations suggest connections between maternal reproductive fitness, early zygotic development and genomic imprinting. PMID:26323243

  16. Contribution of PPi-Hydrolyzing Function of Vacuolar H+-Pyrophosphatase in Vegetative Growth of Arabidopsis: Evidenced by Expression of Uncoupling Mutated Enzymes

    PubMed Central

    Asaoka, Mariko; Segami, Shoji; Ferjani, Ali; Maeshima, Masayoshi

    2016-01-01

    The vacuolar-type H+-pyrophosphatase (H+-PPase) catalyzes a coupled reaction of pyrophosphate (PPi) hydrolysis and active proton translocation across the tonoplast. Overexpression of H+-PPase improves growth in various plant species, and loss-of-function mutants (fugu5s) of H+-PPase in Arabidopsis thaliana have post-germinative developmental defects. Here, to further clarify the physiological significance of this important enzyme, we newly generated three varieties of H+-PPase overexpressing lines with different levels of activity that we analyzed together with the loss-of-function mutant fugu5-3. The H+-PPase overexpressors exhibited enhanced activity of H+-PPase during vegetative growth, but no change in the activity of vacuolar H+-ATPase. Overexpressors with high enzymatic activity grew more vigorously with fresh weight increased by more than 24 and 44%, compared to the wild type and fugu5-3, respectively. Consistently, the overexpressors had larger rosette leaves and nearly 30% more cells in leaves than the wild type. When uncoupling mutated variants of H+-PPase, that could hydrolyze PPi but could not translocate protons, were introduced into the fugu5-3 mutant background, shoot growth defects recovered to the same levels as when a normal H+-PPase was introduced. Taken together, our findings clearly demonstrate that additional expression of H+-PPase improves plant growth by increasing cell number, predominantly as a consequence of the PPi-hydrolyzing activity of the enzyme. PMID:27066051

  17. Impact of mutations in kisspeptin and neurokinin B signaling pathways on human reproduction.

    PubMed

    Silveira, Leticia Gontijo; Tusset, Cintia; Latronico, Ana Claudia

    2010-12-10

    The involvement of kisspeptin and neurokinin in B pathways in the reproductive axis was first suspected by linkage analysis in consanguineous families with isolated hypogonadotropic hypogonadism (IHH). Since then, several loss-of-function mutations affecting the kisspeptin receptor and neurokinin B and its receptor were associated with sporadic and familial IHH without olfactory abnormalities or other associated developmental alterations. Clinical manifestations were indistinguishable in individuals with mutations affecting these pathways. Micropenis and cryptorchidism were common findings among male patients. Response to acute GnRH stimulation varied from blunted to normal, and many affected males and females were successfully treated for infertility with either exogenous gonadotropins or long term pulsatile GnRH infusion. More recently, rare activating mutations of the kisspeptin and its receptor were identified in children with idiopathic central precocious puberty, supporting the crucial role of this system in the human pubertal onset. Kisspeptin is a potent excitatory regulator of the GnRH secretion, whereas the role of neurokinin B in the neuroendocrine control of the reproductive axis is still poorly understood. Interestingly, kisspeptin and neurokinin B are coexpressed in the arcuate nucleus in the mammalian hypothalamus, suggesting that these systems are closely related and potential partners of the regulation of the reproductive axis.

  18. Mutation accumulation may only be a minor force in shaping life-history traits, even when reproduction is sexual.

    PubMed

    Dańko, Maciej Jan; Kozłowski, Jan

    2012-01-01

    In a previous theoretical study we investigated whether adaptive or non-adaptive processes are more important in the evolution of senescence. We built a model that combined both processes and found that mutation accumulation is important only at those ages where mortality has a negligible impact on fitness. This model, however, was limited to haploid organisms. Here we extend our model by introducing diploidy and sexual reproduction. We assume that only recessive (mutated) homozygotes experience detrimental effects. Our results corroborate our previous conclusions, confirming that life histories are largely determined by adaptive processes. We also found that the equilibrium frequencies of mutated alleles are at higher values than in haploid model, because mutations in heterozygotes are hidden for directional selection. Nevertheless, the equilibrium frequencies of recessive homozygotes that make mutations visible to selection are very similar to the equilibrium frequencies of these alleles in our haploid model. Diploidy and sexual reproduction with recombination slows down approaching selection-mutation balance.

  19. Reproductive Decision-Making in MMR Mutation Carriers After Results Disclosure: Impact of Psychological Status in Childbearing Options.

    PubMed

    Duffour, Jacqueline; Combes, Audrey; Crapez, Evelyne; Boissière-Michot, Florence; Bibeau, Frédéric; Senesse, Pierre; Ychou, Marc; Courraud, Julie; de Forges, Hélène; Roca, Lise

    2016-06-01

    Reproductive techniques such as prenatal diagnosis (PND) or preimplantation genetic diagnosis (PGD), although debated, are legally forbidden in France in case of Lynch syndrome. The preference of mutation carriers about their reproductive options is not systematically considered in France. We aimed to prospectively assess the reproductive preferences of mismatch repair mutation carriers consulting in our institution (2003-2010, n = 100). We also considered the short- and long-term post-disclosure psychological impact using the Impact of Events Scale-Revised questionnaire to measure the prevalence of posttraumatic stress disorder (PTSD) in those patients. Complete data were obtained for 34 respondents (17 males, 17 females, median age of 33.5 years [22-59]). Seventeen respondents (57 %) preferred spontaneous natural conception versus 28 % and 35 % choosing PND and PGD, respectively. At results disclosure, respondents mainly explained their distress by fear of premature death (43 %) and transmitting mutated genes (42 %). One year later, this last fear remained predominant in 55 % of subjects. None of the main socio-demographical, psychological or medical variables (including fear of transmitting mutations) was significantly associated with the reproductive preferences. Results disclosure had a real and time-decreasing psychological impact on mutation carriers. Reproductive techniques, expected to decrease the hereditary risk, were not significantly preferred to natural conception.

  20. The complexity of reproductive decision-making in asymptomatic carriers of the Huntington mutation.

    PubMed

    Decruyenaere, Marleen; Evers-Kiebooms, Gerry; Boogaerts, Andrea; Philippe, Kristien; Demyttenaere, Koen; Dom, René; Vandenberghe, Wim; Fryns, Jean-Pierre

    2007-04-01

    The aim of this study was to describe reproductive decisions in mutation carriers after predictive testing for Huntington's disease (HD) and to identify factors that play a role in decision-making. In 1987-2004, 245 individuals received a predictive test result; 89 of them were carriers and seven received an equivocal result. Quantitative data on reproductive behaviour have been collected during all follow-up contacts. The follow-up time in this study was 1-16 years (mean: 7.1 years). Qualitative data on reproductive decision-making have been collected by the means of semistructured interviews during the 5-year follow-up study. For 46 carriers and two persons with an equivocal result, family planning was one of the motives for predictive testing. In this group, slightly more than half of the carriers (58%) had chosen to have children with prenatal diagnosis or preimplantation genetic diagnosis and about one in three (35%) decided to have no children anymore after the test. A minority (7%) was undecided or had no children for other reasons. Factors playing a role in the decision-making process were the carrier's sex, ethical issues about PD and PGD, the strength of the desire to have children, illness representations including personal experiences with HD in the family and the technological imperative. Some of these elements were in conflict and induced ambivalence towards reproductive choices. The results illustrate the complexity of the decision-making process and the necessity of in-depth counselling. Counselling should pay special attention to conflicting values and beliefs and to all kinds of pressure.

  1. Screening of mutations in the CFTR gene in 1195 couples entering assisted reproduction technique programs.

    PubMed

    Stuppia, Liborio; Antonucci, Ivana; Binni, Francesco; Brandi, Alessandra; Grifone, Nicoletta; Colosimo, Alessia; De Santo, Mariella; Gatta, Valentina; Gelli, Gianfranco; Guida, Valentina; Majore, Silvia; Calabrese, Giuseppe; Palka, Chiara; Ravani, Anna; Rinaldi, Rosanna; Tiboni, Gian Mario; Ballone, Enzo; Venturoli, Anna; Ferlini, Alessandra; Torrente, Isabella; Grammatico, Paola; Calzolari, Elisa; Dallapiccola, Bruno

    2005-08-01

    Genetic testing of the cystic fibrosis transmembrane conductance (CFTR) gene is currently performed in couples undergoing assisted reproduction techniques (ART), because of the high prevalence of healthy carriers in the population and the pathogenic relationship with congenital bilateral absence of vas deferens (CBAVD). However, discordant data have been reported concerning the usefulness of this genetic test in couples with no family history of cystic fibrosis (CF). In this study, we report the results of CFTR molecular screening in 1195 couples entering ART. Genetic testing was initially carried out in a single partner of each couple. CFTR mutations were detected in 55 subjects (4.6%), a percentage that overlaps with the one reported in the general population. However, significantly higher frequencies of were found in CBAVD individuals (37.5%) and in males with nonobstructive azoospermia (6.6%). The 5T allele was found in 78 patients (6.5%). This figure was again significantly different in males with nonobstructive-azoospermia (9.9%) and in those with CBAVD (100%). All together, 139 subjects (11.6%) had either a CFTR mutation or the 5T allele. Subsequent molecular analysis of their partners disclosed a CFTR mutation or 5T allele in nine cases (6.5%). However, none of these couples had CFTR alterations in both members, a CFTR mutation being invariably present in one partner and the 5T allele in the other. In order to improve genetic counselling of these couples, the TG-M470V-5T association was analyzed, and a statistically significant relationship between 12TG-V470 and CBAVD was detected.

  2. Mutations and polymorphisms in FSH receptor: functional implications in human reproduction.

    PubMed

    Desai, Swapna S; Roy, Binita Sur; Mahale, Smita D

    2013-12-01

    FSH brings about its physiological actions by activating a specific receptor located on target cells. Normal functioning of the FSH receptor (FSHR) is crucial for follicular development and estradiol production in females and for the regulation of Sertoli cell function and spermatogenesis in males. In the last two decades, the number of inactivating and activating mutations, single nucleotide polymorphisms, and spliced variants of FSHR gene has been identified in selected infertile cases. Information on genotype-phenotype correlation and in vitro functional characterization of the mutants has helped in understanding the possible genetic cause for female infertility in affected individuals. The information is also being used to dissect various extracellular and intracellular events involved in hormone-receptor interaction by studying the differences in the properties of the mutant receptor when compared with WT receptor. Studies on polymorphisms in the FSHR gene have shown variability in clinical outcome among women treated with FSH. These observations are being explored to develop molecular markers to predict the optimum dose of FSH required for controlled ovarian hyperstimulation. Pharmacogenetics is an emerging field in this area that aims at designing individual treatment protocols for reproductive abnormalities based on FSHR gene polymorphisms. The present review discusses the current knowledge of various genetic alterations in FSHR and their impact on receptor function in the female reproductive system.

  3. Male and female differential reproductive rate could explain parental transmission asymmetry of mutation origin in Hirschsprung disease.

    PubMed

    Jannot, Anne-Sophie; Amiel, Jeanne; Pelet, Anna; Lantieri, Francesca; Fernandez, Raquel M; Verheij, Joke B G M; Garcia-Barcelo, Merce; Arnold, Stacey; Ceccherini, Isabella; Borrego, Salud; Hofstra, Robert M W; Tam, Paul K H; Munnich, Arnold; Chakravarti, Aravinda; Clerget-Darpoux, Françoise; Lyonnet, Stanislas

    2012-09-01

    Hirschsprung disease (HSCR, aganglionic megacolon) is a complex and heterogeneous disease with an incidence of 1 in 5000 live births. Despite the multifactorial determination of HSCR in the vast majority of cases, there is a monogenic subgroup for which private rare RET coding sequence mutations with high penetrance are found (45% of HSCR familial cases). An asymmetrical parental origin is observed for RET coding sequence mutations with a higher maternal inheritance. A parent-of-origin effect is usually assumed. Here we show that a differential reproductive rate for males and females also leads to an asymmetrical parental origin, which was never considered as a possible explanation till now. In the case of HSCR, we show a positive association between penetrance of the mutation and parental transmission asymmetry: no parental transmission asymmetry is observed in sporadic RET CDS mutation carrier cases for which penetrance of the mutation is low, whereas a parental transmission asymmetry is observed in affected sib-pairs for which penetrance of the mutation is higher. This allows us to conclude that the explanation for this parental asymmetry is that more severe mutations have resulted in a differential reproductive rate between male and female carriers.

  4. Uncoupling of Obesity from Insulin Resistance Through a Targeted Mutation in aP2, the Adipocyte Fatty Acid Binding Protein

    NASA Astrophysics Data System (ADS)

    Hotamisligil, Gokhan S.; Johnson, Randall S.; Distel, Robert J.; Ellis, Ramsey; Papaioannou, Virginia E.; Spiegelman, Bruce M.

    1996-11-01

    Fatty acid binding proteins (FABPs) are small cytoplasmic proteins that are expressed in a highly tissue-specific manner and bind to fatty acids such as oleic and retinoic acid. Mice with a null mutation in aP2, the gene encoding the adipocyte FABP, were developmentally and metabolically normal. The aP2-deficient mice developed dietary obesity but, unlike control mice, they did not develop insulin resistance or diabetes. Also unlike their obese wild-type counterparts, obese aP2-/- animals failed to express in adipose tissue tumor necrosis factor-α (TNF-α), a molecule implicated in obesity-related insulin resistance. These results indicate that aP2 is central to the pathway that links obesity to insulin resistance, possibly by linking fatty acid metabolism to expression of TNF-α.

  5. Reproductive factors and breast cancer risk among BRCA1 or BRCA2 mutation carriers: results from ten studies.

    PubMed

    Pan, Hong; He, Zhongyuan; Ling, Lijun; Ding, Qiang; Chen, Lin; Zha, Xiaoming; Zhou, Wenbin; Liu, Xiaoan; Wang, Shui

    2014-02-01

    Although reproductive factors are among the most well-established risk factors for breast cancer in the general population, it is still a matter for debate whether these factors act as risk modifiers among BRCA1 or BRCA2 mutation carriers. This meta-analysis is the first to be performed to determine the relationship between reproductive factors and breast cancer risk among BRCA1 and BRCA2 mutation carriers. We searched the PubMed database up to February 2013. A total of ten studies met the inclusion criteria. The results showed that the reproductive factors may be associated with breast cancer risk only among BRCA1 mutation carriers. No association was found between parity and breast cancer risk. Compared with women at the youngest age in the first-birth category, women in the oldest age category were at a 38% lower risk of breast cancer (RR=0.62, 95%CI=0.45-0.85). Breastfeeding for at least 1 or 2 years was associated with a 37% reduction in breast cancer risk (RR=0.63, 95%CI=0.46-0.86). Women at the oldest age in the menarche category were at a 34% lower risk of breast cancer (RR=0.66, 95%CI=0.53-0.81) than women in the youngest age category. However, none of the reproductive factors were associated with breast cancer risk among BRCA2 mutation carriers. In conclusion, late age at first birth, breastfeeding, and late age at menarche protect against breast cancer in BRCA1 mutation carriers only. Further studies are needed to explore the mechanisms.

  6. Energy conservation and uncoupling in mitochondria.

    PubMed

    Hatefi, Y

    1975-01-01

    Energy conservation and uncoupling in mitochondria are examined in the light of three important new findings: (a) Studies with the photoaffinity-labeling uncoupler 2-azido-4-nitrophenol have shown that mitochondria contain a specific uncoupler binding site (apparently a polypeptide of Mr = 30,000 +/- 10%). (b) This site fractionates into an enzyme complex (complex V), which is capable of oligomycin- and uncoupler-sensitive ATP-Pi exchange. It is absent from electron transfer complexes I, III, and IV, which represent segments of the respiratory chain containing coupling sites 1, 2, and 3, respectively. (c) Trinitrophenol is a membrane-impermeable uncoupler (uncouples submitochondrial particles, but not mitochondria) and a poor protonophore. There is an excellent correlation between the uncoupling potencies and the affinities of uncouplers for the mitochondrial uncoupler-binding site. There is no correlation between uncoupling potency and protonophoric activity of uncouplers when a membrane-permeable uncoupler is compared with a membrane-impermeable one.

  7. The role of the prokineticin 2 pathway in human reproduction: evidence from the study of human and murine gene mutations.

    PubMed

    Martin, Cecilia; Balasubramanian, Ravikumar; Dwyer, Andrew A; Au, Margaret G; Sidis, Yisrael; Kaiser, Ursula B; Seminara, Stephanie B; Pitteloud, Nelly; Zhou, Qun-Yong; Crowley, William F

    2011-04-01

    A widely dispersed network of hypothalamic GnRH neurons controls the reproductive axis in mammals. Genetic investigation of the human disease model of isolated GnRH deficiency has revealed several key genes crucial for GnRH neuronal ontogeny and GnRH secretion. Among these genes, prokineticin 2 (PROK2), and PROK2 receptor (PROKR2) have recently emerged as critical regulators of reproduction in both mice and humans. Both prok2- and prokr2-deficient mice recapitulate the human Kallmann syndrome phenotype. Additionally, PROK2 and PROKR2 mutations are seen in humans with Kallmann syndrome, thus implicating this pathway in GnRH neuronal migration. However, PROK2/PROKR2 mutations are also seen in normosmic GnRH deficiency, suggesting a role for the prokineticin signaling system in GnRH biology that is beyond neuronal migration. This observation is particularly surprising because mature GnRH neurons do not express PROKR2. Moreover, mutations in both PROK2 and PROKR2 are predominantly detected in the heterozygous state with incomplete penetrance or variable expressivity frequently seen within and across pedigrees. In some of these pedigrees, a "second hit" or oligogenicity has been documented. Besides reproduction, a pleiotropic physiological role for PROK2 is now recognized, including regulation of pain perception, circadian rhythms, hematopoiesis, and immune response. Therefore, further detailed clinical studies of patients with PROK2/PROKR2 mutations will help to map the broader biological role of the PROK2/PROKR2 pathway and identify other interacting genes/proteins that mediate its molecular effects in humans.

  8. The Role of the Prokineticin 2 Pathway in Human Reproduction: Evidence from the Study of Human and Murine Gene Mutations

    PubMed Central

    Martin, Cecilia; Balasubramanian, Ravikumar; Dwyer, Andrew A.; Au, Margaret G.; Sidis, Yisrael; Kaiser, Ursula B.; Seminara, Stephanie B.; Pitteloud, Nelly; Zhou, Qun-Yong

    2011-01-01

    A widely dispersed network of hypothalamic GnRH neurons controls the reproductive axis in mammals. Genetic investigation of the human disease model of isolated GnRH deficiency has revealed several key genes crucial for GnRH neuronal ontogeny and GnRH secretion. Among these genes, prokineticin 2 (PROK2), and PROK2 receptor (PROKR2) have recently emerged as critical regulators of reproduction in both mice and humans. Both prok2- and prokr2-deficient mice recapitulate the human Kallmann syndrome phenotype. Additionally, PROK2 and PROKR2 mutations are seen in humans with Kallmann syndrome, thus implicating this pathway in GnRH neuronal migration. However, PROK2/PROKR2 mutations are also seen in normosmic GnRH deficiency, suggesting a role for the prokineticin signaling system in GnRH biology that is beyond neuronal migration. This observation is particularly surprising because mature GnRH neurons do not express PROKR2. Moreover, mutations in both PROK2 and PROKR2 are predominantly detected in the heterozygous state with incomplete penetrance or variable expressivity frequently seen within and across pedigrees. In some of these pedigrees, a “second hit” or oligogenicity has been documented. Besides reproduction, a pleiotropic physiological role for PROK2 is now recognized, including regulation of pain perception, circadian rhythms, hematopoiesis, and immune response. Therefore, further detailed clinical studies of patients with PROK2/PROKR2 mutations will help to map the broader biological role of the PROK2/PROKR2 pathway and identify other interacting genes/proteins that mediate its molecular effects in humans. PMID:21037178

  9. ‘My funky genetics’: BRCA1/2 mutation carriers’ understanding of genetic inheritance and reproductive merger in the context of new repro-genetic technologies

    PubMed Central

    Rubin, Lisa R.; Doyle, Maya; Stern, Rikki; Savin, Katie; Hurley, Karen; Sagi, Michal

    2014-01-01

    INTRODUCTION Deleterious mutations in the BRCA1/BRCA2 genes elevate lifetime risk of breast and ovarian cancer. Each child of a mutation-positive parent has a 50% chance of inheriting it. Pre-implantation genetic diagnosis (PGD) permits prospective parents to avoid transmitting a BRCA1/2 mutation to a child, introducing predictability into a process historically defined by chance. This investigation explored how BRCA1/2 mutation carriers understand genetic inheritance and consider a child’s inheritance of a BRCA1/2 mutation, given the opportunities that exist to pursue PGD. METHOD 39 female and male BRCA1/2 mutation carriers of reproductive age were recruited from urban cancer and reproductive medical centers. Participants completed a standardized educational presentation on PGD and prenatal diagnosis, with pre- and post-test assessments. An interdisciplinary team of qualitative researchers analyzed data using grounded theory techniques. FINDINGS Participants expressed the belief that reproduction yields children with unique genetic strengths and challenges, including the BRCA1/2 mutation, family traits for which predictive tests do not exist, and hypothetical genetic risks. Participants expressed preference for biologically-related children, yet stated their genetically ‘well’ partner’s lineage would be marred through reproductive merger, requiring the well partner to assume the burden of the BRCA1/2 mutation via their children. Participants expressed diverse views of genetically ‘well’ partners’ participation in family planning and risk management decisions. DISCUSSION Pressure to use reprogenetic technology may grow as genetic susceptibility testing becomes more widely available. Work with individuals and couples across the disease spectrum must be attuned to they ways beliefs about genetic inheritance play into reproductive decision making. PMID:22709328

  10. The impact of reproductive life on breast cancer risk in women with family history or BRCA mutation.

    PubMed

    Toss, Angela; Grandi, Giovanni; Cagnacci, Angelo; Marcheselli, Luigi; Pavesi, Silvia; De Matteis, Elisabetta; Razzaboni, Elisabetta; Tomasello, Chiara; Cascinu, Stefano; Cortesi, Laura

    2017-02-07

    Reproductive history and exogenous hormonal exposures are acknowledged risk factors for breast cancer in the general population. In women at increased breast cancer risk for genetic predisposition or positive family history, data regarding these risk factors are limited or conflicting, and recommendations for these categories are unclear. We evaluated the characteristics of reproductive life in 2522 women at increased genetic or familial breast cancer risk attending our Family Cancer Center. Breast cancers in BRCA mutation carriers were more likely to be hormone receptor negative, diagnosed at 35 years or before and multiple during the lifetime than tumors in women at increased familial risk, while the distribution of invasive cancers and HER2 positive tumors was similar in the different risk groups. At least one full-term pregnancy (HR 0.27; 95% CI 0.12-0.58; p = 0.001), breastfeeding either less (HR 0.24; 95% CI 0.09-0.66; p = 0.005) or more (HR 0.25; 95% IC 0.08-0.82; p = 0.022) than one year and late age at menopause (HR 0.10; 95% CI 0.01-0.82; p = 0.033) showed to be protective factors in BRCA mutation carriers, while in women at increased familial risk early age at first full-term pregnancy (HR 0.62; 95% IC 0.38-0.99; p = 0.048) and late menarche (HR 0.61; 95% CI 0.42-0.85; p = 0.004) showed to be the main protective factors. Finally, for the entire population, combined hormonal contraceptives demonstrated to do not increase breast cancer risk. The results of our study suggest that women at high familial risk and mutation carries develop tumors with different clinical-pathological characteristics and, consequently, are influenced by different protective and risk factors.

  11. A new uncoupling protein: a potential component of the human body weight regulation system.

    PubMed

    Wolf, G

    1997-05-01

    A mitochondrial protein that uncouples the respiratory chain from oxidative phosphorylation and generates heat is found in brown adipose tissue (BAT) of rodents. Although humans have little BAT, a second uncoupling protein has been discovered that is widely distributed in human tissues. It is induced in mice by a high-fat diet and in mice with obese mutations, and may play a role in human body weight regulation.

  12. Achromatic and uncoupled medical gantry

    DOEpatents

    Tsoupas, Nicholaos; Kayran, Dmitry; Litvinenko, Vladimir; MacKay, William W.

    2011-11-22

    A medical gantry that focus the beam from the beginning of the gantry to the exit of the gantry independent of the rotation angle of the gantry by keeping the beam achromatic and uncoupled, thus, avoiding the use of collimators or rotators, or additional equipment to control the beam divergence, which may cause beam intensity loss or additional time in irradiation of the patient, or disadvantageously increase the overall gantry size inapplicable for the use in the medical treatment facility.

  13. Uncouple my heart: the benefits of inefficiency.

    PubMed

    Modrianský, Martin; Gabrielová, Eva

    2009-04-01

    Myocardial ischemia/reperfusion (IR) injury leads to structural changes in the heart muscle later followed by functional decline due to progressive fibrous replacement. Hence approaches to minimize IR injury are devised, including ischemic pre-and postconditioning. Mild uncoupling of oxidative phosphorylation is one of the mechanisms suggested to be cardioprotective as chemical uncoupling mimics ischemic preconditioning. Uncoupling protein 2 is proposed to be the physiological counterpart of chemical uncouplers and is thought to be a part of the protective machinery of cardiomyocytes. Morphological changes in the mitochondrial network likely accompany the uncoupling with mitochondrial fission dampening the signals leading to cardiomyocyte death. Here we review recent data on the role of uncoupling in cardioprotection and propose that low concentrations of dietary polyphenols may elicit the same cardioprotective effect as dinitrophenol and FCCP, perhaps accounting for the famed "French paradox".

  14. Uncoupling the links between male mating tactics and female attractiveness.

    PubMed Central

    Ojanguren, Alfredo F; Magurran, Anne E

    2004-01-01

    Because not all females are equally attractive, and because mating reduces the chances of getting further copulations, males should prefer better-quality mates. In this paper, we use the Trinidadian guppy (Poecilia reticulata) to explore the effects of two non-correlated measures of female quality--size and reproductive status--on male mating decisions. All male guppies employ two alternative mating tactics. We found that large females, particularly those from a high predation site, were the target of most sneaky mating attempts. The response persisted in fish raised under standard conditions over several generations in the laboratory. In addition, non-pregnant females received more courtship displays. We conclude that males can discriminate among females and that they uncouple their mating tactics to track different axes of quality. PMID:15801594

  15. Uncoupling chitosanase production from chitosan.

    PubMed

    Brzezinski, Ryszard

    2011-01-01

    There is a growing interest in chitosanases as enzymatic tools to hydrolyze chitosan into bioactive forms: low molecular weight chitosan (LMWC) or chitosan oligosaccharides (CHOS). However chitosanases are still expensive and methods of large-scale production of these enzymes are not yet established. The article reviews the approaches used for chitosanase production in various bacterial hosts, pointing out the difficulties resulting from the necessity to include chitosan into the medium composition. A mutated Streptomyces host allows for the efficient production of several chitosanases originating from actinobacteria in the absence of chitosan as inducer.

  16. 30 CFR 57.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Coupling or uncoupling cars. 57.14215 Section... and Equipment Safety Practices and Operational Procedures § 57.14215 Coupling or uncoupling cars. Prior to coupling or uncoupling cars manually, trains shall be brought to a complete stop, and...

  17. 30 CFR 56.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Coupling or uncoupling cars. 56.14215 Section... Equipment Safety Practices and Operational Procedures § 56.14215 Coupling or uncoupling cars. Prior to coupling or uncoupling cars manually, trains shall be brought to a complete stop, and then moved at...

  18. 30 CFR 56.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Coupling or uncoupling cars. 56.14215 Section... Equipment Safety Practices and Operational Procedures § 56.14215 Coupling or uncoupling cars. Prior to coupling or uncoupling cars manually, trains shall be brought to a complete stop, and then moved at...

  19. 30 CFR 57.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Coupling or uncoupling cars. 57.14215 Section... and Equipment Safety Practices and Operational Procedures § 57.14215 Coupling or uncoupling cars. Prior to coupling or uncoupling cars manually, trains shall be brought to a complete stop, and...

  20. 30 CFR 56.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Coupling or uncoupling cars. 56.14215 Section... Equipment Safety Practices and Operational Procedures § 56.14215 Coupling or uncoupling cars. Prior to coupling or uncoupling cars manually, trains shall be brought to a complete stop, and then moved at...

  1. 30 CFR 56.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Coupling or uncoupling cars. 56.14215 Section... Equipment Safety Practices and Operational Procedures § 56.14215 Coupling or uncoupling cars. Prior to coupling or uncoupling cars manually, trains shall be brought to a complete stop, and then moved at...

  2. 30 CFR 56.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Coupling or uncoupling cars. 56.14215 Section... Equipment Safety Practices and Operational Procedures § 56.14215 Coupling or uncoupling cars. Prior to coupling or uncoupling cars manually, trains shall be brought to a complete stop, and then moved at...

  3. 30 CFR 57.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Coupling or uncoupling cars. 57.14215 Section... and Equipment Safety Practices and Operational Procedures § 57.14215 Coupling or uncoupling cars. Prior to coupling or uncoupling cars manually, trains shall be brought to a complete stop, and...

  4. 30 CFR 57.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Coupling or uncoupling cars. 57.14215 Section... and Equipment Safety Practices and Operational Procedures § 57.14215 Coupling or uncoupling cars. Prior to coupling or uncoupling cars manually, trains shall be brought to a complete stop, and...

  5. 30 CFR 57.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Coupling or uncoupling cars. 57.14215 Section... and Equipment Safety Practices and Operational Procedures § 57.14215 Coupling or uncoupling cars. Prior to coupling or uncoupling cars manually, trains shall be brought to a complete stop, and...

  6. Uncoupling of longevity and telomere length in C. elegans.

    PubMed

    Raices, Marcela; Maruyama, Hugo; Dillin, Andrew; Karlseder, Jan

    2005-09-01

    The nematode Caenorhabditis elegans, after completing its developmental stages and a brief reproductive period, spends the remainder of its adult life as an organism consisting exclusively of post-mitotic cells. Here we show that telomere length varies considerably in clonal populations of wild-type worms, and that these length differences are conserved over at least ten generations, suggesting a length regulation mechanism in cis. This observation is strengthened by the finding that the bulk telomere length in different worm strains varies considerably. Despite the close correlation of telomere length and clonal cellular senescence in mammalian cells, nematodes with long telomeres were neither long lived, nor did worm populations with comparably short telomeres exhibit a shorter life span. Conversely, long-lived daf-2 and short-lived daf-16 mutant animals can have either long or short telomeres. Telomere length of post-mitotic cells did not change during the aging process, and the response of animals to stress was found independent of telomere length. Collectively, our data indicate that telomere length and life span can be uncoupled in a post-mitotic setting, suggesting separate pathways for replication-dependent and -independent aging.

  7. [The mechanism of the effect of apterous56f mutation on the reproductive function of Drosophila melanogaster].

    PubMed

    Raushenbakh, I Iu; Gruntenko, N E; Karpova, e K; Adon'eva, N V; Alekseev, A A; Chentsova, N A; Shumnaia, L V; Faddeeva, N V

    2006-02-01

    The effects of L-dihydroxyphenylalanine (L-DOPA) and 20-hydroxyecdysone (20E) were studied with respect to the content of dopamine (DA), intensity of the juvenile hormone (JH) degradation, and fecundity of the wildtype flies (Canton S) and JH-deficient apterous56f mutants (in young females, carrying this mutation, the levels of DA and 20E production were strongly increased). Fly feeding with L-DOPA proved to increase the level of DA in a dose-dependent manner and reduce JH degradation in 2-day-old females of both strains. Feeding with 20E produced the same effect. Treating the wild-type flies with 2.5 mg L-DOPA caused a 24-h delay in beginning of oviposition and reduction in fecundity throughout the experiment. An L-DOPA dose of 1 mg caused no such changes. An experimental increase in 20E titer led to reduced fecundity of the wild-type flies, though no delay in oviposition was observed. In mutant flies, an increase in DA and 20E levels accelerated beginning of oviposition and increased fecundity of young females, though the latter parameter was reduced in mature individuals. Thus, an increase in endogenous DA and 20E characteristic of young apterous56f females is assumed to be a compensatory response that leads to a higher JH titer and induction of vitellogenesis.

  8. Tuning the ion selectivity of glutamate transporter–associated uncoupled conductances

    PubMed Central

    Cater, Rosemary J.; Vandenberg, Robert J.

    2016-01-01

    The concentration of glutamate within a glutamatergic synapse is tightly regulated by excitatory amino acid transporters (EAATs). In addition to their primary role in clearing extracellular glutamate, the EAATs also possess a thermodynamically uncoupled Cl− conductance. This conductance is activated by the binding of substrate and Na+, but the direction of Cl− flux is independent of the rate or direction of substrate transport; thus, the two processes are thermodynamically uncoupled. A recent molecular dynamics study of the archaeal EAAT homologue GltPh (an aspartate transporter from Pyrococcus horikoshii) identified an aqueous pore at the interface of the transport and trimerization domains, through which anions could permeate, and it was suggested that an arginine residue at the most restricted part of this pathway might play a role in determining anion selectivity. In this study, we mutate this arginine to a histidine in the human glutamate transporter EAAT1 and investigate the role of the protonation state of this residue on anion selectivity and transporter function. Our results demonstrate that a positive charge at this position is crucial for determining anion versus cation selectivity of the uncoupled conductance of EAAT1. In addition, because the nature of this residue influences the turnover rate of EAAT1, we reveal an intrinsic link between the elevator movement of the transport domain and the Cl− channel. PMID:27296367

  9. Seismic coupling and uncoupling at subduction zones

    NASA Technical Reports Server (NTRS)

    Ruff, L.; Kanamori, H.

    1983-01-01

    Some of the correlations concerning the properties of subduction zones are reviewed. A quantitative global comparison of many subduction zones reveals that the largest earthquakes occur in zones with young lithosphere and fast convergence rates. Maximum earthquake size is directly related to the asperity distribution on the fault plane. This observation can be translated into a simple model of seismic coupling where the horizontal compressive stress between two plates is proportional to the ratio of the summed asperity area to the total area of the contact surface. Plate age and rate can control asperity distribution directly through the horizontal compressive stress associated with the vertical and horizontal velocities of subducting slabs. The basalt to eclogite phase change in the down-going oceanic crust may be largely responsible for the uncoupling of subduction zones below a depth of about 40 km.

  10. Ageing, oxidative stress, and mitochondrial uncoupling.

    PubMed

    Harper, M-E; Bevilacqua, L; Hagopian, K; Weindruch, R; Ramsey, J J

    2004-12-01

    Mitochondria are a cell's single greatest source of reactive oxygen species. Reactive oxygen species are important for many life sustaining processes of cells and tissues, but they can also induce cell damage and death. If their production and levels within cells is not effectively controlled, then the detrimental effects of oxidative stress can accumulate. Oxidative stress is widely thought to underpin many ageing processes, and the oxidative stress theory of ageing is one of the most widely acknowledged theories of ageing. As well as being the major source of reactive oxygen species, mitochondria are also a major site of oxidative damage. The purpose of this review is a concise and current review of the effects of oxidative stress and ageing on mitochondrial function. Emphasis is placed upon the roles of mitochondrial proton leak, the uncoupling proteins, and the anti-ageing effects of caloric restriction.

  11. Photoaffinity labeling of uncoupler binding sites on mitochondrial membrane.

    PubMed

    Kurup, C K; Sanadi, D R

    1977-02-01

    3H 2-azido-4-nitrophenol, a photoactive uncoupler, has been synthesized, and its uncoupling action on oxidative phosphorylation and its binding to the mitochondrial membrane have been studied. The uncoupler bound covalently to the mitochondrial membrane on photoirradiation was 3-4 times that bound reversibly in the absence of light. When irradiation was carried out in the presence of serum albumin, covalent binding was significantly depressed. The pattern of loss of ATP-Pi exchange activity with increasing amounts of the uncoupler suggests that serum albumin prevents the binding of the uncoupler to the functional sites as well. Polyacrylamide gel electrophoresis of photoaffinity labeled submitochondrial particles in the presence of sodium dodecyl sulfate revealed that a 9000 dalton peptide bound high levels of uncoupler. Other proteins in the molecular weight range of 20,000-40,000 and 55,000 were also labeled. Photolysis in the presence of serum albumin or ATP decreased the covalent binding of the uncoupler to all the proteins, but particularly to the 20,000 dalton component. Soluble ATPase and the mitochondrial proteolipid purified from labeled mitochondria showed the presence of label.

  12. Airway-parenchyma uncoupling in nocturnal asthma.

    PubMed

    Irvin, C G; Pak, J; Martin, R J

    2000-01-01

    Airway flow resistance is well known to be dependent upon lung volume. The rise in lung volume that occurs in asthma is therefore thought to be an important mechanism that defends airway patency. The purpose of the current study was to investigate the interdependence or mechanical coupling between airways and lung parenchyma during the inflammatory processes that occur in the patient with nocturnal asthma. Five patients with documented nocturnal asthma were studied in both a vertical and a horizontal body plethysmograph. Lung volume was altered with continuous negative pressure as applied to the chest wall with a poncho cuirass in different postures and during sleep. We found during the awake phase that an increase in lung volume decreased lower pulmonary resistance (Rlp); however, within 30 min of sleep onset, functional residual capacity (FRC) fell and Rlp rose more than would be expected for the fall in FRC. Restoring FRC to presleep values either at an early (half-hour) or a late (3-h) time point did not cause Rlp to significantly fall. A second phase of the study showed that the loss of Rlp dependence on lung volume was not due to the assumption of the supine posture. Indirect measurements of lung compliance were consistent with a stiffening of the lung. We conclude that with sleep there is an immediate uncoupling of the parenchyma to the airway, resulting in a loss of interdependence that persists throughout sleep and may contribute to the morbidity and mortality associated with nocturnal asthma.

  13. Molecular studies of the uncoupling protein

    SciTech Connect

    Ricquier, D.; Casteilla, L.; Bouillaud, F. )

    1991-06-01

    The uncoupling protein (UCP) is a proton/anion transporter found in the inner mitochondrial membrane of brown adipocyte. Although UCP has nor been detected in mitochondria from any other tissue, it shares structural and catalytic properties with several other mitochondrial carrier proteins. Although UCP was discovered only recently it is one of the most extensively studied mitochondrial carrier proteins.More recently, the mouse, rat, and human genes encoding for UCP have been isolated and sequenced. The availability of these various tools has led to several significant observations. UCP gene expression is strongly controlled at the level of transcription by signals that are activated after the stimulation of brown adipocytes by norepinephrine. The comparison of UCP gene with the genes encoding the adenine nucleotide translocator revealed the existence of structural and evolutionary homologies. Moreover, in humans the UCP gene and one form of adenine nucleotide translocator gene are located on the same chromosome. Recently, the expression of functional UCp in various heterologous systems was achieved (Xenopus oocytes, CHO cells, yeasts). These data will facilitate studies of the structure/function relationship in UCP (identification of residues involved in H{sup +} transport, Cl{sup {minus}} transport, nucleotide binding, mitochondrial targeting). Another aspect of the present research on UCP is the understanding of mechanisms that control UCP gene and the differentiated commitment of adipose precursor cells to thermogenic brown adipocytes.

  14. Uncoupled thermoelasticity solutions applied on beam dumps

    NASA Astrophysics Data System (ADS)

    Ouzia, A.; Antonakakis, T.

    2016-06-01

    In particle accelerators the process of beam absorption is vital. At CERN particle beams are accelerated at energies of the order of TeV. In the event of a system failure or following collisions, the beam needs to be safely absorbed by dedicated protecting blocks. The thermal shock caused by the rapid energy deposition within the absorbing block causes thermal stresses that may rise above critical levels. The present paper provides a convenient expression of such stresses under hypotheses described hereafter. The temperature field caused by the beam energy deposition is assumed to be Gaussian. Such a field models a non-diffusive heat deposition. These effects are described as thermoelastic as long as the stresses remain below the proportional limit and can be analytically modeled by the coupled equations of thermoelasticity. The analytical solution to the uncoupled thermoelastic problem in an infinite domain is presented herein and matched with a finite unit radius sphere. The assumption of zero diffusion as well as the validity of the match with a finite geometry is quantified such that the obtained solutions can be rigorously applied to real problems. Furthermore, truncated series solutions, which are not novel, are used for comparison purposes. All quantities are nondimensional and the problem reduces to a dependence of five dimensionless parameters. The equations of elasticity are presented in the potential formulation where the shear potential is assumed to be nil due to the source being a gradient and the absence of boundaries. Nevertheless equivalent three-dimensional stresses are computed using the compressive potential and optimized using standard analytical optimization methods. An alternative algorithm for finding the critical points of the three-dimensional stress function is presented. Finally, a case study concerning the proton synchrotron booster dump is presented where the aforementioned analytical solutions are used and the preceding assumptions

  15. Uncoupling protein-1 is not leaky.

    PubMed

    Shabalina, Irina G; Ost, Mario; Petrovic, Natasa; Vrbacky, Marek; Nedergaard, Jan; Cannon, Barbara

    2010-01-01

    The activity of uncoupling protein-1 (UCP1) is rate-limiting for nonshivering thermogenesis and diet-induced thermogenesis. Characteristically, this activity is inhibited by GDP experimentally and presumably mainly by cytosolic ATP within brown-fat cells. The issue as to whether UCP1 has a residual proton conductance even when fully saturated with GDP/ATP (as has recently been suggested) has not only scientific but also applied interest, since a residual proton conductance would make overexpressed UCP1 weight-reducing even without physiological/pharmacological activation. To examine this question, we have here established optimal conditions for studying the bioenergetics of wild-type and UCP1-/- brown-fat mitochondria, analysing UCP1-mediated differences in parallel preparations of brown-fat mitochondria from both genotypes. Comparing different substrates, we find that pyruvate (or palmitoyl-L-carnitine) shows the largest relative coupling by GDP. Comparing albumin concentrations, we find the range 0.1-0.6% optimal; higher concentrations are inhibitory. Comparing basic medium composition, we find 125 mM sucrose optimal; an ionic medium (50-100 mM KCl) functions for wild-type but is detrimental for UCP1-/- mitochondria. Using optimal conditions, we find no evidence for a residual proton conductance (not a higher post-GDP respiration, a lower membrane potential or an altered proton leak at highest common potential) with either pyruvate or glycerol-3-phosphate as substrates, nor by a 3-4-fold alteration of the amount of UCP1. We could demonstrate that certain experimental conditions, due to respiratoty inhibition, could lead to the suggestion that UCP1 possesses a residual proton conductance but find that under optimal conditions our experiments concur with implications from physiological observations that in the presence of inhibitory nucleotides, UCP1 is not leaky.

  16. Concurrent porcine circovirus type 2a (PCV2a) or PCV2b infection increases the rate of amino acid mutations of porcine reproductive and respiratory syndrome virus (PRRSV) during serial passages in pigs.

    PubMed

    Yin, Shuang-Hui; Xiao, Chao-Ting; Gerber, Priscilla F; Beach, Nathan M; Meng, Xiang-Jin; Halbur, Patrick G; Opriessnig, Tanja

    2013-12-26

    Porcine reproductive and respiratory syndrome virus (PRRSV) has a high degree of genetic and antigenic variability. The purpose of this study was to determine if porcine circovirus type 2 (PCV2) infection increases genetic variability of PRRSV during serial passages in pigs and to determine if there is a difference in the PRRSV mutation rate between pigs concurrently infected with PCV2a or PCV2b. After 8 consecutive passages of PRRSV alone (group 1), PRRSV with PCV2a (group 2), or PCV2b (group 3) in pigs, the sequences of PRRSV structural genes for open reading frame (ORF) 5, ORF6, ORF7 and the partial non-structural protein gene (Nsp) 2 were determined. The total number of identified amino acid mutations in ORF5, ORF6, ORF7 and Nsp2 sequences was 30 for PRRSV infection only, 63 for PRRSV/PCV2a concurrent infection, and 77 for PRRSV/PCV2b concurrent infection when compared with the original VR2385 virus used to infect the passage 1 pigs. Compared to what occurred in pigs infected with PRRSV only, the mutation rates in ORF5 and ORF6 were significantly higher for concurrent PRRSV/PCV2b infected pigs. The PRRSV/PCV2a pigs had a significantly higher mutation rate in ORF7. The results from this study indicated that, besides ORF5 and Nsp2, the PRRSV structural genes ORF6 and ORF7 were shown to mutate at various degrees when the PRRSV was passaged over time in vivo. Furthermore, a significantly higher mutation rate of PRRSV was observed when pigs were co-infected with PCV2 highlighting the importance of concurrent infections on PRRSV evolution and control.

  17. Triclosan is a mitochondrial uncoupler in live zebrafish.

    PubMed

    Shim, Juyoung; Weatherly, Lisa M; Luc, Richard H; Dorman, Maxwell T; Neilson, Andy; Ng, Ryan; Kim, Carol H; Millard, Paul J; Gosse, Julie A

    2016-12-01

    Triclosan (TCS) is a synthetic antimicrobial agent used in many consumer goods at millimolar concentrations. As a result of exposure, TCS has been detected widely in humans. We have recently discovered that TCS is a proton ionophore mitochondrial uncoupler in multiple types of living cells. Here, we present novel data indicating that TCS is also a mitochondrial uncoupler in a living organism: 24-hour post-fertilization (hpf) zebrafish embryos. These experiments were conducted using a Seahorse Bioscience XF(e) 96 Extracellular Flux Analyzer modified for bidirectional temperature control, using the XF96 spheroid plate to position and measure one zebrafish embryo per well. Using this method, after acute exposure to TCS, the basal oxygen consumption rate (OCR) increases, without a decrease in survival or heartbeat rate. TCS also decreases ATP-linked respiration and spare respiratory capacity and increases proton leak: all indicators of mitochondrial uncoupling. Our data indicate, that TCS is a mitochondrial uncoupler in vivo, which should be taken into consideration when assessing the toxicity and/or pharmaceutical uses of TCS. This is the first example of usage of a Seahorse Extracellular Flux Analyzer to measure bioenergetic flux of a single zebrafish embryo per well in a 96-well assay format. The method developed in this study provides a high-throughput tool to identify previously unknown mitochondrial uncouplers in a living organism. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Uncoupled Cardiac Nitric Oxide Synthase Mediates Diastolic Dysfunction

    PubMed Central

    Silberman, Gad A.; Fan, Tai-Hwang M.; Liu, Hong; Jiao, Zhe; Xiao, Hong D.; Lovelock, Joshua D.; Boulden, Beth M.; Widder, Julian; Fredd, Scott; Bernstein, Kenneth E.; Wolska, Beata M.; Dikalov, Sergey; Harrison, David G.; Dudley, Samuel C.

    2010-01-01

    Background Heart failure with preserved ejection fraction is one consequence of hypertension and caused by impaired cardiac diastolic relaxation. Nitric oxide (NO) is a known modulator of cardiac relaxation. Hypertension can lead to a reduction in vascular NO, in part because nitric oxide synthase (NOS) becomes uncoupled when oxidative depletion of its co-factor tetrahydrobiopterin (BH4) occurs.Similar events may occur in the heart leading to uncoupled NOS and diastolic dysfunction. Methods and Results In a hypertensive mouse model, diastolic dysfunction was accompanied by cardiac oxidation, a reduction in cardiac BH4, and uncoupled NOS. Compared to sham-operated animals, male mice with unilateral nephrectomy, with subcutaneous implantation of a controlled release deoxycorticosterone acetate (DOCA) pellet, and given 1% saline to drink were mildly hypertensive and had diastolic dysfunction in the absence of systolic dysfunction or cardiac hypertrophy. The hypertensive mouse hearts showed increased oxidized biopterins, NOS-dependent superoxide production, reduced NO production, and phosphorylated phospholamban. Feeding hypertensive mice BH4 (5 mg/day), but not treating with hydralazine or tetrahydroneopterin, improved cardiac BH4 stores, phosphorylated phospholamban levels, and diastolic dysfunction. Isolated cardiomyocyte experiments revealed impaired relaxation that was normalized with acute BH4 treatment. Targeted cardiac overexpression of angiotensin converting enzyme also resulted in cardiac oxidation, NOS uncoupling, and diastolic dysfunction in the absence of hypertension. Conclusions Cardiac oxidation, independent of vascular changes, can lead to uncoupled cardiac NOS and diastolic dysfunction. BH4 may represent a possible treatment for diastolic dysfunction. PMID:20083682

  19. Sludge reduction by uncoupling metabolism: SBR tests with para-nitrophenol and a commercial uncoupler.

    PubMed

    Zuriaga-Agustí, E; Mendoza-Roca, J A; Bes-Piá, A; Alonso-Molina, J L; Amorós-Muñoz, I

    2016-11-01

    Nowadays cost reduction is a very important issue in wastewater treatment plants. One way, is to minimize the sludge production. Microorganisms break down the organic matter into inorganic compounds through catabolism. Uncoupling metabolism is a method which promote catabolism reactions instead of anabolism ones, where adenosine triphosphate synthesis is inhibited. In this work, the influence of the addition of para-nitrophenol and a commercial reagent to a sequencing batch reactor (SBR) on sludge production and process performance has been analyzed. Three laboratory SBRs were operated in parallel to compare the effect of the addition of both reagents with a control reactor. SBRs were fed with synthetic wastewater and were operated with the same conditions. Results showed that sludge production was slightly reduced for the tested para-nitrophenol concentrations (20 and 25 mg/L) and for a LODOred dose of 1 mL/day. Biological process performance was not influenced and high COD removals were achieved.

  20. Coupled and uncoupled dipole models of nonlinear scattering.

    PubMed

    Balla, Naveen K; Yew, Elijah Y S; Sheppard, Colin J R; So, Peter T C

    2012-11-05

    Dipole models are one of the simplest numerical models to understand nonlinear scattering. Existing dipole model for second harmonic generation, third harmonic generation and coherent anti-Stokes Raman scattering assume that the dipoles which make up a scatterer do not interact with one another. Thus, this dipole model can be called the uncoupled dipole model. This dipole model is not sufficient to describe the effects of refractive index of a scatterer or to describe scattering at the edges of a scatterer. Taking into account the interaction between dipoles overcomes these short comings of the uncoupled dipole model. Coupled dipole model has been primarily used for linear scattering studies but it can be extended to predict nonlinear scattering. The coupled and uncoupled dipole models have been compared to highlight their differences. Results of nonlinear scattering predicted by coupled dipole model agree well with previously reported experimental results.

  1. Molecular cloning of amphioxus uncoupling protein and assessment of its uncoupling activity using a yeast heterologous expression system

    SciTech Connect

    Chen, Kun; Sun, Guoxun; Lv, Zhiyuan; Wang, Chen; Jiang, Xueyuan; Li, Donghai; Zhang, Chenyu

    2010-10-01

    Research highlights: {yields} Invertebrates, for example amphioxus, do express uncoupling proteins. {yields} Both the sequence and the uncoupling activity of amphioxus UCP resemble UCP2. {yields} UCP1 is the only UCP that can form dimer on yeast mitochondria. -- Abstract: The present study describes the molecular cloning of a novel cDNA fragment from amphioxus (Branchiostoma belcheri) encoding a 343-amino acid protein that is highly homologous to human uncoupling proteins (UCP), this protein is therefore named amphioxus UCP. This amphioxus UCP shares more homology with and is phylogenetically more related to mammalian UCP2 as compared with UCP1. To further assess the functional similarity of amphioxus UCP to mammalian UCP1 and -2, the amphioxus UCP, rat UCP1, and human UCP2 were separately expressed in Saccharomyces cerevisiae, and the recombinant yeast mitochondria were isolated and assayed for the state 4 respiration rate and proton leak, using pYES2 empty vector as the control. UCP1 increased the state 4 respiration rate by 2.8-fold, and the uncoupling activity was strongly inhibited by GDP, while UCP2 and amphioxus UCP only increased the state 4 respiration rate by 1.5-fold and 1.7-fold in a GDP-insensitive manner, moreover, the proton leak kinetics of amphioxus UCP was very similar to UCP2, but much different from UCP1. In conclusion, the amphioxus UCP has a mild, unregulated uncoupling activity in the yeast system, which resembles mammalian UCP2, but not UCP1.

  2. Identification of a nonsense mutation in APAF1 that is likely causal for a decrease in reproductive efficiency in Holstein dairy cattle.

    PubMed

    Adams, Heather A; Sonstegard, Tad S; VanRaden, Paul M; Null, Daniel J; Van Tassell, Curt P; Larkin, Denis M; Lewin, Harris A

    2016-08-01

    The HH1 haplotype on chromosome 5 is associated with a reduced conception rate and a deficit of homozygotes at the population level in Holstein cattle. The source HH1 haplotype was traced to the bull Pawnee Farm Arlinda Chief (Chief), who was born in 1962 and has sired more than 16,000 daughters. We identified a nonsense mutation in APAF1 (apoptotic protease activating factor 1;APAF1 p.Q579X) within HH1 using whole-genome resequencing of Chief and 3 of his sons. This mutation is predicted to truncate 670 AA (53.7%) of the encoded APAF1 protein that contains a WD40 domain critical to protein-protein interactions. Initial screening revealed no homozygous individuals for the mutation in 758 animals previously genotyped, whereas all 497 HH1 carriers possessed 1 copy of the mutant allele. Subsequent commercial genotyping of 246,773 Holsteins revealed 5,299 APAF1 heterozygotes and zero homozygotes for the mutation. The causative role of this mutation is also supported by functional data in mice that have demonstrated Apaf1 to be an essential molecule in the cytochrome-c-mediated apoptotic cascade and directly implicated in developmental and neurodegenerative disorders. In addition, most Apaf1 homozygous knockouts die by day 16.5 of development. We thus propose that the APAF1 p.Q579X nonsense mutation is the functional equivalent of the Apaf1 knockout. This mutation has caused an estimated 525,000 spontaneous abortions worldwide over the past 35 years, accounting for approximately $420 million in losses. With the mutation identified, selection against the deleterious allele in breeding schemes has aided in eliminating this defect from the population, reducing carrier frequency from 8% in past decades to 2% in 2015.

  3. 49 CFR 215.125 - Defective uncoupling device.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Defective uncoupling device. 215.125 Section 215.125 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components...

  4. 49 CFR 215.125 - Defective uncoupling device.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Defective uncoupling device. 215.125 Section 215.125 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components...

  5. 49 CFR 215.125 - Defective uncoupling device.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Defective uncoupling device. 215.125 Section 215.125 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components...

  6. 49 CFR 215.125 - Defective uncoupling device.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Defective uncoupling device. 215.125 Section 215.125 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components...

  7. 49 CFR 215.125 - Defective uncoupling device.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Defective uncoupling device. 215.125 Section 215.125 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components...

  8. Identification of a nonsense mutation in APAF1 that is likely causal for a decrease in reproductive efficiency in Holstein dairy cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A haplotype on cattle chromosome 5 carrying a recessive lethal allele was found to originate in a Holstein-Friesian foundation sire. Resequencing led to the identification of a stop-gain mutation in exon 11 of APAF1, a gene known to cause embryonic lethality and neurodevelopmental abnormalities in ...

  9. Low resistance junctions in crayfish. Structural changes with functional uncoupling

    PubMed Central

    1976-01-01

    Electrical uncoupling of crayfish septate lateral giant axons is paralleled by structural changes in the gap junctions. The changes are characterized by a tighter aggregation of the intramembrane particles and a decrease in the overall width of the junction and the thickness of the gap. Preliminary measurements indicate also a decrease in particle diameter. The uncoupling is produced by in vitro treatment of crayfish abdominal cords either with a Ca++, Mg++-free solution containing EDTA, followed by return to normal saline (Van Harreveld's solution), or with VAn Harreveld's solution containing dinitrophenol (DNP). The uncoupling is monitored by the intracellular recording of the electrical resistance at a septum between lateral giant axons. The junctions of the same septum are examined in thin sections; those of other ganglia of the same chain used for the electrical measurements are studied by freeze-fracture. In controls, most junctions contain a more or less regular array of particles repeating at a center to center distance of approximately 200 A. The overall width of the junctions is approximately 200 A and the gap thickness is 40-50 A. Vesicles (400-700 A in diameter) are closely apposed to the junctional membranes. In uncoupled axons, most junctions contain a hexagonal array of particles repeating at a center to center distance of 150-155 A. The overall width of the junctions is approximately 180 A and the gap thickness is 20-30 A. These junctions are usually curved and are rarely associated with vesicles. Isolated, PTA-stained junctions, also believed to be uncoupled, display similar structural features. There are reasons to believe that the changes in structure and permeability are triggered by an increase in the intracellular free Ca++ concentration. Most likely, the changes in permeability are caused by conformational changes in some components of the intramembrane particles at the gap junctions. PMID:820701

  10. Reproductive Hazards

    MedlinePlus

    ... such as lead and mercury Chemicals such as pesticides Cigarettes Some viruses Alcohol For men, a reproductive hazard can affect the sperm. For a woman, a reproductive hazard can cause different effects during pregnancy, depending on when she is exposed. ...

  11. Coordinated Rhythmic Motion by Uncoupled Neuronal Oscillators with Sensory Feedback

    NASA Astrophysics Data System (ADS)

    Iwasaki, Tetsuya

    This paper explores the potential of biological oscillators as a basic unit for feedback control to achieve rhythmic motion of locomotory systems. Among those properties of biological control systems that are useful for engineering applications, we focus on decentralized coordination, that is, the ability of uncoupled neuronal oscillators to coordinate rhythmic body movements to achieve locomotion with the aid of local sensory feedback. We will consider the reciprocal inhibition oscillator (RIO) as a candidate for the basic control unit, and show that uncoupled RIOs can achieve decentralized coordination of a prototype mechanical rectifier (PMR) that captures essential dynamics underlying animal locomotion by a simple arm-disk configuration. Optimality of the induced locomotion is studied in comparison with analytical results we derive for statically optimal PMR locomotion.

  12. Robots Would Couple And Uncouple Fluid And Electrical Lines

    NASA Technical Reports Server (NTRS)

    Del Castillo, Eduardo Lopez; Davis, Virgil; Ferguson, Bob; Reichle, Garland

    1992-01-01

    Robots make and break connections between umbilical plates and mating connectors on rockets about to be launched. Sensing and control systems include vision, force, and torque subsystems. Enhances safety by making it possible to couple and uncouple umbilical plates quickly, without exposing human technicians to hazards of leaking fuels and oxidizers. Significantly reduces time spent to manually connect umbilicals. Robots based on similar principles used in refueling of National AeroSpace Plane (NASP) and satellites and orbital transfer vehicles in space.

  13. Chimera states in uncoupled neurons induced by a multilayer structure

    PubMed Central

    Majhi, Soumen; Perc, Matjaž; Ghosh, Dibakar

    2016-01-01

    Spatial coexistence of coherent and incoherent dynamics in network of coupled oscillators is called a chimera state. We study such chimera states in a network of neurons without any direct interactions but connected through another medium of neurons, forming a multilayer structure. The upper layer is thus made up of uncoupled neurons and the lower layer plays the role of a medium through which the neurons in the upper layer share information among each other. Hindmarsh-Rose neurons with square wave bursting dynamics are considered as nodes in both layers. In addition, we also discuss the existence of chimera states in presence of inter layer heterogeneity. The neurons in the bottom layer are globally connected through electrical synapses, while across the two layers chemical synapses are formed. According to our research, the competing effects of these two types of synapses can lead to chimera states in the upper layer of uncoupled neurons. Remarkably, we find a density-dependent threshold for the emergence of chimera states in uncoupled neurons, similar to the quorum sensing transition to a synchronized state. Finally, we examine the impact of both homogeneous and heterogeneous inter-layer information transmission delays on the observed chimera states over a wide parameter space. PMID:27958355

  14. Uncoupling of Vascular Nitric Oxide Synthase Caused by Intermittent Hypoxia

    PubMed Central

    Ayas, Najib

    2016-01-01

    Objective. Obstructive sleep apnea (OSA), characterized by chronic intermittent hypoxia (CIH), is often present in diabetic (DB) patients. Both conditions are associated with endothelial dysfunction and cardiovascular disease. We hypothesized that diabetic endothelial dysfunction is further compromised by CIH. Methods. Adult male diabetic (BKS.Cg-Dock7m +/+ Leprdb/J) (db/db) mice (10 weeks old) and their heterozygote littermates were subjected to CIH or intermittent air (IA) for 8 weeks. Mice were separated into 4 groups: IA (intermittent air nondiabetic), IH (intermittent hypoxia nondiabetic), IADB (intermittent air diabetic), and IHDB (intermittent hypoxia diabetic) groups. Endothelium-dependent and endothelium-independent relaxation and modulation by basal nitric oxide (NO) were analyzed using wire myograph. Plasma 8-isoprostane, interleukin-6 (IL-6), and asymmetric dimethylarginine (ADMA) were measured using ELISA. Uncoupling of eNOS was measured using dihydroethidium (DHE) staining. Results. Endothelium-dependent vasodilation and basal NO production were significantly impaired in the IH and IADB group compared to IA group but was more pronounced in IHDB group. Levels of 8-isoprostane, IL-6, ADMA, and eNOS uncoupling were ≈2-fold higher in IH and IADB groups and were further increased in the IHDB group. Conclusion. Endothelial dysfunction is more pronounced in diabetic mice subjected to CIH compared to diabetic or CIH mice alone. Oxidative stress, ADMA, and eNOS uncoupling were exacerbated by CIH in diabetic mice. PMID:27840666

  15. Chimera states in uncoupled neurons induced by a multilayer structure

    NASA Astrophysics Data System (ADS)

    Majhi, Soumen; Perc, Matjaž; Ghosh, Dibakar

    2016-12-01

    Spatial coexistence of coherent and incoherent dynamics in network of coupled oscillators is called a chimera state. We study such chimera states in a network of neurons without any direct interactions but connected through another medium of neurons, forming a multilayer structure. The upper layer is thus made up of uncoupled neurons and the lower layer plays the role of a medium through which the neurons in the upper layer share information among each other. Hindmarsh-Rose neurons with square wave bursting dynamics are considered as nodes in both layers. In addition, we also discuss the existence of chimera states in presence of inter layer heterogeneity. The neurons in the bottom layer are globally connected through electrical synapses, while across the two layers chemical synapses are formed. According to our research, the competing effects of these two types of synapses can lead to chimera states in the upper layer of uncoupled neurons. Remarkably, we find a density-dependent threshold for the emergence of chimera states in uncoupled neurons, similar to the quorum sensing transition to a synchronized state. Finally, we examine the impact of both homogeneous and heterogeneous inter-layer information transmission delays on the observed chimera states over a wide parameter space.

  16. Chimera states in uncoupled neurons induced by a multilayer structure.

    PubMed

    Majhi, Soumen; Perc, Matjaž; Ghosh, Dibakar

    2016-12-13

    Spatial coexistence of coherent and incoherent dynamics in network of coupled oscillators is called a chimera state. We study such chimera states in a network of neurons without any direct interactions but connected through another medium of neurons, forming a multilayer structure. The upper layer is thus made up of uncoupled neurons and the lower layer plays the role of a medium through which the neurons in the upper layer share information among each other. Hindmarsh-Rose neurons with square wave bursting dynamics are considered as nodes in both layers. In addition, we also discuss the existence of chimera states in presence of inter layer heterogeneity. The neurons in the bottom layer are globally connected through electrical synapses, while across the two layers chemical synapses are formed. According to our research, the competing effects of these two types of synapses can lead to chimera states in the upper layer of uncoupled neurons. Remarkably, we find a density-dependent threshold for the emergence of chimera states in uncoupled neurons, similar to the quorum sensing transition to a synchronized state. Finally, we examine the impact of both homogeneous and heterogeneous inter-layer information transmission delays on the observed chimera states over a wide parameter space.

  17. Loss of UCP2 Attenuates Mitochondrial Dysfunction without Altering ROS Production and Uncoupling Activity

    PubMed Central

    Kukat, Alexandra; Dogan, Sukru Anil; Edgar, Daniel; Mourier, Arnaud; Jacoby, Christoph; Maiti, Priyanka; Mauer, Jan; Becker, Christina; Senft, Katharina; Wibom, Rolf; Kudin, Alexei P.; Hultenby, Kjell; Flögel, Ulrich; Rosenkranz, Stephan; Ricquier, Daniel; Kunz, Wolfram S.; Trifunovic, Aleksandra

    2014-01-01

    Although mitochondrial dysfunction is often accompanied by excessive reactive oxygen species (ROS) production, we previously showed that an increase in random somatic mtDNA mutations does not result in increased oxidative stress. Normal levels of ROS and oxidative stress could also be a result of an active compensatory mechanism such as a mild increase in proton leak. Uncoupling protein 2 (UCP2) was proposed to play such a role in many physiological situations. However, we show that upregulation of UCP2 in mtDNA mutator mice is not associated with altered proton leak kinetics or ROS production, challenging the current view on the role of UCP2 in energy metabolism. Instead, our results argue that high UCP2 levels allow better utilization of fatty acid oxidation resulting in a beneficial effect on mitochondrial function in heart, postponing systemic lactic acidosis and resulting in longer lifespan in these mice. This study proposes a novel mechanism for an adaptive response to mitochondrial cardiomyopathy that links changes in metabolism to amelioration of respiratory chain deficiency and longer lifespan. PMID:24945157

  18. Lotus japonicus symRK-14 uncouples the cortical and epidermal symbiotic program.

    PubMed

    Kosuta, Sonja; Held, Mark; Hossain, Md Shakhawat; Morieri, Giulia; Macgillivary, Amanda; Johansen, Christopher; Antolín-Llovera, Meritxell; Parniske, Martin; Oldroyd, Giles E D; Downie, Allan J; Karas, Bogumil; Szczyglowski, Krzysztof

    2011-09-01

    SYMRK is a leucine-rich-repeat (LRR)-receptor kinase that mediates intracellular symbioses of legumes with rhizobia and arbuscular mycorrhizal fungi. It participates in signalling events that lead to epidermal calcium spiking, an early cellular response that is typically considered as central for intracellular accommodation and nodule organogenesis. Here, we describe the Lotus japonicus symRK-14 mutation that alters a conserved GDPC amino-acid sequence in the SYMRK extracellular domain. Normal infection of the epidermis by fungal or bacterial symbionts was aborted in symRK-14. Likewise, epidermal responses of symRK-14 to bacterial signalling, including calcium spiking, NIN gene expression and infection thread formation, were significantly reduced. In contrast, no major negative effects on the formation of nodule primordia and cortical infection were detected. Cumulatively, our data show that the symRK-14 mutation uncouples the epidermal and cortical symbiotic program, while indicating that the SYMRK extracellular domain participates in transduction of non-equivalent signalling events. The GDPC sequence was found to be highly conserved in LRR-receptor kinases in legumes and non-legumes, including the evolutionarily distant bryophytes. Conservation of the GDPC sequence in nearly one-fourth of LRR-receptor-like kinases in the genome of Arabidopsis thaliana suggests, however, that this sequence might also play an important non-symbiotic function in this plant.

  19. Functional and immunochemical characterization of a mutant of Escherichia coli energy uncoupled for lactose transport

    SciTech Connect

    Herzlinger, D.; Carrasco, N.; Kaback, H.R.

    1985-01-01

    Right-side-out cytoplasmic membrane vesicles from Escherichia coli ML 308-22, a mutant ''uncoupled'' for beta-galactoside/H/sup +/ symport are specifically defective in the ability to catalyze accumulation of methyl 1-thio-beta-D-galactopyranoside (TMG) in the presence of an H/sup +/ electrochemical gradient (interior negative and alkaline). Furthermore, the rate of carrier-mediated efflux under nonenergized conditions is slow and unaffected by ambient pH from pH 5.5 to 7.5, and TMG-induced H/sup +/ influx is only about 15% of that observed in vesicles containing wild-type lac permease (ML 308-225). Alternatively, ML 308-22 vesicles bind p-nitrophenyl alpha-D-galactopyranoside and monoclonal antibody 4B1 to the same extent as ML 308-225 vesicles and catalyze facilitated diffusion and equilibrium exchange as well as ML 308-225 vesicles. When entrance counterflow is studied with external substrate at saturating and subsaturating concentrations, it is apparent that the mutation simulates the effects of deuterium oxide. That is, the mutation has no effect on the rate or extent of counterflow when external substrate is saturating but stimulates the efficiency of counterflow when external substrate is below the apparent K/sub m/. Moreover, although replacement of protium with deuterium stimulates counterflow in ML 308-225 vesicles when external substrate is subsaturating, the isotope has no effect on the mutant vesicles under the same conditions.

  20. Stress-induced protein CSP 310: a third uncoupling system in plants.

    PubMed

    Kolesnichenko, A V; Pobezhimova, T P; Grabelnych, O I; Voinikov, V K

    2002-06-01

    Addition of the cold-stress-related protein CSP 310 to mitochondria isolated from winter wheat ( Triticum aestivum L. cv. Zalarinka), winter rye ( Secale cereale L. cv. Dymka), maize ( Zea mays L. cv. VIR 36) and pea ( Pisum sativum L. cv. Marat) caused an increase in non-phosphorylative respiration. This increase was inhibited by KCN, indicating that the protein is not a CN-resistant alternative oxidase. Unlike plant mitochondrial uncoupling proteins such as PUMP, the uncoupling action of CSP 310 did not depend on the presence of free fatty acids in the incubation medium. We propose that the mechanism of the uncoupling action of CSP 310 differs from that of other known plant uncoupling systems and that the CSP 310 uncoupling system is a third uncoupling system in cereals.

  1. Selective advantage for sexual reproduction

    NASA Astrophysics Data System (ADS)

    Tannenbaum, Emmanuel

    2006-06-01

    This paper develops a simplified model for sexual reproduction within the quasispecies formalism. The model assumes a diploid genome consisting of two chromosomes, where the fitness is determined by the number of chromosomes that are identical to a given master sequence. We also assume that there is a cost to sexual reproduction, given by a characteristic time τseek during which haploid cells seek out a mate with which to recombine. If the mating strategy is such that only viable haploids can mate, then when τseek=0 , it is possible to show that sexual reproduction will always out compete asexual reproduction. However, as τseek increases, sexual reproduction only becomes advantageous at progressively higher mutation rates. Once the time cost for sex reaches a critical threshold, the selective advantage for sexual reproduction disappears entirely. The results of this paper suggest that sexual reproduction is not advantageous in small populations per se, but rather in populations with low replication rates. In this regime, the cost for sex is sufficiently low that the selective advantage obtained through recombination leads to the dominance of the strategy. In fact, at a given replication rate and for a fixed environment volume, sexual reproduction is selected for in high populations because of the reduced time spent finding a reproductive partner.

  2. Mutation of FVS1, encoding a protein with a sterile alpha motif domain, affects asexual reproduction in the fungal plant pathogen Fusarium oxysporum.

    PubMed

    Iida, Yuichiro; Fujiwara, Kazuki; Yoshioka, Yosuke; Tsuge, Takashi

    2014-02-01

    Fusarium oxysporum produces three kinds of asexual spores: microconidia, macroconidia and chlamydospores. We previously analysed expressed sequence tags during vegetative growth and conidiation in F. oxysporum and found 42 genes that were markedly upregulated during conidiation compared to vegetative growth. One of the genes, FVS1, encodes a protein with a sterile alpha motif (SAM) domain, which functions in protein-protein interactions that are involved in transcriptional or post-transcriptional regulation and signal transduction. Here, we made FVS1-disrupted mutants from the melon wilt pathogen F. oxysporum f. sp. melonis. Although the mutants produced all three kinds of asexual spores with normal morphology, they formed markedly fewer microconidia and macroconidia than the wild type. The mutants appeared to have a defect in the development of the conidiogenesis cells, conidiophores and phialides, required for the formation of microconidia and macroconidia. In contrast, chlamydospore formation was dramatically promoted in the mutants. The growth rates of the mutants on media were slightly reduced, indicating that FVS1 is also involved in, but not essential for, vegetative growth. We also observed that mutation of FVS1 caused defects in conidial germination and virulence, suggesting that the Fvs1 has pleiotropic functions in F. oxysporum.

  3. Targeted mitochondrial uncoupling beyond UCP1 - The fine line between death and metabolic health.

    PubMed

    Ost, Mario; Keipert, Susanne; Klaus, Susanne

    2017-03-01

    In the early 1930s, the chemical uncoupling agent 2,4-dinitrophenol (DNP) was promoted for the very first time as a powerful and effective weight loss pill but quickly withdrawn from the market due to its lack of tissue-selectivity with resulting dangerous side effects, including hyperthermia and death. Today, novel mitochondria- or tissue-targeted chemical uncouplers with higher safety and therapeutic values are under investigation in order to tackle obesity, diabetes and fatty liver disease. Moreover, in the past 20 years, transgenic mouse models were generated to understand the molecular and metabolic consequences of targeted uncoupling, expressing functional uncoupling protein 1 (UCP1) ectopically in white adipose tissue or skeletal muscle. Similar to the action of chemical mitochondrial uncouplers, UCP1 protein dissipates the proton gradient across the inner mitochondrial membrane, thus allowing maximum activity of the respiratory chain and compensatory increase in oxygen consumption, uncoupled from ATP synthesis. Consequently, targeted mitochondrial uncoupling in adipose tissue and skeletal muscle of UCP1-transgenic mice increased substrate metabolism and ameliorates obesity, hypertriglyceridemia and insulin resistance. Further, muscle-specific decrease in mitochondrial efficiency promotes a cell-autonomous and cell-non-autonomous adaptive metabolic remodeling with increased oxidative stress tolerance. This review provides an overview of novel chemical uncouplers as well as the metabolic consequences and adaptive processes of targeted mitochondrial uncoupling on metabolic health and survival.

  4. Uncoupler-reversible inhibition of mitochondrial ATPase by metal chelates of bathophenanthroline. I. General features.

    PubMed

    Carlsson, C; Ernster, L

    1981-12-14

    (1) Certain metal chelates of 4,7-diphenyl-1,10-phenanthroline (bathophenanthroline, BPh) are potent inhibitors of soluble mitochondrial F1-ATPase. (2) The BPh-metal chelate inhibition of soluble mitochondrial F1-ATPase is relieved by uncouplers of oxidative phosphorylation. (3) The uncouplers appear to interact directly with the inhibitory chelates, forming stoichiometric adducts. (4) A complex between F1 and bPh3Fe2+, containing 3 mol BPh3Fe2+/mol F1, has been isolated. The enzymically inactive F1-BPh3Fe2+ complex binds uncouplers, yielding an enzymically active F1-BPh3Fe2+-uncoupler complex.

