Description of the 3 MW SWT-3 wind turbine at San Gorgonio Pass, California
NASA Technical Reports Server (NTRS)
Rybak, S. C.
1982-01-01
The SWT-3 wind turbine, a microprocessor controlled three bladed variable speed upwind machine with a 3MW rating that is presently operational and undergoing system testing, is discussed. The tower, a rigid triangular truss configuration, is rotated about its vertical axis to position the wind turbine into the prevailing wind. The blades rotate at variable speed in order to maintain an optimum 6 to 1 tip speed ratio between cut in and fated wind velocity, thereby maximizing power extraction from the wind. Rotor variable speed is implemented by the use of a hydrostatic transmission consisting of fourteen fixed displacement pumps operating in conjunction with eighteen variable displacement motors. Full blade pitch with on-off hydraulic actuation is used to maintain 3MW of output power.
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jonkman, J.; Butterfield, S.; Musial, W.
2009-02-01
This report describes a three-bladed, upwind, variable-speed, variable blade-pitch-to-feather-controlled multimegawatt wind turbine model developed by NREL to support concept studies aimed at assessing offshore wind technology.
When the mind wanders: age-related differences between young and older adults.
Zavagnin, Michela; Borella, Erika; De Beni, Rossana
2014-01-01
Interest in mind wandering (MW) has grown in recent years, but few studies have assessed this phenomenon in older adults. The aim of this study was to assess age-related differences between young, young-old and old-old adults in MW using two versions of the sustained attention to response task (SART), one perceptual and one semantic. Different indicators were examined (i.e., reported MW episodes and behavioral indices of MW such as response time latency and variability, incorrect response and omission errors). The relationship between MW, certain basic mechanisms of cognition (working memory, inhibition and processing speed), cognitive failures and intrusive thoughts in everyday life was also explored. Findings in both versions of the SART indicated that older adults reported a lower frequency of MW episodes than young adults, but some of the behavioral indices of MW (response time variability, incorrect response and omission errors) were higher in old-old adults. This seems to suggest that MW becomes less frequent with aging, but more pervasive and detrimental to performance. Our results also indicated that the role of age and cognitive mechanisms in explaining MW depends on the demands of the SART task considered. Copyright © 2013 Elsevier B.V. All rights reserved.
Variable speed generator application on the MOD-5A 7.3 mW wind turbine generator
NASA Technical Reports Server (NTRS)
Barton, Robert S.
1995-01-01
This paper describes the application of a Scherbiustat type variable speed subsystem in the MOD-5A Wind Turbine Generator. As designed by General Electric Company, Advanced Energy Programs Department, under contract DEN3-153 with NASA Lewis Research Center and DOE, the MOD-5A utilizes the subsystem for both starting assistance in a motoring mode and generation in a controlled airgap torque mode. Reactive power control is also provided. The Scherbiustat type arrangement of a wound rotor machine with a cycloconverter in the rotor circuit was selected after an evaluation of variable speed technologies that followed a system evaluation of drivetrain cost and risk. The paper describes the evaluation factors considered, the results of the evaluations and summarizes operating strategy and performance simulations.
Control system design for the MOD-5A 7.3 mW wind turbine generator
NASA Technical Reports Server (NTRS)
Barton, Robert S.; Hosp, Theodore J.; Schanzenbach, George P.
1995-01-01
This paper provides descriptions of the requirements analysis, hardware development and software development phases of the Control System design for the MOD-5A 7.3 mW Wind Turbine Generator. The system, designed by General Electric Company, Advanced Energy Programs Department, under contract DEN 3-153 with NASA Lewis Research Center and DOE, provides real time regulation of rotor speed by control of both generator torque and rotor torque. A variable speed generator system is used to provide both airgap torque control and reactive power control. The wind rotor is designed with segmented ailerons which are positioned to control blade torque. The central component of the control system, selected early in the design process, is a programmable controller used for sequencing, alarm monitoring, communication, and real time control. Development of requirements for use of aileron controlled blades and a variable speed generator required an analytical simulation that combined drivetrain, tower and blade elastic modes with wind disturbances and control behavior. An orderly two phase plan was used for controller software development. A microcomputer based turbine simulator was used to facilitate hardware and software integration and test.
Gauthier, Cindy; Grangeon, Murielle; Ananos, Ludivine; Brosseau, Rachel; Gagnon, Dany H
2017-09-01
Cardiorespiratory fitness assessment and training among manual wheelchair (MW) users are predominantly done with an arm-crank ergometer. However, arm-crank ergometer biomechanics differ substantially from MW propulsion biomechanics. This study aimed to quantify cardiorespiratory responses resulting from speed and slope increments during MW propulsion on a motorized treadmill and to calculate a predictive equation based on speed and slope for estimating peak oxygen uptake (VO 2peak ) in MW users. In total, 17 long-term MW users completed 12 MW propulsion periods (PP), each lasting 2min, on a motorized treadmill, in a random order. Each PP was separated by a 2-min rest. PPs were characterized by a combination of 3 speeds (0.6, 0.8 and 1.0m/s) and 4 slopes (0°, 2.7°, 3.6° and 4.8°). Six key cardiorespiratory outcome measures (VO 2 , heart rate, respiratory rate, minute ventilation and tidal volume) were recorded by using a gas-exchange analysis system. Rate of perceived exertion (RPE) was measured by using the modified 10-point Borg scale after each PP. For the 14 participants who completed the test, cardiorespiratory responses increased in response to speed and/or slope increments, except those recorded between the 3.6 o and 4.8 o slope, for which most outcome measures were comparable. The RPE was positively associated with cardiorespiratory response (r s ≥0.85). A VO 2 predictive equation (R 2 =99.7%) based on speed and slope for each PP was computed. This equation informed the development of a future testing protocol to linearly increase VO 2 via 1-min stages during treadmill MW propulsion. Increasing speed and slope while propelling a MW on a motorized treadmill increases cardiorespiratory response along with RPE. RPE can be used to easily and accurately monitor cardiorespiratory responses during MW exercise. The VO 2 can be predicted to some extent by speed and slope during MW propulsion. A testing protocol is proposed to assess cardiorespiratory fitness during motorized MW propulsion. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdman, W.; Behnke, M.
2005-11-01
Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reductionmore » in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.« less
Wind energy converter GROWIAN 2
NASA Astrophysics Data System (ADS)
Braun, D.; Kloeppel, V.; Marsch, G.; Meggle, R.; Mehlhose, R.; Schoebe, B.; Wennekers, R.
1984-04-01
Multi MW wind energy conversion systems in the rotor class of 135 m diam are described. A variable-speed horizontal-axis downwind machine with a one-bladed teetering rotor and a guyed soft steel tower was investigated and a 1 to 3 scaled demonstrator with a rotor diameter of 48 m was built. The demonstrator will undergo a 2 year verification test program.
Field Validation of the Stability Limit of a Multi MW Turbine
NASA Astrophysics Data System (ADS)
Kallesøe, Bjarne S.; Kragh, Knud A.
2016-09-01
Long slender blades of modern multi-megawatt turbines exhibit a flutter like instability at rotor speeds above a critical rotor speed. Knowing the critical rotor speed is crucial to a safe turbine design. The flutter like instability can only be estimated using geometrically non-linear aeroelastic codes. In this study, the estimated rotor speed stability limit of a 7 MW state of the art wind turbine is validated experimentally. The stability limit is estimated using Siemens Wind Powers in-house aeroelastic code, and the results show that the predicted stability limit is within 5% of the experimentally observed limit.
High-speed rupture during the initiation of the 2015 Bonin Islands deep earthquake
NASA Astrophysics Data System (ADS)
Zhan, Z.; Ye, L.; Shearer, P. M.; Lay, T.; Kanamori, H.
2015-12-01
Among the long-standing questions on how deep earthquakes rupture, the nucleation phase of large deep events is one of the most puzzling parts. Resolving the rupture properties of the initiation phase is difficult to achieve with far-field data because of the need for accurate corrections for structural effects on the waveforms (e.g., attenuation, scattering, and site effects) and alignment errors. Here, taking the 2015 Mw 7.9 Bonin Islands earthquake (depth = 678 km) as an example, we jointly invert its far-field P waves at multiple stations for the average rupture speed during the first second of the event. We use waveforms from a closely located aftershock as empirical Green's functions, and correct for possible differences in focal mechanisms and waveform misalignments with an iterative approach. We find that the average initial rupture speed is over 5 km/s, significantly higher than the average rupture speed of 3 km/s later in the event. This contrast suggests that rupture speeds of deep earthquakes can be highly variable during individual events and may define different stages of rupture, potentially with different mechanisms.
Sollberger, Sébastien; Wehrli, Bernhard; Schubert, Carsten J; DelSontro, Tonya; Eugster, Werner
2017-10-18
We monitored CH 4 emissions during the ice-free period of an Alpine hydropower reservoir in the Swiss Alps, Lake Klöntal, to investigate mechanisms responsible for CH 4 variability and to estimate overall emissions to the atmosphere. A floating eddy-covariance platform yielded total CH 4 and CO 2 emission rates at high temporal resolution, while hydroacoustic surveys provided no indication of CH 4 ebullition. Higher CH 4 fluxes (2.9 ± 0.1 mg CH 4 per m 2 per day) occurred during the day when surface water temperatures were warmer and wind speeds higher than at night. Piston velocity estimates (k 600 ) showed an upper limit at high wind speeds that may be more generally valid also for other lakes and reservoirs with limited CH 4 dissolved in the water body: above 2.0 m s -1 a further increase in wind speed did not lead to higher CH 4 fluxes, because under such conditions it is not the turbulent mixing and transport that limits effluxes, but the resupply of CH 4 to the lake surface. Increasing CH 4 fluxes during the warm season showed a clear spatial gradient once the reservoir started to fill up and flood additional surface area. The warm period contributed 27% of the total CH 4 emissions (2.6 t CH 4 per year) estimated for the full year and CH 4 accounted for 63% of carbonic greenhouse gas emissions. Overall, the average CH 4 emissions (1.7 to 2.2 mg CH 4 per m 2 per day determined independently from surface water samplings and eddy covariance, respectively) were small compared to most tropical and some temperate reservoirs. The resulting greenhouse gas (GHG) emissions in CO 2 -equivalents revealed that electricity produced in the Lake Klöntal power plant was relatively climate-friendly with a low GHG-to-power output ratio of 1.24 kg CO 2,eq per MW h compared to 6.5 and 8.1 kg CO 2,eq per MW h associated with the operation of solar photovoltaics and wind energy, respectively, or about 980 kg CO 2,eq per MW h for coal-fired power plants.
NASA Astrophysics Data System (ADS)
Lundquist, J. K.; Banta, R. M.; Pichugina, Y.; Brewer, A.; Alvarez, R. J.; Sandberg, S. P.; Kelley, N. D.; Aitken, M.; Clifton, A.; Mirocha, J. D.
2011-12-01
To support substantial deployment of renewably-generated electricity from the wind, critical information about the variability of wind turbine wakes in the real atmosphere from multi-MW turbines is required. The assessment of the velocity deficit and turbulence associated with industrial-scale turbines is a major issue for wind farm design, particularly with respect to the optimization of the spacing between turbines. The significant velocity deficit and turbulence generated by upstream turbines can reduce the power production and produce harmful vibrations in downstream turbines, which can lead to excess maintenance costs. The complexity of wake effects depends on many factors arising from both hardware (turbine size, rotor speed, and blade geometry, etc.) and from meteorological considerations such as wind velocity, gradients of wind across the turbine rotor disk, atmospheric stability, and atmospheric turbulence. To characterize the relationships between the meteorological inflow and turbine wakes, a collaborative field campaign was designed and carried out at the Department of Energy's National Wind Technology Center (NREL/NWTC) in south Boulder, Colorado, in spring 2011. This site often experiences channeled flow with a consistent wind direction, enabling robust statistics of wake velocity deficits and turbulence enhancements. Using both in situ and remote sensing instrumentation, measurements upwind and downwind of multi-megawatt wind turbine in complex terrain quantified the variability of wind turbine inflow and wakes from an industrial-scale turbine. The turbine of interest has a rated power of 2.3 MW, a rotor diameter of 100m, and a hub height of 80m. In addition to several meteorological towers, one extending to hub height (80m) and another extending above the top of the rotor disk (135m), a Triton mini-sodar and a Windcube lidar characterized the inflow to the turbine and the variability across the site. The centerpiece instrument of the TWICS campaign was the NOAA High Resolution Doppler lidar (HRDL), a scanning lidar which captured three-dimensional images of the turbine inflow and wake. Over several weeks, 48+ hours of HRDL observations during a variety of wind speed and atmospheric stability conditions were collected using three scanning strategies. Wake features such as lofting, meandering, intersection with the ground, and expansion factors are identified and discussed. Observations of a remarkably long-distance wake are presented and compared with existing wake models.
Downwind pre-aligned rotors for extreme-scale wind turbines
Loth, Eric; Steele, Adam; Qin, Chao; ...
2017-03-08
Downwind force angles are small for current turbines systems (1-5 MW) such that they may be readily accommodated by conventional upwind configurations. However, analysis indicates that extreme-scale systems (10-20 MW) will have larger angles that may benefit from downwind-aligned configurations. To examine potential rotor mass reduction, the pre-alignment concept was investigated a two-bladed configuration by keeping the structural and aerodynamic characteristics of each blade fixed (to avoids a complete blade re-design). Simulations for a 13.2 MW rated rotor at steady-state conditions show that this concept-level two-bladed design may yield 25% rotor mass savings while also reducing average blade stress overmore » all wind speeds. These results employed a pre-alignment on the basis of a wind speed of 1.25 times the rated wind speed. The downwind pre-aligned concept may also reduce damage equivalent loads on the blades by 60% for steady rated wind conditions. Even higher mass and damage equivalent load savings (relative to conventional upwind designs) may be possible for larger systems (15-20 MW) for which load-alignment angles become even larger. Furthermore, much more work is needed to determine whether this concept can be translated into a practical design that must meet a wide myriad of other criteria.« less
Downwind pre-aligned rotors for extreme-scale wind turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loth, Eric; Steele, Adam; Qin, Chao
Downwind force angles are small for current turbines systems (1-5 MW) such that they may be readily accommodated by conventional upwind configurations. However, analysis indicates that extreme-scale systems (10-20 MW) will have larger angles that may benefit from downwind-aligned configurations. To examine potential rotor mass reduction, the pre-alignment concept was investigated a two-bladed configuration by keeping the structural and aerodynamic characteristics of each blade fixed (to avoids a complete blade re-design). Simulations for a 13.2 MW rated rotor at steady-state conditions show that this concept-level two-bladed design may yield 25% rotor mass savings while also reducing average blade stress overmore » all wind speeds. These results employed a pre-alignment on the basis of a wind speed of 1.25 times the rated wind speed. The downwind pre-aligned concept may also reduce damage equivalent loads on the blades by 60% for steady rated wind conditions. Even higher mass and damage equivalent load savings (relative to conventional upwind designs) may be possible for larger systems (15-20 MW) for which load-alignment angles become even larger. Furthermore, much more work is needed to determine whether this concept can be translated into a practical design that must meet a wide myriad of other criteria.« less
Oosting, Ellen; Hoogeboom, Thomas J; Appelman-de Vries, Suzan A; Swets, Adam; Dronkers, Jaap J; van Meeteren, Nico L U
2016-01-01
The aim of this study was to evaluate the value of conventional factors, the Risk Assessment and Predictor Tool (RAPT) and performance-based functional tests as predictors of delayed recovery after total hip arthroplasty (THA). A prospective cohort study in a regional hospital in the Netherlands with 315 patients was attending for THA in 2012. The dependent variable recovery of function was assessed with the Modified Iowa Levels of Assistance scale. Delayed recovery was defined as taking more than 3 days to walk independently. Independent variables were age, sex, BMI, Charnley score, RAPT score and scores for four performance-based tests [2-minute walk test, timed up and go test (TUG), 10-meter walking test (10 mW) and hand grip strength]. Regression analysis with all variables identified older age (>70 years), Charnley score C, slow walking speed (10 mW >10.0 s) and poor functional mobility (TUG >10.5 s) as the best predictors of delayed recovery of function. This model (AUC 0.85, 95% CI 0.79-0.91) performed better than a model with conventional factors and RAPT scores, and significantly better (p = 0.04) than a model with only conventional factors (AUC 0.81, 95% CI 0.74-0.87). The combination of performance-based tests and conventional factors predicted inpatient functional recovery after THA. Two simple functional performance-based tests have a significant added value to a more conventional screening with age and comorbidities to predict recovery of functioning immediately after total hip surgery. Patients over 70 years old, with comorbidities, with a TUG score >10.5 s and a walking speed >1.0 m/s are at risk for delayed recovery of functioning. Those high risk patients need an accurate discharge plan and could benefit from targeted pre- and postoperative therapeutic exercise programs.
NASA Astrophysics Data System (ADS)
Alligné, S.; Nicolet, C.; Béguin, A.; Landry, C.; Gomes, J.; Avellan, F.
2017-04-01
The prediction of pressure and output power fluctuations amplitudes on Francis turbine prototype is a challenge for hydro-equipment industry since it is subjected to guarantees to ensure smooth and reliable operation of the hydro units. The European FP7 research project Hyperbole aims to setup a methodology to transpose the pressure fluctuations induced by the cavitation vortex rope from the reduced scale model to the prototype generating units. A Francis turbine unit of 444MW with a specific speed value of ν = 0.29, is considered as case study. A SIMSEN model of the power station including electrical system, controllers, rotating train and hydraulic system with transposed draft tube excitation sources is setup. Based on this model, a frequency analysis of the hydroelectric system is performed for all technologies to analyse potential interactions between hydraulic excitation sources and electrical components. Three technologies have been compared: the classical fixed speed configuration with Synchronous Machine (SM) and the two variable speed technologies which are Doubly Fed Induction Machine (DFIM) and Full Size Frequency Converter (FSFC).
Simulation of pump-turbine prototype fast mode transition for grid stability support
NASA Astrophysics Data System (ADS)
Nicolet, C.; Braun, O.; Ruchonnet, N.; Hell, J.; Béguin, A.; Avellan, F.
2017-04-01
The paper explores the additional services that Full Size Frequency Converter, FSFC, solution can provide for the case of an existing pumped storage power plant of 2x210 MW, for which conversion from fixed speed to variable speed is investigated with a focus on fast mode transition. First, reduced scale model tests experiments of fast transition of Francis pump-turbine which have been performed at the ANDRITZ HYDRO Hydraulic Laboratory in Linz Austria are presented. The tests consist of linear speed transition from pump to turbine and vice versa performed with constant guide vane opening. Then existing pumped storage power plant with pump-turbine quasi homologous to the reduced scale model is modelled using the simulation software SIMSEN considering the reservoirs, penstocks, the two Francis pump-turbines, the two downstream surge tanks, and the tailrace tunnel. For the electrical part, an FSFC configuration is considered with a detailed electrical model. The transitions from turbine to pump and vice versa are simulated, and similarities between prototype simulation results and reduced scale model experiments are highlighted.
NASA Astrophysics Data System (ADS)
Ellinger, Frank; Fritsche, David; Tretter, Gregor; Leufker, Jan Dirk; Yodprasit, Uroschanit; Carta, C.
2017-01-01
In this paper we review high-speed radio-frequency integrated circuits operating up to 210 GHz and present selected state-of-the-art circuits with leading-edge performance, which we have designed at our chair. The following components are discussed employing bipolar complementary metal oxide semiconductors (BiCMOS) technologies: a 200 GHz amplifier with 17 dB gain and around 9 dB noise figure consuming only 18 mW, a 200 GHz down mixer with 5.5 dB conversion gain and 40 mW power consumption, a 190 GHz receiver with 47 dB conversion gain and 11 dB noise figure and a 60 GHz power amplifier with 24.5 dBm output power and 12.9 % power added efficiency (PAE). Moreover, we report on a single-core flash CMOS analogue-to-digital converter (ADC) with 3 bit resolution and a speed of 24 GS/s. Finally, we discuss a 60 GHz on-off keying (OOK) BiCMOS transceiver chip set. The wireless transmission of data with 5 Gb/s at 42 cm distance between transmitter and receiver was verified by experiments. The complete transceiver consumes 396 mW.
Study on the effect of the runner design parameters on 50 MW Francis hydro turbine model performance
NASA Astrophysics Data System (ADS)
Shrestha, Ujjwal; Chen, Zhenmu; Choi, Young-Do
2018-06-01
Francis hydro turbine is the dominant turbine in the hydropower generation. Francis turbine has been installed at most 60% of the hydropower in the world at present. Although the basic design for the Francis turbine has various method regarding the specific speed. The runner meridional shape varies with different specific speed. Despite having, the basic design but there is still some room for the optimization. In this study 50 MW, Francis hydro turbine with specific speed 323 m-kW was designed and considered for the optimization. The various parameter as runner meridional shape (curve profile of hub, shroud, leading edge and trailing edge), blade angle and its distribution, blade thickness, runner inlet width that has been considered for the optimization of the runner for enhancement of the performance.
Graves, R.W.; Aagaard, Brad T.; Hudnut, K.W.; Star, L.M.; Stewart, J.P.; Jordan, T.H.
2008-01-01
Using the high-performance computing resources of the Southern California Earthquake Center, we simulate broadband (0-10 Hz) ground motions for three Mw 7.8 rupture scenarios of the southern San Andreas fault. The scenarios incorporate a kinematic rupture description with the average rupture speed along the large slip portions of the fault set at 0.96, 0.89, and 0.84 times the local shear wave velocity. Consistent with previous simulations, a southern hypocenter efficiently channels energy into the Los Angeles region along the string of basins south of the San Gabriel Mountains. However, we find the basin ground motion levels are quite sensitive to the prescribed rupture speed, with peak ground velocities at some sites varying by over a factor of two for variations in average rupture speed of about 15%. These results have important implications for estimating seismic hazards in Southern California and emphasize the need for improved understanding of earthquake rupture processes. Copyright 2008 by the American Geophysical Union.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-23
... for the siting of two 6-megawatt (MW) wind turbines for demonstration and research purposes. The... the maximum rated electric output, expressed in MW, which the turbines of the wind farm facility under commercial operations can produce at their rated wind speed as designated by the turbine's manufacturer. The...
Zhou, Jicheng; Xu, Wentao; You, Zhimin; Wang, Zhe; Luo, Yushang; Gao, Lingfei; Yin, Cheng; Peng, Renjie; Lan, Lixin
2016-04-27
The use of microwave (MW) irradiation to increase the rate of chemical reactions has attracted much attention recently in nearly all fields of chemistry due to substantial enhancements in reaction rates. However, the intrinsic nature of the effects of MW irradiation on chemical reactions remains unclear. Herein, the highly effective conversion of NO and decomposition of H2S via MW catalysis were investigated. The temperature was decreased by several hundred degrees centigrade. Moreover, the apparent activation energy (Ea') decreased substantially under MW irradiation. Importantly, for the first time, a model of the interactions between microwave electromagnetic waves and molecules is proposed to elucidate the intrinsic reason for the reduction in the Ea' under MW irradiation, and a formula for the quantitative estimation of the decrease in the Ea' was determined. MW irradiation energy was partially transformed to reduce the Ea', and MW irradiation is a new type of power energy for speeding up chemical reactions. The effect of MW irradiation on chemical reactions was determined. Our findings challenge both the classical view of MW irradiation as only a heating method and the controversial MW non-thermal effect and open a promising avenue for the development of novel MW catalytic reaction technology.
Zhou, Jicheng; Xu, Wentao; You, Zhimin; Wang, Zhe; Luo, Yushang; Gao, Lingfei; Yin, Cheng; Peng, Renjie; Lan, Lixin
2016-01-01
The use of microwave (MW) irradiation to increase the rate of chemical reactions has attracted much attention recently in nearly all fields of chemistry due to substantial enhancements in reaction rates. However, the intrinsic nature of the effects of MW irradiation on chemical reactions remains unclear. Herein, the highly effective conversion of NO and decomposition of H2S via MW catalysis were investigated. The temperature was decreased by several hundred degrees centigrade. Moreover, the apparent activation energy (Ea’) decreased substantially under MW irradiation. Importantly, for the first time, a model of the interactions between microwave electromagnetic waves and molecules is proposed to elucidate the intrinsic reason for the reduction in the Ea’ under MW irradiation, and a formula for the quantitative estimation of the decrease in the Ea’ was determined. MW irradiation energy was partially transformed to reduce the Ea’, and MW irradiation is a new type of power energy for speeding up chemical reactions. The effect of MW irradiation on chemical reactions was determined. Our findings challenge both the classical view of MW irradiation as only a heating method and the controversial MW non-thermal effect and open a promising avenue for the development of novel MW catalytic reaction technology. PMID:27118640
A low-power high-speed ultra-wideband pulse radio transmission system.
Wei Tang; Culurciello, E
2009-10-01
We present a low-power high-speed ultra-wideband (UWB) transmitter with a wireless transmission test platform. The system is specifically designed for low-power high-speed wireless implantable biosensors. The integrated transmitter consists of a compact pulse generator and a modulator. The circuit is fabricated in the 0.5-mum silicon-on-sapphire process and occupies 420 mum times 420 mum silicon area. The transmitter is capable of generating pulses with 1-ns width and the pulse rate can be controlled between 90 MHz and 270 MHz. We built a demonstration/testing system for the transmitter. The transmitter achieves a 14-Mb/s data rate. With 50% duty cycle data, the power consumption of the chip is between 10 mW and 21 mW when the transmission distance is from 3.2 to 4 m. The core circuit size is 70 mum times 130 mum.
NASA Astrophysics Data System (ADS)
Shani-Kadmiel, Shahar; Assink, Jelle D.; Smets, Pieter S. M.; Evers, Läslo G.
2018-01-01
In this study we analyze infrasound signals from three earthquakes in central Italy. The Mw 6.0 Amatrice, Mw 5.9 Visso, and Mw 6.5 Norcia earthquakes generated significant epicentral ground motions that couple to the atmosphere and produce infrasonic waves. Epicentral seismic and infrasonic signals are detected at I26DE; however, a third type of signal, which arrives after the seismic wave train and before the epicentral infrasound signal, is also detected. This peculiar signal propagates across the array at acoustic wave speeds, but the celerity associated with it is 3 times the speed of sound. Atmosphere-independent backprojections and full 3-D ray tracing using atmospheric conditions of the European Centre for Medium-Range Weather Forecasts are used to demonstrate that this apparently fast-arriving infrasound signal originates from ground motions more than 400 km away from the epicenter. The location of the secondary infrasound patch coincides with the closest bounce point to I26DE as depicted by ray tracing backprojections.
Estimating the Mass of the Milky Way Using the Ensemble of Classical Satellite Galaxies
NASA Astrophysics Data System (ADS)
Patel, Ekta; Besla, Gurtina; Sohn, Sangmo Tony; Mandel, Kaisey
2018-06-01
High precision proper motions are currently available for approximately 20% of the Milky Way's known satellite galaxies. Often, the 6D phase space information of each satellite is used separately to constrain the mass of the MW. In this talk, I will discuss the Bayesian framework outlined in Patel et al. 2017b to make inferences of the MW's mass using satellite properties such as specific orbital angular momentum, rather than just position and velocity. By extending this framework from one satellite to a population of satellites, we can now form simultaneous MW mass estimates using the Illustris-Dark cosmological simulation that are unbiased by high speed satellites such as Leo I (Patel et al., submitted). Our resulting MW mass estimates reduce the current factor of two uncertainty in the mass range of the MW and show promising signs for improvement as upcoming ground- and space-based observatories obtain proper motions for additional MW satellite galaxies.
Variable-period surface-wave magnitudes: A rapid and robust estimator of seismic moments
Bonner, J.; Herrmann, R.; Benz, H.
2010-01-01
We demonstrate that surface-wave magnitudes (Ms), measured at local, regional, and teleseismic distances, can be used as a rapid and robust estimator of seismic moment magnitude (Mw). We used the Russell (2006) variable-period surface-wave magnitude formula, henceforth called Ms(VMAX), to estimate the Ms for 165 North American events with 3.2
Astrophysical uncertainties on the local dark matter distribution and direct detection experiments
NASA Astrophysics Data System (ADS)
Green, Anne M.
2017-08-01
The differential event rate in weakly interacting massive particle (WIMP) direct detection experiments depends on the local dark matter density and velocity distribution. Accurate modelling of the local dark matter distribution is therefore required to obtain reliable constraints on the WIMP particle physics properties. Data analyses typically use a simple standard halo model which might not be a good approximation to the real Milky Way (MW) halo. We review observational determinations of the local dark matter density, circular speed and escape speed and also studies of the local dark matter distribution in simulated MW-like galaxies. We discuss the effects of the uncertainties in these quantities on the energy spectrum and its time and direction dependence. Finally, we conclude with an overview of various methods for handling these astrophysical uncertainties.
Progress in Low-Power Digital Microwave Radiometer Technologies
NASA Technical Reports Server (NTRS)
Piepmeier, Jeffrey R.; Kim, Edward J.
2004-01-01
Three component technologies were combined into a digital correlation microwave radiometer. The radiometer comprises a dual-channel X-band superheterodyne receiver, low-power high-speed cross-correlator (HSCC), three-level ADCs, and a correlated noise source (CNS). The HSCC dissipates 10 mW and operates at 500 MHz clock speed. The ADCs are implemented using ECL components and dissipate more power than desired. Thus, a low-power ADC development is underway. The new ADCs arc predicted to dissipated less than 200 mW and operate at 1 GSps with 1.5 GHz of input bandwidth. The CNS provides different input correlation values for calibration of the radiometer. The correlation channel had a null offset of 0.0008. Test results indicate that the correlation channel can be calibrated with 0.09% error in gain.
Rotor instability due to a gear coupling connected to a bearingless sun wheel of a planetary gear
NASA Technical Reports Server (NTRS)
Buehlmann, E. T.; Luzi, A.
1989-01-01
A 21 MW electric power generating unit comprises a gas turbine, a planetary gear, and a generator connected together by gear couplings. For simplicity of the design and high performance the pinion of the gear has no bearing. It is centered by the planet wheels only. The original design showed a strong instability and a natural frequency increasing with the load between 2 and 6.5 MW. In this operating range the natural frequency was below the operating speed of the gas turbine, n sub PT = 7729 RPM. By shortening the pinion shaft and reduction of its moment of inertia the unstable natural frequency was shifted well above the operating speed. With that measure the unit now operates with stability in the entire load range.
Nishizawa, N; Chen, Y; Hsiung, P; Ippen, E P; Fujimoto, J G
2004-12-15
Real-time, ultrahigh-resolution optical coherence tomography (OCT) is demonstrated in the 1.4-1.7-microm wavelength region with a stretched-pulse, passively mode-locked, Er-doped fiber laser and highly nonlinear fiber. The fiber laser generates 100-mW, linearly chirped pulses at a 51-MHz repetition rate. The pulses are compressed and then coupled into a normally dispersive highly nonlinear fiber to generate a low-noise supercontinuum with a 180-nm FWHM bandwidth and 38 mW of output power. This light source is stable, compact, and broadband, permitting high-speed, real-time, high-resolution OCT imaging. In vivo high-speed OCT imaging of human skin with approximately 5.5-microm resolution and 99-dB sensitivity is demonstrated.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-05
... megawatts (MW), that the turbines of the wind farm facility under commercial operations can produce at their rated wind speed as designated by the turbine's manufacturer. The nameplate capacity at the start of..., the nameplate capacity of the wind farm facility at the rated wind speed of the turbines would be 100...
Motor fatigue measurement by distance-induced slow down of walking speed in multiple sclerosis.
Phan-Ba, Rémy; Calay, Philippe; Grodent, Patrick; Delrue, Gael; Lommers, Emilie; Delvaux, Valérie; Moonen, Gustave; Belachew, Shibeshih
2012-01-01
Motor fatigue and ambulation impairment are prominent clinical features of people with multiple sclerosis (pMS). We hypothesized that a multimodal and comparative assessment of walking speed on short and long distance would allow a better delineation and quantification of gait fatigability in pMS. Our objectives were to compare 4 walking paradigms: the timed 25-foot walk (T25FW), a corrected version of the T25FW with dynamic start (T25FW(+)), the timed 100-meter walk (T100MW) and the timed 500-meter walk (T500MW). Thirty controls and 81 pMS performed the 4 walking tests in a single study visit. The 4 walking tests were performed with a slower WS in pMS compared to controls even in subgroups with minimal disability. The finishing speed of the last 100-meter of the T500MW was the slowest measurable WS whereas the T25FW(+) provided the fastest measurable WS. The ratio between such slowest and fastest WS (Deceleration Index, DI) was significantly lower only in pMS with EDSS 4.0-6.0, a pyramidal or cerebellar functional system score reaching 3 or a maximum reported walking distance ≤ 4000 m. The motor fatigue which triggers gait deceleration over a sustained effort in pMS can be measured by the WS ratio between performances on a very short distance and the finishing pace on a longer more demanding task. The absolute walking speed is abnormal early in MS whatever the distance of effort when patients are unaware of ambulation impairment. In contrast, the DI-measured ambulation fatigability appears to take place later in the disease course.
NASA Astrophysics Data System (ADS)
Zhan, Zhongwen; Shearer, Peter M.; Kanamori, Hiroo
2015-10-01
Zhan et al. (2014a) reported supershear rupture during the Mw 6.7 aftershock of the 2013 Mw 8.3 Sea of Okhotsk deep earthquake, relying heavily on the regional station PET, which played a critical role in constraining the vertical rupture dimension and rupture speed. Here we include five more regional stations and find that the durations of the source time functions derived from these stations are consistent with Zhan et al.'s supershear rupture model. Furthermore, to reduce the nonuniqueness of deconvolution and combine the bandwidths of different stations, we conduct a joint inversion of the six regional stations for a single broadband moment-rate function (MRF). The best fitting MRF, which explains all the regional waveforms well, has a smooth shape without any temporal gaps. The Mw 6.7 Okhotsk deep earthquake is more likely a continuous supershear rupture than a dynamically triggered doublet.
Moschetti, Morgan P.; Hartzell, Stephen; Ramirez-Guzman, Leonardo; Frankel, Arthur; Angster, Stephen J.; Stephenson, William J.
2017-01-01
We examine the variability of long‐period (T≥1 s) earthquake ground motions from 3D simulations of Mw 7 earthquakes on the Salt Lake City segment of the Wasatch fault zone, Utah, from a set of 96 rupture models with varying slip distributions, rupture speeds, slip velocities, and hypocenter locations. Earthquake ruptures were prescribed on a 3D fault representation that satisfies geologic constraints and maintained distinct strands for the Warm Springs and for the East Bench and Cottonwood faults. Response spectral accelerations (SA; 1.5–10 s; 5% damping) were measured, and average distance scaling was well fit by a simple functional form that depends on the near‐source intensity level SA0(T) and a corner distance Rc:SA(R,T)=SA0(T)(1+(R/Rc))−1. Period‐dependent hanging‐wall effects manifested and increased the ground motions by factors of about 2–3, though the effects appeared partially attributable to differences in shallow site response for sites on the hanging wall and footwall of the fault. Comparisons with modern ground‐motion prediction equations (GMPEs) found that the simulated ground motions were generally consistent, except within deep sedimentary basins, where simulated ground motions were greatly underpredicted. Ground‐motion variability exhibited strong lateral variations and, at some sites, exceeded the ground‐motion variability indicated by GMPEs. The effects on the ground motions of changing the values of the five kinematic rupture parameters can largely be explained by three predominant factors: distance to high‐slip subevents, dynamic stress drop, and changes in the contributions from directivity. These results emphasize the need for further characterization of the underlying distributions and covariances of the kinematic rupture parameters used in 3D ground‐motion simulations employed in probabilistic seismic‐hazard analyses.
Seli, Paul; Ralph, Brandon C. W.; Konishi, Mahiko; Smilek, Daniel; Schacter, Daniel L.
2017-01-01
It has recently been argued that researchers should distinguish between mind wandering (MW) that is engaged with and without intention. Supporting this argument, studies have found that intentional and unintentional MW have behavioral/neural differences, and that they are differentially associated with certain variables of theoretical interest. Although there have been considerable inroads made into the distinction between intentional/unintentional MW, possible differences in their content remain unexplored. To determine whether these two types of MW differ in content, we had participants complete a task during which they categorized their MW as intentional or unintentional, and then provided responses to questions about the content of their MW. Results indicated that intentional MW was more frequently rated as being future-oriented and less vague than unintentional MW. These findings shed light on the nature of intentional and unintentional MW and provide support for the argument that researchers should distinguish between intentional and unintentional types. PMID:28371688
MW 08-multi-beam air and surface surveillance radar
NASA Astrophysics Data System (ADS)
1989-09-01
Signal of the Netherlands has developed and is marketing the MW 08, a 3-D radar to be used for short to medium range surveillance, target acquisition, and tracking. MW 08 is a fully automated detecting and tracking radar. It is designed to counter threats from aircraft and low flying antiship missiles. It can also deal with the high level missile threat. MW 08 operates in the 5 cm band using one antenna for both transmitting and receiving. The antenna is an array, consisting of 8 stripline antennas. The received radar energy is processed by 8 receiver channels. These channels come together in the beam forming network, in which 8 virtual beams are formed. From this beam pattern, 6 beams are used for the elevation coverage of 0-70 degrees. MW 08's output signals of the beam former are further handled by FFT and plot processors for target speed information, clutter rejection, and jamming suppression. A general purpose computer handles target track initiation, and tracking. Tracking data are transferred to the command and control systems with 3-D target information for fastest possible lockon.
Rupture evolution of the 2006 Java tsunami earthquake and the possible role of splay faults
NASA Astrophysics Data System (ADS)
Fan, Wenyuan; Bassett, Dan; Jiang, Junle; Shearer, Peter M.; Ji, Chen
2017-11-01
The 2006 Mw 7.8 Java earthquake was a tsunami earthquake, exhibiting frequency-dependent seismic radiation along strike. High-frequency global back-projection results suggest two distinct rupture stages. The first stage lasted ∼65 s with a rupture speed of ∼1.2 km/s, while the second stage lasted from ∼65 to 150 s with a rupture speed of ∼2.7 km/s. High-frequency radiators resolved with back-projection during the second stage spatially correlate with splay fault traces mapped from residual free-air gravity anomalies. These splay faults also colocate with a major tsunami source associated with the earthquake inferred from tsunami first-crest back-propagation simulation. These correlations suggest that the splay faults may have been reactivated during the Java earthquake, as has been proposed for other tsunamigenic earthquakes, such as the 1944 Mw 8.1 Tonankai earthquake in the Nankai Trough.
Li, Shanzhi; Wang, Haoping; Tian, Yang; Aitouch, Abdel; Klein, John
2016-09-01
This paper presents an intelligent proportional-integral sliding mode control (iPISMC) for direct power control of variable speed-constant frequency wind turbine system. This approach deals with optimal power production (in the maximum power point tracking sense) under several disturbance factors such as turbulent wind. This controller is made of two sub-components: (i) an intelligent proportional-integral module for online disturbance compensation and (ii) a sliding mode module for circumventing disturbance estimation errors. This iPISMC method has been tested on FAST/Simulink platform of a 5MW wind turbine system. The obtained results demonstrate that the proposed iPISMC method outperforms the classical PI and intelligent proportional-integral control (iPI) in terms of both active power and response time. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Sensor Calibration and Ocean Products for TRMM Microwave Radiometer
NASA Technical Reports Server (NTRS)
Wentz, Frank J.; Lawrence, Richard J. (Technical Monitor)
2003-01-01
During the three years of finding, we have carefully corrected for two sensor/platform problems, developed a physically based retrieval algorithm to calculate SST, wind speed, water vapor, cloud liquid water and rain rates, validated these variables, and demonstrated that satellite microwave radiometers can provide very accurate SST retrievals through clouds. Prior to this, there was doubt by some scientists that the technique of microwave SST retrieval from satellites is a viable option. We think we have put these concerns to rest, and look forward to making microwave SSTs a standard component of the Earth science data sets. Our TMI SSTs were featured on several network news broadcasts and were reported in Science magazine. Additionally, we have developed a SST algorithm for VIRS to facilitate IR/MW inter-comparisons and completed research into diurnal cycles and air-sea interactions.
Sensor Calibration and Ocean Products for TRMM Microwave Radiometer
NASA Technical Reports Server (NTRS)
Lawrence, Richard J. (Technical Monitor); Wentz, Frank J.
2003-01-01
During the three years of fundin& we have carefully corrected for two sensor/platform problems, developed a physically based retrieval algorithm to calculate SST, wind speed, water vapor, cloud liquid water and rain rates, validated these variables, and demonstrated that satellite microwave radiometers can provide very accurate SST retrievals through clouds. Prior to this, there was doubt by some scientists that the technique of microwave SST retrieval from satellites is a viable option. We think we have put these concerns to rest, and look forward to making microwave SSTs a standard component of the Earth science data sets. Our TMI SSTs were featured on several network news broadcasts and were reported in Science magazine. Additionally, we have developed a SST algorithm for VIRS to facilitate IR/MW inter-comparisons and completed research into diurnal cycles and air-sea interactions.
Brain activation associated with practiced left hand mirror writing.
Kushnir, T; Arzouan, Y; Karni, A; Manor, D
2013-04-01
Mirror writing occurs in healthy children, in various pathologies and occasionally in healthy adults. There are only scant experimental data on the underlying brain processes. Eight, right-handed, healthy young adults were scanned (BOLD-fMRI) before and after practicing left-hand mirror-writing (lh-MW) over seven sessions. They wrote dictated words, using either the right hand with regularly oriented writing or lh-MW. An MRI compatible stylus-point recording system was used and online visual feedback was provided. Practice resulted in increased speed and readability of lh-MW but the number of movement segments was unchanged. Post-training signal increases occurred in visual, right lateral and medial premotor areas, and in right anterior and posterior peri-sylvian areas corresponding to language areas. These results suggest that lh-MW may constitute a latent ability that can be reinstated by a relatively brief practice experience. Concurrently, right hemisphere language processing areas may emerge, reflecting perhaps a reduction in trans-hemispheric suppression. Copyright © 2013 Elsevier Inc. All rights reserved.
Improving pilot mental workload evaluation with combined measures.
Wanyan, Xiaoru; Zhuang, Damin; Zhang, Huan
2014-01-01
Behavioral performance, subjective assessment based on NASA Task Load Index (NASA-TLX), as well as physiological measures indexed by electrocardiograph (ECG), event-related potential (ERP), and eye tracking data were used to assess the mental workload (MW) related to flight tasks. Flight simulation tasks were carried out by 12 healthy participants under different MW conditions. The MW conditions were manipulated by setting the quantity of flight indicators presented on the head-up display (HUD) in the cruise phase. In this experiment, the behavioral performance and NASA-TLX could reflect the changes of MW ideally. For physiological measures, the indices of heart rate variability (HRV), P3a, pupil diameter and eyelid opening were verified to be sensitive to MW changes. Our findings can be applied to the comprehensive evaluation of MW during flight tasks and the further quantitative classification.
The variables V477 Peg and MW Com observation results
NASA Astrophysics Data System (ADS)
Bahý, V.; Gajtanska, M.; Hanisko, P.; Krišták, L.
2018-04-01
The paper deals with our results of the photometric observations of two variable stars and with basic interprettions of our results. We have observed the V477 Pegassi and MW Comae systems. We have obtained their light curves in the integral light and in the B, V, R and I filters. The color indices have been computed and there have been realized the models of the both systems by the usage of the BM3 software. These models are presented in our study too.
NASA Technical Reports Server (NTRS)
Balas, Mark J.; Thapa Magar, Kaman S.; Frost, Susan A.
2013-01-01
A theory called Adaptive Disturbance Tracking Control (ADTC) is introduced and used to track the Tip Speed Ratio (TSR) of 5 MW Horizontal Axis Wind Turbine (HAWT). Since ADTC theory requires wind speed information, a wind disturbance generator model is combined with lower order plant model to estimate the wind speed as well as partial states of the wind turbine. In this paper, we present a proof of stability and convergence of ADTC theory with lower order estimator and show that the state feedback can be adaptive.
Mandal, S; Choudhury, B U; Satpati, L N
2015-12-01
In the Sagar Island of Bay of Bengal, rainfed lowland rice is the major crop, grown solely depending on erratic distribution of southwest monsoon (SM) rainfall. Lack of information on SM rainfall variability and absence of crop scheduling accordingly results in frequent occurrence of intermittent water stress and occasional crop failure. In the present study, we analyzed long period (1982-2010) SM rainfall behavior (onset, withdrawal, rainfall and wetness indices, dry and wet spells), crop water requirement (CWR, by Food and Agriculture Organization (FAO) 56), and probability of weekly rainfall occurrence (by two-parameter gamma distribution) to assess the variability and impact on water availability, CWR, and rice productivity. Finally, crop planning was suggested to overcome monsoon uncertainties on water availability and rice productivity. Study revealed that the normal onset and withdrawal weeks for SM rainfall were 22nd ± 1 and 43rd ± 2 meteorological weeks (MW), respectively. However, effective monsoon rainfall started at 24th MW (rainfall 92.7 mm, p > 56.7 % for 50 mm rainfall) and was terminated by the end of 40th MW (rainfall 90.7 mm, p < 59.6 % for 50 mm rainfall). During crop growth periods (seed to seed, 21st to 45th MW), the island received an average weekly rainfall of 65.1 ± 25.9 mm, while the corresponding weekly CWR was 47.8 ± 5.4 mm. Despite net water surplus of 353.9 mm during crop growth periods, there was a deficit of 159.5 mm water during MW of 18-23 (seedling raising) and MW of 41-45 (flowering to maturity stages). Water stress was observed in early lag vegetative stage of crop growth (32nd MW). The total dry spell frequency during panicle initiation and heading stage was computed as 40 of which 6 dry spells were >7 days in duration and reflected a significant (p < 0.05) increasing trend (at 0.22 days year(-1)) over the years (1982-2010). The present study highlights the adaptive capacity of crop planning including abiotic stress-tolerant cultivars to monsoon rainfall variability for sustaining rainfed rice production vis-à-vis food and livelihood security in vulnerable islands of coastal ecosystem.
Huber, R; Adler, D C; Srinivasan, V J; Fujimoto, J G
2007-07-15
A Fourier domain mode-locked (FDML) laser at 1050 nm for ultra-high-speed optical coherence tomography (OCT) imaging of the human retina is demonstrated. Achievable performance, physical limitations, design rules, and scaling principles for FDML operation and component choice in this wavelength range are discussed. The fiber-based FDML laser operates at a sweep rate of 236 kHz over a 63 nm tuning range, with 7 mW average output power. Ultra-high-speed retinal imaging is demonstrated at 236,000 axial scans per second. This represents a speed improvement of approximately10x over typical high-speed OCT systems, paving the way for densely sampled volumetric data sets and new imaging protocols.
NASA Astrophysics Data System (ADS)
Fan, W.; Bassett, D.; Denolle, M.; Shearer, P. M.; Ji, C.; Jiang, J.
2017-12-01
The 2006 Mw 7.8 Java earthquake was a tsunami earthquake, exhibiting frequency-dependent seismic radiation along strike. High-frequency global back-projection results suggest two distinct rupture stages. The first stage lasted 65 s with a rupture speed of 1.2 km/s, while the second stage lasted from 65 to 150 s with a rupture speed of 2.7 km/s. In addition, P-wave high-frequency radiated energy and fall-off rates indicate a rupture transition at 60 s. High-frequency radiators resolved with back-projection during the second stage spatially correlate with splay fault traces mapped from residual free-air gravity anomalies. These splay faults also collocate with a major tsunami source associated with the earthquake inferred from tsunami first-crest back-propagation simulation. These correlations suggest that the splay faults may have been reactivated during the Java earthquake, as has been proposed for other tsunamigenic earthquakes, such as the 1944 Mw 8.1 Tonankai earthquake in the Nankai Trough.
Ignition of an automobile engine by high-peak power Nd:YAG/Cr⁴⁺:YAG laser-spark devices.
Pavel, Nicolaie; Dascalu, Traian; Salamu, Gabriela; Dinca, Mihai; Boicea, Niculae; Birtas, Adrian
2015-12-28
Laser sparks that were built with high-peak power passively Q-switched Nd:YAG/Cr(4+):YAG lasers have been used to operate a Renault automobile engine. The design of such a laser spark igniter is discussed. The Nd:YAG/Cr(4+):YAG laser delivered pulses with energy of 4 mJ and 0.8-ns duration, corresponding to pulse peak power of 5 MW. The coefficients of variability of maximum pressure (COV(Pmax)) and of indicated mean effective pressure (COV(IMEP)) and specific emissions like hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NO(x)) and carbon dioxide (CO2) were measured at various engine speeds and high loads. Improved engine stability in terms of COV(Pmax) and COV(Pmax) and decreased emissions of CO and HC were obtained for the engine that was run by laser sparks in comparison with classical ignition by electrical spark plugs.
Morphing Downwind-Aligned Rotor Concept Based on a 13-MW Wind Turbine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ichter, Brian; Steele, Adam; Loth, Eric
To alleviate the mass-scaling issues associated with conventional upwind rotors of extreme-scale wind turbines (>/=10 MW), a morphing downwind-aligned rotor (MoDaR) concept is proposed herein. The concept employs a downwind rotor with blades whose elements are stiff (no intentional flexibility) but with hub-joints that can be unlocked to allow for moment-free downwind alignment. Aligning the combination of gravitational, centrifugal and thrust forces along the blade path reduces downwind cantilever loads, resulting in primarily tensile loading. For control simplicity, the blade curvature can be fixed with a single morphing degree of freedom using a near-hub joint for coning angle: 22 degreesmore » at rated conditions. The conventional baseline was set as the 13.2-MW Sandia 100-m all glass blade in a three-bladed upwind configuration. To quantify potential mass savings, a downwind load-aligning, two-bladed rotor was designed. Because of the reduced number of blades, the MoDaR concept had a favorable 33% mass reduction. The blade reduction and coning led to a reduction in rated power, but morphing increased energy capture at lower speeds such that both the MoDaR and conventional rotors have the same average power: 5.4 MW. A finite element analysis showed that quasi-steady structural stresses could be reduced, over a range of operating wind speeds and azimuthal angles, despite the increases in loading per blade. However, the concept feasibility requires additional investigation of the mass, cost and complexity of the morphing hinge, the impact of unsteady aeroelastic influence because of turbulence and off-design conditions, along with system-level Levelized Cost of Energy analysis.« less
A plane of high-velocity galaxies across the Local Group
NASA Astrophysics Data System (ADS)
Banik, Indranil; Zhao, Hongsheng
2018-01-01
We recently showed that several Local Group (LG) galaxies have much higher radial velocities (RVs) than predicted by a 3D dynamical model of the standard cosmological paradigm. Here, we show that six of these seven galaxies define a thin plane with root mean square thickness of only 101 kpc despite a widest extent of nearly 3 Mpc, much larger than the conventional virial radius of the Milky Way (MW) or M31. This plane passes within ∼70 kpc of the MW-M31 barycentre and is oriented so the MW-M31 line is inclined by 16° to it. We develop a toy model to constrain the scenario whereby a past MW-M31 flyby in Modified Newtonian Dynamics (MOND) forms tidal dwarf galaxies that settle into the recently discovered planes of satellites around the MW and M31. The scenario is viable only for a particular MW-M31 orbital plane. This roughly coincides with the plane of LG dwarfs with anomalously high RVs. Using a restricted N-body simulation of the LG in MOND, we show how the once fast-moving MW and M31 gravitationally slingshot test particles outwards at high speeds. The most distant such particles preferentially lie within the MW-M31 orbital plane, probably because the particles ending up with the highest RVs are those flung out almost parallel to the motion of the perturber. This suggests a dynamical reason for our finding of a similar trend in the real LG, something not easily explained as a chance alignment of galaxies with an isotropic or mildly flattened distribution (probability = 0.0015).
Dei, Michele; Sutula, Stepan; Cisneros, Jose; Pun, Ernesto; Jansen, Richard Jan Engel; Terés, Lluís; Serra-Graells, Francisco
2017-06-02
Infrared imaging technology, used both to study deep-space bodies' radiation and environmental changes on Earth, experienced constant improvements in the last few years, pushing data converter designers to face new challenges in terms of speed, power consumption and robustness against extremely harsh operating conditions. This paper presents a 96.6-dB-SNDR (Signal-to-Noise-plus-Distortion Ratio) 50-kHz-bandwidth fourth-order single-bit switched-capacitor delta-sigma modulator for ADC operating at 1.8 V and consuming 7.9 mW fit for space instrumentation. The circuit features novel Class-AB single-stage switched variable-mirror amplifiers (SVMAs) enabling low-power operation, as well as low sensitivity to both process and temperature deviations for the whole modulator. The physical implementation resulted in a 1.8-mm 2 chip integrated in a standard 0.18-µm 1-poly-6-metal (1P6M) CMOS technology, and it reaches a 164.6-dB Schreier figure of merit from experimental SNDR measurements without making use of any clock bootstrapping,analogcalibration,nordigitalcompensationtechnique. Whencoupledtoa2048×2048 IR imager, the current design allows more than 50 frames per minute with a resolution of 16 effective number of bits (ENOB) while consuming less than 300 mW.
Dei, Michele; Sutula, Stepan; Cisneros, Jose; Pun, Ernesto; Jansen, Richard Jan Engel; Terés, Lluís; Serra-Graells, Francisco
2017-01-01
Infrared imaging technology, used both to study deep-space bodies’ radiation and environmental changes on Earth, experienced constant improvements in the last few years, pushing data converter designers to face new challenges in terms of speed, power consumption and robustness against extremely harsh operating conditions. This paper presents a 96.6-dB-SNDR (Signal-to-Noise-plus-Distortion Ratio) 50-kHz-bandwidth fourth-order single-bit switched-capacitor delta-sigma modulator for ADC operating at 1.8 V and consuming 7.9 mW fit for space instrumentation. The circuit features novel Class-AB single-stage switched variable-mirror amplifiers (SVMAs) enabling low-power operation, as well as low sensitivity to both process and temperature deviations for the whole modulator. The physical implementation resulted in a 1.8-mm2 chip integrated in a standard 0.18-μm 1-poly-6-metal (1P6M) CMOS technology, and it reaches a 164.6-dB Schreier figure of merit from experimental SNDR measurements without making use of any clock bootstrapping, analog calibration, nor digital compensation technique. When coupled to a 2048×2048 IR imager, the current design allows more than 50 frames per minute with a resolution of 16 effective number of bits (ENOB) while consuming less than 300 mW. PMID:28574466
NASA Astrophysics Data System (ADS)
Zhang, H.; van der Lee, S.
2016-12-01
Warton Basin (WB) is characterized by N-S striking fossil transform faults and E-W trending extinct ridges. The 2016 Mw7.8 southwest of Sumatra earthquake, nearby the WB's center, was first imaged by back-projecting P-waves from three regional seismic networks in Europn, Japan, and Australia. Next, the rupture direction of the earthquake was further determined using the rupture directivity analysis to P-waves from the global seismic network (GSN). Finally, we inverting these GSN waveforms on a defined N-S striking vertical fault for a kinematic source model. The results show that the earthquake reactivates a 190 degree N-S striking vertical fossil transform fault and asymmetrically bilaterally ruptures a 65 km by 30 km asperity over 35 s. Specifically, the earthquake first bilaterally ruptures northward and southward at a speed of 1.0 km/s over the first 12 s, and then mainly rupture northward at a speed of 1.6 km/s. Compared with two previous M≥7.8 WB earthquakes, including the 2000 southern WB earthquake and 2012 Mw8.6 Sumatra earthquake, the lower seismic energy radiation efficiency and slower rupture velicity of the 2016 earthquake indicate the rupture of the earthquake is probably controlled by the warmer ambient slab and tectonic stress regime.
Turbine design using complex modes and substructuring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olausson, H.L.; Torby, B.J.
1988-10-01
A complex modal-analysis method for studying the behavior of a turbine near its design speed is presented. The modal calculations account for gyroscopic moments as well as nonsymmetric bearing effects. Results of calculations performed for a 650 MW ASEA STAL turbine installation are presented. 12 references.
NASA Technical Reports Server (NTRS)
2005-01-01
An operational change made recently in the drive motor system for the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT)/9- by 15-Foot Low-Speed Wind Tunnel (9x15 LSWT) complex resulted in dramatic power savings and expanded operating range. The 8x6 SWT/9x15 LSWT complex offers a unique combination of wind tunnel conditions for both high- and low-speed testing. Prior to the work discussed in this article, the 8- by 6-ft test section offered airflows ranging from Mach 0.36 to 2.0. Subsonic testing was done in the 9-ft high, 15-ft wide test area in the return leg of the facility. The air speed in this test section can range from 0 to 175 mph (Mach 0.23). In the past, we varied the air speed by using a combination of the compressor speed and the position of the tunnel flow-control doors. When very slow speeds were required in the 9x15 LSWT, these large tunnel flow control doors might be very nearly full open, bleeding off large quantities of air, even with the drive system operating at its previous minimum speed of about 510 rpm. Power drawn during this mode of operation varied between 15 and 18 MW/hr, but clearly much of this power was not being used to provide air that would be used for testing in the test section. The air exiting these large doors represented wasted power. Early this year, the facility's tunnel drive system was run on one motor instead of three to see if lower drive speeds could be achieved that would, in turn, result in large power savings because unnecessary air would not be blown out of the flow-control doors unnecessarily. In addition, if the drive could be run slower, then slower speeds would also be possible in the 8x6 SWT test section as an added benefit. Results of the first tests performed early last year showed that in fact the drive, when operating on only one motor, actually reached a steady-state speed of only 337 rpm and drew an amazingly small 6 MW/hr of electrical power. During daytime operation of the drive, this meant that it would be possible to save as much as 10 MW/hr, or nearly $600 per hour of operation, for many of the 9x15 LSWT's testing regimes. An added benefit of this power-saving venture was that since the 8x6 SWT and 9x15 LSWT are indeed on a common loop, if the compressor is slowed down to benefit the 9x15 LSWT, then the air moving through the 8x6 SWT is also moving slower than ever before. In fact, testing has proven that the 8x6 SWT can now achieve Mach 0.25, whereas its previous lower limit was Mach 0.36. This added benefit has attracted additional customers
Developments in TurboBrayton Technology for Low Temperature Applications
NASA Technical Reports Server (NTRS)
Swift, W. L.; Zagarola, M. V.; Nellis, G. F.; McCormick, J. A.; Gibbon, Judy
1999-01-01
A single stage reverse Brayton cryocooler using miniature high-speed turbomachines recently completed a successful space shuttle test flight demonstrating its capabilities for use in cooling the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on the Hubble Space Telescope (HST). The NICMOS CryoCooler (NCC) is designed for a cooling load of about 8 W at 65 K, and comprises a closed loop cryocooler coupled to an independent cryogenic circulating loop. Future space applications involve instruments that will require 5 mW to 200 mW of cooling at temperatures between 4 K and 10 K. This paper discusses the extension of Turbo-Brayton technology to meet these requirements.
Evaluation of a microwave based reactor for the treatment of blackwater sludge
Mawioo, Peter M.; Rweyemamu, Audax; Garcia, Hector A.; Hooijmans, Christine M.; Brdjanovic, Damir
2016-01-01
A laboratory-scale microwave (MW) unit was applied to treat fresh blackwater sludge that represented fecal sludge (FS) produced at heavily used toilet facilities. The sludge was exposed to MW irradiation at different power levels and for various durations. Variables such as sludge volume and pathogen reduction were observed. The results demonstrated that the MW is a rapid and efficient technology that can reduce the sludge volume by over 70% in these experimental conditions. The concentration of bacterial pathogenic indicator E. coli also decreased to below the analytical detection levels. Furthermore, the results indicated that the MW operational conditions including radiation power and contact time can be varied to achieve the desired sludge volume and pathogen reduction. MW technology can be further explored for the potential scaling-up as an option for rapid treatment of FS from intensively used sanitation facilities such as in emergency situations. PMID:26799809
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curley, C.C.; Olesen, P.
1976-09-01
The Martins Creek SES units 3 and 4 are 820 MW crude oil- or residual oil-fired power units. The forced draft and induced draft fans used in the plants are variable pitch axial flow units. The design, operation, maintenance, and field testing of these fans are discussed. (LCL)
NASA Technical Reports Server (NTRS)
1988-01-01
Final report to NASA LeRC on the development of gallium arsenide (GaAS) high-speed, low power serial/parallel interface modules. The report discusses the development and test of a family of 16, 32 and 64 bit parallel to serial and serial to parallel integrated circuits using a self aligned gate MESFET technology developed at the Honeywell Sensors and Signal Processing Laboratory. Lab testing demonstrated 1.3 GHz clock rates at a power of 300 mW. This work was accomplished under contract number NAS3-24676.
Resonant tunnelling diode based high speed optoelectronic transmitters
NASA Astrophysics Data System (ADS)
Wang, Jue; Rodrigues, G. C.; Al-Khalidi, Abdullah; Figueiredo, José M. L.; Wasige, Edward
2017-08-01
Resonant tunneling diode (RTD) integration with photo detector (PD) from epi-layer design shows great potential for combining terahertz (THz) RTD electronic source with high speed optical modulation. With an optimized layer structure, the RTD-PD presented in the paper shows high stationary responsivity of 5 A/W at 1310 nm wavelength. High power microwave/mm-wave RTD-PD optoelectronic oscillators are proposed. The circuitry employs two RTD-PD devices in parallel. The oscillation frequencies range from 20-44 GHz with maximum attainable power about 1 mW at 34/37/44GHz.
2007-04-30
control of cushion air flow and, hence, control of cushion pressure fore and aft of the divider that provides significant dynamic control of ship pitch...fore and aft of the divider that provides significant dynamic control of ship pitch and heave in a seaway. All these modes of operation were tested by...Installed Power, SHP 402,306 Integrated Power System (IPS) featuring: * (6) 50 MW Rolls-Royce MT50 based Gensets Power Plant * Associated Conversion and
A conceptual framework for evaluating variable speed generator options for wind energy applications
NASA Technical Reports Server (NTRS)
Reddoch, T. W.; Lipo, T. A.; Hinrichsen, E. N.; Hudson, T. L.; Thomas, R. J.
1995-01-01
Interest in variable speed generating technology has accelerated as greater emphasis on overall efficiency and superior dynamic and control properties in wind-electric generating systems are sought. This paper reviews variable speed technology options providing advantages and disadvantages of each. Furthermore, the dynamic properties of variable speed systems are contrasted with synchronous operation. Finally, control properties of variable speed systems are examined.
Kono, Kenichi; Nishida, Yusuke; Moriyama, Yoshihumi; Taoka, Masahiro; Sato, Takashi
2015-06-01
The assessment of nutritional states using fat free mass (FFM) measured with near-infrared spectroscopy (NIRS) is clinically useful. This measurement should incorporate the patient's post-dialysis weight ("dry weight"), in order to exclude the effects of any change in water mass. We therefore used NIRS to investigate the regression, independent variables, and absolute reliability of FFM in dry weight. The study included 47 outpatients from the hemodialysis unit. Body weight was measured before dialysis, and FFM was measured using NIRS before and after dialysis treatment. Multiple regression analysis was used to estimate the FFM in dry weight as the dependent variable. The measured FFM before dialysis treatment (Mw-FFM), and the difference between measured and dry weight (Mw-Dw) were independent variables. We performed Bland-Altman analysis to detect errors between the statistically estimated FFM and the measured FFM after dialysis treatment. The multiple regression equation to estimate the FFM in dry weight was: Dw-FFM = 0.038 + (0.984 × Mw-FFM) + (-0.571 × [Mw-Dw]); R(2) = 0.99). There was no systematic bias between the estimated and the measured values of FFM in dry weight. Using NIRS, FFM in dry weight can be calculated by an equation including FFM in measured weight and the difference between the measured weight and the dry weight. © 2015 The Authors. Therapeutic Apheresis and Dialysis © 2015 International Society for Apheresis.
Development of a 5 MW reference gearbox for offshore wind turbines: 5 MW reference gearbox
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nejad, Amir Rasekhi; Guo, Yi; Gao, Zhen
2015-07-27
This paper presents detailed descriptions, modeling parameters and technical data of a 5MW high-speed gearbox developed for the National Renewable Energy Laboratory offshore 5MW baseline wind turbine. The main aim of this paper is to support the concept studies and research for large offshore wind turbines by providing a baseline gearbox model with detailed modeling parameters. This baseline gearbox follows the most conventional design types of those used in wind turbines. It is based on the four-point supports: two main bearings and two torque arms. The gearbox consists of three stages: two planetary and one parallel stage gears. The gearmore » ratios among the stages are calculated in a way to obtain the minimum gearbox weight. The gearbox components are designed and selected based on the offshore wind turbine design codes and validated by comparison to the data available from large offshore wind turbine prototypes. All parameters required to establish the dynamic model of the gearbox are then provided. Moreover, a maintenance map indicating components with high to low probability of failure is shown. The 5 MW reference gearbox can be used as a baseline for research on wind turbine gearboxes and comparison studies. It can also be employed in global analysis tools to represent a more realistic model of a gearbox in a coupled analysis.« less
NASA Astrophysics Data System (ADS)
Ali, T.; Polakowski, P.; Riedel, S.; Büttner, T.; Kämpfe, T.; Rudolph, M.; Pätzold, B.; Seidel, K.; Löhr, D.; Hoffmann, R.; Czernohorsky, M.; Kühnel, K.; Thrun, X.; Hanisch, N.; Steinke, P.; Calvo, J.; Müller, J.
2018-05-01
The recent discovery of ferroelectricity in thin film HfO2 materials renewed the interest in ferroelectric FET (FeFET) as an emerging nonvolatile memory providing a potential high speed and low power Flash alternative. Here, we report more insight into FeFET performance by integrating two types of ferroelectric (FE) materials and varying their properties. By varying the material type [HfO2 (HSO) versus hafnium zirconium oxide (HZO)], optimum content (Si doping/mixture ratio), and film thickness, a material relation to FeFET device physics is concluded. As for the material type, an improved FeFET performance is observed for HZO integration with memory window (MW) comparable to theoretical values. For different Si contents, the HSO based FeFET exhibited a MW trend with different stabilized phases. Similarly, the HZO FeFET shows MW dependence on the Hf:Zr mixture ratio. A maximized MW is obtained with cycle ratios of 16:1 (HfO2:Si) and 1:1 (Hf:Zr) as measured on HSO and HZO based FeFETs, respectively. The thickness variation shows a trend of increasing MW with the increased FE layer thickness confirming early theoretical predictions. The FeFET material aspects and stack physics are discussed with insight into the interplay factors, while optimum FE material parameters are outlined in relation to performance.
New Drive Train Concept with Multiple High Speed Generator
NASA Astrophysics Data System (ADS)
Barenhorst, F.; Serowy, S.; Andrei, C.; Schelenz, R.; Jacobs, G.; Hameyer, K.
2016-09-01
In the research project RapidWind (financed by the German Federal Ministry for Economic Affairs and Energy under Grant 0325642) an alternative 6 MW drive train configuration with six high-speed (n = 5000 rpm) permanent magnet synchronous generators for wind turbine generators (WTG) is designed. The gearbox for this drive train concept is assembled with a six fold power split spur gear stage in the first stage, followed by six individual 1 MW geared driven generators. Switchable couplings are developed to connect and disconnect individual geared generators depending on the input power. With this drive train configuration it is possible to improve the efficiency during partial load operation, increasing the energy yield about 1.15% for an exemplary low-wind site. The focus of this paper is the investigation of the dynamic behavior of this new WTG concept. Due to the high gear ratio the inertia relationship between rotor and generator differs from conventional WT concepts, possibly leading to intensified vibration behavior. Moreover there are switching procedures added, that might also lead to vibration issues.
