Sample records for mutual interaction surfaces

  1. The role of exogenic factors in the formation of the lunar surface

    NASA Technical Reports Server (NTRS)

    Florenskiy, K. P.; Bazilevskiy, A. T.; Ivanov, A. V.

    1977-01-01

    The formation of the surface of planetary bodies is determined by the interaction of endogenic and exogenic forces. Clarification of the mutual role of these forces is one of the most important trends in the geological sciences.

  2. Electric field theory based approach to search-direction line definition in image segmentation: application to optimal femur-tibia cartilage segmentation in knee-joint 3-D MR

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Sonka, M.

    2010-03-01

    A novel method is presented for definition of search lines in a variety of surface segmentation approaches. The method is inspired by properties of electric field direction lines and is applicable to general-purpose n-D shapebased image segmentation tasks. Its utility is demonstrated in graph construction and optimal segmentation of multiple mutually interacting objects. The properties of the electric field-based graph construction guarantee that inter-object graph connecting lines are non-intersecting and inherently covering the entire object-interaction space. When applied to inter-object cross-surface mapping, our approach generates one-to-one and all-to-all vertex correspondent pairs between the regions of mutual interaction. We demonstrate the benefits of the electric field approach in several examples ranging from relatively simple single-surface segmentation to complex multiobject multi-surface segmentation of femur-tibia cartilage. The performance of our approach is demonstrated in 60 MR images from the Osteoarthritis Initiative (OAI), in which our approach achieved a very good performance as judged by surface positioning errors (average of 0.29 and 0.59 mm for signed and unsigned cartilage positioning errors, respectively).

  3. Surface-region context in optimal multi-object graph-based segmentation: robust delineation of pulmonary tumors.

    PubMed

    Song, Qi; Chen, Mingqing; Bai, Junjie; Sonka, Milan; Wu, Xiaodong

    2011-01-01

    Multi-object segmentation with mutual interaction is a challenging task in medical image analysis. We report a novel solution to a segmentation problem, in which target objects of arbitrary shape mutually interact with terrain-like surfaces, which widely exists in the medical imaging field. The approach incorporates context information used during simultaneous segmentation of multiple objects. The object-surface interaction information is encoded by adding weighted inter-graph arcs to our graph model. A globally optimal solution is achieved by solving a single maximum flow problem in a low-order polynomial time. The performance of the method was evaluated in robust delineation of lung tumors in megavoltage cone-beam CT images in comparison with an expert-defined independent standard. The evaluation showed that our method generated highly accurate tumor segmentations. Compared with the conventional graph-cut method, our new approach provided significantly better results (p < 0.001). The Dice coefficient obtained by the conventional graph-cut approach (0.76 +/- 0.10) was improved to 0.84 +/- 0.05 when employing our new method for pulmonary tumor segmentation.

  4. Thermal tolerance affects mutualist attendance in an ant-plant protection mutualism

    PubMed Central

    Fitzpatrick, Ginny; Lanan, Michele C.; Bronstein, Judith L.

    2014-01-01

    Mutualism is an often-complex interaction among multiple species, each of which may respond differently to abiotic conditions. The effects of temperature on the formation, dissolution, and success of these and other species interactions remain poorly understood. We studied the thermal ecology of the mutualism between the cactus Ferocactus wislizeni and its ant defenders (Forelius pruinosus, Crematogaster opuntiae, Solenopsis aurea, and Solenopsis xyloni) in the Sonoran Desert, USA. The ants are attracted to extrafloral nectar produced by the plants and in exchange protect the plants from herbivores; there is a hierarchy of mutualist effectiveness based on aggression toward herbivores. We determined the relationship between temperature and ant activity on plants, the thermal tolerance of each ant species, and ant activity in relation to the thermal environment of plants. Temperature played a role in determining which species interact as mutualists. Three of the four ant species abandoned the plants during the hottest part of the day (up to 40°C), returning when surface temperature began to decrease in the afternoon. The least effective ant mutualist, F. pruinosus, had a significantly higher critical thermal maximum than the other three species, was active across the entire range of plant surface temperatures observed (13.8-57.0°C), and visited plants that reached the highest temperatures. F. pruinosus occupied some plants full-time and invaded plants occupied by more dominant species when those species were thermally excluded. Combining data on thermal tolerance and mutualist effectiveness provides a potentially powerful tool for predicting the effects of temperature on mutualisms and mutualistic species. PMID:25012597

  5. Microbial mutualism at a distance: The role of geometry in diffusive exchanges

    NASA Astrophysics Data System (ADS)

    Peaudecerf, François J.; Bunbury, Freddy; Bhardwaj, Vaibhav; Bees, Martin A.; Smith, Alison G.; Goldstein, Raymond E.; Croze, Ottavio A.

    2018-02-01

    The exchange of diffusive metabolites is known to control the spatial patterns formed by microbial populations, as revealed by recent studies in the laboratory. However, the matrices used, such as agarose pads, lack the structured geometry of many natural microbial habitats, including in the soil or on the surfaces of plants or animals. Here we address the important question of how such geometry may control diffusive exchanges and microbial interaction. We model mathematically mutualistic interactions within a minimal unit of structure: two growing reservoirs linked by a diffusive channel through which metabolites are exchanged. The model is applied to study a synthetic mutualism, experimentally parametrized on a model algal-bacterial co-culture. Analytical and numerical solutions of the model predict conditions for the successful establishment of remote mutualisms, and how this depends, often counterintuitively, on diffusion geometry. We connect our findings to understanding complex behavior in synthetic and naturally occurring microbial communities.

  6. Mutual Exclusion of Urea and Trimethylamine N-oxide from Amino Acids in Mixed Solvent Environment

    NASA Astrophysics Data System (ADS)

    Ganguly, Pritam; Hajari, Timir; Shea, Joan-Emma; van der Vegt, Nico F. A.

    2015-03-01

    We study the solvation thermodynamics of individual amino acids in mixed urea and trimethylamine N-oxide (TMAO) solutions using molecular dynamics simulations and the Kirkwood-Buff theory. Our results on the preferential interactions between the amino acids and the cosolvents (urea and TMAO) show a mutual exclusion of both the cosolvents from the amino acid surface in the mixed cosolvent condition which is followed by an increase in the cosolvent-cosolvent aggregation away from the amino acid surface. The effects of the mixed cosolvents on the association of the amino acids and the preferential solvation of the amino acids by water are found to be highly non-linear in terms of the effects of the individual cosolvents. A similar result has been found for the association of the protein backbone, mimicked by triglycine. Our results have been confirmed by different TMAO force-fields and the mutual exclusions of the cosolvents from the amino acids are found to be independent of the choice of the strength of the TMAO-water interactions. Based on our data, a general mechanism can potentially be proposed for the effects of the mixed cosolvents on the preferential solvations of the solutes including the case of cononsolvency.

  7. Transport theory for a leaf canopy of finite-dimensional scattering centers

    NASA Technical Reports Server (NTRS)

    Myneni, Ranga B.; Marshak, Alexander L.; Kniazikhin, Iurii V.

    1991-01-01

    A formalism for photon transport in leaf canopies with finite-dimensional scattering centers that cross shade mutually is developed. Starting from first principles, expressions for the interaction cross sections are derived. The problem of illumination by a monodirectional source is studied in detail using a successive collisions approach. A balance equation is formulated in R3 and the interaction between a leaf canopy and the adjacent atmosphere is discussed. Although the details are those relating to a leaf canopy, the formalism is equally applicable to other media where the constituents cross shade mutually such as planetary surfaces, rings and ridged-ice in polar regions, i.e., media that exhibit opposition brightening.

  8. Theory and Simulation of Self- and Mutual-Diffusion of Carrier Density and Temperature in Semiconductor Lasers

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Cheung, Samson H.; Ning, C. Z.

    2001-01-01

    Carrier diffusion and thermal conduction play a fundamental role in the operation of high-power, broad-area semiconductor lasers. Restricted geometry, high pumping level and dynamic instability lead to inhomogeneous spatial distribution of plasma density, temperature, as well as light field, due to strong light-matter interaction. Thus, modeling and simulation of such optoelectronic devices rely on detailed descriptions of carrier dynamics and energy transport in the system. A self-consistent description of lasing and heating in large-aperture, inhomogeneous edge- or surface-emitting lasers (VCSELs) require coupled diffusion equations for carrier density and temperature. In this paper, we derive such equations from the Boltzmann transport equation for the carrier distributions. The derived self- and mutual-diffusion coefficients are in general nonlinear functions of carrier density and temperature including many-body interactions. We study the effects of many-body interactions on these coefficients, as well as the nonlinearity of these coefficients for large-area VCSELs. The effects of mutual diffusions on carrier and temperature distributions in gain-guided VCSELs will be also presented.

  9. Direction-specific van der Waals attraction between rutile TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; He, Yang; Sushko, Maria L.; Liu, Jia; Luo, Langli; De Yoreo, James J.; Mao, Scott X.; Wang, Chongmin; Rosso, Kevin M.

    2017-04-01

    Mutual lattice orientations dictate the types and magnitudes of forces between crystalline particles. When lattice polarizability is anisotropic, the van der Waals dispersion attraction can, in principle, contribute to this direction dependence. We report measurement of this attraction between rutile nanocrystals, as a function of their mutual orientation and surface hydration extent. At tens of nanometers of separation, the attraction is weak and shows no dependence on azimuthal alignment or surface hydration. At separations of approximately one hydration layer, the attraction is strongly dependent on azimuthal alignment and systematically decreases as intervening water density increases. Measured forces closely agree with predictions from Lifshitz theory and show that dispersion forces can generate a torque between particles interacting in solution and between grains in materials.

  10. Mutual effects of copper and phosphate on their interaction with γ-Al2O3: combined batch macroscopic experiments with DFT calculations.

    PubMed

    Ren, Xuemei; Yang, Shitong; Tan, Xiaoli; Chen, Changlun; Sheng, Guodong; Wang, Xiangke

    2012-10-30

    The mutual effects of Cu(II) and phosphate on their interaction with γ-Al(2)O(3) are investigated by using batch experiments combined with density functional theory (DFT) calculations. The results of batch experiments show that coexisting phosphate promotes the retention of Cu(II) on γ-Al(2)O(3), whereas phosphate retention is not affected by coexisting Cu(II) at low initial phosphate concentrations (≤ 3.6 mg P/L). Cu-phosphate aqueous complexes control Cu(II) retention through the formation of type B ternary surface complexes (where phosphate bridges γ-Al(2)O(3) and Cu(II)) at pH 5.5. This deduction is further supported by the results of DFT calculations. More specifically, the DFT calculation results indicate that the type B ternary surface complexes prefer to form outer-sphere or monodentate inner-sphere binding mode under our experimental conditions. The enhancement of phosphate retention on γ-Al(2)O(3) in the presence of Cu(II) at high initial phosphate concentrations (>3.6 mg P/L) may be attributed to the formation of 1:2 Cu(II)-phosphate species and/or surface precipitates. Understanding the mutual effects of phosphate and Cu(II) on their mobility and transport in mineral/water environments is more realistic to design effective remediation strategies for reducing their negative impacts on aquatic/terrestrial environments. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Resonant Inductive Decoupling (RID) for Transceiver Arrays to Compensate for both Reactive and Resistive Components of the Mutual Impedance

    PubMed Central

    Avdievich, Nikolai I.; Pan, Jullie W.; Hetherington, Hoby P.

    2013-01-01

    Transceiver surface coil arrays improve transmit performance (B1/√kW) and B1 homogeneity for head imaging up to 9.4 T. To further improve reception performance and parallel imaging the number of array elements has to be increased with correspondent decrease of their size. With a large number of small interacting antennas decoupling is one of the most challenging aspects in the design and construction of transceiver arrays. Previously described decoupling techniques using geometric overlap, inductive or capacitive decoupling have focused on eliminating only the reactance of the mutual impedance, which can limit the obtainable decoupling to −10 dB due to residual mutual resistance. A novel resonant inductive decoupling (RID) method, which allows compensation for both reactive and resistive components of the mutual impedance between the adjacent surface coils, has been developed and experimentally verified. This method provides an easy way to adjust the decoupling remotely by changing the resonance frequency of the RID circuit through adjustment of a variable capacitor. As an example a single row (1×16) 7T transceiver head array of n=16 small overlapped surface coils using RID decoupling between adjacent coils was built. In combination with overlapped coils the RID technique achieved better than −24 dB of decoupling for all adjacent coils. PMID:23775840

  12. 77 FR 26051 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ..., Washington, DC 20549-0213. Extension: Mutual Fund Interactive Data; SEC File No. 270-580; OMB Control No... information in interactive data format is ``Mutual Fund Interactive Data.'' This collection of information... disclosure requirements for funds and other issuers. The purpose of the Mutual Fund Interactive Data...

  13. A consumer-resource approach to the density-dependent population dynamics of mutualism.

    PubMed

    Holland, J Nathaniel; DeAngelis, Donald L

    2010-05-01

    Like predation and competition, mutualism is now recognized as a consumer-resource (C-R) interaction, including, in particular, bi-directional (e.g., coral, plant-mycorrhizae) and uni-directional (e.g., ant-plant defense, plant-pollinator) C-R mutualisms. Here, we develop general theory for the density-dependent population dynamics of mutualism based on the C-R mechanism of interspecific interaction. To test the influence of C-R interactions on the dynamics and stability of bi- and uni-directional C-R mutualisms, we developed simple models that link consumer functional response of one mutualistic species with the resources supplied by another. Phase-plane analyses show that the ecological dynamics of C-R mutualisms are stable in general. Most transient behavior leads to an equilibrium of mutualistic coexistence, at which both species densities are greater than in the absence of interactions. However, due to the basic nature of C-R interactions, certain density-dependent conditions can lead to C-R dynamics characteristic of predator-prey interactions, in which one species overexploits and causes the other to go extinct. Consistent with empirical phenomena, these results suggest that the C-R interaction can provide a broad mechanism for understanding density-dependent population dynamics of mutualism. By unifying predation, competition, and mutualism under the common ecological framework of consumer-resource theory, we may also gain a better understanding of the universal features of interspecific interactions in general.

  14. A consumer-resource approach to the density-dependent population dynamics of mutualism

    USGS Publications Warehouse

    Holland, J. Nathaniel; DeAngelis, Donald L.

    2010-01-01

    Like predation and competition, mutualism is now recognized as a consumer resource (C-R) interaction, including, in particular, bi-directional (e.g., coral, plant- mycorrhizae) and uni-directional (e.g., ant-plant defense, plant-pollinator) C-R mutualisms. Here, we develop general theory for the density-dependent population dynamics of mutualism based on the C-R mechanism of interspecific interaction. To test the influence of C-R interactions on the dynamics and stability of bi- and uni-directional C-R mutualisms, we developed simple models that link consumer functional response of one mutualistic species with the resources supplied by another. Phase-plane analyses show that the ecological dynamics of C-R mutualisms are stable in general. Most transient behavior leads to an equilibrium of mutualistic coexistence, at which both species densities are greater than in the absence of interactions. However, due to the basic nature of C-R interactions, certain density-dependent conditions can lead to C-R dynamics characteristic of predator-prey interactions, in which one species overexploits and causes the other to go extinct. Consistent with empirical phenomena, these results suggest that the C-R interaction can provide a broad mechanism for understanding density-dependent population dynamics of mutualism. By unifying predation, competition, and mutualism under the common ecological framework of consumer-resource theory, we may also gain a better understanding of the universal features of interspecific interactions in general.

  15. Second order harmonic guided wave mutual interactions in plate: Vector analysis, numerical simulation, and experimental results

    NASA Astrophysics Data System (ADS)

    Hasanian, Mostafa; Lissenden, Cliff J.

    2017-08-01

    The extraordinary sensitivity of nonlinear ultrasonic waves to the early stages of material degradation makes them excellent candidates for nondestructive material characterization. However, distinguishing weak material nonlinearity from instrumentation nonlinearity remains problematic for second harmonic generation approaches. A solution to this problem is to mix waves having different frequencies and to let their mutual interaction generate sum and difference harmonics at frequencies far from those of the instrumentation. Mixing of bulk waves and surface waves has been researched for some time, but mixing of guided waves has not yet been investigated in depth. A unique aspect of guided waves is their dispersive nature, which means we need to assure that a wave can propagate at the sum or difference frequency. A wave vector analysis is conducted that enables selection of primary waves traveling in any direction that generate phase matched secondary waves. We have tabulated many sets of primary waves and phase matched sum and difference harmonics. An example wave mode triplet of two counter-propagating collinear shear horizontal waves that interact to generate a symmetric Lamb wave at the sum frequency is simulated using finite element analysis and then laboratory experiments are conducted. The finite element simulation eliminates issues associated with instrumentation nonlinearities and signal-to-noise ratio. A straightforward subtraction method is used in the experiments to identify the material nonlinearity induced mutual interaction and show that the generated Lamb wave propagates on its own and is large enough to measure. Since the Lamb wave has different polarity than the shear horizontal waves the material nonlinearity is clearly identifiable. Thus, the mutual interactions of shear horizontal waves in plates could enable volumetric characterization of material in remote regions from transducers mounted on just one side of the plate.

  16. Mutual interactions of redox couples via electron exchange in silicate melts - Models for geochemical melt systems

    NASA Technical Reports Server (NTRS)

    Schreiber, Henry D.; Merkel, Robert C., Jr.; Schreiber, V. Lea; Balazs, G. Bryan

    1987-01-01

    The mutual interactions via electron exchange of redox couples in glass-forming melts were investigated both theoretically and experimentally. A thermodynamic approach for considering the mutual interactions leads to conclusion that the degree of mutual interaction in the melt should be proportional in part to the difference in relative reduction potentials of the interacting redox couples. Experimental studies verify this conclusion for numerous redox couples in several composition/temperature/oxygen fugacity regimes. Geochemical systems simultaneously possess many potentially multivalent elements; the stabilized redox states in the resulting magmas can be explained in part by mutual interactions and by redox buffering through the central Fe(III)- Fe(II) couples in the melts. The significance of these results for basaltic magmas of the earth, moon, and meteorites is addressed.

  17. 77 FR 11601 - Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ..., Washington, DC 20549-0213. Extension: Mutual Fund Interactive Data; SEC File No. 270-580; OMB Control No... information for submitting risk/ return summary information in interactive data format is ``Mutual Fund.... The purpose of the Mutual Fund Interactive Data requirements is to make risk/return summary...

  18. Inconsistency of the Van't Hoff-Scholander Mechanism of Osmosis

    ERIC Educational Resources Information Center

    Howard, R.; Bradner, H.

    1977-01-01

    Scholander supports a concept of mutually non-interacting, independent solute and solvent pressures. He proposes that the solute can induce this tension in the solvent through bombardment of a free surface. Criticism includes the neglect of a virial expansion for the equation of state by Scholander. (Author/MA)

  19. Instability in a system of two interacting liquid films: Formation of liquid bridges between solid surfaces

    NASA Astrophysics Data System (ADS)

    Forcada, Mikel L.

    1993-01-01

    A theoretical study of systems composed of two solid-supported liquid films that are subject to a mutual attractive interaction reveals the existence of a mechanical instability: for distances closer than a certain threshold value, the system composed by two separate liquid films has no stable equilibrium configurations, and the system collapses to form a single liquid body. The sudden condensation of a connecting liquid bridge when two solid surfaces are brought to close proximity inside an undersaturated medium has been observed experimentally using the surface-force apparatus [see, e.g., Christenson et al., Phys. Rev. B 39, 11750 (1989)]. In this paper, these results are explained as follows: first, liquid films condense on the surfaces; then, if the distance is short enough, the films jump to contact, because of a mechanical instability due to attractive interactions.

  20. Benefit and cost curves for typical pollination mutualisms.

    PubMed

    Morris, William F; Vázquez, Diego P; Chacoff, Natacha P

    2010-05-01

    Mutualisms provide benefits to interacting species, but they also involve costs. If costs come to exceed benefits as population density or the frequency of encounters between species increases, the interaction will no longer be mutualistic. Thus curves that represent benefits and costs as functions of interaction frequency are important tools for predicting when a mutualism will tip over into antagonism. Currently, most of what we know about benefit and cost curves in pollination mutualisms comes from highly specialized pollinating seed-consumer mutualisms, such as the yucca moth-yucca interaction. There, benefits to female reproduction saturate as the number of visits to a flower increases (because the amount of pollen needed to fertilize all the flower's ovules is finite), but costs continue to increase (because pollinator offspring consume developing seeds), leading to a peak in seed production at an intermediate number of visits. But for most plant-pollinator mutualisms, costs to the plant are more subtle than consumption of seeds, and how such costs scale with interaction frequency remains largely unknown. Here, we present reasonable benefit and cost curves that are appropriate for typical pollinator-plant interactions, and we show how they can result in a wide diversity of relationships between net benefit (benefit minus cost) and interaction frequency. We then use maximum-likelihood methods to fit net-benefit curves to measures of female reproductive success for three typical pollination mutualisms from two continents, and for each system we chose the most parsimonious model using information-criterion statistics. We discuss the implications of the shape of the net-benefit curve for the ecology and evolution of plant-pollinator mutualisms, as well as the challenges that lie ahead for disentangling the underlying benefit and cost curves for typical pollination mutualisms.

  1. Three-dimensional analytical solution for the instability of a parallel array of mutually attracting identical simply supported piezoelectric microplates

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Wang, Xu

    2017-12-01

    Three-dimensional analytical solutions are derived for the structural instability of a parallel array of mutually attracting identical simply supported orthotropic piezoelectric rectangular microplates by means of a linear perturbation analysis. The two surfaces of each plate can be either insulating or conducting. By considering the fact that the shear stresses and the normal electric displacement (or electric potential) are zero on the two surfaces of each plate, a 2 × 2 transfer matrix for a plate can be obtained directly from the 8 × 8 fundamental piezoelectricity matrix without resolving the original Stroh eigenrelation. The critical interaction coefficient can be determined by solving the resulting generalized eigenvalue problem for the piezoelectric plate array. Also considered in our analysis is the in-plane uniform edge compression acting on the four sides of each piezoelectric plate. Our results indicate that the stabilizing influence of the piezoelectric effect on the structural instability is unignorable; the edge compression always plays a destabilizing role in the structural instability of the plate array with interactions.

  2. Chemical camouflage: a key process in shaping an ant-treehopper and fig-fig wasp mutualistic network.

    PubMed

    Wang, Bo; Lu, Min; Cook, James M; Yang, Da-Rong; Dunn, Derek W; Wang, Rui-Wu

    2018-01-30

    Different types of mutualisms may interact, co-evolve and form complex networks of interdependences, but how species interact in networks of a mutualistic community and maintain its stability remains unclear. In a mutualistic network between treehoppers-weaver ants and fig-pollinating wasps, we found that the cuticular hydrocarbons of the treehoppers are more similar to the surface chemical profiles of fig inflorescence branches (FIB) than the cuticular hydrocarbons of the fig wasps. Behavioral assays showed that the cuticular hydrocarbons from both treehoppers and FIBs reduce the propensity of weaver ants to attack treehoppers even in the absence of honeydew rewards, suggesting that chemical camouflage helps enforce the mutualism between weaver ants and treehoppers. High levels of weaver ant and treehopper abundances help maintain the dominance of pollinating fig wasps in the fig wasp community and also increase fig seed production, as a result of discriminative predation and disturbance by weaver ants of ovipositing non-pollinating fig wasps (NPFWs). Ants therefore help preserve this fig-pollinating wasp mutualism from over exploitation by NPFWs. Our results imply that in this mutualistic network chemical camouflage plays a decisive role in regulating the behavior of a key species and indirectly shaping the architecture of complex arthropod-plant interactions.

  3. Direction-specific van der Waals attraction between rutile TiO2 nanocrystals.

    PubMed

    Zhang, Xin; He, Yang; Sushko, Maria L; Liu, Jia; Luo, Langli; De Yoreo, James J; Mao, Scott X; Wang, Chongmin; Rosso, Kevin M

    2017-04-28

    Mutual lattice orientations dictate the types and magnitudes of forces between crystalline particles. When lattice polarizability is anisotropic, the van der Waals dispersion attraction can, in principle, contribute to this direction dependence. We report measurement of this attraction between rutile nanocrystals, as a function of their mutual orientation and surface hydration extent. At tens of nanometers of separation, the attraction is weak and shows no dependence on azimuthal alignment or surface hydration. At separations of approximately one hydration layer, the attraction is strongly dependent on azimuthal alignment and systematically decreases as intervening water density increases. Measured forces closely agree with predictions from Lifshitz theory and show that dispersion forces can generate a torque between particles interacting in solution and between grains in materials. Copyright © 2017, American Association for the Advancement of Science.

  4. Direction-specific van der Waals attraction between rutile TiO 2 nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xin; He, Yang; Sushko, Maria L.

    Mutual lattice orientations dictate the types and magnitudes of forces between crystalline particles. When lattice polarizability is anisotropic, the van der Waals dispersion attraction can, in principle, contribute to this direction dependence. Here we report direct measurement of this attraction between rutile nanocrystals, as a function of their mutual orientation and surface hydration extent. At tens of nanometers of separation the attraction is weak and shows no dependence on azimuthal alignment nor surface hydration. At separations of approximately one hydration layer the attraction is strongly dependent on azimuthal alignment, and systematically decreases as intervening water density increases. Measured forces aremore » in close agreement with predictions from Lifshitz theory, and show that dispersion forces are capable of generating a torque between particles interacting in solution and between grains in materials.« less

  5. Water structuring and collagen adsorption at hydrophilic and hydrophobic silicon surfaces.

    PubMed

    Cole, Daniel J; Payne, Mike C; Ciacchi, Lucio Colombi

    2009-12-28

    The adsorption of a collagen fragment on both a hydrophobic, hydrogen-terminated and a hydrophilic, natively oxidised Si surface is investigated using all-atom molecular dynamics. While favourable direct protein-surface interactions via localised contact points characterise adhesion to the hydrophilic surface, evenly spread surface/molecule contacts and stabilisation of the helical structure occurs upon adsorption on the hydrophobic surface. In the latter case, we find that adhesion is accompanied by a mutual fit between the hydrophilic/hydrophobic pattern within the protein and the layered water structure at the solid/liquid interface, which may provide an additional driving force to the classic hydrophobic effect.

  6. Optimal graph search segmentation using arc-weighted graph for simultaneous surface detection of bladder and prostate.

    PubMed

    Song, Qi; Wu, Xiaodong; Liu, Yunlong; Smith, Mark; Buatti, John; Sonka, Milan

    2009-01-01

    We present a novel method for globally optimal surface segmentation of multiple mutually interacting objects, incorporating both edge and shape knowledge in a 3-D graph-theoretic approach. Hard surface interacting constraints are enforced in the interacting regions, preserving the geometric relationship of those partially interacting surfaces. The soft smoothness a priori shape compliance is introduced into the energy functional to provide shape guidance. The globally optimal surfaces can be simultaneously achieved by solving a maximum flow problem based on an arc-weighted graph representation. Representing the segmentation problem in an arc-weighted graph, one can incorporate a wider spectrum of constraints into the formulation, thus increasing segmentation accuracy and robustness in volumetric image data. To the best of our knowledge, our method is the first attempt to introduce the arc-weighted graph representation into the graph-searching approach for simultaneous segmentation of multiple partially interacting objects, which admits a globally optimal solution in a low-order polynomial time. Our new approach was applied to the simultaneous surface detection of bladder and prostate. The result was quite encouraging in spite of the low saliency of the bladder and prostate in CT images.

  7. Critical evaluation of dipolar, acid-base and charge interactions I. Electron displacement within and between molecules, liquids and semiconductors.

    PubMed

    Rosenholm, Jarl B

    2017-09-01

    Specific dipolar, acid-base and charge interactions involve electron displacements. For atoms, single bonds and molecules electron displacement is characterized by electronic potential, absolute hardness, electronegativity and electron gap. In addition, dissociation, bonding, atomization, formation, ionization, affinity and lattice enthalpies are required to quantify the electron displacement in solids. Semiconductors are characterized by valence and conduction band energies, electron gaps and average Fermi energies which in turn determine Galvani potentials of the bulk, space charge layer and surface states. Electron displacement due to interaction between (probe) molecules, liquids and solids are characterized by parameters such as Hamaker constant, solubility parameter, exchange energy density, surface tension, work of adhesion and immersion. They are determined from permittivity, refractive index, enthalpy of vaporization, molar volume, surface pressure and contact angle. Moreover, acidic and basic probes may form adducts which are adsorbed on target substrates in order to establish an indirect measure of polarity, acidity, basicity or hydrogen bonding. Acidic acceptor numbers (AN), basic donor numbers (DN), acidic and basic "electrostatic" (E) and "covalent" (C) parameters determined by enthalpy of adduct formation are considered as general acid-base scales. However, the formal grounds for assignments as dispersive, Lifshitz-van der Waals, polar, acid, base and hydrogen bond interactions are inconsistent. Although correlations are found no of the parameters are mutually fully compatible and moreover the enthalpies of acid-base interaction do not correspond to free energies. In this review the foundations of different acid-base parameters relating to electron displacement within and between (probe) molecules, liquids and (semiconducting) solids are thoroughly investigated and their mutual relationships are evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. TOF-SIMS investigation of metallic material surface after culturing cells

    NASA Astrophysics Data System (ADS)

    Aoyagi, Satoka; Hiromoto, Sachiko; Hanawa, Takao; Kudo, Masahiro

    2004-06-01

    Biomolecules such as extracellular matrix and adhesive proteins generated by adhered cells on metallic specimens were characterized by means of time-of-flight secondary ion mass spectrometry (TOF-SIMS) in order to clarify the interaction between cells and metal surfaces. Since composition and structure of the extracellular matrix depends on conditions of cells, characterization of the interaction between cells and metallic specimens is important in order to evaluate the biocompatibility and the degradation behavior of metallic biomaterials and artificial organs. Moreover, the obtained data can contribute to the development of new metallic biomaterials. TOF-SIMS spectra were analyzed by means of mutual information described by information theory and principal components analysis (PCA). The results show that cells have great influence on adsorption of biomolecules on metallic materials because they change surface conditions of the materials. Thus TOF-SIMS is a useful technique to investigate the interaction between metallic biomaterials and cells.

  9. Microbially induced flotation and flocculation of pyrite and sphalerite.

    PubMed

    Patra, Partha; Natarajan, K A

    2004-07-15

    Cells of Paenibacillus polymyxa and their metabolite products were successfully utilized to achieve selective separation of sphalerite from pyrite, through microbially induced flocculation and flotation. Adsorption studies and electrokinetic investigations were carried out to understand the changes in the surface chemistry of bacterial cells and the minerals after mutual interaction. Possible mechanisms in microbially induced flotation and flocculation are outlined.

  10. The importance of mutual positive expressivity in social adjustment: understanding the role of peers and gender.

    PubMed

    Sallquist, Julie; DiDonato, Matthew D; Hanish, Laura D; Martin, Carol Lynn; Fabes, Richard A

    2012-04-01

    The relations between young children's mutual (reciprocated) and overall positive emotion (PE) with same- and other-gender peers and their social adjustment were explored. Children's PE and peers' PE were observed across the preschool year during peer interactions (N = 166; 46% girls; M age = 52 months). Results revealed that girls and boys had similar frequencies of overall PE and mutual PE when interacting with same-gender peers, but girls were marginally higher compared with boys in overall and mutual PE when interacting with other-gender peers. Girls and boys did not have greater rates of either type of PE after controlling for gender segregation during same- or other-gender interactions. Using structural equation modeling, children's mutual PE, regardless of their gender, positively predicted indicators of positive adjustment (e.g., prosocial behavior, cooperation) and negatively predicted indicators of negative adjustment (e.g., hyperactivity, disruption, exclusion by peers). Children's overall PE did not predict either type of adjustment. Findings support the importance of mutual PE for children's development. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  11. The Importance of Mutual Positive Expressivity in Social Adjustment: Understanding the Role of Peers and Gender

    PubMed Central

    Sallquist, Julie; DiDonato, Matthew D.; Hanish, Laura D.; Martin, Carol Lynn; Fabes, Richard A.

    2011-01-01

    The relations between young children’s mutual (reciprocated) and overall positive emotion (PE) with same- and other-gender peers and their social adjustment were explored. Children’s PE and peers’ PE were observed across the preschool year during peer interactions (N = 166; 46% girls; M age = 52 months). Results revealed that girls and boys had similar frequencies of overall PE and mutual PE when interacting with same-gender peers, but girls were marginally higher compared to boys in overall and mutual PE when interacting with other-gender peers. Girls and boys did not have greater rates of either type of PE after controlling for gender segregation during same- or other-gender interactions. Using structural equation modeling, children’s mutual PE, regardless of their gender, positively predicted indicators of positive adjustment (e.g., prosocial behavior, cooperation) and negatively predicted indicators of negative adjustment (e.g., hyperactivity, disruption, exclusion by peers). Children’s overall PE did not predict either type of adjustment. Findings support the importance of mutual PE for children’s development. PMID:21859190

  12. Depletion force induced collective motion of microtubules driven by kinesin

    NASA Astrophysics Data System (ADS)

    Inoue, Daisuke; Mahmot, Bulbul; Kabir, Arif Md. Rashedul; Farhana, Tamanna Ishrat; Tokuraku, Kiyotaka; Sada, Kazuki; Konagaya, Akihiko; Kakugo, Akira

    2015-10-01

    Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal filaments F-actin or microtubules are driven by the surface immobilized associated biomolecular motors myosin or dynein respectively. Although the F-actin/myosin or microtubule/dynein system was found to be promising in understanding the collective motion and pattern formation by self-propelled objects, the most widely used biomolecular motor system microtubule/kinesin could not be successfully employed so far in this regard. Failure in exhibiting collective motion by kinesin driven microtubules is attributed to the intrinsic properties of kinesin, which was speculated to affect the behavior of individual gliding microtubules and mutual interactions among them. In this work, for the first time, we have demonstrated the collective motion of kinesin driven microtubules by regulating the mutual interaction among the gliding microtubules, by employing a depletion force among them. Proper regulation of the mutual interaction among the gliding microtubules through the employment of the depletion force was found to allow the exhibition of collective motion and stream pattern formation by the microtubules. This work offers a universal means for demonstrating the collective motion using the in vitro gliding assay of biomolecular motor systems and will help obtain a meticulous understanding of the fascinating coordinated behavior and pattern formation by self-propelled objects.Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal filaments F-actin or microtubules are driven by the surface immobilized associated biomolecular motors myosin or dynein respectively. Although the F-actin/myosin or microtubule/dynein system was found to be promising in understanding the collective motion and pattern formation by self-propelled objects, the most widely used biomolecular motor system microtubule/kinesin could not be successfully employed so far in this regard. Failure in exhibiting collective motion by kinesin driven microtubules is attributed to the intrinsic properties of kinesin, which was speculated to affect the behavior of individual gliding microtubules and mutual interactions among them. In this work, for the first time, we have demonstrated the collective motion of kinesin driven microtubules by regulating the mutual interaction among the gliding microtubules, by employing a depletion force among them. Proper regulation of the mutual interaction among the gliding microtubules through the employment of the depletion force was found to allow the exhibition of collective motion and stream pattern formation by the microtubules. This work offers a universal means for demonstrating the collective motion using the in vitro gliding assay of biomolecular motor systems and will help obtain a meticulous understanding of the fascinating coordinated behavior and pattern formation by self-propelled objects. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02213d

  13. Mutual touch during mother-infant face-to-face still-face interactions: influences of interaction period and infant birth status.

    PubMed

    Mantis, Irene; Stack, Dale M; Ng, Laura; Serbin, Lisa A; Schwartzman, Alex E

    2014-08-01

    Contact behaviours such as touch, have been shown to be influential channels of nonverbal communication between mothers and infants. While existing research has examined the communicative roles of maternal or infant touch in isolation, mutual touch, whereby touching behaviours occur simultaneously between mothers and their infants, has yet to be examined. The present study was designed to investigate mutual touch during face-to-face interactions between mothers and their 5½-month-old fullterm (n=40), very low birth weight/preterm (VLBW/preterm; n=40) infants, and infants at psychosocial risk (n=41). Objectives were to examine: (1) how the quantitative and qualitative aspects of touch employed by mothers and their infants varied across the normal periods of the still-face (SF) procedure, and (2) how these were associated with risk status. Mutual touch was systematically coded using the mother-infant touch scale. Interactions were found to largely consist of mutual touch and one-sided touch plus movement, highlighting that active touching is pervasive during mother-infant interactions. Consistent with the literature, while the SF period did not negatively affect the amount of mutual touch engaged in for mothers and their fullterm infants and mothers and their infants at psychosocial risk, it did for mothers and their VLBW/preterm infants. Together, results illuminate how both mothers and infants participate in shaping and co-regulating their interactions through the use of touch and underscore the contribution of examining the influence of birth status on mutual touch. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Variability of bed mobility in natural, gravel-bed channels and adjustments to sediment load at local and reach scales

    Treesearch

    Thomas E. Lisle; Jonathan M. Nelson; John Pitlick; Mary Ann Madej; Brent L. Barkett

    2000-01-01

    Abstract - Local variations in boundary shear stress acting on bed-surface particles control patterns of bed load transport and channel evolution during varying stream discharges. At the reach scale a channel adjusts to imposed water and sediment supply through mutual interactions among channel form, local grain size, and local flow dynamics that govern bed mobility...

  15. Functional traits determine formation of mutualism and predation interactions in seed-rodent dispersal system of a subtropical forest

    NASA Astrophysics Data System (ADS)

    Chang, Gang; Zhang, Zhibin

    2014-02-01

    Network structure in plant-animal systems has been widely investigated but the roles of functional traits of plants and animals in formation of mutualism and predation interactions and community structure are still not fully understood. In this study, we quantitatively assessed interaction strength of mutualism and predation between 5 tree species and 7 rodent species by using semi-natural enclosures in a subtropical forest in southwest China. Seeds with high handling-time and nutrition traits (for both rat and mouse species) or high tannin trait (for mouse species) show high mutualism but low predation with rodents; while seeds with low handling-time and low nutrition traits show high predation but low mutualism with rodents. Large-sized rat species are more linked to seeds with high handling-time and high nutrition traits, while small-sized mouse species are more connected with seeds with low handling-time, low nutrition value and high tannin traits. Anti-predation seed traits tend to increase chance of mutualism instead of reducing predation by rodents, suggesting formation of mutualism may be connected with that of predation. Our study demonstrates that seed and animal traits play significant roles in the formation of mutualism and predation and network structure of the seed-rodent dispersal system.

  16. TOF-SIMS imaging technique with information entropy

    NASA Astrophysics Data System (ADS)

    Aoyagi, Satoka; Kawashima, Y.; Kudo, Masahiro

    2005-05-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is capable of chemical imaging of proteins on insulated samples in principal. However, selection of specific peaks related to a particular protein, which are necessary for chemical imaging, out of numerous candidates had been difficult without an appropriate spectrum analysis technique. Therefore multivariate analysis techniques, such as principal component analysis (PCA), and analysis with mutual information defined by information theory, have been applied to interpret SIMS spectra of protein samples. In this study mutual information was applied to select specific peaks related to proteins in order to obtain chemical images. Proteins on insulated materials were measured with TOF-SIMS and then SIMS spectra were analyzed by means of the analysis method based on the comparison using mutual information. Chemical mapping of each protein was obtained using specific peaks related to each protein selected based on values of mutual information. The results of TOF-SIMS images of proteins on the materials provide some useful information on properties of protein adsorption, optimality of immobilization processes and reaction between proteins. Thus chemical images of proteins by TOF-SIMS contribute to understand interactions between material surfaces and proteins and to develop sophisticated biomaterials.

  17. Diversification through multitrait evolution in a coevolving interaction.

    PubMed

    Thompson, John N; Schwind, Christopher; Guimarães, Paulo R; Friberg, Magne

    2013-07-09

    Mutualisms between species are interactions in which reciprocal exploitation results in outcomes that are mutually beneficial. This reciprocal exploitation is evident in the more than a thousand plant species that are pollinated exclusively by insects specialized to lay their eggs in the flowers they pollinate. By pollinating each flower in which she lays eggs, an insect guarantees that her larval offspring have developing seeds on which to feed, whereas the plant gains a specialized pollinator at the cost of some seeds. These mutualisms are often reciprocally obligate, potentially driving not only ongoing coadaptation but also diversification. The lack of known intermediate stages in most of these mutualisms, however, makes it difficult to understand whether these interactions could have begun to diversify even before they became reciprocally obligate. Experimental studies of the incompletely obligate interactions between woodland star (Lithophragma; Saxifragaceae) plants and their pollinating floral parasites in the moth genus Greya (Prodoxidae) show that, as these lineages have diversified, the moths and plants have evolved in ways that maintain effective oviposition and pollination. Experimental assessment of pollination in divergent species and quantitative evaluation of time-lapse photographic sequences of pollination viewed on surgically manipulated flowers show that various combinations of traits are possible for maintaining the mutualism. The results suggest that at least some forms of mutualism can persist and even diversify when the interaction is not reciprocally obligate.

  18. Antagonisms, mutualisms and commensalisms affect outbreak dynamics of the southern pine beetle

    Treesearch

    Richard W. Hofstetter; James T. Cronin; Kier D. Klepzig; John C. Moser; Matthew P. Ayres

    2005-01-01

    Feedback from community interactions involving mutualisms are a rarely explored mechanism for generating complex population dynamics. We examined the effects of two linked mutualisms on the population dynamics of a beetle that exhibits outbreak dynamics. One mutualism involves an obligate association between the bark beetle, Dendroctonus frontalis...

  19. Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene.

    PubMed

    Xu, Xiaoji G; Jiang, Jian-Hua; Gilburd, Leonid; Rensing, Rachel G; Burch, Kenneth S; Zhi, Chunyi; Bando, Yoshio; Golberg, Dmitri; Walker, Gilbert C

    2014-11-25

    Boron nitride (BN) is considered to be a promising substrate for graphene-based devices in part because its large band gap can serve to insulate graphene in layered heterostructures. At mid-infrared frequencies, graphene supports surface plasmon polaritons (SPPs), whereas hexagonal-BN (h-BN) is found to support surface phonon polaritons (SPhPs). We report on the observation of infrared polaritonic coupling between graphene SPPs and boron nitride nanotube (BNNT) SPhPs. Infrared scattering type scanning near-field optical microscopy is used to obtain spatial distribution of the two types of polaritons at the nanoscale. The observation suggests that those polaritons interact at the nanoscale in a one-dimensional/two-dimensional (1D/2D) geometry, exchanging energy in a nonplanar configuration at the nanoscale. Control of the polaritonic interaction is achieved by adjustment of the graphene Fermi level through voltage gating. Our observation suggests that boron nitride nanotubes and graphene can interact at mid-infrared frequencies and coherently exchange their energies at the nanoscale through the overlap of mutual electric near field of surface phonon polaritons and surface plasmon polaritons. Such interaction enables the design of nano-optical devices based on BNNT-graphene polaritonics in the mid-infrared range.

  20. The Moderating Role of Performance in the Link From Interactional Justice Climate to Mutual Trust Between Managers and Team Members.

    PubMed

    Martínez-Tur, Vicente; Gracia, Esther; Moliner, Carolina; Molina, Agustín; Kuster, Inés; Vila, Natalia; Ramos, José

    2016-06-01

    The main goal of this study was to examine the interaction between team members' performance and interactional justice climate in predicting mutual trust between managers and team members. A total of 93 small centers devoted to the attention of people with intellectual disability participated in the study. In each center, the manager (N = 93) and a group of team members (N = 746) were surveyed. On average, team members were 36.2 years old (SD = 9.3), whereas managers were 41.2 years old (SD = 8.8). The interaction between interactional justice climate and performance was statistically significant. Team members' performance strengthened the link from interactional justice climate to mutual trust. © The Author(s) 2016.

  1. The joint effect of mesoscale and microscale roughness on perceived gloss.

    PubMed

    Qi, Lin; Chantler, Mike J; Siebert, J Paul; Dong, Junyu

    2015-10-01

    Computer simulated stimuli can provide a flexible method for creating artificial scenes in the study of visual perception of material surface properties. Previous work based on this approach reported that the properties of surface roughness and glossiness are mutually interdependent and therefore, perception of one affects the perception of the other. In this case roughness was limited to a surface property termed bumpiness. This paper reports a study into how perceived gloss varies with two model parameters related to surface roughness in computer simulations: the mesoscale roughness parameter in a surface geometry model and the microscale roughness parameter in a surface reflectance model. We used a real-world environment map to provide complex illumination and a physically-based path tracer for rendering the stimuli. Eight observers took part in a 2AFC experiment, and the results were tested against conjoint measurement models. We found that although both of the above roughness parameters significantly affect perceived gloss, the additive model does not adequately describe their mutually interactive and nonlinear influence, which is at variance with previous findings. We investigated five image properties used to quantify specular highlights, and found that perceived gloss is well predicted using a linear model. Our findings provide computational support to the 'statistical appearance models' proposed recently for material perception. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Mutualism and Antagonism: Ecological Interactions Among Bark Beetles, Mite and Fungi

    Treesearch

    K.D. Klepzig; J.C. Moser; M.J. Lombardero; M.P. Ayres; R.W. Hofstetter; C.J. Walkinshaw

    2001-01-01

    Insect-fungal complexes provide challenging and fascinating systems for the study of biotic interactions between plants. plant pathogens, insect vectors and other associated organisms. The types of interactions among these organisms (mutualism. antagonism. parasitism. phoresy. etc.) are as variable as the range of organisms involved (plants, fungi, insects. mites. etc...

  3. Adsorption and co-adsorption of graphene oxide and Ni(II) on iron oxides: A spectroscopic and microscopic investigation.

    PubMed

    Sheng, Guodong; Huang, Chengcai; Chen, Guohe; Sheng, Jiang; Ren, Xuemei; Hu, Baowei; Ma, Jingyuan; Wang, Xiangke; Huang, Yuying; Alsaedi, Ahmed; Hayat, Tasawar

    2018-02-01

    Graphene oxide (GO) may strongly interact with toxic metal ions and mineral particles upon release into the soil environment. We evaluated the mutual effects between GO and Ni (Ni(II)) with regard to their adsorption and co-adsorption on two minerals (goethite and hematite) in aqueous phase. Results indicated that GO and Ni could mutually facilitate the adsorption of each other on both goethite and hematite over a wide pH range. Addition of Ni promoted GO co-adsorption mainly due to the increased positive charge of minerals and cation-π interactions, while the presence of GO enhanced Ni co-adsorption predominantly due to neutralization of positive charge and strong interaction with oxygen-containing functional groups on adsorbed GO. Increasing adsorption of GO and Ni on minerals as they coexist may thus reduce their mobility in soil. Extended X-ray absorption fine structure (EXAFS) spectroscopy data revealed that GO altered the microstructure of Ni on minerals, i.e., Ni formed edge-sharing surface species (at R Ni-Fe ∼3.2 Å) without GO, while a GO-bridging ternary surface complexes (at R Ni-C ∼2.49 Å and R Ni-Fe ∼4.23 Å) was formed with GO. These findings improved the understanding of potential fate and toxicity of GO as well as the partitioning processes of Ni ions in aquatic and soil environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The evolution of plant-insect mutualisms.

    PubMed

    Bronstein, Judith L; Alarcón, Ruben; Geber, Monica

    2006-01-01

    Mutualisms (cooperative interactions between species) have had a central role in the generation and maintenance of life on earth. Insects and plants are involved in diverse forms of mutualism. Here we review evolutionary features of three prominent insect-plant mutualisms: pollination, protection and seed dispersal. We focus on addressing five central phenomena: evolutionary origins and maintenance of mutualism; the evolution of mutualistic traits; the evolution of specialization and generalization; coevolutionary processes; and the existence of cheating. Several features uniting very diverse insect-plant mutualisms are identified and their evolutionary implications are discussed: the involvement of one mobile and one sedentary partner; natural selection on plant rewards; the existence of a continuum from specialization to generalization; and the ubiquity of cheating, particularly on the part of insects. Plant-insect mutualisms have apparently both arisen and been lost repeatedly. Many adaptive hypotheses have been proposed to explain these transitions, and it is unlikely that any one of them dominates across interactions differing so widely in natural history. Evolutionary theory has a potentially important, but as yet largely unfilled, role to play in explaining the origins, maintenance, breakdown and evolution of insect-plant mutualisms.

  5. Mutualisms and Population Regulation: Mechanism Matters

    PubMed Central

    Jha, Shalene; Allen, David; Liere, Heidi; Perfecto, Ivette; Vandermeer, John

    2012-01-01

    For both applied and theoretical ecological science, the mutualism between ants and their hemipteran partners is iconic. In this well-studied interaction, ants are assumed to provide hemipterans protection from natural enemies in exchange for nutritive honeydew. Despite decades of research and the potential importance in pest control, the precise mechanism producing this mutualism remains contested. By analyzing maximum likelihood parameter estimates of a hemipteran population model, we show that the mechanism of the mutualism is direct, via improved hemipteran growth rates, as opposed to the frequently assumed indirect mechanism, via harassment of the specialist parasites and predators of the hemipterans. Broadly, this study demonstrates that the management of mutualism-based ecosystem services requires a mechanistic understanding of mutualistic interactions. A consequence of this finding is the counter intuitive demonstration that preserving ant participation in the ant-hemipteran mutualism may be the best way of insuring pest control. PMID:22927978

  6. Three-dimensional calculations of rotor-airframe interaction in forward flight

    NASA Technical Reports Server (NTRS)

    Zori, Laith A. J.; Mathur, Sanjay R.; Rajagopalan, R. G.

    1992-01-01

    A method for analyzing the mutual aerodynamic interaction between a rotor and an airframe model has been developed. This technique models the rotor implicitly through the source terms of the momentum equations. A three-dimensional, incompressible, laminar, Navier-Stokes solver in cylindrical coordinates was developed for analyzing the rotor/airframe problem. The calculations are performed on a simplified model at an advance ratio of 0.1. The airframe surface pressure predictions are found to be in good agreement with wind tunnel test data. Results are presented for velocity and pressure field distributions in the wake of the rotor.

  7. The full two-body-problem: Simulation, analysis, and application to the dynamics, characteristics, and evolution of binary asteroid systems

    NASA Astrophysics Data System (ADS)

    Fahnestock, Eugene Gregory

    The Full Two-Body-Problem (F2BP) describes the dynamics of two unconstrained rigid bodies in close proximity, having arbitrary spatial distribution of mass, charge, or similar field quantity, and interacting through a mutual potential dependent on that distribution. While the F2BP has applications in areas as wide ranging as molecular dynamics to satellite formation flying, this dissertation focuses on its application to natural bodies in space with nontrivial mass distribution interacting through mutual gravitational potential, i.e. binary asteroids. This dissertation first describes further development and implementation of methods for accurate and efficient F2BP propagation based upon a flexible method for computing the mutual potential between bodies modeled as homogenous polyhedra. Next application of these numerical tools to the study of binary asteroid (66391) 1999 KW4 is summarized. This system typifies the largest class of NEO binaries, which includes nearly half of them, characterized by a roughly oblate spheroid primary rotating rapidly and roughly triaxial ellipsoid secondary in on-average synchronous rotation. Thus KW4's dynamics generalize to any member of that class. Analytical formulae are developed which separately describe the effects of primary oblateness and secondary triaxial ellipsoid shape on frequencies of system motions revealed through the F2BP simulation. These formulae are useful for estimating inertia elements and highest-level internal mass distributions of bodies in any similar system, simply from standoff observation of these motion frequencies. Finally precise dynamical simulation and analysis of the motion of test particles within the time-varying gravity field of the F2BP system is detailed. This Restricted Full-detail Three-Body-Problem encompasses exploration of three types of particle motion within a binary asteroid: (1) Orbital motion such as that for a spacecraft flying within the system about the primary, secondary, or system barycenter at large distance; (2) Motion of ejecta particles originating from the body surfaces with substantial initial surface-relative velocity; (3) Motion of particles originating from the primary surface near the equator, with no initial surface-relative velocity, but when primary spin rate is raised past the "disruption spin rate" for which material on the surface will be spun off.

  8. Free energy of adhesion of lipid bilayers on silica surfaces

    NASA Astrophysics Data System (ADS)

    Schneemilch, M.; Quirke, N.

    2018-05-01

    The free energy of adhesion per unit area (hereafter referred to as the adhesion strength) of lipid arrays on surfaces is a key parameter that determines the nature of the interaction between materials and biological systems. Here we report classical molecular simulations of water and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayers at model silica surfaces with a range of silanol densities and structures. We employ a novel technique that enables us to estimate the adhesion strength of supported lipid bilayers in the presence of water. We find that silanols on the silica surface form hydrogen bonds with water molecules and that the water immersion enthalpy for all surfaces varies linearly with the surface density of these hydrogen bonds. The adhesion strength of lipid bilayers is a linear function of the surface density of hydrogen bonds formed between silanols and the lipid molecules on crystalline surfaces. Approximately 20% of isolated silanols form such bonds but more than 99% of mutually interacting geminal silanols do not engage in hydrogen bonding with water. On amorphous silica, the bilayer displays much stronger adhesion than expected from the crystalline surface data. We discuss the implications of these results for nanoparticle toxicity.

  9. Information Theoretic Approaches to Rapid Discovery of Relationships in Large Climate Data Sets

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.; Rossow, William B.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Mutual information as the asymptotic Bayesian measure of independence is an excellent starting point for investigating the existence of possible relationships among climate-relevant variables in large data sets, As mutual information is a nonlinear function of of its arguments, it is not beholden to the assumption of a linear relationship between the variables in question and can reveal features missed in linear correlation analyses. However, as mutual information is symmetric in its arguments, it only has the ability to reveal the probability that two variables are related. it provides no information as to how they are related; specifically, causal interactions or a relation based on a common cause cannot be detected. For this reason we also investigate the utility of a related quantity called the transfer entropy. The transfer entropy can be written as a difference between mutual informations and has the capability to reveal whether and how the variables are causally related. The application of these information theoretic measures is rested on some familiar examples using data from the International Satellite Cloud Climatology Project (ISCCP) to identify relation between global cloud cover and other variables, including equatorial pacific sea surface temperature (SST), over seasonal and El Nino Southern Oscillation (ENSO) cycles.

  10. Mother-Infant Responsiveness: Timing, Mutual Regulation, and Interactional Context.

    ERIC Educational Resources Information Center

    Van Egeren, Laurie A,; Barratt, Marguerite S.; Roach, Mary A.

    2001-01-01

    Investigated from a dynamic systems perspective mutual regulation during naturalistic interaction of mothers with their 4-month-olds. Found that mothers and infants communicated primarily through vocal signals and responses. Levels of contingent responsiveness between partners were significantly associated and occurred within distinct behavioral…

  11. Evolutionary stability of mutualism: interspecific population regulation as an evolutionarily stable strategy.

    PubMed

    Holland, J Nathaniel; DeAngelis, Donald L; Schultz, Stewart T

    2004-09-07

    Interspecific mutualisms are often vulnerable to instability because low benefit : cost ratios can rapidly lead to extinction or to the conversion of mutualism to parasite-host or predator-prey interactions. We hypothesize that the evolutionary stability of mutualism can depend on how benefits and costs to one mutualist vary with the population density of its partner, and that stability can be maintained if a mutualist can influence demographic rates and regulate the population density of its partner. We test this hypothesis in a model of mutualism with key features of senita cactus (Pachycereus schottii)-senita moth (Upiga virescens) interactions, in which benefits of pollination and costs of larval seed consumption to plant fitness depend on pollinator density. We show that plants can maximize their fitness by allocating resources to the production of excess flowers at the expense of fruit. Fruit abortion resulting from excess flower production reduces pre-adult survival of the pollinating seed-consumer, and maintains its density beneath a threshold that would destabilize the mutualism. Such a strategy of excess flower production and fruit abortion is convergent and evolutionarily stable against invasion by cheater plants that produce few flowers and abort few to no fruit. This novel mechanism of achieving evolutionarily stable mutualism, namely interspecific population regulation, is qualitatively different from other mechanisms invoking partner choice or selective rewards, and may be a general process that helps to preserve mutualistic interactions in nature.

  12. TGMI: an efficient algorithm for identifying pathway regulators through evaluation of triple-gene mutual interaction

    PubMed Central

    Gunasekara, Chathura; Zhang, Kui; Deng, Wenping; Brown, Laura

    2018-01-01

    Abstract Despite their important roles, the regulators for most metabolic pathways and biological processes remain elusive. Presently, the methods for identifying metabolic pathway and biological process regulators are intensively sought after. We developed a novel algorithm called triple-gene mutual interaction (TGMI) for identifying these regulators using high-throughput gene expression data. It first calculated the regulatory interactions among triple gene blocks (two pathway genes and one transcription factor (TF)), using conditional mutual information, and then identifies significantly interacted triple genes using a newly identified novel mutual interaction measure (MIM), which was substantiated to reflect strengths of regulatory interactions within each triple gene block. The TGMI calculated the MIM for each triple gene block and then examined its statistical significance using bootstrap. Finally, the frequencies of all TFs present in all significantly interacted triple gene blocks were calculated and ranked. We showed that the TFs with higher frequencies were usually genuine pathway regulators upon evaluating multiple pathways in plants, animals and yeast. Comparison of TGMI with several other algorithms demonstrated its higher accuracy. Therefore, TGMI will be a valuable tool that can help biologists to identify regulators of metabolic pathways and biological processes from the exploded high-throughput gene expression data in public repositories. PMID:29579312

  13. From metabolism to ecology: cross-feeding interactions shape the balance between polymicrobial conflict and mutualism

    PubMed Central

    Estrela, Sylvie; Trisos, Christopher H.; Brown, Sam P.

    2012-01-01

    Polymicrobial interactions are widespread in nature, and play a major role in maintaining human health and ecosystems. Whenever one organism uses metabolites produced by another organism as energy or nutrient sources, this is called cross-feeding. The ecological outcomes of cross-feeding interactions are poorly understood and potentially diverse: mutualism, competition, exploitation or commensalism. A major reason for this uncertainty is the lack of theoretical approaches linking microbial metabolism to microbial ecology. To address this issue, we explore the dynamics of a one-way interspecific cross-feeding interaction, in which food can be traded for a service (detoxification). Our results show that diverse ecological interactions (competition, mutualism, exploitation) can emerge from this simple cross-feeding interaction, and can be predicted by the metabolic, demographic and environmental parameters that govern the balance of the costs and benefits of association. In particular, our model predicts stronger mutualism for intermediate by-product toxicity because the resource-service exchange is constrained to the service being neither too vital (high toxicity impairs resource provision) nor dispensable (low toxicity reduces need for service). These results support the idea that bridging microbial ecology and metabolism is a critical step towards a better understanding of the factors governing the emergence and dynamics of polymicrobial interactions. PMID:23070318

  14. Side-band mutual interactions in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Chang, D. C. D.; Helliwell, R. A.; Bell, T. F.

    1980-01-01

    Sideband mutual interactions between VLF waves in the magnetosphere are investigated. Results of an experimental program involving the generation of sidebands by means of frequency shift keying are presented which indicate that the energetic electrons in the magnetosphere can interact only with sidebands generated by signals with short modulation periods. Using the value of the memory time during which electrons interact with the waves implied by the above result, it is estimated that the length of the electron interaction region in the magnetosphere is between 4000 and 2000 km. Sideband interactions are found to be similar to those between constant-frequency signals, exhibiting suppression and energy coupling. Results from a second sideband transmitting program show that for most cases the coherence bandwidth of sidebands is about 50 Hz. Sideband mutual interactions are then explained by the overlap of the ranges of the parallel velocity of the electrons which the sidebands organize, and the wave intensity in the interaction region is estimated to be 2.5-10 milli-gamma, in agreement with satellite measurements.

  15. The Interactive Play and a Persuasive God: A Psychoanalytic Approach to Re-envisioning Pastoral Care and Counseling.

    PubMed

    Jang, Jung Eun

    2016-06-01

    The purpose of this article is to present a sketch of a new image of pastoral care and counseling, which reflects the psychoanalytic understanding of the interacting transference and countertransference matrix, along with a process view of God in a mutually influencing relationship with creatures. A more effective approach in pastoral care and counseling can be conceptualized as the interactive play in which pastoral caregivers and receivers co-create a therapeutic relationship with their own past experiences and their creative capabilities. The interactive play is a concept of describing the mutually influencing relationship in the transference and countertransference interchange. The article introduces the concept of a persuasive God as a new image of pastoral care and counseling which includes aspects of the mutually interacting process in play. © The Author(s) 2016.

  16. Dynamic Electrorheological Effects of Rotating Particles:

    NASA Astrophysics Data System (ADS)

    Yu, K. W.; Gu, G. Q.; Huang, J. P.; Xiao, J. J.

    Particle rotation leads to a steady-state which is different from the equilibrium state in the absence of rotational motion. The change of the polarization of the particle due to the rotational motion is called the dynamic electrorheological effect (DER). There are three cases to be considered: rotating particles in a dc field, particle rotation due to a rotating field and spontaneous rotation of particle in dc field (Quincke rotation). In the DER of rotating particles, the particle rotational motion generally reduces the interparticle force between the particles. The effect becomes pronounced when the frequency is on the order of the relaxation rate of the surface charges. In the electrorotation of particles, the mutual interaction between approaching particles will change the electrorotation spectrum significantly. The electrorotation spectrum depends strongly on the medium conductivity as well as the conductivity contrast between the particle and the medium. In the collective behaviors of Quincke rotors, the mutual interactions between the individual rotors lead to the assembly of chain-like structures which make an angle with the applied field. This has an implication of a new class of material.

  17. Microbially induced separation of quartz from calcite using Saccharomyces cerevisiae.

    PubMed

    Padukone, S Usha; Natarajan, K A

    2011-11-01

    Cells of Saccharomyces cerevisiae and their metabolites were successfully utilized to achieve selective separation of quartz and calcite through microbially induced flotation and flocculation. S. cerevisiae was adapted to calcite and quartz minerals. Adsorption studies and electrokinetic investigations were carried out to understand the changes in the surface chemistry of yeast cells and the minerals after mutual interaction. Possible mechanisms in microbially induced flotation and flocculation are outlined. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Exploring whether and how ants affect reproductive fitness in Senna mexicana var. chapmanii

    USDA-ARS?s Scientific Manuscript database

    Extrafloral nectar (EFN) mediates food-for-protection mutualisms between plants and ants. Ant-plant mutualisms are keystone associations, occurring within a complex web of biotic interactions. As such, these interactions may affect plant fitness in a number of ways, both positive and negative. In S...

  19. Strategy Diversity Stabilizes Mutualism through Investment Cycles, Phase Polymorphism, and Spatial Bubbles

    PubMed Central

    Boza, Gergely; Kun, Ádám; Scheuring, István; Dieckmann, Ulf

    2012-01-01

    There is continuing interest in understanding factors that facilitate the evolution and stability of cooperation within and between species. Such interactions will often involve plasticity in investment behavior, in response to the interacting partner's investments. Our aim here is to investigate the evolution and stability of reciprocal investment behavior in interspecific interactions, a key phenomenon strongly supported by experimental observations. In particular, we present a comprehensive analysis of a continuous reciprocal investment game between mutualists, both in well-mixed and spatially structured populations, and we demonstrate a series of novel mechanisms for maintaining interspecific mutualism. We demonstrate that mutualistic partners invariably follow investment cycles, during which mutualism first increases, before both partners eventually reduce their investments to zero, so that these cycles always conclude with full defection. We show that the key mechanism for stabilizing mutualism is phase polymorphism along the investment cycle. Although mutualistic partners perpetually change their strategies, the community-level distribution of investment levels becomes stationary. In spatially structured populations, the maintenance of polymorphism is further facilitated by dynamic mosaic structures, in which mutualistic partners form expanding and collapsing spatial bubbles or clusters. Additionally, we reveal strategy-diversity thresholds, both for well-mixed and spatially structured mutualistic communities, and discuss factors for meeting these thresholds, and thus maintaining mutualism. Our results demonstrate that interspecific mutualism, when considered as plastic investment behavior, can be unstable, and, in agreement with empirical observations, may involve a polymorphism of investment levels, varying both in space and in time. Identifying the mechanisms maintaining such polymorphism, and hence mutualism in natural communities, provides a significant step towards understanding the coevolution and population dynamics of mutualistic interactions. PMID:23166478

  20. Strategy diversity stabilizes mutualism through investment cycles, phase polymorphism, and spatial bubbles.

    PubMed

    Boza, Gergely; Kun, Adám; Scheuring, István; Dieckmann, Ulf

    2012-01-01

    There is continuing interest in understanding factors that facilitate the evolution and stability of cooperation within and between species. Such interactions will often involve plasticity in investment behavior, in response to the interacting partner's investments. Our aim here is to investigate the evolution and stability of reciprocal investment behavior in interspecific interactions, a key phenomenon strongly supported by experimental observations. In particular, we present a comprehensive analysis of a continuous reciprocal investment game between mutualists, both in well-mixed and spatially structured populations, and we demonstrate a series of novel mechanisms for maintaining interspecific mutualism. We demonstrate that mutualistic partners invariably follow investment cycles, during which mutualism first increases, before both partners eventually reduce their investments to zero, so that these cycles always conclude with full defection. We show that the key mechanism for stabilizing mutualism is phase polymorphism along the investment cycle. Although mutualistic partners perpetually change their strategies, the community-level distribution of investment levels becomes stationary. In spatially structured populations, the maintenance of polymorphism is further facilitated by dynamic mosaic structures, in which mutualistic partners form expanding and collapsing spatial bubbles or clusters. Additionally, we reveal strategy-diversity thresholds, both for well-mixed and spatially structured mutualistic communities, and discuss factors for meeting these thresholds, and thus maintaining mutualism. Our results demonstrate that interspecific mutualism, when considered as plastic investment behavior, can be unstable, and, in agreement with empirical observations, may involve a polymorphism of investment levels, varying both in space and in time. Identifying the mechanisms maintaining such polymorphism, and hence mutualism in natural communities, provides a significant step towards understanding the coevolution and population dynamics of mutualistic interactions.

  1. Vortex multiplication in applied flow: A precursor to superfluid turbulence.

    PubMed

    Finne, A P; Eltsov, V B; Eska, G; Hänninen, R; Kopu, J; Krusius, M; Thuneberg, E V; Tsubota, M

    2006-03-03

    A surface-mediated process is identified in 3He-B which generates vortices at a roughly constant rate. It precedes a faster form of turbulence where intervortex interactions dominate. This precursor becomes observable when vortex loops are introduced in low-velocity rotating flow at sufficiently low mutual friction dissipation at temperatures below 0.5Tc. Our measurements indicate that the formation of new loops is associated with a single vortex interacting in the applied flow with the sample boundary. Numerical calculations show that the single-vortex instability arises when a helical Kelvin wave expands from a reconnection kink at the wall and then intersects again with the wall.

  2. DNA base dimers are stabilized by hydrogen-bonding interactions including non-Watson-Crick pairing near graphite surfaces.

    PubMed

    Shankar, Akshaya; Jagota, Anand; Mittal, Jeetain

    2012-10-11

    Single- and double-stranded DNA are increasingly being paired with surfaces and nanoparticles for numerous applications, such as sensing, imaging, and drug delivery. Unlike the majority of DNA structures in bulk that are stabilized by canonical Watson-Crick pairing between Ade-Thy and Gua-Cyt, those adsorbed on surfaces are often stabilized by noncanonical base pairing, quartet formation, and base-surface stacking. Not much is known about these kinds of interactions. To build an understanding of the role of non-Watson-Crick pairing on DNA behavior near surfaces, one requires basic information on DNA base pair stacking and hydrogen-bonding interactions. All-atom molecular simulations of DNA bases in two cases--in bulk water and strongly adsorbed on a graphite surface--are conducted to study the relative strengths of stacking and hydrogen bond interactions for each of the 10 possible combinations of base pairs. The key information obtained from these simulations is the free energy as a function of distance between two bases in a pair. We find that stacking interactions exert the dominant influence on the stability of DNA base pairs in bulk water as expected. The strength of stability for these stacking interactions is found to decrease in the order Gua-Gua > Ade-Gua > Ade-Ade > Gua-Thy > Gua-Cyt > Ade-Thy > Ade-Cyt > Thy-Thy > Cyt-Thy > Cyt-Cyt. On the other hand, mutual interactions of surface-adsorbed base pairs are stabilized mostly by hydrogen-bonding interactions in the order Gua-Cyt > Ade-Gua > Ade-Thy > Ade-Ade > Cyt-Thy > Gua-Gua > Cyt-Cyt > Ade-Cyt > Thy-Thy > Gua-Thy. Interestingly, several non-Watson-Crick base pairings, which are commonly ignored, have similar stabilization free energies due to interbase hydrogen bonding as Watson-Crick pairs. This clearly highlights the importance of non-Watson-Crick base pairing in the development of secondary structures of oligonucleotides near surfaces.

