Yimer, Solomon A; Namouchi, Amine; Zegeye, Ephrem Debebe; Holm-Hansen, Carol; Norheim, Gunnstein; Abebe, Markos; Aseffa, Abraham; Tønjum, Tone
2016-06-30
A deeply rooted phylogenetic lineage of Mycobacterium tuberculosis (M. tuberculosis) termed lineage 7 was discovered in Ethiopia. Whole genome sequencing of 30 lineage 7 strains from patients in Ethiopia was performed. Intra-lineage genome variation was defined and unique characteristics identified with a focus on genes involved in DNA repair, recombination and replication (3R genes). More than 800 mutations specific to M. tuberculosis lineage 7 strains were identified. The proportion of non-synonymous single nucleotide polymorphisms (nsSNPs) in 3R genes was higher after the recent expansion of M. tuberculosis lineage 7 strain started. The proportion of nsSNPs in genes involved in inorganic ion transport and metabolism was significantly higher before the expansion began. A total of 22346 bp deletions were observed. Lineage 7 strains also exhibited a high number of mutations in genes involved in carbohydrate transport and metabolism, transcription, energy production and conversion. We have identified unique genomic signatures of the lineage 7 strains. The high frequency of nsSNP in 3R genes after the phylogenetic expansion may have contributed to recent variability and adaptation. The abundance of mutations in genes involved in inorganic ion transport and metabolism before the expansion period may indicate an adaptive response of lineage 7 strains to enable survival, potentially under environmental stress exposure. As lineage 7 strains originally were phylogenetically deeply rooted, this may indicate fundamental adaptive genomic pathways affecting the fitness of M. tuberculosis as a species.
Jiang, Yi; Liu, Haican; Wang, Xuezhi; Li, Guilian; Qiu, Yan; Dou, Xiangfeng; Wan, Kanglin
2015-01-01
Host immune pressure and associated parasite immune evasion are key features of host-pathogen co-evolution. A previous study showed that human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved and thus it was deduced that M. tuberculosis lacks antigenic variation and immune evasion. Here, we selected 151 clinical Mycobacterium tuberculosis isolates from China, amplified gene encoding Rv1977 and compared the sequences. The results showed that Rv1977, a conserved hypothetical protein, is not conserved in M. tuberculosis strains and there are polymorphisms existed in the protein. Some mutations, especially one frameshift mutation, occurred in the antigen Rv1977, which is uncommon in M.tb strains and may lead to the protein function altering. Mutations and deletion in the gene all affect one of three T cell epitopes and the changed T cell epitope contained more than one variable position, which may suggest ongoing immune evasion.
Riojas, Marco A; McGough, Katya J; Rider-Riojas, Cristin J; Rastogi, Nalin; Hazbón, Manzour Hernando
2018-01-01
The species within the Mycobacterium tuberculosis Complex (MTBC) have undergone numerous taxonomic and nomenclatural changes, leaving the true structure of the MTBC in doubt. We used next-generation sequencing (NGS), digital DNA-DNA hybridization (dDDH), and average nucleotide identity (ANI) to investigate the relationship between these species. The type strains of Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and Mycobacterium pinnipedii were sequenced via NGS. Pairwise dDDH and ANI comparisons between these, previously sequenced MTBC type strain genomes (including 'Mycobacterium canettii', 'Mycobacterium mungi' and 'Mycobacterium orygis') and M. tuberculosis H37Rv T were performed. Further, all available genome sequences in GenBank for species in or putatively in the MTBC were compared to H37Rv T . Pairwise results indicated that all of the type strains of the species are extremely closely related to each other (dDDH: 91.2-99.2 %, ANI: 99.21-99.92 %), greatly exceeding the respective species delineation thresholds, thus indicating that they belong to the same species. Results from the GenBank genomes indicate that all the strains examined are within the circumscription of H37Rv T (dDDH: 83.5-100 %). We, therefore, formally propose a union of the species of the MTBC as M. tuberculosis. M. africanum, M. bovis, M. caprae, M. microti and M. pinnipedii are reclassified as later heterotypic synonyms of M. tuberculosis. 'M. canettii', 'M. mungi', and 'M. orygis' are classified as strains of the species M. tuberculosis. We further recommend use of the infrasubspecific term 'variant' ('var.') and infrasubspecific designations that generally retain the historical nomenclature associated with the groups or otherwise convey such characteristics, e.g. M. tuberculosis var. bovis.
Diversity and Evolution of Mycobacterium tuberculosis: Moving to Whole-Genome-Based Approaches
Niemann, Stefan; Supply, Philip
2014-01-01
Genotyping of clinical Mycobacterium tuberculosis complex (MTBC) strains has become a standard tool for epidemiological tracing and for the investigation of the local and global strain population structure. Of special importance is the analysis of the expansion of multidrug (MDR) and extensively drug-resistant (XDR) strains. Classical genotyping and, more recently, whole-genome sequencing have revealed that the strains of the MTBC are more diverse than previously anticipated. Globally, several phylogenetic lineages can be distinguished whose geographical distribution is markedly variable. Strains of particular (sub)lineages, such as Beijing, seem to be more virulent and associated with enhanced resistance levels and fitness, likely fueling their spread in certain world regions. The upcoming generalization of whole-genome sequencing approaches will expectedly provide more comprehensive insights into the molecular and epidemiological mechanisms involved and lead to better diagnostic and therapeutic tools. PMID:25190252
Constant, Patricia; Perez, Esther; Malaga, Wladimir; Lanéelle, Marie-Antoinette; Saurel, Olivier; Daffé, Mamadou; Guilhot, Christophe
2002-10-11
Diesters of phthiocerol and phenolphthiocerol are important virulence factors of Mycobacterium tuberculosis and Mycobacterium leprae, the two main mycobacterial pathogens in humans. They are both long-chain beta-diols, and their biosynthetic pathway is beginning to be elucidated. Although the two classes of molecules share a common lipid core, phthiocerol diesters have been found in all the strains of the M. tuberculosis complex examined although phenolphthiocerol diesters are produced by only a few groups of strains. To address the question of the origin of this diversity 8 reference strains and 10 clinical isolates of M. tuberculosis were analyzed. We report the presence of glycosylated p-hydroxybenzoic acid methyl esters, structurally related to the type-specific phenolphthiocerol glycolipids, in the culture media of all reference strains of M. tuberculosis, suggesting that the strains devoid of phenolphthiocerol derivatives are unable to elongate the putative p-hydroxybenzoic acid precursor. We also show that all the strains of M. tuberculosis examined and deficient in the production of phenolphthiocerol derivatives are natural mutants with a frameshift mutation in pks15/1 whereas a single open reading frame for pks15/1 is found in Mycobacterium bovis BCG, M. leprae, and strains of M. tuberculosis that produce phenolphthiocerol derivatives. Complementation of the H37Rv strain of M. tuberculosis, which is devoid of phenolphthiocerol derivatives, with the fused pks15/1 gene from M. bovis BCG restored phenolphthiocerol glycolipids production. Conversely, disruption of the pks15/1 gene in M. bovis BCG led to the abolition of the synthesis of type-specific phenolphthiocerol glycolipid. These data indicate that Pks15/1 is involved in the elongation of p-hydroxybenzoic acid to give p-hydroxyphenylalkanoates, which in turn are converted, presumably by the PpsA-E synthase, to phenolphthiocerol derivatives.
[Differentiation of species within the Mycobacterium tuberculosis complex by molecular techniques].
Herrera-León, Laura; Pozuelo-Díaz, Rodolfo; Molina Moreno, Tamara; Valverde Cobacho, Azucena; Saiz Vega, Pilar; Jiménez Pajares, María Soledad
2009-11-01
The Mycobacterium tuberculosis complex includes the following species: Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis, Mycobacterium bovis-BCG, Mycobacterium microti, Mycobacterium caprae, Mycobacterium pinnipedii, and Mycobacterium canettii. These species cause tuberculosis in humans and animals. Identification of mycobacterial strains has classically been performed by phenotype study. Over the last years, laboratories have developed several molecular techniques to differentiate between these species. The aim of this study is to evaluate these methods and develop a simple, fast, identification scheme. We analyzed 251 strains randomly obtained from the strains studied in 2004, and 797 strains received by the Reference Laboratory between 2005 and 2007. Phenotype characterization of 4183 strains isolated during that period was done by studying the colony morphology, characteristics in culture, nitrate reduction, niacin accumulation, and growth in the presence of thiophen-2-carboxylic acid hydrazide 10 microg/mL and pyrazinamide 50 microg/mL. The molecular identification scheme designed was as follows: 1) gyrB PCR-RFLP with RsaI, TaqI or SacII and hsp65 RFLP/PCR with HhaI., and 2) multiplex-PCR to determine the presence/absence of the RD9 and RD1 regions. The results showed 100% agreement between phenotype study and the molecular scheme. This molecular identification scheme is a simple and fast method, with 100% sensitivity and specificity, that can be implemented in most clinical laboratories at a low cost.