Optimized Generator Designs for the DTU 10-MW Offshore Wind Turbine using GeneratorSE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethuraman, Latha; Maness, Michael; Dykes, Katherine
Compared to land-based applications, offshore wind imposes challenges for the development of next generation wind turbine generator technology. Direct-drive generators are believed to offer high availability, efficiency, and reduced operation and maintenance requirements; however, previous research suggests difficulties in scaling to several megawatts or more in size. The resulting designs are excessively large and/or massive, which are major impediments to transportation logistics, especially for offshore applications. At the same time, geared wind turbines continue to sustain offshore market growth through relatively cheaper and lightweight generators. However, reliability issues associated with mechanical components in a geared system create significant operation andmore » maintenance costs, and these costs make up a large portion of overall system costs offshore. Thus, direct-drive turbines are likely to outnumber their gear-driven counterparts for this market, and there is a need to review the costs or opportunities of building machines with different types of generators and examining their competitiveness at the sizes necessary for the next generation of offshore wind turbines. In this paper, we use GeneratorSE, the National Renewable Energy Laboratory's newly developed systems engineering generator sizing tool to estimate mass, efficiency, and the costs of different generator technologies satisfying the electromagnetic, structural, and basic thermal design requirements for application in a very large-scale offshore wind turbine such as the Technical University of Denmark's (DTU) 10-MW reference wind turbine. For the DTU reference wind turbine, we use the previously mentioned criteria to optimize a direct-drive, radial flux, permanent-magnet synchronous generator; a direct-drive electrically excited synchronous generator; a medium-speed permanent-magnet generator; and a high-speed, doubly-fed induction generator. Preliminary analysis of leveled costs of energy indicate that for large turbines, the cost of permanent magnets and reliability issues associated with brushes in electrically excited machines are the biggest deterrents for building direct-drive systems. The advantage of medium-speed permanent-magnet machines over doubly-fed induction generators is evident, yet, variability in magnet prices and solutions to address reliability issues associated with gearing and brushes can change this outlook. This suggests the need to potentially pursue fundamentally new innovations in generator designs that help avoid high capital costs but still have significant reliability related to performance.« less
Optimized Generator Designs for the DTU 10-MW Offshore Wind Turbine using GeneratorSE: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethuraman, Latha; Maness, Michael; Dykes, Katherine
Compared to land-based applications, offshore wind imposes challenges for the development of next generation wind turbine generator technology. Direct-drive generators are believed to offer high availability, efficiency, and reduced operation and maintenance requirements; however, previous research suggests difficulties in scaling to several megawatts or more in size. The resulting designs are excessively large and/or massive, which are major impediments to transportation logistics, especially for offshore applications. At the same time, geared wind turbines continue to sustain offshore market growth through relatively cheaper and lightweight generators. However, reliability issues associated with mechanical components in a geared system create significant operation andmore » maintenance costs, and these costs make up a large portion of overall system costs offshore. Thus, direct-drive turbines are likely to outnumber their gear-driven counterparts for this market, and there is a need to review the costs or opportunities of building machines with different types of generators and examining their competitiveness at the sizes necessary for the next generation of offshore wind turbines. In this paper, we use GeneratorSE, the National Renewable Energy Laboratory's newly developed systems engineering generator sizing tool to estimate mass, efficiency, and the costs of different generator technologies satisfying the electromagnetic, structural, and basic thermal design requirements for application in a very large-scale offshore wind turbine such as the Technical University of Denmark's (DTU) 10-MW reference wind turbine. For the DTU reference wind turbine, we use the previously mentioned criteria to optimize a direct-drive, radial flux, permanent-magnet synchronous generator; a direct-drive electrically excited synchronous generator; a medium-speed permanent-magnet generator; and a high-speed, doubly-fed induction generator. Preliminary analysis of leveled costs of energy indicate that for large turbines, the cost of permanent magnets and reliability issues associated with brushes in electrically excited machines are the biggest deterrents for building direct-drive systems. The advantage of medium-speed permanent-magnet machines over doubly-fed induction generators is evident, yet, variability in magnet prices and solutions to address reliability issues associated with gearing and brushes can change this outlook. This suggests the need to potentially pursue fundamentally new innovations in generator designs that help avoid high capital costs but still have significant reliability related to performance.« less
Braga, Lays Magalhães; Prado, Gustavo Faibischew; Umeda, Iracema Ioco Kikuchi; Kawauchi, Tatiana Satie; Taboada, Adriana Marques Fróes; Azevedo, Raymundo Soares; Pereira Filho, Horacio Gomes; Grupi, César José; Souza, Hayala Cristina Cavenague; Moreira, Dalmo Antônio Ribeiro; Nakagawa, Naomi Kondo
2016-01-01
Heart rate variability (HRV) analysis is a useful method to assess abnormal functioning in the autonomic nervous system and to predict cardiac events in patients with heart failure (HF). HRV measurements with heart rate monitors have been validated with an electrocardiograph in healthy subjects but not in patients with HF. We explored the reproducibility of HRV in two consecutive six-minute walk tests (6MW), 60-minute apart, using a heart rate monitor (PolarS810i) and a portable electrocardiograph (called Holter) in 50 HF patients (mean age 59 years, NYHA II, left ventricular ejection fraction ~35%). The reproducibility for each device was analysed using a paired t-test or the Wilcoxon signed-rank test. Additionally, we assessed the agreement between the two devices based on the HRV indices at rest, during the 6MW and during recovery using concordance correlation coefficients (CCC), 95% confidence intervals and Bland-Altman plots. The test-retest for the HRV analyses was reproducible using Holter and PolarS810i at rest but not during recovery. In the second 6MW, patients showed significant increases in rMSSD and walking distance. The PolarS810i measurements had remarkably high concordance correlation [0.86
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curley, C.C.; Overas, A.J.
1976-01-01
The design and performance of the variable-pitch axial-flow forced-draft and induced-draft fans used in two 820MW generating units at the Martins Creek Power Plant are described. Information is included on fan design; silencers; mechanical and metallurgical testing; insulation; performance testing; start-up and shutdown procedures; and maintenance. (LCL)
Variations and controls on crustal thermal regimes in Southeastern Australia
NASA Astrophysics Data System (ADS)
Mather, Ben; McLaren, Sandra; Taylor, David; Roy, Sukanta; Moresi, Louis
2018-01-01
The surface heat flow field in Australia has for many years been poorly constrained compared to continental regions elsewhere. 182 recent heat flow determinations and 66 new heat production measurements for Southeastern Australia significantly increase our understanding of local and regional lithospheric thermal regimes and allow for detailed thermal modelling. The new data give a mean surface heat flow for Victoria of 71 ± 15 mW m- 2 which fits within the 61-77 mW m- 2 range reported for Phanerozoic-aged crust globally. These data reveal three new thermally and compositionally distinct heat flow sub-provinces within the previously defined Eastern Heat Flow Province: the Delamerian heat flow sub-province (average surface heat flow 60 ± 9 mW m- 2); the Lachlan heat flow sub-province (average surface heat flow 74 ± 13 mW m- 2); and the Newer Volcanics heat flow sub-province (average surface heat flow 72 ± 16 mW m- 2) which includes extreme values that locally exceed 100 mW m- 2. Inversions of reduced heat flow and crustal differentiation find that the Delamerian sub-province has experienced significant crustal reworking compared to the Lachlan and Newer Volcanics sub-provinces. The latter has experienced volcanism within the last 8 Ma and the degree of variability observed in surface heat flow points (up to 8 mW m- 2 per kilometre laterally) cannot be replicated with steady-state thermal models through this sub-province. In the absence of a strong palaeoclimate signal, aquifer disturbances, or highly enriched granites, we suggest that this high variability arises from localised transient perturbations to the upper crust associated with recent intraplate volcanism. This is supported by a strong spatial correlation of high surface heat flow and known eruption points within the Newer Volcanics heat flow sub-province.
Calculation of design load for the MOD-5A 7.3 mW wind turbine system
NASA Technical Reports Server (NTRS)
Mirandy, L.; Strain, J. C.
1995-01-01
Design loads are presented for the General Electric MOD-SA wind turbine. The MOD-SA system consists of a 400 ft. diameter, upwind, two-bladed, teetered rotor connected to a 7.3 mW variable-speed generator. Fatigue loads are specified in the form of histograms for the 30 year life of the machine, while limit (or maximum) loads have been derived from transient dynamic analysis at critical operating conditions. Loads prediction was accomplished using state of the art aeroelastic analyses developed at General Electric. Features of the primary predictive tool - the Transient Rotor Analysis Code (TRAC) are described in the paper. Key to the load predictions are the following wind models: (1) yearly mean wind distribution; (2) mean wind variations during operation; (3) number of start/shutdown cycles; (4) spatially large gusts; and (5) spatially small gusts (local turbulence). The methods used to develop statistical distributions from load calculations represent an extension of procedures used in past wind programs and are believed to be a significant contribution to Wind Turbine Generator analysis. Test/theory correlations are presented to demonstrate code load predictive capability and to support the wind models used in the analysis. In addition MOD-5A loads are compared with those of existing machines. The MOD-5A design was performed by the General Electric Company, Advanced Energy Program Department, under Contract DEN3-153 with NASA Lewis Research Center and sponsored by the Department of Energy.
Examining Impulse-Variability in Kicking.
Chappell, Andrew; Molina, Sergio L; McKibben, Jonathon; Stodden, David F
2016-07-01
This study examined variability in kicking speed and spatial accuracy to test the impulse-variability theory prediction of an inverted-U function and the speed-accuracy trade-off. Twenty-eight 18- to 25-year-old adults kicked a playground ball at various percentages (50-100%) of their maximum speed at a wall target. Speed variability and spatial error were analyzed using repeated-measures ANOVA with built-in polynomial contrasts. Results indicated a significant inverse linear trajectory for speed variability (p < .001, η2= .345) where 50% and 60% maximum speed had significantly higher variability than the 100% condition. A significant quadratic fit was found for spatial error scores of mean radial error (p < .0001, η2 = .474) and subject-centroid radial error (p < .0001, η2 = .453). Findings suggest variability and accuracy of multijoint, ballistic skill performance may not follow the general principles of impulse-variability theory or the speed-accuracy trade-off.
An examination of loads and responses of a wind turbine undergoing variable-speed operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, A.D.; Buhl, M.L. Jr.; Bir, G.S.
1996-11-01
The National Renewable Energy Laboratory has recently developed the ability to predict turbine loads and responses for machines undergoing variable-speed operation. The wind industry has debated the potential benefits of operating wind turbine sat variable speeds for some time. Turbine system dynamic responses (structural response, resonance, and component interactions) are an important consideration for variable-speed operation of wind turbines. The authors have implemented simple, variable-speed control algorithms for both the FAST and ADAMS dynamics codes. The control algorithm is a simple one, allowing the turbine to track the optimum power coefficient (C{sub p}). The objective of this paper is tomore » show turbine loads and responses for a particular two-bladed, teetering-hub, downwind turbine undergoing variable-speed operation. The authors examined the response of the machine to various turbulent wind inflow conditions. In addition, they compare the structural responses under fixed-speed and variable-speed operation. For this paper, they restrict their comparisons to those wind-speed ranges for which limiting power by some additional control strategy (blade pitch or aileron control, for example) is not necessary. The objective here is to develop a basic understanding of the differences in loads and responses between the fixed-speed and variable-speed operation of this wind turbine configuration.« less
NASA Astrophysics Data System (ADS)
Hou, Ligang; Luo, Rengui; Wu, Wuchen
2006-11-01
This paper forwards a low power grating detection chip (EYAS) on length and angle precision measurement. Traditional grating detection method, such as resister chain divide or phase locked divide circuit are difficult to design and tune. The need of an additional CPU for control and display makes these methods' implementation more complex and costly. Traditional methods also suffer low sampling speed for the complex divide circuit scheme and CPU software compensation. EYAS is an application specific integrated circuit (ASIC). It integrates micro controller unit (MCU), power management unit (PMU), LCD controller, Keyboard interface, grating detection unit and other peripherals. Working at 10MHz, EYAS can afford 5MHz internal sampling rate and can handle 1.25MHz orthogonal signal from grating sensor. With a simple control interface by keyboard, sensor parameter, data processing and system working mode can be configured. Two LCD controllers can adapt to dot array LCD or segment bit LCD, which comprised output interface. PMU alters system between working and standby mode by clock gating technique to save power. EYAS in test mode (system action are more frequently than real world use) consumes 0.9mw, while 0.2mw in real world use. EYAS achieved the whole grating detection system function, high-speed orthogonal signal handling in a single chip with very low power consumption.
Model and parametric uncertainty in source-based kinematic models of earthquake ground motion
Hartzell, Stephen; Frankel, Arthur; Liu, Pengcheng; Zeng, Yuehua; Rahman, Shariftur
2011-01-01
Four independent ground-motion simulation codes are used to model the strong ground motion for three earthquakes: 1994 Mw 6.7 Northridge, 1989 Mw 6.9 Loma Prieta, and 1999 Mw 7.5 Izmit. These 12 sets of synthetics are used to make estimates of the variability in ground-motion predictions. In addition, ground-motion predictions over a grid of sites are used to estimate parametric uncertainty for changes in rupture velocity. We find that the combined model uncertainty and random variability of the simulations is in the same range as the variability of regional empirical ground-motion data sets. The majority of the standard deviations lie between 0.5 and 0.7 natural-log units for response spectra and 0.5 and 0.8 for Fourier spectra. The estimate of model epistemic uncertainty, based on the different model predictions, lies between 0.2 and 0.4, which is about one-half of the estimates for the standard deviation of the combined model uncertainty and random variability. Parametric uncertainty, based on variation of just the average rupture velocity, is shown to be consistent in amplitude with previous estimates, showing percentage changes in ground motion from 50% to 300% when rupture velocity changes from 2.5 to 2.9 km/s. In addition, there is some evidence that mean biases can be reduced by averaging ground-motion estimates from different methods.
Improving Ms Estimates by Calibrating Variable-Period Magnitude Scales at Regional Distances
2008-09-01
TF), or oblique - slip variations of normal and thrust faults using the Zoback (1992) classification scheme. For normal faults , 2008 Monitoring...between the observed and Ms-predicted Mw have a definable faulting mechanism effect, especially when strike- slip events are compared to those with...between true and Ms-predicted Mw have a definable faulting mechanism effect, especially when strike- slip events are compared to those with other
Two-stroke diesels meet Macau electric power needs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordeiro, V.; Jensen, J.B.
1996-07-01
In February 1996, the second and last section of the third low-speed diesel extension to the Coloane Power Station was handed over to Companhia de Electricidade de Macau (CEM) by an international consortium. Lead by Burmeister & Wain Scandinavian Contractor A/S (BWSC), The consortium also includes Mitsui Engineering & Shipbuilding Co. Ltd.(MES), and MAN B&W Diesel A/S. The two new Mitsui MAN B&W model 12K90MC-S units, each having a capacity of more than 50MW, are said to be the largest stationary two-stroke low-speed diesels built to date.
Optimization of the oxidant supply system for combined cycle MHD power plants
NASA Technical Reports Server (NTRS)
Juhasz, A. J.
1982-01-01
An in-depth study was conducted to determine what, if any, improvements could be made on the oxidant supply system for combined cycle MHD power plants which could be reflected in higher thermal efficiency and a reduction in the cost of electricity, COE. A systematic analysis of air separation process varitions which showed that the specific energy consumption could be minimized when the product stream oxygen concentration is about 70 mole percent was conducted. The use of advanced air compressors, having variable speed and guide vane position control, results in additional power savings. The study also led to the conceptual design of a new air separation process, sized for a 500 MW sub e MHD plant, referred to a internal compression is discussed. In addition to its lower overall energy consumption, potential capital cost savings were identified for air separation plants using this process when constructed in a single large air separation train rather than multiple parallel trains, typical of conventional practice.
Guo, Yanjie; Chen, Xuefeng; Wang, Shibin; Sun, Ruobin; Zhao, Zhibin
2017-05-18
The gearbox is one of the key components in wind turbines. Gearbox fault signals are usually nonstationary and highly contaminated with noise. The presence of amplitude-modulated and frequency-modulated (AM-FM) characteristics compound the difficulty of precise fault diagnosis of wind turbines, therefore, it is crucial to develop an effective fault diagnosis method for such equipment. This paper presents an improved diagnosis method for wind turbines via the combination of synchrosqueezing transform and local mean decomposition. Compared to the conventional time-frequency analysis techniques, the improved method which is performed in non-real-time can effectively reduce the noise pollution of the signals and preserve the signal characteristics, and hence is suitable for the analysis of nonstationary signals with high noise. This method is further validated by simulated signals and practical vibration data measured from a 1.5 MW wind turbine. The results confirm that the proposed method can simultaneously control the noise and increase the accuracy of time-frequency representation.
Guo, Yanjie; Chen, Xuefeng; Wang, Shibin; Sun, Ruobin; Zhao, Zhibin
2017-01-01
The gearbox is one of the key components in wind turbines. Gearbox fault signals are usually nonstationary and highly contaminated with noise. The presence of amplitude-modulated and frequency-modulated (AM-FM) characteristics compound the difficulty of precise fault diagnosis of wind turbines, therefore, it is crucial to develop an effective fault diagnosis method for such equipment. This paper presents an improved diagnosis method for wind turbines via the combination of synchrosqueezing transform and local mean decomposition. Compared to the conventional time-frequency analysis techniques, the improved method which is performed in non-real-time can effectively reduce the noise pollution of the signals and preserve the signal characteristics, and hence is suitable for the analysis of nonstationary signals with high noise. This method is further validated by simulated signals and practical vibration data measured from a 1.5 MW wind turbine. The results confirm that the proposed method can simultaneously control the noise and increase the accuracy of time-frequency representation. PMID:28524090
Haidar Ahmad, Imad A; Blasko, Andrei
2017-08-11
The aim of this work is to identify the parameters that affect the recovery of pharmaceutical residues from the surface of stainless steel coupons. A series of factors were assessed, including drug product spike levels, spiking procedure, drug-excipient ratios, analyst-to-analyst variability, intraday variability, and cleaning procedure of the coupons. The lack of a well-defined procedure that consistently cleaned the coupon surface was identified as the major contributor to low and variable recoveries. Assessment of cleaning the surface of the coupons with clean-in-place solutions (CIP) gave high recovery (>90%) and reproducible results (Srel≤4%) regardless of the conditions that were assessed previously. The approach was successfully applied for cleaning verification of small molecules (MW <1,000 Da) as well as large biomolecules (MW up to 50,000 Da).
Multiple and variable speed electrical generator systems for large wind turbines
NASA Technical Reports Server (NTRS)
Andersen, T. S.; Hughes, P. S.; Kirschbaum, H. S.; Mutone, G. A.
1982-01-01
A cost effective method to achieve increased wind turbine generator energy conversion and other operational benefits through variable speed operation is presented. Earlier studies of multiple and variable speed generators in wind turbines were extended for evaluation in the context of a specific large sized conceptual design. System design and simulation have defined the costs and performance benefits which can be expected from both two speed and variable speed configurations.
Fully automated 1.5 MHz FDML laser with more than 100mW output power at 1310 nm
NASA Astrophysics Data System (ADS)
Wieser, Wolfgang; Klein, Thomas; Draxinger, Wolfgang; Huber, Robert
2015-07-01
While FDML lasers with MHz sweep speeds have been presented five years ago, these devices have required manual control for startup and operation. Here, we present a fully self-starting and continuously regulated FDML laser with a sweep rate of 1.5 MHz. The laser operates over a sweep range of 115 nm centered at 1315 nm, and provides very high average output power of more than 100 mW. We characterize the laser performance, roll-off, coherence length and investigate the wavelength and phase stability of the laser output under changing environmental conditions. The high output power allows optical coherence tomography (OCT) imaging with an OCT sensitivity of 108 dB at 1.5 MHz.
NASA Technical Reports Server (NTRS)
Howard, Samuel
2012-01-01
A variable-speed power turbine concept is analyzed for rotordynamic feasibility in a Large Civil Tilt-Rotor (LCTR) class engine. Implementation of a variable-speed power turbine in a rotorcraft engine would enable high efficiency propulsion at the high forward velocities anticipated of large tilt-rotor vehicles. Therefore, rotordynamics is a critical issue for this engine concept. A preliminary feasibility study is presented herein to address this concern and identify if variable-speed is possible in a conceptual engine sized for the LCTR. The analysis considers critical speed placement in the operating speed envelope, stability analysis up to the maximum anticipated operating speed, and potential unbalance response amplitudes to determine that a variable-speed power turbine is likely to be challenging, but not impossible to achieve in a tilt-rotor propulsion engine.
Speed control variable rate irrigation
USDA-ARS?s Scientific Manuscript database
Speed control variable rate irrigation (VRI) is used to address within field variability by controlling a moving sprinkler’s travel speed to vary the application depth. Changes in speed are commonly practiced over areas that slope, pond or where soil texture is predominantly different. Dynamic presc...
Cruz, Antonio M; Vidondo, Beatriz; Ramseyer, Alessandra A; Maninchedda, Ugo E
2018-02-01
OBJECTIVE To assess effects of speed on kinematic variables measured by use of extremity-mounted inertial measurement units (IMUs) in nonlame horses performing controlled exercise on a treadmill. ANIMALS 10 nonlame horses. PROCEDURES 6 IMUs were attached at predetermined locations on 10 nonlame Franches Montagnes horses. Data were collected in triplicate during trotting at 3.33 and 3.88 m/s on a high-speed treadmill. Thirty-three selected kinematic variables were analyzed. Repeated-measures ANOVA was used to assess the effect of speed. RESULTS Significant differences between the 2 speeds were detected for most temporal (11/14) and spatial (12/19) variables. The observed spatial and temporal changes would translate into a gait for the higher speed characterized by increased stride length, protraction and retraction, flexion and extension, mediolateral movement of the tibia, and symmetry, but with similar temporal variables and a reduction in stride duration. However, even though the tibia coronal range of motion was significantly different between speeds, the high degree of variability raised concerns about whether these changes were clinically relevant. For some variables, the lower trotting speed apparently was associated with more variability than was the higher trotting speed. CONCLUSIONS AND CLINICAL RELEVANCE At a higher trotting speed, horses moved in the same manner (eg, the temporal events investigated occurred at the same relative time within the stride). However, from a spatial perspective, horses moved with greater action of the segments evaluated. The detected changes in kinematic variables indicated that trotting speed should be controlled or kept constant during gait evaluation.
Integrated Design of Downwind Land-Based Wind Turbines using Analytic Gradients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ning, Andrew; Petch, Derek
2016-12-01
Wind turbines are complex systems where component-level changes can have significant system-level effects. Effective wind turbine optimization generally requires an integrated analysis approach with a large number of design variables. Optimizing across large variable sets is orders of magnitude more efficient with gradient-based methods as compared with gradient-free method, particularly when using exact gradients. We have developed a wind turbine analysis set of over 100 components where 90% of the models provide numerically exact gradients through symbolic differentiation, automatic differentiation, and adjoint methods. This framework is applied to a specific design study focused on downwind land-based wind turbines. Downwind machinesmore » are of potential interest for large wind turbines where the blades are often constrained by the stiffness required to prevent a tower strike. The mass of these rotor blades may be reduced by utilizing a downwind configuration where the constraints on tower strike are less restrictive. The large turbines of this study range in power rating from 5-7MW and in diameter from 105m to 175m. The changes in blade mass and power production have important effects on the rest of the system, and thus the nacelle and tower systems are also optimized. For high-speed wind sites, downwind configurations do not appear advantageous. The decrease in blade mass (10%) is offset by increases in tower mass caused by the bending moment from the rotor-nacelle-assembly. For low-wind speed sites, the decrease in blade mass is more significant (25-30%) and shows potential for modest decreases in overall cost of energy (around 1-2%).« less
Farm-level feasibility of bioenergy depends on variations across multiple sectors
NASA Astrophysics Data System (ADS)
Myhre, Mitchell; Barford, Carol
2013-03-01
The potential supply of bioenergy from farm-grown biomass is uncertain due to several poorly understood or volatile factors, including land availability, yield variability, and energy prices. Although biomass production for liquid fuel has received more attention, here we present a case study of biomass production for renewable heat and power in the state of Wisconsin (US), where heating constitutes at least 30% of total energy demand. Using three bioenergy systems (50 kW, 8.8 MW and 50 MW) and Wisconsin farm-level data, we determined the net farm income effect of producing switchgrass (Panicum virgatum) as a feedstock, either for on-farm use (50 kW system) or for sale to an off-farm energy system operator (8.8 and 50 MW systems). In southern counties, where switchgrass yields approach 10 Mg ha-1 yr-1, the main determinants of economic feasibility were the available land area per farm, the ability to utilize bioheat, and opportunity cost assumptions. Switchgrass yield temporal variability was less important. For the state median farm size and switchgrass yield, at least 25% (50 kW system) or 50% (8.8 MW system) bioheat utilization was required to economically offset propane or natural gas heat, respectively, and purchased electricity. Offsetting electricity only (50 MW system) did not generate enough revenue to meet switchgrass production expenses. Although the opportunity cost of small-scale (50 kW) on-farm bioenergy generation was higher, it also held greater opportunity for increasing farm net income, especially by replacing propane-based heat.
NASA Astrophysics Data System (ADS)
Qin, W.; Yin, J.; Yao, H.
2013-12-01
On May 24th 2013 a Mw 8.3 normal faulting earthquake occurred at a depth of approximately 600 km beneath the sea of Okhotsk, Russia. It is a rare mega earthquake that ever occurred at such a great depth. We use the time-domain iterative backprojection (IBP) method [1] and also the frequency-domain compressive sensing (CS) technique[2] to investigate the rupture process and energy radiation of this mega earthquake. We currently use the teleseismic P-wave data from about 350 stations of USArray. IBP is an improved method of the traditional backprojection method, which more accurately locates subevents (energy burst) during earthquake rupture and determines the rupture speeds. The total rupture duration of this earthquake is about 35 s with a nearly N-S rupture direction. We find that the rupture is bilateral in the beginning 15 seconds with slow rupture speeds: about 2.5km/s for the northward rupture and about 2 km/s for the southward rupture. After that, the northward rupture stopped while the rupture towards south continued. The average southward rupture speed between 20-35 s is approximately 5 km/s, lower than the shear wave speed (about 5.5 km/s) at the hypocenter depth. The total rupture length is about 140km, in a nearly N-S direction, with a southward rupture length about 100 km and a northward rupture length about 40 km. We also use the CS method, a sparse source inversion technique, to study the frequency-dependent seismic radiation of this mega earthquake. We observe clear along-strike frequency dependence of the spatial and temporal distribution of seismic radiation and rupture process. The results from both methods are generally similar. In the next step, we'll use data from dense arrays in southwest China and also global stations for further analysis in order to more comprehensively study the rupture process of this deep mega earthquake. Reference [1] Yao H, Shearer P M, Gerstoft P. Subevent location and rupture imaging using iterative backprojection for the 2011 Tohoku Mw 9.0 earthquake. Geophysical Journal International, 2012, 190(2): 1152-1168. [2]Yao H, Gerstoft P, Shearer P M, et al. Compressive sensing of the Tohoku-Oki Mw 9.0 earthquake: Frequency-dependent rupture modes. Geophysical Research Letters, 2011, 38(20).
A rapid estimation of near field tsunami run-up
Riqueime, Sebastian; Fuentes, Mauricio; Hayes, Gavin; Campos, Jamie
2015-01-01
Many efforts have been made to quickly estimate the maximum run-up height of tsunamis associated with large earthquakes. This is a difficult task, because of the time it takes to construct a tsunami model using real time data from the source. It is possible to construct a database of potential seismic sources and their corresponding tsunami a priori.However, such models are generally based on uniform slip distributions and thus oversimplify the knowledge of the earthquake source. Here, we show how to predict tsunami run-up from any seismic source model using an analytic solution, that was specifically designed for subduction zones with a well defined geometry, i.e., Chile, Japan, Nicaragua, Alaska. The main idea of this work is to provide a tool for emergency response, trading off accuracy for speed. The solutions we present for large earthquakes appear promising. Here, run-up models are computed for: The 1992 Mw 7.7 Nicaragua Earthquake, the 2001 Mw 8.4 Perú Earthquake, the 2003Mw 8.3 Hokkaido Earthquake, the 2007 Mw 8.1 Perú Earthquake, the 2010 Mw 8.8 Maule Earthquake, the 2011 Mw 9.0 Tohoku Earthquake and the recent 2014 Mw 8.2 Iquique Earthquake. The maximum run-up estimations are consistent with measurements made inland after each event, with a peak of 9 m for Nicaragua, 8 m for Perú (2001), 32 m for Maule, 41 m for Tohoku, and 4.1 m for Iquique. Considering recent advances made in the analysis of real time GPS data and the ability to rapidly resolve the finiteness of a large earthquake close to existing GPS networks, it will be possible in the near future to perform these calculations within the first minutes after the occurrence of similar events. Thus, such calculations will provide faster run-up information than is available from existing uniform-slip seismic source databases or past events of pre-modeled seismic sources.
Comparison between variable and constant rotor speed operation on WINDMEL-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasamoto, Akira; Matsumiya, Hikaru; Kawamura, Shunji
1996-10-01
On a wind turbine control system for rotor revolution speed, it is believed that variable speed operation has the advantages over constant speed from a view point of both aerodynamics and mechanics. However, there is no experimental study which shows the differences. In this report, the authors intend to clarify the differences about shaft torque by using experimental data, from a new wind turbine system which has both variable and constant operation. The result in observation of the experimental data shows that variable speed operational shaft torque is lower than constant speed operational one.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-18
...: Nameplate capacity is the maximum rated electric output, expressed in MW, which the turbines of the wind facility under commercial operations can produce at their rated wind speed as designated by the turbine's...; MMAA104000] Atlantic Wind Lease Sale 3 (ATLW3) Commercial Leasing for Wind Power on the Outer Continental...
Effect of Running Speed and Leg Prostheses on Mediolateral Foot Placement and Its Variability
Arellano, Christopher J.; McDermott, William J.; Kram, Rodger; Grabowski, Alena M.
2015-01-01
This study examined the effects of speed and leg prostheses on mediolateral (ML) foot placement and its variability in sprinters with and without transtibial amputations. We hypothesized that ML foot placement variability would: 1. increase with running speed up to maximum speed and 2. be symmetrical between the legs of non-amputee sprinters but asymmetrically greater for the affected leg of sprinters with a unilateral transtibial amputation. We measured the midline of the body (kinematic data) and center of pressure (kinetic data) in the ML direction while 12 non-amputee sprinters and 7 Paralympic sprinters with transtibial amputations (6 unilateral, 1 bilateral) ran across a range of speeds up to maximum speed on a high-speed force measuring treadmill. We quantified ML foot placement relative to the body’s midline and its variability. We interpret our results with respect to a hypothesized relation between ML foot placement variability and lateral balance. We infer that greater ML foot placement variability indicates greater challenges with maintaining lateral balance. In non-amputee sprinters, ML foot placement variability for each leg increased substantially and symmetrically across speed. In sprinters with a unilateral amputation, ML foot placement variability for the affected and unaffected leg also increased substantially, but was asymmetric across speeds. In general, ML foot placement variability for sprinters with a unilateral amputation was within the range observed in non-amputee sprinters. For the sprinter with bilateral amputations, both affected legs exhibited the greatest increase in ML foot placement variability with speed. Overall, we find that maintaining lateral balance becomes increasingly challenging at faster speeds up to maximum speed but was equally challenging for sprinters with and without a unilateral transtibial amputation. Finally, when compared to all other sprinters in our subject pool, maintaining lateral balance appears to be the most challenging for the Paralympic sprinter with bilateral transtibial amputations. PMID:25590634
Basic principles of variable speed drives
NASA Technical Reports Server (NTRS)
Loewenthal, S. H.
1973-01-01
An understanding of the principles which govern variable speed drive operation is discussed for successful drive application. The fundamental factors of torque, speed ratio, and power as they relate to drive selection are discussed. The basic types of variable speed drives, their operating characteristics and their applications are also presented.
Validity and reliability of the 6 minute walk in persons with fibromyalgia.
King, S; Wessel, J; Bhambhani, Y; Maikala, R; Sholter, D; Maksymowych, W
1999-10-01
To assess the reliability and construct validity of the 6 minute walk (6MW) in persons with fibromyalgia (FM) and to determine an equation for predicting peak oxygen consumption (pVO2) from the distance covered in 6 minutes. Ninety-six women who met the American College of Rheumatology (ACR) criteria for FM were tested on the 6MW and the Fibromyalgia Impact Questionnaire (FIQ). A subset (n = 23) were tested on a separate day for pVO2 during a symptom-limited, incremental treadmill test. Twelve subjects repeated the 6MW five times over 10 days. Heart rate and rating of perceived exertion (RPE) were recorded for each walk. Intraclass correlations were used to determine the reliability of the 6MW. Validity was examined by correlating the 6MW with pVO2 and the FIQ. Body mass index (BMI) and 6MW were independent variables in a stepwise regression to predict pVO2. A significant increase in distance occurred from Walk 1 to Walk 2 (p = 0.000) with the distance maintained on the remaining walks (p = 0.148) The correlations of the 6MW with the FIQ and pVO2 were -0.325 and 0.657, respectively. The regression equation to predict pVO2 from 6MW distance and BMI was: pVO2 (ml/kg/min) = 21.48 + (-0.4316 x BMI) + [0.0304 x distance(m)] (R = 0.76, R2 = 0.66). When using the 6MW it is necessary to conduct a practice walk, with the second walk taken as the baseline measure. It was determined from the correlations that the 6MW cannot replace the FIQ as a measure of function. The 6MW may be used as an indicator of aerobic fitness, although obtaining VO2 by means of a graded exercise test is preferable.
Patadia, Riddhish; Vora, Chintan; Mittal, Karan; Mashru, Rajashree
2016-11-01
The research undertaken exemplifies the effects of hydroxypropyl methylcellulose (HPMC) molecular weight (MW) grades of on lag time of press-coated ethylcellulose (EC) tablets. The formulation comprised an immediate release core (containing prednisone as a model drug) surrounded by compression coating with variegated EC-HPMC blends. Five selected HPMC grades (E5, E15, E50, K100LV and K4M) were explored at three different concentrations (10% w/w, 20% w/w and 30% w/w in outer coat) to understand their effects on lag time and drug release. In vitro drug release testing demonstrated that, with increase in concentration of E5 and E15, up to 30% w/w, the mean lag time decreased progressively; whereas with remaining grades, the mean lag time initially decreased up to 20% w/w level and thereafter increased for 30% w/w level. Importantly, with increase in HPMC concentration in the outer coat, the variability in lag time (%RSD; n = 6) was decreased for each of E5, E15 and E50, whereas increased for K100LV and K4M. In general, the variability in lag time was increased with increase in HPMC MW at studied concentration levels. Markedly, tablets with 30% w/w K4M in outer coat exhibited slight premature release (before the rupture of outer coat) along with high variability in lag time. Overall, the study concluded that low MW HPMCs (E5, E15 and E50) were found rather efficient than higher MW HPMCs for developing robust EC-based press-coated pulsatile release formulations where precise lag time followed by sharp burst release is desired.
Improved Model Fitting for the Empirical Green's Function Approach Using Hierarchical Models
NASA Astrophysics Data System (ADS)
Van Houtte, Chris; Denolle, Marine
2018-04-01
Stress drops calculated from source spectral studies currently show larger variability than what is implied by empirical ground motion models. One of the potential origins of the inflated variability is the simplified model-fitting techniques used in most source spectral studies. This study examines a variety of model-fitting methods and shows that the choice of method can explain some of the discrepancy. The preferred method is Bayesian hierarchical modeling, which can reduce bias, better quantify uncertainties, and allow additional effects to be resolved. Two case study earthquakes are examined, the 2016 MW7.1 Kumamoto, Japan earthquake and a MW5.3 aftershock of the 2016 MW7.8 Kaikōura earthquake. By using hierarchical models, the variation of the corner frequency, fc, and the falloff rate, n, across the focal sphere can be retrieved without overfitting the data. Other methods commonly used to calculate corner frequencies may give substantial biases. In particular, if fc was calculated for the Kumamoto earthquake using an ω-square model, the obtained fc could be twice as large as a realistic value.
NASA Astrophysics Data System (ADS)
Tao, Tong; Baoyong, Chi; Ziqiang, Wang; Ying, Zhang; Hanjun, Jiang; Zhihua, Wang
2010-05-01
A reconfigurable analog baseband circuit for WLAN, WCDMA, and Bluetooth in 0.35 μm CMOS is presented. The circuit consists of two variable gain amplifiers (VGA) in cascade and a Gm-C elliptic low-pass filter (LPF). The filter-order and the cut-off frequency of the LPF can be reconfigured to satisfy the requirements of various applications. In order to achieve the optimum power consumption, the bandwidth of the VGAs can also be dynamically reconfigured and some Gm cells can be cut off in the given application. Simulation results show that the analog baseband circuit consumes 16.8 mW for WLAN, 8.9 mW for WCDMA and only 6.5 mW for Bluetooth, all with a 3 V power supply. The analog baseband circuit could provide -10 to +40 dB variable gain, third-order low pass filtering with 1 MHz cut-off frequency for Bluetooth, fourth-order low pass filtering with 2.2 MHz cut-off frequency for WCDMA, and fifth-order low pass filtering with 11 MHz cut-off frequency for WLAN, respectively.
Speed but not amplitude of visual feedback exacerbates force variability in older adults.
Kim, Changki; Yacoubi, Basma; Christou, Evangelos A
2018-06-23
Magnification of visual feedback (VF) impairs force control in older adults. In this study, we aimed to determine whether the age-associated increase in force variability with magnification of visual feedback is a consequence of increased amplitude or speed of visual feedback. Seventeen young and 18 older adults performed a constant isometric force task with the index finger at 5% of MVC. We manipulated the vertical (force gain) and horizontal (time gain) aspect of the visual feedback so participants performed the task with the following VF conditions: (1) high amplitude-fast speed; (2) low amplitude-slow speed; (3) high amplitude-slow speed. Changing the visual feedback from low amplitude-slow speed to high amplitude-fast speed increased force variability in older adults but decreased it in young adults (P < 0.01). Changing the visual feedback from low amplitude-slow speed to high amplitude-slow speed did not alter force variability in older adults (P > 0.2), but decreased it in young adults (P < 0.01). Changing the visual feedback from high amplitude-slow speed to high amplitude-fast speed increased force variability in older adults (P < 0.01) but did not alter force variability in young adults (P > 0.2). In summary, increased force variability in older adults with magnification of visual feedback was evident only when the speed of visual feedback increased. Thus, we conclude that in older adults deficits in the rate of processing visual information and not deficits in the processing of more visual information impair force control.
Evaluation of heat and particle controllability on the JT-60SA divertor
NASA Astrophysics Data System (ADS)
Kawashima, H.; Hoshino, K.; Shimizu, K.; Takizuka, T.; Ide, S.; Sakurai, S.; Asakura, N.
2011-08-01
The JT-60SA divertor design has been established on the basis of engineering requirements and physics analysis. Heat and particle fluxes under the full input power of 41 MW can give severe heat loads on the divertor targets, while the allowable heat load is limited below 15 MW/m2. Dependence of the heat flux mitigation on a D2 gas-puff is evaluated by SONIC simulations for high density (ne_ave ˜ 1 × 1020 m-3) high current plasmas. It is found that the peak heat load 10 MW/m2 with dense (ned > 4 × 1020 m-3) and cold (Ted, Tid ⩽ 1 eV) divertor plasmas are obtained at a moderate gas-puff of Γpuff = 15 × 1021 s-1. Divertor plasmas are controlled from attached to detached condition using the divertor pump with pumping-speed below 100 m3/s. In full non-inductive current drive plasmas with low density (ne_ave ˜ 5 × 1019 m-3), the reduction of divertor heat load is achieved with the Ar injection.
High Speed Solid State Circuit Breaker
NASA Technical Reports Server (NTRS)
Podlesak, Thomas F.
1993-01-01
The U.S. Army Research Laboratory, Fort Monmouth, NJ, has developed and is installing two 3.3 MW high speed solid state circuit breakers at the Army's Pulse Power Center. These circuit breakers will interrupt 4160V three phase power mains in no more than 300 microseconds, two orders of magnitude faster than conventional mechanical contact type circuit breakers. These circuit breakers utilize Gate Turnoff Thyristors (GTO's) and are currently utility type devices using air cooling in an air conditioned enclosure. Future refinements include liquid cooling, either water or two phase organic coolant, and more advanced semiconductors. Each of these refinements promises a more compact, more reliable unit.
The Need for Speed in Rodent Locomotion Analyses
Batka, Richard J.; Brown, Todd J.; Mcmillan, Kathryn P.; Meadows, Rena M.; Jones, Kathryn J.; Haulcomb, Melissa M.
2016-01-01
Locomotion analysis is now widely used across many animal species to understand the motor defects in disease, functional recovery following neural injury, and the effectiveness of various treatments. More recently, rodent locomotion analysis has become an increasingly popular method in a diverse range of research. Speed is an inseparable aspect of locomotion that is still not fully understood, and its effects are often not properly incorporated while analyzing data. In this hybrid manuscript, we accomplish three things: (1) review the interaction between speed and locomotion variables in rodent studies, (2) comprehensively analyze the relationship between speed and 162 locomotion variables in a group of 16 wild-type mice using the CatWalk gait analysis system, and (3) develop and test a statistical method in which locomotion variables are analyzed and reported in the context of speed. Notable results include the following: (1) over 90% of variables, reported by CatWalk, were dependent on speed with an average R2 value of 0.624, (2) most variables were related to speed in a nonlinear manner, (3) current methods of controlling for speed are insufficient, and (4) the linear mixed model is an appropriate and effective statistical method for locomotion analyses that is inclusive of speed-dependent relationships. Given the pervasive dependency of locomotion variables on speed, we maintain that valid conclusions from locomotion analyses cannot be made unless they are analyzed and reported within the context of speed. PMID:24890845
Operation ranges and dynamic capabilities of variable-speed pumped-storage hydropower
NASA Astrophysics Data System (ADS)
Mercier, Thomas; Olivier, Mathieu; Dejaeger, Emmanuel
2017-04-01
The development of renewable and intermittent power generation creates incentives for the development of both energy storage solutions and more flexible power generation assets. Pumped-storage hydropower (PSH) is the most established and mature energy storage technology, but recent developments in power electronics have created a renewed interest by providing PSH units with a variable-speed feature, thereby increasing their flexibility. This paper reviews technical considerations related to variable-speed PSH in link with the provision of primary frequency control, also referred to as frequency containment reserves (FCRs). Based on the detailed characteristics of a scale model pump-turbine, the variable-speed operation ranges in pump and turbine modes are precisely assessed and the implications for the provision of FCRs are highlighted. Modelling and control for power system studies are discussed, both for fixed- and variable-speed machines and simulation results are provided to illustrate the high dynamic capabilities of variable-speed PSH.
Ultralow-power all-optical processing of high-speed data signals in deposited silicon waveguides.
Wang, Ke-Yao; Petrillo, Keith G; Foster, Mark A; Foster, Amy C
2012-10-22
Utilizing a 6-mm-long hydrogenated amorphous silicon nanowaveguide, we demonstrate error-free (BER < 10(-9)) 160-to-10 Gb/s OTDM demultiplexing using ultralow switching peak powers of 50 mW. This material is deposited at low temperatures enabling a path toward multilayer integration and therefore massive scaling of the number of devices in a single photonic chip.
Multibrid technology - a significant step to multi-megawatt wind turbines
NASA Astrophysics Data System (ADS)
Siegfriedsen, S.; Böhmeke, G.
1998-12-01
To fulfil the significant economic potential for offshore wind energy, it is essential that the largest possible installations must be allowed to come into use. Infrastructure investments for foundations and energy transport are only slightly dependent on the size of the installation, so these costs become proportionally smaller as the installed power output increases. This article puts forward a technologically novel type of development for a drive train design, specifically introduced for a 5 MW installation. The concept is especially suited for offshore application and the components are designed for this purpose. The usual way of modifying onshore plants partially and using them in the sea has been left with the present proposals. The design comprises a single-stage planetary gear, into which the rotor bearing is integrated, and a generator rotating at slow speed. Both components are assembled into a compact unit and are characterized by low wear and complete enclosure. New solutions are also proposed for the cooling of the machinery and the yaw system, offering particular advantages in offshore application. The advantages of the new technology are brought out from system comparisons with both a conventional plant configuration with a multi-stage gear and a high-speed generator, and also a combination with a direct drive generator in the 1·5 MW class. A particular design solution, worked through for a 5 MW installation, is presented and described in detail. At 31 kg kW-1, the specific tower head mass achieves a value that has not previously been realized in this power output class. As a result of the advantages that are brought together by this technology, both investment and operating costs are lowered, particularly for offshore applications. Implementation of this technology can thus provide a further stimulus for progress in wind energy utilization. Copyright
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aagaard, B T; Graves, R W; Rodgers, A
We simulate long-period (T > 1.0-2.0 s) and broadband (T > 0.1 s) ground motions for 39 scenarios earthquakes (Mw 6.7-7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area with about 50% of the urban area experiencing MMI VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18more » Oakland and 2007 Mw 4.5 Alum Rock earthquakes show that the USGS Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute at least some of this difference to the relatively narrow width of the Hayward fault ruptures. The simulations suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by including a dependence on the rupture speed and increasing the areal extent of rupture directivity with period. The simulations also indicate that the NGA relations may under-predict amplification in shallow sedimentary basins.« less
Hurt, Christopher P.; Brown, David A.
2018-01-01
Background Step kinematic variability has been characterized during gait using spatial and temporal kinematic characteristics. However, people can adopt different trajectory paths both between individuals and even within individuals at different speeds. Single point measures such as minimum toe clearance (MTC) and step length (SL) do not necessarily account for the multiple paths that the foot may take during the swing phase to reach the same foot fall endpoint. The purpose of this study was to test a step-by-step foot trajectory area (SBS-FTA) variability measure that is able to characterize sagittal plane foot trajectories of varying areas, and compare this measure against MTC and SL variability at different speeds. We hypothesize that the SBS-FTA variability would demonstrate increased variability with speed. Second, we hypothesize that SBS-FTA would have a stronger curvilinear fit compared with the CV and SD of SL and MTC. Third, we hypothesize SBS-FTA would be more responsive to change in the foot trajectory at a given speed compared to SL and MTC. Fourth, SBS-FTA variability would not strongly co-vary with SL and MTC variability measures since it represents a different construct related to foot trajectory area variability. Methods We studied 15 nonimpaired individuals during walking at progressively faster speeds. We calculated SL, MTC, and SBS-FTA area. Results SBS-FTA variability increased with speed, had a stronger curvilinear fit compared with the CV and SD of SL and MTC, was more responsive at a given speed, and did not strongly co-vary with SL and MTC variability measures. Conclusion SBS foot trajectory area variability was sensitive to change with faster speeds, captured a relationship that the majority of the other measures did not demonstrate, and did not co-vary strongly with other measures that are also components of the trajectory. PMID:29370202
Variable-Speed Simulation of a Dual-Clutch Gearbox Tiltrotor Driveline
NASA Technical Reports Server (NTRS)
DeSmidt, Hans; Wang, Kon-Well; Smith, Edward C.; Lewicki, David G.
2012-01-01
This investigation explores the variable-speed operation and shift response of a prototypical two-speed dual-clutch transmission tiltrotor driveline in forward flight. Here, a Comprehensive Variable-Speed Rotorcraft Propulsion System Modeling (CVSRPM) tool developed under a NASA funded NRA program is utilized to simulate the drive system dynamics. In this study, a sequential shifting control strategy is analyzed under a steady forward cruise condition. This investigation attempts to build upon previous variable-speed rotorcraft propulsion studies by 1) including a fully nonlinear transient gas-turbine engine model, 2) including clutch stick-slip friction effects, 3) including shaft flexibility, 4) incorporating a basic flight dynamics model to account for interactions with the flight control system. Through exploring the interactions between the various subsystems, this analysis provides important insights into the continuing development of variable-speed rotorcraft propulsion systems.
Gait variability in community dwelling adults with Alzheimer disease.
Webster, Kate E; Merory, John R; Wittwer, Joanne E
2006-01-01
Studies have shown that measures of gait variability are associated with falling in older adults. However, few studies have measured gait variability in people with Alzheimer disease, despite the high incidence of falls in Alzheimer disease. The purpose of this study was to compare gait variability of community-dwelling older adults with Alzheimer disease and control subjects at various walking speeds. Ten subjects with mild-moderate Alzheimer disease and ten matched control subjects underwent gait analysis using an electronic walkway. Participants were required to walk at self-selected slow, preferred, and fast speeds. Stride length and step width variability were determined using the coefficient of variation. Results showed that stride length variability was significantly greater in the Alzheimer disease group compared with the control group at all speeds. In both groups, increases in walking speed were significantly correlated with decreases in stride length variability. Step width variability was significantly reduced in the Alzheimer disease group compared with the control group at slow speed only. In conclusion, there is an increase in stride length variability in Alzheimer disease at all walking speeds that may contribute to the increased incidence of falls in Alzheimer disease.
Wind Turbine Wake Variability in a Large Wind Farm, Observed by Scanning Lidar
NASA Astrophysics Data System (ADS)
Lundquist, J. K.; Xiaoxia, G.; Aitken, M.; Quelet, P. T.; Rana, J.; Rhodes, M. E.; St Martin, C. M.; Tay, K.; Worsnop, R.; Irvin, S.; Rajewski, D. A.; Takle, E. S.
2014-12-01
Although wind turbine wake modeling is critical for accurate wind resource assessment, operational forecasting, and wind plant optimization, verification of such simulations is currently constrained by sparse datasets taken in limited atmospheric conditions, often of single turbines in isolation. To address this knowledge gap, our team deployed a WINDCUBE 200S scanning lidar in a 300-MW operating wind farm as part of the CWEX-13 field experiment. The lidar was deployed ~2000 m from a row of four turbines, such that wakes from multiple turbines could be sampled with horizontal scans. Twenty minutes of every hour were devoted to horizontal scans at ½ degree resolution at six different elevation angles. Twenty-five days of data were collected, with wind speeds at hub height ranging from quiescent to 14 m/s, and atmospheric stability varying from unstable to strongly stable. The example scan in Fig. 1a shows wakes from a row of four turbines propagating to the northwest. This extensive wake dataset is analyzed based on the quantitative approach of Aitken et al. (J. Atmos. Ocean. Technol. 2014), who developed an automated wake detection algorithm to characterize wind turbine wakes from scanning lidar data. We have extended the Aitken et al. (2014) method to consider multiple turbines in a single scan in order to classify the large numbers of wakes observed in the CWEX-13 dataset (Fig. 1b) during southerly flow conditions. The presentation will explore the variability of wake characteristics such as the velocity deficit and the wake width. These characteristics vary with atmospheric stability, atmospheric turbulence, and inflow wind speed. We find that the strongest and most persistent wakes occur at low to moderate wind speeds (region 2 of the turbine power curve) in stable conditions. We also present evidence that, in stable conditions with strong changes of wind direction with height, wakes propagate in different directions at different elevations above the surface. Finally, we compare characteristics of wakes at the outside of the row of turbines to wakes from turbines in the interior of the row, quantifying how wakes from outer turbines erode faster than those from interior.
Chen, Ching-Fu; Chen, Cheng-Wen
2011-05-01
This paper focuses on a special segment of motorcyclists in Taiwan--riders of heavy motorcycles--and investigates their speeding behavior and its affecting factors. It extends the theory of planned behavior (TPB) to explore motorcyclist speeding behavior by including the variables of psychological flow theory. The levels of sensation-seeking and riding experience are also used as grouping variables to investigate group differences from the influences of their affecting factors on speeding behavior. The results reveal that the psychological flow variables have greater predictive power in explaining speeding behavior than the TPB variables, providing useful insights into the unique nature of this group of motorcyclists, who are more prone to engage in speeding. Group differences with regard to both sensation-seeking and rider experience in speeding behavior are highlighted, and the implications of the findings are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Flexibility as the key for somatic health: From mind wandering to perseverative cognition.
Ottaviani, Cristina; Shapiro, David; Couyoumdjian, Alessandro
2013-09-01
Mind wandering (MW) has been defined as the brain's default mode of operation. It is a common experience, however, that this process can become maladaptive, and take the form of repetitive thoughts. We aimed to compare the cardiac and cognitive correlates of perseverative cognition (PC) and MW. Seventy-three healthy participants were engaged in two recall interviews designed to draw their attention to a neutral and a personally relevant negative episode. After each interview, participants performed a 20-min tracking task with thought probe while the electrocardiogram was continuously recorded. Perseverative cognition was associated with higher levels of cognitive inflexibility (slower reaction times, highest intrusiveness, efforts to inhibit), autonomic rigidity (low heart rate variability), and mood worsening compared to being focused on task or MW. Results suggest that MW fails to serve its adaptive function, and turns into a risk factor for health whenever it becomes a rigid and inflexible pattern (PC). Copyright © 2013 Elsevier B.V. All rights reserved.
ZrO2/bamboo leaves ash (BLA) Catalyst in Biodiesel Conversion of Rice Bran Oil
NASA Astrophysics Data System (ADS)
Fatimah, Is; Taushiyah, Ana; Badriatun Najah, Fitri; Azmi, Ulil
2018-04-01
Preparation, characterization and catalytic activity of ZrO2/bamboo leaves ash (BLA) catalyst for conversion of rice bran oil to biodiesel have been investigated. The catalyst was prepared by impregnation method of ZrOCl2 as ZrO2 precursor with BLA at a theoretical content of 20% wt. followed by calcination. The physicochemical properties of the catalyst material were characterized by x-ray diffraction (XRD), FTIR and surface acidity measurement. Activity test of materials in biodiesel conversion of rice bran oil was used by reflux method and microwave (MW) assisted method. Reaction variables studied in the investigation were the effect of catalyst weight and time of MW irradiation compared with the use reflux method. The results showed that ZrO2/BLA catalyst exhibited competitively effective and efficient processes for the production of biodiesel. The reflux method demonstrated an higher conversion (%) compared to MW method, however MW method showed the better reusable properties.
Assessment of the potential of solar thermal small power systems in small utilities
NASA Technical Reports Server (NTRS)
Steitz, P.; Mayo, L. G.; Perkins, S. P., Jr.
1978-01-01
The potential economic benefit of small solar thermal electric power systems to small municipal and rural electric utilities is assessed. Five different solar thermal small power system configurations were considered in three different solar thermal technologies. The configurations included: (1) 1 MW, 2 MW, and 10 MW parabolic dish concentrators with a 15 kW heat engine mounted at the focal point of each dish, these systems utilized advanced battery energy storage; (2) a 10 MW system with variable slat concentrators and central steam Rankine energy conversion, this system utilized sensible thermal energy storage; and (3) a 50 MW central receiver system consisting of a field of heliostats concentrating energy on a tower-mounted receiver and a central steam Rankine conversion system, this system also utilized sensible thermal storage. The results are summarized in terms of break-even capital costs. The break-even capital cost was defined as the solar thermal plant capital cost which would have to be achieved in order for the solar thermal plants to penetrate 10 percent of the reference small utility generation mix by the year 2000. The calculated break-even capital costs are presented.
2013-01-01
Background The Six-minute walk (6MW) and Timed-Up-and-Go (TUG) are short walk tests commonly used to evaluate functional recovery after total knee arthroplasty (TKA). However, little is known about walking capacity of TKA recipients over extended periods typical of everyday living and whether these short walk tests actually predict longer, more functional distances. Further, short walk tests only correlate moderately with patient-reported outcomes. The overarching aims of this study were to compare the performance of TKA recipients in an extended walk test to healthy age-matched controls and to determine the utility of this extended walk test as a research tool to evaluate longer term functional mobility in TKA recipients. Methods The mobility of 32 TKA recipients one year post-surgery and 43 healthy age-matched controls were assessed using the TUG, 6MW and 30-minute walk (30MW) tests. The latter test was repeated one week later. Self-reported function was measured using the WOMAC Index and a physical activity questionnaire. Results 30MW distance was significantly shorter amongst TKA recipients (mean 2108 m [95% CI 1837 to 2381 m]; Controls 3086 m [2981 to 3191 m], P < 0.001). Test-retest repeatability was high (ICC = 0.97, TKA; 0.96, Controls). Amongst TKA recipients, the 30MW distance correlated strongly with the shorter tests (6MW, r = 0.97, P < 0.001; TUG, r = −0.82, P < 0.001). Multiple regression modeling found 6MW distance to be the only significant predictor (P < 0.001) of 30MW distance, explaining 96% of the variability. The TUG test models were moderate predictors of WOMAC function (55%) and physical activity (36%) and were stronger predictors than 6MW and 30 MW tests. Conclusions Though TKA recipients are able to walk for 30 minutes one year post-surgery, their performance falls significantly short of age-matched norms. The 30MW test is strongly predicted by 6MW test performance, thus providing strong construct validity for the use of the 6MW test in the TKA population. Neither a short nor long walk test is a strong predictor of patient-reported function after TKA. PMID:23617377
Molina, Sergio L; Stodden, David F
2018-04-01
This study examined variability in throwing speed and spatial error to test the prediction of an inverted-U function (i.e., impulse-variability [IV] theory) and the speed-accuracy trade-off. Forty-five 9- to 11-year-old children were instructed to throw at a specified percentage of maximum speed (45%, 65%, 85%, and 100%) and hit the wall target. Results indicated no statistically significant differences in variable error across the target conditions (p = .72), failing to support the inverted-U hypothesis. Spatial accuracy results indicated no statistically significant differences with mean radial error (p = .18), centroid radial error (p = .13), and bivariate variable error (p = .08) also failing to support the speed-accuracy trade-off in overarm throwing. As neither throwing performance variability nor accuracy changed across percentages of maximum speed in this sample of children as well as in a previous adult sample, current policy and practices of practitioners may need to be reevaluated.
NASA Technical Reports Server (NTRS)
DeSmidt, Hans A.; Smith, Edward C.; Bill, Robert C.; Wang, Kon-Well
2013-01-01
This project develops comprehensive modeling and simulation tools for analysis of variable rotor speed helicopter propulsion system dynamics. The Comprehensive Variable-Speed Rotorcraft Propulsion Modeling (CVSRPM) tool developed in this research is used to investigate coupled rotor/engine/fuel control/gearbox/shaft/clutch/flight control system dynamic interactions for several variable rotor speed mission scenarios. In this investigation, a prototypical two-speed Dual-Clutch Transmission (DCT) is proposed and designed to achieve 50 percent rotor speed variation. The comprehensive modeling tool developed in this study is utilized to analyze the two-speed shift response of both a conventional single rotor helicopter and a tiltrotor drive system. In the tiltrotor system, both a Parallel Shift Control (PSC) strategy and a Sequential Shift Control (SSC) strategy for constant and variable forward speed mission profiles are analyzed. Under the PSC strategy, selecting clutch shift-rate results in a design tradeoff between transient engine surge margins and clutch frictional power dissipation. In the case of SSC, clutch power dissipation is drastically reduced in exchange for the necessity to disengage one engine at a time which requires a multi-DCT drive system topology. In addition to comprehensive simulations, several sections are dedicated to detailed analysis of driveline subsystem components under variable speed operation. In particular an aeroelastic simulation of a stiff in-plane rotor using nonlinear quasi-steady blade element theory was conducted to investigate variable speed rotor dynamics. It was found that 2/rev and 4/rev flap and lag vibrations were significant during resonance crossings with 4/rev lagwise loads being directly transferred into drive-system torque disturbances. To capture the clutch engagement dynamics, a nonlinear stick-slip clutch torque model is developed. Also, a transient gas-turbine engine model based on first principles mean-line compressor and turbine approximations is developed. Finally an analysis of high frequency gear dynamics including the effect of tooth mesh stiffness variation under variable speed operation is conducted including experimental validation. Through exploring the interactions between the various subsystems, this investigation provides important insights into the continuing development of variable-speed rotorcraft propulsion systems.
On the efficiency of small air coil motors
NASA Astrophysics Data System (ADS)
Horowitz, P.
1981-05-01
The efficiency of two types of small ironless motors in the output range of 5 to 500 mW was investigated for use in driving a miniature roller pump for a portable infusion system. One motor has a continuous rotating coil (commutator motor) and one has an oscillating coil. In this case a ratchet and ratchet wheel is needed to generate a rotating motion (ratchet wheel motor). The electromechanical transducer and a mechanical transformation and support system are discussed as well as frictional losses. The influence of the size of the motor is discussed. An expression for the total efficiency is obtained which enables the calculation of the speed of rotation of a certain motor at maximum efficiency for a certain required output. This optimal speed of rotation is hardly influenced by the required speed of rotation at the output shaft of the driving. The transmission, if required, has only a small effect on the optimum speed of rotation of the motor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romberger, Jeff
An adjustable-speed drive (ASD) includes all devices that vary the speed of a rotating load, including those that vary the motor speed and linkage devices that allow constant motor speed while varying the load speed. The Variable Frequency Drive Evaluation Protocol presented here addresses evaluation issues for variable-frequency drives (VFDs) installed on commercial and industrial motor-driven centrifugal fans and pumps for which torque varies with speed. Constant torque load applications, such as those for positive displacement pumps, are not covered by this protocol.
Mixed H2/H∞ pitch control of wind turbine with a Markovian jump model
NASA Astrophysics Data System (ADS)
Lin, Zhongwei; Liu, Jizhen; Wu, Qiuwei; Niu, Yuguang
2018-01-01
This paper proposes a Markovian jump model and the corresponding H2/H∞ control strategy for the wind turbine driven by the stochastic switching wind speed, which can be used to regulate the generator speed in order to harvest the rated power while reducing the fatigue loads on the mechanical side of wind turbine. Through sampling the low-frequency wind speed data into separate intervals, the stochastic characteristic of the steady wind speed can be represented as a Markov process, while the high-frequency wind speed in the each interval is regarded as the disturbance input. Then, the traditional operating points of wind turbine can be divided into separate subregions correspondingly, where the model parameters and the control mode can be fixed in each mode. Then, the mixed H2/H∞ control problem is discussed for such a class of Markovian jump wind turbine working above the rated wind speed to guarantee both the disturbance rejection and the mechanical loads objectives, which can reduce the power volatility and the generator torque fluctuation of the whole transmission mechanism efficiently. Simulation results for a 2 MW wind turbine show the effectiveness of the proposed method.
40 CFR 1037.640 - Variable vehicle speed limiters.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Variable vehicle speed limiters. 1037... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Special Compliance Provisions § 1037.640 Variable vehicle speed limiters. This section specifies provisions that apply for vehicle...
40 CFR 1037.640 - Variable vehicle speed limiters.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Variable vehicle speed limiters. 1037... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Special Compliance Provisions § 1037.640 Variable vehicle speed limiters. This section specifies provisions that apply for vehicle...
Compact, low-loss and low-power 8×8 broadband silicon optical switch.
Chen, Long; Chen, Young-kai
2012-08-13
We demonstrated a 8×8 broadband optical switch on silicon for transverse-electrical polarization using a switch-and-selector architecture. The switch has a footprint of only 8 mm × 8 mm, minimum on-chip loss of about 4 dB, and a port-to-port insertion loss variation of only 0.8 dB near some spectral regions. The port-to-port isolation is above 30 dB over the entire 80-nm-wide spectral range or above 45 dB near the central 30 nm. We also demonstrated a switching power of less than 1.5 mW per element and a speed of 2 kHz, and estimated the upper bound of total power consumption to be less than 70 mW even without optimization of the default state of the individual switch elements.
A comparison between the dynamics of horizontal and vertical axis offshore floating wind turbines.
Borg, M; Collu, M
2015-02-28
The need to further exploit offshore wind resources in deeper waters has led to a re-emerging interest in vertical axis wind turbines (VAWTs) for floating foundation applications. However, there has been little effort to systematically compare VAWTs to the more conventional horizontal axis wind turbine (HAWT). This article initiates this comparison based on prime principles, focusing on the turbine aerodynamic forces and their impact on the floating wind turbine static and dynamic responses. VAWTs generate substantially different aerodynamic forces on the support structure, in particular, a potentially lower inclining moment and a substantially higher torque than HAWTs. Considering the static stability requirements, the advantages of a lower inclining moment, a lower wind turbine mass and a lower centre of gravity are illustrated, all of which are exploitable to have a less costly support structure. Floating VAWTs experience increased motion in the frequency range surrounding the turbine [number of blades]×[rotational speed] frequency. For very large VAWTs with slower rotational speeds, this frequency range may significantly overlap with the range of wave excitation forces. Quantitative considerations are undertaken comparing the reference NREL 5 MW HAWT with the NOVA 5 MW VAWT. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Developing a passive load reduction blade for the DTU 10 MW reference turbine
NASA Astrophysics Data System (ADS)
de Vaal, J. B.; Nygaard, T. A.; Stenbro, R.
2016-09-01
This paper presents the development of a passive load reduction blade for the DTU 10 MW reference wind turbine, using the aero-hydro-servo-elastic analysis tool 3DFloat. Passive load reduction is achieved by introducing sweep to the path of the blade elastic axis, so that out-of-plane bending deflections result in load alleviating torsional deformations of the blade. Swept blades are designed to yield similar annual energy production as a rotor with a reference straight blade. This is achieved by modifying the aerodynamic twist distribution for swept blades based on non-linear blade deflection under steady state loads. The passive load reduction capability of a blade design is evaluated by running a selection of fatigue- and extreme load cases with the analysis tool 3DFloat and determining equivalent fatigue loads, fatigue damage and extreme loads at the blade root and tower base. The influence of sweep on the flutter speed of a blade design is also investigated. A large number of blade designs are evaluated by varying the parameters defining the sweep path of a blade's elastic axis. Results show that a moderate amount of sweep can effectively reduce equivalent fatigue damage and extreme loads, without significantly reducing the flutter speed, or compromising annual energy production.
Disturbance observer based pitch control of wind turbines for disturbance rejection
NASA Astrophysics Data System (ADS)
Yuan, Yuan; Chen, Xu; Tang, Jiong
2016-04-01
In this research, a disturbance observer based (DOB) control scheme is illustrated to reject the unknown low frequency disturbances to wind turbines. Specifically, we aim at maintaining the constant output power but achieving better generator speed regulation when the wind turbine is operated at time-varying and turbulent wind field. The disturbance observer combined with a filter is designed to asymptotically reject the persistent unknown time-varying disturbances. The proposed algorithm is tested in both linearized and nonlinear NREL offshore 5-MW baseline wind turbine. The application of this DOB pitch controller achieves improved power and speed regulation in Region 3 compared with a baseline gain scheduling PID collective controller both in linearized and nonlinear plant.
Toda, Haruki; Nagano, Akinori; Luo, Zhiwei
2016-01-01
[Purpose] The purpose of this study was to clarify whether walking speed affects acceleration variability of the head, lumbar, and lower extremity by simultaneously evaluating of acceleration. [Subjects and Methods] Twenty young individuals recruited from among the staff at Kurashiki Heisei Hospital participated in this study. Eight accelerometers were used to measure the head, lumbar and lower extremity accelerations. The participants were instructed to walk at five walking speeds prescribed by a metronome. Acceleration variability was assessed by a cross-correlation analysis normalized using z-transform in order to evaluate stride-to-stride variability. [Results] Vertical acceleration variability was the smallest in all body parts, and walking speed effect had laterality. Antero-posterior acceleration variability was significantly associated with walking speed at sites other than the head. Medio-lateral acceleration variability of the bilateral hip alone was smaller than the antero-posterior variability. [Conclusion] The findings of this study suggest that the effect of walking speed changes on the stride-to-stride acceleration variability was individual for each body parts, and differs among directions. PMID:27390419
Biophysical Neural Spiking, Bursting, and Excitability Dynamics in Reconfigurable Analog VLSI.