  3. Learning dependence from samples.

    PubMed

    Seth, Sohan; Príncipe, José C

    2014-01-01

    Mutual information, conditional mutual information and interaction information have been widely used in scientific literature as measures of dependence, conditional dependence and mutual dependence. However, these concepts suffer from several computational issues; they are difficult to estimate in continuous domain, the existing regularised estimators are almost always defined only for real or vector-valued random variables, and these measures address what dependence, conditional dependence and mutual dependence imply in terms of the random variables but not finite realisations. In this paper, we address the issue that given a set of realisations in an arbitrary metric space, what characteristic makes them dependent, conditionally dependent or mutually dependent. With this novel understanding, we develop new estimators of association, conditional association and interaction association. Some attractive properties of these estimators are that they do not require choosing free parameter(s), they are computationally simpler, and they can be applied to arbitrary metric spaces.

  4. Novel electrostatic attraction from plasmon fluctuations

    PubMed

    Lau; Levine; Pincus

    2000-05-01

    In this Letter, we show that, at low temperatures, zero-point fluctuations of the plasmon modes of two mutually coupled 2D planar Wigner crystals give rise to a novel long-range attractive force. For the case where the distance d between two planar surfaces is large, this attractive force has an unusual power-law decay, which scales as d(-7/2), unlike other fluctuation-induced forces. Specifically, we note that its range is longer than the "standard" zero-temperature van der Waals interaction. This result may, in principle, be observed in bilayer electronic systems and provides insight into the nature of correlation effects for highly charged surfaces.

  5. Evolutionary stability of mutualism: interspecific population regulation as an evolutionarily stable strategy

    USGS Publications Warehouse

    Holland, J. Nathaniel; DeAngelis, Donald L.; Schultz, Stewart T.

    2004-01-01

    Interspecific mutualisms are often vulnerable to instability because low benefit : cost ratios can rapidly lead to extinction or to the conversion of mutualism to parasite–host or predator–prey interactions. We hypothesize that the evolutionary stability of mutualism can depend on how benefits and costs to one mutualist vary with the population density of its partner, and that stability can be maintained if a mutualist can influence demographic rates and regulate the population density of its partner. We test this hypothesis in a model of mutualism with key features of senita cactus (Pachycereus schottii) – senita moth (Upiga virescens) interactions, in which benefits of pollination and costs of larval seed consumption to plant fitness depend on pollinator density. We show that plants can maximize their fitness by allocating resources to the production of excess flowers at the expense of fruit. Fruit abortion resulting from excess flower production reduces pre–adult survival of the pollinating seed–consumer, and maintains its density beneath a threshold that would destabilize the mutualism. Such a strategy of excess flower production and fruit abortion is convergent and evolutionarily stable against invasion by cheater plants that produce few flowers and abort few to no fruit. This novel mechanism of achieving evolutionarily stable mutualism, namely interspecific population regulation, is qualitatively different from other mechanisms invoking partner choice or selective rewards, and may be a general process that helps to preserve mutualistic interactions in nature.

  6. Mutual Group Hypnosis: A Social Interaction Analysis.

    ERIC Educational Resources Information Center

    Sanders, Shirley

    Mutual Group Hypnosis is discussed in terms of its similarity to group dynamics in general and in terms of its similarity to a social interaction program (Role Modeling) designed to foster the expression of warmth and acceptance among group members. Hypnosis also fosters a regression to prelogical thought processes in the service of the ego. Group…

  7. Modelling nutritional mutualisms: challenges and opportunities for data integration.

    PubMed

    Clark, Teresa J; Friel, Colleen A; Grman, Emily; Shachar-Hill, Yair; Friesen, Maren L

    2017-09-01

    Nutritional mutualisms are ancient, widespread, and profoundly influential in biological communities and ecosystems. Although much is known about these interactions, comprehensive answers to fundamental questions, such as how resource availability and structured interactions influence mutualism persistence, are still lacking. Mathematical modelling of nutritional mutualisms has great potential to facilitate the search for comprehensive answers to these and other fundamental questions by connecting the physiological and genomic underpinnings of mutualisms with ecological and evolutionary processes. In particular, when integrated with empirical data, models enable understanding of underlying mechanisms and generalisation of principles beyond the particulars of a given system. Here, we demonstrate how mathematical models can be integrated with data to address questions of mutualism persistence at four biological scales: cell, individual, population, and community. We highlight select studies where data has been or could be integrated with models to either inform model structure or test model predictions. We also point out opportunities to increase model rigour through tighter integration with data, and describe areas in which data is urgently needed. We focus on plant-microbe systems, for which a wealth of empirical data is available, but the principles and approaches can be generally applied to any nutritional mutualism. © 2017 John Wiley & Sons Ltd/CNRS.

  8. Parent-child interaction: Does parental language matter?

    PubMed

    Menashe, Atara; Atzaba-Poria, Naama

    2016-11-01

    Although parental language and behaviour have been widely investigated, few studies have examined their unique and interactive contribution to the parent-child relationship. The current study explores how parental behaviour (sensitivity and non-intrusiveness) and the use of parental language (exploring and control languages) correlate with parent-child dyadic mutuality. Specifically, we investigated the following questions: (1) 'Is parental language associated with parent-child dyadic mutuality above and beyond parental behaviour?' (2) 'Does parental language moderate the links between parental behaviour and the parent-child dyadic mutuality?' (3) 'Do these differences vary between mothers and fathers?' The sample included 65 children (M age  = 1.97 years, SD = 0.86) and their parents. We observed parental behaviour, parent-child dyadic mutuality, and the type of parental language used during videotaped in-home observations. The results indicated that parental language and behaviours are distinct components of the parent-child interaction. Parents who used higher levels of exploring language showed higher levels of parent-child dyadic mutuality, even when accounting for parental behaviour. Use of controlling language, however, was not found to be related to the parent-child dyadic mutuality. Different moderation models were found for mothers and fathers. These results highlight the need to distinguish parental language and behaviour when assessing their contribution to the parent-child relationship. © 2016 The British Psychological Society.

  9. The role of temperature variability in stabilizing the mountain pine beetle-fungus mutualism

    Treesearch

    A. L. Addison; J. A. Powell; D. L. Six; M. Moore; B. J. Bentz

    2013-01-01

    As global climate patterns continue to change and extreme weather events become increasingly common, it is likely that many ecological interactions will be affected. One such interaction is the multipartite symbiosis that exists between the mountain pine beetle and two species of fungi, Grosmannia clavigera and Ophiostoma montium. In this mutualism, the fungi provide...

  10. Dynamics of an ant-plant-pollinator model

    NASA Astrophysics Data System (ADS)

    Wang, Yuanshi; DeAngelis, Donald L.; Nathaniel Holland, J.

    2015-03-01

    In this paper, we consider plant-pollinator-ant systems in which plant-pollinator interaction and plant-ant interaction are both mutualistic, but there also exists interference of pollinators by ants. The plant-pollinator interaction can be described by a Beddington-DeAngelis formula, so we extend the formula to characterize plant-pollinator mutualisms, including the interference by ants, and form a plant-pollinator-ant model. Using dynamical systems theory, we show uniform persistence of the model. Moreover, we demonstrate conditions under which boundary equilibria are globally asymptotically stable. The dynamics exhibit mechanisms by which the three species could coexist when ants interfere with pollinators. We define a threshold in ant interference. When ant interference is strong, it can drive plant-pollinator mutualisms to extinction. Furthermore, if the ants depend on pollination mutualism for their persistence, then sufficiently strong ant interference could lead to their own extinction as well. Yet, when ant interference is weak, plant-ant and plant-pollinator mutualisms can promote the persistence of one another.

  11. Synchronization in human musical rhythms and mutually interacting complex systems

    PubMed Central

    Hennig, Holger

    2014-01-01

    Though the music produced by an ensemble is influenced by multiple factors, including musical genre, musician skill, and individual interpretation, rhythmic synchronization is at the foundation of musical interaction. Here, we study the statistical nature of the mutual interaction between two humans synchronizing rhythms. We find that the interbeat intervals of both laypeople and professional musicians exhibit scale-free (power law) cross-correlations. Surprisingly, the next beat to be played by one person is dependent on the entire history of the other person’s interbeat intervals on timescales up to several minutes. To understand this finding, we propose a general stochastic model for mutually interacting complex systems, which suggests a physiologically motivated explanation for the occurrence of scale-free cross-correlations. We show that the observed long-term memory phenomenon in rhythmic synchronization can be imitated by fractal coupling of separately recorded or synthesized audio tracks and thus applied in electronic music. Though this study provides an understanding of fundamental characteristics of timing and synchronization at the interbrain level, the mutually interacting complex systems model may also be applied to study the dynamics of other complex systems where scale-free cross-correlations have been observed, including econophysics, physiological time series, and collective behavior of animal flocks. PMID:25114228

  12. Meta-analysis of the effects of forest fragmentation on interspecific interactions.

    PubMed

    Magrach, Ainhoa; Laurance, William F; Larrinaga, Asier R; Santamaria, Luis

    2014-10-01

    Forest fragmentation dramatically alters species persistence and distribution and affects many ecological interactions among species. Recent studies suggest that mutualisms, such as pollination and seed dispersal, are more sensitive to the negative effects of forest fragmentation than antagonisms, such as predation or herbivory. We applied meta-analytical techniques to evaluate this hypothesis and quantified the relative contributions of different components of the fragmentation process (decreases in fragment size, edge effects, increased isolation, and habitat degradation) to the overall effect. The effects of fragmentation on mutualisms were primarily driven by habitat degradation, edge effects, and fragment isolation, and, as predicted, they were consistently more negative on mutualisms than on antagonisms. For the most studied interaction type, seed dispersal, only certain components of fragmentation had significant (edge effects) or marginally significant (fragment size) effects. Seed size modulated the effect of fragmentation: species with large seeds showed stronger negative impacts of fragmentation via reduced dispersal rates. Our results reveal that different components of the habitat fragmentation process have varying impacts on key mutualisms. We also conclude that antagonistic interactions have been understudied in fragmented landscapes, most of the research has concentrated on particular types of mutualistic interactions such as seed dispersal, and that available studies of interspecific interactions have a strong geographical bias (arising mostly from studies carried out in Brazil, Chile, and the United States). © 2014 Society for Conservation Biology.

  13. The Role of Gaze Direction and Mutual Exclusivity in Guiding 24-Month-Olds' Word Mappings

    ERIC Educational Resources Information Center

    Graham, Susan A.; Nilsen, Elizabeth S.; Collins, Sarah; Olineck, Kara

    2010-01-01

    In these studies, we examined how a default assumption about word meaning, the mutual exclusivity assumption and an intentional cue, gaze direction, interacted to guide 24-month-olds' object-word mappings. In Expt 1, when the experimenter's gaze was consistent with the mutual exclusivity assumption, novel word mappings were facilitated. When the…

  14. Information-theoretical noninvasive damage detection in bridge structures

    NASA Astrophysics Data System (ADS)

    Sudu Ambegedara, Amila; Sun, Jie; Janoyan, Kerop; Bollt, Erik

    2016-11-01

    Damage detection of mechanical structures such as bridges is an important research problem in civil engineering. Using spatially distributed sensor time series data collected from a recent experiment on a local bridge in Upper State New York, we study noninvasive damage detection using information-theoretical methods. Several findings are in order. First, the time series data, which represent accelerations measured at the sensors, more closely follow Laplace distribution than normal distribution, allowing us to develop parameter estimators for various information-theoretic measures such as entropy and mutual information. Second, as damage is introduced by the removal of bolts of the first diaphragm connection, the interaction between spatially nearby sensors as measured by mutual information becomes weaker, suggesting that the bridge is "loosened." Finally, using a proposed optimal mutual information interaction procedure to prune away indirect interactions, we found that the primary direction of interaction or influence aligns with the traffic direction on the bridge even after damaging the bridge.

  15. Educational Software for Interactive Training of Students on the Theme "Mutual Intersecting of Pyramids and Prisms in Axonometry"

    ERIC Educational Resources Information Center

    Karaibryamov, Samet; Tsareva, Bistra; Zlatanov, Boyan

    2012-01-01

    This work acquaints with the program Sam for interactive computer training of students on the theme "Mutual intersecting of pyramids and prisms in axonometry". The program containing three modules--teacher, student and autopilot--allows for briefest time to teach and study the whole variety of the tasks on this theme. A classification of…

  16. Child Temperament Moderates Effects of Parent-Child Mutuality on Self-Regulation: A Relationship-Based Path for Emotionally Negative Infants

    ERIC Educational Resources Information Center

    Kim, Sanghag; Kochanska, Grazyna

    2012-01-01

    This study examined infants' negative emotionality as moderating the effect of parent-child mutually responsive orientation (MRO) on children's self-regulation (n = 102). Negative emotionality was observed in anger-eliciting episodes and in interactions with parents at 7 months. MRO was coded in naturalistic interactions at 15 months.…

  17. 3D Viscous Free-Surface Flow around a Combatant Ship Hull

    NASA Astrophysics Data System (ADS)

    Pacuraru, Florin; Lungu, Adrian; Maria, Viorel

    2009-09-01

    The prediction of the total drag experienced by an advancing ship is a complicated problem which requires a thorough understanding of the hydrodynamic forces acting on the hull, the physical processes from which these forces arise and their mutual interaction. A general numerical method to predict the hydrodynamic performance of a twin-propeller combatant ship hull is presented in the paper. For practical reasons, the technique couples a body forces method and a RANS-based finite volume solver to account for the interactions between the hull and the appendages mounted on it: propellers, rudders, shaft lines, bossings and brackets. The chimera approach has been found the most versatile way for grid generation of hull and appendages.

  18. The SCEC 3D Community Fault Model (CFM-v5): An updated and expanded fault set of oblique crustal deformation and complex fault interaction for southern California

    NASA Astrophysics Data System (ADS)

    Nicholson, C.; Plesch, A.; Sorlien, C. C.; Shaw, J. H.; Hauksson, E.

    2014-12-01

    Southern California represents an ideal natural laboratory to investigate oblique deformation in 3D owing to its comprehensive datasets, complex tectonic history, evolving components of oblique slip, and continued crustal rotations about horizontal and vertical axes. As the SCEC Community Fault Model (CFM) aims to accurately reflect this 3D deformation, we present the results of an extensive update to the model by using primarily detailed fault trace, seismic reflection, relocated hypocenter and focal mechanism nodal plane data to generate improved, more realistic digital 3D fault surfaces. The results document a wide variety of oblique strain accommodation, including various aspects of strain partitioning and fault-related folding, sets of both high-angle and low-angle faults that mutually interact, significant non-planar, multi-stranded faults with variable dip along strike and with depth, and active mid-crustal detachments. In places, closely-spaced fault strands or fault systems can remain surprisingly subparallel to seismogenic depths, while in other areas, major strike-slip to oblique-slip faults can merge, such as the S-dipping Arroyo Parida-Mission Ridge and Santa Ynez faults with the N-dipping North Channel-Pitas Point-Red Mountain fault system, or diverge with depth. Examples of the latter include the steep-to-west-dipping Laguna Salada-Indiviso faults with the steep-to-east-dipping Sierra Cucapah faults, and the steep southern San Andreas fault with the adjacent NE-dipping Mecca Hills-Hidden Springs fault system. In addition, overprinting by steep predominantly strike-slip faulting can segment which parts of intersecting inherited low-angle faults are reactivated, or result in mutual cross-cutting relationships. The updated CFM 3D fault surfaces thus help characterize a more complex pattern of fault interactions at depth between various fault sets and linked fault systems, and a more complex fault geometry than typically inferred or expected from projecting near-surface data down-dip, or modeled from surface strain and potential field data alone.

  19. Simultaneous segmentation of the bone and cartilage surfaces of a knee joint in 3D

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Zhang, X.; Anderson, D. D.; Brown, T. D.; Hofwegen, C. Van; Sonka, M.

    2009-02-01

    We present a novel framework for the simultaneous segmentation of multiple interacting surfaces belonging to multiple mutually interacting objects. The method is a non-trivial extension of our previously reported optimal multi-surface segmentation. Considering an example application of knee-cartilage segmentation, the framework consists of the following main steps: 1) Shape model construction: Building a mean shape for each bone of the joint (femur, tibia, patella) from interactively segmented volumetric datasets. Using the resulting mean-shape model - identification of cartilage, non-cartilage, and transition areas on the mean-shape bone model surfaces. 2) Presegmentation: Employment of iterative optimal surface detection method to achieve approximate segmentation of individual bone surfaces. 3) Cross-object surface mapping: Detection of inter-bone equidistant separating sheets to help identify corresponding vertex pairs for all interacting surfaces. 4) Multi-object, multi-surface graph construction and final segmentation: Construction of a single multi-bone, multi-surface graph so that two surfaces (bone and cartilage) with zero and non-zero intervening distances can be detected for each bone of the joint, according to whether or not cartilage can be locally absent or present on the bone. To define inter-object relationships, corresponding vertex pairs identified using the separating sheets were interlinked in the graph. The graph optimization algorithm acted on the entire multiobject, multi-surface graph to yield a globally optimal solution. The segmentation framework was tested on 16 MR-DESS knee-joint datasets from the Osteoarthritis Initiative database. The average signed surface positioning error for the 6 detected surfaces ranged from 0.00 to 0.12 mm. When independently initialized, the signed reproducibility error of bone and cartilage segmentation ranged from 0.00 to 0.26 mm. The results showed that this framework provides robust, accurate, and reproducible segmentation of the knee joint bone and cartilage surfaces of the femur, tibia, and patella. As a general segmentation tool, the developed framework can be applied to a broad range of multi-object segmentation problems.

  20. Mother-Child and Father-Child Mutuality in Two Contexts: Consequences for Young Children's Peer Relationships

    ERIC Educational Resources Information Center

    Lindsey, Eric W.; Cremeens, Penny R.; Caldera, Yvonne M.

    2010-01-01

    This study examines the role that context plays in links between relative balance, or mutuality in parent-child interaction and children's social competence. Sixty-three toddlers and their parents were observed in a laboratory play session and caregiving activity (i.e. eating snack). Mutuality was operationalised as the relative balance in (a)…

  1. Molecular modeling of biomembranes and their complexes with protein transmembrane α-helices

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Andrey S.; Smirnov, Kirill V.; Antonov, Mikhail Yu.; Nikolaev, Ivan N.; Efremov, Roman G.

    2017-11-01

    Helical segments are common structural elements of membrane proteins. Dimerization and oligomerization of transmembrane (TM) α-helices provides the framework for spatial structure formation and protein-protein interactions. The membrane itself also takes part in the protein functioning. There are some examples of the mutual influence of the lipid bilayer properties and embedded membrane proteins. This work aims at the detail investigation of protein-lipid interactions using model systems: TM peptides corresponding to native protein segments. Three peptides were considered corresponding to TM domains of human glycophorin A (GpA), epidermal growth factor receptor (EGFR) and proposed TM-segment of human neuraminidase-1 (Neu1). A computational analysis of structural and dynamical properties was performed using molecular dynamics method. Monomers of peptides were considered incorporated into hydrated lipid bilayers. It was confirmed, that all these TM peptides have stable helical conformation in lipid environment, and the mutual adaptation of peptides and membrane was observed. It was shown that incorporation of the peptide into membrane results in the modulation of local and mean structural properties of the bilayer. Each peptide interacts with lipid acyl chains having special binding sites on the surface of central part of α-helix that exist for at least 200 ns. However, lipid acyl chains substitute each other faster occupying the same site. The formation of a special pattern of protein-lipid interactions may modulate the association of TM domains of membrane proteins, so membrane environment should be considered when proposing new substances targeting cell receptors.

  2. Live interaction distinctively shapes social gaze dynamics in rhesus macaques.

    PubMed

    Dal Monte, Olga; Piva, Matthew; Morris, Jason A; Chang, Steve W C

    2016-10-01

    The dynamic interaction of gaze between individuals is a hallmark of social cognition. However, very few studies have examined social gaze dynamics after mutual eye contact during real-time interactions. We used a highly quantifiable paradigm to assess social gaze dynamics between pairs of monkeys and modeled these dynamics using an exponential decay function to investigate sustained attention after mutual eye contact. When monkeys were interacting with real partners compared with static images and movies of the same monkeys, we found a significant increase in the proportion of fixations to the eyes and a smaller dispersion of fixations around the eyes, indicating enhanced focal attention to the eye region. Notably, dominance and familiarity between the interacting pairs induced separable components of gaze dynamics that were unique to live interactions. Gaze dynamics of dominant monkeys after mutual eye contact were associated with a greater number of fixations to the eyes, whereas those of familiar pairs were associated with a faster rate of decrease in this eye-directed attention. Our findings endorse the notion that certain key aspects of social cognition are only captured during interactive social contexts and dependent on the elapsed time relative to socially meaningful events. Copyright © 2016 the American Physiological Society.

  3. Live interaction distinctively shapes social gaze dynamics in rhesus macaques

    PubMed Central

    Piva, Matthew; Morris, Jason A.; Chang, Steve W. C.

    2016-01-01

    The dynamic interaction of gaze between individuals is a hallmark of social cognition. However, very few studies have examined social gaze dynamics after mutual eye contact during real-time interactions. We used a highly quantifiable paradigm to assess social gaze dynamics between pairs of monkeys and modeled these dynamics using an exponential decay function to investigate sustained attention after mutual eye contact. When monkeys were interacting with real partners compared with static images and movies of the same monkeys, we found a significant increase in the proportion of fixations to the eyes and a smaller dispersion of fixations around the eyes, indicating enhanced focal attention to the eye region. Notably, dominance and familiarity between the interacting pairs induced separable components of gaze dynamics that were unique to live interactions. Gaze dynamics of dominant monkeys after mutual eye contact were associated with a greater number of fixations to the eyes, whereas those of familiar pairs were associated with a faster rate of decrease in this eye-directed attention. Our findings endorse the notion that certain key aspects of social cognition are only captured during interactive social contexts and dependent on the elapsed time relative to socially meaningful events. PMID:27486105

  4. Analytical Calculation of Mutual Information between Weakly Coupled Poisson-Spiking Neurons in Models of Dynamically Gated Communication.

    PubMed

    Cannon, Jonathan

    2017-01-01

    Mutual information is a commonly used measure of communication between neurons, but little theory exists describing the relationship between mutual information and the parameters of the underlying neuronal interaction. Such a theory could help us understand how specific physiological changes affect the capacity of neurons to synaptically communicate, and, in particular, they could help us characterize the mechanisms by which neuronal dynamics gate the flow of information in the brain. Here we study a pair of linear-nonlinear-Poisson neurons coupled by a weak synapse. We derive an analytical expression describing the mutual information between their spike trains in terms of synapse strength, neuronal activation function, the time course of postsynaptic currents, and the time course of the background input received by the two neurons. This expression allows mutual information calculations that would otherwise be computationally intractable. We use this expression to analytically explore the interaction of excitation, information transmission, and the convexity of the activation function. Then, using this expression to quantify mutual information in simulations, we illustrate the information-gating effects of neural oscillations and oscillatory coherence, which may either increase or decrease the mutual information across the synapse depending on parameters. Finally, we show analytically that our results can quantitatively describe the selection of one information pathway over another when multiple sending neurons project weakly to a single receiving neuron.

  5. Modeling Coupled Movement of Water, Vapor, and Energy in Soils and at the Soil-Atmosphere Interface Using HYDRUS

    NASA Astrophysics Data System (ADS)

    Simunek, Jiri; Brunetti, Giuseppe; Saito, Hirotaka; Bristow, Keith

    2017-04-01

    Mass and energy fluxes in the subsurface are closely coupled and cannot be evaluated without considering their mutual interactions. However, only a few numerical models consider coupled water, vapor and energy transport in both the subsurface and at the soil-atmosphere interface. While hydrological and thermal processes in the subsurface are commonly implemented in existing models, which often consider both isothermally and thermally induced water and vapor flow, the interactions at the soil-atmosphere interface are often simplified, and the effects of slope inclination, slope azimuth, variable surface albedo and plant shading on incoming radiation and spatially variable surface mass and energy balance, and consequently on soil moisture and temperature distributions, are rarely considered. In this presentation we discuss these missing elements and our attempts to implement them into the HYDRUS model. We demonstrate implications of some of these interactions and their impact on the spatial distributions of soil temperature and water content, and their effect on soil evaporation. Additionally, we will demonstrate the use of the HYDRUS model to simulate processes relevant to the ground source heat pump systems.

  6. Microbial interactions in building of communities

    PubMed Central

    Wright, Christopher J.; Burns, Logan H.; Jack, Alison A.; Back, Catherine R.; Dutton, Lindsay C.; Nobbs, Angela H.; Lamont, Richard J.; Jenkinson, Howard F.

    2012-01-01

    SUMMARY Establishment of a community is considered to be essential for microbial growth and survival in the human oral cavity. Biofilm communities have increased resilience to physical forces, antimicrobial agents, and nutritional variations. Specific cell-to-cell adherence processes, mediated by adhesin-receptor pairings on respective microbial surfaces, are able to direct community development. These interactions co-localize species in mutually beneficial relationships, such as streptococci, veillonellae, Porphyromonas gingivalis and Candida albicans. In transition from the planktonic mode of growth to a biofilm community, microorganisms undergo major transcriptional and proteomic changes. These occur in response to sensing of diffusible signals, such as autoinducer molecules, and to contact with host tissues or other microbial cells. Underpinning many of these processes are intracellular phosphorylation events that regulate a large number of microbial interactions relevant to community formation and development. PMID:23253299

  7. Mother- and father-child mutuality in Anglo and Indian British families: a link with lower externalizing problems.

    PubMed

    Deater-Deckard, Kirby; Atzaba-Poria, Naama; Pike, Alison

    2004-12-01

    We observed mother- and father-child dyadic mutuality (responsiveness, interaction reciprocity, and cooperation), and its association with child behavior problems, in a socioeconomically and ethnically diverse sample of 125 male (51%) and female 7-to-9-year-old children. Dyadic mutuality and positivity were coded from in-home videotaped structured tasks, and parents completed ratings of child externalizing problems. Mothers showed more mutuality than fathers. The same child showed moderately similar mutuality with both of her or his parents (r = .47). Mutuality was higher among Anglo parents compared to Indian parents, an effect that was due in part to acculturation (i.e., years since immigration, native language use, traditional native culture attitudes). Greater mutuality, when coupled with dyadic positive affect, was associated with fewer externalizing problems (R2 = .24). This pattern held across gender, ethnic, and sociocconomic groups.

  8. Nectar bacteria, but not yeast, weaken a plant-pollinator mutualism.

    PubMed

    Vannette, Rachel L; Gauthier, Marie-Pierre L; Fukami, Tadashi

    2013-02-07

    Mutualistic interactions are often subject to exploitation by species that are not directly involved in the mutualism. Understanding which organisms act as such 'third-party' species and how they do so is a major challenge in the current study of mutualistic interactions. Here, we show that even species that appear ecologically similar can have contrasting effects as third-party species. We experimentally compared the effects of nectar-inhabiting bacteria and yeasts on the strength of a mutualism between a hummingbird-pollinated shrub, Mimulus aurantiacus, and its pollinators. We found that the common bacterium Gluconobacter sp., but not the common yeast Metschnikowia reukaufii, reduced pollination success, seed set and nectar consumption by pollinators, thereby weakening the plant-pollinator mutualism. We also found that the bacteria reduced nectar pH and total sugar concentration more greatly than the yeasts did and that the bacteria decreased glucose concentration and increased fructose concentration whereas the yeasts affected neither. These distinct changes to nectar chemistry may underlie the microbes' contrasting effects on the mutualism. Our results suggest that it is necessary to understand the determinants of microbial species composition in nectar and their differential modification of floral rewards to explain the mutual benefits that plants and pollinators gain from each other.

  9. Nectar bacteria, but not yeast, weaken a plant–pollinator mutualism

    PubMed Central

    Vannette, Rachel L.; Gauthier, Marie-Pierre L.; Fukami, Tadashi

    2013-01-01

    Mutualistic interactions are often subject to exploitation by species that are not directly involved in the mutualism. Understanding which organisms act as such ‘third-party’ species and how they do so is a major challenge in the current study of mutualistic interactions. Here, we show that even species that appear ecologically similar can have contrasting effects as third-party species. We experimentally compared the effects of nectar-inhabiting bacteria and yeasts on the strength of a mutualism between a hummingbird-pollinated shrub, Mimulus aurantiacus, and its pollinators. We found that the common bacterium Gluconobacter sp., but not the common yeast Metschnikowia reukaufii, reduced pollination success, seed set and nectar consumption by pollinators, thereby weakening the plant–pollinator mutualism. We also found that the bacteria reduced nectar pH and total sugar concentration more greatly than the yeasts did and that the bacteria decreased glucose concentration and increased fructose concentration whereas the yeasts affected neither. These distinct changes to nectar chemistry may underlie the microbes' contrasting effects on the mutualism. Our results suggest that it is necessary to understand the determinants of microbial species composition in nectar and their differential modification of floral rewards to explain the mutual benefits that plants and pollinators gain from each other. PMID:23222453

  10. Dynamical evolution of dense star clusters in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Haas, Jaroslav; Šubr, Ladislav

    2014-05-01

    By means of direct numerical N-body modeling, we investigate the orbital evolution of an initially thin, central mass dominated stellar disk. We include the perturbative gravitational influence of an extended spherically symmetric star cluster and the mutual gravitational interaction of the stars within the disk. Our results show that the two-body relaxation of the disk leads to significant changes of its radial density profile. In particular, the disk naturally evolves, for a variety of initial configurations, a similar broken power-law surface density profile. Hence, it appears that the single power-law surface density profile ∝R -2 suggested by various authors to describe the young stellar disk observed in the Sgr A* region does not match theoretical expectations.

  11. Supramolecular Interactions in Secondary Plant Cell Walls: Effect of Lignin Chemical Composition Revealed with the Molecular Theory of Solvation.

    PubMed

    Silveira, Rodrigo L; Stoyanov, Stanislav R; Gusarov, Sergey; Skaf, Munir S; Kovalenko, Andriy

    2015-01-02

    Plant biomass recalcitrance, a major obstacle to achieving sustainable production of second generation biofuels, arises mainly from the amorphous cell-wall matrix containing lignin and hemicellulose assembled into a complex supramolecular network that coats the cellulose fibrils. We employed the statistical-mechanical, 3D reference interaction site model with the Kovalenko-Hirata closure approximation (or 3D-RISM-KH molecular theory of solvation) to reveal the supramolecular interactions in this network and provide molecular-level insight into the effective lignin-lignin and lignin-hemicellulose thermodynamic interactions. We found that such interactions are hydrophobic and entropy-driven, and arise from the expelling of water from the mutual interaction surfaces. The molecular origin of these interactions is carbohydrate-π and π-π stacking forces, whose strengths are dependent on the lignin chemical composition. Methoxy substituents in the phenyl groups of lignin promote substantial entropic stabilization of the ligno-hemicellulosic matrix. Our results provide a detailed molecular view of the fundamental interactions within the secondary plant cell walls that lead to recalcitrance.

  12. Phase-locked laser array through global antenna mutual coupling

    DOE PAGES

    Kao, Tsung -Yu; Reno, John L.; Hu, Qing

    2016-01-01

    Here, phase locking of an array of lasers is a highly effective way in beam shaping, to increase the output power, and to reduce lasing threshold. In this work, we present a novel phase-locking mechanism based on "antenna mutual coupling" wherein laser elements interact through far-field radiations with definite phase relations. This allows long-range global coupling among array elements to achieve robust 2-dimensional phase-locked laser array. The new scheme is ideal for lasers with deep sub-wavelength confined cavity such as nanolasers, where the divergent beam pattern could be used to form strong coupling among elements in the array. We experimentallymore » demonstrated such a scheme using sub-wavelength short-cavity surface-emitting lasers at terahertz frequency. More than 37 laser elements are phase-locked to each other, delivering up to 6.5 mW single-mode radiations at ~3 terahertz, with maximum 450-mW/A slope efficiency and near diffraction limit beam divergence.« less

  13. Individual-Based Model of Microbial Life on Hydrated Rough Soil Surfaces

    PubMed Central

    Kim, Minsu; Or, Dani

    2016-01-01

    Microbial life in soil is perceived as one of the most interesting ecological systems, with microbial communities exhibiting remarkable adaptability to vast dynamic environmental conditions. At the same time, it is a notoriously challenging system to understand due to its complexity including physical, chemical, and biological factors in synchrony. This study presents a spatially-resolved model of microbial dynamics on idealised rough soil surfaces represented as patches with different (roughness) properties that preserve the salient hydration physics of real surfaces. Cell level microbial interactions are considered within an individual-based formulation including dispersion and various forms of trophic dependencies (competition, mutualism). The model provides new insights into mechanisms affecting microbial community dynamics and gives rise to spontaneous formation of microbial community spatial patterns. The framework is capable of representing many interacting species and provides diversity metrics reflecting surface conditions and their evolution over time. A key feature of the model is its spatial scalability that permits representation of microbial processes from cell-level (micro-metric scales) to soil representative volumes at sub-metre scales. Several illustrative examples of microbial trophic interactions and population dynamics highlight the potential of the proposed modelling framework to quantitatively study soil microbial processes. The model is highly applicable in a wide range spanning from quantifying spatial organisation of multiple species under various hydration conditions to predicting microbial diversity residing in different soils. PMID:26807803

  14. Structural properties of oligonucleotide monolayers on gold surfaces probed by fluorescence investigations.

    PubMed

    Rant, Ulrich; Arinaga, Kenji; Fujita, Shozo; Yokoyama, Naoki; Abstreiter, Gerhard; Tornow, Marc

    2004-11-09

    We present optical investigations on the conformation of oligonucleotide layers on Au surfaces. Our studies concentrate on the effect of varying surface coverage densities on the structural properties of layers of 12- and 24mer single-stranded DNA, tethered to the Au surface at one end while being labeled with a fluorescent marker at the opposing end. The distance-dependent energy transfer from the marker dye to the metal surface, which causes quenching of the observed fluorescence, is used to provide information on the orientation of the DNA strands relative to the surface. Variations in the oligonucleotide coverage density, as determined from electrochemical quantification, over 2 orders of magnitude are achieved by employing different preparation conditions. The observed enhancement in fluorescence intensity with increasing DNA coverage can be related to a model involving mutual steric interactions of oligonucleotides on the surface, as well as fluorescence quenching theory. Finally, the applicability of the presented concepts for investigations of heterogeneous monolayers is demonstrated by means of studying the coadsorption of mercaptohexanol onto DNA-modified Au surfaces.

  15. Complete information acquisition in scanning probe microscopy

    DOE PAGES

    Belianinov, Alex; Kalinin, Sergei V.; Jesse, Stephen

    2015-03-13

    In the last three decades, scanning probe microscopy (SPM) has emerged as a primary tool for exploring and controlling the nanoworld. A critical part of the SPM measurements is the information transfer from the tip-surface junction to a macroscopic measurement system. This process reduces the many degrees of freedom of a vibrating cantilever to relatively few parameters recorded as images. Similarly, the details of dynamic cantilever response at sub-microsecond time scales of transients, higher-order eigenmodes and harmonics are averaged out by transitioning to millisecond time scale of pixel acquisition. Hence, the amount of information available to the external observer ismore » severely limited, and its selection is biased by the chosen data processing method. Here, we report a fundamentally new approach for SPM imaging based on information theory-type analysis of the data stream from the detector. This approach allows full exploration of complex tip-surface interactions, spatial mapping of multidimensional variability of material s properties and their mutual interactions, and SPM imaging at the information channel capacity limit.« less

  16. Final Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotov, Valeri

    2016-05-29

    The research in this program involves theoretical investigations of electronic, optical and mechanical properties of graphene and its derivatives, such as bi-layer graphene, graphene-based van der Waals heterostructures, strained graphene, as well as graphene on various surfaces. One line of research has been development of theoretical models that support graphene’s large array of possible technological applications. For example one of our goals has been the understanding of surface plasmons and spin relaxation mechanisms in graphene, related to novel optoelectronics and spintronics applications. Our current research focus is on understanding the role of correlations in graphene under mechanical deformations, such asmore » strain. The main goal is to describe the mutual interplay between strain and electron-electron interactions which could lead to the formation of novel elec- tronic phases with strongly modified electronic, magnetic and optical properties. This direction of research contributes to deeper understanding of interactions in graphene and related atomically-thin materials - a subject at the forefront of research on graphene and its derivatives.« less

  17. Fine tuning cellular recognition: The function of the leucine rich repeat (LRR) trans-membrane protein, LRT, in muscle targeting to tendon cells.

    PubMed

    Gilsohn, Eli; Volk, Talila

    2010-01-01

    The formation of complex tissues during embryonic development is often accompanied by directed cellular migration towards a target tissue. Specific mutual recognition between the migrating cell and its target tissue leads to the arrest of the cell migratory behavior and subsequent contact formation between the two interacting cell types. Recent studies implicated a novel family of surface proteins containing a trans-membrane domain and single leucine-rich repeat (LRR) domain in inter-cellular recognition and the arrest of cell migration. Here, we describe the involvement of a novel LRR surface protein, LRT, in targeting migrating muscles towards their corresponding tendon cells in the Drosophila embryo. LRT is specifically expressed by the target tendon cells and is essential for arresting the migratory behavior of the muscle cells. Additional studies in Drosophila S2 cultured cells suggest that LRT forms a protein complex with the Roundabout (Robo) receptor, essential for guiding muscles towards their tendon partners. Genetic analysis supports a model in which LRT performs its activity non-autonomously through its interaction with the Robo receptors expressed on the muscle surfaces. These results suggest a novel mechanism of intercellular recognition through interactions between LRR family members and Robo receptors.

  18. Epigenetic Silencing of Plasmodium falciparum Genes Linked to Erythrocyte Invasion

    PubMed Central

    Cortés, Alfred; Carret, Celine; Kaneko, Osamu; Yim Lim, Brian Y. S.; Ivens, Alasdair; Holder, Anthony A

    2007-01-01

    The process of erythrocyte invasion by merozoites of Plasmodium falciparum involves multiple steps, including the formation of a moving junction between parasite and host cell, and it is characterised by the redundancy of many of the receptor–ligand interactions involved. Several parasite proteins that interact with erythrocyte receptors or participate in other steps of invasion are encoded by small subtelomerically located gene families of four to seven members. We report here that members of the eba, rhoph1/clag, acbp, and pfRh multigene families exist in either an active or a silenced state. In the case of two members of the rhoph1/clag family, clag3.1 and clag3.2, expression was mutually exclusive. Silencing was clonally transmitted and occurred in the absence of detectable DNA alterations, suggesting that it is epigenetic. This was demonstrated for eba-140. Our data demonstrate that variant or mutually exclusive expression and epigenetic silencing in Plasmodium are not unique to genes such as var, which encode proteins that are exported to the surface of the erythrocyte, but also occur for genes involved in host cell invasion. Clonal variant expression of invasion-related ligands increases the flexibility of the parasite to adapt to its human host. PMID:17676953

  19. Heat transfer device

    NASA Technical Reports Server (NTRS)

    Eaton, L. R. (Inventor)

    1976-01-01

    An improved heat transfer device particularly suited for use as an evaporator plate in a diffusion cloud chamber. The device is characterized by a pair of mutually spaced heat transfer plates, each being of a planar configuration, having a pair of opposed surfaces defining therebetween a heat pipe chamber. Within the heat pipe chamber, in contiguous relation with the pair of opposed surfaces, there is disposed a pair of heat pipe wicks supported in a mutually spaced relationship by a foraminous spacer of a planar configuration. A wick including a foraminous layer is contiguously related to the external surfaces of the heat transfer plates for uniformly wetting these surfaces.

  20. Dominance of Spouse Orientation and Perceived Couple Mutuality.

    ERIC Educational Resources Information Center

    Thomas, Antoinette D.; Dudek, Stephanie Z.

    Interactions between husbands and wives are often assessed in terms of power distribution, based on decision-making outcomes. To examine the association of the dominance of "spouse" over "parents" and "peers" orientation with perceived behavioral and affective mutuality in the couple's financial management, couples…

  1. Seed traits and taxonomic relationships determine the occurrence of mutualisms versus seed predation in a tropical forest rodent and seed dispersal system.

    PubMed

    Wang, Zhenyu; Cao, Lin; Zhang, Zhibin

    2014-06-01

    Although many studies have been carried out on plant-animal mutualistic assemblages, the roles of functional traits and taxonomy in determining both whether interactions involve mutualisms or predation and the structure of such assemblages are unclear. We used semi-natural enclosures to quantitatively assess the interaction strengths between seeds of 8 sympatric tree species and 4 rodent species in a tropical forest in Xishuangbanna, Yunnan, Southwest China. We found 2 clusters of species in the seed-rodent network represented by 2 genera in the Fagaceae (Castanopsis, Lithocarpus). Compared to seeds of 3 Castanopsis species, seeds with heavy weight, hard coat or caloric content (including 3 Lithocarpus species) were eaten less and more frequently hoarded by rodents. In turn, hoarded seeds showed less predation and more mutualism with rodents. Our results suggest that seed traits significantly affected the hoarding behavior of rodents, and, consequently, the occurrence of mutualisms and predation as well as assemblage structure in the plant-animal seed dispersal system. Taxonomically-related species with similar seed traits as functional groups belong to the same substructures in the assemblage. Our results indicate that both seed traits and taxonomic relationships may simplify thinking about seed dispersal systems by helping to elucidate whether interactions are likely to be dominated by predation or mutualism. © 2013 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  2. Interaction of two walkers: wave-mediated energy and force.

    PubMed

    Borghesi, Christian; Moukhtar, Julien; Labousse, Matthieu; Eddi, Antonin; Fort, Emmanuel; Couder, Yves

    2014-12-01

    A bouncing droplet, self-propelled by its interaction with the waves it generates, forms a classical wave-particle association called a "walker." Previous works have demonstrated that the dynamics of a single walker is driven by its global surface wave field that retains information on its past trajectory. Here we investigate the energy stored in this wave field for two coupled walkers and how it conveys an interaction between them. For this purpose, we characterize experimentally the "promenade modes" where two walkers are bound and propagate together. Their possible binding distances take discrete values, and the velocity of the pair depends on their mutual binding. The mean parallel motion can be either rectilinear or oscillating. The experimental results are recovered analytically with a simple theoretical framework. A relation between the kinetic energy of the droplets and the total energy of the standing waves is established.

  3. Electrostatic Interactions Between Glycosaminoglycan Molecules

    NASA Astrophysics Data System (ADS)

    Song, Fan; Moyne, Christian; Bai, Yi-Long

    2005-02-01

    The electrostatic interactions between nearest-neighbouring chondroitin sulfate glycosaminoglycan (CS-GAG) molecular chains are obtained on the bottle brush conformation of proteoglycan aggrecan based on an asymptotic solution of the Poisson-Boltzmann equation the CS-GAGs satisfy under the physiological conditions of articular cartilage. The present results show that the interactions are associated intimately with the minimum separation distance and mutual angle between the molecular chains themselves. Further analysis indicates that the electrostatic interactions are not only expressed to be purely exponential in separation distance and decrease with the increasing mutual angle but also dependent sensitively on the saline concentration in the electrolyte solution within the tissue, which is in agreement with the existed relevant conclusions.

  4. Persistence of pollination mutualisms in the presence of ants.

    PubMed

    Wang, Yuanshi; Wang, Shikun

    2015-01-01

    This paper considers plant-pollinator-ant systems in which the plant-pollinator interaction is mutualistic but ants have both positive and negative effects on plants. The ants also interfere with pollinators by preventing them from accessing plants. While a Beddington-DeAngelis (BD) formula can describe the plant-pollinator interaction, the formula is extended in this paper to characterize the pollination mutualism under the ant interference. Then, a plant-pollinator-ant system with the extended BD functional response is discussed, and global dynamics of the model demonstrate the mechanisms by which pollination mutualism can persist in the presence of ants. When the ant interference is strong, it can result in extinction of pollinators. Moreover, if the ants depend on pollination mutualism for survival, the strong interference could drive pollinators into extinction, which consequently lead to extinction of the ants themselves. When the ant interference is weak, a cooperation between plant-ant and plant-pollinator mutualisms could occur, which promotes survival of both ants and pollinators, especially in the case that ants (respectively, pollinators) cannot survive in the absence of pollinators (respectively, ants). Even when the level of ant interference remains invariant, varying ants' negative effect on plants can result in survival/extinction of both ants and pollinators. Therefore, our results provide an explanation for the persistence of pollination mutualism when there exist ants.

  5. Energy and Momentum Relaxation Times of 2D Electrons Due to Near Surface Deformation Potential Scattering

    NASA Astrophysics Data System (ADS)

    Pipa, Viktor; Vasko, Fedor; Mitin, Vladimir

    1997-03-01

    The low temperature energy and momentum relaxation rates of 2D electron gas placed near the free or clamped surface of a semi-infinit sample are calculated. To describe the electron-acoustic phonon interaction with allowance of the surface effect the method of elasticity theory Green functions was used. This method allows to take into account the reflection of acoustic waves from the surface and related mutual conversion of LA and TA waves. It is shown that the strength of the deformation potential scattering at low temperatures substantially depends on the mechanical conditions at the surface: relaxation rates are suppressed for the free surface while for the rigid one the rates are enhanced. The dependence of the conductivity on the distance between the 2D layer and the surface is discussed. The effect is most pronounced in the range of temperatures 2 sl pF < T < (2 hbar s_l)/d, where pF is the Fermi momentum, sl is the velocity of LA waves, d is the width of the quantum well.

  6. Record Charge Carrier Diffusion Length in Colloidal Quantum Dot Solids via Mutual Dot-To-Dot Surface Passivation.

    PubMed

    Carey, Graham H; Levina, Larissa; Comin, Riccardo; Voznyy, Oleksandr; Sargent, Edward H

    2015-06-03

    Through a combination of chemical and mutual dot-to-dot surface passivation, high-quality colloidal quantum dot solids are fabricated. The joint passivation techniques lead to a record diffusion length for colloidal quantum dots of 230 ± 20 nm. The technique is applied to create thick photovoltaic devices that exhibit high current density without losing fill factor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Cooperativity of anion⋯π and π⋯π interactions regulates the self-assembly of a series of carbene proligands: Towards quantitative analysis of intermolecular interactions with Hirshfeld surface

    NASA Astrophysics Data System (ADS)

    Samanta, Tapastaru; Dey, Lingaraj; Dinda, Joydev; Chattopadhyay, Shyamal Kumar; Seth, Saikat Kumar

    2014-06-01

    The cooperative effect of weak non-covalent forces between anions and electron deficient aromatics by π⋯π stacking of a series of carbene proligands (1-3) have been thoroughly explored by crystallographic studies. Structural analysis revealed that the anion⋯π and π⋯π interactions along with intermolecular hydrogen bonding mutually cooperate to facilitate the assembling of the supramolecular framework. The π⋯π and corresponding anion⋯π interactions have been investigated in the title carbene proligands despite their association with counter ions. The presence of the anion in the vicinity of the π-system leads to the formation of anion⋯π/π⋯π/π⋯anion network for an inductive stabilization of the assemblies. To assess the dimensionality of the supramolecular framework consolidated by cooperative anion⋯π/π⋯π interactions and hydrogen bonding, different substituent effects in the carbene backbone have been considered to tune these interactions. These facts show that the supramolecular framework based on these cooperative weak forces may be robust enough for application in molecular recognition. The investigation of close intermolecular interactions between the molecules via Hirshfeld surface analyses is presented in order to reveal subtle differences and similarities in the crystal structures. The decomposition of the fingerprint plot area provides a percentage of each intermolecular interaction, allowing for a quantified analysis of close contacts within each crystal.

  8. Self-assembly of skyrmion-dressed chiral nematic colloids with tangential anchoring.

    PubMed

    Pandey, M B; Porenta, T; Brewer, J; Burkart, A; Copar, S; Zumer, S; Smalyukh, Ivan I

    2014-06-01

    We describe dipolar nematic colloids comprising mutually bound solid microspheres, three-dimensional skyrmions, and point defects in a molecular alignment field of chiral nematic liquid crystals. Nonlinear optical imaging and numerical modeling based on minimization of Landau-de Gennes free energy reveal that the particle-induced skyrmions resemble torons and hopfions, while matching surface boundary conditions at the interfaces of liquid crystal and colloidal spheres. Laser tweezers and videomicroscopy reveal that the skyrmion-colloidal hybrids exhibit purely repulsive elastic pair interactions in the case of parallel dipoles and an unexpected reversal of interaction forces from repulsive to attractive as the center-to-center distance decreases for antiparallel dipoles. The ensuing elastic self-assembly gives rise to colloidal chains of antiparallel dipoles with particles entangled by skyrmions.

  9. The role of multivalent metal cations and organic complexing agents in bitumen-mineral interactions in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Gan, Weibing

    A systematic investigation was carried out to study the interactions between bitumen (or hexadecane) and minerals (quartz, kaolinite and illite) in aqueous solutions containing multivalent metal cations Ca2+, Mg2+ and Fe2+/Fe3+, in the absence and presence of organic complexing agents (oxalic acid, EDTA and citric acid). A range of experimental techniques, including coagulation measurement, visualization of bitumen-mineral attachment, metal ion adsorption measurement, zeta potential measurement, Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopic analyses, were employed in the investigation. Free energy changes of adsorption of metal cations on the minerals and bitumen were evaluated using the James & Healy thermodynamic model. Total interaction energies between the minerals and bitumen were calculated using classical DLVO theory. It was observed that while the tested minerals showed varying degrees of mutual-coagulation with bitumen (or hexadecane), the presence of the multivalent metal cations could prominently increase the mutual coagulation. It was also found that such enhancement of the mutual coagulation was only significant when the metal cations formed first-order hydroxyl complexes (such as CaOH +, MgOH+, etc.) or metal hydroxides (such as Fe(OH) 3, Mg(OH)2, etc.). Therefore, the increase of the bitumen-mineral mutual coagulation by the metal cations was strongly pH dependent. Organic complexing agents (oxalic acid, citric acid and EDTA) used in this study, citric acid in particular, significantly reduced or virtually eliminated the mutual coagulation between bitumen (or hexadecane) and minerals caused by metal cations Ca2+, Mg2+, Fe 2+ and Fe3+. Due to its ability to substantially lower the mutual coagulation between bitumen and mineral particles, citric acid was found the most effective in improving bitumen-mineral liberation in solutions containing the multivalent metal cations at pH 8--10. In small scale flotation experiments to recover the residual bitumen from Syncrude Froth Treatment Tailings, the addition of up to 2x10-3 mol/L citric acid improved the separation efficiency by 24 percentage points. The sequential additions of 1.5x10-3 mol/L citric acid and 30 mg/L polyacrylamide further increased the flotation separation efficiency, which was attributed to the improved liberation of bitumen from the minerals by the citric acid, and the flocculation of the liberated minerals fines by the polyacrylamide. The latter was expected to reduce the mechanical entrainment of the liberated mineral fines. Pretreatment of the Froth Treatment Tailings in an ultrasonic bath was also effective for bitumen liberation and recovery from the Froth Treatment Tailings. Through measurements of zeta potentials of the minerals and adsorption densities of the metal cations on mineral surfaces, coupled with speciation diagrams, it was shown that the multivalent metal cations functioned in the studied systems through three distinctly different mechanisms. These included electrical double layer compression by the metal cations; adsorption of the first-order metal hydroxyl species; and adsorption of the metal hydroxides on the mineral particles. Reversibility of adsorption and analyses by X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) indicated that the adsorption of the first-order metal hydroxyl species on quartz and kaolinite was through electrostatic attraction, while that of metal hydroxides was possibly through chemisorption. It was also shown that classical DLVO theory could be used to describe and predict bitumen-mineral interactions with and without the presence of citric acid. The energy barriers for the interaction between bitumen and the minerals were greatly raised in the presence of citric acid, as a contribution to the repulsive electrical double layers interaction between bitumen droplets and mineral particles.

  10. The roles of amensalistic and commensalistic interactions in large ecological network stability

    PubMed Central

    Mougi, Akihiko

    2016-01-01

    Ecological communities comprise diverse species and their interactions. Notably, ecological and evolutionary studies have revealed that reciprocal interactions such as predator–prey, competition, and mutualism, are key drivers of community dynamics. However, there is an argument that many species interactions are asymmetric, where one species unilaterally affects another species (amensalism or commensalism). This raises the unanswered question of what is the role of unilateral interactions in community dynamics. Here I use a theoretical approach to demonstrate that unilateral interactions greatly enhance community stability. The results suggested that amensalism and commensalism were more stabilizing than symmetrical interactions, such as competition and mutualism, but they were less stabilizing than an asymmetric antagonistic interaction. A mix of unilateral interactions increased stability. Furthermore, in communities with all interaction types, unilateral interactions tended to increase stability. This study suggests that unilateral interactions play a major role in maintaining communities, underlining the need to further investigate their roles in ecosystem dynamics. PMID:27406267

  11. Mutualism and Adaptive Divergence: Co-Invasion of a Heterogeneous Grassland by an Exotic Legume-Rhizobium Symbiosis

    PubMed Central

    Porter, Stephanie S.; Stanton, Maureen L.; Rice, Kevin J.

    2011-01-01

    Species interactions play a critical role in biological invasions. For example, exotic plant and microbe mutualists can facilitate each other's spread as they co-invade novel ranges. Environmental context may influence the effect of mutualisms on invasions in heterogeneous environments, however these effects are poorly understood. We examined the mutualism between the legume, Medicago polymorpha, and the rhizobium, Ensifer medicae, which have both invaded California grasslands. Many of these invaded grasslands are composed of a patchwork of harsh serpentine and relatively benign non-serpentine soils. We grew legume genotypes collected from serpentine or non-serpentine soil in both types of soil in combination with rhizobium genotypes from serpentine or non-serpentine soils and in the absence of rhizobia. Legumes invested more strongly in the mutualism in the home soil type and trends in fitness suggested that this ecotypic divergence was adaptive. Serpentine legumes had greater allocation to symbiotic root nodules in serpentine soil than did non-serpentine legumes and non-serpentine legumes had greater allocation to nodules in non-serpentine soil than did serpentine legumes. Therefore, this invasive legume has undergone the rapid evolution of divergence for soil-specific investment in the mutualism. Contrary to theoretical expectations, the mutualism was less beneficial for legumes grown on the stressful serpentine soil than on the non-serpentine soil, possibly due to the inhibitory effects of serpentine on the benefits derived from the interaction. The soil-specific ability to allocate to a robust microbial mutualism may be a critical, and previously overlooked, adaptation for plants adapting to heterogeneous environments during invasion. PMID:22174755

  12. The roles of tolerance in the evolution, maintenance and breakdown of mutualism

    NASA Astrophysics Data System (ADS)

    Edwards, David P.

    2009-10-01

    Tolerance strategies are cost-reduction mechanisms that enable organisms to recover some of the fitness lost to damage, but impose limited or no cost on antagonists. They are frequently invoked in studies of plant-herbivore and of host-parasite interactions, but the possible roles of tolerance in mutualism (interspecific cooperation) have yet to be thoroughly examined. This review identifies candidate roles for tolerance in the evolution, maintenance and breakdown of mutualism. Firstly, by reducing the cost of damage, tolerance provides a key pathway by which pre-mutualistic hosts can reduce the cost of association with their parasites, promoting cooperation. This holds for the evolution of ‘evolved dependency’ type mutualism, where a host requires an antagonist that does not direct any reward to their partner for some resource, and of ‘outright mutualism’, where participants directly trade benefits. Secondly, in outright mutualism, tolerance might maintain cooperation by reducing the cost of a persisting negative trait in a symbiotic partner. Finally, the evolution of tolerance might also provide a pathway out of mutualism because the host could evolve a cheaper alternative to continued cooperation with its mutualistic partner, permitting autonomy. A key consequence of tolerance is that it contrasts with partner choice mechanisms that impose large costs on cheats, and I highlight understanding any trade-off between tolerance and partner choice as an important research topic in the evolution of cooperation. I conclude by identifying tolerance as part of a more general phenomenon of co-adaptation in mutualism and parasitism that drives the evolution of the cost/benefit ratio from the interaction.

  13. Nanostructure control: Nucleation and diffusion studies for predictable ultra thin film morphologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hershberger, Matthew

    This thesis covers PhD research on two systems with unique and interesting physics. The first system is lead (Pb) deposited on the silicon (111) surface with the 7x7 reconstruction. Pb and Si are mutually bulk insoluble resulting in this system being an ideal case for studying metal and semiconductor interactions. Initial Pb deposition causes an amorphous wetting layer to form across to surface. Continued deposition results in Pb(111) island growth. Classic literature has classified this system as the Stranski-Krastanov growth mode although the system is not near equilibrium conditions. Our research shows a growth mode distinctly different than classical expectationsmore » and begins a discussion of reclassifying diffusion and nucleation for systems far away from the well-studied equilibrium cases.« less

  14. Antagonists in Mutual Antipathies: A Person-Oriented Approach

    ERIC Educational Resources Information Center

    Guroglu, Berna; Haselager, Gerbert J. T.; van Lieshout, Cornelis F. M.; Scholte, Ron H. J.

    2009-01-01

    This study investigated the heterogeneity of mutual antipathy relationships. Separate cluster analyses of peer interactions of early adolescents (mean age 11 years) and adolescents (mean age of 14) yielded 3 "types of individuals" in each age group, namely Prosocial, Antisocial, and Withdrawn. Prevalence analysis of the 6 possible combinations of…

  15. The acacia ants revisited: convergent evolution and biogeographic context in an iconic ant/plant mutualism

    PubMed Central

    2017-01-01

    Phylogenetic and biogeographic analyses can enhance our understanding of multispecies interactions by placing the origin and evolution of such interactions in a temporal and geographical context. We use a phylogenomic approach—ultraconserved element sequence capture—to investigate the evolutionary history of an iconic multispecies mutualism: Neotropical acacia ants (Pseudomyrmex ferrugineus group) and their associated Vachellia hostplants. In this system, the ants receive shelter and food from the host plant, and they aggressively defend the plant against herbivores and competing plants. We confirm the existence of two separate lineages of obligate acacia ants that convergently occupied Vachellia and evolved plant-protecting behaviour, from timid ancestors inhabiting dead twigs in rainforest. The more diverse of the two clades is inferred to have arisen in the Late Miocene in northern Mesoamerica, and subsequently expanded its range throughout much of Central America. The other lineage is estimated to have originated in southern Mesoamerica about 3 Myr later, apparently piggy-backing on the pre-existing mutualism. Initiation of the Pseudomyrmex/Vachellia interaction involved a shift in the ants from closed to open habitats, into an environment with more intense plant herbivory. Comparative studies of the two lineages of mutualists should provide insight into the essential features binding this mutualism. PMID:28298350

  16. Faithful Pointer for Qubit Measurement

    NASA Astrophysics Data System (ADS)

    Kumari, Asmita; Pan, A. K.

    2018-02-01

    In the context of von Neumann projective measurement scenario for a qubit system, it is widely believed that the mutual orthogonality between the post-interaction pointer states is the sufficient condition for achieving the ideal measurement situation. However, for experimentally verifying the observable probabilities, the real space distinction between the pointer distributions corresponding to post-interaction pointer states play crucial role. It is implicitly assumed that mutual orthogonality ensures the support between the post-interaction pointer distributions to be disjoint. We point out that mutual orthogonality (formal idealness) does not necessarily imply the real space distinguishability (operational idealness), but converse is true. In fact, for the commonly referred Gaussian wavefunction, it is possible to obtain a measurement situation which is formally ideal but fully nonideal operationally. In this paper, we derive a class of pointer states, that we call faithful pointers, for which the degree of formal (non)idealness is equal to the operational (non)idealness. In other words, for the faithful pointers, if a measurement situation is formally ideal then it is operationally ideal and vice versa.

  17. First-principles density functional theory (DFT) study of gold nanorod and its interaction with alkanethiol ligands.

    PubMed

    Hu, Hang; Reven, Linda; Rey, Alejandro

    2013-10-17

    The structure and mechanical properties of gold nanorods and their interactions with alkenthiolate self-assembled monolayers have been determined using a novel first-principle density functional theory simulation approach. The multifaceted, 1-dimensional, octagonal nanorod has alternate Au100 and Au110 surfaces. The structural optimization of the gold nanorods was performed with a mixed basis: the outermost layer of gold atoms used double-ζ plus polarization (DZP), the layer below used double-ζ (DZ), and the inner layers used single-ζ (SZ). The final structure compares favorably with simulations using DZP for all atoms. Phonon dispersion calculations and ab initio molecular dynamics (AIMD) were used to establish the dynamic and thermal stability of the system. From the AIMD simulations it was found that the nanorod system will undergo significant surface reconstruction at 300 K. In addition, when subjected to mechanical stress in the axial direction, the nanorod responds as an orthotropic material, with uniform expansion along the radial direction. The Young's moduli are 207 kbar in the axial direction and 631 kbar in the radial direction. The binding of alkanethiolates, ranging from methanethiol to pentanethiol, caused formation of surface point defects on the Au110 surfaces. On the Au100 surfaces, the defects occurred in the inner layer, creating a small surface island. These defects make positive and negative concavities on the gold nanorod surface, which helps the ligand to achieve a more stable state. The simulation results narrowed significant knowledge gaps on the alkanethiolate adsorption process and on their mutual interactions on gold nanorods. The mechanical characterization offers a new dimension to understand the physical chemistry of these complex nanoparticles.

  18. Surface correlation effects in two-band strongly correlated slabs.

    PubMed

    Esfahani, D Nasr; Covaci, L; Peeters, F M

    2014-02-19

    Using an extension of the Gutzwiller approximation for an inhomogeneous system, we study the two-band Hubbard model with unequal band widths for a slab geometry. The aim is to investigate the mutual effect of individual bands on the spatial distribution of quasi-particle weight and charge density, especially near the surface of the slab. The main effect of the difference in band width is the presence of two different length scales corresponding to the quasi-particle profile of each band. This is enhanced in the vicinity of the critical interaction of the narrow band where an orbitally selective Mott transition occurs and a surface dead layer forms for the narrow band. For the doped case, two different regimes of charge transfer between the surface and the bulk of the slab are revealed. The charge transfer from surface/center to center/surface depends on both the doping level and the average relative charge accumulated in each band. Such effects could also be of importance when describing the accumulation of charges at the interface between structures made of multi-band strongly correlated materials.

  19. Stability of an intraguild predation system with mutual predation

    NASA Astrophysics Data System (ADS)

    Wang, Yuanshi; DeAngelis, Donald L.

    2016-04-01

    We examine intraguild predation (IGP), in which species both compete for resources or space and prey on each other. The IGP system is modeled here by a lattice gas model of the mean-field theory. First, we consider the IGP system of one species in which individuals of the same species cannibalize each other. The dynamical behavior of the model demonstrates a mechanism by which the intraspecific predation promotes persistence of the species. Then we consider the IGP system of two species with mutual predation. Global dynamics of the model exhibit basic properties of IGP: (i) When both species' efficiencies in converting the consumptions into fitness are large, the outcome of their interaction is mutualistic in form and the IGP promotes persistence of both species. (ii) When one species' efficiency is large but the other's is small, the interaction outcomes become parasitic in nature, in which an obligate species can survive through the mutual predation with a facultative one. (iii) When both species' efficiencies are small, the interaction outcomes are competitive in nature and the IGP leads to extinction of one of the species. A novel result of this work is that varying one parameter or population density of the species can lead to transition of interaction outcomes between mutualism, parasitism and competition. On the other hand, dynamics of the models demonstrate that over-predation or under-predation will result in extinction of one/both species, while intermediate predation is favorable under certain parameter ranges.

  20. Decision Making for Healthcare Resource Allocation: Joint v. Separate Decisions on Interacting Interventions.

    PubMed

    Dakin, Helen; Gray, Alastair

    2018-05-01

    Standard guidance for allocating healthcare resources based on cost-effectiveness recommends using different decision rules for independent and mutually exclusive alternatives, although there is some confusion around the definition of "mutually exclusive." This paper reviews the definitions used in the literature and shows that interactions (i.e., non-additive effects, whereby the effect of giving 2 interventions simultaneously does not equal the sum of their individual effects) are the defining feature of mutually exclusive alternatives: treatments cannot be considered independent if the costs and/or benefits of one treatment are affected by the other treatment. The paper then identifies and categorizes the situations in which interventions are likely to have non-additive effects, including interventions targeting the same goal or clinical event, or life-saving interventions given to overlapping populations. We demonstrate that making separate decisions on interventions that have non-additive effects can prevent us from maximizing health gained from the healthcare budget. In contrast, treating combinations of independent options as though they were "mutually exclusive" makes the analysis more complicated but does not affect the conclusions. Although interactions are considered by the World Health Organization, other decision makers, such as the National Institute for Health and Care Excellence (NICE), currently make independent decisions on treatments likely to have non-additive effects. We propose a framework by which interactions could be considered when selecting, prioritizing, and appraising healthcare technologies to ensure efficient, evidence-based decision making.

  1. Decision Making for Healthcare Resource Allocation: Joint v. Separate Decisions on Interacting Interventions

    PubMed Central

    Dakin, Helen; Gray, Alastair

    2018-01-01

    Standard guidance for allocating healthcare resources based on cost-effectiveness recommends using different decision rules for independent and mutually exclusive alternatives, although there is some confusion around the definition of “mutually exclusive.” This paper reviews the definitions used in the literature and shows that interactions (i.e., non-additive effects, whereby the effect of giving 2 interventions simultaneously does not equal the sum of their individual effects) are the defining feature of mutually exclusive alternatives: treatments cannot be considered independent if the costs and/or benefits of one treatment are affected by the other treatment. The paper then identifies and categorizes the situations in which interventions are likely to have non-additive effects, including interventions targeting the same goal or clinical event, or life-saving interventions given to overlapping populations. We demonstrate that making separate decisions on interventions that have non-additive effects can prevent us from maximizing health gained from the healthcare budget. In contrast, treating combinations of independent options as though they were “mutually exclusive” makes the analysis more complicated but does not affect the conclusions. Although interactions are considered by the World Health Organization, other decision makers, such as the National Institute for Health and Care Excellence (NICE), currently make independent decisions on treatments likely to have non-additive effects. We propose a framework by which interactions could be considered when selecting, prioritizing, and appraising healthcare technologies to ensure efficient, evidence-based decision making. PMID:29683792

  2. Adsorption of Selenium and Strontium on Goethite: EXAFS Study and Surface Complexation Modeling of the Ternary Systems.

    PubMed

    Nie, Zhe; Finck, Nicolas; Heberling, Frank; Pruessmann, Tim; Liu, Chunli; Lützenkirchen, Johannes

    2017-04-04

    Knowledge of the geochemical behavior of selenium and strontium is critical for the safe disposal of radioactive wastes. Goethite, as one of the most thermodynamically stable and commonly occurring natural iron oxy-hydroxides, promisingly retains these elements. This work comprehensively studies the adsorption of Se(IV) and Sr(II) on goethite. Starting from electrokinetic measurements, the binary and ternary adsorption systems are investigated and systematically compared via batch experiments, EXAFS analysis, and CD-MUSIC modeling. Se(IV) forms bidentate inner-sphere surface complexes, while Sr(II) is assumed to form outer-sphere complexes at low and intermediate pH and inner-sphere complexes at high pH. Instead of a direct interaction between Se(IV) and Sr(II), our results indicate an electrostatically driven mutual enhancement of adsorption. Adsorption of Sr(II) is promoted by an average factor of 5 within the typical groundwater pH range from 6 to 8 for the concentration range studied here. However, the interaction between Se(IV) and Sr(II) at the surface is two-sided, Se(IV) promotes Sr(II) outer-sphere adsorption, but competes for inner-sphere adsorption sites at high pH. The complexity of surfaces is highlighted by the inability of adsorption models to predict isoelectric points without additional constraints.