Draft Genome Sequence of Mycobacterium chimaera Type Strain Fl-0169
We report the draft genome sequence of the type strain Mycobacterium chimaera Fl-0169T, a member of the Mycobacterium avium complex (MAC). M. chimaera Fl-0169T was isolated from a patient in Italy and is highly similar to strains of M. chimaera isolated in Ireland, though Fl-016...
Tran, Phuong M; Dahl, John L
2016-11-01
Several fast- to intermediate-growing, acid-fast, scotochromogenic bacteria were isolated from Sarracenia purpurea pitcher waters in Minnesota sphagnum peat bogs. Two strains (DL734T and DL739T) were among these isolates. On the basis of 16S rRNA gene sequences, the phylogenetic positions of both strains is in the genus Mycobacterium with no obvious relation to any characterized type strains of mycobacteria. Phenotypic characterization revealed that neither strain was similar to the type strains of known species of the genus Mycobacterium in the collective properties of growth, pigmentation or fatty acid composition. Strain DL734T grew at temperatures between 28 and 32 °C, was positive for 3-day arylsulfatase production, and was negative for Tween 80 hydrolysis, urease and nitrate reduction. Strain DL739T grew at temperatures between 28 and 37 °C, and was positive for Tween 80 hydrolysis, urea, nitrate reduction and 3-day arylsulfatase production. Both strains were catalase-negative while only DL739T grew with 5 % NaCl. Fatty acid methyl ester profiles were unique for each strain. DL739T showed an ability to survive at 8 °C with little to no cellular replication and is thus considered to be psychrotolerant. Therefore, strains DL734T and DL739T represent two novel species of the genus Mycobacterium with the proposed names Mycobacterium sarraceniae sp. nov. and Mycobacterium helvum sp. nov., respectively. The type strains are DL734T (=JCM 30395T=NCCB 100519T) and DL739T (=JCM 30396T=NCCB 100520T), respectively.
Whole genome analyses of marine fish pathogenic isolate, Mycobacterium sp. 012931.
Kurokawa, Satoru; Kabayama, Jun; Hwang, Seong Don; Nho, Seong Won; Hikima, Jun-ichi; Jung, Tae Sung; Kondo, Hidehiro; Hirono, Ikuo; Takeyama, Haruko; Mori, Tetsushi; Aoki, Takashi
2014-10-01
Mycobacterium is a genus within the order Actinomycetales that comprises of a large number of well-characterized species, several of which includes pathogens known to cause serious disease in human and animal. Here, we report the whole genome sequence of Mycobacterium sp. strain 012931 isolated from the marine fish, yellowtail (Seriola quinqueradiata). Mycobacterium sp. 012931 is a fish pathogen causing serious damage to aquaculture farms in Japan. DNA dot plot analysis showed that Mycobacterium sp. 012931 was more closely related to Mycobacterium marinum when compared across several Mycobacterium species. However, little conservation of the gene order was observed between Mycobacterium sp. 012931 and M. marinum genome. The annotated 5,464 genes of Mycobacterium sp. 012931 was classified into 26 subsystems. The insertion/deletion gene analysis shows Mycobacterium sp. 012931 had 643 unique genes that were not found in the M. marinum strains. In the virulence, disease, and defense subsystem, both insertion and deletion genes of Mycobacterium sp. 012931 were associated with the PPE gene cluster of Mycobacteria. Of seven plcB genes in Mycobacterium sp. 012931, plcB_2 and plcB_3 showed low identities with those of M. marinum strains. Therefore, Mycobacterium sp. 012931 has differences on genetic and virulence from M. marinum and may induce different interaction mechanisms between host and pathogen.
Pérez-Lago, Laura; Martínez-Lirola, Miguel; García, Sergio; Herranz, Marta; Mokrousov, Igor; Comas, Iñaki; Martínez-Priego, Llúcia; Bouza, Emilio
2016-01-01
Current migratory movements require new strategies for rapidly tracking the transmission of high-risk imported Mycobacterium tuberculosis strains. Whole-genome sequencing (WGS) enables us to identify single-nucleotide polymorphisms (SNPs) and therefore design PCRs to track specific relevant strains. However, fast implementation of these strategies in the hospital setting is difficult because professionals working in diagnostics, molecular epidemiology, and genomics are generally at separate institutions. In this study, we describe the urgent implementation of a system that integrates genomics and molecular tools in a genuine high-risk epidemiological alert involving 2 independent importations of extensively drug resistant (XDR) and pre-XDR Beijing M. tuberculosis strains from Russia into Spain. Both cases involved commercial sex workers with long-standing tuberculosis (TB). The system was based on strain-specific PCRs tailored from WGS data that were transferred to the local node that was managing the epidemiological alert. The optimized tests were available for prospective implementation in the local node 33 working days after receiving the primary cultures of the XDR strains and were applied to all 42 new incident cases. An interpretable result was obtained in each case (directly from sputum for 27 stain-positive cases) and corresponded to the amplification profiles for strains other than the targeted pre-XDR and XDR strains, which made it possible to prospectively rule out transmission of these high-risk strains at diagnosis. PMID:27682128
Pérez-Lago, Laura; Martínez-Lirola, Miguel; García, Sergio; Herranz, Marta; Mokrousov, Igor; Comas, Iñaki; Martínez-Priego, Llúcia; Bouza, Emilio; García-de-Viedma, Darío
2016-12-01
Current migratory movements require new strategies for rapidly tracking the transmission of high-risk imported Mycobacterium tuberculosis strains. Whole-genome sequencing (WGS) enables us to identify single-nucleotide polymorphisms (SNPs) and therefore design PCRs to track specific relevant strains. However, fast implementation of these strategies in the hospital setting is difficult because professionals working in diagnostics, molecular epidemiology, and genomics are generally at separate institutions. In this study, we describe the urgent implementation of a system that integrates genomics and molecular tools in a genuine high-risk epidemiological alert involving 2 independent importations of extensively drug resistant (XDR) and pre-XDR Beijing M. tuberculosis strains from Russia into Spain. Both cases involved commercial sex workers with long-standing tuberculosis (TB). The system was based on strain-specific PCRs tailored from WGS data that were transferred to the local node that was managing the epidemiological alert. The optimized tests were available for prospective implementation in the local node 33 working days after receiving the primary cultures of the XDR strains and were applied to all 42 new incident cases. An interpretable result was obtained in each case (directly from sputum for 27 stain-positive cases) and corresponded to the amplification profiles for strains other than the targeted pre-XDR and XDR strains, which made it possible to prospectively rule out transmission of these high-risk strains at diagnosis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Wee, Wei Yee; Tan, Tze King; Jakubovics, Nicholas S; Choo, Siew Woh
2016-01-01
Mycobacterium brisbanense is a member of Mycobacterium fortuitum third biovariant complex, which includes rapidly growing Mycobacterium spp. that normally inhabit soil, dust and water, and can sometimes cause respiratory tract infections in humans. We present the first whole-genome analysis of M. brisbanense UM_WWY which was isolated from a 70-year-old Malaysian patient. Molecular phylogenetic analyses confirmed the identification of this strain as M. brisbanense and showed that it has an unusually large genome compared with related mycobacteria. The large genome size of M. brisbanense UM_WWY (~7.7Mbp) is consistent with further findings that this strain has a highly variable genome structure that contains many putative horizontally transferred genomic islands and prophage. Comparative analysis showed that M. brisbanense UM_WWY is the only Mycobacterium species that possesses a complete set of genes encoding enzymes involved in the urea cycle, suggesting that this soil bacterium is able to synthesize urea for use as plant fertilizers. It is likely that M. brisbanense UM_WWY is adapted to live in soil as its primary habitat since the genome contains many genes associated with nitrogen metabolism. Nevertheless, a large number of predicted virulence genes were identified in M. brisbanense UM_WWY that are mostly shared with well-studied mycobacterial pathogens such as Mycobacterium tuberculosis and Mycobacterium abscessus. These findings are consistent with the role of M. brisbanense as an opportunistic pathogen of humans. The whole-genome study of UM_WWY has provided the basis for future work of M. brisbanense.
Rodríguez-García, Antonio; Fernández-Alegre, Estela; Morales, Alejandro; Sola-Landa, Alberto; Lorraine, Jess; Macdonald, Sandy; Dovbnya, Dmitry; Smith, Margaret C M; Donova, Marina; Barreiro, Carlos
2016-04-20
Microbial bioconversion of sterols into high value steroid precursors, such as 4-androstene-3,17-dione (AD), is an industrial challenge. Genes and enzymes involved in sterol degradation have been proposed, although the complete pathway is not yet known. The genome sequencing of the AD producer strain 'Mycobacterium neoaurum' NRRL B-3805 (formerly Mycobacterium sp. NRRL B-3805) will serve to elucidate the critical steps for industrial processes and will provide the basis for further genetic engineering. The genome comprises a circular chromosome (5 421 338bp), is devoid of plasmids and contains 4844 protein-coding genes. Copyright © 2016 Elsevier B.V. All rights reserved.