Yu, T; Sejnowski, T J; Cauwenberghs, G
2011-10-01
We study a range of neural dynamics under variations in biophysical parameters underlying extended Morris-Lecar and Hodgkin-Huxley models in three gating variables. The extended models are implemented in NeuroDyn, a four neuron, twelve synapse continuous-time analog VLSI programmable neural emulation platform with generalized channel kinetics and biophysical membrane dynamics. The dynamics exhibit a wide range of time scales extending beyond 100 ms neglected in typical silicon models of tonic spiking neurons. Circuit simulations and measurements show transition from tonic spiking to tonic bursting dynamics through variation of a single conductance parameter governing calcium recovery. We similarly demonstrate transition from graded to all-or-none neural excitability in the onset of spiking dynamics through the variation of channel kinetic parameters governing the speed of potassium activation. Other combinations of variations in conductance and channel kinetic parameters give rise to phasic spiking and spike frequency adaptation dynamics. The NeuroDyn chip consumes 1.29 mW and occupies 3 mm × 3 mm in 0.5 μm CMOS, supporting emerging developments in neuromorphic silicon-neuron interfaces.
Estimating the Mass of the Milky Way Using the Ensemble of Classical Satellite Galaxies
NASA Astrophysics Data System (ADS)
Patel, Ekta; Besla, Gurtina; Mandel, Kaisey; Sohn, Sangmo Tony
2018-04-01
High precision proper motion (PM) measurements are available for approximately 20% of all known dwarf satellite galaxies of the Milky Way (MW). Here we extend the Bayesian framework of Patel et al. to include all MW satellites with measured 6D phase-space information and apply it with the Illustris-Dark simulation to constrain the MW’s mass. Using the properties of each MW satellite individually, we find that the scatter among mass estimates is reduced when the magnitude of specific orbital angular momentum (j) is adopted, rather than their combined instantaneous positions and velocities. We also find that high j satellites (i.e., Leo II) constrain the upper limits for the MW’s mass and low j satellites, rather than the highest speed satellites (i.e., Leo I and Large Magellanic Cloud), set the lower mass limits. When j of all classical satellites is used to simultaneously estimate the MW’s mass, we conclude the halo mass is 0.85+0.23 ‑0.26 × 1012 {M}ȯ (including Sagittarius dSph) and 0.96+0.29 ‑0.28 × 1012 {M}ȯ (excluding Sagittarius dSph), cautioning that low j satellites on decaying orbits like Sagittarius dSph may bias the distribution. These estimates markedly reduce the current factor of two spread in the mass range of the MW. We also find a well-defined relationship between host halo mass and satellite j distribution, which yields the prediction that upcoming PMs for ultra-faint dwarfs should reveal j within 5 × 103–104 kpc km s‑1. This is a promising method to significantly constrain the cosmologically expected mass range for the MW and eventually M31 as more satellite PMs become available.
An improved fast acquisition phase frequency detector for high speed phase-locked loops
NASA Astrophysics Data System (ADS)
Zhang, Lei; Wang, Zongmin; Zhang, Tieliang; Peng, Xinmang
2018-04-01
Phase-locked loops (PLL) have been widely applied in many high-speed designs, such as microprocessors or communication systems. In this paper, an improved fast acquisition phase frequency detector for high speed phase-locked loops is proposed. An improved structure based on dynamic latch is used to eliminate the non-ideal effect such as dead zone and blind zone. And frequency dividers are utilized to vastly extend the phase difference detection range and enhance the operation frequency of the PLL. Proposed PFD has been implemented in 65nm CMOS technology, which occupies an area of 0.0016mm2 and consumes 1.5mW only. Simulation results demonstrate that maximum operation frequency can be up to 5GHz. In addition, the acquisition time of PLL using proposed PFD is 1.0us which is 2.6 times faster than that of the PLL using latch-based PFD without divider.
Highly Reactive Thiol-Norbornene Photo-Click Hydrogels: Toward Improved Processability.
Van Hoorick, Jasper; Gruber, Peter; Markovic, Marica; Rollot, Mélanie; Graulus, Geert-Jan; Vagenende, Maxime; Tromayer, Maximilian; Van Erps, Jürgen; Thienpont, Hugo; Martins, José C; Baudis, Stefan; Ovsianikov, Aleksandr; Dubruel, Peter; Van Vlierberghe, Sandra
2018-06-10
In the present work, gelatin type B is modified with highly reactive norbornene functionalities (Gel-NB) following a one-pot synthesis approach to enable subsequent thiol-ene photo-click crosslinking. The modification strategy displays close control over the amount of introduced functionalities. Additionally, Gel-NB exhibits considerably improved processing capabilities in terms of two-photon polymerization when benchmarked to earlier-reported crosslinkable gelatin derivatives (e.g., gelatin-methacrylamide (Gel-MOD) and gelatin-methacrylamide-aminoethylmethacrylate (Gel-MOD-AEMA)). The improvement is especially apparent in terms of minimally required laser power (20 mW vs ≥60 mW (Gel-MOD) vs ≥40 mW (Gel-MOD-AEMA) at 100 mm s -1 scan speed) and processable concentration range (≥5 w/v% vs ≥10 w/v% (Gel-MOD/Gel-MOD-AEMA)). Furthermore, the proposed functionalization scheme maintains the excellent biocompatibility and cell interactivity of gelatin. Additionally, the norbornene functionalities have potential for straightforward postprocessing "thiol-ene" surface grafting of active molecules. As a consequence, a very promising material toward tissue engineering applications and more specifically, biofabrication, is presented. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shape design and CFD analysis on a 1MW-class horizontal axis tidal current turbine blade
NASA Astrophysics Data System (ADS)
Singh, P. M.; Choi, Y. D.
2013-12-01
This study aims to develop a 1MW-class horizontal axis tidal current turbine rotor blade which can be applied near the southwest island regions of South Korea. On the basis of actual tidal current conditions of southern region of Korea, configuration design of 1MW class turbine rotor blade is carried out by BEMT (Blade element momentum theory). The hydrodynamic performance including the lift and drag forces, is conducted with the variation of the angle of attack using an open source code of X-Foil. The purpose of the study is to study the shape of the hydrofoil used and how it affects the performance of the turbine. After a thorough study of many airfoils, a new hydrofoil is developed using the S814 and DU-91-W2- 250 airfoils, which show good performance for rough conditions. A combination of the upper and lower surface of the two hydrofoils is tested. Three dimensional models were developed and the optimized blade geometry is used for CFD (Computational Fluid Dynamics) analysis with hexahedral numerical grids. Power coefficient, pressure coefficient and velocity distributions are investigated according to Tip Speed Ratio by CFD analysis.
NASA Astrophysics Data System (ADS)
Mirbaha, Babak; Saffarzadeh, Mahmoud; AmirHossein Beheshty, Seyed; Aniran, MirMoosa; Yazdani, Mirbahador; Shirini, Bahram
2017-10-01
Analysis of vehicle speed with different weather condition and traffic characteristics is very effective in traffic planning. Since the weather condition and traffic characteristics vary every day, the prediction of average speed can be useful in traffic management plans. In this study, traffic and weather data for a two-lane highway located in Northwest of Iran were selected for analysis. After merging traffic and weather data, the linear regression model was calibrated for speed prediction using STATA12.1 Statistical and Data Analysis software. Variables like vehicle flow, percentage of heavy vehicles, vehicle flow in opposing lane, percentage of heavy vehicles in opposing lane, rainfall (mm), snowfall and maximum daily wind speed more than 13m/s were found to be significant variables in the model. Results showed that variables of vehicle flow and heavy vehicle percent acquired the positive coefficient that shows, by increasing these variables the average vehicle speed in every weather condition will also increase. Vehicle flow in opposing lane, percentage of heavy vehicle in opposing lane, rainfall amount (mm), snowfall and maximum daily wind speed more than 13m/s acquired the negative coefficient that shows by increasing these variables, the average vehicle speed will decrease.
Cottin, F; Metayer, N; Goachet, A G; Julliand, V; Slawinski, J; Billat, V; Barrey, E
2010-11-01
Arabian horses have morphological, muscular and metabolic features designed for endurance races. Their gas exchange and gait variables were therefore measured during a field exercise test. This study presents original respiratory and locomotor data recorded in endurance horses under field conditions. Respiratory gas exchange ratio (RER) of Arabian horses at the speed required to win endurance races (18 km/h for 120-160 km) are <1 and running economy (RE) is also low in order to maintain exercise intensity using aerobic metabolism for long intervals. The purpose of this study was to measure oxygen consumption and gait variables in Arabian endurance horses running in the field in order to estimate RER and RE. Five Arabian horses trained for endurance racing were test ridden at increasing speeds on the field. Their speed was recorded and controlled by the rider using a GPS logger. Each horse was equipped with a portable respiratory gas analyser, which measured breath-by-breath respiratory variables and heart rate. The gait variables were recorded using tri-axial accelerometer data loggers and software for gait analysis. Descriptive statistics and linear regressions were used to analyse the speed related changes in each variable with P < 0.05 taken as significant. At a canter speed corresponding to endurance race winning speed (18 km/h), horses presented a VO(2) = 42 ± 9 ml/min/kg bwt, RER = 0.96 ± 0.10 and RE (= VO(2) /speed) = 134 ± 27 l/km/kg bwt. Linear relationships were observed between speed and VO(2,) HR and gait variables. Significant correlations were observed between VO(2) and gait variables. The RER of 0.96 at winning endurance speed indicates that Arabian horses mainly use aerobic metabolism based on lipid oxidation and that RER may also be related to a good coordination between running speed, respiratory and gait parameters. © 2010 EVJ Ltd.
Mahoney, Jeannette; Verghese, Joe
2014-01-01
Background. The relationship between executive functions (EF) and gait speed is well established. However, with the exception of dual tasking, the key components of EF that predict differences in gait performance have not been determined. Therefore, the current study was designed to determine whether processing speed, conflict resolution, and intraindividual variability in EF predicted variance in gait performance in single- and dual-task conditions. Methods. Participants were 234 nondemented older adults (mean age 76.48 years; 55% women) enrolled in a community-based cohort study. Gait speed was assessed using an instrumented walkway during single- and dual-task conditions. The flanker task was used to assess EF. Results. Results from the linear mixed effects model showed that (a) dual-task interference caused a significant dual-task cost in gait speed (estimate = 35.99; 95% CI = 33.19–38.80) and (b) of the cognitive predictors, only intraindividual variability was associated with gait speed (estimate = −.606; 95% CI = −1.11 to −.10). In unadjusted analyses, the three EF measures were related to gait speed in single- and dual-task conditions. However, in fully adjusted linear regression analysis, only intraindividual variability predicted performance differences in gait speed during dual tasking (B = −.901; 95% CI = −1.557 to −.245). Conclusion. Among the three EF measures assessed, intraindividual variability but not speed of processing or conflict resolution predicted performance differences in gait speed. PMID:24285744
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wharton, S.; Bulaevskaya, V.; Irons, Z.
The goal of our FY15 project was to explore the use of statistical models and high-resolution atmospheric input data to develop more accurate prediction models for turbine power generation. We modeled power for two operational wind farms in two regions of the country. The first site is a 235 MW wind farm in Northern Oklahoma with 140 GE 1.68 turbines. Our second site is a 38 MW wind farm in the Altamont Pass Region of Northern California with 38 Mitsubishi 1 MW turbines. The farms are very different in topography, climatology, and turbine technology; however, both occupy high wind resourcemore » areas in the U.S. and are representative of typical wind farms found in their respective areas.« less
Estimating the Quantity of Wind and Solar Required To Displace Storage-Induced Emissions.
Hittinger, Eric; Azevedo, Inês M L
2017-11-07
The variable and nondispatchable nature of wind and solar generation has been driving interest in energy storage as an enabling low-carbon technology that can help spur large-scale adoption of renewables. However, prior work has shown that adding energy storage alone for energy arbitrage in electricity systems across the U.S. routinely increases system emissions. While adding wind or solar reduces electricity system emissions, the emissions effect of both renewable generation and energy storage varies by location. In this work, we apply a marginal emissions approach to determine the net system CO 2 emissions of colocated or electrically proximate wind/storage and solar/storage facilities across the U.S. and determine the amount of renewable energy required to offset the CO 2 emissions resulting from operation of new energy storage. We find that it takes between 0.03 MW (Montana) and 4 MW (Michigan) of wind and between 0.25 MW (Alabama) and 17 MW (Michigan) of solar to offset the emissions from a 25 MW/100 MWh storage device, depending on location and operational mode. Systems with a realistic combination of renewables and storage will result in net emissions reductions compared with a grid without those systems, but the anticipated reductions are lower than a renewable-only addition.
Demonstration of variable speed permanent magnet generator at small, low-head hydro site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown Kinloch, David
Small hydro developers face a limited set of bad choices when choosing a generator for a small low-head hydro site. Direct drive synchronous generators are expensive and technically complex to install. Simpler induction generators are higher speed, requiring a speed increaser, which results in inefficiencies and maintenance problems. In addition, both induction and synchronous generators turn at a fixed speed, causing the turbine to run off its peak efficiency curve whenever the available head is different than the designed optimum head.The solution to these problems is the variable speed Permanent Magnet Generators (PMG). At the Weisenberger Mill in Midway, KY,more » a variable speed Permanent Magnet Generator has been installed and demonstrated. This new PMG system replaced an existing induction generator that had a HTD belt drive speed increaser system. Data was taken from the old generator before it was removed and compared to data collected after the PMG system was installed. The new variable speed PMG system is calculated to produce over 96% more energy than the old induction generator system during an average year. This significant increase was primarily due to the PMG generator operating at the correct speed at the maximum head, and the ability for the PMG generator to reduce its speed to lower optimum speeds as the stream flow increased and the net head decreased.This demonstration showed the importance of being able to adjust the speed of fixed blade turbines. All fixed blade turbines with varying net heads could achieve higher efficiencies if the speed can be matched to the optimum speed as the head changes. In addition, this demonstration showed that there are many potential efficiencies that could be realized with variable speed technology at hydro sites where mismatched turbine and generator speeds result in lower power output, even at maximum head. Funding for this project came from the US Dept. of Energy, through Award Number DE-EE0005429.« less
Selective Use of Optical Variables to Control Forward Speed
NASA Technical Reports Server (NTRS)
Johnson, Walter W.; Awe, Cynthia A.; Hart, Sandra G. (Technical Monitor)
1994-01-01
Previous work on the perception and control of simulated vehicle speed has examined the contributions of optical flow rate (angular visual speed) and texture, or edge rate (frequency of passing terrain objects or markings) on the perception and control of forward speed. However, these studies have not examined the ability to selectively use edge rate or flow rate. The two studies reported here show that subjects found it very difficult to arbitrarily direct attention to one or the other of these variables; but that the ability to selectively use these variables is linked to the visual contextual information about the relative validity (linkage with speed) of the two variables. The selectivity also resulted in different velocity adaptation levels for events in which flow rate and edge rate specified forward speed. Finally, the role of visual context in directing attention was further buttressed by the finding that the incorrect perception of changes in ground texture density tended to be coupled with incorrect perceptions of changes in forward speed.
NASA Technical Reports Server (NTRS)
Herrera, J. I.; Reddoch, T. W.; Lawler, J. S.
1985-01-01
As efforts are accelerated to improve the overall capability and performance of wind electric systems, increased attention to variable speed configurations has developed. A number of potentially viable configurations have emerged. Various attributes of variable speed systems need to be carefully tested to evaluate their performance from the utility points of view. With this purpose, the NASA experimental variable speed constant frequency (VSCF) system has been tested. In order to determine the usefulness of these systems in utility applications, tests are required to resolve issues fundamental to electric utility systems. Legitimate questions exist regarding how variable speed generators will influence the performance of electric utility systems; therefore, tests from a utility perspective, have been performed on the VSCF system and an induction generator at an operating power level of 30 kW on a system rated at 200 kVA and 0.8 power factor.
NASA Technical Reports Server (NTRS)
Welch, Gerand E.
2010-01-01
The main rotors of the NASA Large Civil Tilt-Rotor notional vehicle operate over a wide speed-range (100% at take-off to 54% at cruise). The variable-speed power turbine, when coupled to a fixed-gear-ratio transmission, offers one approach to accomplish this speed variation. The key aero-challenges of the variable-speed power turbine are related to high work factors at cruise, where the power turbine operates at 54% of take-off speed, wide incidence variations into the vane, blade, and exit-guide-vane rows associated with the power-turbine speed change, and the impact of low aft-stage Reynolds number (transitional flow) at 28 kft cruise. Meanline and 2-D Reynolds-Averaged Navier- Stokes analyses are used to characterize the variable-speed power-turbine aerodynamic challenges and to outline a conceptual design approach that accounts for multi-point operation. Identified technical challenges associated with the aerodynamics of high work factor, incidence-tolerant blading, and low Reynolds numbers pose research needs outlined in the paper
Effects of Gender Roles and Self Perceptions on Affective Reactions to Horror Films.
ERIC Educational Resources Information Center
Mundorf, Norbert; And Others
1989-01-01
Examines responses to graphic horror films based on gender and personality variables. Results indicate that responses to horror movies are largely determined by gender-specific rules for social conduct. (MW)
Yawing characteristics during slippage of the nacelle of a multi MW wind turbine
NASA Astrophysics Data System (ADS)
Kim, M.-G.; Dalhoff, P. H.; Gust, P.
2016-09-01
High aerodynamic yaw loads coupled with electrical failures in the wind turbine can result to a slippage of the nacelle, due to limited braking capabilities of the yaw system. A slippage on the other hand can lead to a mechanical malfunction of the yaw system. To analyse the yawing characteristics of a wind turbine during nacelle slippage situations, a detailed multibody system model of the yaw system has been developed and incorporated in a multibody system model of a wind turbine based on a 3.3 MW turbine. Extreme load cases which lead to a nacelle slippage have been simulated. The dynamics and loads on different wind turbine components are presented and discussed. First results show minimal load increases of the rotor torque and the bending moments of the blade root sections during slippage but unfavourable rotational speeds of the yaw drives.
Holtzer, Roee; Mahoney, Jeannette; Verghese, Joe
2014-08-01
The relationship between executive functions (EF) and gait speed is well established. However, with the exception of dual tasking, the key components of EF that predict differences in gait performance have not been determined. Therefore, the current study was designed to determine whether processing speed, conflict resolution, and intraindividual variability in EF predicted variance in gait performance in single- and dual-task conditions. Participants were 234 nondemented older adults (mean age 76.48 years; 55% women) enrolled in a community-based cohort study. Gait speed was assessed using an instrumented walkway during single- and dual-task conditions. The flanker task was used to assess EF. Results from the linear mixed effects model showed that (a) dual-task interference caused a significant dual-task cost in gait speed (estimate = 35.99; 95% CI = 33.19-38.80) and (b) of the cognitive predictors, only intraindividual variability was associated with gait speed (estimate = -.606; 95% CI = -1.11 to -.10). In unadjusted analyses, the three EF measures were related to gait speed in single- and dual-task conditions. However, in fully adjusted linear regression analysis, only intraindividual variability predicted performance differences in gait speed during dual tasking (B = -.901; 95% CI = -1.557 to -.245). Among the three EF measures assessed, intraindividual variability but not speed of processing or conflict resolution predicted performance differences in gait speed. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helsen, J.; Weijtjens, W.; Guo, Y.
2015-02-01
This paper experimentally investigates a worst case grid loss event conducted on the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) drivetrain mounted on the 2.5MW NREL dynamic nacelle test-rig. The GRC drivetrain has a directly grid-coupled, fixed speed asynchronous generator. The main goal is the assessment of the dynamic content driving this particular assess the dynamic content of the high-speed stage of the GRC gearbox. In addition to external accelerometers, high frequency sampled measurements of strain gauges were used to assess torque fluctuations and bending moments both at the nacelle main shaft and gearbox high-speed shaft (HSS) throughmore » the entire duration of the event. Modal analysis was conducted using a polyreference Least Squares Complex Frequency-domain (pLSCF) modal identification estimator. The event driving the torsional resonance was identified. Moreover, the pLSCF estimator identified main drivetrain resonances based on a combination of acceleration and strain measurements. Without external action during the grid-loss event, a mode shape characterized by counter phase rotation of the rotor and generator rotor determined by the drivetrain flexibility and rotor inertias was the main driver of the event. This behavior resulted in significant torque oscillations with large amplitude negative torque periods. Based on tooth strain measurements of the HSS pinion, this work showed that at each zero-crossing, the teeth lost contact and came into contact with the backside flank. In addition, dynamic nontorque loads between the gearbox and generator at the HSS played an important role, as indicated by strain gauge-measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Peter; Jiang, Wei; Winiarski, David W.
2009-03-31
this paper develops component and subsystem models used to evaluat4e the performance of a low-lift cooling system with an air-colled chiller optimized for variable-speed and low-pressure-ratio operation, a hydronic radient distribution system, variable-speed transport miotor controls, and peak-shifting controls.
Variable Speed Limit (VSL) - Best Management Practice [Summary
DOT National Transportation Integrated Search
2012-01-01
In variable speed limit (VSL) zones, the speed : limit changes in response to traffic congestion, : adverse weather, or road conditions. VSL zones are : often highly automated and have been employed : successfully in several U.S. and European : locat...
Ramratan, Wendy S; Rabin, Laura A; Wang, Cuiling; Zimmerman, Molly E; Katz, Mindy J; Lipton, Richard B; Buschke, Herman
2012-03-01
Individuals with amnestic mild cognitive impairment (aMCI) show deficits on traditional episodic memory tasks and reductions in speed of performance on reaction time tasks. We present results on a novel task, the Cued-Recall Retrieval Speed Task (CRRST), designed to simultaneously measure level and speed of retrieval. A total of 390 older adults (mean age, 80.2 years), learned 16 words based on corresponding categorical cues. In the retrieval phase, we measured accuracy (% correct) and retrieval speed/reaction time (RT; time from cue presentation to voice onset of a correct response) across 6 trials. Compared to healthy elderly adults (HEA, n = 303), those with aMCI (n = 87) exhibited poorer performance in retrieval speed (difference = -0.13; p < .0001) and accuracy on the first trial (difference = -0.19; p < .0001), and their rate of improvement in retrieval speed was slower over subsequent trials. Those with aMCI also had greater within-person variability in processing speed (variance ratio = 1.22; p = .0098) and greater between-person variability in accuracy (variance ratio = 2.08; p = .0001) relative to HEA. Results are discussed in relation to the possibility that computer-based measures of cued-learning and processing speed variability may facilitate early detection of dementia in at-risk older adults.
Kempton, Thomas; Sullivan, Courtney; Bilsborough, Johann C; Cordy, Justin; Coutts, Aaron J
2015-01-01
To determine the match-to-match variability in physical activity and technical performance measures in Australian Football, and examine the influence of playing position, time of season, and different seasons on these measures of variability. Longitudinal observational study. Global positioning system, accelerometer and technical performance measures (total kicks, handballs, possessions and Champion Data rank) were collected from 33 players competing in the Australian Football League over 31 matches during 2011-2012 (N=511 observations). The global positioning system data were categorised into total distance, mean speed (mmin(-1)), high-speed running (>14.4 kmh(-1)), very high-speed running (>19.9 kmh(-1)), and sprint (>23.0 kmh(-1)) distance while player load was collected from the accelerometer. The data were log transformed to provide coefficient of variation and the between subject standard deviation (expressed as percentages). Match-to-match variability was increased for higher speed activities (high-speed running, very high-speed running, sprint distance, coefficient of variation %: 13.3-28.6%) compared to global measures (speed, total distance, player load, coefficient of variation %: 5.3-9.2%). The between-match variability was relativity stable for all measures between and within AFL seasons, with only few differences between positions. Higher speed activities (high-speed running, very high-speed running, sprint distance), but excluding mean speed, total distance and player load, were all higher in the final third phase of the season compared to the start of the season. While global measures of physical performance are relatively stable, higher-speed activities and technical measures exhibit a large degree of between-match variability in Australian Football. However, these measures remain relatively stable between positions, and within and between Australian Football League seasons. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
The selective use of functional optical variables in the control of forward speed
NASA Technical Reports Server (NTRS)
Johnson, Walter W.; Awe, Cynthia A.
1994-01-01
Previous work on the perception and control of simulated vehicle speed has examined the contributions of optical flow rate (angular visual speed) and texture, or edge rate (frequency of passing terrain objects or markings) on the perception and control of forward speed. However, these studies have not examined the ability to selectively use edge rate or flow rate. The two studies presented here show that this ability is far greater for pilots than non-pilots, as would be expected since pilots must control vehicular speed over a variety of altitudes where flow rates change independently of forward speed. These studies also show that this ability to selectively use these variables is linked to the visual contextual information about the relative validity (linkage with speed) of the two variables. Subjective judgment data also indicated that awareness of altitude and ground texture density did not mediate ground speed awareness.
Measure Guideline. Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, A.; Easley, S.
2012-05-01
This measure guideline evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provides a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.
Measure Guideline: Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, A.; Easley, S.
2012-05-01
The report evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provide a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.
Evaluation of variable advisory speed limits in work zones.
DOT National Transportation Integrated Search
2013-08-01
Variable advisory speed limit (VASL) systems could be effective at both urban and rural work zones, at both uncongested and congested sites. At uncongested urban work zones, the average speeds with VASL were lower than without VASL. But the standard ...
NASA Astrophysics Data System (ADS)
Ermida, Sofia L.; Jiménez, Carlos; Prigent, Catherine; Trigo, Isabel F.; DaCamara, Carlos C.
2017-04-01
Land Surface Temperature (LST) is an important diagnostic parameter of land surface conditions. Satellite LST products generally rely on measurements in the thermal infrared (IR) atmospheric window, which only allows clear sky estimates. Microwave (MW) observations can alternatively be used to derive an all-weather LST. Here we present an inter-comparison between LST derived from the Advanced Microwave Scanning Radiometer - Earth observation system (AMSR-E), the MODerate resolution Imaging Spectroradiometer (MODIS) on-board Aqua, the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on-board Meteosat Second Generation (MSG) satellites, the Geostationary Operational Environmental Satellite (GOES) and the Japanese Meteorological Imager (JAMI) on-board the Multifunction Transport SATellite (MTSAT-2). The higher discrepancies between MW and IR products are observed over snow covered areas. MW emissivity is highly variable for snow-covered ground and not always properly accounted for by the climatological emissivity used in the retrieval. There is a conspicuous bias between MODIS and AMSR-E over desert areas, which is most likely related to the underestimation of LST by MODIS as previously reported in other studies. Inter-comparison between all IR and MW retrievals shows that the STD of the differences between MW and IR LST is generally higher than between IR retrievals. However, the biases between MW and IR LST are, in some cases, of the same order as the ones observed among infrared products. In particular, GOES presents a daytime bias with respect to AMSR-E of 0.45 K whereas the bias with respect to MODIS is 0.60 K. Given that AMSR-E can provide LST under cloudy conditions, the use of microwaves, considering simultaneous overpasses with IR, represents an increase of more than 250% of the number of available LST estimates over equatorial regions. With the MW products of a comparable quality to the IR ones, the MW LST is a very powerful complement of the IR estimates.
NASA Astrophysics Data System (ADS)
McKay, R. A.
1984-06-01
A 1-MW wellhead generator was tested in 1980, 1981, and 1982 by Mexico, Italy, and New Zealand at Cerro Prieto, Cesano, and Broadlands, respectively. The total flow helical screw expander portable power plant, Model 76-1, had been built for the U.S. Government and field-tested in Utah, USA, in 1978 and 1979. The expander had oversized internal clearances designed for self-cleaning operation on fluids that deposit adherent scale normally detrimental to the utiliation of liquid dominated fields. Conditions with which the expander was tested included inlet pressures of 64 to 220 psia, inlet qualities of 0% to 100%, exhaust pressures of 3.1 to 40 psia, electrial loads of idle and 110 to 933 kW, electrical frequencies of 50 and 60 Hz, male rotor speeds of 2500 to 4000 rpm, and fluid characteristics to 310,000 ppm total dissolved solids and noncondensables to 38 wt % of the vapor. Some testing was done on-grid. Typical expander isentropic efficiency was 40% to 50% with the clearances not closed, and 5 percentage points or more higher with the clearances partly closed. The expander efficiency increased approximately logarithmically with shaft power for most operations, while inlet quality, speed, and pressure ratio across the machine had only small effects. These findings are all in agreement with the Utah test results.
NASA Technical Reports Server (NTRS)
Mckay, R. A.
1984-01-01
A 1-MW wellhead generator was tested in 1980, 1981, and 1982 by Mexico, Italy, and New Zealand at Cerro Prieto, Cesano, and Broadlands, respectively. The total flow helical screw expander portable power plant, Model 76-1, had been built for the U.S. Government and field-tested in Utah, USA, in 1978 and 1979. The expander had oversized internal clearances designed for self-cleaning operation on fluids that deposit adherent scale normally detrimental to the utiliation of liquid dominated fields. Conditions with which the expander was tested included inlet pressures of 64 to 220 psia, inlet qualities of 0% to 100%, exhaust pressures of 3.1 to 40 psia, electrial loads of idle and 110 to 933 kW, electrical frequencies of 50 and 60 Hz, male rotor speeds of 2500 to 4000 rpm, and fluid characteristics to 310,000 ppm total dissolved solids and noncondensables to 38 wt % of the vapor. Some testing was done on-grid. Typical expander isentropic efficiency was 40% to 50% with the clearances not closed, and 5 percentage points or more higher with the clearances partly closed. The expander efficiency increased approximately logarithmically with shaft power for most operations, while inlet quality, speed, and pressure ratio across the machine had only small effects. These findings are all in agreement with the Utah test results.
Fast femtosecond laser ablation for efficient cutting of sintered alumina substrates
NASA Astrophysics Data System (ADS)
Oosterbeek, Reece N.; Ward, Thomas; Ashforth, Simon; Bodley, Owen; Rodda, Andrew E.; Simpson, M. Cather
2016-09-01
Fast, accurate cutting of technical ceramics is a significant technological challenge because of these materials' typical high mechanical strength and thermal resistance. Femtosecond pulsed lasers offer significant promise for meeting this challenge. Femtosecond pulses can machine nearly any material with small kerf and little to no collateral damage to the surrounding material. The main drawback to femtosecond laser machining of ceramics is slow processing speed. In this work we report on the improvement of femtosecond laser cutting of sintered alumina substrates through optimisation of laser processing parameters. The femtosecond laser ablation thresholds for sintered alumina were measured using the diagonal scan method. Incubation effects were found to fit a defect accumulation model, with Fth,1=6.0 J/cm2 (±0.3) and Fth,∞=2.5 J/cm2 (±0.2). The focal length and depth, laser power, number of passes, and material translation speed were optimised for ablation speed and high quality. Optimal conditions of 500 mW power, 100 mm focal length, 2000 μm/s material translation speed, with 14 passes, produced complete cutting of the alumina substrate at an overall processing speed of 143 μm/s - more than 4 times faster than the maximum reported overall processing speed previously achieved by Wang et al. [1]. This process significantly increases processing speeds of alumina substrates, thereby reducing costs, making femtosecond laser machining a more viable option for industrial users.
DOT National Transportation Integrated Search
2011-04-01
Variable Advisory Speed Systems (VASS) provide drivers with advanced warning regarding traffic speeds downstream to help them make better decisions. Vehicle use on highways is increasing and the need to improve highways brings increased construction ...
Variable Speed Limit (VSL) - Best Management Practice
DOT National Transportation Integrated Search
2012-07-01
The Variable Speed Limit (VSL) system on the I-4 corridor in Orlando was implemented by Florida Department of Transportation in 2008, and since its deployment, it was revealed that the majority of traffic exceeds the speed limit by more mph when the ...
NASA Astrophysics Data System (ADS)
Makama, Ezekiel Kaura; Lim, Hwee San; Abdullah, Khiruddin
2018-01-01
Precipitable water vapor (PWV) is a highly variable, but important greenhouse gas that regulates the radiation budget of the earth. Its variability in time and space makes it difficult to quantify. Knowledge of its vertical distribution, in particular, is crucial for many reasons. In this study, empirical relationships between isobaric layers of PWV over Peninsular Malaysia are examined. Analysis of variance (ANOVA) technique on Advanced Television and Infrared Observation Satellite Operational Vertical Sounder (ATOVS) observations, from 2005 to 2011, has been used to propose a relationship of the form, W=α(WL)β for the middle (MW) and upper (UW) layers PWV. W is either MW or UW with α and β as regression coefficients, which are functions of latitude. Coefficients of determination (R2) and root mean square error (RMSE) of respective values between 0.75-0.86 and 1.65-2.38 mm, across the zones, were obtained for both the MW and UW predictions, with a mean bias (MB) below ±1 mm.The predicted and observed PWV presented a better agreement northerly. Initial predictability test for each model was done on two independent data sets: ATOVS (2012-2015), and radiosonde (2010-2011) at Penang, Kuantan and Sepang stations, with very good outcomes. The results of the tests revealed remarkable performances, when compared with two previously reported models. The inclusion of variable regression coefficients, and the utilization of satellite-derived data, which provide soundings of data-void regions between radiosonde networks, proved to have optimized the results.
NASA Astrophysics Data System (ADS)
Yuan, Bo; Zong, Jin; Xu, Zhicheng
2018-06-01
According to different operating characteristics of pumped storage fixed speed unit and variable speed unit, a joint dispatching model of pumped storage unit and other types of units based on mixed integer linear optimization is constructed. The model takes into account the operating conditions, reservoir capacity, cycle type and other pumped storage unit constraints, but also consider the frequent start and stop and the stability of the operation of the unit caused by the loss. Using the Cplex solver to solve the model, the empirical example of the provincial power grid shows that the model can effectively arrange the pumping storage speed and the dispatching operation of the variable speed unit under the precondition of economic life of the unit, and give full play to the function of peak shaving and accommodating new energy. Because of its more flexible regulation characteristics of power generation and pumping conditions, the variable speed unit can better improve the operating conditions of other units in the system and promote the new energy dissipation.
Post-processing method for wind speed ensemble forecast using wind speed and direction
NASA Astrophysics Data System (ADS)
Sofie Eide, Siri; Bjørnar Bremnes, John; Steinsland, Ingelin
2017-04-01
Statistical methods are widely applied to enhance the quality of both deterministic and ensemble NWP forecasts. In many situations, like wind speed forecasting, most of the predictive information is contained in one variable in the NWP models. However, in statistical calibration of deterministic forecasts it is often seen that including more variables can further improve forecast skill. For ensembles this is rarely taken advantage of, mainly due to that it is generally not straightforward how to include multiple variables. In this study, it is demonstrated how multiple variables can be included in Bayesian model averaging (BMA) by using a flexible regression method for estimating the conditional means. The method is applied to wind speed forecasting at 204 Norwegian stations based on wind speed and direction forecasts from the ECMWF ensemble system. At about 85 % of the sites the ensemble forecasts were improved in terms of CRPS by adding wind direction as predictor compared to only using wind speed. On average the improvements were about 5 %, but mainly for moderate to strong wind situations. For weak wind speeds adding wind direction had more or less neutral impact.
Work zone variable speed limit systems: Effectiveness and system design issues.
DOT National Transportation Integrated Search
2010-03-01
Variable speed limit (VSL) systems have been used in a number of countries, particularly in Europe, as a method to improve flow and increase safety. VSLs use detectors to collect data on current traffic and/or weather conditions. Posted speed limits ...
Work zone variable speed limit systems : effectiveness and system design issues.
DOT National Transportation Integrated Search
2010-03-01
Variable speed limit (VSL) systems have been used in a number of countries, particularly in Europe, as a method to improve flow and increase safety. VSLs use detectors to collect data on current traffic and/or weather conditions. Posted speed limits ...
Variable-speed, portable routing skate
NASA Technical Reports Server (NTRS)
Pesch, W. A.
1967-01-01
Lightweight, portable, variable-speed routing skate is used on heavy metal subassemblies which are impractical to move to a stationary machine. The assembly, consisting of the housing with rollers, router, and driving mechanism with transmission, weighs about forty pounds. Both speed and depth of cut are adjustable.
Ramratan, Wendy S.; Rabin, Laura A.; Wang, Cuiling; Zimmerman, Molly E.; Katz, Mindy J.; Lipton, Richard B.; Buschke, Herman
2013-01-01
Individuals with amnestic mild cognitive impairment (aMCI) show deficits on traditional episodic memory tasks and reductions in speed of performance on reaction time tasks. We present results on a novel task, the Cued-Recall Retrieval Speed Test (CRRST), designed to simultaneously measure level and speed of retrieval. 390 older adults (mean age of 80.2 years), learned 16 words based on corresponding categorical cues. In the retrieval phase, we measured accuracy (% correct) and retrieval speed/reaction time (RT; time from cue presentation to voice onset of a correct response) across 6 trials. Compared to healthy elderly adults (HEA, n = 303), those with aMCI (n = 87) exhibited poorer performance in retrieval speed (difference = −0.13, p<.0001) and accuracy on the first trial (difference = −0.19, p<.0001), and their rate of improvement in retrieval speed was slower over subsequent trials. Those with aMCI also had greater within-person variability in processing speed (variance ratio = 1.22, p = 0.0098) and greater between-person variability in accuracy (variance ratio = 2.08, p = 0.0001) relative to HEA. Results are discussed in relation to the possibility that computer-based measures of cued-learning and processing speed variability may facilitate early detection of dementia in at-risk older adults. PMID:22265423
21st Century HVAC System for Future Naval Surface Combatants - Concept Development Report
2007-09-01
application of permanent magnet motors to ventilation fans3. The study emphasized reducing the motor size, incorporating variable speed operation to reduce...Incorporation of permanent magnet motors and variable speed is also feasible. Permanent magnet motor technology is ideally suited for variable...family incorporates high speed permanent magnet motors and further fan blade design improvements. The fan diameters will be reduced, substantially, at the
Decomposing ADHD-Related Effects in Response Speed and Variability
Karalunas, Sarah L.; Huang-Pollock, Cynthia L.; Nigg, Joel T.
2012-01-01
Objective Slow and variable reaction times (RTs) on fast tasks are such a prominent feature of Attention Deficit Hyperactivity Disorder (ADHD) that any theory must account for them. However, this has proven difficult because the cognitive mechanisms responsible for this effect remain unexplained. Although speed and variability are typically correlated, it is unclear whether single or multiple mechanisms are responsible for group differences in each. RTs are a result of several semi-independent processes, including stimulus encoding, rate of information processing, speed-accuracy trade-offs, and motor response, which have not been previously well characterized. Method A diffusion model was applied to RTs from a forced-choice RT paradigm in two large, independent case-control samples (NCohort 1= 214 and N Cohort 2=172). The decomposition measured three validated parameters that account for the full RT distribution, and assessed reproducibility of ADHD effects. Results In both samples, group differences in traditional RT variables were explained by slow information processing speed, and unrelated to speed-accuracy trade-offs or non-decisional processes (e.g. encoding, motor response). Conclusions RT speed and variability in ADHD may be explained by a single information processing parameter, potentially simplifying explanations that assume different mechanisms are required to account for group differences in the mean and variability of RTs. PMID:23106115
Scharhag, Jürgen; Herrmann, Markus; Weissinger, Melanie; Herrmann, Wolfgang; Kindermann, Wilfried
2007-04-01
Elevated concentrations of B-type natriuretic peptide (BNP) and N-terminal pro- BNP (NT-proBNP) reflect elevated myocardial wall stress due to volume or pressure overload in cardiac disease. Recently, exercise-induced elevations of (NT-pro)BNP in coronary artery disease (CAD) patients have been reported to result from exercise-induced ischemia associated regional wall abnormalities. Therefore, the study aimed to examine NT-proBNP concentrations in patients with CAD after moderate and brisk walking (MW, BW). We hypothesized that BW induces higher increases than MW. In randomized order 14 patients with stable CAD (12 male symbol/2 female symbol; 63 +/- 9 years; LV ejection fraction: 59+/-9%) of a out-patient rehabilitation group performed MW with 4.5 +/- 0.6 km/h (mean heart rate: 80 +/- 11/min) or BWat their allowed upper exercise heart rate of 102+/-9/min with a speed of 6.2 +/- 0.6 km/h for 30 min on a tartan track on two separate days. Blood samples were taken before, immediately, 1 h, 3 h and 1 day after exercise to determine NT-proBNP and cardiac troponin T (cTnT). Echocardiographic LV function was determined before and 1 h after exercise. Median concentrations of NT-proBNP significantly increased from 222 to 295 ng/l (MW) and from 222 to 296 ng/l (BW) without a difference between both modalities. cTnT remained below the detection limit of 0.01 microg/l. LV functions remained unchanged. A cutoff level of 250 ng/l distinguished CAD patients with elevated exercise-induced increases in NT-proBNP and a diminished LV ejection fraction at rest. BW and MW induce similar increases in NT-proBNP in CAD patients without myocardial damage, which have to be considered when NT-proBNP is determined. Derived from the exercise- induced increase in NTproBNP, the myocardial strain in BW is not elevated in comparison to MW.
Wright, Peter R.; McMahon, Peter B.; Mueller, David K.; Clark, Melanie L.
2012-01-01
In June 2010, the U.S. Environmental Protection Agency installed two deep monitoring wells (MW01 and MW02) near Pavillion, Wyoming, to study groundwater quality. During April and May 2012, the U.S Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, collected groundwater-quality data and quality-control data from monitoring well MW01 and, following well redevelopment, quality-control data for monitoring well MW02. Two groundwater-quality samples were collected from well MW01—one sample was collected after purging about 1.5 borehole volumes, and a second sample was collected after purging 3 borehole volumes. Both samples were collected and processed using methods designed to minimize atmospheric contamination or changes to water chemistry. Groundwater-quality samples were analyzed for field water-quality properties (water temperature, pH, specific conductance, dissolved oxygen, oxidation potential); inorganic constituents including naturally occurring radioactive compounds (radon, radium-226 and radium-228); organic constituents; dissolved gasses; stable isotopes of methane, water, and dissolved inorganic carbon; and environmental tracers (carbon-14, chlorofluorocarbons, sulfur hexafluoride, tritium, helium, neon, argon, krypton, xenon, and the ratio of helium-3 to helium-4). Quality-control sample results associated with well MW01 were evaluated to determine the extent to which environmental sample analytical results were affected by bias and to evaluate the variability inherent to sample collection and laboratory analyses. Field documentation, environmental data, and quality-control data for activities that occurred at the two monitoring wells during April and May 2012 are presented.
Axial force and efficiency tests of fixed center variable speed belt drive
NASA Technical Reports Server (NTRS)
Bents, D. J.
1981-01-01
An investigation of how the axial force varies with the centerline force at different speed ratios, speeds, and loads, and how the drive's transmission efficiency is affected by these related forces is described. The tests, intended to provide a preliminary performance and controls characterization for a variable speed belt drive continuously variable transmission (CVT), consisted of the design and construction of an experimental test rig geometrically similar to the CVT, and operation of that rig at selected speed ratios and power levels. Data are presented which show: how axial forces exerted on the driver and driven sheaves vary with the centerline force at constant values of speed ratio, speed, and output power; how the transmission efficiency varies with centerline force and how it is also a function of the V belt coefficient; and the axial forces on both sheaves as normalized functions of the traction coefficient.
A Multiple-Window Video Embedding Transcoder Based on H.264/AVC Standard
NASA Astrophysics Data System (ADS)
Li, Chih-Hung; Wang, Chung-Neng; Chiang, Tihao
2007-12-01
This paper proposes a low-complexity multiple-window video embedding transcoder (MW-VET) based on H.264/AVC standard for various applications that require video embedding services including picture-in-picture (PIP), multichannel mosaic, screen-split, pay-per-view, channel browsing, commercials and logo insertion, and other visual information embedding services. The MW-VET embeds multiple foreground pictures at macroblock-aligned positions. It improves the transcoding speed with three block level adaptive techniques including slice group based transcoding (SGT), reduced frame memory transcoder (RFMT), and syntax level bypassing (SLB). The SGT utilizes prediction from the slice-aligned data partitions in the original bitstreams such that the transcoder simply merges the bitstreams by parsing. When the prediction comes from the newly covered area without slice-group data partitions, the pixels at the affected macroblocks are transcoded with the RFMT based on the concept of partial reencoding to minimize the number of refined blocks. The RFMT employs motion vector remapping (MVR) and intra mode switching (IMS) to handle intercoded blocks and intracoded blocks, respectively. The pixels outside the macroblocks that are affected by newly covered reference frame are transcoded by the SLB. Experimental results show that, as compared to the cascaded pixel domain transcoder (CPDT) with the highest complexity, our MW-VET can significantly reduce the processing complexity by 25 times and retain the rate-distortion performance close to the CPDT. At certain bit rates, the MW-VET can achieve up to 1.5 dB quality improvement in peak signal-to-noise-ratio (PSNR).
NASA Astrophysics Data System (ADS)
Maurice, P. A.; Cabaniss, S. E.; Drummond, J.
2001-12-01
This study investigated the spatiotemporal variability in dissolved organic carbon concentration (DOC), natural organic matter (NOM) weight average molecular weight (Mw), and absorptivity at 280 nm (e280, an estimator of aromaticity) at McDonalds Branch, a first-order stream that is a fen wetland. When ground-water discharge to the stream was predominant, the DOC, the Mw, and the e280 were all relatively low. When soil porewater was more important, not only was the DOC higher, but also the Mw and e280. Hence, the contribution of soil pore water relative to ground water controlled not only the concentration but also the average physicochemical characteristics of the NOM. Results from this small watershed study provide insight into climatic effects on surface-water NOM characteristics in a small freshwater fen. Low-flow periods resulted in lower Mw, more aliphatic NOM derived primarily from ground-water discharge to the stream whereas higher flow periods resulted in a higher Mw(by 150-500 Da), more aromatic downstream surface-water NOM pool. Hence, during future summer drought periods, as suggested by climate-change models for much of North America, surface-water NOM likely will be lower molecular weight, more aliphatic, and more hydrophilic with lesser metal binding and HOC uptake abilities, along with decreased ability to attenuate UV radiation.
Role of pump hydro in electric power systems
NASA Astrophysics Data System (ADS)
Bessa, R.; Moreira, C.; Silva, B.; Filipe, J.; Fulgêncio, N.
2017-04-01
This paper provides an overview of the expected role that variable speed hydro power plants can have in future electric power systems characterized by a massive integration of highly variable sources. Therefore, it is discussed the development of a methodology for optimising the operation of hydropower plants under increasing contribution from new renewable energy sources, addressing the participation of a hydropower plant with variable speed pumping in reserve markets. Complementarily, it is also discussed the active role variable speed generators can have in the provision of advanced frequency regulation services.
A 6-bit 4 GS/s pseudo-thermometer segmented CMOS DAC
NASA Astrophysics Data System (ADS)
Yijun, Song; Wenyuan, Li
2014-06-01
A 6-bit 4 GS/s, high-speed and power-efficient DAC for ultra-high-speed transceivers in 60 GHz band millimeter wave technology is presented. A novel pseudo-thermometer architecture is proposed to realize a good compromise between the fast conversion speed and the chip area. Symmetrical and compact floor planning and layout techniques including tree-like routing, cross-quading and common-centroid method are adopted to guarantee the chip is fully functional up to near-Nyquist frequency in a standard 0.18 μm CMOS process. Post simulation results corroborate the feasibility of the designed DAC, which canperform good static and dynamic linearity without calibration. DNL errors and INL errors can be controlled within ±0.28 LSB and ±0.26 LSB, respectively. SFDR at 4 GHz clock frequency for a 1.9 GHz near-Nyquist sinusoidal output signal is 40.83 dB and the power dissipation is less than 37 mW.
Airflow energy harvesting with high wind velocities for industrial applications
NASA Astrophysics Data System (ADS)
Chew, Z. J.; Tuddenham, S. B.; Zhu, M.
2016-11-01
An airflow energy harvester capable of harvesting energy from vortices at high speed is presented in this paper. The airflow energy harvester is implemented using a modified helical Savonius turbine and an electromagnetic generator. A power management module with maximum power point finding capability is used to manage the harvested energy and convert the low voltage magnitude from the generator to a usable level for wireless sensors. The airflow energy harvester is characterized using vortex generated by air hitting a plate in a wind tunnel. By using an aircraft environment with wind speed of 17 m/s as case study, the output power of the airflow energy harvester is measured to be 126 mW. The overall efficiency of the power management module is 45.76 to 61.2%, with maximum power point tracking efficiency of 94.21 to 99.72% for wind speed of 10 to 18 m/s, and has a quiescent current of 790 nA for the maximum power point tracking circuit.
Shemya AFB, Alaska Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.
1984-05-01
34.40 41 -0 4S-53 36 % WIND oil . SPEED SSE 1 ____ .7 ~~* iSE~* -E.* 16.. SSW7.,1 19.S mw c .373 17*4 1, VASIL 1.4 TOTAL HUMUS OF OILSERVATIOI4S USAFETAC 0...STATIC’K TAUT OUTS 16 cO " MISI 4I ION. SPEED .FMEAN (KNTS) 1.3 4.6 7.10 11-16 17.-21 22.27 282 33 34.40 41.0 46.5 t5 WN oil . SPUD__ ____ N .. 1 ____ NNE...p WET BULB TEMPERATURE DEPRESSION (F) TOTAL TOTAL (F) 12 3-4 5- 7.8 9. 10 11112,13.14 15-16 17- 14 19.20 21.22122.2425.2 27.229.30 - .1 Oil °II Wei
Automated Heat-Flux-Calibration Facility
NASA Technical Reports Server (NTRS)
Liebert, Curt H.; Weikle, Donald H.
1989-01-01
Computer control speeds operation of equipment and processing of measurements. New heat-flux-calibration facility developed at Lewis Research Center. Used for fast-transient heat-transfer testing, durability testing, and calibration of heat-flux gauges. Calibrations performed at constant or transient heat fluxes ranging from 1 to 6 MW/m2 and at temperatures ranging from 80 K to melting temperatures of most materials. Facility developed because there is need to build and calibrate very-small heat-flux gauges for Space Shuttle main engine (SSME).Includes lamp head attached to side of service module, an argon-gas-recirculation module, reflector, heat exchanger, and high-speed positioning system. This type of automated heat-flux calibration facility installed in industrial plants for onsite calibration of heat-flux gauges measuring fluxes of heat in advanced gas-turbine and rocket engines.
Large-amplitude acoustic solitary waves in a Yukawa chain
NASA Astrophysics Data System (ADS)
Sheridan, T. E.; Gallagher, James C.
2017-06-01
We experimentally study the excitation and propagation of acoustic solitary waves in a one-dimensional dusty plasma (i.e. a Yukawa chain) with particles interacting through a screened Coulomb potential. The lattice constant mm. Waves are launched by applying a 100 mW laser pulse to one end of the chain for laser pulse durations from 0.10 to 2.0 s. We observe damped solitary waves which propagate for distances with an acoustic speed s=11.5\\pm 0.2~\\text{mm}~\\text{s}-1$ . The maximum velocity perturbation increases with laser pulse duration for durations s and then saturates at . The wave speed is found to be independent of the maximum amplitude, indicating that the formation of nonlinear solitons is prevented by neutral-gas damping.
EP of a Different Class: The Challenges of Testing for MW Missions
2012-07-20
that the pumping capacity of the Large Vacuum Test Facility (LVTF) at PEPL (Figure 3) at 520,000 l/s on air makes it most suitable for initial checkout...evaluation of the thruster. NASA Glenn Research Center’s Vacuum Facility 5 (VF5) (Figure 4), with its increased pumping speed of 3,500,000 l/s on air...reader to Dr. Dan Goebel’s IEPC 2011 paper.41 IV. Facility Selection and Preparation Facility Size and Pumping High T/P thruster testing
Heterogeneously-integrated VCSEL using high-contrast grating on silicon
NASA Astrophysics Data System (ADS)
Ferrara, James; Zhu, Li; Yang, Weijian; Qiao, Pengfei; Chang-Hasnain, Connie J.
2015-02-01
We present a unique heterogeneous integration approach for VCSELs on silicon using eutectic bonding. An electrically pumped III-V - silicon heterogeneous VCSEL is demonstrated using a high-contrast grating (HCG) reflector on silicon. CW output power >1.5 mW, thermal resistance of 1.46 K/mW, and 5 Gb/s direct modulation is demonstrated. We also explore the possibility of an all-HCG VCSEL structure that would benefit from stronger thermal performance, larger tuning efficiency, and higher direct modulation speeds.
2017-09-30
characterization of PS-b-PVBC block copolymer and corresponding blends A micrometer blade film applicator was used to cast consistent films of various...means the titration is under tested. cMeasured at 20 °C in 18 MW water. Teflon stripe was running as background. The films were suspended in...overnight in the dark. Cross-linking of the membranes was achieved by exposure to UV light (Fusion UV systems, Inc. belt speed at 122 3, 7 runs
2018-01-12
characterization of PS-b-PVBC block copolymer and corresponding blends A micrometer blade film applicator was used to cast consistent films of various...means the titration is under tested. cMeasured at 20 °C in 18 MW water. Teflon stripe was running as background. The films were suspended in...overnight in the dark. Cross-linking of the membranes was achieved by exposure to UV light (Fusion UV systems, Inc. belt speed at 122 3, 7 runs
Control system development for a 1 MW/e/ solar thermal power plant
NASA Technical Reports Server (NTRS)
Daubert, E. R.; Bergthold, F. M., Jr.; Fulton, D. G.
1981-01-01
The point-focusing distributed receiver power plant considered consists of a number of power modules delivering power to a central collection point. Each power module contains a parabolic dish concentrator with a closed-cycle receiver/turbine/alternator assembly. Currently, a single-module prototype plant is under construction. The major control system tasks required are related to concentrator pointing control, receiver temperature control, and turbine speed control. Attention is given to operational control details, control hardware and software, and aspects of CRT output display.
Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, B.; Hummon, M.; Cochran, J.
2014-04-01
India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minutemore » irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.« less
NASA Astrophysics Data System (ADS)
Carr, Bob; Knowles, John; Warren, Jeremy
2008-10-01
We describe the continuing development of a laser-based, light scattering detector system capable of detecting and analysing liquid-borne nanoparticles. Using a finely focussed and specially configured laser beam to illuminate a suspension of nanoparticles in a small (250ul) sample and videoing the Brownian motion of each and every particle in the detection zone should allow individual but simultaneous detection and measurement of particle size, scattered light intensity, electrophoretic mobility and, where applicable, shape asymmetry. This real-time, multi-parameter analysis capability offers the prospect of reagentlessly differentiating between different particle types within a complex sample of potentially high and variable background. Employing relatively low powered (50-100mW) laser diode modules and low resolution CCD arrays, each component could be run off battery power, allowing distributed/remote or personal deployment. Voltages needed for electrophoresis measurement s would be similarly low (e.g. 20V, low current) and 30second videos (exported at mobile/cell phone download speeds) analysed remotely. The potential of such low-cost technology as a field-deployable grid of remote, battery powered and reagentless, multi-parameter sensors for use as trigger devices is discussed.
NASA Astrophysics Data System (ADS)
Béguin, A.; Nicolet, C.; Hell, J.; Moreira, C.
2017-04-01
The paper explores the improvement in ancillary services that variable speed technologies can provide for the case of an existing pumped storage power plant of 2x210 MVA which conversion from fixed speed to variable speed is investigated with a focus on the power step performances of the units. First two motor-generator variable speed technologies are introduced, namely the Doubly Fed Induction Machine (DFIM) and the Full Scale Frequency Converter (FSFC). Then a detailed numerical simulation model of the investigated power plant used to simulate power steps response and comprising the waterways, the pump-turbine unit, the motor-generator, the grid connection and the control systems is presented. Hydroelectric system time domain simulations are performed in order to determine the shortest response time achievable, taking into account the constraints from the maximum penstock pressure and from the rotational speed limits. It is shown that the maximum instantaneous power step response up and down depends on the hydro-mechanical characteristics of the pump-turbine unit and of the motor-generator speed limits. As a results, for the investigated test case, the FSFC solution offer the best power step response performances.
Engine lubrication circuit including two pumps
Lane, William H.
2006-10-03
A lubrication pump coupled to the engine is sized such that the it can supply the engine with a predetermined flow volume as soon as the engine reaches a peak torque engine speed. In engines that operate predominately at speeds above the peak torque engine speed, the lubrication pump is often producing lubrication fluid in excess of the predetermined flow volume that is bypassed back to a lubrication fluid source. This arguably results in wasted power. In order to more efficiently lubricate an engine, a lubrication circuit includes a lubrication pump and a variable delivery pump. The lubrication pump is operably coupled to the engine, and the variable delivery pump is in communication with a pump output controller that is operable to vary a lubrication fluid output from the variable delivery pump as a function of at least one of engine speed and lubrication flow volume or system pressure. Thus, the lubrication pump can be sized to produce the predetermined flow volume at a speed range at which the engine predominately operates while the variable delivery pump can supplement lubrication fluid delivery from the lubrication pump at engine speeds below the predominant engine speed range.
Photodynamic dosimetry in the treatment of periodontitis
NASA Astrophysics Data System (ADS)
Andersen, Roger C.; Loebel, Nicolas G.; Andersen, Dane M.
2009-06-01
Photodynamic therapy has been demonstrated to effectively kill human periopathogens in vitro. However, the translation of in vitro work to in vivo clinical efficacy has been difficult due to the number of variables present in any given patient. Parameters such as photosensitizer concentration, duration of light therapy and amount of light delivered to the target tissue all play a role in the dose response of PDT in vivo. In this 121 patient study we kept all parameters the same except for light dose which was delivered at either 150 mW or 220 mW. This clearly demonstrated the clinical benefits of a higher light dose in the treatment of periodontitis.
Status and Evaluation of Microwave Furnace Capabilities at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Lizcano, Maricela; Mackey, Jonathan A.
2014-01-01
The microwave (MW) furnace is a HY-Tech Microwave Systems, 2 kW 2.45 GHz Single Mode Microwave Applicator operating in continuous wave (CW) with variable power. It is located in Cleveland, Ohio at NASA Glenn Research Center. Until recently, the furnace capabilities had not been fully realized due to unknown failure that subsequently damaged critical furnace components. Although the causes of the problems were unknown, an assessment of the furnace itself indicated operational failure may have been partially caused by power quality. This report summarizes the status of the MW furnace and evaluates its capabilities in materials processing.
Collected Reprints-1975. Volume I.
1977-02-01
ces ca u sed b y iiic reased sea state in (lie stretch variable (~ ) from cu rrent . ‘ 1(b~ + Ka ) - D, V1”In order to grap h i ca ll y disp lay...mw) and similarly those values of (800- I IOU mini ) is all constrained w DN < (DN — Ka ) are clipped. Equation 0~ DiV~ (0-O. 29 mW cm 2 sr~ ). The low...York . 1 1)4 pgs . vice , NAS ..\\ (‘R-l 333115: 1-73 -I (1”4~~ . Spring- Ka h l e , K. ( 19 3 8) , ‘I tin Ils’ drol. Mari n e M i t , 66. field , Va
Within-day variability on short and long walking tests in persons with multiple sclerosis.
Feys, Peter; Bibby, Bo; Romberg, Anders; Santoyo, Carme; Gebara, Benoit; de Noordhout, Benoit Maertens; Knuts, Kathy; Bethoux, Francois; Skjerbæk, Anders; Jensen, Ellen; Baert, Ilse; Vaney, Claude; de Groot, Vincent; Dalgas, Ulrik
2014-03-15
To compare within-day variability of short (10 m walking test at usual and fastest speed; 10MWT) and long (2 and 6-minute walking test; 2MWT/6MWT) tests in persons with multiple sclerosis. Observational study. MS rehabilitation and research centers in Europe and US within RIMS (European network for best practice and research in MS rehabilitation). Ambulatory persons with MS (Expanded Disability Status Scale 0-6.5). Subjects of different centers performed walking tests at 3 time points during a single day. 10MWT, 2MWT and 6MWT at fastest speed and 10MWT at usual speed. Ninety-five percent limits of agreement were computed using a random effects model with individual pwMS as random effect. Following this model, retest scores are with 95% certainty within these limits of baseline scores. In 102 subjects, within-day variability was constant in absolute units for the 10MWT, 2MWT and 6MWT at fastest speed (+/-0.26, 0.16 and 0.15m/s respectively, corresponding to +/-19.2m and +/-54 m for the 2MWT and 6MWT) independent on the severity of ambulatory dysfunction. This implies a greater relative variability with increasing disability level, often above 20% depending on the applied test. The relative within-day variability of the 10MWT at usual speed was +/-31% independent of ambulatory function. Absolute values of within-day variability on walking tests at fastest speed were independent of disability level and greater with short compared to long walking tests. Relative within-day variability remained overall constant when measured at usual speed. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Design and performance of a centimetre-scale shrouded wind turbine for energy harvesting
NASA Astrophysics Data System (ADS)
Howey, D. A.; Bansal, A.; Holmes, A. S.
2011-08-01
A miniature shrouded wind turbine aimed at energy harvesting for power delivery to wireless sensors in pipes and ducts is presented. The device has a rotor diameter of 2 cm, with an outer diameter of 3.2 cm, and generates electrical power by means of an axial-flux permanent magnet machine built into the shroud. Fabrication was accomplished using a combination of traditional machining, rapid prototyping, and flexible printed circuit board technology for the generator stator, with jewel bearings providing low friction and start up speed. Prototype devices can operate at air speeds down to 3 m s-1, and deliver between 80 µW and 2.5 mW of electrical power at air speeds in the range 3-7 m s-1. Experimental turbine performance curves, obtained by wind tunnel testing and corrected for bearing losses using data obtained in separate vacuum run-down tests, are compared with the predictions of an elementary blade element momentum (BEM) model. The two show reasonable agreement at low tip speed ratios. However, in experiments where a maximum could be observed, the maximum power coefficient (~9%) is marginally lower than predicted from the BEM model and occurs at a lower than predicted tip speed ratio of around 0.6.
NASA Astrophysics Data System (ADS)
Shahbazi, AmirHossein; Koohian, Ata; Madanipour, Khosro
2017-01-01
In this paper continuous wave laser scribing of the metal thin films have been investigated theoretically and experimentally. A formulation is presented based on parameters like beam power, spot size, scanning speed and fluence thresholds. The role of speed on the transient temperature and tracks width is studied numerically. By using two frameworks of pulsed laser ablation of thin films and laser printing on paper, the relation between ablation width and scanning speed has been derived. Furthermore, various speeds of the focused 450 nm continuous laser diode with an elliptical beam spot applied to a 290 nm copper thin film coated on glass, experimentally. The beam power was 150 mW after spatial filtering. By fitting the theoretical formulation to the experimental data, the threshold fluence and energy were obtained to be 13.2 J mm-2 and 414~μ J respectively. An anticipated theoretical parameter named equilibrium~border was verified experimentally. It shows that in the scribing of the 290 nm copper thin film, at a distance where the intensity reaches about 1/e of its maximum value, the absorbed fluence on the surface is equal to zero. Therefore the application of continuous laser in metal thin film ablation has different mechanism from pulsed laser drilling and beam scanning in printers.
Benefits of Applying Hierarchical Models to the Empirical Green's Function Approach
NASA Astrophysics Data System (ADS)
Denolle, M.; Van Houtte, C.
2017-12-01
Stress drops calculated from source spectral studies currently show larger variability than what is implied by empirical ground motion models. One of the potential origins of the inflated variability is the simplified model-fitting techniques used in most source spectral studies. This study improves upon these existing methods, and shows that the fitting method may explain some of the discrepancy. In particular, Bayesian hierarchical modelling is shown to be a method that can reduce bias, better quantify uncertainties and allow additional effects to be resolved. The method is applied to the Mw7.1 Kumamoto, Japan earthquake, and other global, moderate-magnitude, strike-slip earthquakes between Mw5 and Mw7.5. It is shown that the variation of the corner frequency, fc, and the falloff rate, n, across the focal sphere can be reliably retrieved without overfitting the data. Additionally, it is shown that methods commonly used to calculate corner frequencies can give substantial biases. In particular, if fc were calculated for the Kumamoto earthquake using a model with a falloff rate fixed at 2 instead of the best fit 1.6, the obtained fc would be as large as twice its realistic value. The reliable retrieval of the falloff rate allows deeper examination of this parameter for a suite of global, strike-slip earthquakes, and its scaling with magnitude. The earthquake sequences considered in this study are from Japan, New Zealand, Haiti and California.
Contribution of variable-speed pump hydro storage for power system dynamic performance
NASA Astrophysics Data System (ADS)
Silva, B.; Moreira, C.
2017-04-01
This paper presents the study of variable-speed Pump Storage Powerplant (PSP) in the Portuguese power system. It evaluates the progressive integration in three major locations and compares the power system performance following a severe fault event with consequent disconnection of non-Fault Ride-through (FRT) compliant Wind Farms (WF). To achieve such objective, a frequency responsive model was developed in PSS/E and was further used to substitute existing fixed-speed PSP. The results allow identifying a clear enhancement on the power system performance by the presence of frequency responsive variable-speed PSP, especially for the scenario presented, with high level of renewables integration.
The Outer Halo of the Milky Way as Probed by RR Lyr Variables from the Palomar Transient Facility
NASA Astrophysics Data System (ADS)
Cohen, Judith G.; Sesar, Branimir; Bahnolzer, Sophianna; He, Kevin; Kulkarni, Shrinivas R.; Prince, Thomas A.; Bellm, Eric; Laher, Russ R.
2017-11-01
RR Lyrae stars are ideal massless tracers that can be used to study the total mass and dark matter content of the outer halo of the Milky Way (MW). This is because they are easy to find in the light-curve databases of large stellar surveys and their distances can be determined with only knowledge of the light curve. We present here a sample of 112 RR Lyr stars beyond 50 kpc in the outer halo of the MW, excluding the Sgr streams, for which we have obtained moderate-resolution spectra with Deimos on the Keck II Telescope. Four of these have distances exceeding 100 kpc. These were selected from a much larger set of 447 candidate RR Lyr stars that were data-mined using machine-learning techniques applied to the light curves of variable stars in the Palomar Transient Facility database. The observed radial velocities taken at the phase of the variable corresponding to the time of observation were converted to systemic radial velocities in the Galactic standard of rest. From our sample of 112 RR Lyr stars we determine the radial velocity dispersion in the outer halo of the MW to be ˜90 km s-1 at 50 kpc, falling to about 65 km s-1 near 100 kpc once a small number of major outliers are removed. With reasonable estimates of the completeness of our sample of 447 candidates and assuming a spherical halo, we find that the stellar density in the outer halo declines as {r}-4. Based in part on observations obtained at the W. M. Keck Observatory, which is operated jointly by the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration.
A Satellite Infrared Technique for Diurnal Rainfall Variability Studies
NASA Technical Reports Server (NTRS)
Anagnostou, Emmanouil
1998-01-01
Reliable information on the distribution of precipitation at high temporal resolution (
Shahriari, Haleh; Warith, Mostafa; Hamoda, Mohamed; Kennedy, Kevin J
2012-01-01
In order to enhance anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW), pretreatment combining two modalities, microwave (MW) heating in presence or absence of hydrogen peroxide (H(2)O(2)) were investigated. The main pretreatment variables affecting the characteristics of the OFMSW were temperature (T) via MW irradiation and supplemental water additions of 20% and 30% (SWA20 and SW30). Subsequently, the focus of this study was to evaluate mesophilic batch AD performance in terms of biogas production, as well as changes in the characteristics of the OFMSW post digestion. A high MW induced temperature range (115-175°C) was applied, using sealed vessels and a bench scale MW unit equipped with temperature and pressure controls. Biochemical methane potential (BMP) tests were conducted on the whole OFMSW as well as the liquid fractions. The whole OFMSW pretreated at 115°C and 145°C showed 4-7% improvement in biogas production over untreated OFMSW (control). When pretreated at 175°C, biogas production decreased due to formation of refractory compounds, inhibiting the digestion. For the liquid fraction of OFMSW, the effect of pretreatment on the cumulative biogas production (CBP) was more pronounced for SWA20 at 145°C, with a 26% increase in biogas production after 8days of digestion, compared to the control. When considering the increased substrate availability in the liquid fraction after MW pretreatment, a 78% improvement in biogas production vs. the control was achieved. Combining MW and H(2)O(2) modalities did not have a positive impact on OFMSW stabilization and enhanced biogas production. In general, all samples pretreated with H(2)O(2) displayed a long lag phase and the CBP was usually lower than MW irradiated only samples. First order rate constant was calculated. Copyright © 2011 Elsevier Ltd. All rights reserved.