  5. Uncoupling of sexual reproduction from homologous recombination in homozygous Oenothera species

    PubMed Central

    Rauwolf, U; Greiner, S; Mráček, J; Rauwolf, M; Golczyk, H; Mohler, V; Herrmann, R G; Meurer, J

    2011-01-01

    Salient features of the first meiotic division are independent segregation of chromosomes and homologous recombination (HR). In non-sexually reproducing, homozygous species studied to date HR is absent. In this study, we constructed the first linkage maps of homozygous, bivalent-forming Oenothera species and provide evidence that HR was exclusively confined to the chromosome ends of all linkage groups in our population. Co-segregation of complementary DNA-based markers with the major group of AFLP markers indicates that HR has only a minor role in generating genetic diversity of this taxon despite its efficient adaptation capability. Uneven chromosome condensation during meiosis in Oenothera may account for restriction of HR. The use of plants with ancient chromosomal arm arrangement demonstrates that limitation of HR occurred before and independent from species hybridizations and reciprocal translocations of chromosome arms—a phenomenon, which is widespread in the genus. We propose that consecutive loss of HR favored the evolution of reciprocal translocations, beneficial superlinkage groups and ultimately permanent translocation heterozygosity. PMID:21448231

  6. Cellular interactions uncouple beta-adrenergic receptors from adenylate cyclase.

    PubMed

    Ciment, G; de Vellis, J

    1978-11-17

    C6 glioma cells and B104 neuroblastoma cells both possess adenylate cyclase activity, but only C6 cells have beta-adrenergic receptors. However, when cocultured with B104 cells, C6 cells show a marked decrease in their ability to accumulate adenosine 3', 5'-monophosphate upon stimulation with beta receptor agonists. Since both beta receptors and cholera toxin-stimulated adenylate cyclase activities are present in C6/B104 cocultures, we conclude that the beta receptor/adenylate cyclase transduction mechanism in cocultured C6 cells is uncoupled.

  7. Mitochondrial ATP-Pi exchange complex and the site of uncoupling of oxidative phosphorylation.

    PubMed

    Hatefi, Y; Hanstein, W G; Galante, Y; Stiggall, D L

    1975-07-01

    Five enzyme complexes, which are concerned with electron transport and oxidative phosphorylation, have been isolated from beef heart mitochondria. Enzyme complexes I, II, III and IV are the electron transfer complexes discovered in 1961. Complex V is an energy-conserving complex. It catalyzes ATP-Pi exchange and ATP hydrolysis. The exchange reaction is sensitive to uncouplers, rutamycin, valinomycin plus K-+, dicyclorexylcarboditmide, arsenate, azide, and adenylyl imidodiphosphate. It is also specific for ATP; ITP, GTP and UTP are essentially ineffective. Studies with the photoaffinity labeling uncoupler, 2-azido-4-nitrophenol (NPA), have shown that the mitochondrial uncoupler-binding sites are located exclusively in complex V. Complexes I, III and IV, which carry the three coupling sites of the respiratory chain, had negligible capacity for the binding of NPA, whereas the uncoupler-binding capacity of complex V appeared to be increased two- to threefold as compared to mitochondria. Complexes I, II, III, IV and V are obtained from the same batch of mitochondria by a simple fractionation procedure, which employs cholate, deoxycholate, ammonium acetate and ammonium sulfate. Studies with NPA have shown that mitochondria contain per milligram protein about 0.6 nmole of uniformly reacting uncoupler binding site. All of the uncouplers tested appeared to interact competitively with this site. Photoaffinity labeling with tritiated NPA has shown that a major portion of NPA binds to a polypeptide of molecular weight between 26,000 and 30,000. Other studies on the mechanism of uncoupling have shown that picrate is a membrane-impermeable uncoupler. It cannot uncouple mitochondria. However, it is an effective uncoupler of ATP synthesis and ATP-induced transhydrogenation or reverse electron transfer when used in conjunction with sonicated submitochondrial particles, which have an inside-out orientation of the inner membrane with respect to the medium. In these particles, picrate

  8. Flavivirus Infection Uncouples Translation Suppression from Cellular Stress Responses

    PubMed Central

    Roth, Hanna; Magg, Vera; Uch, Fabian; Mutz, Pascal; Klein, Philipp; Haneke, Katharina; Lohmann, Volker; Bartenschlager, Ralf; Fackler, Oliver T.; Locker, Nicolas; Stoecklin, Georg

    2017-01-01

    ABSTRACT As obligate parasites, viruses strictly depend on host cell translation for the production of new progeny, yet infected cells also synthesize antiviral proteins to limit virus infection. Modulation of host cell translation therefore represents a frequent strategy by which viruses optimize their replication and spread. Here we sought to define how host cell translation is regulated during infection of human cells with dengue virus (DENV) and Zika virus (ZIKV), two positive-strand RNA flaviviruses. Polysome profiling and analysis of de novo protein synthesis revealed that flavivirus infection causes potent repression of host cell translation, while synthesis of viral proteins remains efficient. Selective repression of host cell translation was mediated by the DENV polyprotein at the level of translation initiation. In addition, DENV and ZIKV infection suppressed host cell stress responses such as the formation of stress granules and phosphorylation of the translation initiation factor eIF2α (α subunit of eukaryotic initiation factor 2). Mechanistic analyses revealed that translation repression was uncoupled from the disruption of stress granule formation and eIF2α signaling. Rather, DENV infection induced p38-Mnk1 signaling that resulted in the phosphorylation of the eukaryotic translation initiation factor eIF4E and was essential for the efficient production of virus particles. Together, these results identify the uncoupling of translation suppression from the cellular stress responses as a conserved strategy by which flaviviruses ensure efficient replication in human cells. PMID:28074025

  9. Seasonal uncoupling of demographic processes in a marine clonal plant

    NASA Astrophysics Data System (ADS)

    Mascaró, O.; Romero, J.; Pérez, M.

    2014-04-01

    In temperate regions, climatic factors impose a general seasonal pattern on seagrass growth that can be observed in leaf growth rates and, in small species, also in shoot density. Large variations in shoot density suggest a strong temporal uncoupling between shoot recruitment and shoot mortality, and the dependence of each of these processes on different drivers. Here we examine seasonal patterns of recruitment and mortality in the seagrass Cymodocea nodosa, one of the species most sensitive to seasonal forcing in the Mediterranean. We sampled two local populations submitted to different nutrient availability in Alfacs Bay (NW Mediterranean) and determined recruitment and mortality rates, as well as other plant traits, on a monthly basis. Our results confirm the hypothesized uncoupling, with maximum mortality 2 months after maximum recruitment. Whereas timing of recruitment was associated with light availability, and was supported by carbohydrate remobilisation, mortality was related to high water temperatures and probably also to light limitation in late summer due to self-shading. In the high-nutrient population, algal overgrowth caused further light deprivation, with mortality rates higher than in the low-nutrient population. It is emphasised that the demographic balance of the studied populations was negative for most of the year, with the exception of August and September. Therefore, caution is necessary when overall population trends are inferred from single annual sampling events.

  10. Uncoupling the Pleiotropic Phenotypes of clk-1 with tRNA Missense Suppressors in Caenorhabditis elegans

    PubMed Central

    Branicky, Robyn; Nguyen, Phuong Anh Thi; Hekimi, Siegfried

    2006-01-01

    clk-1 encodes a demethoxyubiquinone (DMQ) hydroxylase that is necessary for ubiquinone biosynthesis. When Caenorhabditis elegans clk-1 mutants are grown on bacteria that synthesize ubiquinone (UQ), they are viable but have a pleiotropic phenotype that includes slowed development, behaviors, and aging. However, when grown on UQ-deficient bacteria, the mutants arrest development transiently before growing up to become sterile adults. We identified nine suppressors of the missense mutation clk-1(e2519), which harbors a Glu-to-Lys substitution. All suppress the mutant phenotypes on both UQ-replete and UQ-deficient bacteria. However, each mutant suppresses a different subset of phenotypes, indicating that most phenotypes can be uncoupled from each other. In addition, all suppressors restore the ability to synthesize exceedingly small amounts of UQ, although they still accumulate the precursor DMQ, suggesting that the presence of DMQ is not responsible for the Clk-1 phenotypes. We cloned six of the suppressors, and all encode tRNAGlu genes whose anticodons are altered to read the substituted Lys codon of clk-1(e2519). To our knowledge, these suppressors represent the first missense suppressors identified in any metazoan. The pattern of suppression we observe suggests that the individual members of the tRNAGlu family are expressed in different tissues and at different levels. PMID:16648490

  11. RNA structure-dependent uncoupling of substrate recognition and cleavage by Escherichia coli ribonuclease III

    PubMed Central

    Calin-Jageman, Irina; Nicholson, Allen W.

    2003-01-01

    Members of the ribonuclease III superfamily of double-strand-specific endoribonucleases participate in diverse RNA maturation and decay pathways. Ribonuclease III of the gram-negative bacterium Escherichia coli processes rRNA and mRNA precursors, and its catalytic action can regulate gene expression by controlling mRNA translation and stability. It has been proposed that E.coli RNase III can function in a non-catalytic manner, by binding RNA without cleaving phosphodiesters. However, there has been no direct evidence for this mode of action. We describe here an RNA, derived from the T7 phage R1.1 RNase III substrate, that is resistant to cleavage in vitro by E.coli RNase III but retains comparable binding affinity. R1.1[CL3B] RNA is recognized by RNase III in the same manner as R1.1 RNA, as revealed by the similar inhibitory effects of a specific mutation in both substrates. Structure-probing assays and Mfold analysis indicate that R1.1[CL3B] RNA possesses a bulge– helix–bulge motif in place of the R1.1 asymmetric internal loop. The presence of both bulges is required for uncoupling. The bulge–helix–bulge motif acts as a ‘catalytic’ antideterminant, which is distinct from recognition antideterminants, which inhibit RNase III binding. PMID:12711683

  12. Metabolic Flux Analysis of Mitochondrial Uncoupling in 3T3-L1 Adipocytes

    PubMed Central

    Si, Yaguang; Shi, Hai; Lee, Kyongbum

    2009-01-01

    Background Increasing energy expenditure at the cellular level offers an attractive option to limit adiposity and improve whole body energy balance. In vivo and in vitro observations have correlated mitochondrial uncoupling protein-1 (UCP1) expression with reduced white adipose tissue triglyceride (TG) content. The metabolic basis for this correlation remains unclear. Methodology/Principal Findings This study tested the hypothesis that mitochondrial uncoupling requires the cell to compensate for the decreased oxidation phosphorylation efficiency by up-regulating lactate production, thus redirecting carbon flux away from TG synthesis. Metabolic flux analysis was used to characterize the effects of non-lethal, long-term mitochondrial uncoupling (up to 18 days) on the pathways of intermediary metabolism in differentiating 3T3-L1 adipocytes. Uncoupling was induced by forced expression of UCP1 and chemical (FCCP) treatment. Chemical uncoupling significantly decreased TG content by ca. 35%. A reduction in the ATP level suggested diminished oxidative phosphorylation efficiency in the uncoupled adipocytes. Flux analysis estimated significant up-regulation of glycolysis and down-regulation of fatty acid synthesis, with chemical uncoupling exerting quantitatively larger effects. Conclusions/Significance The results of this study support our hypothesis regarding uncoupling-induced redirection of carbon flux into glycolysis and lactate production, and suggest mitochondrial proton translocation as a potential target for controlling adipocyte lipid metabolism. PMID:19746157

  13. Changes in GDP binding to brown adipose tissue mitochondria and the uncoupling protein

    SciTech Connect

    Swick, A.G.; Swick, R.W. )

    1988-12-01

    Incubation in vitro of brown adipose tissue (BAT) mitochondria with divalent cations, spermine, or alkaline phosphatase led to a marked increase in the binding of ({sup 3}H)GDP. The effect of Mg{sup 2+} appeared to be the most specific and led to the largest increase in GDP binding. A simplified method was developed for measuring GDP binding to purified uncoupling protein from rat BAT mitochondria. Application of this method indicates that uncoupling protein from cold-acclimated rats binds twice as much GDP as uncoupling protein from cold-acclimated rats that were briefly returned to thermoneutrality, paralleling changes in GDP binding to the mitochondria. Incubation of BAT mitochondria with Mg{sup 2+} led to a smaller increase in GDP binding to the subsequently purified uncoupling protein, suggesting that divalent cations may somehow participate in the regulation of the activity of the uncoupling protein.

  14. Uncoupling primer and releaser responses to pheromone in honey bees

    NASA Astrophysics Data System (ADS)

    Grozinger, Christina M.; Fischer, Patrick; Hampton, Jacob E.

    2007-05-01

    Pheromones produce dramatic behavioral and physiological responses in a wide variety of species. Releaser pheromones elicit rapid responses within seconds or minutes, while primer pheromones produce long-term changes which may take days to manifest. Honeybee queen mandibular pheromone (QMP) elicits multiple distinct behavioral and physiological responses in worker bees, as both a releaser and primer, and thus produces responses on vastly different time scales. In this study, we demonstrate that releaser and primer responses to QMP can be uncoupled. First, treatment with the juvenile hormone analog methoprene leaves a releaser response (attraction to QMP) intact, but modulates QMP’s primer effects on sucrose responsiveness. Secondly, two components of QMP (9-ODA and 9-HDA) do not elicit a releaser response (attraction) but are as effective as QMP at modulating a primer response, downregulation of foraging-related brain gene expression. These results suggest that different responses to a single pheromone may be produced via distinct pathways.

  15. Molecular identity of uncoupling proteins in thermogenic skunk cabbage.

    PubMed

    Ito-Inaba, Yasuko; Hida, Yamato; Mori, Hitoshi; Inaba, Takehito

    2008-12-01

    Thermogenic skunk cabbage has been reported to have two types of uncoupling protein (UCP), a typical 6-transmembrane (TM) SrUCPA and an atypical 5-TM SrUCPB. To verify further the role of SrUCPs in thermogenic skunk cabbage, we examined the molecular identity of SrUCPs in more detail. Both mRNA and genomic analyses supported the presence of SrUCPA, but not SrUCPB. Furthermore, SrUCP protein purified from spadix mitochondria was identified as SrUCPA by mass spectrometry. These results clearly indicate that SrUCPA is the major expressed UCP in skunk cabbage, and the presence of atypical SrUCPB is unlikely to be associated with thermogenesis of skunk cabbage.

  16. Potassium channel openers are uncoupling protonophores: implication in cardioprotection.

    PubMed

    Holmuhamedov, Ekhson L; Jahangir, Arshad; Oberlin, Andrew; Komarov, Alexander; Colombini, Marco; Terzic, Andre

    2004-06-18

    Excessive build-up of mitochondrial protonic potential is harmful to cellular homeostasis, and modulation of inner membrane permeability a proposed countermeasure. Here, we demonstrate that structurally distinct potassium channel openers, diazoxide and pinacidil, facilitated transmembrane proton translocation generating H(+)-selective current through planar phospholipid membrane. Both openers depolarized mitochondria, activated state 4 respiration and reduced oxidative phosphorylation, recapitulating the signature of mitochondrial uncoupling. This effect was maintained in K(+)-free conditions and shared with the prototypic protonophore 2,4-dinitrophenol. Diazoxide, pinacidil and 2,4-dinitrophenol, but not 2,4-dinitrotoluene lacking protonophoric properties, preserved functional recovery of ischemic heart. The identified protonophoric property of potassium channel openers, thus, implicates a previously unrecognized component in their mechanism of cardioprotection.

  17. Mitochondrial uncoupling proteins in human physiology and disease.

    PubMed

    Hagen, T; Vidal-Puig, A

    2002-02-01

    Uncoupling proteins are mitochondrial carrier proteins that catalyse a regulated proton leak across the inner mitochondrial membrane, diverting free energy from ATP synthesis by the mitochondrial F0F1-ATP synthase to the production of heat. Uncoupling protein 1 (UCP1), which is exclusively expressed in brown adipose tissue, is the mediator of thermogenesis in response to beta-adrenergic stimulation. Using gene a knockout mouse model, UCP1 has been shown to be required for cold acclimation. Two homologues of UCP1, UCP2 and UCP3, have been identified recently and show a much wider tissue distribution. UCP2 and UCP3 have been postulated to play a role in the regulation of cold acclimation, energy expenditure and diet-induced thermogenesis in humans, who, in contrast to rodents, have very little brown fat in adult life. However, evidence is accumulating that thermogenesis and regulation of body weight may not be the physiological functions of UCP2 and UCP3. For instance, mice deficient for UCP2 or UCP3 are not cold-intolerant and do not develop obesity. Alternative functions were suggested, primarily based on findings in UCP2 and UCP3 gene knockout mice. Both UCP2- and UCP3-deficient mice were found to overproduce reactive oxygen species and UCP2-deficient mice to hypersecrete insulin. Thus, the UCP1 homologues may play a role in regulating mitochondrial production of reactive oxygen species and b-cell function. In this review, we discuss the role of UCP1, UCP2 and UCP3 in human physiology and disease, primarily based on findings from the various animal models that have been generated.

  18. Skeletal muscle mitochondrial uncoupling in a murine cancer cachexia model.

    PubMed

    Tzika, A Aria; Fontes-Oliveira, Cibely Cristine; Shestov, Alexander A; Constantinou, Caterina; Psychogios, Nikolaos; Righi, Valeria; Mintzopoulos, Dionyssios; Busquets, Silvia; Lopez-Soriano, Francisco J; Milot, Sylvain; Lepine, Francois; Mindrinos, Michael N; Rahme, Laurence G; Argiles, Josep M

    2013-09-01

    Approximately half of all cancer patients present with cachexia, a condition in which disease-associated metabolic changes lead to a severe loss of skeletal muscle mass. Working toward an integrated and mechanistic view of cancer cachexia, we investigated the hypothesis that cancer promotes mitochondrial uncoupling in skeletal muscle. We subjected mice to in vivo phosphorous-31 nuclear magnetic resonance (31P NMR) spectroscopy and subjected murine skeletal muscle samples to gas chromatography/mass spectrometry (GC/MS). The mice used in both experiments were Lewis lung carcinoma models of cancer cachexia. A novel 'fragmented mass isotopomer' approach was used in our dynamic analysis of 13C mass isotopomer data. Our 31P NMR and GC/MS results indicated that the adenosine triphosphate (ATP) synthesis rate and tricarboxylic acid (TCA) cycle flux were reduced by 49% and 22%, respectively, in the cancer-bearing mice (p<0.008; t-test vs. controls). The ratio of ATP synthesis rate to the TCA cycle flux (an index of mitochondrial coupling) was reduced by 32% in the cancer-bearing mice (p=0.036; t-test vs. controls). Genomic analysis revealed aberrant expression levels for key regulatory genes and transmission electron microscopy (TEM) revealed ultrastructural abnormalities in the muscle fiber, consistent with the presence of abnormal, giant mitochondria. Taken together, these data suggest that mitochondrial uncoupling occurs in cancer cachexia and thus point to the mitochondria as a potential pharmaceutical target for the treatment of cachexia. These findings may prove relevant to elucidating the mechanisms underlying skeletal muscle wasting observed in other chronic diseases, as well as in aging.

  19. Humane reproduction.

    PubMed

    1974-03-01

    Discusses social, economic, and humane considerations in population control. Mental health aspects of controlled fertility are considered in relation to the family's psychosocial and material resources, the effects of reproduction on the individual the family, and community, and the advantages and disadvantages of controlled reproduction. A distinction between family planning and population control is outlined. It is suggested that there is hardly a single more effective tool for preventing psychological disorders than the prevention of unwanted pregnancies. Analyses of educational and medical services and methods of birth control are presented. A comprehensive neighborhood health station, which would consolidate these services, is suggested. It is concluded that humane programs of reproduction would lead to a reconciliation of biological drives with a responsible concern for the quality of life.

  20. Reproductive physiology

    USGS Publications Warehouse

    Gee, G.F.; Russman, S.E.; Ellis, David H.; Gee, George F.; Mirande, Claire M.

    1996-01-01

    Conclusions: Although the general pattern of avian physiology applies to cranes, we have identified many physiological mechanisms (e.g., effects of disturbance) that need further study. Studies with cranes are expensive compared to those done with domestic fowl because of the crane's larger size, low reproductive rate, and delayed sexual maturity. To summarize, the crane reproductive system is composed of physiological and anatomical elements whose function is controlled by an integrated neural-endocrine system. Males generally produce semen at a younger age than when females lay eggs. Eggs are laid in clutches of two (1 to 3), and females will lay additional clutches if the preceding clutches are removed. Both sexes build nests and incubate the eggs. Molt begins during incubation and body molt may be completed annually in breeding pairs. However, remiges are replaced sequentially over 2 to 3 years, or abruptly every 2 to 3 years in other species. Most immature birds replace their juvenal remiges over a 2 to 3 year period. Stress interferes with reproduction in cranes by reducing egg production or terminating the reproductive effort. In other birds, stress elevates corticosterone levels and decreases LHRH release. We know little about the physiological response of cranes to stress.

  1. Uncoupling protein 2 from carp and zebrafish, ectothermic vertebrates.

    PubMed

    Stuart, J A; Harper, J A; Brindle, K M; Brand, M D

    1999-09-01

    Uncoupling protein 1 (UCP1) is of demonstrated importance in mammalian thermogenesis, and early hypotheses regarding the functions of the newly discovered UCP homologues, UCP2, UCP3 and others, have focused largely on their potential roles in thermogenesis. Here we report the amino acid sequences of two new UCPs from ectothermic vertebrates. UCPs from two fish species, the zebrafish (Danio rerio) and carp (Cyprinus carpio), were identified in expressed sequence tag databases at the European Molecular Biology Laboratory. cDNAs from a C. carpio 'peritoneal exudate cell' cDNA library and from a D. rerio 'day 0 fin regeneration' cDNA library were obtained and fully sequenced. Each cDNA encodes a 310 amino acid protein with an average 82% sequence identity to mammalian UCP2s. The fish UCP2s are about 70% identical to mammalian UCP3s, and 60% identical to mammalian UCP1s. Carp and zebrafish are ectotherms--they do not raise their body temperatures above ambient by producing excess heat. The presence of UCP2 in these fish thus suggests the protein may have function(s) not related to thermogenesis.

  2. Stochastic calculus for uncoupled continuous-time random walks.

    PubMed

    Germano, Guido; Politi, Mauro; Scalas, Enrico; Schilling, René L

    2009-06-01

    The continuous-time random walk (CTRW) is a pure-jump stochastic process with several applications not only in physics but also in insurance, finance, and economics. A definition is given for a class of stochastic integrals driven by a CTRW, which includes the Itō and Stratonovich cases. An uncoupled CTRW with zero-mean jumps is a martingale. It is proved that, as a consequence of the martingale transform theorem, if the CTRW is a martingale, the Itō integral is a martingale too. It is shown how the definition of the stochastic integrals can be used to easily compute them by Monte Carlo simulation. The relations between a CTRW, its quadratic variation, its Stratonovich integral, and its Itō integral are highlighted by numerical calculations when the jumps in space of the CTRW have a symmetric Lévy alpha -stable distribution and its waiting times have a one-parameter Mittag-Leffler distribution. Remarkably, these distributions have fat tails and an unbounded quadratic variation. In the diffusive limit of vanishing scale parameters, the probability density of this kind of CTRW satisfies the space-time fractional diffusion equation (FDE) or more in general the fractional Fokker-Planck equation, which generalizes the standard diffusion equation, solved by the probability density of the Wiener process, and thus provides a phenomenologic model of anomalous diffusion. We also provide an analytic expression for the quadratic variation of the stochastic process described by the FDE and check it by Monte Carlo.

  3. The Role of Nitric Oxide Synthase Uncoupling in Tumor Progression

    PubMed Central

    Rabender, Christopher S.; Alam, Asim; Sundaresan, Gobalakrishnan; Cardnell, Robert J.; Yakovlev, Vasily A.; Mukhopadhyay, Nitai D.; Graves, Paul; Zweit, Jamal; Mikkelsen, Ross B.

    2015-01-01

    Here evidence suggests that nitric oxide synthases (NOS) of tumor cells, in contrast to normal tissues, synthesize predominantly superoxide and peroxynitrite. Based on HPLC analysis, the underlying mechanism for this uncoupling is a reduced tetrahydrobiopterin: dihydrobiopterin ratio (BH4:BH2) found in breast, colorectal, epidermoid and head and neck tumors compared to normal tissues. Increasing BH4:BH2 and reconstitution of coupled NOS activity in breast cancer cells with the BH4 salvage pathway precursor, sepiapterin, causes significant shifts in downstream signaling including increased cGMP-dependent protein kinase (PKG) activity, decreased β-catenin expression and TCF4 promoter activity, and reduced NF-κB promoter activity. Sepiapterin inhibited breast tumor cell growth in vitro and in vivo as measured by clonogenic assay, Ki67 staining and 18F-deoxyglucose positron emission tomography (FDG-PET). In summary, using diverse tumor types, it is demonstrated that the BH4:BH2 ratio is lower in tumor tissues and as a consequence nitric oxide synthase activity generates more peroxynitrite and superoxide anion than nitric oxide resulting in important tumor growth promoting and anti-apoptotic signaling properties. Implications The synthetic BH4, Kuvan®, is used to elevate BH4:BH2 in some phenylketonuria patients and to treat diseases associated with endothelial dysfunction suggesting a novel, testable approach for correcting an abnormality of tumor metabolism to control tumor growth. PMID:25724429

  4. Transcriptional regulation of the uncoupling protein-1 gene.

    PubMed

    Villarroya, Francesc; Peyrou, Marion; Giralt, Marta

    2017-03-01

    Regulated transcription of the uncoupling protein-1 (UCP1) gene, and subsequent UCP1 protein synthesis, is a hallmark of the acquisition of the differentiated, thermogenically competent status of brown and beige/brite adipocytes, as well as of the responsiveness of brown and beige/brite adipocytes to adaptive regulation of thermogenic activity. The 5' non-coding region of the UCP1 gene contains regulatory elements that confer tissue specificity, differentiation dependence, and neuro-hormonal regulation to UCP1 gene transcription. Two main regions-a distal enhancer and a proximal promoter region-mediate transcriptional regulation through interactions with a plethora of transcription factors, including nuclear hormone receptors and cAMP-responsive transcription factors. Co-regulators, such as PGC-1α, play a pivotal role in the concerted regulation of UCP1 gene transcription. Multiple interactions of transcription factors and co-regulators at the promoter region of the UCP1 gene result in local chromatin remodeling, leading to activation and increased accessibility of RNA polymerase II and subsequent gene transcription. Moreover, a commonly occurring A-to-G polymorphism in close proximity to the UCP1 gene enhancer influences the extent of UCP1 gene transcription. Notably, it has been reported that specific aspects of obesity and associated metabolic diseases are associated with human population variability at this site. On another front, the unique properties of the UCP1 promoter region have been exploited to develop brown adipose tissue-specific gene delivery tools for experimental purposes.

  5. Stochastic calculus for uncoupled continuous-time random walks

    NASA Astrophysics Data System (ADS)

    Germano, Guido; Politi, Mauro; Scalas, Enrico; Schilling, René L.

    2009-06-01

    The continuous-time random walk (CTRW) is a pure-jump stochastic process with several applications not only in physics but also in insurance, finance, and economics. A definition is given for a class of stochastic integrals driven by a CTRW, which includes the Itō and Stratonovich cases. An uncoupled CTRW with zero-mean jumps is a martingale. It is proved that, as a consequence of the martingale transform theorem, if the CTRW is a martingale, the Itō integral is a martingale too. It is shown how the definition of the stochastic integrals can be used to easily compute them by Monte Carlo simulation. The relations between a CTRW, its quadratic variation, its Stratonovich integral, and its Itō integral are highlighted by numerical calculations when the jumps in space of the CTRW have a symmetric Lévy α -stable distribution and its waiting times have a one-parameter Mittag-Leffler distribution. Remarkably, these distributions have fat tails and an unbounded quadratic variation. In the diffusive limit of vanishing scale parameters, the probability density of this kind of CTRW satisfies the space-time fractional diffusion equation (FDE) or more in general the fractional Fokker-Planck equation, which generalizes the standard diffusion equation, solved by the probability density of the Wiener process, and thus provides a phenomenologic model of anomalous diffusion. We also provide an analytic expression for the quadratic variation of the stochastic process described by the FDE and check it by Monte Carlo.

  6. The insensitivity to uncouplers of testis mitochondrial ATPase.

    PubMed

    Vázquez-Memije, M E; Izquierdo-Reyes, V; Delhumeau-Ongay, G

    1988-01-01

    Albumin-free testis mitochondrial ATPase activity failed to be stimulated by either 2,4-dinitrophenol (DNP) or carbonyl cyanide rho-trifluoromethoxyphenylhydrazone (FCCP). DNP scarcely enhanced the state 4 respiration and mitochondria proved to be poorly coupled. When 1% bovine serum albumin was added to the isolation medium, DNP or FCCP stimulated ATPase nearly twofold and the dose-response curves for the uncouplers on the QO2 reached a plateau at five- to sixfold. The DNP coupling index (q) also showed a 30-40% improvement. A dose-response curve for oligomycin on the rate of [gamma-32P]ATP synthesis showed a stimulation of ATP synthase activity by 10-100 ng inhibitor/mg protein, suggesting a possible blockade of "open" F0 channels. In the albumin preparation oligomycin inhibited ATP synthesis in the range 10-100 ng/mg protein. Since testis ATPase is known to be loosely bound to the membrane, an effect of albumin, improving tightness in the interaction of the F1 and the F0 sectors of the ATPase, is suggested.

  7. Assisted Reproductive Technology (ART)

    MedlinePlus

    ... American Society for Reproductive Medicine. (2012). Third-party reproduction (sperm, egg, and embryo donation and surrogacy): A ... from https://www.asrm.org/BOOKLET_Third-party_Reproduction [top] American Society for Reproductive Medicine. (2015). Assisted ...

  8. Uncoupling protein 2 gene polymorphisms are associated with obesity

    PubMed Central

    2012-01-01

    Background Uncoupling protein 2 (UCP2) gene polymorphisms have been reported as genetic risk factors for obesity and type 2 diabetes mellitus (T2DM). We examined the association of commonly observed UCP2 G(−866)A (rs659366) and Ala55Val (C > T) (rs660339) single nucleotide polymorphisms (SNPs) with obesity, high fasting plasma glucose, and serum lipids in a Balinese population. Methods A total of 603 participants (278 urban and 325 rural subjects) were recruited from Bali Island, Indonesia. Fasting plasma glucose (FPG), triglyceride (TG), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) were measured. Obesity was determined based on WHO classifications for adult Asians. Participants were genotyped for G(−866)A and Ala55Val polymorphisms of the UCP2 gene. Results Obesity prevalence was higher in urban subjects (51%) as compared to rural subjects (23%). The genotype, minor allele (MAF), and heterozygosity frequencies were similar between urban and rural subjects for both SNPs. All genotype frequencies were in Hardy-Weinberg equilibrium. A combined analysis of genotypes and environment revealed that the urban subjects carrying the A/A genotype of the G(−866)A SNP have higher BMI than the rural subjects with the same genotype. Since the two SNPs showed strong linkage disequilibrium (D’ = 0.946, r2 = 0.657), a haplotype analysis was performed. We found that the AT haplotype was associated with high BMI only when the urban environment was taken into account. Conclusions We have demonstrated the importance of environmental settings in studying the influence of the common UCP2 gene polymorphisms in the development of obesity in a Balinese population. PMID:22533685

  9. Uncoupling Proteins: Role in Insulin Resistance and Insulin Insufficiency

    PubMed Central

    Chan, Catherine B.; Harper, Mary-Ellen

    2010-01-01

    Uncoupling proteins (UCPs) are modulators of mitochondrial metabolism that have been implicated in the development of both insulin resistance and insulin insufficiency, the two major pathophysiological events associated with type 2 diabetes. UCP2 mRNA is expressed in a wide range of tissues; however UCP2 protein expression is restricted to fewer tissues, including the endocrine pancreas, spleen, stomach, brain and the lung. To date, its role in the pathophysiology of diabetes has been most strongly associated with impaired glucose-stimulated insulin secretion from the β-cell, particularly after its induction by free fatty acids. The physiological role of UCP2 remains controversial, but it may act as a downstream signal transducer of superoxide. UCP3 mRNA and protein are expressed in relatively few tissues, predominately skeletal muscle, brown adipose tissue and heart. Increased expression of UCP3 in skeletal muscle is associated with protection from diet-induced insulin resistance in mice. In patients with type 2 diabetes UCP3 protein in muscle is reduced by 50% compared to healthy controls. The primary physiological role of the novel UCPs does not appear to be protection against positive energy balance and obesity; this is based largely on findings from studies of UCP2 and UCP3 knockout mice and from observed increases in UCP3 expression with fasting. The mechanism(s) of action of UCP2 and UCP3 are poorly understood. However, findings support roles for UCP2 and UCP3 as modifiers of fatty acid metabolism and in mitigating damage from reactive oxygen species. PMID:18220632

  10. Uncoupling of mitochondrial oxidative phosphorylation by DNA gyrase inhibitors

    SciTech Connect

    Gallagher, M.; Weinberg, R.; Simpson, M.V.

    1986-05-01

    Supercoiled mtDNA and the swivel requirement for its replication suggest the existence of a mtDNA gyrase. The authors published studies on isolated mitochondria showing that novobiocin, coumermycin, nalidixic acid, and oxolinic acid promote relaxed DNA formation at the expense of supercoiled DNA are in accord with this view. However, their inability to directly detect the enzyme led them to ask whether these drugs act elsewhere. Their results with isolated rat liver mitochondria show that novo, nal, but not oxo, stimulate O/sub 2/ uptake as much as does 2.4-dinitrophenol (DNP). This possible uncoupling effect was confirmed by a standard (/sup 32/P) assay showing the following inhibitions of ATP synthesis: 0.2 mM novo, 95% (0.4 mM, 100%) 0.4 mM nal, 37%; oxo to at least 1.9 mM, 0%; (0.5 mM 2,4-DNP, 100%). Thus, oxo remains a useful tool for intact mitochondrial studies. Because these three drugs, especially novo, are being used to study the role of DNA superhelicity on pro- and eucaryotic (and mitochondrial) gene expression, the authors studied their effect on oxidative phosphorylation in such cells. In these cases the drugs did not affect DNP-sensitive (/sup 14/C)glutamine transport into E. coli cells (an established measure of ATP level), nor, in an S. cerevisiae mutant permeable to novo, did novo affect the steady state ATP level. Studies on cultured mammalian cells are in progress.

  11. Ca2+-induced uncoupling of Aplysia bag cell neurons.

    PubMed

    Dargaei, Zahra; Standage, Dominic; Groten, Christopher J; Blohm, Gunnar; Magoski, Neil S

    2015-02-01

    Electrical transmission is a dynamically regulated form of communication and key to synchronizing neuronal activity. The bag cell neurons of Aplysia are a group of electrically coupled neuroendocrine cells that initiate ovulation by secreting egg-laying hormone during a prolonged period of synchronous firing called the afterdischarge. Accompanying the afterdischarge is an increase in intracellular Ca2+ and the activation of protein kinase C (PKC). We used whole cell recording from paired cultured bag cell neurons to demonstrate that electrical coupling is regulated by both Ca2+ and PKC. Elevating Ca2+ with a train of voltage steps, mimicking the onset of the afterdischarge, decreased junctional current for up to 30 min. Inhibition was most effective when Ca2+ entry occurred in both neurons. Depletion of Ca2+ from the mitochondria, but not the endoplasmic reticulum, also attenuated the electrical synapse. Buffering Ca2+ with high intracellular EGTA or inhibiting calmodulin kinase prevented uncoupling. Furthermore, activating PKC produced a small but clear decrease in junctional current, while triggering both Ca2+ influx and PKC inhibited the electrical synapse to a greater extent than Ca2+ alone. Finally, the amplitude and time course of the postsynaptic electrotonic response were attenuated after Ca2+ influx. A mathematical model of electrically connected neurons showed that excessive coupling reduced recruitment of the cells to fire, whereas less coupling led to spiking of essentially all neurons. Thus a decrease in electrical synapses could promote the afterdischarge by ensuring prompt recovery of electrotonic potentials or making the neurons more responsive to current spreading through the network.

  12. Rethinking reproductive "tourism" as reproductive "exile".

    PubMed

    Inhorn, Marcia C; Patrizio, Pasquale

    2009-09-01

    Whereas reproductive "tourism" implies leisure travel, reproductive "exile" bespeaks the numerous difficulties and constraints faced by infertile patients who are "forced" to travel globally for assisted reproduction. Given this reality, it is time to rethink the language of "reproductive tourism," replacing it with more accurate and patient-centered terms.

  13. Unisexual Reproduction Reverses Muller’s Ratchet

    PubMed Central

    Roach, Kevin C.; Heitman, Joseph

    2014-01-01

    Cryptococcus neoformans is a pathogenic basidiomycetous fungus that engages in outcrossing, inbreeding, and selfing forms of unisexual reproduction as well as canonical sexual reproduction between opposite mating types. Long thought to be clonal, >99% of sampled environmental and clinical isolates of C. neoformans are MATα, limiting the frequency of opposite mating-type sexual reproduction. Sexual reproduction allows eukaryotic organisms to exchange genetic information and shuffle their genomes to avoid the irreversible accumulation of deleterious changes that occur in asexual populations, known as Muller’s ratchet. We tested whether unisexual reproduction, which dispenses with the requirement for an opposite mating-type partner, is able to purge the genome of deleterious mutations. We report that the unisexual cycle can restore mutant strains of C. neoformans to wild-type genotype and phenotype, including prototrophy and growth rate. Furthermore, the unisexual cycle allows attenuated strains to purge deleterious mutations and produce progeny that are returned to wild-type virulence. Our results show that unisexual populations of C. neoformans are able to avoid Muller’s ratchet and loss of fitness through a unisexual reproduction cycle involving α-α cell fusion, nuclear fusion, and meiosis. Similar types of unisexual reproduction may operate in other pathogenic and saprobic eukaryotic taxa. PMID:25217049

  14. Mimicking a SURF1 allele reveals uncoupling of cytochrome c oxidase assembly from translational regulation in yeast.

    PubMed

    Reinhold, Robert; Bareth, Bettina; Balleininger, Martina; Wissel, Mirjam; Rehling, Peter; Mick, David U

    2011-06-15

    Defects in mitochondrial energy metabolism lead to severe human disorders, mainly affecting tissues especially dependent on oxidative phosphorylation, such as muscle and brain. Leigh Syndrome describes a severe encephalomyopathy in infancy, frequently caused by mutations in SURF1. SURF1, termed Shy1 in Saccharomyces cerevisiae, is a conserved assembly factor for the terminal enzyme of the respiratory chain, cytochrome c oxidase. Although the molecular function of SURF1/Shy1 is still enigmatic, loss of function leads to cytochrome c oxidase deficiency and reduced expression of the central subunit Cox1 in yeast. Here, we provide insights into the molecular mechanisms leading to disease through missense mutations in codons of the most conserved amino acids in SURF1. Mutations affecting G(124) do not compromise import of the SURF1 precursor protein but lead to fast turnover of the mature protein within the mitochondria. Interestingly, an Y(274)D exchange neither affects stability nor localization of the protein. Instead, SURF1(Y274D) accumulates in a 200 kDa cytochrome c oxidase assembly intermediate. Using yeast as a model, we demonstrate that the corresponding Shy1(Y344D) is able to overcome the stage where cytochrome c oxidase assembly links to the feedback regulation of mitochondrial Cox1 expression. However, Shy1(Y344D) impairs the assembly at later steps, most apparent at low temperature and exhibits a dominant-negative phenotype upon overexpression. Thus, exchanging the conserved tyrosine (Y(344)) with aspartate in yeast uncouples translational regulation of Cox1 from cytochrome c oxidase assembly and provides evidence for the dual functionality of Shy1.

  15. Identification of a novel mitochondrial uncoupler that does not depolarize the plasma membrane☆

    PubMed Central

    Kenwood, Brandon M.; Weaver, Janelle L.; Bajwa, Amandeep; Poon, Ivan K.; Byrne, Frances L.; Murrow, Beverley A.; Calderone, Joseph A.; Huang, Liping; Divakaruni, Ajit S.; Tomsig, Jose L.; Okabe, Kohki; Lo, Ryan H.; Cameron Coleman, G.; Columbus, Linda; Yan, Zhen; Saucerman, Jeffrey J.; Smith, Jeffrey S.; Holmes, Jeffrey W.; Lynch, Kevin R.; Ravichandran, Kodi S.; Uchiyama, Seiichi; Santos, Webster L.; Rogers, George W.; Okusa, Mark D.; Bayliss, Douglas A.; Hoehn, Kyle L.

    2013-01-01

    Dysregulation of oxidative phosphorylation is associated with increased mitochondrial reactive oxygen species production and some of the most prevalent human diseases including obesity, cancer, diabetes, neurodegeneration, and heart disease. Chemical 'mitochondrial uncouplers' are lipophilic weak acids that transport protons into the mitochondrial matrix via a pathway that is independent of ATP synthase, thereby uncoupling nutrient oxidation from ATP production. Mitochondrial uncouplers also lessen the proton motive force across the mitochondrial inner membrane and thereby increase the rate of mitochondrial respiration while decreasing production of reactive oxygen species. Thus, mitochondrial uncouplers are valuable chemical tools that enable the measurement of maximal mitochondrial respiration and they have been used therapeutically to decrease mitochondrial reactive oxygen species production. However, the most widely used protonophore uncouplers such as carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and 2,4-dinitrophenol have off-target activity at other membranes that lead to a range of undesired effects including plasma membrane depolarization, mitochondrial inhibition, and cytotoxicity. These unwanted properties interfere with the measurement of mitochondrial function and result in a narrow therapeutic index that limits their usefulness in the clinic. To identify new mitochondrial uncouplers that lack off-target activity at the plasma membrane we screened a small molecule chemical library. Herein we report the identification and validation of a novel mitochondrial protonophore uncoupler (2-fluorophenyl){6-[(2-fluorophenyl)amino](1,2,5-oxadiazolo[3,4-e]pyrazin-5-yl)}amine, named BAM15, that does not depolarize the plasma membrane. Compared to FCCP, an uncoupler of equal potency, BAM15 treatment of cultured cells stimulates a higher maximum rate of mitochondrial respiration and is less cytotoxic. Furthermore, BAM15 is bioactive in vivo and dose

  16. Oxidative phosphorylation in Debaryomyces hansenii: physiological uncoupling at different growth phases.

    PubMed

    Cabrera-Orefice, Alfredo; Guerrero-Castillo, Sergio; Díaz-Ruíz, Rodrigo; Uribe-Carvajal, Salvador

    2014-07-01

    Physiological uncoupling of mitochondrial oxidative phosphorylation (OxPhos) was studied in Debaryomyces hansenii. In other species, such as Yarrowia lipolytica and Saccharomyces cerevisiae, OxPhos can be uncoupled through differential expression of branched respiratory chain enzymes or by opening of a mitochondrial unspecific channel (ScMUC), respectively. However D. hansenii mitochondria, which contain both a branched respiratory chain and a mitochondrial unspecific channel (DhMUC), selectively uncouple complex I-dependent rate of oxygen consumption in the stationary growth phase. The uncoupled complex I-dependent respiration was only 20% of the original activity. Inhibition was not due to inactivation of complex I, lack of protein expression or to differential expression of alternative oxidoreductases. Furthermore, all other respiratory chain activities were normal. Decrease of complex I-dependent respiration was due to NAD(+) loss from the matrix, probably through an open of DhMUC. When NAD(+) was added back, coupled complex I-activity was recovered. NAD(+) re-uptake was independent of DhMUC opening and seemed to be catalyzed by a NAD(+)-specific transporter, which was sensitive to bathophenanthroline, bromocresol purple or pyridoxal-5'-phosphate as described for S. cerevisiae mitochondrial NAD(+) transporters. Loss of NAD(+) from the matrix through an open MUC is proposed as an additional mechanism to uncouple OxPhos.

  17. Dinitrophenol-induced mitochondrial uncoupling in vivo triggers respiratory adaptation in HepG2 cells.

    PubMed

    Desquiret, Valérie; Loiseau, Dominique; Jacques, Caroline; Douay, Olivier; Malthièry, Yves; Ritz, Patrick; Roussel, Damien

    2006-01-01

    Here, we show that 3 days of mitochondrial uncoupling, induced by low concentrations of dinitrophenol (10 and 50 microM) in cultured human HepG2 cells, triggers cellular metabolic adaptation towards oxidative metabolism. Chronic respiratory uncoupling of HepG2 cells induced an increase in cellular oxygen consumption, oxidative capacity and cytochrome c oxidase activity. This was associated with an upregulation of COXIV and ANT3 gene expression, two nuclear genes that encode mitochondrial proteins involved in oxidative phosphorylation. Glucose consumption, lactate and pyruvate production and growth rate were unaffected, indicating that metabolic adaptation of HepG2 cells undergoing chronic respiratory uncoupling allows continuous and efficient mitochondrial ATP production without the need to increase glycolytic activity. In contrast, 3 days of dinitrophenol treatment did not change the oxidative capacity of human 143B.TK(-) cells, but it increased glucose consumption, lactate and pyruvate production. Despite a large increase in glycolytic metabolism, the growth rate of 143B.TK(-) cells was significantly reduced by dinitrophenol-induced mitochondrial uncoupling. We propose that chronic respiratory uncoupling may constitute an internal bioenergetic signal, which would initiate a coordinated increase in nuclear respiratory gene expression, which ultimately drives mitochondrial metabolic adaptation within cells.

  18. High membrane potential promotes alkenal-induced mitochondrial uncoupling and influences adenine nucleotide translocase conformation.

    PubMed

    Azzu, Vian; Parker, Nadeene; Brand, Martin D

    2008-07-15

    Mitochondria generate reactive oxygen species, whose downstream lipid peroxidation products, such as 4-hydroxynonenal, induce uncoupling of oxidative phosphorylation by increasing proton leak through mitochondrial inner membrane proteins such as the uncoupling proteins and adenine nucleotide translocase. Using mitochondria from rat liver, which lack uncoupling proteins, in the present study we show that energization (specifically, high membrane potential) is required for 4-hydroxynonenal to activate proton conductance mediated by adenine nucleotide translocase. Prolonging the time at high membrane potential promotes greater uncoupling. 4-Hydroxynonenal-induced uncoupling via adenine nucleotide translocase is prevented but not readily reversed by addition of carboxyatractylate, suggesting a permanent change (such as adduct formation) that renders the translocase leaky to protons. In contrast with the irreversibility of proton conductance, carboxyatractylate added after 4-hydroxynonenal still inhibits nucleotide translocation, implying that the proton conductance and nucleotide translocation pathways are different. We propose a model to relate adenine nucleotide translocase conformation to proton conductance in the presence or absence of 4-hydroxynonenal and/or carboxyatractylate.

  19. Thermodynamics of Anharmonic Systems: Uncoupled Mode Approximations for Molecules.

    PubMed

    Li, Yi-Pei; Bell, Alexis T; Head-Gordon, Martin

    2016-06-14

    The partition functions, heat capacities, entropies, and enthalpies of selected molecules were calculated using uncoupled mode (UM) approximations, where the full-dimensional potential energy surface for internal motions was modeled as a sum of independent one-dimensional potentials for each mode. The computational cost of such approaches scales the same with molecular size as standard harmonic oscillator vibrational analysis using harmonic frequencies (HO(hf)). To compute thermodynamic properties, a computational protocol for obtaining the energy levels of each mode was established. The accuracy of the UM approximation depends strongly on how the one-dimensional potentials of each modes are defined. If the potentials are determined by the energy as a function of displacement along each normal mode (UM-N), the accuracies of the calculated thermodynamic properties are not significantly improved versus the HO(hf) model. Significant improvements can be achieved by constructing potentials for internal rotations and vibrations using the energy surfaces along the torsional coordinates and the remaining vibrational normal modes, respectively (UM-VT). For hydrogen peroxide and its isotopologs at 300 K, UM-VT captures more than 70% of the partition functions on average. By contrast, the HO(hf) model and UM-N can capture no more than 50%. For a selected test set of C2 to C8 linear and branched alkanes and species with different moieties, the enthalpies calculated using the HO(hf) model, UM-N, and UM-VT are all quite accurate comparing with reference values though the RMS errors of the HO model and UM-N are slightly higher than UM-VT. However, the accuracies in entropy calculations differ significantly between these three models. For the same test set, the RMS error of the standard entropies calculated by UM-VT is 2.18 cal mol(-1) K(-1) at 1000 K. By contrast, the RMS error obtained using the HO model and UM-N are 6.42 and 5.73 cal mol(-1) K(-1), respectively. For a test set

  20. The Uncoupling Protein 1 Gene (UCP1) Is Disrupted in the Pig Lineage: A Genetic Explanation for Poor Thermoregulation in Piglets

    PubMed Central

    Berg, Frida; Gustafson, Ulla; Andersson, Leif

    2006-01-01

    Piglets appear to lack brown adipose tissue, a specific type of fat that is essential for nonshivering thermogenesis in mammals, and they rely on shivering as the main mechanism for thermoregulation. Here we provide a genetic explanation for the poor thermoregulation in pigs as we demonstrate that the gene for uncoupling protein 1 (UCP1) was disrupted in the pig lineage. UCP1 is exclusively expressed in brown adipose tissue and plays a crucial role for thermogenesis by uncoupling oxidative phosphorylation. We used long-range PCR and genome walking to determine the complete genome sequence of pig UCP1. An alignment with human UCP1 revealed that exons 3 to 5 were eliminated by a deletion in the pig sequence. The presence of this deletion was confirmed in all tested domestic pigs, as well as in European wild boars, Bornean bearded pigs, wart hogs, and red river hogs. Three additional disrupting mutations were detected in the remaining exons. Furthermore, the rate of nonsynonymous substitutions was clearly elevated in the pig sequence compared with the corresponding sequences in humans, cattle, and mice, and we used this increased rate to estimate that UCP1 was disrupted about 20 million years ago. PMID:16933999

  1. Coevolution of robustness, epistasis, and recombination favors asexual reproduction.

    PubMed

    MacCarthy, Thomas; Bergman, Aviv

    2007-07-31

    The prevalence of sexual reproduction remains one of the most perplexing phenomena in evolutionary biology. The deterministic mutation hypothesis postulates that sexual reproduction will be advantageous under synergistic epistasis, a condition in which mutations cause a greater reduction in fitness when combined than would be expected from their individual effects. The inverse condition, antagonistic epistasis, correspondingly is predicted to favor asexual reproduction. To assess this hypothesis, we introduce a finite population evolutionary process that combines a recombination modifier formalism with a gene-regulatory network model. We demonstrate that when reproductive mode and epistasis are allowed to coevolve, asexual reproduction outcompetes sexual reproduction. In addition, no correlation is found between the level of synergistic epistasis and the fixation time of the asexual mode. However, a significant correlation is found between the level of antagonistic epistasis and asexual mode fixation time. This asymmetry can be explained by the greater reduction in fitness imposed by sexual reproduction as compared with asexual reproduction. Our findings present evidence and suggest plausible explanations that challenge both the deterministic mutation hypothesis and recent arguments asserting the importance of emergent synergistic epistasis in the maintenance of sexual reproduction.

  2. Uncoupling effect of fatty acids on heart muscle mitochondria and submitochondrial particles.

    PubMed

    Dedukhova, V I; Mokhova, E N; Skulachev, V P; Starkov, A A; Arrigoni-Martelli, E; Bobyleva, V A

    1991-12-16

    The effect of ATP/ADP-antiporter inhibitors on palmitate-induced uncoupling was studied in heart muscle mitochondria and inside-out submitochondrial particles. In both systems palmitate is found to decrease the respiration-generated membrane potential. In mitochondria, this effect is specifically abolished by carboxyatractylate (CAtr) a non-penetrating inhibitor of antiporter. In submitochondrial particles, CAtr does not abolish the palmitate-induced potential decrease. At the same time, bongkrekic acid, a penetrating inhibitor of the antiporter, suppresses the palmitate effect on the potential both in mitochondria and particles. Palmitoyl-CoA which is known to inhibit the antiporter in mitochondria as well as in particles decreases the palmitate uncoupling efficiency in both these systems. These data are in agreement with the hypothesis that the ATP/ADP-antiporter is involved in the action of free fatty acids as natural uncouplers of oxidative phosphorylation.

  3. Effect of 6-ketocholestanol on FCCP- and DNP-induced uncoupling in plant mitochondria.

    PubMed

    Vianello, A; Macri, F; Braidot, E; Mokhova, E N

    1995-05-22

    Effect of 6-ketocholestanol on FCCP-induced and DNP-induced uncoupling in beef liver and pea stem mitochondria was studied, under experimental conditions at which this steroid abolished the effect of low concentrations of FCCP and other most potent uncouplers in rat mitochondria [Starkov et al. (1994) FEBS Lett., 355, 305-308]. It is shown that, in both types of mitochondria, 6-ketocholestanol prevents or reverses the uncoupling induced by low concentrations of FCCP, but not that caused by high concentrations of FCCP or by any concentration of DNP. Progesterone and male sex hormones, showing recoupling capability in animal mitochondria, appear to be ineffective in the plant system. Cholesterol does not recouple in both animal and plant mitochondria. Plant steroids, such as beta-sitosterol and stigmasterol, are also without effect.

  4. Male Reproductive System

    MedlinePlus

    ... gamete, the egg or ovum, meet in the female's reproductive system to create a baby. Both the male and female reproductive systems are essential for reproduction. Humans pass certain characteristics ...

  5. Reproduction, physiology and biochemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter summarizes fundamental knowledge and recent discoveries about the reproduction, physiology and biochemistry of plant-parasitic nematodes. Various types of reproduction are reviewed, including sexual reproduction and mitotic and meiotic parthenogenesis. Although much is known about the p...

  6. Society of Reproductive Surgeons

    MedlinePlus

    The Society of Reproductive Surgeons Home About Us About SRS Mission Statement Officers The Role of Reproductive Surgeons For ... Fact Sheets and Booklets SRS is an affiliated society to the American Society for Reproductive Medicine . Below ...

  7. Normal Female Reproductive Anatomy

    MedlinePlus

    ... hyphen, e.g. -historical Searches are case-insensitive Reproductive System, Female, Anatomy Add to My Pictures View /Download : Small: ... Reproductive System, Female, Anatomy Description: Anatomy of the female reproductive system; drawing shows the uterus, myometrium (muscular outer layer ...

  8. Reproductive Information and Reproductive Decision-Making.

    PubMed

    Mehlman, Maxwell J

    2015-01-01

    Opponents of reproductive choice are attempting to limit reproductive decisions based on certain underlying reasons. This commentary explores the rationales for these limitations and the objections to them. It concludes that reasoned-based limitations are unsupportable and unenforceable.

  9. Reproductive and post-reproductive life history of wild-caught Drosophila melanogaster under laboratory conditions.

    PubMed

    Klepsatel, P; Gáliková, M; De Maio, N; Ricci, S; Schlötterer, C; Flatt, T

    2013-07-01

    The life history of the fruit fly (Drosophila melanogaster) is well understood, but fitness components are rarely measured by following single individuals over their lifetime, thereby limiting insights into lifetime reproductive success, reproductive senescence and post-reproductive lifespan. Moreover, most studies have examined long-established laboratory strains rather than freshly caught individuals and may thus be confounded by adaptation to laboratory culture, inbreeding or mutation accumulation. Here, we have followed the life histories of individual females from three recently caught, non-laboratory-adapted wild populations of D. melanogaster. Populations varied in a number of life-history traits, including ovariole number, fecundity, hatchability and lifespan. To describe individual patterns of age-specific fecundity, we developed a new model that allowed us to distinguish four phases during a female's life: a phase of reproductive maturation, followed by a period of linear and then exponential decline in fecundity and, finally, a post-ovipository period. Individual females exhibited clear-cut fecundity peaks, which contrasts with previous analyses, and post-peak levels of fecundity declined independently of how long females lived. Notably, females had a pronounced post-reproductive lifespan, which on average made up 40% of total lifespan. Post-reproductive lifespan did not differ among populations and was not correlated with reproductive fitness components, supporting the hypothesis that this period is a highly variable, random 'add-on' at the end of reproductive life rather than a correlate of selection on reproductive fitness. Most life-history traits were positively correlated, a pattern that might be due to genotype by environment interactions when wild flies are brought into a novel laboratory environment but that is unlikely explained by inbreeding or positive mutational covariance caused by mutation accumulation.

  10. Uncoupling protein expression in skeletal muscle and adipose tissue in response to in vivo porcine somatotropin treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The uncoupling proteins are thought to be involved in waste heat production, reducing the energy efficiency of growth in animals. Previous studies have detected their presence in swine and their regulation by the endocrine system. This study attempted to determine whether the uncoupling proteins 2...

  11. Concentration of rat brown adipose tissue uncoupling protein may not be correlated with /sup 3/H-GDP binding

    SciTech Connect

    Henningfield, M.F.; Swick, A.G.; Swick, R.W.

    1986-03-01

    Rats fed diets low in protein or exposed to cold show an increase in brown adipose tissue (BAT) mitochondrial /sup 3/H-GDP binding. To investigate this phenomenon further, the uncoupling protein associated with BAT function was measured immunochemically on nitrocellulose blots. Quantitation of uncoupling protein was achieved by densitometer scanning with a BioRad densitometer. Peaks were integrated with Chromatochart software and an Apple IIe computer. A standard curve of purified uncoupling protein (50 to 500 ng) was used to calculate uncoupling protein concentration. There is a 1.5-fold increase in uncoupling protein per mg of protein in BAT mitochondria from rats exposed to cold for 15 days. There was no decrease in uncoupling protein from rats exposed to the cold followed by 24 h at 27/sup 0/C although /sup 3/H-GDP binding had decreased by half. Rats fed diets containing either 5 or 15% lactalbumin for 3 weeks did not show differences in uncoupling protein concentration although /sup 3/H-GDP binding was 1.5-fold greater in BAT mitochondria from the low protein group. These results indicate that GDP binding does not necessarily reflect the concentration of uncoupling protein in BAT mitochondria.

  12. Single Cell Microgel Based Modular Bioinks for Uncoupled Cellular Micro- and Macroenvironments.

    PubMed

    Kamperman, Tom; Henke, Sieger; van den Berg, Albert; Shin, Su Ryon; Tamayol, Ali; Khademhosseini, Ali; Karperien, Marcel; Leijten, Jeroen

    2017-02-01

    Modular bioinks based on single cell microgels within distinct injectable prepolymers enable uncoupling of biomaterials' micro- and macroenvironments. These inks allow biofabrication of 3D constructs that recapitulate the multiscale modular design of native tissues with a single cell resolution. This approach represents a major step forward in endowing engineered constructs with the multifunctionality that underlies the behavior of native tissues.

  13. Water recycling by Amazonian vegetation: coupled versus uncoupled vegetation-climate interactions.

    PubMed

    Cowling, S A; Shin, Y; Pinto, E; Jones, C D

    2008-05-27

    To demonstrate the relationship between Amazonian vegetation and surface water dynamics, specifically, the recycling of water via evapotranspiration (ET), we compare two general circulation model experiments; one that couples the IS92a scenario of future CO2 emissions to a land-surface scheme with dynamic vegetation (coupled) and the other to fixed vegetation (uncoupled). Because the only difference between simulations involves vegetation coupling, any alterations to surface energy and water balance must be due to vegetation feedbacks. The proportion of water recycled back to the atmosphere is relatively conserved through time for both experiments. Absolute value of recycled water is lower in our coupled relative to our uncoupled simulation as a result of increasing atmospheric CO2 that in turn promotes lowering of stomatal conductance and increase in water-use efficiency. Bowen ratio increases with decreasing per cent broadleaf cover, with the greatest rate of change occurring at high vegetation cover (above 70% broadleaf cover). Over the duration of the climate change simulation, precipitation is reduced by an extra 30% in the coupled relative to the uncoupled simulations. Lifting condensation level (proxy for base height of cumulus cloud formation) is 520m higher in our coupled relative to uncoupled simulations.

  14. The development of structure-activity relationships for mitochondrial dysfunction: uncoupling of oxidative phosphorylation.

    PubMed

    Naven, Russell T; Swiss, Rachel; Klug-McLeod, Jacquelyn; Will, Yvonne; Greene, Nigel

    2013-01-01

    Mitochondrial dysfunction has been implicated as an important factor in the development of idiosyncratic organ toxicity. An ability to predict mitochondrial dysfunction early in the drug development process enables the deselection of those drug candidates with potential safety liabilities, allowing resources to be focused on those compounds with the highest chance of success to the market. A database of greater than 2000 compounds was analyzed to identify structural and physicochemical features associated with the uncoupling of oxidative phosphorylation (herein defined as an increase in basal respiration). Many toxicophores associated with potent uncoupling activity were identified, and these could be divided into two main mechanistic classes, protonophores and redox cyclers. For the protonophores, potent uncoupling activity was often promoted by high lipophilicity and apparent stabilization of the anionic charge resulting from deprotonation of the protonophore. The potency of redox cyclers did not appear to be prone to variations in lipophilicity. Only 11 toxicophores were of sufficient predictive performance that they could be incorporated into a structural-alert model. Each alert was associated with one of three confidence levels (high, medium, and low) depending upon the lipophilicity-activity profile of the structural class. The final model identified over 68% of those compounds with potent uncoupling activity and with a value for specificity above 99%. We discuss the advantages and limitations of this approach and conclude that although structural alert methodology is useful for identifying toxicophores associated with mitochondrial dysfunction, they are not a replacement for the mitochondrial dysfunction assays in early screening paradigms.

  15. Uncoupling of Energy-Linked Functions of Corn Mitochondria by Linoleic Acid and Monomethyldecenylsuccinic Acid 1

    PubMed Central

    Baddeley, M. Susan; Hanson, J. B.

    1967-01-01

    Linoleic acid and monomethyldecenylsuccinic acid were tested as uncoupling agents for energy linked functions of corn mitochondria. 2,4-dinitrophenol was used as a standard for comparison. Both compounds uncoupled oxidative phosphorylation, released oligomycin-blocked respiration, and accelerated adenosine triphosphatase. Linoleic acid uncoupled calcium-activated phosphate accumulation and the increase in light scattering that accompanies the accumulation. Unlike dinitrophenol, linoleic acid at 0.1 mm had a destructive effect on membrane semipermeability. Kinetic studies indicated that dinitrophenol and linoleic acid compete with phosphate for active sites in oxidative phosphorylation. Some linoleic acid is taken up by respiring mitochondria and a major share of the uptake is incorporated into phospholipids. Calcium ion and oligomycin promote the uptake, but coenzyme A does not. It is deduced that fatty acid probably attacks the non-phosphorylated intermediate, I∼X, producing X∼acyl. Uncoupling results from breakdown of X∼acyl, but sufficient X∼acyl is maintained to serve as a source of activated fatty acid. PMID:16656708

  16. The mitochondrial consequences of uncoupling intact cells depend on the nature of the exogenous substrate.

    PubMed Central

    Sibille, B; Filippi, C; Piquet, M A; Leclercq, P; Fontaine, E; Ronot, X; Rigoulet, M; Leverve, X

    2001-01-01

    In isolated mitochondria the consequences of oxidative phosphorylation uncoupling are well defined, whereas in intact cells various effects have been described. Uncoupling liver cells with 2,4-dinitrophenol (DNP) in the presence of dihydroxyacetone (DHA) and ethanol results in a marked decrease in mitochondrial transmembrane electrical potential (DeltaPsi), ATP/ADP ratios and gluconeogenesis (as an ATP-utilizing process), whereas the increased oxidation rate is limited and transient. Conversely, when DHA is associated with octanoate or proline, DNP addition results in a very large and sustained increase in oxidation rate, whereas the decreases in DeltaPsi, ATP/ADP ratios and gluconeogenesis are significantly less when compared with DHA and ethanol. Hence significant energy wastage (high oxidation rate) by uncoupling is achieved only with substrates that are directly oxidized in the mitochondrial matrix. Conversely in the presence of substrates that are first oxidized in the cytosol, uncoupling results in a profound decrease in mitochondrial DeltaPsi and ATP synthesis, whereas energy wastage is very limited. PMID:11256968

  17. Uncoupling of oxidative phosphorylation by curcumin: Implication of its cellular mechanism of action

    SciTech Connect

    Lim, Han Wern; Lim, Hwee Ying; Wong, Kim Ping

    2009-11-06

    Curcumin is a phytochemical isolated from the rhizome of turmeric. Recent reports have shown curcumin to have antioxidant, anti-inflammatory and anti-tumor properties as well as affecting the 5'-AMP activated protein kinase (AMPK), mTOR and STAT-3 signaling pathways. We provide evidence that curcumin acts as an uncoupler. Well-established biochemical techniques were performed on isolated rat liver mitochondria in measuring oxygen consumption, F{sub 0}F{sub 1}-ATPase activity and ATP biosynthesis. Curcumin displays all the characteristics typical of classical uncouplers like fccP and 2,4-dinitrophenol. In addition, at concentrations higher than 50 {mu}M, curcumin was found to inhibit mitochondrial respiration which is a characteristic feature of inhibitory uncouplers. As a protonophoric uncoupler and as an activator of F{sub 0}F{sub 1}-ATPase, curcumin causes a decrease in ATP biosynthesis in rat liver mitochondria. The resulting change in ATP:AMP could disrupt the phosphorylation status of the cell; this provides a possible mechanism for its activation of AMPK and its downstream mTOR and STAT-3 signaling.

  18. Hyperthyroidism increases the uncoupled ATPase activity and heat production by the sarcoplasmic reticulum Ca2+-ATPase.

    PubMed Central

    Arruda, Ana Paula; Da-Silva, Wagner S; Carvalho, Denise P; De Meis, Leopoldo

    2003-01-01

    The sarcoplasmic reticulum Ca2+-ATPase is able to modulate the distribution of energy released during ATP hydrolysis, so that a portion of energy is used for Ca2+ transport (coupled ATPase activity) and a portion is converted into heat (uncoupled ATPase activity). In this report it is shown that T4 administration to rabbits promotes an increase in the rates of both the uncoupled ATPase activity and heat production in sarcoplasmic reticulum vesicles, and that the degree of activation varies depending on the muscle type used. In white muscles hyperthyroidism promotes a 0.8-fold increase of the uncoupled ATPase activity and in red muscle a 4-fold increase. The yield of vesicles from hyperthyroid muscles is 3-4-fold larger than that obtained from normal muscles; thus the rate of heat production by the Ca2+-ATPase expressed in terms of g of muscle in hyperthyroidism is increased by a factor of 3.6 in white muscles and 12.0 in red muscles. The data presented suggest that the Ca2+-ATPase uncoupled activity may represent one of the heat sources that contributes to the enhanced thermogenesis noted in hyperthyroidism. PMID:12887329

  19. A novel amino acid and metabolomics signature in mice overexpressing muscle uncoupling protein 3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Uncoupling protein 3 (UCP3) is highly expressed in skeletal muscle and is known to lower mitochondrial reactive oxygen species and promote fatty acid oxidation; however, the global impact of UCP3 activity on skeletal muscle and whole body metabolism has not been extensively studied. We utilized unt...

  20. Reproductive compensation in the evolution of plant mating systems.

    PubMed

    Porcher, Emmanuelle; Lande, Russell

    2005-05-01

    Reproductive compensation, the replacement of dead embryos by potentially viable ones, is known to play a major role in the maintenance of deleterious mutations in mammalian populations. However, it has received little attention in plant evolution. Here we model the joint evolution of mating system and inbreeding depression with reproductive compensation. We used a dynamic model of inbreeding depression, allowing for partial purging of recessive lethal mutations by selfing. We showed that reproductive compensation tended to increase the mean number of lethals in a population, but favored self-fertilization by effectively decreasing early inbreeding depression. When compensation depended on the selfing rate, stable mixed mating systems can occur, with low to intermediate selfing rates. Experimental evidence of reproductive compensation is required to confirm its potential importance in the evolution of plant mating systems. We suggest experimental methods to detect reproductive compensation.

  1. Male Reproductive System

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Male Reproductive System KidsHealth > For Parents > Male Reproductive System Print A ... understand your son's reproductive health. continue About the Male Reproductive System Most species have two sexes: male and female. ...

  2. Reproductive Medicine in Amphibians.

    PubMed

    Chai, Norin

    2017-02-04

    Reproduction of amphibians includes ovulation, spermiation, fertilization, oviposition, larval stage and development, and metamorphosis. A problem at any stage could lead to reproductive failure. To stimulate reproduction, environmental conditions must be arranged to simulate changes in natural habits. Reproductive life history is well documented in amphibians; a thorough knowledge of this subject will aid the practitioner in diagnosis and treatment. Technologies for artificial reproduction are developing rapidly, and some protocols may be transferable to privately kept or endangered species. Reproductive tract disorders are rarely described; no bacterial or viral diseases are known that specifically target the amphibian reproductive system.

  3. Chronic mitochondrial uncoupling treatment prevents acute cold-induced oxidative stress in birds.

    PubMed

    Stier, Antoine; Massemin, Sylvie; Criscuolo, François

    2014-12-01

    Endotherms have evolved two major types of thermogenesis that allow them to actively produce heat in response to cold exposure, either through muscular activity (i.e. shivering thermogenesis) or through futile electro-chemical cycles (i.e. non-shivering thermogenesis). Amongst the latter, mitochondrial uncoupling is of key importance because it is suggested to drive heat production at a low cost in terms of oxidative stress. While this has been experimentally shown in mammals, the oxidative stress consequences of cold exposure and mitochondrial uncoupling are clearly less understood in the other class of endotherms, the birds. We compared metabolic and oxidative stress responses of zebra finches chronically treated with or without a chemical mitochondrial uncoupler (2,4-dinitrophenol: DNP), undergoing an acute (24 h) and a chronic (4 weeks) cold exposure (12 °C). We predicted that control birds should present at least a transient elevation of oxidative stress levels in response to cold exposure. This oxidative stress cost should be more pronounced in control birds than in DNP-treated birds, due to their lower basal uncoupling state. Despite similar increase in metabolism, control birds presented elevated levels of DNA oxidative damage in response to acute (but not chronic) cold exposure, while DNP-treated birds did not. Plasma antioxidant capacity decreased overall in response to chronic cold exposure. These results show that acute cold exposure increases oxidative stress in birds. However, uncoupling mitochondrial functioning appears as a putative compensatory mechanism preventing cold-induced oxidative stress. This result confirms previous observations in mice and underlines non-shivering thermogenesis as a putative key mechanism for endotherms in mounting a response to cold at a low oxidative cost.

  4. Reproductive Disorders in Snakes.

    PubMed

    Di Girolamo, Nicola; Selleri, Paolo

    2017-05-01

    Reproduction of snakes is one of the challenging aspects of herpetology medicine. Due to the complexity of reproduction, several disorders may present before, during, or after this process. This article describes the physical examination, and radiographic, ultrasonographic, and endoscopic findings associated with reproductive disorders in snakes. Surgical techniques used to resolve reproductive disorders in snakes are described. Finally, common reproductive disorders in snakes are individually discussed.

  5. Influences of clonality on plant sexual reproduction

    PubMed Central

    Barrett, Spencer C. H.

    2015-01-01

    Flowering plants possess an unrivaled diversity of mechanisms for achieving sexual and asexual reproduction, often simultaneously. The commonest type of asexual reproduction is clonal growth (vegetative propagation) in which parental genotypes (genets) produce vegetative modules (ramets) that are capable of independent growth, reproduction, and often dispersal. Clonal growth leads to an expansion in the size of genets and increased fitness because large floral displays increase fertility and opportunities for outcrossing. Moreover, the clonal dispersal of vegetative propagules can assist “mate finding,” particularly in aquatic plants. However, there are ecological circumstances in which functional antagonism between sexual and asexual reproductive modes can negatively affect the fitness of clonal plants. Populations of heterostylous and dioecious species have a small number of mating groups (two or three), which should occur at equal frequency in equilibrium populations. Extensive clonal growth and vegetative dispersal can disrupt the functioning of these sexual polymorphisms, resulting in biased morph ratios and populations with a single mating group, with consequences for fertility and mating. In populations in which clonal propagation predominates, mutations reducing fertility may lead to sexual dysfunction and even the loss of sex. Recent evidence suggests that somatic mutations can play a significant role in influencing fitness in clonal plants and may also help explain the occurrence of genetic diversity in sterile clonal populations. Highly polymorphic genetic markers offer outstanding opportunities for gaining novel insights into functional interactions between sexual and clonal reproduction in flowering plants. PMID:26195747

  6. Evolution of Human Longevity Uncoupled from Caloric Restriction Mechanisms

    PubMed Central

    Zhao, Guodong; Guo, Song; Somel, Mehmet; Khaitovich, Philipp

    2014-01-01

    Caloric restriction (CR) and chemical agents, such as resveratrol and rapamycin that partially mimic the CR effect, can delay morbidity and mortality across a broad range of species. In humans, however, the effects of CR or other life-extending agents have not yet been investigated systematically. Human maximal lifespan is already substantially greater compared to that of closely related primate species. It is therefore possible that humans have acquired genetic mutations that mimic the CR effect. Here, we tested this notion by comparing transcriptome differences between humans and other primates, with the transcriptome changes observed in mice subjected to CR. We show that the human transcriptome state, relative to other primate transcriptomes, does not match that of the CR mice or mice treated with resveratrol, but resembles the transcriptome state of ad libitum fed mice. At the same time, the transcriptome changes induced by CR in mice are enriched among genes showing age-related changes in primates, concentrated in specific expression patterns, and can be linked with specific functional pathways, including insulin signalling, cancer, and the immune response. These findings indicate that the evolution of human longevity was likely independent of CR-induced lifespan extension mechanisms. Consequently, application of CR or CR-mimicking agents may yet offer a promising direction for the extension of healthy human lifespan. PMID:24400080

  7. Simulated coevolution in a mutating ecology

    NASA Astrophysics Data System (ADS)

    Sá Martins, J. S.