Draft Genome Sequence of Mycobacterium chimaera Type Strain Fl-0169.
Pfaller, Stacy; Tokarev, Vasily; Kessler, Collin; McLimans, Christopher; Gomez-Alvarez, Vicente; Wright, Justin; King, Dawn; Lamendella, Regina
2017-02-23
We report here the draft genome sequence of the type strain Mycobacterium chimaera Fl-0169, a member of the Mycobacterium avium complex (MAC). M. chimaera Fl-0169 T was isolated from a patient in Italy and is highly similar to strains of M. chimaera isolated in Ireland, although Fl-0169 T possesses unique virulence genes. Copyright © 2017 Pfaller et al.
Hasan, Nabeeh A; Warren, René L; Epperson, L Elaine; Malecha, Allyson; Alexander, David C; Turenne, Christine Y; MacMillan, Daniel; Birol, Inanc; Pleasance, Stephen; Coope, Robin; Jones, Steven J M; Romney, Marc G; Ng, Monica; Chan, Tracy; Rodrigues, Mabel; Tang, Patrick; Gardy, Jennifer L; Strong, Michael
2017-09-14
Mycobacterium chimaera , a nontuberculous mycobacterium (NTM) belonging to the Mycobacterium avium complex (MAC), is an opportunistic pathogen that can cause respiratory and disseminated disease. We report the complete genome sequence of a strain, SJ42, isolated from an immunocompromised male presenting with MAC pneumonia, assembled from Illumina and Oxford Nanopore data. Copyright © 2017 Hasan et al.
Peñuelas-Urquides, K; González-Escalante, L; Villarreal-Treviño, L; Silva-Ramírez, B; Gutiérrez-Fuentes, D J; Mojica-Espinosa, R; Rangel-Escareño, C; Uribe-Figueroa, L; Molina-Salinas, G M; Dávila-Velderrain, J; Castorena-Torres, F; Bermúdez de León, M; Said-Fernández, S
2013-09-01
Mycobacterium tuberculosis has developed resistance to anti-tuberculosis first-line drugs. Multidrug-resistant strains complicate the control of tuberculosis and have converted it into a worldwide public health problem. Mutational studies of target genes have tried to envisage the resistance in clinical isolates; however, detection of these mutations in some cases is not sufficient to identify drug resistance, suggesting that other mechanisms are involved. Therefore, the identification of new markers of susceptibility or resistance to first-line drugs could contribute (1) to specifically diagnose the type of M. tuberculosis strain and prescribe an appropriate therapy, and (2) to elucidate the mechanisms of resistance in multidrug-resistant strains. In order to identify specific genes related to resistance in M. tuberculosis, we compared the gene expression profiles between the pansensitive H37Rv strain and a clinical CIBIN:UMF:15:99 multidrug-resistant isolate using microarray analysis. Quantitative real-time PCR confirmed that in the clinical multidrug-resistant isolate, the esxG, esxH, rpsA, esxI, and rpmI genes were upregulated, while the lipF, groES, and narG genes were downregulated. The modified genes could be involved in the mechanisms of resistance to first-line drugs in M. tuberculosis and could contribute to increased efficiency in molecular diagnosis approaches of infections with drug-resistant strains.
Virulence of two strains of Mycobacterium bovis in cattle following aerosol infection
USDA-ARS?s Scientific Manuscript database
Background Over the past two decades, highly virulent strains of Mycobacterium tuberculosis have emerged and spread rapidly in humans, suggesting a selective advantage based upon virulence. A similar scenario has not been described for Mycobacterium bovis infection in cattle (i.e., Bovine Tuberculos...
Draft Genome Sequence of Mycobacterium asiaticum Strain DSM 44297.
Croce, Olivier; Robert, Catherine; Raoult, Didier; Drancourt, Michel
2014-04-17
We report the draft genome sequence of Mycobacterium asiaticum strain DSM 44297, a tropical mycobacterium seldom responsible for human infection. The genome of M. asiaticum has a size of 5,935,986 bp, with a 66.03% G+C content, encoding 5,591 proteins and 81 RNAs.
Aims: To assess low-pressure ultraviolet light (LP-UV) inactivation kinetics of Mycobacterium avium complex (MAC) strains in a water matrix using collimated beam apparatus. Methods and Results: Strains of M. avium (n = 3) and Mycobacterium intracellulare (n = 2) were exposed t...
Castejon, Maria; Menéndez, Maria Carmen; Comas, Iñaki; Vicente, Ana; Garcia, Maria J
2018-06-01
Bacterial whole-genome sequences contain informative features of their evolutionary pathways. Comparison of whole-genome sequences have become the method of choice for classification of prokaryotes, thus allowing the identification of bacteria from an evolutionary perspective, and providing data to resolve some current controversies. Currently, controversy exists about the assignment of members of the Mycobacterium avium complex, as is for the cases of Mycobacterium yongonense and 'Mycobacterium indicus pranii'. These two mycobacteria, closely related to Mycobacterium intracellulare on the basis of standard phenotypic and single gene-sequences comparisons, were not considered a member of such species on the basis on some particular differences displayed by a single strain. Whole-genome sequence comparison procedures, namely the average nucleotide identity and the genome distance, showed that those two mycobacteria should be considered members of the species M. intracellulare. The results were confirmed with other whole-genome comparison supplementary methods. According to the data provided, Mycobacterium yongonense and 'Mycobacterium indicus pranii' should be considered and renamed and included as members of M. intracellulare. This study highlights the problems caused when a novel species is accepted on the basis of a single strain, as was the case for M. yongonense. Based mainly on whole-genome sequence analysis, we conclude that M. yongonense should be reclassified as a subspecies of Mycobacterium intracellulareas Mycobacterium intracellularesubsp. yongonense and 'Mycobacterium indicus pranii' classified in the same subspecies as the type strain of Mycobacterium intracellulare and classified as Mycobacterium intracellularesubsp. intracellulare.
Romero, María M.; Balboa, Luciana; Basile, Juan I.; López, Beatriz; Ritacco, Viviana; de la Barrera, Silvia S.; Sasiain, María C.; Barrera, Lucía; Alemán, Mercedes
2012-01-01
Tuberculosis pathogenesis was earlier thought to be mainly related to the host but now it appears to be clear that bacterial factors are also involved. Genetic variability of Mycobacterium tuberculosis (Mtb) could be slight but it may lead to sharp phenotypic differences. We have previously reported that nonopsonized Mtb H37Rv induce apoptosis of polymorphonuclear neutrophils (PMNs) by a mechanism that involves the p38 pathway. Here we evaluated the capability to induce PMN apoptosis of two prevalent Mtb lineages in Argentina, the Latin America and Mediterranean (LAM), and Haarlem, using the H37Rv as a reference strain. Results showed that LAM strains strongly induced apoptosis of PMN which correlated with the induction of reactive oxygen species (ROS) production and p38 activation. Interestingly, the highly prosperous multidrug-resistant M strain, belonging to the Haarlem lineage, lacked the ability to activate and to induce PMN apoptosis as a consequence of (1) a weak ROS production and (2) the contribution of antiapoptotic mechanisms mediated at least by ERK. Although with less skill, M is able to enter the PMN so that phenotypic differences could lead PMN to be a reservoir allowing some pathogens to prevail and persist over other strains in the community. PMID:22778761
Ouassa, Timothée; Borroni, Emanuele; Loukou, Guillaume Yao; Faye-Kette, Hortense; Kouakou, Jacquemin; Menan, Hervé; Cirillo, Daniela Maria
2012-01-01
Genotyping methods are useful tools to provide information on tuberculosis epidemic. They can allow a better response from health authorities and the implementation of measures for tuberculosis control. This study aimed to identify the main lineages and clades of Mycobacterium tuberculosis complex strains circulating in Côte d'Ivoire. Strains isolated from sputum samples of patients ongoing retreatment from all the country were characterized by spoligotyping and by MIRU-VNTR. Profiles obtained by spoligotyping were first compared to the SITVIT/SpolDB4 database for family assignment. Of 194 strains analysed, 146 (75.3%) belonged to the T lineage. The most predominant spoligotype was the shared international type 53 with 135 strains (69.6%). In contrast with neighbouring countries, LAM (11 strains, 5.7%) and H (9 strains 4.6%) lineages were slightly represented. Only 3 Beijing strains (1.5%) and 4 strains of Mycobacterium africanum (2%) were found. Analysis of the results obtained with MIRU-VNTR revealed also a high level of clustering. The population of Mycobacterium tuberculosis complex strains among retreatment cases in Côte d'Ivoire exhibits a low diversity, allowing to assume recent transmission and locally based infection.
Mycobacterium tuberculosis Pili promote adhesion to and invasion of THP-1 macrophages.