Calibration of Crustal Historical Earthquakes from Intra-Carpathian Region of Romania
NASA Astrophysics Data System (ADS)
Oros, Eugen; Popa, Mihaela; Rogozea, Maria
2017-12-01
The main task of the presented study is to elaborate a set of relations of mutual conversion macroseismic intensity - magnitude, necessary for the calibration of the historical crustal earthquakes produced in the Intra - Carpathian region of Romania, as a prerequisite for homogenization of the parametric catalogue of Romanian earthquakes. To achieve the goal, we selected a set of earthquakes for which we have quality macroseismic data and the Mw moment magnitude obtained instrumentally. These seismic events were used to determine the relations between the Mw and the peak/epicentral intensity, the isoseist surface area for I=3, I=4 and I=5: Mw = f (Imax / Io), Mw = f (Imax / Io, h), Mw = f (A3, A4; A5). We investigated several variants of such relationships and combinations, taking into account that the macroseismic data necessary for the re-evaluation of historical earthquakes in the investigated region are available in several forms. Thus, a number of investigations provided various information resulted after revising initial historical data: 1) Intensity data point (IDP) assimilated or not with the epicentre intensity after analysis of the correlation level with recent seismicity data and / or active tectonics / seismotectonics, 2) Sets of intensities obtained in several localities (IDPs) with variable values having maxims that can be considered equal to epicentral intensity (Io), 3) Sets of intensities obtained in several localities (IDPs) but without obvious maximum values, assimilable with the epicentral intensity, 4) maps with isoseismals, 5) Information on the areas in which the investigated earthquake was felt or the area of perceptiveness (e.g. I = 3 EMS during the day and I = 4 EMS at night) or the surfaces corresponding to a certain degree of well-defined intensity. The obtained relationships were validated using a set of earthquakes with instrumental source parameters (localization, depth, Mw). These relationships lead to redundant results meaningful in the process of estimating the quality and credibility of the primary data used (e.g. IDPs, isoseismals) and in the correct determination of Mw.
Two Independent Contributions to Step Variability during Over-Ground Human Walking
Collins, Steven H.; Kuo, Arthur D.
2013-01-01
Human walking exhibits small variations in both step length and step width, some of which may be related to active balance control. Lateral balance is thought to require integrative sensorimotor control through adjustment of step width rather than length, contributing to greater variability in step width. Here we propose that step length variations are largely explained by the typical human preference for step length to increase with walking speed, which itself normally exhibits some slow and spontaneous fluctuation. In contrast, step width variations should have little relation to speed if they are produced more for lateral balance. As a test, we examined hundreds of overground walking steps by healthy young adults (N = 14, age < 40 yrs.). We found that slow fluctuations in self-selected walking speed (2.3% coefficient of variation) could explain most of the variance in step length (59%, P < 0.01). The residual variability not explained by speed was small (1.5% coefficient of variation), suggesting that step length is actually quite precise if not for the slow speed fluctuations. Step width varied over faster time scales and was independent of speed fluctuations, with variance 4.3 times greater than that for step length (P < 0.01) after accounting for the speed effect. That difference was further magnified by walking with eyes closed, which appears detrimental to control of lateral balance. Humans appear to modulate fore-aft foot placement in precise accordance with slow fluctuations in walking speed, whereas the variability of lateral foot placement appears more closely related to balance. Step variability is separable in both direction and time scale into balance- and speed-related components. The separation of factors not related to balance may reveal which aspects of walking are most critical for the nervous system to control. PMID:24015308
Ameid, Tarek; Menacer, Arezki; Talhaoui, Hicham; Azzoug, Youness
2018-05-03
This paper presents a methodology for the broken rotor bars fault detection is considered when the rotor speed varies continuously and the induction machine is controlled by Field-Oriented Control (FOC). The rotor fault detection is obtained by analyzing a several mechanical and electrical quantities (i.e., rotor speed, stator phase current and output signal of the speed regulator) by the Discrete Wavelet Transform (DWT) in variable speed drives. The severity of the fault is obtained by stored energy calculation for active power signal. Hence, it can be a useful solution as fault indicator. The FOC is implemented in order to preserve a good performance speed control; to compensate the broken rotor bars effect in the mechanical speed and to ensure the operation continuity and to investigate the fault effect in the variable speed. The effectiveness of the technique is evaluated in simulation and in a real-time implementation by using Matlab/Simulink with the real-time interface (RTI) based on dSpace 1104 board. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Zhang, Hao; Koper, Keith D.; Pankow, Kristine; Ge, Zengxi
2017-05-01
The 13 November 2016 Mw 7.8 Kaikoura, New Zealand, earthquake was investigated using teleseismic P waves. Backprojection of high-frequency P waves from two regional arrays shows unilateral rupture of at least two southwest-northeast striking faults with an average rupture speed of 1.4-1.6 km/s and total duration of 100 s. Guided by these backprojection results, 33 globally distributed low-frequency P waves were inverted for a finite fault model (FFM) of slip. The FFM showed evidence of several subevents; however, it lacked significant moment release near the epicenter, where a large burst of high-frequency energy was observed. A local strong-motion network recorded strong shaking near the epicenter; hence, for this earthquake the distribution of backprojection energy is superior to the FFM as a guide of strong shaking. For future large earthquakes that occur in regions without strong-motion networks, initial shaking estimates could benefit from backprojection constraints.
The deep Peru 2015 doublet earthquakes
NASA Astrophysics Data System (ADS)
Ruiz, S.; Tavera, H.; Poli, P.; Herrera, C.; Flores, C.; Rivera, E.; Madariaga, R.
2017-11-01
On 24 November 2015 two events of magnitude Mw 7.5 and Mw 7.6 occurred at 600 km depth under the Peru-Brazil boundary. These two events were separated in time by 300 s. Deep event doublets occur often under South America. The characteristics that control these events and the dynamic interaction between them are an unresolved problem. We used teleseismic and regional data, situated above the doublet, to perform source inversion in order to characterize their ruptures. The overall resemblance between these two events suggests that they share similar rupture process. They are not identical but occur on the same fault surface dipping westward. Using a P-wave stripping and stretching method we determine rupture speed of 2.25 km/s. From regional body wave inversion we find that stress drop is similar for both events, they differ by a factor of two. The similarity in geometry, rupture velocity, stress drop and radiated energy, suggests that these two events looked like simple elliptical ruptures that propagated like classical sub-shear brittle cracks.
Peeters, Elisabeth; De Beer, Thomas; Vervaet, Chris; Remon, Jean-Paul
2015-04-01
Tableting is a complex process due to the large number of process parameters that can be varied. Knowledge and understanding of the influence of these parameters on the final product quality is of great importance for the industry, allowing economic efficiency and parametric release. The aim of this study was to investigate the influence of paddle speeds and fill depth at different tableting speeds on the weight and weight variability of tablets. Two excipients possessing different flow behavior, microcrystalline cellulose (MCC) and dibasic calcium phosphate dihydrate (DCP), were selected as model powders. Tablets were manufactured via a high-speed rotary tablet press using design of experiments (DoE). During each experiment also the volume of powder in the forced feeder was measured. Analysis of the DoE revealed that paddle speeds are of minor importance for tablet weight but significantly affect volume of powder inside the feeder in case of powders with excellent flowability (DCP). The opposite effect of paddle speed was observed for fairly flowing powders (MCC). Tableting speed played a role in weight and weight variability, whereas changing fill depth exclusively influenced tablet weight. The DoE approach allowed predicting the optimum combination of process parameters leading to minimum tablet weight variability. Monte Carlo simulations allowed assessing the probability to exceed the acceptable response limits if factor settings were varied around their optimum. This multi-dimensional combination and interaction of input variables leading to response criteria with acceptable probability reflected the design space.
Frederix, Sofie A; Van Hoeymissen, Klaartje E; Courtin, Christophe M; Delcour, Jan A
2004-12-29
Water-extractable arabinoxylan (WE-AX) of variable molecular weight (MW) and water-unextractable arabinoxylan (WU-AX) were added to wheat flour to study their effect on gluten agglomeration in a dough and batter gluten-starch separation process with recovery of gluten from the batter with a set of vibrating sieves (400, 250, and 125 microm). Low MW WE-AX had almost no impact on the distribution of the gluten on the different sieves. High MW WE-AX decreased yields of the largest (400 microm sieve) gluten aggregates, more than their medium MW counterparts, indicating the importance of AX MW for their effect on gluten interactions. Correlations between the total level of gluten protein recovered on the three sieves and the batter extract viscosity as well as between the proportion of gluten protein recovered on the 400 microm sieve to that on the three sieves and the batter extract viscosity pointed to the importance of viscosity as an indicator for gluten agglomeration, as did the fact that another viscosity increasing plant polysaccharide (guar gum) also negatively influenced gluten agglomeration. However, the obtained data cannot rule out that AX and guar gum also exert steric effects on gluten agglomeration. WU-AX, present as discrete cell wall fragments, had a negative impact on the level of large gluten aggregates. Taken together, the results show that both native WE-AX and WU-AX detrimentally impact gluten agglomeration.
High-speed photorefractive keratectomy with femtosecond ultraviolet pulses
NASA Astrophysics Data System (ADS)
Danieliene, Egle; Gabryte, Egle; Vengris, Mikas; Ruksenas, Osvaldas; Gutauskas, Algimantas; Morkunas, Vaidotas; Danielius, Romualdas
2015-05-01
Femtosecond near-infrared lasers are widely used for a number of ophthalmic procedures, with flap cutting in the laser-assisted in situ keratomileusis (LASIK) surgery being the most frequent one. At the same time, lasers of this type, equipped with harmonic generators, have been shown to deliver enough ultraviolet (UV) power for the second stage of the LASIK procedure, the stromal ablation. However, the speed of the ablation reported so far was well below the currently accepted standards. Our purpose was to perform high-speed photorefractive keratectomy (PRK) with femtosecond UV pulses in rabbits and to evaluate its predictability, reproducibility and healing response. The laser source delivered femtosecond 206 nm pulses with a repetition rate of 50 kHz and an average power of 400 mW. Transepithelial PRK was performed using two different ablation protocols, to a total depth of 110 and 150 μm. The surface temperature was monitored during ablation; haze dynamics and histological samples were evaluated to assess outcomes of the PRK procedure. For comparison, analogous excimer ablation was performed. Increase of the ablation speed up to 1.6 s/diopter for a 6 mm optical zone using femtosecond UV pulses did not significantly impact the healing process.
Continuously-Variable Positive-Mesh Power Transmission
NASA Technical Reports Server (NTRS)
Johnson, J. L.
1982-01-01
Proposed transmission with continuously-variable speed ratio couples two mechanical trigonometric-function generators. Transmission is expected to handle higher loads than conventional variable-pulley drives; and, unlike variable pulley, positive traction through entire drive train with no reliance on friction to transmit power. Able to vary speed continuously through zero and into reverse. Possible applications in instrumentation where drive-train slippage cannot be tolerated.
Gravo-Aeroelastic Scaling for Extreme-Scale Wind Turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fingersh, Lee J; Loth, Eric; Kaminski, Meghan
2017-06-09
A scaling methodology is described in the present paper for extreme-scale wind turbines (rated at 10 MW or more) that allow their sub-scale turbines to capture their key blade dynamics and aeroelastic deflections. For extreme-scale turbines, such deflections and dynamics can be substantial and are primarily driven by centrifugal, thrust and gravity forces as well as the net torque. Each of these are in turn a function of various wind conditions, including turbulence levels that cause shear, veer, and gust loads. The 13.2 MW rated SNL100-03 rotor design, having a blade length of 100-meters, is herein scaled to the CART3more » wind turbine at NREL using 25% geometric scaling and blade mass and wind speed scaled by gravo-aeroelastic constraints. In order to mimic the ultralight structure on the advanced concept extreme-scale design the scaling results indicate that the gravo-aeroelastically scaled blades for the CART3 are be three times lighter and 25% longer than the current CART3 blades. A benefit of this scaling approach is that the scaled wind speeds needed for testing are reduced (in this case by a factor of two), allowing testing under extreme gust conditions to be much more easily achieved. Most importantly, this scaling approach can investigate extreme-scale concepts including dynamic behaviors and aeroelastic deflections (including flutter) at an extremely small fraction of the full-scale cost.« less
NASA Astrophysics Data System (ADS)
Hreinsdottir, Sigrun
2005-07-01
GPS geodetic measurements are used to study two major earthquakes, the 2001 MW 7.7 El Salvador and 2002 MW 7.9 Denali Fault earthquakes. The 2001 MW 7.7 earthquake was a normal fault event in the subducting Cocos plate offshore El Salvador. Coseismic displacements of up to 15 mm were measured at permanent GPS stations in Central America. The GPS data were used to constrain the location of and slip on the normal fault. One month later a MW 6.6 strike-slip earthquake occurred in the overriding Caribbean plate. Coulomb stress changes estimated from the M W 7.7 earthquake suggest that it triggered the MW 6.6 earthquake. Coseismic displacement from the MW 6.6 earthquake, about 40 mm at a GPS station in El Salvador, indicates that the earthquake triggered additional slip on a fault close to the GPS station. The MW 6.6 earthquake further changed the stress field in the overriding Caribbean plate, with triggered seismic activity occurring west and possibly also to the east of the rupture in the days to months following the earthquake. The MW 7.9 Denali Fault earthquake ruptured three faults in the interior of Alaska. It initiated with a thrust motion on the Susitna Glacier fault but then ruptured the Denali and Totschunda faults with predominantly right-lateral strike-slip motion unilaterally from west to east. GPS data measured in the two weeks following the earthquake suggest a complex coseismic rupture along the faults with two main regions of moment release along the Denali fault. A large amount of additional data were collected in the year following the earthquake which greatly improved the resolution on the fault, revealing more details of the slip distribution. We estimate a total moment release of 6.81 x 1020 Nm in the earthquake with a M W 7.2 thrust subevent on Susitna Glacier fault. The slip on the Denali fault is highly variable, with 4 main pulses of moment release. The largest moment pulse corresponds to a MW 7.5 subevent, about 40 km west of the Denali-Totschunda fault junction. We estimate relatively low and shallow slip on the Totschunda fault.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Itoh, H.; Akashi, T.; Takada, M.
1987-03-31
This patent describes a hydraulic control system for controlling a speed ratio of a hydraulically-operated continuously variable transmission of belt-and-pulley type having a variable-diameter pulley and a hydraulic cylinder for changing an effective diameter of the variable diameter-pulley of the transmission. The hydraulic control system includes a speed-ratio control valve assembly for controlling the supply and discharge of a pressurized fluid to and from the hydraulic cylinder to thereby change the speed ratio of the transmission. The speed-ratio control valve assembly comprises: a shift-direction switching valve unit disposed in fluid supply and discharge conduits communicating with the hydraulic cylinder, formore » controlling a direction in which the speed ratio of the transmission is varied; a shift-speed control valve unit of spool-valve type connected to the shift-direction switching valve unit. The shift-speed control valve unit is selectively placed in a first state in which the fluid supply and discharge flows to and from the hydraulic cylinder through the conduits are permitted, or in a second state in which the fluid supply flow is restricted while the fluid discharge flow is inhibited; an actuator means for placing the shift speed control valve unit alternately in the first and second states to control a rate of variation in the speed ratio of the transmission in the direction established by the shift-direction switching valve unit.« less
NASA Astrophysics Data System (ADS)
Susilowati, Agustine; Aspiyanto, Maryati, Yati; Melanie, Hakiki; Lotulung, Puspa D.
2017-01-01
Purifying broccoli (Brassica oleracea L.) fermented by Lactic Acid Bacteria (LAB) using mixture of L. bulgaricus, S. thermopillus, L. acidophillusand Bifidobacteriumbifidum and fructooligosaccharides (FOS) as carbon source have been performed to recover biomass concentrate for probiotic and antioxidant. Purification of fermented broccoli was conducted through microfiltration (MF) membrane of 0.15 µm at stirrer rotation speed 400 rpm, room temperature and pressure 40 psia for 30 minutes. Fermented broccoli produced via fermentation process with fermentation time 0 (initial) and 48 hours, and LAB concentration 10% and 20% (v/v) represented as biomass of A, B, C and D. The experimental result showed that based on selectivity of total organic acids, separating optimization was achieved at biomass D (fermentation time 48 hours and mixed LAB culture concentration 20%). Concentrate composition produced in this condition were total acids 6.04%, total solids 24.31%, total polyphenol 0.0252%, reducing sugar 68.25 mg/mL, total sugars 30.89 mg/mL, and dissolved protein 28.54 mg/mL with pH 3.94. In this condition, recovery of biomass concentrate of D for total acids 5.64 folds, total solids 1.82 folds, total polyphenol 3.03 folds, reducing sugar 1.16 folds, total sugars 1.19 folds, and dissolved protein 0.67 folds compared with feed (initial process). Identification of monomer of biomass concentrate D as polyphenol derivatives at T2,01 and T3.01 gave monomer with molecular weight (MW) 192.78 Dalton (Da.), and monomer with MW 191.08, 191.49 and 192.07 Da., while lactic acid derivatives showed MW 251.13, 251.6 and 252.14, and monomer with MW 250.63, 252.14 and 254.22 Da.
Tra, Viet; Kim, Jaeyoung; Kim, Jong-Myon
2017-01-01
This paper presents a novel method for diagnosing incipient bearing defects under variable operating speeds using convolutional neural networks (CNNs) trained via the stochastic diagonal Levenberg-Marquardt (S-DLM) algorithm. The CNNs utilize the spectral energy maps (SEMs) of the acoustic emission (AE) signals as inputs and automatically learn the optimal features, which yield the best discriminative models for diagnosing incipient bearing defects under variable operating speeds. The SEMs are two-dimensional maps that show the distribution of energy across different bands of the AE spectrum. It is hypothesized that the variation of a bearing’s speed would not alter the overall shape of the AE spectrum rather, it may only scale and translate it. Thus, at different speeds, the same defect would yield SEMs that are scaled and shifted versions of each other. This hypothesis is confirmed by the experimental results, where CNNs trained using the S-DLM algorithm yield significantly better diagnostic performance under variable operating speeds compared to existing methods. In this work, the performance of different training algorithms is also evaluated to select the best training algorithm for the CNNs. The proposed method is used to diagnose both single and compound defects at six different operating speeds. PMID:29211025
NASA Astrophysics Data System (ADS)
Kirchengast, G.; Schweitzer, S.
2008-12-01
The ACCURATE (Atmospheric Climate and Chemistry in the UTLS Region And climate Trends Explorer) mission was conceived at the Wegener Center in late 2004 and subsequently proposed in 2005 by an international team of more than 20 scientific partners from more than 12 countries to an ESA selection process for next Earth Explorer Missions. While the mission was not selected for formal pre-phase A study, it received very positive evaluation and was recommended for further development and demonstration. ACCURATE employs the occultation measurement principle, known for its unique combination of high vertical resolution, accuracy and long-term stability, in a novel way. It systematically combines use of highly stable signals in the MW 17-23/178-196 GHz bands (LEO-LEO MW crosslink occultation) with laser signals in the SWIR 2-2.5 μm band (LEO-LEO IR laser crosslink occultation) for exploring and monitoring climate and chemistry in the atmosphere with focus on the UTLS region (upper troposphere/lower stratosphere, 5-35 km). The MW occultation is an advanced and at the same time compact version of the LEO-LEO MW occultation concept, studied in 2002-2004 for the ACE+ mission project of ESA for frequencies including the 17-23 GHz band, complemented by U.S. study heritage for frequencies including the 178-196 GHz bands (R. Kursinski et al., Univ. of Arizona, Tucson). The core of ACCURATE is tight synergy of the IR laser crosslinks with the MW crosslinks. The observed parameters, obtained simultaneously and in a self-calibrated manner based on Doppler shift and differential log-transmission profiles, comprise the fundamental thermodynamic variables of the atmosphere (temperature, pressure/geopotential height, humidity) retrieved from the MW bands, complemented by line-of-sight wind, six greenhouse gases (GHGs) and key species of UTLS chemistry (H2O, CO2, CH4, N2O, O3, CO) and four CO2 and H2O isotopes (HDO, H218O, 13CO2, C18OO) from the SWIR band. Furthermore, profiles of aerosol extinction, cloud layering, and turbulence are obtained. All profiles come with accurate height knowledge (< 10 m uncertainty), since measuring height as a function of time is intrinsic to the MW occultation part of ACCURATE. The presentation will introduce ACCURATE along the lines above, with emphasis on the climate science value and the new IR laser occultation capability. The focus will then be on retrieval performance analysis results obtained so far, in particular regarding the profiles of GHGs, isotopes, and wind. The results provide evidence that the GHG and isotope profiles can generally be retrieved within 5-35 km outside clouds with < 1% to 5% rms accuracy at 1-2 km vertical resolution, and wind with < 2 m/s accuracy. Monthly mean climatological profiles, assuming ~40 profiles per climatologic grid box per month, are found unbiased (free of time-varying biases) and at < 0.2% to 0.5% rms accuracy. These encouraging results are discussed in light of the potential of the ACCURATE technique to provide benchmark data for future monitoring of climate, GHGs, and chemistry variability and change. European science and demonstration activities are outlined, including international participation opportunities.
Towards Near Real-time Convective Rainfall Observations over Kenya
NASA Astrophysics Data System (ADS)
Hoedjes, Joost; Said, Mohammed; Becht, Robert; Kifugo, Shem; Kooiman, André; Limo, Agnes; Maathuis, Ben; Moore, Ian; Mumo, Mark; Nduhiu Mathenge, Joseph; Su, Bob; Wright, Iain
2013-04-01
The existing meteorological infrastructure in Kenya is poorly suited for the countrywide real-time monitoring of precipitation. Rainfall radar is not available, and the existing network of rain gauges is sparse and challenging to maintain. This severely restricts Kenya's capacity to warn for, and respond to, weather related emergencies. Furthermore, the lack of accurate rainfall observations severely limits Kenya's climate change adaptation capabilities. Over the past decade, the mobile telephone network in Kenya has expanded rapidly. This network makes extensive use of terrestrial microwave (MW) links, received signal level (RSL) data from which can be used for the calculation of rainfall intensities. We present a novel method for the near-real time observation of convective rainfall over Kenya, based on the combined use of MW RSL data and Meteosat Second Generation (MSG) satellite data. In this study, the variable density rainfall information derived from several MW links is scaled up using MSG data to provide full rainfall information coverage for the region surrounding the links. Combining MSG data and MW link derived rainfall data for several adjacent MW links makes it possible to make the distinction between wet and dry pixels. This allows the disaggregation of the MW link derived rainfall intensities. With the distinction between wet and dry pixels made, and the MW derived rainfall intensities disaggregated, these data can then be used to develop instantaneous empirical relationships linking rainfall intensities to cloud physical properties. These relationships are then used to calculate rainfall intensities for the MSG scene. Since both the MSG and the MW data are available at the same temporal resolution, unique empirical coefficients can be determined for each interval. This approach ensures that changes in convective conditions from one interval to the next are taken into account. Initial results from a pilot study, which took place from November 2012 until January 2013, are presented. The work has been carried out in close cooperation with mobile telephone operator Safaricom, using RSL data from 15 microwave links in rain prone areas in Western Kenya (out of a total of 3000 MW links operated by Safaricom in Kenya). The data supplied by Safaricom consist of the mean, minimum and maximum RSL for each MW link over a 15 minute interval. For this pilot study, use has been made of the MSG Cloud Top Temperature data product from the Royal Dutch Meteorological Institute's MSG Cloud Physical Properties database (http://msgcpp.knmi.nl/).
Moon, Y.; Chandrasekaran, J.; Hsu, I.M.K.; Rice, I.M.; Hsiao-Wecksler, E.T.; Sosnoff, J.J.
2013-01-01
Background Manual wheelchair users report a high prevalence of shoulder pain. Growing evidence shows that variability in forces applied to biological tissue is related to musculoskeletal pain. The purpose of this study was to examine the variability of forces acting on the shoulder during wheelchair propulsion as a function of shoulder pain. Methods Twenty-four manual wheelchair users (13 with pain, 11 without pain) participated in the investigation. Kinetic and kinematic data of wheelchair propulsion were recorded for three minutes maintaining a constant speed at three distinct propulsion speeds (fast speed of 1.1 m/s, a self-selected speed, and a slow speed of 0.7 m/s). Peak resultant shoulder forces in the push phase were calculated using inverse dynamics. Within individual variability was quantified as the coefficient of variation of cycle to cycle peak resultant forces. Findings There was no difference in mean peak shoulder resultant force between groups. The pain group had significantly smaller variability of peak resultant force than the no pain group (p < 0.01, η2 = 0.18). Interpretation The observations raise the possibility that propulsion variability could be a novel marker of upper limb pain in manual wheelchair users. PMID:24210512
Wilkes, Donald F.; Purvis, James W.; Miller, A. Keith
1997-01-01
An infinitely variable transmission is capable of operating between a maximum speed in one direction and a minimum speed in an opposite direction, including a zero output angular velocity, while being supplied with energy at a constant angular velocity. Input energy is divided between a first power path carrying an orbital set of elements and a second path that includes a variable speed adjustment mechanism. The second power path also connects with the orbital set of elements in such a way as to vary the rate of angular rotation thereof. The combined effects of power from the first and second power paths are combined and delivered to an output element by the orbital element set. The transmission can be designed to operate over a preselected ratio of forward to reverse output speeds.
Control of variable speed variable pitch wind turbine based on a disturbance observer
NASA Astrophysics Data System (ADS)
Ren, Haijun; Lei, Xin
2017-11-01
In this paper, a novel sliding mode controller based on disturbance observer (DOB) to optimize the efficiency of variable speed variable pitch (VSVP) wind turbine is developed and analyzed. Due to the highly nonlinearity of the VSVP system, the model is linearly processed to obtain the state space model of the system. Then, a conventional sliding mode controller is designed and a DOB is added to estimate wind speed. The proposed control strategy can successfully deal with the random nature of wind speed, the nonlinearity of VSVP system, the uncertainty of parameters and external disturbance. Via adding the observer to the sliding mode controller, it can greatly reduce the chattering produced by the sliding mode switching gain. The simulation results show that the proposed control system has the effectiveness and robustness.
The sample of FBS cataclysmic variables
NASA Astrophysics Data System (ADS)
Mickaelian, Areg M.; Sinamyan, Parandzem K.
2013-02-01
abstract-type="normal"> The First Byurakan Survey (FBS) was conducted by Markarian et al. (1989) to reveal UV-excess galaxies. However, many other interesting objects were possible to detect based on its low-dispersion spectra, and the Second part of the FBS (Mickaelian 2008) was carried out later to reveal UV-excess stellar (point-like) objects, such as white dwarfs (WD), hot subdwarfs, cataclysmic variables (CV), HBB stars, as well as QSOs and Seyfert galaxies. In addition, the FBS plates were digitized (DFBS, Digitized First Byurakan Survey; Mickaelian et al. 2007) and the extraction and reduction of spectra allowed selection of objects with higher confidence and to fainter magnitudes. Spectroscopic observations have been carried out with three telescopes (Byurakan Astrophysical Observatory BAO-2.6m, Russian Special Astrophysical Observatory SAO-6m and Observatoire de Haute Provence OHP-1.93m) (Sinamyan & Mickaelian 2009) for classification of objects. The spectral features of CVs are narrow emission lines (Balmer series, HeI and HeII lines and Bowen band at 4640A) (Fig. 1). In addition, we use the NSVS database (Wozniak et al. 2004) for revealing variability and our method of comparison of POSS1 and POSS2 epoch photometric data (Mickaelian et al. 2011) based on accurate calculations of weighted average POSS1 and POSS2 magnitudes. 27 objects are present in the NSVS and light curves are available (Fig 2.). X-ray data may serve as an additional criterion to detect CVs among the FBS blue stellar objects (Voges et al. 1999; 2000). The subsample of FBS WDs has already been published (Sinamyan & Mickaelian 2011), where some CVs are also present. The subsample of FBS CVs consists of 38 objects, including the following types: dwarf novae (DN; UG and SU subtypes; 7 objects), nova-like variables (NL; SH, AC, VY subtypes; 11 objects), as well as there is a DQ Her type object (FBS 1140+719), a Helium CV (HeCV; FBS 1232+379), and a Low-mass X-ray Binary (LMXB; FBS 1656+354). Other objects do not have accurate classification because of the lack of photometric data. The Periods are in the range of 0.012 to 0.343 days. To make a complete study of these objects possible, multiwavelength (MW) data were retrieved for these 38 objects, including X-ray (ROSAT BSC and FSC), UV (GALEX), optical (APM, MAPS, USNO-B1.0, GSC 2.3.2, SDSS), and IR (2MASS, WISE, IRAS, AKARI) and MW SEDs were built. For CVs, MW SEDs have some disadvantage as their variability does not allow to have their accurate energy distribution. Diagrams with relations between MW data-points and some other physical parameters were also built.
20-meter underwater wireless optical communication link with 1.5 Gbps data rate.
Shen, Chao; Guo, Yujian; Oubei, Hassan M; Ng, Tien Khee; Liu, Guangyu; Park, Ki-Hong; Ho, Kang-Ting; Alouini, Mohamed-Slim; Ooi, Boon S
2016-10-31
The video streaming, data transmission, and remote control in underwater call for high speed (Gbps) communication link with a long channel length (~10 meters). We present a compact and low power consumption underwater wireless optical communication (UWOC) system utilizing a 450-nm laser diode (LD) and a Si avalanche photodetector. With the LD operating at a driving current of 80 mA with an optical power of 51.3 mW, we demonstrated a high-speed UWOC link offering a data rate up to 2 Gbps over a 12-meter-long, and 1.5 Gbps over a record 20-meter-long underwater channel. The measured bit-error rate (BER) are 2.8 × 10-5, and 3.0 × 10-3, respectively, which pass well the forward error correction (FEC) criterion.
Concepts for Variable/Multi-Speed Rotorcraft Drive System
NASA Technical Reports Server (NTRS)
Stevens, Mark A.; Handschuh, Robert F.; Lewicki, David G.
2008-01-01
In several recent studies and on-going developments for advanced rotorcraft, the need for variable or multi-speed capable rotors has been raised. A speed change of up to 50 percent has been proposed for future rotorcraft to improve overall vehicle performance. Accomplishing rotor speed changes during operation requires both a rotor that can perform effectively over the operation speed/load range, and a propulsion system that can enable these speed changes. A study has been completed to investigate possible drive system arrangements that can accommodate up to the 50 percent speed change. Several concepts will be presented and evaluated. The most promising configurations will be identified and developed for future testing in a sub-scaled test facility to validate operational capability.
Impact of Monsoon to Aquatic Productivity and Fish Landing at Pesawaran Regency Waters
NASA Astrophysics Data System (ADS)
Kunarso; Zainuri, Muhammad; Ario, Raden; Munandar, Bayu; Prayogi, Harmon
2018-02-01
Monsoon variability influences the productivity processes in the ocean and has different responses in each waters. Furthermore, variability of marine productivity affects to the fisheries resources fluctuation. This research has conducted using descriptive method to investigate the consequences of monsoon variability to aquatic productivity, sea surface temperature (SST), fish catches, and fish season periods at Pesawaran Regency waters, Lampung. Variability of aquatic productivity was determined based on chlorophyll-a indicator from MODIS satellite images. Monsoon variability was governed based on wind parameters and fish catches from fish landing data of Pesawaran fish market. The result showed that monsoon variability had affected to aquatic productivity, SST, and fish catches at Pesawaran Regency waters. Maximum wind speed and lowest SST occurred twice in a year, December to March and August to October, which the peaks were on January (2.55 m/s of wind speed and 29.66°C of SST) and September (2.44 m/s of wind speed and 29.06°C of SST). Also, Maximum aquatic productivity happened on January to March and July to September, which it was arisen simultaneously with maximum wind speed and the peaks was 0.74 mg/m3 and 0.78 mg/m3, on February and August respectively. The data showed that fish catches decreased along with strong wind speed and low SST. However, when weak wind speed and high SST occurred, fish catches increased. The correlation between Catch per Unit Effort (CPUE) with SST, wind speed, and chlorophyll-a was at value 0.76, -0.67, and -0.70, respectively. The high rate fish catches in Pesawaran emerged on March-May and September-December.
NASA Astrophysics Data System (ADS)
Sexton, E.; Thomas, A.; Delbridge, B. G.
2017-12-01
Large earthquakes often exhibit complex slip distributions and occur along non-planar fault geometries, resulting in variable stress changes throughout the region of the fault hosting aftershocks. To better discern the role of geometric discontinuities on aftershock sequences, we compare areas of enhanced and reduced Coulomb failure stress and mean stress for systematic differences in the time dependence and productivity of these aftershock sequences. In strike-slip faults, releasing structures, including stepovers and bends, experience an increase in both Coulomb failure stress and mean stress during an earthquake, promoting fluid diffusion into the region and further failure. Conversely, Coulomb failure stress and mean stress decrease in restraining bends and stepovers in strike-slip faults, and fluids diffuse away from these areas, discouraging failure. We examine spatial differences in seismicity patterns along structurally complex strike-slip faults which have hosted large earthquakes, such as the 1992 Mw 7.3 Landers, the 2010 Mw 7.2 El-Mayor Cucapah, the 2014 Mw 6.0 South Napa, and the 2016 Mw 7.0 Kumamoto events. We characterize the behavior of these aftershock sequences with the Epidemic Type Aftershock-Sequence Model (ETAS). In this statistical model, the total occurrence rate of aftershocks induced by an earthquake is λ(t) = λ_0 + \\sum_{i:t_i
NASA Astrophysics Data System (ADS)
Virolainen, Yana A.; Timofeyev, Yury M.; Kostsov, Vladimir S.; Ionov, Dmitry V.; Kalinnikov, Vladislav V.; Makarova, Maria V.; Poberovsky, Anatoly V.; Zaitsev, Nikita A.; Imhasin, Hamud H.; Polyakov, Alexander V.; Schneider, Matthias; Hase, Frank; Barthlott, Sabine; Blumenstock, Thomas
2017-11-01
The cross-comparison of different techniques for atmospheric integrated water vapour (IWV) measurements is the essential part of their quality assessment protocol. We inter-compare the synchronised data sets of IWV values measured by the Bruker 125 HR Fourier-transform infrared spectrometer (FTIR), RPG-HATPRO microwave radiometer (MW), and Novatel ProPak-V3 global navigation satellite system receiver (GPS) at the St. Petersburg site between August 2014 and October 2016. As the result of accurate spatial and temporal matching of different IWV measurements, all three techniques agree well with each other except for small IWV values. We show that GPS and MW data quality depends on the atmospheric conditions; in dry atmosphere (IWV smaller than 6 mm), these techniques are less reliable at the St. Petersburg site than the FTIR method. We evaluate the upper bound of statistical measurement errors for clear-sky conditions as 0.29 ± 0.02 mm (1.6 ± 0.3 %), 0.55 ± 0.02 mm (4.7 ± 0.4 %), and 0.76 ± 0.04 mm (6.3 ± 0.8 %) for FTIR, GPS, and MW methods, respectively. We propose the use of FTIR as a reference method under clear-sky conditions since it is reliable on all scales of IWV variability.
Massive infrared clusters in the Milky Way
NASA Astrophysics Data System (ADS)
Chené, André-Nicolas; Ramírez Alegría, Sebastian; Borissova, Jordanka; Hervé, Anthony; Martins, Fabrice; Kuhn, Michael; Minniti, Dante; VVV Science Team
2017-11-01
Our position in the Milky Way (MW) is both a blessing and a curse. We are nearby to many star clusters, but the dust that is a product of their very existence obscures them. Also, many massive young clusters are expected to be located near, or across the Galactic Center, where the dust extinction is extreme (A V > 15 mag) and can be better penetrated by infrared photons. This paper reviews the discoveries and the study of new MW massive stars and massive clusters made possible by near infrared observations that are part of the VISTA Variables in the Vía Láctea (VVV) survey. It discusses what the studies of their fundamental parameters have taught us.
The experimental studies of operating modes of a diesel-generator set at variable speed
NASA Astrophysics Data System (ADS)
Obukhov, S. G.; Plotnikov, I. A.; Surkov, M. A.; Sumarokova, L. P.
2017-02-01
A diesel generator set working at variable speed to save fuel is studied. The results of experimental studies of the operating modes of an autonomous diesel generator set are presented. Areas for regulating operating modes are determined. It is demonstrated that the transfer of the diesel generator set to variable speed of the diesel engine makes it possible to improve the energy efficiency of the autonomous generator source, as well as the environmental and ergonomic performance of the equipment as compared with general industrial analogues.
NASA Astrophysics Data System (ADS)
Azorin-Molina, Cesar; Menendez, Melisa; McVicar, Tim R.; Acevedo, Adrian; Vicente-Serrano, Sergio M.; Cuevas, Emilio; Minola, Lorenzo; Chen, Deliang
2017-08-01
This study simultaneously examines wind speed trends at the land-ocean interface, and below-above the trade-wind inversion layer in the Canary Islands and the surrounding Eastern North Atlantic Ocean: a key region for quantifying the variability of trade-winds and its response to large-scale atmospheric circulation changes. Two homogenized data sources are used: (1) observed wind speed from nine land-based stations (1981-2014), including one mountain weather station (Izaña) located above the trade-wind inversion layer; and (2) simulated wind speed from two atmospheric hindcasts over ocean (i.e., SeaWind I at 30 km for 1948-2014; and SeaWind II at 15 km for 1989-2014). The results revealed a widespread significant negative trend of trade-winds over ocean for 1948-2014, whereas no significant trends were detected for 1989-2014. For this recent period wind speed over land and ocean displayed the same multi-decadal variability and a distinct seasonal trend pattern with a strengthening (late spring and summer; significant in May and August) and weakening (winter-spring-autumn; significant in April and September) of trade-winds. Above the inversion layer at Izaña, we found a predominance of significant positive trends, indicating a decoupled variability and opposite wind speed trends when compared to those reported in boundary layer. The analysis of the Trade Wind Index (TWI), the North Atlantic Oscillation Index (NAOI) and the Eastern Atlantic Index (EAI) demonstrated significant correlations with the wind speed variability, revealing that the correlation patterns of the three indices showed a spatio-temporal complementarity in shaping wind speed trends across the Eastern North Atlantic.
NASA Astrophysics Data System (ADS)
Azorin-Molina, Cesar; Menendez, Melisa; McVicar, Tim R.; Acevedo, Adrian; Vicente-Serrano, Sergio M.; Cuevas, Emilio; Minola, Lorenzo; Chen, Deliang
2018-06-01
This study simultaneously examines wind speed trends at the land-ocean interface, and below-above the trade-wind inversion layer in the Canary Islands and the surrounding Eastern North Atlantic Ocean: a key region for quantifying the variability of trade-winds and its response to large-scale atmospheric circulation changes. Two homogenized data sources are used: (1) observed wind speed from nine land-based stations (1981-2014), including one mountain weather station (Izaña) located above the trade-wind inversion layer; and (2) simulated wind speed from two atmospheric hindcasts over ocean (i.e., SeaWind I at 30 km for 1948-2014; and SeaWind II at 15 km for 1989-2014). The results revealed a widespread significant negative trend of trade-winds over ocean for 1948-2014, whereas no significant trends were detected for 1989-2014. For this recent period wind speed over land and ocean displayed the same multi-decadal variability and a distinct seasonal trend pattern with a strengthening (late spring and summer; significant in May and August) and weakening (winter-spring-autumn; significant in April and September) of trade-winds. Above the inversion layer at Izaña, we found a predominance of significant positive trends, indicating a decoupled variability and opposite wind speed trends when compared to those reported in boundary layer. The analysis of the Trade Wind Index (TWI), the North Atlantic Oscillation Index (NAOI) and the Eastern Atlantic Index (EAI) demonstrated significant correlations with the wind speed variability, revealing that the correlation patterns of the three indices showed a spatio-temporal complementarity in shaping wind speed trends across the Eastern North Atlantic.
Szturm, Tony; Maharjan, Pramila; Marotta, Jonathan J; Shay, Barbara; Shrestha, Shiva; Sakhalkar, Vedant
2013-09-01
Mobility limitations and cognitive impairments, each common with aging, reduce levels of physical and mental activity, are prognostic of future adverse health events, and are associated with an increased fall risk. The purpose of this study was to examine whether divided attention during walking at a constant speed would decrease locomotor rhythm, stability, and cognitive performance. Young healthy participants (n=20) performed a visuo-spatial cognitive task in sitting and while treadmill walking at 2 speeds (0.7 and 1.0 m/s).Treadmill speed had a significant effect on temporal gait variables and ML-COP excursion. Cognitive load did not have a significant effect on average temporal gait variables or COP excursion, but variation of gait variables increased during dual-task walking. ML and AP trunk motion was found to decrease during dual-task walking. There was a significant decrease in cognitive performance (success rate, response time and movement time) while walking, but no effect due to treadmill speed. In conclusion walking speed is an important variable to be controlled in studies that are designed to examine effects of concurrent cognitive tasks on locomotor rhythm, pacing and stability. Divided attention during walking at a constant speed did result in decreased performance of a visuo-spatial cognitive task and an increased variability in locomotor rhythm. Copyright © 2013 Elsevier B.V. All rights reserved.
Variability in clubhead presentation characteristics and ball impact location for golfers' drives.
Betzler, Nils F; Monk, Stuart A; Wallace, Eric S; Otto, Steve R
2012-01-01
The purpose of the present study was to analyse the variability in clubhead presentation to the ball and the resulting ball impact location on the club face for a range of golfers of different ability. A total of 285 male and female participants hit multiple shots using one of four proprietary drivers. Self-reported handicap was used to quantify a participant's golfing ability. A bespoke motion capture system and user-written algorithms was used to track the clubhead just before and at impact, measuring clubhead speed, clubhead orientation, and impact location. A Doppler radar was used to measure golf ball speed. Generally, golfers of higher skill (lower handicap) generated increased clubhead speed and increased efficiency (ratio of ball speed to clubhead speed). Non-parametric statistical tests showed that low-handicap golfers exhibit significantly lower variability from shot to shot in clubhead speed, efficiency, impact location, attack angle, club path, and face angle compared with high-handicap golfers.
A Sequential Shifting Algorithm for Variable Rotor Speed Control
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Edwards, Jason M.; DeCastro, Jonathan A.
2007-01-01
A proof of concept of a continuously variable rotor speed control methodology for rotorcraft is described. Variable rotor speed is desirable for several reasons including improved maneuverability, agility, and noise reduction. However, it has been difficult to implement because turboshaft engines are designed to operate within a narrow speed band, and a reliable drive train that can provide continuous power over a wide speed range does not exist. The new methodology proposed here is a sequential shifting control for twin-engine rotorcraft that coordinates the disengagement and engagement of the two turboshaft engines in such a way that the rotor speed may vary over a wide range, but the engines remain within their prescribed speed bands and provide continuous torque to the rotor; two multi-speed gearboxes facilitate the wide rotor speed variation. The shifting process begins when one engine slows down and disengages from the transmission by way of a standard freewheeling clutch mechanism; the other engine continues to apply torque to the rotor. Once one engine disengages, its gear shifts, the multi-speed gearbox output shaft speed resynchronizes and it re-engages. This process is then repeated with the other engine. By tailoring the sequential shifting, the rotor may perform large, rapid speed changes smoothly, as demonstrated in several examples. The emphasis of this effort is on the coordination and control aspects for proof of concept. The engines, rotor, and transmission are all simplified linear models, integrated to capture the basic dynamics of the problem.
NASA Astrophysics Data System (ADS)
Najda, Stephen P.; Perlin, Piotr; Suski, Tadek; Marona, Lucja; Leszczyński, Mike; Wisniewski, Przemek; Czernecki, Robert; Kucharski, Robert; Targowski, Grzegorz; Watson, Malcolm A.; White, Henry; Watson, Scott; Kelly, Antony E.
2016-02-01
AlGaInN ridge waveguide laser diodes are fabricated to achieve single-mode operation with optical powers up to 100 mW at ˜420 nm for visible free-space, underwater, and plastic optical fiber communication. We report high-frequency operation of AlGaInN laser diodes with data transmission up to 2.5 GHz for free-space and underwater communication and up to 1.38 GHz through 10 m of plastic optical fiber.
Match-to-match variability in high-speed running activity in a professional soccer team.
Carling, Christopher; Bradley, Paul; McCall, Alan; Dupont, Gregory
2016-12-01
This study investigated variability in competitive high-speed running performance in an elite soccer team. A semi-automated tracking system quantified running performance in 12 players over a season (median 17 matches per player, 207 observations). Variability [coefficient of variation (CV)] was compared for total sprint distance (TSD, >25.2 km/h), high-speed running (HSR, 19.8-25.2 km/h), total high-speed running (THSR, ≥19.8 km/h); THSR when the team was in and out of ball possession, in individual ball possession, in the peak 5 min activity period; and distance run according to individual maximal aerobic speed (MAS). Variability for % declines in THSR and distance covered at ≥80% MAS across halves, at the end of play (final 15 min vs. mean for all 15 min periods) and transiently (5 min period following peak 5 min activity period), was analysed. Collectively, variability was higher for TSD versus HSR and THSR and lowest for distance run at ≥80% MAS (CVs: 37.1%, 18.1%, 19.8% and 11.8%). THSR CVs when the team was in/out of ball possession, in individual ball possession and during the peak 5 min period were 31.5%, 26.1%, 60.1% and 23.9%. Variability in THSR declines across halves, at the end of play and transiently, ranged from 37.1% to 142.6%, while lower CVs were observed in these metrics for running at ≥80% MAS (20.9-53.3%).These results cast doubt on the appropriateness of general measures of high-speed activity for determining variability in an elite soccer team, although individualisation of HSR thresholds according to fitness characteristics might provide more stable indicators of running performance and fatigue occurrence.
NREL`s variable speed test bed: Preliminary results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, P.W.; Fingersh, L.J.; Fuchs, E.F.
1996-10-01
Under an NREL subcontract, the Electrical and Computer Engineering Department of the University of Colorado (CU) designed a 20-kilowatt, 12-pole, permanent-magnet, electric generator and associated custom power electronics modules. This system can supply power over a generator speed range from 60 to 120 RPM. The generator was fabricated and assembled by the Denver electric-motor manufacturer, Unique Mobility, and the power electronics modules were designed and fabricated at the University. The generator was installed on a 56-foot tower in the modified nacelle of a Grumman Windstream 33 wind turbine in early October 1995. For checkout it was immediately loaded directly intomore » a three-phase resistive load in which it produced 3.5 kilowatts of power. Abstract only included. The ten-meter Grumman host wind machine is equipped with untwisted, untapered, NREL series S809 blades. The machine was instrumented to record both mechanical hub power and electrical power delivered to the utility. Initial tests are focusing on validating the calculated power surface. This mathematical surface shows the wind machine power as a function of both wind speed and turbine rotor speed. Upon the completion of this task, maximum effort will be directed toward filling a test matrix in which variable-speed operation will be contrasted with constant-speed mode by switching the variable speed control algorithm with the baseline constant speed control algorithm at 10 minutes time intervals. Other quantities in the test matrix will be analyzed to detect variable speed-effects on structural loads and power quality.« less
Speed control system for an access gate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bzorgi, Fariborz M
2012-03-20
An access control apparatus for an access gate. The access gate typically has a rotator that is configured to rotate around a rotator axis at a first variable speed in a forward direction. The access control apparatus may include a transmission that typically has an input element that is operatively connected to the rotator. The input element is generally configured to rotate at an input speed that is proportional to the first variable speed. The transmission typically also has an output element that has an output speed that is higher than the input speed. The input element and the outputmore » element may rotate around a common transmission axis. A retardation mechanism may be employed. The retardation mechanism is typically configured to rotate around a retardation mechanism axis. Generally the retardation mechanism is operatively connected to the output element of the transmission and is configured to retard motion of the access gate in the forward direction when the first variable speed is above a control-limit speed. In many embodiments the transmission axis and the retardation mechanism axis are substantially co-axial. Some embodiments include a freewheel/catch mechanism that has an input connection that is operatively connected to the rotator. The input connection may be configured to engage an output connection when the rotator is rotated at the first variable speed in a forward direction and configured for substantially unrestricted rotation when the rotator is rotated in a reverse direction opposite the forward direction. The input element of the transmission is typically operatively connected to the output connection of the freewheel/catch mechanism.« less
Dambreville, Charline; Labarre, Audrey; Thibaudier, Yann; Hurteau, Marie-France
2015-01-01
When speed changes during locomotion, both temporal and spatial parameters of the pattern must adjust. Moreover, at slow speeds the step-to-step pattern becomes increasingly variable. The objectives of the present study were to assess if the spinal locomotor network adjusts both temporal and spatial parameters from slow to moderate stepping speeds and to determine if it contributes to step-to-step variability in left-right symmetry observed at slow speeds. To determine the role of the spinal locomotor network, the spinal cord of 6 adult cats was transected (spinalized) at low thoracic levels and the cats were trained to recover hindlimb locomotion. Cats were implanted with electrodes to chronically record electromyography (EMG) in several hindlimb muscles. Experiments began once a stable hindlimb locomotor pattern emerged. During experiments, EMG and bilateral video recordings were made during treadmill locomotion from 0.1 to 0.4 m/s in 0.05 m/s increments. Cycle and stance durations significantly decreased with increasing speed, whereas swing duration remained unaffected. Extensor burst duration significantly decreased with increasing speed, whereas sartorius burst duration remained unchanged. Stride length, step length, and the relative distance of the paw at stance offset significantly increased with increasing speed, whereas the relative distance at stance onset and both the temporal and spatial phasing between hindlimbs were unaffected. Both temporal and spatial step-to-step left-right asymmetry decreased with increasing speed. Therefore, the spinal cord is capable of adjusting both temporal and spatial parameters during treadmill locomotion, and it is responsible, at least in part, for the step-to-step variability in left-right symmetry observed at slow speeds. PMID:26084910
Speed Variance and Its Influence on Accidents.
ERIC Educational Resources Information Center
Garber, Nicholas J.; Gadirau, Ravi
A study was conducted to investigate the traffic engineering factors that influence speed variance and to determine to what extent speed variance affects accident rates. Detailed analyses were carried out to relate speed variance with posted speed limit, design speeds, and other traffic variables. The major factor identified was the difference…
Rural variable speed limits : phase II.
DOT National Transportation Integrated Search
2012-05-01
The Wyoming Department of Transportation (WYDOT) installed its first variable speed limit (VSL) corridor along : Interstate 80 in the Elk Mountain Corridor in the Spring of 2009 in an effort to improve safety and reduce road closures, : particularly ...
NASA Astrophysics Data System (ADS)
Frins, E.; Bobrowski, N.; Osorio, M.; Casaballe, N.; Belsterli, G.; Wagner, T.; Platt, U.
2014-12-01
In March 2012 the emissions of NO2 and SO2 from a power station located on the east side of Montevideo Bay (34° 53‧ 10″ S, 56° 11‧ 49″ W) were quantified by simultaneously using mobile and scanning multi-axis differential optical absorption spectroscopy (in the following mobile DOAS and scanning DOAS, respectively). The facility produces electricity by means of two technologies: internal combustion motors and steam generators. The motors are powered with centrifuged heavy oil and produce a maximum power of 80 MW approximately. The steam generators produce approximately 305 MW and are powered with heavy fuel oil. We compare the emissions obtained from the measured slant column densities (mobile DOAS and scanning DOAS) with the emissions estimated from fuel mass balance. On one occasion it was possible to distinguish between the two types of sources, observing two plumes with different SO2 and NO2 emission rates. During the period of the campaign the mean SO2 emission flux was determined to be 0.36 (±0.12) kg s-1 and 0.26 (±0.09) kg s-1 retrieved from mobile and scanning DOAS respectively, while the calculated SO2 flux from the sulphur content of the fuel was 0.34 (±0.03) kg s-1. The average NO2 flux calculated from mobile DOAS was determined to be 11 (±3) × 10-3 kg s-1. Using the scanning DOAS approach a mean NO2 flux of 5.4 (±1.7) × 10-3 kg s-1 was obtained, which is significantly lower than by the mobile measurements. The differences between the results of mobile MAX-DOAS measurements and scanning DOAS measurements are most probably caused by the variability and the limited knowledge of the wind speed and direction.
NASA Astrophysics Data System (ADS)
Moernaut, Jasper; Daele, Maarten Van; Heirman, Katrien; Fontijn, Karen; Strasser, Michael; Pino, Mario; Urrutia, Roberto; De Batist, Marc
2014-03-01
Understanding the long-term earthquake recurrence pattern at subduction zones requires continuous paleoseismic records with excellent temporal and spatial resolution and stable threshold conditions. South central Chilean lakes are typically characterized by laminated sediments providing a quasi-annual resolution. Our sedimentary data show that lacustrine turbidite sequences accurately reflect the historical record of large interplate earthquakes (among others the 2010 and 1960 events). Furthermore, we found that a turbidite's spatial extent and thickness are a function of the local seismic intensity and can be used for reconstructing paleo-intensities. Consequently, our multilake turbidite record aids in pinpointing magnitudes, rupture locations, and extent of past subduction earthquakes in south central Chile. Comparison of the lacustrine turbidite records with historical reports, a paleotsunami/subsidence record, and a marine megaturbidite record demonstrates that the Valdivia Segment is characterized by a variable rupture mode over the last 900 years including (i) full ruptures (Mw ~9.5: 1960, 1575, 1319 ± 9, 1127 ± 44), (ii) ruptures covering half of the Valdivia Segment (Mw ~9: 1837), and (iii) partial ruptures of much smaller coseismic slip and extent (Mw ~7.5-8: 1737, 1466 ± 4). Also, distant or smaller local earthquakes can leave a specific sedimentary imprint which may resolve subtle differences in seismic intensity values. For instance, the 2010 event at the Maule Segment produced higher seismic intensities toward southeastern localities compared to previous megathrust ruptures of similar size and extent near Concepción.
Latash, M; Gottleib, G
1990-01-01
Problems of single-joint movement variability are analysed in the framework of the equilibrium-point hypothesis (the lambda-model). Control of the movements is described with three parameters related to movement amplitude speed, and time. Three strategies emerge from this description. Only one of them is likely to lead to a Fitts' type speed-accuracy trade-off. Experiments were performed to test one of the predictions of the model. Subjects performed identical sets of single-joint fast movements with open or closed eyes and some-what different instructions. Movements performed with closed eyes were characterized with higher peak speeds and unchanged variability in seeming violation of the Fitt's law and in a good correspondence to the model.
Fractal fluctuations in spatiotemporal variables when walking on a self-paced treadmill.
Choi, Jin-Seung; Kang, Dong-Won; Seo, Jeong-Woo; Tack, Gye-Rae
2017-12-08
This study investigated the fractal dynamic properties of stride time (ST), stride length (SL) and stride speed (SS) during walking on a self-paced treadmill (STM) in which the belt speed is automatically controlled by the walking speed. Twelve healthy young subjects participated in the study. The subjects walked at their preferred walking speed under four conditions: STM, STM with a metronome (STM+met), fixed-speed (conventional) treadmill (FTM), and FTM with a metronome (FTM+met). To compare the fractal dynamics between conditions, the mean, variability, and fractal dynamics of ST, SL, and SS were compared. Moreover, the relationship among the variables was examined under each walking condition using three types of surrogates. The mean values of all variables did not differ between the two treadmills, and the variability of all variables was generally larger for STM than for FTM. The use of a metronome resulted in a decrease in variability in ST and SS for all conditions. The fractal dynamic characteristics of SS were maintained with STM, in contrast to FTM, and only the fractal dynamic characteristics of ST disappeared when using a metronome. In addition, the fractal dynamic patterns of the cross-correlated surrogate results were identical to those of all variables for the two treadmills. In terms of the fractal dynamic properties, STM walking was generally closer to overground walking than FTM walking. Although further research is needed, the present results will be useful in research on gait fractal dynamics and rehabilitation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bilwakesh, K. R.; Koch, C. C.; Prince, D. C.
1972-01-01
A 0.5 hub/tip radius ratio compressor stage consisting of a 1500 ft/sec tip speed rotor, a variable camber inlet guide vane and a variable stagger stator was designed and tested with undistorted inlet flow, flow with tip radial distortion, and flow with 90 degrees, one-per-rev, circumferential distortion. At the design speed and design IGV and stator setting the design stage pressure ratio was achieved at a weight within 1% of the design flow. Analytical results on rotor tip shock structure, deviation angle and part-span shroud losses at different operating conditions are presented. The variable geometry blading enabled efficient operation with adequate stall margin at the design condition and at 70% speed. Closing the inlet guide vanes to 40 degrees changed the speed-versus-weight flow relationship along the stall line and thus provided the flexibility of operation at off-design conditions. Inlet flow distortion caused considerable losses in peak efficiency, efficiency on a constant throttle line through design pressure ratio at design speed, stall pressure ratio, and stall margin at the 0 degrees IGV setting and high rotative speeds. The use of the 40 degrees inlet guide vane setting enabled partial recovery of the stall margin over the standard constant throttle line.
Applications of variable speed control for contending with recurrent highway congestion.
DOT National Transportation Integrated Search
2014-07-01
This research project developed vital operational guidelines for design of a variable speed limit (VSL) system and its integrated operations with ramp metering control in contending with recurrent highway congestion. The developed guidelines can serv...
Variable speed generator technology options for wind turbine generators
NASA Technical Reports Server (NTRS)
Lipo, T. A.
1995-01-01
The electrical system options for variable speed operation of a wind turbine generator are treated in this paper. The key operating characteristics of each system are discussed and the major advantages and disadvantages of each are identified
NASA Astrophysics Data System (ADS)
Nazaruk, D. E.; Blokhin, S. A.; Maleev, N. A.; Bobrov, M. A.; Kuzmenkov, A. G.; Vasil'ev, A. P.; Gladyshev, A. G.; Pavlov, M. M.; Blokhin, A. A.; Kulagina, M. M.; Vashanova, K. A.; Zadiranov, Yu M.; Fefelov, A. G.; Ustinov, V. M.
2014-12-01
A new intracavity-contacted design to realize temperature and polarization-stable high-speed single-mode 850 nm vertical cavity surface emitting lasers (VCSELs) grown by molecular-beam epitaxy is proposed. Temperature dependences of static and dynamic characteristics of the 4.5 pm oxide aperture InGaAlAs VCSEL were investigated in detail. Due to optimal gain-cavity detuning and enhanced carrier localization in the active region the threshold current remains below 0.75 mA for the temperature range within 20-90°C, while the output power exceeds 1 mW up to 90°C. Single-mode operation with side-mode suppression ratio higher than 30 dB and orthogonal polarization suppression ratio more than 18 dB was obtained in the whole current and temperature operation range. Device demonstrates serial resistance less than 250 Ohm, which is rather low for any type of single-mode short- wavelength VCSELs. VCSEL demonstrates temperature robust high-speed operation with modulation bandwidth higher than 13 GHz in the entire temperature range of 20-90°C. Despite high resonance frequency the high-speed performance of developed VCSELs was limited by the cut-off frequency of the parasitic low pass filter created by device resistances and capacitances. The proposed design is promising for single-mode high-speed VCSEL applications in a wide spectral range.
NASA Astrophysics Data System (ADS)
Tsai, M.-T.; Chang, F.-Y.
2012-04-01
In this study, a swept-source optical coherence tomography (SS-OCT) system with a Fourier domain mode locking (FDML) laser is proposed for a dermatology study. The homemade FDML laser is one kind of frequency-sweeping light source, which can provide output power of >20 mW and an output spectrum of 65 nm in bandwidth centered at 1300 nm, enabling imaging with an axial resolution of 12 μm in the OCT system. To eliminate the forward scans from the laser output and insert the delayed backward scans, a Mach-Zehnder configuration is implemented. Compared with conventional frequency-sweeping light sources, the FDML laser can achieve much higher scan rates, as high as ˜240 kHz, which can provide a three-dimensional imaging rate of 4 volumes/s. Furthermore, the proposed high-speed SS-OCT system can provide three-dimensional (3D) images with reduced motion artifacts. Finally, a high-speed SS-OCT system is used to visualize hair follicles, demonstrating the potential of this technology as a tool for noninvasive diagnosis of alopecia.
A Wind Energy Powered Wireless Temperature Sensor Node
Zhang, Chuang; He, Xue-Feng; Li, Si-Yu; Cheng, Yao-Qing; Rao, Yang
2015-01-01
A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally. PMID:25734649
A wind energy powered wireless temperature sensor node.
Zhang, Chuang; He, Xue-Feng; Li, Si-Yu; Cheng, Yao-Qing; Rao, Yang
2015-02-27
A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally.
Correction methods of medicinal properties of mineral waters in Pyatigorsk resort
NASA Astrophysics Data System (ADS)
Reps, Valentina; Potapov, Evgeniy; Abramtsova, Anna; Kotova, Margarita
2016-04-01
Mineral Water (MW) of Pyatigorsk deposit (PD) is united in five genetic groups (operational stocks of 2809,8 m3/day): carbonic and hydrosulphuric, carbonic, carbonic chloride-hydrocarbonate sodium (salt and alkaline), radonic low carbonate, nitrogen-carbonic terms. A variety of MW types is explained by peculiarities of geological structure and hydrogeological conditions of PD. Here on the sites of the development of deep semi-ring splits there are overflows and a mixture of various complexes. Unloading of deep water strikes happens not only on the earth surface in the form of springs but also at the depth in its edging crumbling rocks of Palaeocene and quarternary deposits. As a result of mixture processes of water and its subsequent metamorphization, various types of mineral water of this deposit are formed. Pyatigorsk resort is in a special protected ecologo-resort region which mode allows to keep stability of structure and ecological purity of MW. Nevertheless, MW variability, compositional differences and MW mineralization determining the level of its biological effect demand studying of action mechanisms of both natural MW, and possibility of its modification for range expansion of rehabilitation action. There have been examined biological effects of the course drinking reception In experiment on 80 rats males of the Wistar line biological effects of the course drinking reception of two MW types: "Krasnoarmeyskaya new" (MW1) of sulphate-hydrocarbonate-chloride calcium-sodium structure with the raised contents of iron (3-5 mg/dm3), mineralization of 5,0-5,2 g/dm3, CO2 of 1,3-2,2 g/dm3, daily flow of 10-86 m3/day, temperature from 14 to 370C on the mouth of the well and spring №2 (MW2) low sulphate, low carbonate sulphate-hydrocarbonate-chloride calcium-sodium, mineralization of 5,0 g/l, CO2 of 0,7 g/dm3, H2 of S 0,01 g/dm3. There has been shown an ability of the drinking course MW1 to influence on endocrine and metabolic continium - cortisol level increased by 1,86 times at simultaneous decrease in ACTH in 47% in comparison with the control. The decrease in lipid peroxidation intensity in 21,7% due to the change of antioxidant system capacity (ASC) - level glutathione peroxidases (GPO) with 50% of animals higher than 7 ng/l, in control group 0,7 ng/l-6,9ng/l was also noted. Modification of MW1 by selenium nanoparticles in a dosage of 20 and 40 mkg/kg led to the increase of GPO level with 75% of animals. The preventive course of MW1 with oil extract from Tambukan mud before the reproduction of the sharp model of toxic liver involvement CCL4 promoted the decrease in blood serum of the level of damage markers of plasmatic membranes of an alaninaminotransferaza (ALT) and alkaline phosphatase for 9% and 19,6% respectively. So at simultaneous decrease in cholesterol level (for 13,5%) and triglycerides (for 57,1%) in comparison with the control (pathological model). Medical courses of drinking reception of MW1 and MW2 promoted the increase of stability of cellular membranes - ALT level was noted at 17-22% below control (pathological model). Conclusions: The course reception of natural and modified drinking mineral waters of Pyatigorsk resort increases nonspecific resistance of an organism to the action of toxic factors.
Technology Performance Report: Duke Energy Notrees Wind Storage Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehner, Jeff; Mohler, David; Gibson, Stuart
2015-11-01
Duke Energy Renewables owns and operates the Notrees Wind Farm in west Texas’s Ector and Winkler counties. The wind farm, which was commissioned in April 2009, has a total capacity of 152.6 MW generated by 55 Vestas V82 turbines, one Vestas 1-V90 experimental turbine, and 40 GE 1.5-MW turbines. The Vestas V82 turbines have a generating capacity of 1.65 MW each, the Vestas V90 turbine has a generating capacity of 1.86 MW, and the GE turbines have a generating capacity of 1.5 MW each. The objective of the Notrees Wind Storage Demonstration Project is to validate that energy storage increasesmore » the value and practical application of intermittent wind generation and is commercially viable at utility scale. The project incorporates both new and existing technologies and techniques to evaluate the performance and potential of wind energy storage. In addition, it could serve as a model for others to adopt and replicate. Wind power resources are expected to play a significant part in reducing greenhouse gas emissions from electric power generation by 2030. However, the large variability and intermittent nature of wind presents a barrier to integrating it within electric markets, particularly when competing against conventional generation that is more reliable. In addition, wind power production often peaks at night or other times when demand and electricity prices are lowest. Energy storage systems can overcome those barriers and enable wind to become a valuable asset and equal competitor to conventional fossil fuel generation.« less
Variable/Multispeed Rotorcraft Drive System Concepts
NASA Technical Reports Server (NTRS)
Stevens, Mark A.; Handschuh, Robert F.; Lewicki, David G.
2009-01-01
Several recent studies for advanced rotorcraft have identified the need for variable, or multispeed-capable rotors. A speed change of up to 50 percent has been proposed for future rotorcraft to improve vehicle performance. Varying rotor speed during flight not only requires a rotor capable of performing effectively over the extended operation speed and load range, but also requires an advanced propulsion system to provide the required speed changes. A study has been completed, which investigated possible drive system arrangements to accommodate up to the 50 percent speed change. These concepts are presented. The most promising configurations are identified and will be developed for future validation testing.
Variable current speed controller for eddy current motors
Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.
1982-03-12
A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.
Within-person variability in response speed as an indicator of cognitive impairment in older adults.
Strauss, Esther; Bielak, Allison A M; Bunce, David; Hunter, Michael A; Hultsch, David F
2007-11-01
Within-person variability may be an important indicator of central nervous system compromise. In this study, within-person variability in response speed was examined in community-dwelling older adults, ages 64-92 years, using a new framework that takes into account both the extent (single versus multiple domains affected) and nature (amnestic versus non-amnestic) of the cognitive impairment. Those with multiple domains of impairment were more variable than those who showed an isolated area of impairment, regardless of whether memory was one of the domains affected. Further, for those with difficulties in two or more non-memory domains, increased variability was most evident in more cognitively demanding situations, when individuals had to manipulate information held briefly in mind, switch cognitive set or inhibit an automatic response. Finally, group differentiation was better achieved when within-person variability as opposed to mean speed of performance was considered.
Examples of variable speed limit applications : speed management workshop
DOT National Transportation Integrated Search
2000-01-09
VSL systems are a type of Intelligent Transportation System (ITS) that utilizes traffic : speed and volume detection, weather information, and road surface condition technology to determine appropriate speeds at which drivers should be traveling, giv...
Fuzzy Variable Speed Limit Device Modification and Testing - Phase II
DOT National Transportation Integrated Search
2001-07-01
In a previous project, Northern Arizona University (NAU) and the Arizona Department of Transportation (ADOT) designed and implemented the prototype of a variable speed limit (VSL) system for rural highways. The VSL system implements a real-time fuzzy...