  3. Plant-microbe interaction in aquatic system and their role in the management of water quality: a review

    NASA Astrophysics Data System (ADS)

    Srivastava, Jatin K.; Chandra, Harish; Kalra, Swinder J. S.; Mishra, Pratibha; Khan, Hena; Yadav, Poonam

    2017-06-01

    Microbial assemblage as biofilm around the aquatic plant forms a firm association that largely depends upon the mutual supplies of nutrients, e.g., microbes interact with plants in an aquatic system most likely for organic carbon and oxygen, whereas plants receive defensive immunity and mineral exchange. Apart from the mutual benefits, plant-microbe interactions also influence the water quality especially at rhizosphere providing inherent ability to the aquatic system for the mitigation of pollution from the water column. The review presents and in-depth information along with certain research advancements made in the field of ecological and bio/chemical aspects of plant-microbe interactions and the underlying potential to improve water quality.

  4. Signatures of Indistinguishability in Bosonic Many-Body Dynamics

    NASA Astrophysics Data System (ADS)

    Brünner, Tobias; Dufour, Gabriel; Rodríguez, Alberto; Buchleitner, Andreas

    2018-05-01

    The dynamics of bosons in generic multimode systems, such as Bose-Hubbard models, are not only determined by interactions among the particles, but also by their mutual indistinguishability manifested in many-particle interference. We introduce a measure of indistinguishability for Fock states of bosons whose mutual distinguishability is controlled by an internal degree of freedom. We demonstrate how this measure emerges both in the noninteracting and interacting evolution of observables. In particular, we find an unambiguous relationship between our measure and the variance of single-particle observables in the noninteracting limit. A nonvanishing interaction leads to a hierarchy of interaction-induced interference processes, such that even the expectation value of single-particle observables is influenced by the degree of indistinguishability.

  5. The effects of different styles of interaction on the learning of evolutionary theories

    NASA Astrophysics Data System (ADS)

    Sugimoto, Akiko

    This study investigated the effects of different styles of social interaction on the learning of advanced biological knowledge. Recent research has increasingly acknowledged the importance of social interaction for promoting learning and cognitive development. However, there has been a controversy about the optimal style of interaction. Some studies have showed the beneficial effects of symmetrical interactions such as an argument between peers, whereas other studies have found the superiority of asymmetrical interactions in which a novice learn with the guidance of an expert. The reason for the contradictory results may be that different styles of interaction enhance different kinds of learning. The present study focused on the three styles of interaction; (1) Conflicting style, in which two novice students with scientifically wrong but conflicting views argue with one another, (2) Guiding style, in which a novice student is led by a more expert student to an understanding of scientifically appropriate knowledge, (3) Mutual Constructive style, in which an expert student and a novice student jointly solve a scientific problem on an equal footing. Sixty college students with non-biology-majors and 30 students with a biology major participated in this experiment to discuss an evolutionary problem in these three styles of interaction, with the former serving as novices and the latter as experts. Analyses of the Pre- and the Posttest performance and discussion processes in the Interaction session revealed the following. First, the Guiding style and the Mutual Constructive style enhanced the acquisition of the scientific evolutionary conceptual framework more effectively than the Conflicting style. However, some students in the Conflicting style also grasped the scientific evolutionary framework, and many students reconstructed their theories of evolution through discussion, even if the frameworks remained scientifically inappropriate. Second, the students who discussed evolution in the Conflicting style and the Mutual Constructive style tended to become more reflective and flexible than the students in the Guiding style, when solving a new evolutionary problem. Third, analyses of epistemological beliefs and critiques of evolutionary explanations suggested that the Mutual Constructive style and the Conflicting style facilitated the development of critical thinking more than the Guiding style.

  6. Prior Knowledge Facilitates Mutual Gaze Convergence and Head Nodding Synchrony in Face-to-face Communication

    PubMed Central

    Thepsoonthorn, C.; Yokozuka, T.; Miura, S.; Ogawa, K.; Miyake, Y.

    2016-01-01

    As prior knowledge is claimed to be an essential key to achieve effective education, we are interested in exploring whether prior knowledge enhances communication effectiveness. To demonstrate the effects of prior knowledge, mutual gaze convergence and head nodding synchrony are observed as indicators of communication effectiveness. We conducted an experiment on lecture task between lecturer and student under 2 conditions: prior knowledge and non-prior knowledge. The students in prior knowledge condition were provided the basic information about the lecture content and were assessed their understanding by the experimenter before starting the lecture while the students in non-prior knowledge had none. The result shows that the interaction in prior knowledge condition establishes significantly higher mutual gaze convergence (t(15.03) = 6.72, p < 0.0001; α = 0.05, n = 20) and head nodding synchrony (t(16.67) = 1.83, p = 0.04; α = 0.05, n = 19) compared to non-prior knowledge condition. This study reveals that prior knowledge facilitates mutual gaze convergence and head nodding synchrony. Furthermore, the interaction with and without prior knowledge can be evaluated by measuring or observing mutual gaze convergence and head nodding synchrony. PMID:27910902

  7. Prior Knowledge Facilitates Mutual Gaze Convergence and Head Nodding Synchrony in Face-to-face Communication.

    PubMed

    Thepsoonthorn, C; Yokozuka, T; Miura, S; Ogawa, K; Miyake, Y

    2016-12-02

    As prior knowledge is claimed to be an essential key to achieve effective education, we are interested in exploring whether prior knowledge enhances communication effectiveness. To demonstrate the effects of prior knowledge, mutual gaze convergence and head nodding synchrony are observed as indicators of communication effectiveness. We conducted an experiment on lecture task between lecturer and student under 2 conditions: prior knowledge and non-prior knowledge. The students in prior knowledge condition were provided the basic information about the lecture content and were assessed their understanding by the experimenter before starting the lecture while the students in non-prior knowledge had none. The result shows that the interaction in prior knowledge condition establishes significantly higher mutual gaze convergence (t(15.03) = 6.72, p < 0.0001; α = 0.05, n = 20) and head nodding synchrony (t(16.67) = 1.83, p = 0.04; α = 0.05, n = 19) compared to non-prior knowledge condition. This study reveals that prior knowledge facilitates mutual gaze convergence and head nodding synchrony. Furthermore, the interaction with and without prior knowledge can be evaluated by measuring or observing mutual gaze convergence and head nodding synchrony.

  8. Mutual information and phase dependencies: measures of reduced nonlinear cardiorespiratory interactions after myocardial infarction.

    PubMed

    Hoyer, Dirk; Leder, Uwe; Hoyer, Heike; Pompe, Bernd; Sommer, Michael; Zwiener, Ulrich

    2002-01-01

    The heart rate variability (HRV) is related to several mechanisms of the complex autonomic functioning such as respiratory heart rate modulation and phase dependencies between heart beat cycles and breathing cycles. The underlying processes are basically nonlinear. In order to understand and quantitatively assess those physiological interactions an adequate coupling analysis is necessary. We hypothesized that nonlinear measures of HRV and cardiorespiratory interdependencies are superior to the standard HRV measures in classifying patients after acute myocardial infarction. We introduced mutual information measures which provide access to nonlinear interdependencies as counterpart to the classically linear correlation analysis. The nonlinear statistical autodependencies of HRV were quantified by auto mutual information, the respiratory heart rate modulation by cardiorespiratory cross mutual information, respectively. The phase interdependencies between heart beat cycles and breathing cycles were assessed basing on the histograms of the frequency ratios of the instantaneous heart beat and respiratory cycles. Furthermore, the relative duration of phase synchronized intervals was acquired. We investigated 39 patients after acute myocardial infarction versus 24 controls. The discrimination of these groups was improved by cardiorespiratory cross mutual information measures and phase interdependencies measures in comparison to the linear standard HRV measures. This result was statistically confirmed by means of logistic regression models of particular variable subsets and their receiver operating characteristics.

  9. Mutual diffusion coefficients of heptane isomers in nitrogen: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Chae, Kyungchan; Violi, Angela

    2011-01-01

    The accurate knowledge of transport properties of pure and mixture fluids is essential for the design of various chemical and mechanical systems that include fluxes of mass, momentum, and energy. In this study we determine the mutual diffusion coefficients of mixtures composed of heptane isomers and nitrogen using molecular dynamics (MD) simulations with fully atomistic intermolecular potential parameters, in conjunction with the Green-Kubo formula. The computed results were compared with the values obtained using the Chapman-Enskog (C-E) equation with Lennard-Jones (LJ) potential parameters derived from the correlations of state values: MD simulations predict a maximum difference of 6% among isomers while the C-E equation presents that of 3% in the mutual diffusion coefficients in the temperature range 500-1000 K. The comparison of two approaches implies that the corresponding state principle can be applied to the models, which are only weakly affected by the anisotropy of the interaction potentials and the large uncertainty will be included in its application for complex polyatomic molecules. The MD simulations successfully address the pure effects of molecular structure among isomers on mutual diffusion coefficients by revealing that the differences of the total mutual diffusion coefficients for the six mixtures are caused mainly by heptane isomers. The cross interaction potential parameters, collision diameter σ _{12}, and potential energy well depth \\varepsilon _{12} of heptane isomers and nitrogen mixtures were also computed from the mutual diffusion coefficients.

  10. Pathways to Conscience: Early Mother-Child Mutually Responsive Orientation and Children's Moral Emotion, Conduct, and Cognition

    ERIC Educational Resources Information Center

    Kochanska, Grazyna; Forman, David R.; Aksan, Nazan; Dunbar, Stephen B.

    2005-01-01

    Background: Associations between early mother-child mutually responsive orientation (MRO) and children's conscience have been previously established, but the mechanisms accounting for those links are not understood. We examined three such mediational mechanisms: (a) the child's enhanced enjoyment of interactions with the mother, (b) increased…

  11. The Mutual Effect of Marital Quality and Parenting Stress on Child and Parent Depressive Symptoms in Families of Children with Oppositional Defiant Disorder

    PubMed Central

    Lin, Xiuyun; Zhang, Yulin; Chi, Peilian; Ding, Wan; Heath, Melissa A.; Fang, Xiaoyi; Xu, Shousen

    2017-01-01

    The purpose of the current study was to examine the mutual relationships between dyadic level (i.e., marital quality and parenting stress) and individual level factors (i.e., children and parental depressive symptoms) in families of children with Oppositional Defiant Disorder (ODD). Specifically, we explored whether marital interaction (marital quality) was associated with symptoms of child depression through parent-child interaction (parenting stress) and parent depressive symptoms. We also explored whether parent-child interaction was associated with symptoms of parent depression through marital interaction and child depressive symptoms. This study was conducted with 256 parent-child dyads, consisting of children with ODD and one of each child's parents. Participants were recruited from 14 primary schools located in northern, eastern, and southwestern China. Results revealed that marital quality predicted symptoms of child depression through the parenting stress, but not parent depressive symptoms; and parenting stress predicted symptoms of parent depression through marital quality, but not through child depressive symptoms. Also, parenting stress significantly and directly predicted parent depressive symptoms. We concluded in families of children with ODD, the association of marital interaction and parent-child interaction on both symptoms of parent and child depression highlighted the mutual effects of the couple subsystem and the parent-child subsystem. Furthermore, in regard to parental and child depressive symptoms, implications for intervention are provided. PMID:29104548

  12. The Mutual Effect of Marital Quality and Parenting Stress on Child and Parent Depressive Symptoms in Families of Children with Oppositional Defiant Disorder.

    PubMed

    Lin, Xiuyun; Zhang, Yulin; Chi, Peilian; Ding, Wan; Heath, Melissa A; Fang, Xiaoyi; Xu, Shousen

    2017-01-01

    The purpose of the current study was to examine the mutual relationships between dyadic level (i.e., marital quality and parenting stress) and individual level factors (i.e., children and parental depressive symptoms) in families of children with Oppositional Defiant Disorder (ODD). Specifically, we explored whether marital interaction (marital quality) was associated with symptoms of child depression through parent-child interaction (parenting stress) and parent depressive symptoms. We also explored whether parent-child interaction was associated with symptoms of parent depression through marital interaction and child depressive symptoms. This study was conducted with 256 parent-child dyads, consisting of children with ODD and one of each child's parents. Participants were recruited from 14 primary schools located in northern, eastern, and southwestern China. Results revealed that marital quality predicted symptoms of child depression through the parenting stress, but not parent depressive symptoms; and parenting stress predicted symptoms of parent depression through marital quality, but not through child depressive symptoms. Also, parenting stress significantly and directly predicted parent depressive symptoms. We concluded in families of children with ODD, the association of marital interaction and parent-child interaction on both symptoms of parent and child depression highlighted the mutual effects of the couple subsystem and the parent-child subsystem. Furthermore, in regard to parental and child depressive symptoms, implications for intervention are provided.

  13. Mutual regulatory interactions of the trunk gap genes during blastoderm patterning in the hemipteran Oncopeltus fasciatus.

    PubMed

    Ben-David, Jonathan; Chipman, Ariel D

    2010-10-01

    The early embryo of the milkweed bug, Oncopeltus fasciatus, appears as a single cell layer - the embryonic blastoderm - covering the entire egg. It is at this blastoderm stage that morphological domains are first determined, long before the appearance of overt segmentation. Central to the process of patterning the blastoderm into distinct domains are a group of transcription factors known as gap genes. In Drosophila melanogaster these genes form a network of interactions, and maintain sharp expression boundaries through strong mutual repression. Their restricted expression domains define specific areas along the entire body. We have studied the expression domains of the four trunk gap gene homologues in O. fasciatus and have determined their interactions through dsRNA gene knockdown experiments, followed by expression analyses. While the blastoderm in O. fasciatus includes only the first six segments of the embryo, the expression domains of the gap genes within these segments are broadly similar to those in Drosophila where the blastoderm includes all 15 segments. However, the interactions between the gap genes are surprisingly different from those in Drosophila, and mutual repression between the genes seems to play a much less significant role. This suggests that the well-studied interaction pattern in Drosophila is evolutionarily derived, and has evolved from a less strongly interacting network. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Experimental investigation of gravity wave turbulence and of non-linear four wave interactions..

    NASA Astrophysics Data System (ADS)

    Berhanu, Michael

    2017-04-01

    Using the large basins of the Ecole Centrale de Nantes (France), non-linear interactions of gravity surface waves are experimentally investigated. In a first part we study statistical properties of a random wave field regarding the insights from the Wave Turbulence Theory. In particular freely decaying gravity wave turbulence is generated in a closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonl-inear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, non-linear and dissipative time scales to test the time scale separation. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant of the weak turbulence theory is evaluated. In a second part, resonant interactions of oblique surface gravity waves in a large basin are studied. We generate two oblique waves crossing at an acute angle. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory. L. Deike, B. Miquel, P. Gutiérrez, T. Jamin, B. Semin, M. Berhanu, E. Falcon and F. Bonnefoy, Role of the basin boundary conditions in gravity wave turbulence, Journal of Fluid Mechanics 781, 196 (2015) F. Bonnefoy, F. Haudin, G. Michel, B. Semin, T. Humbert, S. Aumaître, M. Berhanu and E. Falcon, Observation of resonant interactions among surface gravity waves, Journal of Fluid Mechanics (Rapids) 805, R3 (2016)

  15. Mechanical spin bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1998-01-01

    A spin bearing assembly including, a pair of mutually opposing complementary bearing support members having mutually spaced apart bearing support surfaces which may be, for example, bearing races and a set of spin bearings located therebetween. Each spin bearing includes a pair of end faces, a central rotational axis passing through the end faces, a waist region substantially mid-way between the end faces and having a first thickness dimension, and discrete side surface regions located between the waist region and the end faces and having a second thickness dimension different from the first thickness dimension of the waist region and wherein the side surface regions further have respective curvilinear contact surfaces adapted to provide a plurality of bearing contact points on the bearing support members.

  16. Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean.

    PubMed

    Thingstad, T F; Krom, M D; Mantoura, R F C; Flaten, G A F; Groom, S; Herut, B; Kress, N; Law, C S; Pasternak, A; Pitta, P; Psarra, S; Rassoulzadegan, F; Tanaka, T; Tselepides, A; Wassmann, P; Woodward, E M S; Riser, C Wexels; Zodiatis, G; Zohary, T

    2005-08-12

    Phosphate addition to surface waters of the ultraoligotrophic, phosphorus-starved eastern Mediterranean in a Lagrangian experiment caused unexpected ecosystem responses. The system exhibited a decline in chlorophyll and an increase in bacterial production and copepod egg abundance. Although nitrogen and phosphorus colimitation hindered phytoplankton growth, phosphorous may have been transferred through the microbial food web to copepods via two, not mutually exclusive, pathways: (i) bypass of the phytoplankton compartment by phosphorus uptake in heterotrophic bacteria and (ii) tunnelling, whereby phosphate luxury consumption rapidly shifts the stoichiometric composition of copepod prey. Copepods may thus be coupled to lower trophic levels through interactions not usually considered.

  17. Nature of Phosphorus Limitation in the Ultraoligotrophic Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Thingstad, T. F.; Krom, M. D.; Mantoura, R. F. C.; Flaten, G. A. F.; Groom, S.; Herut, B.; Kress, N.; Law, C. S.; Pasternak, A.; Pitta, P.; Psarra, S.; Rassoulzadegan, F.; Tanaka, T.; Tselepides, A.; Wassmann, P.; Woodward, E. M. S.; Riser, C. Wexels; Zodiatis, G.; Zohary, T.

    2005-08-01

    Phosphate addition to surface waters of the ultraoligotrophic, phosphorus-starved eastern Mediterranean in a Lagrangian experiment caused unexpected ecosystem responses. The system exhibited a decline in chlorophyll and an increase in bacterial production and copepod egg abundance. Although nitrogen and phosphorus colimitation hindered phytoplankton growth, phosphorous may have been transferred through the microbial food web to copepods via two, not mutually exclusive, pathways: (i) bypass of the phytoplankton compartment by phosphorus uptake in heterotrophic bacteria and (ii) tunnelling, whereby phosphate luxury consumption rapidly shifts the stoichiometric composition of copepod prey. Copepods may thus be coupled to lower trophic levels through interactions not usually considered.

  18. Figs, pollinators, and parasites: A longitudinal study of the effects of nematode infection on fig wasp fitness

    NASA Astrophysics Data System (ADS)

    Van Goor, Justin; Piatscheck, Finn; Houston, Derek D.; Nason, John D.

    2018-07-01

    Mutualisms are interactions between two species in which the fitnesses of both symbionts benefit from the relationship. Although examples of mutualism are ubiquitous in nature, the ecology, evolution, and stability of mutualism has rarely been studied in the broader, multi-species community context in which they occur. The pollination mutualism between figs and fig wasps provides an excellent model system for investigating interactions between obligate mutualists and antagonists. Compared to the community of non-pollinating fig wasps that develop within fig inflorescences at the expense of fig seeds and pollinators, consequences of interactions between female pollinating wasps and their host-specialist nematode parasites is much less well understood. Here we focus on a tri-partite system comprised of a fig (Ficus petiolaris), pollinating wasp (Pegoscapus sp.), and nematode (Parasitodiplogaster sp.), investigating geographical variation in the incidence of attack and mechanisms through which nematodes may limit the fitness of their wasp hosts at successive life history stages. Observational data reveals that nematodes are ubiquitous across their host range in Baja California, Mexico; that the incidence of nematode infection varies across seasons within- and between locations, and that infected pollinators are sometimes associated with fitness declines through reduced offspring production. We find that moderate levels of infection (1-9 juvenile nematodes per host) are well tolerated by pollinator wasps whereas higher infection levels (≥10 nematodes per host) are correlated with a significant reduction in wasp lifespan and dispersal success. This overexploitation, however, is estimated to occur in only 2.8% of wasps in each generation. The result that nematode infection appears to be largely benign - and the unexpected finding that nematodes frequently infect non-pollinating wasps - highlight gaps in our knowledge of pollinator-Parasitodiplogaster interactions and suggest previously unappreciated ways in which this nematode may influence fig and pollinator fitness, mutualism persistence, and non-pollinator community dynamics.

  19. CWG - MUTUAL COUPLING PROGRAM FOR CIRCULAR WAVEGUIDE-FED APERTURE ARRAY (IBM PC VERSION)

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1994-01-01

    Mutual Coupling Program for Circular Waveguide-fed Aperture Array (CWG) was developed to calculate the electromagnetic interaction between elements of an antenna array of circular apertures with specified aperture field distributions. The field distributions were assumed to be a superposition of the modes which could exist in a circular waveguide. Various external media were included to provide flexibility of use, for example, the flexibility to determine the effects of dielectric covers (i.e., thermal protection system tiles) upon the impedance of aperture type antennas. The impedance and radiation characteristics of planar array antennas depend upon the mutual interaction between all the elements of the array. These interactions are influenced by several parameters (e.g., the array grid geometry, the geometry and excitation of each array element, the medium outside the array, and the internal network feeding the array.) For the class of array antenna whose radiating elements consist of small holes in a flat conducting plate, the electromagnetic problem can be divided into two parts, the internal and the external. In solving the external problem for an array of circular apertures, CWG will compute the mutual interaction between various combinations of circular modal distributions and apertures. CWG computes the mutual coupling between various modes assumed to exist in circular apertures that are located in a flat conducting plane of infinite dimensions. The apertures can radiate into free space, a homogeneous medium, a multilayered region or a reflecting surface. These apertures are assumed to be excited by one or more modes corresponding to the modal distributions in circular waveguides of the same cross sections as the apertures. The apertures may be of different sizes and also of different polarizations. However, the program assumes that each aperture field contains the same modal distributions, and calculates the complex scattering matrix between all mode and aperture combinations. The scattering matrix can then be used to determine the complex modal field amplitudes for each aperture with a specified array excitation. CWG is written in VAX FORTRAN for DEC VAX series computers running VMS (LAR-15236) and IBM PC series and compatible computers running MS-DOS (LAR-15226). It requires 360K of RAM for execution. To compile the source code for the PC version, the NDP Fortran compiler and linker will be required; however, the distribution medium for the PC version of CWG includes a sample MS-DOS executable which was created using NDP Fortran with the -vms compiler option. The standard distribution medium for the PC version of CWG is a 3.5 inch 1.44Mb MS-DOS format diskette. The standard distribution medium for the VAX version of CWG is a 1600 BPI 9track magnetic tape in DEC VAX BACKUP format. The VAX version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. Both machine versions of CWG include an electronic version of the documentation in Microsoft Word for Windows format. CWG was developed in 1993 and is a copyrighted work with all copyright vested in NASA.

  20. CWG - MUTUAL COUPLING PROGRAM FOR CIRCULAR WAVEGUIDE-FED APERTURE ARRAY (VAX VMS VERSION)

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1994-01-01

    Mutual Coupling Program for Circular Waveguide-fed Aperture Array (CWG) was developed to calculate the electromagnetic interaction between elements of an antenna array of circular apertures with specified aperture field distributions. The field distributions were assumed to be a superposition of the modes which could exist in a circular waveguide. Various external media were included to provide flexibility of use, for example, the flexibility to determine the effects of dielectric covers (i.e., thermal protection system tiles) upon the impedance of aperture type antennas. The impedance and radiation characteristics of planar array antennas depend upon the mutual interaction between all the elements of the array. These interactions are influenced by several parameters (e.g., the array grid geometry, the geometry and excitation of each array element, the medium outside the array, and the internal network feeding the array.) For the class of array antenna whose radiating elements consist of small holes in a flat conducting plate, the electromagnetic problem can be divided into two parts, the internal and the external. In solving the external problem for an array of circular apertures, CWG will compute the mutual interaction between various combinations of circular modal distributions and apertures. CWG computes the mutual coupling between various modes assumed to exist in circular apertures that are located in a flat conducting plane of infinite dimensions. The apertures can radiate into free space, a homogeneous medium, a multilayered region or a reflecting surface. These apertures are assumed to be excited by one or more modes corresponding to the modal distributions in circular waveguides of the same cross sections as the apertures. The apertures may be of different sizes and also of different polarizations. However, the program assumes that each aperture field contains the same modal distributions, and calculates the complex scattering matrix between all mode and aperture combinations. The scattering matrix can then be used to determine the complex modal field amplitudes for each aperture with a specified array excitation. CWG is written in VAX FORTRAN for DEC VAX series computers running VMS (LAR-15236) and IBM PC series and compatible computers running MS-DOS (LAR-15226). It requires 360K of RAM for execution. To compile the source code for the PC version, the NDP Fortran compiler and linker will be required; however, the distribution medium for the PC version of CWG includes a sample MS-DOS executable which was created using NDP Fortran with the -vms compiler option. The standard distribution medium for the PC version of CWG is a 3.5 inch 1.44Mb MS-DOS format diskette. The standard distribution medium for the VAX version of CWG is a 1600 BPI 9track magnetic tape in DEC VAX BACKUP format. The VAX version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. Both machine versions of CWG include an electronic version of the documentation in Microsoft Word for Windows format. CWG was developed in 1993 and is a copyrighted work with all copyright vested in NASA.

  1. Particular Solutions in Four body problem with solar wind drag

    NASA Astrophysics Data System (ADS)

    Kumari, Reena; Singh Kushvah, Badam

    2012-07-01

    To study the motion of a group of celestial objects/bodies interacting with each other under gravitational attraction. We formulated a four body problem with solar wind drag of one radiating body, rotating about their common center of mass with central configuration. We suppose that the governing forces of the motion of four body problems are mutual gravitational attractions of bodies and drag force of radiating body. Firstly, we derive the equations of motion using new co-ordinates for the four body problem. Again, we find the integrals of motions under different cases regarding to the mass of the bodies. Then we find the zero velocity surfaces and particular solutions. Finally, we examined the effect of solar wind drag on the motion of the four body problem. Keywords: Four Body Problem; Particular Solutions; Radiation Force; Zero Velocity Surfaces.

  2. Investigation of extractive microbial transformation in nonionic surfactant micelle aqueous solution using response surface methodology.

    PubMed

    Xue, Yingying; Qian, Chen; Wang, Zhilong; Xu, Jian-He; Yang, Rude; Qi, Hanshi

    2010-01-01

    Extractive microbial transformation of L-phenylacetylcarbinol (L-PAC) in nonionic surfactant Triton X-100 micelle aqueous solution was investigated by response surface methodology. Based on the Box-Behnken design, a mathematical model was developed for the predication of mutual interactions between benzaldehyde, Triton X-100, and glucose on L-PAC production. It indicated that the negative or positive effect of nonionic surfactant strongly depended on the substrate concentration. The model predicted that the optimal concentration of benzaldehyde, Triton X-100, and glucose was 1.2 ml, 15 g, and 2.76 g per 100 ml, respectively. Under the optimal condition, the maximum L-PAC production was 27.6 mM, which was verified by a time course of extractive microbial transformation. A discrete fed-batch process for verification of cell activity was also presented.

  3. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, T.C.

    1993-03-30

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  4. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, Thomas C.

    1993-01-01

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  5. Evaluation of the simultaneous effects of processing parameters on the iron and zinc solubility of infant sorghum porridge by response surface methodology.

    PubMed

    Kayodé, A P Polycarpe; Nout, Martinus J R; Bakker, Evert J; Van Boekel, Martinus A J S

    2006-06-14

    The purpose of this study was to improve the micronutrient quality of indigenous African infant flour using traditional techniques available in the region. Response surface methodology was used to study the effect of duration of soaking, germination, and fermentation on phytate and phenolic compounds (PC), pH, viscosity, and the in vitro solubility (IVS) of iron and zinc in infant sorghum flour. The phytate and the PC concentrations of the flour were significantly modified as a result of the duration of germination and fermentation and their mutual interaction. These modifications were accompanied by a significant increase in % IVS Zn after 24 h of sprouting. Except for the interaction of soaking and fermentation, none of the processing parameters exerted a significant effect on the % IVS Fe. The viscosity of the porridge prepared with the flour decreased significantly with the duration of germination, making it possible to produce a porridge with high energy and nutrient density. The use of germination in combination with fermentation is recommended in the processing of cereals for infant feeding in developing countries.

  6. Adsorption-desorption kinetics of soft particles onto surfaces

    NASA Astrophysics Data System (ADS)

    Osberg, Brendan; Gerland, Ulrich

    A broad range of physical, chemical, and biological systems feature processes in which particles randomly adsorb on a substrate. Theoretical models usually assume ``hard'' (mutually impenetrable) particles, but in soft matter physics the adsorbing particles can be effectively compressible, implying ``soft'' interaction potentials. We recently studied the kinetics of such soft particles adsorbing onto one-dimensional substrates, identifying three novel phenomena: (i) a gradual density increase, or ''cramming'', replaces the usual jamming behavior of hard particles, (ii) a density overshoot, can occur (only for soft particles) on a time scale set by the desorption rate, and (iii) relaxation rates of soft particles increase with particle size (on a lattice), while hard particles show the opposite trend. The latter occurs since unjamming requires desorption and many-bodied reorganization to equilibrate -a process that is generally very slow. Here we extend this analysis to a two-dimensional substrate, focusing on the question of whether the adsorption-desorption kinetics of particles in two dimensions is similarly enriched by the introduction of soft interactions. Application to experiments, for example the adsorption of fibrinogen on two-dimensional surfaces, will be discussed.

  7. Transactional Patterns of Maternal Depressive Symptoms and Mother-Child Mutual Negativity in an Adoption Sample

    ERIC Educational Resources Information Center

    Roben, Caroline K. P.; Moore, Ginger A.; Cole, Pamela M.; Molenaar, Peter; Leve, Leslie D.; Shaw, Daniel S.; Reiss, David; Neiderhiser, Jenae M.

    2015-01-01

    Transactional models of analysis can examine both moment-to-moment interactions within a dyad and dyadic patterns of influence across time. This study used data from a prospective adoption study to test a transactional model of parental depressive symptoms and mutual negativity between mother and child over time, utilizing contingency analysis of…

  8. How much a galaxy knows about its large-scale environment?: An information theoretic perspective

    NASA Astrophysics Data System (ADS)

    Pandey, Biswajit; Sarkar, Suman

    2017-05-01

    The small-scale environment characterized by the local density is known to play a crucial role in deciding the galaxy properties but the role of large-scale environment on galaxy formation and evolution still remain a less clear issue. We propose an information theoretic framework to investigate the influence of large-scale environment on galaxy properties and apply it to the data from the Galaxy Zoo project that provides the visual morphological classifications of ˜1 million galaxies from the Sloan Digital Sky Survey. We find a non-zero mutual information between morphology and environment that decreases with increasing length-scales but persists throughout the entire length-scales probed. We estimate the conditional mutual information and the interaction information between morphology and environment by conditioning the environment on different length-scales and find a synergic interaction between them that operates up to at least a length-scales of ˜30 h-1 Mpc. Our analysis indicates that these interactions largely arise due to the mutual information shared between the environments on different length-scales.

  9. Patterns of resource-use and competition for mutualistic partners between two species of obligate cleaner fish

    NASA Astrophysics Data System (ADS)

    Adam, T. C.; Horii, S. S.

    2012-12-01

    Cleaner mutualisms on coral reefs, where specialized fish remove parasites from many species of client fishes, have greatly increased our understanding of mutualism, yet we know little about important interspecific interactions between cleaners. Here, we explore the potential for competition between the cleaners Labroides dimidiatus and Labroides bicolor during two distinct life stages. Previous work has demonstrated that in contrast to L. dimidiatus, which establish cleaning stations, adult L. bicolor rove over large areas, searching for clients. We show that site-attached juvenile L. bicolor associate with different microhabitat than juvenile L. dimidiatus and that L. bicolor specialize on a narrower range of species than L. dimidiatus as both juveniles and adults. Further, we present evidence suggesting that differences in resource-use are influenced by competitive interactions between the two species. Finally, we discuss the implications of these results for understanding the ecology and evolution of the mutualism.

  10. A unique resource mutualism between the giant Bornean pitcher plant, Nepenthes rajah, and members of a small mammal community.

    PubMed

    Greenwood, Melinda; Clarke, Charles; Lee, Ch'ien C; Gunsalam, Ansou; Clarke, Rohan H

    2011-01-01

    The carnivorous pitcher plant genus Nepenthes grows in nutrient-deficient substrates and produce jug-shaped leaf organs (pitchers) that trap arthropods as a source of N and P. A number of Bornean Nepenthes demonstrate novel nutrient acquisition strategies. Notably, three giant montane species are engaged in a mutualistic association with the mountain treeshrew, Tupaia montana, in which the treeshrew defecates into the pitchers while visiting them to feed on nectar secretions on the pitchers' lids.Although the basis of this resource mutualism has been elucidated, many aspects are yet to be investigated. We sought to provide insights into the value of the mutualism to each participant. During initial observations we discovered that the summit rat, R. baluensis, also feeds on sugary exudates of N. rajah pitchers and defecates into them, and that this behavior appears to be habitual. The scope of the study was therefore expanded to assess to what degree N. rajah interacts with the small mammal community.We found that both T. montana and R. baluensis are engaged in a mutualistic interaction with N. rajah. T .montana visit pitchers more frequently than R. baluensis, but daily scat deposition rates within pitchers do not differ, suggesting that the mutualistic relationships are of a similar strength. This study is the first to demonstrate that a mutualism exists between a carnivorous plant species and multiple members of a small mammal community. Further, the newly discovered mutualism between R. baluensis and N. rajah represents only the second ever example of a multidirectional resource-based mutualism between a mammal and a carnivorous plant.

  11. The effects of simulated vision impairments on the cone of gaze.

    PubMed

    Hecht, Heiko; Hörichs, Jenny; Sheldon, Sarah; Quint, Jessilin; Bowers, Alex

    2015-10-01

    Detecting the gaze direction of others is critical for many social interactions. We explored factors that may make the perception of mutual gaze more difficult, including the degradation of the stimulus and simulated vision impairment. To what extent do these factors affect the complex assessment of mutual gaze? Using an interactive virtual head whose eye direction could be manipulated by the subject, we conducted two experiments to assess the effects of simulated vision impairments on mutual gaze. Healthy subjects had to demarcate the center and the edges of the cone of gaze-that is, the range of gaze directions that are accepted for mutual gaze. When vision was impaired by adding a semitransparent white contrast reduction mask to the display (Exp. 1), judgments became more variable and more influenced by the head direction (indicative of a compensation strategy). When refractive blur was added (Exp. 1), the gaze cone shrank from 12.9° (no blur) to 11.3° (3-diopter lens), which cannot be explained by a low-level process but might reflect a tightening of the criterion for mutual gaze as a response to the increased uncertainty. However, the overall effects of the impairments were relatively modest. Elderly subjects (Exp. 2) produced more variability but did not differ qualitatively from the younger subjects. In the face of artificial vision impairments, compensation mechanisms and criterion changes allow us to perform better in mutual gaze perception than would be predicted by a simple extrapolation from the losses in basic visual acuity and contrast sensitivity.

  12. Mutual influence of molecular diffusion in gas and surface phases

    NASA Astrophysics Data System (ADS)

    Hori, Takuma; Kamino, Takafumi; Yoshimoto, Yuta; Takagi, Shu; Kinefuchi, Ikuya

    2018-01-01

    We develop molecular transport simulation methods that simultaneously deal with gas- and surface-phase diffusions to determine the effect of surface diffusion on the overall diffusion coefficients. The phenomenon of surface diffusion is incorporated into the test particle method and the mean square displacement method, which are typically employed only for gas-phase transport. It is found that for a simple cylindrical pore, the diffusion coefficients in the presence of surface diffusion calculated by these two methods show good agreement. We also confirm that both methods reproduce the analytical solution. Then, the diffusion coefficients for ink-bottle-shaped pores are calculated using the developed method. Our results show that surface diffusion assists molecular transport in the gas phase. Moreover, the surface tortuosity factor, which is known to be uniquely determined by physical structure, is influenced by the presence of gas-phase diffusion. This mutual influence of gas-phase diffusion and surface diffusion indicates that their simultaneous calculation is necessary for an accurate evaluation of the diffusion coefficients.

  13. Elevated atmospheric carbon dioxide concentrations promote ant tending of aphids.

    PubMed

    Kremer, Jenni M M; Nooten, Sabine S; Cook, James M; Ryalls, James M W; Barton, Craig V M; Johnson, Scott N

    2018-04-27

    Animal mutualisms, which involve beneficial interactions between individuals of different species, are common in nature. Insect-insect mutualism, for example, is widely regarded as a keystone ecological interaction. Some mutualisms are anticipated to be modified by climate change, but the focus has largely been on plant-microbe and plant-animal mutualisms rather than those between animals. Ant-aphid mutualisms, whereby ants tend aphids to harvest their honeydew excretions and, in return, provide protection for the aphids, are widespread. The mutualism is heavily influenced by the quality and quantity of honeydew produced by aphids, which is directly affected by host plant quality. As predicted increases in concentrations of atmospheric carbon dioxide (eCO 2 ) are widely reported to affect plant nutritional chemistry, this may also alter honeydew quality and hence the nature of ant-aphid mutualisms. Using glasshouse chambers and field-based open-top chambers, we determined the effect of eCO 2 on the growth and nutritional quality (foliar amino acids) of lucerne (Medicago sativa). We determined how cowpea aphid (Aphis craccivora) populations and honeydew production were impacted when feeding on such plants and how this affected the tending behaviour of ants (Iridomyrmex sp.). eCO 2 stimulated plant growth but decreased concentrations of foliar amino acids by 29% and 14% on aphid-infested plants and aphid-free plants, respectively. Despite the deterioration in host plant quality under eCO 2 , aphids maintained performance and populations were unchanged by eCO 2 . Aphids induced higher concentrations of amino acids (glutamine, asparagine, glutamic acid and aspartic acid) important for endosymbiont-mediated synthesis of essential amino acids. Aphids feeding under eCO 2 also produced over three times more honeydew than aphids feeding under ambient CO 2 , suggesting they were imbibing more phloem sap at eCO 2 . The frequency of ant tending of aphids more than doubled in response to eCO 2 . To our knowledge, this is the first study to demonstrate the effects of atmospheric change on an ant-aphid mutualism. In particular, these results highlight how impending changes to concentrations of atmospheric CO 2 may alter mutualistic behaviour between animals. These could include positive impacts, as reported here, shifts from mutualism to antagonism, partner switches and mutualism abandonment. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.

  14. Measured Aerodynamic Interaction of Two Tiltrotors

    NASA Technical Reports Server (NTRS)

    Yamauchi, Gloria K.; Wadcock, Alan J.; Derby, Michael R.

    2003-01-01

    The aerodynamic interaction of two model tilrotors in helicopter-mode formation flight is investigated. Three cenarios representing tandem level flight, tandem operations near the ground, and a single tiltrotor operating above thc ground for varying winds are examined. The effect of aircraft separation distance on the thrust and rolling moment of the trailing aircraft with and without the presence of a ground plane are quantified. Without a ground plane, the downwind aircraft experiences a peak rolling moment when the right (left) roto- of the upwind aircraft is laterally aligned with the left (right) rotor of the downwind aircraft. The presence of the ground plane causes the peak rolling moment on the downwind aircraft to occur when the upwind aircraft is further outboard of the downwind aircraft. Ground plane surface flow visualization images obtained using rufts and oil are used to understand mutual interaction between the two aircraft. These data provide guidance in determining tiltrotor flight formations which minimize disturbance to the trailing aircraft.

  15. The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility

    PubMed Central

    Ozdal, Tugba; Sela, David A.; Xiao, Jianbo; Boyacioglu, Dilek; Chen, Fang; Capanoglu, Esra

    2016-01-01

    As of late, polyphenols have increasingly interested the scientific community due to their proposed health benefits. Much of this attention has focused on their bioavailability. Polyphenol–gut microbiota interactions should be considered to understand their biological functions. The dichotomy between the biotransformation of polyphenols into their metabolites by gut microbiota and the modulation of gut microbiota composition by polyphenols contributes to positive health outcomes. Although there are many studies on the in vivo bioavailability of polyphenols, the mutual relationship between polyphenols and gut microbiota is not fully understood. This review focuses on the biotransformation of polyphenols by gut microbiota, modulation of gut microbiota by polyphenols, and the effects of these two-way mutual interactions on polyphenol bioavailability, and ultimately, human health. PMID:26861391

  16. Study of the correlation parameters of the surface structure of disordered semiconductors by the two-dimensional DFA and average mutual information methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpatov, A. V.; Vikhrov, S. P.; Rybina, N. V., E-mail: pgnv@mail.ru

    The processes of self-organization of the surface structure of hydrogenated amorphous silicon are studied by the methods of fluctuation analysis and average mutual information on the basis of atomic-force-microscopy images of the surface. It is found that all of the structures can be characterized by a correlation vector and represented as a superposition of harmonic components and noise. It is shown that, under variations in the technological parameters of the production of a-Si:H films, the correlation properties of their structure vary as well. As the substrate temperature is increased, the formation of structural irregularities becomes less efficient; in this case,more » the length of the correlation vector and the degree of structural ordering increase. It is shown that the procedure based on the method of fluctuation analysis in combination with the method of average mutual information provides a means for studying the self-organization processes in any structures on different length scales.« less

  17. Dispersal Mutualism Incorporated into Large-Scale, Infrequent Disturbances

    PubMed Central

    Parker, V. Thomas

    2015-01-01

    Because of their influence on succession and other community interactions, large-scale, infrequent natural disturbances also should play a major role in mutualistic interactions. Using field data and experiments, I test whether mutualisms have been incorporated into large-scale wildfire by whether the outcomes of a mutualism depend on disturbance. In this study a seed dispersal mutualism is shown to depend on infrequent, large-scale disturbances. A dominant shrubland plant (Arctostaphylos species) produces seeds that make up a persistent soil seed bank and requires fire to germinate. In post-fire stands, I show that seedlings emerging from rodent caches dominate sites experiencing higher fire intensity. Field experiments show that rodents (Perimyscus californicus, P. boylii) do cache Arctostaphylos fruit and bury most seed caches to a sufficient depth to survive a killing heat pulse that a fire might drive into the soil. While the rodent dispersal and caching behavior itself has not changed compared to other habitats, the environmental transformation caused by wildfire converts the caching burial of seed from a dispersal process to a plant fire adaptive trait, and provides the context for stimulating subsequent life history evolution in the plant host. PMID:26151560

  18. Interactions of calcium and fulvic acid at the goethite-water interface

    NASA Astrophysics Data System (ADS)

    Weng, Li Ping; Koopal, Luuk K.; Hiemstra, Tjisse; Meeussen, Johannes C. L.; Van Riemsdijk, Willem H.

    2005-01-01

    Interactions of calcium and fulvic acid (Strichen ) with the surface of goethite were studied with batch and titration experiments. The mutual influence of the interactions on the adsorption of fulvic acid, calcium ions and protons were examined. Adsorption of the fulvic acid to goethite decreased with increase in pH (pH range 3-11). Addition of Ca (1.0 mM) at intermediate and high pH significantly enhanced the adsorption of fulvic acid. Compared to the adsorption to pure goethite, the presence of fulvic acid enhanced the adsorption of Ca significantly. In comparison to the simple linear sum of Ca bound to fulvic acid and goethite, the interactions between goethite and fulvic acid led to a reduced adsorption of Ca at low pH and an enhanced adsorption at high pH. With the adsorption of fulvic acid, protons were released at low pH and coadsorbed at high pH. When Ca was added, fewer protons were released at low pH and fewer coadsorbed at high pH. The experimental results can be adequately described using a surface complexation model, the Ligand and Charge Distribution (LCD) model, in which the CD-MUSIC model for ion adsorption to mineral oxides and the NICA model for ion binding to humics are integrated. In the model calculations, adequate descriptions of the ternary system data (Ca-fulvic acid-goethite) were obtained with parameters derived from three binary systems (fulvic acid-goethite, Ca-goethite and Ca-fulvic acid) without further adjustment. The model calculations suggest that the interactions between Ca and fulvic acid at the surface of goethite are mainly due to the electrostatic effects.

  19. Reconstructed historical land cover and biophysical parameters for studies of land-atmosphere interactions within the eastern United States

    USGS Publications Warehouse

    Steyaert, Louis T.; Knox, R.G.

    2008-01-01

    Over the past 350 years, the eastern half of the United States experienced extensive land cover changes. These began with land clearing in the 1600s, continued with widespread deforestation, wetland drainage, and intensive land use by 1920, and then evolved to the present-day landscape of forest regrowth, intensive agriculture, urban expansion, and landscape fragmentation. Such changes alter biophysical properties that are key determinants of land-atmosphere interactions (water, energy, and carbon exchanges). To understand the potential implications of these land use transformations, we developed and analyzed 20-km land cover and biophysical parameter data sets for the eastern United States at 1650, 1850, 1920, and 1992 time slices. Our approach combined potential vegetation, county-level census data, soils data, resource statistics, a Landsat-derived land cover classification, and published historical information on land cover and land use. We reconstructed land use intensity maps for each time slice and characterized the land cover condition. We combined these land use data with a mutually consistent set of biophysical parameter classes, to characterize the historical diversity and distribution of land surface properties. Time series maps of land surface albedo, leaf area index, a deciduousness index, canopy height, surface roughness, and potential saturated soils in 1650, 1850, 1920, and 1992 illustrate the profound effects of land use change on biophysical properties of the land surface. Although much of the eastern forest has returned, the average biophysical parameters for recent landscapes remain markedly different from those of earlier periods. Understanding the consequences of these historical changes will require land-atmosphere interactions modeling experiments.

  20. Exploring the interaction between O₃ and NOx pollution patterns in the atmosphere of Barcelona, Spain using the MCR-ALS method.

    PubMed

    Malik, Amrita; Tauler, Roma

    2015-06-01

    This work focuses on understanding the behaviour and patterns of three atmospheric pollutants namely, nitric oxide (NO), nitrogen dioxide (NO2), and ozone (O3) along with their mutual interactions in the atmosphere of Barcelona, North Spain. Hourly samples were collected for NO, NO2 and O3 from the same city location for three consecutive years (2010-2012). The study explores the seasonal, annual and weekday-weekend variations in their diurnal profiles along with the possible identification of their source and mutual interactions in the region. Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) was applied to the individual datasets of these pollutants, as well as to all of them simultaneously (augmented mode) to resolve the profiles related to their source and variation patterns in the atmosphere. The analysis of the individual datasets confirmed the source pattern variations in the concerned pollutant's profiles; and the resolved profiles for augmented datasets suggested for the mutual interaction of the pollutants along with their patterns variations, simultaneously. The study suggests vehicular pollution as the major source of atmospheric nitrogen oxides and presence of weekend ozone effect in the region. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Three-dimensional reconstructions come to life--interactive 3D PDF animations in functional morphology.

    PubMed

    van de Kamp, Thomas; dos Santos Rolo, Tomy; Vagovič, Patrik; Baumbach, Tilo; Riedel, Alexander

    2014-01-01

    Digital surface mesh models based on segmented datasets have become an integral part of studies on animal anatomy and functional morphology; usually, they are published as static images, movies or as interactive PDF files. We demonstrate the use of animated 3D models embedded in PDF documents, which combine the advantages of both movie and interactivity, based on the example of preserved Trigonopterus weevils. The method is particularly suitable to simulate joints with largely deterministic movements due to precise form closure. We illustrate the function of an individual screw-and-nut type hip joint and proceed to the complex movements of the entire insect attaining a defence position. This posture is achieved by a specific cascade of movements: Head and legs interlock mutually and with specific features of thorax and the first abdominal ventrite, presumably to increase the mechanical stability of the beetle and to maintain the defence position with minimal muscle activity. The deterministic interaction of accurately fitting body parts follows a defined sequence, which resembles a piece of engineering.

  2. E. coli interactions, adhesion and transport in alumino-silica clays.

    PubMed

    Wei, Houzhen; Yang, Guang; Wang, Boya; Li, Runwei; Chen, Gang; Li, Zhenze

    2017-06-01

    Bacterial adhesion and transport in the geological formation are controlled by their mutual complex interactions, which have been quantified by the traditional and extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory as well as direct atomic force microscopy (AFM) measurements. In this research, the DLVO forces calculated based on the independently determined bacterial and porous media surface thermodynamic properties were compared with those of AFM measurements. Although differences in the order of several magnitudes existed, forces obtained from both ways could explain the observations of E. coli attachment to alumino-silica clays evaluated in laboratory columns under saturated and steady-state flow conditions. E. coli deposition in alumino-silica clays was simulated using a two-site convection-dispersion transport model against E. coli transport breakthrough curves, which was then linked to the interactions forces. By exploring the differences of the two force measurements, it was concluded that the thermodynamic calculations could complement the direct force measurements in describing bacterial interactions with the surrounding environment and the subsequent transport in the porous media. Published by Elsevier B.V.

  3. Three-Dimensional Reconstructions Come to Life – Interactive 3D PDF Animations in Functional Morphology

    PubMed Central

    van de Kamp, Thomas; dos Santos Rolo, Tomy; Vagovič, Patrik; Baumbach, Tilo; Riedel, Alexander

    2014-01-01

    Digital surface mesh models based on segmented datasets have become an integral part of studies on animal anatomy and functional morphology; usually, they are published as static images, movies or as interactive PDF files. We demonstrate the use of animated 3D models embedded in PDF documents, which combine the advantages of both movie and interactivity, based on the example of preserved Trigonopterus weevils. The method is particularly suitable to simulate joints with largely deterministic movements due to precise form closure. We illustrate the function of an individual screw-and-nut type hip joint and proceed to the complex movements of the entire insect attaining a defence position. This posture is achieved by a specific cascade of movements: Head and legs interlock mutually and with specific features of thorax and the first abdominal ventrite, presumably to increase the mechanical stability of the beetle and to maintain the defence position with minimal muscle activity. The deterministic interaction of accurately fitting body parts follows a defined sequence, which resembles a piece of engineering. PMID:25029366

  4. Measuring the interactions between different locations in a muscle to monitor localized muscle fatigue.

    PubMed

    Bingham, Adrian; Arjunan, Sridhar P; Kumar, Dinesh K

    2017-07-01

    In this study we investigated a technique for estimating the progression of localized muscle fatigue. This technique measures the dependence between motor units using high density surface electromyogram (HD-sEMG) and is based on the Normalized Mutual Information (NMI) measure. The NMI between every pair combination of the electrode array is computed to measure the interactions between electrodes. Participants in the experiment had an array of 64 electrodes (16 by 4) placed over the TA of their dominate leg such that the columns of the array ran parallel with the muscle fibers. The HD-sEMG was recorded whilst the participants maintained an isometric dorsiflexion with their dominate foot until task failure at 40% and 80% of their maximum voluntary contraction (MVC). The interactions between different locations over the muscle were computed using the recorded HD-sEMG signals. The results show that the average interactions between various locations over the TA significantly increased during fatigue at both levels of contraction. This can be attributed to the dependence in the motor units.

  5. Collective interaction of microscale matters in natural analogy: human cancer cells vs. microspheres

    NASA Astrophysics Data System (ADS)

    Ahn, Sungsook; Lee, Sang Joon; Postech Team

    2014-11-01

    Collective behaviors have been considered both in living and lifeless things as a natural phenomenon. During the ordering process, a sudden and spontaneous transition is typically generated between an order and a disorder according to the population density of interacting elements. In a cellular level collective behavior, the cells are distributed in the characteristic patterns according to the population density and the mutual interaction of the individual cells undergo density-dependent diffusive motion. On the other hand, density-controlled surface-modified hollow microsphere suspension induces an overpopulation via buoyancy which provides a driving force to induce an assembly. The collective behaviors of the cells and microspheres in a designed liquid medium are explained in terms of the deviation from the interparticle distance distribution and the induced strength to organize the particle position in a specific distance range. as a result, microscale particulate matters exhibit high resemblance in their pair correlation and dynamical heterogeneity in the intermediate range between a single individual and an agglomerate. Therefore, it is suggested that biological systems are analogically explained to be dominated by physically interactive aspects.

  6. Synthesis, characterization and computational study of the newly synthetized sulfonamide molecule

    NASA Astrophysics Data System (ADS)

    Murthy, P. Krishna; Suneetha, V.; Armaković, Stevan; Armaković, Sanja J.; Suchetan, P. A.; Giri, L.; Rao, R. Sreenivasa

    2018-02-01

    A new compound N-(2,5-dimethyl-4-nitrophenyl)-4-methylbenzenesulfonamide (NDMPMBS) has been derived from 2,5-dimethyl-4-nitroaniline and 4-methylbenzene-1-sulfonyl chloride. Structure was characterized by SCXRD studies and spectroscopic tools. Compound crystallized in the monoclinic crystal system with P21/c space group a = 10.0549, b = 18.967, c = 8.3087, β = 103.18 and Z = 4. Type and nature of intermolecular interaction in crystal state investigated by 3D-Hirshfeld surface and 2D-finger print plots revealed that title compound stabilized by several interactions. The structural and electronic properties of title compound have been calculated at DFT/B3LYP/6-311G++(d,p) level of theory. Computationally obtained spectral data was compared with experimental results, showing excellent mutual agreement. Assignment of each vibrational wave number was done on the basis of potential energy distribution (PED). Investigation of local reactivity descriptors encompassed visualization of molecular electrostatic potential (MEP) and average local ionization energy (ALIE) surfaces, visualization of Fukui functions, natural bond order (NBO) analysis, bond dissociation energies for hydrogen abstraction (H-BDE) and radial distribution functions (RDF) after molecular dynamics (MD) simulations. MD simulations were also used in order to investigate interaction of NDMPMBS molecule with 1WKR and 3ETT proteins protein.

  7. Design of a surface-scanning coil detector for direct bacteria detection on food surfaces using a magnetoelastic biosensor

    NASA Astrophysics Data System (ADS)

    Chai, Yating; Wikle, Howard C.; Wang, Zhenyu; Horikawa, Shin; Best, Steve; Cheng, Zhongyang; Dyer, Dave F.; Chin, Bryan A.

    2013-09-01

    The real-time, in-situ bacteria detection on food surfaces was achieved by using a magnetoelastic biosensor combined with a surface-scanning coil detector. This paper focuses on the coil design for signal optimization. The coil was used to excite the sensor's vibration and detect its resonant frequency signal. The vibrating sensor creates a magnetic flux change around the coil, which then produces a mutual inductance. In order to enhance the signal amplitude, a theory of the sensor's mutual inductance with the measurement coil is proposed. Both theoretical calculations and experimental data showed that the working length of the coil has a significant effect on the signal amplitude. For a 1 mm-long sensor, a coil with a working length of 1.3 mm showed the best signal amplitude. The real-time detection of Salmonella bacteria on a fresh food surface was demonstrated using this new technology.

  8. An Experimental Investigation of Helicopter Rotor Hub Fairing Drag Characteristics

    NASA Technical Reports Server (NTRS)

    Sung, D. Y.; Lance, M. B.; Young, L. A.; Stroub, R. H.

    1989-01-01

    A study was done in the NASA 14- by 22-Foot Wind Tunnel at Langley Research Center on the parasite drag of different helicopter rotor hub fairings and pylons. Parametric studies of hub-fairing camber and diameter were conducted. The effect of hub fairing/pylon clearance on hub fairing/pylon mutual interference drag was examined in detail. Force and moment data are presented in tabular and graphical forms. The results indicate that hub fairings with a circular-arc upper surface and a flat lower surface yield maximum hub drag reduction; and clearance between the hub fairing and pylon induces high mutual-interference drag and diminishes the drag-reduction benefit obtained using a hub fairing with a flat lower surface. Test data show that symmetrical hub fairings with circular-arc surfaces generate 74 percent more interference drag than do cambered hub fairings with flat lower surfaces, at moderate negative angle of attack.

  9. Numerical simulation and analysis of the flow in a two-staged axial fan

    NASA Astrophysics Data System (ADS)

    Xu, J. Q.; Dou, H. S.; Jia, H. X.; Chen, X. P.; Wei, Y. K.; Dong, M. W.

    2016-05-01

    In this paper, numerical simulation was performed for the internal three-dimensional turbulent flow field in the two-stage axial fan using steady three-dimensional in-compressible Navier-Stokes equations coupled with the Realizable turbulent model. The numerical simulation results of the steady analysis were combined with the flow characteristics of two- staged axial fan, the influence of the mutual effect between the blade and the vane on the flow of the two inter-stages was analyzed emphatically. This paper studied how the flow field distribution in inter-stage is influenced by the wake interaction and potential flow interaction of mutual effect in the impeller-vane inter-stage and the vane-impeller inter-stage. The results showed that: Relatively, wake interaction has an advantage over potential flow interaction in the impeller-vane inter-stage; potential flow interaction has an advantage over wake interaction in the vane-impeller inter-stage. In other words, distribution of flow field in the two interstages is determined by the rotating component.

  10. Anisotropy of the Coulomb Interaction between Folded Proteins: Consequences for Mesoscopic Aggregation of Lysozyme

    PubMed Central

    Chan, Ho Yin; Lankevich, Vladimir; Vekilov, Peter G.; Lubchenko, Vassiliy

    2012-01-01

    Toward quantitative description of protein aggregation, we develop a computationally efficient method to evaluate the potential of mean force between two folded protein molecules that allows for complete sampling of their mutual orientation. Our model is valid at moderate ionic strengths and accounts for the actual charge distribution on the surface of the molecules, the dielectric discontinuity at the protein-solvent interface, and the possibility of protonation or deprotonation of surface residues induced by the electric field due to the other protein molecule. We apply the model to the protein lysozyme, whose solutions exhibit both mesoscopic clusters of protein-rich liquid and liquid-liquid separation; the former requires that protein form complexes with typical lifetimes of approximately milliseconds. We find the electrostatic repulsion is typically lower than the prediction of the Derjaguin-Landau-Verwey-Overbeek theory. The Coulomb interaction in the lowest-energy docking configuration is nonrepulsive, despite the high positive charge on the molecules. Typical docking configurations barely involve protonation or deprotonation of surface residues. The obtained potential of mean force between folded lysozyme molecules is consistent with the location of the liquid-liquid coexistence, but produces dimers that are too short-lived for clusters to exist, suggesting lysozyme undergoes conformational changes during cluster formation. PMID:22768950

  11. Supporting parent-child interactions: music therapy as an intervention for promoting mutually responsive orientation.

    PubMed

    Pasiali, Varvara

    2012-01-01

    Music therapists working with families address relationship and interpersonal communication issues. Few controlled studies exist in the literature but a growing body of documented practice is emerging. This study makes a contribution by documenting how music therapy supports mutuality and reciprocity in parent-child interactions. This study investigated mutually responsive orientation (MRO) behaviors of young children (aged 3-5) and their family members during music therapy. Participants were 4 families with low income and history of maternal depression as common risk factors. Data were collected by videotaping sessions, creating field notes and analytic memos, conducting parent interviews and reviewing parent journals. A cross-case analysis using MRO theory as a conceptualizing framework was used for the purpose of data reduction. Greeting and farewell rituals, and the flexibility of music-based therapeutic applications facilitated development of coordinated routines. Therapist's actions (e.g., encouraging and modeling musical interactions) and bidirectional parent-child actions (e.g., joint attention, turn-taking, being playful) facilitated harmonious communication. Behaviors promoting mutual cooperation were evident when adults attempted to scaffold a child's participation or when children sought comfort from parents, engaged in social referencing and made requests that shaped the direction of the session. The novelty of musical tasks captivated attention, increasing impulse inhibition. Parent actions (e.g., finding delight in watching their child participate, acting silly) and parent-child interactions (e.g., play exploration, shared excitement, cuddling) contributed to positive emotional ambiance. Music therapy assisted development of MRO within parent-child dyads by providing opportunities to rehearse adaptive ways of connecting with each other. Results of this study may serve as an archetypal model guiding clinical treatment planning.

  12. An ant-plant by-product mutualism is robust to selective logging of rain forest and conversion to oil palm plantation.

    PubMed

    Fayle, Tom M; Edwards, David P; Foster, William A; Yusah, Kalsum M; Turner, Edgar C

    2015-06-01

    Anthropogenic disturbance and the spread of non-native species disrupt natural communities, but also create novel interactions between species. By-product mutualisms, in which benefits accrue as side effects of partner behaviour or morphology, are often non-specific and hence may persist in novel ecosystems. We tested this hypothesis for a two-way by-product mutualism between epiphytic ferns and their ant inhabitants in the Bornean rain forest, in which ants gain housing in root-masses while ferns gain protection from herbivores. Specifically, we assessed how the specificity (overlap between fern and ground-dwelling ants) and the benefits of this interaction are altered by selective logging and conversion to an oil palm plantation habitat. We found that despite the high turnover of ant species, ant protection against herbivores persisted in modified habitats. However, in ferns growing in the oil palm plantation, ant occupancy, abundance and species richness declined, potentially due to the harsher microclimate. The specificity of the fern-ant interactions was also lower in the oil palm plantation habitat than in the forest habitats. We found no correlations between colony size and fern size in modified habitats, and hence no evidence for partner fidelity feedbacks, in which ants are incentivised to protect fern hosts. Per species, non-native ant species in the oil palm plantation habitat (18 % of occurrences) were as important as native ones in terms of fern protection and contributed to an increase in ant abundance and species richness with fern size. We conclude that this by-product mutualism persists in logged forest and oil palm plantation habitats, with no detectable shift in partner benefits. Such persistence of generalist interactions in novel ecosystems may be important for driving ecosystem functioning.

  13. Yucca aloifolia (Asparagaceae) opts out of an obligate pollination mutualism.

    PubMed

    Rentsch, Jeremy D; Leebens-Mack, Jim

    2014-12-01

    • According to Cope's 'law of the unspecialized' highly dependent species interactions are 'evolutionary dead ends,' prone to extinction because reversion to more generalist interactions is thought to be unlikely. Cases of extreme specialization, such as those seen between obligate mutualists, are cast as evolutionarily inescapable, inevitably leading to extinction rather than diversification of participating species. The pollination mutualism between Yucca plants and yucca moths (Tegeticula and Parategeticula) would seem to be locked into such an obligate mutualism. Yucca aloifolia populations, however, can produce large numbers of fruit lacking moth oviposition scars. Here, we investigate the pollination ecology of Y. aloifolia, in search of the non-moth pollination of a Yucca species.• We perform pollinator exclusion studies on Yucca aloifolia and a sympatric yucca species, Y. filamentosa. We then perform postvisit exclusion treatments, an analysis of dissected fruits, and a fluorescent dye transfer experiment.• As expected, Yucca filamentosa plants set fruit only when inflorescences were exposed to crepuscular and nocturnal pollinating yucca moths. In contrast, good fruit set was observed when pollinators were excluded from Y. aloifolia inflorescences from dusk to dawn, and no fruit set was observed when pollinators were excluded during the day. Follow up experiments indicated that European honeybees (Apis mellifera) were passively yet effectively pollinating Y. aloifolia flowers.• These results indicate that even highly specialized mutualisms may not be entirely obligate interactions or evolutionary dead ends. © 2014 Botanical Society of America, Inc.

  14. Determination and impact of surface radiative processes for TOGA COARE

    NASA Technical Reports Server (NTRS)

    Curry, Judith A.; Ackerman, Thomas; Rossow, William B.; Webster, Peter J.

    1991-01-01

    Experiments using atmospheric general circulation models have shown that the atmospheric circulation is very sensitive to small changes in sea surface temperature in the tropical western Pacific Ocean warm pool region. The mutual sensitivity of the ocean and the atmosphere in the warm pool region places stringent requirements on models of the coupled ocean atmosphere system. At present, the situation is such that diagnostic studies using available data sets have been unable to balance the surface energy budget in the warm pool region to better than 50 to 80 W/sq m. The Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean Atmosphere Response Experiment (COARE) is an observation and modelling program that aims specifically at the elucidation of the physical process which determine the mean and transient state of the warm pool region and the manner in which the warm pool interacts with the global ocean and atmosphere. This project focuses on one very important aspect of the ocean atmosphere interface component of TOGA COARE, namely the temporal and spatial variability of surface radiative fluxes in the warm pool region.

  15. Colloidal layers in magnetic fields and under shear flow

    NASA Astrophysics Data System (ADS)

    Löwen, H.; Messina, R.; Hoffmann, N.; Likos, C. N.; Eisenmann, C.; Keim, P.; Gasser, U.; Maret, G.; Goldberg, R.; Palberg, T.

    2005-11-01

    The behaviour of colloidal mono- and bilayers in external magnetic fields and under shear is discussed and recent progress is summarized. Superparamagnetic colloidal particles form monolayers when they are confined to a air-water interface in a hanging water droplet. An external magnetic field allows us to tune the strength of the mutual dipole-dipole interaction between the colloids and the anisotropy of the interaction can be controlled by the tilt angle of the magnetic field relative to the surface normal of the air-water interface. For sufficiently large magnetic field strength crystalline monolayers are found. The role of fluctuations in these two-dimensional crystals is discussed. Furthermore, clustering phenomena in binary mixtures of superparamagnetic particles forming fluid monolayers are predicted. Finally, we address sheared colloidal bilayers and find that the orientation of confined colloidal crystals can be tailored by a previously applied shear direction.

  16. A Unique Resource Mutualism between the Giant Bornean Pitcher Plant, Nepenthes rajah, and Members of a Small Mammal Community

    PubMed Central

    Greenwood, Melinda; Clarke, Charles; Lee, Ch'ien C.; Gunsalam, Ansou; Clarke, Rohan H.

    2011-01-01

    The carnivorous pitcher plant genus Nepenthes grows in nutrient-deficient substrates and produce jug-shaped leaf organs (pitchers) that trap arthropods as a source of N and P. A number of Bornean Nepenthes demonstrate novel nutrient acquisition strategies. Notably, three giant montane species are engaged in a mutualistic association with the mountain treeshrew, Tupaia montana, in which the treeshrew defecates into the pitchers while visiting them to feed on nectar secretions on the pitchers' lids. Although the basis of this resource mutualism has been elucidated, many aspects are yet to be investigated. We sought to provide insights into the value of the mutualism to each participant. During initial observations we discovered that the summit rat, R. baluensis, also feeds on sugary exudates of N. rajah pitchers and defecates into them, and that this behavior appears to be habitual. The scope of the study was therefore expanded to assess to what degree N. rajah interacts with the small mammal community. We found that both T. montana and R. baluensis are engaged in a mutualistic interaction with N. rajah. T .montana visit pitchers more frequently than R. baluensis, but daily scat deposition rates within pitchers do not differ, suggesting that the mutualistic relationships are of a similar strength. This study is the first to demonstrate that a mutualism exists between a carnivorous plant species and multiple members of a small mammal community. Further, the newly discovered mutualism between R. baluensis and N. rajah represents only the second ever example of a multidirectional resource-based mutualism between a mammal and a carnivorous plant. PMID:21695073

  17. The Influence of Ice-Ocean Interactions on Europa's Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Zhu, P.; Manucharyan, G. E.; Thompson, A. F.; Goodman, J. C.; Vance, S.

    2016-12-01

    Jupiter's moon Europa appears to have a global liquid ocean, which is located beneath an ice shell that covers the moon's entire surface. Linking ocean dynamics and ice-ocean interactions is crucial to understanding observed surface features on Europa as well as other satellite measurements. Ocean properties and circulation may also provide clues as to whether the moon has the potential to support extraterrestrial life through chemical transport governed by ice-ocean interactions. Previous studies have identified a Hadley cell-like overturning circulation extending from the equator to mid latitudes. However, these model simulations do not consider ice-ocean interactions. In this study, our goal is to investigate how the ocean circulation may be affected by ice. We study two ice-related processes by building idealized models. One process is horizontal convection driven by an equator-to-pole buoyancy difference due to latitudinal ice transport at the ocean surface, which is found to be much weaker than the convective overturning circulation. The second process we consider is the freshwater layer formed by ice melting at the equator. A strong buoyancy contrast between the freshwater layer and the underlying water suppresses convection and turbulent mixing, which may modify the surface heat flux from the ocean to the bottom of the ice. We find that the salinity of the ocean below the freshwater layer tends to be homogeneous both vertically and horizontally with the presence of an overturning circulation. Critical values of circulation strength constrain the freshwater layer depth, and this relationship is sensitive to the average salinity of the ocean. Further coupling of temperature and salinity of the ice and the ocean that includes mutual influences between the surface heat flux and the freshwater layer may provide additional insights into the ice-ocean feedback, and its influence on the latitudinal difference of heat transport.