Ramsugit, Saiyur; Pillay, Manormoney
2014-01-01
Central to the paradigm of the pathogenesis of Mycobacterium tuberculosis is its ability to attach to, enter, and subsequently survive in host macrophages. However, little is known regarding the bacterial adhesins and invasins involved in this interaction with host macrophages. Pili are cell-surface structures produced by certain bacteria and have been implicated in adhesion to and invasion of phagocytes in several species. M. tuberculosis pili (MTP) are encoded by the Rv3312A (mtp) gene. In the present study, we assessed the ability of a Δmtp mutant and an mtp-complemented clinical strain to adhere to and invade THP-1 macrophages in comparison with the parental strain by determining colony-forming units. Both adhesion to and invasion of macrophages, although not reaching significance, were markedly reduced by 42.16% (P = 0.107) and 69.02% (P = 0.052), respectively, in the pili-deficient Δmtp mutant as compared with the wild-type. The pili-overexpressing complemented strain showed significantly higher levels of THP-1 macrophage adhesion (P = 0.000) and invasion (P = 0.040) than the mutant. We, thus, identified a novel adhesin and invasin of M. tuberculosis involved in adhesion to and invasion of macrophages.
Current Methods in the Molecular Typing of Mycobacterium tuberculosis and Other Mycobacteria
van Ingen, Jakko; Dziadek, Jarosław; Mazur, Paweł K.; Bielecki, Jacek
2014-01-01
In the epidemiology of tuberculosis (TB) and nontuberculous mycobacterial (NTM) diseases, as in all infectious diseases, the key issue is to define the source of infection and to disclose its routes of transmission and dissemination in the environment. For this to be accomplished, the ability of discerning and tracking individual Mycobacterium strains is of critical importance. Molecular typing methods have greatly improved our understanding of the biology of mycobacteria and provide powerful tools to combat the diseases caused by these pathogens. The utility of various typing methods depends on the Mycobacterium species under investigation as well as on the research question. For tuberculosis, different methods have different roles in phylogenetic analyses and person-to-person transmission studies. In NTM diseases, most investigations involve the search for environmental sources or phylogenetic relationships. Here, too, the type of setting determines which methodology is most suitable. Within this review, we summarize currently available molecular methods for strain typing of M. tuberculosis and some NTM species, most commonly associated with human disease. For the various methods, technical practicalities as well as discriminatory power and accomplishments are reviewed. PMID:24527454
Identification of a New DNA Region Specific for Members of Mycobacterium tuberculosis Complex
Magdalena, Juana; Vachée, Anne; Supply, Philip; Locht, Camille
1998-01-01
The successful use of DNA amplification for the detection of tuberculous mycobacteria crucially depends on the choice of the target sequence, which ideally should be present in all tuberculous mycobacteria and absent from all other bacteria. In the present study we developed a PCR procedure based on the intergenic region (IR) separating two genes encoding a recently identified mycobacterial two-component system named SenX3-RegX3. The senX3-regX3 IR is composed of a novel type of repetitive sequence, called mycobacterial interspersed repetitive units (MIRUs). In a survey of 116 Mycobacterium tuberculosis strains characterized by different IS6110 restriction fragment length polymorphisms, 2 Mycobacterium africanum strains, 3 Mycobacterium bovis strains (including 2 BCG strains), and 1 Mycobacterium microti strain, a specific PCR fragment was amplified in all cases. This collection included M. tuberculosis strains that lack IS6110 or mtp40, two target sequences that have previously been used for the detection of M. tuberculosis. No PCR fragment was amplified when DNA from other organisms was used, giving a sensitivity of 100% and a specificity of 100% in the confidence limit of this study. The numbers of MIRUs were found to vary among strains, resulting in six different groups of strains on the basis of the size of the amplified PCR fragment. However, the vast majority of the strains (approximately 90%) fell within the same group, containing two 77-bp MIRUs followed by one 53-bp MIRU. PMID:9542912
Li, W B; Ji, L Y; Xu, D L; Liu, H C; Zhao, X Q; Wu, Y M; Wan, K L
2018-05-10
Objective: To understand the etiological characteristics and drug susceptibility of Mycobacterium thermoresistibile and Mycobacterium elephantis isolated from a cow with mastitis and provide evidence for the prevention and control of infectious mastitis in cows. Methods: The milk sample was collected from a cow with mastitis, which was pretreated with 4 % NaOH and inoculated with L-J medium for Mycobacterium isolation. The positive cultures were initially identified by acid-fast staining and multi-loci PCR, then Mycobacterium species was identified by the multiple loci sequence analysis (MLSA) with 16S rRNA , hsp65 , ITS and SodA genes. The drug sensitivity of the isolates to 27 antibiotics was tested by alamar blue assay. Results: Two anti-acid stain positive strains were isolated from the milk of a cow with mastitis, which were identified as non- tuberculosis mycobacterium by multi-loci PCR, and multi-loci nucleic acid sequence analysis indicated that one strain was Mycobacterium thermoresistibile and another one was Mycobacterium elephantis . The results of the drug susceptibility test showed that the two strains were resistant to most antibiotics, including rifampicin and isoniazid, but they were sensitive to amikacin, moxifloxacin, levofloxacin, ethambutol, streptomycin, tobramycin, ciprofloxacin and linezolid. Conclusions: Mycobacterium thermoresistibile and Mycobacterium elephantis were isolated in a cow with mastitis and the drug susceptibility spectrum of the pathogens were unique. The results of the study can be used as reference for the prevention and control the infection in cows.
Zhang, Hui; Wang, Zhen; Cao, Xudong; Wang, Zhengrong; Sheng, Jinliang; Wang, Yong; Zhang, Jing; Li, Zhiqiang; Gu, Xinli; Chen, Chuangfu
2016-11-01
Loop-mediated isothermal amplification (LAMP) is a highly sensitive, rapid, cost-effective nucleic acid amplification method. Tuberculosis (TB) is widely popular in the world and it is difficult to cure. The fundamental treatment is to clear the types of TB pathogens such as Mycobacterium bovis (M. bovis), Mycobacterium tuberculosis (M. tuberculosis). In order to detect and diagnose TB early, we constructed the differential diagnostic method of TB. In this study, we used LAMP for detection of M. bovis, based on amplification of the mpb70 gene which is a unique gene in M. bovis strain. The LAMP assay was able to detect only seven copies of the gene per reaction, whereas for the conventional PCR, it was 70 copies. The LAMP was evaluated for its specificity using six strains of five Mycobacterium species and 18 related non-Mycobacterium microorganism strains as controls. The target three Mycobacterium strains were all amplified, and no cross-reaction was found with 18 non-Mycobacterium microorganism strains. TB was detected by two methods, LAMP and conventional PCR (based on mpb70 gene); the positive rates of the two methods were 9.55 and 7.01 %, respectively. Our results indicate that the LAMP method should be a potential tool with high convenience, rapidity, sensitivity and specificity for the diagnosis of TB caused by M. bovis. Most importance is that the use of LAMP as diagnostic method in association with diagnostic tests based on mpb70 gene would allow the differentiation between M. bovis and other Mycobacterium in humans or animals. The LAMP method is actually in order to detect human TB, and it can be used for differential diagnosis in this paper.
He, Zhongqi; Spain, Jim C.
2000-01-01
In spite of the variety of initial reactions, the aerobic biodegradation of aromatic compounds generally yields dihydroxy intermediates for ring cleavage. Recent investigation of the degradation of nitroaromatic compounds revealed that some nitroaromatic compounds are initially converted to 2-aminophenol rather than dihydroxy intermediates by a number of microorganisms. The complete pathway for the metabolism of 2-aminophenol during the degradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45 has been elucidated previously. The pathway is parallel to the catechol extradiol ring cleavage pathway, except that 2-aminophenol is the ring cleavage substrate. Here we report the elucidation of the pathway of 2-amino-4-methylphenol (6-amino-m-cresol) metabolism during the degradation of 4-nitrotoluene by Mycobacterium strain HL 4-NT-1 and the comparison of the substrate specificities of the relevant enzymes in strains JS45 and HL 4-NT-1. The results indicate that the 2-aminophenol ring cleavage pathway in strain JS45 is not unique but is representative of the pathways of metabolism of other o-aminophenolic compounds. PMID:10877799
Draft Genome Sequences of Two Mycobacterium bovis Strains Isolated from Beef Cattle in Paraguay
Sanabria, Lidia; Lagrave, Lorena; Nishibe, Christiane; Ribas, Augusto C. A.; Zumárraga, Martín J.; Araújo, Flábio R.