Chénier, Félix; Champagne, Audrey; Desroches, Guillaume; Gagnon, Dany H
2018-03-01
Manual wheelchair (MWC) propulsion is increasingly assessed on a motorized treadmill (TM), which is often considered more ecologically valid than stationary rollers. However, no clear consensus on the similarities between overground (OG) and TM propulsion has yet been reached. Furthermore, no study has investigated the participants' perceptions of propelling a MWC on a TM compared to OG. The present study aims to assess the perception of speed when propelling on a TM vs OG, and to relate this perception to measured spatiotemporal variables, kinetics and work. In this repeated-measures study, the propulsion's spatiotemporal variables, kinetics, and work of nineteen experienced wheelchair users with a spinal cord injury were compared between three conditions: 1) OG at a self-selected speed, 2) on a TM at a self-selected speed perceived as being similar to the OG speed (TM perceived ), and 3) on a TM at the same speed as OG (TM matched ). Each variable was compared between conditions using an analysis of variance for repeated measures. All participants selected a lower speed for TM perceived than OG, with a difference of -0.6 m/s (-44%). This adaptation may be due to a combination of two factors: 1) the absence of speed information, and 2) the feeling of urgency to grab the wheels during the recovery phase. The power output, work per cycle, and work per minute were also much lower on TM perceived than OG. However, in contrast to other work on MWC propulsion on a TM, the kinetic variables assessed were all similar between the OG and TM matched conditions. Training on a TM should be performed at a speed that matches the OG speed and not at a self-selected speed on the TM, which would reduce the power output and work and therefore reduce the efficiency of the training. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio
Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation, and variable speed control and power factor control are executed for high efficiently for wind energy capture and high quality for power system voltage. In variable speed control, a wind speed or a generator speed is used for maximum power point tracking. However, performances of a wind generation power fluctuation due to wind speed variation have not yet investigated for those controls. The authors discuss power smoothing by those controls for the DFIG inter-connected to 6.6kV distribution line. The performances are verified using power system simulation software PSCAD/EMTDC for actual wind speed data and are examined from an approximate equation of wind generation power fluctuation for wind speed variation.
Wind speed and power characteristics of Kalasin province, Thailand
NASA Astrophysics Data System (ADS)
Polnumtiang, Supachai; Tangchaichit, Kiatfa
2018-05-01
This paper presents a wind energy assessment of Kalasin province in the Upper North-Eastern region of Thailand. Four year wind data were recorded continuously from January 2012 to December 2015 at different heights of 60, 90 and 120 m above ground level (AGL). The mean wind speeds were found to be 3.14, 3.63 and 3.94 m/s at 60, 90 and 120 m AGL, respectively. The majority of wind directions for this region are distributed from the East to South directions. The highest wind power density was observed in the summer season, followed by winter and rainy seasons, in order. Four commercial wind turbines were selected to estimate energy yield output using the WAsP 10.0 software application; the results show that VESTAS with rated power of 2.0 MW was estimated to give 2,747 MWh/year with the highest capacity factor of 15.68%.
Ren, Jun-Jie; Liu, Yan-Cheng; Wang, Ning; Liu, Si-Yuan
2015-01-01
This paper proposes a sensorless speed control strategy for ship propulsion interior permanent magnet synchronous motor (IPMSM) based on a new sliding-mode observer (SMO). In the SMO the low-pass filter and the method of arc-tangent calculation of extended electromotive force (EMF) or phase-locked loop (PLL) technique are not used. The calculation of the rotor speed is deduced from the Lyapunov function stability analysis. In order to reduce system chattering, sigmoid functions with switching gains being adaptively updated by fuzzy logic systems are innovatively incorporated into the SMO. Finally, simulation results for a 4.088 MW ship propulsion IPMSM and experimental results from a 7.5 kW IPMSM drive are provided to verify the effectiveness of the proposed SMO method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Wind Resource Assessment of Gujarat (India)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draxl, C.; Purkayastha, A.; Parker, Z.
India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes.more » While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.« less
Analysis of Failures of High Speed Shaft Bearing System in a Wind Turbine
NASA Astrophysics Data System (ADS)
Wasilczuk, Michał; Gawarkiewicz, Rafał; Bastian, Bartosz
2018-01-01
During the operation of wind turbines with gearbox of traditional configuration, consisting of one planetary stage and two helical stages high failure rate of high speed shaft bearings is observed. Such a high failures frequency is not reflected in the results of standard calculations of bearing durability. Most probably it can be attributed to atypical failure mechanism. The authors studied problems in 1.5 MW wind turbines of one of Polish wind farms. The analysis showed that the problems of high failure rate are commonly met all over the world and that the statistics for the analysed turbines were very similar. After the study of potential failure mechanism and its potential reasons, modification of the existing bearing system was proposed. Various options, with different bearing types were investigated. Different versions were examined for: expected durability increase, extent of necessary gearbox modifications and possibility to solve existing problems in operation.
Simulation for Grid Connected Wind Turbines with Fluctuating
NASA Astrophysics Data System (ADS)
Ye, Ying; Fu, Yang; Wei, Shurong
This paper establishes the whole dynamic model of wind turbine generator system which contains the wind speed model and DFIG wind turbines model .A simulation sample based on the mathematical models is built by using MATLAB in this paper. Research are did on the performance characteristics of doubly-fed wind generators (DFIG) which connected to power grid with three-phase ground fault and the disturbance by gust and mixed wind. The capacity of the wind farm is 9MW which consists of doubly-fed wind generators (DFIG). Simulation results demonstrate that the three-phase ground fault occurs on grid side runs less affected on the stability of doubly-fed wind generators. However, as a power source, fluctuations of the wind speed will run a large impact on stability of double-fed wind generators. The results also show that if the two disturbances occur in the meantime, the situation will be very serious.
NASA Astrophysics Data System (ADS)
Sakai, Kazuto; Takahashi, Norio; Shimomura, Eiji; Arata, Masanobu; Nakazawa, Yousuke; Tajima, Toshinobu
Regarding environmental and energy issues, increasing importance has been placed on energy saving in various systems. To save energy, it would be desirable if the total efficiency of various types of equipment were increased.Recently, a hybrid electric vehicle (HEV) and an electric vehicle (EV) have been developed. The use of new technologies will eventually lead to the realization of the new- generation vehicle with high efficiency. One new technology is the variable-speed drive over a wide range of speeds. The motor driving systems of the EV or the HEV must operate in the variable-speed range of up to 1:5. This has created the need for a high-efficiency motor that is capable of operation over a wide speed range. In this paper, we describe the concept of a novel permanent magnet reluctance motor (PRM) and discuss its characteristics. We developed the PRM, which has the capability of operating over a wide speed range with high efficiency. The PRM has a rotor with a salient pole, which generates magnetic anisotropy. In addition, the permanent magnets embedded in the rotor core counter the q-axis flux by the armature reaction. Then, the power density and the power factor increase. The PRM produces reluctance torque and torque by permanent magnet (PM) flux. The reluctance torque is 1 to 2 times larger than the PM torque. When the PRM operates over a constant-power speed range, the field component of the current will be regulated to maintain a constant voltage. The output power of the developed PRM is 8 to 250kW. It is clarified that the PRM operates at a wide variable-speed range (1:5) with high efficiency (92-97%). It is concluded that the PRM has high performance over a wide constant-power speed range. In addition, the PRM is constructed using a small PM, so that we can solve the problem of cost. Thus, the PRM is a superior machine that is suited for variable-speed drive applications.
Haidar Ahmad, Imad A; Tam, James; Li, Xue; Duffield, William; Tarara, Thomas; Blasko, Andrei
2017-02-05
The parameters affecting the recovery of pharmaceutical residues from the surface of stainless steel coupons for quantitative cleaning verification method development have been studied, including active pharmaceutical ingredient (API) level, spiking procedure, API/excipient ratio, analyst-to-analyst variability, inter-day variability, and cleaning procedure of the coupons. The lack of a well-defined procedure that consistently cleaned coupon surface was identified as the major contributor to low and variable recoveries. Assessment of acid, base, and oxidant washes, as well as the order of treatment, showed that a base-water-acid-water-oxidizer-water wash procedure resulted in consistent, accurate spiked recovery (>90%) and reproducible results (S rel ≤4%). By applying this cleaning procedure to the previously used coupons that failed the cleaning acceptance criteria, multiple analysts were able to obtain consistent recoveries from day-to-day for different APIs, and API/excipient ratios at various spike levels. We successfully applied our approach for cleaning verification of small molecules (MW<1000Da) as well as large biomolecules (MW up to 50,000Da). Method robustness was greatly influenced by the sample preparation procedure, especially for analyses using total organic carbon (TOC) determination. Copyright © 2016 Elsevier B.V. All rights reserved.
Shaw, Jared B; Gorshkov, Mikhail V; Wu, Qinghao; Paša-Tolić, Ljiljana
2018-05-01
Mass spectrometric characterization of large biomolecules, such as intact proteins, requires the specificity afforded by ultrahigh resolution mass measurements performed at both the intact mass and product ion levels. Although the performance of time-of-flight mass analyzers is steadily increasing, the choice of mass analyzer for large biomolecules (e.g., proteins >50 kDa) is generally limited to the Fourier transform family of mass analyzers such as Orbitrap and ion cyclotron resonance (FTICR-MS), with the latter providing unmatched mass resolving power and measurement accuracy. Yet, protein analyses using FTMS are largely hindered by the low acquisition rates of spectra with ultrahigh resolving power. Frequency multiple detection schemes enable FTICR-MS to overcome this fundamental barrier and achieve resolving powers and acquisition speeds 4× greater than the limits imposed by magnetic field strength. Here we expand upon earlier work on the implementation of this technique for biomolecular characterization. We report the coupling of 21T FTICR-MS, 4X frequency multiplication, ion trapping field harmonization technology, and spectral data processing methods to achieve unprecedented acquisition rates and resolving power in mass spectrometry of large intact proteins. Isotopically resolved spectra of multiply charged ubiquitin ions were acquired using detection periods as short as 12 ms. Large proteins such as apo-transferrin (MW = 78 kDa) and monoclonal antibody (MW = 150 kDa) were isotopically resolved with detection periods of 384 and 768 ms, respectively. These results illustrate the future capability of accurate characterization of large proteins on time scales compatible with online separations.
915-MHz Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, M.; Bartholomew, M. J.; Giangrande, S.
When considering the amount of shortwave radiation incident on a photovoltaic solar array and, therefore, the amount and stability of the energy output from the system, clouds represent the greatest source of short-term (i.e., scale of minutes to hours) variability through scattering and reflection of incoming solar radiation. Providing estimates of this short-term variability is important for determining and regulating the output from large solar arrays as they connect with the larger power infrastructure. In support of the installation of a 37-MW solar array on the grounds of Brookhaven National Laboratory (BNL), a study of the impacts of clouds onmore » the output of the solar array has been undertaken. The study emphasis is on predicting the change in surface solar radiation resulting from the observed/forecast cloud field on a 5-minute time scale. At these time scales, advection of cloud elements over the solar array is of particular importance. As part of the BNL Aerosol Life Cycle Intensive Operational Period (IOP), a 915-MHz Radar Wind Profiler (RWP) was deployed to determine the profile of low-level horizontal winds and the depth of the planetary boundary layer. The initial deployment mission of the 915-MHz RWP for cloud forecasting has been expanded the deployment to provide horizontal wind measurements for estimating and constraining cloud advection speeds. A secondary focus is on the observation of dynamics and microphysics of precipitation during cold season/winter storms on Long Island. In total, the profiler was deployed at BNL for 1 year from May 2011 through May 2012.« less
915-Mhz Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, M.; Bartholomew, M. J.; Giangrande, S.
When considering the amount of shortwave radiation incident on a photovoltaic solar array and, therefore, the amount and stability of the energy output from the system, clouds represent the greatest source of short-term (i.e., scale of minutes to hours) variability through scattering and reflection of incoming solar radiation. Providing estimates of this short-term variability is important for determining and regulating the output from large solar arrays as they connect with the larger power infrastructure. In support of the installation of a 37-MW solar array on the grounds of Brookhaven National Laboratory (BNL), a study of the impacts of clouds onmore » the output of the solar array has been undertaken. The study emphasis is on predicting the change in surface solar radiation resulting from the observed/forecast cloud field on a 5-minute time scale. At these time scales, advection of cloud elements over the solar array is of particular importance. As part of the BNL Aerosol Life Cycle Intensive Operational Period (IOP), a 915-MHz Radar Wind Profiler (RWP) was deployed to determine the profile of low-level horizontal winds and the depth of the planetary boundary layer. The initial deployment mission of the 915-MHz RWP for cloud forecasting has been expanded the deployment to provide horizontal wind measurements for estimating and constraining cloud advection speeds. A secondary focus is on the observation of dynamics and microphysics of precipitation during cold season/winter storms on Long Island. In total, the profiler was deployed at BNL for 1 year from May 2011 through May 2012.« less
Relationship Between Motor Variability, Accuracy, and Ball Speed in the Tennis Serve
Antúnez, Ruperto Menayo; Hernández, Francisco Javier Moreno; García, Juan Pedro Fuentes; Vaíllo, Raúl Reina; Arroyo, Jesús Sebastián Damas
2012-01-01
The main objective of this study was to analyze the motor variability in the performance of the tennis serve and its relationship to performance outcome. Seventeen male tennis players took part in the research, and they performed 20 serves. Linear and non-linear variability during the hand movement was measured by 3D Motion Tracking. Ball speed was recorded with a sports radar gun and the ball bounces were video recorded to calculate accuracy. The results showed a relationship between the amount of variability and its non-linear structure found in performance of movement and the outcome of the serve. The study also found that movement predictability correlates with performance. An increase in the amount of movement variability could affect the tennis serve performance in a negative way by reducing speed and accuracy of the ball. PMID:23486998
A Lyapunov based approach to energy maximization in renewable energy technologies
NASA Astrophysics Data System (ADS)
Iyasere, Erhun
This dissertation describes the design and implementation of Lyapunov-based control strategies for the maximization of the power captured by renewable energy harnessing technologies such as (i) a variable speed, variable pitch wind turbine, (ii) a variable speed wind turbine coupled to a doubly fed induction generator, and (iii) a solar power generating system charging a constant voltage battery. First, a torque control strategy is presented to maximize wind energy captured in variable speed, variable pitch wind turbines at low to medium wind speeds. The proposed strategy applies control torque to the wind turbine pitch and rotor subsystems to simultaneously control the blade pitch and tip speed ratio, via the rotor angular speed, to an optimum point at which the capture efficiency is maximum. The control method allows for aerodynamic rotor power maximization without exact knowledge of the wind turbine model. A series of numerical results show that the wind turbine can be controlled to achieve maximum energy capture. Next, a control strategy is proposed to maximize the wind energy captured in a variable speed wind turbine, with an internal induction generator, at low to medium wind speeds. The proposed strategy controls the tip speed ratio, via the rotor angular speed, to an optimum point at which the efficiency constant (or power coefficient) is maximal for a particular blade pitch angle and wind speed by using the generator rotor voltage as a control input. This control method allows for aerodynamic rotor power maximization without exact wind turbine model knowledge. Representative numerical results demonstrate that the wind turbine can be controlled to achieve near maximum energy capture. Finally, a power system consisting of a photovoltaic (PV) array panel, dc-to-dc switching converter, charging a battery is considered wherein the environmental conditions are time-varying. A backstepping PWM controller is developed to maximize the power of the solar generating system. The controller tracks a desired array voltage, designed online using an incremental conductance extremum-seeking algorithm, by varying the duty cycle of the switching converter. The stability of the control algorithm is demonstrated by means of Lyapunov analysis. Representative numerical results demonstrate that the grid power system can be controlled to track the maximum power point of the photovoltaic array panel in varying atmospheric conditions. Additionally, the performance of the proposed strategy is compared to the typical maximum power point tracking (MPPT) method of perturb and observe (P&O), where the converter dynamics are ignored, and is shown to yield better results.
Low-speed aerodynamic test of an axisymmetric supersonic inlet with variable cowl slot
NASA Technical Reports Server (NTRS)
Powell, A. G.; Welge, H. R.; Trefny, C. J.
1985-01-01
The experimental low-speed aerodynamic characteristics of an axisymmetric mixed-compression supersonic inlet with variable cowl slot are described. The model consisted of the NASA P-inlet centerbody and redesigned cowl with variable cowl slot powered by the JT8D single-stage fan simulator and driven by an air turbine. The model was tested in the NASA Lewis Research Center 9- by 15-foot low-speed tunnel at Mach numbers of 0, 0.1, and 0.2 over a range of flows, cowl slot openings, centerbody positions, and angles of attack. The variable cowl slot was effective in minimizing lip separation at high velocity ratios, showed good steady-state and dynamic distortion characteristics, and had good angle-of-attack tolerance.
Tunable triple-wavelength mode-locked fiber laser with topological insulator Bi2Se3 solution
NASA Astrophysics Data System (ADS)
Guo, Bo; Yao, Yong
2016-08-01
We experimentally demonstrated a tunable triple-wavelength mode-locked erbium-doped fiber laser with few-layer topological insulator: Bi2Se3/polyvinyl alcohol solution. By properly adjusting the pump power and the polarization state, the single-, dual-, and triple-wavelength mode-locking operation could be stably initiated with a wavelength-tunable range (˜1 nm) and a variable wavelength spacing (1.7 or 2 nm). Meanwhile, it exhibits the maximum output power of 10 mW and pulse energy of 1.12 nJ at the pump power of 175 mW. The simple, low-cost triple-wavelength mode-locked fiber laser might be applied in various potential fields, such as optical communication, biomedical research, and sensing system.
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
2011-01-01
The main rotors of the NASA Large Civil Tilt-Rotor notional vehicle operate over a wide speed-range, from 100% at take-off to 54% at cruise. The variable-speed power turbine offers one approach by which to effect this speed variation. Key aero-challenges include high work factors at cruise and wide (40 to 60 deg.) incidence variations in blade and vane rows over the speed range. The turbine design approach must optimize cruise efficiency and minimize off-design penalties at take-off. The accuracy of the off-design incidence loss model is therefore critical to the turbine design. In this effort, 3-D computational analyses are used to assess the variation of turbine efficiency with speed change. The conceptual design of a 4-stage variable-speed power turbine for the Large Civil Tilt-Rotor application is first established at the meanline level. The design of 2-D airfoil sections and resulting 3-D blade and vane rows is documented. Three-dimensional Reynolds Averaged Navier-Stokes computations are used to assess the design and off-design performance of an embedded 1.5-stage portion-Rotor 1, Stator 2, and Rotor 2-of the turbine. The 3-D computational results yield the same efficiency versus speed trends predicted by meanline analyses, supporting the design choice to execute the turbine design at the cruise operating speed.
Variability in the Speed of the Brewer-Dobson Circulation as Observed by Aura/MLS
NASA Technical Reports Server (NTRS)
Flury, Thomas; Wu, Dong L.; Read, W. G.
2013-01-01
We use Aura/MLS stratospheric water vapour (H2O) measurements as tracer for dynamics and infer interannual variations in the speed of the Brewer-Dobson circulation (BDC) from 2004 to 2011. We correlate one-year time series of H2O in the lower stratosphere at two subsequent pressure levels (68 hPa, approx.18.8 km and 56 hPa, approx 19.9 km at the Equator) and determine the time lag for best correlation. The same calculation is made on the horizontal on the 100 hPa (approx 16.6 km) level by correlating the H2O time series at the Equator with the ones at 40 N and 40 S. From these lag coefficients we derive the vertical and horizontal speeds of the BDC in the tropics and extra-tropics, respectively. We observe a clear interannual variability of the vertical and horizontal branch. The variability reflects signatures of the Quasi Biennial Oscillation (QBO). Our measurements confirm the QBO meridional circulation anomalies and show that the speed variations in the two branches of the BDC are out of phase and fairly well anti-correlated. Maximum ascent rates are found during the QBO easterly phase. We also find that transport of H2O towards the Northern Hemisphere (NH) is on the average two times faster than to the Southern Hemisphere (SH) with a mean speed of 1.15m/s at 100 hPa. Furthermore, the speed towards the NH shows much more interannual variability with an amplitude of about 21% whilst the speed towards the SH varies by only 10 %. An amplitude of 21% is also observed in the variability of the ascent rate at the Equator which is on the average 0.2mm/s.
Variable-speed controller provides flexibility to electrical submersible pumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butlin, D.
1986-06-09
The performance of an electric submersible pump (ESP) is dramatically modified by a variable speed controller (VSC). Variable frequency power directly controls pump speed and thus the hydraulic performance of the pump. Even though the ESP is the primary form of artificial lift for high volume, deep oil wells (particularly where gas is unavailable), the biggest disadvantage has been the pump's inflexibility when run at a constant speed, i.e., the unit is limited to a fixed head output at each rate. The VSC has rapidly gained acceptance as a valuable ESP accessory to alleviate this restriction. By allowing the pumpmore » speed to be varied, the rate and head, or both, can be adjusted with no modification of the downhole unit. There are now over 700 VSCs running with ESPs on every continent of the world. Pumping flexibility was the main purpose of applying the VSC to the ESP, but several other benefits have become apparent. Of particular interest are those that can extend downhole equipment life, e.g., soft start, automatically controlled speed, line-transient suppression, and elimination of surface chokes.« less
NASA Astrophysics Data System (ADS)
Magee, Madeline R.; Wu, Chin H.
2017-12-01
Water temperatures and stratification are important drivers for ecological and water quality processes within lake systems, and changes in these with increases in air temperature and changes to wind speeds may have significant ecological consequences. To properly manage these systems under changing climate, it is important to understand the effects of increasing air temperatures and wind speed changes in lakes of different depths and surface areas. In this study, we simulate three lakes that vary in depth and surface area to elucidate the effects of the observed increasing air temperatures and decreasing wind speeds on lake thermal variables (water temperature, stratification dates, strength of stratification, and surface heat fluxes) over a century (1911-2014). For all three lakes, simulations showed that epilimnetic temperatures increased, hypolimnetic temperatures decreased, the length of the stratified season increased due to earlier stratification onset and later fall overturn, stability increased, and longwave and sensible heat fluxes at the surface increased. Overall, lake depth influences the presence of stratification, Schmidt stability, and differences in surface heat flux, while lake surface area influences differences in hypolimnion temperature, hypolimnetic heating, variability of Schmidt stability, and stratification onset and fall overturn dates. Larger surface area lakes have greater wind mixing due to increased surface momentum. Climate perturbations indicate that our larger study lakes have more variability in temperature and stratification variables than the smaller lakes, and this variability increases with larger wind speeds. For all study lakes, Pearson correlations and climate perturbation scenarios indicate that wind speed has a large effect on temperature and stratification variables, sometimes greater than changes in air temperature, and wind can act to either amplify or mitigate the effect of warmer air temperatures on lake thermal structure depending on the direction of local wind speed changes.
Enhanced optical discrimination system based on switchable retroreflective films
NASA Astrophysics Data System (ADS)
Schultz, Phillip; Heikenfeld, Jason
2016-04-01
Reported herein is the design, characterization, and demonstration of a laser interrogation and response optical discrimination system based on large-area corner-cube retroreflective films. The switchable retroreflective films use light-scattering liquid crystal to modulate retroreflected intensity. The system can operate with multiple wavelengths (visible to infrared) and includes variable divergence optics for irradiance adjustments and ease of system alignment. The electronic receiver and switchable retroreflector offer low-power operation (<4 mW standby) on coin cell batteries with rapid interrogation to retroreflected signal reception response times (<15 ms). The entire switchable retroreflector film is <1 mm thick and is flexible for optimal placement and increased angular response. The system was demonstrated in high ambient lighting conditions (daylight, 18k lux) with a visible 10-mW output 635-nm source out to a distance of 400 m (naked eye detection). Nighttime demonstrations were performed using a 1.5-mW, 850-nm infrared laser diode out to a distance of 400 m using a night vision camera. This system could have tagging and conspicuity applications in commercial or military settings.
Wireless powering for a self-propelled and steerable endoscopic capsule for stomach inspection.
Carta, R; Tortora, G; Thoné, J; Lenaerts, B; Valdastri, P; Menciassi, A; Dario, P; Puers, R
2009-12-15
This paper describes the integration of an active locomotion module in a wirelessly powered endoscopic capsule. The device is a submersible capsule optimized to operate in a fluid environment in a liquid-distended stomach. A 3D inductive link is used to supply up to 400mW to the embedded electronics and a set of 4 radio-controlled motor propellers. The design takes advantage of a ferrite-core in the receiving coil-set. This approach significantly improves the coupling with the external field source with respect to earlier work by the group. It doubles the power that can be received with a coreless coil-set under identical external conditions. The upper limit of the received power was achieved complying with the strict regulations for safe exposure of biological tissue to variable magnetic fields. The wireless transferred power was proven to be sufficient to achieve the speed of 7cm/s in any directions. An optimized locomotion strategy was defined which limits the power consumption by running only 2 motors at a time. A user interface and a joystick controller allow to fully drive the capsule in an intuitive manner. The device functionalities were successfully tested in a dry and a wet environment in a laboratory set-up.
FIFO Buffer for Asynchronous Data Streams
NASA Technical Reports Server (NTRS)
Bascle, K. P.
1985-01-01
Variable-rate, asynchronous data signals from up to four measuring instruments or other sources combined in first-in/first-out (FIFO) buffer for transmission on single channel. Constructed in complementary metal-oxide-semiconductor (CMOS) logic, buffer consumes low power (only 125 mW at 5V) and conforms to aerospace standards of reliability and maintainability.
Plasma polymerized hexamethyldisiloxane (HMDSO) films (~800 Å in thickness) were deposited onto aluminum substrates (6111-T4 alloy) in radio frequency (RF) and microwave (MW) powered reactors to be used as primers for structural adhesive bonding. Processing variables such as sub...
A Bayesian inversion for slip distribution of 1 Apr 2007 Mw8.1 Solomon Islands Earthquake
NASA Astrophysics Data System (ADS)
Chen, T.; Luo, H.
2013-12-01
On 1 Apr 2007 the megathrust Mw8.1 Solomon Islands earthquake occurred in the southeast pacific along the New Britain subduction zone. 102 vertical displacement measurements over the southeastern end of the rupture zone from two field surveys after this event provide a unique constraint for slip distribution inversion. In conventional inversion method (such as bounded variable least squares) the smoothing parameter that determines the relative weight placed on fitting the data versus smoothing the slip distribution is often subjectively selected at the bend of the trade-off curve. Here a fully probabilistic inversion method[Fukuda,2008] is applied to estimate distributed slip and smoothing parameter objectively. The joint posterior probability density function of distributed slip and the smoothing parameter is formulated under a Bayesian framework and sampled with Markov chain Monte Carlo method. We estimate the spatial distribution of dip slip associated with the 1 Apr 2007 Solomon Islands earthquake with this method. Early results show a shallower dip angle than previous study and highly variable dip slip both along-strike and down-dip.
Assessment of arrays of in-stream tidal turbines in the Bay of Fundy.
Karsten, Richard; Swan, Amanda; Culina, Joel
2013-02-28
Theories of in-stream turbines are adapted to analyse the potential electricity generation and impact of turbine arrays deployed in Minas Passage, Bay of Fundy. Linear momentum actuator disc theory (LMADT) is combined with a theory that calculates the flux through the passage to determine both the turbine power and the impact of rows of turbine fences. For realistically small blockage ratios, the theory predicts that extracting 2000-2500 MW of turbine power will result in a reduction in the flow of less than 5 per cent. The theory also suggests that there is little reason to tune the turbines if the blockage ratio remains small. A turbine array model is derived that extends LMADT by using the velocity field from a numerical simulation of the flow through Minas Passage and modelling the turbine wakes. The model calculates the resulting speed of the flow through and around a turbine array, allowing for the sequential positioning of turbines in regions of strongest flow. The model estimates that over 2000 MW of power is possible with only a 2.5 per cent reduction in the flow. If turbines are restricted to depths less than 50 m, the potential power generation is reduced substantially, down to 300 MW. For large turbine arrays, the blockage ratios remain small and the turbines can produce maximum power with a drag coefficient equal to the Betz-limit value.
NASA Astrophysics Data System (ADS)
Occhipinti, G.; Bablet, A.; Makela, J. J.
2015-12-01
The detection of the tsunami related internal gravity waves (IGWtsuna) by airglow camera has been recently validated by observation (Makela et al., 2011) and modeling (Occhipinti et al., 2011) in the case of the Tohoku event (11 March 2011, Mw 9.0). The airglow is measuring the photon emission at 630 nm, indirectly linked to the plasma density of O2+ (Link & Cogger, 1988) and it is commonly used to detect transient event in the ionosphere (Kelley et al., 2002, Makela et al., 2009, Miller et al., 2009). The modeling of the IGWtsuna clearly reproduced the pattern of the airglow measurement observed over Hawaii and the comparison between the observation and the modeling allows to recognize the wave form and allow to explain the IGWtsuna arriving before the tsunami wavefront at the sea level (Occhipinti et al., 2011). Approaching the Hawaiian archipelagos the tsunami propagation is slowed down (reduction of the sea depth), instead, the IGWtsuna, propagating in the atmosphere/ionosphere, conserves its speed. In this work, we present the modeling of the new airglow observation following the Queen Charlotte event (27 October 2012, Mw 7.8) that has been recently detected, proving that the technique can be generalized for smaller events. Additionally, the effect of the wind on the IGWtsuna, already evocated in the past, is included in the modeling to better reproduce the airglow observations. All ref. here @ www.ipgp.fr/~ninto
Wood River recovery project -- speed and cooperation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franczak, D.F.; Santschi, M.F.; Sander, S.
1998-12-31
A unit trip is a situation avoided by power generators because it affects their bottom line. The ability to recover from the trip quickly, and restore MW generation is the desired goal. However, what do you do if you lose your unit to a disastrous fire? How do you recover from this situation? This will be the subject of this paper describing such an event which affected the Illinois Power Company`s (IPC) operation. IPC`s Wood River Power Station suffered a disastrous fire which knocked out the Station`s only two operable units--4 and 5. The fire was the result of amore » coal mill explosion and damaged beyond repair, the units control systems and operating capabilities. A total of 488 MW in generating capacity was lost at a time when the IPC system required all available generation now, and in the foreseeable future. This paper will describe the event, the immediate mobilization efforts, and the challenges of recovering both units in the most expedient time frame possible. The keys to the success of the recovery project will be described in detail.« less
A power scalable PLL frequency synthesizer for high-speed Δ—Σ ADC
NASA Astrophysics Data System (ADS)
Siyang, Han; Baoyong, Chi; Xinwang, Zhang; Zhihua, Wang
2014-08-01
A 35-130 MHz/300-360 MHz phase-locked loop frequency synthesizer for Δ—Σ analog-to-digital converter (ADC) in 65 nm CMOS is presented. The frequency synthesizer can work in low phase-noise mode (300-360 MHz) or in low-power mode (35-130 MHz) to satisfy the ADC's requirements. To switch between these two modes, a high frequency GHz LC VCO followed by a divided-by-four frequency divider and a low frequency ring VCO followed by a divided-by-two frequency divider are integrated on-chip. The measured results show that the frequency synthesizer achieves a phase-noise of -132 dBc/Hz at 1 MHz offset and an integrated RMS jitter of 1.12 ps with 1.74 mW power consumption from a 1.2 V power supply in low phase-noise mode. In low-power mode, the frequency synthesizer achieves a phase-noise of -112 dBc/Hz at 1 MHz offset and an integrated RMS jitter of 7.23 ps with 0.92 mW power consumption from a 1.2 V power supply.
Wei, Shengji; Helmberger, Don; Zhan, Zhongwen; Graves, Robert
2013-01-01
We derive a finite slip model for the 2013 Mw 8.3 Sea of Okhotsk Earthquake (Z = 610 km) by inverting calibrated teleseismic P waveforms. The inversion shows that the earthquake ruptured on a 10° dipping rectangular fault zone (140 km × 50 km) and evolved into a sequence of four large sub-events (E1–E4) with an average rupture speed of 4.0 km/s. The rupture process can be divided into two main stages. The first propagated south, rupturing sub-events E1, E2, and E4. The second stage (E3) originated near E2 with a delay of 12 s and ruptured northward, filling the slip gap between E1 and E2. This kinematic process produces an overall slip pattern similar to that observed in shallow swarms, except it occurs over a compressed time span of about 30 s and without many aftershocks, suggesting that sub-event triggering for deep events is significantly more efficient than for shallow events.
Hazuda, Helen P.
2015-01-01
Background Mexican Americans comprise the most rapidly growing segment of the older US population and are reported to have poorer functional health than European Americans, but few studies have examined factors contributing to ethnic differences in walking speed between Mexican Americans and European Americans. Objective The purpose of this study was to examine factors that contribute to walking speed and observed ethnic differences in walking speed in older Mexican Americans and European Americans using the disablement process model (DPM) as a guide. Design This was an observational, cross-sectional study. Methods Participants were 703 Mexican American and European American older adults (aged 65 years and older) who completed the baseline examination of the San Antonio Longitudinal Study of Aging (SALSA). Hierarchical regression models were performed to identify the contribution of contextual, lifestyle/anthropometric, disease, and impairment variables to walking speed and to ethnic differences in walking speed. Results The ethic difference in unadjusted mean walking speed (Mexican Americans=1.17 m/s, European Americans=1.29 m/s) was fully explained by adjustment for contextual (ie, age, sex, education, income) and lifestyle/anthropometric (ie, body mass index, height, physical activity) variables; adjusted mean walking speed in both ethnic groups was 1.23 m/s. Contextual variables explained 20.3% of the variance in walking speed, and lifestyle/anthropometric variables explained an additional 8.4%. Diseases (ie, diabetes, stroke, chronic obstructive pulmonary disease) explained an additional 1.9% of the variance in walking speed; impairments (ie, FEV1, upper leg pain, and lower extremity strength and range of motion) contributed an additional 5.5%. Thus, both nonmodifiable (ie, contextual, height) and modifiable (ie, impairments, body mass index, physical activity) factors contributed to walking speed in older Mexican Americans and European Americans. Limitations The study was conducted in a single geographic area and included only Mexican American Hispanic individuals. Conclusions Walking speed in older Mexican Americans and European Americans is influenced by modifiable and nonmodifiable factors, underscoring the importance of the DPM framework, which incorporates both factors into the physical therapist patient/client management process. PMID:25592187
Evaluation of variable speed limits on I-270/I-255 in St. Louis.
DOT National Transportation Integrated Search
2010-10-01
In May of 2008, MoDOT installed a Variable Speed Limit (VSL) system along the I270/I255 corridor in St. Louis. This project evaluated the VSL system and its potential impacts and benefits to the transportation users. The technical system ...
NASA Astrophysics Data System (ADS)
Zhao, Zhen-tao; Huang, Wei; Li, Shi-Bin; Zhang, Tian-Tian; Yan, Li
2018-06-01
In the current study, a variable Mach number waverider design approach has been proposed based on the osculating cone theory. The design Mach number of the osculating cone constant Mach number waverider with the same volumetric efficiency of the osculating cone variable Mach number waverider has been determined by writing a program for calculating the volumetric efficiencies of waveriders. The CFD approach has been utilized to verify the effectiveness of the proposed approach. At the same time, through the comparative analysis of the aerodynamic performance, the performance advantage of the osculating cone variable Mach number waverider is studied. The obtained results show that the osculating cone variable Mach number waverider owns higher lift-to-drag ratio throughout the flight profile when compared with the osculating cone constant Mach number waverider, and it has superior low-speed aerodynamic performance while maintaining nearly the same high-speed aerodynamic performance.
Technology Assessment for Large Vertical-Lift Transport Tiltrotors
NASA Technical Reports Server (NTRS)
Germanowski, Peter J.; Stille, Brandon L.; Strauss, Michael P.
2010-01-01
The technical community has identified rotor efficiency as a critical enabling technology for large vertical-lift transport (LVLT) rotorcraft. The size and performance of LVLT aircraft will be far beyond current aircraft capabilities, enabling a transformational change in cargo transport effectiveness. Two candidate approaches for achieving high efficiency were considered for LVLT applications: a variable-diameter tiltrotor (VDTR) and a variable-speed tiltrotor (VSTR); the former utilizes variable-rotor geometry and the latter utilizes variable-rotor speed. Conceptual aircraft designs were synthesized for the VDTR and VSTR and compared to a conventional tiltrotor (CTR). The aircraft were optimized to a common objective function and bounded by a set of physical- and requirements-driven constraints. The resulting aircraft were compared for weight, size, performance, handling qualities, and other attributes. These comparisons established a measure of the relative merits of the variable-diameter and -speed rotor systems as enabling technologies for LVLT capability.
Pacing during an ultramarathon running event in hilly terrain
Cole-Hunter, Tom; Wiegand, Aaron N.; Solomon, Colin
2016-01-01
Purpose The dynamics of speed selection as a function of distance, or pacing, are used in recreational, competitive, and scientific research situations as an indirect measure of the psycho-physiological status of an individual. The purpose of this study was to determine pacing on level, uphill and downhill sections of participants in a long (>80 km) ultramarathon performed on trails in hilly terrain. Methods Fifteen ultramarathon runners competed in a 173 km event (five finished at 103 km) carrying a Global-Positioning System (GPS) device. Using the GPS data, we determined the speed, relative to average total speed, in level (LEV), uphill (UH) and downhill (DH) gradient categories as a function of total distance, as well as the correlation between overall performance and speed variability, speed loss, and total time stopped. Results There were no significant differences in normality, variances or means in the relative speed in 173-km and 103-km participants. Relative speed decreased in LEV, UH and DH. The main component of speed loss occurred between 5% and 50% of the event distance in LEV, and between 5% and 95% in UH and DH. There were no significant correlations between overall performance and speed loss, the variability of speed, or total time stopped. Conclusions Positive pacing was observed at all gradients, with the main component of speed loss occurring earlier (mixed pacing) in LEV compared to UH and DH. A speed reserve (increased speed in the last section) was observed in LEV and UH. The decrease in speed and variability of speed were more important in LEV and DH than in UH. The absence of a significant correlation between overall performance and descriptors of pacing is novel and indicates that pacing in ultramarathons in trails and hilly terrain differs to other types of running events. PMID:27812406
Particle levitation and guidance in hollow-core photonic crystal fiber.
Benabid, Fetah; Knight, J; Russell, P
2002-10-21
We report the guidance of dry micron-sized dielectric particles in hollow core photonic crystal fiber. The particles were levitated in air and then coupled to the air-core of the fiber using an Argon ion laser beam operating at a wavelength of 514 nm. The diameter of the hollow core of the fiber is 20 m . A laser power of 80 mW was sufficient to levitate a 5 m diameter polystyrene sphere and guide it through a ~150 mm long hollow-core crystal photonic fiber. The speed of the guided particle was measured to be around 1 cm/s.
10-Gb/s direct modulation of polymer-based tunable external cavity lasers.
Choi, Byung-Seok; Oh, Su Hwan; Kim, Ki Soo; Yoon, Ki-Hong; Kim, Hyun Soo; Park, Mi-Ran; Jeong, Jong Sool; Kwon, O-Kyun; Seo, Jun-Kyu; Lee, Hak-Kyu; Chung, Yun C
2012-08-27
We demonstrate a directly-modulated 10-Gb/s tunable external cavity laser (ECL) fabricated by using a polymer Bragg reflector and a high-speed superluminescent diode (SLD). The tuning range and output power of this ECL are measured to be >11 nm and 2.6 mW (@ 100 mA), respectively. We directly modulate this laser at 10 Gb/s and transmit the modulated signal over 20 km of standard single-mode fiber. The power penalty is measured to be <2.8 dB at the bit-error rate (BER) of 10(-10).
A 16K-bit static IIL RAM with 25-ns access time
NASA Astrophysics Data System (ADS)
Inabe, Y.; Hayashi, T.; Kawarada, K.; Miwa, H.; Ogiue, K.
1982-04-01
A 16,384 x 1-bit RAM with 25-ns access time, 600-mW power dissipation, and 33 sq mm chip size has been developed. Excellent speed-power performance with high packing density has been achieved by an oxide isolation technology in conjunction with novel ECL circuit techniques and IIL flip-flop memory cells, 980 sq microns (35 x 28 microns) in cell size. Development results have shown that IIL flip-flop memory cell is a trump card for assuring achievement of a high-performance large-capacity bipolar RAM, in the above 16K-bit/chip area.
High-speed photodiodes for InP-based photonic integrated circuits.
Rouvalis, E; Chtioui, M; Tran, M; Lelarge, F; van Dijk, F; Fice, M J; Renaud, C C; Carpintero, G; Seeds, A J
2012-04-09
We demonstrate the feasibility of monolithic integration of evanescently coupled Uni-Traveling Carrier Photodiodes (UTC-PDs) having a bandwidth exceeding 100 GHz with Multimode Interference (MMI) couplers. This platform is suitable for active-passive, butt-joint monolithic integration with various Multiple Quantum Well (MQW) devices for narrow linewidth millimeter-wave photomixing sources. The fabricated devices achieved a high 3-dB bandwidth of up to 110 GHz and a generated output power of more than 0 dBm (1 mW) at 120 GHz with a flat frequency response over the microwave F-band (90-140 GHz).
Lejiang Yu; Shiyuan Zhong; Xindi Bian; Warren E. Heilman
2015-01-01
This study examines the spatial and temporal variability of wind speed at 80m above ground (the average hub height of most modern wind turbines) in the contiguous United States using Climate Forecast System Reanalysis (CFSR) data from 1979 to 2011. The mean 80-m wind exhibits strong seasonality and large spatial variability, with higher (lower) wind speeds in the...
Wuehr, M; Schniepp, R; Pradhan, C; Ilmberger, J; Strupp, M; Brandt, T; Jahn, K
2013-01-01
Healthy persons exhibit relatively small temporal and spatial gait variability when walking unimpeded. In contrast, patients with a sensory deficit (e.g., polyneuropathy) show an increased gait variability that depends on speed and is associated with an increased fall risk. The purpose of this study was to investigate the role of vision in gait stabilization by determining the effects of withdrawing visual information (eyes closed) on gait variability at different locomotion speeds. Ten healthy subjects (32.2 ± 7.9 years, 5 women) walked on a treadmill for 5-min periods at their preferred walking speed and at 20, 40, 70, and 80 % of maximal walking speed during the conditions of walking with eyes open (EO) and with eyes closed (EC). The coefficient of variation (CV) and fractal dimension (α) of the fluctuations in stride time, stride length, and base width were computed and analyzed. Withdrawing visual information increased the base width CV for all walking velocities (p < 0.001). The effects of absent visual information on CV and α of stride time and stride length were most pronounced during slow locomotion (p < 0.001) and declined during fast walking speeds. The results indicate that visual feedback control is used to stabilize the medio-lateral (i.e., base width) gait parameters at all speed sections. In contrast, sensory feedback control in the fore-aft direction (i.e., stride time and stride length) depends on speed. Sensory feedback contributes most to fore-aft gait stabilization during slow locomotion, whereas passive biomechanical mechanisms and an automated central pattern generation appear to control fast locomotion.
Overview of Variable-Speed Power-Turbine Research
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
2011-01-01
The vertical take-off and landing (VTOL) and high-speed cruise capability of the NASA Large Civil Tilt-Rotor (LCTR) notional vehicle is envisaged to enable increased throughput in the national airspace. A key challenge of the LCTR is the requirement to vary the main rotor speeds from 100% at take-off to near 50% at cruise as required to minimize mission fuel burn. The variable-speed power-turbine (VSPT), driving a fixed gear-ratio transmission, provides one approach for effecting this wide speed variation. The key aerodynamic and rotordynamic challenges of the VSPT were described in the FAP Conference presentation. The challenges include maintaining high turbine efficiency at high work factor, wide (60 deg.) of incidence variation in all blade rows due to the speed variation, and operation at low Reynolds numbers (with transitional flow). The PT -shaft of the VSPT must be designed for safe operation in the wide speed range required, and therefore poses challenges associated with rotordynamics. The technical challenges drive research activities underway at NASA. An overview of the NASA SRW VSPT research activities was provided. These activities included conceptual and preliminary aero and mechanical (rotordynamics) design of the VSPT for the LCTR application, experimental and computational research supporting the development of incidence tolerant blading, and steps toward component-level testing of a variable-speed power-turbine of relevance to the LCTR application.
FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM
The paper describes a variable-speed wind generation system where fuzzy logic principles are used to optimize efficiency and enhance performance control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which either pump...
FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM
The report gives results of a demonstration of the successful application of fuzzy logic to enhance the performance and control of a variable-speed wind generation system. A squirrel cage induction generator feeds the power to either a double-sided pulse-width modulation converte...
Influence of travel speed on spray deposition uniformity from an air-assisted variable-rate sprayer
USDA-ARS?s Scientific Manuscript database
A newly developed LiDAR-guided air-assisted variable-rate sprayer for nursery and orchard applications was tested at various travel speeds to compare its spray deposition and coverage uniformity with constant-rate applications. Spray samplers, including nylon screens and water-sensitive papers (WSP)...
Appendices : evaluation of variable speed limits on I-270/I-255 in St. Louis.
DOT National Transportation Integrated Search
2010-10-01
In May of 2008, MoDOT installed a Variable Speed Limit (VSL) system along the I-270/I-255 corridor in : St. Louis. This project evaluated the VSL system and its potential impacts and benefits to the : transportation users. The technical system ...
Inhibitory Performance, Response Speed, Intraindividual Variability, and Response Accuracy in ADHD
ERIC Educational Resources Information Center
De Zeeuw, Patrick; Aarnoudse-Moens, Cornelieke; Bijlhout, Joyce; Konig, Claudia; Uiterweer, Annebeth Post; Papanikolau, Alky; Hoogenraad, Caecilia; Imandt, Lieke; De Been, Debbie; Sergeant, Joseph A.; Oosterlaan, Jaap
2008-01-01
The study aims to investigate the influence of inhibitory performance, response speed, intraindividual variability and response accuracy in distinguishing children from those with Attention-deficit/Hyperactivity (ADHD) syndrome from normal healthy children. The results conclude that there exist large number of differences in the symptoms between…
Krukow, Paweł; Szaniawska, Ola; Harciarek, Michał; Plechawska-Wójcik, Małgorzata; Jonak, Kamil
2017-03-01
Bipolar patients show high intra-individual variability during cognitive processing. However, it is not known whether there are a specific fluctuations of variability contributing to the overall high cognitive inconsistency. The objective was to compare dynamic profiles of patients and healthy controls to identify hypothetical differences and their associations with overall variability and processing speed. Changes of reaction times iSD during processing speed test performance over time was measured by dividing the iSD for whole task into four consecutive parts. Motor speed and cognitive effort were controlled. Patients with BD exhibited significantly lower results regarding processing speed and higher intra-individual variability comparing with HC. The profile of intra-individual variability changes over time of performance was significantly different in BD versus HC groups: F(3, 207)=8.60, p<0.0001, η p 2 =0.11. iSD of BD patients in the initial phase of performance was three times higher than in the last. There was no significant differences between four intervals in HC group. Inter-group difference in the initial part of the profiles was significant also after controlling for several cognitive and clinical variables. Applied computer version of Cognitive Speed Test was relatively new and, thus, replication studies are needed. Effect seen in the present study is driven mainly by the BD type I. Patients with BD exhibits problems with setting a stimulus-response association in starting phase of cognitive processing. This deficit may negatively interfere with the other cognitive functions, decreasing level of psychosocial functioning, therefore should be explored in future studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Torres Silva dos Santos, Alexandre; Moisés Santos e Silva, Cláudio
2013-01-01
Wind speed analyses are currently being employed in several fields, especially in wind power generation. In this study, we used wind speed data from records of Universal Fuess anemographs at an altitude of 10 m from 47 weather stations of the National Institute of Meteorology (Instituto Nacional de Meteorologia-INMET) from January 1986 to December 2011. The objective of the study was to investigate climatological aspects and wind speed trends. To this end, the following methods were used: filling of missing data, descriptive statistical calculations, boxplots, cluster analysis, and trend analysis using the Mann-Kendall statistical method. The seasonal variability of the average wind speeds of each group presented higher values for winter and spring and lower values in the summer and fall. The groups G1, G2, and G5 showed higher annual averages in the interannual variability of wind speeds. These observed peaks were attributed to the El Niño and La Niña events, which change the behavior of global wind circulation and influence wind speeds over the region. Trend analysis showed more significant negative values for the G3, G4, and G5 groups for all seasons of the year and in the annual average for the period under study.
Santos e Silva, Cláudio Moisés
2013-01-01
Wind speed analyses are currently being employed in several fields, especially in wind power generation. In this study, we used wind speed data from records of Universal Fuess anemographs at an altitude of 10 m from 47 weather stations of the National Institute of Meteorology (Instituto Nacional de Meteorologia-INMET) from January 1986 to December 2011. The objective of the study was to investigate climatological aspects and wind speed trends. To this end, the following methods were used: filling of missing data, descriptive statistical calculations, boxplots, cluster analysis, and trend analysis using the Mann-Kendall statistical method. The seasonal variability of the average wind speeds of each group presented higher values for winter and spring and lower values in the summer and fall. The groups G1, G2, and G5 showed higher annual averages in the interannual variability of wind speeds. These observed peaks were attributed to the El Niño and La Niña events, which change the behavior of global wind circulation and influence wind speeds over the region. Trend analysis showed more significant negative values for the G3, G4, and G5 groups for all seasons of the year and in the annual average for the period under study. PMID:24250267
Effectiveness and acceptance of the intelligent speeding prediction system (ISPS).
Zhao, Guozhen; Wu, Changxu
2013-03-01
The intelligent speeding prediction system (ISPS) is an in-vehicle speed assistance system developed to provide quantitative predictions of speeding. Although the ISPS's prediction of speeding has been validated, whether the ISPS can regulate a driver's speed behavior or whether a driver accepts the ISPS needs further investigation. Additionally, compared to the existing intelligent speed adaptation (ISA) system, whether the ISPS performs better in terms of reducing excessive speeds and improving driving safety needs more direct evidence. An experiment was conducted to assess and compare the effectiveness and acceptance of the ISPS and the ISA. We conducted a driving simulator study with 40 participants. System type served as a between-subjects variable with four levels: no speed assistance system, pre-warning system developed based on the ISPS, post-warning system ISA, and combined pre-warning and ISA system. Speeding criterion served as a within-subjects variable with two levels: lower (posted speed limit plus 1 mph) and higher (posted speed limit plus 5 mph) speed threshold. Several aspects of the participants' driving speed, speeding measures, lead vehicle response, and subjective measures were collected. Both pre-warning and combined systems led to greater minimum time-to-collision. The combined system resulted in slower driving speed, fewer speeding exceedances, shorter speeding duration, and smaller speeding magnitude. The results indicate that both pre-warning and combined systems have the potential to improve driving safety and performance. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bender, Christopher M; Ballard, Megan S; Wilson, Preston S
2014-06-01
The overall goal of this work is to quantify the effects of environmental variability and spatial sampling on the accuracy and uncertainty of estimates of the three-dimensional ocean sound-speed field. In this work, ocean sound speed estimates are obtained with acoustic data measured by a sparse autonomous observing system using a perturbative inversion scheme [Rajan, Lynch, and Frisk, J. Acoust. Soc. Am. 82, 998-1017 (1987)]. The vertical and horizontal resolution of the solution depends on the bandwidth of acoustic data and on the quantity of sources and receivers, respectively. Thus, for a simple, range-independent ocean sound speed profile, a single source-receiver pair is sufficient to estimate the water-column sound-speed field. On the other hand, an environment with significant variability may not be fully characterized by a large number of sources and receivers, resulting in uncertainty in the solution. This work explores the interrelated effects of environmental variability and spatial sampling on the accuracy and uncertainty of the inversion solution though a set of case studies. Synthetic data representative of the ocean variability on the New Jersey shelf are used.
Numerical simulations of flow fields through conventionally controlled wind turbines & wind farms
NASA Astrophysics Data System (ADS)
Emre Yilmaz, Ali; Meyers, Johan
2014-06-01
In the current study, an Actuator-Line Model (ALM) is implemented in our in-house pseudo-spectral LES solver SP-WIND, including a turbine controller. Below rated wind speed, turbines are controlled by a standard-torque-controller aiming at maximum power extraction from the wind. Above rated wind speed, the extracted power is limited by a blade pitch controller which is based on a proportional-integral type control algorithm. This model is used to perform a series of single turbine and wind farm simulations using the NREL 5MW turbine. First of all, we focus on below-rated wind speed, and investigate the effect of the farm layout on the controller calibration curves. These calibration curves are expressed in terms of nondimensional torque and rotational speed, using the mean turbine-disk velocity as reference. We show that this normalization leads to calibration curves that are independent of wind speed, but the calibration curves do depend on the farm layout, in particular for tightly spaced farms. Compared to turbines in a lone-standing set-up, turbines in a farm experience a different wind distribution over the rotor due to the farm boundary-layer interaction. We demonstrate this for fully developed wind-farm boundary layers with aligned turbine arrangements at different spacings (5D, 7D, 9D). Further we also compare calibration curves obtained from full farm simulations with calibration curves that can be obtained at a much lower cost using a minimal flow unit.
Speed behaviour in work zone crossovers. A driving simulator study.
Domenichini, Lorenzo; La Torre, Francesca; Branzi, Valentina; Nocentini, Alessandro
2017-01-01
Reductions in speed and, more critically, in speed variability between vehicles are considered an important factor to reduce crash risk in work zones. This study was designed to evaluate in a virtual environment the drivers' behaviour in response to nine different configurations of a motorway crossover work zone. Specifically, the speed behaviour through a typical crossover layout, designed in accordance with the Italian Ministerial Decree 10 July 2002, was compared with that of eight alternative configurations which differ in some characteristics such as the sequence of speed limits, the median opening width and the lane width. The influence of variable message signs, of channelizing devices and of perceptual treatments based on Human Factor principles were also tested. Forty-two participants drove in driving simulator scenarios while data on their speeds and decelerations were collected. The results indicated that drivers' speeds are always higher than the temporary posted speed limits for all configurations and that speeds decreases significantly only within the by-passes. However the implementation of higher speed limits, together with a wider median opening and taller channelization devices led to a greater homogeneity of the speeds adopted by the drivers. The presence of perceptual measures generally induced both the greatest homogenization of speeds and the largest reductions in mean speed values. Copyright © 2016 Elsevier Ltd. All rights reserved.
Eye-Movement Parameters and Reading Speed.
ERIC Educational Resources Information Center
Sovik, Nils; Arntzen, Oddvar; Samuelstuen, Marit
2000-01-01
Addresses the relationship between four eye movement parameters and reading speed of 20 twelve-year-old children during silent and oral reading. Predicts reading speed by the following variables: recognition span, average fixation duration, and number of regressive saccades. Indicates that in terms of reading speed, significant interrelationships…
Yentes, Jennifer M; Rennard, Stephen I; Schmid, Kendra K; Blanke, Daniel; Stergiou, Nicholas
2017-06-01
Compared with control subjects, patients with chronic obstructive pulmonary disease (COPD) have an increased incidence of falls and demonstrate balance deficits and alterations in mediolateral trunk acceleration while walking. Measures of gait variability have been implicated as indicators of fall risk, fear of falling, and future falls. To investigate whether alterations in gait variability are found in patients with COPD as compared with healthy control subjects. Twenty patients with COPD (16 males; mean age, 63.6 ± 9.7 yr; FEV 1 /FVC, 0.52 ± 0.12) and 20 control subjects (9 males; mean age, 62.5 ± 8.2 yr) walked for 3 minutes on a treadmill while their gait was recorded. The amount (SD and coefficient of variation) and structure of variability (sample entropy, a measure of regularity) were quantified for step length, time, and width at three walking speeds (self-selected and ±20% of self-selected speed). Generalized linear mixed models were used to compare dependent variables. Patients with COPD demonstrated increased mean and SD step time across all speed conditions as compared with control subjects. They also walked with a narrower step width that increased with increasing speed, whereas the healthy control subjects walked with a wider step width that decreased as speed increased. Further, patients with COPD demonstrated less variability in step width, with decreased SD, compared with control subjects at all three speed conditions. No differences in regularity of gait patterns were found between groups. Patients with COPD walk with increased duration of time between steps, and this timing is more variable than that of control subjects. They also walk with a narrower step width in which the variability of the step widths from step to step is decreased. Changes in these parameters have been related to increased risk of falling in aging research. This provides a mechanism that could explain the increased prevalence of falls in patients with COPD.
Electron Cyclotron Heating system status and upgrades on DIII-D
Cengher, Mirela; Lohr, John; Gorelov, Yuri; ...
2016-06-02
The Electron Cyclotron Heating (ECH) system on the DIII-D tokamak consists of six 110 GHz gyrotrons with corrugated coaxial 31.75 mm waveguide transmission lines and steerable launching mirrors. The system has been gradually updated, leading to increased experimental flexibility and a high system reliability of 91% in the past year. Operationally, the gyrotrons can generate up to a total of 4.8 MW of rf power for pulses up to 5 seconds in length. The maximum ECH energy injected into the DIII-D has been 16.6 MJ. The HE11 mode content is over 85% for all the lines, and the transmission coefficientmore » is better than -1.1 dB for all the transmission lines, close to the theoretical value. A new depressed collector gyrotron was recently installed and was injecting up to 640 kW of power into the plasma during 2014-2015 tokamak operations. Three dual waveguide launchers, which can steer the RF beams ±20 degrees poloidally and toroidally, were used for real-time neoclassical tearing mode control and suppression. The launchers now have increased poloidal scanning speed and beam positioning accuracy of ~±2 mm at the plasma center. A new method of in-situ calibration of the mirror angle was used in conjunction with the upgrading of the encoders and motors for the launchers. Two more gyrotrons are expected to be installed and operational in 2015-2016. The first is a repaired 110 GHz, 1 MW gyrotron that had a gun failure after more than 11 years of operation at DIII-D. The second is a newly designed depressed collector tube in the 1.5 MW class, operating at 117.5 GHz, manufactured by Communications and Power Industries (CPI). It operates in the TE20,9 mode and has achieved 1.8 MW for short pulses during factory testing. Furthermore, this gyrotron is undergoing rework to address a high voltage standoff problem.« less
An oilspill trajectory analysis model with a variable wind deflection angle
Samuels, W.B.; Huang, N.E.; Amstutz, D.E.
1982-01-01
The oilspill trajectory movement algorithm consists of a vector sum of the surface drift component due to wind and the surface current component. In the U.S. Geological Survey oilspill trajectory analysis model, the surface drift component is assumed to be 3.5% of the wind speed and is rotated 20 degrees clockwise to account for Coriolis effects in the Northern Hemisphere. Field and laboratory data suggest, however, that the deflection angle of the surface drift current can be highly variable. An empirical formula, based on field observations and theoretical arguments relating wind speed to deflection angle, was used to calculate a new deflection angle at each time step in the model. Comparisons of oilspill contact probabilities to coastal areas calculated for constant and variable deflection angles showed that the model is insensitive to this changing angle at low wind speeds. At high wind speeds, some statistically significant differences in contact probabilities did appear. ?? 1982.
Eluru, Naveen; Chakour, Vincent; Chamberlain, Morgan; Miranda-Moreno, Luis F
2013-10-01
Vehicle operating speed measured on roadways is a critical component for a host of analysis in the transportation field including transportation safety, traffic flow modeling, roadway geometric design, vehicle emissions modeling, and road user route decisions. The current research effort contributes to the literature on examining vehicle speed on urban roads methodologically and substantively. In terms of methodology, we formulate a new econometric model framework for examining speed profiles. The proposed model is an ordered response formulation of a fractional split model. The ordered nature of the speed variable allows us to propose an ordered variant of the fractional split model in the literature. The proposed formulation allows us to model the proportion of vehicles traveling in each speed interval for the entire segment of roadway. We extend the model to allow the influence of exogenous variables to vary across the population. Further, we develop a panel mixed version of the fractional split model to account for the influence of site-specific unobserved effects. The paper contributes substantively by estimating the proposed model using a unique dataset from Montreal consisting of weekly speed data (collected in hourly intervals) for about 50 local roads and 70 arterial roads. We estimate separate models for local roads and arterial roads. The model estimation exercise considers a whole host of variables including geometric design attributes, roadway attributes, traffic characteristics and environmental factors. The model results highlight the role of various street characteristics including number of lanes, presence of parking, presence of sidewalks, vertical grade, and bicycle route on vehicle speed proportions. The results also highlight the presence of site-specific unobserved effects influencing the speed distribution. The parameters from the modeling exercise are validated using a hold-out sample not considered for model estimation. The results indicate that the proposed panel mixed ordered probit fractional split model offers promise for modeling such proportional ordinal variables. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Gallo, C.; Kasuba, R.; Pintz, A.; Spring, J.
1986-01-01
The dynamic analysis of a horizontal axis fixed pitch wind turbine generator (WTG) rated at 56 kW is discussed. A mechanical Continuously Variable Transmission (CVT) was incorporated in the drive train to provide variable speed operation capability. One goal of the dynamic analysis was to determine if variable speed operation, by means of a mechanical CVT, is capable of capturing the transient power in the WTG/wind environment. Another goal was to determine the extent of power regulation possible with CVT operation.
Automated section speed control on motorways: an evaluation of the effect on driving speed.
De Pauw, Ellen; Daniels, Stijn; Brijs, Tom; Hermans, Elke; Wets, Geert
2014-12-01
Automated section speed control is a fairly new traffic safety measure that is increasingly applied to enforce speed limits. The advantage of this enforcement system is the registration of the average speed at an entire section, which would lead to high speed limit compliances and subsequently to a reduction in the vehicle speed variability, increased headway, more homogenised traffic flow and increased traffic capacity. However, the number of studies that analysed these effects are limited. The present study evaluates the speed effect of two section speed control systems in Flanders, Belgium. Both sections are located in the opposite direction of a three-lane motorway with a posted speed limit of 120 km/h. Speed data were collected at different points: from 6 km before the entrance of the section to 6 km downstream from the section. The effect was analysed through a before- and after comparison of travel speeds. General time trends and fluctuations were controlled through the analysis of speeds at comparison locations. On the enforced sections considerable decreases were found of about 5.84 km/h in the average speed, 74% in the odds of drivers exceeding the speed limit and 86% in the odds of drivers exceeding the speed limit by more than 10%. At the locations up- and downstream from the section also favourable effects were found for the three outcomes. Furthermore a decrease in the speed variability could be observed at all these data points. Copyright © 2014 Elsevier Ltd. All rights reserved.
A dynamical system perspective to understanding badminton singles game play.
Chow, Jia Yi; Seifert, Ludovic; Hérault, Romain; Chia, Shannon Jing Yi; Lee, Miriam Chang Yi
2014-02-01
By altering the task constraints of cooperative and competitive game contexts in badminton, insights can be obtained from a dynamical systems perspective to investigate the underlying processes that results in either a gradual shift or transition of playing patterns. Positional data of three pairs of skilled female badminton players (average age 20.5±1.38years) were captured and analyzed. Local correlation coefficient, which provides information on the relationship of players' displacement data, between each pair of players was computed for angle and distance from base position. Speed scalar product was in turn established from speed vectors of the players. The results revealed two patterns of playing behaviors (i.e., in-phase and anti-phase patterns) for movement displacement. Anti-phase relation was the dominant coupling pattern for speed scalar relationships among the pairs of players. Speed scalar product, as a collective variable, was different between cooperative and competitive plays with a greater variability in amplitude seen in competitive plays leading to a winning point. The findings from this study provide evidence for increasing stroke variability to perturb existing stable patterns of play and highlights the potential for speed scalar product to be a collective variable to distinguish different patterns of play (e.g., cooperative and competitive). Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sugimoto, Tsuneyoshi; Sugimoto, Kazuko; Kosuge, Nobuaki; Utagawa, Noriyuki; Katakura, Kageyoshi
2017-07-01
The noncontact acoustic inspection method focuses on the resonance phenomenon, and the target surface is measured by being vibrated with an airborne sound. It is possible to detect internal defects near the surface layer of a concrete structure from a long distance. However, it requires a fairly long measurement time to achieve the signal-to-noise (S/N) ratio just to find some resonance frequencies. In our method using the conventional waveform “single-tone burst wave”, only one frequency was used for one-sound-wave emission to achieve a high S/N ratio using a laser Doppler vibrometer (LDV) at a safe low power (e.g., He-Ne 1 mW). On the other hand, in terms of the difference in propagation velocity between laser light and sound waves, the waveform that can be used for high-speed measurement was devised using plural frequencies for one-sound-wave emission (“multitone burst wave”). The measurement time at 35 measurement points has been dramatically decreased from 210 to 28 s when using this waveform. Accordingly, 7.5-fold high-speed measurement became possible. By some demonstration experiments, we confirmed the effectiveness of our measurement technique.
Semiconductor laser joint study program with Rome Laboratory
NASA Astrophysics Data System (ADS)
Schaff, William J.; Okeefe, Sean S.; Eastman, Lester F.
1994-09-01
A program to jointly study vertical-cavity surface emitting lasers (VCSEL) for high speed vertical optical interconnects (VOI) has been conducted under an ES&E between Rome Laboratory and Cornell University. Lasers were designed, grown, and fabricated at Cornell University. A VCSEL measurement laboratory has been designed, built, and utilized at Rome Laboratory. High quality VCSEL material was grown and characterized by fabricating conventional lateral cavity lasers that emitted at the design wavelength of 1.04 microns. The VCSEL's emit at 1.06 microns. Threshold currents of 16 mA at 4.8 volts were obtained for 30 microns diameter devices. Output powers of 5 mW were measured. This is 500 times higher power than from the light emitting diodes employed previously for vertical optical interconnects. A new form of compositional grading using a cosinusoidal function has been developed and is very successful for reducing diode series resistance for high speed interconnection applications. A flip-chip diamond package compatible with high speed operation of 16 VCSEL elements has been designed and characterized. A flip-chip device binding effort at Rome Laboratory was also designed and initiated. This report presents details of the one-year effort, including process recipes and results.
LIDAR wind speed measurements at a Taiwan onshore wind park
NASA Astrophysics Data System (ADS)
Wu, Yu-Ting; Lin, Ta-Hui; Hsuan, Chung-Yao; Li, Yu-Cheng; Yang, Ya-Fei; Tai, Tzy-Hwan; Huang, Chien-Cheng
2016-04-01
Measurements of wind speed and wind direction were carried out using a Leosphere Windcube LIDAR system at a Taiwan onshore wind park. The Lidar shot a total of five laser beams to the atmosphere to collect the light-of-sight (LOS) velocity. Four beams were sent successively in four cardinal directions along a 28° scanning cone angle, followed by a fifth, vertical beam. An unchangeable sampling rate of approximately 1.2 Hz was set in the LIDAR system to collect the LOS velocity. The supervisory control and data acquisition (SCADA) data from two GE 1.5 MW wind turbines near the LIDAR deployment site were acquired for the whole measuring period from February 4 to February 16 of 2015. The SCADA data include the blade angular velocity, the wind velocity measured at hub height from an anemometer mounted on the nacelle, the wind turbine yaw angle, and power production; each parameter was recorded as averages over 1-min periods. The data analysis involving the LIDAR measurements and the SCADA data were performed to obtain the turbulent flow statistics. The results show that the turbine power production has significant dependence to the wind speed, wind direction, turbulence intensity and wind shear.
Measurement and characterisation of radiated underwater sound from a 3.6 MW monopile wind turbine.
Pangerc, Tanja; Theobald, Peter D; Wang, Lian S; Robinson, Stephen P; Lepper, Paul A
2016-10-01
This paper describes underwater sound pressure measurements obtained in close proximity (∼50 m) to two individual wind turbines, over a 21-day period, capturing the full range of turbine operating conditions. The sound radiated into the water was characterised by a number of tonal components, which are thought to primarily originate from the gearbox for the bandwidth measured. The main signal associated with the turbine operation had a mean-square sound pressure spectral density level which peaked at 126 dB re 1 μPa 2 Hz -1 at 162 Hz. Other tonal components were also present, notably at frequencies between about 20 and 330 Hz, albeit at lower amplitudes. The measured sound characteristics, both in terms of frequency and amplitude, were shown to vary with wind speed. The sound pressure level increased with wind speed up to an average value of 128 dB re 1 μPa at a wind speed of about 10 ms -1 , and then showed a general decrease. Overall, differences in the mean-square sound pressure spectral density level of over 20 dB were observed across the operational envelope of the turbine.