  18. A Meta-Surface Antenna Array Decoupling (MAAD) Method for Mutual Coupling Reduction in a MIMO Antenna System.

    PubMed

    Wang, Ziyang; Zhao, Luyu; Cai, Yuanming; Zheng, Shufeng; Yin, Yingzeng

    2018-02-16

    In this paper, a method to reduce the inevitable mutual coupling between antennas in an extremely closely spaced two-element MIMO antenna array is proposed. A suspended meta-surface composed periodic square split ring resonators (SRRs) is placed above the antenna array for decoupling. The meta-surface is equivalent to a negative permeability medium, along which wave propagation is rejected. By properly designing the rejection frequency band of the SRR unit, the mutual coupling between the antenna elements in the MIMO antenna system can be significantly reduced. Two prototypes of microstrip antenna arrays at 5.8 GHz band with and without the metasurface have been fabricated and measured. The matching bandwidths of antennas with reflection coefficient smaller than -15 dB for the arrays without and with the metasurface are 360 MHz and 900 MHz respectively. Using the meta-surface, the isolation between elements is increased from around 8 dB to more than 27 dB within the band of interest. Meanwhile, the total efficiency and peak gain of each element, the envelope correlation coefficient (ECC) between the two elements are also improved by considerable amounts. All the results demonstrate that the proposed method is very efficient for enhancing the performance of MIMO antenna arrays.

  19. Plant chemical defence: a partner control mechanism stabilising plant - seed-eating pollinator mutualisms

    PubMed Central

    Ibanez, Sébastien; Gallet, Christiane; Dommanget, Fanny; Després, Laurence

    2009-01-01

    Background Mutualisms are inherently conflictual as one partner always benefits from reducing the costs imposed by the other. Despite the widespread recognition that mutualisms are essentially reciprocal exploitation, there are few documented examples of traits that limit the costs of mutualism. In plant/seed-eating pollinator interactions the only mechanisms reported so far are those specific to one particular system, such as the selective abortion of over-exploited fruits. Results This study shows that plant chemical defence against developing larvae constitutes another partner sanction mechanism in nursery mutualisms. It documents the chemical defence used by globeflower Trollius europaeus L. (Ranunculaceae) against the seed-eating larvae of six pollinating species of the genus Chiastocheta Pokorny (Anthomyiidae). The correlative field study carried out shows that the severity of damage caused by Chiastocheta larvae to globeflower fruits is linked to the accumulation in the carpel walls of a C-glycosyl-flavone (adonivernith), which reduces the larval seed predation ability per damaged carpel. The different Chiastocheta species do not exploit the fruit in the same way and their interaction with the plant chemical defence is variable, both in terms of induction intensity and larval sensitivity to adonivernith. Conclusion Adonivernith accumulation and larval predation intensity appear to be both the reciprocal cause and effect. Adonivernith not only constitutes an effective chemical means of partner control, but may also play a key role in the sympatric diversification of the Chiastocheta genus. PMID:19887006

  20. The Molecular Basis of TnrA Control by Glutamine Synthetase in Bacillus subtilis*

    PubMed Central

    Hauf, Ksenia; Kayumov, Airat; Gloge, Felix; Forchhammer, Karl

    2016-01-01

    TnrA is a master regulator of nitrogen assimilation in Bacillus subtilis. This study focuses on the mechanism of how glutamine synthetase (GS) inhibits TnrA function in response to key metabolites ATP, AMP, glutamine, and glutamate. We suggest a model of two mutually exclusive GS conformations governing the interaction with TnrA. In the ATP-bound state (A-state), GS is catalytically active but unable to interact with TnrA. This conformation was stabilized by phosphorylated l-methionine sulfoximine (MSX), fixing the enzyme in the transition state. When occupied by glutamine (or its analogue MSX), GS resides in a conformation that has high affinity for TnrA (Q-state). The A- and Q-state are mutually exclusive, and in agreement, ATP and glutamine bind to GS in a competitive manner. At elevated concentrations of glutamine, ATP is no longer able to bind GS and to bring it into the A-state. AMP efficiently competes with ATP and prevents formation of the A-state, thereby favoring GS-TnrA interaction. Surface plasmon resonance analysis shows that TnrA bound to a positively regulated promoter fragment binds GS in the Q-state, whereas it rapidly dissociates from a negatively regulated promoter fragment. These data imply that GS controls TnrA activity at positively controlled promoters by shielding the transcription factor in the DNA-bound state. According to size exclusion and multiangle light scattering analysis, the dodecameric GS can bind three TnrA dimers. The highly interdependent ligand binding properties of GS reveal this enzyme as a sophisticated sensor of the nitrogen and energy state of the cell to control the activity of DNA-bound TnrA. PMID:26635369

  1. Effect of simulated acid rain on the mutualism between tall fescue (Festuca arundinacea) and an endophytic fungus (Acremonium coenophialum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheplick, G.P.

    Biotic interactions between plants and microorganisms have the potential to be affected by acidic precipitation. I examined the effect of simulated sulfuric acid rain on the mutualism between a perennial forage grass (Festuca arundinacea) and a fungal endophyte (Acremonium coenophialum). Acid water was supplied as mists sprayed onto leaf surfaces or as water added to the soil for two groups in a greenhouse: one group had high levels of endophyte infection, while the other was predominantly noninfected. Control plants received distilled water (pH 6), while others received sulfuric acid water at pH 4.5 or pH 3. Plants were harvested aftermore » 4, 6, 8, and 23 wk. Leaf endophyte infection intensity as measured by hyphal counts was not affected by acid water treatment. Root mass and root: shoot ratios generally decreased with increasing acidity of both foliar sprays and soil water, but shoot mass was mostly not affected. There was a significant pH x infection interaction for plants exposed to acidic foliar sprays for 4 wk; root and shoot mass decreased with acidity, but only for infected plants. It was found that acid rain may be deleterious to tall fescue growth at specific stages of development, but biomass production in response to acid rain is not likely to be influenced by fungal endophytes within mature plants. 55 refs., 2 figs., 3 tabs.« less

  2. Mutual adaptation of a membrane protein and its lipid bilayer during conformational changes.

    PubMed

    Sonntag, Yonathan; Musgaard, Maria; Olesen, Claus; Schiøtt, Birgit; Møller, Jesper Vuust; Nissen, Poul; Thøgersen, Lea

    2011-01-01

    The structural elucidation of membrane proteins continues to gather pace, but we know little about their molecular interactions with the lipid environment or how they interact with the surrounding bilayer. Here, with the aid of low-resolution X-ray crystallography, we present direct structural information on membrane interfaces as delineated by lipid phosphate groups surrounding the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) in its phosphorylated and dephosphorylated Ca(2+)-free forms. The protein-lipid interactions are further analysed using molecular dynamics simulations. We find that SERCA adapts to membranes of different hydrophobic thicknesses by inducing local deformations in the lipid bilayers and by undergoing small rearrangements of the amino-acid side chains and helix tilts. These mutually adaptive interactions allow smooth transitions through large conformational changes associated with the transport cycle of SERCA, a strategy that may be of general nature for many membrane proteins.

  3. Biological invasions as disruptors of plant reproductive mutualisms.

    PubMed

    Traveset, Anna; Richardson, David M

    2006-04-01

    Invasive alien species affect the composition and functioning of invaded ecosystems in many ways, altering ecological interactions that have arisen over evolutionary timescales. Specifically, disruptions to pollination and seed-dispersal mutualistic interactions are often documented, although the profound implications of such impacts are not widely recognized. Such disruptions can occur via the introduction of alien pollinators, seed dispersers, herbivores, predators or plants, and we define here the many potential outcomes of each situation. The frequency and circumstances under which each category of mechanisms operates are also poorly known. Most evidence is from population-level studies, and the implications for global biodiversity are difficult to predict. Further insights are needed on the degree of resilience in interaction networks, but the preliminary picture suggests that invasive species frequently cause profound disruptions to plant reproductive mutualisms.

  4. Global stability and optimal control of epidemic spreading on multiplex networks with nonlinear mutual interaction

    NASA Astrophysics Data System (ADS)

    Jia, Nan; Ding, Li; Liu, Yu-Jing; Hu, Ping

    2018-07-01

    In this paper, we consider two interacting pathogens spreading on multiplex networks. Each pathogen spreads only on its single layer, and different layers have the same individuals but different network topology. A state-dependent infectious rate is proposed to describe the nonlinear mutual interaction during the propagation of two pathogens. Then a novel epidemic spreading model incorporating treatment control strategy is established. We investigate the global asymptotic stability of the equilibrium points by using Dulac's criterion, Poincaré-Bendixson theorem and Lyapunov method. Furthermore, we discuss an optimal strategy to minimize the total number of the infected individuals and the cost associated with treatment control for both spreading of two pathogens. Finally, numerical simulations are presented to show the validity and efficiency of our results.

  5. As you reap, so shall you sow: coupling of harvesting and inoculating stabilizes the mutualism between termites and fungi

    PubMed Central

    Aanen, Duur K

    2006-01-01

    At present there is no consensus theory explaining the evolutionary stability of mutualistic interactions. However, the question is whether there are general ‘rules’, or whether each particular mutualism needs a unique explanation. Here, I address the ultimate evolutionary stability of the ‘agricultural’ mutualism between fungus-growing termites and Termitomyces fungi, and provide a proximate mechanism for how stability is achieved. The key to the proposed mechanism is the within-nest propagation mode of fungal symbionts by termites. The termites suppress horizontal fungal transmission by consuming modified unripe mushrooms (nodules) for food. However, these nodules provide asexual gut-resistant spores that form the inoculum of new substrate. This within-nest propagation has two important consequences: (i) the mutualistic fungi undergo severe, recurrent bottlenecks, so that the fungus is likely to be in monoculture and (ii) the termites ‘artificially’ select for high nodule production, because their fungal food source also provides the inoculum for the next harvest. I also provide a brief comparison of the termite–fungus mutualism with the analogous agricultural mutualism between attine ants and fungi. This comparison shows that—although common factors for the ultimate evolutionary stability of mutualisms can be identified—the proximate mechanisms can be fundamentally different between different mutualisms. PMID:17148364

  6. Altered Landscapes and Groundwater Sustainability — Exploring Impacts with Induced Polarization, DC Resistivity, and Thermal Tracing

    NASA Astrophysics Data System (ADS)

    Eddy-Miller, C.; Caldwell, R.; Wheeler, J.; McCarthy, P.; Binley, A. M.; Constantz, J. E.; Stonestrom, D. A.

    2009-12-01

    Anthropogenically impacted landscapes constitute rising proportions of the Earth’s surface that are characterized by generally elevated nutrient and sediment loadings concurrent with increased consumptive water withdrawals. In recent years a growing number of hydraulically engineered riparian habitat restoration projects have attempted to ameliorate negative impacts of land use on groundwater-surface water systems resulting, e.g., from agricultural practices and urban development. Often the nature of groundwater-surface water interactions in pre- and minimally altered systems is poorly known, making it difficult to assess the impacts of land use and restoration projects on groundwater sustainability. Traditional assessments of surface water parameters (flow, temperature, dissolved oxygen, biotic composition, etc.) can be complemented by hydraulic and thermal measurements to better understand the important role played by groundwater-surface water interactions. Hydraulic and thermal measurements are usually limited to point samples, however, making non-invasive and spatially extensive geophysical characterizations an attractive additional tool. Groundwater-surface water interactions along the Smith River, a tributary to the Missouri River in Montana, and Fish Creek and Flat Creek, tributaries to the Snake River in Wyoming, are being examined using a combination of hydraulic measurements, thermal tracing, and electrical-property imaging. Ninety-two direct-current (DC) resistivity and induced polarization cross sections were obtained at stream transects covering a wide variety of hydrogeologic settings ranging from shallow bedrock to thick alluvial sequences, nature of groundwater-surface water interactions (always gaining, always losing, or seasonally varying) and anthropogenic impacts (minimal low-intensity agriculture to major landscape engineering, including channel reconstruction). DC resistivity and induced polarization delineated mutually distinct features related to hydraulic architecture. For example, induced polarization imaging resolved channel-edge muck deposits that are presumed to be sites of low hydraulic conductivity, chemical reduction, and metal accumulation. DC resistivity delineated bedrock-alluvium contacts and showed potential for tracking changes in salinization. While electrical properties cannot substitute for hydraulic and thermal data, the addition of relatively rapidly acquired, spatially extensive resistivity and induced polarization imaging offers synergistic opportunities for interpretive hydrologic investigations.

  7. Cooperation and coexpression: How coexpression networks shift in response to multiple mutualists.

    PubMed

    Palakurty, Sathvik X; Stinchcombe, John R; Afkhami, Michelle E

    2018-04-01

    A mechanistic understanding of community ecology requires tackling the nonadditive effects of multispecies interactions, a challenge that necessitates integration of ecological and molecular complexity-namely moving beyond pairwise ecological interaction studies and the "gene at a time" approach to mechanism. Here, we investigate the consequences of multispecies mutualisms for the structure and function of genomewide differential coexpression networks for the first time, using the tractable and ecologically important interaction between legume Medicago truncatula, rhizobia and mycorrhizal fungi. First, we found that genes whose expression is affected nonadditively by multiple mutualists are more highly connected in gene networks than expected by chance and had 94% greater network centrality than genes showing additive effects, suggesting that nonadditive genes may be key players in the widespread transcriptomic responses to multispecies symbioses. Second, multispecies mutualisms substantially changed coexpression network structure of 18 modules of host plant genes and 22 modules of the fungal symbionts' genes, indicating that third-party mutualists can cause significant rewiring of plant and fungal molecular networks. Third, we found that 60% of the coexpressed gene sets that explained variation in plant performance had coexpression structures that were altered by interactive effects of rhizobia and fungi. Finally, an "across-symbiosis" approach identified sets of plant and mycorrhizal genes whose coexpression structure was unique to the multiple mutualist context and suggested coupled responses across the plant-mycorrhizal interaction to rhizobial mutualists. Taken together, these results show multispecies mutualisms have substantial effects on the molecular interactions in host plants, microbes and across symbiotic boundaries. © 2018 John Wiley & Sons Ltd.

  8. A minimal model for multiple epidemics and immunity spreading.

    PubMed

    Sneppen, Kim; Trusina, Ala; Jensen, Mogens H; Bornholdt, Stefan

    2010-10-18

    Pathogens and parasites are ubiquitous in the living world, being limited only by availability of suitable hosts. The ability to transmit a particular disease depends on competing infections as well as on the status of host immunity. Multiple diseases compete for the same resource and their fate is coupled to each other. Such couplings have many facets, for example cross-immunization between related influenza strains, mutual inhibition by killing the host, or possible even a mutual catalytic effect if host immunity is impaired. We here introduce a minimal model for an unlimited number of unrelated pathogens whose interaction is simplified to simple mutual exclusion. The model incorporates an ongoing development of host immunity to past diseases, while leaving the system open for emergence of new diseases. The model exhibits a rich dynamical behavior with interacting infection waves, leaving broad trails of immunization in the host population. This obtained immunization pattern depends only on the system size and on the mutation rate that initiates new diseases.

  9. Robots Learn to Recognize Individuals from Imitative Encounters with People and Avatars

    NASA Astrophysics Data System (ADS)

    Boucenna, Sofiane; Cohen, David; Meltzoff, Andrew N.; Gaussier, Philippe; Chetouani, Mohamed

    2016-02-01

    Prior to language, human infants are prolific imitators. Developmental science grounds infant imitation in the neural coding of actions, and highlights the use of imitation for learning from and about people. Here, we used computational modeling and a robot implementation to explore the functional value of action imitation. We report 3 experiments using a mutual imitation task between robots, adults, typically developing children, and children with Autism Spectrum Disorder. We show that a particular learning architecture - specifically one combining artificial neural nets for (i) extraction of visual features, (ii) the robot’s motor internal state, (iii) posture recognition, and (iv) novelty detection - is able to learn from an interactive experience involving mutual imitation. This mutual imitation experience allowed the robot to recognize the interactive agent in a subsequent encounter. These experiments using robots as tools for modeling human cognitive development, based on developmental theory, confirm the promise of developmental robotics. Additionally, findings illustrate how person recognition may emerge through imitative experience, intercorporeal mapping, and statistical learning.

  10. Robots Learn to Recognize Individuals from Imitative Encounters with People and Avatars

    PubMed Central

    Boucenna, Sofiane; Cohen, David; Meltzoff, Andrew N.; Gaussier, Philippe; Chetouani, Mohamed

    2016-01-01

    Prior to language, human infants are prolific imitators. Developmental science grounds infant imitation in the neural coding of actions, and highlights the use of imitation for learning from and about people. Here, we used computational modeling and a robot implementation to explore the functional value of action imitation. We report 3 experiments using a mutual imitation task between robots, adults, typically developing children, and children with Autism Spectrum Disorder. We show that a particular learning architecture - specifically one combining artificial neural nets for (i) extraction of visual features, (ii) the robot’s motor internal state, (iii) posture recognition, and (iv) novelty detection - is able to learn from an interactive experience involving mutual imitation. This mutual imitation experience allowed the robot to recognize the interactive agent in a subsequent encounter. These experiments using robots as tools for modeling human cognitive development, based on developmental theory, confirm the promise of developmental robotics. Additionally, findings illustrate how person recognition may emerge through imitative experience, intercorporeal mapping, and statistical learning. PMID:26844862

  11. Articulating nurse practitioner practice using King's theory of goal attainment.

    PubMed

    de Leon-Demare, Kathleen; MacDonald, Jane; Gregory, David M; Katz, Alan; Halas, Gayle

    2015-11-01

    To further understand the interactions between nurse practitioners (NPs) and patients, King's nursing theory of goal attainment was applied as the conceptual framework to describe the interactions between NPs and patients in the primary care setting. Six dyads of NPs and their patients were video- and audio-taped over three consecutive clinic visits. For the purposes of this arm of the study, the audio-taped interactions were transcribed and then coded using King's concepts in her theory of goal attainment. King's theory was applicable to describe NP practice. King's concepts and processes of nurse-patient interactions, such as disturbances, mutual goal setting, and transactions, were observed in NP-patient interactions. Disturbances during clinical encounters were essential in the progression toward goal attainment. Elements, such as social exchange, symptom reporting, role explanation, and information around clinical processes facilitated relationship building. NPs as practitioners need to be reflective of their own practice, embrace disturbances in the clinical encounter, and attend to these as opportunities for mutual goal setting. ©2015 American Association of Nurse Practitioners.

  12. ATP and AMP Mutually Influence Their Interaction with the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) at Separate Binding Sites*

    PubMed Central

    Randak, Christoph O.; Dong, Qian; Ver Heul, Amanda R.; Elcock, Adrian H.; Welsh, Michael J.

    2013-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter protein family. In the presence of ATP and physiologically relevant concentrations of AMP, CFTR exhibits adenylate kinase activity (ATP + AMP ⇆ 2 ADP). Previous studies suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for this activity. Two other ABC proteins, Rad50 and a structural maintenance of chromosome protein, also have adenylate kinase activity. All three ABC adenylate kinases bind and hydrolyze ATP in the absence of other nucleotides. However, little is known about how an ABC adenylate kinase interacts with ATP and AMP when both are present. Based on data from non-ABC adenylate kinases, we hypothesized that ATP and AMP mutually influence their interaction with CFTR at separate binding sites. We further hypothesized that only one of the two CFTR ATP-binding sites is involved in the adenylate kinase reaction. We found that 8-azidoadenosine 5′-triphosphate (8-N3-ATP) and 8-azidoadenosine 5′-monophosphate (8-N3-AMP) photolabeled separate sites in CFTR. Labeling of the AMP-binding site with 8-N3-AMP required the presence of ATP. Conversely, AMP enhanced photolabeling with 8-N3-ATP at ATP-binding site 2. The adenylate kinase active center probe P1,P5-di(adenosine-5′) pentaphosphate interacted simultaneously with an AMP-binding site and ATP-binding site 2. These results show that ATP and AMP interact with separate binding sites but mutually influence their interaction with the ABC adenylate kinase CFTR. They further indicate that the active center of the adenylate kinase comprises ATP-binding site 2. PMID:23921386

  13. A Novel Type of Nutritional Ant–Plant Interaction: Ant Partners of Carnivorous Pitcher Plants Prevent Nutrient Export by Dipteran Pitcher Infauna

    PubMed Central

    Scharmann, Mathias; Thornham, Daniel G.; Grafe, T. Ulmar; Federle, Walter

    2013-01-01

    Many plants combat herbivore and pathogen attack indirectly by attracting predators of their herbivores. Here we describe a novel type of insect–plant interaction where a carnivorous plant uses such an indirect defence to prevent nutrient loss to kleptoparasites. The ant Camponotus schmitzi is an obligate inhabitant of the carnivorous pitcher plant Nepenthes bicalcarata in Borneo. It has recently been suggested that this ant–plant interaction is a nutritional mutualism, but the detailed mechanisms and the origin of the ant-derived nutrient supply have remained unexplained. We confirm that N. bicalcarata host plant leaves naturally have an elevated 15N/14N stable isotope abundance ratio (δ15N) when colonised by C. schmitzi. This indicates that a higher proportion of the plants’ nitrogen is insect-derived when C. schmitzi ants are present (ca. 100%, vs. 77% in uncolonised plants) and that more nitrogen is available to them. We demonstrated direct flux of nutrients from the ants to the host plant in a 15N pulse-chase experiment. As C. schmitzi ants only feed on nectar and pitcher contents of their host, the elevated foliar δ15N cannot be explained by classic ant-feeding (myrmecotrophy) but must originate from a higher efficiency of the pitcher traps. We discovered that C. schmitzi ants not only increase the pitchers' capture efficiency by keeping the pitchers’ trapping surfaces clean, but they also reduce nutrient loss from the pitchers by predating dipteran pitcher inhabitants (infauna). Consequently, nutrients the pitchers would have otherwise lost via emerging flies become available as ant colony waste. The plants’ prey is therefore conserved by the ants. The interaction between C. schmitzi, N. bicalcarata and dipteran pitcher infauna represents a new type of mutualism where animals mitigate the damage by nutrient thieves to a plant. PMID:23717446

  14. A novel type of nutritional ant-plant interaction: ant partners of carnivorous pitcher plants prevent nutrient export by dipteran pitcher infauna.

    PubMed

    Scharmann, Mathias; Thornham, Daniel G; Grafe, T Ulmar; Federle, Walter

    2013-01-01

    Many plants combat herbivore and pathogen attack indirectly by attracting predators of their herbivores. Here we describe a novel type of insect-plant interaction where a carnivorous plant uses such an indirect defence to prevent nutrient loss to kleptoparasites. The ant Camponotus schmitzi is an obligate inhabitant of the carnivorous pitcher plant Nepenthes bicalcarata in Borneo. It has recently been suggested that this ant-plant interaction is a nutritional mutualism, but the detailed mechanisms and the origin of the ant-derived nutrient supply have remained unexplained. We confirm that N. bicalcarata host plant leaves naturally have an elevated (15)N/(14)N stable isotope abundance ratio (δ(15)N) when colonised by C. schmitzi. This indicates that a higher proportion of the plants' nitrogen is insect-derived when C. schmitzi ants are present (ca. 100%, vs. 77% in uncolonised plants) and that more nitrogen is available to them. We demonstrated direct flux of nutrients from the ants to the host plant in a (15)N pulse-chase experiment. As C. schmitzi ants only feed on nectar and pitcher contents of their host, the elevated foliar δ(15)N cannot be explained by classic ant-feeding (myrmecotrophy) but must originate from a higher efficiency of the pitcher traps. We discovered that C. schmitzi ants not only increase the pitchers' capture efficiency by keeping the pitchers' trapping surfaces clean, but they also reduce nutrient loss from the pitchers by predating dipteran pitcher inhabitants (infauna). Consequently, nutrients the pitchers would have otherwise lost via emerging flies become available as ant colony waste. The plants' prey is therefore conserved by the ants. The interaction between C. schmitzi, N. bicalcarata and dipteran pitcher infauna represents a new type of mutualism where animals mitigate the damage by nutrient thieves to a plant.

  15. Characterization of non-classical Csbnd Br⋯π interactions in (E)-1,3-dibromo-5-(2-(ferrocenyl)vinyl)benzene and related derivatives of ferrocene

    NASA Astrophysics Data System (ADS)

    Shukla, Rahul; Panini, Piyush; McAdam, C. John; Robinson, Brian H.; Simpson, Jim; Tagg, Tei; Chopra, Deepak

    2017-03-01

    Amongst the halogens, the involvement of bromine atoms in various types of intermolecular interactions is comparatively the least studied. In this manuscript, we report the formation of Csbnd Br⋯π interactions, with the π-rings being the cyclopentadienyl (Cp) rings of a ferrocene molecule in a newly synthesized compound (E)-1,3-dibromo-5-(2-(ferrocenyl)vinyl)benzene. We have also performed a detailed quantitative analysis on Csbnd Br⋯π interactions observed in the synthesized molecule and in several related molecules found in the Cambridge Structure Database (CSD) showing the presence of these interactions. A topological analysis based upon QTAIM theory and electrostatic potential ESP mapped on the Hirshfeld surface of these molecules confirm that these interactions are better described as "halogen bonds" wherein the electropositive region (σ-hole) on the Br-atom interacts with the electronegative region over the Cp-ring of the ferrocene. Further, the electronegative region on the bromine atom (perpendicular to the Csbnd Br bond) was observed to be involved in the formation of highly directional Csbnd H⋯Br interactions with the ∠Csbnd Br⋯H close to 90°. Thus the bromine atom is acting as both a "halogen bond donor" and "hydrogen bond acceptor" in the crystal packing with the two interactions being mutually orthogonal.

  16. Design of High Impedance Electromagnetic Surfaces for Mutual Coupling Reduction in Patch Antenna Array

    PubMed Central

    Islam, Mohammad Tariqul; Alam, Md. Shahidul

    2013-01-01

    A compact planar meander-bridge high impedance electromagnetic structure (MBHIES) was designed and its bandgap characteristics, mutual coupling reduction abilities were studied and compared in detail. Several parametric analyses were performed to obtain optimized design values and the transmission responses were calculated through the suspended microstrip line and waveguide simulation methods. The achieved bandgap is 2.3 GHz (2.55–4.85 GHz) with −61 dB minimum transmission coefficient level at the center frequency of 3.6 GHz. To see the effectiveness, the proposed design was inserted between a microstrip patch antenna array which operates at 3.8 GHz and whose operating bandwidth falls within the MBHIES bandgap. The surface wave suppression phenomenon was analyzed and simulated results are verified by measuring the fabricated prototypes, both are in good agreement. The configuration reduced the mutual coupling by 20.69 dB in simulation and 19.18 dB in measurement, without affecting the radiation characteristics of the array but increasing the gain slightly. PMID:28809299

  17. Design of High Impedance Electromagnetic Surfaces for Mutual Coupling Reduction in Patch Antenna Array.

    PubMed

    Islam, Mohammad Tariqul; Alam, Md Shahidul

    2013-01-07

    A compact planar meander-bridge high impedance electromagnetic structure (MBHIES) was designed and its bandgap characteristics, mutual coupling reduction abilities were studied and compared in detail. Several parametric analyses were performed to obtain optimized design values and the transmission responses were calculated through the suspended microstrip line and waveguide simulation methods. The achieved bandgap is 2.3 GHz (2.55-4.85 GHz) with -61 dB minimum transmission coefficient level at the center frequency of 3.6 GHz. To see the effectiveness, the proposed design was inserted between a microstrip patch antenna array which operates at 3.8 GHz and whose operating bandwidth falls within the MBHIES bandgap. The surface wave suppression phenomenon was analyzed and simulated results are verified by measuring the fabricated prototypes, both are in good agreement. The configuration reduced the mutual coupling by 20.69 dB in simulation and 19.18 dB in measurement, without affecting the radiation characteristics of the array but increasing the gain slightly.

  18. The mutual attraction of magnetic knots. [solar hydromagnetic instability in sunspot regions

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1978-01-01

    It is observed that the magnetic knots associated with active regions on the sun have an attraction for each other during the formative period of the active regions, when new magnetic flux is coming to the surface. The attraction disappears when new flux ceases to rise through the surface. Then the magnetic spots and knots tend to come apart, leading to disintegration of the sunspots previously formed. The dissolution of the fields is to be expected, as a consequence of the magnetic repulsion of knots of like polarity and as a consequence of the hydromagnetic exchange instability. The purpose of this paper is to show that the mutual attraction of knots during the formative stages of a sunspot region may be understood as the mutual hydrodynamic attraction of the rising flux tubes. Two rising tubes attract each other, as a consequence of the wake of the leading tube when one is moving behind the other, and as a consequence of the Bernoulli effect when rising side by side.

  19. A Study of Shared-Memory Mutual Exclusion Protocols Using CADP

    NASA Astrophysics Data System (ADS)

    Mateescu, Radu; Serwe, Wendelin

    Mutual exclusion protocols are an essential building block of concurrent systems: indeed, such a protocol is required whenever a shared resource has to be protected against concurrent non-atomic accesses. Hence, many variants of mutual exclusion protocols exist in the shared-memory setting, such as Peterson's or Dekker's well-known protocols. Although the functional correctness of these protocols has been studied extensively, relatively little attention has been paid to their non-functional aspects, such as their performance in the long run. In this paper, we report on experiments with the performance evaluation of mutual exclusion protocols using Interactive Markov Chains. Steady-state analysis provides an additional criterion for comparing protocols, which complements the verification of their functional properties. We also carefully re-examined the functional properties, whose accurate formulation as temporal logic formulas in the action-based setting turns out to be quite involved.

  20. A socio-emotional approach to couple therapy: linking social context and couple interaction.

    PubMed

    Knudson-Martin, Carmen; Huenergardt, Douglas

    2010-09-01

    This paper introduces Socio-Emotional Relationship Therapy (SERT), an approach designed to intervene in socio-cultural processes that limit couples' ability to develop mutually supportive relationships, especially within heterosexual relationships. SERT integrates recent advances in neurobiology and the social context of emotion with social constructionist assumptions regarding the fluid and contextual nature of gender, culture, personal identities, and relationship patterns. It advances social constructionist practice through in-session experiential work focused on 4 conditions foundational to mutual support--mutual influence, shared vulnerability, shared relationship responsibility, and mutual attunement. In contrast to couple therapy models that mask power issues, therapist neutrality is not considered possible or desirable. Instead, therapists position themselves to counteract social inequalities. The paper illustrates how empathic engagement of a socio-culturally attuned therapist sets the stage for new socio-cultural experience as it is embodied neurologically and physically in the relationship and discusses therapy as societal intervention. 2010 © FPI, Inc.

  1. Entanglement entropy of dispersive media from thermodynamic entropy in one higher dimension.

    PubMed

    Maghrebi, M F; Reid, M T H

    2015-04-17

    A dispersive medium becomes entangled with zero-point fluctuations in the vacuum. We consider an arbitrary array of material bodies weakly interacting with a quantum field and compute the quantum mutual information between them. It is shown that the mutual information in D dimensions can be mapped to classical thermodynamic entropy in D+1 dimensions. As a specific example, we compute the mutual information both analytically and numerically for a range of separation distances between two bodies in D=2 dimensions and find a logarithmic correction to the area law at short separations. A key advantage of our method is that it allows the strong subadditivity property to be easily verified.

  2. Evolutionary dynamics of fluctuating populations with strong mutualism

    NASA Astrophysics Data System (ADS)

    Chotibut, Thiparat; Nelson, David

    2013-03-01

    Evolutionary game theory with finite interacting populations is receiving increased attention, including subtle phenomena associated with number fluctuations, i.e., ``genetic drift.'' Models of cooperation and competition often utilize a simplified Moran model, with a strictly fixed total population size. We explore a more general evolutionary model with independent fluctuations in the numbers of two distinct species, in a regime characterized by ``strong mutualism.'' The model has two absorbing states, each corresponding to fixation of one of the two species, and allows exploration of the interplay between growth, competition, and mutualism. When mutualism is favored, number fluctuations eventually drive the system away from a stable fixed point, characterized by cooperation, to one of the absorbing states. Well-mixed populations will thus be taken over by a single species in a finite time, despite the bias towards cooperation. We calculate both the fixation probability and the mean fixation time as a function of the initial conditions and carrying capacities in the strong mutualism regime, using the method of matched asymptotic expansions. Our results are compared to computer simulations.

  3. Transactional Patterns of Maternal Depressive Symptoms and Mother–Child Mutual Negativity in an Adoption Sample

    PubMed Central

    Roben, Caroline K. P.; Moore, Ginger A.; Cole, Pamela M.; Molenaar, Peter; Leve, Leslie D.; Shaw, Daniel S.; Reiss, David; Neiderhiser, Jenae M.

    2015-01-01

    Transactional models of analysis can examine both moment-to-moment interactions within a dyad and dyadic patterns of influence across time. This study used data from a prospective adoption study to test a transactional model of parental depressive symptoms and mutual negativity between mother and child over time, utilizing contingency analysis of second-by-second behavioral data. To consider both genetic and environmental influences on mutual negativity, depressive symptoms were examined in both adoptive and birth mothers. Adoptive mother depressive symptoms at 9 months increased the likelihood that, at 18 months, children reacted negatively to their mothers' negative behavior, which in turn predicted higher levels of adoptive mother depressive symptoms at 27 months, suggesting that over time, mothers' depressive symptoms influence and are influenced by moment-to-moment mutual negativity with their toddlers. Birth mother depressive symptoms moderated the association between mutual negativity at 18 months and adoptive mother depressive symptoms at 27 months, suggesting a child-driven contribution to maternal depressive symptoms that can be measured by a genetic sensitivity. PMID:26170764

  4. Ambient occlusion effects for combined volumes and tubular geometry.

    PubMed

    Schott, Mathias; Martin, Tobias; Grosset, A V Pascal; Smith, Sean T; Hansen, Charles D

    2013-06-01

    This paper details a method for interactive direct volume rendering that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube-shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The algorithm extends the recently presented the directional occlusion shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. Stream tube geometries are computed using an effective spline-based interpolation and approximation scheme that avoids self-intersection and maintains coherent orientation of the stream tube segments to avoid surface deforming twists. Furthermore, strategies to reduce the geometric and specular aliasing of the stream tubes are discussed.

  5. Ambient Occlusion Effects for Combined Volumes and Tubular Geometry

    PubMed Central

    Schott, Mathias; Martin, Tobias; Grosset, A.V. Pascal; Smith, Sean T.; Hansen, Charles D.

    2013-01-01

    This paper details a method for interactive direct volume rendering that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube-shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The algorithm extends the recently presented the directional occlusion shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. Stream tube geometries are computed using an effective spline-based interpolation and approximation scheme that avoids self-intersection and maintains coherent orientation of the stream tube segments to avoid surface deforming twists. Furthermore, strategies to reduce the geometric and specular aliasing of the stream tubes are discussed. PMID:23559506

  6. Biodegradation of bispyribac sodium by a novel bacterial consortium BDAM: Optimization of degradation conditions using response surface methodology.

    PubMed

    Ahmad, Fiaz; Anwar, Samina; Firdous, Sadiqa; Da-Chuan, Yin; Iqbal, Samina

    2018-05-05

    Bispyribac sodium (BS), is a selective, systemic and post emergent herbicide used to eradicate grasses and broad leaf weeds. Extensive use of this herbicide has engendered serious environmental concerns. Hence it is important to develop strategies for bioremediation of BS in a cost effective and environment friendly way. In this study a bacterial consortium named BDAM, comprising three novel isolates Achromobacter xylosoxidans (BD1), Achromobacter pulmonis (BA2), and Ochrobactrum intermedium (BM2), was developed by virtue of its potential for degradation of BS. Different culture conditions (temperature, pH and inoculum size) were optimized for degradation of BS by the consortium BDAM and the mutual interactions of these parameters were analysed using a 2 3 full factorial central composite design (CCD) based on Response Surface Methodology (RSM). The optimal values for temperature, pH and inoculum size were found to be 40 °C, 8 and 0.4 g/L respectively to achieve maximum degradation of BS (85.6%). Moreover, the interactive effects of these parameters were investigated using three dimensional surface plots in terms of maximum fitness function. Importantly, it was concluded that the newly developed consortium is a potential candidate for biodegradation of BS in a safe, cost-effective and environmentally friendly manner. Copyright © 2017. Published by Elsevier B.V.

  7. Acemetacin cocrystal structures by powder X-ray diffraction.

    PubMed

    Bolla, Geetha; Chernyshev, Vladimir; Nangia, Ashwini

    2017-05-01

    Cocrystals of acemetacin drug (ACM) with nicotinamide (NAM), p -aminobenzoic acid (PABA), valerolactam (VLM) and 2-pyridone (2HP) were prepared by melt crystallization and their X-ray crystal structures determined by high-resolution powder X-ray diffraction. The powerful technique of structure determination from powder data (SDPD) provided details of molecular packing and hydrogen bonding in pharmaceutical cocrystals of acemetacin. ACM-NAM occurs in anhydrate and hydrate forms, whereas the other structures crystallized in a single crystalline form. The carboxylic acid group of ACM forms theacid-amide dimer three-point synthon R 3 2 (9) R 2 2 (8) R 3 2 (9) with three different syn amides (VLM, 2HP and caprolactam). The conformations of the ACM molecule observed in the crystal structures differ mainly in the mutual orientation of chlorobenzene fragment and the neighboring methyl group, being anti (type I) or syn (type II). ACM hydrate, ACM-NAM, ACM-NAM-hydrate and the piperazine salt of ACM exhibit the type I conformation, whereas ACM polymorphs and other cocrystals adopt the ACM type II conformation. Hydrogen-bond interactions in all the crystal structures were quantified by calculating their molecular electrostatic potential (MEP) surfaces. Hirshfeld surface analysis of the cocrystal surfaces shows that about 50% of the contribution is due to a combination of strong and weak O⋯H, N⋯H, Cl⋯H and C⋯H interactions. The physicochemical properties of these cocrystals are under study.

  8. Acemetacin cocrystal structures by powder X-ray diffraction

    PubMed Central

    Bolla, Geetha

    2017-01-01

    Cocrystals of acemetacin drug (ACM) with nicotinamide (NAM), p-aminobenzoic acid (PABA), valerolactam (VLM) and 2-pyridone (2HP) were prepared by melt crystallization and their X-ray crystal structures determined by high-resolution powder X-ray diffraction. The powerful technique of structure determination from powder data (SDPD) provided details of molecular packing and hydrogen bonding in pharmaceutical cocrystals of acemetacin. ACM–NAM occurs in anhydrate and hydrate forms, whereas the other structures crystallized in a single crystalline form. The carboxylic acid group of ACM forms theacid–amide dimer three-point synthon R 3 2(9)R 2 2(8)R 3 2(9) with three different syn amides (VLM, 2HP and caprolactam). The conformations of the ACM molecule observed in the crystal structures differ mainly in the mutual orientation of chlorobenzene fragment and the neighboring methyl group, being anti (type I) or syn (type II). ACM hydrate, ACM—NAM, ACM–NAM-hydrate and the piperazine salt of ACM exhibit the type I conformation, whereas ACM polymorphs and other cocrystals adopt the ACM type II conformation. Hydrogen-bond interactions in all the crystal structures were quantified by calculating their molecular electrostatic potential (MEP) surfaces. Hirshfeld surface analysis of the cocrystal surfaces shows that about 50% of the contribution is due to a combination of strong and weak O⋯H, N⋯H, Cl⋯H and C⋯H interactions. The physicochemical properties of these cocrystals are under study. PMID:28512568

  9. In vitro interaction of actinomycetes isolates with Aspergillus flavus: impact on aflatoxins B1 and B2 production.

    PubMed

    Verheecke, C; Liboz, T; Darriet, M; Sabaou, N; Mathieu, F

    2014-06-01

    This work aimed to study the interaction between Actinomycetal isolates and Aspergillus flavus to promote mutual antagonism in contact. Thirty-seven soilborn Streptomyces spp. isolates were chosen as potential candidates. After a 10-day in vitro co-incubation period, 27 isolates respond to the criteria, that is, mutual antagonism in contact. Further aflatoxins B1 and B2 analysis revealed that those 27 isolates reduced aflatoxin B1 residual concentration from 38·6 to 4·4%, depending on the isolate. We selected 12 isolates and tested their capacity to reduce AFB1 in pure culture to start identifying the mechanisms involved in its reduction. AFB1 was reduced by eight isolates. The remaining AFB1 concentration varied between 82·2 and 15·6%. These findings led us to suggest that these eight isolates could be used as biocontrol agents against AFB1 and B2 with low risk of impacting the natural microbial equilibrium. Interaction between Aspergillus flavus and Actinomycetes isolates was conducted in vitro. Actinomycetes isolates having a mutual antagonism in contact with A. flavus were chosen for further aflatoxins production study. This is a new approach based to develop biocontrol against aflatoxins accumulation in maize while respecting natural microbial equilibrium. © 2014 The Society for Applied Microbiology.

  10. Professional identity development: Learning and journeying together.

    PubMed

    Bridges, Stephanie J

    2018-03-01

    Pharmacy students start to develop their professional values through engagement with the course, practice exposure, staff and fellow students. Group working is an element of pedagogy which draws on the social aspects of learning to facilitate knowledge and skills development, but its potential role in facilitating professional identity formation has as yet been under researched. This study aimed to explore the potential of mutual learning through group work to contribute not only to academic knowledge and understanding, but also to the development of students' professional values and selves. Semi-structured interviews were conducted with 17 home and international first year undergraduate pharmacy students in a UK School of Pharmacy, to explore their experiences of interacting for learning with other students on the course. Thematic analysis of the interview data highlighted four main benefits of mutual learning, which are that it: promotes friendly interactions; aids learning about the subject and the profession; opens the mind through different opinions and ways of thinking; and enables learning about other people. Through working together students developed their communication skills and confidence; reflectively considered their own stance in the light of others' experiences and healthcare perspectives; and started to gain a wider worldview, potentially informing their future interactions with patients and colleagues. Some difficulties arose when group interactions functioned less well. Opportunity for collaboration and exchange can positively influence development of students' professional outlook and values. However, careful management of group working is required, in order to create a mutually supportive environment wherein students feel able to interact, share and develop together. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  11. Killing to Fluctuate, or: How Death and Reproduction Drive a Fluctuation-Response Relation in Biofilms

    NASA Astrophysics Data System (ADS)

    Kalziqi, Arben; Yunker, Peter; Thomas, Jacob

    Unlike equilibrium atomic solids, biofilms do not experience significant thermal fluctuations at the constituent level. However, cells inside the biofilm stochastically die and reproduce, provoking a mechanical response. We investigate the mechanical response of biofilms to the death and reproduction of cells by measuring surface-height fluctuations of biofilms with two mutual predator strains of Vibrio cholerae which kill one another on contact via the Type VI Secretion System. Biofilm surface topography is measured in the homeostatic limit, wherein cell division and death occur at roughly the same rate, via white light interferometry. Although biofilms are far from equilibrium systems, measured height correlation functions line up with expectations from a generalized fluctuation-response relation derived from replication and death events, as predicted by Risler et al. (PRL 2015). Using genetically modified strains of V. cholerae which cannot kill, we demonstrate that extracted effective temperatures increase with the amount of death and reproduction. Thus, high-precision measurement of surface topography reveals the physical consequences of death and reproduction within a biofilm, providing a new approach to studying interactions between bacteria and cells.

  12. SNSAG5 IS AN ALTERNATIVE SURFACE ANTIGEN OF SARCOCYSTIS NEURONA STRAINS THAT IS MUTUALLY EXCLUSIVE TO SNSAG1

    USDA-ARS?s Scientific Manuscript database

    Sarcocystis neurona is an obligate intracellular parasite that causes equine protozoal myeloencephalitis (EPM). Previous work has identified a gene family of paralogous surface antigens in S. neurona called SnSAGs. These surface proteins are immunogenic in their host animals, and are therefore can...

  13. Ants at Plant Wounds: A Little-Known Trophic Interaction with Evolutionary Implications for Ant-Plant Interactions.

    PubMed

    Staab, Michael; Fornoff, Felix; Klein, Alexandra-Maria; Blüthgen, Nico

    2017-09-01

    Extrafloral nectaries (EFNs) allow plants to engage in mutualisms with ants, preventing herbivory in exchange for food. EFNs occur scattered throughout the plant phylogeny and likely evolved independent from herbivore-created wounds subsequently visited by ants collecting leaked sap. Records of wound-feeding ants are, however, anecdotal. By surveying 38,000 trees from 40 species, we conducted the first quantitative ecological study of this overlooked behavior. Ant-wound interactions were widespread (0.5% of tree individuals) and occurred on 23 tree species. Interaction networks were opportunistic, closely resembling ant-EFN networks. Fagaceae, a family lacking EFNs, was strongly overrepresented. For Fagaceae, ant occurrence at wounds correlated with species-level leaf damage, potentially indicating that wounds may attract mutualistic ants, which supports the hypothesis of ant-tended wounds as precursors of ant-EFN mutualisms. Given that herbivore wounds are common, wound sap as a steadily available food source might further help to explain the overwhelming abundance of ants in (sub)tropical forest canopies.

  14. Mutualism with sea anemones triggered the adaptive radiation of clownfishes

    PubMed Central

    2012-01-01

    Background Adaptive radiation is the process by which a single ancestral species diversifies into many descendants adapted to exploit a wide range of habitats. The appearance of ecological opportunities, or the colonisation or adaptation to novel ecological resources, has been documented to promote adaptive radiation in many classic examples. Mutualistic interactions allow species to access resources untapped by competitors, but evidence shows that the effect of mutualism on species diversification can greatly vary among mutualistic systems. Here, we test whether the development of obligate mutualism with sea anemones allowed the clownfishes to radiate adaptively across the Indian and western Pacific oceans reef habitats. Results We show that clownfishes morphological characters are linked with ecological niches associated with the sea anemones. This pattern is consistent with the ecological speciation hypothesis. Furthermore, the clownfishes show an increase in the rate of species diversification as well as rate of morphological evolution compared to their closest relatives without anemone mutualistic associations. Conclusions The effect of mutualism on species diversification has only been studied in a limited number of groups. We present a case of adaptive radiation where mutualistic interaction is the likely key innovation, providing new insights into the mechanisms involved in the buildup of biodiversity. Due to a lack of barriers to dispersal, ecological speciation is rare in marine environments. Particular life-history characteristics of clownfishes likely reinforced reproductive isolation between populations, allowing rapid species diversification. PMID:23122007

  15. Environmental variation shifts the relationship between trees and scatterhoarders along the continuum from mutualism to antagonism.

    PubMed

    Sawaya, Gina M; Goldberg, Adam S; Steele, Michael A; Dalgleish, Harmony J

    2018-05-01

    The conditional mutualism between scatterhoarders and trees varies on a continuum from mutualism to antagonism and can change across time and space, and among species. We examined 4 tree species (red oak [Quercus rubra], white oak [Quercus alba], American chestnut [Castanea dentata] and hybrid chestnut [C. dentata × Castanea mollissima) across 5 sites and 3 years to quantify the variability in this conditional mutualism. We used a published model to compare the rates of seed emergence with and without burial to the probability that seeds will be cached and left uneaten by scatterhoarders to quantify variation in the conditional mutualism that can be explained by environmental variation among sites, years, species, and seed provenance within species. All species tested had increased emergence when buried. However, comparing benefits of burial to the probability of caching by scatterhoarders indicated a mutualism in red oak, while white oak was nearly always antagonistic. Chestnut was variable around the boundary between mutualism and antagonism, indicating a high degree of context dependence in the relationship with scatterhoarders. We found that different seed provenances did not vary in their potential for mutualism. Temperature did not explain microsite differences in seed emergence in any of the species tested. In hybrid chestnut only, emergence on the surface declined with soil moisture in the fall. By quantifying the variation in the conditional mutualism that was not caused by changes in scatterhoarder behavior, we show that environmental conditions and seed traits are an important and underappreciated component of the variation in the relationship between trees and scatterhoarders. © 2018 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  16. Evaluating Remotely-Sensed Surface Soil Moisture Estimates Using Triple Collocation

    USDA-ARS?s Scientific Manuscript database

    Recent work has demonstrated the potential of enhancing remotely-sensed surface soil moisture validation activities through the application of triple collocation techniques which compare time series of three mutually independent geophysical variable estimates in order to acquire the root-mean-square...

  17. Water stress strengthens mutualism among ants, trees, and scale insects.

    PubMed

    Pringle, Elizabeth G; Akçay, Erol; Raab, Ted K; Dirzo, Rodolfo; Gordon, Deborah M

    2013-11-01

    Abiotic environmental variables strongly affect the outcomes of species interactions. For example, mutualistic interactions between species are often stronger when resources are limited. The effect might be indirect: water stress on plants can lead to carbon stress, which could alter carbon-mediated plant mutualisms. In mutualistic ant-plant symbioses, plants host ant colonies that defend them against herbivores. Here we show that the partners' investments in a widespread ant-plant symbiosis increase with water stress across 26 sites along a Mesoamerican precipitation gradient. At lower precipitation levels, Cordia alliodora trees invest more carbon in Azteca ants via phloem-feeding scale insects that provide the ants with sugars, and the ants provide better defense of the carbon-producing leaves. Under water stress, the trees have smaller carbon pools. A model of the carbon trade-offs for the mutualistic partners shows that the observed strategies can arise from the carbon costs of rare but extreme events of herbivory in the rainy season. Thus, water limitation, together with the risk of herbivory, increases the strength of a carbon-based mutualism.

  18. Water Stress Strengthens Mutualism Among Ants, Trees, and Scale Insects

    PubMed Central

    Pringle, Elizabeth G.; Akçay, Erol; Raab, Ted K.; Dirzo, Rodolfo; Gordon, Deborah M.

    2013-01-01

    Abiotic environmental variables strongly affect the outcomes of species interactions. For example, mutualistic interactions between species are often stronger when resources are limited. The effect might be indirect: water stress on plants can lead to carbon stress, which could alter carbon-mediated plant mutualisms. In mutualistic ant–plant symbioses, plants host ant colonies that defend them against herbivores. Here we show that the partners' investments in a widespread ant–plant symbiosis increase with water stress across 26 sites along a Mesoamerican precipitation gradient. At lower precipitation levels, Cordia alliodora trees invest more carbon in Azteca ants via phloem-feeding scale insects that provide the ants with sugars, and the ants provide better defense of the carbon-producing leaves. Under water stress, the trees have smaller carbon pools. A model of the carbon trade-offs for the mutualistic partners shows that the observed strategies can arise from the carbon costs of rare but extreme events of herbivory in the rainy season. Thus, water limitation, together with the risk of herbivory, increases the strength of a carbon-based mutualism. PMID:24223521

  19. Ferromagnetism in armchair graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Lin, Hsiu-Hau; Hikihara, Toshiya; Jeng, Horng-Tay; Huang, Bor-Luen; Mou, Chung-Yu; Hu, Xiao

    2009-01-01

    Due to the weak spin-orbit interaction and the peculiar relativistic dispersion in graphene, there are exciting proposals to build spin qubits in graphene nanoribbons with armchair boundaries. However, the mutual interactions between electrons are neglected in most studies so far and thus motivate us to investigate the role of electronic correlations in armchair graphene nanoribbon by both analytical and numerical methods. Here we show that the inclusion of mutual repulsions leads to drastic changes and the ground state turns ferromagnetic in a range of carrier concentrations. Our findings highlight the crucial importance of the electron-electron interaction and its subtle interplay with boundary topology in graphene nanoribbons. Furthermore, since the ferromagnetic properties sensitively depend on the carrier concentration, it can be manipulated at ease by electric gates. The resultant ferromagnetic state with metallic conductivity is not only surprising from an academic viewpoint, but also has potential applications in spintronics at nanoscale.

  20. Eddy, drift wave and zonal flow dynamics in a linear magnetized plasma

    PubMed Central

    Arakawa, H.; Inagaki, S.; Sasaki, M.; Kosuga, Y.; Kobayashi, T.; Kasuya, N.; Nagashima, Y.; Yamada, T.; Lesur, M.; Fujisawa, A.; Itoh, K.; Itoh, S.-I.

    2016-01-01

    Turbulence and its structure formation are universal in neutral fluids and in plasmas. Turbulence annihilates global structures but can organize flows and eddies. The mutual-interactions between flow and the eddy give basic insights into the understanding of non-equilibrium and nonlinear interaction by turbulence. In fusion plasma, clarifying structure formation by Drift-wave turbulence, driven by density gradients in magnetized plasma, is an important issue. Here, a new mutual-interaction among eddy, drift wave and flow in magnetized plasma is discovered. A two-dimensional solitary eddy, which is a perturbation with circumnavigating motion localized radially and azimuthally, is transiently organized in a drift wave – zonal flow (azimuthally symmetric band-like shear flows) system. The excitation of the eddy is synchronized with zonal perturbation. The organization of the eddy has substantial impact on the acceleration of zonal flow. PMID:27628894

  1. Camera traps reveal an apparent mutualism between a common mesocarnivore and an endangered ungulate

    USGS Publications Warehouse

    Cove, Michael V.; Maurer, Andrew S.; O'Connell, Allan F.

    2017-01-01

    Camera traps are commonly used to study mammal ecology and they occasionally capture previously undocumented species interactions. The key deer (Odocoileus virginianus clavium) is an endangered endemic subspecies of the Florida Keys, where it exists with few predators. We obtained a camera trap sequence of 80 photos in which a key deer interacted with two northern raccoons (Procyon lotor). One of the raccoons groomed the deer’s face for ∼1 min. This interaction is peculiar and appears mutualistic because the deer was not concerned and willingly remained still throughout the physical contact. Although mutualistic relationships between deer and birds are common, we are unaware of any previously documented mesocarnivore-deer mutualisms. Key deer have evolved in the absence of mammalian predators and we hypothesize that they exhibit reduced vigilance or concern when encountering other species because of predator naivety. Key deer and raccoons are commonly associated with humans and urbanization and an alternative hypothesis is that the interactions are a consequence of heightened deer density, causing a greater probability of sustained interactions with the common mesocarnivores.

  2. The Metabolic Core of Environmental Education

    ERIC Educational Resources Information Center

    Affifi, Ramsey

    2017-01-01

    I consider the case of the "simplest" living beings--bacteria--and examine how their embodied activity constitutes an organism/environment interaction, out of which emerges the possibility of learning from an environment. I suggest that this mutual co-emergence of organism and environment implies a panbiotic educational interaction that…

  3. Dynamical mechanism in aero-engine gas path system using minimum spanning tree and detrended cross-correlation analysis

    NASA Astrophysics Data System (ADS)

    Dong, Keqiang; Zhang, Hong; Gao, You

    2017-01-01

    Identifying the mutual interaction in aero-engine gas path system is a crucial problem that facilitates the understanding of emerging structures in complex system. By employing the multiscale multifractal detrended cross-correlation analysis method to aero-engine gas path system, the cross-correlation characteristics between gas path system parameters are established. Further, we apply multiscale multifractal detrended cross-correlation distance matrix and minimum spanning tree to investigate the mutual interactions of gas path variables. The results can infer that the low-spool rotor speed (N1) and engine pressure ratio (EPR) are main gas path parameters. The application of proposed method contributes to promote our understanding of the internal mechanisms and structures of aero-engine dynamics.

  4. Cross-Correlations and Structures of Aero-Engine Gas Path System Based on DCCA Coefficient and Rooted Tree

    NASA Astrophysics Data System (ADS)

    Dong, Keqiang; Fan, Jie; Gao, You

    2015-12-01

    Identifying the mutual interaction is a crucial problem that facilitates the understanding of emerging structures in complex system. We here focus on aero-engine dynamic as an example of complex system. By applying the detrended cross-correlation analysis (DCCA) coefficient method to aero-engine gas path system, we find that the low-spool rotor speed (N1) and high-spool rotor speed (N2) fluctuation series exhibit cross-correlation characteristic. Further, we employ detrended cross-correlation coefficient matrix and rooted tree to investigate the mutual interactions of other gas path variables. The results can infer that the exhaust gas temperature (EGT), N1, N2, fuel flow (WF) and engine pressure ratio (EPR) are main gas path parameters.

  5. Integrated semiconductor twin-microdisk laser under mutually optical injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Ling-Xiu; Liu, Bo-Wen; Lv, Xiao-Meng

    2015-05-11

    We experimentally study the characteristics of an integrated semiconductor twin-microdisk laser under mutually optical injection through a connected optical waveguide. Based on the lasing spectra, four-wave mixing, injection locking, and period-two oscillation states are observed due to the mutually optical injection by adjusting the injected currents applied to the two microdisks. The enhanced 3 dB bandwidth is realized for the microdisk laser at the injection locking state, and photonic microwave is obtained from the electrode of the microdisk laser under the period-two oscillation state. The plentifully dynamical states similar as semiconductor lasers subject to external optical injection are realized due tomore » strong optical interaction between the two microdisks.« less

  6. Self-assembly of metal nanowires induced by alternating current electric fields

    NASA Astrophysics Data System (ADS)

    García-Sánchez, Pablo; Arcenegui, Juan J.; Morgan, Hywel; Ramos, Antonio

    2015-01-01

    We describe the reversible assembly of an aqueous suspension of metal nanowires into two different 2-dimensional stable configurations. The assembly is induced by an AC electric field of magnitude around 10 kV/m. It is known that single metal nanowires orientate parallel to the electric field for all values of applied frequency, according to two different mechanisms depending on the frequency. These different mechanisms also govern the mutual interaction between nanowires, which leads to directed-assembly into distinctive structures, the shape of which depends on the frequency of the applied field. We show that for frequencies higher than the typical frequency for charging the electrical double layer at the metal-electrolyte interface, dipole-dipole interaction leads to the formation of chains of nanowires. For lower frequencies, the nanowires form wavy bands perpendicular to the electric field direction. This behavior appears to be driven by the electroosmotic flow induced on the metal surface of the nanowires. Remarkably, no similar structures have been reported in previous studies of nanowires.

  7. Laser optomechanics

    NASA Astrophysics Data System (ADS)

    Yang, Weijian; Adair Gerke, Stephen; Wei Ng, Kar; Rao, Yi; Chase, Christopher; Chang-Hasnain, Connie J.

    2015-09-01

    Cavity optomechanics explores the interaction between optical field and mechanical motion. So far, this interaction has relied on the detuning between a passive optical resonator and an external pump laser. Here, we report a new scheme with mutual coupling between a mechanical oscillator supporting the mirror of a laser and the optical field generated by the laser itself. The optically active cavity greatly enhances the light-matter energy transfer. In this work, we use an electrically-pumped vertical-cavity surface-emitting laser (VCSEL) with an ultra-light-weight (130 pg) high-contrast-grating (HCG) mirror, whose reflectivity spectrum is designed to facilitate strong optomechanical coupling, to demonstrate optomechanically-induced regenerative oscillation of the laser optomechanical cavity. We observe >550 nm self-oscillation amplitude of the micromechanical oscillator, two to three orders of magnitude larger than typical, and correspondingly a 23 nm laser wavelength sweep. In addition to its immediate applications as a high-speed wavelength-swept source, this scheme also offers a new approach for integrated on-chip sensors.

  8. Optimal averaging of soil moisture predictions from ensemble land surface model simulations

    USDA-ARS?s Scientific Manuscript database

    The correct interpretation of ensemble information obtained from the parallel implementation of multiple land surface models (LSMs) requires information concerning the LSM ensemble’s mutual error covariance. Here we propose a new technique for obtaining such information using an instrumental variabl...

  9. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    PubMed Central

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam

    2017-01-01

    Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries. PMID:28443608

  10. Robust design of multiple trailing edge flaps for helicopter vibration reduction: A multi-objective bat algorithm approach

    NASA Astrophysics Data System (ADS)

    Mallick, Rajnish; Ganguli, Ranjan; Seetharama Bhat, M.

    2015-09-01

    The objective of this study is to determine an optimal trailing edge flap configuration and flap location to achieve minimum hub vibration levels and flap actuation power simultaneously. An aeroelastic analysis of a soft in-plane four-bladed rotor is performed in conjunction with optimal control. A second-order polynomial response surface based on an orthogonal array (OA) with 3-level design describes both the objectives adequately. Two new orthogonal arrays called MGB2P-OA and MGB4P-OA are proposed to generate nonlinear response surfaces with all interaction terms for two and four parameters, respectively. A multi-objective bat algorithm (MOBA) approach is used to obtain the optimal design point for the mutually conflicting objectives. MOBA is a recently developed nature-inspired metaheuristic optimization algorithm that is based on the echolocation behaviour of bats. It is found that MOBA inspired Pareto optimal trailing edge flap design reduces vibration levels by 73% and flap actuation power by 27% in comparison with the baseline design.

  11. Self-interacting polymer chains terminally anchored to adsorbing surfaces of three-dimensional fractal lattices

    NASA Astrophysics Data System (ADS)

    Živić, I.; Elezović-Hadžić, S.; Milošević, S.

    2018-01-01

    We have studied the adsorption problem of self-attracting linear polymers, modeled by self-avoiding walks (SAWs), situated on three-dimensional fractal structures, exemplified by 3d Sierpinski gasket (SG) family of fractals as containers of a poor solvent. Members of SG family are enumerated by an integer b (b ≥ 2), and it is assumed that one side of each SG fractal is an impenetrable adsorbing surface. We calculate the critical exponents γ1 ,γ11, and γs, which are related to the numbers of all possible SAWs with one, both, and no ends anchored to the adsorbing boundary, respectively. By applying the exact renormalization group (RG) method (for the first three members of the SG fractal family, b = 2 , 3, and 4), we have obtained specific values of these exponents, for θ-chain and globular polymer phase. We discuss their mutual relations and relations with corresponding values pertinent to extended polymer chain phase.

  12. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam

    2017-04-01

    Undesired electrode-electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.

  13. Carers' interactions with patients suffering from severe dementia: a difficult balance to facilitate mutual togetherness.

    PubMed

    Hansebo, Görel; Kihlgren, Mona

    2002-03-01

    1. A phenomenological-hermeneutic approach was used to illuminate carers' video-recorded interactions in connection with supervision for individualized nursing care. 2. In order to disclose any changes in the carers' interactions with patients suffering from severe dementia the video recordings were conducted before, during and after the intervention. 3. The content of the videos was transcribed as a text, mainly verbal communication. Due to the rich data the videos and text were kept together as a whole in every step of the analysis. 4. After an initial naïve understanding, different subthemes emerged in the structural analyses: promoting competence, struggling for co-operation, deep communication for communion, showing respect for the unique person, skills in balancing power, distance in a negative point of view, and fragmentary nursing situations. 5. The overall theme was 'Carers' balancing in their interactions, verbal as well as non-verbal, to promote a sense of mutual togetherness with the patient'. 6. The supervision intervention contributed to an improvement in carers' skills in balancing in their interactions. In the caring process carers' and patients' shared experiences and, due to patients' disabilities, interactions depended mainly on carers' qualities and capabilities for this confirming nursing care.

  14. See You See Me: the Role of Eye Contact in Multimodal Human-Robot Interaction.

    PubMed

    Xu, Tian Linger; Zhang, Hui; Yu, Chen

    2016-05-01

    We focus on a fundamental looking behavior in human-robot interactions - gazing at each other's face. Eye contact and mutual gaze between two social partners are critical in smooth human-human interactions. Therefore, investigating at what moments and in what ways a robot should look at a human user's face as a response to the human's gaze behavior is an important topic. Toward this goal, we developed a gaze-contingent human-robot interaction system, which relied on momentary gaze behaviors from a human user to control an interacting robot in real time. Using this system, we conducted an experiment in which human participants interacted with the robot in a joint attention task. In the experiment, we systematically manipulated the robot's gaze toward the human partner's face in real time and then analyzed the human's gaze behavior as a response to the robot's gaze behavior. We found that more face looks from the robot led to more look-backs (to the robot's face) from human participants and consequently created more mutual gaze and eye contact between the two. Moreover, participants demonstrated more coordinated and synchronized multimodal behaviors between speech and gaze when more eye contact was successfully established and maintained.

  15. Difference in growth and coalescing patterns of droplets on bi-philic surfaces with varying spatial distribution.

    PubMed

    Garimella, Martand Mayukh; Koppu, Sudheer; Kadlaskar, Shantanu Shrikant; Pillutla, Venkata; Abhijeet; Choi, Wonjae

    2017-11-01

    This paper reports the condensation and subsequent motion of water droplets on bi-philic surfaces, surfaces that are patterned with regions of different wettability. Bi-philic surfaces can enhance the water collection efficiency: droplets condensing on hydrophobic regions wick into hydrophilic drain channels when droplets grow to a certain size, renewing the condensation on the dry hydrophobic region. The onset of drain phenomenon can be triggered by multiple events with distinct nature ranging from gravity, direct contact between a droplet and a drain channel, to a mutual coalescence between droplets. This paper focuses on the effect of the length scale of hydrophobic regions on the dynamics of mutual coalescence between droplets and subsequent drainage. The main hypothesis was that, when the drop size is sufficient, the kinetic energy associated with a coalescence of droplets may cause dynamic advancing of a newly formed drop, leading to further coalescence with nearby droplets and ultimately to a chain reaction. We fabricate bi-philic surfaces with hydrophilic and hydrophobic stripes, and the result confirms that coalescing droplets, when the length scale of droplets increases beyond 0.2mm, indeed display dynamic expansion and chain reaction. Multiple droplets can thus migrate to hydrophilic drain simultaneously even when the initial motion of the droplets was not triggered by the direct contact between the droplet and the hydrophilic drain. Efficiency of drain due to mutual coalescence of droplets varies depending on the length scale of bi-philic patterns, and the drain phenomenon reaches its peak when the width of hydrophobic stripes is between 800μm and 1mm. The Ohnesorge number of droplets draining on noted surfaces is between 0.0042 and 0.0037 respectively. The observed length scale of bi-philic patterns matches that on the Stenocara beetle's fog harvesting back surface. This match between length scales suggests that the surface of the insect is optimized for the drain of harvested water. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. An age-dependent interaction with leptin unmasks ghrelin's bone-protective effects

    USDA-ARS?s Scientific Manuscript database

    The mutual interplay between energy homeostasis and bone metabolism is an important emerging concept. Ghrelin and leptin antagonize each other in regulating energy balance, but the role of this interaction in bone metabolism is unknown. Using ghrelin receptor and leptin-deficient mice, we show that ...