2017-01-01
ABSTRACT This work reports the draft genome sequences of the Mycobacterium bovis strains M1009 and M1010, isolated from the lymph nodes of two infected cows on a beef farm in Paraguay. Comparative genomics between these strains and other regional strains may provide more insights regarding M. bovis epidemiology in South America. PMID:28705977
Ryoo, Sung Weon; Park, Young Kil; Park, Sue-Nie; Shim, Young Soo; Liew, Hyunjeong; Kang, Seongman; Bai, Gill-Han
2007-06-01
In Korea, the Mycobacterium tuberculosis K-strain is the most prevalent clinical isolates and belongs to the Beijing family. In this study, we conducted comparative porteomics of expressed proteins of clinical isolates of the K-strain with H37Rv, H37Ra as well as the vaccine strain of Mycobacterium bovis BCG following phagocytosis by the human monocytic cell line U-937. Proteins were analyzed by 2-D PAGE and MALDITOF-MS. Two proteins, Mb1363 (probable glycogen phosphorylase GlgP) and MT2656 (Haloalkane dehalogenase LinB) were most abundant after phagocytosis of M. tuberculosis K-strain. This approach provides a method to determine specific proteins that may have critical roles in tuberculosis pathogenesis.
Differential growth of Mycobacterium leprae strains (SNP genotypes) in armadillos.
Sharma, Rahul; Singh, Pushpendra; Pena, Maria; Subramanian, Ramesh; Chouljenko, Vladmir; Kim, Joohyun; Kim, Nayong; Caskey, John; Baudena, Marie A; Adams, Linda B; Truman, Richard W
2018-04-14
Leprosy (Hansen's Disease) has occurred throughout human history, and persists today at a low prevalence in most populations. Caused by Mycobacterium leprae, the infection primarily involves the skin, mucosa and peripheral nerves. The susceptible host range for Mycobacterium leprae is quite narrow. Besides humans, nine banded armadillos (Dasypus novemcinctus) and red squirrels (Sciurus vulgaris) are the only other natural hosts for M. leprae, but only armadillos recapitulate the disease as seen in humans. Armadillos across the Southern United States harbor a single predominant genotypic strain (SNP Type-3I) of M. leprae, which is also implicated in the zoonotic transmission of leprosy. We investigated, whether the zoonotic strain (3I) has any notable growth advantages in armadillos over another genetically distant strain-type (SNP Type-4P) of M. leprae, and if M. leprae strains manifest any notably different pathology among armadillos. We co-infected armadillos (n = 6) with 2 × 10 9 highly viable M. leprae of both strains and assessed the relative growth and dissemination of each strain in the animals. We also analyzed 12 additional armadillos, 6 each individually infected with the same quantity of either strain. The infections were allowed to fulminate and the clinical manifestations of the disease were noted. Animals were humanely sacrificed at the terminal stage of infection and the number of bacilli per gram of liver, spleen and lymph node tissue were enumerated by Q-PCR assay. The growth of M. leprae strain 4P was significantly higher (P < 0.05) than 3I when each strain was propagated individually in armadillos. Significantly (P < 0.0001) higher growth of the 4P strain also was confirmed among animals co-infected with both 3I and 4P strain types using whole genome sequencing. Interestingly, the zoonotic strain does not exhibit any growth advantage in these non-human hosts, but the varied proliferation of the two M. leprae strains within armadillos suggest there are notable pathological variations between M. leprae strain-types. Copyright © 2018. Published by Elsevier B.V.
Mycobacterium avium Genes Associated with the Ability To Form a Biofilm
Yamazaki, Yoshitaka; Danelishvili, Lia; Wu, Martin; MacNab, Molly; Bermudez, Luiz E.
2006-01-01
Mycobacterium avium is widely distributed in the environment, and it is chiefly found in water and soil. M. avium, as well as Mycobacterium smegmatis, has been recognized to produce a biofilm or biofilm-like structure. We screened an M. avium green fluorescent protein (GFP) promoter library in M. smegmatis for genes involved in biofilm formation on polyvinyl chloride (PVC) plates. Clones associated with increased GFP expression ≥2.0-fold over the baseline were sequenced. Seventeen genes, most encoding proteins of the tricarboxylic acid (TCA) cycle and GDP-mannose and fatty acid biosynthesis, were identified. Their regulation in M. avium was confirmed by examining the expression of a set of genes by real-time PCR after incubation on PVC plates. In addition, screening of 2,000 clones of a transposon mutant bank constructed using M. avium strain A5, a mycobacterial strain with the ability to produce large amounts of biofilm, revealed four mutants with an impaired ability to form biofilm. Genes interrupted by transposons were homologues of M. tuberculosis 6-oxodehydrogenase (sucA), enzymes of the TCA cycle, protein synthetase (pstB), enzymes of glycopeptidolipid (GPL) synthesis, and Rv1565c (a hypothetical membrane protein). In conclusion, it appears that GPL biosynthesis, including the GDP-mannose biosynthesis pathway, is the most important pathway involved in the production of M. avium biofilm. PMID:16391123
Degradation of Morpholine by an Environmental Mycobacterium Strain Involves a Cytochrome P-450
Poupin, P.; Truffaut, N.; Combourieu, B.; Besse, P.; Sancelme, M.; Veschambre, H.; Delort, A. M.
1998-01-01
A Mycobacterium strain (RP1) was isolated from a contaminated activated sludge collected in a wastewater treatment unit of a chemical plant. It was capable of utilizing morpholine and other heterocyclic compounds, such as pyrrolidine and piperidine, as the sole source of carbon, nitrogen, and energy. The use of in situ 1H nuclear magnetic resonance (1H NMR) spectroscopy allowed the determination of two intermediates in the biodegradative pathway, 2-(2-aminoethoxy)acetate and glycolate. The inhibitory effects of metyrapone on the degradative abilities of strain RP1 indicated the involvement of a cytochrome P-450 in the biodegradation of morpholine. This observation was confirmed by spectrophotometric analysis and 1H NMR. Reduced cell extracts from morpholine-grown cultures, but not succinate-grown cultures, gave rise to a carbon monoxide difference spectrum with a peak near 450 nm, which indicated the presence of a soluble cytochrome P-450. 1H NMR allowed the direct analysis of the incubation medium containing metyrapone, a specific inhibitor of cytochrome P-450. The inhibition of morpholine degradation was dependent on the morpholine/metyrapone ratio. The heme-containing monooxygenase was also detected in pyrrolidine- and piperidine-grown cultures. The abilities of different compounds to support strain growth or the induction of a soluble cytochrome P-450 were assayed. The results suggest that this enzyme catalyzes the cleavage of the C—N bond of the morpholine ring. PMID:9435074
MicroRNA-155 Is Required for Mycobacterium bovis BCG-Mediated Apoptosis of Macrophages
Ghorpade, Devram Sampat; Leyland, Rebecca; Kurowska-Stolarska, Mariola; Patil, Shripad A.
2012-01-01
Pathogenic mycobacteria, including Mycobacterium tuberculosis and Mycobacterium bovis, cause significant morbidity and mortality worldwide. However, the vaccine strain Mycobacterium bovis BCG, unlike virulent strains, triggers extensive apoptosis of infected macrophages, a step necessary for the elicitation of robust protective immunity. We here demonstrate that M. bovis BCG triggers Toll-like receptor 2 (TLR2)-dependent microRNA-155 (miR-155) expression, which involves signaling cross talk among phosphatidylinositol 3-kinase (PI3K), protein kinase Cδ (PKCδ), and mitogen-activated protein kinases (MAPKs) and recruitment of NF-κB and c-ETS to miR-155 promoter. Genetic and signaling perturbations presented the evidence that miR-155 regulates PKA signaling by directly targeting a negative regulator of PKA, protein kinase inhibitor alpha (PKI-α). Enhanced activation of PKA signaling resulted in the generation of PKA C-α; phosphorylation of MSK1, cyclic AMP response element binding protein (CREB), and histone H3; and recruitment of phospho-CREB to the apoptotic gene promoters. The miR-155-triggered activation of caspase-3, BAK1, and cytochrome c translocation involved signaling integration of MAPKs and epigenetic or posttranslational modification of histones or CREB. Importantly, M. bovis BCG infection-induced apoptosis was severely compromised in macrophages derived from miR-155 knockout mice. Gain-of-function and loss-of-function studies validated the requirement of miR-155 for M. bovis BCG's ability to trigger apoptosis. Overall, M. bovis BCG-driven miR-155 dictates cell fate decisions of infected macrophages, strongly implicating a novel role for miR-155 in orchestrating cellular reprogramming during immune responses to mycobacterial infection. PMID:22473996
Coleman, Nicholas V; Spain, Jim C
2003-10-01
An epoxyalkane:coenzyme M (CoM) transferase (EaCoMT) enzyme was recently found to be active in the aerobic vinyl chloride (VC) and ethene assimilation pathways of Mycobacterium strain JS60. In the present study, EaCoMT activity and genes were investigated in 10 different mycobacteria isolated on VC or ethene from diverse environmental samples. In all cases, epoxyethane metabolism in cell extracts was dependent on CoM, with average specific activities of EaCoMT between 380 and 2,910 nmol/min/mg of protein. PCR with primers based on conserved regions of EaCoMT genes from Mycobacterium strain JS60 and the propene oxidizers Xanthobacter strain Py2 and Rhodococcus strain B-276 yielded fragments (834 bp) of EaCoMT genes from all of the VC- and ethene-assimilating isolates. The Mycobacterium EaCoMT genes form a distinct cluster and are more closely related to the EaCoMT of Rhodococcus strain B-276 than that of Xanthobacter strain Py2. The incongruence of the EaCoMT and 16S rRNA gene trees and the fact that isolates from geographically distant locations possessed almost identical EaCoMT genes suggest that lateral transfer of EaCoMT among the Mycobacterium strains has occurred. Pulsed-field gel electrophoresis revealed large linear plasmids (110 to 330 kb) in all of the VC-degrading strains. In Southern blotting experiments, the strain JS60 EaCoMT gene hybridized to many of the plasmids. The CoM-mediated pathway of epoxide metabolism appears to be universal in alkene-assimilating mycobacteria, possibly because of plasmid-mediated lateral gene transfer.