Desktop Publishing: The Effects of Computerized Formats on Reading Speed and Comprehension.
ERIC Educational Resources Information Center
Knupfer, Nancy Nelson; McIsaac, Marina Stock
1989-01-01
Describes study that was conducted to determine the effects of two electronic text variables used in desktop publishing on undergraduate students' reading speed and comprehension. Research on text variables, graphic design, instructional text design, and computer screen design is discussed, and further studies are suggested. (22 references) (LRW)
Density dependence in demography and dispersal generates fluctuating invasion speeds
Li, Bingtuan; Miller, Tom E. X.
2017-01-01
Density dependence plays an important role in population regulation and is known to generate temporal fluctuations in population density. However, the ways in which density dependence affects spatial population processes, such as species invasions, are less understood. Although classical ecological theory suggests that invasions should advance at a constant speed, empirical work is illuminating the highly variable nature of biological invasions, which often exhibit nonconstant spreading speeds, even in simple, controlled settings. Here, we explore endogenous density dependence as a mechanism for inducing variability in biological invasions with a set of population models that incorporate density dependence in demographic and dispersal parameters. We show that density dependence in demography at low population densities—i.e., an Allee effect—combined with spatiotemporal variability in population density behind the invasion front can produce fluctuations in spreading speed. The density fluctuations behind the front can arise from either overcompensatory population growth or density-dependent dispersal, both of which are common in nature. Our results show that simple rules can generate complex spread dynamics and highlight a source of variability in biological invasions that may aid in ecological forecasting. PMID:28442569
NASA Astrophysics Data System (ADS)
Menon, P. S.; Kandiah, K.; Mandeep, J. S.; Shaari, S.; Apte, P. R.
Long-wavelength VCSELs (LW-VCSEL) operating in the 1.55 μm wavelength regime offer the advantages of low dispersion and optical loss in fiber optic transmission systems which are crucial in increasing data transmission speed and reducing implementation cost of fiber-to-the-home (FTTH) access networks. LW-VCSELs are attractive light sources because they offer unique features such as low power consumption, narrow beam divergence and ease of fabrication for two-dimensional arrays. This paper compares the near field and far field effects of the numerically investigated LW-VCSEL for various design parameters of the device. The optical intensity profile far from the device surface, in the Fraunhofer region, is important for the optical coupling of the laser with other optical components. The near field pattern is obtained from the structure output whereas the far-field pattern is essentially a two-dimensional fast Fourier Transform (FFT) of the near-field pattern. Design parameters such as the number of wells in the multi-quantum-well (MQW) region, the thickness of the MQW and the effect of using Taguchi's orthogonal array method to optimize the device design parameters on the near/far field patterns are evaluated in this paper. We have successfully increased the peak lasing power from an initial 4.84 mW to 12.38 mW at a bias voltage of 2 V and optical wavelength of 1.55 μm using Taguchi's orthogonal array. As a result of the Taguchi optimization and fine tuning, the device threshold current is found to increase along with a slight decrease in the modulation speed due to increased device widths.
NASA Astrophysics Data System (ADS)
Qixing, Chen; Qiyu, Luo
2013-03-01
At present, the architecture of a digital-to-analog converter (DAC) in essence is based on the weight current, and the average value of its D/A signal current increases in geometric series according to its digital signal bits increase, which is 2n-1 times of its least weight current. But for a dual weight resistance chain type DAC, by using the weight voltage manner to D/A conversion, the D/A signal current is fixed to chain current Icha; it is only 1/2n-1 order of magnitude of the average signal current value of the weight current type DAC. Its principle is: n pairs dual weight resistances form a resistance chain, which ensures the constancy of the chain current; if digital signals control the total weight resistance from the output point to the zero potential point, that could directly control the total weight voltage of the output point, so that the digital signals directly turn into a sum of the weight voltage signals; thus the following goals are realized: (1) the total current is less than 200 μA (2) the total power consumption is less than 2 mW; (3) an 18-bit conversion can be realized by adopting a multi-grade structure; (4) the chip area is one order of magnitude smaller than the subsection current-steering type DAC; (5) the error depends only on the error of the unit resistance, so it is smaller than the error of the subsection current-steering type DAC; (6) the conversion time is only one action time of switch on or off, so its speed is not lower than the present DAC.
NASA Astrophysics Data System (ADS)
Dolan, James F.; Meade, Brendan J.
2017-12-01
Comparison of preevent geodetic and geologic rates in three large-magnitude (Mw = 7.6-7.9) strike-slip earthquakes reveals a wide range of behaviors. Specifically, geodetic rates of 26-28 mm/yr for the North Anatolian fault along the 1999 MW = 7.6 Izmit rupture are ˜40% faster than Holocene geologic rates. In contrast, geodetic rates of ˜6-8 mm/yr along the Denali fault prior to the 2002 MW = 7.9 Denali earthquake are only approximately half as fast as the latest Pleistocene-Holocene geologic rate of ˜12 mm/yr. In the third example where a sufficiently long pre-earthquake geodetic time series exists, the geodetic and geologic rates along the 2001 MW = 7.8 Kokoxili rupture on the Kunlun fault are approximately equal at ˜11 mm/yr. These results are not readily explicable with extant earthquake-cycle modeling, suggesting that they may instead be due to some combination of regional kinematic fault interactions, temporal variations in the strength of lithospheric-scale shear zones, and/or variations in local relative plate motion rate. Whatever the exact causes of these variable behaviors, these observations indicate that either the ratio of geodetic to geologic rates before an earthquake may not be diagnostic of the time to the next earthquake, as predicted by many rheologically based geodynamic models of earthquake-cycle behavior, or different behaviors characterize different fault systems in a manner that is not yet understood or predictable.
Validation of China-wide interpolated daily climate variables from 1960 to 2011
NASA Astrophysics Data System (ADS)
Yuan, Wenping; Xu, Bing; Chen, Zhuoqi; Xia, Jiangzhou; Xu, Wenfang; Chen, Yang; Wu, Xiaoxu; Fu, Yang
2015-02-01
Temporally and spatially continuous meteorological variables are increasingly in demand to support many different types of applications related to climate studies. Using measurements from 600 climate stations, a thin-plate spline method was applied to generate daily gridded climate datasets for mean air temperature, maximum temperature, minimum temperature, relative humidity, sunshine duration, wind speed, atmospheric pressure, and precipitation over China for the period 1961-2011. A comprehensive evaluation of interpolated climate was conducted at 150 independent validation sites. The results showed superior performance for most of the estimated variables. Except for wind speed, determination coefficients ( R 2) varied from 0.65 to 0.90, and interpolations showed high consistency with observations. Most of the estimated climate variables showed relatively consistent accuracy among all seasons according to the root mean square error, R 2, and relative predictive error. The interpolated data correctly predicted the occurrence of daily precipitation at validation sites with an accuracy of 83 %. Moreover, the interpolation data successfully explained the interannual variability trend for the eight meteorological variables at most validation sites. Consistent interannual variability trends were observed at 66-95 % of the sites for the eight meteorological variables. Accuracy in distinguishing extreme weather events differed substantially among the meteorological variables. The interpolated data identified extreme events for the three temperature variables, relative humidity, and sunshine duration with an accuracy ranging from 63 to 77 %. However, for wind speed, air pressure, and precipitation, the interpolation model correctly identified only 41, 48, and 58 % of extreme events, respectively. The validation indicates that the interpolations can be applied with high confidence for the three temperatures variables, as well as relative humidity and sunshine duration based on the performance of these variables in estimating daily variations, interannual variability, and extreme events. Although longitude, latitude, and elevation data are included in the model, additional information, such as topography and cloud cover, should be integrated into the interpolation algorithm to improve performance in estimating wind speed, atmospheric pressure, and precipitation.
Four quadrant control of induction motors
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1991-01-01
Induction motors are the nation's workhorse, being the motor of choice in most applications due to their simple rugged construction. It has been estimated that 14 to 27 percent of the country's total electricity use could be saved with adjustable speed drives. Until now, induction motors have not been suited well for variable speed or servo-drives, due to the inherent complexity, size, and inefficiency of their variable speed controls. Work at NASA Lewis Research Center on field oriented control of induction motors using pulse population modulation method holds the promise for the desired drive electronics. The system allows for a variable voltage to frequency ratio which enables the user to operate the motor at maximum efficiency, while having independent control of both the speed and torque of an induction motor in all four quadrants of the speed torque map. Multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of machine. The pulse population technique, results to date, and projections for implementation of this existing new motor control technology are discussed.
Predictor Variables for Marathon Race Time in Recreational Female Runners
Schmid, Wiebke; Knechtle, Beat; Knechtle, Patrizia; Barandun, Ursula; Rüst, Christoph Alexander; Rosemann, Thomas; Lepers, Romuald
2012-01-01
Purpose We intended to determine predictor variables of anthropometry and training for marathon race time in recreational female runners in order to predict marathon race time for future novice female runners. Methods Anthropometric characteristics such as body mass, body height, body mass index, circumferences of limbs, thicknesses of skin-folds and body fat as well as training variables such as volume and speed in running training were related to marathon race time using bi- and multi-variate analysis in 29 female runners. Results The marathoners completed the marathon distance within 251 (26) min, running at a speed of 10.2 (1.1) km/h. Body mass (r=0.37), body mass index (r=0.46), the circumferences of thigh (r=0.51) and calf (r=0.41), the skin-fold thicknesses of front thigh (r=0.38) and of medial calf (r=0.40), the sum of eight skin-folds (r=0.44) and body fat percentage (r=0.41) were related to marathon race time. For the variables of training, maximal distance ran per week (r=− 0.38), number of running training sessions per week (r=− 0.46) and the speed of the training sessions (r= − 0.60) were related to marathon race time. In the multi-variate analysis, the circumference of calf (P=0.02) and the speed of the training sessions (P=0.0014) were related to marathon race time. Marathon race time might be partially (r 2=0.50) predicted by the following equation: Race time (min)=184.4 + 5.0 x (circumference calf, cm) –11.9 x (speed in running during training, km/h) for recreational female marathoners. Conclusions Variables of both anthropometry and training were related to marathon race time in recreational female marathoners and cannot be reduced to one single predictor variable. For practical applications, a low circumference of calf and a high running speed in training are associated with a fast marathon race time in recreational female runners. PMID:22942994
Predictor variables for marathon race time in recreational female runners.
Schmid, Wiebke; Knechtle, Beat; Knechtle, Patrizia; Barandun, Ursula; Rüst, Christoph Alexander; Rosemann, Thomas; Lepers, Romuald
2012-06-01
We intended to determine predictor variables of anthropometry and training for marathon race time in recreational female runners in order to predict marathon race time for future novice female runners. Anthropometric characteristics such as body mass, body height, body mass index, circumferences of limbs, thicknesses of skin-folds and body fat as well as training variables such as volume and speed in running training were related to marathon race time using bi- and multi-variate analysis in 29 female runners. The marathoners completed the marathon distance within 251 (26) min, running at a speed of 10.2 (1.1) km/h. Body mass (r=0.37), body mass index (r=0.46), the circumferences of thigh (r=0.51) and calf (r=0.41), the skin-fold thicknesses of front thigh (r=0.38) and of medial calf (r=0.40), the sum of eight skin-folds (r=0.44) and body fat percentage (r=0.41) were related to marathon race time. For the variables of training, maximal distance ran per week (r=- 0.38), number of running training sessions per week (r=- 0.46) and the speed of the training sessions (r= - 0.60) were related to marathon race time. In the multi-variate analysis, the circumference of calf (P=0.02) and the speed of the training sessions (P=0.0014) were related to marathon race time. Marathon race time might be partially (r(2)=0.50) predicted by the following equation: Race time (min)=184.4 + 5.0 x (circumference calf, cm) -11.9 x (speed in running during training, km/h) for recreational female marathoners. Variables of both anthropometry and training were related to marathon race time in recreational female marathoners and cannot be reduced to one single predictor variable. For practical applications, a low circumference of calf and a high running speed in training are associated with a fast marathon race time in recreational female runners.
Time course of word production in fast and slow speakers: a high density ERP topographic study.
Laganaro, Marina; Valente, Andrea; Perret, Cyril
2012-02-15
The transformation of an abstract concept into an articulated word is achieved through a series of encoding processes, which time course has been repeatedly investigated in the psycholinguistic and neuroimaging literature on single word production. The estimates of the time course issued from previous investigations represent the timing of process duration for mean processing speed: as production speed varies significantly across speakers, a crucial question is how the timing of encoding processing varies with speed. Here we investigated whether between-subjects variability in the speed of speech production is distributed along all encoding processes or if it is accounted for by a specific processing stage. We analysed event-related electroencephalographical (ERP) correlates during overt picture naming in 45 subjects divided into three speed subgroups according to their production latencies. Production speed modulated waveform amplitudes in the time window ranging from about 200 to 350 ms after picture presentation and the duration of a stable electrophysiological spatial configuration in the same time period. The remaining time windows from picture onset to 200 ms before articulation were unaffected by speed. By contrast, the manipulation of a psycholinguistic variable, word age-of-acquisition, modulated ERPs in all speed subgroups in a different and later time period, starting at around 400 ms after picture presentation, associated with phonological encoding processes. These results indicate that the between-subject variability in the speed of single word production is principally accounted for by the timing of a stable electrophysiological activity in the 200-350 ms time period, presumably associated with lexical selection. Copyright © 2011 Elsevier Inc. All rights reserved.
Predictor variables for a half marathon race time in recreational male runners
Rüst, Christoph Alexander; Knechtle, Beat; Knechtle, Patrizia; Barandun, Ursula; Lepers, Romuald; Rosemann, Thomas
2011-01-01
The aim of this study was to investigate predictor variables of anthropometry, training, and previous experience in order to predict a half marathon race time for future novice recreational male half marathoners. Eighty-four male finishers in the ‘Half Marathon Basel’ completed the race distance within (mean and standard deviation, SD) 103.9 (16.5) min, running at a speed of 12.7 (1.9) km/h. After multivariate analysis of the anthropometric characteristics, body mass index (r = 0.56), suprailiacal (r = 0.36) and medial calf skin fold (r = 0.53) were related to race time. For the variables of training and previous experience, speed in running of the training sessions (r = −0.54) were associated with race time. After multivariate analysis of both the significant anthropometric and training variables, body mass index (P = 0.0150) and speed in running during training (P = 0.0045) were related to race time. Race time in a half marathon might be partially predicted by the following equation (r2 = 0.44): Race time (min) = 72.91 + 3.045 * (body mass index, kg/m2) −3.884 * (speed in running during training, km/h) for recreational male runners. To conclude, variables of both anthropometry and training were related to half marathon race time in recreational male half marathoners and cannot be reduced to one single predictor variable. PMID:24198577
Predictor variables for a half marathon race time in recreational male runners.
Rüst, Christoph Alexander; Knechtle, Beat; Knechtle, Patrizia; Barandun, Ursula; Lepers, Romuald; Rosemann, Thomas
2011-01-01
The aim of this study was to investigate predictor variables of anthropometry, training, and previous experience in order to predict a half marathon race time for future novice recreational male half marathoners. Eighty-four male finishers in the 'Half Marathon Basel' completed the race distance within (mean and standard deviation, SD) 103.9 (16.5) min, running at a speed of 12.7 (1.9) km/h. After multivariate analysis of the anthropometric characteristics, body mass index (r = 0.56), suprailiacal (r = 0.36) and medial calf skin fold (r = 0.53) were related to race time. For the variables of training and previous experience, speed in running of the training sessions (r = -0.54) were associated with race time. After multivariate analysis of both the significant anthropometric and training variables, body mass index (P = 0.0150) and speed in running during training (P = 0.0045) were related to race time. Race time in a half marathon might be partially predicted by the following equation (r(2) = 0.44): Race time (min) = 72.91 + 3.045 * (body mass index, kg/m(2)) -3.884 * (speed in running during training, km/h) for recreational male runners. To conclude, variables of both anthropometry and training were related to half marathon race time in recreational male half marathoners and cannot be reduced to one single predictor variable.
Experimental evaluation of fog warning system.
Al-Ghamdi, Ali S
2007-11-01
Highway safety is a major concern to the public and to transportation professionals, so the number of crashes caused by poor visibility due to fog form an alarming statistic. Drivers respond to poor visibility conditions in different ways: some slow down; others do not. Many drivers simply follow the taillights of the vehicle ahead. Accordingly, hazardous conditions are created in which speeds are both too high for the prevailing conditions and highly variable. Findings are presented from a study of traffic crashes due to fog in the southern region of Saudi Arabia. The primary objective was to assess the effectiveness of fog detection and warning system on driver behavior regarding speed and headway. This warning system includes visibility sensors that automatically activate a variable message sign that posts an advisory speed when hazardous conditions due to fog occur. The system was installed on a 2 km section of a two-lane, rural highway. A data set of 36,013 observations from both experimental and control sections at two study sites was collected and analyzed. The data included vehicle speed, volume, and classification; time headway, time of day, and visibility distance. Although the warning system was ineffective in reducing speed variability, mean speed throughout the experimental sections was reduced by about 6.5 kph. This reduction indicates that the warning system appeared to have a positive effect on driver behavior in fog even though the observed mean speeds were still higher than the posted advisory speed. From relationships found in the literature between mean driving speed and number of crashes, a speed reduction of only 5 kph would yield a 15% decrease in the number of crashes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaya Shankar Tumuluru; Lope Tabil; Anthony Opoku
2011-04-01
The rapid expansion of ethanol processing plants in Canada has resulted in a significant increase in the production of wheat-based distiller's dried grains with solubles (DDGS). Transportation and flowability problems associated with DDGS necessitate investigations on pelleting. In the present study, the effect of process variables like die temperature (T) and feed moisture content (Mw) on the pellet properties like pellet moisture content, durability and pellet density was explored using a single pelleting machine; further studies on pelleting DDGS using a pilot-scale pellet mill were also conducted to understand the effect of die diameter and steam conditioning on durability andmore » bulk density of pellets. Proximate analysis of DDGS indicated that crude protein and dry matter were in the range of 37.37–40.33% and 91.27–92.60%, respectively. Linear regression models developed for pellet quality attributes like pellet moisture content, pellet density and durability adequately described the single pelleting process with R2 value of 0.97, 0.99 and 0.7, respectively. ANOVA results have indicated that linear terms T and Mw and the interaction term T × Mw were statistically significant at P < 0.01 and P < 0.1 for pellet moisture content and pellet density. Based on the trends of the surface plots, a medium T of about 50–80 °C and a low Mw of about 5.1% resulted in maximum pellet density and durability and minimum pellet moisture content. Results from pilot-scale studies indicated that bulk density, durability and throughput values were 436.8–528.9 kg m-3, 60.3–92.7% and 45.52–68.77 kg h-1, respectively. It was observed that both die diameter and steam addition had a significant effect on the bulk density and the durability values. The highest bulk density and durability were achieved with 6.4 mm die diameter with steam addition compared to 7.9 mm die with or without steam addition.« less
NASA Astrophysics Data System (ADS)
Cheng, Jilin; Zhang, Lihua; Zhang, Rentian; Gong, Yi; Zhu, Honggeng; Deng, Dongsheng; Feng, Xuesong; Qiu, Jinxian
2010-06-01
A dynamic planning model for optimizing operation of variable speed pumping system, aiming at minimum power consumption, was proposed to achieve economic operation. The No. 4 Jiangdu Pumping Station, a source pumping station in China's Eastern Route of South-to-North Water Diversion Project, is taken as a study case. Since the sump water level of Jiangdu Pumping Station is affected by the tide of Yangtze River, the daily-average heads of the pumping system varies yearly from 3.8m to 7.8m and the tide level difference in one day up to 1.2m. Comparisons of operation electricity cost between optimized variable speed and fixed speed operations of pumping system were made. When the full load operation mode is adopted, whether or not electricity prices in peak-valley periods are considered, the benefits of variable speed operation cannot compensate the energy consumption of the VFD. And when the pumping system operates in part load and the peak-valley electricity prices are considered, the pumping system should cease operation or lower its rotational speed in peak load hours since the electricity price are much higher, and to the contrary the pumping system should raise its rotational speed in valley load hours to pump more water. The computed results show that if the pumping system operates in 80% or 60% loads, the energy consumption cost of specified volume of water will save 14.01% and 26.69% averagely by means of optimal variable speed operation, and the investment on VFD will be paid back in 2 or 3 years. However, if the pumping system operates in 80% or 60% loads and the energy cost is calculated in non peak-valley electricity price, the repayment will be lengthened up to 18 years. In China's S-to-N Water Diversion Project, when the market operation and peak-valley electricity prices are taken into effect to supply water and regulate water levels in regulation reservoirs as Hongzehu Lake, Luomahu Lake, etc. the economic operation of water-diversion pumping stations will be vital, and the adoption of VFDs to achieve optimal operation may be a good choice.
Test Operations Procedure (TOP) 06-2-301 Wind Testing
2017-06-14
critical to ensure that the test item is exposed to the required wind speeds. This may be an iterative process as the fan blade pitch, fan speed...fan speed is the variable that is adjusted to reach the required velocities. Calibration runs with a range of fan speeds are performed and a
ERIC Educational Resources Information Center
Christopher, Micaela E.; Miyake, Akira; Keenan, Janice M.; Pennington, Bruce; DeFries, John C.; Wadsworth, Sally J.; Willcutt, Erik; Olson, Richard K.
2012-01-01
The present study explored whether different executive control and speed measures (working memory, inhibition, processing speed, and naming speed) independently predict individual differences in word reading and reading comprehension. Although previous studies suggest these cognitive constructs are important for reading, the authors analyze the…
Dynamic control of a homogeneous charge compression ignition engine
Duffy, Kevin P [Metamora, IL; Mehresh, Parag [Peoria, IL; Schuh, David [Peoria, IL; Kieser, Andrew J [Morton, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL
2008-06-03
A homogenous charge compression ignition engine is operated by compressing a charge mixture of air, exhaust and fuel in a combustion chamber to an autoignition condition of the fuel. The engine may facilitate a transition from a first combination of speed and load to a second combination of speed and load by changing the charge mixture and compression ratio. This may be accomplished in a consecutive engine cycle by adjusting both a fuel injector control signal and a variable valve control signal away from a nominal variable valve control signal. Thereafter in one or more subsequent engine cycles, more sluggish adjustments are made to at least one of a geometric compression ratio control signal and an exhaust gas recirculation control signal to allow the variable valve control signal to be readjusted back toward its nominal variable valve control signal setting. By readjusting the variable valve control signal back toward its nominal setting, the engine will be ready for another transition to a new combination of engine speed and load.
Do attentional capacities and processing speed mediate the effect of age on executive functioning?
Gilsoul, Jessica; Simon, Jessica; Hogge, Michaël; Collette, Fabienne
2018-02-06
The executive processes are well known to decline with age, and similar data also exists for attentional capacities and processing speed. Therefore, we investigated whether these two last nonexecutive variables would mediate the effect of age on executive functions (inhibition, shifting, updating, and dual-task coordination). We administered a large battery of executive, attentional and processing speed tasks to 104 young and 71 older people, and we performed mediation analyses with variables showing a significant age effect. All executive and processing speed measures showed age-related effects while only the visual scanning task performance (selective attention) was explained by age when controlled for gender and educational level. Regarding mediation analyses, visual scanning partially mediated the age effect on updating while processing speed partially mediated the age effect on shifting, updating and dual-task coordination. In a more exploratory way, inhibition was also found to partially mediate the effect of age on the three other executive functions. Attention did not greatly influence executive functioning in aging while, in agreement with the literature, processing speed seems to be a major mediator of the age effect on these processes. Interestingly, the global pattern of results seems also to indicate an influence of inhibition but further studies are needed to confirm the role of that variable as a mediator and its relative importance by comparison with processing speed.
Ploner, Stefan B; Moult, Eric M; Choi, WooJhon; Waheed, Nadia K; Lee, ByungKun; Novais, Eduardo A; Cole, Emily D; Potsaid, Benjamin; Husvogt, Lennart; Schottenhamml, Julia; Maier, Andreas; Rosenfeld, Philip J; Duker, Jay S; Hornegger, Joachim; Fujimoto, James G
2016-12-01
Currently available optical coherence tomography angiography systems provide information about blood flux but only limited information about blood flow speed. The authors develop a method for mapping the previously proposed variable interscan time analysis (VISTA) algorithm into a color display that encodes relative blood flow speed. Optical coherence tomography angiography was performed with a 1,050 nm, 400 kHz A-scan rate, swept source optical coherence tomography system using a 5 repeated B-scan protocol. Variable interscan time analysis was used to compute the optical coherence tomography angiography signal from B-scan pairs having 1.5 millisecond and 3.0 milliseconds interscan times. The resulting VISTA data were then mapped to a color space for display. The authors evaluated the VISTA visualization algorithm in normal eyes (n = 2), nonproliferative diabetic retinopathy eyes (n = 6), proliferative diabetic retinopathy eyes (n = 3), geographic atrophy eyes (n = 4), and exudative age-related macular degeneration eyes (n = 2). All eyes showed blood flow speed variations, and all eyes with pathology showed abnormal blood flow speeds compared with controls. The authors developed a novel method for mapping VISTA into a color display, allowing visualization of relative blood flow speeds. The method was found useful, in a small case series, for visualizing blood flow speeds in a variety of ocular diseases and serves as a step toward quantitative optical coherence tomography angiography.
Barandun, Ursula; Knechtle, Beat; Knechtle, Patrizia; Klipstein, Andreas; Rüst, Christoph Alexander; Rosemann, Thomas; Lepers, Romuald
2012-01-01
Recent studies have shown that personal best marathon time is a strong predictor of race time in male ultramarathoners. We aimed to determine variables predictive of marathon race time in recreational male marathoners by using the same characteristics of anthropometry and training as used for ultramarathoners. Anthropometric and training characteristics of 126 recreational male marathoners were bivariately and multivariately related to marathon race times. After multivariate regression, running speed of the training units (β = -0.52, P < 0.0001) and percent body fat (β = 0.27, P < 0.0001) were the two variables most strongly correlated with marathon race times. Marathon race time for recreational male runners may be estimated to some extent by using the following equation (r (2) = 0.44): race time ( minutes) = 326.3 + 2.394 × (percent body fat, %) - 12.06 × (speed in training, km/hours). Running speed during training sessions correlated with prerace percent body fat (r = 0.33, P = 0.0002). The model including anthropometric and training variables explained 44% of the variance of marathon race times, whereas running speed during training sessions alone explained 40%. Thus, training speed was more predictive of marathon performance times than anthropometric characteristics. The present results suggest that low body fat and running speed during training close to race pace (about 11 km/hour) are two key factors for a fast marathon race time in recreational male marathoner runners.
DIII-D Electron Cyclotron Heating System Status and Upgrades
Cengher, Mirela; Lohr, John; Gorelov, Yuri; ...
2016-06-23
The DIII-D Electron Cyclotron Heating (ECH) system consists of six 110 GHz gyrotrons with corrugated coaxial 31.75 mm waveguide transmission lines and steerable launching mirrors. The system has been gradually updated, leading to increased experimental flexibility and a high system reliability of 91% in the past year. Operationally, the gyrotrons can generate up to a total of 4.8 MW of rf power for pulses up to 5 seconds. The maximum ECH energy injected into the DIII-D is 16.6 MJ. The HE1,1 mode content is over 85% for all the lines, and the transmission coefficient is better than -1.1 dB formore » all the transmission lines, close to the theoretical value. A new depressed collector gyrotron was recently installed and was injecting up to 640 kW of power into the plasma during 2014-2015 tokamak operations. Four dual waveguide launchers, which can steer the RF beams ±20 degrees poloidally and toroidally, are used for real-time neoclassical tearing mode control and suppression. The launchers now have increased poloidal scanning speed and beam positioning accuracy of ~±2 mm at the plasma center. Two more gyrotrons are expected to be installed and operational in 2015- 2016. The first is a repaired 110 GHz, 1 MW gyrotron that had a gun failure after more than 11 years of operation at DIII-D. The second is a newly designed depressed collector tube in the 1.5 MW class, operating at 117.5 GHz, manufactured by Communications and Power Industries (CPI).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amano, Sho
2014-06-15
To generate continuously repetitive EUV and soft X-ray pulses with various wavelengths from laser-produced plasmas, a one-dimensionally translating substrate system with a closed He gas cryostat that can continuously supply various cryogenic targets for ∼10 Hz laser pulses has been developed. The system was successfully operated at a lowest temperature of 15 K and at a maximum up-down speed of 12 mm/s. Solid Ar, Kr, and Xe layers were formed, and their growth rates and the laser crater sizes on them were studied. By optimization of the operational parameters in accordance with our design rule, it was shown that stablemore » output power was achieved continuously from the plasma emission at frequencies of 1–10 Hz. The average soft X-ray and EUV powers obtained were 19 mW at 3.2 nm, 33 mW at 10.0 nm, and 66 mW at 10.8 nm, with 10% bandwidths, from the Ar, Kr, and Xe solid targets, respectively, with a laser power of 1 W. We will be able to achieve higher frequencies using a high beam quality laser that produces smaller craters, and can expect higher powers. Although only Ar, Kr, and Xe gases were tested in this study, the target system achieved a temperature of 15 K and can thus solidify almost all target gases, apart from H and He, and can continuously supply the solid target. The use of various target materials will enable expansion of the EUV and soft X-ray emission wavelength range.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-07-04
A 1-MW geothermal wellhead power plant incorporating a Lysholm or helical screw expander (HSE) was field tested between 1980 and 1983 by Mexico, Italy, and New Zealand with technical assistance from the United States. The objectives were to provide data on the reliability and performance of the HSE and to assess the costs and benefits of its use. The range of conditions under which the HSE was tested included loads up to 933 kW, mass flowrates of 14,600 to 395, 000 lbs/hr, inlet pressures of 64 to 220 psia, inlet qualities of 0 to 100%, exhaust pressures of 3.1 tomore » 40 psia, total dissolved solids up to 310,000 ppM, and noncondensible gases up to 38% of the vapor mass flow. Typical machine efficiencies of 40 to 50% were calculated. For most operations efficiency increased approximately logarithmically with shaft power, while inlet quality and rotor speed had only small effects. The HSE was designed with oversized internal clearances in the expectation that adherent scale would form during operation. Improvements in machine efficiency of 3.5 to 4 percentage points were observed over some test periods with some scale deposition. A comparison with a 1-MW back-pressure turbine showed that the HSE can compete favorably under certain conditions. The HSE was found to be a rugged energy conversion machine for geothermal applications, but some subsystems were found to require further development. 7 refs., 28 figs., 5 tabs.« less
Variability of gait, bilateral coordination, and asymmetry in women with fibromyalgia.
Heredia-Jimenez, J; Orantes-Gonzalez, E; Soto-Hermoso, V M
2016-03-01
To analyze how fibromyalgia affected the variability, asymmetry, and bilateral coordination of gait walking at comfortable and fast speeds. 65 fibromyalgia (FM) patients and 50 healthy women were analyzed. Gait analysis was performed using an instrumented walkway (GAITRite system). Average walking speed, coefficient of variation (CV) of stride length, swing time, and step width data were obtained and bilateral coordination and gait asymmetry were analyzed. FM patients presented significantly lower speeds than the healthy group. FM patients obtained significantly higher values of CV_StrideLength (p=0.04; p<0.001), CV_SwingTime (p<0.001; p<0.001), CV_StepWidth (p=0.004; p<0.001), phase coordination index (p=0.01; p=0.03), and p_CV (p<0.001; p=0.001) than the control group, walking at comfortable or fast speeds. Gait asymmetry only showed significant differences in the fast condition. FM patients walked more slowly and presented a greater variability of gait and worse bilateral coordination than healthy subjects. Gait asymmetry only showed differences in the fast condition. The variability and the bilateral coordination were particularly affected by FM in women. Therefore, variability and bilateral coordination of gait could be analyzed to complement the gait evaluation of FM patients. Copyright © 2016 Elsevier B.V. All rights reserved.
Plasma-wall interactions in ITER
NASA Astrophysics Data System (ADS)
Parker, R.; Janeschitz, G.; Pacher, H. D.; Post, D.; Chiocchio, S.; Federici, G.; Ladd, P.; Iter Joint Central Team; Home Teams
1997-02-01
This paper reviews the status of the design of the divertor and first-wall/shield, the main in-vessel components for ITER. Under nominal ignited conditions, 300 MW of alpha power will be produced and must be removed from the divertor and first-wall. Additional power from auxiliary sources up to the level of 100 MW must also be removed in the case of driven burns. In the ignited case, about 100 MW will be radiated to the first wall as bremsstrahlung. Allowing the remaining power to be conducted to the divertor target plates would result in excessive heat fluxes. The power handling strategy is to radiate an additional 100-150 MW in the SOL and the divertor channel via a combination of radiation from hydrogen, and intrinsic and seeded impurities. Vertical targets have been adopted for the baseline divertor configuration. This geometry promotes partial detachment, as found in present experiments and in the results of modelling runs for ITER conditions, and power densities on the target plates can be ≤ 5 MW/ m2. Such regimes promote relatively high pressure (> 1 Pa) in the divertor and even with a low helium enrichment factor of 0.2, the required pumping speed to pump helium is ≤ 50 m3/ s. An important physics question is the quality of core confinement in these attractive divertor regimes. In addition to power and particle handling issues, the effects of disruptions play a major role in the design and performance of in-vessel components. Both centered disruptions and VDE's produce stresses in the first-wall/shield modules, backplate and the divertor wings and cassettes that are near or even somewhat in excess of allowables for normal operation. Also plasma-wall contact from disruptions, including at the divertor target, together with material properties are major factors determining component lifetime. Considering the potential for impurity contamination and minimizing tritium inventory as well as thermomechanical performance, the present material selection calls for carbon divertor targets near the strike point, tungsten on the rest of the target and on the baffle where the charge-exchange flux could be high, and beryllium elsewhere. All three materials and relevant joining techniques are being developed in the R&D program and the final selection for the first assembly will be made at the end of the EDA.
Description and test results of a variable speed, constant frequency generating system
NASA Astrophysics Data System (ADS)
Brady, F. J.
1985-12-01
The variable-speed, constant frequency generating system developed for the Mod-0 wind turbine is presented. This report describes the system as it existed at the conclusion of the project. The cycloconverter control circuit is described including the addition of field-oriented control. The laboratory test and actual wind turbine test results are included.
EXPERIMENTAL DEVELOPMENT OF VARIABILITY IN READING RATE IN GRADES FOUR, FIVE AND SIX.
ERIC Educational Resources Information Center
HARRIS, THEODORE L.; AND OTHERS
METHODS OF TESTING, EVALUATING, AND TEACHING READING IN THE FOURTH, FIFTH AND SIXTH GRADES ARE DESCRIBED. CONSTRUCTION AND DESIGN OF EXPERIMENTAL TESTS OF VARIABILITY IN READING SPEED ARE DISCUSSED. DESIGN WAS BASED ON THE RATIONALE THAT A MEANINGFUL READING-TIME SCORE DIRECTLY RELATED TO THE SUBJECT'S PURPOSE FOR READING. WHILE READING SPEED MAY…
A robust variable sampling time BLDC motor control design based upon μ-synthesis.
Hung, Chung-Wen; Yen, Jia-Yush
2013-01-01
The variable sampling rate system is encountered in many applications. When the speed information is derived from the position marks along the trajectory, one would have a speed dependent sampling rate system. The conventional fixed or multisampling rate system theory may not work in these cases because the system dynamics include the uncertainties which resulted from the variable sampling rate. This paper derived a convenient expression for the speed dependent sampling rate system. The varying sampling rate effect is then translated into multiplicative uncertainties to the system. The design then uses the popular μ-synthesis process to achieve a robust performance controller design. The implementation on a BLDC motor demonstrates the effectiveness of the design approach.
A Robust Variable Sampling Time BLDC Motor Control Design Based upon μ-Synthesis
Yen, Jia-Yush
2013-01-01
The variable sampling rate system is encountered in many applications. When the speed information is derived from the position marks along the trajectory, one would have a speed dependent sampling rate system. The conventional fixed or multisampling rate system theory may not work in these cases because the system dynamics include the uncertainties which resulted from the variable sampling rate. This paper derived a convenient expression for the speed dependent sampling rate system. The varying sampling rate effect is then translated into multiplicative uncertainties to the system. The design then uses the popular μ-synthesis process to achieve a robust performance controller design. The implementation on a BLDC motor demonstrates the effectiveness of the design approach. PMID:24327804
Modelling and control algorithms of the cross conveyors line with multiengine variable speed drives
NASA Astrophysics Data System (ADS)
Cheremushkina, M. S.; Baburin, S. V.
2017-02-01
The paper deals with the actual problem of developing the control algorithm that meets the technical requirements of the mine belt conveyors, and enables energy and resource savings taking into account a random sort of traffic. The most effective method of solution of these tasks is the construction of control systems with the use of variable speed drives for asynchronous motors. The authors designed the mathematical model of the system ‘variable speed multiengine drive - conveyor - control system of conveyors’ that takes into account the dynamic processes occurring in the elements of the transport system, provides an assessment of the energy efficiency of application the developed algorithms, which allows one to reduce the dynamic overload in the belt to 15-20%.
Design Details for the Aquantis 2.5 MW Ocean Current Generation Device
Banko, Rich; Coakley, David; Colegrove, Dana; Fleming, Alex; Zierke, William; Ebner, Stephen
2015-06-03
Items in this submission provide the detailed design of the Aquantis Ocean Current Turbine and accompanying analysis documents, including preliminary designs, verification of design reports, CAD drawings of the hydrostatic drivetrain, a test plan and an operating conditions simulation report. This dataset also contains analysis trade off studies of fixed vs. variable pitch and 2 vs. 3 blades.
NASA Astrophysics Data System (ADS)
van der Molen, J.; Ruardij, P.; Greenwood, N.
2015-12-01
A model study was carried out of the potential large-scale (> 100 km) effects of marine renewable tidal energy generation in the Pentland Firth, using the 3-D hydrodynamics-biogeochemistry model GETM-ERSEM-BFM. A realistic 800 MW scenario and an exaggerated academic 8 GW scenario were considered. The realistic 800 MW scenario suggested minor effects on the tides, and undetectable effects on the biogeochemistry. The academic 8 GW scenario suggested effects would be observed over hundreds of kilometres away with changes of up to 10 % in tidal and ecosystem variables, in particular in a broad area in the vicinity of The Wash. There, waters became less turbid, and primary production increased with associated increases in faunal ecosystem variables. Moreover, a one-off increase in carbon storage in the sea bed was detected. Although these first results suggest positive environmental effects, further investigation is recommended of: (i) the residual circulation in the vicinity of the Pentland Firth and effects on larval dispersal using a higher resolution model, (ii) ecosystem effects with (future) state-of-the-art models if energy extraction substantially beyond 1 GW is planned.
NASA Astrophysics Data System (ADS)
Sinaga, R. H. M.; Manik, Y.
2018-03-01
Sibayak Geothermal Power Plant (SGPP) is one of the plants being developed by Pertamina Geothermal Energy (PGE) at the upstream phase. At the downstream phase, State - owned Electricity Company (PLN) through PT. Dizamatra Powerindo is the developer. The gross capacity of the power plant is 13.3 MW, consisting 1 unit of Monoblock (2 MW) developed by PGE and 2 units (2×5.65 MW) operated through Energy Sales Contract by PLN. During the development phase of a geothermal power plant, there is a chance to reduce the utility power in order to increase the overall plant efficiency. Reducing the utility power can be attempted by utilizing the wet bulb temperature fluctuation. In this study, a modeling process is developed by using Engineering Equation Solver (EES) software version 9.430. The possibility of energy saving is indicated by condenser pressure changes as a result of wet bulb temperature fluctuation. The result of this study indicates that the change of condenser pressure is about 50.8% on the constant liquid/gas (L/G) condition of the wet bulb temperature of 15°C to 25°C. Further result indicates that in this power plant, Cooling Tower Fan (CTF) is the facility that has the greatest utility load, followed by Hot Well Pump (HWP). The saving of the greatest utility load is applied trough Variable Frequency Drive (VFD) instrumentation. The result of this modeling has been validated by actual operations data (log sheet). The developed model has also been reviewed trough Specific Steam Consumption (SSC), resulting that constant L/G condition allows the optimum condition on of the wet bulb temperature of 15°C to 25°C.
NASA Technical Reports Server (NTRS)
Rubesin, M. W.; Rose, W. C.
1973-01-01
The time-dependent, turbulent mean-flow, Reynolds stress, and heat flux equations in mass-averaged dependent variables are presented. These equations are given in conservative form for both generalized orthogonal and axisymmetric coordinates. For the case of small viscosity and thermal conductivity fluctuations, these equations are considerably simpler than the general Reynolds system of dependent variables for a compressible fluid and permit a more direct extension of low speed turbulence modeling to computer codes describing high speed turbulence fields.
Strauss, Maria; Mergl, Roland; Sander, Christian; Schönknecht, Peter; Hegerl, Ulrich
2015-01-01
Depressive episodes show large interindividual differences concerning their speed of onset and speed of recovery, which might suggest differences in underlying pathophysiological processes. The aim of the present study was to assess whether there is a relationship between the speed of onset and the speed of recovery from depressive episodes. The speed of onset and the speed of recovery from depression were assessed using a structured patient interview, the Onset of Depression Inventory (ODI). In total, 28 patients with bipolar depression and 91 patients with unipolar depression were included. The mean speed of onset of depression was significantly faster than the mean speed of recovery from depression (35.25, range 0-360 days vs. 59.60, range 0.13-720 days; Z = -3.40; p = 0.001). The correlation between these variables was positive, but numerically low (ρ = 0.22; p = 0.016). The speed of onset of the previous episode and that of the present episode were significantly correlated (ρ = 0.45; p < 0.001). Data are based on retrospective patient reports within a naturalistic study. While the speed of onset of depressive episodes has been found to show large interindividual variability and some intraindividual stability, the data of this study do not indicate that the neurobiological processes involved in the onset of and in the recovery from depressive episodes are closely linked. © 2014 S. Karger AG, Basel.
Shiue, Ren-Jye; Gao, Yuanda; Wang, Yifei; Peng, Cheng; Robertson, Alexander D; Efetov, Dmitri K; Assefa, Solomon; Koppens, Frank H L; Hone, James; Englund, Dirk
2015-11-11
Graphene and other two-dimensional (2D) materials have emerged as promising materials for broadband and ultrafast photodetection and optical modulation. These optoelectronic capabilities can augment complementary metal-oxide-semiconductor (CMOS) devices for high-speed and low-power optical interconnects. Here, we demonstrate an on-chip ultrafast photodetector based on a two-dimensional heterostructure consisting of high-quality graphene encapsulated in hexagonal boron nitride. Coupled to the optical mode of a silicon waveguide, this 2D heterostructure-based photodetector exhibits a maximum responsivity of 0.36 A/W and high-speed operation with a 3 dB cutoff at 42 GHz. From photocurrent measurements as a function of the top-gate and source-drain voltages, we conclude that the photoresponse is consistent with hot electron mediated effects. At moderate peak powers above 50 mW, we observe a saturating photocurrent consistent with the mechanisms of electron-phonon supercollision cooling. This nonlinear photoresponse enables optical on-chip autocorrelation measurements with picosecond-scale timing resolution and exceptionally low peak powers.
A Numerical Study of Wind-Turbine Wakes for Three Atmospheric Stability Conditions
NASA Astrophysics Data System (ADS)
Xie, Shengbai; Archer, Cristina L.
2017-10-01
The effects of atmospheric stability on wind-turbine wakes are studied via large-eddy simulations. Three stability conditions are considered: stable, neutral, and unstable, with the same geostrophic wind speed aloft and the same Coriolis frequency. Both a single 5-MW turbine and a wind farm of five turbines are studied. The single-turbine wake is strongly correlated with stability, in terms of velocity deficit, turbulence kinetic energy (TKE) and temperature distribution. Because of the Coriolis effect, the wake shape deviates from a Gaussian distribution. For the wind-farm simulations, the separation of the core region and outer region is clear for the stable and neutral cases, but less distinct for the unstable case. The unstable case exhibits strong horizontal variations in wind speed. Local accelerations such as related to aisle jets are also observed, whose features depend on stability. The added TKE in the wind farm increases with stability. The highest power extraction and lowest power deficit are observed for the unstable case.
NASA Technical Reports Server (NTRS)
Sydnor, George H.; Bhatia, Ram; Krattiger, Hansueli; Mylius, Justus; Schafer, D.
2012-01-01
In September 1995, a project was initiated to replace the existing drive line at NASA's most unique transonic wind tunnel, the National Transonic Facility (NTF), with a single 101 MW synchronous motor driven by a Load Commutated Inverter (LCI). This Adjustable Speed Drive (ASD) system also included a custom four-winding transformer, harmonic filter, exciter, switch gear, control system, and feeder cable. The complete system requirements and design details have previously been presented and published [1], as well as the commissioning and acceptance test results [2]. The NTF was returned to service in December 1997 with the new drive system powering the fan. Today, this installation still represents the world s largest horizontal single motor/drive combination. This paper describes some significant events that occurred with the drive system during the first 15 years of service. These noteworthy issues are analyzed and root causes presented. Improvements that have substantially increased the long term viability of the system are given.
1Mbps NLOS solar-blind ultraviolet communication system based on UV-LED array
NASA Astrophysics Data System (ADS)
Sun, Zhaotian; Zhang, Lijun; Li, Ping'an; Qin, Yu; Bai, Tingzhu
2018-01-01
We proposed and demonstrated a high data rate ultraviolet communication system based on a 266nm UV LED array with 50mW luminous power. The emitting source is driven by a three outputs constant-current control circuit, whose driving speed is up to 2Mbps. At the receiving side, in order to achieve the amplification for high-speed signal, a two-stage differential preamplifier is designed to make I-V conversion. The voltage-current gain is up to 140dB and bandwidth is 1.9MHz. An experiment is conducted to test the performance of the UV communication system. The effects of elevation angles and transmission distance are analyzed. It is shown that the ultraviolet communication system has high data rate of up to 921.6kbps and bit error rate of less than 10-7 in 150m, which can beat the best record created by UV-LED communication system in terms of the transmission rate.
An automatic molecular beam microwave Fourier transform spectrometer
NASA Astrophysics Data System (ADS)
Andresen, U.; Dreizler, H.; Grabow, J.-U.; Stahl, W.
1990-12-01
The general setup of an automatic MB-MWFT spectrometer for use in the 4-18 GHz range and its software details are discussed. The experimental control and data handling are performed on a personal computer using an interactive program. The parameters of the MW source and the resonator are controlled via IEEE bus and several serial interface ports. The tuning and measuring processes are automated and the efficiency is increased if unknown spectra are to be scanned. As an example, the spectrum of carbonyl sulfide has been measured automatically. The spectrometer is superior to all other kinds of rotational spectroscopic methods in both speed and unambiguity.
Observations of core-mantle boundary Stoneley modes
NASA Astrophysics Data System (ADS)
Koelemeijer, Paula; Deuss, Arwen; Ritsema, Jeroen
2013-06-01
Core-mantle boundary (CMB) Stoneley modes represent a unique class of normal modes with extremely strong sensitivity to wave speed and density variations in the D" region. We measure splitting functions of eight CMB Stoneley modes using modal spectra from 93 events with Mw> 7.4 between 1976 and 2011. The obtained splitting function maps correlate well with the predicted splitting calculated for S20RTS+Crust5.1 structure and the distribution of Sdiff and Pdiff travel time anomalies, suggesting that they are robust. We illustrate how our new CMB Stoneley mode splitting functions can be used to estimate density variations in the Earth's lowermost mantle.
Prediction of half-marathon race time in recreational female and male runners.
Knechtle, Beat; Barandun, Ursula; Knechtle, Patrizia; Zingg, Matthias A; Rosemann, Thomas; Rüst, Christoph A
2014-01-01
Half-marathon running is of high popularity. Recent studies tried to find predictor variables for half-marathon race time for recreational female and male runners and to present equations to predict race time. The actual equations included running speed during training for both women and men as training variable but midaxillary skinfold for women and body mass index for men as anthropometric variable. An actual study found that percent body fat and running speed during training sessions were the best predictor variables for half-marathon race times in both women and men. The aim of the present study was to improve the existing equations to predict half-marathon race time in a larger sample of male and female half-marathoners by using percent body fat and running speed during training sessions as predictor variables. In a sample of 147 men and 83 women, multiple linear regression analysis including percent body fat and running speed during training units as independent variables and race time as dependent variable were performed and an equation was evolved to predict half-marathon race time. For men, half-marathon race time might be predicted by the equation (r(2) = 0.42, adjusted r(2) = 0.41, SE = 13.3) half-marathon race time (min) = 142.7 + 1.158 × percent body fat (%) - 5.223 × running speed during training (km/h). The predicted race time correlated highly significantly (r = 0.71, p < 0.0001) to the achieved race time. For women, half-marathon race time might be predicted by the equation (r(2) = 0.68, adjusted r(2) = 0.68, SE = 9.8) race time (min) = 168.7 + 1.077 × percent body fat (%) - 7.556 × running speed during training (km/h). The predicted race time correlated highly significantly (r = 0.89, p < 0.0001) to the achieved race time. The coefficients of determination of the models were slightly higher than for the existing equations. Future studies might include physiological variables to increase the coefficients of determination of the models.
Smith, Victoria Mj; Varsanik, Jonathan S; Walker, Rachel A; Russo, Andrew W; Patel, Kevin R; Gabel, Wendy; Phillips, Glenn A; Kimmel, Zebadiah M; Klawiter, Eric C
2018-01-01
Gait disturbance is a major contributor to clinical disability in multiple sclerosis (MS). A sensor was developed to assess walking speed at home for people with MS using infrared technology in real-time without the use of wearables. To develop continuous in-home outcome measures to assess gait in adults with MS. Movement measurements were collected continuously for 8 months from six people with MS. Average walking speed and peak walking speed were calculated from movement data, then analyzed for variability over time, by room (location), and over the course of the day. In-home continuous gait outcomes and variability were correlated with standard in-clinic gait outcomes. Measured in-home average walking speed of participants ranged from 0.33 m/s to 0.96 m/s and peak walking speed ranged from 0.89 m/s to 1.51 m/s. Mean total within-participant coefficient of variation for daily average walking speed and peak walking speed were 10.75% and 10.93%, respectively. Average walking speed demonstrated a moderately strong correlation with baseline Timed 25-Foot Walk (r s = 0.714, P = 0.111). New non-wearable technology provides reliable and continuous in-home assessment of walking speed.
System solution to improve energy efficiency of HVAC systems
NASA Astrophysics Data System (ADS)
Chretien, L.; Becerra, R.; Salts, N. P.; Groll, E. A.
2017-08-01
According to recent surveys, heating and air conditioning systems account for over 45% of the total energy usage in US households. Three main types of HVAC systems are available to homeowners: (1) fixed-speed systems, where the compressor cycles on and off to match the cooling load; (2) multi-speed (typically, two-speed) systems, where the compressor can operate at multiple cooling capacities, leading to reduced cycling; and (3) variable-speed systems, where the compressor speed is adjusted to match the cooling load of the household, thereby providing higher efficiency and comfort levels through better temperature and humidity control. While energy consumption could reduce significantly by adopting variable-speed compressor systems, the market penetration has been limited to less than 10% of the total HVAC units and a vast majority of systems installed in new construction remains single speed. A few reasons may explain this phenomenon such as the complexity of the electronic circuitry required to vary compressor speed as well as the associated system cost. This paper outlines a system solution to boost the Seasonal Energy Efficiency Rating (SEER) of a traditional single-speed unit through using a low power electronic converter that allows the compressor to operate at multiple low capacity settings and is disabled at high compressor speeds.
Analysis of proximal and distal muscle activity during handwriting tasks.
Naider-Steinhart, Shoshana; Katz-Leurer, Michal
2007-01-01
In this study we sought to describe upper-extremity proximal and distal muscle activity in typically developing children during a handwriting task and to explore the relationship between muscle activity and speed and quality of writing. We evaluated 35 third- and fourth-grade Israeli children using the Alef-Alef Ktav Yad Hebrew Handwriting Test. Simultaneously, we recorded the participants' upper trapezius and thumb muscle activity by surface electromyography. Using the coefficient of variation (standard deviation divided by mean amplitude) as a measure of variability within each muscle, we analyzed differences in muscle activity variability within and between muscles. The proximal muscle displayed significantly less variability than the distal muscles. Decreased variability in proximal muscle activity was associated with decreased variability in distal muscle activity, and decreased variability in the distal muscles was significantly associated with faster speed of writing. The lower amount of variability exhibited in the proximal muscle compared with the distal muscles seems to indicate that the proximal muscle functions as a stabilizer during a handwriting task. In addition, decreased variability in both proximal and distal muscle activity appears to be more economical and is related to faster writing speed. Knowledge of the type of proximal and distal muscle activity used during handwriting can help occupational therapists plan treatment for children with handwriting disabilities.
NASA Astrophysics Data System (ADS)
Doering, K.; Steinschneider, S.
2017-12-01
The variability of renewable energy supply and drivers of demand across space and time largely determines the energy balance within power systems with a high penetration of renewable technologies. This study examines the joint spatiotemporal variability of summertime climate linked to renewable energy production (precipitation, wind speeds, insolation) and energy demand (temperature) across the contiguous United States (CONUS) between 1948 and 2015. Canonical correlation analysis is used to identify the major modes of joint variability between summer wind speeds and precipitation and related patterns of insolation and temperature. Canonical variates are then related to circulation anomalies to identify common drivers of the joint modes of climate variability. Results show that the first two modes of joint variability between summer wind speeds and precipitation exhibit pan-US dipole patterns with centers of action located in the eastern and central CONUS. Temperature and insolation also exhibit related US-wide dipoles. The relationship between canonical variates and lower-tropospheric geopotential height indicates that these modes are related to variability in the North Atlantic subtropical high (NASH). This insight can inform optimal strategies for siting renewables in an interconnected electric grid, and has implications for the impacts of climate variability and change on renewable energy systems.
Stegemöller, Elizabeth L; Wilson, Jonathan P; Hazamy, Audrey; Shelley, Mack C; Okun, Michael S; Altmann, Lori J P; Hass, Chris J
2014-06-01
Cognitive impairments in Parkinson disease (PD) manifest as deficits in speed of processing, working memory, and executive function and attention abilities. The gait impairment in PD is well documented to include reduced speed, shortened step lengths, and increased step-to-step variability. However, there is a paucity of research examining the relationship between overground walking and cognitive performance in people with PD. This study sought to examine the relationship between both the mean and variability of gait spatiotemporal parameters and cognitive performance across a broad range of cognitive domains. A cross-sectional design was used. Thirty-five participants with no dementia and diagnosed with idiopathic PD completed a battery of 12 cognitive tests that yielded 3 orthogonal factors: processing speed, working memory, and executive function and attention. Participants completed 10 trials of overground walking (single-task walking) and 5 trials of overground walking while counting backward by 3's (dual-task walking). All gait measures were impaired by the dual task. Cognitive processing speed correlated with stride length and walking speed. Executive function correlated with step width variability. There were no significant associations with working memory. Regression models relating speed of processing to gait spatiotemporal variables revealed that including dual-task costs in the model significantly improved the fit of the model. Participants with PD were tested only in the on-medication state. Different characteristics of gait are related to distinct types of cognitive processing, which may be differentially affected by dual-task walking due to the pathology of PD. © 2014 American Physical Therapy Association.
NASA Astrophysics Data System (ADS)
Sung, Hae-Jin; Kim, Gyeong-Hun; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Kim, Jong-Yul
2013-11-01
Wind turbine concepts can be classified into the geared type and the gearless type. The gearless type wind turbine is more attractive due to advantages of simplified drive train and increased energy yield, and higher reliability because the gearbox is omitted. In addition, this type resolves the weight issue of the wind turbine with the light weight of gearbox. However, because of the low speed operation, this type has disadvantage such as the large diameter and heavy weight of generator. Super-Conducting (SC) wind power generator can reduce the weight and volume of a wind power system. Properties of superconducting wire are very different from each company. This paper considers the design and comparative analysis of 10 MW class SC wind power generators according to different types of SC wires. Super-Conducting Synchronous Generators (SCSGs) using YBCO and Bi-2223 wires are optimized by an optimal method. The magnetic characteristics of the SCSGs are investigated using the finite elements method program. The optimized specifications of the SCSGs are discussed in detail, and the optimization processes can be used effectively to develop large scale wind power generation systems.
Deformation Recording Process In Polymer-Metal Bilayers And Its Use For Optical Storage
NASA Astrophysics Data System (ADS)
Cornet, Jean A.
1983-11-01
A non-antireflective polymer-metal bilayer structure, encapsulated inside a closed cons-truction/is used for digital data storage in the Thomson-CSF Gigadisc. In this paper, a simple model is presented for microdeformation recording in the medium. This model enables a good understanding of the readout signal as a function of the recording power and leads to some practical consequences. Useful polymers and metallic layers are identified and the disc performance is reported. It is shown that recording using laser diodes can be performed at bit rate up to 14 Mbits.s-1 with a laser power of 7 mW at the disc entry face, in case of a 1200 rpm disc speed. Moreover a working range of 4 mW, as defined by a 3 dB attenuation, is demonstrated. Discs from pilot production exhibit raw bit error rates at the level of 2.10-5. For usual environmental conditions, the disc behaviour is compatible with shelf-and archival life at scale of 10 years. Finally, the processes for both layers deposition and disc construction are easy and cost effective. It is concluded that Giaadisc can successfully enter today the market place.
ABB's advanced steam turbine program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chellini, R.
Demand for industrial steam turbines for combined-cycle applications and cogeneration plants has influenced turbine manufacturers to standardize their machines to reduce delivery time and cost. ABB, also a supplier of turnkey plants, manufactures steam turbines in Finspong, Sweden, at the former ASEA Stal facilities and in Nuernberg, Germany, at the former AEG facilities. The companies have joined forces, setting up the advanced Steam Turbine Program (ATP) that, once completed, will cover a power range from two to 100 MW. The company decided to use two criteria as a starting point, the high efficiency design of the Swedish turbines and themore » high reliability of the German machines. Thus, the main task was combining the two designs in standard machines that could be assembled quickly into predefined packages to meet specific needs of combined-cycle and cogeneration plants specified by customers. In carrying out this project, emphasis was put on cost reduction as one of the main goals. The first results of the ATP program, presented by ABB Turbinen Nuernberg, is the range of 2-30 MW turbines covered by two frame sizes comprising standard components supporting the thermodynamic module. An important feature is the standardization of the speed reduction gearbox.« less
Comparison of Predictive Modeling Methods of Aircraft Landing Speed
NASA Technical Reports Server (NTRS)
Diallo, Ousmane H.
2012-01-01
Expected increases in air traffic demand have stimulated the development of air traffic control tools intended to assist the air traffic controller in accurately and precisely spacing aircraft landing at congested airports. Such tools will require an accurate landing-speed prediction to increase throughput while decreasing necessary controller interventions for avoiding separation violations. There are many practical challenges to developing an accurate landing-speed model that has acceptable prediction errors. This paper discusses the development of a near-term implementation, using readily available information, to estimate/model final approach speed from the top of the descent phase of flight to the landing runway. As a first approach, all variables found to contribute directly to the landing-speed prediction model are used to build a multi-regression technique of the response surface equation (RSE). Data obtained from operations of a major airlines for a passenger transport aircraft type to the Dallas/Fort Worth International Airport are used to predict the landing speed. The approach was promising because it decreased the standard deviation of the landing-speed error prediction by at least 18% from the standard deviation of the baseline error, depending on the gust condition at the airport. However, when the number of variables is reduced to the most likely obtainable at other major airports, the RSE model shows little improvement over the existing methods. Consequently, a neural network that relies on a nonlinear regression technique is utilized as an alternative modeling approach. For the reduced number of variables cases, the standard deviation of the neural network models errors represent over 5% reduction compared to the RSE model errors, and at least 10% reduction over the baseline predicted landing-speed error standard deviation. Overall, the constructed models predict the landing-speed more accurately and precisely than the current state-of-the-art.
Gómez-Molina, Josué; Ogueta-Alday, Ana; Camara, Jesus; Stickley, Christopher; García-López, Juan
2018-03-01
Concurrent plyometric and running training has the potential to improve running economy (RE) and performance through increasing muscle strength and power, but the possible effect on spatiotemporal parameters of running has not been studied yet. The aim of this study was to compare the effect of 8 weeks of concurrent plyometric and running training on spatiotemporal parameters and physiological variables of novice runners. Twenty-five male participants were randomly assigned into two training groups; running group (RG) (n = 11) and running + plyometric group (RPG) (n = 14). Both groups performed 8 weeks of running training programme, and only the RPG performed a concurrent plyometric training programme (two sessions per week). Anthropometric, physiological (VO 2max , heart rate and RE) and spatiotemporal variables (contact and flight times, step rate and length) were registered before and after the intervention. In comparison to RG, the RPG reduced step rate and increased flight times at the same running speeds (P < .05) while contact times remained constant. Significant increases in pre- and post-training (P < .05) were found in RPG for squat jump and 5 bound test, while RG remained unchanged. Peak speed, ventilatory threshold (VT) speed and respiratory compensation threshold (RCT) speed increased (P < .05) for both groups, although peak speed and VO 2max increased more in the RPG than in the RG. In conclusion, concurrent plyometric and running training entails a reduction in step rate, as well as increases in VT speed, RCT speed, peak speed and VO 2max . Athletes could benefit from plyometric training in order to improve their strength, which would contribute to them attaining higher running speeds.
Wind turbine power tracking using an improved multimodel quadratic approach.
Khezami, Nadhira; Benhadj Braiek, Naceur; Guillaud, Xavier
2010-07-01
In this paper, an improved multimodel optimal quadratic control structure for variable speed, pitch regulated wind turbines (operating at high wind speeds) is proposed in order to integrate high levels of wind power to actively provide a primary reserve for frequency control. On the basis of the nonlinear model of the studied plant, and taking into account the wind speed fluctuations, and the electrical power variation, a multimodel linear description is derived for the wind turbine, and is used for the synthesis of an optimal control law involving a state feedback, an integral action and an output reference model. This new control structure allows a rapid transition of the wind turbine generated power between different desired set values. This electrical power tracking is ensured with a high-performance behavior for all other state variables: turbine and generator rotational speeds and mechanical shaft torque; and smooth and adequate evolution of the control variables. 2010 ISA. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamana, Manohar; Mather, Barry A
A library of load variability classes is created to produce scalable synthetic data sets using historical high-speed raw data. These data are collected from distribution monitoring units connected at the secondary side of a distribution transformer. Because of the irregular patterns and large volume of historical high-speed data sets, the utilization of current load characterization and modeling techniques are challenging. Multi-resolution analysis techniques are applied to extract the necessary components and eliminate the unnecessary components from the historical high-speed raw data to create the library of classes, which are then utilized to create new synthetic load data sets. A validationmore » is performed to ensure that the synthesized data sets contain the same variability characteristics as the training data sets. The synthesized data sets are intended to be utilized in quasi-static time-series studies for distribution system planning studies on a granular scale, such as detailed PV interconnection studies.« less
A New Turbo-shaft Engine Control Law during Variable Rotor Speed Transient Process
NASA Astrophysics Data System (ADS)
Hua, Wei; Miao, Lizhen; Zhang, Haibo; Huang, Jinquan
2015-12-01
A closed-loop control law employing compressor guided vanes is firstly investigated to solve unacceptable fuel flow dynamic change in single fuel control for turbo-shaft engine here, especially for rotorcraft in variable rotor speed process. Based on an Augmented Linear Quadratic Regulator (ALQR) algorithm, a dual-input, single-output robust control scheme is proposed for a turbo-shaft engine, involving not only the closed loop adjustment of fuel flow but also that of compressor guided vanes. Furthermore, compared to single fuel control, some digital simulation cases using this new scheme about variable rotor speed have been implemented on the basis of an integrated system of helicopter and engine model. The results depict that the command tracking performance to the free turbine rotor speed can be asymptotically realized. Moreover, the fuel flow transient process has been significantly improved, and the fuel consumption has been dramatically cut down by more than 2% while keeping the helicopter level fight unchanged.
Ehgoetz Martens, Kaylena A; Ellard, Colin G; Almeida, Quincy J
2015-03-01
Although dopaminergic replacement therapy is believed to improve sensory processing in PD, while delayed perceptual speed is thought to be caused by a predominantly cholinergic deficit, it is unclear whether sensory-perceptual deficits are a result of corrupt sensory processing, or a delay in updating perceived feedback during movement. The current study aimed to examine these two hypotheses by manipulating visual flow speed and dopaminergic medication to examine which influenced distance estimation in PD. Fourteen PD and sixteen HC participants were instructed to estimate the distance of a remembered target by walking to the position the target formerly occupied. This task was completed in virtual reality in order to manipulate the visual flow (VF) speed in real time. Three conditions were carried out: (1) BASELINE: VF speed was equal to participants' real-time movement speed; (2) SLOW: VF speed was reduced by 50 %; (2) FAST: VF speed was increased by 30 %. Individuals with PD performed the experiment in their ON and OFF state. PD demonstrated significantly greater judgement error during BASELINE and FAST conditions compared to HC, although PD did not improve their judgement error during the SLOW condition. Additionally, PD had greater variable error during baseline compared to HC; however, during the SLOW conditions, PD had significantly less variable error compared to baseline and similar variable error to HC participants. Overall, dopaminergic medication did not significantly influence judgement error. Therefore, these results suggest that corrupt processing of sensory information is the main contributor to sensory-perceptual deficits during movement in PD rather than delayed updating of sensory feedback.
Measurement of strains at high temperatures by means of a portable holographic moire camera
NASA Astrophysics Data System (ADS)
Sciammarella, C. A.; Bhat, G.; Shao, Y.
Electronic holographic moire is utilized to measure strains at temperatures up to 1000 C. A CW laser operating at 50 mW and at the wavelength of 632.8 nm is used to illuminate the objects under study. The main variables influencing the fringe patterns visibility are discussed and measurements are performed to obtain the values of these variables in the performed experiments. The coefficient of expansion of an alloy is measured at temperatures ranging from 797 C to 986 C. Excellent agreement is found between the measured values and those provided by the manufacturer.
Measurement of strains at high temperatures by means of a portable holographic moire camera
NASA Technical Reports Server (NTRS)
Sciammarella, C. A.; Bhat, G.; Shao, Y.
1989-01-01
Electronic holographic moire is utilized to measure strains at temperatures up to 1000 C. A CW laser operating at 50 mW and at the wavelength of 632.8 nm is used to illuminate the objects under study. The main variables influencing the fringe patterns visibility are discussed and measurements are performed to obtain the values of these variables in the performed experiments. The coefficient of expansion of an alloy is measured at temperatures ranging from 797 C to 986 C. Excellent agreement is found between the measured values and those provided by the manufacturer.
Kinematic Variables Evolution During a 200-m Maximum Test in Young Paddlers
Vaquero-Cristóbal, Raquel; Alacid, Fernando; López-Plaza, Daniel; Muyor, José María; López-Miñarro, Pedro A.