  17. A Specialist Herbivore Uses Chemical Camouflage to Overcome the Defenses of an Ant-Plant Mutualism

    PubMed Central

    Whitehead, Susan R.; Reid, Ellen; Sapp, Joseph; Poveda, Katja; Royer, Anne M.; Posto, Amanda L.; Kessler, André

    2014-01-01

    Many plants and ants engage in mutualisms where plants provide food and shelter to the ants in exchange for protection against herbivores and competitors. Although several species of herbivores thwart ant defenses and extract resources from the plants, the mechanisms that allow these herbivores to avoid attack are poorly understood. The specialist insect herbivore, Piezogaster reclusus (Hemiptera: Coreidae), feeds on Neotropical bull-horn acacias (Vachellia collinsii) despite the presence of Pseudomyrmex spinicola ants that nest in and aggressively defend the trees. We tested three hypotheses for how P. reclusus feeds on V. collinsii while avoiding ant attack: (1) chemical camouflage via cuticular surface compounds, (2) chemical deterrence via metathoracic defense glands, and (3) behavioral traits that reduce ant detection or attack. Our results showed that compounds from both P. reclusus cuticles and metathoracic glands reduce the number of ant attacks, but only cuticular compounds appear to be essential in allowing P. reclusus to feed on bull-horn acacia trees undisturbed. In addition, we found that ant attack rates to P. reclusus increased significantly when individuals were transferred between P. spinicola ant colonies. These results are consistent with the hypothesis that chemical mimicry of colony-specific ant or host plant odors plays a key role in allowing P. reclusus to circumvent ant defenses and gain access to important resources, including food and possibly enemy-free space. This interaction between ants, acacias, and their herbivores provides an excellent example of the ability of herbivores to adapt to ant defenses of plants and suggests that herbivores may play an important role in the evolution and maintenance of mutualisms. PMID:25047551

  18. A specialist herbivore uses chemical camouflage to overcome the defenses of an ant-plant mutualism.

    PubMed

    Whitehead, Susan R; Reid, Ellen; Sapp, Joseph; Poveda, Katja; Royer, Anne M; Posto, Amanda L; Kessler, André

    2014-01-01

    Many plants and ants engage in mutualisms where plants provide food and shelter to the ants in exchange for protection against herbivores and competitors. Although several species of herbivores thwart ant defenses and extract resources from the plants, the mechanisms that allow these herbivores to avoid attack are poorly understood. The specialist insect herbivore, Piezogaster reclusus (Hemiptera: Coreidae), feeds on Neotropical bull-horn acacias (Vachellia collinsii) despite the presence of Pseudomyrmex spinicola ants that nest in and aggressively defend the trees. We tested three hypotheses for how P. reclusus feeds on V. collinsii while avoiding ant attack: (1) chemical camouflage via cuticular surface compounds, (2) chemical deterrence via metathoracic defense glands, and (3) behavioral traits that reduce ant detection or attack. Our results showed that compounds from both P. reclusus cuticles and metathoracic glands reduce the number of ant attacks, but only cuticular compounds appear to be essential in allowing P. reclusus to feed on bull-horn acacia trees undisturbed. In addition, we found that ant attack rates to P. reclusus increased significantly when individuals were transferred between P. spinicola ant colonies. These results are consistent with the hypothesis that chemical mimicry of colony-specific ant or host plant odors plays a key role in allowing P. reclusus to circumvent ant defenses and gain access to important resources, including food and possibly enemy-free space. This interaction between ants, acacias, and their herbivores provides an excellent example of the ability of herbivores to adapt to ant defenses of plants and suggests that herbivores may play an important role in the evolution and maintenance of mutualisms.

  19. Evolution of the Edgeworth-Kuiper Belt and Kuiperoidal Dust

    NASA Astrophysics Data System (ADS)

    Ozernoy, L. M.; Ipatov, S. I.

    Evolution of orbits of Edgeworth-Kuiper belt objects (EKBOs) under the gravitational influence of the giant planets has been studied by a number of authors (e.g., Duncan & Levison; Budd; Ozernoy, Gorkavyi & Taidakova). Here we show that the gravitational interactions of EKBOs can also play a certain role in their orbital evolution. For instance, during the last 4 Gyr as many as several percents of EKBOs could change their semimajor axes by more than 1 AU due to close encounters with other EKBOs. Even small variations in orbital elements of EKBOs caused by their mutual collisions coupled with the mutual gravitational influence can cause large variations in the orbital elements due to the gravitational influence of planets. About 6% of Neptune-crossers can reach the orbit of the Earth, with the average time in Earth-crossing orbits of about 5× 103 yr. The portion of former EKBOs now moving in Earth-crossing orbits can exceed 20% of all Earth-crossers. Evaporation of the volatile material from the EKBOs surfaces, due to mutual EKBO collisions, along with the Solar wind and the heating by the Sun, are the sources of the dust in the outer Solar system. The evolution and structure of the interplanetary dust cloud computed, in some approximations, by Gorkavyi, Ozernoy, Mather, & Taidakova offers a preliminary 3-D physical model of the cloud, which includes three dust components (asteroidal, cometary, and kuiperoidal), which is fairly consistent with the available data of Pioneer and Voyager dust detectors and contribution of the zodiacal light into the COBE/DIRBE data. We acknowledge support of this work by NASA grant NAG5-10776, the Russian Federal Program ``Astronomy'' (section 1.9.4.1), RFBR (01-02-17540), and INTAS (00-240).

  20. Theoretical insights into the π-hole interactions in the complexes containing triphosphorus hydride (P3H3) and its derivatives.

    PubMed

    Wang, Yuehong; Li, Xiaoyan; Zeng, Yanli; Meng, Lingpeng; Zhang, Xueying

    2017-04-01

    The π-hole of triphosphorus hydride (P 3 H 3 ) and its derivatives Z 3 X 3 (Z = P, As; X = H, F, Cl, Br) was discovered and analyzed. MP2/aug-cc-pVDZ calculations were performed on the π-hole interactions in the HCN...Z 3 X 3 complexes and the mutual influence between π-hole interactions and the hydrogen bond in the HCN...HCN...Z 3 X 3 and HCN...Z 3 X 3 ...HCN complexes studied. The π-hole interaction belongs to the typical closed-shell noncovalent interaction. The linear relationship was found between the most positive electrostatic potential of the π-hole (V S,max ) and the interaction energy. Moreover, the V S,max of the π-hole was also found to be linearly correlated to the electrostatic energy term, indicating the important contribution of the electrostatic energy term to the π-hole interaction. There is positive cooperativity between the π-hole interaction and the hydrogen bond in the termolecular complexes. The π-hole interaction has a greater influence on the hydrogen bond than vice versa. The mutual enhancing effect between the π-hole interaction and the hydrogen bond in the HCN...HCN...Z 3 X 3 complexes is greater than that in the HCN...Z 3 X 3 ...HCN complexes.

  1. Mutually Exclusive Splicing of the Insect Dscam Pre-mRNA Directed by Competing Intronic RNA Secondary Structures

    PubMed Central

    Graveley, Brenton R.

    2008-01-01

    Summary Drosophila Dscam encodes 38,016 distinct axon guidance receptors through the mutually exclusive alternative splicing of 95 variable exons. Importantly, known mechanisms that ensure the mutually exclusive splicing of pairs of exons cannot explain this phenomenon in Dscam. I have identified two classes of conserved elements in the Dscam exon 6 cluster, which contains 48 alternative exons—the docking site, located in the intron downstream of constitutive exon 5, and the selector sequences, which are located upstream of each exon 6 variant. Strikingly, each selector sequence is complementary to a portion of the docking site, and this pairing juxtaposes one, and only one, alternative exon to the upstream constitutive exon. The mutually exclusive nature of the docking site:selector sequence interactions suggests that the formation of these competing RNA structures is a central component of the mechanism guaranteeing that only one exon 6 variant is included in each Dscam mRNA. PMID:16213213

  2. Long-range RNA pairings contribute to mutually exclusive splicing

    PubMed Central

    Yue, Yuan; Yang, Yun; Dai, Lanzhi; Cao, Guozheng; Chen, Ran; Hong, Weiling; Liu, Baoping; Shi, Yang; Meng, Yijun; Shi, Feng; Xiao, Mu; Jin, Yongfeng

    2016-01-01

    Mutually exclusive splicing is an important means of increasing the protein repertoire, by which the Down's syndrome cell adhesion molecule (Dscam) gene potentially generates 38,016 different isoforms in Drosophila melanogaster. However, the regulatory mechanisms remain obscure due to the complexity of the Dscam exon cluster. Here, we reveal a molecular model for the regulation of the mutually exclusive splicing of the serpent pre-mRNA based on competition between upstream and downstream RNA pairings. Such dual RNA pairings confer fine tuning of the inclusion of alternative exons. Moreover, we demonstrate that the splicing outcome of alternative exons is mediated in relative pairing strength-correlated mode. Combined comparative genomics analysis and experimental evidence revealed similar bidirectional structural architectures in exon clusters 4 and 9 of the Dscam gene. Our findings provide a novel mechanistic framework for the regulation of mutually exclusive splicing and may offer potentially applicable insights into long-range RNA–RNA interactions in gene regulatory networks. PMID:26554032

  3. Long-range RNA pairings contribute to mutually exclusive splicing.

    PubMed

    Yue, Yuan; Yang, Yun; Dai, Lanzhi; Cao, Guozheng; Chen, Ran; Hong, Weiling; Liu, Baoping; Shi, Yang; Meng, Yijun; Shi, Feng; Xiao, Mu; Jin, Yongfeng

    2016-01-01

    Mutually exclusive splicing is an important means of increasing the protein repertoire, by which the Down's syndrome cell adhesion molecule (Dscam) gene potentially generates 38,016 different isoforms in Drosophila melanogaster. However, the regulatory mechanisms remain obscure due to the complexity of the Dscam exon cluster. Here, we reveal a molecular model for the regulation of the mutually exclusive splicing of the serpent pre-mRNA based on competition between upstream and downstream RNA pairings. Such dual RNA pairings confer fine tuning of the inclusion of alternative exons. Moreover, we demonstrate that the splicing outcome of alternative exons is mediated in relative pairing strength-correlated mode. Combined comparative genomics analysis and experimental evidence revealed similar bidirectional structural architectures in exon clusters 4 and 9 of the Dscam gene. Our findings provide a novel mechanistic framework for the regulation of mutually exclusive splicing and may offer potentially applicable insights into long-range RNA-RNA interactions in gene regulatory networks. © 2015 Yue et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  4. Optimal averaging of soil moisture predictions from ensemble land surface model simulations

    USDA-ARS?s Scientific Manuscript database

    The correct interpretation of ensemble 3 soil moisture information obtained from the parallel implementation of multiple land surface models (LSMs) requires information concerning the LSM ensemble’s mutual error covariance. Here we propose a new technique for obtaining such information using an inst...

  5. Metabolic and Demographic Feedbacks Shape the Emergent Spatial Structure and Function of Microbial Communities

    PubMed Central

    Estrela, Sylvie; Brown, Sam P.

    2013-01-01

    Microbes are predominantly found in surface-attached and spatially structured polymicrobial communities. Within these communities, microbial cells excrete a wide range of metabolites, setting the stage for interspecific metabolic interactions. The links, however, between metabolic and ecological interactions (functional relationships), and species spatial organization (structural relationships) are still poorly understood. Here, we use an individual-based modelling framework to simulate the growth of a two-species surface-attached community where food (resource) is traded for detoxification (service) and investigate how metabolic constraints of individual species shape the emergent structural and functional relationships of the community. We show that strong metabolic interdependence drives the emergence of mutualism, robust interspecific mixing, and increased community productivity. Specifically, we observed a striking and highly stable emergent lineage branching pattern, generating a persistent lineage mixing that was absent when the metabolic exchange was removed. These emergent community properties are driven by demographic feedbacks, such that aid from neighbouring cells directly enhances focal cell growth, which in turn feeds back to neighbour fecundity. In contrast, weak metabolic interdependence drives conflict (exploitation or competition), and in turn greater interspecific segregation. Together, these results support the idea that species structural and functional relationships represent the net balance of metabolic interdependencies. PMID:24385891

  6. TPPII, MYBBP1A and CDK2 form a protein-protein interaction network.

    PubMed

    Nahálková, Jarmila; Tomkinson, Birgitta

    2014-12-15

    Tripeptidyl-peptidase II (TPPII) is an aminopeptidase with suggested regulatory effects on cell cycle, apoptosis and senescence. A protein-protein interaction study revealed that TPPII physically interacts with the tumor suppressor MYBBP1A and the cell cycle regulator protein CDK2. Mutual protein-protein interaction was detected between MYBBP1A and CDK2 as well. In situ Proximity Ligation Assay (PLA) using HEK293 cells overexpressing TPPII forming highly enzymatically active oligomeric complexes showed that the cytoplasmic interaction frequency of TPPII with MYBBP1A increased with the protein expression of TPPII and using serum-free cell growth conditions. A specific reversible inhibitor of TPPII, butabindide, suppressed the cytoplasmic interactions of TPPII and MYBBP1A both in control HEK293 and the cells overexpressing murine TPPII. The interaction of MYBBP1A with CDK2 was confirmed by in situ PLA in two different mammalian cell lines. Functional link between TPPII and MYBBP1A has been verified by gene expression study during anoikis, where overexpression of TPP II decreased mRNA expression level of MYBBP1A at the cell detachment conditions. All three interacting proteins TPPII, MYBBP1A and CDK2 have been previously implicated in the research for development of tumor-suppressing agents. This is the first report presenting mutual protein-protein interaction network of these proteins. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. A parasitism-mutualism-predation model consisting of crows, cuckoos and cats with stage-structure and maturation delays on crows and cuckoos

    USGS Publications Warehouse

    Luo, Yantao; Zhang, Long; Teng, Zhidong; DeAngelis, Donald L.

    2018-01-01

    In this paper, a parasitism-mutualism-predation model is proposed to investigate the dynamics of multi-interactions among cuckoos, crows and cats with stage-structure and maturation time delays on cuckoos and crows. The crows permit the cuckoos to parasitize their nestlings (eggs) on the crow chicks (eggs). In return, the cuckoo nestlings produce a malodorous cloacal secretion to protect the crow chicks from predation by the cats, which is apparently beneficial to both the crow and cuckoo population. The multi-interactions, i.e., parasitism and mutualism between the cuckoos (nestlings) and crows (chicks), predation between the cats and crow chicks are modeled both by Holling-type II and Beddington-DeAngelis-type functional responses. The existence of positive equilibria of three subsystems of the model are discussed. The criteria for the global stability of the trivial equilibrium are established by the Krein-Rutman Theorem and other analysis methods. Moreover, the threshold dynamics for the coexistence and weak persistence of the model are obtained, and we show, both analytically and numerically, that the stabilities of the interior equilibria may change with the increasing maturation time delays. We find there exists an evident difference in the dynamical properties of the parasitism-mutualism-predation model based on whether or not we consider the effects of stage-structure and maturation time delays on cuckoos and crows. Inclusion of stage structure results in many varied dynamical complexities which are difficult to encompass without this inclusion.

  8. Finding quasi-modules of human and viral miRNAs: a case study of human cytomegalovirus (HCMV)

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) are important regulators of gene expression encoded by a variety of organisms, including viruses. Although the function of most of the viral miRNAs is currently unknown, there is evidence that both viral and host miRNAs contribute to the interactions between viruses and their hosts. miRNAs constitute a complex combinatorial network, where one miRNA may target many genes and one gene may be targeted by multiple miRNAs. In particular, viral and host miRNAs may also have mutual target genes. Based on published evidence linking viral and host miRNAs there are three modes of mutual regulation: competing, cooperating, and compensating modes. Results In this paper we explore the compensating mode of mutual regulation upon Human Cytomegalovirus (HCMV) infection, when host miRNAs are down regulated and viral miRNAs compensate by mimicking their function. To achieve this, we develop a new algorithm which finds groups, called quasi-modules, of viral and host miRNAs and their mutual target genes, and use a new host miRNA expression data for HCMV-infected and uninfected cells. For two of the reported quasi-modules, supporting evidence from biological and medical literature is provided. Conclusions The modules found by our method may advance the understanding of the role of miRNAs in host-viral interactions, and the genes in these modules may serve as candidates for further experimental validation. PMID:23206407

  9. The bonobo-dialium positive interactions: seed dispersal mutualism.

    PubMed

    Beaune, David; Bretagnolle, François; Bollache, Loïc; Hohmann, Gottfried; Surbeck, Martin; Bourson, Chloé; Fruth, Barbara

    2013-04-01

    A positive interaction is any interaction between individuals of the same or different species (mutualism) that provides a benefit to both partners such as increased fitness. Here we focus on seed dispersal mutualism between an animal (bonobo, Pan paniscus) and a plant (velvet tamarind trees, Dialium spp.). In the LuiKotale rainforest southwest of Salonga National Park, Democratic Republic of Congo, seven species of the genus Dialium account for 29.3% of all trees. Dialium is thus the dominant genus in this forest. Dialium fruits make up a large proportion of the diet of a habituated bonobo community in this forest. During the 6 months of the fruiting season, more than half of the bonobos' feeding time is devoted to Dialium fruits. Furthermore, Dialium fruits contribute a considerable proportion of sugar and protein to bonobos' dietary intake, being among the richest fruits for these nutrients. Bonobos in turn ingest fruits with seeds that are disseminated in their feces (endozoochory) at considerable distances (average: 1.25 km after 24 hr of average transit time). Endozoochory through the gut causes loss of the cuticle protection and tegumentary dormancy, as well as an increase in size by water uptake. Thus, after gut passage, seeds are better able to germinate. We consider other primate species as a potential seed disperser and conclude that Dialium germination is dependent on passage through bonobo guts. This plant-animal interaction highlights positive effects between two major organisms of the Congo basin rainforest, and establishes the role of the bonobo as an efficient disperser of Dialium seeds. Periodicals, Inc. © 2013 Wiley Periodicals, Inc.

  10. Temporal Information Partitioning Networks (TIPNets): A process network approach to infer ecohydrologic shifts

    NASA Astrophysics Data System (ADS)

    Goodwell, Allison E.; Kumar, Praveen

    2017-07-01

    In an ecohydrologic system, components of atmospheric, vegetation, and root-soil subsystems participate in forcing and feedback interactions at varying time scales and intensities. The structure of this network of complex interactions varies in terms of connectivity, strength, and time scale due to perturbations or changing conditions such as rainfall, drought, or land use. However, characterization of these interactions is difficult due to multivariate and weak dependencies in the presence of noise, nonlinearities, and limited data. We introduce a framework for Temporal Information Partitioning Networks (TIPNets), in which time-series variables are viewed as nodes, and lagged multivariate mutual information measures are links. These links are partitioned into synergistic, unique, and redundant information components, where synergy is information provided only jointly, unique information is only provided by a single source, and redundancy is overlapping information. We construct TIPNets from 1 min weather station data over several hour time windows. From a comparison of dry, wet, and rainy conditions, we find that information strengths increase when solar radiation and surface moisture are present, and surface moisture and wind variability are redundant and synergistic influences, respectively. Over a growing season, network trends reveal patterns that vary with vegetation and rainfall patterns. The framework presented here enables us to interpret process connectivity in a multivariate context, which can lead to better inference of behavioral shifts due to perturbations in ecohydrologic systems. This work contributes to more holistic characterizations of system behavior, and can benefit a wide variety of studies of complex systems.

  11. Endophyte mediated plant-herbivore interactions or cross resistance to fungi and insect herbivores

    Treesearch

    Kari Saikkonen; Marjo Helander

    2012-01-01

    Endophytic fungi are generally considered to be plant mutualists that protect the host plant from pathogens and herbivores. Defensive mutualism appears to hold true particularly for seed-transmitted, alkaloid producing, grass endophytes. However, we propose that the mutualistic nature of plant-endophyte interactions via enhanced plant resistance to pathogens and...

  12. Development of Lexical and Syntactic Representations: The Acquisition of Symmetrical and Asymmetrical Verbs

    ERIC Educational Resources Information Center

    Gurcanli, Ozge

    2013-01-01

    This dissertation concerns the acquisition of the interaction between lexicosemantic properties of verbs and syntax, focusing on symmetrical and asymmetrical verbs in different syntactic structures. Based on linguistic evidence, it is shown that two conceptual categories, Mutuality and Number, interact to give rise to four event-types: Single…

  13. Early Markers of Language and Attention: Mutual Contributions and the Impact of Parent-Infant Interactions

    ERIC Educational Resources Information Center

    Gartstein, Maria A.; Crawford, Jennifer; Robertson, Christopher D.

    2008-01-01

    This study was conducted to explore the contribution of attentional skills to early language, and the influence of early language markers on the development of attention, simultaneously examining the impact of parent-child interaction factors (reciprocity/synchrony and sensitivity/responsivity), including their potential moderator effects. All…

  14. Patterns of Interaction in Family Relationships and the Development of Identity Exploration in Adolescence.

    ERIC Educational Resources Information Center

    Grotevant, Harold D.; Cooper, Catherine R.

    1985-01-01

    Developed a model of individuation in family relationships focused on communicative processes. Expressions of four dimensions of the model (self-esteem, separateness, permeability, and mutuality) were predicted to be positively associated with identity exploration in adolescents. Analysis of observations of families in a Family Interaction Task…

  15. Mutually Beneficial Foreign Language Learning: Creating Meaningful Interactions through Video-Synchronous Computer-Mediated Communication

    ERIC Educational Resources Information Center

    Kato, Fumie; Spring, Ryan; Mori, Chikako

    2016-01-01

    Providing learners of a foreign language with meaningful opportunities for interactions, specifically with native speakers, is especially challenging for instructors. One way to overcome this obstacle is through video-synchronous computer-mediated communication tools such as Skype software. This study reports quantitative and qualitative data from…

  16. Strong indirect interactions of Tarsonemus mites (Acarina: Tarsonemidae) and Dendroctonus frontalis (Coleoptera: Scolytidae)

    Treesearch

    Maria J. Lombardero; Matthew P. Ayres; Richard W. Hofstetter; John C. Moser; Kier D. Lepzig

    2003-01-01

    Phoretic mites of bark beetles are classic examples of commensal ectosymbionts. However, many such mites appear to have mutualisms with fungi that could themselves interact with beetles. We tested for indirect effects of phoretic mites on Dendroctonus frontalis, which auacks and kills pine trees in North America. Tarsonemus mites...

  17. Temporal Dynamics and Decomposition of Reciprocal Determinism: A Reply to Phillips and Orton.

    ERIC Educational Resources Information Center

    Bandura, Albert

    1983-01-01

    In their analysis of reciprocal determinism, Phillips and Orton (TM 509 061) mistakenly assume that behavior, cognitive and other personal factors, and environmental events operate as a simultaneous wholistic interaction. Contrary to this belief, the interactants in triadic reciprocality work their mutual effects sequentially over variable time…

  18. Effects of Message Interactivity upon Relational Maintenance Strategy in Digital Communications between Organizations and the Public

    ERIC Educational Resources Information Center

    Liu, Zhan-Qing

    2012-01-01

    Digital communication between organizations and the public is strategically important in shaping mutual understanding and long term relationship. The primary focus of this project was to investigate the relationship between message interactivity and relational maintenance strategy in the email communication process on organization websites. At…

  19. Cytochrome c at charged interfaces studied by resonance Raman and surface-enhanced resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Peter

    1991-05-01

    The effect of electrostatic fields on the structure of cytochrome c bound to charged interfaces was studied by resonance Raman and surface enhanced resonance Raman spectroscopy. Binding of this heme protein to the Ag electrode or heteropolytungstates which may be regarded as simple model systems for biological interfaces establishes an equilibrium between two conformational states (I II). In state I the structure and the redox potential are the same as for the uncomplexed cytochrome c. In state II however the heme pocket assumes an open structure and the axial iron Met80 bond is weakened leading to thennal coordination equilibrium between the fivecoordinated high spin and the sixcoordinated low spin configuration. These structural changes are accompanied by a decrease of the redox potential by 420 mV. The structural rearrangement of the heme pocket in state II is presumably initiated by the dissociation of the internal salt bridge of Lys13 due to electrostatic interactions with the negatively charged surfaces of the model systems. From detailed Raman spectroscopic studies characteristic spectral properties of the states I and II were identified. Based on these findings the interactions of cytochrome c with phospholipid vesicles as well as with its physiological reaction partner cytocbrome c oxidase were analysed. A systematic study of the cytochmme c/phospholipid system by varying the lipid composition and the temperature revealed mutual structural changes in both the lipid and the protein structure.

  20. Human performance interfaces in air traffic control.

    PubMed

    Chang, Yu-Hern; Yeh, Chung-Hsing

    2010-01-01

    This paper examines how human performance factors in air traffic control (ATC) affect each other through their mutual interactions. The paper extends the conceptual SHEL model of ergonomics to describe the ATC system as human performance interfaces in which the air traffic controllers interact with other human performance factors including other controllers, software, hardware, environment, and organisation. New research hypotheses about the relationships between human performance interfaces of the system are developed and tested on data collected from air traffic controllers, using structural equation modelling. The research result suggests that organisation influences play a more significant role than individual differences or peer influences on how the controllers interact with the software, hardware, and environment of the ATC system. There are mutual influences between the controller-software, controller-hardware, controller-environment, and controller-organisation interfaces of the ATC system, with the exception of the controller-controller interface. Research findings of this study provide practical insights in managing human performance interfaces of the ATC system in the face of internal or external change, particularly in understanding its possible consequences in relation to the interactions between human performance factors.

  1. The long-range non-additive three-body dispersion interactions for the rare gases, alkali, and alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Tang, Li-Yan; Yan, Zong-Chao; Shi, Ting-Yun; Babb, James F.; Mitroy, J.

    2012-03-01

    The long-range non-additive three-body dispersion interaction coefficients Z111, Z112, Z113, and Z122 are computed for many atomic combinations using standard expressions. The atoms considered include hydrogen, the rare gases, the alkali atoms (up to Rb), and the alkaline-earth atoms (up to Sr). The term Z111 arising from three mutual dipole interactions is known as the Axilrod-Teller-Muto coefficient or the DDD (dipole-dipole-dipole) coefficient. Similarly, the terms Z112, Z113, and Z122 arise from the mutual combinations of dipole (1), quadrupole (2), and octupole (3) interactions between atoms and they are sometimes known, respectively, as dipole-dipole-quadrupole, dipole-dipole-octupole, and dipole-quadrupole-quadrupole coefficients. Results for the four Z coefficients are given for the homonuclear trimers, for the trimers involving two like-rare-gas atoms, and for the trimers with all combinations of the H, He, and Li atoms. An exhaustive compilation of all coefficients between all possible atomic combinations is presented as supplementary data.

  2. Virulence Factors of Geminivirus Interact with MYC2 to Subvert Plant Resistance and Promote Vector Performance[C][W

    PubMed Central

    Li, Ran; Weldegergis, Berhane T.; Li, Jie; Jung, Choonkyun; Qu, Jing; Sun, Yanwei; Qian, Hongmei; Tee, ChuanSia; van Loon, Joop J.A.; Dicke, Marcel; Chua, Nam-Hai; Liu, Shu-Sheng

    2014-01-01

    A pathogen may cause infected plants to promote the performance of its transmitting vector, which accelerates the spread of the pathogen. This positive effect of a pathogen on its vector via their shared host plant is termed indirect mutualism. For example, terpene biosynthesis is suppressed in begomovirus-infected plants, leading to reduced plant resistance and enhanced performance of the whiteflies (Bemisia tabaci) that transmit these viruses. Although begomovirus-whitefly mutualism has been known, the underlying mechanism is still elusive. Here, we identified βC1 of Tomato yellow leaf curl China virus, a monopartite begomovirus, as the viral genetic factor that suppresses plant terpene biosynthesis. βC1 directly interacts with the basic helix-loop-helix transcription factor MYC2 to compromise the activation of MYC2-regulated terpene synthase genes, thereby reducing whitefly resistance. MYC2 associates with the bipartite begomoviral protein BV1, suggesting that MYC2 is an evolutionarily conserved target of begomoviruses for the suppression of terpene-based resistance and the promotion of vector performance. Our findings describe how this viral pathogen regulates host plant metabolism to establish mutualism with its insect vector. PMID:25490915

  3. An overlooked plant–parakeet mutualism counteracts human overharvesting on an endangered tree

    PubMed Central

    Gleiser, Gabriela; Tella, José L.; Hiraldo, Fernando; Aizen, Marcelo A.

    2018-01-01

    The exponential growth of the human population often causes the overexploitation of resources and disruption of ecological interactions. Here, we propose that the antagonist effect of humans on exploited species might be alleviated with the advent of a second predator species. We focused on the complex interactions between an endangered conifer (Araucaria araucana) and two seed exploiters: the Austral parakeet (Enicognathus ferrugineus) and human seed collectors. We tested the importance of partial seed consumption by parakeets as an escape from human seed harvesting. Although parakeets frequently ate whole seeds, a substantial proportion of the seeds found under trees were only partially eaten and avoided by human seed collectors. These seeds germinated at a similar proportion but faster than intact seeds under laboratory conditions. Our results revealed an overlooked mutualism between parakeets and an endangered tree. Incomplete seed eating by parakeets, plus selection against these eaten seeds by humans, may enhance regeneration possibilities for this conifer species subject to human seed collection, turning the scale of the antagonism–mutualism continuum to the mutualistic side. In this context, parakeets might be providing an important service in those forests subject to human harvesting by allowing a fraction of seeds to escape human predation. PMID:29410848

  4. A Mutual Hostility Explanation for the Co-Occurrence of Delinquency and Depressive Mood in Adolescence.

    PubMed

    Martínez-Ferrer, Belén; Stattin, Håkan

    2017-10-01

    Different interpersonal experiences are related to delinquency and depressive mood. In many studies, delinquency has been associated with exposing others to hostility, while depressive mood has been associated with being a victim of others' hostility. In this study, we proposed that adolescents with a co-occurrence of high delinquency and depressive mood may be both perpetrators and victims in their relations with parents at home, peers and teachers at school, and other people encountered in leisure time. We studied a normative sample of 1452 mid-adolescents (50.61% boys and 49.38% girls). Cluster analyses found a group with a co-occurrence of high delinquency and high depressive mood. Adolescents in this cluster group were highest on being exposed to hostility, exposing others to hostility, and being involved in mutually hostile interactions with others in different everyday contexts. The findings were especially strong when we examined being a victim and a perpetrator across contexts. The results were similar for boys and girls. We conclude that the co-occurrence of high delinquency and depressive mood among some adolescents is intimately linked to the mutually hostile interactions that these adolescents experience in their everyday interpersonal contexts.

  5. 3-D vision and figure-ground separation by visual cortex.

    PubMed

    Grossberg, S

    1994-01-01

    A neural network theory of three-dimensional (3-D) vision, called FACADE theory, is described. The theory proposes a solution of the classical figure-ground problem for biological vision. It does so by suggesting how boundary representations and surface representations are formed within a boundary contour system (BCS) and a feature contour system (FCS). The BCS and FCS interact reciprocally to form 3-D boundary and surface representations that are mutually consistent. Their interactions generate 3-D percepts wherein occluding and occluded object parts are separated, completed, and grouped. The theory clarifies how preattentive processes of 3-D perception and figure-ground separation interact reciprocally with attentive processes of spatial localization, object recognition, and visual search. A new theory of stereopsis is proposed that predicts how cells sensitive to multiple spatial frequencies, disparities, and orientations are combined by context-sensitive filtering, competition, and cooperation to form coherent BCS boundary segmentations. Several factors contribute to figure-ground pop-out, including: boundary contrast between spatially contiguous boundaries, whether due to scenic differences in luminance, color, spatial frequency, or disparity; partially ordered interactions from larger spatial scales and disparities to smaller scales and disparities; and surface filling-in restricted to regions surrounded by a connected boundary. Phenomena such as 3-D pop-out from a 2-D picture, Da Vinci stereopsis, 3-D neon color spreading, completion of partially occluded objects, and figure-ground reversals are analyzed. The BCS and FCS subsystems model aspects of how the two parvocellular cortical processing streams that join the lateral geniculate nucleus to prestriate cortical area V4 interact to generate a multiplexed representation of Form-And-Color-And-DEpth, or FACADE, within area V4. Area V4 is suggested to support figure-ground separation and to interact with cortical mechanisms of spatial attention, attentive object learning, and visual search. Adaptive resonance theory (ART) mechanisms model aspects of how prestriate visual cortex interacts reciprocally with a visual object recognition system in inferotemporal (IT) cortex for purposes of attentive object learning and categorization. Object attention mechanisms of the What cortical processing stream through IT cortex are distinguished from spatial attention mechanisms of the Where cortical processing stream through parietal cortex. Parvocellular BCS and FCS signals interact with the model What stream. Parvocellular FCS and magnocellular motion BCS signals interact with the model Where stream.(ABSTRACT TRUNCATED AT 400 WORDS)

  6. Conditions Promoting Mycorrhizal Parasitism Are of Minor Importance for Competitive Interactions in Two Differentially Mycotrophic Species

    PubMed Central

    Friede, Martina; Unger, Stephan; Hellmann, Christine; Beyschlag, Wolfram

    2016-01-01

    Interactions of plants with arbuscular mycorrhizal fungi (AMF) may range along a broad continuum from strong mutualism to parasitism, with mycorrhizal benefits received by the plant being determined by climatic and edaphic conditions affecting the balance between carbon costs vs. nutritional benefits. Thus, environmental conditions promoting either parasitism or mutualism can influence the mycorrhizal growth dependency (MGD) of a plant and in consequence may play an important role in plant-plant interactions. In a multifactorial field experiment we aimed at disentangling the effects of environmental and edaphic conditions, namely the availability of light, phosphorus and nitrogen, and the implications for competitive interactions between Hieracium pilosella and Corynephorus canescens for the outcome of the AMF symbiosis. Both species were planted in single, intraspecific and interspecific combinations using a target-neighbor approach with six treatments distributed along a gradient simulating conditions for the interaction between plants and AMF ranking from mutualistic to parasitic. Across all treatments we found mycorrhizal association of H. pilosella being consistently mutualistic, while pronounced parasitism was observed in C. canescens, indicating that environmental and edaphic conditions did not markedly affect the cost:benefit ratio of the mycorrhizal symbiosis in both species. Competitive interactions between both species were strongly affected by AMF, with the impact of AMF on competition being modulated by colonization. Biomass in both species was lowest when grown in interspecific competition, with colonization being increased in the less mycotrophic C. canescens, while decreased in the obligate mycotrophic H. pilosella. Although parasitism-promoting conditions negatively affected MGD in C. canescens, these effects were small as compared to growth decreases related to increased colonization levels in this species. Thus, the lack of plant control over mycorrhizal colonization was identified as a possible key factor for the outcome of competition, while environmental and edaphic conditions affecting the mutualism-parasitism continuum appeared to be of minor importance. PMID:27729924

  7. Synergistic behavior of glycine betaine-urea mixture: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Kumar, Narendra; Kishore, Nand

    2013-09-01

    Glycine betaine (GB) is one of the most important osmolyte which is known to stabilize proteins as well as counteract the denaturing effect of urea. There have been many studies indicating protein stabilization and counteraction of the effect of urea by GB. However, the exact mechanism of counteraction is still debated and is of important research interest. In this study, distribution functions, hydrogen bonds, and energetics were analysed to understand different interactions between GB and urea, and their solvation properties in presence of each other. The results show that in the GB-urea mixture, GB acted as a stronger osmolyte and urea became a weaker denaturing agent than its individual counterparts. The increase in the solvation of urea and GB in GB-urea mixture and their mutual interactions through hydrogen bonding and coulombic energy resulted in more involvement of GB and urea with solvent as well as with themselves. This might result in the increase of the exclusion of GB from protein surface and decrease in the protein-urea interactions in the mixture. This synergistic behavior might be the prime reason for the counteraction of denaturing effect of urea by GB.

  8. Radiative Enhancement of Linear and Third-Order Vibrational Excitations by an Array of Infrared Plasmonic Antennas.

    PubMed

    Gandman, Andrey; Mackin, Robert T; Cohn, Bar; Rubtsov, Igor V; Chuntonov, Lev

    2018-05-22

    Infrared gold antennas localize enhanced near fields close to the metal surface, when excited at the frequency of their plasmon resonance, and amplify vibrational signals from the nearby molecules. We study the dependence of the signal enhancement on the thickness of a polymer film containing vibrational chromophores, deposited on the antenna array, using linear (FTIR) and third-order femtosecond vibrational spectroscopy (transient absorption and 2DIR). Our results show that for a film thickness beyond only a few nanometers the near-field interaction is not sufficient to account for the magnitude of the observed signal, which nevertheless has a clear Fano line shape, suggesting a radiative origin of the molecule-plasmon interaction. The mutual radiative damping of plasmonic and molecular transitions leads to the spectroscopic signal of a molecular vibrational excitation to be enhanced by up to a factor of 50 in the case of linear spectroscopy and over 2000 in the case of third-order spectroscopy. A qualitative explanation for the observed effect is given by the extended coupled oscillators model, which takes into account both near-field and radiative interactions between the plasmonic and molecular transitions.

  9. Algae-bacteria interactions: Evolution, ecology and emerging applications.

    PubMed

    Ramanan, Rishiram; Kim, Byung-Hyuk; Cho, Dae-Hyun; Oh, Hee-Mock; Kim, Hee-Sik

    2016-01-01

    Algae and bacteria have coexisted ever since the early stages of evolution. This coevolution has revolutionized life on earth in many aspects. Algae and bacteria together influence ecosystems as varied as deep seas to lichens and represent all conceivable modes of interactions - from mutualism to parasitism. Several studies have shown that algae and bacteria synergistically affect each other's physiology and metabolism, a classic case being algae-roseobacter interaction. These interactions are ubiquitous and define the primary productivity in most ecosystems. In recent years, algae have received much attention for industrial exploitation but their interaction with bacteria is often considered a contamination during commercialization. A few recent studies have shown that bacteria not only enhance algal growth but also help in flocculation, both essential processes in algal biotechnology. Hence, there is a need to understand these interactions from an evolutionary and ecological standpoint, and integrate this understanding for industrial use. Here we reflect on the diversity of such relationships and their associated mechanisms, as well as the habitats that they mutually influence. This review also outlines the role of these interactions in key evolutionary events such as endosymbiosis, besides their ecological role in biogeochemical cycles. Finally, we focus on extending such studies on algal-bacterial interactions to various environmental and bio-technological applications. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Ant-Plant Interaction in a Tropical Savanna: May the Network Structure Vary over Time and Influence on the Outcomes of Associations?

    PubMed Central

    Lange, Denise; Del-Claro, Kleber

    2014-01-01

    Plant-animal interactions occur in a community context of dynamic and complex ecological interactive networks. The understanding of who interacts with whom is a basic information, but the outcomes of interactions among associates are fundamental to draw valid conclusions about the functional structure of the network. Ecological networks studies in general gave little importance to know the true outcomes of interactions and how they may change over time. We evaluate the dynamic of an interaction network between ants and plants with extrafloral nectaries, by verifying the temporal variation in structure and outcomes of mutualism for the plant community (leaf herbivory). To reach this goal, we used two tools: bipartite network analysis and experimental manipulation. The networks exhibited the same general pattern as other mutualistic networks: nestedness, asymmetry and low specialization and this pattern was maintained over time, but with internal changes (species degree, connectance and ant abundance). These changes influenced the protection effectiveness of plants by ants, which varied over time. Our study shows that interaction networks between ants and plants are dynamic over time, and that these alterations affect the outcomes of mutualisms. In addition, our study proposes that the set of single systems that shape ecological networks can be manipulated for a greater understanding of the entire system. PMID:25141007

  11. Coaction of intercellular adhesion and cortical tension specifies tissue surface tension

    PubMed Central

    Manning, M. Lisa; Foty, Ramsey A.; Steinberg, Malcolm S.; Schoetz, Eva-Maria

    2010-01-01

    In the course of animal morphogenesis, large-scale cell movements occur, which involve the rearrangement, mutual spreading, and compartmentalization of cell populations in specific configurations. Morphogenetic cell rearrangements such as cell sorting and mutual tissue spreading have been compared with the behaviors of immiscible liquids, which they closely resemble. Based on this similarity, it has been proposed that tissues behave as liquids and possess a characteristic surface tension, which arises as a collective, macroscopic property of groups of mobile, cohering cells. But how are tissue surface tensions generated? Different theories have been proposed to explain how mesoscopic cell properties such as cell–cell adhesion and contractility of cell interfaces may underlie tissue surface tensions. Although recent work suggests that both may be contributors, an explicit model for the dependence of tissue surface tension on these mesoscopic parameters has been missing. Here we show explicitly that the ratio of adhesion to cortical tension determines tissue surface tension. Our minimal model successfully explains the available experimental data and makes predictions, based on the feedback between mechanical energy and geometry, about the shapes of aggregate surface cells, which we verify experimentally. This model indicates that there is a crossover from adhesion dominated to cortical-tension dominated behavior as a function of the ratio between these two quantities. PMID:20616053

  12. Causal inference in nonlinear systems: Granger causality versus time-delayed mutual information

    NASA Astrophysics Data System (ADS)

    Li, Songting; Xiao, Yanyang; Zhou, Douglas; Cai, David

    2018-05-01

    The Granger causality (GC) analysis has been extensively applied to infer causal interactions in dynamical systems arising from economy and finance, physics, bioinformatics, neuroscience, social science, and many other fields. In the presence of potential nonlinearity in these systems, the validity of the GC analysis in general is questionable. To illustrate this, here we first construct minimal nonlinear systems and show that the GC analysis fails to infer causal relations in these systems—it gives rise to all types of incorrect causal directions. In contrast, we show that the time-delayed mutual information (TDMI) analysis is able to successfully identify the direction of interactions underlying these nonlinear systems. We then apply both methods to neuroscience data collected from experiments and demonstrate that the TDMI analysis but not the GC analysis can identify the direction of interactions among neuronal signals. Our work exemplifies inference hazards in the GC analysis in nonlinear systems and suggests that the TDMI analysis can be an appropriate tool in such a case.

  13. A model parent group for enhancing aggressive children's social competence in Taiwan.

    PubMed

    Li, Ming-Hui

    2009-07-01

    This paper presents a semi-structured psychoeducational model of group work for parents of aggressive children based on concepts of co-parenting and bidirectionality. The group was developed for enhancing five Taiwanese aggressive children's social competence by promoting positive interactions within family. Topics covered in the group included identifying parenting styles, forming parental alliances, fostering parent-child mutual initiations/mutual compliances, establishing parent-child co-regulation, and responding to aggressive children's negative emotions. Pre- and post-group comparisons suggested the effectiveness of the group model.

  14. A new strategic neurosurgical planning tool for brainstem cavernous malformations using interactive computer graphics with multimodal fusion images.

    PubMed

    Kin, Taichi; Nakatomi, Hirofumi; Shojima, Masaaki; Tanaka, Minoru; Ino, Kenji; Mori, Harushi; Kunimatsu, Akira; Oyama, Hiroshi; Saito, Nobuhito

    2012-07-01

    In this study, the authors used preoperative simulation employing 3D computer graphics (interactive computer graphics) to fuse all imaging data for brainstem cavernous malformations. The authors evaluated whether interactive computer graphics or 2D imaging correlated better with the actual operative field, particularly in identifying a developmental venous anomaly (DVA). The study population consisted of 10 patients scheduled for surgical treatment of brainstem cavernous malformations. Data from preoperative imaging (MRI, CT, and 3D rotational angiography) were automatically fused using a normalized mutual information method, and then reconstructed by a hybrid method combining surface rendering and volume rendering methods. With surface rendering, multimodality and multithreshold techniques for 1 tissue were applied. The completed interactive computer graphics were used for simulation of surgical approaches and assumed surgical fields. Preoperative diagnostic rates for a DVA associated with brainstem cavernous malformation were compared between conventional 2D imaging and interactive computer graphics employing receiver operating characteristic (ROC) analysis. The time required for reconstruction of 3D images was 3-6 hours for interactive computer graphics. Observation in interactive mode required approximately 15 minutes. Detailed anatomical information for operative procedures, from the craniotomy to microsurgical operations, could be visualized and simulated three-dimensionally as 1 computer graphic using interactive computer graphics. Virtual surgical views were consistent with actual operative views. This technique was very useful for examining various surgical approaches. Mean (±SEM) area under the ROC curve for rate of DVA diagnosis was significantly better for interactive computer graphics (1.000±0.000) than for 2D imaging (0.766±0.091; p<0.001, Mann-Whitney U-test). The authors report a new method for automatic registration of preoperative imaging data from CT, MRI, and 3D rotational angiography for reconstruction into 1 computer graphic. The diagnostic rate of DVA associated with brainstem cavernous malformation was significantly better using interactive computer graphics than with 2D images. Interactive computer graphics was also useful in helping to plan the surgical access corridor.

  15. Estimating Temporal Causal Interaction between Spike Trains with Permutation and Transfer Entropy

    PubMed Central

    Li, Zhaohui; Li, Xiaoli

    2013-01-01

    Estimating the causal interaction between neurons is very important for better understanding the functional connectivity in neuronal networks. We propose a method called normalized permutation transfer entropy (NPTE) to evaluate the temporal causal interaction between spike trains, which quantifies the fraction of ordinal information in a neuron that has presented in another one. The performance of this method is evaluated with the spike trains generated by an Izhikevich’s neuronal model. Results show that the NPTE method can effectively estimate the causal interaction between two neurons without influence of data length. Considering both the precision of time delay estimated and the robustness of information flow estimated against neuronal firing rate, the NPTE method is superior to other information theoretic method including normalized transfer entropy, symbolic transfer entropy and permutation conditional mutual information. To test the performance of NPTE on analyzing simulated biophysically realistic synapses, an Izhikevich’s cortical network that based on the neuronal model is employed. It is found that the NPTE method is able to characterize mutual interactions and identify spurious causality in a network of three neurons exactly. We conclude that the proposed method can obtain more reliable comparison of interactions between different pairs of neurons and is a promising tool to uncover more details on the neural coding. PMID:23940662

  16. See You See Me: the Role of Eye Contact in Multimodal Human-Robot Interaction

    PubMed Central

    XU, TIAN (LINGER); ZHANG, HUI; YU, CHEN

    2016-01-01

    We focus on a fundamental looking behavior in human-robot interactions – gazing at each other’s face. Eye contact and mutual gaze between two social partners are critical in smooth human-human interactions. Therefore, investigating at what moments and in what ways a robot should look at a human user’s face as a response to the human’s gaze behavior is an important topic. Toward this goal, we developed a gaze-contingent human-robot interaction system, which relied on momentary gaze behaviors from a human user to control an interacting robot in real time. Using this system, we conducted an experiment in which human participants interacted with the robot in a joint attention task. In the experiment, we systematically manipulated the robot’s gaze toward the human partner’s face in real time and then analyzed the human’s gaze behavior as a response to the robot’s gaze behavior. We found that more face looks from the robot led to more look-backs (to the robot’s face) from human participants and consequently created more mutual gaze and eye contact between the two. Moreover, participants demonstrated more coordinated and synchronized multimodal behaviors between speech and gaze when more eye contact was successfully established and maintained. PMID:28966875

  17. Battery element and method for making same

    NASA Technical Reports Server (NTRS)

    Clough, Thomas J. (Inventor); Pinsky, Naum (Inventor)

    1989-01-01

    In a method for producing a battery element useful as at least a positive plate in a lead-acid battery, the element comprising a fluid impervious, electrically conductive matrix having mutually opposing first and second surfaces and positive active electrode material associated with the first surface of the matrix, the improvement which comprises: conditioning the first surface to enhance the association of the positive active electrode material and the first surface; and applying and associating the positive active electrode material to the first surface.

  18. The two-brain approach: how can mutually interacting brains teach us something about social interaction?

    PubMed Central

    Konvalinka, Ivana; Roepstorff, Andreas

    2012-01-01

    Measuring brain activity simultaneously from two people interacting is intuitively appealing if one is interested in putative neural markers of social interaction. However, given the complex nature of interactions, it has proven difficult to carry out two-person brain imaging experiments in a methodologically feasible and conceptually relevant way. Only a small number of recent studies have put this into practice, using fMRI, EEG, or NIRS. Here, we review two main two-brain methodological approaches, each with two conceptual strategies. The first group has employed two-brain fMRI recordings, studying (1) turn-based interactions on the order of seconds, or (2) pseudo-interactive scenarios, where only one person is scanned at a time, investigating the flow of information between brains. The second group of studies has recorded dual EEG/NIRS from two people interacting, in (1) face-to-face turn-based interactions, investigating functional connectivity between theory-of-mind regions of interacting partners, or in (2) continuous mutual interactions on millisecond timescales, to measure coupling between the activity in one person's brain and the activity in the other's brain. We discuss the questions these approaches have addressed, and consider scenarios when simultaneous two-brain recordings are needed. Furthermore, we suggest that (1) quantification of inter-personal neural effects via measures of emergence, and (2) multivariate decoding models that generalize source-specific features of interaction, may provide novel tools to study brains in interaction. This may allow for a better understanding of social cognition as both representation and participation. PMID:22837744

  19. A role for parasites in stabilising the fig-pollinator mutualism.

    PubMed

    Dunn, Derek W; Segar, Simon T; Ridley, Jo; Chan, Ruth; Crozier, Ross H; Yu, Douglas W; Cook, James M

    2008-03-11

    Mutualisms are interspecific interactions in which both players benefit. Explaining their maintenance is problematic, because cheaters should outcompete cooperative conspecifics, leading to mutualism instability. Monoecious figs (Ficus) are pollinated by host-specific wasps (Agaonidae), whose larvae gall ovules in their "fruits" (syconia). Female pollinating wasps oviposit directly into Ficus ovules from inside the receptive syconium. Across Ficus species, there is a widely documented segregation of pollinator galls in inner ovules and seeds in outer ovules. This pattern suggests that wasps avoid, or are prevented from ovipositing into, outer ovules, and this results in mutualism stability. However, the mechanisms preventing wasps from exploiting outer ovules remain unknown. We report that in Ficus rubiginosa, offspring in outer ovules are vulnerable to attack by parasitic wasps that oviposit from outside the syconium. Parasitism risk decreases towards the centre of the syconium, where inner ovules provide enemy-free space for pollinator offspring. We suggest that the resulting gradient in offspring viability is likely to contribute to selection on pollinators to avoid outer ovules, and by forcing wasps to focus on a subset of ovules, reduces their galling rates. This previously unidentified mechanism may therefore contribute to mutualism persistence independent of additional factors that invoke plant defences against pollinator oviposition, or physiological constraints on pollinators that prevent oviposition in all available ovules.

  20. A Role for Parasites in Stabilising the Fig-Pollinator Mutualism

    PubMed Central

    Dunn, Derek W; Segar, Simon T; Ridley, Jo; Chan, Ruth; Crozier, Ross H; Yu, Douglas W; Cook, James M

    2008-01-01

    Mutualisms are interspecific interactions in which both players benefit. Explaining their maintenance is problematic, because cheaters should outcompete cooperative conspecifics, leading to mutualism instability. Monoecious figs (Ficus) are pollinated by host-specific wasps (Agaonidae), whose larvae gall ovules in their “fruits” (syconia). Female pollinating wasps oviposit directly into Ficus ovules from inside the receptive syconium. Across Ficus species, there is a widely documented segregation of pollinator galls in inner ovules and seeds in outer ovules. This pattern suggests that wasps avoid, or are prevented from ovipositing into, outer ovules, and this results in mutualism stability. However, the mechanisms preventing wasps from exploiting outer ovules remain unknown. We report that in Ficus rubiginosa, offspring in outer ovules are vulnerable to attack by parasitic wasps that oviposit from outside the syconium. Parasitism risk decreases towards the centre of the syconium, where inner ovules provide enemy-free space for pollinator offspring. We suggest that the resulting gradient in offspring viability is likely to contribute to selection on pollinators to avoid outer ovules, and by forcing wasps to focus on a subset of ovules, reduces their galling rates. This previously unidentified mechanism may therefore contribute to mutualism persistence independent of additional factors that invoke plant defences against pollinator oviposition, or physiological constraints on pollinators that prevent oviposition in all available ovules. PMID:18336072

  1. Mother-Child Dyadic Synchrony in European American and African American Families during Early Adolescence: Relations with Self-Esteem and Prosocial Behavior

    ERIC Educational Resources Information Center

    Lindsey, Eric W.; Colwell, Malinda J.; Frabutt, James M.; Chambers, Jessica Campbell; MacKinnon-Lewis, Carol

    2008-01-01

    Mother-child relationships characterized by dyadic synchrony, a mutually responsive and interconnected interaction style, have been consistently linked to children's psychosocial adjustment in early childhood, but it is unclear whether such interaction patterns remain conducive to positive outcomes in early adolescence. The aim of the present…

  2. The Use of Force Notation to Detect Students' Misconceptions: Mutual Interactions Case

    ERIC Educational Resources Information Center

    Serhane, Ahcene; Zeghdaoui, Abdelhamid; Debiache, Mehdi

    2017-01-01

    Using a conventional notation for representing forces on diagrams, students were presented with questions on the interaction between two objects. The results show that complete understanding of Newton's Third Law of Motion is quite rare, and that some problems relate to misunderstanding which force acts on each body. The use of the terms…

  3. Examining Interactions between Problem Posing and Problem Solving with Prospective Primary Teachers: A Case of Using Fractions

    ERIC Educational Resources Information Center

    Xie, Jinxia; Masingila, Joanna O.

    2017-01-01

    Existing studies have quantitatively evidenced the relatedness between problem posing and problem solving, as well as the magnitude of this relationship. However, the nature and features of this relationship need further qualitative exploration. This paper focuses on exploring the interactions, i.e., mutual effects and supports, between problem…

  4. Polymer dynamics: Floored by the rings

    NASA Astrophysics Data System (ADS)

    McLeish, Tom

    2008-12-01

    The tube model can explain how mutually entangled polymer chains move and interact, but it relies on the loose ends of chains to generate relaxation. Ring polymers have no ends - so how do they relax?

  5. Identifying Functional Mechanisms of Gene and Protein Regulatory Networks in Response to a Broader Range of Environmental Stresses

    PubMed Central

    Li, Cheng-Wei; Chen, Bor-Sen

    2010-01-01

    Cellular responses to sudden environmental stresses or physiological changes provide living organisms with the opportunity for final survival and further development. Therefore, it is an important topic to understand protective mechanisms against environmental stresses from the viewpoint of gene and protein networks. We propose two coupled nonlinear stochastic dynamic models to reconstruct stress-activated gene and protein regulatory networks via microarray data in response to environmental stresses. According to the reconstructed gene/protein networks, some possible mutual interactions, feedforward and feedback loops are found for accelerating response and filtering noises in these signaling pathways. A bow-tie core network is also identified to coordinate mutual interactions and feedforward loops, feedback inhibitions, feedback activations, and cross talks to cope efficiently with a broader range of environmental stresses with limited proteins and pathways. PMID:20454442

  6. Asymmetric interaction and indeterminate fitness correlation between cooperative partners in the fig–fig wasp mutualism

    PubMed Central

    Wang, Rui-Wu; Sun, Bao-Fa; Zheng, Qi; Shi, Lei; Zhu, Lixing

    2011-01-01

    Empirical observations have shown that cooperative partners can compete for common resources, but what factors determine whether partners cooperate or compete remain unclear. Using the reciprocal fig–fig wasp mutualism, we show that nonlinear amplification of interference competition between fig wasps—which limits the fig wasps' ability to use a common resource (i.e. female flowers)—keeps the common resource unsaturated, making cooperation locally stable. When interference competition was manually prevented, the fitness correlation between figs and fig wasps went from positive to negative. This indicates that genetic relatedness or reciprocal exchange between cooperative players, which could create spatial heterogeneity or self-restraint, was not sufficient to maintain stable cooperation. Moreover, our analysis of field-collected data shows that the fitness correlation between cooperative partners varies stochastically, and that the mainly positive fitness correlation observed during the warm season shifts to a negative correlation during the cold season owing to an increase in the initial oviposition efficiency of each fig wasp. This implies that the discriminative sanction of less-cooperative wasps (i.e. by decreasing the egg deposition efficiency per fig wasp) but reward to cooperative wasps by fig, a control of the initial value, will facilitate a stable mutualism. Our finding that asymmetric interaction leading to an indeterminate fitness interaction between symbiont (i.e. cooperative actors) and host (i.e. recipient) has the potential to explain why conflict has been empirically observed in both well-documented intraspecific and interspecific cooperation systems. PMID:21490005

  7. An ant-plant mutualism through the lens of cGMP-dependent kinase genes.

    PubMed

    Malé, Pierre-Jean G; Turner, Kyle M; Doha, Manjima; Anreiter, Ina; Allen, Aaron M; Sokolowski, Marla B; Frederickson, Megan E

    2017-09-13

    In plant-animal mutualisms, how an animal forages often determines how much benefit its plant partner receives. In many animals, foraging behaviour changes in response to foraging gene expression or activation of the cGMP-dependent protein kinase (PKG) that foraging encodes. Here, we show that this highly conserved molecular mechanism affects the outcome of a plant-animal mutualism. We studied the two PKG genes of Allomerus octoarticulatus, an Amazonian ant that defends the ant-plant Cordia nodosa against herbivores. Some ant colonies are better 'bodyguards' than others. Working in the field in Peru, we found that colonies fed with a PKG activator recruited more workers to attack herbivores than control colonies. This resulted in less herbivore damage. PKG gene expression in ant workers correlated with whether an ant colony discovered an herbivore and how much damage herbivores inflicted on leaves in a complex way; natural variation in expression levels of the two genes had significant interaction effects on ant behaviour and herbivory. Our results suggest a molecular basis for ant protection of plants in this mutualism. © 2017 The Author(s).

  8. Higher-Order Statistical Correlations and Mutual Information Among Particles in a Quantum Well

    NASA Astrophysics Data System (ADS)

    Yépez, V. S.; Sagar, R. P.; Laguna, H. G.

    2017-12-01

    The influence of wave function symmetry on statistical correlation is studied for the case of three non-interacting spin-free quantum particles in a unidimensional box, in position and in momentum space. Higher-order statistical correlations occurring among the three particles in this quantum system is quantified via higher-order mutual information and compared to the correlation between pairs of variables in this model, and to the correlation in the two-particle system. The results for the higher-order mutual information show that there are states where the symmetric wave functions are more correlated than the antisymmetric ones with same quantum numbers. This holds in position as well as in momentum space. This behavior is opposite to that observed for the correlation between pairs of variables in this model, and the two-particle system, where the antisymmetric wave functions are in general more correlated. These results are also consistent with those observed in a system of three uncoupled oscillators. The use of higher-order mutual information as a correlation measure, is monitored and examined by considering a superposition of states or systems with two Slater determinants.

  9. Mutual understanding: a communication model for general practice.

    PubMed

    Hantho, Arne; Jensen, Lena; Malterud, Kirsti

    2002-12-01

    To present our pursuits towards development of a simple model for clinical communication intended for application by the practitioner as a tool for enhancing mutual understanding. Inspired by theories about patient-centredness and interactive modes of understanding, and supported by the perspectives of the Danish philosopher Niels Thomassen, we reviewed audiotapes from our own consultations. Recognising four dimensions assumed to be essential for mutual understanding in the transcripts, we explored these dimensions further. We present a communication model consisting of the following dimensions: The Framework, within which the communication takes place; The Subject, about which the communication takes place; The Persons, between whom the communication takes place; and The Action, verbally and non-verbally, through which communication takes place. We describe these dimensions in detail. The nature of the dimensions indicates that there is an interrelationship between them, implying that the character of the communication may change if one of the factors is changed. Analysis of an ongoing or recent consultation completed in accordance with these four dimensions allows the doctor to refocus the communication, thus leading to a more extensive mutual understanding and perhaps enhanced freedom of action.

  10. Towards an avatar for deciphering the modes of three-phase interactions in lava lakes

    NASA Astrophysics Data System (ADS)

    Suckale, J.; Qin, Z.; Culha, C.; Lev, E.

    2016-12-01

    An avatar is the virtual representation of a character, system or idea. Here, we present progress towards building a numerical avatar for lava lakes that allows us to constrain the modes of multiphase interactions between crystals, gas, and magmatic fluid in the interior of lava lakes. We focus on lava lakes, because they expose the free surface of magma to direct observations. They hence offer a unique window into different regimes of the three-phase flow dynamics of crystals, gases, and melts in magmatic convection more generally. The multiphase interactions between crystals, gases and melt give rise to nonlinear and unstable behavior in magmatic systems and are hence key for understanding the behavior of the bulk magma, but are notoriously difficult to capture in numerical models. Our avatar approach solves the full set of governing equations entailing the momentum, mass, and energy balance for each of the three phases at the scale of individual crystals or bubble interfaces. It hence obviates the need for simplifying assumptions regarding the individual behavior of the three phases or their mutual coupling to achieve a minimally preconditioned virtual representation of a lava lake. To identify the multi-phase regime at depth, we compute the observational signatures of different multiphase regimes, both in terms of surface velocity and temperature distribution, and compare the computed synthetic data to observational surface data for lava lakes. We focus specifically on the lava lake dynamics at Mount Erebus, Antarctica, and Kīlauea, Hawai'i. These two lava lakes are particularly well observed, which presents a compelling opportunity for closely linking modeling and observations. The also exhibit notably different circulation patterns. We hypothesize that Erebus and Kīlauea highlight different mechanisms through which multiphase interactions alter magmatic convection and eruptive behavior in basaltic systems. We suggest that volumetric flow effects like bubble dynamics and spatially heterogeneous crystal retention may dominate the behavior at Erebus and that surface effects resulting primarily from the formation of a cool skin on top of the lake govern the dynamics observed at Kīlauea.

  11. Relationship between mother-infant mutual dyadic responsiveness and premature infant development as measured by the Bayley III at 6 weeks corrected age.

    PubMed

    White-Traut, Rosemary C; Rankin, Kristin M; Yoder, Joe; Zawacki, Laura; Campbell, Suzann; Kavanaugh, Karen; Brandon, Debra; Norr, Kathleen F

    2018-06-01

    The quality of mother-preterm infant interaction has been identified as a key factor in influencing the infant's later development and language acquisition. The relationship between mother-infant responsiveness and later development may be evident early in infancy, a time period which has been understudied. Describe the relationship between mother-infant mutual dyadic responsiveness and premature infant development. This study employed a secondary analysis of data from the 6-week corrected age (CA) follow-up visit of the Hospital-Home Transition: Optimizing Prematures' Environment (H-HOPE) study, a randomized clinical trial testing the efficacy of a mother- and infant- focused intervention for improving outcomes among premature infants. Premature infants born between 29 and 34 weeks gestational age and their mothers who had social-environmental risks. At 6-weeks corrected age, a play session was coded for the quality of mutual responsiveness (Dyadic Mutuality Code). Development was assessed via the Bayley Scales of Infant and Toddler Development, 3rd edition. Of 137 mother-infant dyads, high, medium and low mutual responsiveness was observed for 35.8%, 34.3% and 29.9%, respectively. Overall motor, language and cognitive scores were 115.8 (SD = 8.2), 108.0 (7.7) and 109.3 (7.9). Multivariable linear models showed infants in dyads with high versus low mutual responsiveness had higher scores on the motor (β = 3.07, p = 0.06) and language (β = 4.47, p = 0.006) scales. High mutual responsiveness in mother-premature infant dyads is associated with significantly better language development and marginally better motor development. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Parrots as key multilinkers in ecosystem structure and functioning.

    PubMed

    Blanco, Guillermo; Hiraldo, Fernando; Rojas, Abraham; Dénes, Francisco V; Tella, José L

    2015-09-01

    Mutually enhancing organisms can become reciprocal determinants of their distribution, abundance, and demography and thus influence ecosystem structure and dynamics. In addition to the prevailing view of parrots (Psittaciformes) as plant antagonists, we assessed whether they can act as plant mutualists in the dry tropical forest of the Bolivian inter-Andean valleys, an ecosystem particularly poor in vertebrate frugivores other than parrots (nine species). We hypothesised that if interactions between parrots and their food plants evolved as primarily or facultatively mutualistic, selection should have acted to maximize the strength of their interactions by increasing the amount and variety of resources and services involved in particular pairwise and community-wide interaction contexts. Food plants showed different growth habits across a wide phylogenetic spectrum, implying that parrots behave as super-generalists exploiting resources differing in phenology, type, biomass, and rewards from a high diversity of plants (113 species from 38 families). Through their feeding activities, parrots provided multiple services acting as genetic linkers, seed facilitators for secondary dispersers, and plant protectors, and therefore can be considered key mutualists with a pervasive impact on plant assemblages. The number of complementary and redundant mutualistic functions provided by parrots to each plant species was positively related to the number of different kinds of food extracted from them. These mutually enhancing interactions were reflected in species-level properties (e.g., biomass or dominance) of both partners, as a likely consequence of the temporal convergence of eco-(co)evolutionary dynamics shaping the ongoing structure and organization of the ecosystem. A full assessment of the, thus far largely overlooked, parrot-plant mutualisms and other ecological linkages could change the current perception of the role of parrots in the structure, organization, and functioning of ecosystems.

  13. High Resolution Evaporative Fluxes Over Corn and Soybean Crops from Lidar

    NASA Astrophysics Data System (ADS)

    Eichinger, W. E.; Cooper, D. I.; Hipps, L. E.; Kustas, W. P.; Neale, C. M.; Prueger, J. H.

    2003-12-01

    The Soil Moisture-Atmosphere Coupling Experiment (SMACEX) was conducted in the Walnut Creek Watershed near Ames, Iowa over the period from June 15-July 11, 2002. A main focus of SMACEX was the investigation of the interactions between the atmospheric boundary layer, surface moisture and current vegetative state. The Lidar collected data over fields of soybeans and corn, with mutually supporting measurements by the NRC Twin Otter atmospheric research aircraft, the Utah State University Piper Seneca remote sensing aircraft, two elastic Lidars, and an array of eddy covariance towers in the nearby fields. The aircraft and lidar will provide a high resolution mapping of the evaporation rate over the fields and the changes between them. A mapping of the evaporative fluxes that existed during the field campaign, with a comparison to the topology of the local area will be presented.

  14. Superior lithium storage performance using sequentially stacked MnO2/reduced graphene oxide composite electrodes.

    PubMed

    Kim, Sue Jin; Yun, Young Jun; Kim, Ki Woong; Chae, Changju; Jeong, Sunho; Kang, Yongku; Choi, Si-Young; Lee, Sun Sook; Choi, Sungho

    2015-04-24

    Hybrid nanostructures based on graphene and metal oxides hold great potential for use in high-performance electrode materials for next-generation lithium-ion batteries. Herein, a new strategy to fabricate sequentially stacked α-MnO2 /reduced graphene oxide composites driven by surface-charge-induced mutual electrostatic interactions is proposed. The resultant composite anode exhibits an excellent reversible charge/discharge capacity as high as 1100 mA h g(-1) without any traceable capacity fading, even after 100 cycles, which leads to a high rate capability electrode performance for lithium ion batteries. Thus, the proposed synthetic procedures guarantee a synergistic effect of multidimensional nanoscale media between one (metal oxide nanowire) and two dimensions (graphene sheet) for superior energy-storage electrodes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. From synthetic modeling of social interaction to dynamic theories of brain-body-environment-body-brain systems.

    PubMed

    Froese, Tom; Iizuka, Hiroyuki; Ikegami, Takashi

    2013-08-01

    Synthetic approaches to social interaction support the development of a second-person neuroscience. Agent-based models and psychological experiments can be related in a mutually informing manner. Models have the advantage of making the nonlinear brain-body-environment-body-brain system as a whole accessible to analysis by dynamical systems theory. We highlight some general principles of how social interaction can partially constitute an individual's behavior.