    2000-03-01

    The bit-string Penna model is used to simulate the competition between an asexual parthenogenetic and a sexual population sharing the same environment. A newborn of either population can mutate and become a part of the other with some probability. In a stable environment the sexual population soon dies out. When an infestation by rapidly mutating genetically coupled parasites is introduced, however, sexual reproduction prevails, as predicted by the so-called Red Queen hypothesis for the evolution of sex.

  8. Investigation of connexin 43 uncoupling and prolongation of the cardiac QRS complex in preclinical and marketed drugs

    PubMed Central

    Burnham, M P; Sharpe, P M; Garner, C; Hughes, R; Pollard, C E; Bowes, J

    2014-01-01

    Background and Purpose Prolongation of the cardiac QRS complex is linked to increased mortality and may result from drug-induced inhibition of cardiac sodium channels (hNaV1.5). There has been no systematic evaluation of preclinical and marketed drugs for their additional potential to cause QRS prolongation via gap junction uncoupling. Experimental Approach Using the human cardiac gap junction connexin 43 (hCx43), a dye transfer ‘parachute’ assay to determine IC50 values for compound ranking was validated with compounds known to uncouple gap junctions. Uncoupling activity (and hNaV1.5 inhibition by automated patch clamp) was determined in a set of marketed drugs and preclinical candidate drugs, each with information regarding propensity to prolong QRS. Key Results The potency of known gap junction uncouplers to uncouple hCx43 was ranked (according to IC50) as phorbol ester>digoxin>meclofenamic acid>carbenoxolone>heptanol. Among the drugs associated with QRS prolongation, 29% were found to uncouple hCx43 (IC50 < 50 μM), whereas no uncoupling activity was observed in drugs not associated with QRS prolongation. In preclinical candidate drugs, hCx43 and hNaV1.5 IC50 values were similar (within threefold). No consistent margin over preclinical Cmax (free) was apparent for QRS prolongation associated with Cx43 inhibition. However, instances were found of QRS prolonging compounds that uncoupled hCx43 with significantly less activity at hNaV1.5. Conclusion and Implications These results demonstrate that off-target uncoupling activity is apparent in drug and drug-like molecules. Although the full ramifications of Cx inhibition remain to be established, screening for hCx43 off-target activity could reduce the likelihood of developing candidate drugs with a risk of causing QRS prolongation. PMID:24328991

  9. Disorders of reproduction.

    PubMed

    Sweeney, Anne; del Junco, Deborah

    2011-01-01

    This chapter focuses on biomarkers of reproductive health and disease that have been developed in the past 15 years. Due to the gender- and age-dependency of most of the advances in measuring reproductive health status and outcomes, these biomarkers have been categorized with respect to the unique member of the reproductive triad of interest (i.e. mother, father, conceptus). Biomarkers of female and male puberty, female reproductive function, fetal and infant development, and male reproductive function are discussed. The strengths and limitations of developing and implementing biomarkers in reproductive health studies over the past decade are explored.

  10. Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification.

    PubMed

    Dejonghe, Wim; Kuenen, Sabine; Mylle, Evelien; Vasileva, Mina; Keech, Olivier; Viotti, Corrado; Swerts, Jef; Fendrych, Matyáš; Ortiz-Morea, Fausto Andres; Mishev, Kiril; Delang, Simon; Scholl, Stefan; Zarza, Xavier; Heilmann, Mareike; Kourelis, Jiorgos; Kasprowicz, Jaroslaw; Nguyen, Le Son Long; Drozdzecki, Andrzej; Van Houtte, Isabelle; Szatmári, Anna-Mária; Majda, Mateusz; Baisa, Gary; Bednarek, Sebastian York; Robert, Stéphanie; Audenaert, Dominique; Testerink, Christa; Munnik, Teun; Van Damme, Daniël; Heilmann, Ingo; Schumacher, Karin; Winne, Johan; Friml, Jiří; Verstreken, Patrik; Russinova, Eugenia

    2016-06-08

    ATP production requires the establishment of an electrochemical proton gradient across the inner mitochondrial membrane. Mitochondrial uncouplers dissipate this proton gradient and disrupt numerous cellular processes, including vesicular trafficking, mainly through energy depletion. Here we show that Endosidin9 (ES9), a novel mitochondrial uncoupler, is a potent inhibitor of clathrin-mediated endocytosis (CME) in different systems and that ES9 induces inhibition of CME not because of its effect on cellular ATP, but rather due to its protonophore activity that leads to cytoplasm acidification. We show that the known tyrosine kinase inhibitor tyrphostinA23, which is routinely used to block CME, displays similar properties, thus questioning its use as a specific inhibitor of cargo recognition by the AP-2 adaptor complex via tyrosine motif-based endocytosis signals. Furthermore, we show that cytoplasm acidification dramatically affects the dynamics and recruitment of clathrin and associated adaptors, and leads to reduction of phosphatidylinositol 4,5-biphosphate from the plasma membrane.

  11. Uncoupling of reading and IQ over time: empirical evidence for a definition of dyslexia.

    PubMed

    Ferrer, Emilio; Shaywitz, Bennett A; Holahan, John M; Marchione, Karen; Shaywitz, Sally E

    2010-01-01

    Developmental dyslexia is defined as an unexpected difficulty in reading in individuals who otherwise possess the intelligence and motivation considered necessary for fluent reading, and who also have had reasonable reading instruction. Identifying factors associated with normative and impaired reading development has implications for diagnosis, intervention, and prevention. We show that in typical readers, reading and IQ development are dynamically linked over time. Such mutual interrelationships are not perceptible in dyslexic readers, which suggests that reading and cognition develop more independently in these individuals. To our knowledge, these findings provide the first empirical demonstration of a coupling between cognition and reading in typical readers and a developmental uncoupling between cognition and reading in dyslexic readers. This uncoupling was the core concept of the initial description of dyslexia and remains the focus of the current definitional model of this learning disability.

  12. Effects of the uncoupling agents FCCP and CCCP on the saltatory movements of cytoplasmic organelles.

    PubMed

    Hollenbeck, P J; Bray, D; Adams, R J

    1985-02-01

    Two potent uncoupling agents, carbonylcyanide-4-trifluoromethoxyphenylhydrazone (FCCP) and carbonylcyanide-3-chlorophenylhydrazone (CCCP) inhibit the movement of organelles in neurites of chick sensory neurones in culture. FCCP applied for 30 minutes at 10 microM reduces the number of moving organelles by 78% and a similar treatment with CCCP causes a reduction of 47%. At 100 microM either compound abolishes all directed movements both in neurites and in cultured 3T3 cells. These effects are probably not due to the discharge of proton gradients since 2,4-dinitrophenol (DNP), at concentrations shown to uncouple mitochondria by the discharge of the permeant cationic fluorescent probe rhodamine 123, fails to inhibit cytoplasmic movements. The inhibition of cytoplasmic movements by FCCP and CCCP is likely to be a consequence of their inhibitory action on a variety of enzymes, including dynein and myosin ATPases, through a reaction with sulfhydryl groups.

  13. Reproductive systems and evolution in vascular plants

    PubMed Central

    Holsinger, Kent E.

    2000-01-01

    Differences in the frequency with which offspring are produced asexually, through self-fertilization and through sexual outcrossing, are a predominant influence on the genetic structure of plant populations. Selfers and asexuals have fewer genotypes within populations than outcrossers with similar allele frequencies, and more genetic diversity in selfers and asexuals is a result of differences among populations than in sexual outcrossers. As a result of reduced levels of diversity, selfers and asexuals may be less able to respond adaptively to changing environments, and because genotypes are not mixed across family lineages, their populations may accumulate deleterious mutations more rapidly. Such differences suggest that selfing and asexual lineages may be evolutionarily short-lived and could explain why they often seem to be of recent origin. Nonetheless, the origin and maintenance of different reproductive modes must be linked to individual-level properties of survival and reproduction. Sexual outcrossers suffer from a cost of outcrossing that arises because they do not contribute to selfed or asexual progeny, whereas selfers and asexuals may contribute to outcrossed progeny. Selfing and asexual reproduction also may allow reproduction when circumstances reduce opportunities for a union of gametes produced by different individuals, a phenomenon known as reproductive assurance. Both the cost of outcrossing and reproductive assurance lead to an over-representation of selfers and asexuals in newly formed progeny, and unless sexual outcrossers are more likely to survive and reproduce, they eventually will be displaced from populations in which a selfing or asexual variant arises. PMID:10860968

  14. Male reproductive proteins and reproductive outcomes.

    PubMed

    Ness, Roberta B; Grainger, David A

    2008-06-01

    Male reproductive proteins (MRPs), associated with sperm and semen, are the moieties responsible for carrying male genes into the next generation. Evolutionary biologists have focused on their capacity to control conception. Immunologists have shown that MRPs cause female genital tract inflammation as preparatory for embryo implantation and placentation. These observations argue that MRPs are critically important to reproductive success. Yet the impact of male reproductive proteins on obstetrical outcomes in women is largely unstudied. Epidemiologic and clinical observations suggest that shorter-duration exposure to MRPs prior to conception may elevate the risk for preeclampsia. A limited literature has also linked sexual behavior to bacterial vaginosis and preterm birth. We offer a clinical opinion that MRPs may have broad implications for successful reproduction, potentially involved in the composition of vaginal microflora, risks of preterm birth and preeclampsia, and success of assisted reproduction.

  15. Men's Reproductive Health

    MedlinePlus

    ... NICHD Research Information Clinical Trials Resources and Publications Men's Reproductive Health: Overview Skip sharing on social media ... Content Reproductive health is an important component of men's overall health and well-being. Too often, males ...

  16. Female Reproductive System

    MedlinePlus

    ... Ectopic Pregnancy A Week-by-Week Pregnancy Calendar Male Reproductive System Five Things Girls Want to Know About Periods ... Coping With Common Period Problems All About Menstruation Male Reproductive System Everything You Wanted to Know About Puberty Polycystic ...

  17. Uncoupling effect of polyunsaturated fatty acid deficiency in isolated rat hepatocytes:effect on glycerol metabolism.

    PubMed Central

    Piquet, M A; Fontaine, E; Sibille, B; Filippi, C; Keriel, C; Leverve, X M

    1996-01-01

    The effects of a 4-week deficiency in polyunsaturated fatty acids (PUFA) in isolated rat hepatocytes have been investigated for oxidative phosphorylation and fatty acid, dihydroxyacetone (DHA) or glycerol metabolism. Oxygen uptake was significantly increased (by 20%) with or without fatty acid addition (octanoate or oleate) in the PUFA-deficient group compared with controls. The effect persisted after oligomycin addition but not after that of potassium cyanide, leading to the conclusion that, in these intact cells, the mitochondria were uncoupled. The PUFA-deficient group exhibited a significant decrease in the cytosolic ATP/ADP ratio, whereas the mitochondrial ratio was not affected. PUFA deficiency led to a 16% decrease in DHA metabolism owing to a 34% decrease in glycerol kinase activity; the significant decrease in the ATP/ADP ratio was accompanied by an increase in the fractional glycolytic flux. In contrast, glycerol metabolism was significantly enhanced in the PUFA-deficient group. The role of the glycerol 3-phosphate dehydrogenase step in this stimulation was evidenced in hepatocytes perifused with glycerol and octanoate in the presence of increased concentrations of 2,4-dinitrophenol (Dnp): uncoupling with Dnp led to an enhancement of glycerol metabolism, as found in PUFA deficiency, although it was more pronounced than in controls. The matrix/cytosol gradients for redox potential and ATP/ADP ratio were lower in cells from PUFA-deficient rats, suggesting a decreased mitochondrial membrane potential in accordance with the uncoupling effect. Moreover, a doubling of the mitochondrial glycerol 3-phosphate dehydrogenase activity in the PUFA-deficient group compared with controls led us to conclude that the activation of glycerol metabolism is the consequence of two mitochondrial effects: uncoupling and an increase in glycerol 3-phosphate dehydrogenase activity. PMID:8760348

  18. Uncoupling GP1 and GP2 Expression in the Lassa Virus Glycoprotein Complex: Implications for GP1 Ectodomain Shedding

    DTIC Science & Technology

    2008-12-23

    BioMed CentralVirology Journal ssOpen AcceResearch Uncoupling GP1 and GP2 expression in the Lassa virus glycoprotein complex: implications for GP1...contributors Abstract Background: Sera from convalescent Lassa fever patients often contains antibodies to Lassa virus (LASV) glycoprotein 1 (GP1...uncoupled Lassa virus (LASV) glycoprotein 1 (GP1) and glycoprotein 2 (GP2) were established. Soluble GP1 was generated using either the native

  19. Uncoupling GP1 and GP2 Expression in the Lassa Virus Glycoprotein Complex: Implications for GPI Ectodomain Shedding

    DTIC Science & Technology

    2008-12-23

    BioMed CentralVirology Journal ssOpen AcceResearch Uncoupling GP1 and GP2 expression in the Lassa virus glycoprotein complex: implications for GP1...contributors Abstract Background: Sera from convalescent Lassa fever patients often contains antibodies to Lassa virus (LASV) glycoprotein 1 (GP1...uncoupled Lassa virus (LASV) glycoprotein 1 (GP1) and glycoprotein 2 (GP2) were established. Soluble GP1 was generated using either the native

  20. Burn after feeding. An old uncoupler of oxidative phosphorylation is redesigned for the treatment of nonalcoholic fatty liver disease.

    PubMed

    Fromenty, B

    2014-10-01

    Uncoupling of oxidative phosphorylation (OXPHOS) in brown adipose tissue can be used by hibernating animals to produce heat at the expense of their fat mass. In a recent work, Dr Shulman et al. generated a liver-targeted derivative of the prototypical OXPHOS uncoupler 2,4-dinitrophenol that alleviated steatosis, hypertriglyceridemia and insulin resistance in several models of nonalcoholic fatty liver disease and type 2 diabetes.

  1. Mitochondrial uncoupling as a regulator of life-history trajectories in birds: an experimental study in the zebra finch.

    PubMed

    Stier, Antoine; Bize, Pierre; Roussel, Damien; Schull, Quentin; Massemin, Sylvie; Criscuolo, François

    2014-10-01

    Mitochondria have a fundamental role in the transduction of energy from food into ATP. The coupling between food oxidation and ATP production is never perfect, but may nevertheless be of evolutionary significance. The 'uncoupling to survive' hypothesis suggests that 'mild' mitochondrial uncoupling evolved as a protective mechanism against the excessive production of damaging reactive oxygen species (ROS). Because resource allocation and ROS production are thought to shape animal life histories, alternative life-history trajectories might be driven by individual variation in the degree of mitochondrial uncoupling. We tested this hypothesis in a small bird species, the zebra finch (Taeniopygia guttata), by treating adults with the artificial mitochondrial uncoupler 2,4-dinitrophenol (DNP) over a 32-month period. In agreement with our expectations, the uncoupling treatment increased metabolic rate. However, we found no evidence that treated birds enjoyed lower oxidative stress levels or greater survival rates, in contrast to previous results in other taxa. In vitro experiments revealed lower sensitivity of ROS production to DNP in mitochondria isolated from skeletal muscles of zebra finch than mouse. In addition, we found significant reductions in the number of eggs laid and in the inflammatory immune response in treated birds. Altogether, our data suggest that the 'uncoupling to survive' hypothesis may not be applicable for zebra finches, presumably because of lower effects of mitochondrial uncoupling on mitochondrial ROS production in birds than in mammals. Nevertheless, mitochondrial uncoupling appeared to be a potential life-history regulator of traits such as fecundity and immunity at adulthood, even with food supplied ad libitum.

  2. Snf1-related kinase improves cardiac mitochondrial efficiency and decreases mitochondrial uncoupling

    PubMed Central

    Rines, Amy K.; Chang, Hsiang-Chun; Wu, Rongxue; Sato, Tatsuya; Khechaduri, Arineh; Kouzu, Hidemichi; Shapiro, Jason; Shang, Meng; Burke, Michael A.; Jiang, Xinghang; Chen, Chunlei; Rawlings, Tenley A.; Lopaschuk, Gary D.; Schumacker, Paul T.; Abel, E. Dale; Ardehali, Hossein

    2017-01-01

    Ischaemic heart disease limits oxygen and metabolic substrate availability to the heart, resulting in tissue death. Here, we demonstrate that the AMP-activated protein kinase (AMPK)-related protein Snf1-related kinase (SNRK) decreases cardiac metabolic substrate usage and mitochondrial uncoupling, and protects against ischaemia/reperfusion. Hearts from transgenic mice overexpressing SNRK have decreased glucose and palmitate metabolism and oxygen consumption, but maintained power and function. They also exhibit decreased uncoupling protein 3 (UCP3) and mitochondrial uncoupling. Conversely, Snrk knockout mouse hearts have increased glucose and palmitate oxidation and UCP3. SNRK knockdown in cardiac cells decreases mitochondrial efficiency, which is abolished with UCP3 knockdown. We show that Tribbles homologue 3 (Trib3) binds to SNRK, and downregulates UCP3 through PPARα. Finally, SNRK is increased in cardiomyopathy patients, and SNRK reduces infarct size after ischaemia/reperfusion. SNRK also decreases cardiac cell death in a UCP3-dependent manner. Our results suggest that SNRK improves cardiac mitochondrial efficiency and ischaemic protection. PMID:28117339

  3. Uncoupling RARA transcriptional activation and degradation clarifies the bases for APL response to therapies.

    PubMed

    Ablain, Julien; Leiva, Magdalena; Peres, Laurent; Fonsart, Julien; Anthony, Elodie; de Thé, Hugues

    2013-04-08

    In PML/RARA-driven acute promyelocytic leukemia (APL), retinoic acid (RA) induces leukemia cell differentiation and transiently clears the disease. Molecularly, RA activates PML/RARA-dependent transcription and also initiates its proteasome-mediated degradation. In contrast, arsenic, the other potent anti-APL therapy, only induces PML/RARA degradation by specifically targeting its PML moiety. The respective contributions of RA-triggered transcriptional activation and proteolysis to clinical response remain disputed. Here, we identify synthetic retinoids that potently activate RARA- or PML/RARA-dependent transcription, but fail to down-regulate RARA or PML/RARA protein levels. Similar to RA, these uncoupled retinoids elicit terminal differentiation, but unexpectedly fail to impair leukemia-initiating activity of PML/RARA-transformed cells ex vivo or in vivo. Accordingly, the survival benefit conferred by uncoupled retinoids in APL mice is dramatically lower than the one provided by RA. Differentiated APL blasts sorted from uncoupled retinoid-treated mice retain PML/RARA expression and reinitiate APL in secondary transplants. Thus, differentiation is insufficient for APL eradication, whereas PML/RARA loss is essential. These observations unify the modes of action of RA and arsenic and shed light on the potency of their combination in mice or patients.

  4. Inhibition of uncoupled respiration in tumor cells. A possible role of mitochondrial Ca2+ efflux.

    PubMed

    Gabai, V L

    1993-08-23

    Uncouplers CCCP (2-4 microM) or DNP (200-400 microM) when added to EL-4 thymoma or Ehrlich carcinoma ascites cells initially stimulated endogenous respiration about 2-fold but then inhibited it to a first-order rate 20-25% of controls. This inhibition was accelerated by intracellular acidification or by A23187, a Ca2+/H(+)-antiporter (i.e. when mitochondrial Ca2+ efflux was stimulated) whereas Ruthenium red, an inhibitor of uniporter-driven Ca2+ efflux, significantly slowed down the effect of uncouplers. The respiratory inhibition was associated with NAD(P)H oxidation and was partially reversed by exogenous substrates (glutamine or glucose). In the permeabilized cells, endogenous and glutamine-supported respiration was inhibited by EGTA, while succinate-supported respiration was Ca2+ independent. It is suggested that mitochondrial Ca2+ is necessary for NADH-dependent respiration of tumor cells, and uncouplers inhibit it by activation of mitochondrial Ca2+ efflux.

  5. Endothelin uncouples gap junctions in sustentacular cells and olfactory ensheathing cells of the olfactory mucosa.

    PubMed

    Le Bourhis, Mikaël; Rimbaud, Stéphanie; Grebert, Denise; Congar, Patrice; Meunier, Nicolas

    2014-09-01

    Several factors modulate the first step of odour detection in the rat olfactory mucosa (OM). Among others, vasoactive peptides such as endothelin might play multifaceted roles in the different OM cells. Like their counterparts in the central nervous system, the olfactory sensory neurons are encompassed by different glial-like non-neuronal OM cells; sustentacular cells (SCs) surround their cell bodies, whereas olfactory ensheathing cells (OECs) wrap their axons. Whereas SCs maintain both the structural and ionic integrity of the OM, OECs assure protection, local blood flow control and guiding of olfactory sensory neuron axons toward the olfactory bulb. We previously showed that these non-neuronal OM cells are particularly responsive to endothelin in vitro. Here, we confirmed that the endothelin system is strongly expressed in the OM using in situ hybridization. We then further explored the effects of endothelin on SCs and OECs using electrophysiological recordings and calcium imaging approaches on both in vitro and ex vivo OM preparations. Endothelin induced both robust calcium signals and gap junction uncoupling in both types of cells. This latter effect was mimicked by carbenoxolone, a known gap junction uncoupling agent. However, although endothelin is known for its antiapoptotic effect in the OM, the uncoupling of gap junctions by carbenoxolone was not sufficient to limit the cellular death induced by serum deprivation in OM primary culture. The functional consequence of the endothelin 1-induced reduction of the gap junctional communication between OM non-neuronal cells thus remains to be elucidated.

  6. Uncoupling RARA transcriptional activation and degradation clarifies the bases for APL response to therapies

    PubMed Central

    Ablain, Julien; Leiva, Magdalena; Peres, Laurent; Fonsart, Julien; Anthony, Elodie

    2013-01-01

    In PML/RARA-driven acute promyelocytic leukemia (APL), retinoic acid (RA) induces leukemia cell differentiation and transiently clears the disease. Molecularly, RA activates PML/RARA-dependent transcription and also initiates its proteasome-mediated degradation. In contrast, arsenic, the other potent anti-APL therapy, only induces PML/RARA degradation by specifically targeting its PML moiety. The respective contributions of RA-triggered transcriptional activation and proteolysis to clinical response remain disputed. Here, we identify synthetic retinoids that potently activate RARA- or PML/RARA-dependent transcription, but fail to down-regulate RARA or PML/RARA protein levels. Similar to RA, these uncoupled retinoids elicit terminal differentiation, but unexpectedly fail to impair leukemia-initiating activity of PML/RARA-transformed cells ex vivo or in vivo. Accordingly, the survival benefit conferred by uncoupled retinoids in APL mice is dramatically lower than the one provided by RA. Differentiated APL blasts sorted from uncoupled retinoid–treated mice retain PML/RARA expression and reinitiate APL in secondary transplants. Thus, differentiation is insufficient for APL eradication, whereas PML/RARA loss is essential. These observations unify the modes of action of RA and arsenic and shed light on the potency of their combination in mice or patients. PMID:23509325

  7. Dopamine-stimulated dephosphorylation of connexin 36 mediates AII amacrine cell uncoupling

    PubMed Central

    Kothmann, W. Wade; Massey, Stephen C.; O’Brien, John

    2010-01-01

    Gap junction proteins form the substrate for electrical coupling between neurons. These electrical synapses are widespread in the central nervous system and serve a variety of important functions. In the retina, connexin 36 (Cx36) gap junctions couple AII amacrine cells and are a requisite component of the high-sensitivity rod photoreceptor pathway. AII amacrine cell coupling strength is dynamically regulated by background light intensity, and uncoupling is thought to be mediated by dopamine signaling via D1-like receptors. One proposed mechanism for this uncoupling involves dopamine-stimulated phosphorylation of Cx36 at regulatory sites, mediated by protein kinase A. Here we provide evidence against this hypothesis and demonstrate a direct relationship between Cx36 phosphorylation and AII amacrine cell coupling strength. Dopamine receptor-driven uncoupling of the AII network results from protein kinase A activation of protein phosphatase 2A and subsequent dephosphorylation of Cx36. Protein phosphatase 1 activity negatively regulates this pathway. We also find that Cx36 gap junctions can exist in widely different phosphorylation states within a single neuron, implying that coupling is controlled at the level of individual gap junctions by locally assembled signaling complexes. This kind of synapse-by-synapse plasticity allows for precise control of neuronal coupling, as well as cell type-specific responses dependent on the identity of the signaling complexes assembled. PMID:19940186

  8. Female Reproductive System

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Female Reproductive System KidsHealth > For Parents > Female Reproductive System A A ... the egg or sperm. continue Parts of the Female Reproductive System Unlike the male, the human female has a ...

  9. Female Reproductive System (For Teens)

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Female Reproductive System KidsHealth > For Teens > Female Reproductive System A A ... and female reproductive systems. continue What Is the Female Reproductive System? Most species have two sexes: male and female. ...

  10. Female Reproductive System (For Teens)

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Female Reproductive System KidsHealth > For Teens > Female Reproductive System Print A ... and female reproductive systems. continue What Is the Female Reproductive System? Most species have two sexes: male and female. ...

  11. Genistein ameliorated endothelial nitric oxidase synthase uncoupling by stimulating sirtuin-1 pathway in ox-LDL-injured HUVECs.

    PubMed

    Zhang, Hua-ping; Zhao, Jia-hui; Yu, Hai-xia; Guo, Dong-xing

    2016-03-01

    Endothelial nitric oxidase synthase (eNOS) uncoupling plays a causal role in endothelial dysfunction in atherosclerosis. Genistein consumption has been associated with the prevention of atherosclerosis. However, the effect of genistein on eNOS uncoupling has not been reported. A model of oxidized low-density lipoprotein (ox-LDL)-induced injury on human umbilical vein endothelial cells (HUVECs) was established to evaluate the effect of genistein on eNOS uncoupling. We investigated the effect of genistein on NADPH oxidase-dependent superoxide production, NOX4 expression, BH4 synthesis and oxidation, the expression of GTP cyclohydrolase 1 (GCH1) and dihydrofolate reductase (DHFR). The results showed that genistein decreased superoxide production and NOX4 expression, enhanced the ratio of BH4/BH2, augmented the expressions of GCH1 and DHFR. Accompanied with genistein ameliorating eNOS uncoupling, genistein elevated the expression of sirtuin-1; furthermore, the effects of genistein on eNOS uncoupling were blunted with sirtuin-1 siRNA. The present study indicated that genistein ameliorated eNOS uncoupling was concerned with sirtuin-1 pathway in ox-LDL-injured HUVECs.

  12. Evaluation of sludge reduction of three metabolic uncouplers in laboratory-scale anaerobic-anoxic-oxic process.

    PubMed

    Li, Ping; Li, Hechao; Li, Jin; Guo, Xuesong; Liu, Junxin; Xiao, Benyi

    2016-12-01

    To evaluate the sludge reduction of three metabolic uncouplers (3,3',4',5-tetrachlorosalicylanilide (TCS), 2,4-dichlorophenol (DCP), and tetrakis (hydroxymethyl) phosphonium sulfate (THPS)), we conducted continuous experiments on laboratory-scale anaerobic-anoxic-oxic processes. The three metabolic uncouplers were separately added in each oxic tank of the three systems, and a system without uncoupler addition was used as control. During the 85-day operation, sludge production and observed growth yields decreased to 38.6% and 16.98%, 43.4% and 17.55%, and 39.3% and 17.04% by the addition of TCS, DCP, and THPS, respectively. The addition of metabolic uncouplers slightly reduced the wastewater treatment efficiencies of the system (about 1.1-8.7%) and increased sludge SVIs (about 69.9-80.6%). Meanwhile, the differences among three metabolic uncouplers were little. Besides metabolic uncoupling and maintenance metabolism, which exist in the TCS- and DCP-added systems, lysis-cryptic growth also exists in the THPS-added system.

  13. UCP1, the mitochondrial uncoupling protein of brown adipocyte: A personal contribution and a historical perspective.

    PubMed

    Ricquier, Daniel

    2017-03-01

    The present text summarizes what was my contribution, starting in 1975, to the research on the uncoupling protein 1 (UCP1), the mitochondrial uncoupler of brown adipocytes. The research on UCP1 aimed at identifying the mechanisms of heat production by brown adipocytes that occurs in mammals either at birth or during cold exposure and arousal in hibernators. With others and in particular Dr. David Nicholls, I participated in the first experiments that contributed to the identification of UCP1. Important steps were the obtention of UCP1 antibodies followed with my main collaborator and friend Frédéric Bouillaud with the initial cloning of the UCP1 cDNA and gene from rats and humans. These molecular tools were then used not only to analyse UCP1 uncoupling activity and to investigate the effects of mutagenesis on the uncoupling function of this protein, but also to decipher the transcriptional regulation of the UCP1 gene. In addition to experiments carried out in rodents, we could identify UCP1 and thermogenic brown adipocytes in humans. A more recent outcome of our research on this uncoupling protein was the identification of a second isoform of UCP, that we named UCP2, and of several UCP homologues in mammals, chicken and plants. UCP1 is certainly a unique mitochondrial transporter able to uncouple respiration from ADP phosphorylation in mitochondria. The discovery of this protein has opened new avenues for studying energy expenditure in relation to overweight, obesity and related pathologies.

  14. Accelerated mutation accumulation in asexual lineages of a freshwater snail.

    PubMed

    Neiman, Maurine; Hehman, Gery; Miller, Joseph T; Logsdon, John M; Taylor, Douglas R

    2010-04-01

    Sexual reproduction is both extremely costly and widespread relative to asexual reproduction, meaning that it must also confer profound advantages in order to persist. One theorized benefit of sex is that it facilitates the clearance of harmful mutations, which would accumulate more rapidly in the absence of recombination. The extent to which ineffective purifying selection and mutation accumulation are direct consequences of asexuality and whether the accelerated buildup of harmful mutations in asexuals can occur rapidly enough to maintain sex within natural populations, however, remain as open questions. We addressed key components of these questions by estimating the rate of mutation accumulation in the mitochondrial genomes of multiple sexual and asexual representatives of Potamopyrgus antipodarum, a New Zealand snail characterized by mixed sexual/asexual populations. We found that increased mutation accumulation is associated with asexuality and occurs rapidly enough to be detected in recently derived asexual lineages of P. antipodarum. Our results demonstrate that increased mutation accumulation in asexuals can differentially affect coexisting and ecologically similar sexual and asexual lineages. The accelerated rate of mutation accumulation observed in asexual P. antipodarum provides some of the most direct evidence to date for a link between asexuality and mutation accumulation and implies that mutational buildup could be rapid enough to contribute to the short-term evolutionary mechanisms that favor sexual reproduction.

  15. Reproduction (II): Human Control of Reproductive Processes

    ERIC Educational Resources Information Center

    Jost, Alfred

    1970-01-01

    Describes methods of intervening in reproduction of animals and humans (artificial insemination, contraception, ovular and blastodisc transplants, pre selection of sex, cloning) and discusses the social implications of their use with humans. (AL)

  16. From reproductive choice to reproductive justice.

    PubMed

    Cook, Rebecca J; Dickens, Bernard M

    2009-08-01

    Since the 1994 Cairo Conference on Population and Development, the human rights movement has embraced the concept of reproductive rights. These are often pursued, however, by means to which objection is taken. Some conservative political and religious forces continue to resist implementation of several means of protecting and advancing reproductive rights. Individuals' rights to grant and to deny consent to medical procedures affecting their reproductive health and confidentiality have been progressively advanced. However, access to contraceptive services, while not necessarily opposed, is unjustifiably obstructed in some settings. Rights to lawful abortion have been considerably liberalized by legislative and judicial decisions, although resistance remains. Courts are increasingly requiring that lawful services be accommodated under transparent conditions of access and of legal protection. The conflict between rights of resort to lawful reproductive health services and to conscientious objection to participation is resolved by legal duties to refer patients to non-objecting providers.

  17. Simulated emergence of cyclic sexual-asexual reproduction

    NASA Astrophysics Data System (ADS)

    Sá Martins, J. S.; Racco, A.

    2001-08-01

    Motivated by the cyclic pattern of reproductive regimes observed in some species of green flies (“ aphids”), we simulate the evolution of a population enduring harsh seasonal conditions for survival. The reproductive regime of each female is also seasonal in principle and genetically acquired, and can mutate for each newborn with some small probability. The results show a sharp transition at a critical value of the survival probability in the winter, between a reproductive regime in the fall that is predominantly sexual, for low values of this probability, or asexual, for high values.

  18. Justification of sexual reproduction by modified Penna model of ageing

    NASA Astrophysics Data System (ADS)

    Sá Martins, J. S.; Stauffer, D.

    2001-05-01

    We generalize the standard Penna bit-string model of biological ageing by assuming that each deleterious mutation diminishes the survival probability in every time interval by a small percentage. This effect is added to the usual lethal but age-dependent effect of the same mutation. We then find strong advantages or disadvantages of sexual reproduction (with males and females) compared to asexual cloning, depending on parameters.

  19. Coupled and uncoupled hydrogeophysical inversions using ensemble Kalman filter assimilation of ERT-monitored tracer test data

    NASA Astrophysics Data System (ADS)

    Camporese, Matteo; Cassiani, Giorgio; Deiana, Rita; Salandin, Paolo; Binley, Andrew

    2015-05-01

    Recent advances in geophysical methods have been increasingly exploited as inverse modeling tools in groundwater hydrology. In particular, several attempts to constrain the hydrogeophysical inverse problem to reduce inversion errors have been made using time-lapse geophysical measurements through both coupled and uncoupled (also known as sequential) inversion approaches. Despite the appeal and popularity of coupled inversion approaches, their superiority over uncoupled methods has not been proved conclusively; the goal of this work is to provide an objective comparison between the two approaches within a specific inversion modeling framework based on the ensemble Kalman filter (EnKF). Using EnKF and a model of Lagrangian transport, we compare the performance of a fully coupled and uncoupled inversion method for the reconstruction of heterogeneous saturated hydraulic conductivity fields through the assimilation of ERT-monitored tracer test data. The two inversion approaches are tested in a number of different scenarios, including isotropic and anisotropic synthetic aquifers, where we change the geostatistical parameters used to generate the prior ensemble of hydraulic conductivity fields. Our results show that the coupled approach outperforms the uncoupled when the prior statistics are close to the ones used to generate the true field. Otherwise, the coupled approach is heavily affected by "filter inbreeding" (an undesired effect of variance underestimation typical of EnKF), while the uncoupled approach is more robust, being able to correct biased prior information, thanks to its capability of capturing the solute travel times even in presence of inversion artifacts such as the violation of mass balance. Furthermore, the coupled approach is more computationally intensive than the uncoupled, due to the much larger number of forward runs required by the electrical model. Overall, we conclude that the relative merit of the coupled versus the uncoupled approach cannot

  20. The evolution and consequences of sex-specific reproductive variance.

    PubMed

    Mullon, Charles; Reuter, Max; Lehmann, Laurent

    2014-01-01

    Natural selection favors alleles that increase the number of offspring produced by their carriers. But in a world that is inherently uncertain within generations, selection also favors alleles that reduce the variance in the number of offspring produced. If previous studies have established this principle, they have largely ignored fundamental aspects of sexual reproduction and therefore how selection on sex-specific reproductive variance operates. To study the evolution and consequences of sex-specific reproductive variance, we present a population-genetic model of phenotypic evolution in a dioecious population that incorporates previously neglected components of reproductive variance. First, we derive the probability of fixation for mutations that affect male and/or female reproductive phenotypes under sex-specific selection. We find that even in the simplest scenarios, the direction of selection is altered when reproductive variance is taken into account. In particular, previously unaccounted for covariances between the reproductive outputs of different individuals are expected to play a significant role in determining the direction of selection. Then, the probability of fixation is used to develop a stochastic model of joint male and female phenotypic evolution. We find that sex-specific reproductive variance can be responsible for changes in the course of long-term evolution. Finally, the model is applied to an example of parental-care evolution. Overall, our model allows for the evolutionary analysis of social traits in finite and dioecious populations, where interactions can occur within and between sexes under a realistic scenario of reproduction.

  1. The Evolution and Consequences of Sex-Specific Reproductive Variance

    PubMed Central

    Mullon, Charles; Reuter, Max; Lehmann, Laurent

    2014-01-01

    Natural selection favors alleles that increase the number of offspring produced by their carriers. But in a world that is inherently uncertain within generations, selection also favors alleles that reduce the variance in the number of offspring produced. If previous studies have established this principle, they have largely ignored fundamental aspects of sexual reproduction and therefore how selection on sex-specific reproductive variance operates. To study the evolution and consequences of sex-specific reproductive variance, we present a population-genetic model of phenotypic evolution in a dioecious population that incorporates previously neglected components of reproductive variance. First, we derive the probability of fixation for mutations that affect male and/or female reproductive phenotypes under sex-specific selection. We find that even in the simplest scenarios, the direction of selection is altered when reproductive variance is taken into account. In particular, previously unaccounted for covariances between the reproductive outputs of different individuals are expected to play a significant role in determining the direction of selection. Then, the probability of fixation is used to develop a stochastic model of joint male and female phenotypic evolution. We find that sex-specific reproductive variance can be responsible for changes in the course of long-term evolution. Finally, the model is applied to an example of parental-care evolution. Overall, our model allows for the evolutionary analysis of social traits in finite and dioecious populations, where interactions can occur within and between sexes under a realistic scenario of reproduction. PMID:24172130

  2. Mitochondrial uncoupling reduces exercise capacity despite several skeletal muscle metabolic adaptations.

    PubMed

    Schlagowski, A I; Singh, F; Charles, A L; Gali Ramamoorthy, T; Favret, F; Piquard, F; Geny, B; Zoll, J

    2014-02-15

    The effects of mitochondrial uncoupling on skeletal muscle mitochondrial adaptation and maximal exercise capacity are unknown. In this study, rats were divided into a control group (CTL, n = 8) and a group treated with 2,4-dinitrophenol, a mitochondrial uncoupler, for 28 days (DNP, 30 mg·kg(-1)·day(-1) in drinking water, n = 8). The DNP group had a significantly lower body mass (P < 0.05) and a higher resting oxygen uptake (Vo2, P < 0.005). The incremental treadmill test showed that maximal running speed and running economy (P < 0.01) were impaired but that maximal Vo2 (Vo2max) was higher in the DNP-treated rats (P < 0.05). In skinned gastrocnemius fibers, basal respiration (V0) was higher (P < 0.01) in the DNP-treated animals, whereas the acceptor control ratio (ACR, Vmax/V0) was significantly lower (P < 0.05), indicating a reduction in OXPHOS efficiency. In skeletal muscle, DNP activated the mitochondrial biogenesis pathway, as indicated by changes in the mRNA expression of PGC1-α and -β, NRF-1 and -2, and TFAM, and increased the mRNA expression of cytochrome oxidase 1 (P < 0.01). The expression of two mitochondrial proteins (prohibitin and Ndufs 3) was higher after DNP treatment. Mitochondrial fission 1 protein (Fis-1) was increased in the DNP group (P < 0.01), but mitofusin-1 and -2 were unchanged. Histochemical staining for NADH dehydrogenase and succinate dehydrogenase activity in the gastrocnemius muscle revealed an increase in the proportion of oxidative fibers after DNP treatment. Our study shows that mitochondrial uncoupling induces several skeletal muscle adaptations, highlighting the role of mitochondrial coupling as a critical factor for maximal exercise capacities. These results emphasize the importance of investigating the qualitative aspects of mitochondrial function in addition to the amount of mitochondria.

  3. Exercise-induced cardioprotection: a role for eNOS uncoupling and NO metabolites.

    PubMed

    Farah, C; Kleindienst, A; Bolea, G; Meyer, G; Gayrard, S; Geny, B; Obert, P; Cazorla, O; Tanguy, S; Reboul, Cyril

    2013-11-01

    Exercise is an efficient strategy for myocardial protection against ischemia-reperfusion (IR) injury. Although endothelial nitric oxide synthase (eNOS) is phosphorylated and activated during exercise, its role in exercise-induced cardioprotection remains unknown. This study investigated whether modulation of eNOS activation during IR could participate in the exercise-induced cardioprotection against IR injury. Hearts isolated from sedentary or exercised rats (5 weeks training) were perfused with a Langendorff apparatus and IR performed in the presence or absence of NOS inhibitors [N-nitro-L-arginine methyl ester, L-NAME or N5-(1-iminoethyl)-L-ornithine, L-NIO] or tetrahydrobiopterin (BH₄). Exercise training protected hearts against IR injury and this effect was abolished by L-NAME or by L-NIO treatment, indicating that exercise-induced cardioprotection is eNOS dependent. However, a strong reduction of eNOS phosphorylation at Ser1177 (eNOS-PSer1177) and of eNOS coupling during early reperfusion was observed in hearts from exercised rats (which showed higher eNOS-PSer1177 and eNOS dimerization at baseline) in comparison to sedentary rats. Despite eNOS uncoupling, exercised hearts had more S-nitrosylated proteins after early reperfusion and also less nitro-oxidative stress, indexed by lower malondialdehyde content and protein nitrotyrosination compared to sedentary hearts. Moreover, in exercised hearts, stabilization of eNOS dimers by BH4 treatment increased nitro-oxidative stress and then abolished the exercise-induced cardioprotection, indicating that eNOS uncoupling during IR is required for exercise-induced myocardial cardioprotection. Based on these results, we hypothesize that in the hearts of exercised animals, eNOS uncoupling associated with the improved myocardial antioxidant capacity prevents excessive NO synthesis and limits the reaction between NO and O₂·- to form peroxynitrite (ONOO⁻), which is cytotoxic.

  4. Mitochondrial efficiency and exercise economy following heat stress: a potential role of uncoupling protein 3.

    PubMed

    Salgado, Roy M; Sheard, Ailish C; Vaughan, Roger A; Parker, Daryl L; Schneider, Suzanne M; Kenefick, Robert W; McCormick, James J; Gannon, Nicholas P; Van Dusseldorp, Trisha A; Kravitz, Len R; Mermier, Christine M

    2017-02-01

    Heat stress has been reported to reduce uncoupling proteins (UCP) expression, which in turn should improve mitochondrial efficiency. Such an improvement in efficiency may translate to the systemic level as greater exercise economy. However, neither the heat-induced improvement in mitochondrial efficiency (due to decrease in UCP), nor its potential to improve economy has been studied. Determine: (i) if heat stress in vitro lowers UCP3 thereby improving mitochondrial efficiency in C2C12 myocytes; (ii) whether heat acclimation (HA) in vivo improves exercise economy in trained individuals; and (iii) the potential improved economy during exercise at altitude. In vitro, myocytes were heat stressed for 24 h (40°C), followed by measurements of UCP3, mitochondrial uncoupling, and efficiency. In vivo, eight trained males completed: (i) pre-HA testing; (ii) 10 days of HA (40°C, 20% RH); and (iii) post-HA testing. Pre- and posttesting consisted of maximal exercise test and submaximal exercise at two intensities to assess exercise economy at 1600 m (Albuquerque, NM) and 4350 m. Heat-stressed myocytes displayed significantly reduced UCP3 mRNA expression and, mitochondrial uncoupling (77.1 ± 1.2%, P < 0.0001) and improved mitochondrial efficiency (62.9 ± 4.1%, P < 0.0001) compared to control. In humans, at both 1600 m and 4350 m, following HA, submaximal exercise economy did not change at low and moderate exercise intensities. Our findings indicate that while heat-induced reduction in UCP3 improves mitochondrial efficiency in vitro, this is not translated to in vivo improvement of exercise economy at 1600 m or 4350 m.

  5. Diesel exhaust exposure enhances venoconstriction via uncoupling of eNOS

    SciTech Connect

    Knuckles, Travis L.; Lund, Amie K.; Lucas, Selita N.; Campen, Matthew J.

    2008-08-01

    Environmental air pollution is associated with adverse cardiovascular events, including increased hospital admissions due to heart failure and myocardial infarction. The exact mechanism(s) by which air pollution affects the heart and vasculature is currently unknown. Recent studies have found that exposure to air pollution enhances arterial vasoconstriction in humans and animal models. Work in our laboratory has shown that diesel emissions (DE) enhance vasoconstriction of mouse coronary arteries. Thus, we hypothesized that DE could enhance vasoconstriction in arteries and veins through uncoupling of endothelial nitric oxide synthase (eNOS). To test this hypothesis, we first bubbled DE through a physiological saline solution and exposed isolated mesenteric veins. Second, we exposed animals, whole body, to DE at 350 {mu}g/m{sup 3} for 4 h, after which mesenteric arteries and veins were isolated. Results from these experiments show that saline bubbled with DE as well as inhaled DE enhances vasoconstriction in veins but not arteries. Exposure to several representative volatile organic compounds found in the DE-exposed saline did not enhance arterial constriction. L-nitro-arginine-methyl-ester (L-NAME), an eNOS inhibitor, normalized the control vessels to the DE-exposed vessels implicating an uncoupling of eNOS as a mechanism for enhanced vasoconstriction. The principal conclusions of this research are 1) veins exhibit endothelial dysfunction following in vivo and ex vivo exposures to DE, 2) veins appear to be more sensitive to DE effects than arteries, and 3) DE components most likely induce endothelial dysfunction through the uncoupling of eNOS.

  6. Modelling of the protonophoric uncoupling by phenoxyacetic acid of the plasma membrane potential of Penicillium chrysogenum.

    PubMed

    Henriksen, C M; Nielsen, J; Villadsen, J

    1998-12-20

    Physiological effects of phenoxyacetic acid, the penicillin V side-chain precursor, on steady-state continuous cultures of Penicillium chrysogenum have been studied both theoretically and experimentally. Theoretical calculations show that at an extracellular pH of 6.50, phenoxyacetic acid has negligible influence on the growth energetics due to protonophoric uncoupling of membrane potentials by passive diffusive uptake. On the other hand, when the extracellular pH is lowered to 5.00, a severe maintenance-related uncoupling effect of phenoxyacetic acid is calculated. These findings were confirmed experimentally by steady-state continuous cultivations with a high-yielding penicillin strain of P. chrysogenum performed on a chemically defined and glucose-limited medium at pH 6.50 and pH 5.00, both with and without phenoxyacetic acid present. The yield and maintenance coefficients were determined from steady-state measurements of the specific uptake rates of glucose and oxygen and the specific production rate of carbon dioxide as functions of the specific growth rate. Combining these data with a simple stoichiometric model for the primary metabolism of P. chrysogenum allows quantitative information to be extracted on the growth energetics in terms of ATP spent in maintenance- and growth-related processes, i.e. mATP and YxATP. The increased maintenance-related ATP consumption when adding phenoxyacetic acid at pH 5.00 agrees with the theoretical calculations on the uncoupling effect of phenoxyacetic acid. When YxATP is compared with earlier reported values for the theoretical ATP requirement for biosynthesis of P. chrysogenum, i.e. YxATP, growth, it is found that YxATP,growth is only 40-50% of YxATP, which stresses that a large amount of ATP is wasted in turnover of macromolecules, leaks, and futile cycles.

  7. Nucleotide binding to human uncoupling protein-2 refolded from bacterial inclusion bodies.

    PubMed

    Jekabsons, Mika B; Echtay, Karim S; Brand, Martin D

    2002-09-01

    Experiments were performed to test the hypothesis that recombinant human uncoupling protein-2 (UCP2) ectopically expressed in bacterial inclusion bodies binds nucleotides in a manner identical with the nucleotide-inhibited uncoupling that is observed in kidney mitochondria. For this, sarkosyl-solubilized UCP2 inclusion bodies were treated with the polyoxyethylene ether detergent C12E9 and hydroxyapatite. Protein recovered from hydroxyapatite chromatography was approx. 90% pure UCP2, as judged by Coomassie Blue and silver staining of polyacrylamide gels. Using fluorescence resonance energy transfer, N-methylanthraniloyl-tagged purine nucleoside di- and tri-phosphates exhibited enhanced fluorescence with purified UCP2. Dissociation constants determined by least-squares non-linear regression indicated that the affinity of UCP2 for these fluorescently tagged nucleotides was 3-5 microM or perhaps an order of magnitude stronger, depending on the model used. Competition experiments with [8-14C]ATP demonstrated that UCP2 binds unmodified purine and pyrimidine nucleoside triphosphates with 2-5 microM affinity. Affinities for ADP and GDP were approx. 10-fold lower. These data indicate that: UCP2 (a) is at least partially refolded from sarkosyl-solubilized bacterial inclusion bodies by a two-step treatment with C12E9 detergent and hydroxyapatite; (b) binds purine and pyrimidine nucleoside triphosphates with low micromolar affinity; (c) binds GDP with the same affinity as GDP inhibits superoxide-stimulated uncoupling by kidney mitochondria; and (d) exhibits a different nucleotide preference than kidney mitochondria.

  8. Uncoupling protein-3 is a molecular determinant for the regulation of resting metabolic rate by thyroid hormone.

    PubMed

    de Lange, P; Lanni, A; Beneduce, L; Moreno, M; Lombardi, A; Silvestri, E; Goglia, F

    2001-08-01

    Thyroid hormones increase energy expenditure, partly by reducing metabolic efficiency. The control of specific genes at the transcriptional level is thought to be the major molecular mechanism. However, both the number and the identity of the thyroid hormone-controlled genes remain unknown, as do their relative contributions. Uncoupling protein-3, a recently identified member of the mitochondrial transporter superfamily and one that is predominantly expressed in skeletal muscle, has the potential to be a molecular determinant for thyroid thermogenesis. However, changes in mitochondrial proton conductance and resting metabolic rate after physiologically mediated changes in uncoupling protein-3 levels have not been described. Here, in a study on hypothyroid rats given a single injection of T(3), we describe a strict correlation in terms of time course between the induced increase in uncoupling protein-3 expression (at mRNA and protein levels) and decrease in mitochondrial respiratory efficiency, on the one hand, and the increase in resting metabolic rate, on the other. First, we describe our finding that uncoupling protein-3 is present and regulated by T(3) only in metabolically relevant tissues (such as skeletal muscle and heart). Second, we follow the time course (at 0, 6, 12, 24, 48, 65, 96, and 144 h) of both uncoupling protein-3 mRNA levels and mitochondrial uncoupling protein-3 density in gastrocnemius muscle and heart. In both tissues, the maximal (12-fold) increase in uncoupling protein-3 density was reached at 65 h. The resting metabolic rate [lO(2)(kg(0.75))(-1)h(-1)] showed the same time course, and at 65 h the increase vs. time zero was 45% (1.316 +/- 0.026 vs. 0.940 +/- 0.007; P < 0.001). At the same time point, gastrocnemius muscle mitochondria showed a significantly higher nonphosphorylating respiration rate (nanoatoms of oxygen per min/mg protein; increase vs. time zero, 40%; 118 +/- 4 vs. 85 +/- 9; P < 0.05), whereas the membrane potential decreased

  9. Carboxyatractylate inhibits the potentiating effect of lipophylic cation TPP+ on uncoupling activity of fatty acid.

    PubMed

    Dedukhova, V I; Mokhova, E N; Starkov, A A; Leikin YuN

    1993-08-01

    The effect of TPP+ on the fatty acid or FCCP-induced uncoupling in rat heart mitochondria was studied. It was found that (a) TPP+ increases the stimulation of oxygen consumption by palmitic acid or FCCP in the presence of oligomycin, (b) TPP+ greatly enhances the palmitic acid or FCCP-induced delta psi decrease. Both effects of TPP+ were strongly suppressed by carboxyatractylate in the case of palmitate but were not in the case of FCCP. The role of ATP/ADP-antiporter in the TPP+ and palmitic acid effects is discussed.

  10. Advances in reproductive biotechnologies

    PubMed Central

    Choudhary, K. K.; Kavya, K. M.; Jerome, A.; Sharma, R. K.

    2016-01-01

    In recent times, reproductive biotechnologies have emerged and started to replace the conventional techniques. It is noteworthy that for sustained livestock productivity, it is imperative to start using these techniques for facing the increasing challenges for productivity, reproduction and health with impending environment conditions. These recent biotechniques, both in male and female, have revolutionized and opened avenues for studying and manipulating the reproductive process both in vitro and in vivo in various livestock species for improving tis efficiency. This review attempts to highlight pros and cons, on the recent developments in reproductive biotechnologies, both in male and female in livestock species. PMID:27182135

  11. Uncoupler-reversible inhibition of mitochondrial ATPase by metal chelates of bathophenanthroline. II. Comparison with other inhibitors.

    PubMed

    Carlsson, C; Ernster, L

    1981-12-14

    (1) Trisbathophenanthroline-Fe2+ (BPh3Fe2+)alters the hyperbolic relationship between concentration of ATP and reaction velocity of F1-ATPase to sigmoidal, with a simultaneous decrease in maximal velocity. (2) BPh3Fe2+ binds to the beta-subunit of F1 and competes with the binding of aurovertin. The reversal of this effect uncouplers in enhanced by ADP and diminished by ATP. BPh3Fe2+ also changes the hyperbolic concentration dependence of aurovertin binding to sigmoidal. (3) BPh3Fe2+ stabilizes F1 against the cold inactivation and cold dissociation in an uncoupler-reversible manner. (4) BPh3Fe2+ efficiently protects F1 against the light-induced inactivation occurring in the presence of Rose Bengal, and the effect is reversed by uncouplers. (5) The results are discussed in relation to the reaction mechanism of F1-ATPase and other enzymes catalyzing the reversible hydrolysis of pyrophosphate bonds.

  12. Reproduction, Physiology and Biochemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter focuses on the reproduction, physiology, and biochemistry of the root-knot nematodes. The extensive amount of information on the reproduction and cytogenetics of species of Meloidogyne contrasts with the limited information on physiology, biochemistry, and biochemical pathways. In commo...

  13. Reproductive Physiology of Marsupials

    ERIC Educational Resources Information Center

    Sharman, G. B.

    1970-01-01

    Describes some unique features of marsupial reproduction which include (1) chromosomal sex determination, (2) reproductive system, (3) birth, (4) location, and (5) embryonic diapause. These features suggest that viviparity evolved separately in eutherian and marsupial stocks after their derivation from a common oviparous ancestor. Bibliography.…

  14. Aerial photographic reproductions

    USGS Publications Warehouse

    ,

    1971-01-01

    Geological Survey vertical aerial photography is obtained primarily for topographic and geologic mapping. Reproductions from this photography are usually satisfactory for general use. Because reproductions are not stocked, but are custom processed for each order, they cannot be returned for credit or refund.

  15. Sexual Reproduction and Breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the second edition of Plant Propagation Concepts and Laboratory Exercises, we have combined the first edition chapters 36: Sexual Reproduction in Angiosperms and 37: Breeding Horticultural Plants into the present single chapter Sexual Reproduction and Breeding. These topics are so closely relate...

  16. The Reproduction of Intelligence

    ERIC Educational Resources Information Center

    Meisenberg, Gerhard

    2010-01-01

    Although a negative relationship between fertility and education has been described consistently in most countries of the world, less is known about the relationship between intelligence and reproductive outcomes. Also the paths through which intelligence influences reproductive outcomes are uncertain. The present study uses the NLSY79 to analyze…

  17. Uncoupling protein 1 in fish uncovers an ancient evolutionary history of mammalian nonshivering thermogenesis.

    PubMed

    Jastroch, Martin; Wuertz, Sven; Kloas, Werner; Klingenspor, Martin

    2005-07-14

    Uncoupling proteins (UCPs) increase proton leakage across the inner mitochondrial membrane. Thereby, UCP1 in brown adipose tissue dissipates proton motive force as heat. This mechanism of nonshivering thermogenesis is considered as a monophyletic trait of endothermic placental mammals that emerged about 140 million years ago and provided a crucial advantage for life in the cold. The paralogues UCP2 and UCP3 are probably not thermogenic proteins but convey mild uncoupling, which may serve to reduce the rate of mitochondrial reactive oxygen species production. Both are present in endotherms (mammals and birds), but so far only UCP2 has been identified in ectothermic vertebrates (fish and amphibia). The evolution of UCPs is of general interest in the search for the origin of mammalian UCP1-mediated nonshivering thermogenesis. We here show the presence of UCP1 and UCP3 in ectothermic teleost fish species using comparative genomics, phylogenetic inference, and gene expression analysis. In the common carp (Cyprinus carpio), UCP1 is predominantly expressed in the liver and strongly diminished in response to cold exposure, thus contrasting the cold-induced expression of mammalian UCP1 in brown adipose tissue. UCP3 mRNA is only found in carp skeletal muscle with expression levels increased fivefold in response to fasting. Our findings disprove the monophyletic nature of UCP1 in placental mammals and demonstrate that all three members of the core UCP family were already present before the divergence of ray-finned and lobe-finned vertebrate lineages about 420 million years ago.

  18. Uncoupling protein homologs may provide a link between mitochondria, metabolism and lifespan.

    PubMed

    Wolkow, Catherine A; Iser, Wendy B

    2006-05-01

    Uncoupling proteins (UCPs), which dissipate the mitochondrial proton gradient, have the ability to decouple mitochodrial respiration from ATP production. Since mitochondrial electron transport is a major source of free radical production, it is possible that UCP activity might impact free radical production. Free radicals can react with and damage cellular proteins, DNA and lipids. Accumulated damage from oxidative stress is believed to be a major contributor to cellular decline during aging. If UCP function were to impact mitochondrial free radical production, then one would expect to find a link between UCP activity and aging. This theory has recently been tested in a handful of organisms whose genomes contain UCP1 homologs. Interestingly, these experiments indicate that UCP homologs can affect lifespan, although they do not support a simple relationship between UCP activity and aging. Instead, UCP-like proteins appear to have a variety of effects on lifespan, and on pathways implicated in lifespan regulation. One possible explanation for this complex picture is that UCP homologs may have tissue-specific effects that complicate their effects on aging. Furthermore, the functional analysis of UCP1 homologs is incomplete. Thus, these proteins may perform functions in addition to, or instead of, mitochondrial uncoupling. Although these studies have not revealed a clear picture of UCP effects on aging, they have contributed to the growing knowledge base for these interesting proteins. Future biochemical and genetic investigation of UCP-like proteins will do much to clarify their functions and to identify the regulatory networks in which they are involved.

  19. The uncoupling agent 2,4-dinitrophenol improves mitochondrial homeostasis following striatal quinolinic acid injections.

    PubMed

    Korde, Amit S; Sullivan, Patrick G; Maragos, William F

    2005-10-01

    It is now generally accepted that excitotoxic cell death involves bioenergetic failure resulting from the cycling of Ca2+ and the generation of reactive oxygen species (ROS) by mitochondria. Both Ca2+ cycling and ROS formation by mitochondria are dependent on the mitochondrial membrane potential (Deltapsi(m)) that results from the proton gradient that is generated across the inner membrane. Mitochondrial uncoupling refers to a condition in which protons cross the inner membrane back into the matrix while bypassing the ATP synthase. As a consequence of this "short-circuit," there is a reduction in Deltapsi(m). We have previously demonstrated that animals treated with the classic uncoupling agent 2,4-dinitrophenol (DNP) show significant protection against brain damage following striatal injections of the NMDA agonist quinolinic acid (QA). In an effort to elucidate the mechanism of neuroprotection, we have assessed the effects of DNP on several parameters of mitochondrial function caused by QA. The results presented herein demonstrate that treatment with DNP attenuates QA-induced increases in mitochondrial Ca2+ levels and ROS formation and also improves mitochondrial respiration. Our findings indicate that DNP may confer protection against acute brain injury involving excitotoxic pathways by mechanisms that maintain mitochondrial function.

  20. Mitochondrial Hormesis in Pancreatic β Cells: Does Uncoupling Protein 2 Play a Role?

    PubMed Central

    Li, Ning; Stojanovski, Suzana; Maechler, Pierre

    2012-01-01

    In pancreatic β cells, mitochondrial metabolism translates glucose sensing into signals regulating insulin secretion. Chronic exposure of β cells to excessive nutrients, namely, glucolipotoxicity, impairs β-cell function. This is associated with elevated ROS production from overstimulated mitochondria. Mitochondria are not only the major source of cellular ROS, they are also the primary target of ROS attacks. The mitochondrial uncoupling protein UCP2, even though its uncoupling properties are debated, has been associated with protective functions against ROS toxicity. Hormesis, an adaptive response to cellular stresses, might contribute to the protection against β-cell death, possibly limiting the development of type 2 diabetes. Mitochondrial hormesis, or mitohormesis, is a defense mechanism observed in ROS-induced stress-responses by mitochondria. In β cells, mitochondrial damages induced by sublethal exogenous H2O2 can induce secondary repair and defense mechanisms. In this context, UCP2 is a marker of mitohormesis, being upregulated following stress conditions. When overexpressed in nonstressed naïve cells, UCP2 confers resistance to oxidative stress. Whether treatment with mitohormetic inducers is sufficient to restore or ameliorate secretory function of β cells remains to be determined. PMID:23029600

  1. Characteristics of the turnover of uncoupling protein 3 by the ubiquitin proteasome system in isolated mitochondria.

    PubMed

    Mookerjee, Shona A; Brand, Martin D

    2011-11-01

    Uncoupling protein 3 (UCP3) is implicated in mild uncoupling and the regulation of mitochondrial ROS production. We previously showed that UCP3 turns over rapidly in C2C12 myoblasts, with a half-life of 0.5-4h, and that turnover can be reconstituted in vitro. We show here that rapid degradation of UCP3 in vitro in isolated brown adipose tissue mitochondria required the 26S proteasome, ubiquitin, ATP, succinate to generate a high membrane potential, and a pH of 7.4 or less. Ubiquitin containing lysine-48 was both necessary and sufficient to support UCP3 degradation, implying a requirement for polyubiquitylation at this residue. The 20S proteasome did not support degradation. UCP3 degradation was prevented by simultaneously blocking matrix ATP generation and import, showing that ATP in the mitochondrial matrix was required. Degradation did not appear to require a transmembrane pH gradient, but was very sensitive to membrane potential: degradation was halved when membrane potential decreased 10-20mV from its resting value, and was not significant below about 120mV. We propose that matrix ATP and a high membrane potential are needed for UCP3 to be polyubiquitylated through lysine-48 of ubiquitin and exported to the cytosolic 26S proteasome, where it is de-ubiquitylated and degraded.

  2. Uncoupled transport of chlorofluorocarbons and anthropogenic carbon in the subpolar North Atlantic

    NASA Astrophysics Data System (ADS)

    Álvarez, Marta; Gourcuff, Claire

    2010-07-01

    Chlorofluorocarbon (CFC) 11 and 12 transports across the transoceanic World Ocean Circulation Experiment (WOCE) A25 section in the subpolar North Atlantic are derived from an inverse model using hydrographic and ADCP data ( Lherminier et al., 2007). CFC and anthropogenic carbon ( CANT) advective transports contrary to expected are uncoupled: CANT is transported northeastwards (82±39 kmol s -1) mainly within the overturning circulation, while CFC-11 and CFC-12 are transported southwestwards (-24±4 and -11±2 mol s -1, respectively) as part of the large-scale horizontal circulation. The main reason for this uncoupled behaviour is the complex CFC vs. CANT relation in the ocean, which stems from the contrasting temperature relation for both tracers: more CANT dissolves in warmer waters with a low Revelle factor, while CFC's solubility is higher in cold waters. These results point to CANT and CFC having different routes of uptake, accumulation and transport within the ocean, and hence: CANT transport would be more sensitive to changes in the overturning circulation strength, while CFC to changes in the East Greenland Current and Labrador Sea Water formation in the Irminger Sea. Additionally, CANT and CFCs would have different sensitivities to circulation and climate changes derived from global warming as the slowdown of the overturning circulation, increase stratification due to warming and changes in wind stress.

  3. Effect of high-fat diet, surrounding temperature, and enterostatin on uncoupling protein gene expression.

    PubMed

    Rippe, C; Berger, K; Böiers, C; Ricquier, D; Erlanson-Albertsson, C

    2000-08-01

    Nonshivering thermogenesis induced in brown adipose tissue (BAT) during high-fat feeding is mediated through uncoupling protein 1 (UCP1). UCP2 is a recently identified homologue found in many tissues. To determine the role of UCP1 and UCP2 in thermoregulation and energy balance, we investigated the long-term effect of high-fat feeding on mRNA levels in mice at two different ambient temperatures. We also treated mice with the anorectic peptide enterostatin and compared mRNA levels in BAT, white adipose tissue (WAT), stomach, and duodenum. Here, we report that high-fat feeding at 23 degrees C increased UCP1 and UCP2 levels in BAT four- and threefold, respectively, and increased UCP2 levels fourfold in WAT. However, at 29 degrees C, UCP1 decreased, whereas UCP2 remained unchanged in BAT and increased twofold in WAT. Enterostatin increased UCP1 and decreased UCP2 mRNA in BAT. In stomach and duodenum, high-fat feeding decreased UCP2 mRNA, whereas enterostatin increased it. Our results suggest that the regulation of uncoupling protein mRNA levels by high-fat feeding is dependent on ambient temperature and that enterostatin is able to modulate it.

  4. Spectroscopic elucidation of uncoupled transition energies in the major photosynthetic light-harvesting complex, LHCII

    PubMed Central

    Schlau-Cohen, Gabriela S.; Calhoun, Tessa R.; Ginsberg, Naomi S.; Ballottari, Matteo; Bassi, Roberto; Fleming, Graham R.

    2010-01-01

    Electrostatic couplings between chromophores in photosynthetic pigment–protein complexes, and interactions of pigments with the surrounding protein environment, produce a complicated energy landscape of delocalized excited states. The resultant electronic structure absorbs light and gives rise to energy transfer steps that direct the excitation toward a site of charge separation with near unity quantum efficiency. Knowledge of the transition energies of the uncoupled chromophores is required to describe how the wave functions of the individual pigments combine to form this manifold of delocalized excited states that effectively harvests light energy. In an investigation of the major light-harvesting complex of photosystem II (LHCII), we develop a method based on polarized 2D electronic spectroscopy to experimentally access the energies of the S0–S1 transitions in the chromophore site basis. Rotating the linear polarization of the incident laser pulses reveals previously hidden off-diagonal features. We exploit the polarization dependence of energy transfer peaks to find the angles between the excited state transition dipole moments. We show that these angles provide a spectroscopic method to directly inform on the relationship between the delocalized excitons and the individual chlorophylls through the site energies of the uncoupled chromophores. PMID:20622154

  5. Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification

    PubMed Central

    Dejonghe, Wim; Kuenen, Sabine; Mylle, Evelien; Vasileva, Mina; Keech, Olivier; Viotti, Corrado; Swerts, Jef; Fendrych, Matyáš; Ortiz-Morea, Fausto Andres; Mishev, Kiril; Delang, Simon; Scholl, Stefan; Zarza, Xavier; Heilmann, Mareike; Kourelis, Jiorgos; Kasprowicz, Jaroslaw; Nguyen, Le Son Long; Drozdzecki, Andrzej; Van Houtte, Isabelle; Szatmári, Anna-Mária; Majda, Mateusz; Baisa, Gary; Bednarek, Sebastian York; Robert, Stéphanie; Audenaert, Dominique; Testerink, Christa; Munnik, Teun; Van Damme, Daniël; Heilmann, Ingo; Schumacher, Karin; Winne, Johan; Friml, Jiří; Verstreken, Patrik; Russinova, Eugenia

    2016-01-01

    ATP production requires the establishment of an electrochemical proton gradient across the inner mitochondrial membrane. Mitochondrial uncouplers dissipate this proton gradient and disrupt numerous cellular processes, including vesicular trafficking, mainly through energy depletion. Here we show that Endosidin9 (ES9), a novel mitochondrial uncoupler, is a potent inhibitor of clathrin-mediated endocytosis (CME) in different systems and that ES9 induces inhibition of CME not because of its effect on cellular ATP, but rather due to its protonophore activity that leads to cytoplasm acidification. We show that the known tyrosine kinase inhibitor tyrphostinA23, which is routinely used to block CME, displays similar properties, thus questioning its use as a specific inhibitor of cargo recognition by the AP-2 adaptor complex via tyrosine motif-based endocytosis signals. Furthermore, we show that cytoplasm acidification dramatically affects the dynamics and recruitment of clathrin and associated adaptors, and leads to reduction of phosphatidylinositol 4,5-biphosphate from the plasma membrane. PMID:27271794

  6. Overexpression of uncoupling protein 3 in skeletal muscle protects against fat-induced insulin resistance

    PubMed Central

    Choi, Cheol Soo; Fillmore, Jonathan J.; Kim, Jason K.; Liu, Zhen-Xiang; Kim, Sheene; Collier, Emily F.; Kulkarni, Ameya; Distefano, Alberto; Hwang, Yu-Jin; Kahn, Mario; Chen, Yan; Yu, Chunli; Moore, Irene K.; Reznick, Richard M.; Higashimori, Takamasa; Shulman, Gerald I.

    2007-01-01

    Insulin resistance is a major factor in the pathogenesis of type 2 diabetes and is strongly associated with obesity. Increased concentrations of intracellular fatty acid metabolites have been postulated to interfere with insulin signaling by activation of a serine kinase cascade involving PKCθ in skeletal muscle. Uncoupling protein 3 (UCP3) has been postulated to dissipate the mitochondrial proton gradient and cause metabolic inefficiency. We therefore hypothesized that overexpression of UCP3 in skeletal muscle might protect against fat-induced insulin resistance in muscle by conversion of intramyocellular fat into thermal energy. Wild-type mice fed a high-fat diet were markedly insulin resistant, a result of defects in insulin-stimulated glucose uptake in skeletal muscle and hepatic insulin resistance. Insulin resistance in these tissues was associated with reduced insulin-stimulated insulin receptor substrate 1– (IRS-1–) and IRS-2–associated PI3K activity in muscle and liver, respectively. In contrast, UCP3-overexpressing mice were completely protected against fat-induced defects in insulin signaling and action in these tissues. Furthermore, these changes were associated with a lower membrane-to-cytosolic ratio of diacylglycerol and reduced PKCθ activity in whole-body fat–matched UCP3 transgenic mice. These results suggest that increasing mitochondrial uncoupling in skeletal muscle may be an excellent therapeutic target for type 2 diabetes mellitus. PMID:17571165

  7. Influence of a Small Fraction of Individuals with Enhanced Mutations on a Population Genetic Pool

    NASA Astrophysics Data System (ADS)

    Cebrat, S.; Stauffer, D.

    It has been observed that a higher mutation load could be introduced into the genomes of children conceived by assisted reproduction technology (fertilization in-vitro). This generates two effects — slightly higher mutational pressure on the whole genetic pool of population and inhomogeneity of mutation distributions in the genetic pool. Computer simulations of the Penna ageing model suggest that already a small fraction of births with enhanced number of new mutations can negatively influence the whole population.

  8. Asiatic acid uncouples respiration in isolated mouse liver mitochondria and induces HepG2 cells death.

    PubMed

    Lu, Yapeng; Liu, Siyuan; Wang, Ying; Wang, Dang; Gao, Jing; Zhu, Li

    2016-09-05

    Asiatic acid, one of the triterpenoid components isolated from Centella asiatica, has received increasing attention due to a wide variety of biological activities. To date, little is known about its mechanisms of action. Here we examined the cytotoxic effect of asiatic acid on HepG2 cells and elucidated some of the underlying mechanisms. Asiatic acid induced rapid cell death, as well as mitochondrial membrane potential (MMP) dissipation, ATP depletion and cytochrome c release from mitochondria to the cytosol in HepG2 cells. In mitochondria isolated from mouse liver, asiatic acid treatment significantly stimulated the succinate-supported state 4 respiration rate, dissipated the MMP, increased Ca(2+) release from Ca(2+)-loaded mitochondria, decreased ATP content and promoted cytochrome c release, indicating the uncoupling effect of asiatic acid. Hydrogen peroxide (H2O2) produced by succinate-supported mitochondrial respiration was also significantly inhibited by asiatic acid. In addition, asiatic acid inhibited Ca(2+)-induced mitochondrial swelling but did not induce mitochondrial swelling in hyposmotic potassium acetate medium which suggested that asiatic acid may not act as a protonophoric uncoupler. Inhibition of uncoupling proteins (UCPs) or blockade of adenine nucleotide transporter (ANT) attenuated the effect of asiatic acid on MMP dissipation, Ca(2+) release, mitochondrial respiration and HepG2 cell death. When combined inhibition of UCPs and ANT, asiatic acid-mediated uncoupling effect was noticeably alleviated. These results suggested that both UCPs and ANT partially contribute to the uncoupling properties of asiatic acid. In conclusion, asiatic acid is a novel mitochondrial uncoupler and this property is potentially involved in its toxicity on HepG2 cells.

  9. Society for Assisted Reproductive Technology

    MedlinePlus

    The Society for Assisted Reproductive Technology PATIENTS Patient Information What Is SART? Risks of IVF Third Party Reproduction A ... Read Article View All News ©1996 - 2016 SART, Society for Assisted Reproductive Technology . All Rights Reserved. ASRM/ ...

  10. Male Reproductive System (For Teens)

    MedlinePlus

    ... gamete, the egg or ovum , meet in the female's reproductive system to create a new individual. Both the male and female reproductive systems are essential for reproduction. Humans, like other organisms, ...

  11. Assessment of Male Reproductive Toxicity##

    EPA Science Inventory

    This review covers all aspects of male reproductive toxicology. It begins with an overview of male reproductive biology and then transitions to the considerations of conducting male reproductive toxicology studies. We discuss multigenerational study as proposed in EPAs harmoniz...

  12. Male Reproductive System (For Teens)

    MedlinePlus

    ... español Sistema reproductor masculino All living things reproduce. Reproduction — the process by which organisms make more organisms ... male and female reproductive systems are essential for reproduction. Humans, like other organisms, pass certain characteristics of ...

  13. Reproduction in female reindeer.

    PubMed

    Ropstad, E

    2000-07-02

    Reindeer are either wild or kept under very extensive farming systems. They are seasonal breeders, with mating coinciding with the decreasing photoperiod in the autumn, and with calving in the spring. Little is known regarding the factors that influence reproduction in reindeer or of their reproductive physiology. Studies carried out to date have mainly focused on issues related to the population dynamics of wild populations and semi-domestic herds, and to a limited extent on the reproductive physiology of the female. Nor is much known about reproductive disorders and their medical treatment, or of the possibilities to manipulate or control reproduction by the use of hormones. Modern reproductive techniques such as artificial insemination and in vitro fertilisation, maturation and transfer of embryos have so far received scant attention.In the future, it is possible that reindeer under certain conditions might be kept in more intensive production systems. Limited access to high-quality winter pastures and increased demands for productivity have resulted in artificial feeding becoming a common practice in various reindeer herding areas in Scandinavia. In efforts to enhance the productivity of reindeer herds, attention has been focused on factors affecting reproduction in the female and survival of the offspring. Further knowledge on these issues seems necessary when developing strategies for optimalization of meat production in domestic herds and the harvesting of wild populations. This paper puts a broad focus on various aspects of reproduction, including factors influencing the fecundity of reproductively active females. In order to understand these effects it is important also to have a basic understanding of the reproductive physiology of these animals.