2013-01-01
The objective of this research was to determine the kinematic variables evolution in a sprint canoeing maximal test over 200 m, comparing women and men kayak paddlers and men canoeists. Speed evolution, cycle frequency, cycle length and cycle index were analysed each 50 m section in fifty-two young paddlers (20 male kayakers, 17 female kayakers and 15 male canoeists; 13–14 years-old). Recordings were taken from a boat which followed each paddler trial in order to measure the variables cited above. Kinematic evolution was similar in the three categories, the speed and cycle index decreased through the test after the first 50 m. Significant differences were observed among most of the sections in speed and the cycle index (p<0.05 and <0.01, respectively). Cycle length remained stable showing the lowest values in the first section when compared with the others (p<0.01). Cycle frequency progressively decreased along the distance. Significant differences were identified in the majority of the sections (p<0.01). Men kayakers attained higher values in all the variables than women kayakers and men canoeists, but only such variables as speed, cycle length and cycle index were observed to be significantly higher (p<0.01). Moreover, lower kinematic values were obtained from men canoeists. The study of the evolution of kinematic variables can provide valuable information for athletes and coaches while planning training sessions and competitions. PMID:24235980
Wind Velocity and Position Sensor-less Operation for PMSG Wind Generator
NASA Astrophysics Data System (ADS)
Senjyu, Tomonobu; Tamaki, Satoshi; Urasaki, Naomitsu; Uezato, Katsumi; Funabashi, Toshihisa; Fujita, Hideki
Electric power generation using non-conventional sources is receiving considerable attention throughout the world. Wind energy is one of the available non-conventional energy sources. Electrical power generation using wind energy is possible in two ways, viz. constant speed operation and variable speed operation using power electronic converters. Variable speed power generation is attractive, because maximum electric power can be generated at all wind velocities. However, this system requires a rotor speed sensor, for vector control purpose, which increases the cost of the system. To alleviate the need of rotor speed sensor in vector control, we propose a new sensor-less control of PMSG (Permanent Magnet Synchronous Generator) based on the flux linkage. We can estimate the rotor position using the estimated flux linkage. We use a first-order lag compensator to obtain the flux linkage. Furthermore‚we estimate wind velocity and rotation speed using a observer. The effectiveness of the proposed method is demonstrated thorough simulation results.
Ultra-high-speed variable focus optics for novel applications in advanced imaging
NASA Astrophysics Data System (ADS)
Kang, S.; Dotsenko, E.; Amrhein, D.; Theriault, C.; Arnold, C. B.
2018-02-01
With the advancement of ultra-fast manufacturing technologies, high speed imaging with high 3D resolution has become increasingly important. Here we show the use of an ultra-high-speed variable focus optical element, the TAG Lens, to enable new ways to acquire 3D information from an object. The TAG Lens uses sound to adjust the index of refraction profile in a liquid and thereby can achieve focal scanning rates greater than 100 kHz. When combined with a high-speed pulsed LED and a high-speed camera, we can exploit this phenomenon to achieve high-resolution imaging through large depths. By combining the image acquisition with digital image processing, we can extract relevant parameters such as tilt and angle information from objects in the image. Due to the high speeds at which images can be collected and processed, we believe this technique can be used as an efficient method of industrial inspection and metrology for high throughput applications.
Design Optimization of a Variable-Speed Power Turbine
NASA Technical Reports Server (NTRS)
Hendricks, Eric S.; Jones, Scott M.; Gray, Justin S.
2014-01-01
NASA's Rotary Wing Project is investigating technologies that will enable the development of revolutionary civil tilt rotor aircraft. Previous studies have shown that for large tilt rotor aircraft to be viable, the rotor speeds need to be slowed significantly during the cruise portion of the flight. This requirement to slow the rotors during cruise presents an interesting challenge to the propulsion system designer as efficient engine performance must be achieved at two drastically different operating conditions. One potential solution to this challenge is to use a transmission with multiple gear ratios and shift to the appropriate ratio during flight. This solution will require a large transmission that is likely to be maintenance intensive and will require a complex shifting procedure to maintain power to the rotors at all times. An alternative solution is to use a fixed gear ratio transmission and require the power turbine to operate efficiently over the entire speed range. This concept is referred to as a variable-speed power-turbine (VSPT) and is the focus of the current study. This paper explores the design of a variable speed power turbine for civil tilt rotor applications using design optimization techniques applied to NASA's new meanline tool, the Object-Oriented Turbomachinery Analysis Code (OTAC).
Some preliminary results from the NWTC direct-drive, variable-speed test bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, P.W.; Fingersh, L.J.
1996-10-01
With the remarkable rise in interest in variable-speed operation of larger wind turbines, it has become important for the National Wind Technology Center (NWTC) to have access to a variable-speed test bed that can be specially instrumented for research. Accordingly, a three-bladed, 10-meter, downwind, Grumman Windstream machine has been equipped with a set of composite blades and a direct-coupled, permanent-magnet, 20 kilowatt generator. This machine and its associated control system and data collection system are discussed. Several variations of a maximum power control algorithm have been installed on the control computer. To provide a baseline for comparison, several constant speedmore » algorithms have also been installed. The present major effort is devoted to daytime, semi-autonomous data collection.« less
Barandun, Ursula; Knechtle, Beat; Knechtle, Patrizia; Klipstein, Andreas; Rüst, Christoph Alexander; Rosemann, Thomas; Lepers, Romuald
2012-01-01
Background Recent studies have shown that personal best marathon time is a strong predictor of race time in male ultramarathoners. We aimed to determine variables predictive of marathon race time in recreational male marathoners by using the same characteristics of anthropometry and training as used for ultramarathoners. Methods Anthropometric and training characteristics of 126 recreational male marathoners were bivariately and multivariately related to marathon race times. Results After multivariate regression, running speed of the training units (β = −0.52, P < 0.0001) and percent body fat (β = 0.27, P < 0.0001) were the two variables most strongly correlated with marathon race times. Marathon race time for recreational male runners may be estimated to some extent by using the following equation (r2 = 0.44): race time ( minutes) = 326.3 + 2.394 × (percent body fat, %) − 12.06 × (speed in training, km/hours). Running speed during training sessions correlated with prerace percent body fat (r = 0.33, P = 0.0002). The model including anthropometric and training variables explained 44% of the variance of marathon race times, whereas running speed during training sessions alone explained 40%. Thus, training speed was more predictive of marathon performance times than anthropometric characteristics. Conclusion The present results suggest that low body fat and running speed during training close to race pace (about 11 km/hour) are two key factors for a fast marathon race time in recreational male marathoner runners. PMID:24198587
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.; Acree, Cecil W., Jr.
2012-01-01
A Large Civil Tiltrotor (LCTR) conceptual design was developed as part of the NASA Heavy Lift Rotorcraft Systems Investigation in order to establish a consistent basis for evaluating the benefits of advanced technology for large tiltrotors. The concept has since evolved into the second-generation LCTR2, designed to carry 90 passengers for 1,000 nm at 300 knots, with vertical takeoff and landing capability. This paper performs a preliminary assessment of variable-speed power turbine technology on LCTR2 sizing, while maintaining the same, advanced technology engine core. Six concepts were studied; an advanced, single-speed engine with a conventional power turbine layout (Advanced Conventional Engine, or ACE) using a multi-speed (shifting) gearbox. There were five variable-speed power turbine (VSPT) engine concepts, comprising a matrix of either three or four turbine stages, and fixed or variable guide vanes; plus a minimum weight, twostage, fixed-geometry VSPT. The ACE is the lightest engine, but requires a multi-speed (shifting) gearbox to maximize its fuel efficiency, whereas the VSPT concepts use a lighter, fixed-ratio gearbox. The NASA Design and Analysis of Rotorcraft (NDARC) design code was used to study the trades between rotor and engine efficiency and weight. Rotor performance was determined by Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD II), and engine performance was estimated with the Numerical Propulsion System Simulation (NPSS). Design trades for the ACE vs. VSPT are presented in terms of vehicle gross and empty weight, propulsion system weight and mission fuel burn for the civil mission. Because of its strong effect on gearbox weight and on both rotor and engine efficiency, rotor speed was chosen as the reference design variable for comparing design trades. Major study assumptions are presented and discussed. Impressive engine power-to-weight and fuel efficiency reduced vehicle sensitivity to propulsion system choice. The 10% weight penalty for multi-speed gearbox was more significant than most engine technology weight penalties to the vehicle design because drive system weight is more than two times engine weight. Based on study assumptions, fixed-geometry VSPT concept options performed better than their variable-geometry counterparts. Optimum design gross weights varied 1% or less and empty weights less than 2% among the concepts studied, while optimum fuel burns varied up to 5%. The outcome for some optimum configurations was so unexpected as to recommend a deeper look at the underlying technology assumptions.
Concentrating Solar Power Projects in China | Concentrating Solar Power |
Delingha 50MW Thermal Oil Parabolic Trough project Gansu Akesai 50MW Molten Salt Trough project Golden Tower 100MW Molten Salt project Golmud Gulang 100MW Thermal Oil Parabolic Trough project Hami 50 MW CSP Yumen 50MW Thermal Oil Trough project Shangyi 50MW DSG Tower CSP project SunCan Dunhuang 10 MW Phase I
NASA Astrophysics Data System (ADS)
Lu, Siliang; Wang, Xiaoxian; He, Qingbo; Liu, Fang; Liu, Yongbin
2016-12-01
Transient signal analysis (TSA) has been proven an effective tool for motor bearing fault diagnosis, but has yet to be applied in processing bearing fault signals with variable rotating speed. In this study, a new TSA-based angular resampling (TSAAR) method is proposed for fault diagnosis under speed fluctuation condition via sound signal analysis. By applying the TSAAR method, the frequency smearing phenomenon is eliminated and the fault characteristic frequency is exposed in the envelope spectrum for bearing fault recognition. The TSAAR method can accurately estimate the phase information of the fault-induced impulses using neither complicated time-frequency analysis techniques nor external speed sensors, and hence it provides a simple, flexible, and data-driven approach that realizes variable-speed motor bearing fault diagnosis. The effectiveness and efficiency of the proposed TSAAR method are verified through a series of simulated and experimental case studies.
NASA Astrophysics Data System (ADS)
Velayudhan, C.; Bundell, J. H.
This paper investigates a variable-speed, constant-frequency double output induction generator which is capable of absorbing the mechanical energy from a fixed pitch wind turbine and converting it into electrical energy at constant grid voltage and frequency. Rotor power at varying voltage and frequency is either fed to electronically controlled resistances and used as heat energy or is rectified, inverted by a controllable line-commutated inverter and returned to the grid. Optimal power tracking is by means of an adaptive controller which controls the developed torque of the generator by monitoring the shaft speed.
Cai, Hong; Long, Christopher M.; DeRose, Christopher T.; ...
2017-01-01
We demonstrate a silicon photonic transceiver circuit for high-speed discrete variable quantum key distribution that employs a common structure for transmit and receive functions. The device is intended for use in polarization-based quantum cryptographic protocols, such as BB84. Our characterization indicates that the circuit can generate the four BB84 states (TE/TM/45°/135° linear polarizations) with >30 dB polarization extinction ratios and gigabit per second modulation speed, and is capable of decoding any polarization bases differing by 90° with high extinction ratios.
Cai, Hong; Long, Christopher M; DeRose, Christopher T; Boynton, Nicholas; Urayama, Junji; Camacho, Ryan; Pomerene, Andrew; Starbuck, Andrew L; Trotter, Douglas C; Davids, Paul S; Lentine, Anthony L
2017-05-29
We demonstrate a silicon photonic transceiver circuit for high-speed discrete variable quantum key distribution that employs a common structure for transmit and receive functions. The device is intended for use in polarization-based quantum cryptographic protocols, such as BB84. Our characterization indicates that the circuit can generate the four BB84 states (TE/TM/45°/135° linear polarizations) with >30 dB polarization extinction ratios and gigabit per second modulation speed, and is capable of decoding any polarization bases differing by 90° with high extinction ratios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Hong; Long, Christopher M.; DeRose, Christopher T.
We demonstrate a silicon photonic transceiver circuit for high-speed discrete variable quantum key distribution that employs a common structure for transmit and receive functions. The device is intended for use in polarization-based quantum cryptographic protocols, such as BB84. Our characterization indicates that the circuit can generate the four BB84 states (TE/TM/45°/135° linear polarizations) with >30 dB polarization extinction ratios and gigabit per second modulation speed, and is capable of decoding any polarization bases differing by 90° with high extinction ratios.
Imaging the Seismic Cycle in the Central Andean Subduction Zone from Geodetic Observations
NASA Astrophysics Data System (ADS)
Ortega-Culaciati, F.; Becerra-Carreño, V. C.; Socquet, A.; Jara, J.; Carrizo, D.; Norabuena, E. O.; Simons, M.; Vigny, C.; Bataille, K. D.; Moreno, M.; Baez, J. C.; Comte, D.; Contreras-Reyes, E.; Delorme, A.; Genrich, J. F.; Klein, E.; Ortega, I.; Valderas, M. C.
2015-12-01
We aim to quantify spatial and temporal evolution of fault slip behavior during all stages of the seismic cycle in subduction megathrusts, with the eventual goal of improving our understanding of the mechanical behavior of the subduction system and its implications for earthquake and tsunami hazards. In this work, we analyze the portion of the Nazca-SouthAmerican plates subduction zone affected by the 1868 southern Peru and 1877 northern Chile mega-earthquakes. The 1868 and 1878 events defined a seismic gap that did not experience a large earthquake for over 124 years. Only recently, the 1995 Mw 8.1 Antofagasta, 2001 Mw 8.4 Arequipa, 2007 Mw 7.7 Tocopilla, and 2014 Mw 8.2 Pisagua earthquakes released only a small fraction of the potential slip budget, thereby raising concerns about continued seismic and tsunami hazard. We use over a decade of observations from continuous and campaign GPS networks to analyze inter-seismic strain accumulation, as well as co-seimic deformation associated to the more recent earthquakes in the in the Central Andean region. We obtain inferences of slip (and back-slip) behavior using a consistent and robust inversion framework that accounts for the spatial variability of the constraint provided by the observations on slip across the subduction megathrust. We present an updated inter-seismic coupling model and estimates of pre-, co- and post- seismic slip behavior associated with the most recent 2014 Mw 8.2 Pisagua earthquake. We analyze our results, along with published information on the recent and historical large earthquakes, to characterize the regions of the megathrust that tend to behave aseismically, and those that are capable to accumulate a slip budget (ultimately leading to the generation of large earthquakes), to what extent such regions may overlap, and discuss the potential for large earthquakes in the region.
On the relationship between land surface infrared emissivity and soil moisture
NASA Astrophysics Data System (ADS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu
2018-01-01
The relationship between surface infrared (IR) emissivity and soil moisture content has been investigated based on satellite measurements. Surface soil moisture content can be estimated by IR remote sensing, namely using the surface parameters of IR emissivity, temperature, vegetation coverage, and soil texture. It is possible to separate IR emissivity from other parameters affecting surface soil moisture estimation. The main objective of this paper is to examine the correlation between land surface IR emissivity and soil moisture. To this end, we have developed a simple yet effective scheme to estimate volumetric soil moisture (VSM) using IR land surface emissivity retrieved from satellite IR spectral radiance measurements, assuming those other parameters impacting the radiative transfer (e.g., temperature, vegetation coverage, and surface roughness) are known for an acceptable time and space reference location. This scheme is applied to a decade of global IR emissivity data retrieved from MetOp-A infrared atmospheric sounding interferometer measurements. The VSM estimated from these IR emissivity data (denoted as IR-VSM) is used to demonstrate its measurement-to-measurement variations. Representative 0.25-deg spatially-gridded monthly-mean IR-VSM global datasets are then assembled to compare with those routinely provided from satellite microwave (MW) multisensor measurements (denoted as MW-VSM), demonstrating VSM spatial variations as well as seasonal-cycles and interannual variability. Initial positive agreement is shown to exist between IR- and MW-VSM (i.e., R2 = 0.85). IR land surface emissivity contains surface water content information. So, when IR measurements are used to estimate soil moisture, this correlation produces results that correspond with those customarily achievable from MW measurements. A decade-long monthly-gridded emissivity atlas is used to estimate IR-VSM, to demonstrate its seasonal-cycle and interannual variation, which is spatially coherent and consistent with that from MW measurements, and, moreover, to achieve our objective of investigating the relationship between land surface IR emissivity and soil moisture.
NASA Technical Reports Server (NTRS)
Chambon, Philippe; Zhang, Sara Q.; Hou, Arthur Y.; Zupanski, Milija; Cheung, Samson
2013-01-01
The forthcoming Global Precipitation Measurement (GPM) Mission will provide next generation precipitation observations from a constellation of satellites. Since precipitation by nature has large variability and low predictability at cloud-resolving scales, the impact of precipitation data on the skills of mesoscale numerical weather prediction (NWP) is largely affected by the characterization of background and observation errors and the representation of nonlinear cloud/precipitation physics in an NWP data assimilation system. We present a data impact study on the assimilation of precipitation-affected microwave (MW) radiances from a pre-GPM satellite constellation using the Goddard WRF Ensemble Data Assimilation System (Goddard WRF-EDAS). A series of assimilation experiments are carried out in a Weather Research Forecast (WRF) model domain of 9 km resolution in western Europe. Sensitivities to observation error specifications, background error covariance estimated from ensemble forecasts with different ensemble sizes, and MW channel selections are examined through single-observation assimilation experiments. An empirical bias correction for precipitation-affected MW radiances is developed based on the statistics of radiance innovations in rainy areas. The data impact is assessed by full data assimilation cycling experiments for a storm event that occurred in France in September 2010. Results show that the assimilation of MW precipitation observations from a satellite constellation mimicking GPM has a positive impact on the accumulated rain forecasts verified with surface radar rain estimates. The case-study on a convective storm also reveals that the accuracy of ensemble-based background error covariance is limited by sampling errors and model errors such as precipitation displacement and unresolved convective scale instability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahriari, Haleh, E-mail: haleh.shahriari@gmail.com; Warith, Mostafa; Hamoda, Mohamed
2012-01-15
Highlights: Black-Right-Pointing-Pointer Microwave and H{sub 2}O{sub 2} pretreatment were studied to enhance anaerobic digestion of organic waste. Black-Right-Pointing-Pointer The whole waste pretreated at 115 Degree-Sign C or 145 Degree-Sign C had the highest biogas production. Black-Right-Pointing-Pointer Biogas production of the whole waste decreased at 175 Degree-Sign C due to formation of refractory compounds. Black-Right-Pointing-Pointer Pretreatment to 145 Degree-Sign C and 175 Degree-Sign C were the best when considering only the free liquid fraction. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} pretreatment had a lag phase and the biogas production was not higher than MW pretreated samples. - Abstract: In order to enhance anaerobicmore » digestion (AD) of the organic fraction of municipal solid waste (OFMSW), pretreatment combining two modalities, microwave (MW) heating in presence or absence of hydrogen peroxide (H{sub 2}O{sub 2}) were investigated. The main pretreatment variables affecting the characteristics of the OFMSW were temperature (T) via MW irradiation and supplemental water additions of 20% and 30% (SWA20 and SW30). Subsequently, the focus of this study was to evaluate mesophilic batch AD performance in terms of biogas production, as well as changes in the characteristics of the OFMSW post digestion. A high MW induced temperature range (115-175 Degree-Sign C) was applied, using sealed vessels and a bench scale MW unit equipped with temperature and pressure controls. Biochemical methane potential (BMP) tests were conducted on the whole OFMSW as well as the liquid fractions. The whole OFMSW pretreated at 115 Degree-Sign C and 145 Degree-Sign C showed 4-7% improvement in biogas production over untreated OFMSW (control). When pretreated at 175 Degree-Sign C, biogas production decreased due to formation of refractory compounds, inhibiting the digestion. For the liquid fraction of OFMSW, the effect of pretreatment on the cumulative biogas production (CBP) was more pronounced for SWA20 at 145 Degree-Sign C, with a 26% increase in biogas production after 8 days of digestion, compared to the control. When considering the increased substrate availability in the liquid fraction after MW pretreatment, a 78% improvement in biogas production vs. the control was achieved. Combining MW and H{sub 2}O{sub 2} modalities did not have a positive impact on OFMSW stabilization and enhanced biogas production. In general, all samples pretreated with H{sub 2}O{sub 2} displayed a long lag phase and the CBP was usually lower than MW irradiated only samples. First order rate constant was calculated.« less
DOT National Transportation Integrated Search
2013-02-01
Interstate preservation projects are commonly conducted at night and often require working in close proximity to ongoing traffic. Vehicle speed and speed variability in work zones is inextricably connected to the work zone design and the selected tra...
AC Coupled Interconnect for Low Power Spaceborne Electronics
2012-01-18
Apad = 175x175µm2 (200µm pitch and 25µm spacing on package), CC,row,min = 500fF (from preliminary simulation with TRX in 0.13µm standard CMOS and 80cm...the TRX performance with state-of-the-art designs. It is demonstrated that the TRX , benefitting from the CT-FSE scheme combined with use of the...8.9Gb/s TX Power 5.2mW 6.5mW 7.6mW 4.9mW - 11.6mW RX Power 1.1mW 1.1mW 1.1mW 8mW 10.9mW 5.4mW TRX Total Area .007mm 2 .307mm 2 .054mm 2 .023mm 2
Rand, Miya K; Shimansky, Y P; Hossain, Abul B M I; Stelmach, George E
2010-11-01
Based on an assumption of movement control optimality in reach-to-grasp movements, we have recently developed a mathematical model of transport-aperture coordination (TAC), according to which the hand-target distance is a function of hand velocity and acceleration, aperture magnitude, and aperture velocity and acceleration (Rand et al. in Exp Brain Res 188:263-274, 2008). Reach-to-grasp movements were performed by young adults under four different reaching speeds and two different transport distances. The residual error magnitude of fitting the above model to data across different trials and subjects was minimal for the aperture-closure phase, but relatively much greater for the aperture-opening phase, indicating considerable difference in TAC variability between those phases. This study's goal is to identify the main reasons for that difference and obtain insights into the control strategy of reach-to-grasp movements. TAC variability within the aperture-opening phase of a single trial was found minimal, indicating that TAC variability between trials was not due to execution noise, but rather a result of inter-trial and inter-subject variability of motor plan. At the same time, the dependence of the extent of trial-to-trial variability of TAC in that phase on the speed of hand transport was sharply inconsistent with the concept of speed-accuracy trade-off: the lower the speed, the larger the variability. Conversely, the dependence of the extent of TAC variability in the aperture-closure phase on hand transport speed was consistent with that concept. Taking into account recent evidence that the cost of neural information processing is substantial for movement planning, the dependence of TAC variability in the aperture-opening phase on task performance conditions suggests that it is not the movement time that the CNS saves in that phase, but the cost of neuro-computational resources and metabolic energy required for TAC regulation in that phase. Thus, the CNS performs a trade-off between that cost and TAC regulation accuracy. It is further discussed that such trade-off is possible because, due to a special control law that governs optimal switching from aperture opening to aperture closure, the inter-trial variability of the end of aperture opening does not affect the high accuracy of TAC regulation in the subsequent aperture-closure phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yeonhee; Kang, Moses; Muljadi, Eduard
This paper proposes a power-smoothing scheme for a variable-speed wind turbine generator (WTG) that can smooth out the WTG's fluctuating power caused by varying wind speeds, and thereby keep the system frequency within a narrow range. The proposed scheme employs an additional loop based on the system frequency deviation that operates in conjunction with the maximum power point tracking (MPPT) control loop. Unlike the conventional, fixed-gain scheme, its control gain is modified with the rotor speed. In the proposed scheme, the control gain is determined by considering the ratio of the output of the additional loop to that of themore » MPPT loop. To improve the contribution of the scheme toward maintaining the frequency while ensuring the stable operation of WTGs, in the low rotor speed region, the ratio is set to be proportional to the rotor speed; in the high rotor speed region, the ratio remains constant. The performance of the proposed scheme is investigated under varying wind conditions for the IEEE 14-bus system. The simulation results demonstrate that the scheme successfully operates regardless of the output power fluctuation of a WTG by adjusting the gain with the rotor speed, and thereby improves the frequency-regulating capability of a WTG.« less
Verster, Joris C; Roth, Thomas
2014-01-01
The on-the-road driving test in normal traffic is used to examine the impact of drugs on driving performance. This paper compares the sensitivity of standard deviation of lateral position (SDLP) and SD speed in detecting driving impairment. A literature search was conducted to identify studies applying the on-the-road driving test, examining the effects of anxiolytics, antidepressants, antihistamines, and hypnotics. The proportion of comparisons (treatment versus placebo) where a significant impairment was detected with SDLP and SD speed was compared. About 40% of 53 relevant papers did not report data on SD speed and/or SDLP. After placebo administration, the correlation between SDLP and SD speed was significant but did not explain much variance (r = 0.253, p = 0.0001). A significant correlation was found between ΔSDLP and ΔSD speed (treatment-placebo), explaining 48% of variance. When using SDLP as outcome measure, 67 significant treatment-placebo comparisons were found. Only 17 (25.4%) were significant when SD speed was used as outcome measure. Alternatively, for five treatment-placebo comparisons, a significant difference was found for SD speed but not for SDLP. Standard deviation of lateral position is a more sensitive outcome measure to detect driving impairment than speed variability.
A computer program for the design and analysis of low-speed airfoils, supplement
NASA Technical Reports Server (NTRS)
Eppler, R.; Somers, D. M.
1980-01-01
Three new options were incorporated into an existing computer program for the design and analysis of low speed airfoils. These options permit the analysis of airfoils having variable chord (variable geometry), a boundary layer displacement iteration, and the analysis of the effect of single roughness elements. All three options are described in detail and are included in the FORTRAN IV computer program.
NetCDF file of the SREF standard deviation of wind speed and direction that was used to inject variability in the FDDA input.variable U_NDG_OLD contains standard deviation of wind speed (m/s)variable V_NDG_OLD contains the standard deviation of wind direction (deg)This dataset is associated with the following publication:Gilliam , R., C. Hogrefe , J. Godowitch, S. Napelenok , R. Mathur , and S.T. Rao. Impact of inherent meteorology uncertainty on air quality model predictions. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES. American Geophysical Union, Washington, DC, USA, 120(23): 12,259–12,280, (2015).
Choice of Variables and Preconditioning for Time Dependent Problems
NASA Technical Reports Server (NTRS)
Turkel, Eli; Vatsa, Verr N.
2003-01-01
We consider the use of low speed preconditioning for time dependent problems. These are solved using a dual time step approach. We consider the effect of this dual time step on the parameter of the low speed preconditioning. In addition, we compare the use of two sets of variables, conservation and primitive variables, to solve the system. We show the effect of these choices on both the convergence to a steady state and the accuracy of the numerical solutions for low Mach number steady state and time dependent flows.
Apelfröjd, Senad; Eriksson, Sandra
2014-01-01
Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed.
2014-01-01
Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed. PMID:25258733
40 CFR Appendix B to Subpart E of... - Tables
Code of Federal Regulations, 2010 CFR
2010-07-01
... Variable-Speed Engines Test segment Mode number Engine speed 1 Observed torque 2 (percent of max. observed...'s specifications. Idle speed is specified by the manufacturer. 2 Torque (non-idle): Throttle fully open for 100 percent points. Other non-idle points: ± 2 percent of engine maximum value. Torque (idle...
DOT National Transportation Integrated Search
2013-02-01
Interstate preservation projects are commonly conducted at night and often require working in close proximity to ongoing traffic. Vehicle speed and speed variability in work zones is inextricably connected to the work zone design and the selected tra...
Mazerolle, Erin L; Wojtowicz, Magdalena A; Omisade, Antonina; Fisk, John D
2013-01-01
Slowed information processing speed is commonly reported in persons with multiple sclerosis (MS), and is typically investigated using clinical neuropsychological tests, which provide sensitive indices of mean-level information processing speed. However, recent studies have demonstrated that within-person variability or intra-individual variability (IIV) in information processing speed may be a more sensitive indicator of neurologic status than mean-level performance on clinical tests. We evaluated the neural basis of increased IIV in mildly affected relapsing-remitting MS patients by characterizing the relation between IIV (controlling for mean-level performance) and white matter integrity using diffusion tensor imaging (DTI). Twenty women with relapsing-remitting MS and 20 matched control participants completed the Computerized Test of Information Processing (CTIP), from which both mean response time and IIV were calculated. Other clinical measures of information processing speed were also collected. Relations between IIV on the CTIP and DTI metrics of white matter microstructure were evaluated using tract-based spatial statistics. We observed slower and more variable responses on the CTIP in MS patients relative to controls. Significant relations between white matter microstructure and IIV were observed for MS patients. Increased IIV was associated with reduced integrity in more white matter tracts than was slowed information processing speed as measured by either mean CTIP response time or other neuropsychological test scores. Thus, despite the common use of mean-level performance as an index of cognitive dysfunction in MS, IIV may be more sensitive to the overall burden of white matter disease at the microstructural level. Furthermore, our study highlights the potential value of considering within-person fluctuations, in addition to mean-level performance, for uncovering brain-behavior relationships in neurologic disorders with widespread white matter pathology.
Jurick, Sarah M; Crocker, Laura D; Sanderson-Cimino, Mark; Keller, Amber V; Trenova, Liljana S; Boyd, Briana L; Twamley, Elizabeth W; Rodgers, Carie S; Schiehser, Dawn M; Aupperle, Robin L; Jak, Amy J
Posttraumatic stress disorder (PTSD), history of mild traumatic brain injury (mTBI), and executive function (EF) difficulties are prevalent in Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Veterans. We evaluated the contributions of injury variables, lower-order cognitive component processes (processing speed/attention), and psychological symptoms to EF. OEF/OIF Veterans (N = 65) with PTSD and history of mTBI were administered neuropsychological tests of EF and self-report assessments of PTSD and depression. Those impaired on one or more EF measures had higher PTSD and depression symptoms and lower processing speed/attention performance than those with intact performance on all EF measures. Across participants, poorer attention/processing speed performance and higher psychological symptoms were associated with worse performance on specific aspects of EF (eg, inhibition and switching) even after accounting for injury variables. Although direct relationships between EF and injury variables were equivocal, there was an interaction between measures of injury burden and processing speed/attention such that those with greater injury burden exhibited significant and positive relationships between processing speed/attention and inhibition/switching, whereas those with lower injury burden did not. Psychological symptoms as well as lower-order component processes of EF (attention and processing speed) contribute significantly to executive dysfunction in OEF/OIF Veterans with PTSD and history of mTBI. However, there may be equivocal relationships between injury variables and EF that warrant further study. Results provide groundwork for more fully understanding cognitive symptoms in OEF/OIF Veterans with PTSD and history of mTBI that can inform psychological and cognitive interventions in this population.
Keen, Justin M; Martin, Charlie; Machado, Augie; Sandhu, Harpreet; McGinity, James W; DiNunzio, James C
2014-02-01
The use of corotating twin screw hot-melt extruders to prepare amorphous drug/polymer systems has become commonplace. As small molecule drug candidates exiting discovery pipelines trend towards higher MW and become more structurally complicated, the acceptable operating space shifts below the drug melting point. The objective of this research is to investigate the extrusion process space, which should be selected to ensure that the drug is solubilized in the polymer with minimal thermal exposure, is critical in ensuring the performance, stability and purity of the solid dispersion. The properties of a model solid dispersion were investigated using both corotating and counter-rotating hot-melt twin-screw extruders operated at various temperatures and screw speeds. The solid state and dissolution performance of the resulting solid dispersions was investigated and evaluated in context of thermodynamic predictions from Flory-Huggins Theory. In addition, the residence time distributions were measured using a tracer, modelled and characterized. The amorphous content in the resulting solid dispersions was dependent on the combination of screw speed, temperature and operating mode. The counter-rotating extruder was observed to form amorphous solid dispersions at a slightly lower temperature and with a narrower residence time distribution, which also exhibited a more desirable shape. © 2013 Royal Pharmaceutical Society.
NASA Astrophysics Data System (ADS)
Shi, Jin-Wei; Wei, Chia-Chien; Chen, Jason (Jyehong); Yang, Ying-Jay
2015-03-01
High-speed and "green" ~850 nm vertical-cavity surface-emitting lasers (VCSELs) have lately attracted lots of attention due to their suitability for applications in optical interconnects (OIs). To further enhance the speed and its maximum allowable linking distance of VCSELs are two major trends to meet the requirement of OI in next generation data centers. Recently, by use of the advanced 850 nm VCSEL technique, data rate as high as 64 Gbit/sec over 57m and 20 Gbit/sec over 2km MMF transmission have been demonstrated, respectively. Here, we will review our recent work about 850 nm Zn-diffusion VCSELs with oxide-relief apertures to further enhance the above-mentioned performances. By using Zn-diffusion, we can not only reduce the device resistance but also manipulate the number of optical modes to benefit transmission. Combing such device, which has excellent single-mode (SMSR >30 dB) and high-power (~7mW) performance, with advanced modulation format (OFDM), record-high bit-rate-distance-product through MMF (2.3 km×28 Gbit/sec) has been demonstrated. Furthermore, by selective etching away the oxide aperture inside Zn-diffusion VCSEL, significant enhancement of device speed, D-factor, and reliability can be observed. With such unique VCSEL structure, >40 Gbit/sec energy-efficient transmission over 100m MMF under extremely low-driving current density (<10kA/cm2) has been successfully demonstrated.
Helical screw expander evaluation project
NASA Technical Reports Server (NTRS)
Mckay, R.
1982-01-01
A one MW helical rotary screw expander power system for electric power generation from geothermal brine was evaluated. The technology explored in the testing is simple, potentially very efficient, and ideally suited to wellhead installations in moderate to high enthalpy, liquid dominated field. A functional one MW geothermal electric power plant that featured a helical screw expander was produced and then tested with a demonstrated average performance of approximately 45% machine efficiency over a wide range of test conditions in noncondensing, operation on two-phase geothermal fluids. The Project also produced a computer equipped data system, an instrumentation and control van, and a 1000 kW variable load bank, all integrated into a test array designed for operation at a variety of remote test sites. Data are presented for the Utah testing and for the noncondensing phases of the testing in Mexico. Test time logged was 437 hours during the Utah tests and 1101 hours during the Mexico tests.
Chua, Karen S G; Chee, Johnny; Wong, Chin J; Lim, Pang H; Lim, Wei S; Hoo, Chuan M; Ong, Wai S; Shen, Mira L; Yu, Wei S
2015-01-01
Impairments in walking speed and capacity are common problems after stroke which may benefit from treadmill training. However, standard treadmills, are unable to adapt to the slower walking speeds of stroke survivors and are unable to automate training progression. This study tests a Variable Automated Speed and Sensing Treadmill (VASST) using a standard clinical protocol. VASST is a semi-automated treadmill with multiple sensors and micro controllers, including wireless control to reposition a fall-prevention harness, variable pre-programmed exercise parameters and laser beam foot sensors positioned on the belt to detect subject's foot positions. An open-label study with assessor blinding was conducted in 10 community-dwelling chronic hemiplegic patients who could ambulate at least 0.1 m/s. Interventions included physiotherapist-supervised training on VASST for 60 min three times per week for 4 weeks (total 12 h). Outcome measures of gait speed, quantity, balance, and adverse events were assessed at baseline, 2, 4, and 8 weeks. Ten subjects (8 males, mean age 55.5 years, 2.1 years post stroke) completed VASST training. Mean 10-m walk test speed was 0.69 m/s (SD = 0.29) and mean 6-min walk test distance was 178.3 m (84.0). After 4 weeks of training, 70% had significant positive gains in gait speed (0.06 m/s, SD = 0.08 m/s, P = 0.037); and 90% improved in walking distance. (54.3 m, SD = 30.9 m, P = 0.005). There were no adverse events. This preliminary study demonstrates the initial feasibility and short-term efficacy of VASST for walking speed and distance for people with chronic post-stroke hemiplegia.
Vu, Van Hoan; Isableu, Brice; Berret, Bastien
2016-07-22
The purpose of this study was to investigate the nature of the variables and rules underlying the planning of unrestrained 3D arm reaching. To identify whether the brain uses kinematic, dynamic and energetic values in an isolated manner or combines them in a flexible way, we examined the effects of speed variations upon the chosen arm trajectories during free arm movements. Within the optimal control framework, we uncovered which (possibly composite) optimality criterion underlays at best the empirical data. Fifteen participants were asked to perform free-endpoint reaching movements from a specific arm configuration at slow, normal and fast speeds. Experimental results revealed that prominent features of observed motor behaviors were significantly speed-dependent, such as the chosen reach endpoint and the final arm posture. Nevertheless, participants exhibited different arm trajectories and various degrees of speed dependence of their reaching behavior. These inter-individual differences were addressed using a numerical inverse optimal control methodology. Simulation results revealed that a weighted combination of kinematic, energetic and dynamic cost functions was required to account for all the critical features of the participants' behavior. Furthermore, no evidence for the existence of a speed-dependent tuning of these weights was found, thereby suggesting subject-specific but speed-invariant weightings of kinematic, energetic and dynamic variables during the motor planning process of free arm movements. This suggested that the inter-individual difference of arm trajectories and speed dependence was not only due to anthropometric singularities but also to critical differences in the composition of the subjective cost function. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
More mind wandering, fewer original ideas: be not distracted during creative idea generation.
Hao, Ning; Wu, Mengxia; Runco, Mark A; Pina, Jeremy
2015-10-01
Several studies suggest that mind wandering (MW) benefits creativity when the MW occurs in the incubation period of creative problem solving. The aim of present study was to examine the effects of MW that occurs in the course of creative idea generation. Participants received an Alternative Uses Task (AUT) and were asked to generate ideas for 20min. Their MW frequencies as time passed were measured by means of probe-caught MW. Comparisons of the AUT performances of high and low MW groups revealed that greater MW was associated with lower fluency and originality scores on the AUT. Furthermore, the high MW group showed greater MW as time passed, while the low MW group's MW was steady during the course of idea generation. Accordingly, the originality of idea generation decreased with time passing for the high MW group but was steady for the low MW group. The findings suggest that the MW during the course of creative idea generation is negatively related to creativity, perhaps because the control processes involved in idea generation are impaired by the mind wandering. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Can; Yang, Bo; Tan, Gangfeng; Guo, Xuexun; Zhou, Li; Xiong, Shengguang
2016-05-01
In the high latitudes, the icy patches on the road are frequently generated and have a wide distribution, which are difficult to remove and obviously affect the normal usage of the highways, bridges and airport runways. Physical deicing, such as microwave (MW) deicing, help the ice melt completely through heating mode and then the ice layer can be swept away. Though it is no pollution and no damage to the ground, the low efficiency hinders the development of MW deicing vehicle equipped without sufficient speed. In this work, the standard evaluation of deicing is put forward firstly. The intensive MW deicing is simplified to ice melting process characterized by one-dimensional slab with uniform volumetric energy generation, which results in phase transformation and interface motion between ice and water. The heating process is split into the superposition of three parts — non-heterogeneous heating for ground without phase change, heat transfer with phase change and the heat convection between top surface of ice layer and flow air. Based on the transient heat conduction theory, a mathematical model, combining electromagnetic and two-phase thermal conduction, is proposed in this work, which is able to reveal the relationship between the deicing efficiency and ambient conditions, as well as energy generation and material parameters. Using finite difference time-domain, this comprehensive model is developed to solve the moving boundary heat transfer problem in a one-dimensional structured gird. As a result, the stimulation shows the longitudinal temperature distributions in all circumstances and quantitative validation is obtained by comparing simulated temperature distributions under different conditions. In view of the best economy and fast deicing, these analytic solutions referring to the complex influence factors of deicing efficiency demonstrate the optimal matching for the new deicing design.
High-power converters for space applications
NASA Technical Reports Server (NTRS)
Park, J. N.; Cooper, Randy
1991-01-01
Phase 1 was a concept definition effort to extend space-type dc/dc converter technology to the megawatt level with a weight of less than 0.1 kg/kW (220 lb./MW). Two system designs were evaluated in Phase 1. Each design operates from a 5 kV stacked fuel cell source and provides a voltage step-up to 100 kV at 10 A for charging capacitors (100 pps at a duty cycle of 17 min on, 17 min off). Both designs use an MCT-based, full-bridge inverter, gaseous hydrogen cooling, and crowbar fault protection. The GE-CRD system uses an advanced high-voltage transformer/rectifier filter is series with a resonant tank circuit, driven by an inverter operating at 20 to 50 kHz. Output voltage is controlled through frequency and phase shift control. Fast transient response and stability is ensured via optimal control. Super-resonant operation employing MCTs provides the advantages of lossless snubbing, no turn-on switching loss, use of medium-speed diodes, and intrinsic current limiting under load-fault conditions. Estimated weight of the GE-CRD system is 88 kg (1.5 cu ft.). Efficiency of 94.4 percent and total system loss is 55.711 kW operating at 1 MW load power. The Maxwell system is based on a resonance transformer approach using a cascade of five LC resonant sections at 100 kHz. The 5 kV bus is converted to a square wave, stepped-up to a 100 kV sine wave by the LC sections, rectified, and filtered. Output voltage is controlled with a special series regulator circuit. Estimated weight of the Maxwell system is 83.8 kg (4.0 cu ft.). Efficiency is 87.2 percent and total system loss is 146.411 kW operating at 1 MW load power.
NASA Astrophysics Data System (ADS)
Ilgner, Justus F.; Wehner, Martin; Lorenzen, Johann; Bovi, Manfred; Westhofen, Martin
2004-07-01
Introduction: Since the early 1980's, a considerable number of different laser systems have been introduced into reconstructive middle ear surgery. Depending on the ablation mode, however, pressure transients or thermal load to inner ear structures continue to be subject to discussion. Material and methods: We examined single spot ablations by a nanosecond-pulsed, frequency-tripled Nd:YAG-Laser (355 nm, beam diameter 10 μm, pulse rate 2 kHz, power 250 mW) on isolated human mallei. In a second set-up, a similar system (355 nm, beam diameter 20 μm, pulse rate 10 kHz, power 160-1500 mW) was coupled to a scanner to examine the morphology of bone surface ablation over an area of 1mm2. A third set-up employed a femtosecond-pulsed CrLiSAF-Oscillator (850 nm, pulse duration 100 fs, pulse energy 40μJ, beam diameter 36 μm, pulse rate 1 kHz) to compare these results with the former and with those obtained from a commercially available Er:YAG laser for ear surgery (Zeiss ORL E, 2940 nm, single pulse, energy 10-25 mJ). Results: In set-up 1 and 2, thermal effects in terms of marginal carbonization were visible in all single spot ablations of 1 s and longer. With ablations of 0.5 seconds, precise cutting margins with preservation of surrounding tissue could be observed. Cooling with saline solution resulted in no carbonization at 1500 mW and a scan speed of 500 mm/s. Set-up 3 equally showed no carbonization, although scanning times were longer and ablation less pronounced. Conclusion: Ultrashort pulsed laser systems could potentially aid further refinement of reconstructive microsurgery of the middle ear.
Mo, Shiwei; Chow, Daniel H K
2018-05-19
Motor control, related to running performance and running related injuries, is affected by progression of fatigue during a prolonged run. Distance runners are usually recommended to train at or slightly above anaerobic threshold (AT) speed for improving performance. However, running at AT speed may result in accelerated fatigue. It is not clear how one adapts running gait pattern during a prolonged run at AT speed and if there are differences between runners with different training experience. To compare characteristics of stride-to-stride variability and complexity during a prolonged run at AT speed between novice runners (NR) and experienced runners (ER). Both NR (n = 17) and ER (n = 17) performed a treadmill run for 31 min at his/her AT speed. Stride interval dynamics was obtained throughout the run with the middle 30 min equally divided into six time intervals (denoted as T1, T2, T3, T4, T5 and T6). Mean, coefficient of variation (CV) and scaling exponent alpha of stride intervals were calculated for each interval of each group. This study revealed mean stride interval significantly increased with running time in a non-linear trend (p<0.001). The stride interval variability (CV) maintained relatively constant for NR (p = 0.22) and changed nonlinearly for ER (p = 0.023) throughout the run. Alpha was significantly different between groups at T2, T5 and T6, and nonlinearly changed with running time for both groups with slight differences. These findings provided insights into how the motor control system adapts to progression of fatigue and evidences that long-term training enhances motor control. Although both ER and NR could regulate gait complexity to maintain AT speed throughout the prolonged run, ER also regulated stride interval variability to achieve the goal. Copyright © 2018. Published by Elsevier B.V.
Urban traffic pollution reduction for sedan cars using petrol engines by hydro-oxide gas inclusion.
Al-Rousan, Ammar A; Alkheder, Sharaf; Musmar, Sa'ed A
2015-12-01
Petrol cars, in particular nonhybrid cars, contribute significantly to the pollution problem as compared with other types of cars. The originality of this article falls in the direction of using hydro-oxy gas to reduce pollution from petrol car engines. Experiments were performed in city areas at low real speeds, with constant engine speeds in the average of 2500 rpm and at variable velocity ratios (first speed was 10-20 km/hr, second speed was 20-35 km/hr, and third speed was 35-50 km/hr). Results indicated that through using hydro-oxy gas, a noticeable reduction in pollution was recorded. Oxygen (O2) percentage has increased by about 2.5%, and nitric oxide (NO) level has been reduced by about 500 ppm. Carbon monoxide (CO) has decreased by about 2.2%, and also CO2 has decreased by 2.1%. It's worth mentioning that for hybrid system in cars at speeds between 10 and 50 km/hr, the emission percentage change is zero. However, hybrid cars are less abundant than petrol cars. The originality of this paper falls in the direction of using hydro-oxy gas to reduce pollution from petrol car engines. Experiments were performed in city areas at low real speeds, with constant engine speeds in the average of 2500 rpm and at variable velocity ratios (first speed was 10-20 km/hr, second speed was 20-35 km/hr, and third speed was 35-50 km/h).
The 2015 Gorkha (Nepal) earthquake sequence: I. Source modeling and deterministic 3D ground shaking
NASA Astrophysics Data System (ADS)
Wei, Shengji; Chen, Meng; Wang, Xin; Graves, Robert; Lindsey, Eric; Wang, Teng; Karakaş, Çağıl; Helmberger, Don
2018-01-01
To better quantify the relatively long period (< 0.3 Hz) shaking experienced during the 2015 Gorkha (Nepal) earthquake sequence, we study the finite rupture processes and the associated 3D ground motion of the Mw7.8 mainshock and the Mw7.2 aftershock. The 3D synthetics are then used in the broadband ground shaking in Kathmandu with a hybrid approach, summarized in a companion paper (Chen and Wei, 2017, submitted together). We determined the coseismic rupture process of the mainshock by joint inversion of InSAR/SAR, GPS (static and high-rate), strong motion and teleseismic waveforms. Our inversion for the mainshock indicates unilateral rupture towards the ESE, with an average rupture speed of 3.0 km/s and a total duration of 60 s. Additionally, we find that the beginning part of the rupture (5-18 s) has about 40% longer rise time than the rest of the rupture, as well as slower rupture velocity. Our model shows two strong asperities occurring 24 s and 36 s after the origin and located 30 km to the northwest and northeast of the Kathmandu valley, respectively. In contrast, the Mw7.2 aftershock is more compact both in time and space, as revealed by joint inversion of teleseismic body waves and InSAR data. The different rupture features between the mainshock and the aftershock could be related to difference in fault zone structure. The mainshock and aftershock ground motions in the Kathmandu valley, recorded by both strong motion and high-rate GPS stations, exhibited strong amplification around 0.2 Hz. A simplified 3D basin model, calibrated by an Mw5.2 aftershock, can match the observed waveforms reasonably well at 0.3 Hz and lower frequency. The 3D simulations indicate that the basin structure trapped the wavefield and produced an extensive ground vibration. Our study suggests that the combination of rupture characteristics and propagational complexity are required to understand the ground shaking produced by hazardous earthquakes such as the Gorkha event.
Assessment Study of Small Space Debris Removal by Laser Satellites
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Papa, Richard S.
2011-01-01
Space debris in Earth orbit poses significant danger to satellites, humans in space, and future space exploration activities. In particular, the increasing number of unidentifiable objects, smaller than 10 cm, presents a serious hazard. Numerous technologies have been studied for removing unwanted objects in space. Our approach uses a short wavelength laser stationed in orbit to vaporize these small objects. This paper discusses the power requirements for space debris removal using lasers. A short wavelength laser pumped directly or indirectly by solar energy can scan, identify, position, and illuminate the target, which will then be vaporized or slow down the orbital speed of debris by laser detonation until it re-enters the atmosphere. The laser-induced plasma plume has a dispersive motion of approximately 105 m/sec with a Lambertian profile in the direction of the incoming beam [1-2]. The resulting fast ejecting jet plume of vaporized material should prevent matter recombination and condensation. If it allows any condensation of vaporized material, the size of condensed material will be no more than a nanoscale level [3]. Lasers for this purpose can be indirectly pumped by power from an array of solar cells or directly pumped by the solar spectrum [4]. The energy required for vaporization and ionization of a 10 cm cube ( 2700 gm) of aluminum is 87,160 kJ. To remove this amount of aluminum in 3 minutes requires a continuous laser beam power of at least 5.38 MW under the consideration of 9% laser absorption by aluminum [5] and 5% laser pumping efficiency. The power needed for pumping 5.38 MW laser is approximately 108 MW, which can be obtained from a large solar array with 40% efficiency solar cells and a minimal area of 450 meters by 450 meters. This solar array would collect approximately 108 MW. The power required for system operation and maneuvering can be obtained by increasing solar panel size. This feasibility assessment covers roughly the power requirement, laser system, and a potential operational scenario.
Toward seismic source imaging using seismo-ionospheric data
NASA Astrophysics Data System (ADS)
Rolland, L.; Larmat, C. S.; Mikesell, D.; Sladen, A.; Khelfi, K.; Astafyeva, E.; Lognonne, P. H.
2014-12-01
The worldwide coverage offered by global navigation space systems (GNSS) such as GPS, GLONASS or Galileo allows seismological measurements of a new kind. GNSS-derived total electron content (TEC) measurements can be especially useful to image seismically active zones that are not covered by conventional instruments. For instance, it has been shown that the Japanese dense GPS network GEONET was able to record images of the ionosphere response to the initial coseismic sea-surface motion induced by the great Mw 9.0 2011 Tohoku-Oki earthquake less than 10 minutes after the rupture initiation (Astafyeva et al., 2013). But earthquakes of lower magnitude, down to about 6.5 would also induce measurable ionospheric perturbations, when GNSS stations are located less than 250 km away from the epicenter. In order to make use of these new data, ionospheric seismology needs to develop accurate forward models so that we can invert for quantitative seismic sources parameters. We will present our current understanding of the coupling mechanisms between the solid Earth, the ocean, the atmosphere and the ionosphere. We will also present the state-of-the-art in the modeling of coseismic ionospheric disturbances using acoustic ray theory and a new 3D modeling method based on the Spectral Element Method (SEM). This latter numerical tool will allow us to incorporate lateral variations in the solid Earth properties, the bathymetry and the atmosphere as well as realistic seismic source parameters. Furthermore, seismo-acoustic waves propagate in the atmosphere at a much slower speed (from 0.3 to ~1 km/s) than seismic waves propagate in the solid Earth. We are exploring the application of back-projection and time-reversal methods to TEC observations in order to retrieve the time and space characteristics of the acoustic emission in the seismic source area. We will first show modeling and inversion results with synthetic data. Finally, we will illustrate the imaging capability of our approach with, among other possible examples, the 2011 Mw 9.0 Tohoku-Oki earthquake, Japan, the 2012 Mw 7.8 Haida Gwaii earthquake, Canada and the 2011 Mw 7.1 Van earthquake, Eastern Turkey.
On the Profitability of Variable Speed Pump-Storage-Power in Frequency Restoration Reserve
NASA Astrophysics Data System (ADS)
Filipe, Jorge; Bessa, Ricardo; Moreira, Carlos; Silva, Bernardo
2017-04-01
The increase penetration of renewable energy sources (RES) into the European power system has introduced a significant amount of variability and uncertainty in the generation profiles raising the needs for ancillary services as well as other tools like demand response, improved generation forecasting techniques and changes to the market design. While RES is able to replace energy produced by the traditional centralized generation, it cannot displace its capacity in terms of ancillary services provided. Therefore, centralized generation capacity must be retained to perform this function leading to over-capacity issues and underutilisation of the assets. Large-scale reversible hydro power plants represent the majority of the storage solution installed in the power system. This technology comes with high investments costs, hence the constant search for methods to increase and diversify the sources of revenue. Traditional fixed speed pump storage units typically operate in the day-ahead market to perform price arbitrage and, in some specific cases, provide downward replacement reserve (RR). Variable speed pump storage can not only participate in RR but also contribute to FRR, given their ability to control its operating point in pumping mode. This work does an extended analysis of a complete bidding strategy for Pumped Storage Power, enhancing the economic advantages of variable speed pump units in comparison with fixed ones.
Analysis on electronic control unit of continuously variable transmission
NASA Astrophysics Data System (ADS)
Cao, Shuanggui
Continuously variable transmission system can ensure that the engine work along the line of best fuel economy, improve fuel economy, save fuel and reduce harmful gas emissions. At the same time, continuously variable transmission allows the vehicle speed is more smooth and improves the ride comfort. Although the CVT technology has made great development, but there are many shortcomings in the CVT. The CVT system of ordinary vehicles now is still low efficiency, poor starting performance, low transmission power, and is not ideal controlling, high cost and other issues. Therefore, many scholars began to study some new type of continuously variable transmission. The transmission system with electronic systems control can achieve automatic control of power transmission, give full play to the characteristics of the engine to achieve optimal control of powertrain, so the vehicle is always traveling around the best condition. Electronic control unit is composed of the core processor, input and output circuit module and other auxiliary circuit module. Input module collects and process many signals sent by sensor and , such as throttle angle, brake signals, engine speed signal, speed signal of input and output shaft of transmission, manual shift signals, mode selection signals, gear position signal and the speed ratio signal, so as to provide its corresponding processing for the controller core.
Sullivan, Katherine J; Knowlton, Barbara J; Dobkin, Bruce H
2002-05-01
To investigate the effect of practice paradigms that varied treadmill speed during step training with body weight support in subjects with chronic hemiparesis after stroke. Randomized, repeated-measures pilot study with 1- and 3-month follow-ups. Outpatient locomotor laboratory. Twenty-four individuals with hemiparetic gait deficits whose walking speeds were at least 50% below normal. Participants were stratified by locomotor severity based on initial walking velocity and randomly assigned to treadmill training at slow (0.5mph), fast (2.0mph), or variable (0.5, 1.0, 1.5, 2.0mph) speeds. Participants received 20 minutes of training per session for 12 sessions over 4 weeks. Self-selected overground walking velocity (SSV) was assessed at the onset, middle, and end of training, and 1 and 3 months later. SSV improved in all groups compared with baseline (P<.001). All groups increased SSV in the 1-month follow-up (P<.01) and maintained these gains at the 3-month follow-up (P=.77). The greatest improvement in SSV across training occurred with fast training speeds compared with the slow and variable groups combined (P=.04). Effect size (ES) was large between fast compared with slow (ES=.75) and variable groups (ES=.73). Training at speeds comparable with normal walking velocity was more effective in improving SSV than training at speeds at or below the patient's typical overground walking velocity. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation
Drag, but not buoyancy, affects swim speed in captive Steller sea lions
Suzuki, Ippei; Sato, Katsufumi; Fahlman, Andreas; Naito, Yasuhiko; Miyazaki, Nobuyuki; Trites, Andrew W.
2014-01-01
ABSTRACT Swimming at an optimal speed is critical for breath-hold divers seeking to maximize the time they can spend foraging underwater. Theoretical studies have predicted that the optimal swim speed for an animal while transiting to and from depth is independent of buoyancy, but is dependent on drag and metabolic rate. However, this prediction has never been experimentally tested. Our study assessed the effects of buoyancy and drag on the swim speed of three captive Steller sea lions (Eumetopias jubatus) that made 186 dives. Our study animals were trained to dive to feed at fixed depths (10–50 m) under artificially controlled buoyancy and drag conditions. Buoyancy and drag were manipulated using a pair of polyvinyl chloride (PVC) tubes attached to harnesses worn by the sea lions, and buoyancy conditions were designed to fall within the natural range of wild animals (∼12–26% subcutaneous fat). Drag conditions were changed with and without the PVC tubes, and swim speeds were recorded and compared during descent and ascent phases using an accelerometer attached to the harnesses. Generalized linear mixed-effect models with the animal as the random variable and five explanatory variables (body mass, buoyancy, dive depth, dive phase, and drag) showed that swim speed was best predicted by two variables, drag and dive phase (AIC = −139). Consistent with a previous theoretical prediction, the results of our study suggest that the optimal swim speed of Steller sea lions is a function of drag, and is independent of dive depth and buoyancy. PMID:24771620
Yıldırım-Yenier, Zümrüt; Vingilis, Evelyn; Wiesenthal, David L; Mann, Robert E; Seeley, Jane
2016-01-01
Motor racing includes high speed driving and risky maneuvers and can result in negative outcomes for both spectators and drivers. Interest in motorsports is also associated with risky driving attitudes and behaviors on public roads as well as with individual difference variables, such as sensation seeking. However, whether the links between motorsports involvement and risky driving tendencies differ for spectators and drivers has remained mainly unexamined. The aim of this study was to investigate the relationships between thrill seeking, attitudes toward speeding, and self-reported driving violations among a sample of motorsports spectators and drivers. A web-based survey was conducted and sampled 408 members and visitors of car club and racing websites in Ontario, Canada. The questionnaire included measures of (i) motorsports involvement, (ii) thrill seeking (Driver Thrill Seeking Scale), (iii) attitudes (Attitudes toward Speed Limits on Roadways and Competitive Attitudes toward Driving Scale); (iv) self-reported driving violations (adapted from Driver Behaviour Questionnaire), and (v) background variables. Path analysis was performed to test the relationships among the variables. For both spectators and drivers, thrill seeking directly predicted driving violations; competitive attitudes toward driving further mediated this relationship. Attitudes toward speed limits, however, mediated the relationship between thrill seeking and violations only for drivers. We observed significant relationships among individual difference measures, motorsports involvement, speeding attitudes and violations that may inform road safety interventions, including differences in the relationships among thrill seeking, speeding attitudes, and violations for motorsports spectators and drivers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Variable rate irrigation (VRI)
USDA-ARS?s Scientific Manuscript database
Variable rate irrigation (VRI) technology is now offered by all major manufacturers of moving irrigation systems, mostly on center pivot irrigation systems. Variable irrigation depths may be controlled by sector only, in which case only the speed of the irrigation lateral is regulated. Or, variable ...
Microstructural studies of wear mechanisms in cast aluminum alloys
NASA Astrophysics Data System (ADS)
Elmadagli, Mustafa
2005-07-01
The microstructural basis of wear and surface degradation mechanisms in Al-Si alloys has been investigated in order to improve the current understanding of the requirements for wear resistant aluminum alloy design. The wear behaviour of three commercial alloys namely: a sand cast A390 (Al-18.4%Si), a spray formed Al-25%Si, and a die cast 383 (Al-9.5%Si) have been investigated. Dry sliding wear tests were performed using a block on ring type tribometer under controlled environments. The experiments were performed in a load range between 0.2 N and 300 N at a constant speed of 1 m/s. The testing environments were a dry air (5% RH), a humid air (95% RH), and an argon atmosphere. In dry air (5% RH), two main wear regimes namely, mild wear (MW), and severe wear (SW) were identified. The (MW) regime consisted of two sub-regimes: first and second regimes of mild wear, (MW-1) and (MW-2). The mild wear was controlled by the formation and destruction (spallation) of hardened tribolayers composed of Fe, Al, Si, and O which gave rise to steady state wear rates in both sub-regimes. The transition to second sub-regime was attributed to the destabilization and partial removal of the tribolayers on the contact surfaces. Severe wear occurred at loads exceeding 150 N irrespective of the alloy when the contact surface temperature reached a critical value (210-240°C). The wear rates (W) in each sub-regime of the MW obeyed the relation, W=CLn, where C and n were the wear coefficient and the wear exponent, respectively. The wear exponents, n, were similar in each of the sub-regimes for all three alloys, indicating that the same mechanisms controlled the wear rates. However, the wear coefficients, C, and the transition loads to the second sub-regime were considerably different for each alloy. A method of analyzing the wear coefficients and the transition loads of the alloys, based on pair-wise comparison between them, was developed. This method demonstrated that small equiaxed silicon particles, high alloy hardness, and high silicon content promoted a better wear resistance in the Al-Si alloys by delaying MW-1 to MW-2 transition, and reducing the wear coefficients. Wear tests performed on A390 in air with 95% RH and in argon atmospheres resulted in a 10-fold reduction of wear rates and formation of an ultra mild wear (UMW) regime at loads less than 10 N. UMW in an argon atmosphere was due to the formation of highly deformed Al-(Si) tribolayers, which were less brittle and were not removed as easily as Fe-Al-Si-O tribolayers formed in dry air (5% RH). UMW of A390 samples could be also achieved in dry air (5% RH) when the tests were performed against a diamond-like carbon (DLC) coated counterface at loads less than 10 N. The analysis showed that DLC reduced the wear and friction significantly through preventing the formation of Fe rich oxidized tribolayers and Al transfer to the counterface.
Control strategy for a variable-speed wind energy conversion system
NASA Technical Reports Server (NTRS)
Jacob, A.; Veillette, D.; Rajagopalan, V.
1979-01-01
A control concept for a variable-speed wind energy conversion system is proposed, for which a self-exited asynchronous cage generator is used along with a system of thyristor converters. The control loops are the following: (1) regulation of the entrainment speed as function of available mechanical energy by acting on the resistance couple of the asynchronous generator; (2) control of electric power delivered to the asynchronous machine, functioning as a motor, for start-up of the vertical axis wind converter; and (3) limitation of the slip value, and by consequence, of the induction currents in the presence of sudden variations of input parameters.
Variable sound speed in interacting dark energy models
NASA Astrophysics Data System (ADS)
Linton, Mark S.; Pourtsidou, Alkistis; Crittenden, Robert; Maartens, Roy
2018-04-01
We consider a self-consistent and physical approach to interacting dark energy models described by a Lagrangian, and identify a new class of models with variable dark energy sound speed. We show that if the interaction between dark energy in the form of quintessence and cold dark matter is purely momentum exchange this generally leads to a dark energy sound speed that deviates from unity. Choosing a specific sub-case, we study its phenomenology by investigating the effects of the interaction on the cosmic microwave background and linear matter power spectrum. We also perform a global fitting of cosmological parameters using CMB data, and compare our findings to ΛCDM.
Digital phase-locked loop speed control for a brushless dc motor
NASA Astrophysics Data System (ADS)
Wise, M. G.
1985-06-01
Speed control of d.c. motors by phase-locked loops (PLL) is becoming increasingly popular. Primary interest has been in employing PLL for constant speed control. This thesis investigates the theory and techniques of digital PLL to speed control of a brushless d.c. motor with a variable speed of operation. Addition of logic controlled count enable/disable to a synchronous up/down counter, used as a phase-frequency detector, is shown to improve the performance of previously proposed PLL control schemes.
Development of a novel virtual reality gait intervention.
Boone, Anna E; Foreman, Matthew H; Engsberg, Jack R
2017-02-01
Improving gait speed and kinematics can be a time consuming and tiresome process. We hypothesize that incorporating virtual reality videogame play into variable improvement goals will improve levels of enjoyment and motivation and lead to improved gait performance. To develop a feasible, engaging, VR gait intervention for improving gait variables. Completing this investigation involved four steps: 1) identify gait variables that could be manipulated to improve gait speed and kinematics using the Microsoft Kinect and free software, 2) identify free internet videogames that could successfully manipulate the chosen gait variables, 3) experimentally evaluate the ability of the videogames and software to manipulate the gait variables, and 4) evaluate the enjoyment and motivation from a small sample of persons without disability. The Kinect sensor was able to detect stride length, cadence, and joint angles. FAAST software was able to identify predetermined gait variable thresholds and use the thresholds to play free online videogames. Videogames that involved continuous pressing of a keyboard key were found to be most appropriate for manipulating the gait variables. Five participants without disability evaluated the effectiveness for modifying the gait variables and enjoyment and motivation during play. Participants were able to modify gait variables to permit successful videogame play. Motivation and enjoyment were high. A clinically feasible and engaging virtual intervention for improving gait speed and kinematics has been developed and initially tested. It may provide an engaging avenue for achieving thousands of repetitions necessary for neural plastic changes and improved gait. Copyright © 2016 Elsevier B.V. All rights reserved.
McAuley, Tara; White, Desirée
2010-01-01
The present study addressed three related aims: (1) to replicate and extend previous work regarding the non-unitary nature of processing speed, response inhibition, and working memory during development, (2) to quantify the rate at which processing speed, response inhibition, and working memory develop and the extent to which the development of these latter abilities reflect general changes in processing speed, and (3) to evaluate whether commonly used tasks of processing speed, response inhibition, and working memory are valid and reliable when used with a developmentally diverse group. To address these aims, a latent variables approach was used to analyze data from 147 participants 6 to 24 years of age. Results showed that processing speed, response inhibition, and working memory were separable abilities and that the extent of this separability was stable cross the age range of participants. All three constructs improved as a function of age; however, only the effect of age on working memory remained significant after processing speed was controlled. The psychometric properties of tasks used to assess the constructs were age invariant, thus validating their use in studies of executive development. PMID:20888572
Variable-Speed Power-Turbine Research at Glenn Research Center
NASA Technical Reports Server (NTRS)
Welch, Gerard E.; McVetta, Ashlie B.; Stevens, Mark A.; Howard, Samuel A.; Giel, Paul W.; Ameri, Ali, A.; To, Waiming; Skoch, Gary J.; Thurman, Douglas R.
2012-01-01
The main rotors of the NASA Large Civil Tilt-Rotor (LCTR) notional vehicle operate over a wide speed-range, from 100 percent at takeoff to 54 percent at cruise. The variable-speed power turbine (VSPT) offers one approach by which to effect this speed variation. VSPT aerodynamics challenges include high work factors at cruise, wide (40 to 60 ) incidence-angle variations in blade and vane rows over the speed range, and operation at low Reynolds numbers. Rotordynamics challenges include potential responsiveness to shaft modes within the 50 percent VSPT speed-range. A research effort underway at NASA Glenn Research Center, intended to address these key aerodynamic and rotordynamic challenges, is described. Conceptual design and 3-D multistage RANS and URANS analyses, conducted internally and under contract, provide expected VSPT sizing, stage-count, performance and operability information, and maps for system studies. Initial steps toward experimental testing of incidence-tolerant blading in a transonic linear cascade are described, and progress toward development/improvement of a simulation capability for multistage turbines with low Reynolds number transitional flow is summarized. Preliminary rotordynamics analyses indicate that viable concept engines with 50 percent VSPT shaft-speed range. Assessments of potential paths toward VSPT component-level testing are summarized.
Roos, Paulien E; Dingwell, Jonathan B
2013-06-21
Older adults and those with increased fall risk tend to walk slower. They may do this voluntarily to reduce their fall risk. However, both slower and faster walking speeds can predict increased risk of different types of falls. The mechanisms that contribute to fall risk across speeds are not well known. Faster walking requires greater forward propulsion, generated by larger muscle forces. However, greater muscle activation induces increased signal-dependent neuromuscular noise. These speed-related increases in neuromuscular noise may contribute to the increased fall risk observed at faster walking speeds. Using a 3D dynamic walking model, we systematically varied walking speed without and with physiologically-appropriate neuromuscular noise. We quantified how actual fall risk changed with gait speed, how neuromuscular noise affected speed-related changes in fall risk, and how well orbital and local dynamic stability measures predicted changes in fall risk across speeds. When we included physiologically-appropriate noise to the 'push-off' force in our model, fall risk increased with increasing walking speed. Changes in kinematic variability, orbital, and local dynamic stability did not predict these speed-related changes in fall risk. Thus, the increased neuromuscular variability that results from increased signal-dependent noise that is necessitated by the greater muscular force requirements of faster walking may contribute to the increased fall risk observed at faster walking speeds. The lower fall risk observed at slower speeds supports experimental evidence that slowing down can be an effective strategy to reduce fall risk. This may help explain the slower walking speeds observed in older adults and others. Copyright © 2013 Elsevier Ltd. All rights reserved.