  16. Inter Individual Variations of the Fish Skin Microbiota: Host Genetics Basis of Mutualism?

    PubMed Central

    Boutin, Sébastien; Sauvage, Christopher; Bernatchez, Louis; Audet, Céline; Derome, Nicolas

    2014-01-01

    The commensal microbiota of fish skin is suspected to provide a protection against opportunist infections. The skin of fish harbors a complex and diverse microbiota that closely interacts with the surrounding water microbial communities. Up to now there is no clear evidence as to whether the host regulates the recruitment of environmental bacteria to build a specific skin microbiota. To address this question, we detected Quantitative Trait Loci (QTL) associated with the abundance of specific skin microbiota bacterial strains in brook charr (Salvelinus fontinalis), combining 16S RNA tagged-amplicon 454 pyrosequencing with genetic linkage analysis. Skin microbiota analysis revealed high inter-individual variation among 86 F2 fish progeny based upon the relative abundance of bacterial operational taxonomic units (OTUs). Out of those OTUs, the pathogenic strain Flavobacterium psychrophilum and the non-pathogenic strain Methylobacterium rhodesianum explained the majority of inter-individual distances. Furthermore, a strong negative correlation was found between Flavobacterium and Methylobacterium, suggesting a mutually competitive relationship. Finally, after considering a total of 266 markers, genetic linkage analysis highlighted three major QTL associated with the abundance of Lysobacter, Rheinheimera and Methylobacterium. All these three genera are known for their beneficial antibacterial activity. Overall, our results provide evidence that host genotype may regulate the abundance of specific genera among their surface microbiota. They also indicate that Lysobacter, Rheinheimera and Methylobacterium are potentially important genera in providing protection against pathogens. PMID:25068850

  17. Inter individual variations of the fish skin microbiota: host genetics basis of mutualism?

    PubMed

    Boutin, Sébastien; Sauvage, Christopher; Bernatchez, Louis; Audet, Céline; Derome, Nicolas

    2014-01-01

    The commensal microbiota of fish skin is suspected to provide a protection against opportunist infections. The skin of fish harbors a complex and diverse microbiota that closely interacts with the surrounding water microbial communities. Up to now there is no clear evidence as to whether the host regulates the recruitment of environmental bacteria to build a specific skin microbiota. To address this question, we detected Quantitative Trait Loci (QTL) associated with the abundance of specific skin microbiota bacterial strains in brook charr (Salvelinus fontinalis), combining 16S RNA tagged-amplicon 454 pyrosequencing with genetic linkage analysis. Skin microbiota analysis revealed high inter-individual variation among 86 F2 fish progeny based upon the relative abundance of bacterial operational taxonomic units (OTUs). Out of those OTUs, the pathogenic strain Flavobacterium psychrophilum and the non-pathogenic strain Methylobacterium rhodesianum explained the majority of inter-individual distances. Furthermore, a strong negative correlation was found between Flavobacterium and Methylobacterium, suggesting a mutually competitive relationship. Finally, after considering a total of 266 markers, genetic linkage analysis highlighted three major QTL associated with the abundance of Lysobacter, Rheinheimera and Methylobacterium. All these three genera are known for their beneficial antibacterial activity. Overall, our results provide evidence that host genotype may regulate the abundance of specific genera among their surface microbiota. They also indicate that Lysobacter, Rheinheimera and Methylobacterium are potentially important genera in providing protection against pathogens.

  18. Intercultural communication in general practice.

    PubMed

    van Wieringen, Joke C M; Harmsen, Johannes A M; Bruijnzeels, Marc A

    2002-03-01

    Little is known about the causes of problems in communication between health care professionals and ethnic-minority patients. Not only language difficulties, but also cultural differences may result in these problems. This study explores the influence of communication and patient beliefs about health (care) and disease on understanding and compliance of native-born and ethnic-minority patients. In this descriptive study seven general practices located in a multi-ethnic neighbourhood in Rotterdam participated. Eighty-seven parents who visited their GP with a child for a new health problem took part: more than 50% of them belonged to ethnic-minorities. The consultation between GP and patient was recorded on video and a few days after the consultation patients were interviewed at home. GPs filled out a short questionnaire immediately after the consultation. Patient beliefs and previous experiences with health care were measured by different questionnaires in the home interview. Communication was analysed using the Roter Interaction Analysis System based on the videos. Mutual understanding between GP and patient and therapy compliance was assessed by comparing GP's questionnaires with the home interview with the parents. In 33% of the consultations with ethnic-minority patients (versus 13% with native-born patients) mutual understanding was poor. Different aspects of communication had no influence on mutual understanding. Problems in the relationship with the GP, as experienced by patients, showed a significant relation with mutual understanding. Consultations without mutual understanding more often ended in non-compliance with the prescribed therapy. Ethnic-minority parents more often report problems in their relationship with the GP and they have different beliefs about health and health care from native-born parents. Good relationships between GP and patients are necessary for mutual understanding. Mutual understanding has a strong correlation with compliance. Mutual understanding and consequently compliance is more often poor in consultations with ethnic-minority parents than with native-born parents.

  19. Aircraft wake vortex transport model

    DOT National Transportation Integrated Search

    1974-03-31

    A wake vortex transport model has been developed which includes the effects of wind and wind : shear, buoyancy, mutual and self-induction, ground plane interaction, viscous decay, finite core : and Crow instability effects. Photographic and ground-wi...

  20. Virial coefficients of anisotropic hard solids of revolution: The detailed influence of the particle geometry

    NASA Astrophysics Data System (ADS)

    Herold, Elisabeth; Hellmann, Robert; Wagner, Joachim

    2017-11-01

    We provide analytical expressions for the second virial coefficients of differently shaped hard solids of revolution in dependence on their aspect ratio. The second virial coefficients of convex hard solids, which are the orientational averages of the mutual excluded volume, are derived from volume, surface, and mean radii of curvature employing the Isihara-Hadwiger theorem. Virial coefficients of both prolate and oblate hard solids of revolution are investigated in dependence on their aspect ratio. The influence of one- and two-dimensional removable singularities of the surface curvature to the mutual excluded volume is analyzed. The virial coefficients of infinitely thin oblate and infinitely long prolate particles are compared, and analytical expressions for their ratios are derived. Beyond their dependence on the aspect ratio, the second virial coefficients are influenced by the detailed geometry of the particles.

  1. Virial coefficients of anisotropic hard solids of revolution: The detailed influence of the particle geometry.

    PubMed

    Herold, Elisabeth; Hellmann, Robert; Wagner, Joachim

    2017-11-28

    We provide analytical expressions for the second virial coefficients of differently shaped hard solids of revolution in dependence on their aspect ratio. The second virial coefficients of convex hard solids, which are the orientational averages of the mutual excluded volume, are derived from volume, surface, and mean radii of curvature employing the Isihara-Hadwiger theorem. Virial coefficients of both prolate and oblate hard solids of revolution are investigated in dependence on their aspect ratio. The influence of one- and two-dimensional removable singularities of the surface curvature to the mutual excluded volume is analyzed. The virial coefficients of infinitely thin oblate and infinitely long prolate particles are compared, and analytical expressions for their ratios are derived. Beyond their dependence on the aspect ratio, the second virial coefficients are influenced by the detailed geometry of the particles.

  2. A Curriculum Vitae of Teeth: Evolution, Generation, Regeneration

    PubMed Central

    Koussoulakou, Despina S.; Margaritis, Lukas H.; Koussoulakos, Stauros L.

    2009-01-01

    The ancestor of recent vertebrate teeth was a tooth-like structure on the outer body surface of jawless fishes. Over the course of 500,000,000 years of evolution, many of those structures migrated into the mouth cavity. In addition, the total number of teeth per dentition generally decreased and teeth morphological complexity increased. Teeth form mainly on the jaws within the mouth cavity through mutual, delicate interactions between dental epithelium and oral ectomesenchyme. These interactions involve spatially restricted expression of several, teeth-related genes and the secretion of various transcription and signaling factors. Congenital disturbances in tooth formation, acquired dental diseases and odontogenic tumors affect millions of people and rank human oral pathology as the second most frequent clinical problem. On the basis of substantial experimental evidence and advances in bioengineering, many scientists strongly believe that a deep knowledge of the evolutionary relationships and the cellular and molecular mechanisms regulating the morphogenesis of a given tooth in its natural position, in vivo, will be useful in the near future to prevent and treat teeth pathologies and malformations and for in vitro and in vivo teeth tissue regeneration. PMID:19266065

  3. Van der Waals interactions between planar substrate and tubular lipid membranes undergoing pearling instability

    NASA Astrophysics Data System (ADS)

    Valchev, G. S.; Djondjorov, P. A.; Vassilev, V. M.; Dantchev, D. M.

    2017-10-01

    In the current article we study the behavior of the van der Waals force between a planar substrate and an axisymmetric bilayer lipid membrane undergoing pearling instability, caused by uniform hydrostatic pressure difference. To do so, the recently suggested "surface integration approach" is used, which can be considered a generalization of the well known and widely used Derjaguin approximation. The static equilibrium shape after the occurrence of the instability is described in the framework of Helfrich's spontaneous curvature model. Some specific classes of exact analytical solutions to the corresponding shape equation are considered, and the components of the respective position vectors given in terms of elliptic integrals and Jacobi elliptic functions. The mutual orientation between the interacting objects is chosen such that the axis of revolution of the distorted cylinder be parallel to the plane bounding the substrate. Based on the discussed models and approaches we made some estimations for the studied force in real experimentally realizable systems, thus showing the possibility of pearling as an useful technique for reduction of the adhesion in variety of industrial processes using lipid membranes as carriers.

  4. Spherical mirror mount

    NASA Technical Reports Server (NTRS)

    Meyer, Jay L. (Inventor); Messick, Glenn C. (Inventor); Nardell, Carl A. (Inventor); Hendlin, Martin J. (Inventor)

    2011-01-01

    A spherical mounting assembly for mounting an optical element allows for rotational motion of an optical surface of the optical element only. In that regard, an optical surface of the optical element does not translate in any of the three perpendicular translational axes. More importantly, the assembly provides adjustment that may be independently controlled for each of the three mutually perpendicular rotational axes.

  5. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun

    Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species.more » By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Finally, our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.« less

  6. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    DOE PAGES

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun; ...

    2017-04-26

    Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species.more » By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Finally, our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.« less

  7. Interaction and dispersion of waveguide modes in an optical fiber with microirregularities of the core surface

    NASA Astrophysics Data System (ADS)

    Zadorin, A. S.; Kruglov, R. S.; Surkova, G. A.

    2012-08-01

    A self-consistent linear model is proposed for the transformation of the average intensity of the mode spectrum I( z) of the waveguide field in a multimode optical fiber with a stepped refractive index profile and the core having a rough surface. The model is based on the concept of the intermodal dispersion matrix of an elementary segment of the fiber, ∆, whose elements characterize the mutual transfer of energy between the waveguide modes, as well as their conversion to radiation modes on the specified interval. On this basis, the features of the transformation of the mode spectrum I( z) in a multimode optical fiber with a stepped refractive index profile are considered that is due to the effects of multiple dispersion of the signal by the stochastic irregularities of the duct. The effect of self-filtering of I( z) is described that results in the formation of a stable (normalized) distribution I*. The features of the normalization of the radiative damping of a group of modes I i ( z) in an optical fiber are considered.

  8. Mechanistic understanding of tetracycline sorption on waste tire powder and its chars as affected by Cu(2+) and pH.

    PubMed

    Lian, Fei; Song, Zhengguo; Liu, Zhongqi; Zhu, Lingyan; Xing, Baoshan

    2013-07-01

    The sorption characteristics of tetracycline (TC) by waste tire powder and its chars were investigated to explore the potential of using waste tires as effective sorbents for removal of TC from aqueous solution. Naphthalene (NAPH), a typical hydrophobic organic compound, was selected as asorbate for comparison. TC displayed much lower sorption affinity to tire powder than NAPH. However, it exhibited similar adsorption affinity as NAPH on the pyrolyzed tire chars, which was mainly attributed to π-π electron-donor-acceptor interactions of TC with the graphite surface of chars. TC and Cu(2+) could mutually facilitate the sorption of each other on both tire powder and pyrolyzed chars in a wide pH range. This could be explained by the metallic complexation and/or surface-bridging mechanisms (i.e., Cu- or TC-bridging). However, Cu(2+) and NAPH depressed the sorption of each other on tire powder and displayed negligible impact to each other on the highly pyrolyzed chars. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Multimodal Language Learner Interactions via Desktop Videoconferencing within a Framework of Social Presence: Gaze

    ERIC Educational Resources Information Center

    Satar, H. Muge

    2013-01-01

    Desktop videoconferencing (DVC) offers many opportunities for language learning through its multimodal features. However, it also brings some challenges such as gaze and mutual gaze, that is, eye-contact. This paper reports some of the findings of a PhD study investigating social presence in DVC interactions of English as a Foreign Language (EFL)…

  10. B. F. Skinner and T. N. Whitehead: A Brief Encounter, Research Similarities, Hawthorne Revisited, What Next?

    ERIC Educational Resources Information Center

    Claus, Calvin K.

    2007-01-01

    B. F. Skinner and T. N. Whitehead recalled a personal interaction in 1934, with differing memories of the event. No evidence of other subsequent interactions or mutual citations has been found. Although they went their separate ways, three similarities in their research strategies have been found and are discussed. Elements of Whitehead's…

  11. Interactive Effects of Counselor-Client Similarity and Client Self-Esteem on Termination Type and Number of Sessions.

    ERIC Educational Resources Information Center

    Berry, G. William; Sipps, Gary J.

    1991-01-01

    Examined effects of client self-esteem as measured by Rosenberg Self-Esteem Scale and client-counselor similarity as determined by Myers-Briggs Type Indicator (MBTI) on number of sessions and type of termination (unilateral or mutual) for 55 clients and 9 counselors at university counseling center. Self-esteem interacted significantly with…

  12. Coupled Flip-Flop Model for REM Sleep Regulation in the Rat

    PubMed Central

    Dunmyre, Justin R.; Mashour, George A.; Booth, Victoria

    2014-01-01

    Recent experimental studies investigating the neuronal regulation of rapid eye movement (REM) sleep have identified mutually inhibitory synaptic projections among REM sleep-promoting (REM-on) and REM sleep-inhibiting (REM-off) neuronal populations that act to maintain the REM sleep state and control its onset and offset. The control mechanism of mutually inhibitory synaptic interactions mirrors the proposed flip-flop switch for sleep-wake regulation consisting of mutually inhibitory synaptic projections between wake- and sleep-promoting neuronal populations. While a number of synaptic projections have been identified between these REM-on/REM-off populations and wake/sleep-promoting populations, the specific interactions that govern behavioral state transitions have not been completely determined. Using a minimal mathematical model, we investigated behavioral state transition dynamics dictated by a system of coupled flip-flops, one to control transitions between wake and sleep states, and another to control transitions into and out of REM sleep. The model describes the neurotransmitter-mediated inhibitory interactions between a wake- and sleep-promoting population, and between a REM-on and REM-off population. We proposed interactions between the wake/sleep and REM-on/REM-off flip-flops to replicate the behavioral state statistics and probabilities of behavioral state transitions measured from experimental recordings of rat sleep under ad libitum conditions and after 24 h of REM sleep deprivation. Reliable transitions from REM sleep to wake, as dictated by the data, indicated the necessity of an excitatory projection from the REM-on population to the wake-promoting population. To replicate the increase in REM-wake-REM transitions observed after 24 h REM sleep deprivation required that this excitatory projection promote transient activation of the wake-promoting population. Obtaining the reliable wake-nonREM sleep transitions observed in the data required that activity of the wake-promoting population modulated the interaction between the REM-on and REM-off populations. This analysis suggests neuronal processes to be targeted in further experimental studies of the regulatory mechanisms of REM sleep. PMID:24722577

  13. Coupled flip-flop model for REM sleep regulation in the rat.

    PubMed

    Dunmyre, Justin R; Mashour, George A; Booth, Victoria

    2014-01-01

    Recent experimental studies investigating the neuronal regulation of rapid eye movement (REM) sleep have identified mutually inhibitory synaptic projections among REM sleep-promoting (REM-on) and REM sleep-inhibiting (REM-off) neuronal populations that act to maintain the REM sleep state and control its onset and offset. The control mechanism of mutually inhibitory synaptic interactions mirrors the proposed flip-flop switch for sleep-wake regulation consisting of mutually inhibitory synaptic projections between wake- and sleep-promoting neuronal populations. While a number of synaptic projections have been identified between these REM-on/REM-off populations and wake/sleep-promoting populations, the specific interactions that govern behavioral state transitions have not been completely determined. Using a minimal mathematical model, we investigated behavioral state transition dynamics dictated by a system of coupled flip-flops, one to control transitions between wake and sleep states, and another to control transitions into and out of REM sleep. The model describes the neurotransmitter-mediated inhibitory interactions between a wake- and sleep-promoting population, and between a REM-on and REM-off population. We proposed interactions between the wake/sleep and REM-on/REM-off flip-flops to replicate the behavioral state statistics and probabilities of behavioral state transitions measured from experimental recordings of rat sleep under ad libitum conditions and after 24 h of REM sleep deprivation. Reliable transitions from REM sleep to wake, as dictated by the data, indicated the necessity of an excitatory projection from the REM-on population to the wake-promoting population. To replicate the increase in REM-wake-REM transitions observed after 24 h REM sleep deprivation required that this excitatory projection promote transient activation of the wake-promoting population. Obtaining the reliable wake-nonREM sleep transitions observed in the data required that activity of the wake-promoting population modulated the interaction between the REM-on and REM-off populations. This analysis suggests neuronal processes to be targeted in further experimental studies of the regulatory mechanisms of REM sleep.

  14. Sustained neural activity to gaze and emotion perception in dynamic social scenes

    PubMed Central

    Ulloa, José Luis; Puce, Aina; Hugueville, Laurent; George, Nathalie

    2014-01-01

    To understand social interactions, we must decode dynamic social cues from seen faces. Here, we used magnetoencephalography (MEG) to study the neural responses underlying the perception of emotional expressions and gaze direction changes as depicted in an interaction between two agents. Subjects viewed displays of paired faces that first established a social scenario of gazing at each other (mutual attention) or gazing laterally together (deviated group attention) and then dynamically displayed either an angry or happy facial expression. The initial gaze change elicited a significantly larger M170 under the deviated than the mutual attention scenario. At around 400 ms after the dynamic emotion onset, responses at posterior MEG sensors differentiated between emotions, and between 1000 and 2200 ms, left posterior sensors were additionally modulated by social scenario. Moreover, activity on right anterior sensors showed both an early and prolonged interaction between emotion and social scenario. These results suggest that activity in right anterior sensors reflects an early integration of emotion and social attention, while posterior activity first differentiated between emotions only, supporting the view of a dual route for emotion processing. Altogether, our data demonstrate that both transient and sustained neurophysiological responses underlie social processing when observing interactions between others. PMID:23202662

  15. Promoting student engagement in science: Interaction rituals and the pursuit of a community of practice

    NASA Astrophysics Data System (ADS)

    Olitsky, Stacy

    2007-01-01

    This study explores the relationship between interaction rituals, student engagement with science, and learning environments modeled on communities of practice based on an ethnographic study of an eighth grade urban magnet school classroom. It compares three interactional events in order to examine the classroom conditions and teacher practices that can foster successful interaction rituals (IRs), which are characterized by high levels of emotional energy, feelings of group membership, and sustained interest in the subject. Classroom conditions surrounding the emergence of successful IRs included mutual focus, familiar symbols and activity structures, the permissibility of some side-talk, and opportunities for physical and emotional entrainment. Sustained interest in the topic beyond the duration of the IR and an increase in students' helping each other learn occurred more frequently when the mutual focus consisted of science-related symbols, when there were low levels of risk for participants, when activities involved sufficient challenge and time, and when students were positioned as knowledgeable and competent in science. The results suggest that successful interaction rituals can foster student engagement with topics that may not have previously held interest and can contribute to students' support of peers' learning, thereby moving the classroom toward a community-of-practice model.

  16. Mutual-friction induced instability of normal-fluid vortex tubes in superfluid helium-4

    NASA Astrophysics Data System (ADS)

    Kivotides, Demosthenes

    2018-06-01

    It is shown that, as a result of its interactions with superfluid vorticity, a normal-fluid vortex tube in helium-4 becomes unstable and disintegrates. The superfluid vorticity acquires only a small (few percents of normal-fluid tube strength) polarization, whilst expanding in a front-like manner in the intervortex space of the normal-fluid, forming a dense, unstructured tangle in the process. The accompanied energy spectra scalings offer a structural explanation of analogous scalings in fully developed finite-temperature superfluid turbulence. A macroscopic mutual-friction model incorporating these findings is proposed.

  17. Identity theory and personality theory: mutual relevance.

    PubMed

    Stryker, Sheldon

    2007-12-01

    Some personality psychologists have found a structural symbolic interactionist frame and identity theory relevant to their work. This frame and theory, developed in sociology, are first reviewed. Emphasized in the review are a multiple identity conception of self, identities as internalized expectations derived from roles embedded in organized networks of social interaction, and a view of social structures as facilitators in bringing people into networks or constraints in keeping them out, subsequently, attention turns to a discussion of the mutual relevance of structural symbolic interactionism/identity theory and personality theory, looking to extensions of the current literature on these topics.

  18. Fewer Defects in the Surface Slows the Hydrolysis Rate, Decreases the ROS Generation Potential, and Improves the Non-ROS Antimicrobial Activity of MgO.

    PubMed

    Anicˇić, Nemanja; Vukomanović, Marija; Koklicˇ, Tilen; Suvorov, Danilo

    2018-05-21

    Magnesium oxide (MgO) is recognised as exhibiting a contact-based antibacterial activity. However, a comprehensive study of the impact of atomic-scale surface features on MgO's antibacterial activity is lacking. In this study, the nature and abundance of the native surface defects on different MgO powders are thoroughly investigated. Their impacts on the hydrolysis kinetics, antibacterial activity against Escherichia coli (ATCC 47076), Staphylococcus epidermidis and Pseudomonas aeruginosa and the reactive oxygen species (ROS) generation potential are determined and explained. It is shown that a reduction in the abundance of low-coordinated oxygen atoms on the surface of the MgO improves its resistance to both hydrolysis and antibacterial activity. The ROS generation potential, determined in-situ using a fluorescence microplate assay and electron paramagnetic resonance spectroscopy, is not an inherent property of the studied MgO, rather it is a side product of hydrolysis (only for the most highly defected MgO particles) and/or a consequence of the MgO/bacteria interaction. The evaluation of the mutual correlations of the hydrolysis, the antibacterial activity and the ROS generation, with their origin in the surface defects' peculiarities, led to the conclusion that the acid/base reaction between the MgO surface and the bacterial wall contributes considerably to the MgO's antibacterial activity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Mutualism between co-introduced species facilitates invasion and alters plant community structure

    PubMed Central

    Prior, Kirsten M.; Robinson, Jennifer M.; Meadley Dunphy, Shannon A.; Frederickson, Megan E.

    2015-01-01

    Generalized mutualisms are often predicted to be resilient to changes in partner identity. Variation in mutualism-related traits between native and invasive species however, can exacerbate the spread of invasive species (‘invasional meltdown’) if invasive partners strongly interact. Here we show how invasion by a seed-dispersing ant (Myrmica rubra) promotes recruitment of a co-introduced invasive over native ant-dispersed (myrmecochorous) plants. We created experimental communities of invasive (M. rubra) or native ants (Aphaenogaster rudis) and invasive and native plants and measured seed dispersal and plant recruitment. In our mesocosms, and in laboratory and field trials, M. rubra acted as a superior seed disperser relative to the native ant. By contrast, previous studies have found that invasive ants are often poor seed dispersers compared with native ants. Despite belonging to the same behavioural guild, seed-dispersing ants were not functionally redundant. Instead, native and invasive ants had strongly divergent effects on plant communities: the invasive plant dominated in the presence of the invasive ant and the native plants dominated in the presence of the native ant. Community changes were not due to preferences for coevolved partners: variation in functional traits of linked partners drove differences. Here, we show that strongly interacting introduced mutualists can be major drivers of ecological change. PMID:25540283

  20. Qualities in friendship - Within an outside perspective - Definitions expressed by adolescents with mild intellectual disabilities.

    PubMed

    Sigstad, Hanne Marie Høybråten

    2017-03-01

    This study examined how adolescents with mild intellectual disabilities define qualities of friendship and discussed the extent to which these definitions adhere to established definitions of close friendship. The study was based on qualitative interviews with 11 adolescents in secondary school. The interviews were supplemented with information from six parents. A thematic structural analysis was used to identify themes. Qualities of friendship were categorized as mutual preference, mutual enjoyment, shared interactions, care, mutual trust and bonding. The criteria for close friendship seem to be fulfilled, albeit to a moderate degree. Closeness and reciprocity appear to be significant in this study, although these features have been considered less relevant within this target group in previous research. Differences in definitions may explain divergent results compared with other studies, and the need to achieve equivalence in friendship may be another.

  1. Competitive impacts of an invasive nectar thief on plant-pollinator mutualisms

    USGS Publications Warehouse

    Hanna, Cause; Foote, David; Kremen, Claire

    2014-01-01

    Plant–pollinator mutualisms are disrupted by a variety of competitive interactions between introduced and native floral visitors. The invasive western yellowjacket wasp, Vespula pensylvanica, is an aggressive nectar thief of the dominant endemic Hawaiian tree species, Metrosideros polymorpha. We conducted a large-scale, multiyear manipulative experiment to investigate the impacts of V. pensylvanica on the structure and behavior of the M. polymorpha pollinator community, including competitive mechanisms related to resource availability. Our results demonstrate that V. pensylvanica, through both superior exploitative and interference competition, influences resource partitioning and displaces native and nonnative M. polymorpha pollinators. Furthermore, the restructuring of the pollinator community due to V. pensylvanica competition and predation results in a significant decrease in the overall pollinator effectiveness and fruit set of M. polymorpha. This research highlights both the competitive mechanisms and contrasting effects of social insect invaders on plant–pollinator mutualisms and the role of competition in pollinator community structure.

  2. Mutualism supports biodiversity when the direct competition is weak

    PubMed Central

    Pascual-García, Alberto; Bastolla, Ugo

    2017-01-01

    A key question of theoretical ecology is which properties of ecosystems favour their stability and help maintaining biodiversity. This question recently reconsidered mutualistic systems, generating intense controversy about the role of mutualistic interactions and their network architecture. Here we show analytically and verify with simulations that reducing the effective interspecific competition and the propagation of perturbations positively influences structural stability against environmental perturbations, enhancing persistence. Noteworthy, mutualism reduces the effective interspecific competition only when the direct interspecific competition is weaker than a critical value. This critical competition is in almost all cases larger in pollinator networks than in random networks with the same connectance. Highly connected mutualistic networks reduce the propagation of environmental perturbations, a mechanism reminiscent of MacArthur’s proposal that ecosystem complexity enhances stability. Our analytic framework rationalizes previous contradictory results, and it gives valuable insight on the complex relationship between mutualism and biodiversity. PMID:28232740

  3. Information flow to assess cardiorespiratory interactions in patients on weaning trials.

    PubMed

    Vallverdú, M; Tibaduisa, O; Clariá, F; Hoyer, D; Giraldo, B; Benito, S; Caminal, P

    2006-01-01

    Nonlinear processes of the autonomic nervous system (ANS) can produce breath-to-breath variability in the pattern of breathing. In order to provide assess to these nonlinear processes, nonlinear statistical dependencies between heart rate variability and respiratory pattern variability are analyzed. In this way, auto-mutual information and cross-mutual information concepts are applied. This information flow analysis is presented as a short-term non linear analysis method to investigate the information flow interactions in patients on weaning trials. 78 patients from mechanical ventilation were studied: Group A of 28 patients that failed to maintain spontaneous breathing and were reconnected; Group B of 50 patients with successful trials. The results show lower complexity with an increase of information flow in group A than in group B. Furthermore, a more (weakly) coupled nonlinear oscillator behavior is observed in the series of group A than in B.

  4. Numerical Simulation of an Industrial Cumulus Affected by Heat, Moisture, and CCN Released from an Oil Refinery.

    NASA Astrophysics Data System (ADS)

    Guan, S.; Reuter, G. W.

    1996-08-01

    Large oil refineries emit heat, vapor, and cloud condensation nuclei (CCN), all of which can affect the formation of cloud and precipitation. This study quantities the relative contributions of the three factors on cloud development in calm wind conditions using an axisymmetric cloud model. The factor separation technique is applied to isolate the net contributions of waste heat, vapor, and CCN on the rainfall of a cumulus developing in the industrial plume. The mutual-interactive contributions of two or three of the factors are also computed.The simulations for midlatitude and tropical conditions indicate that the sensible heat provides the major stimulus for cloud development and rain formation. The pure contribution of the industrial CCN is to enhance the condensation, causing an increase in the mass of total cloud water. The simulation results indicate that mutual interactions between waste heat and industrial CCN are large for both cases considered.

  5. Iron metal production in silicate melts through the direct reduction of Fe/II/ by Ti/III/, Cr/II/, and Eu/II/. [in lunar basalts

    NASA Technical Reports Server (NTRS)

    Schreiber, H. D.; Balazs, G. B.; Shaffer, A. P.; Jamison, P. L.

    1982-01-01

    The production of metallic iron in silicate melts by chemical reactions of Ti(3+), Cr(2+), and Eu(2+) with Fe(2+) is demonstrated under experimental conditions in a simplified basaltic liquid. These reactions form a basis for interpreting the role of isochemical valency exchange models in explanations for the reduced nature of lunar basalts. The redox couples are individually investigated in the silicate melt to ascertain reference redox ratios that are independent of mutual interactions. These studies also provide calibrations of spectral absorptions of the Fe(2+) and Ti(2+) species in these glasses. Subsequent spectrophotometric analyses of Fe(2+) and Ti(2+) in glasses doped with both iron and titanium and of Fe(2+) in glasses doped with either iron and chromium or iron and europium ascertain the degree of mutual interactions in these dual-doped glasses.

  6. Child Temperament Moderates Effects of Parent-Child Mutuality on Self-Regulation: A Relationship-Based Path for Emotionally Negative Infants

    PubMed Central

    Kim, Sanghag; Kochanska, Grazyna

    2012-01-01

    This study examined infants’ negative emotionality as moderating the effect of parent-child Mutually Responsive Orientation (MRO) on children’s self-regulation (N=102). Negative emotionality was observed in anger-eliciting episodes and in interactions with parents at 7 months. MRO was coded in naturalistic interactions at 15 months. Self-regulation was measured at 25 months in effortful control battery and as self-regulated compliance to parental requests and prohibitions. Negative emotionality moderated the effects of mother-child MRO. Highly negative infants were less self-regulated when they were in unresponsive relationships (low MRO), but more self-regulated when in responsive relationships (high MRO). For infants not prone to negative emotionality, there was no link between MRO and self-regulation. The “regions-of-significance” analysis supported the differential susceptibility model not the diathesis-stress model. PMID:22670684

  7. Method of mounting a PC board to a hybrid

    NASA Technical Reports Server (NTRS)

    O'Coin, James R. (Inventor)

    1999-01-01

    A system for mounting a hybrid electronic component to a PC board is disclosed. The system includes a set of brackets for mutually engaging a first surface of the PC board and a cover surface of the hybrid electronic component, wherein the cover surface has an arcuate shape when in a vacuum environment. The brackets are designed with legs having lengths and thicknesses for providing clearance between the cover surface of the hybrid and the first surface of the PC board for use when the hybrid electronic component is in a vacuum environment.

  8. A novel growth-promoting microbe, Methylobacterium funariae sp. nov., isolated from the leaf surface of a common moss.

    PubMed

    Schauer, S; Kutschera, U

    2011-04-01

    Land plants (embryophytes) evolved in the presence of prokaryotic microbes. As a result, numerous mutually beneficial associations (symbioses) developed that can be analyzed using a variety of methods. Here we describe the isolation and characterization of a new pink-pigmented facultatively methylotrophic symbiotic bacterium of the genus Methylobacterium (laboratory strain F3.2) that was isolated from the gametophytic phylloids of the common cord moss Funaria hygrometrica Hedw. Plantlets were collected in the field and analyzed in the laboratory. Colonies of methylobacteria were obtained by the agar-impression-method. Based on its unique phenotype (the bacterial cells are characterized by fimbriae-like appendages), a comparative 16S rRNA gene (DNA) sequence analysis, and an average DNA-DNA hybridization value of 8,4 %, compared with its most closely related sister taxon, this isolate is described as a new species, Methylobacterium funariae sp. nov. (type strain F3.2). This new epiphytic bacterium inhabits the leaf surface of "primitive" land plants such as mosses and interacts with its host organism via the secretion of phytohormones (cytokinines, auxins). These external signals are perceived by the plant cells that divide and grow more rapidly than in the absence of their prokaryotic phytosymbionts. We suggest that M. funariae sp. nov. uses methanol emitted from the stomatal pores as principal carbon source for cell metabolism. However, our novel data indicate that, in this unique symbiotic plant-microbe interaction, the uptake of amino acids leached from the surface of the epidermal cells of the green host organism may be of importance as microbial carbon- and nitrogen-source.

  9. Limiting the cost of mutualism: the defensive role of elongated gynophore in the leafflower-moth mutualism.

    PubMed

    Furukawa, Saori; Kawakita, Atsushi

    2017-08-01

    Mutualisms are interactions from which both partners benefit but may collapse if mutualists' costs and benefits are not aligned. Host sanctions are one mechanism whereby hosts selectively allocate resources to the more cooperative partners and thereby reduce the fitness of overexploiters; however, many mutualisms lack apparent means of host sanctions. In mutualisms between plants and pollinating seed parasites, such as those between leafflowers and leafflower moths, pollinators consume subsets of the seeds as larval food in return for their pollination service. Plants may select against overexploiters by selectively aborting flowers with a heavy egg load, but in many leafflower species, seeds are fully eaten in some fruits, suggesting that such a mechanism is not present in all species. Instead, the fruits of Breynia vitis-idaea have stalk-like structures (gynophore) through which early-instar moth larvae must bore to reach seeds. Examination of moth mortality in fruits with different gynophore lengths suggested that fruits with longer gynophore had higher moth mortality and, therefore, less seed damage. Most moth mortality occurred at the egg stage or as early larval instar before moths reached the seeds, consistent with the view that gynophore functions to prevent moth access to seeds. Gynophore length was unaffected by plant size, extent of moth oviposition, or geography; thus, it is most likely genetically controlled. Because gynophores do not elongate in related species whose pollinators oviposit directly into the ovary, the gynophore in B. vitis-idaea may have evolved as a defense to limit the cost of the mutualism.

  10. Learning by Observing, Pitching in, and Being in Relations in the Natural World.

    PubMed

    Bang, Megan; Marin, Ananda; Medin, Douglas; Washinawatok, Karen

    2015-01-01

    This chapter describes a central tenet of Indigenous American social interaction, which emphasizes mutuality in collaboration and caring in Indigenous communities. This includes interactions with an agentive natural world, in which more-than-human beings act as participants in the lives of humans and vice versa. We argue that research on children's learning should take a broader view of interactional partners to include the natural world. © 2015 Elsevier Inc. All rights reserved.

  11. Enhancing non-local correlations in the bipartite partitions of two qubit-system with non-mutual interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, A.-B.A., E-mail: abdelbastm@yahoo.com; Faculty of Science, Assiut University, Assiut; Joshi, A., E-mail: mcbamji@gmail.com

    2016-03-15

    Several quantum-mechanical correlations, notably, quantum entanglement, measurement-induced nonlocality and Bell nonlocality are studied for a two qubit-system having no mutual interaction. Analytical expressions for the measures of these quantum-mechanical correlations of different bipartite partitions of the system are obtained, for initially two entangled qubits and the two photons are in their vacuum states. It is found that the qubits-fields interaction leads to the loss and gain of the initial quantum correlations. The lost initial quantum correlations transfer from the qubits to the cavity fields. It is found that the maximal violation of Bell’s inequality is occurring when the quantum correlationsmore » of both the logarithmic negativity and measurement-induced nonlocality reach particular values. The maximal violation of Bell’s inequality occurs only for certain bipartite partitions of the system. The frequency detuning leads to quick oscillations of the quantum correlations and inhibits their transfer from the qubits to the cavity modes. It is also found that the dynamical behavior of the quantum correlation clearly depends on the qubit distribution angle.« less

  12. Ecological network analysis on global virtual water trade.

    PubMed

    Yang, Zhifeng; Mao, Xufeng; Zhao, Xu; Chen, Bin

    2012-02-07

    Global water interdependencies are likely to increase with growing virtual water trade. To address the issues of the indirect effects of water trade through the global economic circulation, we use ecological network analysis (ENA) to shed insight into the complicated system interactions. A global model of virtual water flow among agriculture and livestock production trade in 1995-1999 is also built as the basis for network analysis. Control analysis is used to identify the quantitative control or dependency relations. The utility analysis provides more indicators for describing the mutual relationship between two regions/countries by imitating the interactions in the ecosystem and distinguishes the beneficiary and the contributor of virtual water trade system. Results show control and utility relations can well depict the mutual relation in trade system, and direct observable relations differ from integral ones with indirect interactions considered. This paper offers a new way to depict the interrelations between trade components and can serve as a meaningful start as we continue to use ENA in providing more valuable implications for freshwater study on a global scale.

  13. Clustering by well-being in workplace social networks: Homophily and social contagion.

    PubMed

    Chancellor, Joseph; Layous, Kristin; Margolis, Seth; Lyubomirsky, Sonja

    2017-12-01

    Social interaction among employees is crucial at both an organizational and individual level. Demonstrating the value of recent methodological advances, 2 studies conducted in 2 workplaces and 2 countries sought to answer the following questions: (a) Do coworkers interact more with coworkers who have similar well-being? and, if yes, (b) what are the processes by which such affiliation occurs? Affiliation was assessed via 2 methodologies: a commonly used self-report measure (i.e., mutual nominations by coworkers) complemented by a behavioral measure (i.e., sociometric badges that track physical proximity and social interaction). We found that individuals who share similar levels of well-being (e.g., positive affect, life satisfaction, need satisfaction, and job satisfaction) were more likely to socialize with one another. Furthermore, time-lagged analyses suggested that clustering in need satisfaction arises from mutual attraction (homophily), whereas clustering in job satisfaction and organizational prosocial behavior results from emotional contagion. These results suggest ways in which organizations can physically and socially improve their workplace. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. Changes in the interaction of resting-state neural networks from adolescence to adulthood.

    PubMed

    Stevens, Michael C; Pearlson, Godfrey D; Calhoun, Vince D

    2009-08-01

    This study examined how the mutual interactions of functionally integrated neural networks during resting-state fMRI differed between adolescence and adulthood. Independent component analysis (ICA) was used to identify functionally connected neural networks in 100 healthy participants aged 12-30 years. Hemodynamic timecourses that represented integrated neural network activity were analyzed with tools that quantified system "causal density" estimates, which indexed the proportion of significant Granger causality relationships among system nodes. Mutual influences among networks decreased with age, likely reflecting stronger within-network connectivity and more efficient between-network influences with greater development. Supplemental tests showed that this normative age-related reduction in causal density was accompanied by fewer significant connections to and from each network, regional increases in the strength of functional integration within networks, and age-related reductions in the strength of numerous specific system interactions. The latter included paths between lateral prefrontal-parietal circuits and "default mode" networks. These results contribute to an emerging understanding that activity in widely distributed networks thought to underlie complex cognition influences activity in other networks. (c) 2009 Wiley-Liss, Inc.

  15. Mutual influences between the main olfactory and vomeronasal systems in development and evolution

    PubMed Central

    Suárez, Rodrigo; García-González, Diego; de Castro, Fernando

    2012-01-01

    The sense of smell plays a crucial role in the sensory world of animals. Two chemosensory systems have been traditionally thought to play-independent roles in mammalian olfaction. According to this, the main olfactory system (MOS) specializes in the detection of environmental odorants, while the vomeronasal system (VNS) senses pheromones and semiochemicals produced by individuals of the same or different species. Although both systems differ in their anatomy and function, recent evidence suggests they act synergistically in the perception of scents. These interactions include similar responses to some ligands, overlap of telencephalic connections and mutual influences in the regulation of olfactory-guided behavior. In the present work, we propose the idea that the relationships between systems observed at the organismic level result from a constant interaction during development and reflects a common history of ecological adaptations in evolution. We review the literature to illustrate examples of developmental and evolutionary processes that evidence these interactions and propose that future research integrating both systems may shed new light on the mechanisms of olfaction. PMID:23269914

  16. Mutual antagonism between the Ebola virus VP35 protein and the RIG-I activator PACT determines infection outcome.

    PubMed

    Luthra, Priya; Ramanan, Parameshwaran; Mire, Chad E; Weisend, Carla; Tsuda, Yoshimi; Yen, Benjamin; Liu, Gai; Leung, Daisy W; Geisbert, Thomas W; Ebihara, Hideki; Amarasinghe, Gaya K; Basler, Christopher F

    2013-07-17

    The cytoplasmic pattern recognition receptor RIG-I is activated by viral RNA and induces type I IFN responses to control viral replication. The cellular dsRNA binding protein PACT can also activate RIG-I. To counteract innate antiviral responses, some viruses, including Ebola virus (EBOV), encode proteins that antagonize RIG-I signaling. Here, we show that EBOV VP35 inhibits PACT-induced RIG-I ATPase activity in a dose-dependent manner. The interaction of PACT with RIG-I is disrupted by wild-type VP35, but not by VP35 mutants that are unable to bind PACT. In addition, PACT-VP35 interaction impairs the association between VP35 and the viral polymerase, thereby diminishing viral RNA synthesis and modulating EBOV replication. PACT-deficient cells are defective in IFN induction and are insensitive to VP35 function. These data support a model in which the VP35-PACT interaction is mutually antagonistic and plays a fundamental role in determining the outcome of EBOV infection. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Commensal microbiome effects on mucosal immune system development in the ruminant gastrointestinal tract.

    PubMed

    Taschuk, Ryan; Griebel, Philip J

    2012-06-01

    Commensal microflora play many roles within the mammalian gastrointestinal tract (GIT) that benefit host physiology by way of direct or indirect interactions with mucosal surfaces. Commensal flora comprises members across all microbial phyla, although predominantly bacterial, with population dynamics varying with host species, genotype, and environmental factors. Little is known, however, about the complex mechanisms regulating host-commensal interactions that underlie this mutually beneficial relationship and how alterations in the microbiome may influence host development and susceptibility to infection. Research into the gut microbiome has intensified as it becomes increasingly evident that symbiont-host interactions have a significant impact on mucosal immunity and health. Furthermore, evidence that microbial populations vary significantly throughout the GIT suggest that regional differences in the microbiome may also influence immune function within distinct compartments of the GIT. Postpartum colonization of the GIT has been shown to have a direct effect on mucosal immune system development, but information is limited regarding regional effects of the microbiome on the development, activation, and maturation of the mucosal immune system. This review discusses factors influencing the colonization and establishment of the microbiome throughout the GIT of newborn calves and the evidence that regional differences in the microbiome influence mucosal immune system development and maturation. The implications of this complex interaction are also discussed in terms of possible effects on responses to enteric pathogens and vaccines.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Tirtha; Vercauteren, Nikki; Muste, Marian

    Flume experiments with particle imaging velocimetry (PIV) were conducted recently to study a complex flow problem where wind shear acts on the surface of a static water body in presence of flexible emergent vegetation and induces a rich dynamics of wave–turbulence–vegetation interaction inside the water body without any gravitational gradient. The experiments were aimed at mimicking realistic vegetated wetlands and the present work is targeted to improve the understanding of the coherent structures associated with this interaction by employing a combination of techniques such as quadrant analysis, proper orthogonal decomposition (POD), Shannon entropy and mutual information content (MIC). The turbulentmore » transfer of momentum is found to be dominated by organized motions such as sweeps and ejections, while the wave component of vertical momentum transport does not show any such preference. Furthermore, by reducing the data using POD we see that wave energy for large flow depths and turbulent energy for all water depths is concentrated among the top few modes, which can allow development of simple reduced order models. Vegetation flexibility is found to induce several roll type structures, however if the vegetation density is increased, drag effects dominate over flexibility and organize the flow. The interaction between waves and turbulence is also found to be highest among flexible sparse vegetation. But, rapidly evolving parts of the flow such as the air–water interface reduces wave–turbulence interaction.« less

  19. Orbits of Two-Body Problem From the Lenz Vector

    ERIC Educational Resources Information Center

    Caplan, S.; And Others

    1978-01-01

    Obtains the orbits with reference to the center of mass of two bodies under mutual universe square law interaction by use of the eccentricity vector which is equivalent to the Lenz vector within a numerical factor. (Author/SL)

  20. Influence of flavor oscillations on neutrino beam instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendonça, J. T., E-mail: titomend@ist.utl.pt; Haas, F.; Bret, A.

    2014-09-15

    We consider the collective neutrino plasma interactions and study the electron plasma instabilities produced by a nearly mono-energetic neutrino beam in a plasma. We describe the mutual interaction between neutrino flavor oscillations and electron plasma waves. We show that the neutrino flavor oscillations are not only perturbed by electron plasmas waves but also contribute to the dispersion relation and the growth rates of neutrino beam instabilities.

  1. Verbal Interaction Structures and Repetition's Functions: A Comparison of Exchanges between Adults and Severely Disabled Adolescents or Young Children

    ERIC Educational Resources Information Center

    Bocéréan, Christine; Musiol, Michel

    2017-01-01

    This article describes a study in which conversation analysis was used to examine verbal interactions between caregivers and severely disabled adolescents or young children. It focused on the phenomenon of repetition, which seems to be the basis of the mutual-understanding process. We compared dialogue structures containing repetitions in the two…

  2. Stabilization of a bat-pitcher plant mutualism.

    PubMed

    Schöner, Michael G; Schöner, Caroline R; Ermisch, Rebecca; Puechmaille, Sébastien J; Grafe, T Ulmar; Tan, Moi Chan; Kerth, Gerald

    2017-10-13

    Despite the long persistence of many mutualisms, it is largely unknown which mechanisms stabilize these interactions. This is especially true if only one mutualism partner can choose alternative partners while the other cannot, resulting in a power asymmetry. According to biological market theory the choosing partner should prefer the more dependent partner if the latter offers commodities of higher quality than its competitors. We tested this prediction using Bornean carnivorous pitcher plants (Nepenthes hemsleyana) that strongly rely on faecal nitrogen of bats (Kerivoula hardwickii) which roost inside the pitchers. The bats also roost in furled leaves of various plants. Surprisingly, during field observations the bats did not always choose N. hemsleyana pitchers despite their superior quality but were generally faithful either to pitchers or to furled leaves. In behavioural experiments 21% of the leaf-roosting bats switched to pitchers, while the majority of these bats and all pitcher-roosting individuals were faithful to the roost type in which we had found them. Genetic differentiation cannot explain this faithfulness, which likely results from different roosting traditions. Such traditions could have stabilizing or destabilizing effects on various mutualisms and should be investigated in more detail.

  3. Establishment of stable synthetic mutualism without co-evolution between microalgae and bacteria demonstrated by mutual transfer of metabolites (NanoSIMS isotopic imaging) and persistent physical association (Fluorescent in situ hybridization)

    DOE PAGES

    de-Bashan, Luz E.; Mayali, Xavier; Bebout, Brad M.; ...

    2016-03-03

    The demonstration of a mutualistic interaction requires evidence of benefits for both partners as well as stability of the association over multiple generations. A synthetic mutualism between the freshwater microalga Chlorella sorokiniana and the soil-derived plant growth-promoting bacterium (PGPB) Azospirillum brasilense was created when both microorganisms were co-immobilized in alginate beads. Using stable isotope enrichment experiments followed by high-resolution secondary ion mass spectrometry (SIMS) imaging of single cells, we demonstrated transfer of carbon and nitrogen compounds between the two partners. Further, using fluorescent in situ hybridization (FISH), mechanical disruption and scanning electron microscopy, we demonstrated the stability of their physicalmore » association for a period of 10 days after the aggregated cells were released from the beads. The bacteria significantly enhanced the growth of the microalgae while the microalgae supported growth of the bacteria in a medium where it could not otherwise grow. In conclusion, we propose that this microalga-bacterium association is a true synthetic mutualism independent of co-evolution. (155 words).« less

  4. Coherent structures in wind shear induced wave–turbulence–vegetation interaction in water bodies

    DOE PAGES

    Banerjee, Tirtha; Vercauteren, Nikki; Muste, Marian; ...

    2017-08-26

    Flume experiments with particle imaging velocimetry (PIV) were conducted recently to study a complex flow problem where wind shear acts on the surface of a static water body in presence of flexible emergent vegetation and induces a rich dynamics of wave–turbulence–vegetation interaction inside the water body without any gravitational gradient. The experiments were aimed at mimicking realistic vegetated wetlands and the present work is targeted to improve the understanding of the coherent structures associated with this interaction by employing a combination of techniques such as quadrant analysis, proper orthogonal decomposition (POD), Shannon entropy and mutual information content (MIC). The turbulentmore » transfer of momentum is found to be dominated by organized motions such as sweeps and ejections, while the wave component of vertical momentum transport does not show any such preference. Furthermore, by reducing the data using POD we see that wave energy for large flow depths and turbulent energy for all water depths is concentrated among the top few modes, which can allow development of simple reduced order models. Vegetation flexibility is found to induce several roll type structures, however if the vegetation density is increased, drag effects dominate over flexibility and organize the flow. The interaction between waves and turbulence is also found to be highest among flexible sparse vegetation. But, rapidly evolving parts of the flow such as the air–water interface reduces wave–turbulence interaction.« less

  5. Experimental and numerical study on bubble-sphere interaction near a rigid wall

    NASA Astrophysics Data System (ADS)

    Li, S.; Zhang, A. M.; Han, R.; Liu, Y. Q.

    2017-09-01

    This study is concerned with the interaction between a violently oscillating bubble and a movable sphere with comparable size near a rigid wall, which is an essential physical phenomenon in many applications such as cavitation, underwater explosion, ultrasonic cleaning, and biomedical treatment. Experiments are performed in a cubic water tank, and the underwater electric discharge technique (580 V DC) is employed to generate a bubble that is initiated between a rigid wall and a sphere in an axisymmetric configuration. The bubble-sphere interactions are captured using a high-speed camera operating at 52 000 frames/s. A classification of the bubble-sphere interaction is proposed, i.e., "weak," "intermediate," and "strong" interactions, identified with three distinct bubble shapes at the maximum volume moment. In the numerical simulations, the boundary integral method and the auxiliary function method are combined to establish a full coupling model that decouples the mutual dependence between the force and the sphere motion. The main features of bubble dynamics in different experiments are well reproduced by our numerical model. Meanwhile, the pressure and velocity fields are also provided for clarifying the associated mechanisms. The effects of two dimensionless standoff parameters, namely, γs (defined as ds/Rm, where ds is the minimum distance between the initial bubble center and the sphere surface and Rm is the maximum bubble radius) and γw (defined as dw/Rm, where dw is the distance between the initial bubble center and the rigid wall), are also discussed.

  6. Interactions of the NAEG information support project with other projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfuderer, H.A.

    In the past year the Information Support Project to the Nevada Applied Ecology Group has interacted with many other research projects on the transuranics and other radionuclides. Group interactions through symposiums, workshops, and responding to search requests have proven to be mutually beneficial. The NAEG Information Support Project will draw on the information resources of the Oak Ridge National Laboratory to produce a bibliography of the radionuclides (other than the transuranics) of interest to the Nevada Test Site. (auth)

  7. A computational study on the strength and nature of bifurcated aerogen bonds

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Sadr-Mousavi, Asma

    2018-04-01

    A quantum chemical study is performed to unveil the strength and bonding properties of bifurcated aerogen-bonding (BAB) interactions in complexes formed between ZO3 molecules (Z = Ar, Kr and Xe) and 1,2-dihydroxybenzene derivatives. The interaction energies of the resulting complexes are between -7.70 and -15.59 kcal/mol. The nature of BAB interactions is identified by the molecular electrostatic potential, quantum theory of atoms in molecules, noncovalent interaction index and natural bond orbital analyses. The mutual influence between the BAB and a halogen, chalcogen, pnicogen or tetrel bonding interaction is also studied in systems where these interactions coexist.

  8. Arrays of dipolar molecular rotors in Tris(o-phenylenedioxy) cyclotriphosphazene.

    PubMed

    Zhao, Ke; Dron, Paul I; Kaleta, Jiří; Rogers, Charles T; Michl, Josef

    2014-01-01

    Regular two-dimensional or three-dimensional arrays of mutually interacting dipolar molecular rotors represent a worthy synthetic objective. Their dielectric properties, including possible collective behavior, will be a sensitive function of the location of the rotors, the orientation of their axes, and the size of their dipoles. Host-guest chemistry is one possible approach to gaining fine control over these factors. We describe the progress that has been achieved in recent years using tris (o-phenylenedioxy)cyclotriphosphazene as a host and a series of rod-shaped dipolar molecular rotors as guests. Structures of both surface and bulk inclusion compounds have been established primarily by solid-state nuclear magnetic resonance (NMR) and powder X-ray diffraction (XRD) techniques. Low-temperature dielectric spectroscopy revealed rotational barriers as low as 1.5 kcal/mol, but no definitive evidence for collective behavior has been obtained so far.

  9. [The importance of maternal microbiome in pregnancy].

    PubMed

    Záhumenský, J; Hederlingová, J; Pšenková, P

    2017-01-01

    To bring the most actual published findings of the influence of maternal microbiome on the development of pregnancy and possibilities of its adjusting. Review. 2nd Department of Gyneacology and Obstetrics of the Faculty of Medicine and the University Hospital, Bratislava. Review of the literature. The appearance of microbes on various body surface areas determines the overall health status of the individual in significant manner. The change in composition of microbioma in pregnant woman is well known. It was believed that the placenta and the body of the newborn is sterile environment. Modern diagnostic methods proved the presence of microorganisms inside the fetoplacentar unit without the signs of inflammation. Mutual interaction between the immune system of the mother, microbioma and immune system of the newborn can decrease the risk of serious obstetrical syndromes as well as define the lifelong health status of the newborn. The risk can be decreased by the administration of probiotics during the pregnancy.

  10. Long-range effect of a Zeeman field on the electric current through the helical metal-superconductor interface in an Andreev interferometer

    NASA Astrophysics Data System (ADS)

    Mal'shukov, A. G.

    2018-02-01

    It is shown that the spin-orbit and Zeeman interactions result in phase shifts of Andreev-reflected holes propagating at the surface of a topological insulator, or in Rashba spin-orbit-coupled two-dimensional normal metals, which are in contact with an s -wave superconductor. Due to interference of holes reflected through different paths of the Andreev interferometer the electric current through external contacts varies depending on the strength and direction of the Zeeman field. It also depends on mutual orientations of Zeeman fields in different shoulders of the interferometer. Such a nonlocal effect is a result of the long-range coherency caused by the superconducting proximity effect. This current has been calculated within the semiclassical theory for Green's functions in the diffusive regime, by assuming a strong disorder due to elastic scattering of electrons.

  11. Proteolysis produced within biofilms of bacterial isolates from raw milk tankers.

    PubMed

    Teh, Koon Hoong; Flint, Steve; Palmer, Jon; Andrewes, Paul; Bremer, Phil; Lindsay, Denise

    2012-06-15

    In this study, six bacterial isolates that produced thermo-resistant enzymes isolated from the internal surfaces of raw milk tankers were evaluated for their ability to produce proteolysis within either single culture biofilms or co-culture biofilms. Biofilms were formed in an in vitro model system that simulated the upper internal surface of a raw milk tanker during a typical summer's day of milk collection in New Zealand. The bacterial isolates were further evaluated for their ability to form biofilms at 25, 30 and 37°C. Mutual and competitive effects were observed in some of the co-culture biofilms, with all isolates being able to form biofilms in either single culture or co-culture at the three temperatures. The proteolysis was also evaluated in both biofilms and corresponding planktonic cultures. The proteolysis per cell decreased as the temperature of incubation (20-37°C) increased. Furthermore, mutualistic interactions in terms of proteolysis were observed when cultures were grown as co-culture biofilms. This is the first study to show that proteolytic enzymes can be produced in biofilms on the internal surfaces of raw milk tankers. This has important implications for the cleaning and the temperature control of raw milk transport tankers. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Adsorption of imidazolinone herbicides on smectite-humic acid and smectite-ferrihydrite associations.

    PubMed

    Leone, P; Nègre, M; Gennari, M; Boero, V; Celis, R; Cornejo, J

    2002-01-16

    Adsorption of imazapyr (IMZ), imazethapyr (IMZT), and imazaquin (IMZQ) was studied on two smectite-humic acid and two smectite-ferrihydrite binary systems prepared by treating a Wyoming smectite with a humic acid extracted from soil (4 and 8% w/w of the smectite) and with just-precipitated synthetic ferrihydrite (8 and 16% w/w of the smectite). Adsorption of the three herbicides on the smectite was not measurable at pH >4.5, presumably because of negative charges on the surface of the smectite. Adsorption on the smectite-humic acid systems was also not measurable, presumably because of negative charges on the surface, despite the high affinity of the three herbicides for humic acid, the adsorption order of which was IMZ < IMZT < IMZQ. Adsorption decreased in the order IMZ < IMZT < IMZQ on the smectite-ferrihydrite systems and IMZQ < IMZT < IMZ on ferrihydrite, although here the differences were small. These results show that even though pure smectite cannot adsorb herbicides, it modifies the adsorption capacity of ferrihydrite. The mutual interaction of active phases such as humic acid, ferrihydrite, and smectite alters the characteristics of the resulting surface and hence the adsorption process. Investigations of herbicide adsorption have been seen to produce more reliable results if conducted on polyphasic systems rather than on single soil components.

  13. High Electrochemical Sensitivity of TiO2- x Nanosheets and an Electron-Induced Mutual Interference Effect toward Heavy Metal Ions Demonstrated Using X-ray Absorption Fine Structure Spectra.

    PubMed

    Zhou, Wen-Yi; Li, Shan-Shan; Song, Jie-Yao; Jiang, Min; Jiang, Tian-Jia; Liu, Jin-Yun; Liu, Jin-Huai; Huang, Xing-Jiu

    2018-04-03

    Mutual interference is a severe issue that occurs during the electrochemical detection of heavy metal ions. This limitation presents a notable drawback for its high sensitivity to specific targets. Here, we present a high electrochemical sensitivity of ∼237.1 μA cm -2 μM -1 toward copper(II) [Cu(II)] based on oxygen-deficient titanium dioxide (TiO 2- x ) nanosheets. We fully demonstrated an atomic-level relationship between electrochemical behaviors and the key factors, including the high-energy (001) facet percentage, oxygen vacancy concentration, surface -OH content, and charge carrier density, is fully demonstrated. These four factors were quantified using Raman, electron spin resonance, X-ray photoelectron spectroscopy spectra, and Mott-Schottky plots. In the mutual interference investigation, we selected cadmium(II) [Cd(II)] as the target ion because of the significant difference in its stripping potential (∼700 mV). The results show that the Cd(II) can enhance the sensitivity of TiO 2- x nanosheets toward Cu(II), exhibiting an electron-induced mutual interference effect, as demonstrated by X-ray absorption fine structure spectra.

  14. Toward a multimodal communication theory of psychotherapy: the vicarious coprocessing of experience.

    PubMed

    Adler, H M

    1997-01-01

    "Talking" therapy is examined as an interpersonal transaction. The personal-experience narrative is used as a vehicle through which the patient and therapist coprocess a mutual experience. Within the narrative transaction, the patient is able to vicariously re-experience and reconfigure the narrated events as he/she believes the therapist is experiencing them. Nonverbal symbolic modes of communication such as music, movement, and art also provide media through which patients and therapists can coprocess a mutual experience. The vicarious coprocessing of experience is a therapeutic factor common to talking therapy, music therapy, art therapy, movement therapy, conventional social interaction, and some healing practices in other cultures.

  15. Does biological intimacy shape ecological network structure? A test using a brood pollination mutualism on continental and oceanic islands.

    PubMed

    Hembry, David H; Raimundo, Rafael L G; Newman, Erica A; Atkinson, Lesje; Guo, Chang; Guimarães, Paulo R; Gillespie, Rosemary G

    2018-04-25

    Biological intimacy-the degree of physical proximity or integration of partner taxa during their life cycles-is thought to promote the evolution of reciprocal specialization and modularity in the networks formed by co-occurring mutualistic species, but this hypothesis has rarely been tested. Here, we test this "biological intimacy hypothesis" by comparing the network architecture of brood pollination mutualisms, in which specialized insects are simultaneously parasites (as larvae) and pollinators (as adults) of their host plants to that of other mutualisms which vary in their biological intimacy (including ant-myrmecophyte, ant-extrafloral nectary, plant-pollinator and plant-seed disperser assemblages). We use a novel dataset sampled from leafflower trees (Phyllanthaceae: Phyllanthus s. l. [Glochidion]) and their pollinating leafflower moths (Lepidoptera: Epicephala) on three oceanic islands (French Polynesia) and compare it to equivalent published data from congeners on continental islands (Japan). We infer taxonomic diversity of leafflower moths using multilocus molecular phylogenetic analysis and examine several network structural properties: modularity (compartmentalization), reciprocality (symmetry) of specialization and algebraic connectivity. We find that most leafflower-moth networks are reciprocally specialized and modular, as hypothesized. However, we also find that two oceanic island networks differ in their modularity and reciprocal specialization from the others, as a result of a supergeneralist moth taxon which interacts with nine of 10 available hosts. Our results generally support the biological intimacy hypothesis, finding that leafflower-moth networks (usually) share a reciprocally specialized and modular structure with other intimate mutualisms such as ant-myrmecophyte symbioses, but unlike nonintimate mutualisms such as seed dispersal and nonintimate pollination. Additionally, we show that generalists-common in nonintimate mutualisms-can also evolve in intimate mutualisms, and that their effect is similar in both types of assemblages: once generalists emerge they reshape the network organization by connecting otherwise isolated modules. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.

  16. Evolution of parasitism and mutualism between filamentous phage M13 and Escherichia coli.

    PubMed

    Shapiro, Jason W; Williams, Elizabeth S C P; Turner, Paul E

    2016-01-01

    Background. How host-symbiont interactions coevolve between mutualism and parasitism depends on the ecology of the system and on the genetic and physiological constraints of the organisms involved. Theory often predicts that greater reliance on horizontal transmission favors increased costs of infection and may result in more virulent parasites or less beneficial mutualists. We set out to understand transitions between parasitism and mutualism by evolving the filamentous bacteriophage M13 and its host Escherichia coli. Results. The effect of phage M13 on bacterial fitness depends on the growth environment, and initial assays revealed that infected bacteria reproduce faster and to higher density than uninfected bacteria in 96-well microplates. These data suggested that M13 is, in fact, a facultative mutualist of E. coli. We then allowed E. coli and M13 to evolve in replicated environments, which varied in the relative opportunity for horizontal and vertical transmission of phage in order to assess the evolutionary stability of this mutualism. After 20 experimental passages, infected bacteria from treatments with both vertical and horizontal transmission of phage had evolved the fastest growth rates. At the same time, phage from these treatments no longer benefited the ancestral bacteria. Conclusions. These data suggest a positive correlation between the positive effects of M13 on E. coli hosts from the same culture and the negative effects of the same phage toward the ancestral bacterial genotype. The results also expose flaws in applying concepts from the virulence-transmission tradeoff hypothesis to mutualism evolution. We discuss the data in the context of more recent theory on how horizontal transmission affects mutualisms and explore how these effects influence phages encoding virulence factors in pathogenic bacteria.

  17. Evolution of parasitism and mutualism between filamentous phage M13 and Escherichia coli

    PubMed Central

    Williams, Elizabeth S.C.P.; Turner, Paul E.

    2016-01-01

    Background. How host-symbiont interactions coevolve between mutualism and parasitism depends on the ecology of the system and on the genetic and physiological constraints of the organisms involved. Theory often predicts that greater reliance on horizontal transmission favors increased costs of infection and may result in more virulent parasites or less beneficial mutualists. We set out to understand transitions between parasitism and mutualism by evolving the filamentous bacteriophage M13 and its host Escherichia coli. Results. The effect of phage M13 on bacterial fitness depends on the growth environment, and initial assays revealed that infected bacteria reproduce faster and to higher density than uninfected bacteria in 96-well microplates. These data suggested that M13 is, in fact, a facultative mutualist of E. coli. We then allowed E. coli and M13 to evolve in replicated environments, which varied in the relative opportunity for horizontal and vertical transmission of phage in order to assess the evolutionary stability of this mutualism. After 20 experimental passages, infected bacteria from treatments with both vertical and horizontal transmission of phage had evolved the fastest growth rates. At the same time, phage from these treatments no longer benefited the ancestral bacteria. Conclusions. These data suggest a positive correlation between the positive effects of M13 on E. coli hosts from the same culture and the negative effects of the same phage toward the ancestral bacterial genotype. The results also expose flaws in applying concepts from the virulence-transmission tradeoff hypothesis to mutualism evolution. We discuss the data in the context of more recent theory on how horizontal transmission affects mutualisms and explore how these effects influence phages encoding virulence factors in pathogenic bacteria. PMID:27257543

  18. A longitudinal study of the comparative efficacy of Women for Sobriety, LifeRing, SMART Recovery, and 12-step groups for those with AUD.

    PubMed

    Zemore, Sarah E; Lui, Camillia; Mericle, Amy; Hemberg, Jordana; Kaskutas, Lee Ann

    2018-05-01

    Despite the effectiveness of 12-step groups, most people reporting a prior alcohol use disorder (AUD) do not sustain involvement in such groups at beneficial levels. This highlights the need for research on other mutual help groups that address alcohol problems and may attract those who avoid 12-step groups. The current study addresses this need, offering outcome data from the first longitudinal, comparative study of 12-step groups and their alternatives: The Peer ALlternatives for Addiction (PAL) Study. Adults with a lifetime AUD were surveyed at baseline (N=647), 6months (81% response rate) and 12months (83% response rate). Members of the largest known secular mutual help alternatives, namely Women for Sobriety (WFS), LifeRing, and SMART, were recruited in collaboration with group directors; current 12-step attendees were recruited from an online meeting hub. Online surveys assessed demographic and clinical variables; mutual help involvement; and alcohol and drug use and severity. Analyses involved multivariate logistic GEEs separately modelling alcohol abstinence, alcohol problems, and total abstinence across 6 and 12months. Key predictors were baseline primary group affiliation (PGA); primary group involvement (PGI) at both baseline and 6months; and the interaction between baseline PGA and 6-month PGI. The critical effects of interest were the interactions, expressing whether associations between changes in PGI from baseline to 6months and substance use outcomes differed by primary group. None of the interactions between baseline PGA and 6-month PGI were significant, suggesting no differences in the efficacy of WFS, LifeRing, or SMART, vs. 12-step groups. Nevertheless, some PGA main effects emerged. Compared to 12-step members, those identifying SMART as their primary group at baseline fared worse across outcomes, and those affiliating with LifeRing showed lower odds of total abstinence. Still, these effects became nonsignificant when controlling for baseline alcohol recovery goal, suggesting that any group differences may be explained by selection of those with weaker abstinence motivation into LifeRing and (especially) SMART. This study makes a valuable contribution in view of the extremely limited evidence on mutual help alternatives. Results tentatively suggest that WFS, LifeRing, and SMART are as effective as 12-step groups for those with AUDs, and that this population has the best odds of success when committing to lifetime total abstinence. An optimal care plan may thus involve facilitating involvement in a broad array of mutual help groups and supporting abstinence motivation. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Investigating a Quadrant Surface Coil Array for NQR Remote Sensing

    DTIC Science & Technology

    2014-10-23

    UNCLASSIFIED 1  Abstract—this paper is on the design and fabrication of a surface coil array in a quadrant layout for NQR (Nuclear Quadrupole...coupling and SNR (Signal-to-Noise Ratio) at standoff distances perpendicular from each coil. Index Terms— Nuclear Quadrupole Resonance, NQR ...Coil Array, probe, Nuclear Magnetic Resonance, tuning, decoupling, RLC, mutual coupling, RLC I. INTRODUCTION N Nuclear quadrupole resonance ( NQR

  20. The effects of herbivory on neighbor interactions along a coastal marsh gradient

    USGS Publications Warehouse

    Taylor, K.L.; Grace, J.B.; Marx, B.D.

    1997-01-01

    Many current theories of community function are based on the assumption that disturbances such as herbivory act to reduce the importance of neighbor interactions among plants. In this study, we examined the effects of herbivory (primarily by nutria, Myocastor coy-pus) on neighbor interactions between three dominant grasses in three coastal marsh communities, fresh, oligohaline, and mesohaline. The grasses studied were Panicum virgatum, Spartina patens, and Spartina alterniflora, which are dominant species in the fresh, oligohaline, and mesohaline marshes, respectively. Additive mixtures and monocultures of transplants were used in conjunction with exclosure fences to determine the impact of herbivory on neighbor interactions in the different marsh types. Herbivory had a strong effect on all three species and was important in all three marshes. In the absence of herbivores, the impact of neighbors was significant for two of the species (Panicum virgatum and Spartina patens) and varied considerably between environments, with competition intensifying for Panicum virgatum and decreasing for Spartina patens with increasing salinity. Indications of positive neighbor effects (mutualisms) were observed for both of these species, though in contrasting habitats and to differing degrees. In the presence of herbivores, however, competitive and positive effects were eliminated. Overall, then, it was observed that in this case, intense herbivory was able to override other biotic interactions such as competition and mutualism, which were not detectable in the presence of herbivores.