Role of P27 -P55 operon from Mycobacterium tuberculosis in the resistance to toxic compounds
2011-01-01
Background The P27-P55 (lprG-Rv1410c) operon is crucial for the survival of Mycobacterium tuberculosis, the causative agent of human tuberculosis, during infection in mice. P55 encodes an efflux pump that has been shown to provide Mycobacterium smegmatis and Mycobacterium bovis BCG with resistance to several drugs, while P27 encodes a mannosylated glycoprotein previously described as an antigen that modulates the immune response against mycobacteria. The objective of this study was to determine the individual contribution of the proteins encoded in the P27-P55 operon to the resistance to toxic compounds and to the cell wall integrity of M. tuberculosis. Method In order to test the susceptibility of a mutant of M. tuberculosis H37Rv in the P27-P55 operon to malachite green, sodium dodecyl sulfate, ethidium bromide, and first-line antituberculosis drugs, this strain together with the wild type strain and a set of complemented strains were cultivated in the presence and in the absence of these drugs. In addition, the malachite green decolorization rate of each strain was obtained from decolorization curves of malachite green in PBS containing bacterial suspensions. Results The mutant strain decolorized malachite green faster than the wild type strain and was hypersensitive to both malachite green and ethidium bromide, and more susceptible to the first-line antituberculosis drugs: isoniazid and ethambutol. The pump inhibitor reserpine reversed M. tuberculosis resistance to ethidium bromide. These results suggest that P27-P55 functions through an efflux-pump like mechanism. In addition, deletion of the P27-P55 operon made M. tuberculosis susceptible to sodium dodecyl sulfate, suggesting that the lack of both proteins causes alterations in the cell wall permeability of the bacterium. Importantly, both P27 and P55 are required to restore the wild type phenotypes in the mutant. Conclusions The results clearly indicate that P27 and P55 are functionally connected in processes that involve the preservation of the cell wall and the transport of toxic compounds away from the cells. PMID:21762531
Namouchi, Amine; Cimino, Mena; Favre-Rochex, Sandrine; Charles, Patricia; Gicquel, Brigitte
2017-07-13
Tuberculosis (TB) is caused by Mycobacterium tuberculosis and represents one of the major challenges facing drug discovery initiatives worldwide. The considerable rise in bacterial drug resistance in recent years has led to the need of new drugs and drug regimens. Model systems are regularly used to speed-up the drug discovery process and circumvent biosafety issues associated with manipulating M. tuberculosis. These include the use of strains such as Mycobacterium smegmatis and Mycobacterium marinum that can be handled in biosafety level 2 facilities, making high-throughput screening feasible. However, each of these model species have their own limitations. We report and describe the first complete genome sequence of Mycobacterium aurum ATCC23366, an environmental mycobacterium that can also grow in the gut of humans and animals as part of the microbiota. This species shows a comparable resistance profile to that of M. tuberculosis for several anti-TB drugs. The aims of this study were to (i) determine the drug resistance profile of a recently proposed model species, Mycobacterium aurum, strain ATCC23366, for anti-TB drug discovery as well as Mycobacterium smegmatis and Mycobacterium marinum (ii) sequence and annotate the complete genome sequence of this species obtained using Pacific Bioscience technology (iii) perform comparative genomics analyses of the various surrogate strains with M. tuberculosis (iv) discuss how the choice of the surrogate model used for drug screening can affect the drug discovery process. We describe the complete genome sequence of M. aurum, a surrogate model for anti-tuberculosis drug discovery. Most of the genes already reported to be associated with drug resistance are shared between all the surrogate strains and M. tuberculosis. We consider that M. aurum might be used in high-throughput screening for tuberculosis drug discovery. We also highly recommend the use of different model species during the drug discovery screening process.
Deng, Yun-feng; Zhang, Yan-an; Zheng, Jian-li; Jing, Hui; Wang, Yan; Wang, Hai-ying; Ma, Xin; Liu, Zhi-min
2010-03-01
To establish the molecular characteristics of Mycobacterium tuberculosis and on factors influencing the recent transmission of drug resistant isolates in Shandong. Mycobacterium tuberculosis isolated from active pulmonary tuberculosis patients of 13 counties were genotyped by mycobacterial interspersed repetitive units (MIRU) methods. 12 loci of MIRU were detected in 558 isolates and a total of 143 MIRU patterns were confirmed. 66 isolates had distinct patterns, and 481 (86.2%) strains were in clusters. Shandong cluster included 177 strains with 74.6% of the isolates belonged to Beijing family. The recent transmission index of multi-drug resistance strains was in lower level, comparing to the susceptible strains. Our results showed that the Shandong cluster isolates had capacities of facilitating person-to-person transmission and high level of drug resistance.
Hümpel, Anja; Gebhard, Susanne; Cook, Gregory M.; Berney, Michael
2010-01-01
SigF is an alternative sigma factor that is highly conserved among species of the genus Mycobacterium. In this study we identified the SigF regulon in Mycobacterium smegmatis using whole-genome microarray and promoter consensus analyses. In total, 64 genes in exponential phase and 124 genes in stationary phase are SigF dependent (P < 0.01, >2-fold expression change). Our experimental data reveal the SigF-dependent promoter consensus GTTT-N(15-17)-GGGTA for M. smegmatis, and we propose 130 potential genes under direct control of SigF, of which more than 50% exhibited reduced expression in a ΔsigF strain. We previously reported an increased susceptibility of the ΔsigF strain to heat and oxidative stress, and our expression data indicate a molecular basis for these phenotypes. We observed SigF-dependent expression of several genes purportedly involved in oxidative stress defense, namely, a heme-containing catalase, a manganese-containing catalase, a superoxide dismutase, the starvation-induced DNA-protecting protein MsDps1, and the biosynthesis genes for the carotenoid isorenieratene. Our data suggest that SigF regulates the biosynthesis of the thermoprotectant trehalose, as well as an uptake system for osmoregulatory compounds, and this may explain the increased heat susceptibility of the ΔsigF strain. We identified the regulatory proteins SigH3, PhoP, WhiB1, and WhiB4 as possible genes under direct control of SigF and propose four novel anti-sigma factor antagonists that could be involved in the posttranslational regulation of SigF in M. smegmatis. This study emphasizes the importance of this sigma factor for stationary-phase adaptation and stress response in mycobacteria. PMID:20233930
Piscine mycobacteriosis - Involvement of bacterial species and reflection in pathology.
Keller, C; Wenker, C; Jermann, T; Hirschi, R; Schildger, B; Meier, R; Schmidt-Posthaus, H
2018-06-01
Piscine mycobacteriosis is a lethal disease with zoonotic potential, found worldwide in both fresh and marine fish. More than 20 strains of Mycobacterium spp. are known to persist in fish so far, but the pathogenicity is currently unknown for most of them. However, M. marinum is reported as one of the most pathogenic agents for fish and is involved in zoonotic cases. We examined 47 different cases from two zoological gardens, where fish tuberculosis was identified or previously suspected during the last ten years. We collected PCR and sequencing data, which were then compared to previously collected clinical data and pathology. The clinical signs caused by Mycobacterium spp. were similar in all the cases, except for cases infected by M. marinum, which lacked the presence of skin lesions. Lesions seen in histology caused by M. marinum tended to be more acute and severe compared lesions caused by other Mycobacterium spp. The majority of M. marinum cases have been reported within marine fish. In contrast to previous studies we detected this species to be the predominant bacteria present within freshwater fish. Interestingly, we detected M. holsaticum in one of the seawater systems used in this project, being the first report of this Mycobacterium species shown to be present in a fish.
Draft Genome Sequence of Mycobacterium neoaurum Strain DSM 44074T.
Phelippeau, Michael; Robert, Catherine; Croce, Olivier; Raoult, Didier; Drancourt, Michel
2014-07-10
We report the draft genome sequence of Mycobacterium neoaurum strain DSM 44074(T), a nontuberculosis species responsible for opportunistic infections in immunocompromised patients. The strain described here is composed of 5,536,033 bp, with a G+C content of 66.24%, and carries 5,274 protein-coding genes and 72 RNA genes. Copyright © 2014 Phelippeau et al.