  14. Pre- or post-treatment with the mitochondrial uncoupler 2,4-dinitrophenol attenuates striatal quinolinate lesions.

    PubMed

    Maragos, William F; Rockich, Kevin T; Dean, Jesse J; Young, Kristie L

    2003-03-21

    We have examined the neuroprotective efficacy of the mitochondrial uncoupler 2,4-dinitrophenol (DNP) in animals receiving striatal injections of the neurotoxin quinolinic acid. Animals administered DNP either 1 h before or 3 h following QA infusion developed lesions that were 25% smaller than control animals. Animals treated with the DNP analogue 2,4,6-trinitrophenol, which does not possess uncoupling activity in intact mitochondria, showed no neuroprotection. These results indicate that DNP, and other compounds that diminish the mitochondrial membrane potential, might provide a novel approach to the treatment of acute neurological injury.

  15. Mutation and the environment

    SciTech Connect

    Mendelsohn, M.L. ); Albertini, R.J. )

    1990-01-01

    This book is covered under the following topics: Somatic Mutation: Animal Model; Somatic Mutation: Human; Heritable Mutation: Animal Model; Heritable Mutation: Approaches to Human Induction Rates; Heritable Mutation: Human Risk; Epidemiology: Population Studies on Genotoxicity; and Epidemiology: Workplace Studies of Genotoxicity.

  16. Reproductive decisions after fetal genetic counselling.

    PubMed

    Pergament, Eugene; Pergament, Deborah

    2012-10-01

    A broad range of testing modalities for fetal genetic disease has been established. These include carrier screening for single-gene mutations, first-trimester and second-trimester screening for chromosome abnormalities and open neural-tube defects, prenatal diagnosis by means of chorionic villus sampling and amniocentesis, and preimplantation genetic diagnosis. Reproductive decisions before and after fetal genetic counselling represent the culmination of a dynamic interaction between prospective parents, obstetrician and genetic counsellor. The decision to undergo genetic testing before and after genetic counselling is influenced by a host of interrelated factors, including patient-partner and family relationships, patient-physician communication, societal mores, religious beliefs, and the media. Because of the complexity of personal and societal factors involved, it is not surprising that genetic counselling concerning reproductive decision-making must be individualised. A limited number of principles, guidelines and standards apply when counselling about testing for fetal genetic disease. These principles are that genetic counselling should be non-directive and unbiased and that parental decisions should be supported regardless of the reproductive choice. A critical responsibility of the obstetrician and genetic counsellor is to provide accurate and objective information about the implications, advantages, disadvantages and consequences of any genetic testing applied to prospective parents and their fetuses. These principles and responsibilities will be tested as newer technologies, such as array comparative genome hybridisation, non-invasive prenatal diagnosis and sequencing of the entire genome are introduced into the field of reproductive genetics and become routine practice.

  17. Reproductive strategies in snakes.

    PubMed Central

    Shine, Richard

    2003-01-01

    Snakes of both sexes display remarkable flexibility and diversity in their reproductive tactics. Many features of reproduction in female snakes (such as reproductive mode and frequency, seasonality and multiple mating) allow flexible maternal control. For example, females can manipulate not only the genotypes of their offspring (through mate choice or enhanced sperm competition) but also the phenotypes of their offspring (through allocation 'decisions', behavioural and physiological thermoregulation, and nest-site selection). Reliance on stored energy ('capital') to fuel breeding results in low frequencies of female reproduction and, in extreme cases, semelparity. A sophisticated vomeronasal system not only allows male snakes to locate reproductive females by following scent trails, but also facilitates pheromonally mediated mate choice by males. Male-male rivalry takes diverse forms, including female mimicry and mate guarding; combat bouts impose strong selection for large body size in males of some species. Intraspecific (geographical) variation and phenotypic plasticity in a wide array of reproductive traits (offspring size and number; reproductive frequency; incidence of multiple mating; male tactics such as mate guarding and combat; mate choice criteria) provide exceptional opportunities for future studies. PMID:12803888

  18. Reproductive strategies in snakes.

    PubMed

    Shine, Richard

    2003-05-22

    Snakes of both sexes display remarkable flexibility and diversity in their reproductive tactics. Many features of reproduction in female snakes (such as reproductive mode and frequency, seasonality and multiple mating) allow flexible maternal control. For example, females can manipulate not only the genotypes of their offspring (through mate choice or enhanced sperm competition) but also the phenotypes of their offspring (through allocation 'decisions', behavioural and physiological thermoregulation, and nest-site selection). Reliance on stored energy ('capital') to fuel breeding results in low frequencies of female reproduction and, in extreme cases, semelparity. A sophisticated vomeronasal system not only allows male snakes to locate reproductive females by following scent trails, but also facilitates pheromonally mediated mate choice by males. Male-male rivalry takes diverse forms, including female mimicry and mate guarding; combat bouts impose strong selection for large body size in males of some species. Intraspecific (geographical) variation and phenotypic plasticity in a wide array of reproductive traits (offspring size and number; reproductive frequency; incidence of multiple mating; male tactics such as mate guarding and combat; mate choice criteria) provide exceptional opportunities for future studies.

  19. The politics of reproduction.

    PubMed

    Ginsburg, F; Rapp, R

    1991-01-01

    The topic of human reproduction encompasses events throughout the human and especially female life-cycle as well as ideas and practices surrounding fertility, birth, and child care. Most of the scholarship on the subject, up through the 1960s, was based on cross-cultural surveys focused on the beliefs, norms, and values surrounding reproductive behaviors. Multiple methodologies and subspecialties, and fields like social history, human biology, and demography were utilized for the analysis. The concept of the politics of reproduction synthesizes local and global perspectives. The themes investigated include: the concept of reproduction, population control, and the internationalization of state and market interests (new reproductive technologies); social movements and contested domains; medicalization and its discontents; fertility and its control; adolescence and teen pregnancy; birth; birth attendants; the construction of infancy and the politics of child survival; rethinking the demographic transition; networks of nurturance; and meanings of menopause. The medicalization of reproduction is a central issue of studies of birth, midwifery, infertility, and reproductive technologies. Scholars have also analyzed different parts of the female life-cycle as medical problems. Other issues worth analysis include the internationalization of adoption and child care workers; the crisis of infertility of low-income and minority women who are not candidates for expensive reproductive technologies; the concerns of women at high risk for HIV whose cultural status depends on their fertility; questions of reproduction concerning, lesbians and gay men (artificial insemination and discrimination in child rearing); the study of menopause; and fatherhood. New discourse analysis is used to analyze state eugenic policies; conflicts over Western neocolonial influences in which women's status as childbearers represent nationalist interests; fundamentalist attacks on abortion rights; and

  20. Human reproduction: Jewish perspectives.

    PubMed

    Schenker, Joseph G

    2013-11-01

    Developments in science and technology and corresponding clinical applications raise new religious questions, often without clear answers. The role of theology in bioethics is integral to clarify perceived attitudes toward these developments for different religious communities. The Jewish attitude towards procreation is derived from the first commandment of God to Adam to 'Be fruitful and multiply'. Judaism allows the practice of all techniques of assisted reproduction when the oocyte and spermatozoon originate from the wife and husband respectively. This paper presents the attitude of Jewish Law -- Halacha to therapeutic procedures, such as IVF-embryo transfer, spermatozoa, oocytes, embryo donation, cryopreservation of genetic material, surrogacy, posthumous reproduction, gender preselection, reproductive and therapeutic cloning.

  1. Oxidase uncoupling in heme monooxygenases: Human cytochrome P450 CYP3A4 in Nanodiscs

    SciTech Connect

    Grinkova, Yelena V.; Denisov, Ilia G.; McLean, Mark A.; Sligar, Stephen G.

    2013-01-25

    Highlights: ► Substantial reducing equivalents are lost in human P450 CYP3A4 via an oxidase channel. ► Substrate binding has a pronounced effect on uncoupling in cytochrome P450. ► Anionic phospholipids improve the overall coupling in CYP3A4 Nanodiscs. -- Abstract: The normal reaction mechanism of cytochrome P450 operates by utilizing two reducing equivalents to reduce atmospheric dioxygen, producing one molecule of water and an oxygenated product in an overall stoichiometry of 2 electrons:1 dioxygen:1 product. However, three alternate unproductive pathways exist where the intermediate iron–oxygen states in the catalytic cycle can yield reduced oxygen products without substrate metabolism. The first involves release of superoxide from the oxygenated intermediate while the second occurs after input of the second reducing equivalent. Superoxide rapidly dismutates and hence both processes produce hydrogen peroxide that can be cytotoxic to the organism. In both cases, the formation of hydrogen peroxide involves the same overall stoichiometry as oxygenases catalysis. The key step in the catalytic cycle of cytochrome P450 involves scission of the oxygen–oxygen bond of atmospheric dioxygen to produce a higher valent iron-oxo state termed “Compound I”. This intermediate initiates a radical reaction in the oxygenase pathway but also can uptake two additional reducing equivalents from reduced pyridine nucleotide (NADPH) and the flavoprotein reductase to produce a second molecule of water. This non-productive decay of Compound I thus yields an overall oxygen to NADPH ratio of 1:2 and does not produce hydrocarbon oxidation. This water uncoupling reaction provides one of a limited means to study the reactivity of the critical Compound I intermediate in P450 catalysis. We measured simultaneously the rates of NADPH and oxygen consumption as a function of substrate concentration during the steady-state hydroxylation of testosterone catalyzed by human P450 CYP3A4

  2. Marked over expression of uncoupling protein-2 in beta cells exerts minor effects on mitochondrial metabolism

    SciTech Connect

    Hals, Ingrid K.; Ogata, Hirotaka; Pettersen, Elin; Ma, Zuheng; Bjoerklund, Anneli; Skorpen, Frank; Egeberg, Kjartan Wollo; Grill, Valdemar

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer The impact of UCP-2 over expression on mitochondrial function is controversial. Black-Right-Pointing-Pointer We tested mitochondrial functions at defined levels of overexpression. Black-Right-Pointing-Pointer We find minor increases of fatty acid oxidation and uncoupling. Black-Right-Pointing-Pointer Effects were seen only at high level (fourfold) of over expression. Black-Right-Pointing-Pointer Hence it is doubtful whether these effects are of importance in diabetes. -- Abstract: Evidence is conflicting as to the impact of elevated levels of uncoupling protein-2 (UCP-2) on insulin-producing beta cells. Here we investigated effects of a fourfold induction of UCP-2 protein primarily on mitochondrial parameters and tested for replication of positive findings at a lower level of induction. We transfected INS-1 cells to obtain a tet-on inducible cell line. A 48 h exposure to 1 {mu}g/ml of doxycycline (dox) induced UCP-2 fourfold (424 {+-} 113%, mean {+-} SEM) and 0.1 {mu}g/ml twofold (178 {+-} 29%, n = 3). Fourfold induced cells displayed normal viability (MTT, apoptosis), normal cellular insulin contents and, glucose-induced insulin secretion (+27 {+-} 11%) as well as D-[U-{sup 14}C]-glucose oxidation (+5 {+-} 9% at 11 mM glucose). Oxidation of [1-{sup 14}C]-oleate was increased from 4088 to 5797 fmol/{mu}g prot/2 h at 3.3 mM glucose, p < 0.03. Oxidation of L-[{sup 14}C(U)]-glutamine was unaffected. Induction of UCP-2 did not significantly affect measures of mitochondrial membrane potential (Rhodamine 123) or mitochondrial mass (Mitotracker Green) and did not affect ATP levels. Oligomycin-inhibited oxygen consumption (a measure of mitochondrial uncoupling) was marginally increased, the effect being significant in comparison with dox-only treated cells, p < 0.05. Oxygen radicals, assessed by dichlorofluorescin diacetate, were decreased by 30%, p < 0.025. Testing for the lower level of UCP-2 induction did not reproduce any of the

  3. Oxidative damage and phospholipid fatty acyl composition in skeletal muscle mitochondria from mice underexpressing or overexpressing uncoupling protein 3.

    PubMed Central

    Brand, Martin D; Pamplona, Reinald; Portero-Otín, Manuel; Requena, Jesús R; Roebuck, Stephen J; Buckingham, Julie A; Clapham, John C; Cadenas, Susana

    2002-01-01

    Five markers of different kinds of oxidative damage to proteins [glutamic semialdehyde, aminoadipic semialdehyde, N (epsilon)-(carboxymethyl)lysine, N (epsilon)-(carboxyethyl)lysine and N (epsilon)-(malondialdehyde)lysine] and phospholipid fatty acyl composition were identified and measured in skeletal muscle mitochondria isolated from mice genetically engineered to underexpress or overexpress uncoupling protein 3 (UCP3). Mitochondria from UCP3-underexpressing mice had significantly higher levels of oxidative damage than wild-type controls, suggesting that UCP3 functions in vivo as part of the antioxidant defences of the cell, but mitochondria from UCP3-overexpressing mice had unaltered oxidative damage, suggesting that mild uncoupling in vivo beyond the normal basal uncoupling provides little protection against oxidative stress. Mitochondria from UCP3-underexpressing mice showed little change, but mitochondria from UCP3-overexpressing mice showed marked changes in mitochondrial phospholipid fatty acyl composition. These changes were very similar to those previously found to correlate with basal proton conductance in mitochondria from a range of species and treatments, suggesting that high protein expression, or some secondary result of uncoupling, may cause the observed correlation between basal proton conductance and phospholipid fatty acyl composition. PMID:12193161

  4. Upregulation of uncoupling protein Ucp2 through acute cold exposure increases post-thaw sperm quality in zebrafish.

    PubMed

    Wang, Gongfa; Kang, Ning; Gong, Hongmei; Luo, Yan; Bai, Chenglian; Chen, Yuanhong; Ji, Xiaoping; Huang, Changjiang; Dong, Qiaoxiang

    2015-12-01

    Oxidative stress plays an important role in sperm damage during cryopreservation. Mild mitochondrial uncoupling has been shown to reduce excessive reactive oxygen species (ROS) and thus mitigate oxidative stress. Uncoupling protein (Ucp2) regulates mitochondrial uncoupling and can be induced by temperature fluctuation. In the present study, we explored a novel approach of acute cold exposure on Ucp2 activation and its association with oxidative damage and post-thaw sperm quality in zebrafish. Our study revealed that acute cold exposure of zebrafish at 18 °C for 24 h led to significant increase of ucp2 mRNA and Ucp2 protein in zebrafish fresh sperm as well as thawed sperm after cryopreservation. Although cold exposure had no effect on fresh sperm quality except for decreasing lipid peroxidation, sperm collected from cold-exposed zebrafish exhibited higher resistance to cryodamage, which was demonstrated by increased post-thaw motility, decreased lipid peroxidation, increased ATP production, and ultimately increased fertilization success. However, except for reduced lipid peroxidation, we did not observe any significant ROS reduction associated with increased Ucp2 activation in cold-exposed group, suggesting mechanisms other than mitochondrial uncoupling could have contributed to cold exposure associated benefits in post-thaw sperm survival. Nevertheless, our findings indicate that acute cold exposure prior to sperm cryopreservation is beneficial for post-thaw sperm survival in zebrafish, and this novel approach may be used to improve post-thaw sperm quality for other aquatic species.

  5. Relationship between expression of muscle-specific uncoupling protein 2 messenger RNA and genetic selection toward growth in channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Uncoupling protein 2 is a member of the mitochondrial channel proteins that regulate the flow of hydrogen ions and ATP generation. The relationship between UCP2 and nutrient metabolism has been well-defined in humans but unclear in fish. We hypothesized that increased muscle growth in channel catf...

  6. Teaching Plant Reproduction.

    ERIC Educational Resources Information Center

    Tolman, Marvin N., Ed.; Hardy, Garry R., Ed.

    2000-01-01

    Recommends using Amaryllis hippeastrum to teach young children about plant reproduction. Provides tips for growing these plants, discusses the fast growing rate of the plant, and explains the anatomy. (YDS)

  7. Interactive effects of sex, social environment, dietary restriction, and methionine on survival and reproduction in fruit flies.

    PubMed

    Zajitschek, Felix; Zajitschek, Susanne R K; Friberg, Urban; Maklakov, Alexei A

    2013-08-01

    For the evolution of life histories, the trade-off between survival and reproduction is fundamental. Because sexes optimize fitness in different ways, this trade-off is expected to be resolved differently by males and females. Consequently, the sexes are predicted to respond differently to changes in resource availability. In fruit flies, research on dietary restriction has focused largely on females maintained in the absence of males, thereby neglecting sexual interactions that affect reproductive behavior of both sexes under more natural conditions. Here, we tested for the interactive effects of diet (40, 60, 100, and 300 % of standard yeast concentrations) and social environment (separate-sex vs. mixed-sex groups) on male and female Drosophila melanogaster life histories. Additionally, we evaluated the essential amino acid methionine as an agent that can uncouple the survival-reproduction trade-off. We show sex differences in the effect of social environment on survival patterns, but not on reproductive fitness. In females, yeast had a positive effect on reproduction and a negative effect on survival. In males, yeast had a negative effect on reproduction and the effect on survival depended on the social environment. Methionine reduced survival, but had no effect on reproduction. Our findings highlight the need to include both sexes and to vary social environments in research programs aimed at lifespan extension and call for further evaluation of the fecundity-restoring effect of methionine.

  8. A Prototypical Small-Molecule Modulator Uncouples Mitochondria in Response to Endogenous Hydrogen Peroxide Production

    PubMed Central

    McQuaker, Stephen J; Quinlan, Casey L; Caldwell, Stuart T; Brand, Martin D; Hartley, Richard C

    2013-01-01

    A high membrane potential across the mitochondrial inner membrane leads to the production of the reactive oxygen species (ROS) implicated in aging and age-related diseases. A prototypical drug for the correction of this type of mitochondrial dysfunction is presented. MitoDNP-SUM accumulates in mitochondria in response to the membrane potential due to its mitochondria-targeting alkyltriphenylphosphonium (TPP) cation and is uncaged by endogenous hydrogen peroxide to release the mitochondrial uncoupler, 2,4-dinitrophenol (DNP). DNP is known to reduce the high membrane potential responsible for the production of ROS. The approach potentially represents a general method for the delivery of drugs to the mitochondrial matrix through mitochondria targeting and H2O2-induced uncaging. PMID:23640856

  9. An uncoupling protein homologue putatively involved in facultative muscle thermogenesis in birds.

    PubMed Central

    Raimbault, S; Dridi, S; Denjean, F; Lachuer, J; Couplan, E; Bouillaud, F; Bordas, A; Duchamp, C; Taouis, M; Ricquier, D

    2001-01-01

    The cDNA of an uncoupling protein (UCP) homologue was obtained by screening a chicken skeletal-muscle library. The predicted 307-amino-acid sequence of avian UCP (avUCP) is 55, 70, 70 and 46% identical with mammalian UCP1, UCP2 and UCP3 and plant UCP respectively. avUCP mRNA expression is restricted to skeletal muscle and its abundance was increased 1.3-fold in a chicken line showing diet-induced thermogenesis, and 3.6- and 2.6-fold in cold-acclimated and glucagon-treated ducklings developing muscle non-shivering thermogenesis respectively. The present data support the implication of avUCP in avian energy expenditure. PMID:11171038

  10. Design of an achromatic and uncoupled medical gantry for radiation therapy

    SciTech Connect

    Tsoupas, N.; Kayran, D.; Litvinenko, V.; MacKay, W.W.

    2011-03-28

    We are presenting the layout and the optics of a beam line to be used as a medical gantry in radiation therapy. The optical properties of the gantry's beam line are such as to make the beam line achromatic and uncoupled. These two properties make the beam spot size, which is delivered and focused by the gantry, on the tumor of the patient, independent of the angular orientation of the gantry. In this paper we present the layout of the magnetic elements of the gantry, and also present the theoretical basis for the optics design of such a gantry. A medical gantry, as it is used in the radiation treatment of cancer patients, is the last part of the beam optical system, of the accelerator complex, which delivers and focuses the beam on the tumor. The curved line shown in figure 1 is a schematic diagram of a gantry which can rotate about a horizontal axis. The particle beam (green arrow in fig. 1) enters the gantry, and is guided by the gantry on the tumor (red spot in fig. 1). As the gantry rotates about the axis shown in figure 1, the beam exiting the gantry always lies on a plane normal to the rotation axis at the point of the icocenter. Thus the gantry facilitates the ability of the beam delivery system, to deliver the beam at the tumor, which is placed at the icocenter, from any angle on this vertical plane, which is normal to the rotation angle of the gantry as stated earlier. The gantry consists of dipoles and quadrupoles elements whose median symmetry plane lies on a plane which contains the rotation axis of the gantry. In this paper we define this plane as the 'plane of the gantry'. As the beam is transported along the axis of rotation of the gantry and before it enters the gantry, it is focused by 'normal' quadrupoles and experiences no linear beam coupling. Subsequently the beam enters the gantry, and is transported by the gantry to the delivery point which is the tumor. The transported beam at the tumor is still linearly uncoupled as long as the plane of the

  11. An improved finite-difference analysis of uncoupled vibrations of tapered cantilever beams

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1983-01-01

    An improved finite difference procedure for determining the natural frequencies and mode shapes of tapered cantilever beams undergoing uncoupled vibrations is presented. Boundary conditions are derived in the form of simple recursive relations involving the second order central differences. Results obtained by using the conventional first order central differences and the present second order central differences are compared, and it is observed that the present second order scheme is more efficient than the conventional approach. An important advantage offered by the present approach is that the results converge to exact values rapidly, and thus the extrapolation of the results is not necessary. Consequently, the basic handicap with the classical finite difference method of solution that requires the Richardson's extrapolation procedure is eliminated. Furthermore, for the cases considered herein, the present approach produces consistent lower bound solutions.

  12. Role of cellular uncoupling in arrhythmogenesis in ischemia phase 1B.

    PubMed

    Jie, Xiao; Rodriguez, Blanca; Trayanova, Natalia

    2006-01-01

    Delayed ventricular arrhythmias during acute myocardial ischemia phase 1B are related to a rise in tissue impedance and are most likely sustained in a thin layer of subepicardium. It has been hypothesized that coupling of depressed midmyocardial tissue to the surviving subepicardial layer sets the conditions for reentrant arrhythmias. This hypothesis was verified by means of bidomain simulations on a 3D slab consisting of a normal subepicardial layer coupled to a depressed depolarized midmyocardial layer. The heterogeneity in the coupling was defined by varying the transmural conductivities between the two layers in a circular centrally-located region. The resulting dispersion of effective refractory period in the subepicardium allows for reentry to occur. As uncoupling increases within the circular island, the vulnerability to reentry increases. A higher degree of depolarization in the midmyocardium inhibits the induction of reentry.

  13. Coherent population transfer between uncoupled or weakly coupled states in ladder-type superconducting qutrits

    PubMed Central

    Xu, H. K.; Song, C.; Liu, W. Y.; Xue, G. M.; Su, F. F.; Deng, H.; Tian, Ye; Zheng, D. N.; Han, Siyuan; Zhong, Y. P.; Wang, H.; Liu, Yu-xi; Zhao, S. P.

    2016-01-01

    Stimulated Raman adiabatic passage offers significant advantages for coherent population transfer between uncoupled or weakly coupled states and has the potential of realizing efficient quantum gate, qubit entanglement and quantum information transfer. Here we report on the realization of the process in the superconducting Xmon and phase qutrits—two ladder-type three-level systems in which the ground state population is coherently transferred to the second excited state via the dark state subspace. We demonstrate that the population transfer efficiency is no less than 96% and 67% for the two devices, which agree well with the numerical simulation of the master equation. Population transfer via stimulated Raman adiabatic passage is significantly more robust against variations of the experimental parameters compared with that via the conventional resonant π pulse method. Our work opens up a new venue for exploring the process for quantum information processing using the superconducting artificial atoms. PMID:27009972

  14. Effect of running training on uncoupling protein mRNA expression in rat brown adipose tissue

    NASA Astrophysics Data System (ADS)

    Yamashita, Hitoshi; Yamamoto, Mikio; Sato, Yuzo; Izawa, Tetsuya; Komabayashi, Takao; Saito, Daizo; Ohno, Hideki

    1993-03-01

    The effect was investigated of endurance training on the expression of uncoupling protein (UCP) mRNA in brown adipose tissue (BAT) of rats. The exercised rats were trained on a rodent treadmill for 5 days per week and a total of 9 weeks. After the training programme, a marked decrease in BAT mass was found in terms of weight or weight per unit body weight; there was a corresponding decrease in DNA content and a downward trend in RNA and glycogen levels. The UCP mRNA was present at a markedly decreased level in BAT of trained animals. In consideration of the reduced levels of mRNAs for hormone-sensitive lipase and acylCoA synthetase, the brown adipose tissue investigated appeared to be in a relatively atrophied and thermogenically quiescent state.

  15. Application of an Uncoupled Elastic-plastic-creep Constitutive Model to Metals at High Temperature

    NASA Technical Reports Server (NTRS)

    Haisler, W. E.

    1983-01-01

    A uniaxial, uncoupled constitutive model to predict the response of thermal and rate dependent elastic-plastic material behavior is presented. The model is based on an incremental classicial plasticity theory extended to account for thermal, creep, and transient temperature conditions. Revisions to he combined hardening rule of the theory allow for better representation of cyclic phenomenon including the high rate of strain hardening upon cyclic reyield and cyclic saturation. An alternative approach is taken to model the rate dependent inelastic deformation which utilizes hysteresis loops and stress relaxation test data at various temperatures. The model is evaluated and compared to experiments which involve various thermal and mechanical load histories on 5086 aluminum alloy, 304 stainless steel and Hastelloy-X.

  16. Spatial uncoupling of biodegradation, soil respiration, and PAH concentration in a creosote contaminated soil.

    PubMed

    Bengtsson, Göran; Törneman, Niklas; Yang, Xiuhong

    2010-09-01

    Hotspots and coldspots of concentration and biodegradation of polycyclic aromatic hydrocarbons (PAHs) marginally overlapped at the 0.5-100 m scale in a creosote contaminated soil in southern Sweden, suggesting that concentration and biodegradation had little spatial co-variation. Biodegradation was substantial and its spatial variability considerable and highly irregular, but it had no spatial autocorrelation. The soil concentration of PAHs explained only 20-30% of the variance of their biodegradation. Soil respiration was spatially autocorrelated. The spatial uncoupling between biodegradation and soil respiration seemed to be governed by the aging of PAHs in the soil, since biodegradation of added 13C phenanthrene covaried with both soil respiration and microbial biomass. The latter two were also correlated with high concentrations of phospholipid fatty acids (PLFAs) that are common in gram-negative bacteria. However, several of the hotspots of biodegradation coincided with hotspots for the distribution of a PLFA indicative of fungal biomass.

  17. Evidence that bacteriophage λ lysogens may induce in response to the proton motive force uncoupler CCCP

    PubMed Central

    Thomason, Lynn C.; Court, Donald L.

    2015-01-01

    We describe a genetic β-galactoside reporter system using a disk diffusion assay on MacConkey Lactose agar petri plates to monitor maintenance of the bacteriophage λ prophage state and viral induction in Escherichia coli K-12. Evidence is presented that the phage λ major lytic promoters, pL and pR, are activated when cells containing the reporters are exposed to the energy poison carbonyl cyanide m-chlorophenyl hydrazine, CCCP. This uncoupler of oxidative phosphorylation inhibits ATP synthesis by collapsing the proton motive force. Expression of the λ lytic promoters in response to CCCP requires host RecA function and an autocleavable CI repressor, as does SOS induction of the λ prophage that occurs by a DNA damage-dependent pathway. λ Cro function is required for CCCP-mediated activation of the λ lytic promoters. CCCP does not induce an sfi-lacZ SOS reporter. PMID:26705574

  18. Dynamic regulation of uncoupling protein 2 content in INS-1E insulinoma cells.

    PubMed

    Azzu, Vian; Affourtit, Charles; Breen, Eamon P; Parker, Nadeene; Brand, Martin D

    2008-10-01

    Uncoupling protein 2 (UCP2) regulates glucose-stimulated insulin secretion in pancreatic beta-cells. UCP2 content, measured by calibrated immunoblot in INS-1E insulinoma cells (a pancreatic beta-cell model) grown in RPMI medium, and INS-1E mitochondria, was 2.0 ng/million cells (7.9 ng/mg mitochondrial protein). UCP2 content was lower in cells incubated without glutamine and higher in cells incubated with 20 mM glucose, and varied from 1.0-4.4 ng/million cells (2.7-14.5 ng/mg mitochondrial protein). This dynamic response to nutrients was achieved by varied expression rates against a background of a very short UCP2 protein half-life of about 1 h.

  19. Avian reproductive physiology

    USGS Publications Warehouse

    Gee, G.F.; Gibbons, Edward F.; Durrant, Barbara S.; Demarest, Jack

    1995-01-01

    Knowledge of the many physiological factors associated with egg production , fertility, incubation, and brooding in nondomestic birds is limited. Science knows even less about reproduction in most of the 238 endangered or threatened birds. This discussion uses studies of nondomestic and, when necessary, domestic birds to describe physiological control of reproduction. Studies of the few nondomestic avian species show large variation in physiological control of reproduction. Aviculturists, in order to successfully propagate an endangered bird, must understand the bird's reproductive peculiarities. First, investigators can do studies with carefully chosen surrogate species, but eventually they need to confirm the results in the target endangered bird. Studies of reproduction in nondomestic birds increased in the last decade. Still, scientists need to do more comparative studies to understand the mechanisms that control reproduction in birds. New technologies are making it possible to study reproductive physiology of nondomestic species in less limiting ways. These technologies include telemetry to collect information without inducing stress on captives (Howey et al., 1987; Klugman, 1987), new tests for most of the humoral factors associated with reproduction, and the skill to collect small samples and manipulate birds without disrupting the physiological mechanisms (Bercovitz et al., 1985). Managers are using knowledge from these studies to improve propagation in zoological parks, private and public propagation facilities, and research institutions. Researchers need to study the control of ovulation, egg formation, and oviposition in the species of nondomestic birds that lay very few eggs in a season, hold eggs in the oviduct for longer intervals, or differ in other ways from the more thoroughly studied domestic birds. Other techniques that would enhance propagation for nondomestlc birds include tissue culture of cloned embryonic cells, cryopreservation of embryos

  20. Control of mitochondrial pH by uncoupling protein 4 in astrocytes promotes neuronal survival.

    PubMed

    Perreten Lambert, Hélène; Zenger, Manuel; Azarias, Guillaume; Chatton, Jean-Yves; Magistretti, Pierre J; Lengacher, Sylvain

    2014-11-07

    Brain activity is energetically costly and requires a steady and highly regulated flow of energy equivalents between neural cells. It is believed that a substantial share of cerebral glucose, the major source of energy of the brain, will preferentially be metabolized in astrocytes via aerobic glycolysis. The aim of this study was to evaluate whether uncoupling proteins (UCPs), located in the inner membrane of mitochondria, play a role in setting up the metabolic response pattern of astrocytes. UCPs are believed to mediate the transmembrane transfer of protons, resulting in the uncoupling of oxidative phosphorylation from ATP production. UCPs are therefore potentially important regulators of energy fluxes. The main UCP isoforms expressed in the brain are UCP2, UCP4, and UCP5. We examined in particular the role of UCP4 in neuron-astrocyte metabolic coupling and measured a range of functional metabolic parameters including mitochondrial electrical potential and pH, reactive oxygen species production, NAD/NADH ratio, ATP/ADP ratio, CO2 and lactate production, and oxygen consumption rate. In brief, we found that UCP4 regulates the intramitochondrial pH of astrocytes, which acidifies as a consequence of glutamate uptake, with the main consequence of reducing efficiency of mitochondrial ATP production. The diminished ATP production is effectively compensated by enhancement of glycolysis. This nonoxidative production of energy is not associated with deleterious H2O2 production. We show that astrocytes expressing more UCP4 produced more lactate, which is used as an energy source by neurons, and had the ability to enhance neuronal survival.

  1. Control of Mitochondrial pH by Uncoupling Protein 4 in Astrocytes Promotes Neuronal Survival*

    PubMed Central

    Perreten Lambert, Hélène; Zenger, Manuel; Azarias, Guillaume; Chatton, Jean-Yves; Magistretti, Pierre J.; Lengacher, Sylvain

    2014-01-01

    Brain activity is energetically costly and requires a steady and highly regulated flow of energy equivalents between neural cells. It is believed that a substantial share of cerebral glucose, the major source of energy of the brain, will preferentially be metabolized in astrocytes via aerobic glycolysis. The aim of this study was to evaluate whether uncoupling proteins (UCPs), located in the inner membrane of mitochondria, play a role in setting up the metabolic response pattern of astrocytes. UCPs are believed to mediate the transmembrane transfer of protons, resulting in the uncoupling of oxidative phosphorylation from ATP production. UCPs are therefore potentially important regulators of energy fluxes. The main UCP isoforms expressed in the brain are UCP2, UCP4, and UCP5. We examined in particular the role of UCP4 in neuron-astrocyte metabolic coupling and measured a range of functional metabolic parameters including mitochondrial electrical potential and pH, reactive oxygen species production, NAD/NADH ratio, ATP/ADP ratio, CO2 and lactate production, and oxygen consumption rate. In brief, we found that UCP4 regulates the intramitochondrial pH of astrocytes, which acidifies as a consequence of glutamate uptake, with the main consequence of reducing efficiency of mitochondrial ATP production. The diminished ATP production is effectively compensated by enhancement of glycolysis. This nonoxidative production of energy is not associated with deleterious H2O2 production. We show that astrocytes expressing more UCP4 produced more lactate, which is used as an energy source by neurons, and had the ability to enhance neuronal survival. PMID:25237189

  2. Acceptably aware during general anaesthesia: 'dysanaesthesia'--the uncoupling of perception from sensory inputs.

    PubMed

    Pandit, Jaideep J

    2014-07-01

    This review makes the case for 'dysanaesthesia', a term encompassing states of mind that can arise in the course of anaesthesia during surgery, characterised by an uncoupling of sensation and perceptual experience. This is reflected in a macroscopic, functional model of anaesthetically-relevant consciousness. Patients in this state can be aware of events but in a neutral way, not in pain, sometimes personally dissociated from the experiences. This makes events associated with surgery peripheral to their whole experience, such that recall is less likely and if it exists, makes any spontaneous report of awareness unlikely. This state of perception-sensation uncoupling is therefore broadly acceptable (a minimum requirement for acceptable anaesthesia) but since it is likely a dose-related phenomenon, may also represent a precursor for awareness with adverse recall. This hypothesis uniquely explains the often inconsistent responses seen during the experimental paradigm of the 'isolated forearm technique', wherein apparently anaesthetised patients exhibit a positive motor response to verbal command, but no spontaneous movement to surgery. The hypothesis can also explain the relatively high incidence of positive response to relatively direct questions for recall (e.g., using the Brice questionnaire; ∼1:500; the vast majority of these being neutral reports) versus the very low incidence of spontaneous reports of awareness (∼1:15,000; a higher proportion of these being adverse recollections). The hypothesis is consistent with relevant notions from philosophical discussions of consciousness, and neuroscientific evidence. Dysanaesthesia has important implications for research and also for the development of appropriate monitoring.

  3. Prenatal cocaine exposure uncouples mGluR1 from Homer1 and Gq Proteins.

    PubMed

    Bakshi, Kalindi; Parihar, Raminder; Goswami, Satindra K; Walsh, Melissa; Friedman, Eitan; Wang, Hoau-Yan

    2014-01-01

    Cocaine exposure during gestation causes protracted neurobehavioral changes consistent with a compromised glutamatergic system. Although cocaine profoundly disrupts glutamatergic neurotransmission and in utero cocaine exposure negatively affects metabotropic glutamate receptor-type 1 (mGluR1) activity, the effect of prenatal cocaine exposure on mGluR1 signaling and the underlying mechanism responsible for the prenatal cocaine effect remain elusive. Using brains of the 21-day-old (P21) prenatal cocaine-exposed rats, we show that prenatal cocaine exposure uncouples mGluR1s from their associated synaptic anchoring protein, Homer1 and signal transducer, Gq/11 proteins leading to markedly reduced mGluR1-mediated phosphoinositide hydrolysis in frontal cortex (FCX) and hippocampus. This prenatal cocaine-induced effect is the result of a sustained protein kinase C (PKC)-mediated phosphorylation of mGluR1 on the serine residues. In support, phosphatase treatment of prenatal cocaine-exposed tissues restores whereas PKC-mediated phosphorylation of saline-treated synaptic membrane attenuates mGluR1 coupling to both Gq/11 and Homer1. Expression of mGluR1, Homer1 or Gα proteins was not altered by prenatal cocaine exposure. Collectively, these data indicate that prenatal cocaine exposure triggers PKC-mediated hyper-phosphorylation of the mGluR1 leading to uncoupling of mGluR1 from its signaling components. Hence, blockade of excessive PKC activation may alleviate abnormalities in mGluR1 signaling and restores mGluR1-regulated brain functions in prenatal cocaine-exposed brains.

  4. Overexpression of mitochondrial uncoupling protein 1 (UCP1) induces a hypoxic response in Nicotiana tabacum leaves

    PubMed Central

    Barreto, Pedro; Okura, Vagner; Pena, Izabella A.; Maia, Renato; Maia, Ivan G.; Arruda, Paulo

    2016-01-01

    Mitochondrial uncoupling protein 1 (UCP1) decreases reactive oxygen species production under stress conditions by uncoupling the electrochemical gradient from ATP synthesis. This study combined transcriptome profiling with experimentally induced hypoxia to mechanistically dissect the impact of Arabidopsis thaliana UCP1 (AtUCP1) overexpression in tobacco. Transcriptomic analysis of AtUCP1-overexpressing (P07) and wild-type (WT) plants was carried out using RNA sequencing. Metabolite and carbohydrate profiling of hypoxia-treated plants was performed using 1H-nuclear magnetic resonance spectroscopy and high-performance anion-exchange chromatography with pulsed amperometric detection. The transcriptome of P07 plants revealed a broad induction of stress-responsive genes that were not strictly related to the mitochondrial antioxidant machinery, suggesting that overexpression of AtUCP1 imposes a strong stress response within the cell. In addition, transcripts that mapped into carbon fixation and energy expenditure pathways were broadly altered. It was found that metabolite markers of hypoxic adaptation, such as alanine and tricarboxylic acid intermediates, accumulated in P07 plants under control conditions at similar rates to WT plants under hypoxia. These findings indicate that constitutive overexpression of AtUCP1 induces a hypoxic response. The metabolites that accumulated in P07 plants are believed to be important in signalling for an improvement in carbon assimilation and induction of a hypoxic response. Under these conditions, mitochondrial ATP production is less necessary and fermentative glycolysis becomes critical to meet cell energy demands. In this scenario, the more flexible energy metabolism along with an intrinsically activated hypoxic response make these plants better adapted to face several biotic and abiotic stresses. PMID:26494730

  5. Myosin VI undergoes a 180 degrees power stroke implying an uncoupling of the front lever arm.

    PubMed

    Reifenberger, Jeff G; Toprak, Erdal; Kim, Hyeongjun; Safer, Dan; Sweeney, H Lee; Selvin, Paul R

    2009-10-27

    We simultaneously measure both the step size, via FIONA, and the 3-D orientation, via DOPI, of the light-chain domain of individual dimeric myosin VIs. This allows for the correlation of the change in orientation of the light chain domain to the stepping of the motor. Three different pairs of positions were tested using a rigid bifunctional rhodamine on the calmodulin of the IQ domain. The data for all three labeling positions support the model that the light chain domain undergoes a significant rotation of approximately 180 degrees . Contrary to an earlier study [Sun, Y. et al. (2007) Mol Cell 28, 954-964], our data does not support a model of multiple angles of the lever arm of the lead head, nor "wiggly" walking on actin. Instead, we propose that for the two heads of myosin VI to coordinate their processive movement, the lever arm of the lead head must be uncoupled from the converter until the rear head detaches. More specifically, intramolecular strain causes the myosin VI lever arm of the lead head to uncouple from the motor domain, allowing the motor domain to go through its product-release (phosphate and ADP) steps at an unstrained rate. The lever arm of the lead head rebinds to the motor and attains a rigor conformation when the rear head detaches. By coupling the orientation and position information with previously described kinetics, this allows us to explain how myosin VI coordinates its heads processively while maintaining the ability to move under load with a (semi-) rigid lever arm.

  6. Effect of temperature on oxidative stress, antioxidant levels and uncoupling protein expression in striped hamsters.

    PubMed

    Zhou, Si-Si; Cao, Li-Li; Xu, Wei-Dong; Cao, Jing; Zhao, Zhi-Jun

    2015-11-01

    According to the rate of living-free radical hypothesis, higher metabolic rates should increase reactive oxygen species (ROS) production. However, the "uncoupling to survive" hypothesis postulates that uncoupling proteins (UCPs) can decrease ROS production by lowering the potential of the inner mitochondrial membrane, in which case the correlation between metabolic rate and ROS levels would be a negative rather than positive. In this study, we examined energy intake, oxidative stress levels, antioxidant activity and the expression of UCPs in brown adipose tissue (BAT), and in the liver, heart, skeletal muscle and brain, of striped hamsters (Cricetulus barabensis) acclimated to either 5 °C or 32.5 °C. The energy intake of hamsters acclimated to 5 °C increased by 70.7%, whereas the energy intake of hamsters acclimated to 32.5 °C decreased by 31.3%, relative to hamsters kept at room temperature (21 °C) (P<0.05). Malonadialdehyde (MDA) levels, total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-PX) activity in BAT significantly decreased in 5 °C group, but increased in 32.5 °C group, relative to the 21 °C group. Neither ROS levels (i.e. H2O2 levels), nor antioxidants in skeletal muscle, liver, heart or brain tissue, were affected by temperature. UCP1 expression in BAT was significantly up-regulated in 5 °C group, but down-regulated in 32.5 °C group, relative to the 21 °C group. UCP3 expression of skeletal muscle was also up-regulated significantly in hamsters acclimated to 5 °C. These results suggest that the relationship between ROS levels and metabolic rate was negative, rather than positive. UCP1 expression in BAT may have played a role in lowering ROS levels.

  7. Apoptosis-associated uncoupling of bone formation and resorption in osteomyelitis.

    PubMed

    Marriott, Ian

    2013-01-01

    The mechanisms underlying the destruction of bone tissue in osteomyelitis are only now being elucidated. While some of the tissue damage associated with osteomyelitis likely results from the direct actions of bacteria and infiltrating leukocytes, perhaps exacerbated by bacterial manipulation of leukocyte survival pathways, infection-induced bone loss predominantly results from an uncoupling of the activities of osteoblasts and osteoclasts. Bacteria or their products can directly increase osteoclast formation and activity, and the inflammatory milieu at sites of infection can further promote bone resorption. In addition, osteoclast activity is critically regulated by osteoblasts that can respond to bacterial pathogens and foster both inflammation and osteoclastogenesis. Importantly, bone loss during osteomyelitis is also brought about by a decline in new bone deposition due to decreased bone matrix synthesis and by increased rates of osteoblast apoptosis. Extracellular bacterial components may be sufficient to reduce osteoblast viability, but the causative agents of osteomyelitis are also capable of inducing continuous apoptosis of these cells by activating intrinsic and extrinsic cell death pathways to further uncouple bone formation and resorption. Interestingly, bacterial internalization appears to be required for maximal osteoblast apoptosis, and cytosolic inflammasome activation may act in concert with autocrine/paracrine death receptor-ligand signaling to induce cell death. The manipulation of apoptotic pathways in infected bone cells could be an attractive new means to limit inflammatory damage in osteomyelitis. However, the mechanism that is the most important in bacterium-induced bone loss has not yet been identified. Furthermore, it remains to be determined whether the host would be best served by preventing osteoblast cell death or by promoting apoptosis in infected cells.

  8. Prodigiosins uncouple lysosomal vacuolar-type ATPase through promotion of H+/Cl- symport.

    PubMed Central

    Ohkuma, S; Sato, T; Okamoto, M; Matsuya, H; Arai, K; Kataoka, T; Nagai, K; Wasserman, H H

    1998-01-01

    We reported previously [Kataoka, Muroi, Ohkuma, Waritani, Magae, Takatsuki, Kondo, Yamasaki and Nagai (1995) FEBS Lett. 359, 53-59] that prodigiosin 25-C (one of the red pigments of the prodigiosin group produced by micro-organisms like Streptomyces and Serratia) uncoupled vacuolar H+-ATPase, inhibited vacuolar acidification and affected glycoprotein processing. In the present study we show that prodigiosin, metacycloprodigiosin and prodigiosin 25-C, all raise intralysosomal pH through inhibition of lysosomal acidification driven by vacuolar-type (V-)ATPase without inhibiting ATP hydrolysis in a dose-dependent manner with IC50 values of 30-120 pmol/mg of protein. The inhibition against lysosomal acidification was quick and reversible, showing kinetics of simple non-competitive (for ATP) inhibition. However, the prodigiosins neither raised the internal pH of isolated lysosomes nor showed ionophoric activity against H+ or K+ at concentrations where they strongly inhibited lysosomal acidification. They required Cl- for their acidification inhibitory activity even when driven in the presence of K+ and valinomycin, suggesting that their target is not anion (chloride) channel(s). In fact, the prodigiosins inhibited acidification of proteoliposomes devoid of anion channels that were reconstituted from lysosomal vacuolar-type (V-)ATPase and Escherichia coli phospholipids. However, they did not inhibit the formation of an inside-positive membrane potential driven by lysosomal V-ATPase. Instead, they caused quick reversal of acidified pH driven by lysosomal V-ATPase and, in acidic buffer, produced quick acidification of lysosomal pH, both only in the presence of Cl-. In addition, they induced swelling of liposomes and erythrocytes in iso-osmotic ammonium salt of chloride but not of gluconate, suggesting the promotion of Cl- entry by prodigiosins. These results suggest that prodigiosins facilitate the symport of H+ with Cl- (or exchange of OH- with Cl-) through lysosomal

  9. Metabolically inert perfluorinated fatty acids directly activate uncoupling protein 1 in brown-fat mitochondria.

    PubMed

    Shabalina, Irina G; Kalinovich, Anastasia V; Cannon, Barbara; Nedergaard, Jan

    2016-05-01

    The metabolically inert perfluorinated fatty acids perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) can display fatty acid-like activity in biological systems. The uncoupling protein 1 (UCP1) in brown adipose tissue is physiologically (re)activated by fatty acids, including octanoate. This leads to bioenergetically uncoupled energy dissipation (heat production, thermogenesis). We have examined here the possibility that PFOA/PFOS can directly (re)activate UCP1 in isolated mouse brown-fat mitochondria. In wild-type brown-fat mitochondria, PFOS and PFOA overcame GDP-inhibited thermogenesis, leading to increased oxygen consumption and dissipated membrane potential. The absence of this effect in brown-fat mitochondria from UCP1-ablated mice indicated that it occurred through activation of UCP1. A competitive type of inhibition by increased GDP concentrations indicated interaction with the same mechanistic site as that utilized by fatty acids. No effect was observed in heart mitochondria, i.e., in mitochondria without UCP1. The stimulatory effect of PFOA/PFOS was not secondary to non-specific mitochondrial membrane permeabilization or to ROS production. Thus, metabolic effects of perfluorinated fatty acids could include direct brown adipose tissue (UCP1) activation. The possibility that this may lead to unwarranted extra heat production and thus extra utilization of food resources, leading to decreased fitness in mammalian wildlife, is discussed, as well as possible negative effects in humans. However, a possibility to utilize PFOA-/PFOS-like substances for activating UCP1 therapeutically in obesity-prone humans may also be envisaged.

  10. Salicylic Acid Is an Uncoupler and Inhibitor of Mitochondrial Electron Transport1

    PubMed Central

    Norman, Christel; Howell, Katharine A.; Millar, A. Harvey; Whelan, James M.; Day, David A.

    2004-01-01

    The effect of salicylic acid (SA) on respiration and mitochondrial function was examined in tobacco (Nicotiana tabacum) suspension cell cultures in the range of 0.01 to 5 mm. Cells rapidly accumulated SA up to 10-fold of the externally applied concentrations. At the lower concentrations, SA accumulation was transitory. When applied at 0.1 mm or less, SA stimulated respiration of whole cells and isolated mitochondria in the absence of added ADP, indicating uncoupling of respiration. However, at higher concentrations, respiration was severely inhibited. Measurements of ubiquinone redox poise in isolated mitochondria suggested that SA blocked electron flow from the substrate dehydrogenases to the ubiquinone pool. This inhibition could be at least partially reversed by re-isolating the mitochondria. Two active analogs of SA, benzoic acid and acetyl-SA, had the same effect as SA on isolated tobacco mitochondria, whereas the inactive p-hydroxybenzoic acid was without effect at the same concentration. SA induced an increase in Aox protein levels in cell suspensions, and this was correlated with an increase in Aox1 transcript abundance. However, when applied at 0.1 mm, this induction was transient and disappeared as SA levels in the cells declined. SA at 0.1 mm also increased the expression of other SA-responsive genes, and this induction was dependent on active mitochondria. The results indicate that SA is both an uncoupler and an inhibitor of mitochondrial electron transport and suggest that this underlies the induction of some genes by SA. The possible implications of this for the interpretation of SA action in plants are discussed. PMID:14684840

  11. Apoptosis-associated uncoupling of bone formation and resorption in osteomyelitis

    PubMed Central

    Marriott, Ian

    2013-01-01

    The mechanisms underlying the destruction of bone tissue in osteomyelitis are only now being elucidated. While some of the tissue damage associated with osteomyelitis likely results from the direct actions of bacteria and infiltrating leukocytes, perhaps exacerbated by bacterial manipulation of leukocyte survival pathways, infection-induced bone loss predominantly results from an uncoupling of the activities of osteoblasts and osteoclasts. Bacteria or their products can directly increase osteoclast formation and activity, and the inflammatory milieu at sites of infection can further promote bone resorption. In addition, osteoclast activity is critically regulated by osteoblasts that can respond to bacterial pathogens and foster both inflammation and osteoclastogenesis. Importantly, bone loss during osteomyelitis is also brought about by a decline in new bone deposition due to decreased bone matrix synthesis and by increased rates of osteoblast apoptosis. Extracellular bacterial components may be sufficient to reduce osteoblast viability, but the causative agents of osteomyelitis are also capable of inducing continuous apoptosis of these cells by activating intrinsic and extrinsic cell death pathways to further uncouple bone formation and resorption. Interestingly, bacterial internalization appears to be required for maximal osteoblast apoptosis, and cytosolic inflammasome activation may act in concert with autocrine/paracrine death receptor-ligand signaling to induce cell death. The manipulation of apoptotic pathways in infected bone cells could be an attractive new means to limit inflammatory damage in osteomyelitis. However, the mechanism that is the most important in bacterium-induced bone loss has not yet been identified. Furthermore, it remains to be determined whether the host would be best served by preventing osteoblast cell death or by promoting apoptosis in infected cells. PMID:24392356

  12. Asexual Reproduction in Holothurians

    PubMed Central

    Dolmatov, Igor Yu.

    2014-01-01

    Aspects of asexual reproduction in holothurians are discussed. Holothurians are significant as fishery and aquaculture items and have high commercial value. The last review on holothurian asexual reproduction was published 18 years ago and included only 8 species. An analysis of the available literature shows that asexual reproduction has now been confirmed in 16 holothurian species. Five additional species are also most likely capable of fission. The recent discovery of new fissiparous holothurian species indicates that this reproduction mode is more widespread in Holothuroidea than previously believed. New data about the history of the discovery of asexual reproduction in holothurians, features of fission, and regeneration of anterior and posterior fragments are described here. Asexual reproduction is obviously controlled by the integrated systems of the organism, primarily the nervous system. Special molecular mechanisms appear to determine the location where fission occurs along the anterior-posterior axis of the body. Alteration of the connective tissue strength of the body wall may play an important role during fission of holothurians. The basic mechanism of fission is the interaction of matrix metalloproteinases, their inhibitors, and enzymes forming cross-link complexes between fibrils of collagen. The population dynamics of fissiparous holothurians are discussed. PMID:25405228

  13. Asexual reproduction in holothurians.

    PubMed

    Dolmatov, Igor Yu

    2014-01-01

    Aspects of asexual reproduction in holothurians are discussed. Holothurians are significant as fishery and aquaculture items and have high commercial value. The last review on holothurian asexual reproduction was published 18 years ago and included only 8 species. An analysis of the available literature shows that asexual reproduction has now been confirmed in 16 holothurian species. Five additional species are also most likely capable of fission. The recent discovery of new fissiparous holothurian species indicates that this reproduction mode is more widespread in Holothuroidea than previously believed. New data about the history of the discovery of asexual reproduction in holothurians, features of fission, and regeneration of anterior and posterior fragments are described here. Asexual reproduction is obviously controlled by the integrated systems of the organism, primarily the nervous system. Special molecular mechanisms appear to determine the location where fission occurs along the anterior-posterior axis of the body. Alteration of the connective tissue strength of the body wall may play an important role during fission of holothurians. The basic mechanism of fission is the interaction of matrix metalloproteinases, their inhibitors, and enzymes forming cross-link complexes between fibrils of collagen. The population dynamics of fissiparous holothurians are discussed.

  14. Male mutation rates and the cost of sex for females

    NASA Astrophysics Data System (ADS)

    Redfield, Rosemary J.

    1994-05-01

    ALTHOUGH we do not know why sex evolved, the twofold cost of meiosis for females provides a standard against which postulated benefits of sex can be evaluated1. The most reliable benefit is sex's ability to reduce the impact of deleterious mutations2,3. But deleterious mutations may themselves generate a large and previously overlooked female-specific cost of sex. DNA sequence comparisons have confirmed Haldane's suggestion that most mutations arise in the male germ line4,5; recent estimates of α, the ratio of male to female mutation rates, are ten, six and two in humans, primates and rodents, respectively6-8. Consequently, male gametes may give progeny more mutations than the associated sexual recombination eliminates. Here I describe computer simulations showing that the cost of male mutations can easily exceed the benefits of recombination, causing females to produce fitter progeny by parthenogenesis than by mating. The persistence of sexual reproduction by females thus becomes even more problematic.

  15. Glucocorticoid Regulation of Reproduction.

    PubMed

    Geraghty, Anna C; Kaufer, Daniela

    2015-01-01

    It is well accepted that stress, measured by increased glucocorticoid secretion, leads to profound reproductive dysfunction. In times of stress, glucocorticoids activate many parts of the fight or flight response, mobilizing energy and enhancing survival, while inhibiting metabolic processes that are not necessary for survival in the moment. This includes reproduction, an energetically costly procedure that is very finely regulated. In the short term, this is meant to be beneficial, so that the organism does not waste precious energy needed for survival. However, long-term inhibition can lead to persistent reproductive dysfunction, even if no longer stressed. This response is mediated by the increased levels of circulating glucocorticoids, which orchestrate complex inhibition of the entire reproductive axis. Stress and glucocorticoids exhibits both central and peripheral inhibition of the reproductive hormonal axis. While this has long been recognized as an issue, understanding the complex signaling mechanism behind this inhibition remains somewhat of a mystery. What makes this especially difficult is attempting to differentiate the many parts of both of these hormonal axes, and new neuropeptide discoveries in the last decade in the reproductive field have added even more complexity to an already complicated system. Glucocorticoids (GCs) and other hormones within the hypothalamic-pituitary-adrenal (HPA) axis (as well as contributors in the sympathetic system) can modulate the hypothalamic-pituitary-gonadal (HPG) axis at all levels-GCs can inhibit release of GnRH from the hypothalamus, inhibit gonadotropin synthesis and release in the pituitary, and inhibit testosterone synthesis and release from the gonads, while also influencing gametogenesis and sexual behavior. This chapter is not an exhaustive review of all the known literature, however is aimed at giving a brief look at both the central and peripheral effects of glucocorticoids on the reproductive function.

  16. Strong sexual selection in males against a mutation load that reduces offspring production in seed beetles.

    PubMed

    Grieshop, K; Stångberg, J; Martinossi-Allibert, I; Arnqvist, G; Berger, D

    2016-06-01

    Theory predicts that sexual reproduction can increase population viability relative to asexual reproduction by allowing sexual selection in males to remove deleterious mutations from the population without large demographic costs. This requires that selection acts more strongly in males than females and that mutations affecting male reproductive success have pleiotropic effects on population productivity, but empirical support for these assumptions is mixed. We used the seed beetle Callosobruchus maculatus to implement a three-generation breeding design where we induced mutations via ionizing radiation (IR) in the F0 generation and measured mutational effects (relative to nonirradiated controls) on an estimate of population productivity in the F1 and effects on sex-specific competitive lifetime reproductive success (LRS) in the F2 . Regardless of whether mutations were induced via F0 males or females, they had strong negative effects on male LRS, but a nonsignificant influence on female LRS, suggesting that selection is more efficient in removing deleterious alleles in males. Moreover, mutations had seemingly shared effects on population productivity and competitive LRS in both sexes. Thus, our results lend support to the hypothesis that strong sexual selection on males can act to remove the mutation load on population viability, thereby offering a benefit to sexual reproduction.

  17. Genetic Counselors' Experiences Regarding Communication of Reproductive Risks with Autosomal Recessive Conditions found on Cancer Panels.

    PubMed

    Mets, Sarah; Tryon, Rebecca; Veach, Patricia McCarthy; Zierhut, Heather A

    2016-04-01

    The development of hereditary cancer genetic testing panels has altered genetic counseling practice. Mutations within certain genes on cancer panels pose not only a cancer risk, but also a reproductive risk for autosomal recessive conditions such as Fanconi anemia, constitutional mismatch repair deficiency syndrome, and ataxia telangiectasia. This study aimed to determine if genetic counselors discuss reproductive risks for autosomal recessive conditions associated with genes included on cancer panels, and if so, under what circumstances these risks are discussed. An on-line survey was emailed through the NSGC list-serv. The survey assessed 189 cancer genetic counselors' experiences discussing reproductive risks with patients at risk to carry a mutation or variant of uncertain significance (VUS) in a gene associated with both an autosomal dominant cancer risk and an autosomal recessive syndrome. Over half (n = 82, 55 %) reported having discussed reproductive risks; the remainder (n = 66, 45 %) had not. Genetic counselors who reported discussing reproductive risks primarily did so when patients had a positive result and were of reproductive age. Reasons for not discussing these risks included when a patient had completed childbearing or when a VUS was identified. Most counselors discussed reproductive risk after obtaining results and not during the informed consent process. There is inconsistency as to if and when the discussion of reproductive risks is taking place. The wide variation in responses suggests a need to develop professional guidelines for when and how discussions of reproductive risk for autosomal recessive conditions identified through cancer panels should occur with patients.

  18. Molecular analysis of heritable mouse mutations.

    PubMed

    Rinchik, E M

    1987-10-01

    Germ-line mutations of the mouse have for years comprised one class of biological markers for mammalian reproductive and developmental toxicology. Understanding the molecular nature of mutations and the mechanisms by which mutations are translated into specific (and often complex) phenotypes, however, still looms as a major goal of mammalian biology. Molecular genetic analysis of heritable mouse mutations constitutes a significant, experimentally malleable strategy for relating genomic DNA structure to genic expression and function in mammals. The integrated use of recombinant DNA technology, which allows both the identification and analysis of expression of single genes, and classical genetic and cytogenetic analysis, which allow the important correlation between basic DNA defects and the organismic consequences of such defects, has been crucial to this strategy. Some of the approaches (e.g., specific-gene cloning, random-clone analysis of genomic regions, insertional mutagenesis) for studying the nature and effect of both mutations and their wild-type counterparts that have resulted from this integration of genetic analysis and molecular biology have been applied to many loci within the murine genome. Studies of the nature and effects of a complex set of radiation-induced mutations at the dilute-short ear (d-se) region of chromosome 9, a specific example of this type of integrated analysis, are discussed.

  19. BRCA Mutations, DNA Repair Deficiency, and Ovarian Aging.

    PubMed

    Oktay, Kutluk; Turan, Volkan; Titus, Shiny; Stobezki, Robert; Liu, Lin

    2015-09-01

    Oocyte aging has a significant impact on reproductive outcomes both quantitatively and qualitatively. However, the molecular mechanisms underlying the age-related decline in reproductive success have not been fully addressed. BRCA is known to be involved in homologous DNA recombination and plays an essential role in double-strand DNA break repair. Given the growing body of laboratory and clinical evidence, we performed a systematic review on the current understanding of the role of DNA repair in human reproduction. We find that BRCA mutations negatively affect ovarian reserve based on convincing evidence from in vitro and in vivo results and prospective studies. Because decline in the function of the intact gene occurs at an earlier age, women with BRCA1 mutations exhibit accelerated ovarian aging, unlike those with BRCA2 mutations. However, because of the still robust function of the intact allele in younger women and because of the masking of most severe cases by prophylactic oophorectomy or cancer, it is less likely one would see an effect of BRCA mutations on fertility until later in reproductive age. The impact of BRCA2 mutations on reproductive function may be less visible because of the delayed decline in the function of normal BRCA2 allele. BRCA1 function and ataxia-telangiectasia-mutated (ATM)-mediated DNA repair may also be important in the pathogenesis of age-induced increase in aneuploidy. BRCA1 is required for meiotic spindle assembly, and cohesion function between sister chromatids is also regulated by ATM family member proteins. Taken together, these findings strongly suggest the implication of BRCA and DNA repair malfunction in ovarian aging.

  20. Franchising Reproductive Health Services

    PubMed Central

    Stephenson, Rob; Tsui, Amy Ong; Sulzbach, Sara; Bardsley, Phil; Bekele, Getachew; Giday, Tilahun; Ahmed, Rehana; Gopalkrishnan, Gopi; Feyesitan, Bamikale

    2004-01-01

    Objectives Networks of franchised health establishments, providing a standardized set of services, are being implemented in developing countries. This article examines associations between franchise membership and family planning and reproductive health outcomes for both the member provider and the client. Methods Regression models are fitted examining associations between franchise membership and family planning and reproductive health outcomes at the service provider and client levels in three settings. Results Franchising has a positive association with both general and family planning client volumes, and the number of family planning brands available. Similar associations with franchise membership are not found for reproductive health service outcomes. In some settings, client satisfaction is higher at franchised than other types of health establishments, although the association between franchise membership and client outcomes varies across the settings. Conclusions Franchise membership has apparent benefits for both the provider and the client, providing an opportunity to expand access to reproductive health services, although greater attention is needed to shift the focus from family planning to a broader reproductive health context. PMID:15544644

  1. Adipokines in human reproduction.

    PubMed

    Dupont, Joëlle; Pollet-Villard, Xavier; Reverchon, Maxime; Mellouk, Namya; Levy, Rachel

    2015-10-01

    Adipose tissue communicates with other central and peripheral organs by the synthesis and release of substances called adipokines. The most studied adipokine is leptin but others have been recently identified including resistin, adiponectin, chemerin, omentin and visfatin. These adipokines have a critical role in the development of obesity-related complications and inflammatory conditions. However, they are also involved in other functions in the organism including reproductive functions. Indeed, many groups have demonstrated that adipokine receptors, such as adiponectin and chemerin, but also adipokines themselves (adiponectin, chemerin, resistin, visfatin and omentin) are expressed in human peripheral reproductive tissues and that these adipokines are likely to exert direct effects on these tissues. After a brief description of these new adipokines, an overview of their actions in different human reproductive organs (hypothalamus, pituitary, ovary, testis, uterus and placenta) will be presented. Finally, comments will be made on the eventual alterations of these adipokines in reproductive disorders, with special attention to polycystic ovary syndrome, a disease characterized by dysfunction of gonadal axis and systemic nerve endocrine metabolic network with a prevalence of up to 10% in women of reproductive age.

  2. Melatonin and male reproduction.

    PubMed

    Li, Chunjin; Zhou, Xu

    2015-06-15

    Melatonin is a neurohormone secreted by the pineal gland whose concentrations in the body are regulated by both the dark-light and seasonal cycles. The reproductive function of seasonal breeding animals is clearly influenced by the circadian variation in melatonin levels. Moreover, a growing body of evidence indicates that melatonin has important effects in the reproduction of some non-seasonal breeding animals. In males, melatonin affects reproductive regulation in three main ways. First, it regulates the secretion of two key neurohormones, GnRH and LH. Second, it regulates testosterone synthesis and testicular maturation. Third, as a potent free radical scavenger that is both lipophilic and hydrophilic, it prevents testicular damage caused by environmental toxins or inflammation. This review summarizes the existing data on the possible biological roles of melatonin in male reproduction. Overall, the literature data indicate that melatonin affects the secretion of both gonadotropins and testosterone while also improving sperm quality. This implies that it has important effects on the regulation of testicular development and male reproduction.

  3. Endocrine regulation of aging and reproduction in Drosophila.

    PubMed

    Toivonen, Janne M; Partridge, Linda

    2009-02-05

    Hormonal signals can modulate lifespan and reproductive capacity across the animal kingdom. The use of model organisms such as worms, flies and mice has been fundamentally important for aging research in the discovery of genetic alterations that can extend healthy lifespan. The effects of mutations in the insulin and insulin-like growth factor-like signaling (IIS) pathways are evolutionarily conserved in that they can increase lifespan in all three animal models. Additionally, steroids and other lipophilic signaling molecules modulate lifespan in diverse organisms. Here we shall review how major hormonal pathways in the fruit fly Drosophila melanogaster interact to influence reproductive capacity and aging.

  4. Complete nucleotide and derived amino acid sequence of cDNA encoding the mitochondrial uncoupling protein of rat brown adipose tissue: lack of a mitochondrial targeting presequence.

    PubMed Central

    Ridley, R G; Patel, H V; Gerber, G E; Morton, R C; Freeman, K B

    1986-01-01

    A cDNA clone spanning the entire amino acid sequence of the nuclear-encoded uncoupling protein of rat brown adipose tissue mitochondria has been isolated and sequenced. With the exception of the N-terminal methionine the deduced N-terminus of the newly synthesized uncoupling protein is identical to the N-terminal 30 amino acids of the native uncoupling protein as determined by protein sequencing. This proves that the protein contains no N-terminal mitochondrial targeting prepiece and that a targeting region must reside within the amino acid sequence of the mature protein. Images PMID:3012461

  5. Rethinking progesterone regulation of female reproductive cyclicity.

    PubMed

    Kubota, Kaiyu; Cui, Wei; Dhakal, Pramod; Wolfe, Michael W; Rumi, M A Karim; Vivian, Jay L; Roby, Katherine F; Soares, Michael J

    2016-04-12

    The progesterone receptor (PGR) is a ligand-activated transcription factor with key roles in the regulation of female fertility. Much has been learned of the actions of PGR signaling through the use of pharmacologic inhibitors and genetic manipulation, using mouse mutagenesis. Characterization of rats with a null mutation at the Pgr locus has forced a reexamination of the role of progesterone in the regulation of the female reproductive cycle. We generated two Pgr mutant rat models, using genome editing. In both cases, deletions yielded a null mutation resulting from a nonsense frame-shift and the emergence of a stop codon. Similar to Pgr null mice, Pgr null rats were infertile because of deficits in sexual behavior, ovulation, and uterine endometrial differentiation. However, in contrast to the reported phenotype of female mice with disruptions in Pgr signaling, Pgr null female rats exhibit robust estrous cycles. Cyclic changes in vaginal cytology, uterine histology, serum hormone levels, and wheel running activity were evident in Pgr null female rats, similar to wild-type controls. Furthermore, exogenous progesterone treatment inhibited estrous cycles in wild-type female rats but not in Pgr-null female rats. As previously reported, pharmacologic antagonism supports a role for PGR signaling in the regulation of the ovulatory gonadotropin surge, a result at variance with experimentation using genetic ablation of PGR signaling. To conclude, our findings in the Pgr null rat challenge current assumptions and prompt a reevaluation of the hormonal control of reproductive cyclicity.

  6. Selective advantage for sexual reproduction

    NASA Astrophysics Data System (ADS)

    Tannenbaum, Emmanuel

    2006-03-01

    We develop a simplified model for sexual replication within the quasispecies formalism. We assume that the genomes of the replicating organisms are two-chromosomed and diploid, and that the fitness is determined by the number of chromosomes that are identical to a given master sequence. We also assume that there is a cost to sexual replication, given by a characteristic time τseek during which haploid cells seek out a mate with which to recombine. If the mating strategy is such that only viable haploids can mate, then when τseek= 0 , it is possible to show that sexual replication will always outcompete asexual replication. However, as τseek increases, sexual replication only becomes advantageous at progressively higher mutation rates. Once the time cost for sex reaches a critical threshold, the selective advantage for sexual replication disappears entirely. The results of this talk suggest that sexual replication is not advantageous in small populations per se, but rather in populations with low replication rates. In this regime, the cost for sex is sufficiently low that the selective advantage obtained through recombination leads to the dominance of the strategy. In fact, at a given replication rate and for a fixed environment volume, sexual replication is selected for in high populations because of the reduced time spent finding a reproductive partner.

  7. Dinosaur Reproduction and Parenting

    NASA Astrophysics Data System (ADS)

    Horner, John R.

    Non-avian dinosaur reproductive and parenting behaviors were mostly similar to those of extant archosaurs. Non-avian dinosaurs were probably sexually dimorphic and some may have engaged in hierarchical rituals. Non-avian coelurosaurs (e.g. Troodontidae, Oviraptorosauria) had two active oviducts, each of which produced single eggs on a daily or greater time scale. The eggs of non-coelurosaurian dinosaurs (e.g. Ornithischia, Sauropoda) were incubated in soils, whereas the eggs of non-avian coelurosaurs (e.g. Troodon, Oviraptor) were incubated with a combination of soil and direct parental contact. Parental attention to the young was variable, ranging from protection from predators to possible parental feeding of nest-bound hatchlings. Semi-altricial hadrosaur hatchlings exited their respective nests near the time of their first linear doubling. Some reproductive behaviors, once thought exclusive to Aves, arose first in non-avian dinosaurs. The success of the Dinosauria may be related to reproductive strategies.

  8. Biofluidmechanics of Reproduction

    NASA Astrophysics Data System (ADS)

    Fauci, Lisa J.; Dillon, Robert

    2006-01-01

    Mammalian fertilization requires the coordinated activity of motile spermatozoa, muscular contractions of the uterus and oviduct, as well as ciliary beating. These elastic structures generate forces that drive fluid motion, but their configurations are, in turn, determined by the fluid dynamics. We review the basic fluid mechanical aspects of reproduction, including flagellar/ciliary beating and peristalsis. We report on recent biological studies that have shed light on the relative importance of the mechanical ingredients of reproduction. In particular, we examine sperm motility in the reproductive tract, ovum pickup and transport in the oviduct, as well as sperm-egg interactions. We review recent advances in understanding the internal mechanics of cilia and flagella, flagellar surface interaction, sperm motility in complex fluids, and the role of fluid dynamics in embryo transfer. We outline promising computational fluid dynamics frameworks that may be used to investigate these complex, fluid-structure interactions.

  9. Tribbles role in reproduction.

    PubMed

    Basatvat, Shaghayegh; Carter, Deborah Angela Louise; Kiss-Toth, Endre; Fazeli, Alireza

    2015-10-01

    Tribbles (TRIB) proteins, a family of evolutionary conserved psuedokinase proteins, modulate various signalling pathways within the cell. The regulatory roles of TRIB make them an important part of a number of biological processes ranging from cell proliferation to metabolism, immunity, inflammation and carcinogenesis. Innate immune system plays a pivotal role during the regulation of reproductive processes that allows successful creation of an offspring. Its involvement initiates from fertilization of the oocyte by spermatozoon and lasts throughout early embryonic development, pregnancy and labour. Therefore, there is a close cooperation between the reproductive system and the innate immune system. Evidence from our lab has demonstrated that improper activation of the innate immune system can reduce embryo implantation, thus leading to infertility. Therefore, control mechanisms regulating the innate immune system function can be critical for successful reproductive events.

  10. Analysis of variation for apomictic reproduction in diploid Paspalum rufum

    PubMed Central

    Delgado, Luciana; Galdeano, Florencia; Sartor, María E.; Quarin, Camilo L.; Espinoza, Francisco; Ortiz, Juan Pablo A.

    2014-01-01

    Background and Aims The diploid cytotype of Paspalum rufum (Poaceae) reproduces sexually and is self-sterile; however, recurrent autopolyploidization through 2n + n fertilization and the ability for reproduction via apomixis have been documented in one genotype of the species. The objectives of this work were to analyse the variation in the functionality of apomixis components in diploid genotypes of P. rufum and to identify individuals with contrasting reproductive behaviours. Methods Samples of five individuals from each of three natural populations of P. rufum (designated R2, R5 and R6) were used. Seeds were obtained after open pollination, selfing, conspecific interploidy crosses and interspecific interploidy self-pollination induction. The reproductive behaviour of each plant was determined by using the flow cytometric seed screen (FCSS) method. Embryo sacs were cleared using a series of ethanol and methyl salicylate solutions and observed microscopically. Key Results In open pollination, all genotypes formed seeds by sexual means and no evidence of apomeiotic reproduction was detected. However, in conspecific interploidy crosses and interspecific interploidy self-pollination induction, variations in the reproductive pathways were observed. While all plants from populations R2 and R6 formed seeds exclusively by sexual means, three genotypes from the R5 population developed seeds from both meiotic and aposporous embryo sacs, and one of them (R5#49) through the complete apomictic pathway (apospory + parthenogenesis + pseudogamy). Cytoembryological observations revealed the presence of both meiotic and aposporous embryo sacs in all the genotypes analysed, suggesting that parthenogenesis could be uncoupled from apospory in some genotypes. Conclusions The results presented demonstrate the existence of variation in the functionality of apomixis components in natural diploid genotypes of P. rufum and have identified individuals with contrasting reproductive

  11. A Perspective on the Importance of Reproductive Mode in Astrobiology

    NASA Astrophysics Data System (ADS)

    Van Doninck, Karine; Schön, Isa; Martens, Koen

    2003-12-01

    Reproduction is a vital characteristic of life, and sex is the most common reproductive mode in the eukaryotic world. Sex and reproduction are not necessarily linked mechanisms: Sexuality without reproduction exists, while several forms of asexual reproduction are known. The occurrence of sexuality itself is paradoxical, as it is very costly in evolutionary terms. Most of the hypotheses (more than 20) attempting to explain the prevalence of sex fall into two categories: Sex either creates good gene combinations for adaptation to environments or eliminates bad gene combinations counteracting the accumulation of mutations. In spite of this apparent wealth of beneficial effects of sex, asexuality is not rare. Most eukaryotic, asexual lineages are short-lived and can only persist through the presence of sexual roots, but at least two animal groups, bdelloid rotifers and darwinulid ostracods, seem to claim the status of ancient asexuals. Research on (a)sexuality is relevant to astrobiology in a number of ways. First, strong relationships between the origin and persistence of life in extreme environments and reproductive mode are known. Second, the "habitability" of nonterrestrial environments to life greatly depends on reproductive mode. Whereas asexuals can do equally well or better in harsh environments, they fail to adapt fast enough to changing abiotic and biotic environments. Third, it has been shown that plants reproduce mainly asexually in space, and sperm production and motility in some vertebrates are hampered. Both findings indicate that extraterrestrial life under conditions different from Earth might be dominated by asexual reproduction. Finally, for exchange of biological material between planets, the choice of reproductive mode will be important.