  1. An Escherichia coli nitrogen starvation response is important for mutualistic coexistence with Rhodopseudomonas palustris.

    PubMed

    McCully, Alexandra L; Behringer, Megan G; Gliessman, Jennifer R; Pilipenko, Evgeny V; Mazny, Jeffrey L; Lynch, Michael; Drummond, D Allan; McKinlay, James B

    2018-05-04

    Microbial mutualistic cross-feeding interactions are ubiquitous and can drive important community functions. Engaging in cross-feeding undoubtedly affects the physiology and metabolism of individual species involved. However, the nature in which an individual's physiology is influenced by cross-feeding and the importance of those physiological changes for the mutualism have received little attention. We previously developed a genetically tractable coculture to study bacterial mutualisms. The coculture consists of fermentative Escherichia coli and phototrophic Rhodopseudomonas palustris In this coculture, E. coli anaerobically ferments sugars into excreted organic acids as a carbon source for R. palustris In return, a genetically-engineered R. palustris constitutively converts N 2 into NH 4 + , providing E. coli with essential nitrogen. Using RNA-seq and proteomics, we identified transcript and protein levels that differ in each partner when grown in coculture versus monoculture. When in coculture with R. palustris , E. coli gene-expression changes resembled a nitrogen starvation response under the control of the transcriptional regulator NtrC. By genetically disrupting E. coli NtrC, we determined that a nitrogen starvation response is important for a stable coexistence, especially at low R. palustris NH 4 + excretion levels. Destabilization of the nitrogen starvation regulatory network resulted in variable growth trends and in some cases, extinction. Our results highlight that alternative physiological states can be important for survival within cooperative cross-feeding relationships. Importance Mutualistic cross-feeding between microbes within multispecies communities is widespread. Studying how mutualistic interactions influence the physiology of each species involved is important for understanding how mutualisms function and persist in both natural and applied settings. Using a bacterial mutualism consisting of Rhodopseudomonas palustris and Escherichia coli growing cooperatively through bidirectional nutrient exchange, we determined that an E. coli nitrogen starvation response is important for maintaining a stable coexistence. The lack of an E. coli nitrogen starvation response ultimately destabilized the mutualism and, in some cases, led to community collapse after serial transfers. Our findings thus inform on the potential necessity of an alternative physiological state for mutualistic coexistence with another species compared to the physiology of species grown in isolation. Copyright © 2018 American Society for Microbiology.

  2. Aggressive mimicry coexists with mutualism in an aphid.

    PubMed

    Salazar, Adrián; Fürstenau, Benjamin; Quero, Carmen; Pérez-Hidalgo, Nicolás; Carazo, Pau; Font, Enrique; Martínez-Torres, David

    2015-01-27

    Understanding the evolutionary transition from interspecific exploitation to cooperation is a major challenge in evolutionary biology. Ant-aphid relationships represent an ideal system to this end because they encompass a coevolutionary continuum of interactions ranging from mutualism to antagonism. In this study, we report an unprecedented interaction along this continuum: aggressive mimicry in aphids. We show that two morphs clonally produced by the aphid Paracletus cimiciformis during its root-dwelling phase establish relationships with ants at opposite sides of the mutualism-antagonism continuum. Although one of these morphs exhibits the conventional trophobiotic (mutualistic) relationship with ants of the genus Tetramorium, aphids of the alternative morph are transported by the ants to their brood chamber and cared for as if they were true ant larvae. Gas chromatography-mass spectrometry analyses reveal that the innate cuticular hydrocarbon profile of the mimic morph resembles the profile of ant larvae more than that of the alternative, genetically identical nonmimic morph. Furthermore, we show that, once in the brood chamber, mimic aphids suck on ant larva hemolymph. These results not only add aphids to the limited list of arthropods known to biosynthesize the cuticular chemicals of their deceived hosts to exploit their resources but describe a remarkable case of plastic aggressive mimicry. The present work adds a previously unidentified dimension to the classical textbook paradigm of aphid-ant relationships by showcasing a complex system at the evolutionary interface between cooperation and exploitation.

  3. Plant-pollinator interactions in New Caledonia influenced by introduced honey bees.

    PubMed

    Kato, Makoto; Kawakita, Atsushi

    2004-11-01

    The flora of New Caledonia is characterized by remarkably high species diversity, high endemicity, and an unusual abundance of archaic plant taxa. To investigate community-level pollination mutualism in this endemic ecosystem, we observed flower visitors on 99 plant species in 42 families of various types of vegetation. Among the 95 native plant species, the most dominant pollination system was melittophily (bee-pollinated, 46.3%), followed by phalaenophily (moth-pollinated, 20.0%), ornithophily (bird-pollinated, 11.6%), cantharophily (beetle-pollinated, 8.4%), myophily (fly-pollinated, 3.2%), chiropterophily (bat-pollinated, 3.2%), and anemophily (wind-pollinated, 3.2%). The prevalence of ornithophily by honeyeaters shows an ecological link to pollination mutualism in Australia. The relative dominance of phalaenophily is unique to New Caledonia, and is proposed to be related to the low diversity of the original bee fauna and the absence of long-tongued bees. Although some archaic plants maintain archaic plant-pollinator interactions, e.g., Zygogynum pollinated by micropterigid moths, or Hedycarya pollinated by thrips and staphylinid beetles, the most dominant organism observed on flowers was the introduced honey bee, Apis mellifera. The plant species now visited by honey bees are thought to have originally been pollinated by native solitary short-tongued bees. Our data suggest that the unique systems of pollination mutualism in New Caledonia are now endangered by the establishment of highly invasive honey bees.

  4. Cooperation beyond the dyad: on simple models and a complex society

    PubMed Central

    Connor, Richard C.

    2010-01-01

    Players in Axelrod and Hamilton's model of cooperation were not only in a Prisoner's Dilemma, but by definition, they were also trapped in a dyad. But animals are rarely so restricted and even the option to interact with third parties allows individuals to escape from the Prisoner's Dilemma into a much more interesting and varied world of cooperation, from the apparently rare ‘parcelling’ to the widespread phenomenon of market effects. Our understanding of by-product mutualism, pseudo-reciprocity and the snowdrift game is also enriched by thinking ‘beyond the dyad’. The concepts of by-product mutualism and pseudo-reciprocity force us to think again about our basic definitions of cooperative behaviour (behaviour by a single individual) and cooperation (the outcome of an interaction between two or more individuals). Reciprocity is surprisingly rare outside of humans, even among large-brained ‘intelligent’ birds and mammals. Are humans unique in having extensive cooperative interactions among non-kin and an integrated cognitive system for mediating reciprocity? Perhaps, but our best chance for finding a similar phenomenon may be in delphinids, which also live in large societies with extensive cooperative interactions among non-relatives. A system of nested male alliances in bottlenose dolphins illustrates the potential and difficulties of finding a complex system of cooperation close to our own. PMID:20679112

  5. A mutually exclusive stem–loop arrangement in roX2 RNA is essential for X-chromosome regulation in Drosophila

    PubMed Central

    Ilik, Ibrahim Avsar; Maticzka, Daniel; Georgiev, Plamen; Gutierrez, Noel Marie; Backofen, Rolf; Akhtar, Asifa

    2017-01-01

    The X chromosome provides an ideal model system to study the contribution of RNA–protein interactions in epigenetic regulation. In male flies, roX long noncoding RNAs (lncRNAs) harbor several redundant domains to interact with the ubiquitin ligase male-specific lethal 2 (MSL2) and the RNA helicase Maleless (MLE) for X-chromosomal regulation. However, how these interactions provide the mechanics of spreading remains unknown. By using the uvCLAP (UV cross-linking and affinity purification) methodology, which provides unprecedented information about RNA secondary structures in vivo, we identified the minimal functional unit of roX2 RNA. By using wild-type and various MLE mutant derivatives, including a catalytically inactive MLE derivative, MLEGET, we show that the minimal roX RNA contains two mutually exclusive stem–loops that exist in a peculiar structural arrangement: When one stem–loop is unwound by MLE, an alternate structure can form, likely trapping MLE in this perpetually structured region. We show that this functional unit is necessary for dosage compensation, as mutations that disrupt this formation lead to male lethality. Thus, we propose that roX2 lncRNA contains an MLE-dependent affinity switch to enable reversible interactions of the MSL complex to allow dosage compensation of the X chromosome. PMID:29066499

  6. Interacting epidemics on overlay networks

    NASA Astrophysics Data System (ADS)

    Funk, Sebastian; Jansen, Vincent A. A.

    2010-03-01

    The interaction between multiple pathogens spreading on networks connecting a given set of nodes presents an ongoing theoretical challenge. Here, we aim to understand such interactions by studying bond percolation of two different processes on overlay networks of arbitrary joint degree distribution. We find that an outbreak of a first pathogen providing immunity to another one spreading subsequently on a second network connecting the same set of nodes does so most effectively if the degrees on the two networks are positively correlated. In that case, the protection is stronger the more heterogeneous the degree distributions of the two networks are. If, on the other hand, the degrees are uncorrelated or negatively correlated, increasing heterogeneity reduces the potential of the first process to prevent the second one from reaching epidemic proportions. We generalize these results to cases where the edges of the two networks overlap to arbitrary amount, or where the immunity granted is only partial. If both processes grant immunity to each other, we find a wide range of possible situations of coexistence or mutual exclusion, depending on the joint degree distribution of the underlying networks and the amount of immunity granted mutually. These results generalize the concept of a coexistence threshold and illustrate the impact of large-scale network structure on the interaction between multiple spreading agents.

  7. Interactions between the jasmonic and salicylic acid pathway modulate the plant metabolome and affect herbivores of different feeding types.

    PubMed

    Schweiger, R; Heise, A-M; Persicke, M; Müller, C

    2014-07-01

    The phytohormones jasmonic acid (JA) and salicylic acid (SA) mediate induced plant defences and the corresponding pathways interact in a complex manner as has been shown on the transcript and proteine level. Downstream, metabolic changes are important for plant-herbivore interactions. This study investigated metabolic changes in leaf tissue and phloem exudates of Plantago lanceolata after single and combined JA and SA applications as well as consequences on chewing-biting (Heliothis virescens) and piercing-sucking (Myzus persicae) herbivores. Targeted metabolite profiling and untargeted metabolic fingerprinting uncovered different categories of plant metabolites, which were influenced in a specific manner, indicating points of divergence, convergence, positive crosstalk and pronounced mutual antagonism between the signaling pathways. Phytohormone-specific decreases of primary metabolite pool sizes in the phloem exudates may indicate shifts in sink-source relations, resource allocation, nutrient uptake or photosynthesis. Survival of both herbivore species was significantly reduced by JA and SA treatments. However, the combined application of JA and SA attenuated the negative effects at least against H. virescens suggesting that mutual antagonism between the JA and SA pathway may be responsible. Pathway interactions provide a great regulatory potential for the plant that allows triggering of appropriate defences when attacked by different antagonist species. © 2013 John Wiley & Sons Ltd.

  8. Nanoparticles in natural systems II: The natural oxide fraction at interaction with natural organic matter and phosphate

    NASA Astrophysics Data System (ADS)

    Hiemstra, Tjisse; Antelo, Juan; van Rotterdam, A. M. D.(Debby); van Riemsdijk, Willem H.

    2010-01-01

    Information on the particle size and reactive surface area of natural samples and its interaction with natural organic matter (NOM) is essential for the understanding bioavailability, toxicity, and transport of elements in the natural environment. In part I of this series ( Hiemstra et al., 2010), a method is presented that allows the determination of the effective reactive surface area ( A, m 2/g soil) of the oxide particles of natural samples which uses a native probe ion (phosphate) and a model oxide (goethite) as proxy. In soils, the natural oxide particles are generally embedded in a matrix of natural organic matter (NOM) and this will affect the ion binding properties of the oxide fraction. A remarkably high variation in the natural phosphate loading of the oxide surfaces ( Γ, μmol/m 2) is observed in our soils and the present paper shows that it is due to surface complexation of NOM, acting as a competitor via site competition and electrostatic interaction. The competitive interaction of NOM can be described with the charge distribution (CD) model by defining a ≡NOM surface species. The interfacial charge distribution of this ≡NOM surface species can be rationalized based on calculations done with an evolved surface complexation model, known as the ligand and charge distribution (LCD) model. An adequate choice is the presence of a charge of -1 v.u. at the 1-plane and -0.5 v.u. at the 2-plane of the electrical double layer used (Extended Stern layer model). The effective interfacial NOM adsorption can be quantified by comparing the experimental phosphate concentration, measured under standardized field conditions (e.g. 0.01 M CaCl 2), with a prediction that uses the experimentally derived surface area ( A) and the reversibly bound phosphate loading ( Γ, μmol/m 2) of the sample (part I) as input in the CD model. Ignoring the competitive action of adsorbed NOM leads to a severe under-prediction of the phosphate concentration by a factor ˜10 to 1000. The calculated effective loading of NOM is low at a high phosphate loading ( Γ) and vice versa, showing the mutual competition of both constituents. Both constituents in combination usually dominate the surface loading of natural oxide fraction of samples and form the backbone in modeling the fate of other (minor) ions in the natural environment. Empirically, the effective NOM adsorption is found to correlate well to the organic carbon content (OC) of the samples. The effective NOM adsorption can also be linked to DOC. For this, a Non-Ideal Competitive adsorption (NICA) model is used. DOC is found to be a major explaining factor for the interfacial loading of NOM as well as phosphate. The empirical NOM-OC relation or the parameterized NICA model can be used as an alternative for estimating the effective NOM adsorption to be implemented in the CD model for calculation of the surface complexation of field samples. The biogeochemical impact of the NOM-PO 4 interaction is discussed.

  9. Enhancing parent-child interaction with a prenatal couple intervention.

    PubMed

    Bryan, A A

    2000-01-01

    To determine the effect of a prenatal couple group intervention on parent-child interaction postbirth. Quasiexperimental study. A nonrandomized convenience sample of treatment group (TG) couples (n = 35) who attended an additional prenatal three-class series was compared to a control group (CG) from childbirth education classes on measures of videotaped parent-child interaction using the NCATS tool. The intervention class series was based on individual and couple changes in meaning/identity, roles, and relationship/interaction during the transition to parenthood. It addressed mother/father roles, infant communication abilities, and patterns of the first 3 months of life in a mutually enjoyable, possibility-focused way. T-tests and ANCOVA on NCATS scores between groups showed higher TG scores for mothers in sensitivity to cues, for fathers in social-emotional growth fostering, and for couple mean scores in social-emotional growth fostering, couple mean response to child distress, caregiver total, and caregiver-child total. Higher contingency scores were also found in the TG group. Fewer TG mothers and fathers fell below NCATS lower cutoff scores. Interventions that enhance mutual parent-child interaction through increased sensitivity to cues and responsiveness to infant needs or signals are important avenues for facilitating secure attachment, father and mother involvement, optimal development, and prevention of child abuse and neglect. The positive approach to this intervention invites couples to see themselves as developing with their infants over time, and to view their infants in new ways that will help develop satisfying, self-reinforcing patterns of interaction.

  10. Variation and Mathematics Pedagogy

    ERIC Educational Resources Information Center

    Leung, Allen

    2012-01-01

    This discussion paper put forwards variation as a theme to structure mathematical experience and mathematics pedagogy. Patterns of variation from Marton's Theory of Variation are understood and developed as types of variation interaction that enhance mathematical understanding. An idea of a discernment unit comprising mutually supporting variation…

  11. Spectra, Winter 2014

    DTIC Science & Technology

    2014-01-01

    program officer of ONR’s Computational Neuro - science and Biorobotics programs. “The goal of this research is to develop the mutual interaction between...water temperature, and transmitted this data to my office every five minutes. The entire buoy including the radio transmitter was powered by the BMFC

  12. Mutual transformation of light waves by reflection holograms in photorefractive crystals of the 4-bar 3m symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naunyka, V. N.; Shepelevich, V. V., E-mail: vasshep@inbox.ru

    2011-05-15

    The mutual transformation of light waves in the case of their simultaneous diffraction from a bulk reflection phase hologram, which was formed in a cubic photorefractive crystal of the 4-bar 3m symmetry class, has been studied. The indicator surfaces of the polarization-optimized values of the relative intensity of the object wave, which make it possible to determine the amplification of this wave for any crystal cut, are constructed. The linear polarization azimuths at which the energy exchange between the light waves reaches a maximum are found numerically for crystals of different cuts.

  13. Redundant imprinting of information in nonideal environments: Objective reality via a noisy channel

    NASA Astrophysics Data System (ADS)

    Zwolak, Michael; Quan, H. T.; Zurek, Wojciech H.

    2010-06-01

    Quantum Darwinism provides an information-theoretic framework for the emergence of the objective, classical world from the quantum substrate. The key to this emergence is the proliferation of redundant information throughout the environment where observers can then intercept it. We study this process for a purely decohering interaction when the environment, E, is in a nonideal (e.g., mixed) initial state. In the case of good decoherence, that is, after the pointer states have been unambiguously selected, the mutual information between the system, S, and an environment fragment, F, is given solely by F’s entropy increase. This demonstrates that the environment’s capacity for recording the state of S is directly related to its ability to increase its entropy. Environments that remain nearly invariant under the interaction with S, either because they have a large initial entropy or a misaligned initial state, therefore have a diminished ability to acquire information. To elucidate the concept of good decoherence, we show that, when decoherence is not complete, the deviation of the mutual information from F’s entropy change is quantified by the quantum discord, i.e., the excess mutual information between S and F is information regarding the initial coherence between pointer states of S. In addition to illustrating these results with a single-qubit system interacting with a multiqubit environment, we find scaling relations for the redundancy of information acquired by the environment that display a universal behavior independent of the initial state of S. Our results demonstrate that Quantum Darwinism is robust with respect to nonideal initial states of the environment: the environment almost always acquires redundant information about the system but its rate of acquisition can be reduced.

  14. MUTUAL DIFFUSION OF PAIRS OF RARE GASES AT DIFFERENT TEMPERATURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, B.N.; Srivastava, K.P.

    1959-04-01

    The eoefficient of mutual diffusion of the binary gas mixtures Ne--Ar, Ar--Krs and Ne--Kr has been determined at 0, 15, 30s and 45 C. Diffusion is allowed to take place between two diffusion bulbs through a precision capillary tube and samples of gas are withdrawn from one bulb at different times and analyzed by a differential conductivity analyzer. From the experimentally determined values of the diffusion coefficient at different temperatures the unlike interaction parameters for the above gas pairs have been calculated by two different methods on the Lennard-Jones I2:6 model. These values of the force parameters are found tomore » be in good agreement with those obtained from the usual combination rules and also from the thermal diffusion data following the method of Srivastava and Madan. These values are found to reproduce the experimental data on mutual diffusion quite satisfactorily. With Kelvin's method, these data have also been utilized to calculate the self-diffusion coefficient of neon, argons and krypton. (auth)« less

  15. Mutual friends' social support and self-disclosure in face-to-face and instant messenger communication.

    PubMed

    Trepte, Sabine; Masur, Philipp K; Scharkow, Michael

    2018-01-01

    In the present study, we investigated long-term effects of self-disclosure on social support in face-to-face and instant messenger (IM) communication between mutual friends. Using a representative sample of 583 German IM users, we explored whether self-disclosure and positive experiences with regard to social support would dynamically interact in the form of a reinforcing spiral across three measurement occasions. If mutual friends self-disclose today, will they receive more social support 6 months later? In turn, will this affect their willingness to self-disclose another 6 months later? We further analyzed spill-over effects from face-to-face to IM communication and vice versa. We found that self-disclosure predicted social support and vice versa in IM communication, but not in face-to-face communication. In light of these results, the impact of IM communication on how individuals maneuver friendships through the interplay between self-disclosure and social support are discussed.

  16. Research on the impact of LMX leadership theory on mutual trust and organisational commitment of employees in Bosnia and Herzegovina

    NASA Astrophysics Data System (ADS)

    Strukan, E.; Nikolić, M.

    2017-05-01

    The paper presents the theoretical foundations of leadership based on the LMX exchange leader-member theory which essentially involves leadership process where a continuous and creative interaction between leaders and followers is at the centre of attention, during which the leader, among other things, affects the degree of mutual trust and organisational commitment and the quality of relationships in his/her organisation, which actually has a direct impact on organisational performances, effectiveness of the organisation’s business and its market positioning. Also, the paper presents the results of research conducted in organisations in Bosnia and Herzegovina, which undoubtedly point to the fact that the dimensions of leadership based on the LMX exchange leader-member theory, is strongly correlated with the dimensions of mutual trust and organisational commitment, and to have a significant positive impact on them, and therefore on organisational performances and effectiveness of business organisations that were included in this study.

  17. Insulin Mimetic Peptide Disrupts the Primary Binding Site of the Insulin Receptor*

    PubMed Central

    Lawrence, Callum F.; Margetts, Mai B.; Menting, John G.; Smith, Nicholas A.; Smith, Brian J.; Ward, Colin W.; Lawrence, Michael C.

    2016-01-01

    Sets of synthetic peptides that interact with the insulin receptor ectodomain have been discovered by phage display and reported in the literature. These peptides were grouped into three classes termed Site 1, Site 2, and Site 3 based on their mutual competition of binding to the receptor. Further refinement has yielded, in particular, a 36-residue Site 2-Site 1 fusion peptide, S519, that binds the insulin receptor with subnanomolar affinity and exhibits agonist activity in both lipogenesis and glucose uptake assays. Here, we report three-dimensional crystallographic detail of the interaction of the C-terminal, 16-residue Site 1 component (S519C16) of S519 with the first leucine-rich repeat domain (L1) of the insulin receptor. Our structure shows that S519C16 binds to the same site on the L1 surface as that occupied by a critical component of the primary binding site, namely the helical C-terminal segment of the insulin receptor α-chain (termed αCT). In particular, the two phenylalanine residues within the FYXWF motif of S519C16 are seen to engage the insulin receptor L1 domain surface in a fashion almost identical to the respective αCT residues Phe701 and Phe705. The structure provides a platform for the further development of peptidic and/or small molecule agents directed toward the insulin receptor and/or the type 1 insulin-like growth factor receptor. PMID:27281820

  18. Potential interactions between heterotrophic archaea and bacteria for degrading particulate organic carbon in marine water column

    NASA Astrophysics Data System (ADS)

    Liu, H.; Zhang, C.; Tian, J.

    2017-12-01

    Microbial degradation of organic matter is an essential process in marine carbon cycle, which constitutes an integral component of the marine ecosystem and influences climate change. It is still poorly known, however, how microorganisms interact in utilizing organic matter in the ocean. We have performed metagenomic and qPCR analyses of archaea and bacteria in both particle-attached (>3 mm) and free-living (0.2-3 mm) fractions from surface down to 8727 m in the Mariana Trench. The metagenomic results showed large numbers of genes related to the degradation of valine, leucine, isoleucine and lysine, which were similar between free-living and particle-attached fractions from surface to 6000 m depth intervals. However, the relative abundance of these genes decreased in particle-attached fractions and increased in the free-living fractions below 6000 m depth. This is consistent with the ecophysiology of marine group II (MGII) Euryarchaeota, which are suggested to be able to degrade proteins and lipids. Overall, significant correlation (R2 = 0.95) was observed between the abundance of particle-attached MGII and that of particle-attached heterotrophic bacteria in the Mariana Trench water column; whereas, the correlation was significantly reduced (R2 = 0.34) between free-living MGII and free-living bacteria. We hypothesize that particle-attached MGII and heterotrophic bacteria were mutually beneficial in degrading organic matter, which becomes less important between these organisms in the free-living population.

  19. The NMR phased array.

    PubMed

    Roemer, P B; Edelstein, W A; Hayes, C E; Souza, S P; Mueller, O M

    1990-11-01

    We describe methods for simultaneously acquiring and subsequently combining data from a multitude of closely positioned NMR receiving coils. The approach is conceptually similar to phased array radar and ultrasound and hence we call our techniques the "NMR phased array." The NMR phased array offers the signal-to-noise ratio (SNR) and resolution of a small surface coil over fields-of-view (FOV) normally associated with body imaging with no increase in imaging time. The NMR phased array can be applied to both imaging and spectroscopy for all pulse sequences. The problematic interactions among nearby surface coils is eliminated (a) by overlapping adjacent coils to give zero mutual inductance, hence zero interaction, and (b) by attaching low input impedance preamplifiers to all coils, thus eliminating interference among next nearest and more distant neighbors. We derive an algorithm for combining the data from the phased array elements to yield an image with optimum SNR. Other techniques which are easier to implement at the cost of lower SNR are explored. Phased array imaging is demonstrated with high resolution (512 x 512, 48-cm FOV, and 32-cm FOV) spin-echo images of the thoracic and lumbar spine. Data were acquired from four-element linear spine arrays, the first made of 12-cm square coils and the second made of 8-cm square coils. When compared with images from a single 15 x 30-cm rectangular coil and identical imaging parameters, the phased array yields a 2X and 3X higher SNR at the depth of the spine (approximately 7 cm).

  20. Theoretical insight into the solvent effect of H2O and formamide on the cooperativity effect in HMX complex.

    PubMed

    Meng, Rui-Hong; Cao, Xiong; Hu, Shuang-Qi; Hu, Li-Shuang

    2017-08-01

    The cooperativity effects of the H-bonding interactions in HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane)∙∙∙HMX∙∙∙FA (formamide), HMX∙∙∙HMX∙∙∙H 2 O and HMX∙∙∙HMX∙∙∙HMX complexes involving the chair and chair-chair HMX are investigated by using the ONIOM2 (CAM-B3LYP/6-31++G(d,p):PM3) and ONIOM2 (M06-2X/6-31++G(d,p):PM3) methods. The solvent effect of FA or H 2 O on the cooperativity effect in HMX∙∙∙HMX∙∙∙HMX are evaluated by the integral equation formalism polarized continuum model. The results show that the cooperativity and anti-cooperativity effects are not notable in all the systems. Although the effect of solvation on the binding energy of ternary system HMX∙∙∙HMX∙∙∙HMX is not large, that on the cooperativity of H-bonds is notable, which leads to the mutually strengthened H-bonding interaction in solution. This is perhaps the reason for the formation of different conformation of HMX in different solvent. Surface electrostatic potential and reduced density gradient are used to reveal the nature of the solvent effect on cooperativity effect in HMX∙∙∙HMX∙∙∙HMX. Graphical abstract RDG isosurface and electrostatic potential surface of HMX∙∙∙HMX∙∙∙HMX.

  1. Interactions of phytoplankton, zooplankton and microorganisms

    NASA Astrophysics Data System (ADS)

    Pomeroy, L. R.; Paffenhöfer, G.-A.; Yoder, J. A.

    We present evidence that there are significant interactions between heterotrophic microorganisms, doliolids and Fritillaria within intrusions of nutrient-rich Gulf Stream water stranding on the continental shelf. During the summer of 1981 cold, nutrient-rich water from below the surface of the Gulf Stream was repeatedly intruded and stranded on the continental shelf off northeastern Florida. On August 6 old, stranded Gulf Stream water depleted of nitrate occupied the lower layer on the outer shelf. The upper water was continental shelf water, older but of undefined age. On August 6 free-living bacteria were >10 6ml -1 everywhere at all depths, an order of magnitude greater than normal bacterial numbers on the northeastern Florida continental shelf. Over 10 days the numbers of free bacteria doubled while bacteria attached to particles increased by a factor of four. The adenylate/chlorophyll ratio showed that phytoplankton dominated the lower layers of intruded water, while the surface water became increasingly dominated by heterotrophic microorganisms (bacteria and protozoa) over 10 days. There were significant, negative correlations between bacteria and doliolids and between bacteria and Fritillaria. Regions of maximum bacterial numbers did not coincide with locations of salp swarms. The increased numbers of bacteria at all depths in a highly stratified system in which most phytoplankton are in the lower layer suggests a diverse source of bacterial growth substrates, some of which involve zooplankton as intermediaries. Production of autotrophs is more than twice that of microheterotrophs on average, but because of their differential distribution, microheterotrophs are the dominant biomass in much of the surface water and may be significant in energy flux to metazoan consumers as well as competitors for mutually useable sources of nutrition.

  2. Ice sheet climate modeling: past achievements, ongoing challenges, and future endeavors

    NASA Astrophysics Data System (ADS)

    Lenaerts, J.

    2017-12-01

    Fluctuations in surface mass balance (SMB) mask out a substantial portion of contemporary Greenland and Antarctic ice sheet mass loss. That implies that we need accurate, consistent, and long-term SMB time series to isolate the mass loss signal. This in turn requires understanding of the processes driving SMB, and how they interplay. The primary controls on present-day ice sheet SMB are snowfall, which is regulated by large-scale atmospheric variability, and surface meltwater production at the ice sheet's edges, which is a complex result of atmosphere-surface interactions. Additionally, wind-driven snow redistribution and sublimation are large SMB contributors on the downslope areas of the ice sheets. Climate models provide an integrated framework to simulate all these individual ice sheet components. Recent developments in RACMO2, a regional climate model bound by atmospheric reanalyses, have focused on enhancing horizontal resolution, including blowing snow, snow albedo, and meltwater processes. Including these physics not only enhanced our understanding of the ice sheet climate system, but also enabled to obtain increasingly accurate estimates of ice sheet SMB. However, regional models are not suitable to capture the mutual interactions between ice sheet and the remainder of the global climate system in transient climates. To take that next step, global climate models are essential. In this talk, I will highlight our present work on improving ice sheet climate in the Community Earth System Model (CESM). In particular, we focus on an improved representation of polar firn, ice sheet clouds, and precipitation. For this exercise, we extensively use field observations, remote sensing data, as well as RACMO2. Next, I will highlight how CESM is used to enhance our understanding of ice sheet SMB, its drivers, and past and present changes.

  3. A novel growth-promoting microbe, Methylobacterium funariae sp. nov., isolated from the leaf surface of a common moss

    PubMed Central

    Schauer, S

    2011-01-01

    Land plants (embryophytes) evolved in the presence of prokaryotic microbes. As a result, numerous mutually beneficial associations (symbioses) developed that can be analyzed using a variety of methods. Here we describe the isolation and characterization of a new pink-pigmented facultatively methylotrophic symbiotic bacterium of the genus Methylobacterium (laboratory strain F3.2) that was isolated from the gametophytic phylloids of the common cord moss Funaria hygrometrica Hedw. Plantlets were collected in the field and analyzed in the laboratory. Colonies of methylobacteria were obtained by the agar-impression-method. Based on its unique phenotype (the bacterial cells are characterized by fimbriae-like appendages), a comparative 16S rRNA gene (DNA) sequence analysis and an average DNA-DNA hybridization value of 8.4%, compared with its most closely related sister taxon, this isolate is described as a new species, Methylobacterium funariae sp. nov. (type strain F3.2). This new epiphytic bacterium inhabits the leaf surface of “primitive” land plants such as mosses and interacts with its host organism via the secretion of phytohormones (cytokinines, auxins). These external signals are perceived by the plant cells that divide and grow more rapidly than in the absence of their prokaryotic phytosymbionts. We suggest that M. funariae sp. nov. uses methanol emitted from the stomatal pores as principal carbon source for cell metabolism. However, our novel data indicate that, in this unique symbiotic plant-microbe interaction, the uptake of amino acids leached from the surface of the epidermal cells of the green host organism may be of importance as microbial carbon- and nitrogen-source. PMID:21673511

  4. Displacement, distance, and shape measurements of fast-rotating rough objects by two mutually tilted interference fringe systems.

    PubMed

    Günther, Philipp; Kuschmierz, Robert; Pfister, Thorsten; Czarske, Jürgen W

    2013-05-01

    The precise distance measurement of fast-moving rough surfaces is important in several applications such as lathe monitoring. A nonincremental interferometer based on two mutually tilted interference fringe systems has been realized for this task. The distance is coded in the phase difference between the generated interference signals corresponding to the fringe systems. Large tilting angles between the interference fringe systems are necessary for a high sensitivity. However, due to the speckle effect at rough surfaces, different envelopes and phase jumps of the interference signals occur. At large tilting angles, these signals become dissimilar, resulting in a small correlation coefficient and a high measurement uncertainty. Based on a matching of illumination and receiving optics, the correlation coefficient and the phase difference estimation have been improved significantly. For axial displacement measurements of recurring rough surfaces, laterally moving with velocities of 5 m/s, an uncertainty of 110 nm has been attained. For nonrecurring surfaces, a distance measurement uncertainty of 830 nm has been achieved. Incorporating the additionally measured lateral velocity and the rotational speed, the two-dimensional shape of rotating objects results. Since the measurement uncertainty of the displacement, distance, and shape is nearly independent of the lateral surface velocity, this technique is predestined for fast-rotating objects, such as crankshafts, camshafts, vacuum pump shafts, or turning parts of lathes.

  5. A Transcriptional Regulatory Switch Underlying B-Cell Terminal Differentiation and its Disruption by Dioxin

    EPA Science Inventory

    The terminal differentiation of B lymphocytes into antibody-secreting plasma cells upon antigen stimulation is a crucial step in the humoral immune response. The mutually-repressive interactions among three key regulatory transcription factors underlying B to plasma cell differe...

  6. A VIRTUAL LEARNING COMMUNITY TO FACILITATE SUSTAINABLE BEHAVIOR

    EPA Science Inventory

    Research to date on virtual learning communities suggests that electronic interaction can be a useful way to impact new skills and to encourage innovative practices by creating networked systems of mutual support. We expect that by being able to exchange information, trade tip...

  7. Technical Considerations in the Behavioral-Marital Treatment of Agoraphobia.

    ERIC Educational Resources Information Center

    Friedman, Steven

    1987-01-01

    Outlines a treatment approach integrating behavioral and marital interventions for working with agoraphobics and their partners. Where interactions arouse anxiety, agoraphobes and significant others become embroiled in a circular transaction which causes mutual resentment and entrenched symptomatology. Suggests a method to help develop a…

  8. Creating Space for Learner Autonomy: An Interactional Perspective

    ERIC Educational Resources Information Center

    Szczepek Reed, Beatrice

    2017-01-01

    This paper is concerned with teachers' and learners' collaborative pursuit of learner autonomy in a highly asymmetrical education setting, the music masterclass. Evaluations are identified as a potential opportunity for the mutual construction of learner autonomy. The analysis shows that, while teaching professionals mitigate interactional…

  9. Sweet Tetra-Trophic Interactions: Multiple Evolution of Nectar Secretion, a Defensive Extended Phenotype in Cynipid Gall Wasps.

    PubMed

    Nicholls, James A; Melika, George; Stone, Graham N

    2017-01-01

    Many herbivores employ reward-based mutualisms with ants to gain protection from natural enemies. We examine the evolutionary dynamics of a tetra-trophic interaction in which gall wasp herbivores induce their host oaks to produce nectar-secreting galls, which attract ants that provide protection from parasitoids. We show that, consistent with other gall defensive traits, nectar secretion has evolved repeatedly across the oak gall wasp tribe and also within a single genus (Disholcaspis) that includes many nectar-inducing species. Once evolved, nectar secretion is never lost in Disholcaspis, consistent with high defensive value of this trait. We also show that evolution of nectar secretion is correlated with a transition from solitary to aggregated oviposition, resulting in clustered nectar-secreting galls, which produce a resource that ants can more easily monopolize. Such clustering is commonly seen in ant guard mutualisms. We suggest that correlated evolution between maternal oviposition and larval nectar induction traits has enhanced the effectiveness of this gall defense strategy.

  10. Mutual orientation of three magnetic tensors in a polycrystalline dipeptide by dipole-modulated 15N chemical shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Hartzell, C. J.; Pratum, T. K.; Drobny, G.

    1987-10-01

    This study demonstrates the mutual orientation of three tensor interactions in a single NMR experiment. The orientation of the 15N chemical shift tensor relative to the molecular frame has thus been determined in polycrystalline L-[1-13C] alanyl-L-[15N] alanine. The 13C-15N and 15N-1H dipole interactions are determined using the 1H dipole-modulated, 13C dipole-coupled 15N spectrum obtained as a transform of the data in t2. From simulations of the experimental spectra, two sets of polar angles have been determined relating the 13C-15N and 15N-1H dipoles to the 15N chemical shift tensor. The values determined are βCN =106°, αCN =5° and βNH =-19°, αNH =12°. The experiment verifies, without reference to single crystal data, that σ33 lies in the peptide plane and σ22 is nearly perpendicular to the plane.

  11. Mutualism in a Reduced Gravity Environment (MuRGE)

    NASA Technical Reports Server (NTRS)

    Patel, Karishma K.

    2010-01-01

    MuRGE (Mutualism in a Reduced Gravity Environment) is a NASA flight-research experiment to investigate the microgravity effects associated with cell-cell communication and beneficial microbe-host interactions using a plant-fungal model system. This investigation will use a clinostat, an instrument that slowly rotates the plants to negate the effects of gravitational pull on plant growth (gravitropism) and development, to simulate microgravity. I will be using the endophytic fungus Piriformospora indica (Pi) and the model plant species Arabidopsis thaliana (At). P. indica has been shown to colonize roots of various plant species, including A. thaliana, and to increase plant growth and resistance to stress. The fungus has the ability to grow from spores or in axenic cultures without the presence of a host. P. indica spores and P. indica extract will be used to inoculate Arabidopsis seeds germinated on a clinostat in order to determine if simulated microgravity affects the interaction between the fungus and its plant host.

  12. Extrafloral-nectar-based partner manipulation in plant–ant relationships

    PubMed Central

    Grasso, D. A.; Pandolfi, C.; Bazihizina, N.; Nocentini, D.; Nepi, M.; Mancuso, S.

    2015-01-01

    Plant–ant interactions are generally considered as mutualisms, with both parties gaining benefits from the association. It has recently emerged that some of these mutualistic associations have, however, evolved towards other forms of relationships and, in particular, that plants may manipulate their partner ants to make reciprocation more beneficial, thereby stabilizing the mutualism. Focusing on plants bearing extrafloral nectaries, we review recent studies and address three key questions: (i) how can plants attract potential partners and maintain their services; (ii) are there compounds in extrafloral nectar that could mediate partner manipulation; and (iii) are ants susceptible to such compounds? After reviewing the current knowledge on plant–ant associations, we propose a possible scenario where plant-derived chemicals, such as secondary metabolites, known to have an impact on animal brain, could have evolved in plants to attract and manipulate ant behaviour. This new viewpoint would place plant–animal interaction in a different ecological context, opening new ecological and neurobiological perspectives of drug seeking and use. PMID:25589521

  13. GPs' interactional styles in consultations with Dutch and ethnic minority patients.

    PubMed

    Schouten, Barbara C; Meeuwesen, Ludwien; Harmsen, Hans A M

    2009-12-01

    The aim of this study was to examine interactional styles of general practitioners (GPs) in consultations with Dutch patients as compared to ethnic minority patients, from the perspective of level of mutual understanding between patient and GP. Data of 103 transcripts of video-registered medical interviews were analyzed to assess GPs' communication styles in terms of involvement, detachment, shared decision-making and patient-centeredness. Surveys were used to collect data on patients' characteristics and mutual understanding. Results show that overall, GPs communicate less adequately with ethnic minority patients than with Dutch patients; they involve them less in decision-making and check their understanding of what has been discussed less often. Intercultural consultations are thus markedly distinguishable from intracultural consultations by a lack of adequate communicative behavior by GPs. As every patient has a moral and legal right to make informed decisions, it is concluded that GPs should check more often whether their ethnic minority patients have understood what has been said during the medical consultation.

  14. The joint effect of ethnicity and gender on occupational segregation. An approach based on the Mutual Information Index.

    PubMed

    Guinea-Martin, Daniel; Mora, Ricardo; Ruiz-Castillo, Javier

    2015-01-01

    In this article, we study the effects of ethnicity and gender on occupational segregation. Traditionally, researchers have examined the two sources of segregation separately. In contrast, we measure their joint effect by applying a multigroup segregation index-the Mutual Information or M index-to the product of the seven ethnic groups and two genders distinguished in our 2001 Census data for England and Wales. We exploit M's additive decomposability property to pose the following two questions: (i) Is there an interaction effect? (ii) How much does each source contribute to occupational segregation, controlling for the effect of the other? Although the role of ethnicity is non-negligible in the areas where minorities are concentrated, our findings confirm the greater importance of gender over ethnicity as a source of segregation. Moreover, we find a small "dwindling" interaction effect between the two sources of segregation: ethnicity slightly weakens the segregating power of gender and vice versa. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Rationality and self-interest as economic-exchange strategy in borderline personality disorder: Game theory, social preferences, and interpersonal behavior.

    PubMed

    Jeung, Haang; Schwieren, Christiane; Herpertz, Sabine C

    2016-12-01

    Borderline Personality Disorder (BPD) is characterized by severe and persistent impairments in interpersonal functioning. Given the complexity of social interactions, studying the interactive behavior of BPD patients is challenging. One way to implement both tight experimental control and realistic, externally valid settings is to use game-theoretical experiments. This review discusses findings from economic exchange studies in BPD against the background of game-theoretical literature. BPD patients do not seem to derive utility from mutual cooperation with others and appear not to "forgive" a partner's unfairness. By pursuing a strategy of negative reciprocity, BPD patients seem to act mostly "rationally" and in their own self-interest. Their "grim trigger strategy" resembles the theoretical ideal of the rational and self-interested agent homo economicus. Finally, we summarize how research findings from economics and clinical psychiatry may be mutually enriching and propose new research ideas in this fascinating field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. [Mutualism in a Reduced Gravity Environment (MuRGE)

    NASA Technical Reports Server (NTRS)

    Patel, Karishma

    2010-01-01

    MuRGE (Mutualism in a Reduced Gravity Environment) is a NASA flight-research experiment to investigate the microgravity effects associated with cell-cell communication and beneficial microbe-host interactions using a plant-fungal model system. This investigation will use a clinostat, an instrument that slowly rotates the plants to negate the effects of gravitational pull on plant growth (gravitropism) and development, to simulate microgravity. I will be using the endophytic fungus Piriformospora indica (Pi) and the model plant species Arabidopsis thaliana (At). P. indica has been shown to colonize roots of various plant species, including A. thaliana, and to increase plant growth and resistance to stress. The fungus has the ability to grow from spores or in axenic cultures without the presence of a host. P. indica spores and P. indica extract will be used to inoculate Arabidopsis seeds germinated on a clinostat in order to determine if simulated microgravity affects the interaction between the fungus and its plant host.

  17. Biological interactions and cooperative management of multiple species.

    PubMed

    Jiang, Jinwei; Min, Yong; Chang, Jie; Ge, Ying

    2017-01-01

    Coordinated decision making and actions have become the primary solution for the overexploitation of interacting resources within ecosystems. However, the success of coordinated management is highly sensitive to biological, economic, and social conditions. Here, using a game theoretic framework and a 2-species model that considers various biological relationships (competition, predation, and mutualism), we compute cooperative (or joint) and non-cooperative (or separate) management equilibrium outcomes of the model and investigate the effects of the type and strength of the relationships. We find that cooperation does not always show superiority to non-cooperation in all biological interactions: (1) if and only if resources are involved in high-intensity predation relationships, cooperation can achieve a win-win scenario for ecosystem services and resource diversity; (2) for competitive resources, cooperation realizes higher ecosystem services by sacrificing resource diversity; and (3) for mutual resources, cooperation has no obvious advantage for either ecosystem services or resource evenness but can slightly improve resource abundance. Furthermore, by using a fishery model of the North California Current Marine Ecosystem with 63 species and seven fleets, we demonstrate that the theoretical results can be reproduced in real ecosystems. Therefore, effective ecosystem management should consider the interconnection between stakeholders' social relationship and resources' biological relationships.

  18. Signal verification can promote reliable signalling.

    PubMed

    Broom, Mark; Ruxton, Graeme D; Schaefer, H Martin

    2013-11-22

    The central question in communication theory is whether communication is reliable, and if so, which mechanisms select for reliability. The primary approach in the past has been to attribute reliability to strategic costs associated with signalling as predicted by the handicap principle. Yet, reliability can arise through other mechanisms, such as signal verification; but the theoretical understanding of such mechanisms has received relatively little attention. Here, we model whether verification can lead to reliability in repeated interactions that typically characterize mutualisms. Specifically, we model whether fruit consumers that discriminate among poor- and good-quality fruits within a population can select for reliable fruit signals. In our model, plants either signal or they do not; costs associated with signalling are fixed and independent of plant quality. We find parameter combinations where discriminating fruit consumers can select for signal reliability by abandoning unprofitable plants more quickly. This self-serving behaviour imposes costs upon plants as a by-product, rendering it unprofitable for unrewarding plants to signal. Thus, strategic costs to signalling are not a prerequisite for reliable communication. We expect verification to more generally explain signal reliability in repeated consumer-resource interactions that typify mutualisms but also in antagonistic interactions such as mimicry and aposematism.

  19. Hydrodynamic interactions in freely suspended liquid crystal films

    NASA Astrophysics Data System (ADS)

    Kuriabova, Tatiana; Powers, Thomas R.; Qi, Zhiyuan; Goldfain, Aaron; Park, Cheol Soo; Glaser, Matthew A.; Maclennan, Joseph E.; Clark, Noel A.

    2016-11-01

    Hydrodynamic interactions play an important role in biological processes in cellular membranes, a large separation of length scales often allowing such membranes to be treated as continuous, two-dimensional (2D) fluids. We study experimentally and theoretically the hydrodynamic interaction of pairs of inclusions in two-dimensional, fluid smectic liquid crystal films suspended in air. Such smectic membranes are ideal systems for performing controlled experiments as they are mechanically stable, of highly uniform structure, and have well-defined, variable thickness, enabling experimental investigation of the crossover from 2D to 3D hydrodynamics. Our theoretical model generalizes the Levine-MacKintosh theory of point-force response functions and uses a boundary-element approach to calculate the mobility matrix for inclusions of finite extent. We describe in detail the theoretical and computational approach previously outlined in Z. Qi et al., Phys. Rev. Lett. 113, 128304 (2014), 10.1103/PhysRevLett.113.128304 and extend the method to study the mutual mobilities of inclusions with asymmetric shapes. The model predicts well the observed mutual mobilities of pairs of circular inclusions in films and the self-mobility of a circular inclusion in the vicinity of a linear boundary.

  20. 30 CFR 705.17 - What to report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... including trusts. An employee is not required to report mutual funds, investment clubs or regulated investment companies not specializing in underground and surface coal mining operations. (3) Real Property... ordinary household and living expenses. (c) Employee certification, and, if applicable, a listing of...

  1. Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity.

    PubMed

    Wagner, Stephan; Stuttmann, Johannes; Rietz, Steffen; Guerois, Raphael; Brunstein, Elena; Bautor, Jaqueline; Niefind, Karsten; Parker, Jane E

    2013-12-11

    Biotrophic plant pathogens encounter a postinfection basal resistance layer controlled by the lipase-like protein enhanced disease susceptibility 1 (EDS1) and its sequence-related interaction partners, senescence-associated gene 101 (SAG101) and phytoalexin deficient 4 (PAD4). Maintainance of separate EDS1 family member clades through angiosperm evolution suggests distinct functional attributes. We report the Arabidopsis EDS1-SAG101 heterodimer crystal structure with juxtaposed N-terminal α/β hydrolase and C-terminal α-helical EP domains aligned via a large conserved interface. Mutational analysis of the EDS1-SAG101 heterodimer and a derived EDS1-PAD4 structural model shows that EDS1 signals within mutually exclusive heterocomplexes. Although there is evolutionary conservation of α/β hydrolase topology in all three proteins, a noncatalytic resistance mechanism is indicated. Instead, the respective N-terminal domains appear to facilitate binding of the essential EP domains to create novel interaction surfaces on the heterodimer. Transitions between distinct functional EDS1 heterodimers might explain the central importance and versatility of this regulatory node in plant immunity. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Aggregation of Aß(25-35) on DOPC and DOPC/DHA bilayers: an atomic force microscopy study.

    PubMed

    Sublimi Saponetti, Matilde; Grimaldi, Manuela; Scrima, Mario; Albonetti, Cristiano; Nori, Stefania Lucia; Cucolo, Annamaria; Bobba, Fabrizio; D'Ursi, Anna Maria

    2014-01-01

    β amyloid peptide plays an important role in both the manifestation and progression of Alzheimer disease. It has a tendency to aggregate, forming low-molecular weight soluble oligomers, higher-molecular weight protofibrillar oligomers and insoluble fibrils. The relative importance of these single oligomeric-polymeric species, in relation to the morbidity of the disease, is currently being debated. Here we present an Atomic Force Microscopy (AFM) study of Aβ(25-35) aggregation on hydrophobic dioleoylphosphatidylcholine (DOPC) and DOPC/docosahexaenoic 22∶6 acid (DHA) lipid bilayers. Aβ(25-35) is the smallest fragment retaining the biological activity of the full-length peptide, whereas DOPC and DOPC/DHA lipid bilayers were selected as models of cell-membrane environments characterized by different fluidity. Our results provide evidence that in hydrophobic DOPC and DOPC/DHA lipid bilayers, Aβ(25-35) forms layered aggregates composed of mainly annular structures. The mutual interaction between annular structures and lipid surfaces end-results into a membrane solubilization. The presence of DHA as a membrane-fluidizing agent is essential to protect the membrane from damage caused by interactions with peptide aggregates; to reduces the bilayer defects where the delipidation process starts.

  3. Position and Momentum Entanglement of Dipole-Dipole Interacting Atoms in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Opatrný, T.; Kolář, M.; Kurizki, G.

    We consider a possible realization of the position- and momentum-correlated atomic pairs that are confined to adjacent sites of two mutually shifted optical lattices and are entangled via laser-induced dipole-dipole interactions. The Einstein-Podolsky-Rosen (EPR) "paradox" [Einstein 1935] with translational variables is then modified by lattice-diffraction effects. We study a possible mechanism of creating such diatom entangled states by varying the effective mass of the atoms.

  4. Analysis of the intrinsic and forced variability of the Antarctic Circumpolar Current south of Australia and New Zealand

    NASA Astrophysics Data System (ADS)

    de Ruggiero, Paola; Celeste, Antonio; Pierini, Stefano; Sgubin, Giovanni

    2017-04-01

    A modelling study of the intrinsic and forced variability of the Antarctic Circumpolar Current in a wide sector of the Southern Ocean (SO) in summer conditions is presented. A sigma-coordinate ocean general circulation model with a spatial resolution of 0.18° and 12 vertical sigma levels is implemented in a domain extending from 30°S to 80°S and from 90°E to 110°W (thus including the SO sector south of Australia and New Zealand as well as the Ross Sea). Periodic conditions are imposed along the two meridional boundaries. Realistic bathymetry and coastlines and relatively idealized latitude-dependent stratification and surface momentum and heat fluxes are used. The Southern Ocean Database (SODB) for the initialization and the ERA-Interim ECMWF modelling data for the atmospheric forcing are used. Steady climatological surface fluxes are imposed to identify intrinsic low- and high-frequency fluctuations, whose analysis suggests possible mechanisms of mutual interactions. This work was carried out in the framework of the ACCUA and MOMA projects of the Italian "Programma Nazionale di Ricerche in Antartide" (PNRA).

  5. Quantum turbulence in superfluids with wall-clamped normal component.

    PubMed

    Eltsov, Vladimir; Hänninen, Risto; Krusius, Matti

    2014-03-25

    In Fermi superfluids, such as superfluid (3)He, the viscous normal component can be considered to be stationary with respect to the container. The normal component interacts with the superfluid component via mutual friction, which damps the motion of quantized vortex lines and eventually couples the superfluid component to the container. With decreasing temperature and mutual friction, the internal dynamics of the superfluid component becomes more important compared with the damping and coupling effects from the normal component. As a result profound changes in superfluid dynamics are observed: the temperature-dependent transition from laminar to turbulent vortex motion and the decoupling from the reference frame of the container at even lower temperatures.

  6. Quantum turbulence in superfluids with wall-clamped normal component

    PubMed Central

    Eltsov, Vladimir; Hänninen, Risto; Krusius, Matti

    2014-01-01

    In Fermi superfluids, such as superfluid 3He, the viscous normal component can be considered to be stationary with respect to the container. The normal component interacts with the superfluid component via mutual friction, which damps the motion of quantized vortex lines and eventually couples the superfluid component to the container. With decreasing temperature and mutual friction, the internal dynamics of the superfluid component becomes more important compared with the damping and coupling effects from the normal component. As a result profound changes in superfluid dynamics are observed: the temperature-dependent transition from laminar to turbulent vortex motion and the decoupling from the reference frame of the container at even lower temperatures. PMID:24704879

  7. Scissors: More than a Cut Above

    ERIC Educational Resources Information Center

    Suzanne, Teri

    2005-01-01

    Scissors are a unique interactive tool when successfully used, allowing teachers and students to recognize and explore each other's creative ability while nurturing mutual communication. Freehand cutting gives children freedom to create as they cut. Scissors have the power to improve fine motor skills, stimulate creative imagination, reinforce…

  8. Vocational and Academic Teachers Work Together.

    ERIC Educational Resources Information Center

    Beck, Robert H.; And Others

    1991-01-01

    In a recent project involving two midwestern high schools, vocational and academic teachers participated in a project promoting interaction and mutual reinforcement. Innovative matches were found in agriculture and biology exchange classes, a technology outreach program, a study of world protein distribution, and a furniture marketing project. The…

  9. An Intergenerational Approach for Enriching Children's Environmental Attitudes and Knowledge

    ERIC Educational Resources Information Center

    Liu, Shih-Tsen; Kaplan, Matthew S.

    2006-01-01

    Intergenerational programming, which brings children, youth, and older adults together for mutually beneficial interaction, represents a relatively new strategy for broadening the public's awareness and participation in environmental activities. To explore the potential benefits of involving older adults and young people in joint environmental…

  10. Socializing Procedures in Parent-Child and Friendship Relations during Adolescence.

    ERIC Educational Resources Information Center

    Hunter, Fumiyo Tao

    1984-01-01

    Examines two patterns of socializing interactions in 180 adolescents' relations with mothers, fathers, and friends. These patterns involve commands based on greater authority and expertise (unilateral) and negotiation and coconstruction (mutual). In a questionnaire, adolescents reported the frequencies of these patterns in their own relations…

  11. Random walks on mutual microRNA-target gene interaction network improve the prediction of disease-associated microRNAs.

    PubMed

    Le, Duc-Hau; Verbeke, Lieven; Son, Le Hoang; Chu, Dinh-Toi; Pham, Van-Huy

    2017-11-14

    MicroRNAs (miRNAs) have been shown to play an important role in pathological initiation, progression and maintenance. Because identification in the laboratory of disease-related miRNAs is not straightforward, numerous network-based methods have been developed to predict novel miRNAs in silico. Homogeneous networks (in which every node is a miRNA) based on the targets shared between miRNAs have been widely used to predict their role in disease phenotypes. Although such homogeneous networks can predict potential disease-associated miRNAs, they do not consider the roles of the target genes of the miRNAs. Here, we introduce a novel method based on a heterogeneous network that not only considers miRNAs but also the corresponding target genes in the network model. Instead of constructing homogeneous miRNA networks, we built heterogeneous miRNA networks consisting of both miRNAs and their target genes, using databases of known miRNA-target gene interactions. In addition, as recent studies demonstrated reciprocal regulatory relations between miRNAs and their target genes, we considered these heterogeneous miRNA networks to be undirected, assuming mutual miRNA-target interactions. Next, we introduced a novel method (RWRMTN) operating on these mutual heterogeneous miRNA networks to rank candidate disease-related miRNAs using a random walk with restart (RWR) based algorithm. Using both known disease-associated miRNAs and their target genes as seed nodes, the method can identify additional miRNAs involved in the disease phenotype. Experiments indicated that RWRMTN outperformed two existing state-of-the-art methods: RWRMDA, a network-based method that also uses a RWR on homogeneous (rather than heterogeneous) miRNA networks, and RLSMDA, a machine learning-based method. Interestingly, we could relate this performance gain to the emergence of "disease modules" in the heterogeneous miRNA networks used as input for the algorithm. Moreover, we could demonstrate that RWRMTN is stable, performing well when using both experimentally validated and predicted miRNA-target gene interaction data for network construction. Finally, using RWRMTN, we identified 76 novel miRNAs associated with 23 disease phenotypes which were present in a recent database of known disease-miRNA associations. Summarizing, using random walks on mutual miRNA-target networks improves the prediction of novel disease-associated miRNAs because of the existence of "disease modules" in these networks.

  12. Developmental Experience Alters Information Coding in Auditory Midbrain and Forebrain Neurons

    PubMed Central

    Woolley, Sarah M. N.; Hauber, Mark E.; Theunissen, Frederic E.

    2010-01-01

    In songbirds, species identity and developmental experience shape vocal behavior and behavioral responses to vocalizations. The interaction of species identity and developmental experience may also shape the coding properties of sensory neurons. We tested whether responses of auditory midbrain and forebrain neurons to songs differed between species and between groups of conspecific birds with different developmental exposure to song. We also compared responses of individual neurons to conspecific and heterospecific songs. Zebra and Bengalese finches that were raised and tutored by conspecific birds, and zebra finches that were cross-tutored by Bengalese finches were studied. Single-unit responses to zebra and Bengalese finch songs were recorded and analyzed by calculating mutual information, response reliability, mean spike rate, fluctuations in time-varying spike rate, distributions of time-varying spike rates, and neural discrimination of individual songs. Mutual information quantifies a response’s capacity to encode information about a stimulus. In midbrain and forebrain neurons, mutual information was significantly higher in normal zebra finch neurons than in Bengalese finch and cross-tutored zebra finch neurons, but not between Bengalese finch and cross-tutored zebra finch neurons. Information rate differences were largely due to spike rate differences. Mutual information did not differ between responses to conspecific and heterospecific songs. Therefore, neurons from normal zebra finches encoded more information about songs than did neurons from other birds, but conspecific and heterospecific songs were encoded equally. Neural discrimination of songs and mutual information were highly correlated. Results demonstrate that developmental exposure to vocalizations shapes the information coding properties of songbird auditory neurons. PMID:20039264

  13. INTEGRATION OF PARTICLE-GAS SYSTEMS WITH STIFF MUTUAL DRAG INTERACTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Chao-Chin; Johansen, Anders, E-mail: ccyang@astro.lu.se, E-mail: anders@astro.lu.se

    2016-06-01

    Numerical simulation of numerous mm/cm-sized particles embedded in a gaseous disk has become an important tool in the study of planet formation and in understanding the dust distribution in observed protoplanetary disks. However, the mutual drag force between the gas and the particles can become so stiff—particularly because of small particles and/or strong local solid concentration—that an explicit integration of this system is computationally formidable. In this work, we consider the integration of the mutual drag force in a system of Eulerian gas and Lagrangian solid particles. Despite the entanglement between the gas and the particles under the particle-mesh construct,more » we are able to devise a numerical algorithm that effectively decomposes the globally coupled system of equations for the mutual drag force, and makes it possible to integrate this system on a cell-by-cell basis, which considerably reduces the computational task required. We use an analytical solution for the temporal evolution of each cell to relieve the time-step constraint posed by the mutual drag force, as well as to achieve the highest degree of accuracy. To validate our algorithm, we use an extensive suite of benchmarks with known solutions in one, two, and three dimensions, including the linear growth and the nonlinear saturation of the streaming instability. We demonstrate numerical convergence and satisfactory consistency in all cases. Our algorithm can, for example, be applied to model the evolution of the streaming instability with mm/cm-sized pebbles at high mass loading, which has important consequences for the formation scenarios of planetesimals.« less

  14. Conversion from mutual helicity to self-helicity observed with IRIS

    NASA Astrophysics Data System (ADS)

    Li, L. P.; Peter, H.; Chen, F.; Zhang, J.

    2014-10-01

    Context. In the upper atmosphere of the Sun observations show convincing evidence for crossing and twisted structures, which are interpreted as mutual helicity and self-helicity. Aims: We use observations with the new Interface Region Imaging Spectrograph (IRIS) to show the conversion of mutual helicity into self-helicity in coronal structures on the Sun. Methods: Using far UV spectra and slit-jaw images from IRIS and coronal images and magnetograms from SDO, we investigated the evolution of two crossing loops in an active region, in particular, the properties of the Si IV line profile in cool loops. Results: In the early stage two cool loops cross each other and accordingly have mutual helicity. The Doppler shifts in the loops indicate that they wind around each other. As a consequence, near the crossing point of the loops (interchange) reconnection sets in, which heats the plasma. This is consistent with the observed increase of the line width and of the appearance of the loops at higher temperatures. After this interaction, the two new loops run in parallel, and in one of them shows a clear spectral tilt of the Si IV line profile. This is indicative of a helical (twisting) motion, which is the same as to say that the loop has self-helicity. Conclusions: The high spatial and spectral resolution of IRIS allowed us to see the conversion of mutual helicity to self-helicity in the (interchange) reconnection of two loops. This is observational evidence for earlier theoretical speculations. Movie associated with Fig. 1 and Appendix A are available in electronic form at http://www.aanda.org

  15. Femtosecond laser-induced cross-periodic structures on a crystalline silicon surface under low pulse number irradiation

    NASA Astrophysics Data System (ADS)

    Ji, Xu; Jiang, Lan; Li, Xiaowei; Han, Weina; Liu, Yang; Wang, Andong; Lu, Yongfeng

    2015-01-01

    A cross-patterned surface periodic structure in femtosecond laser processing of crystalline silicon was revealed under a relatively low shots (4 < N < 10) with the pulse energy slightly higher than the ablation threshold. The experimental results indicated that the cross-pattern was composed of mutually orthogonal periodic structures (ripples). Ripples with a direction perpendicular to laser polarization (R⊥) spread in the whole laser-modified region, with the periodicity around 780 nm which was close to the central wavelength of the laser. Other ripples with a direction parallel to laser polarization (R‖) were found to be distributed between two of the adjacent ripples R⊥, with a periodicity about the sub-wavelength of the irradiated laser, 390 nm. The geometrical morphology of two mutually orthogonal ripples under static femtosecond laser irradiation could be continuously rotated as the polarization directions changed, but the periodicity remained almost unchanged. The underlying physical mechanism was revealed by numerical simulations based on the finite element method. It was found that the incubation effect with multiple shots, together with the redistributed electric field after initial ablation, plays a crucial role in the generation of the cross-patterned periodic surface structures.

  16. Heterodimerization of the human RNase P/MRP subunits Rpp20 and Rpp25 is a prerequisite for interaction with the P3 arm of RNase MRP RNA

    PubMed Central

    Hands-Taylor, Katherine L. D.; Martino, Luigi; Tata, Renée; Babon, Jeffrey J.; Bui, Tam T.; Drake, Alex F.; Beavil, Rebecca L.; Pruijn, Ger J. M.; Brown, Paul R.; Conte, Maria R.

    2010-01-01

    Rpp20 and Rpp25 are two key subunits of the human endoribonucleases RNase P and MRP. Formation of an Rpp20–Rpp25 complex is critical for enzyme function and sub-cellular localization. We present the first detailed in vitro analysis of their conformational properties, and a biochemical and biophysical characterization of their mutual interaction and RNA recognition. This study specifically examines the role of the Rpp20/Rpp25 association in the formation of the ribonucleoprotein complex. The interaction of the individual subunits with the P3 arm of the RNase MRP RNA is revealed to be negligible whereas the 1:1 Rpp20:Rpp25 complex binds to the same target with an affinity of the order of nM. These results unambiguously demonstrate that Rpp20 and Rpp25 interact with the P3 RNA as a heterodimer, which is formed prior to RNA binding. This creates a platform for the design of future experiments aimed at a better understanding of the function and organization of RNase P and MRP. Finally, analyses of interactions with deletion mutant proteins constructed with successively shorter N- and C-terminal sequences indicate that the Alba-type core domain of both Rpp20 and Rpp25 contains most of the determinants for mutual association and P3 RNA recognition. PMID:20215441

  17. Quantum corrections to holographic mutual information

    DOE PAGES

    Agon, Cesar A.; Faulkner, Thomas

    2016-08-22

    We compute the leading contribution to the mutual information (MI) of two disjoint spheres in the large distance regime for arbitrary conformal field theories (CFT) in any dimension. This is achieved by refining the operator product expansion method introduced by Cardy [1]. For CFTs with holographic duals the leading contribution to the MI at long distances comes from bulk quantum corrections to the Ryu-Takayanagi area formula. According to the FLM proposal [2] this equals the bulk MI between the two disjoint regions spanned by the boundary spheres and their corresponding minimal area surfaces. We compute this quantum correction and providemore » in this way a non-trivial check of the FLM proposal.« less

  18. Fragmentation, rings and coarsening: structure and transformations of nanocrystal aggregate networks on a liquid surface

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Scheidtmann, Jens; Mayer, Joachim; Wuttig, Matthias; Michely, Thomas

    2002-01-01

    Deposition of Ag on a silicon oil surface leads to the formation of nm-sized Ag crystals floating on the oil surface. These nanocrystals mutually attract each other, forming strongly branched nanocrystal aggregates and continuous aggregate networks. Transformation processes of such nanocrystal aggregate networks are imaged in situ by optical microscopy. The observations are explained on the basis of a simple model involving diffusion of nanocrystals along aggregate edges and the rupture of branches resulting from branch width fluctuations due to edge diffusion.

  19. Burnout and demographic characteristics of workers experiencing different types of work-home interaction.

    PubMed

    Merecz, Dorota; Andysz, Aleksandra

    2014-12-01

    The purpose of this study was to explore configurations of positive versus negative interactions between work and home (WHI) and their relation to burnout and demographic characteristics. Sample of 533 Polish workers were interviewed by means of self-administered questionnaires (SWING and MBI-GS). Demographic and work characteristics were also controlled. Cluster analysis distinguished 5 types of WHIs: positive WHI (18%), negative WHI (15.9%), no interaction (29.3%), mutual positive interactions (15.4%) and positive HWI (21.4%). The quality of WHI was associated with number of work hours and tenure at main place of employment. The effect of gender on the quality of work-home interaction was not significant. Configuration of WHIs affected the level of burnout. Again, there was no significant difference between men and women in terms of burnout and its sub-dimensions. The least burned-out were people from positive WHI, positive HWI and mutual positive interaction groups. The most burned-out were people who experienced negative WHI the most often. In this group, predominance of men working more than 10 h per day was observed. The majority of study group (71%) experienced rather integration than segmentation of both spheres. Our results suggest that segmentation is not an universal and effective strategy of coping with work and home demands - it may prevent the positive home-work spillover, which can be buffer or remedy against stress or burnout. We consider cluster analysis the appropriate method in research on relation to work-family balance issue, which may be useful in unraveling relationships between this phenomenon and attitudes and behaviors.