Roos, Paulien E.; Dingwell, Jonathan B.
2013-01-01
Older adults and those with increased fall risk tend to walk slower. They may do this voluntarily to reduce their fall risk. However, both slower and faster walking speeds can predict increased risk of different types of falls. The mechanisms that contribute to fall risk across speeds are not well known. Faster walking requires greater forward propulsion, generated by larger muscle forces. However, greater muscle activation induces increased signal-dependent neuromuscular noise. These speed-related increases in neuromuscular noise may contribute to the increased fall risk observed at faster walking speeds. Using a 3D dynamic walking model, we systematically varied walking speed without and with physiologically-appropriate neuromuscular noise. We quantified how actual fall risk changed with gait speed, how neuromuscular noise affected speed-related changes in fall risk, and how well orbital and local dynamic stability measures predicted changes in fall risk across speeds. When we included physiologically-appropriate noise to the ‘push-off’ force in our model, fall risk increased with increasing walking speed. Changes in kinematic variability, orbital, and local dynamic stability did not predict these speed-related changes in fall risk. Thus, the increased neuromuscular variability that results from increased signal-dependent noise that is necessitated by the greater muscular force requirements of faster walking may contribute to the increased fall risk observed at faster walking speeds. The lower fall risk observed at slower speeds supports experimental evidence that slowing down can be an effective strategy to reduce fall risk. This may help explain the slower walking speeds observed in older adults and others. PMID:23659911
NASA Astrophysics Data System (ADS)
van der Molen, Johan; Ruardij, Piet; Greenwood, Naomi
2016-05-01
A model study was carried out of the potential large-scale (> 100 km) effects of marine renewable tidal energy generation in the Pentland Firth, using the 3-D hydrodynamics-biogeochemistry model GETM-ERSEM-BFM. A realistic 800 MW scenario and a high-impact scenario with massive expansion of tidal energy extraction to 8 GW scenario were considered. The realistic 800 MW scenario suggested minor effects on the tides, and undetectable effects on the biogeochemistry. The massive-expansion 8 GW scenario suggested effects would be observed over hundreds of kilometres away with changes of up to 10 % in tidal and ecosystem variables, in particular in a broad area in the vicinity of the Wash. There, waters became less turbid, and primary production increased with associated increases in faunal ecosystem variables. Moreover, a one-off increase in carbon storage in the sea bed was detected. Although these first results suggest positive environmental effects, further investigation is recommended of (i) the residual circulation in the vicinity of the Pentland Firth and effects on larval dispersal using a higher-resolution model and (ii) ecosystem effects with (future) state-of-the-art models if energy extraction substantially beyond 1 GW is planned.
Development and optimization of a diode laser for photodynamic therapy.
Lim, Hyun Soo
2011-01-01
This study demonstrated the development of a laser system for cancer treatment with photodynamic therapy (PDT) based on a 635 nm laser diode. In order to optimize efficacy in PDT, the ideal laser system should deliver a homogeneous nondivergent light energy with a variable spot size and specific wavelength at a stable output power. We developed a digital laser beam controller using the constant current method to protect the laser diode resonator from the current spikes and other fluctuations, and electrical faults. To improve the PDT effects, the laser system should deliver stable laser energy in continuous wave (CW), burst mode and super burst mode, with variable irradiation times depending on the tumor type and condition. The experimental results showed the diode laser system described herein was eminently suitable for PDT. The laser beam was homogeneous without diverging and the output power increased stably and in a linear manner from 10 mW to 1500 mW according to the increasing input current. Variation between the set and delivered output was less than 7%. The diode laser system developed by the author for use in PDT was compact, user-friendly, and delivered a stable and easily adjustable output power at a specific wavelength and user-set emission modes.
Development and optimization of a diode laser for photodynamic therapy
Lim, Hyun Soo
2011-01-01
Background and Aims: This study demonstrated the development of a laser system for cancer treatment with photodynamic therapy (PDT) based on a 635 nm laser diode. In order to optimize efficacy in PDT, the ideal laser system should deliver a homogeneous nondivergent light energy with a variable spot size and specific wavelength at a stable output power. Materials and Methods: We developed a digital laser beam controller using the constant current method to protect the laser diode resonator from the current spikes and other fluctuations, and electrical faults. To improve the PDT effects, the laser system should deliver stable laser energy in continuous wave (CW), burst mode and super burst mode, with variable irradiation times depending on the tumor type and condition. Results and Comments: The experimental results showed the diode laser system described herein was eminently suitable for PDT. The laser beam was homogeneous without diverging and the output power increased stably and in a linear manner from 10 mW to 1500 mW according to the increasing input current. Variation between the set and delivered output was less than 7%. Conclusions: The diode laser system developed by the author for use in PDT was compact, user-friendly, and delivered a stable and easily adjustable output power at a specific wavelength and user-set emission modes. PMID:24155529
Variability in reaction time performance of younger and older adults.
Hultsch, David F; MacDonald, Stuart W S; Dixon, Roger A
2002-03-01
Age differences in three basic types of variability were examined: variability between persons (diversity), variability within persons across tasks (dispersion), and variability within persons across time (inconsistency). Measures of variability were based on latency performance from four measures of reaction time (RT) performed by a total of 99 younger adults (ages 17--36 years) and 763 older adults (ages 54--94 years). Results indicated that all three types of variability were greater in older compared with younger participants even when group differences in speed were statistically controlled. Quantile-quantile plots showed age and task differences in the shape of the inconsistency distributions. Measures of within-person variability (dispersion and inconsistency) were positively correlated. Individual differences in RT inconsistency correlated negatively with level of performance on measures of perceptual speed, working memory, episodic memory, and crystallized abilities. Partial set correlation analyses indicated that inconsistency predicted cognitive performance independent of level of performance. The results indicate that variability of performance is an important indicator of cognitive functioning and aging.
The Impact of Variable Wind Shear Coefficients on Risk Reduction of Wind Energy Projects
Thomson, Allan; Yoonesi, Behrang; McNutt, Josiah
2016-01-01
Estimation of wind speed at proposed hub heights is typically achieved using a wind shear exponent or wind shear coefficient (WSC), variation in wind speed as a function of height. The WSC is subject to temporal variation at low and high frequencies, ranging from diurnal and seasonal variations to disturbance caused by weather patterns; however, in many cases, it is assumed that the WSC remains constant. This assumption creates significant error in resource assessment, increasing uncertainty in projects and potentially significantly impacting the ability to control gird connected wind generators. This paper contributes to the body of knowledge relating to the evaluation and assessment of wind speed, with particular emphasis on the development of techniques to improve the accuracy of estimated wind speed above measurement height. It presents an evaluation of the use of a variable wind shear coefficient methodology based on a distribution of wind shear coefficients which have been implemented in real time. The results indicate that a VWSC provides a more accurate estimate of wind at hub height, ranging from 41% to 4% reduction in root mean squared error (RMSE) between predicted and actual wind speeds when using a variable wind shear coefficient at heights ranging from 33% to 100% above the highest actual wind measurement. PMID:27872898
Matrix Converter Interface for a Wind Energy Conversion System: Issues and Limitations
NASA Astrophysics Data System (ADS)
Patki, Chetan; Agarwal, Vivek
2009-08-01
Variable speed grid connected wind energy systems sometimes involve AC-AC power electronic interface between the generator and the grid. Matrix converter is an attractive option for such applications. Variable speed of the wind generator demands variable voltage variable frequency at the generator terminal. Matrix converter is used in this work to generate such a supply. Also, matrix converter can be appropriately controlled to compensate the grid for non-linear, reactive loads. However, any change of power factor on the grid side reflects on the voltage magnitude on the wind generator side. It is highlighted that this may contradict the maximum power point tracking control requirements. All the results of this work are presented.
Gas turbine engine fuel control
NASA Technical Reports Server (NTRS)
Gold, H. S. (Inventor)
1973-01-01
A variable orifice system is described that is responsive to compressor inlet pressure and temperature, compressor discharge pressure and rotational speed of a gas-turbine engine. It is incorporated into a hydraulic circuit that includes a zero gradient pump driven at a speed proportional to the speed of the engine. The resulting system provides control of fuel rate for starting, steady running, acceleration and deceleration under varying altitudes and flight speeds.
Fitzsimmons, Eric J; Kvam, Vanessa; Souleyrette, Reginald R; Nambisan, Shashi S; Bonett, Douglas G
2013-01-01
Despite recent improvements in highway safety in the United States, serious crashes on curves remain a significant problem. To assist in better understanding causal factors leading to this problem, this article presents and demonstrates a methodology for collection and analysis of vehicle trajectory and speed data for rural and urban curves using Z-configured road tubes. For a large number of vehicle observations at 2 horizontal curves located in Dexter and Ames, Iowa, the article develops vehicle speed and lateral position prediction models for multiple points along these curves. Linear mixed-effects models were used to predict vehicle lateral position and speed along the curves as explained by operational, vehicle, and environmental variables. Behavior was visually represented for an identified subset of "risky" drivers. Linear mixed-effect regression models provided the means to predict vehicle speed and lateral position while taking into account repeated observations of the same vehicle along horizontal curves. Speed and lateral position at point of entry were observed to influence trajectory and speed profiles. Rural horizontal curve site models are presented that indicate that the following variables were significant and influenced both vehicle speed and lateral position: time of day, direction of travel (inside or outside lane), and type of vehicle.
Implementation of Temperature Sequential Controller on Variable Speed Drive
NASA Astrophysics Data System (ADS)
Cheong, Z. X.; Barsoum, N. N.
2008-10-01
There are many pump and motor installations with quite extensive speed variation, such as Sago conveyor, heating, ventilation and air conditioning (HVAC) and water pumping system. A common solution for these applications is to run several fixed speed motors in parallel, with flow control accomplish by turning the motors on and off. This type of control method causes high in-rush current, and adds a risk of damage caused by pressure transients. This paper explains the design and implementation of a temperature speed control system for use in industrial and commercial sectors. Advanced temperature speed control can be achieved by using ABB ACS800 variable speed drive-direct torque sequential control macro, programmable logic controller and temperature transmitter. The principle of direct torque sequential control macro (DTC-SC) is based on the control of torque and flux utilizing the stator flux field orientation over seven preset constant speed. As a result of continuous comparison of ambient temperature to the references temperatures; electromagnetic torque response is particularly fast to the motor state and it is able maintain constant speeds. Experimental tests have been carried out by using ABB ACS800-U1-0003-2, to validate the effectiveness and dynamic respond of ABB ACS800 against temperature variation, loads, and mechanical shocks.
Both Handwriting Speed and Selective Attention Are Important to Lecture Note-Taking
ERIC Educational Resources Information Center
Peverly, Stephen T.; Garner, Joanna K.; Vekaria, Pooja C.
2014-01-01
The primary purpose of this investigation was to evaluate the relationship of handwriting speed, fine motor fluency, speed of verbal access, language comprehension, working memory, and attention (executive control; selective) to note-taking and all of the aforementioned variables to test performance (written recall). A second purpose was to…
A computer-vision-based rotating speed estimation method for motor bearing fault diagnosis
NASA Astrophysics Data System (ADS)
Wang, Xiaoxian; Guo, Jie; Lu, Siliang; Shen, Changqing; He, Qingbo
2017-06-01
Diagnosis of motor bearing faults under variable speed is a problem. In this study, a new computer-vision-based order tracking method is proposed to address this problem. First, a video recorded by a high-speed camera is analyzed with the speeded-up robust feature extraction and matching algorithm to obtain the instantaneous rotating speed (IRS) of the motor. Subsequently, an audio signal recorded by a microphone is equi-angle resampled for order tracking in accordance with the IRS curve, through which the frequency-domain signal is transferred to an angular-domain one. The envelope order spectrum is then calculated to determine the fault characteristic order, and finally the bearing fault pattern is determined. The effectiveness and robustness of the proposed method are verified with two brushless direct-current motor test rigs, in which two defective bearings and a healthy bearing are tested separately. This study provides a new noninvasive measurement approach that simultaneously avoids the installation of a tachometer and overcomes the disadvantages of tacholess order tracking methods for motor bearing fault diagnosis under variable speed.
Joyce, Christopher; Burnett, Angus; Cochrane, Jodie; Ball, Kevin
2013-06-01
The aims of this study were (i) to determine whether significant three-dimensional (3D) trunk kinematic differences existed between a driver and a five-iron during a golf swing; and (ii) to determine the anthropometric, physiological, and trunk kinematic variables associated with clubhead speed. Trunk range of motion and golf swing kinematic data were collected from 15 low-handicap male golfers (handicap = 2.5 +/- 1.9). Data were collected using a 10-camera motion capture system operating at 250 Hz. Data on clubhead speed and ball velocity were collected using a real-time launch monitor. Paired t-tests revealed nine significant (p < or = 0.0019) between-club differences for golf swing kinematics, namely trunk and lower trunk flexion/extension and lower trunk axial rotation. Multiple regression analyses explained 33.7-66.7% of the variance in clubhead speed for the driver and five-iron, respectively, with both trunk and lower trunk variables showing associations with clubhead speed. Future studies should consider the role of the upper limbs and modifiable features of the golf club in developing clubhead speed for the driver in particular.
Some applications of equilibrium thermodynamic properties to continuum gasdynamics
NASA Technical Reports Server (NTRS)
1976-01-01
The speed of sound for the propagation of isentropic disturbances in a gas is developed, including corrections for chemical reaction. The term zero frequency is used to describe this isentropic limit sound speed; the term signifies that change in the gasdynamic variables are all very slow compared with the chemical rate changes in the gas. A faster, nonisentropic speed of propagation occurs for disturbances where the changes in gasdynamic variables are fast compared with the chemical rate changes. In the limit, this is known as the infinite frequency or frozen sound speed - the former term calling attention to the very high frequency of the disturbance, the latter term calling attention to the frozen character of the chemical reactions under such rapid changes of state. The true sound speed for a disturbance of finite frequency is shown to be between these two limits and is expressed in terms of the chemical relaxation time. The Riemann invariants that are useful in determining the changes in flow speed along characteristic directions in supersonic flow are derived in terms of integrations of acoustic impedance, and example results are given for air.
Energy Partition and Variability of Earthquakes
NASA Astrophysics Data System (ADS)
Kanamori, H.
2003-12-01
During an earthquake the potential energy (strain energy + gravitational energy + rotational energy) is released, and the released potential energy (Δ W) is partitioned into radiated energy (ER), fracture energy (EG), and thermal energy (E H). How Δ W is partitioned into these energies controls the behavior of an earthquake. The merit of the slip-weakening concept is that only ER and EG control the dynamics, and EH can be treated separately to discuss the thermal characteristics of an earthquake. In general, if EG/E_R is small, the event is ``brittle", if EG /ER is large, the event is ``quasi static" or, in more common terms, ``slow earthquakes" or ``creep". If EH is very large, the event may well be called a thermal runaway rather than an earthquake. The difference in energy partition has important implications for the rupture initiation, evolution and excitation of long-period ground motions from very large earthquakes. We review the current state of knowledge on this problem in light of seismological observations and the basic physics of fracture. With seismological methods, we can measure only ER and the lower-bound of Δ W, Δ W0, and estimation of other energies involves many assumptions. ER: Although ER can be directly measured from the radiated waves, its determination is difficult because a large fraction of energy radiated at the source is attenuated during propagation. With the commonly used teleseismic and regional methods, only for events with MW>7 and MW>4, respectively, we can directly measure more than 10% of the total radiated energy. The rest must be estimated after correction for attenuation. Thus, large uncertainties are involved, especially for small earthquakes. Δ W0: To estimate Δ W0, estimation of the source dimension is required. Again, only for large earthquakes, the source dimension can be estimated reliably. With the source dimension, the static stress drop, Δ σ S, and Δ W0, can be estimated. EG: Seismologically, EG is the energy mechanically dissipated during faulting. In the context of the slip-weakening model, EG can be estimated from Δ W0 and ER. Alternatively, EG can be estimated from the laboratory data on the surface energy, the grain size and the total volume of newly formed fault gouge. This method suggests that, for crustal earthquakes, EG/E_R is very small, less than 0.2 even for extreme cases, for earthquakes with MW>7. This is consistent with the EG estimated with seismological methods, and the fast rupture speeds during most large earthquakes. For shallow subduction-zone earthquakes, EG/E_R varies substantially depending on the tectonic environments. EH: Direct estimation of EH is difficult. However, even with modest friction, EH can be very large, enough to melt or even dissociate a significant amount of material near the slip zone for large events with large slip, and the associated thermal effects may have significant effects on fault dynamics. The energy partition varies significantly for different types of earthquakes, e.g. large earthquakes on mature faults, large earthquakes on faults with low slip rates, subduction-zone earthquakes, deep focus earthquakes etc; this variability manifests itself in the difference in the evolution of seismic slip pattern. The different behaviors will be illustrated using the examples for large earthquakes, including, the 2001 Kunlun, the 1998 Balleny Is., the 1994 Bolivia, the 2001 India earthquake, the 1999 Chi-Chi, and the 2002 Denali earthquakes.
Zheng, Xuezhe; Chang, Eric; Amberg, Philip; Shubin, Ivan; Lexau, Jon; Liu, Frankie; Thacker, Hiren; Djordjevic, Stevan S; Lin, Shiyun; Luo, Ying; Yao, Jin; Lee, Jin-Hyoung; Raj, Kannan; Ho, Ron; Cunningham, John E; Krishnamoorthy, Ashok V
2014-05-19
We report the first complete 10G silicon photonic ring modulator with integrated ultra-efficient CMOS driver and closed-loop wavelength control. A selective substrate removal technique was used to improve the ring tuning efficiency. Limited by the thermal tuner driver output power, a maximum open-loop tuning range of about 4.5nm was measured with about 14mW of total tuning power including the heater driver circuit power consumption. Stable wavelength locking was achieved with a low-power mixed-signal closed-loop wavelength controller. An active wavelength tracking range of > 500GHz was demonstrated with controller energy cost of only 20fJ/bit.
Fiber-Optic Pyrometer with Optically Powered Switch for Temperature Measurements
Pérez-Prieto, Sandra; López-Cardona, Juan D.; Blanco, Enrique; Moreno-López, Jorge
2018-01-01
We report the experimental results on a new infrared fiber-optic pyrometer for very localized and high-speed temperature measurements ranging from 170 to 530 °C using low-noise photodetectors and high-gain transimpedance amplifiers with a single gain mode in the whole temperature range. We also report a shutter based on an optical fiber switch which is optically powered to provide a reference signal in an optical fiber pyrometer measuring from 200 to 550 °C. The tests show the potential of remotely powering via optical means a 300 mW power-hungry optical switch at a distance of 100 m, avoiding any electromagnetic interference close to the measuring point. PMID:29415477
Fiber-Optic Pyrometer with Optically Powered Switch for Temperature Measurements.
Vázquez, Carmen; Pérez-Prieto, Sandra; López-Cardona, Juan D; Tapetado, Alberto; Blanco, Enrique; Moreno-López, Jorge; Montero, David S; Lallana, Pedro C
2018-02-06
We report the experimental results on a new infrared fiber-optic pyrometer for very localized and high-speed temperature measurements ranging from 170 to 530 °C using low-noise photodetectors and high-gain transimpedance amplifiers with a single gain mode in the whole temperature range. We also report a shutter based on an optical fiber switch which is optically powered to provide a reference signal in an optical fiber pyrometer measuring from 200 to 550 °C. The tests show the potential of remotely powering via optical means a 300 mW power-hungry optical switch at a distance of 100 m, avoiding any electromagnetic interference close to the measuring point.
Wang, Jiyu; Ding, Wenbo; Pan, Lun; Wu, Changsheng; Yu, Hua; Yang, Lijun; Liao, Ruijin; Wang, Zhong Lin
2018-04-24
The development of the Internet of Things has brought new challenges to the corresponding distributed sensor systems. Self-powered sensors that can perceive and respond to environmental stimuli without an external power supply are highly desirable. In this paper, a self-powered wind sensor system based on an anemometer triboelectric nanogenerator (a-TENG, free-standing mode) and a wind vane triboelectric nanogenerator (v-TENG, single-electrode mode) is proposed for simultaneously detecting wind speed and direction. A soft friction mode is adopted instead of a typical rigid friction for largely enhancing the output performance of the TENG. The design parameters including size, unit central angle, and applied materials are optimized to enhance sensitivity, resolution, and wide measurement scale. The optimized a-TENG could deliver an open-circuit voltage of 88 V and short-circuit current of 6.3 μA, corresponding to a maximum power output of 0.47 mW (wind speed of 6.0 m/s), which is capable of driving electronics for data transmission and storage. The current peak value of the a-TENG signal is used for analyzing wind speed for less energy consumption. Moreover, the output characteristics of a v-TENG are further explored, with six actual operation situations, and the v-TENG delivers fast response to the incoming wind and accurately outputs the wind direction data. As a wind sensor system, wind speed ranging from 2.7 to 8.0 m/s can be well detected (consistent with a commercial sensor) and eight regular directions can be monitored. Therefore, the fabricated wind sensor system has great potential in wireless environmental monitoring applications.
Landslides triggered by the 14 November 2016 Mw 7.8 Kaikōura Earthquake, New Zealand
Massey, C.; Townsend, D.; Rathje, Ellen M.; Allstadt, Kate E.; Lukovic, B.; Kaneko, Yoshihiro; Bradley, Brendon A.; Wartman, J.; Jibson, Randall W.; Petley, D. N.; Horspool, Nick; Hamling, I.; Carey, J.; Cox, S.; Davidson, John; Dellow, S.; Godt, Jonathan W.; Holden, Christopher; Jones, Katherine D.; Kaiser, Anna E.; Little, M.; Lyndsell, B.; McColl, S.; Morgenstern, R.; Rengers, Francis K.; Rhoades, D.; Rosser, B.; Strong, D.; Singeisen, C.; Villeneuve, M.
2018-01-01
The 14 November 2016 Mw">MwMw 7.8 Kaikōura earthquake generated more than 10,000 landslides over a total area of about 10,000 km2">10,000 km210,000 km2, with the majority concentrated in a smaller area of about 3600 km2">3600 km23600 km2. The largest landslide triggered by the earthquake had an approximate volume of 20(±2) M m3">20(±2) M m320(±2) M m3, with a runout distance of about 2.7 km, forming a dam on the Hapuku River. In this article, we present version 1.0 of the landslide inventory we have created for this event. We use the inventory presented in this article to identify and discuss some of the controls on the spatial distribution of landslides triggered by the Kaikōura earthquake. Our main findings are (1) the number of medium to large landslides (source area ≥10,000 m2">≥10,000 m2≥10,000 m2) triggered by the Kaikōura earthquake is smaller than for similar‐sized landslides triggered by similar magnitude earthquakes in New Zealand; (2) seven of the largest eight landslides (from 5 to 20 M m3">20 M m320 M m3) occurred on faults that ruptured to the surface during the earthquake; (3) the average landslide density within 200 m of a mapped surface fault rupture is three times that at a distance of 2500 m or more from a mapped surface fault rupture; (4) the “distance to fault” predictor variable, when used as a proxy for ground‐motion intensity, and when combined with slope angle, geology, and elevation variables, has more power in predicting landslide probability than the modeled peak ground acceleration or peak ground velocity; and (5) for the same slope angles, the coastal slopes have landslide point densities that are an order of magnitude greater than those in similar materials on the inland slopes, but their source areas are significantly smaller.
NASA Astrophysics Data System (ADS)
Gasperini, Paolo; Lolli, Barbara
2014-01-01
The argument proposed by Wason et al. that the conversion of magnitudes from a scale (e.g. Ms or mb) to another (e.g. Mw), using the coefficients computed by the general orthogonal regression method (Fuller) is biased if the observed values of the predictor (independent) variable are used in the equation as well as the methodology they suggest to estimate the supposedly true values of the predictor variable are wrong for a number of theoretical and empirical reasons. Hence, we advise against the use of such methodology for magnitude conversions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFontaine, F.; Tauch, P.
The optimum range of the independent variables of and ORGEL reactor connected to a 250-Mw power plant (4 fuel rods of UC with individual pressure tubes), as well as the geometry of the reactor core and the operation of the plant, is described. (auth)
Subduction zone slip variability during the last millennium, south-central Chile
Dura, Tina; Horton, Benjamin P.; Cisternas, Macro; Ely, Lisa L; Hong, Isabel; Nelson, Alan R.; Wesson, Robert L.; Pilarczyk, Jessica E.; Parnell, Andrew C.; Nikitina, Daria
2017-01-01
The Arauco Peninsula (37°-38°S) in south-central Chile has been proposed as a possible barrier to the along-strike propagation of megathrust ruptures, separating historical earthquakes to the south (1960 AD 1837, 1737, and 1575) and north (2010 AD, 1835, 1751, 1657, and 1570) of the peninsula. However, the 2010 (Mw 8.8) earthquake propagated into the Arauco Peninsula, re-rupturing part of the megathrust that had ruptured only 50 years earlier during the largest subduction zone earthquake in the instrumental record (Mw 9.5). To better understand long-term slip variability in the Arauco Peninsula region, we analyzed four coastal sedimentary sections from two sites (Tirúa, 38.3°S and Quidico, 38.1°S) located within the overlap of the 2010 and 1960 ruptures to reconstruct a ∼600-year record of coseismic land-level change and tsunami inundation. Stratigraphic, lithologic, and diatom results show variable coseismic land-level change coincident with tsunami inundation of the Tirúa and Quidico marshes that is consistent with regional historical accounts of coseismic subsidence during earthquakes along the Valdivia portion of the subduction zone (1960 AD and 1575) and coseismic uplift during earthquakes along the Maule portion of the subduction zone (2010 AD, 1835, 1751). In addition, we document variable coseismic land-level change associated with three new prehistoric earthquakes and accompanying tsunamis in 1470–1570 AD, 1425–1455, and 270–410. The mixed record of coseismic subsidence and uplift that we document illustrates the variability of down-dip and lateral slip distribution at the overlap of the 2010 and 1960 ruptures, showing that ruptures have repeatedly propagated into, but not through the Arauco Peninsula and suggesting the area has persisted as a long-term impediment to slip through at least seven of the last megathrust earthquakes (∼600 years).
Subduction zone slip variability during the last millennium, south-central Chile
NASA Astrophysics Data System (ADS)
Dura, Tina; Horton, Benjamin P.; Cisternas, Marco; Ely, Lisa L.; Hong, Isabel; Nelson, Alan R.; Wesson, Robert L.; Pilarczyk, Jessica E.; Parnell, Andrew C.; Nikitina, Daria
2017-11-01
The Arauco Peninsula (37°-38°S) in south-central Chile has been proposed as a possible barrier to the along-strike propagation of megathrust ruptures, separating historical earthquakes to the south (1960 AD 1837, 1737, and 1575) and north (2010 AD, 1835, 1751, 1657, and 1570) of the peninsula. However, the 2010 (Mw 8.8) earthquake propagated into the Arauco Peninsula, re-rupturing part of the megathrust that had ruptured only 50 years earlier during the largest subduction zone earthquake in the instrumental record (Mw 9.5). To better understand long-term slip variability in the Arauco Peninsula region, we analyzed four coastal sedimentary sections from two sites (Tirúa, 38.3°S and Quidico, 38.1°S) located within the overlap of the 2010 and 1960 ruptures to reconstruct a ∼600-year record of coseismic land-level change and tsunami inundation. Stratigraphic, lithologic, and diatom results show variable coseismic land-level change coincident with tsunami inundation of the Tirúa and Quidico marshes that is consistent with regional historical accounts of coseismic subsidence during earthquakes along the Valdivia portion of the subduction zone (1960 AD and 1575) and coseismic uplift during earthquakes along the Maule portion of the subduction zone (2010 AD, 1835, 1751). In addition, we document variable coseismic land-level change associated with three new prehistoric earthquakes and accompanying tsunamis in 1470-1570 AD, 1425-1455, and 270-410. The mixed record of coseismic subsidence and uplift that we document illustrates the variability of down-dip and lateral slip distribution at the overlap of the 2010 and 1960 ruptures, showing that ruptures have repeatedly propagated into, but not through the Arauco Peninsula and suggesting the area has persisted as a long-term impediment to slip through at least seven of the last megathrust earthquakes (∼600 years).
The Systemic Proper Motions of the Magellanic Clouds and their Orbits around the Milky Way
NASA Astrophysics Data System (ADS)
Kallivayalil, N.; van der Marel, R. P.; Alcock, C.; Axelrod, T.; Cook, K. H.; Drake, A. J.; Geha, M.
2005-12-01
The interaction between the Large and Small Magellanic Clouds (LMC & SMC) and the Milky Way (MW) is thought to have played an important role in the dynamical evolution of the MW's outer parts. The Clouds probe the potential of the MW dark halo in places where other kinematic tracers are unavailable and thus the MW-MC system has been a major subject of study. In particular, the global dynamics of both Clouds need to be well prescribed before other evolutionary features of the system can be understood. The radial velocities of the clouds are more readily determined than the transverse velocities, which can only be estimated using proper motions. We undertook a project using two epochs of HST/ACS data to determine the systemic proper motions of the Clouds. The Magellanic Cloud fields are centered on background QSOs that were discovered from their optical variability in the MACHO database (Geha et al. 2003). The final sample consists of 21 QSOs behind the LMC and 5 behind the SMC, distributed homogeneously behind the central few degrees of both Clouds. With a ˜2 year baseline and the use of the High Resolution Camera, we have determined the proper motion of the LMC to better than 5 \\ μ N = 0.44 ± 0.05 mas/yr (Kallivayalil et al. 2005). This is the most accurate proper motion measurement for any MW satellite thus far. We will present this measurement, as well as our results for the SMC, and the conclusions we can draw about the Clouds' orbits around the MW. Our study shows that ground-based work on finding QSOs can be combined with high resolution HST data to get good measurements in a relatively short amount of time. When combined with HI data from the Magellanic Stream our measurements should provide new constraints on both the mass distribution of the Galactic Halo and models of the Stream. Support for this work was provided by NASA through grant numbers GO-09462 and GO-10130 from STScI. KHC's work was performed under the auspices of the U.S. DOE, NNSA, by the Univ. of California, LLNL under contract No. W-7405-Eng-48.
Crawford, John T; Loken, Luke C; Casson, Nora J; Smith, Colin; Stone, Amanda G; Winslow, Luke A
2015-01-06
Advanced sensor technology is widely used in aquatic monitoring and research. Most applications focus on temporal variability, whereas spatial variability has been challenging to document. We assess the capability of water chemistry sensors embedded in a high-speed water intake system to document spatial variability. This new sensor platform continuously samples surface water at a range of speeds (0 to >45 km h(-1)) resulting in high-density, mesoscale spatial data. These novel observations reveal previously unknown variability in physical, chemical, and biological factors in streams, rivers, and lakes. By combining multiple sensors into one platform, we were able to detect terrestrial-aquatic hydrologic connections in a small dystrophic lake, to infer the role of main-channel vs backwater nutrient processing in a large river and to detect sharp chemical changes across aquatic ecosystem boundaries in a stream/lake complex. Spatial sensor data were verified in our examples by comparing with standard lab-based measurements of selected variables. Spatial fDOM data showed strong correlation with wet chemistry measurements of DOC, and optical NO3 concentrations were highly correlated with lab-based measurements. High-frequency spatial data similar to our examples could be used to further understand aquatic biogeochemical fluxes, ecological patterns, and ecosystem processes, and will both inform and benefit from fixed-site data.
Crawford, John T.; Loken, Luke C.; Casson, Nora J.; Smith, Collin; Stone, Amanda G.; Winslow, Luke A.
2015-01-01
Advanced sensor technology is widely used in aquatic monitoring and research. Most applications focus on temporal variability, whereas spatial variability has been challenging to document. We assess the capability of water chemistry sensors embedded in a high-speed water intake system to document spatial variability. This new sensor platform continuously samples surface water at a range of speeds (0 to >45 km h–1) resulting in high-density, mesoscale spatial data. These novel observations reveal previously unknown variability in physical, chemical, and biological factors in streams, rivers, and lakes. By combining multiple sensors into one platform, we were able to detect terrestrial–aquatic hydrologic connections in a small dystrophic lake, to infer the role of main-channel vs backwater nutrient processing in a large river and to detect sharp chemical changes across aquatic ecosystem boundaries in a stream/lake complex. Spatial sensor data were verified in our examples by comparing with standard lab-based measurements of selected variables. Spatial fDOM data showed strong correlation with wet chemistry measurements of DOC, and optical NO3 concentrations were highly correlated with lab-based measurements. High-frequency spatial data similar to our examples could be used to further understand aquatic biogeochemical fluxes, ecological patterns, and ecosystem processes, and will both inform and benefit from fixed-site data.
High performance reconciliation for continuous-variable quantum key distribution with LDPC code
NASA Astrophysics Data System (ADS)
Lin, Dakai; Huang, Duan; Huang, Peng; Peng, Jinye; Zeng, Guihua
2015-03-01
Reconciliation is a significant procedure in a continuous-variable quantum key distribution (CV-QKD) system. It is employed to extract secure secret key from the resulted string through quantum channel between two users. However, the efficiency and the speed of previous reconciliation algorithms are low. These problems limit the secure communication distance and the secure key rate of CV-QKD systems. In this paper, we proposed a high-speed reconciliation algorithm through employing a well-structured decoding scheme based on low density parity-check (LDPC) code. The complexity of the proposed algorithm is reduced obviously. By using a graphics processing unit (GPU) device, our method may reach a reconciliation speed of 25 Mb/s for a CV-QKD system, which is currently the highest level and paves the way to high-speed CV-QKD.
NASA Astrophysics Data System (ADS)
Mishra, C.; Samantaray, A. K.; Chakraborty, G.
2016-05-01
Rolling element bearings are widely used in rotating machines and their faults can lead to excessive vibration levels and/or complete seizure of the machine. Under special operating conditions such as non-uniform or low speed shaft rotation, the available fault diagnosis methods cannot be applied for bearing fault diagnosis with full confidence. Fault symptoms in such operating conditions cannot be easily extracted through usual measurement and signal processing techniques. A typical example is a bearing in heavy rolling mill with variable load and disturbance from other sources. In extremely slow speed operation, variation in speed due to speed controller transients or external disturbances (e.g., varying load) can be relatively high. To account for speed variation, instantaneous angular position instead of time is used as the base variable of signals for signal processing purposes. Even with time synchronous averaging (TSA) and well-established methods like envelope order analysis, rolling element faults in rolling element bearings cannot be easily identified during such operating conditions. In this article we propose to use order tracking on the envelope of the wavelet de-noised estimate of the short-duration angle synchronous averaged signal to diagnose faults in rolling element bearing operating under the stated special conditions. The proposed four-stage sequential signal processing method eliminates uncorrelated content, avoids signal smearing and exposes only the fault frequencies and its harmonics in the spectrum. We use experimental data1
Thought Speed, Mood, and the Experience of Mental Motion.
Pronin, Emily; Jacobs, Elana
2008-11-01
This article presents a theoretical account relating thought speed to mood and psychological experience. Thought sequences that occur at a fast speed generally induce more positive affect than do those that occur slowly. Thought speed constitutes one aspect of mental motion. Another aspect involves thought variability, or the degree to which thoughts in a sequence either vary widely from or revolve closely around a theme. Thought sequences possessing more motion (occurring fast and varying widely) generally produce more positive affect than do sequences possessing little motion (occurring slowly and repetitively). When speed and variability oppose each other, such that one is low and the other is high, predictable psychological states also emerge. For example, whereas slow, repetitive thinking can prompt dejection, fast, repetitive thinking can prompt anxiety. This distinction is related to the fact that fast thinking involves greater actual and felt energy than slow thinking does. Effects of mental motion occur independent of the specific content of thought. Their consequences for mood and energy hold psychotherapeutic relevance. © 2008 Association for Psychological Science.
Variable-speed wind power system with improved energy capture via multilevel conversion
Erickson, Robert W.; Al-Naseem, Osama A.; Fingersh, Lee Jay
2005-05-31
A system and method for efficiently capturing electrical energy from a variable-speed generator are disclosed. The system includes a matrix converter using full-bridge, multilevel switch cells, in which semiconductor devices are clamped to a known constant DC voltage of a capacitor. The multilevel matrix converter is capable of generating multilevel voltage wave waveform of arbitrary magnitude and frequencies. The matrix converter can be controlled by using space vector modulation.
High Efficiency Variable Speed Versatile Power Air Conditioning System
2013-08-08
Design concept applicable for wide range of HVAC and refrigeration systems • One TXV size can be used for a wide range of cooling capacity...versatility, can run from AC and DC sources Cooling load adaptive, variable Speed Fully operable up to 140 degrees Fahrenheit 15. SUBJECT TERMS 16. SECURITY...ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 High Efficiency HVAC &R Technology
Wind turbine wake characterization using long-range Doppler lidar
NASA Astrophysics Data System (ADS)
Aitken, M.; Lundquist, J. K.; Hestmark, K.; Banta, R. M.; Pichugina, Y.; Brewer, A.
2012-12-01
Wind turbines extract energy from the freestream flow, resulting in a waked region behind the rotor which is characterized by reduced wind speed and increased turbulence. The velocity deficit in the wake diminishes with distance, as faster-moving air outside is gradually entrained. In a concentrated group of turbines, then, downwind machines experience very different inflow conditions compared to those in the front row. As utility-scale turbines rarely exist in isolation, detailed knowledge of the mean flow and turbulence structure inside wakes is needed to correctly model both power production and turbine loading at modern wind farms. To this end, the Turbine Wake and Inflow Characterization Study (TWICS) was conducted in the spring of 2011 to determine the reduction in wind speeds downstream from a multi-MW turbine located at the National Renewable Energy Laboratory's National Wind Technology Center (NWTC) near Boulder, Colorado. Full-scale measurements of wake dynamics are hardly practical or even possible with conventional sensors, such as cup anemometers mounted on meteorological (met) masts. Accordingly, the High Resolution Doppler Lidar (HRDL) developed by the National Oceanic and Atmospheric Administration's Earth System Research Laboratory was employed to investigate the formation and propagation of wakes under varying levels of ambient wind speed, shear, atmospheric stability, and turbulence. HRDL remotely senses line-of-sight wind velocities and has been used in several previous studies of boundary layer aerodynamics. With a fully steerable beam and a maximum range up to about 5 km, depending on atmospheric conditions, HRDL performed a comprehensive survey of the wind flow in front of and behind the turbine to study the shape, meandering, and attenuation of wakes. Due in large part to limited experimental data availability, wind farm wake modeling is still subject to an unacceptable amount of uncertainty, particularly in complex terrain. Here, analytical techniques are developed to distinguish wakes from the background variability, and moreover, wakes are then classified by width, height, length, and velocity deficit based on atmospheric stability and inflow conditions. By integrating these advanced observational capabilities with innovative approaches to atmospheric modeling, this work will help to improve simulation tools used to quantify power loss and fatigue loading due to wake effects, thereby aiding the optimization of wind farm layouts.
Liu, Yong; Gracia, Jose R,; King, Jr, Thomas J.; ...
2014-05-16
The U.S. Eastern Interconnection (EI) is one of the largest electric power grids in the world and is expected to have difficulties in dealing with frequency regulation and oscillation damping issues caused by the increasing wind power. On the other side, variable-speed wind generators can actively engage in frequency regulation or oscillation damping with supplementary control loops. This paper creates a 5% wind power penetration simulation scenario based on the 16 000-bus EI system dynamic model and developed the user-defined wind electrical control model in PSS (R) E that incorporates additional frequency regulation and oscillation damping control loops. We evaluatedmore » the potential contributions of variable-speed wind generations to the EI system frequency regulation and oscillation damping, and simulation results demonstrate that current and future penetrations of wind power are promising in the EI system frequency regulation and oscillation damping.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Na, Woonki; Muljadi, Eduard; Leighty, Bill
A Self-Excited Induction Generation (SEIG) for a variable speed wind turbine generation(VS-WG) is normally considered to be a good candidate for implementation in stand-alone applications such as battery charging, hydrogenation, water pumping, water purification, water desalination, and etc. In this study, we have examined a study on active power and flux control strategies for a SEIG for a variable speed wind turbine generation. The control analysis for the proposed system is carried out by using PSCAD software. In the process, we can optimize the control design of the system, thereby enhancing and expediting the control design procedure for this application.more » With this study, this control design for a SEIG for VS-WG can become the industry standard for analysis and development in terms of SEIG.« less
Thermodynamics in variable speed of light theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Racker, Juan; Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N; Sisterna, Pablo
2009-10-15
The perfect fluid in the context of a covariant variable speed of light theory proposed by J. Magueijo is studied. On the one hand the modified first law of thermodynamics together with a recipe to obtain equations of state are obtained. On the other hand the Newtonian limit is performed to obtain the nonrelativistic hydrostatic equilibrium equation for the theory. The results obtained are used to determine the time variation of the radius of Mercury induced by the variability of the speed of light (c), and the scalar contribution to the luminosity of white dwarfs. Using a bound for themore » change of that radius and combining it with an upper limit for the variation of the fine structure constant, a bound on the time variation of c is set. An independent bound is obtained from luminosity estimates for Stein 2015B.« less
NASA Astrophysics Data System (ADS)
Salami, Adebayo Wahab; Sule, Bolaji Fatai; Adunkpe, Tope Lacroix; Ayanshola, Ayanniyi Mufutau; Bilewu, Solomon Olakunle
2017-03-01
Optimization models have been developed to maximize annual energy generation from the Doma dam, subject to the constraint of releases for irrigation, ecological purposes, the water supply, the maximum yield from the reservoir and reservoir storage. The model was solved with LINGO software for various mean annual inflow exceedence probabilities. Two scenarios of hydropower retrofitting were considered. Scenario 1, with the reservoir inflows at 50%, 75%, and 90% probabilities of exceedence, gives the total annual hydropower as 0.531 MW, 0.450 MW and 0.291 MW, respectively. The corresponding values for scenario 2 were 0.615 MW, 0.507 MW, and 0.346 MW respectively. The study also considered increasing the reservoir's live storage to 32.63Mm3 by taking part of the flood storage so that the maximum draft increases to 7 Mm3. With this upper limit of storage and draft with reservoir inflows of 50%, 75% and 90% probabilities of exceedence, the hydropower generated increased to 0.609 MW, 0.540 MW, and 0.347 MW respectively for the scenario 1 arrangement, while those of scenario 2 increased to 0.699 MW, 0.579MW and 0.406 MW respectively. The results indicate that the Doma Dam is suitable for the production of hydroelectric power and that its generation potential is between 0.61 MW and 0.70 MW.
NASA Astrophysics Data System (ADS)
Geirsson, H.; La Femina, P. C.; DeMets, C.; Mattioli, G. S.; Hernández, D.
2013-05-01
We investigate the co-seismic deformation of two significant earthquakes that occurred along the Middle America trench in 2012. The August 27 Mw 7.3 El Salvador and September 5 Mw 7.6 Nicoya Peninsula, Costa Rica earthquakes, were examined using a combination of episodic and continuous Global Positioning System (GPS) data. USGS finite fault models based on seismic data predict fundamentally different characteristics for the two ruptures. The El Salvador event occurred in a historical seismic gap and on the shallow segment of the Middle America Trench main thrust, rupturing a large area, but with a low magnitude of slip. A small tsunami was observed along the coast in Nicaragua and El Salvador, additionally indicating near-trench rupture. Conversely, the Nicoya, Costa Rica earthquake was predicted to have an order of magnitude higher slip on a spatially smaller patch deeper on the main thrust. We present results from episodic and continuous geodetic GPS measurements made in conjunction with the two earthquakes, including data from newly installed COCONet (Continuously Operating Caribbean GPS Observational Network) sites. Episodic GPS measurements made in El Salvador, Honduras, and Nicaragua following the earthquakes, allow us to estimate the co-seismic deformation field from both earthquakes. Because of the small magnitude of the El Salvador earthquake and its shallow rupture the observed co-seismic deformation is small (<2 cm). Conversely, the Costa Rica earthquake occurred directly beneath a seismic and geodetic network specifically designed to capture such events. The observed displacements exceeded 0.5 m and there is a significant post-seismic transient following the earthquake. We use our estimated co-seismic offsets for both earthquakes to model the magnitude and spatial variability of slip for these two events.
Dorvel, Brian; Boopalachandran, Praveenkumar; Chen, Ida; Bowling, Andrew; Williams, Kerry; King, Steve
2018-05-01
Decking is one of the largest applications for the treated wood market. The most challenging property to obtain for treated wood is dimensional stability, which can be achieved, in part, by cell wall bulking, cell wall polymer crosslinking and removal of hygroscopic components in the cell wall. A commonly accepted key requirement is for the actives to infuse through the cell wall, which has a microporosity of ∼5-13 nm. Equally as challenging is being able to measure and quantify the cell wall penetration. Branched polyethylenimine (PEI) was studied as a model polymer for penetration due to its water solubility, polarity, variable molecular weight ranges, and ability to form a chelation complex with preservative metals to treat lumbers. Two different molecular weight polyethylenimines (PEI), one with a weight average molecular weight (Mw) equal to 800 Da and the other 750 000 Da, were investigated for penetration by microscopy and spectroscopy techniques. Analytical methods were developed to both create smooth interfaces and for relative quantitation and visualisation of PEI penetration into the wood. The results showed both PEI with Mw of 800 Da and PEI with Mw of 750 000 Da coated the lumens in high density. However, only the PEI with Mw of 800 appeared to penetrate the cell walls in sufficient levels. Literature has shown the hydrodynamic radii of PEI 750 000 is near 29 nm, whereas a smaller PEI at 25 K showed 4.5 nm. Most importantly the results, based on methods developed, show how molecular weight and tertiary structure of the polymer can affect its penetration, with the microporosity of the wood being the main barrier. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Cryan, P.M.; Wolf, B. O.
2003-01-01
This study quantifies sex differences in thermoregulation and water loss of a small (20-35 g) insectivorous heterothermic mammal, the hoary bat Lasiurus cinereus, during its spring migration. We measured body temperature, metabolic rate and evaporative water loss, and calculated wet thermal conductance, for bats exposed to air temperatures ranging from 0 to 40°C for periods of 2-5 h. Pregnant females maintained normothermic body temperatures (35.7±0.7°C; mean ± s.e.m.) independent of air temperature. In contrast, males became torpid during the majority (68%) of exposures to air temperatures <25°C. The thermal neutral zone (TNZ) ranged between approximately 30°C and 34°C in both sexes and, within the TNZ, females had lower mass-specific metabolic rates (6.1±0.2 mW g-1) than males (9.0±0.9 mW g-1). Wet thermal conductance values in torpid bats (0.7±0.5 mW g-1 deg.-1) were lower than those of normothermic individuals (1.1±0.3 mW g-1 deg.-1). Mass-specific rates of evaporative water loss in males were consistently higher than in females at most air temperatures and rates of water loss in torpid bats were 63±6% of normothermic values. These results suggest that male and pregnant female L. cinereus employ different thermoregulatory strategies during their spring migration. Females defend normothermic body temperatures, presumably to expedite embryonic growth, while males use torpor, presumably to minimize energy and water deficits. These variable thermoregulatory strategies may reflect continental differences in the summer distribution of the sexes.
NASA Astrophysics Data System (ADS)
Wang, Tianyang; Liang, Ming; Li, Jianyong; Cheng, Weidong; Li, Chuan
2015-10-01
The interfering vibration signals of a gearbox often represent a challenging issue in rolling bearing fault detection and diagnosis, particularly under unknown variable rotational speed conditions. Though some methods have been proposed to remove the gearbox interfering signals based on their discrete frequency nature, such methods may not work well under unknown variable speed conditions. As such, we propose a new approach to address this issue. The new approach consists of three main steps: (a) adaptive gear interference removal, (b) fault characteristic order (FCO) based fault detection, and (c) rotational-order-sideband (ROS) based fault type identification. For gear interference removal, an enhanced adaptive noise cancellation (ANC) algorithm has been developed in this study. The new ANC algorithm does not require an additional accelerometer to provide reference input. Instead, the reference signal is adaptively constructed from signal maxima and instantaneous dominant meshing multiple (IDMM) trend. Key ANC parameters such as filter length and step size have also been tailored to suit the variable speed conditions, The main advantage of using ROS for fault type diagnosis is that it is insusceptible to confusion caused by the co-existence of bearing and gear rotational frequency peaks in the identification of the bearing fault characteristic frequency in the FCO sub-order region. The effectiveness of the proposed method has been demonstrated using both simulation and experimental data. Our experimental study also indicates that the proposed method is applicable regardless whether the bearing and gear rotational speeds are proportional to each other or not.
The interrelationship between disease severity, dynamic stability, and falls in cerebellar ataxia.
Schniepp, Roman; Schlick, Cornelia; Pradhan, Cauchy; Dieterich, Marianne; Brandt, Thomas; Jahn, Klaus; Wuehr, Max
2016-07-01
Cerebellar ataxia (CA) results in discoordination of body movements (ataxia), a gait disorder, and falls. All three aspects appear to be obviously interrelated; however, experimental evidence is sparse. This study systematically correlated the clinical rating of the severity of ataxia with dynamic stability measures and the fall frequency in patients with CA. Clinical severity of CA in patients with sporadic (n = 34) and hereditary (n = 24) forms was assessed with the Scale for the Assessment and Rating of Ataxia (SARA). Gait performance was examined during slow, preferred, and maximally fast walking speeds. Spatiotemporal variability parameters in the fore-aft and medio-lateral directions were analyzed. The fall frequency was assessed using a standardized interview about fall events within the last 6 months. Fore-aft gait variability showed significant speed-dependent characteristics with highest magnitudes during slow and fast walking. The SARA score correlated positively with fore-aft gait variability, most prominently during fast walking. The fall frequency was significantly associated to fore-aft gait variability during slow walking. Severity of ataxia, dynamic stability, and the occurrence of falls were interrelated in a speed-dependent manner: (a) Severity of ataxia symptoms was closely related to instability during fast walking. (b) Fall frequency was associated with instability during slow walking. These findings suggest the presence of a speed-dependent, twofold cerebellar locomotor control. Assessment of gait performance during non-preferred, slow and fast walking speeds provides novel insights into the pathophysiology of cerebellar locomotor control and may become a useful approach in the clinical evaluation of patients with CA.
Singh, Satnam; Young, Li-Sen; Shen, Fo-Ting; Young, Chiu-Chung
2014-10-01
Discharging untreated highly acidic (pH<4.0), organic and nutrients rich monosodium glutamate wastewater (MW), and highly alkaline (pH>10.0) paper-mill wastewater (PW) causes environmental pollution. When acidity of MW neutralized (pH 6.5±0.1) with PW and lime (treatments represented as MW+PW and MW+Lime), then MW may be utilized as a potential source of nutrients and organic carbon for sustainable food production. Objectives of this study were to compare the effects of PW and lime neutralized MW and chemical fertilizers on maize (Zea mays L. cv. Snow Jean) plant growth, yield, nutrients uptake, soil organic matter and humic substances. The field experiment was carried out on maize using MW at 6000 L ha(-1). Impacts of the MW application on maize crop and soil properties were evaluated at different stages. At harvest, plant height, and plant N and K uptake were higher in MW treatment. Leaf area index at 60 days after sowing, plant dry matter accumulation at harvest, and kernels ear(-1) and 100-kernel weight were higher in MW+Lime treatment. Kernel N, P, K, Mn, Fe and Zn, and plant Zn uptake were highest in MW+Lime. Plant Fe uptake, and soil organic matter and humic substances were highest in MW+PW. The MW+PW and MW+Lime treatments exhibited comparable results with chemically fertilized treatment. The MW acidity neutralized with lime showed positive impacts on growth, yield and nutrients uptake; nevertheless, when MW pH neutralized with PW has an additional benefit on increase in soil organic matter and humic substances. Copyright © 2014. Published by Elsevier Ltd.
Christiansen, Cory; Fields, Thomas; Lev, Guy; Stephenson, Ryan O.; Stevens-Lapsley, Jennifer E.
2015-01-01
Objective To describe physical function outcomes and modes of physical therapy intervention for a cohort of patients with dysvascular lower extremity amputation (LEA) during the prosthetic training phase of rehabilitation. Design A retrospective cohort study. Setting Physical rehabilitation clinics at a Veterans Affairs Medical Center and a University Hospital. Patients Forty-two patients (38 men, 4 women, age 60.2±8.4 years) who completed outpatient physical therapy rehabilitation with prosthetic training after dysvascular LEA. Methods All patients underwent a prosthetic training phase of rehabilitation, with standardized outcome measures performed at initiation and discharge. Main Outcome Measures Performance-based physical function measures included: Two-Minute Walk (2MW), Timed-Up and Go (TUG), and 5-meter gait speed. Self-report physical function measures included: the Prosthesis Evaluation Questionnaire – Mobility Section (PEQ-MS) and the Patient-Specific Functional Scale (PSFS). Rehabilitation dose was tracked as total number of clinic visits, rehabilitation duration, and specific intervention modes. Results There were significant improvements in 2MW (mean±SD) [67.5±29.9 m (initial) and 103.3±45.8 m (discharge) (p<0.001)], gait speed [0.58±0.27 m/s (initial) and 0.88±0.39 m/s (discharge) (p<0.001)], TUG [34.8±21.3 s (initial) and 18.6±13.9 s (discharge) (p<0.001)], PEQ-MS [2.2±0.9 (initial) and 2.8±0.8 (discharge) (p<0.001)], and PSFS [3.2±2.0 (initial) and 5.9±2.3 (discharge) (p<0.001)]. Performance-based (TUG) and self-report (PEQ-MS) changes in functional mobility from initial exam to discharge had low or no correlations with rehabilitation dose measures. Number of clinic visits was 12.7±13.1 and rehabilitation duration was 13.7±16.8 weeks. Conclusions Significant improvements in performance-based and self-report measures of physical function occurred during the prosthetic training phase of physical rehabilitation following dysvascular major LEA. Despite improvements in function, gait speed and TUG outcomes remained below clinically important thresholds, indicating patients were limited in community ambulation and at risk for falls. Lack of moderate or higher correlation between rehabilitation dose and outcome measures may indicate need for more specific rehabilitation dose measures. PMID:25978948
Self-monitoring of driving speed.
Etzioni, Shelly; Erev, Ido; Ishaq, Robert; Elias, Wafa; Shiftan, Yoram
2017-09-01
In-vehicle data recorders (IVDR) have been found to facilitate safe driving and are highly valuable in accident analysis. Nevertheless, it is not easy to convince drivers to use them. Part of the difficulty is related to the "Big Brother" concern: installing IVDR impairs the drivers' privacy. The "Big Brother" concern can be mitigated by adding a turn-off switch to the IVDR. However, this addition comes at the expense of increasing speed variability between drivers, which is known to impair safety. The current experimental study examines the significance of this negative effect of a turn-off switch under two experimental settings representing different incentive structures: small and large fines for speeding. 199 students were asked to participate in a computerized speeding dilemma task, where they could control the speed of their "car" using "brake" and "speed" buttons, corresponding to automatic car foot pedals. The participants in two experimental conditions had IVDR installed in their "cars", and were told that they could turn it off at any time. Driving with active IVDR implied some probability of "fines" for speeding, and the two experimental groups differed with respect to the fine's magnitude, small or large. The results indicate that the option to use IVDR reduced speeding and speed variance. In addition, the results indicate that the reduction of speed variability was maximal in the small fine group. These results suggest that using IVDR with gentle fines and with a turn-off option maintains the positive effect of IVDR, addresses the "Big Brother" concern, and does not increase speed variance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Feedback interventions and driving speed: A parametric and comparative analysis
Houten, Ron Van; Nau, Paul A.
1983-01-01
Five experiments were conducted to assess the effects of several variables on the efficacy of feedback in reducing driving speed. Experiment 1 systematically varied the criterion used to define speeding, and results showed that the use of a lenient criterion (20 km/hr over the speed limit), which allowed for the posting of high percentages of drivers not speeding, was more effective in reducing speeding than the use of a stringent criterion (10 km/hr over the speed limit). In Experiment 2 an analysis revealed that posting feedback reduced speeding on a limited access highway and the effects persisted to some degree up to 6 km. Experiments 3 and 4 compared the effectiveness of an unmanned parked police vehicle (Experiment 3) and a police air patrol speeding program (Experiment 4) with the feedback sign and determined whether the presence of either of these enforcement variables could potentiate the efficacy of the sign. The results of both experiments demonstrated that although the two enforcement programs initially produced larger effects than the feedback sign, the magnitude of their effect attenuated over time. Experiment 5 compared the effectiveness of a traditional enforcement program with a warning program which included handing out a flier providing feedback on the number and types of accidents occuring on the road during the past year. This experiment demonstrated that the warning program produced a marked reduction in speeding and the traditional enforcement program did not. Furthermore, the warning program and a feedback sign together produced an even greater reduction in speeding than either alone. PMID:16795666
Fidelity of the ensemble code for visual motion in primate retina.
Frechette, E S; Sher, A; Grivich, M I; Petrusca, D; Litke, A M; Chichilnisky, E J
2005-07-01
Sensory experience typically depends on the ensemble activity of hundreds or thousands of neurons, but little is known about how populations of neurons faithfully encode behaviorally important sensory information. We examined how precisely speed of movement is encoded in the population activity of magnocellular-projecting parasol retinal ganglion cells (RGCs) in macaque monkey retina. Multi-electrode recordings were used to measure the activity of approximately 100 parasol RGCs simultaneously in isolated retinas stimulated with moving bars. To examine how faithfully the retina signals motion, stimulus speed was estimated directly from recorded RGC responses using an optimized algorithm that resembles models of motion sensing in the brain. RGC population activity encoded speed with a precision of approximately 1%. The elementary motion signal was conveyed in approximately 10 ms, comparable to the interspike interval. Temporal structure in spike trains provided more precise speed estimates than time-varying firing rates. Correlated activity between RGCs had little effect on speed estimates. The spatial dispersion of RGC receptive fields along the axis of motion influenced speed estimates more strongly than along the orthogonal direction, as predicted by a simple model based on RGC response time variability and optimal pooling. on and off cells encoded speed with similar and statistically independent variability. Simulation of downstream speed estimation using populations of speed-tuned units showed that peak (winner take all) readout provided more precise speed estimates than centroid (vector average) readout. These findings reveal how faithfully the retinal population code conveys information about stimulus speed and the consequences for motion sensing in the brain.
ERIC Educational Resources Information Center
Fox, Mark C.; Roring, Roy W.; Mitchum, Ainsley L.
2009-01-01
Elementary cognitive tasks (ECTs) are simple tasks involving basic cognitive processes for which speed of performance typically correlates with IQ. Inspection time (IT) has the strongest IQ correlations and is considered critical evidence for neural speed underlying individual differences in intelligence. However, results from Bors et al. [Bors,…
Code of Federal Regulations, 2013 CFR
2013-07-01
.... You may extend the sampling time to improve measurement accuracy of PM emissions, using good..., you may omit speed, torque, and power points from the duty-cycle regression statistics if the... mapped. (2) For variable-speed engines without low-speed governors, you may omit torque and power points...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... You may extend the sampling time to improve measurement accuracy of PM emissions, using good..., you may omit speed, torque, and power points from the duty-cycle regression statistics if the... mapped. (2) For variable-speed engines without low-speed governors, you may omit torque and power points...
Floating microbial fuel cells as energy harvesters for signal transmission from natural water bodies
NASA Astrophysics Data System (ADS)
Schievano, Andrea; Colombo, Alessandra; Grattieri, Matteo; Trasatti, Stefano P.; Liberale, Alessandro; Tremolada, Paolo; Pino, Claudio; Cristiani, Pierangela
2017-02-01
A new type of floating microbial fuel cell (fMFC) was developed for power supply of remote environmental sensors and data transmission. Ten operating fMFCs generated a cell potential in the range 100-800 mV depending on the external resistance applied. Power production peaked around 3-3.5 mW (power density of 22-28 mW m-2 cathode) after about 20-30 days of start-up period. The average of daily electrical energy harvested ranged between 10 and 35 mWh/d. Long-term performances were ensured in the presence of dense rice plants (Oryza Sativa). A power management system, based on a step-up DC/DC converter and a low-power data transmission system via SIGFOX™ technology, have been set up for the fMFCs. The tested fMFCs systems allowed to: i) harvest produced energy, ii) supply electronic devices (intermittent LED-light and a buzzer); iii) transmit remote data at low speed (three message of 12 bites each, in 6 s). Several 'floating garden' MFCs were set in the context of demonstrative events at EXPO2015 world exposition held in Milan between May-October 2015. Some of the 'floating garden' MFCs were operating for more than one year.
Resin-Impregnated Carbon Ablator: A New Ablative Material for Hyperbolic Entry Speeds
NASA Technical Reports Server (NTRS)
Esper, Jaime; Lengowski, Michael
2012-01-01
Ablative materials are required to protect a space vehicle from the extreme temperatures encountered during the most demanding (hyperbolic) atmospheric entry velocities, either for probes launched toward other celestial bodies, or coming back to Earth from deep space missions. To that effect, the resin-impregnated carbon ablator (RICA) is a high-temperature carbon/phenolic ablative thermal protection system (TPS) material designed to use modern and commercially viable components in its manufacture. Heritage carbon/phenolic ablators intended for this use rely on materials that are no longer in production (i.e., Galileo, Pioneer Venus); hence the development of alternatives such as RICA is necessary for future NASA planetary entry and Earth re-entry missions. RICA s capabilities were initially measured in air for Earth re-entry applications, where it was exposed to a heat flux of 14 MW/sq m for 22 seconds. Methane tests were also carried out for potential application in Saturn s moon Titan, with a nominal heat flux of 1.4 MW/sq m for up to 478 seconds. Three slightly different material formulations were manufactured and subsequently tested at the Plasma Wind Tunnel of the University of Stuttgart in Germany (PWK1) in the summer and fall of 2010. The TPS integrity was well preserved in most cases, and results show great promise.
Statistical fault diagnosis of wind turbine drivetrain applied to a 5MW floating wind turbine
NASA Astrophysics Data System (ADS)
Ghane, Mahdi; Nejad, Amir R.; Blanke, Mogens; Gao, Zhen; Moan, Torgeir
2016-09-01
Deployment of large scale wind turbine parks, in particular offshore, requires well organized operation and maintenance strategies to make it as competitive as the classical electric power stations. It is important to ensure systems are safe, profitable, and cost-effective. In this regards, the ability to detect, isolate, estimate, and prognose faults plays an important role. One of the critical wind turbine components is the gearbox. Failures in the gearbox are costly both due to the cost of the gearbox itself and also due to high repair downtime. In order to detect faults as fast as possible to prevent them to develop into failure, statistical change detection is used in this paper. The Cumulative Sum Method (CUSUM) is employed to detect possible defects in the downwind main bearing. A high fidelity gearbox model on a 5-MW spar-type wind turbine is used to generate data for fault-free and faulty conditions of the bearing at the rated wind speed and the associated wave condition. Acceleration measurements are utilized to find residuals used to indirectly detect damages in the bearing. Residuals are found to be nonGaussian, following a t-distribution with multivariable characteristic parameters. The results in this paper show how the diagnostic scheme can detect change with desired false alarm and detection probabilities.
Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin
2015-04-28
We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks.
Tiny bubbles challenge giant turbines: Three Gorges puzzle.
Li, Shengcai
2015-10-06
Since the birth of the first prototype of the modern reaction turbine, cavitation as conjectured by Euler in 1754 always presents as a challenge. Following his theory, the evolution of modern reaction (Francis and Kaplan) turbines has been completed by adding the final piece of the element 'draft-tube' that enables turbines to explore water energy at efficiencies of almost 100%. However, during the last two and a half centuries, with increasing unit capacity and specific speed, the problem of cavitation has been manifested and complicated by the draft-tube surges rather than being solved. Particularly, during the last 20 years, the fierce competition in the international market for extremely large turbines with compact design has encouraged the development of giant Francis turbines of 700-1000 MW. The first group (24 units) of such giant turbines of 700 MW each was installed in the Three Gorges project. Immediately after commission, a strange erosion phenomenon appeared on the guide vane of the machines that has puzzled professionals. From a multi-disciplinary analysis, this Three Gorges puzzle could reflect an unknown type of cavitation inception presumably triggered by turbulence production from the boundary-layer streak transitional process. It thus presents a fresh challenge not only to this old turbine industry, but also to the fundamental sciences.
Tiny bubbles challenge giant turbines: Three Gorges puzzle
Li, Shengcai
2015-01-01
Since the birth of the first prototype of the modern reaction turbine, cavitation as conjectured by Euler in 1754 always presents as a challenge. Following his theory, the evolution of modern reaction (Francis and Kaplan) turbines has been completed by adding the final piece of the element ‘draft-tube’ that enables turbines to explore water energy at efficiencies of almost 100%. However, during the last two and a half centuries, with increasing unit capacity and specific speed, the problem of cavitation has been manifested and complicated by the draft-tube surges rather than being solved. Particularly, during the last 20 years, the fierce competition in the international market for extremely large turbines with compact design has encouraged the development of giant Francis turbines of 700–1000 MW. The first group (24 units) of such giant turbines of 700 MW each was installed in the Three Gorges project. Immediately after commission, a strange erosion phenomenon appeared on the guide vane of the machines that has puzzled professionals. From a multi-disciplinary analysis, this Three Gorges puzzle could reflect an unknown type of cavitation inception presumably triggered by turbulence production from the boundary-layer streak transitional process. It thus presents a fresh challenge not only to this old turbine industry, but also to the fundamental sciences. PMID:26442144
X-ray and gamma ray detector readout system
Tumer, Tumay O; Clajus, Martin; Visser, Gerard
2010-10-19
A readout electronics scheme is under development for high resolution, compact PET (positron emission tomography) imagers based on LSO (lutetium ortho-oxysilicate, Lu.sub.2SiO.sub.5) scintillator and avalanche photodiode (APD) arrays. The key is to obtain sufficient timing and energy resolution at a low power level, less than about 30 mW per channel, including all required functions. To this end, a simple leading edge level crossing discriminator is used, in combination with a transimpedance preamplifier. The APD used has a gain of order 1,000, and an output noise current of several pA/ Hz, allowing bipolar technology to be used instead of CMOS, for increased speed and power efficiency. A prototype of the preamplifier and discriminator has been constructed, achieving timing resolution of 1.5 ns FWHM, 2.7 ns full width at one tenth maximum, relative to an LSO/PMT detector, and an energy resolution of 13.6% FWHM at 511 keV, while operating at a power level of 22 mW per channel. Work is in progress towards integration of this preamplifier and discriminator with appropriate coincidence logic and amplitude measurement circuits in an ASIC suitable for a high resolution compact PET instrument. The detector system and/or ASIC can also be used for many other applications for medical to industrial imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiue, Ren-Jye; Gao, Yuanda; Wang, Yifei
2015-11-11
Graphene and other two-dimensional (2D) materials have emerged as promising materials for broadband and ultrafast photodetection and optical modulation. These optoelectronic capabilities can augment complementary metal–oxide–semiconductor (CMOS) devices for high-speed and low-power optical interconnects. Here, we demonstrate an on-chip ultrafast photodetector based on a two-dimensional heterostructure consisting of high-quality graphene encapsulated in hexagonal boron nitride. Coupled to the optical mode of a silicon waveguide, this 2D heterostructure-based photodetector exhibits a maximum responsivity of 0.36 A/W and high-speed operation with a 3 dB cutoff at 42 GHz. From photocurrent measurements as a function of the top-gate and source-drain voltages, we concludemore » that the photoresponse is consistent with hot electron mediated effects. At moderate peak powers above 50 mW, we observe a saturating photocurrent consistent with the mechanisms of electron–phonon supercollision cooling. This nonlinear photoresponse enables optical on-chip autocorrelation measurements with picosecond-scale timing resolution and exceptionally low peak powers.« less