  12. A perspective on the importance of reproductive mode in astrobiology.

    PubMed

    Van Doninck, Karine; Schön, Isa; Martens, Koen

    2003-01-01

    Reproduction is a vital characteristic of life, and sex is the most common reproductive mode in the eukaryotic world. Sex and reproduction are not necessarily linked mechanisms: Sexuality without reproduction exists, while several forms of asexual reproduction are known. The occurrence of sexuality itself is paradoxical, as it is very costly in evolutionary terms. Most of the hypotheses (more than 20) attempting to explain the prevalence of sex fall into two categories: Sex either creates good gene combinations for adaptation to environments or eliminates bad gene combinations counteracting the accumulation of mutations. In spite of this apparent wealth of beneficial effects of sex, asexuality is not rare. Most eukaryotic, asexual lineages are short-lived and can only persist through the presence of sexual roots, but at least two animal groups, bdelloid rotifers and darwinulid ostracods, seem to claim the status of ancient asexuals. Research on (a)sexuality is relevant to astrobiology in a number of ways. First, strong relationships between the origin and persistence of life in extreme environments and reproductive mode are known. Second, the "habitability" of nonterrestrial environments to life greatly depends on reproductive mode. Whereas asexuals can do equally well or better in harsh environments, they fail to adapt fast enough to changing abiotic and biotic environments. Third, it has been shown that plants reproduce mainly asexually in space, and sperm production and motility in some vertebrates are hampered. Both findings indicate that extraterrestrial life under conditions different from Earth might be dominated by asexual reproduction. Finally, for exchange of biological material between planets, the choice of reproductive mode will be important.

  13. Reproductive rights under attack.

    PubMed

    Mcdonald, K

    1995-01-01

    Women's groups, politicians, nongovernmental organizations, funding groups, and donor countries must all be lobbied with the message that sexual and reproductive health issues are inextricably linked to women in development, education, and future economic strength of nations worldwide. In the Beijing Nongovernmental Organization (NGO) Forum the draft Plan of Action had 35% of its language bracketed and subject to negotiation in Beijing. The previous International Conference on Population and Development (ICPD) in Cairo had only 15% of its language bracketed. Much of the language bracketed for Beijing had already been fully agreed upon before the Cairo conference. The bracketed language was in the health and human rights sections, and most of the language pertained to sexual and reproductive health. The increase in controversy is due to an opposition better organized in Beijing than it had been in Cairo, due to the opposition's failure to recognize the implications of the Cairo declarations on women, men, and children, and due to the opposition's general intolerance of sexual and reproductive issues. The major factor, however, was the linking of women's rights with sexual and reproductive health issues. Family planners joined with women's rights groups, which had always promoted women's control over their bodies as the cornerstone of equality. This connection was interpreted as a threat to the social order by conservative societies. NGO participants included 1400 people representing 170 countries. The NGO anti-abortion contingent was well-funded, well-organized, and large. Lobbying was conducted in an effort to convince people to oppose any language pertaining to gender, sexual and reproductive health, and adolescent rights. Anti-abortion lobbyists also rifled through documents of pro-choice participants. In Canada and the United States anti-abortion groups are lobbying hard to overturn the Cairo Plan of Action and to expand their efforts internationally among

  14. Parental Age Affects Somatic Mutation Rates in the Progeny of Flowering Plants1

    PubMed Central

    Singh, Amit Kumar; Bashir, Tufail; Sailer, Christian; Gurumoorthy, Viswanathan; Ramakrishnan, Anantha Maharasi; Dhanapal, Shanmuhapreya; Grossniklaus, Ueli; Baskar, Ramamurthy

    2015-01-01

    In humans, it is well known that the parental reproductive age has a strong influence on mutations transmitted to their progeny. Meiotic nondisjunction is known to increase in older mothers, and base substitutions tend to go up with paternal reproductive age. Hence, it is clear that the germinal mutation rates are a function of both maternal and paternal ages in humans. In contrast, it is unknown whether the parental reproductive age has an effect on somatic mutation rates in the progeny, because these are rare and difficult to detect. To address this question, we took advantage of the plant model system Arabidopsis (Arabidopsis thaliana), where mutation detector lines allow for an easy quantitation of somatic mutations, to test the effect of parental age on somatic mutation rates in the progeny. Although we found no significant effect of parental age on base substitutions, we found that frameshift mutations and transposition events increased in the progeny of older parents, an effect that is stronger through the maternal line. In contrast, intrachromosomal recombination events in the progeny decrease with the age of the parents in a parent-of-origin-dependent manner. Our results clearly show that parental reproductive age affects somatic mutation rates in the progeny and, thus, that some form of age-dependent information, which affects the frequency of double-strand breaks and possibly other processes involved in maintaining genome integrity, is transmitted through the gametes. PMID:25810093

  15. Nonequilibrium model for estimating parameters of deleterious mutations

    NASA Astrophysics Data System (ADS)

    Gordo, Isabel; Dionisio, Francisco

    2005-03-01

    Deleterious mutations are of extreme evolutionary importance because, even though they are eliminated by natural selection, their continuous pressure creates a pool of variability in natural populations. They are of potential relevance for the existence of several features in evolution, such as sexual reproduction, and pose a risk to small asexual populations. Despite their extreme importance, the deleterious mutation rate and the effects of each mutation on fitness are poorly known quantities. Here we analyze a simple model that can be applied to simple experiments, in microorganisms, aiming at the quantification of these values.

  16. Does reproductive isolation evolve faster in larger populations via sexually antagonistic coevolution?

    PubMed

    Gay, L; Eady, P E; Vasudev, R; Hosken, D J; Tregenza, T

    2009-10-23

    Sexual conflict over reproductive investment can lead to sexually antagonistic coevolution and reproductive isolation. It has been suggested that, unlike most models of allopatric speciation, the evolution of reproductive isolation through sexually antagonistic coevolution will occur faster in large populations as these harbour greater levels of standing genetic variation, receive larger numbers of mutations and experience more intense sexual selection. We tested this in bruchid beetle populations (Callosobruchus maculatus) by manipulating population size and standing genetic variability in replicated lines derived from founders that had been released from sexual conflict for 90 generations. We found that after 19 generations of reintroduced sexual conflict, none of our treatments had evolved significant overall reproductive isolation among replicate lines. However, as predicted, measures of reproductive isolation tended to be greater among larger populations. We discuss our methodology, arguing that reproductive isolation is best examined by performing a matrix of allopatric and sympatric crosses whereas measurement of divergence requires crosses with a tester line.

  17. Feminism and reproductive technologies.

    PubMed

    Callahan, Joan C

    1994-01-01

    ... Rowland is a social scientist and a radical feminist, and she has undertaken the task of making readers think twice about reproductive technologies. If a reader isn't thinking twice, it will not do to blame it on Rowland and the shortcomings of her book. She has a good deal to say that is extremely important and that needs to be considered by anyone who is interested in the moral issues, in general, and the issues for women and children, in particular, that are raised by the new and emerging reproductive technologies. Her book should be widely read. And it should generate the worries it is written to generate.

  18. MicroRNA-133a-1 regulates inflammasome activation through uncoupling protein-2.

    PubMed

    Bandyopadhyay, Sayantani; Lane, Troy; Venugopal, Rajanbabu; Parthasarathy, Prasanna Tamarapu; Cho, Young; Galam, Lakshmi; Lockey, Richard; Kolliputi, Narasaiah

    2013-09-27

    Inflammasomes are multimeric protein complexes involved in the processing of IL-1β through Caspase-1 cleavage. NLRP3 is the most widely studied inflammasome, which has been shown to respond to a large number of both endogenous and exogenous stimuli. Although studies have begun to define basic pathways for the activation of inflammasome and have been instrumental in identifying therapeutics for inflammasome related disorders; understanding the inflammasome activation at the molecular level is still incomplete. Recent functional studies indicate that microRNAs (miRs) regulate molecular pathways and can lead to diseased states when hampered or overexpressed. Mechanisms involving the miRNA regulatory network in the activation of inflammasome and IL-1β processing is yet unknown. This report investigates the involvement of miR-133a-1 in the activation of inflammasome (NLRP3) and IL-1β production. miR-133a-1 is known to target the mitochondrial uncoupling protein 2 (UCP2). The role of UCP2 in inflammasome activation has remained elusive. To understand the role of miR-133a-1 in regulating inflammasome activation, we either overexpressed or suppressed miR-133a-1 in differentiated THP1 cells that express the NLRP3 inflammasome. Levels of Caspase-1 and IL-1β were analyzed by Western blot analysis. For the first time, we showed that overexpression of miR-133a-1 increases Caspase-1 p10 and IL-1β p17 cleavage, concurrently suppressing mitochondrial uncoupling protein 2 (UCP2). Surprisingly, our results demonstrated that miR-133A-1 controls inflammasome activation without affecting the basal expression of the individual inflammasome components NLRP3 and ASC or its immediate downstream targets proIL-1β and pro-Caspase-1. To confirm the involvement of UCP2 in the regulation of inflammasome activation, Caspase-1 p10 and IL-1β p17 cleavage in UCP2 of overexpressed and silenced THP1 cells were studied. Suppression of UCP2 by siRNA enhanced the inflammasome activity stimulated

  19. Benzene-Induced Uncoupling of Naphthalene Dioxygenase Activity and Enzyme Inactivation by Production of Hydrogen Peroxide

    PubMed Central

    Lee, Kyoung

    1999-01-01

    Naphthalene dioxygenase (NDO) is a multicomponent enzyme system that oxidizes naphthalene to (+)-cis-(1R,2S)-1,2-dihydroxy-1,2-dihydronaphthalene with consumption of O2 and two electrons from NAD(P)H. In the presence of benzene, NADH oxidation and O2 utilization were partially uncoupled from substrate oxidation. Approximately 40 to 50% of the consumed O2 was detected as hydrogen peroxide. The rate of benzene-dependent O2 consumption decreased with time, but it was partially increased by the addition of catalase in the course of the O2 consumption by NDO. Detailed experiments showed that the total amount of O2 consumed and the rate of benzene-induced O2 consumption increased in the presence of hydrogen peroxide-scavenging agents, and further addition of the terminal oxygenase component (ISPNAP) of NDO. Kinetic studies showed that ISPNAP was irreversibly inactivated in the reaction that contained benzene, but the inactivation was relieved to a high degree in the presence of catalase and partially relieved in the presence of 0.1 mM ferrous ion. Benzene- and naphthalene-reacted ISPNAP gave almost identical visible absorption spectra. In addition, hydrogen peroxide added at a range of 0.1 to 0.6 mM to the reaction mixtures inactivated the reduced ISPNAP containing mononuclear iron. These results show that hydrogen peroxide released during the uncoupling reaction acts both as an inhibitor of benzene-dependent O2 consumption and as an inactivator of ISPNAP. It is proposed that the irreversible inactivation of ISPNAP occurs by a Fenton-type reaction which forms a strong oxidizing agent, hydroxyl radicals (·OH), from the reaction of hydrogen peroxide with ferrous mononuclear iron at the active site. Furthermore, when [14C]benzene was used as the substrate, cis-benzene 1,2-dihydrodiol formed by NDO was detected. This result shows that NDO also couples a trace amount of benzene to both O2 consumption and NADH oxidation. PMID:10217759

  20. A novel amino acid and metabolomics signature in mice overexpressing muscle uncoupling protein 3.

    PubMed

    Aguer, Céline; Piccolo, Brian D; Fiehn, Oliver; Adams, Sean H; Harper, Mary-Ellen

    2017-02-01

    Uncoupling protein 3 (UCP3) is highly selectively expressed in skeletal muscle and is known to lower mitochondrial reactive oxygen species and promote fatty acid oxidation; however, the global impact of UCP3 activity on skeletal muscle and whole-body metabolism have not been extensively studied. We utilized untargeted metabolomics to identify novel metabolites that distinguish mice overexpressing UCP3 in muscle, both at rest and after exercise regimens that challenged muscle metabolism, to potentially unmask subtle phenotypes. Male wild-type (WT) and muscle-specific UCP3-overexpressing transgenic (UCP3 Tg) C57BL/6J mice were compared with or without a 5 wk endurance training protocol at rest or after an acute exercise bout (EB). Skeletal muscle, liver, and plasma samples were analyzed by gas chromatography time-of-flight mass spectrometry. Discriminant metabolites were considered if within the top 99th percentile of variable importance measurements obtained from partial least-squares discriminant analysis models. A total of 80 metabolites accurately discriminated UCP3 Tg mice from WT when modeled within a specific exercise condition (i.e., untrained/rested, endurance trained/rested, untrained/EB, and endurance trained/EB). Results revealed that several amino acids and amino acid derivatives in skeletal muscle and plasma of UCP3 Tg mice (e.g., Asp, Glu, Lys, Tyr, Ser, Met) were significantly reduced after an EB; that metabolites associated with skeletal muscle glutathione/Met/Cys metabolism (2-hydroxybutanoic acid, oxoproline, Gly, and Glu) were altered in UCP3 Tg mice across all training and exercise conditions; and that muscle metabolite indices of dehydrogenase activity were increased in UCP3 Tg mice, suggestive of a shift in tissue NADH/NAD(+) ratio. The results indicate that mitochondrial UCP3 activity affects metabolism well beyond fatty acid oxidation, regulating biochemical pathways associated with amino acid metabolism and redox status. That select

  1. Deleterious mutation accumulation in asexual Timema stick insects.

    PubMed

    Henry, Lee; Schwander, Tanja; Crespi, Bernard J

    2012-01-01

    Sexual reproduction is extremely widespread in spite of its presumed costs relative to asexual reproduction, indicating that it must provide significant advantages. One postulated benefit of sex and recombination is that they facilitate the purging of mildly deleterious mutations, which would accumulate in asexual lineages and contribute to their short evolutionary life span. To test this prediction, we estimated the accumulation rate of coding (nonsynonymous) mutations, which are expected to be deleterious, in parts of one mitochondrial (COI) and two nuclear (Actin and Hsp70) genes in six independently derived asexual lineages and related sexual species of Timema stick insects. We found signatures of increased coding mutation accumulation in all six asexual Timema and for each of the three analyzed genes, with 3.6- to 13.4-fold higher rates in the asexuals as compared with the sexuals. In addition, because coding mutations in the asexuals often resulted in considerable hydrophobicity changes at the concerned amino acid positions, coding mutations in the asexuals are likely associated with more strongly deleterious effects than in the sexuals. Our results demonstrate that deleterious mutation accumulation can differentially affect sexual and asexual lineages and support the idea that deleterious mutation accumulation plays an important role in limiting the long-term persistence of all-female lineages.

  2. Reproductive Market Values Explain Post-reproductive Lifespans in Men.

    PubMed

    Vinicius, Lucio; Migliano, Andrea Bamberg

    2016-03-01

    Post-reproductive lifespans (PRLSs) of men vary across traditional societies. We argue that if sexual selection operates on male age-dependent resource availability (or 'reproductive market values') the result is variation in male late-life reproduction across subsistence systems. This perspective highlights the uniqueness of PRLS in both women and men.

  3. Male Reproductive Toxicology: Environmental Exposures vs Reproductive Competence

    EPA Science Inventory

    Like the lecture this chapter begins with an overview of male reproductive biology and transitions into male reproductive toxicology. It ends with a brief discussion of the strengths and weaknesses in male reproductive toxicology and epidemiology today. This chapter is highly il...

  4. Mitochondria-Targeted Antioxidants and Uncouplers of Oxidative Phosphorylation in Treatment of the Systemic Inflammatory Response Syndrome (SIRS).

    PubMed

    Zakharova, Vlada V; Pletjushkina, Olga Yu; Zinovkin, Roman A; Popova, Ekaterina N; Chernyak, Boris V

    2017-05-01

    Systemic inflammatory response syndrome (SIRS) development is accompanied by mitochondrial dysfunction and excessive ROS production. Mitochondrial dysfunctions also occur in many SIRS-related diseases and may be critical for their pathogenesis; therefore, a use of mitochondria-targeted drugs is a promising trend in SIRS research and therapy. Here, we review recent studies concerning the application of the mitochondria-targeted antioxidants and uncouplers of oxidative phosphorylation in animal models of SIRS and related diseases. We propose that a new class of uncouplers of oxidative phosphorylation, lipophilic cations could be a base for a new generation of drugs for SIRS treatment. J. Cell. Physiol. 232: 904-912, 2017. © 2016 Wiley Periodicals, Inc.

  5. Processive steps in the reverse direction require uncoupling of the lead head lever arm of myosin VI.

    PubMed

    Ménétrey, Julie; Isabet, Tatiana; Ropars, Virginie; Mukherjea, Monalisa; Pylypenko, Olena; Liu, Xiaoyan; Perez, Javier; Vachette, Patrice; Sweeney, H Lee; Houdusse, Anne M

    2012-10-12

    Myosin VI is the only known reverse-direction myosin motor. It has an unprecedented means of amplifying movements within the motor involving rearrangements of the converter subdomain at the C terminus of the motor and an unusual lever arm projecting from the converter. While the average step size of a myosin VI dimer is 30-36 nm, the step size is highly variable, presenting a challenge to the lever arm mechanism by which all myosins are thought to move. Herein, we present structures of myosin VI that reveal regions of compliance that allow an uncoupling of the lead head when movement is modeled on actin. The location of the compliance restricts the possible actin binding sites and predicts the observed stepping behavior. The model reveals that myosin VI, unlike plus-end directed myosins, does not use a pure lever arm mechanism, but instead steps with a mechanism analogous to the kinesin neck-linker uncoupling model.

  6. Solving Modal Equations of Motion with Initial Conditions Using MSC/NASTRAN DMAP. Part 2; Coupled Versus Uncoupled Integration

    NASA Technical Reports Server (NTRS)

    Barnett, Alan R.; Ibrahim, Omar M.; Abdallah, Ayman A.; Sullivan, Timothy L.

    1993-01-01

    By utilizing MSC/NASTRAN DMAP (Direct Matrix Abstraction Program) in an existing NASA Lewis Research Center coupled loads methodology, solving modal equations of motion with initial conditions is possible using either coupled (Newmark-Beta) or uncoupled (exact mode superposition) integration available within module TRD1. Both the coupled and newly developed exact mode superposition methods have been used to perform transient analyses of various space systems. However, experience has shown that in most cases, significant time savings are realized when the equations of motion are integrated using the uncoupled solver instead of the coupled solver. Through the results of a real-world engineering analysis, advantages of using the exact mode superposition methodology are illustrated.

  7. Molecular dynamics simulations and rigid body (TLS) analysis of aspartate carbamoyltransferase: evidence for an uncoupled R state.

    PubMed Central

    Tanner, J. J.; Smith, P. E.; Krause, K. L.

    1993-01-01

    In the R form of ATCase complexed with the bisubstrate analogue, N-(phosphonacetyl)-L-aspartate, large temperature factors are reported for the allosteric domains of the regulatory chains. We studied the conformational flexibility of the holoenzyme with molecular dynamics simulations and rigid body (TLS) analysis. The results of the molecular dynamics simulations suggest that, although local atomic fluctuations account for the temperature factors of the catalytic and zinc domains, they do not account for the large temperature factors of the allosteric regions. However, the temperature factors of the allosteric domains can be satisfactorily analyzed using a rigid body model. The simulations and rigid body analysis support the idea that the allosteric regions are mechanically uncoupled from the rest of the enzyme in the PALA structure. Implications of this uncoupling for allosteric regulation are discussed. PMID:8318897

  8. Reduction in energy efficiency induced by expression of the uncoupling protein, UCP1, in mouse liver mitochondria.

    PubMed

    González-Muniesa, Pedro; Milagro, Fermín I; Campión, Javier; Martínez, J Alfredo

    2006-04-01

    Uncoupling Protein 1 (UCP1) is an inner mitochondrial membrane protein, uniquely expressed in brown adipocytes, which uncouples the mitochondrial respiration impairing ATP production and energy efficiency. The aim of the present study was to express UCP1 in liver mitochondria using a non-viral system in order to affect energy utilization. The effect of ectopic protein expression on liver energy metabolism, which was evaluated 42 h after DNA transfer, showed that mitochondria expressing UCP1 presented decreased ATP production, lasted more time in membrane potential state 3, and consumed more molecular oxygen to produce the same amount of ATP than the control group. In summary, the successful functionality of the mitochondrial protein, UCP1, after hydrodynamic delivery is a novel and significant finding. This approach could be useful to ectopically express mitochondrial proteins and, in this particular case, to manage metabolic disorders related to energy efficiency and expenditure, such as obesity.

  9. Ethics of Reproductive Engineering

    ERIC Educational Resources Information Center

    Buuck, R. John

    1977-01-01

    Artificial insemination, in vitro fertilization, artificial placentas, and cloning are examined from a ethical viewpoint. The moral, social, and legal implications of reproductive engineering are considered important to biology as well as medicine. The author suggests that these ethical issues should be included in the biology curriculum and lists…

  10. Telomeres and human reproduction.

    PubMed

    Kalmbach, Keri Horan; Fontes Antunes, Danielle Mota; Dracxler, Roberta Caetano; Knier, Taylor Warner; Seth-Smith, Michelle Louise; Wang, Fang; Liu, Lin; Keefe, David Lawrence

    2013-01-01

    Telomeres mediate biologic aging in organisms as diverse as plants, yeast, and mammals. We propose a telomere theory of reproductive aging that posits telomere shortening in the female germ line as the primary driver of reproductive aging in women. Experimental shortening of telomeres in mice, which normally do not exhibit appreciable oocyte aging, and which have exceptionally long telomeres, recapitulates the aging phenotype of human oocytes. Telomere shortening in mice reduces synapsis and chiasmata, increases embryo fragmentation, cell cycle arrest, apoptosis, spindle dysmorphologies, and chromosome abnormalities. Telomeres are shorter in the oocytes from women undergoing in vitro fertilization, who then produce fragmented, aneuploid embryos that fail to implant. In contrast, the testes are replete with spermatogonia that can rejuvenate telomere reserves throughout the life of the man by expressing telomerase. Differences in telomere dynamics across the life span of men and women may have evolved because of the difference in the inherent risks of aging on reproduction between men and women. Additionally, growing evidence links altered telomere biology to endometriosis and gynecologic cancers, thus future studies should examine the role of telomeres in pathologies of the reproductive tract.

  11. Male Reproductive System.

    ERIC Educational Resources Information Center

    Turkington, B. A.

    This autoinstructional lesson deals with the study of the human body with emphasis on the life process of reproduction. It is a learning activity included in high school biology or health education classes. The behavioral objectives are listed and the equipment and materials needed to help the student gain these objectives are also included in the…

  12. Female Reproductive System.

    ERIC Educational Resources Information Center

    Hodge, N. J.

    This autoinstructional lesson can be used with health education and/or biology classes in a high school curriculum. It deals with the study of human development with emphasis on the female reproductive organs and cycles. The behavioral objectives are given, and the materials and equipment needed to gain these objectives are itemized. Fifteen…

  13. Melatonin and female reproduction.

    PubMed

    Tamura, Hiroshi; Takasaki, Akihisa; Taketani, Toshiaki; Tanabe, Manabu; Lee, Lifa; Tamura, Isao; Maekawa, Ryo; Aasada, Hiromi; Yamagata, Yoshiaki; Sugino, Norihiro

    2014-01-01

    Melatonin (N-acetyl-5-methoxytryptamine) is secreted during the dark hours at night by the pineal gland. After entering the circulation, melatonin acts as an endocrine factor and a chemical messenger of light and darkness. It regulates a variety of important central and peripheral actions related to circadian rhythms and reproduction. It also affects the brain, immune, gastrointestinal, cardiovascular, renal, bone and endocrine functions and acts as an oncostatic and anti-aging molecule. Many of melatonin's actions are mediated through interactions with specific membrane-bound receptors expressed not only in the central nervous system, but also in peripheral tissues. Melatonin also acts through non-receptor-mediated mechanisms, for example serving as a scavenger for reactive oxygen species and reactive nitrogen species. At both physiological and pharmacological concentrations, melatonin attenuates and counteracts oxidative stress and regulates cellular metabolism. Growing scientific evidence of reproductive physiology supports the role of melatonin in human reproduction. This review was conducted to investigate the effects of melatonin on female reproduction and to summarize our findings in this field.

  14. Preparing for Assisted Reproductive Technology

    MedlinePlus

    ... CDC Cancel Submit Search The CDC Assisted Reproductive Technology (ART) Note: Javascript is disabled or is not ... visit this page: About CDC.gov . Assisted Reproductive Technology (ART) What Is ART Patient Resources Preparing for ...

  15. Hypoxia and Reoxygenation Induce Endothelial Nitric Oxide Synthase Uncoupling in Endothelial Cells through Tetrahydrobiopterin Depletion and S-Glutathionylation

    PubMed Central

    2015-01-01

    Ischemia-reperfusion injury is accompanied by endothelial hypoxia and reoxygenation that trigger oxidative stress with enhanced superoxide generation and diminished nitric oxide (NO) production leading to endothelial dysfunction. Oxidative depletion of the endothelial NO synthase (eNOS) cofactor tetrahydrobiopterin can trigger eNOS uncoupling, in which the enzyme generates superoxide rather than NO. Recently, it has also been shown that oxidative stress can induce eNOS S-glutathionylation at critical cysteine residues of the reductase site that serves as a redox switch to control eNOS coupling. While superoxide can deplete tetrahydrobiopterin and induce eNOS S-glutathionylation, the extent of and interaction between these processes in the pathogenesis of eNOS dysfunction in endothelial cells following hypoxia and reoxygenation remain unknown. Therefore, studies were performed on endothelial cells subjected to hypoxia and reoxygenation to determine the severity of eNOS uncoupling and the role of cofactor depletion and S-glutathionylation in this process. Hypoxia and reoxygenation of aortic endothelial cells triggered xanthine oxidase-mediated superoxide generation, causing both tetrahydrobiopterin depletion and S-glutathionylation with resultant eNOS uncoupling. Replenishing cells with tetrahydrobiopterin along with increasing intracellular levels of glutathione greatly preserved eNOS activity after hypoxia and reoxygenation, while targeting either mechanism alone only partially ameliorated the decrease in NO. Endothelial oxidative stress, secondary to hypoxia and reoxygenation, uncoupled eNOS with an altered ratio of oxidized to reduced glutathione inducing eNOS S-glutathionylation. These mechanisms triggered by oxidative stress combine to cause eNOS dysfunction with shift of the enzyme from NO to superoxide production. Thus, in endothelial reoxygenation injury, normalization of both tetrahydrobiopterin levels and the glutathione pool are needed for maximal

  16. The role of mild uncoupling and non-coupled respiration in the regulation of hydrogen peroxide generation by plant mitochondria.

    PubMed

    Casolo, V; Braidot, E; Chiandussi, E; Macrì, F; Vianello, A

    2000-05-26

    The roles of mild uncoupling caused by free fatty acids (mediated by plant uncoupling mitochondrial protein (PUMP) and ATP/ADP carrier (AAC)) and non-coupled respiration (alternative oxidase (AO)) on H(2)O(2) formation by plant mitochondria were examined. Both laurate and oleate prevent H(2)O(2) formation dependent on the oxidation of succinate. Conversely, these free fatty acids (FFA) only slightly affect that dependent on malate plus glutamate oxidation. Carboxyatractylate (CAtr), an inhibitor of AAC, completely inhibits oleate- or laurate-stimulated oxygen consumption linked to succinate oxidation, while GDP, an inhibitor of PUMP, caused only a 30% inhibition. In agreement, CAtr completely restores the oleate-inhibited H(2)O(2) formation, while GDP induces only a 30% restoration. Both oleate and laurate cause a mild uncoupling of the electrical potential (generated by succinate), which is then followed by a complete collapse with a sigmoidal kinetic. FFA also inhibit the succinate-dependent reverse electron transfer. Diamide, an inhibitor of AO, favors the malate plus glutamate-dependent H(2)O(2) formation, while pyruvate (a stimulator of AO) inhibits it. These results show that the succinate-dependent H(2)O(2) formation occurs at the level of Complex I by a reverse electron transport. This generation appears to be prevented by mild uncoupling mediated by FFA. The anionic form of FFA appears to be shuttled by AAC rather than PUMP. The malate plus glutamate-dependent H(2)O(2) formation is, conversely, mainly prevented by non-coupled respiration (AO).

  17. Nox2-dependent glutathionylation of endothelial NOS leads to uncoupled superoxide production and endothelial barrier dysfunction in acute lung injury.

    PubMed

    Wu, Feng; Szczepaniak, William S; Shiva, Sruti; Liu, Huanbo; Wang, Yinna; Wang, Ling; Wang, Ying; Kelley, Eric E; Chen, Alex F; Gladwin, Mark T; McVerry, Bryan J

    2014-12-15

    Microvascular barrier integrity is dependent on bioavailable nitric oxide (NO) produced locally by endothelial NO synthase (eNOS). Under conditions of limited substrate or cofactor availability or by enzymatic modification, eNOS may become uncoupled, producing superoxide in lieu of NO. This study was designed to investigate how eNOS-dependent superoxide production contributes to endothelial barrier dysfunction in inflammatory lung injury and its regulation. C57BL/6J mice were challenged with intratracheal LPS. Bronchoalveolar lavage fluid was analyzed for protein accumulation, and lung tissue homogenate was assayed for endothelial NOS content and function. Human lung microvascular endothelial cell (HLMVEC) monolayers were exposed to LPS in vitro, and barrier integrity and superoxide production were measured. Biopterin species were quantified, and coimmunoprecipitation (Co-IP) assays were performed to identify protein interactions with eNOS that putatively drive uncoupling. Mice exposed to LPS demonstrated eNOS-dependent increased alveolar permeability without evidence for altered canonical NO signaling. LPS-induced superoxide production and permeability in HLMVEC were inhibited by the NOS inhibitor nitro-l-arginine methyl ester, eNOS-targeted siRNA, the eNOS cofactor tetrahydrobiopterin, and superoxide dismutase. Co-IP indicated that LPS stimulated the association of eNOS with NADPH oxidase 2 (Nox2), which correlated with augmented eNOS S-glutathionylation both in vitro and in vivo. In vitro, Nox2-specific inhibition prevented LPS-induced eNOS modification and increases in both superoxide production and permeability. These data indicate that eNOS uncoupling contributes to superoxide production and barrier dysfunction in the lung microvasculature after exposure to LPS. Furthermore, the results implicate Nox2-mediated eNOS-S-glutathionylation as a mechanism underlying LPS-induced eNOS uncoupling in the lung microvasculature.

  18. The conserved regulation of mitochondrial uncoupling proteins: From unicellular eukaryotes to mammals.

    PubMed

    Woyda-Ploszczyca, Andrzej M; Jarmuszkiewicz, Wieslawa

    2017-01-01

    Uncoupling proteins (UCPs) belong to the mitochondrial anion carrier protein family and mediate regulated proton leak across the inner mitochondrial membrane. Free fatty acids, aldehydes such as hydroxynonenal, and retinoids activate UCPs. However, there are some controversies about the effective action of retinoids and aldehydes alone; thus, only free fatty acids are commonly accepted positive effectors of UCPs. Purine nucleotides such as GTP inhibit UCP-mediated mitochondrial proton leak. In turn, membranous coenzyme Q may play a role as a redox state-dependent metabolic sensor that modulates the complete activation/inhibition of UCPs. Such regulation has been observed for UCPs in microorganisms, plant and animal UCP1 homologues, and UCP1 in mammalian brown adipose tissue. The origin of UCPs is still under debate, but UCP homologues have been identified in all systematic groups of eukaryotes. Despite the differing levels of amino acid/DNA sequence similarities, functional studies in unicellular and multicellular organisms, from amoebae to mammals, suggest that the mechanistic regulation of UCP activity is evolutionarily well conserved. This review focuses on the regulatory feedback loops of UCPs involving free fatty acids, aldehydes, retinoids, purine nucleotides, and coenzyme Q (particularly its reduction level), which may derive from the early stages of evolution as UCP first emerged.

  19. FGF21-Mediated Improvements in Glucose Clearance Require Uncoupling Protein 1.

    PubMed

    Kwon, Michelle M; O'Dwyer, Shannon M; Baker, Robert K; Covey, Scott D; Kieffer, Timothy J

    2015-11-24

    Fibroblast growth factor 21 (FGF21)-mediated weight loss and improvements in glucose metabolism correlate with increased uncoupling protein 1 (Ucp1) levels in adipose tissues, suggesting that UCP1-dependent thermogenesis may drive FGF21 action. It was reported that FGF21 is equally effective at reducing body weight and improving glucose homeostasis without UCP1. We find while FGF21 can lower body weight in both wild-type and Ucp1 knockout mice, rapid clearance of glucose by FGF21 is defective in the absence of UCP1. Furthermore, in obese wild-type mice there is a fall in brown adipose tissue (BAT) temperature during glucose excursion, and FGF21 improves glucose clearance while preventing the fall in BAT temperature. In Ucp1 knockout mice, the fall in BAT temperature during glucose excursion and FGF21-mediated changes in BAT temperature are lost. We conclude FGF21-mediated improvements in clearance of a glucose challenge require UCP1 and evoke UCP1-dependent thermogenesis as a method to increase glucose disposal.

  20. Differential regulation of uncoupling protein gene homologues in multiple tissues of hibernating ground squirrels.

    PubMed

    Boyer, B B; Barnes, B M; Lowell, B B; Grujic, D

    1998-10-01

    Nonshivering thermogenesis in brown adipose tissue (BAT) provides heat through activation of a mitochondrial uncoupling protein (UCP1), which causes futile electron transport cycles without the production of ATP. Recent discovery of two molecular homologues, UCP2, expressed in multiple tissues, and UCP3, expressed in muscle, has resulted in investigation of their roles in thermoregulatory physiology and energy balance. To determine the expression pattern of Ucp homologues in hibernating mammals, we compared relative mRNA levels of Ucp1, -2, and -3 in BAT, white adipose tissue (WAT), and skeletal muscle of arctic ground squirrels (Spermophilus parryii) hibernating at different ambient and body temperatures, with levels determined in tissues from ground squirrels not in hibernation. Here we report significant increases in mRNA levels for Ucp2 in WAT (1. 6-fold) and Ucp3 in skeletal muscle (3-fold) during hibernation. These results indicate the potential for a role of UCP2 and UCP3 in thermal homeostasis during hibernation and indicate that parallel mechanisms and multiple tissues could be important for nonshivering thermoregulation in mammals.

  1. Uncoupling protein 2 regulates palmitic acid-induced hepatoma cell autophagy.

    PubMed

    Lou, Jiaxin; Wang, Yunjiao; Wang, Xuejiang; Jiang, Ying

    2014-01-01

    Mitochondrial uncoupling protein 2 (UCP2) is suggested to have a role in the development of nonalcoholic steatohepatitis (NASH). However, the mechanism remains unclear. Autophagy is an important mediator of many pathological responses. This study aims to investigate the relationship between UCP2 and hepatoma cells autophagy in palmitic acid- (PA-) induced lipotoxicity. H4IIE cells were treated with palmitic acid (PA), and cell autophagy and apoptosis were examined. UCP2 expression, in association with LC3-II and caspase-3, which are indicators of cell autophagy and apoptosis, respectively,was measured. Results demonstrated that UCP2 was associated with autophagy during PA-induced hepatic carcinoma cells injury. Tests on reactive oxygen species (ROS) showed that UCP2 overexpression strongly decreases PA-induced ROS production and apoptosis. Conversely, UCP2 inhibition by genipin or UCP2 mRNA silencing enhances PA-induced ROS production and apoptosis. Autophagy partially participates in this progress. Moreover, UCP2 was associated with ATP synthesis during PA-induced autophagy. In conclusion, increasing UCP2 expression in hepatoma cells may contribute to cell autophagy and antiapoptotic as result of fatty acid injury. Our results may bring new insights for potential NASH therapies.

  2. Growth cessation uncouples isotopic signals in leaves and tree rings of drought-exposed oak trees.

    PubMed

    Pflug, Ellen E; Siegwolf, R; Buchmann, N; Dobbertin, M; Kuster, T M; Günthardt-Goerg, M S; Arend, M

    2015-10-01

    An increase in temperature along with a decrease in summer precipitation in Central Europe will result in an increased frequency of drought events and gradually lead to a change in species composition in forest ecosystems. In the present study, young oaks (Quercus robur L. and Quercus petraea (Matt.) Liebl.) were transplanted into large mesocosms and exposed for 3 years to experimental warming and a drought treatment with yearly increasing intensities. Carbon and oxygen isotopic (δ(13)C and δ(18)O) patterns were analysed in leaf tissue and tree-ring cellulose and linked to leaf physiological measures and tree-ring growth. Warming had no effect on the isotopic patterns in leaves and tree rings, while drought increased δ(18)O and δ(13)C. Under severe drought, an unexpected isotopic pattern, with a decrease in δ(18)O, was observed in tree rings but not in leaves. This decrease in δ(18)O could not be explained by concurrent physiological analyses and is not supported by current physiological knowledge. Analysis of intra-annual tree-ring growth revealed a drought-induced growth cessation that interfered with the record of isotopic signals imprinted on recently formed leaf carbohydrates. This missing record indicates isotopic uncoupling of leaves and tree rings, which may have serious implications for the interpretation of tree-ring isotopes, particularly from trees that experienced growth-limiting stresses.

  3. Phosphorylation of GENOMES UNCOUPLED 4 Alters Stimulation of Mg Chelatase Activity in Angiosperms1[OPEN

    PubMed Central

    Hochheuser, Caroline; Fufezan, Christian; Heinze, Laura

    2016-01-01

    GENOMES UNCOUPLED 4 (GUN4) is a positive regulator of light-dependent chlorophyll biosynthesis. GUN4 activates Mg chelatase (MgCh) that catalyzes the insertion of an Mg2+ ion into protoporphyrin IX. We show that Arabidopsis (Arabidopsis thaliana) GUN4 is phosphorylated at Ser 264 (S264), the penultimate amino acid residue at the C terminus. While GUN4 is preferentially phosphorylated in darkness, phosphorylation is reduced upon accumulation of Mg porphyrins. Expression of a phosphomimicking GUN4(S264D) results in an incomplete complementation of the white gun4-2 null mutant and a chlorotic phenotype comparable to gun4 knockdown mutants. Phosphorylated GUN4 has a reduced stimulatory effect on MgCh in vitro and in vivo but retains its protein stability and tetrapyrrole binding capacity. Analysis of GUN4 found in oxygenic photosynthetic organisms reveals the evolution of a C-terminal extension, which harbors the phosphorylation site of GUN4 expressed in angiosperms. Homologs of GUN4 from Synechocystis and Chlamydomonas lack the conserved phosphorylation site found in a C-terminal extension of angiosperm GUN4. Biochemical studies proved the importance of the C-terminal extension for MgCh stimulation and inactivation of GUN4 by phosphorylation in angiosperms. An additional mechanism regulating MgCh activity is proposed. In conjunction with the dark repression of 5-aminolevulinic acid synthesis, GUN4 phosphorylation minimizes the flow of intermediates into the Mg branch of the tetrapyrrole metabolic pathway for chlorophyll biosynthesis. PMID:27688621

  4. Uncoupled Geographical Variation between Leaves and Flowers in a South-Andean Proteaceae

    PubMed Central

    Chalcoff, Vanina R.; Ezcurra, Cecilia; Aizen, Marcelo A.

    2008-01-01

    Background and Aims Geographical variation in foliar and floral traits and their degree of coupling can provide relevant information on the relative importance of abiotic, biotic and even neutral factors acting at geographical scales as generators of evolutionary novelty. Geographical variation was studied in leaves and flowers of Embothrium coccineum, a species that grows along abrupt environmental gradients and exhibits contrasting pollinator assemblages in the southern Andes. Methods Five foliar and eight floral morphological characters were considered from 32 populations, and their patterns of variation and covariation were analysed within and among populations, together with their relationship with environmental variables, using both univariate and multivariate methods. The relationships between foliar and floral morphological variation and geographical distance between populations were compared with Mantel permutation tests. Key Results Leaf and flower traits were clearly uncoupled within populations and weakly associated among populations. Whereas geographical variation in foliar traits was mostly related to differences in precipitation associated with geographical longitude, variation in floral traits was not. Conclusions These patterns suggest that leaves and flowers responded to different evolutionary forces, environmental (i.e. rainfall) in the case of leaves, and biotic (i.e. pollinators) or genetic drift in the case of flowers. This study supports the view that character divergence at a geographical scale can be moulded by different factors acting in an independent fashion. PMID:18436551

  5. Uncoupling protein 2 negatively regulates glucose-induced glucagon-like peptide 1 secretion.

    PubMed

    Zhang, Hongjie; Li, Jing; Liang, Xiangying; Luo, Yun; Zen, Ke; Zhang, Chen-Yu

    2012-04-01

    It is known that endogenous levels of the incretin hormone glucagon-like peptide 1 (GLP1) can be enhanced by various secretagogues, but the mechanism underlying GLP1 secretion is still not fully understood. We assessed the possible effect of uncoupling protein 2 (UCP2) on GLP1 secretion in mouse intestinal tract and NCI-H716 cells, a well-characterized human enteroendocrine L cell model. Localization of UCP2 and GLP1 in the gastrointestinal tract was assessed by immunofluorescence staining. Ucp2 mRNA levels in gut were analyzed by quantitative RT-PCR. Human NCI-H716 cells were transiently transfected with siRNAs targeting UCP2. The plasma and ileum tissue levels of GLP1 (7-36) amide were measured using an ELISA kit. UCP2 was primarily expressed in the mucosal layer and colocalized with GLP1 in gastrointestinal mucosa. L cells secreting GLP1 also expressed UCP2. After glucose administration, UCP2-deficient mice showed increased glucose-induced GLP1 secretion compared with wild-type littermates. GLP1 secretion increased after NCI-H716 cells were transfected with siRNAs targeting UCP2. UCP2 was markedly upregulated in ileum tissue from ob/ob mice, and GLP1 secretion decreased compared with normal mice. Furthermore, GLP1 secretion increased after administration of genipin by oral gavage. Taken together, these results reveal an inhibitory role of UCP2 in glucose-induced GLP1 secretion.

  6. Uncoupling stimulus specificity and glomerular position in the mouse olfactory system

    PubMed Central

    Zhang, Jingji; Huang, Guangzhe; Dewan, Adam; Feinstein, Paul; Bozza, Thomas

    2012-01-01

    Sensory information is often mapped systematically in the brain with neighboring neurons responding to similar stimulus features. The olfactory system represents chemical information as spatial and temporal activity patterns across glomeruli in the olfactory bulb. However, the degree to which chemical features are mapped systematically in the glomerular array has remained controversial. Here, we test the hypothesis that the dual roles of odorant receptors, in axon guidance and odor detection, can serve as a mechanism to map olfactory inputs with respect to their function. We compared the relationship between response specificity and glomerular formation in genetically-defined olfactory sensory neurons expressing variant odorant receptors. We find that sensory neurons with the same odor response profile can be mapped to different regions of the bulb, and that neurons with different response profiles can be mapped to the same glomeruli. Our data demonstrate that the two functions of odorant receptors can be uncoupled, indicating that the mechanisms that map olfactory sensory inputs to glomeruli do so without regard to stimulus specificity. PMID:22926192

  7. Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler.

    PubMed

    Perry, Rachel J; Kim, Taehan; Zhang, Xian-Man; Lee, Hui-Young; Pesta, Dominik; Popov, Violeta B; Zhang, Dongyan; Rahimi, Yasmeen; Jurczak, Michael J; Cline, Gary W; Spiegel, David A; Shulman, Gerald I

    2013-11-05

    Nonalcoholic fatty liver disease (NAFLD) affects one in three Americans and is a major predisposing condition for the metabolic syndrome and type 2 diabetes (T2D). We examined whether a functionally liver-targeted derivative of 2,4-dinitrophenol (DNP), DNP-methyl ether (DNPME), could safely decrease hypertriglyceridemia, NAFLD, and insulin resistance without systemic toxicities. Treatment with DNPME reversed hypertriglyceridemia, fatty liver, and whole-body insulin resistance in high-fat-fed rats and decreased hyperglycemia in a rat model of T2D with a wide therapeutic index. The reversal of liver and muscle insulin resistance was associated with reductions in tissue diacylglycerol content and reductions in protein kinase C epsilon (PKCε) and PKCθ activity in liver and muscle, respectively. These results demonstrate that the beneficial effects of DNP on hypertriglyceridemia, fatty liver, and insulin resistance can be dissociated from systemic toxicities and suggest the potential utility of liver-targeted mitochondrial uncoupling agents for the treatment of hypertriglyceridemia, NAFLD, metabolic syndrome, and T2D.

  8. The uncoupling of catalysis and translocation in the viral RNA-dependent RNA polymerase.

    PubMed

    Shu, Bo; Gong, Peng

    2017-03-01

    The nucleotide addition cycle of nucleic acid polymerases includes two major events: the pre-chemistry active site closure leading to the addition of one nucleotide to the product chain; the post-chemistry translocation step moving the polymerase active site one position downstream on its template. In viral RNA-dependent RNA polymerases (RdRPs), structural and biochemical evidences suggest that these two events are not tightly coupled, unlike the situation observed in A-family polymerases such as the bacteriophage T7 RNA polymerase. Recently, an RdRP translocation intermediate crystal structure of enterovirus 71 shed light on how translocation may be controlled by elements within RdRP catalytic motifs, and a series of poliovirus apo RdRP crystal structures explicitly suggest that a motif B loop may assist the movement of the template strand in late stages of transcription. Implications of RdRP catalysis-translocation uncoupling and the remaining challenges to further elucidate RdRP translocation mechanism are also discussed.

  9. Uncoupling protein 2 in the glial response to stress: implications for neuroprotection.

    PubMed

    Hass, Daniel T; Barnstable, Colin J

    2016-08-01

    Reactive oxygen species (ROS) are free radicals thought to mediate the neurotoxic effects of several neurodegenerative disorders. In the central nervous system, ROS can also trigger a phenotypic switch in both astrocytes and microglia that further aggravates neurodegeneration, termed reactive gliosis. Negative regulators of ROS, such as mitochondrial uncoupling protein 2 (UCP2) are neuroprotective factors that decrease neuron loss in models of stroke, epilepsy, and parkinsonism. However, it is unclear whether UCP2 acts purely to prevent ROS production, or also to prevent gliosis. In this review article, we discuss published evidence supporting the hypothesis that UCP2 is a neuroprotective factor both through its direct effects in decreasing mitochondrial ROS and through its effects in astrocytes and microglia. A major effect of UCP2 activation in glia is a change in the spectrum of secreted cytokines towards a more anti-inflammatory spectrum. There are multiple mechanisms that can control the level or activity of UCP2, including a variety of metabolites and microRNAs. Understanding these mechanisms will be key to exploitingthe protective effects of UCP2 in therapies for multiple neurodegenerative conditions.

  10. Uncoupling protein 2 in the glial response to stress: implications for neuroprotection

    PubMed Central

    Hass, Daniel T.; Barnstable, Colin J.

    2016-01-01

    Reactive oxygen species (ROS) are free radicals thought to mediate the neurotoxic effects of several neurodegenerative disorders. In the central nervous system, ROS can also trigger a phenotypic switch in both astrocytes and microglia that further aggravates neurodegeneration, termed reactive gliosis. Negative regulators of ROS, such as mitochondrial uncoupling protein 2 (UCP2) are neuroprotective factors that decrease neuron loss in models of stroke, epilepsy, and parkinsonism. However, it is unclear whether UCP2 acts purely to prevent ROS production, or also to prevent gliosis. In this review article, we discuss published evidence supporting the hypothesis that UCP2 is a neuroprotective factor both through its direct effects in decreasing mitochondrial ROS and through its effects in astrocytes and microglia. A major effect of UCP2 activation in glia is a change in the spectrum of secreted cytokines towards a more anti-inflammatory spectrum. There are multiple mechanisms that can control the level or activity of UCP2, including a variety of metabolites and microRNAs. Understanding these mechanisms will be key to exploitingthe protective effects of UCP2 in therapies for multiple neurodegenerative conditions. PMID:27651753

  11. Overexpression of mitochondrial uncoupling protein conferred resistance to heat stress and Botrytis cinerea infection in tomato.

    PubMed

    Chen, Shuangchen; Liu, Airong; Zhang, Shaojie; Li, Cong; Chang, Rui; Liu, Dilin; Ahammed, Golam Jalal; Lin, Xiaomin

    2013-12-01

    The mitochondrial uncoupling protein genes improve plant stress tolerance by minimizing oxidative damage. However, the underlying mechanism of redox homeostasis and antioxidant signaling associated with reactive oxygen species (ROS) accumulation remained poorly understood. We introduced LeUCP gene into tomato line Ailsa Craig via Agrobacterium-mediated method. Transgenic lines were confirmed for integration into the tomato genome using PCR and Southern blot hybridization. One to three copies of the transgene were integrated into the tomato nuclear genome. Transcription of LeUCP in various transgenic lines was determined using real-time PCR. Transgenic tomato overexpressing LeUCP showed higher growth rate, chlorophyll content, maximum photochemical efficiency of PSII (Fv/Fm), photochemical quenching coefficient (qP) and electron transport rate (ETR), increased contents of AsA and proline, higher AsA/DHA ratio and GalLDH activity, reduced ROS accumulation, and enhanced heat stress tolerance compared with the control plants. The transgenic tomato plants also exhibited significant increases in tolerance against the necrotrophic fungus Botrytis cinerea. Taken together, our results suggest that LeUCP may play a pivotal role in controlling a broad range of abiotic and biotic stresses in plants by increasing redox level and antioxidant capacity, elevating electron transport rate, lowering H2O2 and lipid peroxidation accumulation.

  12. Uncoupling of reactive oxygen species accumulation and defence signalling in the metal hyperaccumulator plant Noccaea caerulescens.

    PubMed

    Fones, Helen N; Eyles, Chris J; Bennett, Mark H; Smith, J Andrew C; Preston, Gail M

    2013-09-01

    The metal hyperaccumulator plant Noccaea caerulescens is protected from disease by the accumulation of high concentrations of metals in its aerial tissues, which are toxic to many pathogens. As these metals can lead to the production of damaging reactive oxygen species (ROS), metal hyperaccumulator plants have developed highly effective ROS tolerance mechanisms, which might quench ROS-based signals. We therefore investigated whether metal accumulation alters defence signalling via ROS in this plant. We studied the effect of zinc (Zn) accumulation by N. caerulescens on pathogen-induced ROS production, salicylic acid accumulation and downstream defence responses, such as callose deposition and pathogenesis-related (PR) gene expression, to the bacterial pathogen Pseudomonas syringae pv. maculicola. The accumulation of Zn caused increased superoxide production in N. caerulescens, but inoculation with P. syringae did not elicit the defensive oxidative burst typical of most plants. Defences dependent on signalling through ROS (callose and PR gene expression) were also modified or absent in N. caerulescens, whereas salicylic acid production in response to infection was retained. These observations suggest that metal hyperaccumulation is incompatible with defence signalling through ROS and that, as metal hyperaccumulation became effective as a form of elemental defence, normal defence responses became progressively uncoupled from ROS signalling in N. caerulescens.

  13. Uncoupling Environmental pH and Intrabacterial Acidification from Pyrazinamide Susceptibility in Mycobacterium tuberculosis.

    PubMed

    Peterson, Nicholas D; Rosen, Brandon C; Dillon, Nicholas A; Baughn, Anthony D

    2015-12-01

    Pyrazinamide (PZA) is a first-line antitubercular drug for which the mode of action remains unresolved. Mycobacterium tuberculosis lacks measurable susceptibility to PZA under standard laboratory growth conditions. However, susceptibility to this drug can be induced by cultivation of the bacilli in an acidified growth medium. Previous reports suggested that the active form of PZA, pyrazinoic acid (POA), operates as a proton ionophore that confers cytoplasmic acidification when M. tuberculosis is exposed to an acidic environment. In this study, we demonstrate that overexpression of the PZA-activating enzyme PncA can confer PZA susceptibility to M. tuberculosis under neutral and even alkaline growth conditions. Furthermore, we find that wild-type M. tuberculosis displays increased susceptibility to POA relative to PZA in neutral and alkaline media. Utilizing a strain of M. tuberculosis that expresses a pH-sensitive green fluorescent protein (GFP), we find that unlike the bona fide ionophores monensin and carbonyl cyanide 3-chlorophenylhydrazone, PZA and POA do not induce rapid uncoupling or cytoplasmic acidification under conditions that promote susceptibility. Thus, based on these observations, we conclude that the antitubercular action of POA is independent of environmental pH and intrabacterial acidification.

  14. Cell Death and Heart Failure in Obesity: Role of Uncoupling Proteins.

    PubMed

    Ruiz-Ramírez, Angélica; López-Acosta, Ocarol; Barrios-Maya, Miguel Angel; El-Hafidi, Mohammed

    2016-01-01

    Metabolic diseases such as obesity, metabolic syndrome, and type II diabetes are often characterized by increased reactive oxygen species (ROS) generation in mitochondrial respiratory complexes, associated with fat accumulation in cardiomyocytes, skeletal muscle, and hepatocytes. Several rodents studies showed that lipid accumulation in cardiac myocytes produces lipotoxicity that causes apoptosis and leads to heart failure, a dynamic pathological process. Meanwhile, several tissues including cardiac tissue develop an adaptive mechanism against oxidative stress and lipotoxicity by overexpressing uncoupling proteins (UCPs), specific mitochondrial membrane proteins. In heart from rodent and human with obesity, UCP2 and UCP3 may protect cardiomyocytes from death and from a state progressing to heart failure by downregulating programmed cell death. UCP activation may affect cytochrome c and proapoptotic protein release from mitochondria by reducing ROS generation and apoptotic cell death. Therefore the aim of this review is to discuss recent findings regarding the role that UCPs play in cardiomyocyte survival by protecting against ROS generation and maintaining bioenergetic metabolism homeostasis to promote heart protection.

  15. Uncoupling Stress-Inducible Phosphorylation of Heat Shock Factor 1 from Its Activation

    PubMed Central

    Budzyński, Marek A.; Puustinen, Mikael C.; Joutsen, Jenny

    2015-01-01

    In mammals the stress-inducible expression of genes encoding heat shock proteins is under the control of the heat shock transcription factor 1 (HSF1). Activation of HSF1 is a multistep process, involving trimerization, acquisition of DNA-binding and transcriptional activities, which coincide with several posttranslational modifications. Stress-inducible phosphorylation of HSF1, or hyperphosphorylation, which occurs mainly within the regulatory domain (RD), has been proposed as a requirement for HSF-driven transcription and is widely used for assessing HSF1 activation. Nonetheless, the contribution of hyperphosphorylation to the activity of HSF1 remains unknown. In this study, we generated a phosphorylation-deficient HSF1 mutant (HSF1Δ∼PRD), where the 15 known phosphorylation sites within the RD were disrupted. Our results show that the phosphorylation status of the RD does not affect the subcellular localization and DNA-binding activity of HSF1. Surprisingly, under stress conditions, HSF1Δ∼PRD is a potent transactivator of both endogenous targets and a reporter gene, and HSF1Δ∼PRD has a reduced activation threshold. Our results provide the first direct evidence for uncoupling stress-inducible phosphorylation of HSF1 from its activation, and we propose that the phosphorylation signature alone is not an appropriate marker for HSF1 activity. PMID:25963659

  16. Weight Loss by Ppc-1, a Novel Small Molecule Mitochondrial Uncoupler Derived from Slime Mold

    PubMed Central

    Suzuki, Toshiyuki; Kikuchi, Haruhisa; Ogura, Masato; Homma, Miwako K.; Oshima, Yoshiteru; Homma, Yoshimi

    2015-01-01

    Mitochondria play a key role in diverse processes including ATP synthesis and apoptosis. Mitochondrial function can be studied using inhibitors of respiration, and new agents are valuable for discovering novel mechanisms involved in mitochondrial regulation. Here, we screened small molecules derived from slime molds and other microorganisms for their effects on mitochondrial oxygen consumption. We identified Ppc-1 as a novel molecule which stimulates oxygen consumption without adverse effects on ATP production. The kinetic behavior of Ppc-1 suggests its function as a mitochondrial uncoupler. Serial administration of Ppc-1 into mice suppressed weight gain with no abnormal effects on liver or kidney tissues, and no evidence of tumor formation. Serum fatty acid levels were significantly elevated in mice treated with Ppc-1, while body fat content remained low. After a single administration, Ppc-1 distributes into various tissues of individual animals at low levels. Ppc-1 stimulates adipocytes in culture to release fatty acids, which might explain the elevated serum fatty acids in Ppc-1-treated mice. The results suggest that Ppc-1 is a unique mitochondrial regulator which will be a valuable tool for mitochondrial research as well as the development of new drugs to treat obesity. PMID:25668511

  17. Uncoupling of retinoic acid signaling from tailbud development before termination of body axis extension.

    PubMed

    Cunningham, Thomas J; Zhao, Xianling; Duester, Gregg

    2011-10-01

    During the early stages of body axis extension, retinoic acid (RA) synthesized in somites by Raldh2 represses caudal fibroblast growth factor (FGF) signaling to limit the tailbud progenitor zone. Excessive RA down-regulates Fgf8 and triggers premature termination of body axis extension, suggesting that endogenous RA may function in normal termination of body axis extension. Here, we demonstrate that Raldh2-/- mouse embryos undergo normal down-regulation of tailbud Fgf8 expression and termination of body axis extension in the absence of RA. Interestingly, Raldh2 expression in wild-type tail somites and tailbud from E10.5 onwards does not result in RA activity monitored by retinoic acid response element (RARE)-lacZ. Treatment of wild-type tailbuds with physiological levels of RA or retinaldehyde induces RARE-lacZ activity, validating the sensitivity of RARE-lacZ and demonstrating that deficient RA synthesis in wild-type tail somites and tailbud is due to a lack of retinaldehyde synthesis. These studies demonstrate an early uncoupling of RA signaling from mouse tailbud development and show that termination of body axis extension occurs in the absence of RA signaling.

  18. Uncoupling Protein 2 Increases Susceptibility to Lipopolysaccharide-Induced Acute Lung Injury in Mice

    PubMed Central

    Wang, Qin; Wang, Jianchun; Hu, Mingdong; Yang, Yu; Guo, Liang; Xu, Jing; Lei, Chuanjiang; Jiao, Yan; Xu, JianCheng

    2016-01-01

    Uncoupling protein 2 (UCP2) is upregulated in patients with systemic inflammation and infection, but its functional role is unclear. We up- or downregulated UCP2 expression using UCP2 recombinant adenovirus or the UCP2 inhibitor, genipin, in lungs of mice, and investigated the mechanisms of UCP2 in ALI. UCP2 overexpression in mouse lungs increased LPS-induced pathological changes, lung permeability, lung inflammation, and lowered survival rates. Furthermore, ATP levels and mitochondrial membrane potential were decreased, while reactive oxygen species production was increased. Additionally, mitogen-activated protein kinases (MAPKs) activity was elevated, which increased the sensitivity to LPS-induced apoptosis and inflammation. LPS-induced apoptosis and release of inflammatory factors were alleviated by pretreatment of the Jun N-terminal kinase (JNK) inhibitor SP600125 or the p38 MAPK inhibitor SB203580, but not by the extracellular signal-regulated kinase (ERK) inhibitor PD98059 in UCP2-overexpressing mice. On the other hand, LPS-induced alveolar epithelial cell death and inflammation were attenuated by genipin. In conclusion, UCP2 increased susceptibility to LPS-induced cell death and pulmonary inflammation, most likely via ATP depletion and activation of MAPK signaling following ALI in mice. PMID:27057102

  19. Uncoupling Charge Movement from Channel Opening in Voltage-gated Potassium Channels by Ruthenium Complexes*

    PubMed Central

    Jara-Oseguera, Andrés; Ishida, Itzel G.; Rangel-Yescas, Gisela E.; Espinosa-Jalapa, Noel; Pérez-Guzmán, José A.; Elías-Viñas, David; Le Lagadec, Ronan; Rosenbaum, Tamara; Islas, León D.

    2011-01-01

    The Kv2.1 channel generates a delayed-rectifier current in neurons and is responsible for modulation of neuronal spike frequency and membrane repolarization in pancreatic β-cells and cardiomyocytes. As with other tetrameric voltage-activated K+-channels, it has been proposed that each of the four Kv2.1 voltage-sensing domains activates independently upon depolarization, leading to a final concerted transition that causes channel opening. The mechanism by which voltage-sensor activation is coupled to the gating of the pore is still not understood. Here we show that the carbon-monoxide releasing molecule 2 (CORM-2) is an allosteric inhibitor of the Kv2.1 channel and that its inhibitory properties derive from the CORM-2 ability to largely reduce the voltage dependence of the opening transition, uncoupling voltage-sensor activation from the concerted opening transition. We additionally demonstrate that CORM-2 modulates Shaker K+-channels in a similar manner. Our data suggest that the mechanism of inhibition by CORM-2 may be common to voltage-activated channels and that this compound should be a useful tool for understanding the mechanisms of electromechanical coupling. PMID:21454671

  20. Cellulose-Microtubule Uncoupling Proteins Prevent Lateral Displacement of Microtubules during Cellulose Synthesis in Arabidopsis.

    PubMed

    Liu, Zengyu; Schneider, Rene; Kesten, Christopher; Zhang, Yi; Somssich, Marc; Zhang, Youjun; Fernie, Alisdair R; Persson, Staffan

    2016-08-08

    Cellulose is the most abundant biopolymer on Earth and is the major contributor to plant morphogenesis. Cellulose is synthesized by plasma membrane-localized cellulose synthase complexes (CSCs). Nascent cellulose microfibrils become entangled in the cell wall, and further catalysis therefore drives the CSC forward through the membrane: a process guided by cortical microtubules via the protein CSI1/POM2. Still, it is unclear how the microtubules can withstand the forces generated by the motile CSCs to effectively direct CSC movement. Here, we identified a family of microtubule-associated proteins, the cellulose synthase-microtubule uncouplings (CMUs), that located as static puncta along cortical microtubules. Functional disruption of the CMUs caused lateral microtubule displacement and compromised microtubule-based guidance of CSC movement. CSCs that traversed the microtubules interacted with the microtubules via CSI1/POM2, which prompted the lateral microtubule displacement. Hence, we have revealed how microtubules can withstand the propulsion of the CSCs during cellulose biosynthesis and thus sustain anisotropic plant cell growth.

  1. Cell Death and Heart Failure in Obesity: Role of Uncoupling Proteins

    PubMed Central

    Ruiz-Ramírez, Angélica; López-Acosta, Ocarol; Barrios-Maya, Miguel Angel

    2016-01-01

    Metabolic diseases such as obesity, metabolic syndrome, and type II diabetes are often characterized by increased reactive oxygen species (ROS) generation in mitochondrial respiratory complexes, associated with fat accumulation in cardiomyocytes, skeletal muscle, and hepatocytes. Several rodents studies showed that lipid accumulation in cardiac myocytes produces lipotoxicity that causes apoptosis and leads to heart failure, a dynamic pathological process. Meanwhile, several tissues including cardiac tissue develop an adaptive mechanism against oxidative stress and lipotoxicity by overexpressing uncoupling proteins (UCPs), specific mitochondrial membrane proteins. In heart from rodent and human with obesity, UCP2 and UCP3 may protect cardiomyocytes from death and from a state progressing to heart failure by downregulating programmed cell death. UCP activation may affect cytochrome c and proapoptotic protein release from mitochondria by reducing ROS generation and apoptotic cell death. Therefore the aim of this review is to discuss recent findings regarding the role that UCPs play in cardiomyocyte survival by protecting against ROS generation and maintaining bioenergetic metabolism homeostasis to promote heart protection. PMID:27642497

  2. Induction by leptin of uncoupling protein-2 and enzymes of fatty acid oxidation

    PubMed Central

    Zhou, Yan-Ting; Shimabukuro, Michio; Koyama, Kazunori; Lee, Young; Wang, May-Yun; Trieu, Falguni; Newgard, Christopher B.; Unger, Roger H.

    1997-01-01

    We have studied mechanisms by which leptin overexpression, which reduces body weight via anorexic and thermogenic actions, induces triglyceride depletion in adipocytes and nonadipocytes. Here we show that leptin alters in pancreatic islets the mRNA of the genes encoding enzymes of free fatty acid metabolism and uncoupling protein-2 (UCP-2). In animals infused with a recombinant adenovirus containing the leptin cDNA, the levels of mRNAs encoding enzymes of mitochondrial and peroxisomal oxidation rose 2- to 3-fold, whereas mRNA encoding an enzyme of esterification declined in islets from hyperleptinemic rats. Islet UCP-2 mRNA rose 6-fold. All in vivo changes occurred in vitro in normal islets cultured with recombinant leptin, indicating direct extraneural effects. Leptin overexpression increased UCP-2 mRNA by more than 10-fold in epididymal, retroperitoneal, and subcutaneous fat tissue of normal, but not of leptin–receptor-defective obese rats. By directly regulating the expression of enzymes of free fatty acid metabolism and of UCP-2, leptin controls intracellular triglyceride content of certain nonadipocytes, as well as adipocytes. PMID:9177227

  3. Uncoupling charge movement from channel opening in voltage-gated potassium channels by ruthenium complexes.

    PubMed

    Jara-Oseguera, Andrés; Ishida, Itzel G; Rangel-Yescas, Gisela E; Espinosa-Jalapa, Noel; Pérez-Guzmán, José A; Elías-Viñas, David; Le Lagadec, Ronan; Rosenbaum, Tamara; Islas, León D

    2011-05-06

    The Kv2.1 channel generates a delayed-rectifier current in neurons and is responsible for modulation of neuronal spike frequency and membrane repolarization in pancreatic β-cells and cardiomyocytes. As with other tetrameric voltage-activated K(+)-channels, it has been proposed that each of the four Kv2.1 voltage-sensing domains activates independently upon depolarization, leading to a final concerted transition that causes channel opening. The mechanism by which voltage-sensor activation is coupled to the gating of the pore is still not understood. Here we show that the carbon-monoxide releasing molecule 2 (CORM-2) is an allosteric inhibitor of the Kv2.1 channel and that its inhibitory properties derive from the CORM-2 ability to largely reduce the voltage dependence of the opening transition, uncoupling voltage-sensor activation from the concerted opening transition. We additionally demonstrate that CORM-2 modulates Shaker K(+)-channels in a similar manner. Our data suggest that the mechanism of inhibition by CORM-2 may be common to voltage-activated channels and that this compound should be a useful tool for understanding the mechanisms of electromechanical coupling.

  4. The role of uncoupling protein 3 regulating calcium ion uptake into mitochondria during sarcopenia

    NASA Astrophysics Data System (ADS)

    Nikawa, Takeshi; Choi, Inho; Haruna, Marie; Hirasaka, Katsuya; Maita Ohno, Ayako; Kondo Teshima, Shigetada

    Overloaded mitochondrial calcium concentration contributes to progression of mitochondrial dysfunction in aged muscle, leading to sarcopenia. Uncoupling protein 3 (UCP3) is primarily expressed in the inner membrane of skeletal muscle mitochondria. Recently, it has been reported that UCP3 is associated with calcium uptake into mitochondria. However, the mechanisms by which UCP3 regulates mitochondrial calcium uptake are not well understood. Here we report that UCP3 interacts with HS-1 associated protein X-1 (Hax-1), an anti-apoptotic protein that is localized in mitochondria, which is involved in cellular responses to calcium ion. The hydrophilic sequences within the loop 2, matrix-localized hydrophilic domain of mouse UCP3 are necessary for binding to Hax-1 of the C-terminal domain in adjacent to mitochondrial innermembrane. Interestingly, these proteins interaction occur the calcium-dependent manner. Indeed, overexpression of UCP3 significantly enhanced calcium uptake into mitochondria on Hax-1 endogenously expressing C2C12 myoblasts. In addition, Hax-1 knock-down enhanced calcium uptake into mitochondria on both UCP3 and Hax-1 endogenously expressing C2C12 myotubes, but not myoblasts. Finally, the dissociation of UCP3 and Hax-1 enhances calcium uptake into mitochondria in aged muscle. These studies identify a novel UCP3-Hax-1 complex regulates the influx of calcium ion into mitochondria in muscle. Thus, the efficacy of UCP3-Hax-1 in mitochondrial calcium regulation may provide a novel therapeutic approach against mitochondrial dysfunction-related disease containing sarcopenia.

  5. Synthesis of mitochondrial uncoupling protein in brown adipocytes differentiated in cell culture

    SciTech Connect

    Kopecky, J.; Baudysova, M.; Zanotti, F.; Janikova, D.; Pavelka, S.; Houstek, J. )

    1990-12-25

    In order to characterize the biogenesis of unique thermogenic mitochondria of brown adipose tissue, differentiation of precursor cells isolated from mouse brown adipose tissue was studied in cell culture. Synthesis of mitochondrial uncoupling protein (UCP), F1-ATPase, and cytochrome oxidase was examined by L-(35S)methionine labeling and immunoblotting. For the first time, synthesis of physiological amounts of the UCP, a key and tissue-specific component of thermogenic mitochondria, was observed in cultures at about confluence (day 6), indicating that a complete differentiation of brown adipocytes was achieved in vitro. In postconfluent cells (day 8) the content of UCP decreased rapidly, in contrast to some other mitochondrial proteins (beta subunit of F1-ATPase, cytochrome oxidase). In these cells, it was possible, by using norepinephrine, to induce specifically the synthesis of the UCP but not of F1-ATPase or cytochrome oxidase. The maximal response was observed at 0.1 microM norepinephrine and the synthesis of UCP remained activated for at least 24 h. Detailed analysis revealed a major role of the beta-adrenergic receptors and elevated intracellular concentration of cAMP in stimulation of UCP synthesis. A quantitative recovery of the newly synthesized UCP in the mitochondrial fraction indicated completed biogenesis of functionally competent thermogenic mitochondria.

  6. Phytanic acid, a novel activator of uncoupling protein-1 gene transcription and brown adipocyte differentiation.

    PubMed Central

    Schlüter, Agatha; Barberá, Maria José; Iglesias, Roser; Giralt, Marta; Villarroya, Francesc

    2002-01-01

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a phytol-derived branched-chain fatty acid present in dietary products. Phytanic acid increased uncoupling protein-1 (UCP1) mRNA expression in brown adipocytes differentiated in culture. Phytanic acid induced the expression of the UCP1 gene promoter, which was enhanced by co-transfection with a retinoid X receptor (RXR) expression vector but not with other expression vectors driving peroxisome proliferator-activated receptor (PPAR)alpha, PPARgamma or a form of RXR devoid of ligand-dependent sensitivity. The effect of phytanic acid on the UCP1 gene required the 5' enhancer region of the gene and the effects of phytanic acid were mediated in an additive manner by three binding sites for RXR. Moreover, phytanic acid activates brown adipocyte differentiation: long-term exposure of brown preadipocytes to phytanic acid promoted the acquisition of the brown adipocyte morphology and caused a co-ordinate induction of the mRNAs for gene markers of brown adipocyte differentiation, such as UCP1, adipocyte lipid-binding protein aP2, lipoprotein lipase, the glucose transporter GLUT4 or subunit II of cytochrome c oxidase. In conclusion, phytanic acid is a natural product of phytol metabolism that activates brown adipocyte thermogenic function. It constitutes a potential nutritional signal linking dietary status to adaptive thermogenesis. PMID:11829740

  7. Subunit-selective proteasome activity profiling uncovers uncoupled proteasome subunit activities during bacterial infections.

    PubMed

    Misas-Villamil, Johana C; van der Burgh, Aranka M; Grosse-Holz, Friederike; Bach-Pages, Marcel; Kovács, Judit; Kaschani, Farnusch; Schilasky, Sören; Emon, Asif Emran Khan; Ruben, Mark; Kaiser, Markus; Overkleeft, Hermen S; van der Hoorn, Renier A L

    2017-01-24

    The proteasome is a nuclear - cytoplasmic proteolytic complex involved in nearly all regulatory pathways in plant cells. The three different catalytic activities of the proteasome can have different functions but tools to monitor and control these subunits selectively are not yet available in plant science. Here, we introduce subunit-selective inhibitors and dual-color fluorescent activity-based probes for studying two of the three active catalytic subunits of the plant proteasome. We validate these tools in two model plants and use this to study the proteasome during plant-microbe interactions. Our data reveals that Nicotiana benthamiana incorporates two different paralogs of each catalytic subunit into active proteasomes. Interestingly, both β1 and β5 activities are significantly increased upon infection with pathogenic Pseudomonas syringae pv. tomato DC3000 lacking hopQ1-1 (PtoDC3000(ΔhQ)) whilst the activity profile of the β1 subunit changes. Infection with wild-type PtoDC3000 causes proteasome activities that range from strongly induced β1 and β5 activities to strongly suppressed β5 activities, revealing that β1 and β5 activities can be uncoupled during bacterial infection. These selective probes and inhibitors are now available to the plant science community and can be widely and easily applied to study the activity and role of the different catalytic subunits of the proteasome in different plant species. This article is protected by copyright. All rights reserved.