  20. Galleria mellonella apolipophorin III - an apolipoprotein with anti-Legionella pneumophila activity.

    PubMed

    Zdybicka-Barabas, Agnieszka; Palusińska-Szysz, Marta; Gruszecki, Wiesław I; Mak, Paweł; Cytryńska, Małgorzata

    2014-10-01

    The greater wax moth Galleria mellonella has been exploited worldwide as an alternative model host for studying pathogenicity and virulence factors of different pathogens, including Legionella pneumophila, a causative agent of a severe form of pneumonia called Legionnaires' disease. An important role in the insect immune response against invading pathogens is played by apolipophorin III (apoLp-III), a lipid- and pathogen associated molecular pattern-binding protein able to inhibit growth of some Gram-negative bacteria, including Legionella dumoffii. In the present study, anti-L. pneumophila activity of G. mellonella apoLp-III and the effects of the interaction of this protein with L. pneumophila cells are demonstrated. Alterations in the bacteria cell surface occurring upon apoLp-III treatment, revealed by Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy, are also documented. ApoLp-III interactions with purified L. pneumophila LPS, an essential virulence factor of the bacteria, were analysed using electrophoresis and immunoblotting with anti-apoLp-III antibodies. Moreover, FTIR spectroscopy was used to gain detailed information on the type of conformational changes in L. pneumophila LPS and G. mellonella apoLp-III induced by their mutual interactions. The results indicate that apoLp-III binding to components of bacterial cell envelope, including LPS, may be responsible for anti-L. pneumophila activity of G. mellonella apoLp-III. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Networks within networks: floods, droughts, and the assembly of algal-based food webs in a Mediterranean river

    NASA Astrophysics Data System (ADS)

    Power, M. E.; Limm, M.; Finlay, J. C.; Welter, J.; Furey, P.; Lowe, R.; Hondzo, M.; Dietrich, W. E.; Bode, C. A.; National CenterEarth Surface Dynamics

    2011-12-01

    Riverine biota live within several networks. Organisms are embedded in food webs, whose structure and dynamics respond to environmental changes down river drainages. In sunlit rivers, food webs are fueled by attached algae. Primary producer biomass in the Eel River of Northwestern California, as in many sunlit, temperate rivers worldwide, is dominated by the macroalga Cladophora, which grows as a hierarchical, branched network. Cladophora proliferations vastly amplify the ecological surface area and the diversity microhabitats available to microbes. Environmental conditions (light, substrate age or stability, flow, redox gradients) change in partially predictable ways along both Cladophora fronds and river drainage networks, from the frond tips (or headwaters) to their base (or river mouth). We are interested in the ecological and biogeochemical consequences, at the catchment scale, of cross-scale interactions of microbial food webs on Cladophora with macro-organismal food webs, as these change down river drainages. We are beginning to explore how seasonal, hydrologic and macro-consumer control over the production and fate of Cladophora and its epiphytes could mediate ecosystem linkages of the river, its watershed, and nearshore marine ecosystems. Of the four interacting networks we consider, the web of microbial interactions is the most poorly known, and possibly the least hierarchical due to the prevalence of metabolic processing chains (waste products of some members become resources for others) and mutualisms.

  2. Identifying and quantifying interactions in a laboratory swarm

    NASA Astrophysics Data System (ADS)

    Puckett, James; Kelley, Douglas; Ouellette, Nicholas

    2013-03-01

    Emergent collective behavior, such as in flocks of birds or swarms of bees, is exhibited throughout the animal kingdom. Many models have been developed to describe swarming and flocking behavior using systems of self-propelled particles obeying simple rules or interacting via various potentials. However, due to experimental difficulties and constraints, little empirical data exists for characterizing the exact form of the biological interactions. We study laboratory swarms of flying Chironomus riparius midges, using stereoimaging and particle tracking techniques to record three-dimensional trajectories for all the individuals in the swarm. We describe methods to identify and quantify interactions by examining these trajectories, and report results on interaction magnitude, frequency, and mutuality.

  3. Assessing spatial coupling in complex population dynamics using mutual prediction and continuity statistics

    USGS Publications Warehouse

    Nichols, J.M.; Moniz, L.; Nichols, J.D.; Pecora, L.M.; Cooch, E.

    2005-01-01

    A number of important questions in ecology involve the possibility of interactions or ?coupling? among potential components of ecological systems. The basic question of whether two components are coupled (exhibit dynamical interdependence) is relevant to investigations of movement of animals over space, population regulation, food webs and trophic interactions, and is also useful in the design of monitoring programs. For example, in spatially extended systems, coupling among populations in different locations implies the existence of redundant information in the system and the possibility of exploiting this redundancy in the development of spatial sampling designs. One approach to the identification of coupling involves study of the purported mechanisms linking system components. Another approach is based on time series of two potential components of the same system and, in previous ecological work, has relied on linear cross-correlation analysis. Here we present two different attractor-based approaches, continuity and mutual prediction, for determining the degree to which two population time series (e.g., at different spatial locations) are coupled. Both approaches are demonstrated on a one-dimensional predator?prey model system exhibiting complex dynamics. Of particular interest is the spatial asymmetry introduced into the model as linearly declining resource for the prey over the domain of the spatial coordinate. Results from these approaches are then compared to the more standard cross-correlation analysis. In contrast to cross-correlation, both continuity and mutual prediction are clearly able to discern the asymmetry in the flow of information through this system.

  4. Molecular and supramolecular control of the work function of an inorganic electrode with self-assembled monolayer of umbrella-shaped fullerene derivatives.

    PubMed

    Lacher, Sebastian; Matsuo, Yutaka; Nakamura, Eiichi

    2011-10-26

    The surface properties of inorganic substrates can be altered by coating with organic molecules, which may result in the improvement of the properties suitable for electronic or biological applications. This article reports a systematic experimental study on the influence of the molecular and supramolecular properties of umbrella-shaped penta(organo)[60]fullerene derivatives, and on the work function and the water contact angle of indium-tin oxide (ITO) and gold surfaces. We could relate these macroscopic characteristics to single-molecular level properties, such as ionization potential and molecular dipole. The results led us to conclude that the formation of a SAM of a polar compound generates an electronic field through intermolecular interaction of the molecular charges, and this field makes the overall dipole of the SAM much smaller than the one expected from the simple sum of the dipoles of all molecules in the SAM. This effect, which was called depolarization and previously discussed theoretically, is now quantitatively probed by experiments. The important physical properties in surface science such as work function, ionization potential, and water contact angles have been mutually correlated at the level of molecular structures and molecular orientations on the substrate surface. We also found that the SAMs on ITO and gold operate under the same principle except that the "push-back" effect operates specifically for gold. The study also illustrates the ability of the photoelectron yield spectroscopy technique to rapidly measure the work function of a SAM-covered substrate and the ionization potential value of a molecule on the surface.

  5. Ant aggression and evolutionary stability in plant-ant and plant-pollinator mutualistic interactions.

    PubMed

    Oña, L; Lachmann, M

    2011-03-01

    Mutualistic partners derive a benefit from their interaction, but this benefit can come at a cost. This is the case for plant-ant and plant-pollinator mutualistic associations. In exchange for protection from herbivores provided by the resident ants, plants supply various kinds of resources or nests to the ants. Most ant-myrmecophyte mutualisms are horizontally transmitted, and therefore, partners share an interest in growth but not in reproduction. This lack of alignment in fitness interests between plants and ants drives a conflict between them: ants can attack pollinators that cross-fertilize the host plants. Using a mathematical model, we define a threshold in ant aggressiveness determining pollinator survival or elimination on the host plant. In our model we observed that, all else being equal, facultative interactions result in pollinator extinction for lower levels of ant aggressiveness than obligatory interactions. We propose that the capacity to discriminate pollinators from herbivores should not often evolve in ants, and when it does it will be when the plants exhibit limited dispersal in an environment that is not seed saturated so that each seed produced can effectively generate a new offspring or if ants acquire an extra benefit from pollination (e.g. if ants eat fruit). We suggest specific mutualism examples where these hypotheses can be tested empirically. © 2010 The Authors. Journal of Evolutionary Biology © 2010 European Society For Evolutionary Biology.

  6. Both the constitutive Cauliflower Mosaic Virus 35S and tissue-specific AGAMOUS enhancers activate transcription autonomously in Arabidopsis thaliana

    USDA-ARS?s Scientific Manuscript database

    The presence of multiple enhancers and promoters within a single vector often provokes complicated mutual interaction and crosstalk, thereby, altering promoter specificity, which causes serious problems for precisely engineering gene function and agronomic traits in transgenic plants. Enhancer elem...

  7. The Mechanics of CSCL Macro Scripts

    ERIC Educational Resources Information Center

    Dillenbourg, Pierre; Hong, Fabrice

    2008-01-01

    Macro scripts structure collaborative learning and foster the emergence of knowledge-productive interactions such as argumentation, explanations and mutual regulation. We propose a pedagogical model for the designing of scripts and illustrate this model using three scripts. In brief, a script disturbs the natural convergence of a team and in doing…

  8. Undergraduate Student Research Opportunities and Economic Revitalization through Urban Agriculture Initiatives

    ERIC Educational Resources Information Center

    Schläppi, Michael R.

    2017-01-01

    Through interactions with the recently formed Cooperative of the Institute of Urban Agriculture and Nutrition (CIUAN), a catalyst initiative co-governed by community organizations and academia to engage in mutually beneficial research and teaching projects, Marquette University in Milwaukee, Wisconsin, is supporting community efforts to bring…

  9. Infants' Developing Understanding of Social Gaze

    ERIC Educational Resources Information Center

    Beier, Jonathan S.; Spelke, Elizabeth S.

    2012-01-01

    Young infants are sensitive to self-directed social actions, but do they appreciate the intentional, target-directed nature of such behaviors? The authors addressed this question by investigating infants' understanding of social gaze in third-party interactions (N = 104). Ten-month-old infants discriminated between 2 people in mutual versus…

  10. Departmental Dialogues: Facilitating Positive Academic Climates to Improve Equity in STEM Disciplines

    ERIC Educational Resources Information Center

    Holmes, Maja Husar; Jackson, J. Kasi; Stoiko, Rachel

    2016-01-01

    This exploratory qualitative study examined faculty responses to a collegiality-building process called Dialogues. The process used a series of discussions and activities to guide faculty members toward a common, mutually beneficially goal, while changing patterns of interaction. The responses revealed how faculty members experienced…

  11. Lexical Development during Middle Infancy: A Mutually Driven Infant-Caregiver Process.

    ERIC Educational Resources Information Center

    Dunham, Philip; Dunham, Frances

    1992-01-01

    Mothers' utterances were measured during interactions with their 13-month-old infants and correlated with measures of infants' productive lexical development at 13 and 24 months. Correlations between maternal measures and infants' lexical development were lower for employed mothers than for mothers who were full-time caregivers. (BC)

  12. Toward an Integrated View of Early Language and Communication Development and Socioemotional Development.

    ERIC Educational Resources Information Center

    Prizant, Barry M.; Wetherby, Amy M.

    1990-01-01

    The article reviews literature on the integrated nature of early communication and socioemotional development in children. It discusses two models, one addressing the role of the development of mutual (interactive) and self-regulatory capacities in young children's socioemotional development, and a transactional model conceptualizing the complex…

  13. "Improvising Together": The Play of Dialogue in Humanities Supervision

    ERIC Educational Resources Information Center

    Grant, Barbara M.

    2010-01-01

    Graduate supervision is a pedagogy that remakes students into the disciplined subjects of scholars and researchers. While the supervision relation is structured by the fixed and asymmetrical institutional positions of supervisor and student, pedagogic interactions between the two can also have a dynamic, playful and more mutual character. At these…

  14. Nominal and Verbal Semantic Structure: Analogies and Interactions.

    ERIC Educational Resources Information Center

    Filip, Hanna

    2001-01-01

    Examines parallels in semantic structure between noun phrases and verbal predicates in constructions in which they are mutually constraining and contribute to the expression of lexical aspect and grammatical aspect. Data are drawn mainly from English and Slavic languages, which are compared to German and Finnish. (Author/VWL)

  15. Elementary Students' Laboratory Record Keeping during Scientific Inquiry

    ERIC Educational Resources Information Center

    Garcia-Mila, Merce; Andersen, Christopher; Rojo, Nubia E.

    2011-01-01

    The present study examines the mutual interaction between students' writing and scientific reasoning among sixth-grade students (age 11-12 years) engaged in scientific inquiry. The experimental task was designed to promote spontaneous record keeping compared to previous task designs by increasing the saliency of task requirements, with the design…

  16. A Smile Enhances 3-Month-Olds' Recognition of an Individual Face

    ERIC Educational Resources Information Center

    Turati, Chiara; Montirosso, Rosario; Brenna, Viola; Ferrara, Veronica; Borgatti, Renato

    2011-01-01

    Recent studies demonstrated that in adults and children recognition of face identity and facial expression mutually interact (Bate, Haslam, & Hodgson, 2009; Spangler, Schwarzer, Korell, & Maier-Karius, 2010). Here, using a familiarization paradigm, we explored the relation between these processes in early infancy, investigating whether 3-month-old…

  17. Endophyte-host cross talk as a signaling determinant for grass mutualisms: Presumptive evidence

    USDA-ARS?s Scientific Manuscript database

    The general term crosstalk is used to describe interactive signaling pathways that are operationally defined, usually at the molecular or genetic level, without regards to negative or positive results. However, this term has evolved to indicate studies of signaling between components of different p...

  18. The Various Forms of Neuroplasticity: Biological Bases of Learning and Teaching

    ERIC Educational Resources Information Center

    Tovar-Moll, Fernanda; Lent, Roberto

    2016-01-01

    Education is a socially structured form of learning. It involves the brains of different players--students, teachers, family members, and others--in permanent interaction. The biological set of mechanisms by which these brains receive, encode, store, and retrieve mutually exchanged information is called "neuroplasticity". This is the…

  19. Honeybees, Butterflies, and Ladybugs: Partners to Plants

    ERIC Educational Resources Information Center

    Campbell, Ashley

    2009-01-01

    Honeybees, butterflies, and ladybugs all have fascinating mutually beneficial relationships with plants and play important ecosystem roles. Children also love these creatures. But how do we teach children about these symbiotic interactions and help them appreciate their vital roles in our environment? One must is to give children direct experience…

  20. Afro-American Music and Dance.

    ERIC Educational Resources Information Center

    Floyd, Samuel A., Jr.

    1989-01-01

    Outlines the concurrent development of Black music and Black dance in the United States, and describes the interaction of the two genres throughout their mutually dependent evolutions. Traces the histories of the dances of African American culture, known collectively as "jazz dance," in relation to ragtime, jazz, and the blues. (AF)

  1. Mutualists and Phoronts of the Southern Pine Beetle

    Treesearch

    Richard W. Hofstetter

    2011-01-01

    The large numbers of invertebrates and microbes that exist only within dying and decayed pines killed by the southern pine beetle (SPB) make this system ideal for the study of species interactions, including mutualism and phorecy. The associated organisms comprise an entire functioning community that includes fungivores, herbivores, detritovores, scavengers,...

  2. Freire (with Bakhtin) and the Dialogic Classroom Seminar

    ERIC Educational Resources Information Center

    Bowers, Rick

    2005-01-01

    This article on pedagogy in the classroom seminar combines the basic principles of dialogue and liberation as expressed especially by 20th-century thinkers Bakhtin and Freire. It argues for a pedagogy of educational growth and facilitation of ideas. Through learner-centered knowledge, dialogic interaction, open exploration, mutual respect, and…

  3. 2D-3D registration using gradient-based MI for image guided surgery systems

    NASA Astrophysics Data System (ADS)

    Yim, Yeny; Chen, Xuanyi; Wakid, Mike; Bielamowicz, Steve; Hahn, James

    2011-03-01

    Registration of preoperative CT data to intra-operative video images is necessary not only to compare the outcome of the vocal fold after surgery with the preplanned shape but also to provide the image guidance for fusion of all imaging modalities. We propose a 2D-3D registration method using gradient-based mutual information. The 3D CT scan is aligned to 2D endoscopic images by finding the corresponding viewpoint between the real camera for endoscopic images and the virtual camera for CT scans. Even though mutual information has been successfully used to register different imaging modalities, it is difficult to robustly register the CT rendered image to the endoscopic image due to varying light patterns and shape of the vocal fold. The proposed method calculates the mutual information in the gradient images as well as original images, assigning more weight to the high gradient regions. The proposed method can emphasize the effect of vocal fold and allow a robust matching regardless of the surface illumination. To find the viewpoint with maximum mutual information, a downhill simplex method is applied in a conditional multi-resolution scheme which leads to a less-sensitive result to local maxima. To validate the registration accuracy, we evaluated the sensitivity to initial viewpoint of preoperative CT. Experimental results showed that gradient-based mutual information provided robust matching not only for two identical images with different viewpoints but also for different images acquired before and after surgery. The results also showed that conditional multi-resolution scheme led to a more accurate registration than single-resolution.

  4. Constraints on the perturbed mutual motion in Didymos due to impact-induced deformation of its primary after the DART impact

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Masatoshi; Schwartz, Stephen R.; Yu, Yang; Davis, Alex B.; Chesley, Steven R.; Fahnestock, Eugene G.; Michel, Patrick; Richardson, Derek C.; Naidu, Shantanu P.; Scheeres, Daniel J.; Cheng, Andrew F.; Rivkin, Andrew S.; Benner, Lance A. M.

    2017-12-01

    Binary near-Earth asteroid (65803) Didymos is the target of the proposed NASA Double Asteroid Redirection Test (DART), part of the Asteroid Impact & Deflection Assessment (AIDA) mission concept. In this mission, the DART spacecraft is planned to impact the secondary body of Didymos, perturbing mutual dynamics of the system. The primary body is currently rotating at a spin period close to the spin barrier of asteroids, and materials ejected from the secondary due to the DART impact are likely to reach the primary. These conditions may cause the primary to reshape, due to landslides or internal deformation, changing the permanent gravity field. Here, we propose that if shape deformation of the primary occurs, the mutual orbit of the system would be perturbed due to a change in the gravity field. We use a numerical simulation technique based on the full two-body problem to investigate the shape effect on the mutual dynamics in Didymos after the DART impact. The results show that under constant volume, shape deformation induces strong perturbation in the mutual motion. We find that the deformation process always causes the orbital period of the system to become shorter. If surface layers with a thickness greater than ∼0.4 m on the poles of the primary move down to the equatorial region due to the DART impact, a change in the orbital period of the system and in the spin period of the primary will be detected by ground-based measurement.

  5. Mutual promotion of electrochemical-localized surface plasmon resonance on nanochip for sensitive sialic acid detection.

    PubMed

    Li, Shuang; Liu, Jinglong; Lu, Yanli; Zhu, Long; Li, Candong; Hu, Lijiang; Li, Jun; Jiang, Jing; Low, Szeshin; Liu, Qingjun

    2018-06-01

    Localized surface plasmon resonance (LSPR) induced charge separation were concentrated on the metal nanoparticles surface, which made it sensitive to the surface refractive index changes during optical sensing. Similarly, electrochemical detection was based on the electron transformation on the electrode surface. Herein, we fabricated a nanochip by decorating a nanocone-array substrate with gold nanoparticles and silver nanoparticles for dynamic electro-optical spectroscopy. Mercaptophenyl boronic acid (MPBA) was immobilized firmly on the nanochip by the metal-S bond for sensitive sialic acid sensing. Owing to the high stability of gold nanoparticles and the high sensitivity of silver nanoparticles, the nanochip showed good performance in LSPR detection with rich and high responses. Besides, the nanochip also showed sensitive electrical signals during electrochemical detection due to the excitation of the energetic charges from the nanoparticles surface to the reaction system. The dynamic electro-optical spectroscopy was based on a unique combination of LSPR and linear sweep voltammetry (LSV). On the one hand, electrochemical signals activated the electrons on the nanochip to promote the propagation and resonance of surface plasmon. On the other hand, LSPR concentrated the electrons on the nanochip surface, which made the electrons easily driven to enhance the current in electrochemical detection. Results showed that mutual promotion of electrochemical-LSPR on nanochip covered a linear dynamic range from 0.05 mM to 5 mM on selective sialic acid detection with a low detection limit of 17 μM. The synchronous amplification of the electro-optical response during electrochemical-LSPR, opened up a new perspective for efficient and sensitive biochemical detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources

    NASA Astrophysics Data System (ADS)

    Wada, Y.; Wisser, D.; Bierkens, M. F. P.

    2014-01-01

    To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over large scales, a number of macro-scale hydrological models (MHMs) have been developed in recent decades. However, few models consider the interaction between terrestrial water fluxes, and human activities and associated water use, and even fewer models distinguish water use from surface water and groundwater resources. Here, we couple a global water demand model with a global hydrological model and dynamically simulate daily water withdrawal and consumptive water use over the period 1979-2010, using two re-analysis products: ERA-Interim and MERRA. We explicitly take into account the mutual feedback between supply and demand, and implement a newly developed water allocation scheme to distinguish surface water and groundwater use. Moreover, we include a new irrigation scheme, which works dynamically with a daily surface and soil water balance, and incorporate the newly available extensive Global Reservoir and Dams data set (GRanD). Simulated surface water and groundwater withdrawals generally show good agreement with reported national and subnational statistics. The results show a consistent increase in both surface water and groundwater use worldwide, with a more rapid increase in groundwater use since the 1990s. Human impacts on terrestrial water storage (TWS) signals are evident, altering the seasonal and interannual variability. This alteration is particularly large over heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use and associated reservoir operations generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.

  7. Global Modeling of Withdrawal, Allocation and Consumptive Use of Surface Water and Groundwater Resources

    NASA Astrophysics Data System (ADS)

    Wada, Y.; Wisser, D.; Bierkens, M. F.

    2014-12-01

    To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over large scales, a number of macro-scale hydrological models (MHMs) have been developed in recent decades. However, few models consider the interaction between terrestrial water fluxes, and human activities and associated water use, and even fewer models distinguish water use from surface water and groundwater resources. Here, we couple a global water demand model with a global hydrological model and dynamically simulate daily water withdrawal and consumptive water use over the period 1979-2010, using two re-analysis products: ERA-Interim and MERRA. We explicitly take into account the mutual feedback between supply and demand, and implement a newly developed water allocation scheme to distinguish surface water and groundwater use. Moreover, we include a new irrigation scheme, which works dynamically with a daily surface and soil water balance, and incorporate the newly available extensive global reservoir data set (GRanD). Simulated surface water and groundwater withdrawals generally show good agreement with reported national and sub-national statistics. The results show a consistent increase in both surface water and groundwater use worldwide, with a more rapid increase in groundwater use since the 1990s. Human impacts on terrestrial water storage (TWS) signals are evident, altering the seasonal and inter-annual variability. This alteration is particularly large over heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use and associated reservoir operations generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.

  8. Genomic Characterization of Variable Surface Antigens Reveals a Telomere Position Effect as a Prerequisite for RNA Interference-Mediated Silencing in Paramecium tetraurelia

    PubMed Central

    Baranasic, Damir; Oppermann, Timo; Cheaib, Miriam; Cullum, John; Schmidt, Helmut

    2014-01-01

    ABSTRACT Antigenic or phenotypic variation is a widespread phenomenon of expression of variable surface protein coats on eukaryotic microbes. To clarify the mechanism behind mutually exclusive gene expression, we characterized the genetic properties of the surface antigen multigene family in the ciliate Paramecium tetraurelia and the epigenetic factors controlling expression and silencing. Genome analysis indicated that the multigene family consists of intrachromosomal and subtelomeric genes; both classes apparently derive from different gene duplication events: whole-genome and intrachromosomal duplication. Expression analysis provides evidence for telomere position effects, because only subtelomeric genes follow mutually exclusive transcription. Microarray analysis of cultures deficient in Rdr3, an RNA-dependent RNA polymerase, in comparison to serotype-pure wild-type cultures, shows cotranscription of a subset of subtelomeric genes, indicating that the telomere position effect is due to a selective occurrence of Rdr3-mediated silencing in subtelomeric regions. We present a model of surface antigen evolution by intrachromosomal gene duplication involving the maintenance of positive selection of structurally relevant regions. Further analysis of chromosome heterogeneity shows that alternative telomere addition regions clearly affect transcription of closely related genes. Consequently, chromosome fragmentation appears to be of crucial importance for surface antigen expression and evolution. Our data suggest that RNAi-mediated control of this genetic network by trans-acting RNAs allows rapid epigenetic adaptation by phenotypic variation in combination with long-term genetic adaptation by Darwinian evolution of antigen genes. PMID:25389173

  9. Interactions between Manta birostris and Sotalia guianensis in a World Heritage listed Brazilian estuary.

    PubMed

    Domit, C; Broadhurst, M K; Bornatowski, H

    2017-10-01

    During 1442 h of visual observations over 7 years throughout the World Heritage listed Paranaguá estuarine complex, Brazil, seven occurrences of interactions were observed at a single location involving breaching Manta birostris displacing schools of teleosts, which were subsequently preyed upon by Sotalia guianensis. Although the interactions were not definitively categorized as being amensal, commensal or mutual, their restriction to isolated space (adjacent to a protected area) and time (summer) supports previous assertions the area is important to regional productivity and the continuation of protected-area status. © 2017 The Fisheries Society of the British Isles.

  10. Non-additivity of functional group contributions in protein-ligand binding: a comprehensive study by crystallography and isothermal titration calorimetry.

    PubMed

    Baum, Bernhard; Muley, Laveena; Smolinski, Michael; Heine, Andreas; Hangauer, David; Klebe, Gerhard

    2010-04-09

    Additivity of functional group contributions to protein-ligand binding is a very popular concept in medicinal chemistry as the basis of rational design and optimized lead structures. Most of the currently applied scoring functions for docking build on such additivity models. Even though the limitation of this concept is well known, case studies examining in detail why additivity fails at the molecular level are still very scarce. The present study shows, by use of crystal structure analysis and isothermal titration calorimetry for a congeneric series of thrombin inhibitors, that extensive cooperative effects between hydrophobic contacts and hydrogen bond formation are intimately coupled via dynamic properties of the formed complexes. The formation of optimal lipophilic contacts with the surface of the thrombin S3 pocket and the full desolvation of this pocket can conflict with the formation of an optimal hydrogen bond between ligand and protein. The mutual contributions of the competing interactions depend on the size of the ligand hydrophobic substituent and influence the residual mobility of ligand portions at the binding site. Analysis of the individual crystal structures and factorizing the free energy into enthalpy and entropy demonstrates that binding affinity of the ligands results from a mixture of enthalpic contributions from hydrogen bonding and hydrophobic contacts, and entropic considerations involving an increasing loss of residual mobility of the bound ligands. This complex picture of mutually competing and partially compensating enthalpic and entropic effects determines the non-additivity of free energy contributions to ligand binding at the molecular level. (c) 2010 Elsevier Ltd. All rights reserved.

  11. Recursive computation of mutual potential between two polyhedra

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Masatoshi; Scheeres, Daniel J.

    2013-11-01

    Recursive computation of mutual potential, force, and torque between two polyhedra is studied. Based on formulations by Werner and Scheeres (Celest Mech Dyn Astron 91:337-349, 2005) and Fahnestock and Scheeres (Celest Mech Dyn Astron 96:317-339, 2006) who applied the Legendre polynomial expansion to gravity interactions and expressed each order term by a shape-dependent part and a shape-independent part, this paper generalizes the computation of each order term, giving recursive relations of the shape-dependent part. To consider the potential, force, and torque, we introduce three tensors. This method is applicable to any multi-body systems. Finally, we implement this recursive computation to simulate the dynamics of a two rigid-body system that consists of two equal-sized parallelepipeds.

  12. AN EVALUATION OF THE INDIVIDUAL COMPONENTS AND ACCURACIES ASSOCIATED WITH THE DETERMINATION OF IMPERVIOUS AREA

    EPA Science Inventory

    The percentage of impervious surface area in a watershed has been widely recognized as a key indicator of terrestrial and aquatic ecosystem condition. Although the use of the impervious indicator is widespread, there is currently no consistent or mutually accepted method of compu...

  13. Mycorrhizae

    Treesearch

    Martin Jurgensen; Dana Richter; Carl C. Trettin; Mary Davis

    2000-01-01

    Mycorrhizae, a mutual partnership between certain soil fungi and fine root tips, contribute to tree growth and vigor by increasing both water and nutrient uptake, especially nitrogen (N) and phosphorus (P). The fungal hyphae increase root surface contact with the soil, while the fungi are supplied with a reliable source of carbon (Allen 1991, George and Marschner 1995...

  14. The "Turkey Buzzard" glider

    NASA Technical Reports Server (NTRS)

    Miller, Roy G; Brown, D T

    1923-01-01

    The "Turkey Buzzard" is a semi-internally braced monoplane (Fig. 1). The wing is placed above the fuselage for two important aerodynamical reasons: first, because this position minimizes the mutual interference between the wing and the fuselage, and, second, useful lifting surface is utilized with the wing passing over the fuselage instead of through it.

  15. Friendship relations from the perspective of children with experience of cancer treatment: a focus group study with a salutogenic approach.

    PubMed

    Einberg, Eva-Lena; Svedberg, Petra; Enskär, Karin; Nygren, Jens M

    2015-01-01

    Friendships are significant to child development and health but diseases such as cancer can interrupt the contact with friends. The purpose of this study was to describe perceptions of friendship from the perspective of children undergoing cancer treatment, in order to build knowledge that can be used in a health promotion intervention for these children. Fifteen children between 8 and 12 years of age participated in focus groups, where a mixture of informative and creative techniques were used. The focus group discussions were analyzed using qualitative content analysis. The analysis resulted in three generic categories, "Common interests and experiences," "Mutual empathic actions." and "Mutual trust and understanding," incorporating seven subcategories. Based on children's descriptions from a salutogenic perspective, friendship emerged as An equal and mutual commitment that evolves over time and with interactions face-to-face and digitally, a child perspective on friendship should be central to the development of health promotion interventions designed to support friendship relations of children treated for cancer. © 2014 by Association of Pediatric Hematology/Oncology Nurses.

  16. Divergence in an obligate mutualism is not explained by divergent climatic factors

    USGS Publications Warehouse

    Godsoe, W.; Strand, Espen; Smith, C.I.; Yoder, J.B.; Esque, T.C.; Pellmyr, O.

    2009-01-01

    Adaptation to divergent environments creates and maintains biological diversity, but we know little about the importance of different agents of ecological divergence. Coevolution in obligate mutualisms has been hypothesized to drive divergence, but this contention has rarely been tested against alternative ecological explanations. Here, we use a well-established example of coevolution in an obligate pollination mutualism, Yucca brevifolia and its two pollinating yucca moths, to test the hypothesis that divergence in this system is the result of mutualists adapting to different abiotic environments as opposed to coevolution between mutualists. ??? We used a combination of principal component analyses and ecological niche modeling to determine whether varieties of Y. brevifolia associated with different pollinators specialize on different environments. ??? Yucca brevifolia occupies a diverse range of climates. When the two varieties can disperse to similar environments, they occupy similar habitats. ??? This suggests that the two varieties have not specialized on distinct habitats. In turn, this suggests that nonclimatic factors, such as the biotic interaction between Y. brevifolia and its pollinators, are responsible for evolutionary divergence in this system. ?? New Phytologist (2009).

  17. Low RF Reflectivity Spacecraft Thermal Blanket by Using High-Impedance Surface Absorbers

    NASA Astrophysics Data System (ADS)

    Costa, F.; Monorchio, A.; Carrubba, E.; Zolesi, V.

    2012-05-01

    A technique for designing a low-RF reflectivity thermal blanket is presented. Multi-layer insulation (MLI) blankets are employed to stabilize the temperature on spacecraft unit but they can be responsible of passive intermodulation products and high-mutual coupling between antennas since they are realized with metallic materials. The possibility to replace the last inner layer of a MLI blanket with an ultra-thin absorbing layer made of high-impedance surface absorber is discussed.

  18. Bearing assembly and the like for use in corrosive and non-corrosive atmospheres

    DOEpatents

    Mashburn, Douglas N.; Woodall, Harold C.; Wright, Ralph R.

    1979-01-01

    This invention relates to a novel machine element characterized by mutually rubbing surfaces which are composed of dissimilar materials having high hardness, a low coefficient of friction, and resistance to corrosion by halogen-containing atmospheres. As exemplified by the preferred embodiment for use in gaseous UF.sub.6, the rubbing surfaces are chemically deposited nickel and anodized aluminum. These surfaces permit jam-free operation despite long-term exposure to UF.sub.6. Preferably, both surfaces have a hardness of at least about 500 HV.sub.100 on the Vickers hardness scale, and preferably the anodized-aluminum surface is of a type having comparatively little tendency to sorb uranium hexafluoride.

  19. Two is better than one: Physical interactions improve motor performance in humans

    NASA Astrophysics Data System (ADS)

    Ganesh, G.; Takagi, A.; Osu, R.; Yoshioka, T.; Kawato, M.; Burdet, E.

    2014-01-01

    How do physical interactions with others change our own motor behavior? Utilizing a novel motor learning paradigm in which the hands of two - individuals are physically connected without their conscious awareness, we investigated how the interaction forces from a partner adapt the motor behavior in physically interacting humans. We observed the motor adaptations during physical interactions to be mutually beneficial such that both the worse and better of the interacting partners improve motor performance during and after interactive practice. We show that these benefits cannot be explained by multi-sensory integration by an individual, but require physical interaction with a reactive partner. Furthermore, the benefits are determined by both the interacting partner's performance and similarity of the partner's behavior to one's own. Our results demonstrate the fundamental neural processes underlying human physical interactions and suggest advantages of interactive paradigms for sport-training and physical rehabilitation.

  20. Antisynchronization of Two Complex Dynamical Networks

    NASA Astrophysics Data System (ADS)

    Banerjee, Ranjib; Grosu, Ioan; Dana, Syamal K.

    A nonlinear type open-plus-closed-loop (OPCL) coupling is investi-gated for antisynchronization of two complex networks under unidirectional and bidirectional interactions where each node of the networks is considered as a continuous dynamical system. We present analytical results for antisynchroni-zation in identical networks. A numerical example is given for unidirectional coupling with each node represented by a spiking-bursting type Hindmarsh-Rose neuron model. Antisynchronization for mutual interaction is allowed only to inversion symmetric dynamical systems as chosen nodes.

  1. Phase Transitions in a Model for Social Learning via the Internet

    NASA Astrophysics Data System (ADS)

    Bordogna, Clelia M.; Albano, Ezequiel V.

    Based on the concepts of educational psychology, sociology and statistical physics, a mathematical model for a new type of social learning process that takes place when individuals interact via the Internet is proposed and studied. The noise of the interaction (misunderstandings, lack of well organized participative activities, etc.) dramatically restricts the number of individuals that can be efficiently in mutual contact and drives phase transitions between ``ordered states'' such as the achievements of the individuals are satisfactory and ``disordered states'' with negligible achievements.

  2. Proposal for Translational Entanglement of Dipole-Dipole Interacting Atoms in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Opatrný, Tomáš; Deb, Bimalendu; Kurizki, Gershon

    2003-06-01

    We propose and investigate a realization of the position- and momentum-correlated Einstein-Podolsky-Rosen (EPR) states [

    Phys. Rev. 47, 777 (1935)
    ] that have hitherto eluded detection. The realization involves atom pairs that are confined to adjacent sites of two mutually shifted optical lattices and are entangled via laser-induced dipole-dipole interactions. The EPR “paradox” with translational variables is then modified by lattice-diffraction effects and can be verified to a high degree of accuracy in this scheme.

  3. Interaction specificity between leaf-cutting ants and vertically transmitted Pseudonocardia bacteria.

    PubMed

    Andersen, Sandra B; Yek, Sze Huei; Nash, David R; Boomsma, Jacobus J

    2015-02-25

    The obligate mutualism between fungus-growing ants and microbial symbionts offers excellent opportunities to study the specificity and stability of multi-species interactions. In addition to cultivating fungus gardens, these ants have domesticated actinomycete bacteria to defend gardens against the fungal parasite Escovopsis and possibly other pathogens. Panamanian Acromyrmex echinatior leaf-cutting ants primarily associate with actinomycetes of the genus Pseudonocardia. Colonies are inoculated with one of two vertically transmitted phylotypes (Ps1 or Ps2), and maintain the same phylotype over their lifetime. We performed a cross-fostering experiment to test whether co-adaptations between ants and bacterial phylotypes have evolved, and how this affects bacterial growth and ant prophylactic behavior after infection with Escovopsis. We show that Pseudonocardia readily colonized ants irrespective of their colony of origin, but that the Ps2 phylotype, which was previously shown to be better able to maintain its monocultural integrity after workers became foragers than Ps1, reached a higher final cover when grown on its native host than on alternative hosts. The frequencies of major grooming and weeding behaviors co-varied with symbiont/host combinations, showing that ant behavior also was affected when cuticular actinomycete phylotypes were swapped. These results show that the interactions between leaf-cutting ants and Pseudonocardia bear signatures of mutual co-adaptation within a single ant population.

  4. Interphyletic relationships in the use of nesting cavities: mutualism, competition and amensalism among hymenopterans and vertebrates

    NASA Astrophysics Data System (ADS)

    Veiga, José P.; Wamiti, Wanyoike; Polo, Vicente; Muchai, Muchane

    2013-09-01

    Although competition is usually assumed to be the most common interaction between closely related organisms that share limiting resources, the relationships linking distant taxa that use the same nesting sites are poorly understood. In the present study, we examine the interactions among social hymenopterans (honeybees and wasps) and vertebrates in tropical ecosystems of East Africa. By analysing the preferences of these three groups for nest boxes that were empty or previously occupied by a different taxon, we try to establish whether the relationships among them are commensal, mutualistic, competitive or amensal. Vertebrates and honeybees selected nest boxes that had previously been occupied by the other, which suggests that each obtains some benefit from the other. This relationship can be considered mutualistic, although a mutual preference for each others' nests does not exclude a competitive interaction. Vertebrates and wasps preferred nest boxes not previously occupied by the other, which suggests that they compete for tree cavities. Finally, wasps seemed to completely refuse cavities previously used by honeybees, while the bees occupied cavities regardless of whether they had been previously used by wasps, an apparently amensal relationship. These results indicate that the interdependence between distantly related taxa is stronger and more complex than previously described, which may have important implications for population dynamics and community structure.

  5. Collapse of cooperation in evolving games.

    PubMed

    Stewart, Alexander J; Plotkin, Joshua B

    2014-12-09

    Game theory provides a quantitative framework for analyzing the behavior of rational agents. The Iterated Prisoner's Dilemma in particular has become a standard model for studying cooperation and cheating, with cooperation often emerging as a robust outcome in evolving populations. Here we extend evolutionary game theory by allowing players' payoffs as well as their strategies to evolve in response to selection on heritable mutations. In nature, many organisms engage in mutually beneficial interactions and individuals may seek to change the ratio of risk to reward for cooperation by altering the resources they commit to cooperative interactions. To study this, we construct a general framework for the coevolution of strategies and payoffs in arbitrary iterated games. We show that, when there is a tradeoff between the benefits and costs of cooperation, coevolution often leads to a dramatic loss of cooperation in the Iterated Prisoner's Dilemma. The collapse of cooperation is so extreme that the average payoff in a population can decline even as the potential reward for mutual cooperation increases. Depending upon the form of tradeoffs, evolution may even move away from the Iterated Prisoner's Dilemma game altogether. Our work offers a new perspective on the Prisoner's Dilemma and its predictions for cooperation in natural populations; and it provides a general framework to understand the coevolution of strategies and payoffs in iterated interactions.

  6. Experimental quantum simulations of many-body physics with trapped ions.

    PubMed

    Schneider, Ch; Porras, Diego; Schaetz, Tobias

    2012-02-01

    Direct experimental access to some of the most intriguing quantum phenomena is not granted due to the lack of precise control of the relevant parameters in their naturally intricate environment. Their simulation on conventional computers is impossible, since quantum behaviour arising with superposition states or entanglement is not efficiently translatable into the classical language. However, one could gain deeper insight into complex quantum dynamics by experimentally simulating the quantum behaviour of interest in another quantum system, where the relevant parameters and interactions can be controlled and robust effects detected sufficiently well. Systems of trapped ions provide unique control of both the internal (electronic) and external (motional) degrees of freedom. The mutual Coulomb interaction between the ions allows for large interaction strengths at comparatively large mutual ion distances enabling individual control and readout. Systems of trapped ions therefore exhibit a prominent system in several physical disciplines, for example, quantum information processing or metrology. Here, we will give an overview of different trapping techniques of ions as well as implementations for coherent manipulation of their quantum states and discuss the related theoretical basics. We then report on the experimental and theoretical progress in simulating quantum many-body physics with trapped ions and present current approaches for scaling up to more ions and more-dimensional systems.

  7. Softening of the stiffness of bottle-brush polymers by mutual interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolisetty, S.; Airaud, C.; Rosenfeldt, S.

    2007-04-15

    We study bottle-brush macromolecules in a good solvent by small-angle neutron scattering (SANS), static light scattering (SLS), and dynamic light scattering (DLS). These polymers consist of a linear backbone to which long side chains are chemically grafted. The backbone contains about 1600 monomer units (weight average) and every second monomer unit carries side chains with approximately 60 monomer units. The SLS and SANS data extrapolated to infinite dilution lead to the form factor of the polymer that can be described in terms of a wormlike chain with a contour length of 380 nm and a persistence length of 17.5 nm.more » An analysis of the DLS data confirms these model parameters. The scattering intensities taken at finite concentration can be modeled using the polymer reference interaction site model. It reveals a softening of the bottle-brush polymers caused by their mutual interaction. We demonstrate that the persistence decreases from 17.5 nm down to 5 nm upon increasing the concentration from dilute solution to the highest concentration (40.59 g/l) under consideration. The observed softening of the chains is comparable to the theoretically predicted decrease of the electrostatic persistence length of linear polyelectrolyte chains at finite concentrations.« less

  8. Morphodynamics of growing bacterial colony

    NASA Astrophysics Data System (ADS)

    Ghosh, Pushpita; Perlekar, Prasad; Rana, Navdeep

    Self-organization into multicellular communities is a natural trend of most of the bacteria. Mutual interactions and competition among the bacterial cells in such multicellular organization play essential role in governing the spatiotemporal dynamics. We here present the spatiotemporal dynamics of growing bacterial colony using theory and a particle-based or individual-based simulation model of nonmotile cells growing utilizing a diffusing nutrient/food on a semi-solid surface by their growth and division forces and by pushing each-other through sliding motility. We show how the resource competition over a fixed amount of food, the diffusion coefficient of the nutrient and the random genetic noise govern the morphodynamics of a single species and a well-mixed two-species bacterial colonies. Our results show that for a very low initial food concentrations, colony develops fingering pattern at the front, while for intermediate values of initial food sources, the colony undergoes transitions to branched structures at the periphery and for very high values of food colony develops smoother fronts.

  9. BAR domain proteins regulate Rho GTPase signaling.

    PubMed

    Aspenström, Pontus

    2014-01-01

    BAR proteins comprise a heterogeneous group of multi-domain proteins with diverse biological functions. The common denominator is the Bin-Amphiphysin-Rvs (BAR) domain that not only confers targeting to lipid bilayers, but also provides scaffolding to mold lipid membranes into concave or convex surfaces. This function of BAR proteins is an important determinant in the dynamic reconstruction of membrane vesicles, as well as of the plasma membrane. Several BAR proteins function as linkers between cytoskeletal regulation and membrane dynamics. These links are provided by direct interactions between BAR proteins and actin-nucleation-promoting factors of the Wiskott-Aldrich syndrome protein family and the Diaphanous-related formins. The Rho GTPases are key factors for orchestration of this intricate interplay. This review describes how BAR proteins regulate the activity of Rho GTPases, as well as how Rho GTPases regulate the function of BAR proteins. This mutual collaboration is a central factor in the regulation of vital cellular processes, such as cell migration, cytokinesis, intracellular transport, endocytosis, and exocytosis.

  10. Protein analysis by time-resolved measurements with an electro-switchable DNA chip

    PubMed Central

    Langer, Andreas; Hampel, Paul A.; Kaiser, Wolfgang; Knezevic, Jelena; Welte, Thomas; Villa, Valentina; Maruyama, Makiko; Svejda, Matej; Jähner, Simone; Fischer, Frank; Strasser, Ralf; Rant, Ulrich

    2013-01-01

    Measurements in stationary or mobile phases are fundamental principles in protein analysis. Although the immobilization of molecules on solid supports allows for the parallel analysis of interactions, properties like size or shape are usually inferred from the molecular mobility under the influence of external forces. However, as these principles are mutually exclusive, a comprehensive characterization of proteins usually involves a multi-step workflow. Here we show how these measurement modalities can be reconciled by tethering proteins to a surface via dynamically actuated nanolevers. Short DNA strands, which are switched by alternating electric fields, are employed as capture probes to bind target proteins. By swaying the proteins over nanometre amplitudes and comparing their motional dynamics to a theoretical model, the protein diameter can be quantified with Angström accuracy. Alterations in the tertiary protein structure (folding) and conformational changes are readily detected, and even post-translational modifications are revealed by time-resolved molecular dynamics measurements. PMID:23839273

  11. Central composite design and genetic algorithm applied for the optimization of ultrasonic-assisted removal of malachite green by ZnO Nanorod-loaded activated carbon.

    PubMed

    Ghaedi, M; Azad, F Nasiri; Dashtian, K; Hajati, S; Goudarzi, A; Soylak, M

    2016-10-05

    Maximum malachite green (MG) adsorption onto ZnO Nanorod-loaded activated carbon (ZnO-NR-AC) was achieved following the optimization of conditions, while the mass transfer was accelerated by ultrasonic. The central composite design (CCD) and genetic algorithm (GA) were used to estimate the effect of individual variables and their mutual interactions on the MG adsorption as response and to optimize the adsorption process. The ZnO-NR-AC surface morphology and its properties were identified via FESEM, XRD and FTIR. The adsorption equilibrium isotherm and kinetic models investigation revealed the well fit of the experimental data to Langmuir isotherm and pseudo-second-order kinetic model, respectively. It was shown that a small amount of ZnO-NR-AC (with adsorption capacity of 20mgg(-1)) is sufficient for the rapid removal of high amount of MG dye in short time (3.99min). Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Central composite design and genetic algorithm applied for the optimization of ultrasonic-assisted removal of malachite green by ZnO Nanorod-loaded activated carbon

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Azad, F. Nasiri; Dashtian, K.; Hajati, S.; Goudarzi, A.; Soylak, M.

    2016-10-01

    Maximum malachite green (MG) adsorption onto ZnO Nanorod-loaded activated carbon (ZnO-NR-AC) was achieved following the optimization of conditions, while the mass transfer was accelerated by ultrasonic. The central composite design (CCD) and genetic algorithm (GA) were used to estimate the effect of individual variables and their mutual interactions on the MG adsorption as response and to optimize the adsorption process. The ZnO-NR-AC surface morphology and its properties were identified via FESEM, XRD and FTIR. The adsorption equilibrium isotherm and kinetic models investigation revealed the well fit of the experimental data to Langmuir isotherm and pseudo-second-order kinetic model, respectively. It was shown that a small amount of ZnO-NR-AC (with adsorption capacity of 20 mg g- 1) is sufficient for the rapid removal of high amount of MG dye in short time (3.99 min).

  13. Dispersion Morphology of Poly(methyl acrylate)/Silica Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D Janes; J Moll; S Harton

    Nearly monodisperse poly(methyl acrylate) (PMA) and spherical SiO{sub 2} nanoparticles (NP, d = 14 {+-} 4 nm) were co-cast from 2-butanone, a mutually good solvent and a displacer of adsorbed PMA from silica. The effects of NP content and post-casting sample history on the dispersion morphology were found by small-angle X-ray scattering supplemented by transmission electron microscopy. Analysis of the X-ray results show that cast and thermally annealed samples exhibited a nearly random particle dispersion. That the same samples, prior to annealing, were not well-dispersed is indicative of thermodynamic miscibility during thermal annealing over the range of NP loadings studied.more » A simple mean-field thermodynamic model suggests that miscibility results primarily from favorable polymer segment/NP surface interactions. The model also indicates, and experiments confirm, that subsequent exposure of the composites to the likely displacer ethyl acetate results in entropic destabilization and demixing into NP-rich and NP-lean phases.« less

  14. Free-surface flow around an appended hull

    NASA Astrophysics Data System (ADS)

    Lungu, A.; Pacuraru, F.

    2010-08-01

    The prediction of the total drag experienced by an advancing ship is a complicated problem which requires a thorough understanding of the hydrodynamic forces acting on the hull, the physical processes from which these forces arise as well as their mutual interaction. A general numerical method to predict the hydrodynamic performance of a twin-propeller combatant ship is presented in the paper, which describes the solution of a RANS solver coupled with a body force method as an attempt in investigating the flow features around the ship hull equipped with rotating propellers and rudders. A special focus is made on the propeller non-symmetrical inflow field, aimed at obtaining the necessary data for the propulsive performances evaluation as well as for the propeller final design. The reported work allows not only the performance evaluation for the overall performances of a hull, but also leads to the development, implementation and validation of new concepts in modeling the turbulent vortical flows, with direct connection to the ship propulsion problem.

  15. Robust Modeling of Stellar Triples in PHOEBE

    NASA Astrophysics Data System (ADS)

    Conroy, Kyle E.; Prsa, Andrej; Horvat, Martin; Stassun, Keivan G.

    2017-01-01

    The number of known mutually-eclipsing stellar triple and multiple systems has increased greatly during the Kepler era. These systems provide significant opportunities to both determine fundamental stellar parameters of benchmark systems to unprecedented precision as well as to study the dynamical interaction and formation mechanisms of stellar and planetary systems. Modeling these systems to their full potential, however, has not been feasible until recently. Most existing available codes are restricted to the two-body binary case and those that do provide N-body support for more components make sacrifices in precision by assuming no stellar surface distortion. We have completely redesigned and rewritten the PHOEBE binary modeling code to incorporate support for triple and higher-order systems while also robustly modeling data with Kepler precision. Here we present our approach, demonstrate several test cases based on real data, and discuss the current status of PHOEBE's support for modeling these types of systems. PHOEBE is funded in part by NSF grant #1517474.

  16. Exometabolomics Assisted Design and Validation of Synthetic Obligate Mutualism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosina, Suzanne M.; Danielewicz, Megan A.; Mohammed, Mujahid

    Synthetic microbial ecology has the potential to enhance the productivity and resiliency of biotechnology processes compared to approaches using single isolates. Engineering microbial consortia is challenging; however, one approach that has attracted significant attention is the creation of synthetic obligate mutualism using auxotrophic mutants that depend on each other for exchange or cross-feeding of metabolites. In this paper, we describe the integration of mutant library fitness profiling with mass spectrometry based exometabolomics as a method for constructing synthetic mutualism based on cross-feeding. Two industrially important species lacking known ecological interactions, Zymomonas mobilis and Escherichia coli, were selected as the testmore » species. Amino acid exometabolites identified in the spent medium of Z. mobilis were used to select three corresponding E. coli auxotrophs (proA, pheA and IlvA), as potential E. coli counterparts for the coculture. A pooled mutant fitness assay with a Z. mobilis transposon mutant library was used to identify mutants with improved growth in the presence of E. coli. An auxotroph mutant in a gene (ZMO0748) with sequence similarity to cysteine synthase A (cysK), was selected as the Z. mobilis counterpart for the coculture. Exometabolomic analysis of spent E. coli medium identified glutathione related metabolites as potentially available for rescue of the Z. mobilis cysteine synthase mutant. Three sets of cocultures between the Z. mobilis auxotroph and each of the three E. coli auxotrophs were monitored by optical density for growth and analyzed by flow cytometry to confirm high cell counts for each species. Taken together, our methods provide a technological framework for creating synthetic mutualisms combining existing screening based methods and exometabolomics for both the selection of obligate mutualism partners and elucidation of metabolites involved in auxotroph rescue.« less

  17. Exometabolomics Assisted Design and Validation of Synthetic Obligate Mutualism

    DOE PAGES

    Kosina, Suzanne M.; Danielewicz, Megan A.; Mohammed, Mujahid; ...

    2016-02-17

    Synthetic microbial ecology has the potential to enhance the productivity and resiliency of biotechnology processes compared to approaches using single isolates. Engineering microbial consortia is challenging; however, one approach that has attracted significant attention is the creation of synthetic obligate mutualism using auxotrophic mutants that depend on each other for exchange or cross-feeding of metabolites. In this paper, we describe the integration of mutant library fitness profiling with mass spectrometry based exometabolomics as a method for constructing synthetic mutualism based on cross-feeding. Two industrially important species lacking known ecological interactions, Zymomonas mobilis and Escherichia coli, were selected as the testmore » species. Amino acid exometabolites identified in the spent medium of Z. mobilis were used to select three corresponding E. coli auxotrophs (proA, pheA and IlvA), as potential E. coli counterparts for the coculture. A pooled mutant fitness assay with a Z. mobilis transposon mutant library was used to identify mutants with improved growth in the presence of E. coli. An auxotroph mutant in a gene (ZMO0748) with sequence similarity to cysteine synthase A (cysK), was selected as the Z. mobilis counterpart for the coculture. Exometabolomic analysis of spent E. coli medium identified glutathione related metabolites as potentially available for rescue of the Z. mobilis cysteine synthase mutant. Three sets of cocultures between the Z. mobilis auxotroph and each of the three E. coli auxotrophs were monitored by optical density for growth and analyzed by flow cytometry to confirm high cell counts for each species. Taken together, our methods provide a technological framework for creating synthetic mutualisms combining existing screening based methods and exometabolomics for both the selection of obligate mutualism partners and elucidation of metabolites involved in auxotroph rescue.« less

  18. Exometabolomics Assisted Design and Validation of Synthetic Obligate Mutualism.

    PubMed

    Kosina, Suzanne M; Danielewicz, Megan A; Mohammed, Mujahid; Ray, Jayashree; Suh, Yumi; Yilmaz, Suzan; Singh, Anup K; Arkin, Adam P; Deutschbauer, Adam M; Northen, Trent R

    2016-07-15

    Synthetic microbial ecology has the potential to enhance the productivity and resiliency of biotechnology processes compared to approaches using single isolates. Engineering microbial consortia is challenging; however, one approach that has attracted significant attention is the creation of synthetic obligate mutualism using auxotrophic mutants that depend on each other for exchange or cross-feeding of metabolites. Here, we describe the integration of mutant library fitness profiling with mass spectrometry based exometabolomics as a method for constructing synthetic mutualism based on cross-feeding. Two industrially important species lacking known ecological interactions, Zymomonas mobilis and Escherichia coli, were selected as the test species. Amino acid exometabolites identified in the spent medium of Z. mobilis were used to select three corresponding E. coli auxotrophs (proA, pheA and IlvA), as potential E. coli counterparts for the coculture. A pooled mutant fitness assay with a Z. mobilis transposon mutant library was used to identify mutants with improved growth in the presence of E. coli. An auxotroph mutant in a gene (ZMO0748) with sequence similarity to cysteine synthase A (cysK), was selected as the Z. mobilis counterpart for the coculture. Exometabolomic analysis of spent E. coli medium identified glutathione related metabolites as potentially available for rescue of the Z. mobilis cysteine synthase mutant. Three sets of cocultures between the Z. mobilis auxotroph and each of the three E. coli auxotrophs were monitored by optical density for growth and analyzed by flow cytometry to confirm high cell counts for each species. Taken together, our methods provide a technological framework for creating synthetic mutualisms combining existing screening based methods and exometabolomics for both the selection of obligate mutualism partners and elucidation of metabolites involved in auxotroph rescue.

  19. Structural and spectroscopic characterization, reactivity study and charge transfer analysis of the newly synthetized 2-(6-hydroxy-1-benzofuran-3-yl) acetic acid

    NASA Astrophysics Data System (ADS)

    Murthy, P. Krishna; Krishnaswamy, G.; Armaković, Stevan; Armaković, Sanja J.; Suchetan, P. A.; Desai, Nivedita R.; Suneetha, V.; SreenivasaRao, R.; Bhargavi, G.; Aruna Kumar, D. B.

    2018-06-01

    The title compound 2-(6-hydroxy-1-benzofuran-3-yl) acetic acid (abbreviated as HBFAA) has been synthetized and characterized by FT-IR, FT-Raman and NMR spectroscopic techniques. Solid state crystal structure of HBFAA has been determined by single crystal X-ray diffraction technique. The crystal structure features O-H⋯O and C-H⋯O intermolecular interactions resulting in a two dimensional supramolecular architecture. The presence of various intermolecular interactions is well supported by the Hirshfeld surface analysis. The molecular properties of HBFAA were performed by Density functional theory (DFT) using B3LYP/6-311G++(d,p) method at ground state in gas phase, compile these results with experimental values and shows mutual agreement. The vibrational spectral analysis were carried out using FT-IR and FT-Raman spectroscopic techniques and assignment of each vibrational wavenumber made on the basis of potential energy distribution (PED). And also frontier orbital analysis (FMOs), global reactivity descriptors, non-linear optical properties (NLO) and natural bond orbital analysis (NBO) of HBFAA were computed with same method. Efforts were made in order to understand global and local reactivity properties of title compound by calculations of MEP, ALIE, BDE and Fukui function surfaces in gas phase, together with thermodynamic properties. Molecular dynamics simulation and radial distribution functions were also used in order to understand the influence of water to the stability of title compound. Charge transfer between molecules of HBFAA has been investigated thanks to the combination of MD simulations and DFT calculations.

  20. Influence of Ar/O2/H2O Feed Gas and N2/O2/H2O Environment on the Interaction of Time Modulated MHz Atmospheric Pressure Plasma Jet (APPJ) with Model Polymers

    NASA Astrophysics Data System (ADS)

    Oehrlein, Gottlieb; Luan, Pingshan; Knoll, Andrew; Kondeti, Santosh; Bruggeman, Peter

    2016-09-01

    An Ar/O2/H2O fed time modulated MHz atmospheric pressure plasma jet (APPJ) in a sealed chamber was used to study plasma interaction with model polymers (polystyrene, poly-methyl methacrylate, etc.). The amount of H2O in the feed gas and/or present in the N2, O2, or N2/O2 environment was controlled. Short lived species such as O atoms and OH radicals play a crucial role in polymer etching and surface modifications (obtained from X-ray photoelectron spectroscopy of treated polymers without additional atmospheric exposure). Polymer etching depth for Ar/air fed APPJ mirrors the decay of gas phase O atoms with distance from the APPJ nozzle in air and is consistent with the estimated O atom flux at the polymer surface. Furthermore, whereas separate O2 or H2O admixture to Ar enhances polymer etching, simultaneous addition of O2 and H2O to Ar quenches polymer etching. This can be explained by the mutual quenching of O with OH, H and HO2 in the gas phase. Results where O2 and/or H2O in the environment were varied are consistent with these mechanisms. All results will be compared with measured and simulated species densities reported in the literature. We gratefully acknowledge funding from US Department of Energy (DE-SC0001939) and National Science Foundation (PHY-1415353).

  1. The U.S. National Mall microbiome: A census of rhizosphere bacteria inhabiting landscape turf

    USDA-ARS?s Scientific Manuscript database

    Turf contains living assemblages of not only grass plants but also a plethora of microorganisms that may play critical roles in plant health through interactions such as predation, mutualism, and resource competition. Little is known about the turf microbiome, and how it might change in response to ...

  2. Facilitating Social Interaction between Asian and Non-Asian Students: A Resource Booklet.

    ERIC Educational Resources Information Center

    Fort Lee School District, NJ.

    This resource guide provides teachers at all grade levels in the Fort Lee (New Jersey) School District with programs, activities, procedures, and resources to promote mutual understanding and improve inter-group relations between Asian and non-Asian students. Section I, "Outline of Classroom, All-School, and After-School Activities for…

  3. Exploring Talenting: Talent Management as a Collective Endeavour

    ERIC Educational Resources Information Center

    Gold, Jeff; Oldroyd, Tony; Chesters, Ed; Booth, Amanda; Waugh, Adrian

    2016-01-01

    Purpose: This paper seeks to show appreciation for the collective endeavour of work practices based on varying degrees of dependence, interdependence and mutuality between at least two people. Such dependencies have to be concerned with how talent is used and how this use is an interaction between people, a process called talenting. The aim of…

  4. An Investigation of Verbal Interaction, Knowledge of Sexual Behavior and Self-Concept in Adolescent Mothers.

    ERIC Educational Resources Information Center

    Horn, Mary Elaine; Rudolph, Linda B.

    1987-01-01

    Examined adolescent mothers' communication with significant others and their knowledge about sex, pregnancy, and birth control. Adolescent mothers (N=23) reported their communication with their own mothers to be one of mutual understanding. Most reported obtaining sex, pregnancy, and birth control information from significant others. Respondents'…

  5. Language Acquisition by Children with Down Syndrome: A Naturalistic Approach to Assisting Language Acquisition

    ERIC Educational Resources Information Center

    Vilaseca, R.M.; Del Rio, M-J.

    2004-01-01

    Many child language studies emphasize the value of verbal and social support, of 'scaffolding' processes and mutual adjustments that naturally occur in adult-child interactions in everyday contexts. Based on such theories, this study attempted to improve the language and communication skills in children with special educational needs through…

  6. A Mutual Training Experience for Black Parents and School Personnel.

    ERIC Educational Resources Information Center

    Bell, Afesa Marie Adams

    Two action research projects were designed to examine the effectiveness of cultural training workshops as a means of increasing communication and interaction between black parents and educators in an urban school district. An important feature of the workshop was participation by black parents as part of the training team. It was assumed that…

  7. Assessing Peer Support and Usability of Blogging in Hybrid Learning Environments

    ERIC Educational Resources Information Center

    Chang, Y. J.; Chang, Y. S.

    2014-01-01

    Blogs provide contextualization of the information which is vital to the process of peer support. Through dialogues initiated by blog authors and followed by readers, blog platforms build a viable base of shared experiences and mutual relationships. We employ blogs as interactive learning tools for communities of practice in higher education.…

  8. Brain-Immune Interactions as the Basis of Gulf War Illness: Consortium Development

    DTIC Science & Technology

    2012-12-01

    advancements regarding the role of glia in chronic pain processing (Watkins et al., 2007; Watkins et al., 2009), axonal transport deficits in...cytokine signaling) Behavioral Effects (fatigue, pain , cognitive problems) Astrocyte Activation (cytokine signaling) mutually exclusive and once...K. Sullivan, Ph.D. 12 characterized by persistent pain , cognitive dysfunction, and fatigue

  9. Tapping Community Resources to Enrich Your Schooling: Partners-in-Education.

    ERIC Educational Resources Information Center

    Walker, Charles R.

    The Lancaster (PA) school district is working with the Chamber of Commerce and industry to bring resource persons into classrooms and to provide staff for adult career retraining. Program objectives include identifying areas for school/community interaction and mutual gain. Partnership benefits are shared among business, community and schools: to…

  10. German and American Universities: Mutual Influence--Past and Present. Werkstattberichte 36.

    ERIC Educational Resources Information Center

    Teichler, Ulrich, Ed.; Wasser, Henry, Ed.

    The nine conference papers presented in this report offer analyses of the German and American university systems and their interactions as well as discussions of significant issues in contemporary higher education generally. Papers were solicited from leading scholars on both sides of the Atlantic and assigned to four related categories. Two…

  11. Pressure-Volume Work Exercises Illustrating the First and Second Laws.

    ERIC Educational Resources Information Center

    Hoover, William G.; Moran, Bill

    1979-01-01

    Presented are two problem exercises involving rapid compression and expansion of ideal gases which illustrate the first and second laws of thermodynamics. The first problem involves the conversion of gravitational energy into heat through mechanical work. The second involves the mutual interaction of two gases through an adiabatic piston. (BT)

  12. Mothers' and Fathers' Perceptions of Mutuality in Middle Childhood: The Domain of Intimacy

    ERIC Educational Resources Information Center

    Oliphant, Amy E.; Kuczynski, Leon

    2011-01-01

    This study investigated parents' experiences of closeness in their interactions with their children in middle childhood. Structured, open-ended interviews were conducted with mothers and fathers from 23 families (46 participants) with children aged between 7 and 11 years (M = 9.2 years). Qualitative analyses indicated that parents' experiences of…

  13. Pedagogical Self-Image Is the Key to Better Student-Teacher Interaction.

    ERIC Educational Resources Information Center

    Danahy, Michael

    Imagery and metaphors for language teaching, language teachers, and language students that appear in the literature of language teacher training do not reflect a sense of mutual teacher-student cooperation or complementarity, but may instead show why most second language students seldom achieve more than minimal language proficiency. Terminology…

  14. Positive Classroom Motivational Environments : Convergence between Mastery Goal Structure and Classroom Social Climate

    ERIC Educational Resources Information Center

    Patrick, Helen; Kaplan, Avi; Ryan, Allison M.

    2011-01-01

    In a series of 4 studies we investigated the relations of mastery goal structure and 4 dimensions of the classroom social climate (teacher academic support, teacher emotional support, classroom mutual respect, task-related interaction). We conducted multidimensional scaling with separate adolescent samples that differed considerably (i.e., by…

  15. Effects of long-term soil management on the mutual interaction among soil organic matter, microbial activity and aggregates in vineyard

    USDA-ARS?s Scientific Manuscript database

    Vineyard management practices to enhance soil conservation principally focus on increasing carbon (C) input, whereas mitigating impacts of disturbance through reduced tillage has been rarely considered. Furthermore, information is lacking on the effects of soil management practices adopted in the un...

  16. Gesture as a Resource for Intersubjectivity in Second-Language Learning Situations

    ERIC Educational Resources Information Center

    Belhiah, Hassan

    2013-01-01

    This study documents the role of hand gestures in achieving mutual understanding in second-language learning situations. The study tracks the way gesture is coordinated with talk in tutorials between two Korean students and their American teachers. The study adopts an interactional approach to the study of participants' talk and gestural…

  17. Deweyan Education and Democratic Ecologies

    ERIC Educational Resources Information Center

    Affifi, Ramsey R.

    2014-01-01

    From a Deweyan perspective, the capacity to learn is enabled or restricted by the clutch of one's habits, which are established and maintained by the mutual eliciting of action and reaction between an organism and its environment. Relationships that constrict the capacity for organisms to interact and learn from each other are undemocratic so…

  18. Complete Genome of Serratia sp. Strain FGI 94, a Strain Associated with Leaf-Cutter Ant Fungus Gardens

    PubMed Central

    Aylward, Frank O.; Tremmel, Daniel M.; Starrett, Gabriel J.; Bruce, David C.; Chain, Patrick; Chen, Amy; Davenport, Karen W.; Detter, Chris; Han, Cliff S.; Han, James; Huntemann, Marcel; Ivanova, Natalia N.; Kyrpides, Nikos C.; Markowitz, Victor; Mavrommatis, Kostas; Nolan, Matt; Pagani, Ioanna; Pati, Amrita; Pitluck, Sam; Teshima, Hazuki; Deshpande, Shweta; Goodwin, Lynne; Woyke, Tanja

    2013-01-01

    Serratia sp. strain FGI 94 was isolated from a fungus garden of the leaf-cutter ant Atta colombica. Analysis of its 4.86-Mbp chromosome will help advance our knowledge of symbiotic interactions and plant biomass degradation in this ancient ant-fungus mutualism. PMID:23516234

  19. Mutual Influences: U.S.S.R. - U.S. Interactions During the Space Race

    NASA Technical Reports Server (NTRS)

    Siddiqi, Asif

    2005-01-01

    This paper presents a broad historical view of the space race and its relationship between the Soviet Union and the United States in the early years of the space race. The author also adds some thoughts on the writing of history and how we evaluate space history.

  20. The Role of Antennae in Removing Entomopathogenic Fungi from Cuticle of the Termite, Coptotermes formosanus

    PubMed Central

    Yanagawa, Aya; Yokohari, Fumio; Shimizu, Susumu

    2009-01-01

    Our previous research has shown that the termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae), protects itself from entomopathogenic fungi by mutual grooming behavior. The termite removes and discards foreign organisms, such as fungal conidia, from the body surface of its nestmates by mutual grooming behavior. The role of the antennae in detecting the condia was examind here. Three entomopathogenic fungi were used, Beauveria brongniartii 782 (Saccardo) (Hypocreales), Paecilomyces fumosoroseus K3 (Wize) (Hyphomycetes), and Metarhizium anisopliae 455 Sorokin (Hyphomycetes). Termites with antennae removed conidia more efficiently than termites without antennae. There were differences between termites with and without antennae in selection of sites to be groomed on nestmates, in the length of grooming and in occurrence of grooming. Electroantennogram (EAG) responses were recorded from termite antennae and the waveforms were rather specific to the kinds of fungi used as odor sources. Termites were able to distinguish between the tested fungi in feeding tests. These results show that the antennae play important roles in the mutual grooming behavior of the termite. PMID:19611249

Top