Decolorization of Malachite Green and Crystal Violet by Waterborne Pathogenic Mycobacteria
Jones, Jefferson J.; Falkinham III, Joseph O.
2003-01-01
Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium scrofulaceum, Mycobacterium marinum, and Mycobacterium chelonae tolerate high concentrations of the dyes malachite green and crystal violet. Cells of strains of those species decolorized (reduced) both malachite green and crystal violet. Because decolorized malachite green lacked antimicrobial activity, the resistance of these mycobacteria could be due, in part, to their ability to decolorize the dyes. Small amounts of malachite green and its reduced, decolorized product were detected in the lipid fraction of M. avium strain A5 cells grown in the presence of malachite green, suggesting that a minor component of resistance could be due to sequestering the dyes in the extensive mycobacterial cell surface lipid. The membrane fraction of M. avium strain A5 had at least a fivefold-higher specific decolorization rate than did the crude extract, suggesting that the decolorization activity is membrane associated. The malachite green-decolorizing activity of the membrane fraction of M. avium strain A5 was abolished by either boiling or proteinase exposure, suggesting that the decolorizing activity was due to a protein. Decolorization activity of membrane fractions was stimulated by ferrous ion and inhibited by dinitrophenol and metyrapone. PMID:12821489
Feuerriegel, Silke; Köser, Claudio U.; Baù, Davide; Rüsch-Gerdes, Sabine; Summers, David K.; Archer, John A. C.; Marti-Renom, Marc A.; Niemann, Stefan
2011-01-01
PA-824 is a promising drug candidate for the treatment of tuberculosis (TB). It is in phase II clinical trials as part of the first newly designed regimen containing multiple novel antituberculosis drugs (PA-824 in combination with moxifloxacin and pyrazinamide). However, given that the genes involved in resistance against PA-824 are not fully conserved in the Mycobacterium tuberculosis complex (MTBC), this regimen might not be equally effective against different MTBC genotypes. To investigate this question, we sequenced two PA-824 resistance genes (fgd1 [Rv0407] and ddn [Rv3547]) in 65 MTBC strains representing major phylogenetic lineages. The MICs of representative strains were determined using the modified proportion method in the Bactec MGIT 960 system. Our analysis revealed single-nucleotide polymorphisms in both genes that were specific either for several genotypes or for individual strains, yet none of these mutations significantly affected the PA-824 MICs (≤0.25 μg/ml). These results were supported by in silico modeling of the mutations identified in Fgd1. In contrast, “Mycobacterium canettii” strains displayed a higher MIC of 8 μg/ml. In conclusion, we found a large genetic diversity in PA-824 resistance genes that did not lead to elevated PA-824 MICs. In contrast, M. canettii strains had MICs that were above the plasma concentrations of PA-824 documented so far in clinical trials. As M. canettii is also intrinsically resistant against pyrazinamide, new regimens containing PA-824 and pyrazinamide might not be effective in treating M. canettii infections. This finding has implications for the design of multiple ongoing clinical trials. PMID:21930879
Zeng, Jie; Deng, Wanyan; Yang, Wenmin; Luo, Hongping; Duan, Xiangke; Xie, Longxiang; Li, Ping; Wang, Rui; Fu, Tiwei; Abdalla, Abualgasim Elgaili; Xie, Jianping
2016-01-01
Novel factors involved in Mycobacteria antibiotics resistance are crucial for better targets to combat the ever-increasing drug resistant strains. Mycobacterium tuberculosis Rv1152, a novel GntR family transcriptional regulator and a promising vancomycin adjuvant target, was firstly characterized in our study. Overexpression of Rv1152 in Mycobacterium smegmatis decreased bacterial susceptibility to vancomycin. Moreover, a deficiency in MSMEG_5174, an Rv1152 homolog made M. smegmatis more sensitive to vancomycin, which was reverted by complementing the MSMEG_5174 deficiency with Rv1152 of M. tuberculosis. Rv1152 negatively regulated four vancomycin responsive genes, namely genes encoding the ribosome binding protein Hsp, small unit of sulfate adenylyltransferase CysD, L-lysine-epsilon aminotransferase Lat, and protease HtpX. Taken together, Rv1152 controls the expression of genes required for the susceptibility to vancomycin. This is the first report that links the GntR family transcriptional factor with vancomycin susceptibility. Inhibitors of Rv1152 might be ideal vancomycin adjuvants for controlling multi-drug resistant Mycobacterial infections. PMID:27349953
A New 4-Nitrotoluene Degradation Pathway in a Mycobacterium Strain
Spiess, Tilmann; Desiere, Frank; Fischer, Peter; Spain, Jim C.; Knackmuss, Hans-Joachim; Lenke, Hiltrud
1998-01-01
Mycobacterium sp. strain HL 4-NT-1, isolated from a mixed soil sample from the Stuttgart area, utilized 4-nitrotoluene as the sole source of nitrogen, carbon, and energy. Under aerobic conditions, resting cells of the Mycobacterium strain metabolized 4-nitrotoluene with concomitant release of small amounts of ammonia; under anaerobic conditions, 4-nitrotoluene was completely converted to 6-amino-m-cresol. 4-Hydroxylaminotoluene was converted to 6-amino-m-cresol by cell extracts and thus could be confirmed as the initial metabolite in the degradative pathway. This enzymatic equivalent to the acid-catalyzed Bamberger rearrangement requires neither cofactors nor oxygen. In the same crucial enzymatic step, the homologous substrate hydroxylaminobenzene was rearranged to 2-aminophenol. Abiotic oxidative dimerization of 6-amino-m-cresol, observed during growth of the Mycobacterium strain, yielded a yellow dihydrophenoxazinone. Another yellow metabolite (λmax, 385 nm) was tentatively identified as 2-amino-5-methylmuconic semialdehyde, formed from 6-amino-m-cresol by meta ring cleavage. PMID:9464378
Chou, S.; Chedore, P.; Kasatiya, S.
1998-01-01
Three Mycobacterium genavense strains and three American Type Culture Collection reference strains each of Mycobacterium fortuitum, Mycobacterium simiae, and Mycobacterium tuberculosis were subcultured onto Mycobacteria 7H11 agar (Difco Laboratories, Detroit, Mich.) supplemented with mycobactin J (Allied Laboratories, Fayette, Mo.). After 4 weeks of incubation at 37°C in 10% CO2, the cultures were analyzed by gas-liquid chromatography (GLC) for their fatty acids and mycolic acid cleavage products. M. fortuitum was clearly differentiated from M. genavense by the presence of the specific marker 2-methyloctadecenoic acid in M. fortuitum and by the ratio of tetracosanoic acid to hexacosanoic acid. This ratio was <1 for M. genavense and >3 for M. fortuitum. M. fortuitum also contained docosanoic acid, which was not detected in M. genavense. M. genavense, M. simiae, and M. tuberculosis, which have similar GLC profiles, were also differentiated from each other by the presence of either cis-10-hexadecenoic acid or cis-11-hexadecenoic acid and by tetradecanoic acid content. PMID:9466781
Chou, S; Chedore, P; Kasatiya, S
1998-02-01
Three Mycobacterium genavense strains and three American Type Culture Collection reference strains each of Mycobacterium fortuitum, Mycobacterium simiae, and Mycobacterium tuberculosis were subcultured onto Mycobacteria 7H11 agar (Difco Laboratories, Detroit, Mich.) supplemented with mycobactin J (Allied Laboratories, Fayette, Mo.). After 4 weeks of incubation at 37 degrees C in 10% CO2, the cultures were analyzed by gas-liquid chromatography (GLC) for their fatty acids and mycolic acid cleavage products. M. fortuitum was clearly differentiated from M. genavense by the presence of the specific marker 2-methyloctadecenoic acid in M. fortuitum and by the ratio of tetracosanoic acid to hexacosanoic acid. This ratio was <1 for M. genavense and >3 for M. fortuitum. M. fortuitum also contained docosanoic acid, which was not detected in M. genavense. M. genavense, M. simiae, and M. tuberculosis, which have similar GLC profiles, were also differentiated from each other by the presence of either cis-10-hexadecenoic acid or cis-11-hexadecenoic acid and by tetradecanoic acid content.