  8. Pharmacologically-induced neurovascular uncoupling is associated with cognitive impairment in mice

    PubMed Central

    Tarantini, Stefano; Hertelendy, Peter; Tucsek, Zsuzsanna; Valcarcel-Ares, M Noa; Smith, Nataliya; Menyhart, Akos; Farkas, Eszter; Hodges, Erik L; Towner, Rheal; Deak, Ferenc; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan; Toth, Peter

    2015-01-01

    There is increasing evidence that vascular risk factors, including aging, hypertension, diabetes mellitus, and obesity, promote cognitive impairment; however, the underlying mechanisms remain obscure. Cerebral blood flow (CBF) is adjusted to neuronal activity via neurovascular coupling (NVC) and this mechanism is known to be impaired in the aforementioned pathophysiologic conditions. To establish a direct relationship between impaired NVC and cognitive decline, we induced neurovascular uncoupling pharmacologically in mice by inhibiting the synthesis of vasodilator mediators involved in NVC. Treatment of mice with the epoxygenase inhibitor N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MSPPOH), the NO synthase inhibitor l-NG-Nitroarginine methyl ester (L-NAME), and the COX inhibitor indomethacin decreased NVC by over 60% mimicking the aging phenotype, which was associated with significantly impaired spatial working memory (Y-maze), recognition memory (Novel object recognition), and impairment in motor coordination (Rotarod). Blood pressure (tail cuff) and basal cerebral perfusion (arterial spin labeling perfusion MRI) were unaffected. Thus, selective experimental disruption of NVC is associated with significant impairment of cognitive and sensorimotor function, recapitulating neurologic symptoms and signs observed in brain aging and pathophysiologic conditions associated with accelerated cerebromicrovascular aging. PMID:26174328

  9. Functional white-laser imaging to study brain oxygen uncoupling/recoupling in songbirds.

    PubMed

    Mottin, Stéphane; Montcel, Bruno; de Chatellus, Hugues Guillet; Ramstein, Stéphane

    2011-02-01

    Contrary to the intense debate about brain oxygen dynamics and its uncoupling in mammals, very little is known in birds. In zebra finches, picosecond optical tomography with a white laser and a streak camera can measure in vivo oxyhemoglobin (HbO(2)) and deoxyhemoglobin (Hb) concentration changes following physiologic stimulation (familiar calls and songs). Picosecond optical tomography showed sufficient submicromolar sensitivity to resolve the fast changes in the hippocampus and auditory forebrain areas with 250 μm resolution. The time course is composed of (1) an early 2-second-long event with a significant decrease in Hb and HbO(2) levels of -0.7 and -0.9 μmol/L, respectively, (2) a subsequent increase in blood oxygen availability with a plateau of HbO(2) (+0.3 μmol/L), and (3) pronounced vasodilatation events immediately after the end of the stimulus. One of the findings of our study is the direct link between blood oxygen level-dependent signals previously published in birds and our results. Furthermore, the early vasoconstriction event and poststimulus ringing seem to be more pronounced in birds than in mammals. These results in birds, tachymetabolic vertebrates with a long lifespan, can potentially yield new insights, e.g., into brain aging.

  10. Flow-metabolism uncoupling in the cervical spinal cord of ALS patients.

    PubMed

    Yamashita, Toru; Hatakeyama, Tetsuhiro; Sato, Kota; Fukui, Yusuke; Hishikawa, Nozomi; Ohta, Yasuyuki; Nishiyama, Yoshihiro; Kawai, Nobuyuki; Tamiya, Takashi; Abe, Koji

    2017-04-01

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease. In ALS, both glucose consumption and neuronal intensity reportedly decrease in the cerebral motor cortex when measured by positron emission tomography (PET). In this study, we evaluated cervical spinal glucose metabolism, blood flow, and neuronal intensity of 10 ALS patients with upper extremity (U/E) atrophy both with (18)F-2-fluoro-2-deoxy-D-glucose ((18)F-FDG) PET and (11)C-flumazenil ((11)C-FMZ) PET. On the ipsilateral side of C5 and T1 levels, (18)F-FDG uptake increased significantly (*p < 0.05), and was correlated with the rate of progression of the ALS FRS-R-U/E score (R = 0.645, *p = 0.041). Despite this hyperglucose metabolism, the (11)C-FMZ PET study did not show a coupled increase of spinal blood flow even though neuronal intensity did not decrease. These results indicate a strong correlation between hyperglucose metabolism and ALS progression alongside the uncoupling of flow-metabolism. This mechanism, which could result in subsequent motor neuronal death, may be a potential therapeutic target for ALS.

  11. Investigation of Surface Flux Feedbacks for Coupled and Uncoupled Atmosphere-Ocean Anomalies

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, F. R.

    2010-01-01

    Variability in the atmosphere and ocean are linked through coupled processes via the surface exchanges of heat, moisture, and momentum. This coupling can occur predominantly via one-way (ocean forcing atmosphere or atmosphere forcing ocean) or two-way interactions. The dominant type of interaction can vary both regionally and with season. The existence of the coupled variability can act to enhance the persistence of anomalies and therefore may be important to seasonal (and longer) forecasts. The leading components of surface exchange that regulate the damping of the atmospheric and oceanic anomalies most likely also varies regionally and seasonally. This study seeks to elucidate the roles of the various surface flux components using satellite based data sets. Using dynamical relationships expected for one-way forcing regimes, coupled and uncoupled variability is isolated and used in conjunction with composite-type analyses to reveal the nature of these coupling mechanisms and their variation in space and time. Results of this study can be useful in examining the veracity of general circulation model output by understanding how the coupling mechanisms are replicated as found in satellite based observations.

  12. Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs

    PubMed Central

    Campos, Marcelo L.; Yoshida, Yuki; Major, Ian T.; de Oliveira Ferreira, Dalton; Weraduwage, Sarathi M.; Froehlich, John E.; Johnson, Brendan F.; Kramer, David M.; Jander, Georg; Sharkey, Thomas D.; Howe, Gregg A.

    2016-01-01

    Plants resist infection and herbivory with innate immune responses that are often associated with reduced growth. Despite the importance of growth-defense tradeoffs in shaping plant productivity in natural and agricultural ecosystems, the molecular mechanisms that link growth and immunity are poorly understood. Here, we demonstrate that growth-defense tradeoffs mediated by the hormone jasmonate are uncoupled in an Arabidopsis mutant (jazQ phyB) lacking a quintet of Jasmonate ZIM-domain transcriptional repressors and the photoreceptor phyB. Analysis of epistatic interactions between jazQ and phyB reveal that growth inhibition associated with enhanced anti-insect resistance is likely not caused by diversion of photoassimilates from growth to defense but rather by a conserved transcriptional network that is hardwired to attenuate growth upon activation of jasmonate signalling. The ability to unlock growth-defense tradeoffs through relief of transcription repression provides an approach to assemble functional plant traits in new and potentially useful ways. PMID:27573094

  13. Uncoupling Angiogenesis and Inflammation in Peripheral Artery Disease with Therapeutic Peptide-loaded Microgels

    PubMed Central

    Zachman, Angela L.; Wang, Xintong; Tucker-Schwartz, Jason M.; Fitzpatrick, Sean T.; Lee, Sue H.; Guelcher, Scott A.; Skala, Melissa C.; Sung, Hak-Joon

    2014-01-01

    Peripheral artery disease (PAD) is characterized by vessel occlusion and ischemia in the limbs. Treatment for PAD with surgical interventions has been showing limited success. Moreover, recent clinical trials with treatment of angiogenic growth factors proved ineffective as increased angiogenesis triggered severe inflammation in a proportionally coupled fashion. Hence, the overarching goal of this research was to address this issue by developing a biomaterial system that enables controlled, dual delivery of pro-angiogenic C16 and anti-inflammatory Ac-SDKP peptides in a minimally-invasive way. To achieve the goal, a peptide-loaded injectable microgel system was developed and tested in a mouse model of PAD. When delivered through multiple, low volume injections, the combination of C16 and Ac-SDKP peptides promoted angiogenesis, muscle regeneration, and perfusion recovery, while minimizing detrimental inflammation. Additionally, this peptide combination regulated inflammatory TNF-α pathways independently of MMP-9 mediated pathways of angiogenesis in vitro, suggesting a potential mechanism by which angiogenic and inflammatory responses can be uncoupled in the context of PAD. This study demonstrates a translatable potential of the dual peptide-loaded injectable microgel system for PAD treatment. PMID:25154665

  14. Natural and semisynthetic mammea-type isoprenylated dihydroxycoumarins uncouple cellular respiration.

    PubMed

    Du, Lin; Mahdi, Fakhri; Jekabsons, Mika B; Nagle, Dale G; Zhou, Yu-Dong

    2011-02-25

    In an effort to identify natural product-based molecular-targeted antitumor agents, mammea-type coumarins from the tropical/subtropical plant Mammea americana were found to inhibit the activation of HIF-1 (hypoxia-inducible factor-1) in human breast and prostate tumor cells. In addition to the recently reported mammea E/BB (15), bioassay-guided fractionation of the active extract yielded 14 mammea-type coumarins including three new compounds, mammea F/BB (1), mammea F/BA (2), and mammea C/AA (3). The absolute configuration of C-1' in 1 was determined by the modified Mosher's method on a methylated derivative. These coumarins were evaluated for their effects on mitochondrial respiration, HIF-1 signaling, and tumor cell proliferation/viability. Acetylation of 1 afforded a triacetoxylated product (A-2) that inhibited HIF-1 activation with increased potency in both T47D (IC(50) 0.83 μM for hypoxia-induced) and PC-3 cells (IC(50) 0.94 μM for hypoxia-induced). Coumarins possessing a 6-prenyl-8-(3-methyloxobutyl) substituent pattern exhibited enhanced HIF-1 inhibitory effects. The O-methylated derivatives were less active at inhibiting HIF-1 and suppressing cell proliferation/viability. Mechanistic studies indicate that these compounds act as anionic protonophores that potently uncouple mitochondrial electron transport and disrupt hypoxic signaling.

  15. Natural and Semisynthetic Mammea-Type Isoprenlated Dihydroxycoumarins Uncouple Cellular Respiration

    PubMed Central

    Du, Lin; Mahdi, Fakhri; Jekabsons, Mika B.; Nagle, Dale G.; Zhou, Yu-Dong

    2011-01-01

    In an effort to identify natural product-based molecular-targeted antitumor agents, mammea-type coumarins from the tropical/subtropical plant Mammea americana were found to inhibit the activation of HIF-1 (hypoxia-inducible factor-1) in human breast and prostate tumor cells. In addition to the recently reported mammea E/BB (15), bioassay-guided fractionation of the active extract yielded fourteen mammea-type coumarins including three new compounds mammea F/BB 1 (1), mammea F/BA (2), and C/AA (3). The absolute configuration of C-1′ in 1 was determined by the modified Mosher’s method on a methylated derivative. These coumarins were evaluated for their effects on mitochondrial respiration, HIF-1 signaling, and tumor cell proliferation/viability. Acetylation of 1 afforded a triacetoxylated product (A-2) that inhibited HIF-1 activation with increased potency in both T47D (IC50 0.83 μM for hypoxia-induced) and PC3 cells (IC50 0.94 μM for hypoxia-induced). Coumarins possessing a 6-prenyl-8-(3-methyl-oxobutyl)-substituent pattern exhibited enhanced HIF-1 inhibitory effects. The O-methylated derivatives were less active at inhibiting HIF-1 and suppressing cell proliferation/viability. Mechanistic studies indicate that these compounds act as anionic protonophores that potently uncouple mitochondrial electron transport and disrupt hypoxic signaling. PMID:21214226

  16. Low-level lasers affect uncoupling protein gene expression in skin and skeletal muscle tissues

    NASA Astrophysics Data System (ADS)

    Canuto, K. S.; Sergio, L. P. S.; Paoli, F.; Mencalha, A. L.; Fonseca, A. S.

    2016-03-01

    Wavelength, frequency, power, fluence, and emission mode determine the photophysical, photochemical, and photobiological responses of biological tissues to low-level lasers. Free radicals are involved in these responses acting as second messengers in intracellular signaling processes. Irradiated cells present defenses against these chemical species to avoid unwanted effects, such as uncoupling proteins (UCPs), which are part of protective mechanisms and minimize the effects of free radical generation in mitochondria. In this work UCP2 and UCP3 mRNA gene relative expression in the skin and skeletal muscle tissues of Wistar rats exposed to low-level red and infrared lasers was evaluated. Samples of the skin and skeletal muscle tissue of Wistar rats exposed to low-level red and infrared lasers were withdrawn for total RNA extraction, cDNA synthesis, and the evaluation of gene expression by quantitative polymerase chain reaction. UCP2 and UCP3 mRNA expression was differently altered in skin and skeletal muscle tissues exposed to lasers in a wavelength-dependent effect, with the UCP3 mRNA expression dose-dependent. Alteration on UCP gene expression could be part of the biostimulation effect and is necessary to make cells exposed to red and infrared low-level lasers more resistant or capable of adapting in damaged tissues or diseases.

  17. Calculation of Coupled Vibroacoustics Response Estimates from a Library of Available Uncoupled Transfer Function Sets

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Hunt, Ron; Fulcher, Clay; Towner, Robert; McDonald, Emmett

    2012-01-01

    The design and theoretical basis of a new database tool that quickly generates vibroacoustic response estimates using a library of transfer functions (TFs) is discussed. During the early stages of a launch vehicle development program, these response estimates can be used to provide vibration environment specification to hardware vendors. The tool accesses TFs from a database, combines the TFs, and multiplies these by input excitations to estimate vibration responses. The database is populated with two sets of uncoupled TFs; the first set representing vibration response of a bare panel, designated as H(sup s), and the second set representing the response of the free-free component equipment by itself, designated as H(sup c). For a particular configuration undergoing analysis, the appropriate H(sup s) and H(sup c) are selected and coupled to generate an integrated TF, designated as H(sup s +c). This integrated TF is then used with the appropriate input excitations to estimate vibration responses. This simple yet powerful tool enables a user to estimate vibration responses without directly using finite element models, so long as suitable H(sup s) and H(sup c) sets are defined in the database libraries. The paper discusses the preparation of the database tool and provides the assumptions and methodologies necessary to combine H(sup s) and H(sup c) sets into an integrated H(sup s + c). An experimental validation of the approach is also presented.

  18. Uncoupling protein-1 (UCP1) contributes to the basal proton conductance of brown adipose tissue mitochondria.

    PubMed

    Parker, Nadeene; Crichton, Paul G; Vidal-Puig, Antonio J; Brand, Martin D

    2009-08-01

    Proton leak pathways uncouple substrate oxidation from ATP synthesis in mitochondria. These pathways are classified as basal (not regulated) or inducible (activated and inhibited). Previously it was found that over half of the basal proton conductance of muscle mitochondria was catalyzed by the adenine nucleotide translocase (ANT), an abundant mitochondrial anion carrier protein. To determine whether ANT is the unique protein catalyst, or one of many proteins that catalyze basal proton conductance, we measured proton leak kinetics in mitochondria isolated from brown adipose tissue (BAT). BAT can express another mitochondrial anion carrier, UCP1, at concentrations similar to ANT. Basal proton conductance was measured under conditions where UCP1 and ANT were catalytically inactive and was found to be lower in mitochondria from UCP1 knockout mice compared to wild-type. Ablation of another abundant inner membrane protein, nicotinamide nucleotide transhydrogenase, had no effect on proton leak kinetics in mitochondria from liver, kidney or muscle, showing that basal proton conductance is not catalyzed by all membrane proteins. We identify UCP1 as a second protein propagating basal proton leak, lending support to the hypothesis that basal leak pathways are perpetrated by members of the mitochondrial anion carrier family but not by other mitochondrial inner membrane proteins.

  19. Bone Morphogenic Protein 4 Mediates NOX1-Dependent eNOS Uncoupling, Endothelial Dysfunction, and COX2 Induction in Type 2 Diabetes Mellitus.

    PubMed

    Youn, Ji-Youn; Zhou, Jun; Cai, Hua

    2015-08-01

    We have recently shown that angiotensin II-mediated uncoupling of endothelial nitric oxide synthase (eNOS) contributes to endothelial dysfunction in streptozotocin-induced type 1 diabetes mellitus. However, it has remained unclear whether and how eNOS uncoupling occurs in type 2 diabetes mellitus (T2DM) and the consequences of such in regulating vascular function. Here we investigated a role of bone morphogenic protein (BMP)-4 in mediating eNOS uncoupling, endothelial dysfunction, and inflammation in db/db mice. Circulating levels of BMP4 were markedly elevated in db/db mice but not in mice with type 1 diabetes mellitus, in which angiotensin II levels were significantly increased. Infusion of BMP4 antagonist noggin into db/db mice (15 μg/kg/day, 4 weeks) abolished eNOS uncoupling activity while restoring tetrahydrobiopterin (H(4)B) bioavailability. The impaired endothelium-dependent vasorelaxation in db/db aortas was significantly improved by noggin infusion. Exposure of aortic endothelial cells to BMP4 (50 ng/mL, 24 hours) resulted in eNOS uncoupling, which was attenuated by H(4)B precursor sepiapterin or small interfering RNA silencing nicotinamide adenine dinucleotide phosphate oxidase isoform 1 (NOX1). Interestingly, BMP4-dependent NOX1 up-regulation was abrogated by sepiapterin, implicating a NOX1-uncoupled eNOS-NOX1 feed-forward loop. BMP4 induction of cyclooxygenase 2 (COX2) expression and vascular cell adhesion protein 1 was found in db/db mice. Consistently, COX2 was up-regulated by BMP4 in endothelial cells, which was attenuated by sepiapterin, implicating an upstream role of eNOS uncoupling in COX2-mediated inflammatory activation. Taken together, our data for the first time reveal a novel role of BMP4 in inducing NOX1-dependent eNOS uncoupling in T2DM, which may promote development of novel therapeutics restoring endothelial function in T2DM.

  20. Platelets promote mitochondrial uncoupling and resistance to apoptosis in leukemia cells: a novel paradigm for the bone marrow microenvironment.

    PubMed

    Velez, Juliana; Enciso, Leonardo José; Suarez, Marta; Fiegl, Michael; Grismaldo, Adriana; López, Catalina; Barreto, Alfonso; Cardozo, Claudia; Palacios, Pilar; Morales, Ludis; Duque, Jorge Eduardo; Carmona, Jorge Uriel; Konopleva, Marina; Andreeff, Michael; Samudio, Ismael

    2014-08-01

    Here we report that leukemia cell lines and primary CD34+ leukemic blasts exposed to platelet rich plasma (PRP) or platelet lysates (PL) display increased resistance to apoptosis induced by mitochondria-targeted agents ABT-737 and CDDO-Me. Intriguingly, leukemia cells exposed to platelet components demonstrate a reduction in mitochondrial membrane potential (ΔΨM) and a transient increase in oxygen consumption, suggestive of mitochondrial uncoupling. Accompanying the ranolazine-sensitive increase in oxygen consumption, a reduction in triglyceride content was also observed in leukemia cells cultured with platelet components indicating that lipolysis and fatty acid oxidation may support the molecular reduction of oxygen in these cells. Mechanistically, platelet components antagonized Bax oligomerization in accordance with previous observations supporting an antiapoptotic role for fatty acid oxidation in leukemia cells. Lastly, substantiating the notion that mitochondrial uncoupling reduces oxidative stress, platelet components induced a marked decrease in basal and rotenone-induced superoxide levels in leukemia cells. Taken together, the decrease in ΔΨM, the transient increase in ranolazine-sensitive oxygen consumption, the reduction in triglyceride levels, and the reduced generation of superoxide, all accompanying the increased resistance to mitochondrial apoptosis, substantiate the hypothesis that platelets may contribute to the chemoprotective sanctuary of the bone marrow microenvironment via promotion of mitochondrial uncoupling.

  1. Salsalate (Salicylate) Uncouples Mitochondria, Improves Glucose Homeostasis, and Reduces Liver Lipids Independent of AMPK-β1

    PubMed Central

    Smith, Brennan K.; Ford, Rebecca J.; Desjardins, Eric M.; Green, Alex E.; Hughes, Meghan C.; Houde, Vanessa P.; Day, Emily A.; Marcinko, Katarina; Crane, Justin D.; Mottillo, Emilio P.; Perry, Christopher G.R.; Kemp, Bruce E.; Tarnopolsky, Mark A.; Steinberg, Gregory R.

    2017-01-01

    Salsalate is a prodrug of salicylate that lowers blood glucose in patients with type 2 diabetes (T2D) and reduces nonalcoholic fatty liver disease (NAFLD) in animal models; however, the mechanism mediating these effects is unclear. Salicylate directly activates AMPK via the β1 subunit, but whether salsalate requires AMPK-β1 to improve T2D and NAFLD has not been examined. Therefore, wild-type (WT) and AMPK-β1–knockout (AMPK-β1KO) mice were treated with a salsalate dose resulting in clinically relevant serum salicylate concentrations (~1 mmol/L). Salsalate treatment increased VO2, lowered fasting glucose, improved glucose tolerance, and led to an ~55% reduction in liver lipid content. These effects were observed in both WT and AMPK-β1KO mice. To explain these AMPK-independent effects, we found that salicylate increases oligomycin-insensitive respiration (state 4o) and directly increases mitochondrial proton conductance at clinical concentrations. This uncoupling effect is tightly correlated with the suppression of de novo lipogenesis. Salicylate is also able to stimulate brown adipose tissue respiration independent of uncoupling protein 1. These data indicate that the primary mechanism by which salsalate improves glucose homeostasis and NAFLD is via salicylate-driven mitochondrial uncoupling. PMID:27554471

  2. The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP.

    PubMed Central

    Ricquier, D; Bouillaud, F

    2000-01-01

    Animal and plant uncoupling protein (UCP) homologues form a subfamily of mitochondrial carriers that are evolutionarily related and possibly derived from a proton/anion transporter ancestor. The brown adipose tissue (BAT) UCP1 has a marked and strongly regulated uncoupling activity, essential to the maintenance of body temperature in small mammals. UCP homologues identified in plants are induced in a cold environment and may be involved in resistance to chilling. The biochemical activities and biological functions of the recently identified mammalian UCP2 and UCP3 are not well known. However, recent data support a role for these UCPs in State 4 respiration, respiration uncoupling and proton leaks in mitochondria. Moreover, genetic studies suggest that UCP2 and UCP3 play a part in energy expenditure in humans. The UCPs may also be involved in adaptation of cellular metabolism to an excessive supply of substrates in order to regulate the ATP level, the NAD(+)/NADH ratio and various metabolic pathways, and to contain superoxide production. A major goal will be the analysis of mice that either lack the UCP2 or UCP3 gene or overexpress these genes. Other aims will be to investigate the possible roles of UCP2 and UCP3 in response to oxidative stress, lipid peroxidation, inflammatory processes, fever and regulation of temperature in certain specific parts of the body. PMID:10620491

  3. MicroRNA-181a suppresses parkin-mediated mitophagy and sensitizes neuroblastoma cells to mitochondrial uncoupler-induced apoptosis

    PubMed Central

    Lao, Yuanzhi; Liao, Weijie; Liao, Meijian; Luo, Xuan; Wu, Jiangbin; Xie, Weidong; Zhang, Yaou; Xu, Naihan

    2016-01-01

    Damage to mitochondria often results in the activation of both mitophagy and mitochondrial apoptosis. The elimination of dysfunctional mitochondria is necessary for mitochondrial quality maintenance and efficient energy supply. Here we report that miR-181a is a novel inhibitor of mitophagy. miR-181a is downregulated by mitochondrial uncouplers in human neuroblastoma SH-SY5Y cells. Overexpression of miR-181a inhibits mitochondrial uncoupling agents-induced mitophagy by inhibiting the degradation of mitochondrial proteins without affecting global autophagy. Knock down of endogenous miR-181a accelerates the autophagic degradation of damaged mitochondria. miR-181a directly targets Parkin E3 ubiquitin ligase and partially blocks the colocalization of mitochondria and autophagosomes/lysosomes. Re-expression of exogenous Parkin restores the inhibitory effect of miR-181a on mitophagy. Furthermore, miR-181a increases the sensitivity of neuroblastoma cells to mitochondrial uncoupler-induced apoptosis, whereas miR-181a antagomir prevents cell death. Because mitophagy defects are associated with a variety of human disorders, these findings indicate an important link between microRNA and Parkin-mediated mitophagy and highlights a potential therapeutic strategy for human diseases. PMID:27281615

  4. Application of a personal computer for the uncoupled vibration analysis of wind turbine blade and counterweight assemblies

    NASA Technical Reports Server (NTRS)

    White, P. R.; Little, R. R.

    1985-01-01

    A research effort was undertaken to develop personal computer based software for vibrational analysis. The software was developed to analytically determine the natural frequencies and mode shapes for the uncoupled lateral vibrations of the blade and counterweight assemblies used in a single bladed wind turbine. The uncoupled vibration analysis was performed in both the flapwise and chordwise directions for static rotor conditions. The effects of rotation on the uncoupled flapwise vibration of the blade and counterweight assemblies were evaluated for various rotor speeds up to 90 rpm. The theory, used in the vibration analysis codes, is based on a lumped mass formulation for the blade and counterweight assemblies. The codes are general so that other designs can be readily analyzed. The input for the codes is generally interactive to facilitate usage. The output of the codes is both tabular and graphical. Listings of the codes are provided. Predicted natural frequencies of the first several modes show reasonable agreement with experimental results. The analysis codes were originally developed on a DEC PDP 11/34 minicomputer and then downloaded and modified to run on an ITT XTRA personal computer. Studies conducted to evaluate the efficiency of running the programs on a personal computer as compared with the minicomputer indicated that, with the proper combination of hardware and software options, the efficiency of using a personal computer exceeds that of a minicomputer.

  5. Sestrin 2 and AMPK Connect Hyperglycemia to Nox4-Dependent Endothelial Nitric Oxide Synthase Uncoupling and Matrix Protein Expression

    PubMed Central

    Eid, Assaad A.; Lee, Doug-Yoon; Roman, Linda J.; Khazim, Khaled

    2013-01-01

    Mesangial matrix accumulation is an early feature of glomerular pathology in diabetes. Oxidative stress plays a critical role in hyperglycemia-induced glomerular injury. Here, we demonstrate that, in glomerular mesangial cells (MCs), endothelial nitric oxide synthase (eNOS) is uncoupled upon exposure to high glucose (HG), with enhanced generation of reactive oxygen species (ROS) and decreased production of nitric oxide. Peroxynitrite mediates the effects of HG on eNOS dysfunction. HG upregulates Nox4 protein, and inhibition of Nox4 abrogates the increase in ROS and peroxynitrite generation, as well as the eNOS uncoupling triggered by HG, demonstrating that Nox4 functions upstream from eNOS. Importantly, this pathway contributes to HG-induced MC fibronectin accumulation. Nox4-mediated eNOS dysfunction was confirmed in glomeruli of a rat model of type 1 diabetes. Sestrin 2-dependent AMP-activated protein kinase (AMPK) activation attenuates HG-induced MC fibronectin synthesis through blockade of Nox4-dependent ROS and peroxynitrite generation, with subsequent eNOS uncoupling. We also find that HG negatively regulates sestrin 2 and AMPK, thereby promoting Nox4-mediated eNOS dysfunction and increased fibronectin. These data identify a protective function for sestrin 2/AMPK and potential targets for intervention to prevent fibrotic injury in diabetes. PMID:23816887

  6. Complex formation between the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and valinomycin in the presence of potassium.

    PubMed

    O'Brien, T A; Nieva-Gomez, D; Gennis, R B

    1978-03-25

    Spectroscopic evidence is presented which indicates that the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and the peptide antibiotic valinomycin form a complex in the presence of potassium. Complex formation has been observed both in aqueous and nonaqueous media. Several techniques have been used to indicate the existence of a complex in aqueous solution. In the presence of valinomycin and K+, the absorption spectrum of FCCP is significantly perturbed, and there is also a large induced circular dichroism signal. In addition, the previously characterized complex which forms between valinomycin, K+, and the fluorescent probe 8-anilino-1-naphthalene-sulfonate (ANS) in aqueous solution is apparently disrupted by the addition of FCCP. The result is an effective quenching of the fluorescence due to the bound probe as it is displaced from the valinomycin.K+ by the uncoupler. In a nonpolar solvent, the absorption spectrum of FCCP is also perturbed by valinomycin in the presence of K+, again indicating the formation of a complex. These data point to the importance of considering the role of valinomycin.K+.uncoupler complex in interpreting physiological or ion transport data in which these substances have been used together.

  7. Defective Expression of the Mitochondrial-tRNA Modifying Enzyme GTPBP3 Triggers AMPK-Mediated Adaptive Responses Involving Complex I Assembly Factors, Uncoupling Protein 2, and the Mitochondrial Pyruvate Carrier

    PubMed Central

    Esteve, Juan M.; Villarroya, Magda; Aguado, Carmen; Enríquez, J. Antonio; Knecht, Erwin; Armengod, M.-Eugenia

    2015-01-01

    GTPBP3 is an evolutionary conserved protein presumably involved in mitochondrial tRNA (mt-tRNA) modification. In humans, GTPBP3 mutations cause hypertrophic cardiomyopathy with lactic acidosis, and have been associated with a defect in mitochondrial translation, yet the pathomechanism remains unclear. Here we use a GTPBP3 stable-silencing model (shGTPBP3 cells) for a further characterization of the phenotype conferred by the GTPBP3 defect. We experimentally show for the first time that GTPBP3 depletion is associated with an mt-tRNA hypomodification status, as mt-tRNAs from shGTPBP3 cells were more sensitive to digestion by angiogenin than tRNAs from control cells. Despite the effect of stable silencing of GTPBP3 on global mitochondrial translation being rather mild, the steady-state levels and activity of Complex I, and cellular ATP levels were 50% of those found in the controls. Notably, the ATPase activity of Complex V increased by about 40% in GTPBP3 depleted cells suggesting that mitochondria consume ATP to maintain the membrane potential. Moreover, shGTPBP3 cells exhibited enhanced antioxidant capacity and a nearly 2-fold increase in the uncoupling protein UCP2 levels. Our data indicate that stable silencing of GTPBP3 triggers an AMPK-dependent retrograde signaling pathway that down-regulates the expression of the NDUFAF3 and NDUFAF4 Complex I assembly factors and the mitochondrial pyruvate carrier (MPC), while up-regulating the expression of UCP2. We also found that genes involved in glycolysis and oxidation of fatty acids are up-regulated. These data are compatible with a model in which high UCP2 levels, together with a reduction in pyruvate transport due to the down-regulation of MPC, promote a shift from pyruvate to fatty acid oxidation, and to an uncoupling of glycolysis and oxidative phosphorylation. These metabolic alterations, and the low ATP levels, may negatively affect heart function. PMID:26642043

  8. Molecular evolution and genetics of postzygotic reproductive isolation in plants

    PubMed Central

    2012-01-01

    In just the last few years, plant geneticists have made tremendous progress in identifying the molecular genetic basis of postzygotic reproductive isolation. With more than a dozen genes now cloned, it is clear that plant hybrid incompatibilities usually evolve via two or more mutational steps, as is predicted by the Dobzhansky-Muller model. There is evidence that natural selection or random genetic drift can be responsible for these incompatibilities. PMID:23236340

  9. Evolution of Population with Sexual and Asexual Reproduction in Changing Environment

    NASA Astrophysics Data System (ADS)

    He, Mingfeng; Yu, Changliang; Ruan, Hongbo; Yao, Lei

    Using a lattice model based on Monte Carlo simulations, we study the role of the reproduction pattern on the fate of an evolving population. Each individual is under the selection pressure from the environment and random mutations. The habitat ("climate") is changing periodically. Evolutions of populations following two reproduction patterns are compared, asexual and sexual. We show, via Monte Carlo simulations, that sexual reproduction by keeping more diversified populations gives them better chances to adapt themselves to the changing environment. However, in order to obtain a greater chance to mate, the birth rate should be high. In the case of low birth rate and high mutation probability there is a preference for the asexual reproduction.

  10. Reproductive rights approach to reproductive health in developing countries

    PubMed Central

    Pillai, Vijayan K.; Gupta, Rashmi

    2011-01-01

    Background Research on reproductive health in developing countries focuses mostly on the role of economic development on various components of reproductive health. Cross-sectional and empirical research studies in particular on the effects of non-economic factors such as reproductive rights remain few and far between. Objective This study investigates the influence of two components of an empowerment strategy, gender equality, and reproductive rights on women's reproductive health in developing countries. The empowerment strategy for improving reproductive health is theoretically situated on a number of background factors such as economic and social development. Design Cross-national socioeconomic and demographic data from a number of international organizations on 142 developing countries are used to test a model of reproductive rights and reproductive health. Results The findings suggest that both economic and democratic development have significant positive effects on levels of gender equality. The level of social development plays a prominent role in promoting reproductive rights. It is found that reproductive rights channel the influences of social structural factors and gender equality on reproductive health. PMID:22184501

  11. The Impact of Fabry Disease on Reproductive Fitness.

    PubMed

    Laney, Dawn A; Clarke, Virginia; Foley, Allison; Hall, Eric W; Gillespie, Scott E; Holida, Myrl; Simmons, Morgan; Wadley, Alexandrea

    2017-03-22

    Fabry disease (FD) is a pan-ethnic, X-linked, progressive lysosomal storage disorder caused by pathogenic mutations in the GLA gene. Published case reports and abstracts suggest that decreased reproductive fitness may occur in males with FD. In order to understand the impact of FD on reproductive fitness and increase the accuracy of reproductive genetic counseling, this study examines a large, multi-centered population of individuals with FD to determine if males have reduced reproductive fitness. Study data were collected on 376 patients through two, gender-specific surveys distributed across the United States and Canada. The number of biological live-born children among individuals with FD was compared to statistics from the general population. Information was also collected on reduced sperm count, depression, pain, use of assisted reproductive technology, and reproductive choice. On average, females affected by FD had more biological live-born children (1.8) than males affected by FD (1.1). However, males affected by FD had an increased mean number of biological children (1.1) compared to the mean number of biological children fathered by men in the United States (0.9). Sixteen of the 134 males with FD reported oligospermia, which suggests that an infertility work up may be indicated for males having difficulty impregnating their partners. In our large multicenter sample, males and females with FD do not exhibit reduced reproductive fitness; on average they have more biological children than the general population in the United States. This information should assist clinicians in providing accurate reproductive genetic counseling and treatment for individuals with FD.

  12. 8-oxoguanine causes spontaneous de novo germline mutations in mice.

    PubMed

    Ohno, Mizuki; Sakumi, Kunihiko; Fukumura, Ryutaro; Furuichi, Masato; Iwasaki, Yuki; Hokama, Masaaki; Ikemura, Toshimichi; Tsuzuki, Teruhisa; Gondo, Yoichi; Nakabeppu, Yusaku

    2014-04-15

    Spontaneous germline mutations generate genetic diversity in populations of sexually reproductive organisms, and are thus regarded as a driving force of evolution. However, the cause and mechanism remain unclear. 8-oxoguanine (8-oxoG) is a candidate molecule that causes germline mutations, because it makes DNA more prone to mutation and is constantly generated by reactive oxygen species in vivo. We show here that endogenous 8-oxoG caused de novo spontaneous and heritable G to T mutations in mice, which occurred at different stages in the germ cell lineage and were distributed throughout the chromosomes. Using exome analyses covering 40.9 Mb of mouse transcribed regions, we found increased frequencies of G to T mutations at a rate of 2 × 10(-7) mutations/base/generation in offspring of Mth1/Ogg1/Mutyh triple knockout (TOY-KO) mice, which accumulate 8-oxoG in the nuclear DNA of gonadal cells. The roles of MTH1, OGG1, and MUTYH are specific for the prevention of 8-oxoG-induced mutation, and 99% of the mutations observed in TOY-KO mice were G to T transversions caused by 8-oxoG; therefore, we concluded that 8-oxoG is a causative molecule for spontaneous and inheritable mutations of the germ lineage cells.

  13. 8-oxoguanine causes spontaneous de novo germline mutations in mice

    NASA Astrophysics Data System (ADS)

    Ohno, Mizuki; Sakumi, Kunihiko; Fukumura, Ryutaro; Furuichi, Masato; Iwasaki, Yuki; Hokama, Masaaki; Ikemura, Toshimichi; Tsuzuki, Teruhisa; Gondo, Yoichi; Nakabeppu, Yusaku

    2014-04-01

    Spontaneous germline mutations generate genetic diversity in populations of sexually reproductive organisms, and are thus regarded as a driving force of evolution. However, the cause and mechanism remain unclear. 8-oxoguanine (8-oxoG) is a candidate molecule that causes germline mutations, because it makes DNA more prone to mutation and is constantly generated by reactive oxygen species in vivo. We show here that endogenous 8-oxoG caused de novo spontaneous and heritable G to T mutations in mice, which occurred at different stages in the germ cell lineage and were distributed throughout the chromosomes. Using exome analyses covering 40.9 Mb of mouse transcribed regions, we found increased frequencies of G to T mutations at a rate of 2 × 10-7 mutations/base/generation in offspring of Mth1/Ogg1/Mutyh triple knockout (TOY-KO) mice, which accumulate 8-oxoG in the nuclear DNA of gonadal cells. The roles of MTH1, OGG1, and MUTYH are specific for the prevention of 8-oxoG-induced mutation, and 99% of the mutations observed in TOY-KO mice were G to T transversions caused by 8-oxoG; therefore, we concluded that 8-oxoG is a causative molecule for spontaneous and inheritable mutations of the germ lineage cells.

  14. Whither Artificial Reproduction?

    PubMed Central

    Percival-Smith, Robin

    1985-01-01

    Artificial reproduction now offers sub fertile couples a number of options which raise scientific and ethical questions. This article discusses the Canadian and British experiences in formulating regulations and legislation in this important field. Current work on mammalian embryo research foretells the direction which human research will take. This article stresses the need for family physicians' participation in the ethical decisions that accompany these new developments. PMID:21274181

  15. Introduction: Imaging in reproduction.

    PubMed

    Sella, Tamar; Laufer, Neri

    2016-06-01

    The authors of this Views and Reviews outline in detail the indispensable role of imaging tools-ultrasound, computed tomography, and magnetic resonance imaging-in the diagnosis and treatment of female and male factor infertility. Equipment producing diagnostic images, coupled with ever-increasing computing power, will pave the way for novel functional dynamic studies that will expand the understanding of reproductive processes and their management.

  16. Clonal reproduction in fungi

    PubMed Central

    Taylor, John W.; Hann-Soden, Christopher; Branco, Sara; Sylvain, Iman; Ellison, Christopher E.

    2015-01-01

    Research over the past two decades shows that both recombination and clonality are likely to contribute to the reproduction of all fungi. This view of fungi is different from the historical and still commonly held view that a large fraction of fungi are exclusively clonal and that some fungi have been exclusively clonal for hundreds of millions of years. Here, we first will consider how these two historical views have changed. Then we will examine the impact on fungal research of the concept of restrained recombination [Tibayrenc M, Ayala FJ (2012) Proc Natl Acad Sci USA 109 (48):E3305–E3313]. Using animal and human pathogenic fungi, we examine extrinsic restraints on recombination associated with bottlenecks in genetic variation caused by geographic dispersal and extrinsic restraints caused by shifts in reproductive mode associated with either disease transmission or hybridization. Using species of the model yeast Saccharomyces and the model filamentous fungus Neurospora, we examine intrinsic restraints on recombination associated with mating systems that range from strictly clonal at one extreme to fully outbreeding at the other and those that lie between, including selfing and inbreeding. We also consider the effect of nomenclature on perception of reproductive mode and a means of comparing the relative impact of clonality and recombination on fungal populations. Last, we consider a recent hypothesis suggesting that fungi thought to have the most severe intrinsic constraints on recombination actually may have the fewest. PMID:26195774

  17. Uncoupling of bacterial and terrigenous dissolved organic matter dynamics in decomposition experiments.

    PubMed

    Herlemann, Daniel P R; Manecki, Marcus; Meeske, Christian; Pollehne, Falk; Labrenz, Matthias; Schulz-Bull, Detlef; Dittmar, Thorsten; Jürgens, Klaus

    2014-01-01

    The biodegradability of terrigenous dissolved organic matter (tDOM) exported to the sea has a major impact on the global carbon cycle, but our understanding of tDOM bioavailability is fragmentary. In this study, the effects of preparative tDOM isolation on microbial decomposition were investigated in incubation experiments consisting of mesocosms containing mesohaline water from the Baltic Sea. Dissolved organic carbon (DOC) consumption, molecular DOM composition, bacterial activities, and shifts in bacterial community structure were compared between mesocosms supplemented with riverine tDOM, either as filtered, particle-free river water or as a concentrate obtained by lyophilization/tangential ultrafiltration, and those containing only Baltic Sea water or river water. As shown using ultra-high-resolution mass spectrometry (15 Tesla Fourier-transform ion cyclotron resonance mass spectrometry, FT-ICR-MS) covering approximately 4600 different DOM compounds, the three DOM preparation protocols resulted in distinct patterns of molecular DOM composition. However, despite DOC losses of 4-16% and considerable bacterial production, there was no significant change in DOM composition during the 28-day experiment. Moreover, tDOM addition affected neither DOC degradation nor bacterial dynamics significantly, regardless of the tDOM preparation. This result suggested that the introduced tDOM was largely not bioavailable, at least on the temporal scale of our experiment, and that the observed bacterial activity and DOC decomposition mainly reflected the degradation of unknown, labile, colloidal and low-molecular weight DOM, both of which escape the analytical window of FT-ICR-MS. In contrast to the different tDOM preparations, the initial bacterial inoculum and batch culture conditions determined bacterial community succession and superseded the effects of tDOM addition. The uncoupling of tDOM and bacterial dynamics suggests that mesohaline bacterial communities cannot

  18. Mitochondrial Uncoupling and the Reprograming of Intermediary Metabolism in Leukemia Cells

    PubMed Central

    Vélez, Juliana; Hail Jr., Numsen; Konopleva, Marina; Zeng, Zhihong; Kojima, Kensuke; Samudio, Ismael; Andreeff, Michael

    2013-01-01

    Nearly 60 years ago Otto Warburg proposed, in a seminal publication, that an irreparable defect in the oxidative capacity of normal cells supported the switch to glycolysis for energy generation and the appearance of the malignant phenotype (Warburg, 1956). Curiously, this phenotype was also observed by Warburg in embryonic tissues, and recent research demonstrated that normal stem cells may indeed rely on aerobic glycolysis – fermenting pyruvate to lactate in the presence of ample oxygen – rather than on the complete oxidation of pyruvate in the Krebs cycle – to generate cellular energy (Folmes et al., 2012). However, it remains to be determined whether this phenotype is causative for neoplastic development, or rather the result of malignant transformation. In addition, in light of mounting evidence demonstrating that cancer cells can carry out electron transport and oxidative phosphorylation, although in some cases predominantly using electrons from non-glucose carbon sources (Bloch-Frankenthal et al., 1965), Warburg’s hypothesis needs to be revisited. Lastly, recent evidence suggests that the leukemia bone marrow microenvironment promotes the Warburg phenotype adding another layer of complexity to the study of metabolism in hematological malignancies. In this review we will discuss some of the evidence for alterations in the intermediary metabolism of leukemia cells and present evidence for a concept put forth decades ago by lipid biochemist Feodor Lynen, and acknowledged by Warburg himself, that cancer cell mitochondria uncouple ATP synthesis from electron transport and therefore depend on glycolysis to meet their energy demands (Lynen, 1951; Warburg, 1956). PMID:23565503

  19. Exploring Uncoupling Proteins and Antioxidant Mechanisms under Acute Cold Exposure in Brains of Fish

    PubMed Central

    Lucassen, Magnus; Schmidt, Maike M.; Dringen, Ralf; Abele, Doris; Hwang, Pung-Pung

    2011-01-01

    Exposure to fluctuating temperatures accelerates the mitochondrial respiration and increases the formation of mitochondrial reactive oxygen species (ROS) in ectothermic vertebrates including fish. To date, little is known on potential oxidative damage and on protective antioxidative defense mechanisms in the brain of fish under cold shock. In this study, the concentration of cellular protein carbonyls in brain was significantly increased by 38% within 1 h after cold exposure (from 28°C to 18°C) of zebrafish (Danio rerio). In addition, the specific activity of superoxide dismutase (SOD) and the mRNA level of catalase (CAT) were increased after cold exposure by about 60% (6 h) and by 60%–90% (1 and 24 h), respectively, while the specific glutathione content as well as the ratio of glutathione disulfide to glutathione remained constant and at a very low level. In addition, cold exposure increased the protein level of hypoxia-inducible factor (HIF) by about 50% and the mRNA level of the glucose transporter zglut3 in brain by 50%–100%. To test for an involvement of uncoupling proteins (UCPs) in the cold adaptation of zebrafish, five UCP members were annotated and identified (zucp1-5). With the exception of zucp1, the mRNA levels of the other four zucps were significantly increased after cold exposure. In addition, the mRNA levels of four of the fish homologs (zppar) of the peroxisome proliferator-activated receptor (PPAR) were increased after cold exposure. These data suggest that PPARs and UCPs are involved in the alterations observed in zebrafish brain after exposure to 18°C. The observed stimulation of the PPAR-UCP axis may help to prevent oxidative damage and to maintain metabolic balance and cellular homeostasis in the brains of ectothermic zebrafish upon cold exposure. PMID:21464954

  20. Exploring uncoupling proteins and antioxidant mechanisms under acute cold exposure in brains of fish.

    PubMed

    Tseng, Yung-Che; Chen, Ruo-Dong; Lucassen, Magnus; Schmidt, Maike M; Dringen, Ralf; Abele, Doris; Hwang, Pung-Pung

    2011-03-25

    Exposure to fluctuating temperatures accelerates the mitochondrial respiration and increases the formation of mitochondrial reactive oxygen species (ROS) in ectothermic vertebrates including fish. To date, little is known on potential oxidative damage and on protective antioxidative defense mechanisms in the brain of fish under cold shock. In this study, the concentration of cellular protein carbonyls in brain was significantly increased by 38% within 1 h after cold exposure (from 28 °C to 18 °C) of zebrafish (Danio rerio). In addition, the specific activity of superoxide dismutase (SOD) and the mRNA level of catalase (CAT) were increased after cold exposure by about 60% (6 h) and by 60%-90% (1 and 24 h), respectively, while the specific glutathione content as well as the ratio of glutathione disulfide to glutathione remained constant and at a very low level. In addition, cold exposure increased the protein level of hypoxia-inducible factor (HIF) by about 50% and the mRNA level of the glucose transporter zglut3 in brain by 50%-100%. To test for an involvement of uncoupling proteins (UCPs) in the cold adaptation of zebrafish, five UCP members were annotated and identified (zucp1-5). With the exception of zucp1, the mRNA levels of the other four zucps were significantly increased after cold exposure. In addition, the mRNA levels of four of the fish homologs (zppar) of the peroxisome proliferator-activated receptor (PPAR) were increased after cold exposure. These data suggest that PPARs and UCPs are involved in the alterations observed in zebrafish brain after exposure to 18°C. The observed stimulation of the PPAR-UCP axis may help to prevent oxidative damage and to maintain metabolic balance and cellular homeostasis in the brains of ectothermic zebrafish upon cold exposure.

  1. Age-related changes of serum mitochondrial uncoupling 1, rumen and rectal temperature in goats.

    PubMed

    Arfuso, Francesca; Rizzo, Maria; Giannetto, Claudia; Giudice, Elisabetta; Fazio, Francesco; Piccione, Giuseppe

    2016-07-01

    Thermoregulatory processes are induced not only by exposure to cold or heat but also by a variety of physiological situations including age, fasting and food intake that result in changes in body temperature. The aim of the present study was to evaluate the differences in serum mitochondrial uncoupling protein 1 (UCP1), rumen temperature (TRUMEN) and rectal temperature (TRECTAL) values between adult and kids goats. Ten adult male Maltese goats aged 3-5 years old (Group A) and 30 male kids, raised for meat, were enrolled in this study. The kids were equally divided into 3 groups according to their age: Group B included kids aged 3 months, Group C included kids aged 4 months and Group D included kids aged 5 months. Blood samples and measurements of TRUMEN and TRECTAL were obtained from each animal. One-way repeated measures analysis of variance (ANOVA) was applied to evaluate the effect of age on the studied parameters. Statistically significant higher serum UCP1 levels (P<0.001) were found in Group A as compared to Groups B, C and D. Higher TRUMEN values (P<0.001) were found in Group A than in Groups B, C and D, and in Group B than in Groups C and D. Group A showed lower TRECTAL values (P<0.001) than Groups B, C and D. The Pearson's Correlation test was applied to assess significant relationship among studied parameters showing a statistically significant negative correlation between the values of TRECTAL and serum UCP1 in all studied Groups (P<0.001). These results indicate that goats have good control of body temperature suggesting that further details about the thermogenic capacity and the function of UCP1 in kids and adult goats are worth exploring.

  2. Spironolactone Prevents Endothelial Nitric Oxide Synthase Uncoupling and Vascular Dysfunction Induced by β-Adrenergic Overstimulation

    PubMed Central

    Victorio, Jamaira A.; Clerici, Stefano P.; Palacios, Roberto; Alonso, María J.; Vassallo, Dalton V.; Jaffe, Iris Z.; Rossoni, Luciana V.

    2016-01-01

    Sustained stimulation of β-adrenoceptors (β-ARs) and activation of renin–angiotensin–aldosterone system are common features of cardiovascular diseases with rising sympathetic activation, including essential hypertension, myocardial infarction, and heart failure. In this study, we investigated the role of AT1 receptor and mineralocorticoid receptor (MR) in the vascular alterations caused by β-AR overstimulation. β-AR overstimulation with associated cardiac hypertrophy and increased vasoconstrictor response to phenylephrine in aorta were modeled in rats by 7-day isoproterenol treatment. The increased vasoconstrictor response to phenylephrine in this model was blunted by the MR antagonist spironolactone, but not by the AT1 receptor antagonist losartan, despite the blunting of cardiac hypertrophy with both drugs. Spironolactone, but not losartan, restored NO bioavailability in association with lower endothelial nitric oxide synthase–derived superoxide production, increased endothelial nitric oxide synthase dimerization, and aortic HSP90 upregulation. MR genomic and nongenomic functions were activated in aortas from isoproterenol-treated rats. Isoproterenol did not modify plasma levels of MR ligands aldosterone and corticosterone but rather increased perivascular adipose tissue–derived corticosterone in association with increased expression of 11β-hydroxysteroid dehydrogenase type 1. The anticontractile effect of aortic perivascular adipose tissue was impaired by β-AR overstimulation and restored by MR blockade. These results suggest that activation of vascular MR signaling contributes to the vascular dysfunction induced by β-AR overstimulation associated with endothelial nitric oxide synthase uncoupling. These findings reveal an additional explanation for the protective effects of MR antagonists in cardiovascular disorders with sympathetic activation. PMID:27432866

  3. NO synthase uncoupling in the kidney of Dahl S rats: role of dihydrobiopterin.

    PubMed

    Taylor, Norman E; Maier, Kristopher G; Roman, Richard J; Cowley, Allen W

    2006-12-01

    NO synthase (NOS) can paradoxically contribute to the production of reactive oxygen species when l-arginine or the cofactor R-tetrahydrobiopterin (BH(4)) becomes limited. The present study examined whether NOS contributes to superoxide production in kidneys of hypertensive Dahl salt-sensitive (SS) rats compared with an inbred consomic control strain (SS-13(BN)) and tested the hypothesis that elevated dihydrobiopterin (BH(2)) levels are importantly involved in this process. This was assessed by determining the effects of l-nitroarginine methyl ester (l-NAME) inhibition of NOS on superoxide production and by comparing tissue concentrations of BH(4) and BH(2). A reverse-phase high-performance liquid chromatography method was applied for direct measurements of BH(4) and BH(2) using (S)-tetrahydrobiopterin as an internal standard. Superoxide concentrations were measured in vivo from medullary microdialysis fluid using dihydroethidine and in vitro using lucigenin. The results indicate the following: (1) that superoxide levels were elevated in the outer medulla of SS rats fed a 4% salt diet and could be inhibited by l-NAME. In contrast, l-NAME resulted in elevated superoxide production in consomic SS-13(BN) rats because of higher NOS activity; (2) SS rats showed a reduced ratio of BH(4)/BH(2) in the outer medulla that was driven by increased concentrations of BH(2); and (3) lower superoxide dismutase and catalase activities contributed to elevated reactive oxygen species in SS samples. Based on the shift of BH(4) to BH(2) and the observation of l-NAME inhibitable superoxide production, we conclude that NOS uncoupling occurs in the renal medulla of hypertensive SS rats fed a high-salt diet.

  4. Uncoupling clutch size, prolactin, and luteinizing hormone using experimental egg removal.

    PubMed

    Ryan, Calen P; Dawson, Alistair; Sharp, Peter J; Williams, Tony D

    2015-03-01

    Clutch size is a key avian fitness and life history trait. A physiological model for clutch size determination (CSD), involving an anti-gonadal effect of prolactin (PRL) via suppression of luteinizing hormone (LH), was proposed over 20 years ago, but has received scant experimental attention since. The few studies looking at a PRL-based mechanistic hypothesis for CSD have been equivocal, but recent experiments utilizing a pharmacological agent to manipulate PRL in the zebra finch (Taeniopygia guttata) found no support for a role of this hormone in clutch size determination. Here, we take a complementary approach by manipulating clutch size through egg removal, examining co-variation in PRL and LH between two breeding attempts, as well as through experimentally-extended laying. Clutch size increased for egg removal females, but not controls, but this was not correlated with changes in PRL or LH. There were also no differences in PRL between egg removal females and controls, nor did PRL levels during early, mid- or late-laying of supra-normal clutches predict clutch size. By uncoupling PRL, LH and clutch size in our study, several key predictions of the PRL-based mechanistic model for CSD were not supported. However, a positive correlation between PRL levels late in laying and days relative to the last egg (clutch completion) provides an alternative explanation for the equivocal results surrounding the conventional PRL-based physiological model for CSD. We suggest that females coordinate PRL-mediated incubation onset with clutch completion to minimize hatching asynchrony and sibling hierarchy, a behavior that is amplified in females laying larger clutches.

  5. Rapamycin negatively impacts insulin signaling, glucose uptake and uncoupling protein-1 in brown adipocytes.

    PubMed

    García-Casarrubios, Ester; de Moura, Carlos; Arroba, Ana I; Pescador, Nuria; Calderon-Dominguez, María; Garcia, Laura; Herrero, Laura; Serra, Dolors; Cadenas, Susana; Reis, Flavio; Carvalho, Eugenia; Obregon, Maria Jesus; Valverde, Ángela M

    2016-12-01

    New onset diabetes after transplantation (NODAT) is a metabolic disorder that affects 40% of patients on immunosuppressive agent (IA) treatment, such as rapamycin (also known as sirolimus). IAs negatively modulate insulin action in peripheral tissues including skeletal muscle, liver and white fat. However, the effects of IAs on insulin sensitivity and thermogenesis in brown adipose tissue (BAT) have not been investigated. We have analyzed the impact of rapamycin on insulin signaling, thermogenic gene-expression and mitochondrial respiration in BAT. Treatment of brown adipocytes with rapamycin for 16h significantly decreased insulin receptor substrate 1 (IRS1) protein expression and insulin-mediated protein kinase B (Akt) phosphorylation. Consequently, both insulin-induced glucose transporter 4 (GLUT4) translocation to the plasma membrane and glucose uptake were decreased. Early activation of the N-terminal Janus activated kinase (JNK) was also observed, thereby increasing IRS1 Ser 307 phosphorylation. These effects of rapamycin on insulin signaling in brown adipocytes were partly prevented by a JNK inhibitor. In vivo treatment of rats with rapamycin for three weeks abolished insulin-mediated Akt phosphorylation in BAT. Rapamycin also inhibited norepinephrine (NE)-induced lipolysis, the expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and uncoupling protein (UCP)-1 in brown adipocytes. Importantly, basal mitochondrial respiration, proton leak and maximal respiratory capacity were significantly decreased in brown adipocytes treated with rapamycin. In conclusion, we demonstrate, for the first time the important role of brown adipocytes as target cells of rapamycin, suggesting that insulin resistance in BAT might play a major role in NODAT development.

  6. FGF Signalling Regulates Chromatin Organisation during Neural Differentiation via Mechanisms that Can Be Uncoupled from Transcription

    PubMed Central

    Patel, Nishal S.; Rhinn, Muriel; Semprich, Claudia I.; Halley, Pamela A.; Dollé, Pascal; Bickmore, Wendy A.; Storey, Kate G.

    2013-01-01

    Changes in higher order chromatin organisation have been linked to transcriptional regulation; however, little is known about how such organisation alters during embryonic development or how it is regulated by extrinsic signals. Here we analyse changes in chromatin organisation as neural differentiation progresses, exploiting the clear spatial separation of the temporal events of differentiation along the elongating body axis of the mouse embryo. Combining fluorescence in situ hybridisation with super-resolution structured illumination microscopy, we show that chromatin around key differentiation gene loci Pax6 and Irx3 undergoes both decompaction and displacement towards the nuclear centre coincident with transcriptional onset. Conversely, down-regulation of Fgf8 as neural differentiation commences correlates with a more peripheral nuclear position of this locus. During normal neural differentiation, fibroblast growth factor (FGF) signalling is repressed by retinoic acid, and this vitamin A derivative is further required for transcription of neural genes. We show here that exposure to retinoic acid or inhibition of FGF signalling promotes precocious decompaction and central nuclear positioning of differentiation gene loci. Using the Raldh2 mutant as a model for retinoid deficiency, we further find that such changes in higher order chromatin organisation are dependent on retinoid signalling. In this retinoid deficient condition, FGF signalling persists ectopically in the elongating body, and importantly, we find that inhibiting FGF receptor (FGFR) signalling in Raldh2−/− embryos does not rescue differentiation gene transcription, but does elicit both chromatin decompaction and nuclear position change. These findings demonstrate that regulation of higher order chromatin organisation during differentiation in the embryo can be uncoupled from the machinery that promotes transcription and, for the first time, identify FGF as an extrinsic signal that can direct

  7. Biphasic direct current shift, haemoglobin desaturation and neurovascular uncoupling in cortical spreading depression

    PubMed Central

    Chang, Joshua C.; Shook, Lydia L.; Biag, Jonathan; Nguyen, Elaine N.; Toga, Arthur W.; Charles, Andrew C.

    2010-01-01

    Cortical spreading depression is a propagating wave of depolarization that plays important roles in migraine, stroke, subarachnoid haemorrhage and brain injury. Cortical spreading depression is associated with profound vascular changes that may be a significant factor in the clinical response to cortical spreading depression events. We used a combination of optical intrinsic signal imaging, electro-physiology, potassium sensitive electrodes and spectroscopy to investigate neurovascular changes associated with cortical spreading depression in the mouse. We identified two distinct phases of altered neurovascular function, one during the propagating cortical spreading depression wave and a second much longer phase after passage of the wave. The direct current shift associated with the cortical spreading depression wave was accompanied by marked arterial constriction and desaturation of cortical haemoglobin. After recovery from the initial cortical spreading depression wave, we observed a second phase of prolonged, negative direct current shift, arterial constriction and haemoglobin desaturation, lasting at least an hour. Persistent disruption of neurovascular coupling was demonstrated by a loss of coherence between electro-physiological activity and perfusion. Extracellular potassium concentration increased during the cortical spreading depression wave, but recovered and remained at baseline after passage of the wave, consistent with different mechanisms underlying the first and second phases of neurovascular dysfunction. These findings indicate that cortical spreading depression is associated with a multiphasic alteration in neurovascular function, including a novel second direct current shift accompanied by arterial constriction and decrease in tissue oxygen supply, that is temporally and mechanistically distinct from the initial propagated cortical spreading depression wave. Vascular/metabolic uncoupling with cortical spreading depression may have important

  8. Natural Endogenous Human Matriptase and Prostasin Undergo Zymogen Activation via Independent Mechanisms in an Uncoupled Manner

    PubMed Central

    Su, Hui Chen; Liang, Yan A.; Lai, Ying-Jung J.; Chiu, Yi-Lin; Barndt, Robert B.; Shiao, Frank; Chang, Hsiang-Hua D.; Lu, Dajun D.; Huang, Nanxi; Tseng, Chun-Che; Wang, Jehng-Kang; Lee, Ming-Shyue; Johnson, Michael D.; Huang, Shih-Ming; Lin, Chen-Yong

    2016-01-01

    The membrane-associated serine proteases matriptase and prostasin are believed to function in close partnership. Their zymogen activation has been reported to be tightly coupled, either as a matriptase-initiated proteolytic cascade or through a mutually dependent mechanism involving the formation of a reciprocal zymogen activation complex. Here we show that this putative relationship may not apply in the context of human matriptase and prostasin. First, the tightly coupled proteolytic cascade between matriptase and prostasin might not occur when modest matriptase activation is induced by sphingosine 1-phospahte in human mammary epithelial cells. Second, prostasin is not required and/or involved in matriptase autoactivation because matriptase can undergo zymogen activation in cells that do not endogenously express prostasin. Third, matriptase is not required for and/or involved in prostasin activation, since activated prostasin can be detected in cells expressing no endogenous matriptase. Finally, matriptase and prostasin both undergo zymogen activation through an apparently un-coupled mechanism in cells endogenously expressing both proteases, such as in Caco-2 cells. In these human enterocytes, matriptase is detected primarily in the zymogen form and prostasin predominantly as the activated form, either in complexes with protease inhibitors or as the free active form. The negligible levels of prostasin zymogen with high levels of matriptase zymogen suggests that the reciprocal zymogen activation complex is likely not the mechanism for matriptase zymogen activation. Furthermore, high level prostasin activation still occurs in Caco-2 variants with reduced or absent matriptase expression, indicating that matriptase is not required and/or involved in prostasin zymogen activation. Collectively, these data suggest that any functional relationship between natural endogenous human matriptase and prostasin does not occur at the level of zymogen activation. PMID:27936035

  9. The Role of Uncoupling Protein 2 During Myocardial Dysfunction in a Canine Model of Endotoxin Shock.

    PubMed

    Wang, Xiaoting; Liu, Dawei; Chai, Wenzhao; Long, Yun; Su, Longxiang; Yang, Rongli

    2015-03-01

    To explore the role of uncoupling protein 2 (UCP2) during myocardial dysfunction in a canine model of endotoxin shock, 26 mongrel canines were randomly divided into the following four groups: A (control group; n = 6), B2 (shock after 2 h; n = 7), B4 (shock after 4 h; n = 7), and B6 (shock after 6 h; n = 6). Escherichia coli endotoxin was injected into the canines via the central vein, and hemodynamics were monitored. Energy metabolism, UCP2 mRNA and protein expression, and UCP2 localization were analyzed, and the correlation between energy metabolism changes, and UCP2 expression was determined. After the canine endotoxin shock model was successfully established, the expression of UCP2 mRNA and protein was found to increase, with later time points showing significant increases (P < 0.05). Immunofluorescence assays of UCP2 in heart tissue showed that UCP2 was localized in the cytoplasm, and its expression pattern was the same as that found in the mRNA and protein analyses. The energy metabolism results revealed that the ADP levels increased, but the ATP and phosphocreatine (PCr) levels and ATP/ADP and PCr/ATP ratios decreased in the model. In particular, the PCr/ATP ratio was significantly different from that of the control group 6 h after shock (P < 0.05). Furthermore, correlation analysis showed that the UCP2 protein and mRNA levels were negatively correlated with myocardial energy levels. In summary, decreased energy synthesis can occur in the myocardium during endotoxin shock, and UCP2 may play an important role in this process. The negative correlation between UCP2 expression and energy metabolism requires further study, as the results might contribute to the treatment of sepsis with heart failure.

  10. The molecular features of uncoupling protein 1 support a conventional mitochondrial carrier-like mechanism.

    PubMed

    Crichton, Paul G; Lee, Yang; Kunji, Edmund R S

    2017-03-01

    Uncoupling protein 1 (UCP1) is an integral membrane protein found in the mitochondrial inner membrane of brown adipose tissue, and facilitates the process of non-shivering thermogenesis in mammals. Its activation by fatty acids, which overcomes its inhibition by purine nucleotides, leads to an increase in the proton conductance of the inner mitochondrial membrane, short-circuiting the mitochondrion to produce heat rather than ATP. Despite 40 years of intense research, the underlying molecular mechanism of UCP1 is still under debate. The protein belongs to the mitochondrial carrier family of transporters, which have recently been shown to utilise a domain-based alternating-access mechanism, cycling between a cytoplasmic and matrix state to transport metabolites across the inner membrane. Here, we review the protein properties of UCP1 and compare them to those of mitochondrial carriers. UCP1 has the same structural fold as other mitochondrial carriers and, in contrast to past claims, is a monomer, binding one purine nucleotide and three cardiolipin molecules tightly. The protein has a single substrate binding site, which is similar to those of the dicarboxylate and oxoglutarate carriers, but also contains a proton binding site and several hydrophobic residues. As found in other mitochondrial carriers, UCP1 has two conserved salt bridge networks on either side of the central cavity, which regulate access to the substrate binding site in an alternating way. The conserved domain structures and mobile inter-domain interfaces are consistent with an alternating access mechanism too. In conclusion, UCP1 has retained all of the key features of mitochondrial carriers, indicating that it operates by a conventional carrier-like mechanism.

  11. In vivo and in vitro effects of the mitochondrial uncoupler FCCP on microtubules.

    PubMed

    Maro, B; Marty, M C; Bornens, M

    1982-01-01

    FCCP (carbonylcyanide-p-trifluoromethoxyphenylhydrazone), a potent uncoupler of oxidative phosphorylation, induces the complete disruption of cellular microtubules. A further analysis of this effect on BHK21 cells has shown that a decrease in the number of microtubules can be observed 15 min after adding FCCP and there is complete disruption after 60 min. Regrowth of microtubules was initiated 30 min after removal of FCCP, in marked contrast with the rapid reversion observed when microtubules are disrupted by nocodazole. A similar delay was required for the recovery of mitochondrial function as assessed by rhodamine 123 labelling. The effect of FCCP on microtubules was partially inhibited by preincubation of the cells with NaN3, suggesting that FCCP acts on microtubules through mitochondria. FCCP did not depolymerize microtubules of cells permeabilized with Triton X-100. In vitro polymerisation of microtubule protein was only slightly diminished by concentrations of FCCP which provoke complete disassembly in vivo. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the microtubules polymerized in vitro in the presence of FCCP showed a reduced amount of high mol. wt. proteins, mainly MAP 2, associated with them. In an attempt to reproduce the mitochondrial effects of FCCP in vitro, we checked the effects of alkaline pH and calcium on microtubule protein polymerization in the presence of FCCP. FCCP did not influence the calcium inhibitory effect but did significantly increase the inhibitory effect of alkaline pH. We conclude that FCCP could depolymerise microtubules in vivo through a dual operation: increasing the intracellular pH by the disruption of the mitochondrial H+ gradient and decreasing the stability of microtubules by impairing the binding of microtubule-associated proteins.

  12. In vivo and in vitro effects of the mitochondrial uncoupler FCCP on microtubules.

    PubMed Central

    Maro, B; Marty, M C; Bornens, M

    1982-01-01

    FCCP (carbonylcyanide-p-trifluoromethoxyphenylhydrazone), a potent uncoupler of oxidative phosphorylation, induces the complete disruption of cellular microtubules. A further analysis of this effect on BHK21 cells has shown that a decrease in the number of microtubules can be observed 15 min after adding FCCP and there is complete disruption after 60 min. Regrowth of microtubules was initiated 30 min after removal of FCCP, in marked contrast with the rapid reversion observed when microtubules are disrupted by nocodazole. A similar delay was required for the recovery of mitochondrial function as assessed by rhodamine 123 labelling. The effect of FCCP on microtubules was partially inhibited by preincubation of the cells with NaN3, suggesting that FCCP acts on microtubules through mitochondria. FCCP did not depolymerize microtubules of cells permeabilized with Triton X-100. In vitro polymerisation of microtubule protein was only slightly diminished by concentrations of FCCP which provoke complete disassembly in vivo. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the microtubules polymerized in vitro in the presence of FCCP showed a reduced amount of high mol. wt. proteins, mainly MAP 2, associated with them. In an attempt to reproduce the mitochondrial effects of FCCP in vitro, we checked the effects of alkaline pH and calcium on microtubule protein polymerization in the presence of FCCP. FCCP did not influence the calcium inhibitory effect but did significantly increase the inhibitory effect of alkaline pH. We conclude that FCCP could depolymerise microtubules in vivo through a dual operation: increasing the intracellular pH by the disruption of the mitochondrial H+ gradient and decreasing the stability of microtubules by impairing the binding of microtubule-associated proteins. Images Fig. 1. Fig. 2. Fig. 3. Fig. 5. Fig. 6. PMID:6765194

  13. Fruit calcium accumulation coupled and uncoupled from its transpiration in kiwifruit.

    PubMed

    Montanaro, Giuseppe; Dichio, Bartolomeo; Lang, Alexander; Mininni, Alba N; Xiloyannis, Cristos

    2015-06-01

    Accumulation of Ca in several fleshy fruit is often supposed to depend, among others, by climatic variables driving fruit transpiration. This study tests the whole causal chain hypothesis: VPD → fruit transpiration → Ca accumulation. Also there are evidences that relationship between fruit transpiration and Ca content is not always clear, hence the hypothesis that low VPD reduces the fraction of xylemic water destined to transpiration was tested by examining the water budget of fruit. Attached fruits of Actinidia deliciosa were subjected to Low (L) and High (H) VPD. Their transpiration was measured from early after fruit-set to day 157 after full bloom (DAFB). Fruits were picked at 70, 130 and 157 DAFB for Ca and K determinations and for water budget analysis. Cumulative transpired water was ∼ 70 g and ∼ 16 g H2O f(-1) in HVPD and LVPD, respectively. Calcium accumulated linearly (R(2) = 0.71) with cumulative transpiration when VPD was high, while correlation was weaker (R(2) = 0.24) under LVPD. Under low VPD the fraction of xylem stream destined to transpiration declined to 40-50%. Results suggest that Ca accumulation is coupled to cumulative transpiration under high VPD because under that condition cumulative transpiration equals xylem stream (which carry the nutrient). At LVPD, Ca gain by fruit is uncoupled from transpiration because ∼ 60% of the xylemic water is needed to sustain fruit growth. Results will apply to most fruits (apples, tomatoes, capsicum, grapes etc.) since most suffer Ca deficiency disorders and grow in changing environments with variable VPD, also they could be supportive for the implementation of fruit quality models accounting also for mineral compositions and for a reinterpretation of certain field practices aimed at naturally improve fruit Ca content.

  14. Uncoupling of Bacterial and Terrigenous Dissolved Organic Matter Dynamics in Decomposition Experiments

    PubMed Central

    Herlemann, Daniel P. R.; Manecki, Marcus; Meeske, Christian; Pollehne, Falk; Labrenz, Matthias; Schulz-Bull, Detlef; Dittmar, Thorsten; Jürgens, Klaus

    2014-01-01

    The biodegradability of terrigenous dissolved organic matter (tDOM) exported to the sea has a major impact on the global carbon cycle, but our understanding of tDOM bioavailability is fragmentary. In this study, the effects of preparative tDOM isolation on microbial decomposition were investigated in incubation experiments consisting of mesocosms containing mesohaline water from the Baltic Sea. Dissolved organic carbon (DOC) consumption, molecular DOM composition, bacterial activities, and shifts in bacterial community structure were compared between mesocosms supplemented with riverine tDOM, either as filtered, particle-free river water or as a concentrate obtained by lyophilization/tangential ultrafiltration, and those containing only Baltic Sea water or river water. As shown using ultra-high-resolution mass spectrometry (15 Tesla Fourier-transform ion cyclotron resonance mass spectrometry, FT-ICR-MS) covering approximately 4600 different DOM compounds, the three DOM preparation protocols resulted in distinct patterns of molecular DOM composition. However, despite DOC losses of 4–16% and considerable bacterial production, there was no significant change in DOM composition during the 28-day experiment. Moreover, tDOM addition affected neither DOC degradation nor bacterial dynamics significantly, regardless of the tDOM preparation. This result suggested that the introduced tDOM was largely not bioavailable, at least on the temporal scale of our experiment, and that the observed bacterial activity and DOC decomposition mainly reflected the degradation of unknown, labile, colloidal and low-molecular weight DOM, both of which escape the analytical window of FT-ICR-MS. In contrast to the different tDOM preparations, the initial bacterial inoculum and batch culture conditions determined bacterial community succession and superseded the effects of tDOM addition. The uncoupling of tDOM and bacterial dynamics suggests that mesohaline bacterial communities cannot

  15. Not all mitochondrial carrier proteins support permeability transition pore formation: no involvement of uncoupling protein 1.

    PubMed

    Crichton, Paul G; Parker, Nadeene; Vidal-Puig, Antonio J; Brand, Martin D

    2009-12-15

    The mPTP (mitochondrial permeability transition pore) is a non-specific channel that is formed in the mitochondrial inner membrane in response to several stimuli, including elevated levels of matrix calcium. The pore is proposed to be composed of the ANT (adenine nucleotide translocase), voltage-dependent anion channel and cyclophilin D. Knockout studies, however, have demonstrated that ANT is not essential for permeability transition, which has led to the proposal that other members of the mitochondrial carrier protein family may be able to play a similar function to ANT in pore formation. To investigate this possibility, we have studied the permeability transition properties of BAT (brown adipose tissue) mitochondria in which levels of the mitochondrial carrier protein, UCP1 (uncoupling protein 1), can exceed those of ANT. Using an improved spectroscopic assay, we have quantified mPTP formation in de-energized mitochondria from wild-type and Ucp1KO (Ucp1-knockout) mice and assessed the dependence of pore formation on UCP1. When correctly normalized for differences in mitochondrial morphology, we find that calcium-induced mPTP activity is the same in both types of mitochondria, with similar sensitivity to GDP (approximately 50% inhibited), although the portion sensitive to cyclosporin A is higher in mitochondria lacking UCP1 (approximately 80% inhibited, compared with approximately 60% in mitochondria containing UCP1). We conclude that UCP1 is not a component of the cyclosporin A-sensitive mPTP in BAT and that playing a role in mPTP formation is not a general characteristic of the mitochondrial carrier protein family but is, more likely, restricted to specific members including ANT.

  16. Resolving the contribution of the uncoupled phycobilisomes to cyanobacterial pulse-amplitude modulated (PAM) fluorometry signals.

    PubMed

    Acuña, Alonso M; Snellenburg, Joris J; Gwizdala, Michal; Kirilovsky, Diana; van Grondelle, Rienk; van Stokkum, Ivo H M

    2016-01-01

    Pulse-amplitude modulated (PAM) fluorometry is extensively used to characterize photosynthetic organisms on the slow time-scale (1-1000 s). The saturation pulse method allows determination of the quantum yields of maximal (F(M)) and minimal fluorescence (F(0)), parameters related to the activity of the photosynthetic apparatus. Also, when the sample undergoes a certain light treatment during the measurement, the fluorescence quantum yields of the unquenched and the quenched states can be determined. In the case of cyanobacteria, however, the recorded fluorescence does not exclusively stem from the chlorophyll a in photosystem II (PSII). The phycobilins, the pigments of the cyanobacterial light-harvesting complexes, the phycobilisomes (PB), also contribute to the PAM signal, and therefore, F(0) and F(M) are no longer related to PSII only. We present a functional model that takes into account the presence of several fluorescent species whose concentrations can be resolved provided their fluorescence quantum yields are known. Data analysis of PAM measurements on in vivo cells of our model organism Synechocystis PCC6803 is discussed. Three different components are found necessary to fit the data: uncoupled PB (PB(free)), PB-PSII complexes, and free PSI. The free PSII contribution was negligible. The PB(free) contribution substantially increased in the mutants that lack the core terminal emitter subunits allophycocyanin D or allophycocyanin F. A positive correlation was found between the amount of PB(free) and the rate constants describing the binding of the activated orange carotenoid protein to PB, responsible for non-photochemical quenching.

  17. Molecular properties of purified human uncoupling protein 2 refolded from bacterial inclusion bodies.

    PubMed

    Jekabsons, Mika B; Echtay, Karim S; Arechaga, Ignacio; Brand, Martin D

    2003-10-01

    One way to study low-abundance mammalian mitochondrial carriers is by ectopically expressing them as bacterial inclusion bodies. Problems encountered with this approach include protein refolding, homogeneity, and stability. In this study, we investigated protein refolding and homogeneity properties of inclusion body human uncoupling protein 2 (UCP2). N-methylanthraniloyl-tagged ATP (Mant-ATP) experiments indicated two independent inclusion body UCP2 binding sites with dissociation constants (Kd) of 0.3-0.5 and 23-92 microM. Dimethylanthranilate, the fluorescent tag without nucleotide, bound with a Kd of greater than 100 microM, suggesting that the low affinity site reflected binding of the tag. By direct titration, UCP2 bound [8-(14)C] ATP and [8-(14)C] ADP with Kds of 4-5 and 16-18 microM, respectively. Mg2+ (2 mM) reduced the apparent ATP affinity to 53 microM, an effect entirely explained by chelation of ATP; with Mg2+, Kd using calculated free ATP was 3 microM. A combination of gel filtration, Cu2+-phenanthroline cross-linking, and ultracentrifugation indicated that 75-80% of UCP2 was in a monodisperse, 197 kDa form while the remainder was aggregated. We conclude that (a) Mant-tagged nucleotides are useful fluorescent probes with isolated UCP2 when used with dimethylanthranilate controls; (b) UCP2 binds Mg2+-free nucleotides: the Kd for ATP is about 3-5 microM and for Mant-ATP it is about 10 times lower; and (c) in C12E9 detergent, the monodisperse protein may be in dimeric form.

  18. UV Signature Mutations

    PubMed Central

    2014-01-01

    Sequencing complete tumor genomes and exomes has sparked the cancer field's interest in mutation signatures for identifying the tumor's carcinogen. This review and meta-analysis discusses signatures and their proper use. We first distinguish between a mutagen's canonical mutations – deviations from a random distribution of base changes to create a pattern typical of that mutagen – and the subset of signature mutations, which are unique to that mutagen and permit inference backward from mutations to mutagen. To verify UV signature mutations, we assembled literature datasets on cells exposed to UVC, UVB, UVA, or solar simulator light (SSL) and tested canonical UV mutation features as criteria for clustering datasets. A confirmed UV signature was: ≥60% of mutations are C→T at a dipyrimidine site, with ≥5% CC→TT. Other canonical features such as a bias for mutations on the non-transcribed strand or at the 3' pyrimidine had limited application. The most robust classifier combined these features with criteria for the rarity of non-UV canonical mutations. In addition, several signatures proposed for specific UV wavelengths were limited to specific genes or species; non-signature mutations induced by UV may cause melanoma BRAF mutations; and the mutagen for sunlight-related skin neoplasms may vary between continents. PMID:25354245

  19. Comparative Metabolomic Profiling Reveals That Dysregulated Glycolysis Stemming from Lack of Salvage NAD+ Biosynthesis Impairs Reproductive Development in Caenorhabditis elegans*

    PubMed Central

    Wang, Wenqing; McReynolds, Melanie R.; Goncalves, Jimmy F.; Shu, Muya; Dhondt, Ineke; Braeckman, Bart P.; Lange, Stephanie E.; Kho, Kelvin; Detwiler, Ariana C.; Pacella, Marisa J.; Hanna-Rose, Wendy

    2015-01-01

    Temporal developmental progression is highly coordinated in Caenorhabditis elegans. However, loss of nicotinamidase PNC-1 activity slows reproductive development, uncoupling it from its typical progression relative to the soma. Using LC/MS we demonstrate that pnc-1 mutants do not salvage the nicotinamide released by NAD+ consumers to resynthesize NAD+, resulting in a reduction in global NAD+ bioavailability. We manipulate NAD+ levels to demonstrate that a minor deficit in NAD+ availability is incompatible with a normal pace of gonad development. The NAD+ deficit compromises NAD+ consumer activity, but we surprisingly found no functional link between consumer activity and reproductive development. As a result we turned to a comparative metabolomics approach to identify the cause of the developmental phenotype. We reveal widespread metabolic perturbations, and using complementary pharmacological and genetic approaches, we demonstrate that a glycolytic block accounts for the slow pace of reproductive development. Interestingly, mitochondria are protected from both the deficiency in NAD+ biosynthesis and the effects of reduced glycolytic output. We suggest that compensatory metabolic processes that maintain mitochondrial activity in the absence of efficient glycolysis are incompatible with the requirements for reproductive development, which requires high levels of cell division. In addition to demonstrating metabolic requirements for reproductive development, this work also has implications for understanding the mechanisms behind therapeutic interventions that target NAD+ salvage biosynthesis for the purposes of inhibiting tumor growth. PMID:26350462

  20. Comparative Metabolomic Profiling Reveals That Dysregulated Glycolysis Stemming from Lack of Salvage NAD+ Biosynthesis Impairs Reproductive Development in Caenorhabditis elegans.

    PubMed

    Wang, Wenqing; McReynolds, Melanie R; Goncalves, Jimmy F; Shu, Muya; Dhondt, Ineke; Braeckman, Bart P; Lange, Stephanie E; Kho, Kelvin; Detwiler, Ariana C; Pacella, Marisa J; Hanna-Rose, Wendy

    2015-10-23

    Temporal developmental progression is highly coordinated in Caenorhabditis elegans. However, loss of nicotinamidase PNC-1 activity slows reproductive development, uncoupling it from its typical progression relative to the soma. Using LC/MS we demonstrate that pnc-1 mutants do not salvage the nicotinamide released by NAD(+) consumers to resynthesize NAD(+), resulting in a reduction in global NAD(+) bioavailability. We manipulate NAD(+) levels to demonstrate that a minor deficit in NAD(+) availability is incompatible with a normal pace of gonad development. The NAD(+) deficit compromises NAD(+) consumer activity, but we surprisingly found no functional link between consumer activity and reproductive development. As a result we turned to a comparative metabolomics approach to identify the cause of the developmental phenotype. We reveal widespread metabolic perturbations, and using complementary pharmacological and genetic approaches, we demonstrate that a glycolytic block accounts for the slow pace of reproductive development. Interestingly, mitochondria are protected from both the deficiency in NAD(+) biosynthesis and the effects of reduced glycolytic output. We suggest that compensatory metabolic processes that maintain mitochondrial activity in the absence of efficient glycolysis are incompatible with the requirements for reproductive development, which requires high levels of cell division. In addition to demonstrating metabolic requirements for reproductive development, this work also has implications for understanding the mechanisms behind therapeutic interventions that target NAD(+) salvage biosynthesis for the purposes of inhibiting tumor growth.

  1. The evolution of reproduction-related NLRP genes.

    PubMed

    Duéñez-Guzmán, Edgar A; Haig, David

    2014-04-01

    NLRP proteins are important components of inflammasomes with a major role in innate immunity. A subset of NLRP genes, with unknown functions, are expressed in oocytes and early embryos. Mutations of Nlrp5 in mice are associated with maternal-effect embryonic lethality and mutations of NLRP7 in women are associated with conception of biparental complete hydatidiform moles (biCHMs), suggesting perturbed processes of genomic imprinting. Recessive mutations on NLRP2/7 in humans are associated with reproductive disorders and appear to be induced by a demethylation of the maternal pronucleus. In this study, we find that radiation of NLRP genes occurred before the common ancestor of Afrotheria and Boreoeutheria, with the clade of oocyte-expressed genes originating before the divergence of marsupial and eutherian mammals. There have been multiple independent duplications of NLRP2 genes one of which produced the NLRP7 gene associated with biCHMs.

  2. Association between Thrombophilia and Repeated Assisted Reproductive Technology Failures

    PubMed Central

    Hamdi, Kobra; Vaezi, Maryam; Dagigazar, Behrooz; Mehrzad Sadagiani, Mahzad; Farzadi, Laya; Pashaei-Asl, Maryam

    2012-01-01

    Purpose: This study was performed to investigate the incidence of thrombophilic gene mutations in repeated assisted reproductive technology (ART) failures. Methods: The prevalence of mutated genes in the patients with a history of three or more previous ART failures was compared with the patients with a history of successful pregnancy following ARTs. The study group included 70 patients, 34 with three or more previously failed ARTs (A) and control group consisted of 36 patients with successful pregnancy following ARTs (B). All patients were tested for the presence of mutated thrombophilic genes including factor V Leiden (FVL), Methylenetetrahydrofolate reductase (MTHFR) and Prothrombin (G20210A) using real-time polymerase chain reaction (RT- PCR). Results: Mutation of FVL gene was detected in 5.9% women of group A (2 of 34) compared with 2.8% women (1 of 36) of control group (P = 0.6). Mutation of MTHFR gene was found in 35.3% (12 cases) as compared with 50% (18 cases) of control (35.3% versus 50%; P = 0.23). Regarding Prothrombin, only control group had 5.6% mutation (P = 0.49). No significant differences were detected in the incidences of FVL, Prothrombin and MTHFR in the study group A compared with the control group B. Conclusion: The obtained results suggest that thrombophilia does not have a significant effect in ART failures. PMID:24312798

  3. VARIATIONS IN REPRODUCTIVE TOXICANT IDENTIFICATION

    SciTech Connect

    Simmons, F

    2008-05-13

    Reproductive toxicants are a very important class of compounds. They present unique hazards to those of child bearing ages, perform their 'dirty work' using a wide variety of mechanisms on a number of different organs, and are regulatorily important. Because of all of this, properly identifying reproductive toxicants is important, but fraught with difficulty. In this paper we will describe types or reproductive toxicants, their importance, and both mistakes and good practices that people who are not experts in reproductive toxicology may use in their attempts to identify them. Additionally, this paper will focus on chemical reproductive toxicants and will not address biological agents that could affect reproductive toxicity although many principles outlined here could be applied to that endeavor.

  4. Uncoupling is without an effect on the production of reactive oxygen species by in situ synaptic mitochondria.

    PubMed

    Tretter, Laszlo; Adam-Vizi, Vera

    2007-12-01

    Earlier reports that generation of reactive oxygen species (ROS) by isolated mitochondria supported by succinate was sensitive to small changes in the mitochondrial membrane potential (DeltaPsim) served as a basis for the concept of 'mild uncoupling' suggesting that a few millivolts decrease in DeltaPsim would be beneficial in neuroprotection because of reducing the production of ROS by mitochondria. In this study, we tested whether ROS generation by in situ mitochondria, which function in a normal cytosolic environment and oxidize glucose-derived physiological substrates, is also dependent on changes in DeltaPsim. The release of H(2)O(2) was measured by the Amplex red fluorescence assay in freshly prepared isolated nerve terminals, synaptosomes incubated in a glucose-containing medium. DeltaPsim was decreased by the uncoupler carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazon (FCCP) (10-200 nmol/L), which accelerated the oxygen consumption, decreased the NADH level and induced depolarization, as shown by the fluorescence indicator JC-1, in in situ mitochondria. These changes were detected at already the smallest FCCP concentration. H(2)O(2) generation, however, was found to be unaltered by FCCP at any of the applied concentration. Depolarization of mitochondria was also induced by veratridine (40 mumol/L), which enhances the cytosolic Na(+) concentration and imposes an ATP demand in synaptosomes. The accelerated oxygen consumption and the small depolarization of in situ mitochondria by veratridine were not paralleled by any significant alteration in the ROS generation. These findings indicate that a basal ROS generation by in situ mitochondria is not sensitive to changes in DeltaPsim challenging the rational of the 'mild uncoupling' theory for neuroprotection and suggest that the DeltaPsim-dependent characteristics of ROS generation is limited mainly to well-coupled succinate-supported isolated mitochondria.

  5. Characterization of the plant uncoupling protein, SrUCPA, expressed in spadix mitochondria of the thermogenic skunk cabbage.

    PubMed

    Ito-Inaba, Yasuko; Hida, Yamato; Ichikawa, Megumi; Kato, Yoshiaki; Yamashita, Tetsuro

    2008-01-01

    In mammalian brown adipose tissue, uncoupling protein 1 (UCP1), an integral inner mitochondrial membrane protein, triggers a proton leak and converts the energy generated by the resulting electron flow into heat. Although the recent finding of plant UCPs in non-thermogenic tissues has questioned their involvement in thermogenesis, there are few studies of plant UCPs in thermogenic tissues. Therefore, in this work, two cloned UCP cDNAs, SrUCPA and SrUCPB, isolated from the thermogenic spadix of skunk cabbage, were analysed. SrUCPA, not SrUCPB, was identified as the major uncoupling protein, and it was found to be integrated into the inner mitochondrial membrane. Topological analyses indicate that the 1st and 2nd intra-matrix loops are sensitive to trypsin treatment, but the 3rd intra-matrix loop is resistant to it. Using spadix mitochondria, the uncoupling activity of SrUCPA was examined. Although SrUCPA transcripts were constitutively expressed in various tissues irrespective of thermogenic stage, the SrUCPA protein was detected only in the thermogenic tissue or stage. On the other hand, both gene and protein expression for another heat-generating protein, SrAOX, were increased specifically in the thermogenic tissue or stage. Quantitative immunoblot analysis revealed that SrUCPA was an abundant protein in spadix mitochondria, accounting for about 3% of the total mitochondrial protein in the spadix. The results suggest that specific co-expression of SrUCPA and SrAOX protein in the thermogenic tissue or stage, as well as the high expression of SrUCPA protein in spadix mitochondria, may play a role in thermogenesis of skunk cabbage.

  6. The relationship between ventricular-vascular uncoupling during exercise and impaired left ventricular longitudinal functional reserve in hypertensive patients.

    PubMed

    Shim, Chi Young; Park, Sungha; Choi, Eui-Young; Hong, Geu-Ru; Choi, Donghoon; Jang, Yangsoo; Chung, Namsik

    2013-01-01

    Uncoupling between heart and vessel may be accompanied by left ventricular (LV) dysfunction during exercise. We investigated the association between ventricular-vascular uncoupling during exercise and impaired LV longitudinal functional reserve in hypertensive subjects. Supine bicycle exercise echocardiography (25-watt, 3-minute increments) was performed in 216 hypertensive patients (106 male; mean age, 58 ± 9 years). Arterial elastance (Ea), end-systolic ventricular elastance (Ees), and ventricular-vascular interaction (VVI) index (Ea/Ees) were calculated at rest and at each stage of exercise. The patients were divided into three groups according to the tertile value of VVI ratio. The VVI ratio was defined as the ratio of VVI index at 50 W exercise over VVI index at rest; normal VVI response (n = 72); borderline VVI response (n = 72); and abnormal VVI response (n = 72). There were no significant differences in conventional echo parameters, mitral inflow velocities, mitral annular early diastolic (E') velocity, and mitral annular systolic velocity (S') at rest among the three groups. However, E' velocities and S' velocities at 25 W and 50 W were significantly lower in patients with abnormal VVI response compared with those in the other groups (P = .010 at 25 W, P = .008 at 50 W in E' velocity; P = .022 at 25 W, P = .043 at 50 W in S' velocity). Longitudinal diastolic functional reserve index from rest to 50 W was significantly lower in patients with abnormal VVI response compared with the other groups. Ventricular-vascular uncoupling during exercise was related to impaired LV longitudinal functional reserve in hypertensive patients.

  7. Interaction of carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) with lipid membrane systems: a biophysical approach with relevance to mitochondrial uncoupling.

    PubMed

    Monteiro, João P; Martins, André F; Lúcio, Marlene; Reis, Salette; Geraldes, Carlos F G C; Oliveira, Paulo J; Jurado, Amália S

    2011-06-01

    FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone), a classical uncoupler of mitochondrial oxidative phosphorylation, is used in this study as a model to clarify how interactions of uncouplers with membrane lipid bilayers may influence membrane biophysics and their protonophoric activity itself. In order to disclose putative effects that may be important when considering using uncouplers for pharmacological purposes, an extensive characterization of FCCP membrane lipid interactions using accurate biophysical approaches and simple model lipid systems was carried out. Differential scanning calorimetry studies showed that FCCP molecules disturb lipid bilayers and favor lateral phase separation in mixed lipid systems. (31)P NMR assays indicated that FCCP alters the curvature elastic properties of membrane models containing non-bilayer lipids, favoring lamellar/H(II) transition, probably by alleviation of hydrocarbon-packing constraints in the inverted hexagonal phase. Taking advantage of FCCP quenching effects on the fluorescent probes DPH (1,6-diphenyl-1,3,5-hexatriene) and DPH-PA (3-(p-(6-phenyl)-1,3,5-hexatrienyl)phenylpropionic acid), it is demonstrated that FCCP distributes across the bilayer thickness in both a single and a ternary lipid system mimicking the inner mitochondrial membrane. This behavior is consistent with the ability of the compound to migrate through the thickness of the inner mitochondrial membrane, an event required for its protonophoric activity. Finally, the study of the membrane fluidity in different lipid systems, as reported by the rotational correlation time (θ) of DPH or DPH-PA, showed that the extension at which FCCP disturbs membrane properties associated with the dynamics and the order of lipid molecules depends on the lipid composition of the model lipid system assayed.

  8. β-Cell Uncoupling Protein 2 Regulates Reactive Oxygen Species Production, Which Influences Both Insulin and Glucagon Secretion

    PubMed Central

    Robson-Doucette, Christine A.; Sultan, Sobia; Allister, Emma M.; Wikstrom, Jakob D.; Koshkin, Vasilij; Bhatacharjee, Alpana; Prentice, Kacey J.; Sereda, Samuel B.; Shirihai, Orian S.; Wheeler, Michael B.

    2011-01-01

    OBJECTIVE The role of uncoupling protein 2 (UCP2) in pancreatic β-cells is highly debated, partly because of the broad tissue distribution of UCP2 and thus limitations of whole-body UCP2 knockout mouse models. To investigate the function of UCP2 in the β-cell, β-cell–specific UCP2 knockout mice (UCP2BKO) were generated and characterized. RESEARCH DESIGN AND METHODS UCP2BKO mice were generated by crossing loxUCP2 mice with mice expressing rat insulin promoter-driven Cre recombinase. Several in vitro and in vivo parameters were measured, including respiration rate, mitochondrial membrane potential, islet ATP content, reactive oxygen species (ROS) levels, glucose-stimulated insulin secretion (GSIS), glucagon secretion, glucose and insulin tolerance, and plasma hormone levels. RESULTS UCP2BKO β-cells displayed mildly increased glucose-induced mitochondrial membrane hyperpolarization but unchanged rates of uncoupled respiration and islet ATP content. UCP2BKO islets had elevated intracellular ROS levels that associated with enhanced GSIS. Surprisingly, UCP2BKO mice were glucose-intolerant, showing greater α-cell area, higher islet glucagon content, and aberrant ROS-dependent glucagon secretion under high glucose conditions. CONCLUSIONS Using a novel β-cell–specific UCP2KO mouse model, we have shed light on UCP2 function in primary β-cells. UCP2 does not behave as a classical metabolic uncoupler in the β-cell, but has a more prominent role in the regulation of intracellular ROS levels that contribute to GSIS amplification. In addition, β-cell UCP2 contributes to the regulation of intraislet ROS signals that mediate changes in α-cell morphology and glucagon secretion. PMID:21984579

  9. Uncoupled active transport mechanisms accounting for low selectivity in multidrug carriers: P-glycoprotein and SMR antiporters.

    PubMed

    Krupka, R M

    1999-11-15

    The extraordinarily low substrate specificity of P-glycoprotein conflicts with the notion that specific substrate interactions are required in the control of the reaction path in an active transport system. The difficulty is shown to be overcome by a half-coupled mechanism in which the ATP reaction is linked to carrier transformations, as in a fully coupled system, but in which the transported substrate plays a passive role. The mechanism, which requires no specific interaction with the substrate, brings about uphill transport. A half-coupled mechanism is directly supported by two observations: (i) almost completely uncoupled ATPase activity in purified P-glycoprotein, and (ii) a pattern of substrate specificity like that of passive systems, where maximum rates for different substrates vary little (unlike active systems, where maximum rates vary greatly). The mechanism accommodates other findings: partial inhibition of ATPase activity by an actively transported substrate; simultaneous binding and translocation of more than one substrate molecule; and stimulation or inhibition of the transport of one substrate molecule by another. A half-coupled system associated with an internal competitive inhibitor should behave as if tightly coupled, in agreement with the effects of the synthetic peptide, polytryptophan. The degree of coupling in the intact system is yet to be determined, however. A half-coupled ATPase mechanism could originally have evolved in a flippase, where immersion of the carrier in its substrate, the membrane lipid, precludes uncoupled ATP hydrolysis. These concepts may have wider application. An uncoupled antiport mechanism, driven by a proton gradient rather than ATP, can explain low selectivity in the SMR multidrug carriers of bacteria, and a half-coupled mechanism for the ion-driven cotransport of water (the substrate in which the carrier site is immersed) can explain a recently proposed uphill flow of water.

  10. Alcoholism and reproduction.

    PubMed

    Heine, M W

    1981-01-01

    A brief overview of the reproductive capacities of both men and women in alcoholism is presented. A historical evaluation indicates a resurgence of interest in this area. The effect of chronic alcohol consumption on both male fertility and potency is reported in conjunction with alcohol-mediated effects on the female subject. Emphasis is placed on pharmacokinetics, metabolism and drinking behavior of the alcoholic female. The adverse actions of some therapeutic drugs and chronic alcohol consumption is discussed in relationship to fetal alcohol syndrome and the accompanied mental and somatic abnormalities.

  11. Cannabis, cannabinoids and reproduction.

    PubMed

    Park, Boram; McPartland, John M; Glass, Michelle

    2004-02-01

    In most countries Cannabis is the most widely used illegal drug. Its use during pregnancy in developed nations is estimated to be approximately 10%. Recent evidence suggests that the endogenous cannabinoid system, now consisting of two receptors and multiple endocannabinoid ligands, may also play an important role in the maintenance and regulation of early pregnancy and fertility. The purpose of this review is therefore twofold, to examine the impact that cannabis use may have on fertility and reproduction, and to review the potential role of the endocannabinoid system in hormonal regulation, embryo implantation and maintenance of pregnancy.

  12. The reproduction of America.

    PubMed

    Rudy, Kathy

    1994-01-01

    ... This essay draws a connection between the medical procedures produced by new reproductive technologies, most specifically the use of pre-natal tests which result in abortion, and the dictates of American liberal theory. There is, I believe, a strong link between certain contemporary American abortion practices and American liberalism's formulation of and emphasis on rational individualism. The touchstone and criterion of reason as the sole measure of humanity has influenced the conditions under which we reproduce, and consequently, when we abort. Although America purports to offer certain kinds of freedom to all individuals, only those who exercise the capacity for rationality are in fact permitted to reap the benefits of liberal society.

  13. Uncoupling of T cell receptor zeta chain function during the induction of anergy by the superantigen, staphylococcal enterotoxin A.

    PubMed

    Cornwell, William D; Rogers, Thomas J

    2010-07-01

    Staphylococcus aureus enterotoxins have immunomodulatory properties. In this study, we show that Staphylococcal enterotoxin A (SEA) induces a strong proliferative response in a murine T cell clone independent of MHC class II bearing cells. SEA stimulation also induces a state of hypo-responsiveness (anergy). We characterized the components of the T cell receptor (TCR) during induction of anergy by SEA. Most interestingly, TCR zeta chain phosphorylation was absent under SEA anergizing conditions, which suggests an uncoupling of zeta chain function. We characterize here a model system for studying anergy in the absence of confounding costimulatory signals.

  14. Reproductive Outcomes for Survivors of Childhood Cancer

    PubMed Central

    Hudson, Melissa M.

    2016-01-01

    Due to remarkable progress in therapy for pediatric cancer, long-term survival is expected for 80% of children and adolescents diagnosed with cancer. Infertility remains one of the most common and life-altering complications experienced by adults treated for cancer during childhood. Surgery, radiation, or chemotherapy that negatively affects any component of the hypothalamic-pituitary-gonadal axis may compromise reproductive outcomes in childhood cancer survivors. The risk of infertility is generally related to the tissues or organs involved in cancer and the specific type, dose, and combination of cytotoxic therapy. In addition to anticancer therapy, age at treatment, sex, and likely genetic factors influence the risk of permanent infertility. When possible, contemporary protocols limit cumulative doses of cytotoxic therapy in an effort to optimize reproductive potential. If sterilizing therapy is required for cancer control, fertility preservation measures should be explored before initiation of therapy. For childhood cancer survivors who maintain fertility, health risks to offspring resulting from their cancer treatment are major concerns. Radiation affecting ovarian and uterine function has been linked to pregnancy complications including spontaneous abortion, preterm labor, fetal malposition and low birth weight. The risk of congenital malformations, genetic disorders, and cancer appears to be low, with the exception of cancer risk in offspring born to survivors with germline cancer-predisposing mutations. This review will summarize research about cancer treatment factors impacting fertility and pregnancy outcomes of childhood cancer survivors. The data presented should facilitate the delivery of preventive counseling and age- and gender-appropriate interventions to optimize reproductive outcomes in childhood cancer survivors. PMID:20966703

  15. Human reproductive issues in space

    NASA Technical Reports Server (NTRS)

    Santy, Patricia A.; Jennings, Richard T.

    1992-01-01

    A review of reproductive functioning in animal species studied during space flight demonstrated that most species were affected significantly by the absence of gravity and/or the presence of radiation. These two factors induced alterations in normal reproductive functioning independently of, as well as in combination with, each other. Based on animal models, several potential problem areas regarding human reproductive physiology and functioning in the space environment were identified. While there are no current space flight investigations, the animal studies suggest priorities for future research in human reproduction. Such studies will be critical for the successful colonization of the space frontier.

  16. The lampricide 3-trifluoromethyl-4-nitrophenol (TFM) uncouples mitochondrial oxidative phosphorylation in both sea lamprey (Petromyzon marinus) and TFM-tolerant rainbow trout (Oncorhynchus mykiss).

    PubMed

    Birceanu, Oana; McClelland, Grant B; Wang, Yuxiang S; Brown, Jason C L; Wilkie, Michael P

    2011-04-01

    The toxicity of 3-trifluoromethyl-4-nitrophenol (TFM) appears to be due to a mismatch between ATP supply and demand in lamprey, depleting glycogen stores and starving the nervous system of ATP. The cause of this TFM-induced ATP deficit is unclear. One possibility is that TFM uncouples mitochondrial oxidative phosphorylation, thus impairing ATP production. To test this hypothesis, mitochondria were isolated from the livers of sea lamprey and rainbow trout, and O(2) consumption rates were measured in the presence of TFM or 2,4-dinitrophenol (2,4-DNP), a known uncoupler of oxidative phosphorylation. TFM and 2,4-DNP markedly increased State IV respiration in a dose-dependent fashion, but had no effect on State III respiration, which is consistent with uncoupling of oxidative phosphorylation. To determine how TFM uncoupled oxidative phosphorylation, the mitochondrial transmembrane potential (TMP) was recorded using the mitochondria-specific dye rhodamine 123. Mitochondrial TMP decreased by 22% in sea lamprey, and by 28% in trout following treatment with 50μmolL(-1) TFM. These findings suggest that TFM acted as a protonophore, dissipating the proton motive force needed to drive ATP synthesis. We conclude that the mode of TFM toxicity in sea lamprey and rainbow trout is via uncoupling of oxidative phosphorylation, leading to impaired ATP production.

  17. An uncoupled multiphase approach towards modeling ice crystals in jet engines

    NASA Astrophysics Data System (ADS)

    Nilamdeen, Mohamed Shezad

    A recent series of high altitude turbofan engine malfunctions, characterized by flameout and sudden power losses have been reported in recent years. The source of these incidents has been hypothesized to be due to the presence of ice crystals at high altitudes. Ice crystals have been shown to have ballistic trajectories and consequently enter the core engine flow, without getting centrifuged out towards the engine bypass as droplets do. The crystals may melt as they move downstream to higher temperatures in successive stages, or hit a heated surface. The wetted surface may then act as an interface for further crystal impingement, which locally reduces the temperature and could lead to an ice accretion on the components. Ice can accrete to dangerously high levels, causing compressor surge due to blockage of the primary flowpath, vibrational instabilities due to load imbalances of ice on rotating components, mechanical damage of components downstream due to large shed ice fragments, or performance losses if ice enters the combustor, causing a decreased burner efficiency and an eventual flame-out. In order to provide a numerical tool to analyze such situations, FENSAP-ICE has been extended to model mixed-phase flows that combine air, water and ice crystals, and the related ice accretion. DROP3D has been generalized to calculate particle impingement, concentration, and field velocities in an uncoupled approach that neglects any phase change by assuming both ice crystals and supercooled droplets are in thermodynamic equilibrium. ICE3D then accounts for the contribution of ice crystals that stick and melt on an existing water-film and promote ice accretion. The extended ice crystal impingement and ice accretion model has been validated against test data from Cox and Co. and National Research Council icing tests conducted on a NACA0012 airfoil and unheated non-rotating cylinder respectively. The tests show a consistent agreement with respect to experimental profiles in

  18. Concise reviews: Assisted reproductive technologies to prevent transmission of mitochondrial DNA disease.

    PubMed

    Richardson, Jessica; Irving, Laura; Hyslop, Louise A; Choudhary, Meenakshi; Murdoch, Alison; Turnbull, Douglass M; Herbert, Mary

    2015-03-01

    While the fertilized egg inherits its nuclear DNA from both parents, the mitochondrial DNA is strictly maternally inherited. Cells contain multiple copies of mtDNA, each of which encodes 37 genes, which are essential for energy production by oxidative phosphorylation. Mutations can be present in all, or only in some copies of mtDNA. If present above a certain threshold, pathogenic mtDNA mutations can cause a range of debilitating and fatal diseases. Here, we provide an update of currently available options and new techniques under development to reduce the risk of transmitting mtDNA disease from mother to child. Preimplantation genetic diagnosis (PGD), a commonly used technique to detect mutations in nuclear DNA, is currently being offered to determine the mutation load of embryos produced by women who carry mtDNA mutations. The available evidence indicates that cells removed from an eight-cell embryo are predictive of the mutation load in the entire embryo, indicating that PGD provides an effective risk reduction strategy for women who produce embryos with low mutation loads. For those who do not, research is now focused on meiotic nuclear transplantation techniques to uncouple the inheritance of nuclear and mtDNA. These approaches include transplantation of any one of the products or female meiosis (meiosis II spindle, or either of the polar bodies) between oocytes, or the transplantation of pronuclei between fertilized eggs. In all cases, the transferred genetic material arises from a normal meiosis and should therefore, not be confused with cloning. The scientific progress and associated regulatory issues are discussed.

  19. Effective Temperature of Mutations

    NASA Astrophysics Data System (ADS)

    Derényi, Imre; Szöllősi, Gergely J.

    2015-02-01

    Biological macromolecules experience two seemingly very different types of noise acting on different time scales: (i) point mutations corresponding to changes in molecular sequence and (ii) thermal fluctuations. Examining the secondary structures of a large number of microRNA precursor sequences and model lattice proteins, we show that the effects of single point mutations are statistically indistinguishable from those of an increase in temperature by a few tens of kelvins. The existence of such an effective mutational temperature establishes a quantitative connection between robustness to genetic (mutational) and environmental (thermal) perturbations.

  20. Reproductive cycle of goats.

    PubMed

    Fatet, Alice; Pellicer-Rubio, Maria-Teresa; Leboeuf, Bernard

    2011-04-01

    Goats are spontaneously ovulating, polyoestrous animals. Oestrous cycles in goats are reviewed in this paper with a view to clarifying interactions between cyclical changes in tissues, hormones and behaviour. Reproduction in goats is described as seasonal; the onset and length of the breeding season is dependent on various factors such as latitude, climate, breed, physiological stage, presence of the male, breeding system and specifically photoperiod. In temperate regions, reproduction in goats is described as seasonal with breeding period in the fall and winter and important differences in seasonality between breeds and locations. In tropical regions, goats are considered continuous breeders; however, restricted food availability often causes prolonged anoestrous and anovulatory periods and reduced fertility and prolificacy. Different strategies of breeding management have been developed to meet the supply needs and expectations of consumers, since both meat and milk industries are subjected to growing demands for year-round production. Hormonal treatments, to synchronize oestrus and ovulation in combination with artificial insemination (AI) or natural mating, allow out-of-season breeding and the grouping of the kidding period. Photoperiodic treatments coupled with buck effect now allow hormone-free synchronization of ovulation but fertility results after AI are still behind those of hormonal treatments. The latter techniques are still under study and will help meeting the emerging social demand of reducing the use of hormones for the management of breeding systems.

  1. Human reproduction: current status.

    PubMed

    Izzo, Carlos Roberto; Monteleone, Pedro Augusto Araújo; Serafini, Paulo C

    2015-01-01

    The concern about the maintenance of the human species has existed since the earliest civilizations. Progress in the diagnosis and treatment of infertility has led to the development of assisted reproductive techniques (ART) which, along with the evolution of genetics and molecular biology studies, have contributed in a concrete way to the management of infertile couples. Classic in vitro fertilization was initially developed 35 years ago for the treatment of women with tubal blockage, however, it remains inaccessible to a significant proportion of infertile couples around the world. This can be explained by the lack of specialized clinics in some countries and by the high cost of the procedures. Efforts have been employed to increase the number of treatment cycles for assisted reproduction, as for example, the creation of low-cost programs. Even today, infertility remains a problem of global proportions, affecting millions of couples. The estimate of the incidence of infertility is uncertain, mainly because of the criteria used for its definition. This article aims to review the most important aspects, succinctly, regarding the incidence, etiology, and treatment options available to infertile couples.

  2. Smoking and reproduction.

    PubMed

    Lincoln, R

    1986-01-01

    2 of the 5 health warnings that must now appear on American cigarette packs and cigarette advertising refer to some of the increased hazards smoking entails for the woman and her unborn child. Yet, the myriad reproductive risks associated with smoking are little known or considered by the general public--or even by physicians--when compared with the dangers of lung cancer, heart attacks and emphysema. In an attempt to remedy that deficit, 8 government agencies sponsored the 1st International Conference on Smoking and Reproductive Health, held October 15-17, 1985 in San Francisco. Speaker after expert speaker connected smoking during pregnancy with increased risks of low birth weight, miscarriage, infant mortality and morbidity--including poorer health of surviving children up to at least age 3--ectopic pregnancy, infertility, menstrual disorders, early menopause, osteoporosis, cervical cancer and dysplasia, cardiovascular disease and placental abnormalities. Similarly, the conference participants documented the association of smoking among men with lower sperm count and increased prevalence of abnormal sperm. The following measures were urged at the closing statements of the conference: 1) an increased effort to inform doctors and health professionals of these findings; 2) increasing the tax on cigarettes, so that smokers would pay for their own health costs; 3) decreasing or eliminating government subsidies for growing tobacco, while helping growers make the transition to nontobacco crops; 4) making smoking cessation programs more widely available; 5) prohibiting the sale of cigarettes through vending machines; and 6) banning all smoking in the workplace.

  3. Reproduction and advances in reproductive studies in carnivores.

    PubMed

    Jewgenow, Katarina; Songsasen, Nucharin

    2014-01-01

    Reproductive mechanisms are extraordinarily diverse among species, even within the same phylogenetic clade. Due to this, it has been difficult to directly apply reproductive technologies developed in human and livestock to genetically manage ex situ wildlife, including carnivores. To date, more common, closely related species, e.g., domestic cats, dogs and ferrets have served as valuable models for developing reproductive technologies for managing rare, endangered carnivores. Artificial insemination and sperm cryopreservation have already been successfully used to manage ex situ populations in some carnivore species, such as the black-footed ferret, cheetah and giant panda. However, technologies aiming at preserving genetics of valuable females have not been fully developed in carnivores, due to the lack of fundamental knowledge about reproductive anatomy and physiology, gamete development, embryogenesis and cryopreservation. The present chapter is divided into two parts. The first part focuses on current knowledge about carnivore reproduction, with emphasis on species diversity in reproductive mechanisms. The second part highlights the progress in reproductive science and related technologies made during the last decade. In addition, we provide examples of how reproductive technologies can contribute to carnivore management and conservation. Although carnivores are comprised of 19 families, we will only focus our attention on four taxonomic groups, including felids, canids, ursids and mustelids.

  4. Gestational mutations in radiation carcinogenesis

    NASA Astrophysics Data System (ADS)

    Meza, R.; Luebeck, G.; Moolgavkar, S.

    Mutations in critical genes during gestation could increase substantially the risk of cancer. We examine the consequences of such mutations using the Luebeck-Moolgavkar model for colorectal cancer and the Lea-Coulson modification of the Luria-Delbruck model for the accumulation of mutations during gestation. When gestational mutation rates are high, such mutations make a significant contribution to cancer risk even for adult tumors. Furthermore, gestational mutations ocurring at distinct times during emryonic developmemt lead to substantially different numbers of mutated cells at birth, with early mutations leading to a large number (jackpots) of mutated cells at birth and mutation occurring late leading to only a few mutated cells. Thus gestational mutations could confer considerable heterogeneity of the risk of cancer. If the fetus is exposed to an environmental mutagen, such as ionizing radiation, the gestational mutation rate would be expected to increase. We examine the consequences of such exposures during gestation on the subsequent development of cancer.

  5. Examination of the requirement for ucp-4, a putative homolog of mammalian uncoupling proteins, for stress tolerance and longevity in C. elegans.

    PubMed

    Iser, Wendy B; Kim, Daemyung; Bachman, Eric; Wolkow, Catherine

    2005-10-01

    Reactive oxygen species (ROS) are generated by mitochondrial respiration and can react with and damage cellular components. According to the free radical theory of aging, oxidative damage from mitochondrial ROS is a major cause of cellular decline during aging. Mitochondrial uncoupling proteins (UCPs) uncouple ATP production from electron transport and can be stimulated by free radicals, suggesting UCPs may perform a cytoprotective function. The nematode, Caenorhabditis elegans, contains one UCP-like protein, encoded by the ucp-4 gene. We have investigated the genetic requirement for ucp-4 in normal aging and stress resistance. Consistent with the hypothesis that ucp-4 encodes a putative uncoupling protein, animals lacking ucp-4 function contained elevated ATP levels. However, the absence of ucp-4 function did not affect adult lifespan or survival in the presence of thermal or oxidative stress. Together, these results demonstrate that ucp-4 is a negative regulator of ATP production in C. elegans, but is not required for normal lifespan.

  6. Evolution in eggs and phases: experimental evolution of fecundity and reproductive timing in Caenorhabditis elegans

    PubMed Central

    2016-01-01

    To examine the role of natural selection in fecundity in a variety of Caenorhabditis elegans genetic backgrounds, we used an experimental evolution protocol to evolve 14 distinct genetic strains over 15–20 generations. We were able to generate 790 distinct genealogies, which provided information on both the effects of natural selection and the evolvability of each strain. Among these genotypes are a wild-type (N2) and a collection of mutants with targeted mutations in the daf-c, daf-d and AMPK pathways. Differences are observed in reproductive fitness along with related changes in reproductive timing. The majority of selective effects on fecundity occur during the first few generations of evolution, while the negative selection for reproductive timing occurs on longer time scales. In addition, positive selection on fecundity results in positive and negative strain-dependent selection on reproductive timing. A derivative of population size per generation called reproductive carry-over (RCO) may be informative in terms of developmental selection. While these findings transcend mutations in a specific gene, changes in the RCO measure may nevertheless be products of selection. In conclusion, the broader implications of these findings are discussed, particularly in the context of genotype-fitness maps and the role of uncharacterized mutations in individual variation and evolvability. PMID:28018635

  7. The cytotoxic effects of brown Cuban propolis depend on the nemorosone content and may be mediated by mitochondrial uncoupling.

    PubMed

    Pardo Andreu, Gilberto L; Reis, Felippe H Z; Dalalio, Felipe M; Nuñez Figueredo, Yanier; Cuesta Rubio, Osmany; Uyemura, Sergio A; Curti, Carlos; Alberici, Luciane C

    2015-02-25

    Three main types of Cuban propolis directly related to their secondary metabolite composition have been identified: brown, red and yellow propolis; the former is majoritarian and is characterized by the presence of nemorosone. In this study, brown Cuban propolis extracts were found cytotoxic against HepG2 cells and primary rat hepatocytes, in close association with the nemorosone contents. In mitochondria isolated from rat liver the extracts displayed uncoupling activity, which was demonstrated by the increase in succinate-supported state 4 respiration rates, dissipation of mitochondrial membrane potential, Ca(2+) release from Ca(2+)-loaded mitochondria, and a marked ATP depletion. As in cells, the degree of such mitotoxic events was closely correlated to the nemorosone content. The propolis extracts that do not contain nemorosone were neither cytotoxic nor mitotoxic, except R-29, whose detrimental effect upon cells and mitochondria could be mediated by its isoflavonoids and chalcones components, well known mitochondrial uncouplers. Our results at least partly unravel the cytotoxic mechanism of Cuban propolis, particularly regarding brown propolis, and raise concerns about the toxicological implication of Cuban propolis consumption.

  8. The mitochondrial uncoupler 2,4-dinitrophenol attenuates tissue damage and improves mitochondrial homeostasis following transient focal cerebral ischemia.

    PubMed

    Korde, Amit S; Pettigrew, L Creed; Craddock, Susan D; Maragos, William F

    2005-09-01

    Ischemic stroke is caused by acute neuronal degeneration provoked by interruption of cerebral blood flow. Although the mechanisms contributing to ischemic neuronal degeneration are myriad, mitochondrial dysfunction is now recognized as a pivotal event that can lead to either necrotic or apoptotic neuronal death. Lack of suitable 'upstream' targets to prevent loss of mitochondrial homeostasis has, so far, restricted the development of mechanistically based interventions to promote neuronal survival. Here, we show that the uncoupling agent 2,4 dinitrophenol (DNP) reduces infarct volume approximately 40% in a model of focal ischemia-reperfusion injury in the rat brain. The mechanism of protection involves an early decrease in mitochondrial reactive oxygen species formation and calcium uptake leading to improved mitochondrial function and a reduction in the release of cytochrome c into the cytoplasm. The observed effects of DNP were not associated with enhanced cerebral perfusion. These findings indicate that compounds with uncoupling properties may confer neuroprotection through a mechanism involving stabilization of mitochondrial function.

  9. Down-regulation of uncoupling protein-3 and -2 by thiazolidinediones in C2C12 myotubes.

    PubMed

    Cabrero, A; Alegret, M; Sánchez, R M; Adzet, T; Laguna, J C; Vázquez, M

    2000-10-27

    Uncoupling proteins (UCPs) are mitochondrial membrane proton transporters that uncouple respiration from oxidative phosphorylation by dissipating the proton gradient across the membrane. We studied the direct effect of several peroxisome proliferator-activated receptor (PPAR) ligands on UCP-3 and UCP-2 mRNA expression in C2C12 myotubes for 24 h. In the absence of exogenous fatty acids, treatment of C2C12 cells with a selective PPARalpha activator (Wy-14,643) or a non-selective PPAR activator (bezafibrate) did not affect the expression of UCP-3 mRNA levels, whereas UCP-2 expression was slightly increased. In contrast, troglitazone, a thiazolidinedione which selectively activates PPARgamma, strongly decreased UCP-3 and UCP-2 mRNA levels. Another thiazolidinedione, ciglitazone, had the same effect, but to a lower extent, suggesting that PPARgamma activation is involved. Further, the presence of 0.5 mM oleic acid strongly increased UCP-3 mRNA levels and troglitazone addition failed to block the effect of this fatty acid. The drop in UCP expression after thiazolidinedione treatment correlated well with a reduction in PPARalpha mRNA levels produced by this drug, linking the reduction in PPARalpha mRNA levels with the down-regulation of UCP mRNA in C2C12 myotubes after thiazolidinedione treatment.

  10. Polarisabilities of long conjugated chain molecules with density functional response methods: The role of coupled and uncoupled response

    SciTech Connect

    Heßelmann, Andreas

    2015-04-28

    The longitudinal component of the dipole-dipole polarisability of polyacetylene molecules containing 4 to 20 carbon atoms has been calculated with density-functional theory (DFT) response methods. In order to analyse the effect of the uncoupled and coupled contributions to the response matrix, a number of different sets of orbitals were combined with different approximations for the Hessian matrix. This revealed a surprising result: a qualitatively correct increase of the polarisability with the chain length can already be reproduced on the uncoupled level if the response matrix is constructed from Hartree-Fock (HF) or exact-exchange (EXX) DFT orbitals. The nonlocal HF and the local EXX exchange potentials both produce a displacement of charge from the chain ends to the centre of the polyacetylene molecule compared to DFT methods using standard exchange-correlation potentials. In this way, the reduced increase of the transition dipole moments along the molecular axis counteracts the decrease of the occupied-virtual orbital energy gaps and leads to a linear dependence of the polarisabilities (normalised by the number of carbon atoms) on the chain length. A new DFT response approach is tested which utilises unitary transformed Hartree-Fock orbitals as input and which resolves the failure of standard DFT response methods.

  11. Up-regulation of muscle uncoupling protein 3 gene expression by calcium channel blocker, benidipine hydrochloride in rats.

    PubMed

    Sakane, Naoki; Kotani, Kazuhiko; Hioki, Chizuko; Yoshida, Toshihide; Kawada, Teruo

    2007-12-01

    To examine whether benidipine hydrochloride, one of the calcium channel blockers, up-regulate uncoupling protein 3 (UCP3) expression in two skeletal muscles (gastrocnemius and soleus) in rats. Wistar rats were treated orally with benidipine hydrochloride at 4 mg/kg for 7 days. Blood pressure was measured after 4 days. At the end of experiments, the rats were weighed, and brown adipose tissue (BAT) and skeletal muscles (gastrocnemius and soleus muscles) were removed. The mRNA levels of uncoupling protein 1 (UCP1) and UCP3 were measured using the real-time quantitative reverse transcription-polymerase chain reaction method. Benidipine reduced body weight and also had a hypotensive effect. In rats treated with benidipine, UCP1 mRNA levels were significantly increased 1.4-fold in BAT, and UCP3 mRNA levels in BAT and gastrocnemius muscle were significantly increased 1.7 and 3.0-fold, respectively, compared with the control rats. There was no difference in UCP3 mRNA levels in soleus muscle between the two groups. We concluded that benidipine up-regulates not only UCP1 gene expression in BAT but also UCP3 gene expression in BAT and gastrocnemius muscle, which may contribute to thermogenesis in rats.

  12. Functional coexpression of the mitochondrial alternative oxidase and uncoupling protein underlies thermoregulation in the thermogenic florets of skunk cabbage.

    PubMed

    Onda, Yoshihiko; Kato, Yoshiaki; Abe, Yukie; Ito, Takanori; Morohashi, Miyuki; Ito, Yuka; Ichikawa, Megumi; Matsukawa, Kazushige; Kakizaki, Yusuke; Koiwa, Hiroyuki; Ito, Kikukatsu

    2008-02-01

    Two distinct mitochondrial energy dissipating systems, alternative oxidase (AOX) and uncoupling protein (UCP), have been implicated as crucial components of thermogenesis in plants and animals, respectively. To further clarify the physiological roles of AOX and UCP during homeothermic heat production in the thermogenic skunk cabbage (Symplocarpus renifolius), we identified the thermogenic cells and performed expression and functional analyses of these genes in this organism. Thermographic analysis combined with in situ hybridization revealed that the putative thermogenic cells surround the stamens in the florets of skunk cabbage and coexpress transcripts for SrAOX, encoding Symplocarpus AOX, and SrUCPb, encoding a novel UCP that lacks a fifth transmembrane segment. Mitochondria isolated from the thermogenic florets exhibited substantial linoleic acid (LA)-inducible uncoupling activities. Moreover, our results demonstrate that LA is capable of inhibiting the mitochondrial AOX pathway, whereas the proportion of pyruvate-stimulated AOX capacity was not significantly affected by LA. Intriguingly, the protein expression levels for SrAOX and SrUCPb were unaffected even when the ambient air temperatures increased from 10.3 degrees C to 23.1 degrees C or from 8.3 degrees C to 24.9 degrees C. Thus, our results suggest that functional coexpression of AOX and UCP underlies the molecular basis of heat production, and that posttranslational modifications of these proteins play a crucial role in regulating homeothermic heat production under conditions of natural ambient temperature fluctuations in skunk cabbage.

  13. The uncoupling effect of diacylglycerol on gap junctional communication of mammalian heart cells is independent of protein kinase C.

    PubMed

    Bastide, B; Hervé, J C; Délèze, J

    1994-10-01

    Possible regulatory effects on cell-to-cell communication of a synthetic diacylglycerol, an activator of protein kinase C (PKC), were examined in pairs of synchronously beating ventricular myocytes of neonatal rats in primary culture. Junctional communication was estimated by measuring either the rate constant of dye diffusion, with the fluorescence recovery after photobleaching technique, or the cell-to-cell electrical conductance with a double whole-cell voltage clamp. The addition of a freshly prepared emulsion of 1-oleoyl-2-acetyl-sn-glycerol (OAG, 100 micrograms/ml), either in the bath or in the solution filling the patch pipet, was seen to interrupt intercellular communication within approximately 8 to 10 min. This effect is neither mimicked by stimulation of PKC by a phorbol ester, nor prevented by PKC inhibitors, making it unlikely that, in these cells, PKC activation could induce intercellular uncoupling. During OAG exposures, the intracellular calcium concentration was very modestly increased (by a factor 1.5 to 2), which does not suffice to account for uncoupling. OAG might trigger interruption of cell-to-cell communication by a mechanism analogous to that of other lipophilic molecules (such as aliphatic alcohols or long chain unsaturated fatty acids) which interfere with gap junctions.

  14. Identification and characterization of uncoupling protein 4 in fat body and muscle mitochondria from the cockroach Gromphadorhina cocquereliana.

    PubMed

    Slocinska, Malgorzata; Antos-Krzeminska, Nina; Rosinski, Grzegorz; Jarmuszkiewicz, Wieslawa

    2011-12-01

    We have identified and characterized an uncoupling protein in mitochondria isolated from leg muscle and from fat body, an insect analogue tissue of mammalian liver and adipose tissue, of the cockroach Gromphadorhina coquereliana (GcUCP). This is the first functional characterization of UCP activity in isolated insect mitochondria. Bioenergetic studies clearly indicate UCP function in both insect tissues. In resting (non-phosphorylating) mitochondria, cockroach GcUCP activity was stimulated by the addition of micromolar concentrations of palmitic acid and inhibited by the purine nucleotide GTP. Moreover, in phosphorylating mitochondria, GcUCP activity was able to divert energy from oxidative phosphorylation. Functional studies indicate a higher activity of GcUCP-mediated uncoupling in cockroach muscle mitochondria compared to fat body mitochondria. GcUCP activation by palmitic acid resulted in a decrease in superoxide anion production, suggesting that protection against mitochondrial oxidative stress may be a physiological role of UCPs in insects. GcUCP protein was immunodetected using antibodies raised against human UCP4 as a single band of around 36 kDa. GcUCP protein expression in cockroach muscle mitochondria was significantly higher compared to mitochondria isolated from fat body. LC-MS/MS analyses revealed 100% sequence identities for peptides obtained from GcUCP to UCP4 isoforms from D. melanogaster (the highest homology), human, rat or other insect mitochondria. Therefore, it can be proposed that cockroach GcUCP corresponds to the UCP4 isoforms of other animals.

  15. Phthalates as developmental reproductive toxicants

    EPA Science Inventory

    PE are a large family ofcompounds used in a wide array ofconsumer, industrial and medical products. Studies have shown that in utero treatment with PE such as diethyl hexyl phthalate (DEHP) during the critical period offetal reproductive development produced male reproductive mal...

  16. Porcine Reproductive and Respiratory Syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Porcine reproductive and respiratory syndrome (PRRS) is the number one disease affecting US swine. It is caused by the PRRS virus (PRRSV) and is recognized as reproductive failure of sows and respiratory problems of piglets and growing pigs. This book chapter is part of the Office of International E...

  17. Assisted reproductive practice: religious perspectives.

    PubMed

    Schenker, Joscph G

    2005-03-01

    It is important to those who practise reproductive techniques to learn about different religious perspectives related to reproductive health problems. Religious groups are active in influencing the public regarding bioethical positions, and this is particularly evident with issues concerning procreation, abortion and infertility therapy. The Jewish attitude towards procreation is derived from the first commandment of God to Adam to 'Be fruitful and multiply'. Judaism allows the practice of all techniques of assisted reproduction when the oocyte and spermatozoon originate from the wife and husband respectively. The attitude toward reproductive practice varies among Christian groups. While assisted reproduction is not accepted by the Vatican, it may be practised by Protestant, Anglican and other denominations. According to traditional Christian views, beginning at conception, the embryo has moral status as a human being, and thus most assisted reproductive technologies are forbidden. According to Islam, the procedures of IVF and embryo transfer are acceptable, although they can be performed only for husband and wife. Developments in science and technology and corresponding clinical applications raise new religious questions, often without clear answers. The role of theology in bioethics is integral to clarify perceived attitudes toward these developments for different religious communities. This paper presents the attitude of monotheistic religions to therapeutic procedures, such as IVF-embryo transfer, spermatozoa, oocytes, embryo donation, cryopreservation of genetic material, surrogacy, posthumous reproduction, gender preselection, reproductive and therapeutic cloning.

  18. Male reproductive health and yoga

    PubMed Central

    Sengupta, Pallav; Chaudhuri, Prasenjit; Bhattacharya, Koushik

    2013-01-01

    Now-a-days reproductive health problems along with infertility in male is very often observed. Various Assisted Reproductive Technologies have been introduced to solve the problem, but common people cannot afford the cost of such procedures. Various ayurvedic and other alternative medicines, along with regular yoga practice are proven to be not only effective to enhance the reproductive health in men to produce a successful pregnancy, but also to regulate sexual desire in men who practice celibacy. Yoga is reported to reduce stress and anxiety, improve autonomic functions by triggering neurohormonal mechanisms by the suppression of sympathetic activity, and even, today, several reports suggested regular yoga practice from childhood is beneficial for reproductive health. In this regard the present review is aimed to provide all the necessary information regarding the effectiveness of yoga practice to have a better reproductive health and to prevent infertility. PMID:23930026

  19. Genomic imprinting and reproduction.

    PubMed

    Swales, A K E; Spears, N

    2005-10-01

    Genomic imprinting is the parent-of-origin specific gene expression which is a vital mechanism through both development and adult life. One of the key elements of the imprinting mechanism is DNA methylation, controlled by DNA methyltransferase enzymes. Germ cells undergo reprogramming to ensure that sex-specific genomic imprinting is initiated, thus allowing normal embryo development to progress after fertilisation. In some cases, errors in genomic imprinting are embryo lethal while in others they lead to developmental disorders and disease. Recent studies have suggested a link between the use of assisted reproductive techniques and an increase in normally rare imprinting disorders. A greater understanding of the mechanisms of genomic imprinting and the factors that influence them are important in assessing the safety of these techniques.

  20. Prostaglandins in reproductive physiology*

    PubMed Central

    Craig, Gillian M.

    1975-01-01

    The role of prostaglandins in reproductive physiology is reviewed with particular emphasis on their possible importance in ovulation in humans. A possible interaction between gonadal steroids, biogenic amines and prostaglandins at hypothalamic-pituitary level, in relation to the release of luteinizing hormone releasing factor, and LH, is discussed. Anomalies regarding the role of oestrogens in LH release are noted, and it is suggested that high oestrogen levels may release prostaglandins from the uterus and/or centrally in humans, in connection with the mid-cycle LH surge and ovulation. A hypothetical role for prostaglandins in sexual behaviour and premenstrual changes is discussed. The hypotheses open up new areas for clinical research to establish the role of prostaglandins in human endocrinology. The need for measurement of prostaglandin metabolites in blood and urine is emphasized. PMID:1089972

  1. Mutation and premating isolation

    NASA Technical Reports Server (NTRS)

    Woodruff, R. C.; Thompson, J. N. Jr

    2002-01-01

    While premating isolation might be traceable to different genetic mechanisms in different species, evidence supports the idea that as few as one or two genes may often be sufficient to initiate isolation. Thus, new mutation can theoretically play a key role in the process. But it has long been thought that a new isolation mutation would fail, because there would be no other individuals for the isolation-mutation-carrier to mate with. We now realize that premeiotic mutations are very common and will yield a cluster of progeny carrying the same new mutant allele. In this paper, we discuss the evidence for genetically simple premating isolation barriers and the role that clusters of an isolation mutation may play in initiating allopatric, and even sympatric, species divisions.

  2. Mutation and premating isolation.

    PubMed

    Woodruff, R C; Thompson, J N

    2002-11-01

    While premating isolation might be traceable to different genetic mechanisms in different species, evidence supports the idea that as few as one or two genes may often be sufficient to initiate isolation. Thus, new mutation can theoretically play a key role in the process. But it has long been thought that a new isolation mutation would fail, because there would be no other individuals for the isolation-mutation-carrier to mate with. We now realize that premeiotic mutations are very common and will yield a cluster of progeny carrying the same new mutant allele. In this paper, we discuss the evidence for genetically simple premating isolation barriers and the role that clusters of an isolation mutation may play in initiating allopatric, and even sympatric, species divisions.

  3. Reproductive health in adolescence.

    PubMed

    Friedman, H L

    1994-01-01

    The health and well-being of adolescents is closely intertwined with their physical, psychological and social development, but this is put at risk by sexual and reproductive health hazards which are increasing in much of the world. Changes in population growth and distribution, the rise of telecommunications, the increase in travel and a decline in the family, as well as a generally earlier start of menarche and later age of marriage are contributing to an increase in unprotected sexual relations before marriage. This, combined with risks from early marriage, result in too early or unwanted pregnancy and childbirth, induced abortion in hazardous circumstances and sexually transmitted diseases, including HIV infection leading to AIDS. With more than half the world's population below the age of 25, and 4 out of 5 young people living in developing countries with inadequate access to prevention and care, there is an urgent need for action. Young women are particularly vulnerable. Mortality and morbidity from early pregnancy whether ending in childbirth or abortion, is much higher for the younger adolescent. Young women, especially those who have less formal education, are more vulnerable to pressures for marriage, or sexual relations before marriage, often with older men. Young people generally lack adequate knowledge about their own development and information on how to get help. Those who could help are rarely trained for working with adolescents, and services which are generally designed for adults or children often deter young people from getting help when they most need it. Policy and legislation relating to sexual and reproductive health issues are often contradictory, and unclear or unenforced.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Bone Morphogenic Protein 4 Mediates NOX1-Dependent eNOS Uncoupling, Endothelial Dysfunction, and COX2 Induction in Type 2 Diabetes Mellitus

    PubMed Central

    Youn, Ji-Youn; Zhou, Jun

    2015-01-01

    We have recently shown that angiotensin II-mediated uncoupling of endothelial nitric oxide synthase (eNOS) contributes to endothelial dysfunction in streptozotocin-induced type 1 diabetes mellitus. However, it has remained unclear whether and how eNOS uncoupling occurs in type 2 diabetes mellitus (T2DM) and the consequences of such in regulating vascular function. Here we investigated a role of bone morphogenic protein (BMP)-4 in mediating eNOS uncoupling, endothelial dysfunction, and inflammation in db/db mice. Circulating levels of BMP4 were markedly elevated in db/db mice but not in mice with type 1 diabetes mellitus, in which angiotensin II levels were significantly increased. Infusion of BMP4 antagonist noggin into db/db mice (15 μg/kg/day, 4 weeks) abolished eNOS uncoupling activity while restoring tetrahydrobiopterin (H4B) bioavailability. The impaired endothelium-dependent vasorelaxation in db/db aortas was significantly improved by noggin infusion. Exposure of aortic endothelial cells to BMP4 (50 ng/mL, 24 hours) resulted in eNOS uncoupling, which was attenuated by H4B precursor sepiapterin or small interfering RNA silencing nicotinamide adenine dinucleotide phosphate oxidase isoform 1 (NOX1). Interestingly, BMP4-dependent NOX1 up-regulation was abrogated by sepiapterin, implicating a NOX1-uncoupled eNOS-NOX1 feed-forward loop. BMP4 induction of cyclooxygenase 2 (COX2) expression and vascular cell adhesion protein 1 was found in db/db mice. Consistently, COX2 was up-regulated by BMP4 in endothelial cells, which was attenuated by sepiapterin, implicating an upstream role of eNOS uncoupling in COX2-mediated inflammatory activation. Taken together, our data for the first time reveal a novel role of BMP4 in inducing NOX1-dependent eNOS uncoupling in T2DM, which may promote development of novel therapeutics restoring endothelial function in T2DM. PMID:26121233

  5. Reproductive Rights or Reproductive Justice? Lessons from Argentina.

    PubMed

    Morgan, Lynn

    2015-06-11

    Argentine sexual and reproductive rights activists insist on using the language and framework of "human rights," even when many reproductive rights activists in the US and elsewhere now prefer the framework of "reproductive justice." Reflecting on conversations with Argentine feminist anthropologists, social scientists, and reproductive rights activists, this paper analyzes why the Argentine movement to legalize abortion relies on the contested concept of human rights. Its conclusion that "women's rights are human rights" is a powerful claim in post-dictatorship politics where abortion is not yet legal and the full scope of women's rights has yet to be included in the government's human rights agenda. Argentine feminist human rights activists have long been attentive to the ways that social class, gender, migration, and racism intersect with reproduction. Because their government respects and responds to a human rights framework, however, they have not felt it necessary--as U.S. feminists have--to invent a new notion of reproductive justice in order to be heard. Given the increasing popularity of reproductive justice in health and human rights, the Argentine case shows that rights-based claims can still be politically useful when a State values the concept of human rights.

  6. Performance analysis of coupled and uncoupled hydrodynamic and wave models in the northern Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Busca, Claudia; Coluccelli, Alessandro; Valentini, Andrea; Benetazzo, Alvise; Bonaldo, Davide; Bortoluzzi, Giovanni; Carniel, Sandro; Falcieri, Francesco; Paccagnella, Tiziana; Ravaioli, Mariangela; Riminucci, Francesco; Sclavo, Mauro; Russo, Aniello

    2014-05-01

    implementations currently running, there is the need to: assess their forecast skill; quantitatively evaluate if the new, coupled systems provide better performances than the uncoupled ones; individuate weaknesses and eventual time trends in the forecasts quality, their causes, and actions to improve the systems. This work presents a first effort aimed to satisfy such need. We employ in situ and remote sensing data collected starting from November 2011, in particular: temperature and salinity data collected during several oceanographic cruises, sea surface temperature derived from satellite measurements, waves, sea level and currents measurements from oceanographic buoys and platforms; specific observational activities funded by the Italian Flagship project RITMARE allowed to collect new measurements in NA coastal areas. Data-model comparison is firstly performed with exploratory qualitative comparisons in order to highlight discrepancies between observed and forecasted data, then a quantitative comparison is performed through the computation of standard statistical scores (root mean square error, mean error, mean bias, standard deviation, cross-correlation). Results are plotted in Taylor diagrams for a rapid evaluation of the overall performances.

  7. Caste load and the evolution of reproductive skew.

    PubMed

    Holman, Luke

    2014-01-01

    Reproductive skew theory seeks to explain how reproduction is divided among group members in animal societies. Existing theory is framed almost entirely in terms of selection, though nonadaptive processes must also play some role in the evolution of reproductive skew. Here I propose that a genetic correlation between helper fecundity and breeder fecundity may frequently constrain the evolution of reproductive skew. This constraint is part of a wider phenomenon that I term "caste load," which is defined as the decline in mean fitness caused by caste-specific selection pressures, that is, differential selection on breeding and nonbreeding individuals. I elaborate the caste load hypothesis using quantitative and population genetic arguments and individual-based simulations. Although selection can sometimes erode genetic correlations and resolve caste load, this may be constrained when mutations have similar pleiotropic effects on breeder and helper traits. I document evidence for caste load, identify putative genomic adaptations to it, and suggest future research directions. The models highlight the value of considering adaptation within the boundaries imposed by genetic architecture and incidentally reaffirm that monogamy promotes the evolutionary transition to eusociality.

  8. The effects of kisspeptin in human reproductive function - therapeutic implications.

    PubMed

    Ratnasabapathy, Risheka; Dhillo, Waljit S

    2013-03-01

    Kisspeptin is a 54-amino acid peptide which is encoded by the KiSS-1 gene and activates the G protein-coupled receptor GPR54. Evidence suggests that this system is a key regulator of mammalian and human reproduction. Animal studies have shown that GPR54-deficient mice have abnormal sexual development. Central and peripheral administration of kisspeptin stimulates the hypothalamic-pituitary-gonadal (HPG) axis whilst pre-administration of a gonadotrophin releasing hormone (GnRH) antagonist abolishes this effect. In humans, inactivating GPR54 mutations cause normosmic hypogonadotrophic hypogonadism whilst activation of GPR54 signalling is associated with premature puberty. In healthy human volunteers, the acute intravenous administration of kisspeptin potently increases plasma luteinising hormone (LH) levels and significantly increases plasma follicle stimulating hormone (FSH) and testosterone without side effects in both males and in females particularly in the preovulatatory phase of the menstrual cycle. In infertility due to hypothalamic amenorrhoea acute administration of kisspeptin results in stimulation of reproductive hormones. The kisspeptin/GPR54 system therefore appears to play an important role in the regulation of reproduction in humans. Hence kisspeptin has potential as a novel tool for the manipulation of the HPG axis and treatment of infertility in humans. This review discusses the evidence highlighting kisspeptin's key role in human reproduction.

  9. The Mahabharata and reproductive endocrinology

    PubMed Central

    Kalra, Bharti; Baruah, Manash P.; Kalra, Sanjay

    2016-01-01

    This communication approaches the Mahabharata through the prism of reproductive endocrinology. Descriptions of episodes related to reproduction are listed here, to provide fodder for the endocrinologically minded brain. The cases described here are perhaps, the first documented observations of fetal orgasm, pseudocyesis and assisted reproductive technology, including assisted insemination by donor, induction of ovulation, and in vitro fertilization as well as precocious growth and intersex. We do not presume to offer a definite explanation for these interesting episodes from the Mahabharata. We do, however, hope to stimulate interest in ancient Indian literature, and encourage a literary “forensic endocrine” analysis of events relevant to our specialty. PMID:27186562

  10. The optimal dosage and window of opportunity to maintain mitochondrial homeostasis following traumatic brain injury using the uncoupler FCCP.

    PubMed

    Pandya, Jignesh D; Pauly, James R; Sullivan, Patrick G

    2009-08-01

    Experimental traumatic brain injury (TBI) leads to a rapid and extensive necrosis at the primary site of injury that appears to be driven in part by significant mitochondrial dysfunction. The present study is based on the hypothesis that TBI-induced, aberrant glutamate release increases mitochondrial Ca(2+) cycling/overload ultimately leading to mitochondrial damage. Previous work from our laboratory demonstrates that mitochondrial uncoupling during the acute phases of TBI-induced excitotoxicity can reduce mitochondrial Ca(2+) uptake (cycling), ROS production and mitochondrial damage resulting in neuroprotection and improved behavioral outcome. The current study was designed to determine the optimal dosage and therapeutic window of opportunity for the potent mitochondrial uncoupler FCCP following moderate TBI. For this study, we used young adult male Sprague-Dawley rats (300-350 g); either sham-operated or moderately (1.5 mm) injured using the controlled cortical impactor (CCI) model of TBI. In the first set of studies animals were injected with either vehicle (100% DMSO) or different concentrations of FCCP (0.5, 1, 2.5 and 5 mg/kg in 100% DMSO) intraperitoneally at 5 min post-injury; tested behaviorally at 10 days and cortical sparing assessed at 18 days post-injury. The results demonstrate that of all the dosages tested, 2.5 mg/kg rendered the maximum improvement in behavioral outcomes and tissue spared. Using this optimal dose (2.5 mg/kg) and time point for intervention (5 min post-injury), we assessed mitochondrial bioenergetics and mitochondrial structural integrity 24 h post-injury. Furthermore, using this dosage we assessed mitochondrial bioenergetics and Ca(2+) loading at 3 and 6 h post-injury to further verify our target mechanism and establish these assessments as a valid endpoint to use as a means to determine the therapeutic window of FCCP. To begin to address the window of opportunity for maintaining mitochondrial homeostasis, the optimal dose of FCCP

  11. The role of syncytins in human reproduction and reproductive organ cancers.

    PubMed

    Soygur, Bikem; Sati, Leyla

    2016-11-01

    Human life begins with sperm and oocyte fusion. After fertilization, various fusion events occur during human embryogenesis and morphogenesis. For example, the fusion of trophoblastic cells constitutes a key process for normal placental development. Fusion in the placenta is facilitated by syncytin 1 and syncytin 2. These syncytins arose from retroviral sequences that entered the primate genome 25 million and more than 40 million years ago respectively. About 8% of the human genome consists of similar human endogenous retroviral (HERVs) sequences. Many are inactive because of mutations or deletions. However, the role of the few that remain transcriptionally active has not been fully elucidated. Syncytin proteins maintain cell-cell fusogenic activity based on ENV: gene-mediated viral cell entry. In this review, we summarize how syncytins and their receptors are involved in fusion events during human reproduction. The significance of syncytins in tumorigenesis is also discussed.

  12. Genetic (Co)Variation for Life Span in Rhabditid Nematodes: Role of Mutation, Selection, and History

    PubMed Central

    Upadhyay, Ambuj; Salomon, Matthew P.; Grigaltchik, Veronica; Baer, Charles F.

    2009-01-01

    The evolutionary mechanisms maintaining genetic variation in life span, particularly post-reproductive life span, are poorly understood. We characterized the effects of spontaneous mutations on life span in the rhabditid nematodes Caenorhabditis elegans and C. briggsae and standing genetic variance for life span and correlation of life span with fitness in C. briggsae. Mutations decreased mean life span, a signature of directional selection. Mutational correlations between life span and fitness were consistently positive. The average selection coefficient against new mutations in C. briggsae was approximately 2% when homozygous. The pattern of phylogeographic variation in life span is inconsistent with global mutation–selection balance (MSB), but MSB appears to hold at the local level. Standing genetic correlations in C. briggsae reflect mutational correlations at a local scale but not at a broad phylogeographic level. At the local scale, results are broadly consistent with predictions of the “mutation accumulation” hypothesis for the evolution of aging. PMID:19671885

  13. Reproductive rights and responsibilities.

    PubMed

    Oliviera, R D

    1994-01-01

    Rosiska Darcy Oliviera, Executive Secretary of the Coalition of Brazilian Women from Non-governmental Organizations for Population and Environment, stresses the need to view population control as a political problem rather than just a technical problem of demographic organization. At present, science, technology, and capital separate the work in much the same way that the master slave relationship of colonialist times did. The vast majority of the excluded are from developing countries in the South and, from a market perspective, these outcasts serve no purpose to global processes. Relegated to the margins of society, outcasts are often forced to turn to illegal activities such as drug trafficking and prostitution to survive, and these behaviors are used to bolster racist ideology. Improving the quality of life for all men and women requires a global alliance to overcome this social apartheid. If women are to exercise their reproductive rights, women's health programs must extend their focus beyond contraception to include education that empowers women to make real choices and a material base that permits access to a spectrum of safe methods.

  14. Fungal Infection Increases the Rate of Somatic Mutation in Scots Pine (Pinus sylvestris L.).

    PubMed

    Ranade, Sonali Sachin; Ganea, Laura-Stefana; Razzak, Abdur M; García Gil, M R

    2015-01-01

    Somatic mutations are transmitted during mitosis in developing somatic tissue. Somatic cells bearing the mutations can develop into reproductive (germ) cells and the somatic mutations are then passed on to the next generation of plants. Somatic mutations are a source of variation essential to evolve new defense strategies and adapt to the environment. Stem rust disease in Scots pine has a negative effect on wood quality, and thus adversely affects the economy. It is caused by the 2 most destructive fungal species in Scandinavia: Peridermium pini and Cronartium flaccidum. We studied nuclear genome stability in Scots pine under biotic stress (fungus-infected, 22 trees) compared to a control population (plantation, 20 trees). Stability was assessed as accumulation of new somatic mutations in 10 microsatellite loci selected for genotyping. Microsatellites are widely used as molecular markers in population genetics studies of plants, and are particularly used for detection of somatic mutations as their rate of mutation is of a much higher magnitude when compared with other DNA markers. We report double the rate of somatic mutation per locus in the fungus-infected trees (4.8×10(-3) mutations per locus), as compared to the controls (2.0×10(-3) mutations per locus) when individual samples were analyzed at 10 different microsatellite markers. Pearson's chi-squared test indicated a significant effect of the fungal infection which increased the number of mutations in the fungus-infected trees (χ(2) = 12.9883, df = 1, P = 0.0003134).

  15. Inhibition of ROS production through mitochondria-targeted antioxidant and mitochondrial uncoupling increases post-thaw sperm viability in yellow catfish.

    PubMed

    Fang, Lu; Bai, Chenglian; Chen, Yuanhong; Dai, Jun; Xiang, Yang; Ji, Xiaoping; Huang, Changjiang; Dong, Qiaoxiang

    2014-12-01

    Reactive oxygen species (ROS) are one of the main causes for decreased viability in cryopreserved sperm. Many studies have reported the beneficial effect of antioxidant supplements in freezing media for post-thaw sperm quality. In the present study, we explored two new approaches of ROS inhibition in sperm cryopreservation of yellow catfish, namely mitochondrial-targeted antioxidant and metabolic modulator targeting mitochondrial uncoupling pathways. Our study revealed that addition of MitoQ, a compound designed to deliver ubiquinone into mitochondria, significantly decreased ROS production, as well as lipid peroxidation, and increased post-thaw viability. Similarly, sperm incubated with 2,4-dinitrophenol (DNP), a chemical protonophore that induces mitochondrial uncoupling, also had reduced ROS production, as well as lipid peroxidation, and increased post-thaw sperm viability. Conversely, activation of uncoupling protein (UCP2) by 4-hydroxynonenal (HNE) neither reduced ROS production nor increased post-thaw sperm viability. Our findings indicate that ROS inhibition through mitochondrial-targeted antioxidant or mild mitochondrial uncoupling is beneficial for sperm cryopreservation in yellow catfish. Our study provides novel methods to mitigate oxidative stress induced damage in cryopreserved sperm for future applications.

  16. Antioxidants, Oxyrase, and mitochondrial uncoupler 2,4-dinitrophenol improved postthaw survival of rhesus monkey sperm from ejaculates with low cryosurvival.

    PubMed

    Dong, Qiaoxiang; Tollner, Theodore L; Rodenburg, Sarah E; Hill, Dana L; VandeVoort, Catherine A

    2010-11-01

    Various antioxidant strategies such as supplementation of antioxidants, limiting oxygen concentration with Oxyrase, and reducing reactive oxygen species through mild mitochondrial uncoupling had statistically significant beneficial effects on sperm cryopreservation from rhesus monkeys with low cryoresistant ejaculates. Individuals or species that have higher sensitivity to cryodamage may derive the most benefit from these treatments.

  17. The cytotoxic effects of VE-3N, a novel 1,4-dihydropyridine derivative, involve the mitochondrial bioenergetic disruption via uncoupling mechanisms.

    PubMed

    Marín-Prida, Javier; Pardo Andreu, Gilberto L; Rossignoli, Camila Pederiva; Durruthy, Michael González; Rodríguez, Estael Ochoa; Reyes, Yamila Verdecia; Acosta, Roberto Fernández; Uyemura, Sergio A; Alberici, Luciane C

    2017-03-29

    Several 1,4-dihydropyridine derivatives overcome the multidrug resistance in tumors, but their intrinsic cytotoxic mechanisms remain unclear. Here we addressed if mitochondria are involved in the cytotoxicity of the novel 1,4-dihydropyridine derivative VE-3N [ethyl 6-chloro-5-formyl-2-methyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3-carboxylate] towards cancer cells by employing hepatic carcinoma (HepG2) cells and isolated rat liver mitochondria. In HepG2 cells, VE-3N induced mitochondrial membrane potential dissipation, ATP depletion, annexin V/propidium iodide double labeling, and Hoechst staining; events indicating apoptosis induction. In isolated rat liver mitochondria, VE-3N promoted mitochondrial uncoupling by exerting protonophoric actions and by increasing membrane fluidity. Mitochondrial uncoupling was evidenced by an increase in resting respiration, dissipation of mitochondrial membrane potential, inhibition of Ca(2+) uptake, stimulation of Ca(2+) release, decrease in ATP synthesis, and swelling of valinomycin-treated organelles in hyposmotic potassium acetate media. Furthermore, uncoupling concentrations of VE-3N in the presence of Ca(2+) plus ruthenium red induced the mitochondrial permeability transition process. These results indicate that mitochondrial uncoupling is potentially involved in the VE-3N cytotoxic actions towards HepG2 cells. Considering that hepatocellular carcinoma is the most common form of liver cancer, our findings may open a new avenue for the development of VE-3N-based cancer therapies, and help to unravel the cytotoxic mechanisms of 1,4-dihydropyridines towards cancer cells.

  18. Lack of association between uncoupling protein-2 Ala55Val polymorphism and incident diabetes in the atherosclerosis risk in communities study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Type 2 diabetes mellitus (T2DM) is characterized by impaired insulin secretion, peripheral insulin resistance, and increased hepatic glucose production. Genes that contribute to genetic susceptibility to T2DM function in numerous biochemical pathways. Uncoupling protein-2 (UCP2) functions as a negat...

  19. Uncoupling complement C1s activation from C1q binding in apoptotic cell phagocytosis and immunosuppressive capacity.

    PubMed

    Colonna, Lucrezia; Parry, Graham C; Panicker, Sandip; Elkon, Keith B

    2016-02-01

    Complement activation contributes to inflammation in many diseases, yet it also supports physiologic apoptotic cells (AC) clearance and its downstream immunosuppressive effects. The roles of individual complement components in AC phagocytosis have been difficult to dissect with artificially depleted sera. Using human in vitro systems and the novel antibody complement C1s inhibitor TNT003, we uncoupled the role of the enzymatic activation of the classical pathway from the opsonizing role of C1q in mediating a) the phagocytosis of early and late AC, and b) the immunosuppressive capacity of early AC. We found that C1s inhibition had a small impact on the physiologic clearance of early AC, leaving their immunosuppressive properties entirely unaffected, while mainly inhibiting the phagocytosis of late apoptotic/secondary necrotic cells. Our data suggest that C1s inhibition may represent a valuable therapeutic strategy to control classical pathway activation without causing significant AC accumulation in diseases without defects in AC phagocytosis.

  20. Is fully coupled hydrogeophysical inversion really better than uncoupled? A comparison study using ensemble Kalman filter assimilation of ERT-monitored tracer test data. (Invited)

    NASA Astrophysics Data System (ADS)

    Camporese, M.; Cassiani, G.; Deiana, R.; Salandin, P.; Binley, A. M.

    2013-12-01

    Recent advances in geophysical methods have been increasingly exploited as inverse modeling tools in groundwater hydrology. In particular, several attempts to constrain the hydrogeophysical inverse problem to reduce inversion error have been made using time-lapse geophysical measurements through both coupled and uncoupled inversion approaches. On one hand, the main advantage of coupled approaches is that the numerical models for the geophysical and hydrological processes are linked together such that the geophysical data are inverted directly for the hydrological properties of interest, avoiding artifacts related to the classical geophysical inversions. On the other hand, uncoupled approaches, relying upon a geophysical inversion that is carried out before estimating the hydrological variable of interest, could reveal something about the process that is not accounted for in a model, i.e., they are not constrained by the conceptualization of the hydrological model. In spite of the appeal and popularity of fully coupled inversion approaches, their superiority over more traditional uncoupled methods still needs to be objectively proven; the aim of this work is to shed some light on this debate. An approach based on the Lagrangian formulation of transport and the ensemble Kalman filter (EnKF) is here applied to assess the spatial distribution of hydraulic conductivity (K) by assimilating time-lapse cross-hole electrical resistivity tomography (ERT) data generated for a synthetic tracer test in a heterogeneous aquifer. In the coupled version of the proposed inverse modeling approach, the K distribution is retrieved by assimilating raw ERT resistance data without the need for a preliminary geoelectrical inversion. In the uncoupled version, K is estimated by assimilating electrical conductivity data derived from a previously performed classical geophysical inversion of the same resistance dataset. We compare the performance of the two approaches in a number of simulation

  1. Reproduction Symposium: developmental programming of reproductive and metabolic health.

    PubMed

    Padmanabhan, V; Veiga-Lopez, A

    2014-08-01

    Inappropriate programming of the reproductive system by developmental exposure to excess steroid hormones is of concern. Sheep are well suited for investigating developmental origin of reproductive and metabolic disorders. The developmental time line of female sheep (approximately 5 mo gestation and approximately 7 mo to puberty) is ideal for conducting sequential studies of the progression of metabolic and/or reproductive disruption from the developmental insult to manifestation of adult consequences. Major benefits of using sheep include knowledge of established critical periods to target adult defects, a rich understanding of reproductive neuroendocrine regulation, availability of noninvasive approaches to monitor follicular dynamics, established surgical approaches to obtain hypophyseal portal blood for measurement of hypothalamic hormones, and the ability to perform studies in natural setting thereby keeping behavioral interactions intact. Of importance is the ability to chronically instrument fetus and mother for determining early endocrine perturbations. Prenatal exposure of the female to excess testosterone (T) leads to an array of adult reproductive disorders that include LH excess, functional hyperandrogenism, neuroendocrine defects, multifollicular ovarian morphology, and corpus luteum dysfunction culminating in early reproductive failure. At the neuroendocrine level, all 3 feedback systems are compromised. At the pituitary level, gonadotrope (LH secretion) sensitivity to GnRH is increased. Multifollicular ovarian morphology stems from persistence of follicles as well as enhanced follicular recruitment. These defects culminate in progressive loss of cyclicity and reduced fecundity. Prenatal T excess also leads to fetal growth retardation, an early marker of adult reproductive and metabolic diseases, insulin resistance, hypertension, and behavioral deficits. Collectively, the reproductive and metabolic deficits of prenatal T-treated sheep provide proof of

  2. Comparing Mutational Variabilities

    PubMed Central

    Houle, D.; Morikawa, B.; Lynch, M.

    1996-01-01

    We have reviewed the available data on V(M), the amount of genetic variation in phenotypic traits produced each generation by mutation. We use these data to make several qualitative tests of the mutation-selection balance hypothesis for the maintenance of genetic variance (MSB). To compare V(M) values, we use three dimensionless quantities: mutational heritability, V(M)/V(E); the mutational coefficient of variation, CV(M); and the ratio of the standing genetic variance to V(M), V(G)/V(M). Since genetic coefficients of variation for life history traits are larger than those for morphological traits, we predict that under MSB, life history traits should also have larger CV(M). This is confirmed; life history traits have a median CV(M) value more than six times higher than that for morphological traits. V(G)/V(M) approximates the persistence time of mutations under MSB in an infinite population. In order for MSB to hold, V(G)/V(M) must be small, substantially less than 1000, and life history traits should have smaller values than morphological traits. V(G)/V(M) averages about 50 generations for life history traits and 100 generations for morphological traits. These observations are all consistent with the predictions of a mutation-selection balance model. PMID:8807316

  3. Nordic criteria for reproductive toxicity.

    PubMed

    Taskinen, H K

    1995-08-01

    Scientific criteria for assessment of the reproductive toxicity of chemicals have been proposed by a Nordic group of experts and regulatory representatives. The criteria take into account the results of clinical studies as well as of experimental research. The criteria should be useful in, for example, product control and labeling and planning of a safe work environment. The proposed Nordic criteria and examples of the assessment of the reproductive toxicity of some chemicals are presented.

  4. Dodecyl and octyl esters of fluorescein as protonophores and uncouplers of oxidative phosphorylation in mitochondria at submicromolar concentrations.

    PubMed

    Shchepinova, Maria M; Denisov, Stepan S; Kotova, Elena A; Khailova, Ljudmila S; Knorre, Dmitry A; Korshunova, Galina A; Tashlitsky, Vadim N; Severin, Fedor F; Antonenko, Yuri N

    2014-01-01

    In our search for fluorescent uncouplers of oxidative phosphorylation, three esters of fluorescein, n-butyl-, n-octyl-, and n-dodecyl-oxycarbonyl-fluorescein (C4-FL, C8-FL, C12-FL) were synthesized and characterized. With increasing liposomal lipid content, the long-chain alkyl derivatives of fluorescein (C8-FL, C12-FL and commercially available C18-FL), but not C4-FL and unsubstituted fluorescein, exhibited an increase in fluorescence polarization reflecting the dye binding to liposomes. C12-FL induced proton permeability in lipid membranes, while C4-FL was inactive. In contrast to C4-FL and C18-FL, C12-FL and C8-FL increased the respiration rate and decreased the membrane potential of isolated rat liver mitochondria with half-maximal effective concentrations of 700nM and 300nM, respectively. The effect of Cn-FL on the respiration correlated with that on proton permeability of the inner mitochondrial membrane, as measured by induction of mitochondria swelling in the potassium acetate medium. Binding of C8-FL to mitochondria depended on their energization, which was apparently associated with pH gradient generation across the inner mitochondrial membrane in the presence of a respiratory substrate. In wild-type yeast cells, C12-FL localized predominantly in plasma membrane, whereas in AD1-8 mutants lacking MDR pumps, it stained cytoplasmic organelles with some preference for mitochondria. Fluorescent uncouplers can be useful as a tool for determining their localization in a cell or distribution between different tissues in a living animal by fluorescent microscopy.

  5. Uncoupling protein-2 up-regulation and enhanced cyanide toxicity are mediated by PPARalpha activation and oxidative stress.

    PubMed

    Zhang, X; Li, L; Prabhakaran, K; Zhang, L; Leavesley, H B; Borowitz, J L; Isom, G E

    2007-08-15

    Uncoupling protein 2 (UCP-2) is an inner mitochondrial membrane proton carrier that modulates mitochondrial membrane potential (DeltaPsi(m)) and uncouples oxidative phosphorylation. We have shown that up-regulation of UCP-2 by Wy14,643, a selective peroxisome proliferator-activated receptor-alpha (PPARalpha) agonist, enhances cyanide cytotoxicity. The pathway by which Wy14,643 up-regulates UCP-2 was determined in a dopaminergic cell line (N27 cells). Since dopaminergic mesencephalic cells are a primary brain target of cyanide, the N27 immortalized mesencephalic cell was used in this study. Wy14,643 produced a concentration- and time-dependent up-regulation of UCP-2 that was linked to enhanced cyanide-induced cell death. MK886 (PPARalpha antagonist) or PPARalpha knock-down by RNA interference (RNAi) inhibited PPARalpha activity as shown by the peroxisome proliferator response element-luciferase reporter assay, but only partially decreased up-regulation of UCP-2. The role of oxidative stress as an alternative pathway to UCP-2 up-regulation was determined. Wy14,643 induced a rapid surge of ROS generation and loading cells with glutathione ethyl ester (GSH-EE) or pre-treatment with vitamin E attenuated up-regulation of UCP-2. On the other hand, RNAi knockdown of PPARalpha did not alter ROS generation, suggesting a PPARalpha-independent component to the response. Co-treatment with PPARalpha-RNAi and GSH-EE blocked both the up-regulation of UCP-2 by Wy14,643 and the cyanide-induced cell death. It was concluded that a PPARalpha-mediated pathway and an oxidative stress pathway independent of PPARalpha mediate the up-regulation of UCP-2 and subsequent increased vulnerability to cyanide-induced cytotoxicity.

  6. Small structural changes on a hydroquinone scaffold determine the complex I inhibition or uncoupling of tumoral oxidative phosphorylation.

    PubMed

    Urra, Félix A; Córdova-Delgado, Miguel; Lapier, Michel; Orellana-Manzano, Andrea; Acevedo-Arévalo, Luis; Pessoa-Mahana, Hernán; González-Vivanco, Jaime M; Martínez-Cifuentes, Maximiliano; Ramírez-Rodríguez, Oney; Millas-Vargas, Juan Pablo; Weiss-López, Boris; Pavani, Mario; Ferreira, Jorge; Araya-Maturana, Ramiro

    2016-01-15

    Mitochondria participate in several distinctiveness of cancer cell, being a promising target for the design of anti-cancer compounds. Previously, we described that ortho-carbonyl hydroquinone scaffold 14 inhibits the complex I-dependent respiration with selective anti-proliferative effect on mouse mammary adenocarcinoma TA3/Ha cancer cells; however, the structural requirements of this hydroquinone scaffold to affect the oxidative phosphorylation (OXPHOS) of cancer cells have not been studied in detail. Here, we characterize the mitochondrial metabolism of TA3/Ha cancer cells, which exhibit a high oxidative metabolism, and evaluate the effect of small structural changes of the hydroquinone scaffold 14 on the respiration of this cell line. Our results indicate that these structural changes modify the effect on OXPHOS, obtaining compounds with three alternative actions: inhibitors of complex I-dependent respiration, uncoupler of OXPHOS and compounds with both actions. To confirm this, the effect of a bicyclic hydroquinone (9) was evaluated in isolated mitochondria. Hydroquinone 9 increased mitochondrial respiration in state 4o without effects on the ADP-stimulated respiration (state 3ADP), decreasing the complexes I and II-dependent respiratory control ratio. The effect on mitochondrial respiration was reversed by 6-ketocholestanol addition, indicating that this hydroquinone is a protonophoric uncoupling agent. In intact TA3/Ha cells, hydroquinone 9 caused mitochondrial depolarization, decreasing intracellular ATP and NAD(P)H levels and GSH/GSSG ratio, and slightly increasing the ROS levels. Moreover, it exhibited selective NAD(P)H availability-dependent anti-proliferative effect on cancer cells. Therefore, our results indicate that the ortho-carbonyl hydroquinone scaffold offers the possibility to design compounds with specific actions on OXPHOS of cancer cells.

  7. The Mitochondrial Uncoupler DNP Triggers Brain Cell mTOR Signaling Network Reprogramming and CREB Pathway Upregulation

    PubMed Central

    Liu, Dong; Zhang, Yongqing; Gharavi, Robert; Park, Hee Ra; Lee, Jaewon; Siddiqui, Sana; Telljohann, Richard; Nassar, Matthew R.; Cutler, Roy G.; Becker, Kevin G.; Mattson, Mark P.

    2015-01-01

    Mitochondrial metabolism is highly responsive to nutrient availability and ongoing activity in neuronal circuits. The molecular mechanisms by which brain cells respond to an increase in cellular energy expenditure are largely unknown. Mild mitochondrial uncoupling enhances cellular energy expenditure in mitochondria and can be induced with 2, 4-dinitrophenol (DNP), a proton ionophore previously used for weight loss. We found that DNP treatment reduces mitochondrial membrane potential, increases intracellular Ca2+ levels and reduces oxidative stress in cerebral cortical neurons. Gene expression profiling of the cerebral cortex of DNP-treated mice revealed reprogramming of signaling cascades that included suppression of the mTOR and insulin – PI3K – MAPK pathways, and up-regulation of tuberous sclerosis complex 2, a negative regulator of mTOR. Genes encoding proteins involved in autophagy processes were up-regulated in response to DNP. CREB (cAMP-response element-binding protein) signaling, Arc and BDNF, which play important roles in synaptic plasticity and adaptive cellular stress responses, were up-regulated in response to DNP, and DNP-treated mice exhibited improved performance in a test of learning and memory. Immunoblot analysis verified that key DNP-induced changes in gene expression resulted in corresponding changes at the protein level. Our findings suggest that mild mitochondrial uncoupling triggers an integrated signaling response in brain cells characterized by reprogramming of mTOR and insulin signaling, and up-regulation of pathways involved in adaptive stress responses, molecular waste disposal and synaptic plasticity. PMID:26010875

  8. ATF-1 Is a Hypoxia-responsive Transcriptional Activator of Skeletal Muscle Mitochondrial-uncoupling Protein 3*S⃞

    PubMed Central

    Lu, Zhongping; Sack, Michael N.

    2008-01-01

    Hypoxia induces oxidative damage in skeletal muscle. Uncoupling protein 3 (UCP3) is the skeletal muscle enriched uncoupling protein and has previously been shown to confer resistance against oxidative stress. We show that hypoxia robustly up-regulates skeletal muscle UCP3 and that the absence of UCP3 in primary skeletal myocytes exacerbates hypoxia-induced reactive oxygen species generation. In this context, we reasoned that the investigation of the regulation of UCP3 may identify novel hypoxia-responsive regulatory pathways that modulate intrinsic anti-oxidant defenses. By screening a transcription factor array of 704 full-length cDNAs in murine C2C12 myoblasts following cotransfection of a murine UCP3 promoter-luciferase construct and myoD we identified numerous candidate regulatory factors that up-regulate UCP3. Active transcription factor-1 (ATF-1) was identified, and as this transcription factor is a known component of a multiprotein hypoxia-induced regulatory complex, we explored its role in hypoxia-mediated UCP3 up-regulation. Site-directed mutagenesis and chromatin immunoprecipitation assays identify a 10-bp region required for ATF-1 induction of UCP3 promoter activity. Hypoxia promotes the phosphorylation of ATF-1, and the knockdown of ATF-1 by shRNA prevents hypoxia-mediated up-regulation of UCP3. Pharmacologic inhibition of p38 MAP kinase prevents both hypoxia-mediated ATF-1 phosphorylation and UCP3 up-regulation. PKA signaling does not modulate hypoxia-induced UCP3 up-regulation and neither does HIF-1α activation by cobalt chloride. In conclusion, ATF-1, via p38 MAP kinase activation, functions as a novel regulatory pathway driving UCP3 expression. These data reinforce the role of ATF-1 as a hypoxia-responsive trans-activator and identifies a novel regulatory program that may modulate cellular responses to oxygen-deficit. PMID:18579531

  9. Uncoupling protein-2 up-regulation and enhanced cyanide toxicity are mediated by PPAR{alpha} activation and oxidative stress

    SciTech Connect

    Zhang, X.; Li, L.; Prabhakaran, K.; Zhang, L.; Leavesley, H.B.; Borowitz, J.L.; Isom, G.E.

    2007-08-15

    Uncoupling protein 2 (UCP-2) is an inner mitochondrial membrane proton carrier that modulates mitochondrial membrane potential ({delta}{psi}{sub m}) and uncouples oxidative phosphorylation. We have shown that up-regulation of UCP-2 by Wy14,643, a selective peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) agonist, enhances cyanide cytotoxicity. The pathway by which Wy14,643 up-regulates UCP-2 was determined in a dopaminergic cell line (N27 cells). Since dopaminergic mesencephalic cells are a primary brain target of cyanide, the N27 immortalized mesencephalic cell was used in this study. Wy14,643 produced a concentration- and time-dependent up-regulation of UCP-2 that was linked to enhanced cyanide-induced cell death. MK886 (PPAR{alpha} antagonist) or PPAR{alpha} knock-down by RNA interference (RNAi) inhibited PPAR{alpha} activity as shown by the peroxisome proliferator response element-luciferase reporter assay, but only partially decreased up-regulation of UCP-2. The role of oxidative stress as an alternative pathway to UCP-2 up-regulation was determined. Wy14,643 induced a rapid surge of ROS generation and loading cells with glutathione ethyl ester (GSH-EE) or pre-treatment with vitamin E attenuated up-regulation of UCP-2. On the other hand, RNAi knockdown of PPAR{alpha} did not alter ROS generation, suggesting a PPAR{alpha}-independent component to the response. Co-treatment with PPAR{alpha}-RNAi and GSH-EE blocked both the up-regulation of UCP-2 by Wy14,643 and the cyanide-induced cell death. It was concluded that a PPAR{alpha}-mediated pathway and an oxidative stress pathway independent of PPAR{alpha} mediate the up-regulation of UCP-2 and subsequent increased vulnerability to cyanide-induced cytotoxicity.

  10. Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet

    PubMed Central

    Srivastava, Shireesh; Kashiwaya, Yoshihiro; King, M. Todd; Baxa, Ulrich; Tam, Joseph; Niu, Gang; Chen, Xiaoyuan; Clarke, Kieran; Veech, Richard L.

    2012-01-01

    We measured the effects of a diet in which d-β-hydroxybutyrate-(R)-1,3 butanediol monoester [ketone ester (KE)] replaced equicaloric amounts of carbohydrate on 8-wk-old male C57BL/6J mice. Diets contained equal amounts of fat, protein, and micronutrients. The KE group was fed ad libitum, whereas the control (Ctrl) mice were pair-fed to the KE group. Blood d-β-hydroxybutyrate levels in the KE group were 3-5 times those reported with high-fat ketogenic diets. Voluntary food intake was reduced dose dependently with the KE diet. Feeding the KE diet for up to 1 mo increased the number of mitochondria and doubled the electron transport chain proteins, uncoupling protein 1, and mitochondrial biogenesis-regulating proteins in the interscapular brown adipose tissue (IBAT). [18F]-Fluorodeoxyglucose uptake in IBAT of the KE group was twice that in IBAT of the Ctrl group. Plasma leptin levels of the KE group were more than 2-fold those of the Ctrl group and were associated with increased sympathetic nervous system activity to IBAT. The KE group exhibited 14% greater resting energy expenditure, but the total energy expenditure measured over a 24-h period or body weights was not different. The quantitative insulin-sensitivity check index was 73% higher in the KE group. These results identify KE as a potential antiobesity supplement.—Srivastava, S., Kashiwaya, Y., King, M. T. Baxa, U., Tam, J., Niu, G., Chen, X., Clarke, K., Veech, R. L. Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet. PMID:22362892

  11. 32 CFR 310.20 - Reproduction fees.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Reproduction fees. 310.20 Section 310.20... PROGRAM DOD PRIVACY PROGRAM Access by Individuals § 310.20 Reproduction fees. (a) Assessing fees. (1) Charge the individual only the direct cost of reproduction. (2) Do not charge reproduction fees...

  12. 76 FR 62632 - NARA Records Reproduction Fees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... RECORDS ADMINISTRATION 36 CFR Part 1258 RIN 3095-AB71 NARA Records Reproduction Fees AGENCY: National... reproduction fees, to remove records reproduction fees found in its regulations, and to provide a notification process for the public of new or proposed fees. This final rule covers reproduction of Federal...

  13. 32 CFR 310.20 - Reproduction fees.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Reproduction fees. 310.20 Section 310.20... PROGRAM DOD PRIVACY PROGRAM Access by Individuals § 310.20 Reproduction fees. (a) Assessing fees. (1) Charge the individual only the direct cost of reproduction. (2) Do not charge reproduction fees...

  14. 32 CFR 310.20 - Reproduction fees.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Reproduction fees. 310.20 Section 310.20... PROGRAM DOD PRIVACY PROGRAM Access by Individuals § 310.20 Reproduction fees. (a) Assessing fees. (1) Charge the individual only the direct cost of reproduction. (2) Do not charge reproduction fees...

  15. 32 CFR 310.20 - Reproduction fees.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Reproduction fees. 310.20 Section 310.20... PROGRAM DOD PRIVACY PROGRAM Access by Individuals § 310.20 Reproduction fees. (a) Assessing fees. (1) Charge the individual only the direct cost of reproduction. (2) Do not charge reproduction fees...

  16. 32 CFR 310.20 - Reproduction fees.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Reproduction fees. 310.20 Section 310.20... PROGRAM DOD PRIVACY PROGRAM Access by Individuals § 310.20 Reproduction fees. (a) Assessing fees. (1) Charge the individual only the direct cost of reproduction. (2) Do not charge reproduction fees...

  17. Clinically relevant concentrations of di (2-ethylhexyl) phthalate (DEHP) uncouple cardiac syncytium

    SciTech Connect

    Gillum, Nikki; Karabekian, Zaruhi; Swift, Luther M.; Brown, Ronald P.; Kay, Matthew W.; Sarvazyan, Narine

    2009-04-01

    Di(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer found in a variety of polyvinyl chloride (PVC) medical products. The results of studies in experimental animals suggest that DEHP leached from flexible PVC tubing may cause health problems in some patient populations. While the cancerogenic and reproductive effects of DEHP are well recognized, little is known about the potential adverse impact of phthalates on the heart. This study examined the effects of clinically relevant concentrations of DEHP on neonatal rat cardiomyocytes. It was found that application of DEHP to a confluent, synchronously beating cardiac cell network, leads to a marked, concentration-dependent decrease in conduction velocity and asynchronous cell beating. The mechanism behind these changes was a loss of gap junctional connexin-43, documented using Western blot analysis, dye-transfer assay and immunofluorescence. In addition to its effect on electrical coupling, DEHP treatment also affected the mechanical movement of myocyte layers. The latter was linked to the decreased stiffness of the underlying fibroblasts, as the amount of triton-insoluble vimentin was significantly decreased in DEHP-treated samples. The data indicate that DEHP, in clinically relevant concentrations, can impair the electrical and mechanical behavior of a cardiac cell network. Applicability of these findings to human patients remains to be established.

  18. Plant reproduction in spaceflight environments

    NASA Technical Reports Server (NTRS)

    Musgrave, M. E.; Kuang, A.; Porterfield, D. M.

    1997-01-01

    Because plant reproduction is a complex developmental process there are many possible sites of perturbation by the unusual environments of orbital spacecraft. Previous long-duration experiments on Soviet platforms shared features of slowed development through the vegetative stage of plant growth and aborted reproductive function. Our goal has been to understand how special features of the spaceflight environment impact physiological function and reproductive development. In a series of short-duration experiments in the Shuttle mid-deck we studied early reproductive development in Arabidopsis thaliana. Pollen and ovule development aborted at an early stage in the first experiment on STS-54 which utilized closed plant growth chambers. Post-flight analysis suggested that the plants may have been carbon dioxide limited. Subsequent experiments utilized carbon dioxide enrichment (on STS-51) and cabin air flow-through with an air exchange system (on STS-68). Both modifications allowed pollen and ovule development to occur normally on orbit, and full reproductive development up to the stage of an immature seed occurred on STS-68. However, analysis of plant roots from these experiments demonstrated a limitation in rootzone aeration in the spaceflight material that was not mitigated by these procedures. In the future, additional resources (crew time, upgraded flight hardware, and special platforms) will invite more elaborate, long-duration experimentation. On the ISS, a variable speed centrifuge and upgraded plant habitats will permit detailed experiments on the role of gravity in shaping the plant micro-environment, and what influence this plays during reproduction.

  19. Limited dispersal, deleterious mutations and the evolution of sex

    SciTech Connect

    Peck, J.R.

    1996-03-01

    This study presents a mathematical model that allows for some offspring to be dispersed at random, while others stay close to their mothers. A single genetic locus is assumed to control fertility, and this locus is subject to the occurrence of deletions mutations. It is shown that, at equilibrium, the frequency of deleterious mutations in the population is inversely related to the rate of dispersal. The results also show that sexual reproduction can lead to a decrease in the equilibrium frequency of deleterious mutations. The reason for this relationship is that sex involves the dispersal of genetic material, and thus, like the dispersal of offspring, sex enhances competition among adults. The model is described using the example of a hermaphroditic plant population. However, the results should apply to animal populations as well. 36 refs., 1 fig.

  20. Ethics in reproductive genetics.

    PubMed

    Fletcher, J C; Evans, M I

    1992-12-01

    Ethics in reproductive genetics comprise descriptive ethics and normative ethics. Ethical problems before prenatal diagnosis involve genetic counseling and informed consent for the choice patients must make. Prenatal diagnosis using amniocentesis is controversial. An international survey of geneticists showed that 25% would do prenatal diagnosis for sex selection, and 17% would refer the couple elsewhere. Hungary (60%), India (37%), the US (34%), Canada (30%), Greece (29%), and Sweden (28%) would do prenatal diagnosis. The statistical incidence of positive findings after prenatal diagnosis does not exceed 4% of all cases when most couples choose abortion. Respect for parental choice and for nondirective counseling was supported in responses to 3 cases in the international survey that also had disclosure dilemmas included with abortion choices. 84% of respondents would be nondirective for XYY and 88% for XO. In India, Hungary, Turkey, and Norway, 46%, 40%, 40%, and 33%, respectively, would advise aborting an XO (Turner) fetus. A survey of 737 genetics and obstetricians and ethicists and clergy showed acceptability of abortion in singleton pregnancies and in twins associated strongly with the trimester of pregnancy, indication for selective termination, and fetal number. Prior group review of risks and benefits of experimental fetal therapy, case selection for experimental fetal therapy, the optimal informed-consent process for fetal therapy, twin pregnancies, refusal of proven fetal therapy, the lack of federal support for research in fetal diagnosis (preimplantation embryo diagnosis) and therapy, and sources of a moral obligation are also addressed. The Belmont Report on the ethics of biomedical research in the US proposed ethical principles to guide research with human subjects including the fetus: respect for parsons, beneficence, and justice.

  1. Reproductive health in India.

    PubMed

    1994-08-01

    In India, prenatal tests are used to determine the sex of the fetus and, if it is female, it is often aborted. In response to sex discrimination in utero, the Forum against Sex Determination and Sex Preselection was formed in 1985. It began a campaign against using prenatal tests to determine sex for the subsequent abortion of female fetuses. The 1989 Maharashtra Regulation of Prenatal Diagnostic Techniques was a direct result of this campaign. The forum expanded to examine other reproductive technologies, particularly long-lasting contraceptives that cause systemic changes in women's bodies, and it has become more concerned about women's rights in general. It has renamed itself the Forum for Women's Health. The state translates the need for contraceptives into population control. It provides health care through primary health centers and subcenters. The maternal and child health program provides health care only to 15-45 year old women. The government knows that abortion and childbirth are major contributors to maternal mortality, so it provides safe abortion through its centers. Yet, prevailing conditions and social values keep women from using these services, so they resort to unhygienic abortions. The government considers repeated childbearing as the only cause of maternal mortality and ignores that poverty, malnutrition, and social position can also be responsible for maternal deaths. This attitude justifies its coercion of women to use contraception. India's government is presently pushing provider-controlled, long-acting methods. It supports high tech research of antifertility vaccines. Female barrier methods are not marketed. The family planning program is based on targets and incentives/ disincentives. The government has recently set up sterilization camps in Bombay. The forum is concerned that providers will not fully inform women about side effects of the injectables and about other possible contraceptive methods. Women are being trained in self-help and

  2. Novel function of LHFPL2 in female and male distal reproductive tract development

    PubMed Central

    Zhao, Fei; Zhou, Jun; Li, Rong; Dudley, Elizabeth A.; Ye, Xiaoqin

    2016-01-01

    Congenital reproductive tract anomalies could impair fertility. Female and male reproductive tracts are developed from Müllerian ducts and Wolffian ducts, respectively, involving initiation, elongation and differentiation. Genetic basis solely for distal reproductive tract development is largely unknown. Lhfpl2 (lipoma HMGIC fusion partner-like 2) encodes a tetra-transmembrane protein with unknown functions. It is expressed in follicle cells of ovary and epithelial cells of reproductive tracts. A spontaneous point mutation of Lhfpl2 (LHFPL2G102E) leads to infertility in 100% female mice, which have normal ovarian development, ovulation, uterine development, and uterine response to exogenous estrogen stimulation, but abnormal upper longitudinal vaginal septum and lower vaginal agenesis. Infertility is also observed in ~70% mutant males, which have normal mating behavior and sperm counts, but abnormal distal vas deferens convolution resulting in complete and incomplete blockage of reproductive tract in infertile and fertile males, respectively. On embryonic day 15.5, mutant Müllerian ducts and Wolffian ducts have elongated but their duct tips are enlarged and fail to merge with the urogenital sinus. These findings provide a novel function of LHFPL2 and a novel genetic basis for distal reproductive tract development; they also emphasize the importance of an additional merging phase for proper reproductive tract development. PMID:26964900

  3. Novel function of LHFPL2 in female and male distal reproductive tract development.

    PubMed

    Zhao, Fei; Zhou, Jun; Li, Rong; Dudley, Elizabeth A; Ye, Xiaoqin

    2016-03-11

    Congenital reproductive tract anomalies could impair fertility. Female and male reproductive tracts are developed from Müllerian ducts and Wolffian ducts, respectively, involving initiation, elongation and differentiation. Genetic basis solely for distal reproductive tract development is largely unknown. Lhfpl2 (lipoma HMGIC fusion partner-like 2) encodes a tetra-transmembrane protein with unknown functions. It is expressed in follicle cells of ovary and epithelial cells of reproductive tracts. A spontaneous point mutation of Lhfpl2 (LHFPL2(G102E)) leads to infertility in 100% female mice, which have normal ovarian development, ovulation, uterine development, and uterine response to exogenous estrogen stimulation, but abnormal upper longitudinal vaginal septum and lower vaginal agenesis. Infertility is also observed in ~70% mutant males, which have normal mating behavior and sperm counts, but abnormal distal vas deferens convolution resulting in complete and incomplete blockage of reproductive tract in infertile and fertile males, respectively. On embryonic day 15.5, mutant Müllerian ducts and Wolffian ducts have elongated but their duct tips are enlarged and fail to merge with the urogenital sinus. These findings provide a novel function of LHFPL2 and a novel genetic basis for distal reproductive tract development; they also emphasize the importance of an additional merging phase for proper reproductive tract development.

  4. Spectacular reproduction: Ron's Angels and mechanical reproduction in the age of ART (assisted reproductive technology).

    PubMed

    Hafstein, Valdimar Tr

    2007-03-01

    Ron Harris captured the popular imagination in October 1999 with a website where he auctioned off the ova of fashion models to the highest bidder. This article treats the controversy surrounding Harris' site within a dual frame of critical theory's approach to reproduction and a folkloristic approach to discourse. The website fuses traditional narrative motifs and structures with the logic of advertising, seventies television, family-values rhetoric, and the fertility industry. I argue that the great attraction of ronsangels.com is that it put into relief the intervention of mechanical reproduction in human fertility together with the state of genetics at the turn of the 21st century. The result is not only a disconcerting aestheticization and commodification of biological reproduction, but also the biological reproduction of a particular aesthetic and moral code--a generation of reality by model.

  5. Dynein mutations associated with hereditary motor neuropathies impair mitochondrial morphology and function with age.

    PubMed

    Eschbach, Judith; Sinniger, Jérôme; Bouitbir, Jamal; Fergani, Anissa; Schlagowski, Anna-Isabel; Zoll, Joffrey; Geny, Bernard; René, Frédérique; Larmet, Yves; Marion, Vincent; Baloh, Robert H; Harms, Matthew B; Shy, Michael E; Messadeq, Nadia; Weydt, Patrick; Loeffler, Jean-Philippe; Ludolph, Albert C; Dupuis, Luc

    2013-10-01

    Mutations in the DYNC1H1 gene encoding for dynein heavy chain cause two closely related human motor neuropathies, dominant spinal muscular atrophy with lower extremity predominance (SMA-LED) and axonal Charcot-Marie-Tooth (CMT) disease, and lead to sensory neuropathy and striatal atrophy in mutant mice. Dynein is the molecular motor carrying mitochondria retrogradely on microtubules, yet the consequences of dynein mutations on mitochondrial physiology have not been explored. Here, we show that mouse fibroblasts bearing heterozygous or homozygous point mutation in Dync1h1, similar to human mutations, show profoundly abnormal mitochondrial morphology associated with the loss of mitofusin 1. Furthermore, heterozygous Dync1h1 mutant mice display progressive mitochondrial dysfunction in muscle and mitochondria progressively increase in size and invade sarcomeres. As a likely consequence of systemic mitochondrial dysfunction, Dync1h1 mutant mice develop hyperinsulinemia and hyperglycemia and progress to glucose intolerance with age. Similar defects in mitochondrial morphology and mitofusin levels are observed in fibroblasts from patients with SMA-LED. Last, we show that Dync1h1 mutant fibroblasts show impaired perinuclear clustering of mitochondria in response to mitochondrial uncoupling. Our results show that dynein function is required for the maintenance of mitochondrial morphology and function with aging and suggest that mitochondrial dysfunction contributes to dynein-dependent neurological diseases, such as SMA-LED.

  6. Myosin VI deafness mutation prevents the initiation of processive runs on actin.

    PubMed

    Pylypenko, Olena; Song, Lin; Shima, Ai; Yang, Zhaohui; Houdusse, Anne M; Sweeney, H Lee

    2015-03-17

    Mutations in the reverse-direction myosin, myosin VI, are associated with deafness in humans and mice. A myosin VI deafness mutation, D179Y, which is in the transducer of the motor, uncoupled the release of the ATP hydrolysis product, inorganic phosphate (Pi), from dependency on actin binding and destroyed the ability of single dimeric molecules to move processively on actin filaments. We observed that processive movement is rescued if ATP is added to the mutant dimer following binding of both heads to actin in the absence of ATP, demonstrating that the mutation selectively destroys the initiation of processive runs at physiological ATP levels. A drug (omecamtiv) that accelerates the actin-activated activity of cardiac myosin was able to rescue processivity of the D179Y mutant dimers at physiological ATP concentrations by slowing the actin-independent release of Pi. Thus, it may be possible to create myosin VI-specific drugs that rescue the function of deafness-causing mutations.

  7. Prokineticins in central and peripheral control of human reproduction.

    PubMed

    Traboulsi, Wael; Brouillet, Sophie; Sergent, Frederic; Boufettal, Houssine; Samouh, Naima; Aboussaouira, Touria; Hoffmann, Pascale; Feige, Jean Jacques; Benharouga, Mohamed; Alfaidy, Nadia

    2015-11-01

    Prokineticin 1 (PROK1) and (PROK2), are two closely related proteins that were identified as the mammalian homologs of their two amphibian homologs, mamba intestinal toxin (MIT-1) and Bv8. PROKs activate two G-protein linked receptors (prokineticin receptor 1 and 2, PROKR1 and PROKR2). Both PROK1 and PROK2 have been found to regulate a stunning array of biological functions. In particular, PROKs stimulate gastrointestinal motility, thus accounting for their family name "prokineticins". PROK1 acts as a potent angiogenic mitogen, thus earning its other name, endocrine gland-derived vascular endothelial factor. In contrast, PROK2 signaling pathway has been shown to be a critical regulator of olfactory bulb morphogenesis and sexual maturation. During the last decade, strong evidences established the key roles of prokineticins in the control of human central and peripheral reproductive processes. PROKs act as main regulators of the physiological functions of the ovary, uterus, placenta, and testis, with marked dysfunctions in various pathological conditions such as recurrent pregnancy loss, and preeclampsia. PROKs have also been associated to the tumor development of some of these organs. In the central system, prokineticins control the migration of GnRH neurons, a key process that controls reproductive functions. Importantly, mutations in PROK2 and PROKR2 are associated to the development of Kallmann syndrome, with direct consequences on the reproductive system. This review describes the finely tuned actions of prokineticins in the control of the central and peripheral reproductive processes. Also, it discusses future research directions for the use of these cytokines as diagnostic markers for several reproductive diseases.

  8. Effects of short photoperiod on energy intake, thermogenesis, and reproduction in desert hamsters (Phodopus roborovskii).

    PubMed

    Zhang, Xueying; Zhao, Zhijun; Vasilieva, Nina; Khrushchova, Anastasia; Wang, Dehua

    2015-03-01

    Desert hamsters (Phodopus roborovskii) are the least known species in the genus Phodopus with respect to ecology and physiology, and deserve scientific attention, particularly because of their small body size. Here, the responses of energy metabolism and reproductive function to short photoperiods in desert hamsters were investigated. Male and female desert hamsters were acclimated to either long day (LD) (L:D 16:8 h) or short day (SD) photoperiods (L:D 8:16 h) for three months, and then the females were transferred back to an LD photoperiod for a further five months, while at the end of the SD acclimation the males were killed and measurements were taken for serum leptin as well as molecular markers for thermogenesis. We found that like the other two species from the genus Phodopus, the desert hamsters under SD decreased body mass, increased adaptive thermogenesis as indicated by elevated mitochondrial protein content and uncoupling protein-1 content in brown adipose tissue, and suppressed reproduction compared to those under LD. However, different from the other two species, desert hamsters did not show any differences in energy intake or serum leptin concentration between LD and SD. These data suggest that different species from the same genus respond in different ways to the environmental signals, and the desert adapted species are not as sensitive to change in photoperiod as the other two species.

  9. Zambia moves towards reproductive health.

    PubMed

    1997-01-01

    Several events in Zambia this year have marked the development of an integrated approach to reproductive health. A team met in March to draw up a national safe motherhood policy, plus strategies and guidelines. These were completed by April and are being distributed for comments. Clinical guidelines for safe motherhood in health centers have also been developed. These aim to reduce mortality and morbidity among mothers and infants by helping health workers to provide quality care to women at every stage of pregnancy and delivery. A reproductive health workshop was held in Ngwerere in May to create awareness of the concept of reproductive health, identify reproductive health problems in the area, propose solutions and outline activities. The 75 participants included community health workers, community leaders, teachers, youth leaders, and community members, as well as health workers and policymakers. The workshop was conducted in the local language so that those present were able to participate fully. June 1997 saw the official launch of Zambia's new policy framework, guidelines and strategy on family planning within reproductive health. The country's Minister of Health, Dr. Katele Kalumba, said the family planning guidelines were a sign of the government's commitment to providing a basic health care package for all Zambians. To promote widespread discussion of the whole concept of reproductive health, local newspapers printed feature articles with the headline "Let's talk reproductive health." The articles raised a variety of sensitive issues that ranged from safe sex and adolescent sexuality to safe motherhood and HIV prevention. Plans are going ahead in Zambia for drawing up a national training curriculum for safe motherhood and family planning. The curriculum for health workers will cover both pre-service and in-service training.

  10. PICK1 uncoupling from mGluR7a causes absence-like seizures.

    PubMed

    Bertaso, Federica; Zhang, Chuansheng; Scheschonka, Astrid; de Bock, Frédéric; Fontanaud, Pierre; Marin, Philippe; Huganir, Richard L; Betz, Heinrich; Bockaert, Joël; Fagni, Laurent; Lerner-Natoli, Mireille

    2008-08-01

    Absence epilepsy is a neurological disorder that causes a recurrent loss of consciousness and generalized spike-and-wave discharges on an electroencephalogram (EEG). The role of metabotropic glutamate receptors (mGluRs) and associated scaffolding proteins in absence epilepsy has been unclear to date. We investigated a possible role for these proteins in absence epilepsy, focusing on the mGluR7a receptor and its PDZ-interacting protein, protein interacting with C kinase 1 (PICK1), in rats and mice. Injection of a cell-permeant dominant-negative peptide or targeted mutation of the mGluR7a C terminus, both of which disrupt the interaction between the receptor and PDZ proteins, caused behavioral symptoms and EEG discharges that are characteristic of absence epilepsy. Inactivation of the Pick1 gene also facilitated pharmacological induction of the absence epilepsy phenotype. The cortex and thalamus, which are known to participate in absence epilepsy, were involved, but the hippocampus was not. Our results indicate that disruption of the mGluR7a-PICK1 complex is sufficient to induce absence epilepsy-like seizures in rats and mice, thus providing, to the best of our knowledge, the first animal model of metabotropic glutamate receptor-PDZ protein interaction in absence epilepsy.

  11. Evolutionarily conserved regions of the human c-myc protein can be uncoupled from transforming activity

    SciTech Connect

    Sarid, J.; Halazonetis, T.D.; Murphy, W.; Leder, P.

    1987-01-01

    The myc family of oncogenes contains coding sequences that have been preserved in different species for over 400 million years. This conservation (which implies functional selection) is broadly represented throughout the C-terminal portion of the human c-myc protein but is largely restricted to three cluster of amino acid sequences in the N-terminal region. The authors have examined the role that the latter three regions of the c-myc protein might play in the transforming function of the c-myc gene. Several mutations, deletions and frameshifts, were introduced into the c-myc gene, and these mutant genes were tested for their ability to collaborate with the EJ-ras oncogene to transform rat embryo fibroblasts. Complete elimination of the first two N-terminal conserved segments abolished transforming activity. In contrast, genes altered in a portion of the second or the entire third conserved segment retained their transforming activity. Thus, the latter two segments are not required for the transformation process, suggesting that they serve another function related only to the normal expression of the c-myc gene.

  12. Uncoupling histone turnover from transcription-associated histone H3 modifications.

    PubMed

    Ferrari, Paolo; Strubin, Michel

    2015-04-30

    Transcription in eukaryotes is associated with two major changes in chromatin organization. Firstly, nucleosomal histones are continuously replaced by new histones, an event that in yeast occurs predominantly at transcriptionally active promoters. Secondly, histones become modified post-translationally at specific lysine residues. Some modifications, including histone H3 trimethylation at lysine 4 (H3K4me3) and acetylation at lysines 9 (H3K9ac) and 14 (H3K14ac), are specifically enriched at active promoters where histones exchange, suggesting a possible causal relationship. Other modifications accumulate within transcribed regions and one of them, H3K36me3, is thought to prevent histone exchange. Here we explored the relationship between these four H3 modifications and histone turnover at a few selected genes. Using lysine-to-arginine mutants and a histone exchange assay, we found that none of these modifications plays a major role in either promoting or preventing histone turnover. Unexpectedly, mutation of H3K56, whose acetylation occurs prior to chromatin incorporation, had an effect only when introduced into the nucleosomal histone. Furthermore, we used various genetic approaches to show that histone turnover can be experimentally altered with no major consequence on the H3 modifications tested. Together, these results suggest that transcription-associated histone turnover and H3 modification are two correlating but largely independent events.

  13. Uncoupling Malt1 threshold function from paracaspase activity results in destructive autoimmune inflammation.

    PubMed

    Gewies, Andreas; Gorka, Oliver; Bergmann, Hanna; Pechloff, Konstanze; Petermann, Franziska; Jeltsch, Katharina M; Rudelius, Martina; Kriegsmann, Mark; Weichert, Wilko; Horsch, Marion; Beckers, Johannes; Wurst, Wolfgang; Heikenwalder, Mathias; Korn, Thomas; Heissmeyer, Vigo; Ruland, Jürgen

    2014-11-20

    The paracaspase Malt1 is a central regulator of antigen receptor signaling that is frequently mutated in human lymphoma. As a scaffold, it assembles protein complexes for NF-κB activation, and its proteolytic domain cleaves negative NF-κB regulators for signal enforcement. Still, the physiological functions of Malt1-protease are unknown. We demonstrate that targeted Malt1-paracaspase inactivation induces a lethal inflammatory syndrome with lymphocyte-dependent neurodegeneration in vivo. Paracaspase activity is essential for regulatory T cell (Treg) and innate-like B cell development, but it is largely dispensable for overcoming Malt1-dependent thresholds for lymphocyte activation. In addition to NF-κB inhibitors, Malt1 cleaves an entire set of mRNA stability regulators, including Roquin-1, Roquin-2, and Regnase-1, and paracaspase inactivation results in excessive interferon gamma (IFNγ) production by effector lymphocytes that drive pathology. Together, our results reveal distinct threshold and modulatory functions of Malt1 that differentially control lymphocyte differentiation and activation pathways and demonstrate that selective paracaspase blockage skews systemic immunity toward destructive autoinflammation.

  14. Reproductive options for prospective parents in families with Huntington's disease: clinical, psychological and ethical reflections.

    PubMed

    de Die-Smulders, C E M; de Wert, G M W R; Liebaers, I; Tibben, A; Evers-Kiebooms, G

    2013-01-01

    BACKGROUND Huntington's disease (HD) is an autosomal dominant neurodegenerative late onset disorder. This review of reproductive options aims to increase reproductive confidence and to prevent suffering in relation to family planning around HD and possibly other late onset neurodegenerative disorders. METHODS Selected relevant literature and own views and experiences as clinical geneticists, psychologists and ethicists have been used. RESULTS Possible options, with emphasis on prenatal diagnosis (PD) and preimplantation genetic diagnosis (PGD) to prevent the transmission of HD to the next generation, are described and discussed. They are formally presented in a decision tree, taking into account the presence or absence of a fully penetrant allele (FPA), a reduced penetrant allele (RPA) or an intermediate allele (IA). A table compares invasive and non-invasive PD and PGD. From a psychological perspective, the complex process of counselling and decision-making regarding reproductive options is discussed. Special attention is paid to the decision to avoid the transmission of the mutation and to the confrontation and coping of a mutation-free child growing up with a parent developing disease symptoms. From an ethical point of view, reflections on both PD and PGD are brought forward taking into account the difference between FPA, RPA and IA, direct testing or exclusion testing and taking into account the welfare of the child in the context of medically assisted reproduction. CONCLUSION Recommendations and suggestions for good clinical practice in the reproductive care for HD families are formulated.

  15. Structural Basis for the Allosteric Interference of Myosin Function by Reactive Thiol Region Mutations G680A and G680V*

    PubMed Central

    Preller, Matthias; Bauer, Stefanie; Adamek, Nancy; Fujita-Becker, Setsuko; Fedorov, Roman; Geeves, Michael A.; Manstein, Dietmar J.

    2011-01-01

    The cold-sensitive single-residue mutation of glycine 680 in the reactive thiol region of Dictyostelium discoideum myosin-2 or the corresponding conserved glycine in other myosin isoforms has been reported to interfere with motor function. Here we present the x-ray structures of myosin motor domain mutants G680A in the absence and presence of nucleotide as well as the apo structure of mutant G680V. Our results show that the Gly-680 mutations lead to uncoupling of the reactive thiol region from the surrounding structural elements. Structural and functional data indicate that the mutations induce the preferential population of a state that resembles the ADP-bound state. Moreover, the Gly-680 mutants display greatly reduced dynamic properties, which appear to be related to the recovery of myosin motor function at elevated temperatures. PMID:21841195

  16. Reproduction in the space environment: Part I. Animal reproductive studies

    NASA Technical Reports Server (NTRS)

    Santy, P. A.; Jennings, R. T.; Craigie, D.

    1990-01-01

    Mankind's exploration and colonization of the frontier of space will ultimately depend on men's and women's ability to live, work, and reproduce in the space environment. This paper reviews animal studies, from microorganisms to mammals, done in space or under space-simulated conditions, which identify some of the key areas which might interfere with human reproductive physiology and/or embryonic development. Those space environmental factors which impacted almost all species included: microgravity, artificial gravity, radiation, and closed life support systems. These factors may act independently and in combination to produce their effects. To date, there have been no studies which have looked at the entire process of reproduction in any animal species. This type of investigation will be critical in understanding and preventing the problems which will affect human reproduction. Part II will discuss these problems directly as they relate to human physiology.

  17. The effect of induced mutations on quantitative traits in Arabidopsis thaliana: Natural versus artificial conditions.

    PubMed

    Stearns, Frank W; Fenster, Charles B

    2016-12-01

    Mutations are the ultimate source of all genetic variations. New mutations are expected to affect quantitative traits differently depending on the extent to which traits contribute to fitness and the environment in which they are tested. The dogma is that the preponderance of mutations affecting fitness will be skewed toward deleterious while their effects on nonfitness traits will be bidirectionally distributed. There are mixed views on the role of stress in modulating these effects. We quantify mutation effects by inducing mutations in Arabidopsis thaliana (Columbia accession) using the chemical ethylmethane sulfonate. We measured the effects of new mutations relative to a premutation founder for fitness components under both natural (field) and artificial (growth room) conditions. Additionally, we measured three other quantitative traits, not expected to contribute directly to fitness, under artificial conditions. We found that induced mutations were equally as likely to increase as decrease a trait when that trait was not closely related to fitness (traits that were neither survivorship nor reproduction). We also found that new mutations were more likely to decrease fitness or fitness-related traits under more stressful field conditions than under relatively benign artificial conditions. In the benign condition, the effect of new mutations on fitness components was similar to traits not as closely related to fitness. These results highlight the importance of measuring the effects of new mutations on fitness and other traits under a range of conditions.

  18. [Introduction of mutations in insulin molecule: positive and negative mutations].

    PubMed

    Ksenofontova, O I

    2014-01-01

    Introduction of mutations in an insulin molecule is one of the important approaches to drug development for treatment of diabetes mellitus. Generally, usage of mutations is aimed at activation of insulin and insulin receptor interaction. Such mutations can be considered as positive. Mutations that reduce the binding efficacy are negative. There are neutral mutations as well. This article considers both natural mutations that are typical for various members of the insulin superfamily and artificial ones which are introduced to improve the insulin pharmacological characteristics. Data presented here can be useful in developing new effective insulin analogues for treatment of diabetes mellitus.

  19. Free radicals and male reproduction.

    PubMed

    Agarwal, Ashok; Allamaneni, Shyam S R

    2011-03-01

    Male factor accounts for almost 50% cases of infertility. The exact mechanism of sperm dysfunction is not known in many cases. Extensive research in the last decade has led to the identification of free radicals (reactive oxygen species) as mediators of sperm dysfunction in both specific diagnoses and idiopathic cases of male infertility. Elevated levels of reactive oxygen species are seen in up to 30-80% of men with male infertility. The role of free radicals has been studied extensively in the process of human reproduction. We know now that a certain level of free radicals is necessary for normal sperm function, whereas an excessive level of free radicals can cause detrimental effect on sperm function and subsequent fertilisation and offspring health. Oxidative stress develops when there is an imbalance between generation of free radicals and scavenging capacity of anti-oxidants in reproductive tract. Oxidative stress has been shown to affect both standard semen parameters and fertilising capacity. In addition, high levels of free radicals have been associated with lack of or poor fertility outcome after natural conception or assisted reproduction. Diagnostic techniques to quantify free radicals in infertile patients can assist physicians treating patients with infertility to plan for proper treatment strategies. In vivo anti-oxidants can be used against oxidative stress in male reproductive tract. Supplementation of in vitro anti-oxidants can help prevent the oxidative stress during sperm preparation techniques in assisted reproduction.

  20. Religious aspects of assisted reproduction

    PubMed Central

    Sallam, HN; Sallam, NH

    2016-01-01

    Abstract Human response to new developments regarding birth, death, marriage and divorce is largely shaped by religious beliefs. When assisted reproduction was introduced into medical practice in the last quarter of the twentieth century, it was fiercely attacked by some religious groups and highly welcomed by others. Today, assisted reproduction is accepted in nearly all its forms by Judaism, Hinduism and Buddhism, although most Orthodox Jews refuse third party involvement. On the contrary assisted reproduction is totally unacceptable to Roman Catholicism, while Protestants, Anglicans, Coptic Christians and Sunni Muslims accept most of its forms, which do not involve gamete or embryo donation. Orthodox Christians are less strict than Catholic Christians but still refuse third party involvement. Interestingly, in contrast to Sunni Islam, Shi’a Islam accepts gamete donation and has made provisions to institutionalize it. Chinese culture is strongly influenced by Confucianism, which accepts all forms of assisted reproduction that do not involve third parties. Other communities follow the law of the land, which is usually dictated by the religious group(s) that make(s) the majority of that specific community. The debate will certainly continue as long as new developments arise in the ever-evolving field of assisted reproduction. PMID:27822349

  1. [Public health ethics and reproduction].

    PubMed

    Alexandrova-Yankulovska, S; Bozhinov, P; Bojinova, S

    2014-01-01

    Medical progress has enabled achievements that were not even thinkable earlier but at the same time society and public health have had to face new challenges. What are we ready to accept in the area of human reproduction? This paper aims at ethical analysis of Bulgarian laws on reproduction. The abortion debate nowadays has got new dimiension focusing not that much on its moral acceptability but rather on the acceptable indications for its performance. Is it ethical to perform abortion in case of undesired gender of the embryo or genetic malformations? Lots of moral issues mark the area of assisted reproduction which is due to the separation of the reproductive functions (ova, sperm and embryo donation, surrogacy), fragmentation of motherhood and fatherhood, differentiation of biological and social parenthood. Defining limits of acceptable interference or non-interference in human reproduction will never be easy, but dynamics of moral judgment shouldn't bother us. The rigidity of moral norms is what should be alarming because it threatens procreative autonomy.

  2. Chemosignals, hormones, and amphibian reproduction.

    PubMed

    Woodley, Sarah

    2015-02-01

    This article is part of a Special Issue "Chemosignals and Reproduction". Amphibians are often thought of as relatively simple animals especially when compared to mammals. Yet the chemosignaling systems used by amphibians are varied and complex. Amphibian chemosignals are particularly important in reproduction, in both aquatic and terrestrial environments. Chemosignaling is most evident in salamanders and newts, but increasing evidence indicates that chemical communication facilitates reproduction in frogs and toads as well. Reproductive hormones shape the production, dissemination, detection, and responsiveness to chemosignals. A large variety of chemosignals have been identified, ranging from simple, invariant chemosignals to complex, variable blends of chemosignals. Although some chemosignals elicit straightforward responses, others have relatively subtle effects. Review of amphibian chemosignaling reveals a number of issues to be resolved, including: 1) the significance of the complex, individually variable blends of courtship chemosignals found in some salamanders, 2) the behavioral and/or physiological functions of chemosignals found in anuran "breeding glands", 3) the ligands for amphibian V2Rs, especially V2Rs expressed in the main olfactory epithelium, and 4) the mechanism whereby transdermal delivery of chemosignals influences behavior. To date, only a handful of the more than 7000 species of amphibians has been examined. Further study of amphibians should provide additional insight to the role of chemosignals in reproduction.

  3. Unisexual reproduction in Huntiella moniliformis.

    PubMed

    Wilson, A M; Godlonton, T; van der Nest, M A; Wilken, P M; Wingfield, M J; Wingfield, B D

    2015-07-01

    Sexual reproduction in fungi is controlled by genes present at the mating type (MAT) locus, which typically harbors transcription factors that influence the expression of many sex-related genes. The MAT locus exists as two alternative idiomorphs in ascomycetous fungi and sexual reproduction is initiated when genes from both idiomorphs are expressed. Thus, the gene content of this locus determines whether a fungus is heterothallic (self-sterile) or homothallic (self-fertile). Recently, a unique sub-class of homothallism has been described in fungi, where individuals possessing a single MAT idiomorph can reproduce sexually in the absence of a partner. Using various mycological, molecular and bioinformatic techniques, we investigated the sexual strategies and characterized the MAT loci in two tree wound-infecting fungi, Huntiella moniliformis and Huntiella omanensis. H. omanensis was shown to exhibit a typically heterothallic sexual reproductive cycle, with isolates possessing either the MAT1-1 or MAT1-2 idiomorph. This was in contrast to the homothallism via unisexual reproduction that was shown in H. moniliformis, where only the MAT1-2-1 gene was present in sexually reproducing cultures. While the evolutionary benefit and mechanisms underpinning a unisexual mating strategy remain unknown, it could have evolved to minimize the costs, while retaining the benefits, of normal sexual reproduction.

  4. [Acceleration of Embryonic Development of Pinus sibirica Trees with a One-Year Reproductive Cycle].

    PubMed

    Tret'yakova, I N; Lukina, N V

    2016-01-01

    The study of the formation of embryonic structures in Pinus sibirica forms with a one-year reproductive cycle showed that the acceleration of the embryonic process manifested itself as a reduction of the coenocytic stage of the female gametophyte development (1.5 months instead of 1 year). The egg was not fertilized because of the asynchronous maturation of male and female gametophytes. Seeds without embryos were formed. We assumed that the acceleration of the reproductive process in Pinus sibirica was caused by a mutation in the female generative organs.

  5. Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancer.

    PubMed

    Aguilera, Oscar; Muñoz-Sagastibelza, María; Torrejón, Blanca; Borrero-Palacios, Aurea; Del Puerto-Nevado, Laura; Martínez-Useros, Javier; Rodriguez-Remirez, María; Zazo, Sandra; García, Estela; Fraga, Mario; Rojo, Federico; García-Foncillas, Jesús

    2016-07-26

    KRAS mutation is often present in many hard-to-treat tumors such as colon and pancreatic cancer and it is tightly linked to serious alterations in the normal cell metabolism and clinical resistance to chemotherapy.In 1931, the winner of the Nobel Prize in Medicine, Otto Warburg, stated that cancer was primarily caused by altered metabolism interfering with energy processing in the normal cell. Increased cell glycolytic rates even in the presence of oxygen is fully recognized as a hallmark in cancer and known as the Warburg effect.In the late 1970's, Linus Pauling and Ewan Cameron reported that vitamin C may have positive effects in cancer treatment, although deep mechanistic knowledge about this activity is still scarce.We describe a novel antitumoral mechanism of vitamin C in KRAS mutant colorectal cancer that involves the Warburg metabolic disruption through downregulation of key metabolic checkpoints in KRAS mutant cancer cells and tumors without killing human immortalized colonocytes.Vitamin C induces RAS detachment from the cell membrane inhibiting ERK 1/2 and PKM2 phosphorylation. As a consequence of this activity, strong downregulation of the glucose transporter (GLUT-1) and pyruvate kinase M2 (PKM2)-PTB dependent protein expression are observed causing a major blockage of the Warburg effect and therefore energetic stress.We propose a combination of conventional chemotherapy with metabolic strategies, including vitamin C and/or other molecules targeting pivotal key players involved in the Warburg effect which may constitute a new horizon in anti-cancer therapies.

  6. Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancer

    PubMed Central

    Aguilera, Oscar; Muñoz-Sagastibelza, María; Torrejón, Blanca; Borrero-Palacios, Aurea; del Puerto-Nevado, Laura; Martínez-Useros, Javier; Rodriguez-Remirez, María; Zazo, Sandra; García, Estela; Fraga, Mario; Rojo, Federico; García-Foncillas, Jesús

    2016-01-01

    KRAS mutation is often present in many hard-to-treat tumors such as colon and pancreatic cancer and it is tightly linked to serious alterations in the normal cell metabolism and clinical resistance to chemotherapy. In 1931, the winner of the Nobel Prize in Medicine, Otto Warburg, stated that cancer was primarily caused by altered metabolism interfering with energy processing in the normal cell. Increased cell glycolytic rates even in the presence of oxygen is fully recognized as a hallmark in cancer and known as the Warburg effect. In the late 1970′s, Linus Pauling and Ewan Cameron reported that vitamin C may have positive effects in cancer treatment, although deep mechanistic knowledge about this activity is still scarce. We describe a novel antitumoral mechanism of vitamin C in KRAS mutant colorectal cancer that involves the Warburg metabolic disruption through downregulation of key metabolic checkpoints in KRAS mutant cancer cells and tumors without killing human immortalized colonocytes. Vitamin C induces RAS detachment from the cell membrane inhibiting ERK 1/2 and PKM2 phosphorylation. As a consequence of this activity, strong downregulation of the glucose transporter (GLUT-1) and pyruvate kinase M2 (PKM2)-PTB dependent protein expression are observed causing a major blockage of the Warburg effect and therefore energetic stress. We propose a combination of conventional chemotherapy with metabolic strategies, including vitamin C and/or other molecules targeting pivotal key players involved in the Warburg effect which may constitute a new horizon in anti-cancer therapies. PMID:27323830

  7. Low Base-Substitution Mutation Rate in the Germline Genome of the Ciliate Tetrahymena thermophil.

    PubMed

    Long, Hongan; Winter, David J; Chang, Allan Y-C; Sung, Way; Wu, Steven H; Balboa, Mariel; Azevedo, Ricardo B R; Cartwright, Reed A; Lynch, Michael; Zufall, Rebecca A

    2016-09-15

    Mutation is the ultimate source of all genetic variation and is, therefore, central to evolutionary change. Previous work on Paramecium tetraurelia found an unusually low germline base-substitution mutation rate in this ciliate. Here, we tested the generality of this result among ciliates using Tetrahymena thermophila. We sequenced the genomes of 10 lines of T. thermophila that had each undergone approximately 1,000 generations of mutation accumulation (MA). We applied an existing mutation-calling pipeline and developed a new probabilistic mutation detection approach that directly models the design of an MA experiment and accommodates the noise introduced by mismapped reads. Our probabilistic mutation-calling method provides a straightforward way of estimating the number of sites at which a mutation could have been called if one was present, providing the denominator for our mutation rate calculations. From these methods, we find that T. thermophila has a germline base-substitution mutation rate of 7.61 × 10 (-)  (12) per-site, per cell division, which is consistent with the low base-substitution mutation rate in P. tetraurelia Over the course of the evolution experiment, genomic exclusion lines derived from the MA lines experienced a fitness decline that cannot be accounted for by germline base-substitution mutations alone, suggesting that other genetic or epigenetic factors must be involved. Because selection can only operate to reduce mutation rates based upon the "visible" mutational load, asexual reproduction with a transcriptionally silent germline may allow ciliates to evolve extremely low germline mutation rates.

  8. ALS2 mutations

    PubMed Central

    Schneider, Susanne A.; Carr, Lucinda; Deuschl, Guenther; Hopfner, Franziska; Stamelou, Maria; Wood, Nicholas W.; Bhatia, Kailash P.

    2014-01-01

    Objective: To determine the genetic etiology in 2 consanguineous families who presented a novel phenotype of autosomal recessive juvenile amyotrophic lateral sclerosis associated with generalized dystonia. Methods: A combination of homozygosity mapping and whole-exome sequencing in the first family and Sanger sequencing of candidate genes in the second family were used. Results: Both families were found to have homozygous loss-of-function mutations in the amyotrophic lateral sclerosis 2 (juvenile) (ALS2) gene. Conclusions: We report generalized dystonia and cerebellar signs in association with ALS2-related disease. We suggest that the ALS2 gene should be screened for mutations in patients who present with a similar phenotype. PMID:24562058

  9. Male mutation bias and possible long-term effects of human activities.

    PubMed

    Cotton, Samuel; Wedekind, Claus

    2010-10-01

    The ability of a population to adapt to changing environments depends critically on the amount and kind of genetic variability it possesses. Mutations are an important source of new genetic variability and may lead to new adaptations, especially if the population size is large. Mutation rates are extremely variable between and within species, and males usually have higher mutation rates as a result of elevated rates of male germ cell division. This male bias affects the overall mutation rate. We examined the factors that influence male mutation bias, and focused on the effects of classical life-history parameters, such as the average age at reproduction and elevated rates of sperm production in response to sexual selection and sperm competition. We argue that human-induced changes in age at reproduction or in sexual selection will affect male mutation biases and hence overall mutation rates. Depending on the effective population size, these changes are likely to influence the long-term persistence of a population.

  10. Genetic tools to improve reproduction traits in dairy cattle.

    PubMed

    Capitan, A; Michot, P; Baur, A; Saintilan, R; Hozé, C; Valour, D; Guillaume, F; Boichon, D; Barbat, A; Boichard, D; Schibler, L; Fritz, S

    2014-12-01

    Fertility is a major concern in the dairy cattle industry and has been the subject of numerous studies over the past 20 years. Surprisingly, most of these studies focused on rough female phenotypes and, despite their important role in reproductive success, male- and embryo-related traits have been poorly investigated. In recent years, the rapid and important evolution of technologies in genetic research has led to the development of genomic selection. The generalisation of this method in combination with the achievements of the AI industry have led to the constitution of large databases of genotyping and sequencing data, as well as refined phenotypes and pedigree records. These resources offer unprecedented opportunities in terms of fundamental and applied research. Here we present five such examples with a focus on reproduction-related traits: (1) detection of quantitative trait loci (QTL) for male fertility and semen quality traits; (2) detection of QTL for refined phenotypes associated with female fertility; (3) identification of recessive embryonic lethal mutations by depletion of homozygous haplotypes; (4) identification of recessive embryonic lethal mutations by mining whole-genome sequencing data; and (5) the contribution of high-density single nucleotide polymorphism chips, whole-genome sequencing and imputation to increasing the power of QTL detection methods and to the identification of causal variants.

  11. Size-dependent reproductive pattern and short-term reproductive cost in Rumex obtusifolius L

    NASA Astrophysics Data System (ADS)

    Pino, Joan; Sans, F. Xavier; Masalles, Ramon M.

    2002-10-01

    This paper analyses the size-dependent reproductive pattern of Rumex obtusifolius L. growing in lucerne crops ( Medicago sativa L.), and its importance in determining the existence of a short-term reproductive cost. Size effects on reproductive pattern were evaluated by determining the role of plant size at the time of first reproduction, and the size-dependency of flowering probability (estimated as the proportion of flowering plants), plant fecundity, and reproductive effort (estimated as the ratio between reproductive and vegetative biomass). These parameters were recorded over the reproductive episodes determined by crop harvesting during the reproductive period. The results showed that size was much more important than age in determining time of first reproduction. Seed output decreased progressively over the reproductive period, probably in relation to an increasing short-term reproductive cost caused by a gradual depletion of plant resources. Probability of flowering over the successive reproductive episodes increased with plant size. The allometric relationship of vegetative versus reproductive biomass indicated that reproductive biomass increased less sharply than vegetative biomass and, consequently, reproductive effort decreased as plant size increased. Assuming a direct relationship between reproductive effort and reproductive cost, the size-dependent flowering probability could reflect, in turn, the existence of a size-dependent reproductive cost that would decrease as plant size increased. Ecological implications of these results are discussed.

  12. Stem Cells and Female Reproduction

    PubMed Central

    Du, Hongling; Taylor, Hugh S.

    2011-01-01

    Several recent findings in stem cell biology have resulted in new opportunities for the treatment of reproductive disease. Endometrial regeneration can be driven by bone marrow derived stem cells. This finding has potential implications for the treatment of uterine disorders. It also supports a new theory for the etiology of endometriosis. The ovaries have been shown to contain stem cells that form oocytes in adults and can be cultured in vitro to develop mature oocytes. Stem cells from the fetus have been demonstrated to lead to microchimerism in the mother and implicated in several maternal diseases. Additionally the placenta may be another source of hematopoietic stem cell. Finally endometrial derived stem cells have been demonstrated to differentiate into non-reproductive tissues. While we are just beginning to understand stem cells and many key questions remain, the potential advantages of stem cells in reproductive biology and medicine are apparent. PMID:19208782

  13. Therapeutic cloning and reproductive liberty.

    PubMed

    Sparrow, Robert

    2009-04-01

    Concern for "reproductive liberty" suggests that decisions about embryos should normally be made by the persons who would be the genetic parents of the child that would be brought into existence if the embryo were brought to term. Therapeutic cloning would involve creating and destroying an embryo, which, if brought to term, would be the offspring of the genetic parents of the person undergoing therapy. I argue that central arguments in debates about parenthood and genetics therefore suggest that therapeutic cloning would be prima facie unethical unless it occurred with the consent of the parents of the person being cloned. Alternatively, if therapeutic cloning is thought to be legitimate, this undermines the case for some uses of reproductive cloning by implying that the genetic relation it establishes between clones and DNA donors does not carry the same moral weight as it does in cases of normal reproduction.