Côtes, Karen; Dhouib, Rabeb; Douchet, Isabelle; Chahinian, Henri; de Caro, Alain; Carrière, Frédéric; Canaan, Stéphane
2007-12-15
The Rv0183 gene of the Mycobacterium tuberculosis H37Rv strain, which has been implicated as a lysophospholipase, was cloned and expressed in Escherichia coli. The purified Rv0183 protein did not show any activity when lysophospholipid substrates were used, but preferentially hydrolysed monoacylglycerol substrates with a specific activity of 290 units x mg(-1) at 37 degrees C. Rv0183 hydrolyses both long chain di- and triacylglycerols, as determined using the monomolecular film technique, although the turnover was lower than with MAG (monoacyl-glycerol). The enzyme shows an optimum activity at pH values ranging from 7.5 to 9.0 using mono-olein as substrate and is inactivated by serine esterase inhibitors such as E600, PMSF and tetrahydrolipstatin. The catalytic triad is composed of Ser110, Asp226 and His256 residues, as confirmed by the results of site-directed mutagenesis. Rv0183 shows 35% sequence identity with the human and mouse monoglyceride lipases and well below 15% with the other bacterial lipases characterized so far. Homologues of Rv0183 can be identified in other mycobacterial genomes such as Mycobacterium bovis, Mycobacterium smegmatis, and even Mycobacterium leprae, which is known to contain a low number of genes involved in the replication process within the host cells. The results of immunolocalization studies performed with polyclonal antibodies raised against the purified recombinant Rv0183 suggested that the enzyme was present only in the cell wall and culture medium of M. tuberculosis. Our results identify Rv0183 as the first exported lipolytic enzyme to be characterized in M. tuberculosis and suggest that Rv0183 may be involved in the degradation of the host cell lipids.
Côtes, Karen; Dhouib, Rabeb; Douchet, Isabelle; Chahinian, Henri; deCaro, Alain; Carrière, Frédéric; Canaan, Stéphane
2007-01-01
The Rv0183 gene of the Mycobacterium tuberculosis H37Rv strain, which has been implicated as a lysophospholipase, was cloned and expressed in Escherichia coli. The purified Rv0183 protein did not show any activity when lysophospholipid substrates were used, but preferentially hydrolysed monoacylglycerol substrates with a specific activity of 290 units·mg−1 at 37 °C. Rv0183 hydrolyses both long chain di- and triacylglycerols, as determined using the monomolecular film technique, although the turnover was lower than with MAG (monoacyl-glycerol). The enzyme shows an optimum activity at pH values ranging from 7.5 to 9.0 using mono-olein as substrate and is inactivated by serine esterase inhibitors such as E600, PMSF and tetrahydrolipstatin. The catalytic triad is composed of Ser110, Asp226 and His256 residues, as confirmed by the results of site-directed mutagenesis. Rv0183 shows 35% sequence identity with the human and mouse monoglyceride lipases and well below 15% with the other bacterial lipases characterized so far. Homologues of Rv0183 can be identified in other mycobacterial genomes such as Mycobacterium bovis, Mycobacterium smegmatis, and even Mycobacterium leprae, which is known to contain a low number of genes involved in the replication process within the host cells. The results of immunolocalization studies performed with polyclonal antibodies raised against the purified recombinant Rv0183 suggested that the enzyme was present only in the cell wall and culture medium of M. tuberculosis. Our results identify Rv0183 as the first exported lipolytic enzyme to be characterized in M. tuberculosis and suggest that Rv0183 may be involved in the degradation of the host cell lipids. PMID:17784850
TnSeq of Mycobacterium tuberculosis clinical isolates reveals strain-specific antibiotic liabilities
Carey, Allison F.; Rock, Jeremy M.; Krieger, Inna V.; Gagneux, Sebastien; Sacchettini, James C.; Fortune, Sarah M.
2018-01-01
Once considered a phenotypically monomorphic bacterium, there is a growing body of work demonstrating heterogeneity among Mycobacterium tuberculosis (Mtb) strains in clinically relevant characteristics, including virulence and response to antibiotics. However, the genetic and molecular basis for most phenotypic differences among Mtb strains remains unknown. To investigate the basis of strain variation in Mtb, we performed genome-wide transposon mutagenesis coupled with next-generation sequencing (TnSeq) for a panel of Mtb clinical isolates and the reference strain H37Rv to compare genetic requirements for in vitro growth across these strains. We developed an analytic approach to identify quantitative differences in genetic requirements between these genetically diverse strains, which vary in genomic structure and gene content. Using this methodology, we found differences between strains in their requirements for genes involved in fundamental cellular processes, including redox homeostasis and central carbon metabolism. Among the genes with differential requirements were katG, which encodes the activator of the first-line antitubercular agent isoniazid, and glcB, which encodes malate synthase, the target of a novel small-molecule inhibitor. Differences among strains in their requirement for katG and glcB predicted differences in their response to these antimicrobial agents. Importantly, these strain-specific differences in antibiotic response could not be predicted by genetic variants identified through whole genome sequencing or by gene expression analysis. Our results provide novel insight into the basis of variation among Mtb strains and demonstrate that TnSeq is a scalable method to predict clinically important phenotypic differences among Mtb strains. PMID:29505613
DNA Replication Fidelity in the Mycobacterium tuberculosis Complex.
Warner, Digby F; Rock, Jeremy M; Fortune, Sarah M; Mizrahi, Valerie
2017-01-01
Mycobacterium tuberculosis is genetically isolated, with no evidence for horizontal gene transfer or the acquisition of episomal genetic information in the modern evolution of strains of the Mycobacterium tuberculosis complex. When considered in the context of the specific features of the disease M. tuberculosis causes (e.g., transmission via cough aerosol, replication within professional phagocytes, subclinical persistence, and stimulation of a destructive immune pathology), this implies that to understand the mechanisms ensuring preservation of genomic integrity in infecting mycobacterial populations is to understand the source of genetic variation, including the emergence of microdiverse sub-populations that may be linked to the acquisition of drug resistance. In this chapter, we focus on mechanisms involved in maintaining DNA replication fidelity in M. tuberculosis, and consider the potential to target components of the DNA replication machinery as part of novel therapeutic regimens designed to curb the emerging threat of drug-resistance.
Nigou, J; Vercellone, A; Puzo, G
2000-06-23
Lipoarabinomannans are key molecules of the mycobacterial envelopes involved in many steps of tuberculosis immunopathogenesis. Several of the biological activities of lipoarabinomannans are mediated by their ability to bind human C-type lectins, such as the macrophage mannose receptor, the mannose-binding protein and the surfactant proteins A and D. The lipoarabinomannan mannooligosaccharide caps have been demonstrated to be involved in the binding to the lectin carbohydrate recognition domains. We report an original analytical approach, based on capillary electrophoresis monitored by laser-induced fluorescence, allowing the absolute quantification, in nanomole quantities of lipoarabinomannan, of the number of mannooligosaccharide units per lipoarabinomannan molecule. Moreover, this analytical approach was successful for the glycosidic linkage determination of the mannooligosaccharide motifs and has been applied to the comparative analysis of parietal and cellular lipoarabinomannans of Mycobacterium bovis BCG and Mycobacterium tuberculosis H37Rv, H37Ra and Erdman strains. Significant differences were observed in the amounts of the various mannooligosaccharide units between lipoarabinomannans of different strains and between parietal and cellular lipoarabinomannans of the same strain. Nevertheless, no relationship was found between the number of mannooligosaccharide caps and the virulence of the corresponding strain. The results of the present study should help us to gain more understanding of the molecular basis of lipoarabinomannan discrimination in the process of binding to C-type lectins. Copyright 2000 Academic Press.
Optimal control of a two-strain tuberculosis-HIV/AIDS co-infection model.
Agusto, F B; Adekunle, A I
2014-05-01
Tuberculosis is a bacterial disease caused by Mycobacterium tuberculosis (TB). The risk for TB infection greatly increases with HIV infection; TB disease occurs in 7-10% of patients with HIV infection each year, increasing the potential for transmission of drug-resistant Mycobacterium tuberculosis strains. In this paper a deterministic model is presented and studied for the transmission of TB-HIV/AIDS co-infection. Optimal control theory is then applied to investigate optimal strategies for controlling the spread of the disease using treatment of infected individuals with TB as the system control variables. Various combination strategies were examined so as to investigate the impact of the controls on the spread of the disease. And incremental cost-effectiveness ratio (ICER) was used to investigate the cost effectiveness of all the control strategies. Our results show that the implementation of the combination strategy involving the prevention of treatment failure in drug-sensitive TB infectious individuals and the treatment of individuals with drug-resistant TB is the most cost-effective control strategy. Similar results were obtained with different objective functionals involving the minimization of the number of individuals with drug-sensitive TB-only and drug-resistant TB-only with the efforts involved in applying the control. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
The genome sequence strain 104 of the opportunistic pathogen Mycobacterium avium was isolated form an adult AIDS patient in Southern California in 1983. Isolates of non-paratuberculosis M. avium from 207 other patients in Southern California and elsewhere were examined for genoty...
Mycobacterium ahvazicum sp. nov., the nineteenth species of the Mycobacterium simiae complex.
Bouam, Amar; Heidarieh, Parvin; Shahraki, Abodolrazagh Hashemi; Pourahmad, Fazel; Mirsaeidi, Mehdi; Hashemzadeh, Mohamad; Baptiste, Emeline; Armstrong, Nicholas; Levasseur, Anthony; Robert, Catherine; Drancourt, Michel
2018-03-07
Four slowly growing mycobacteria isolates were isolated from the respiratory tract and soft tissue biopsies collected in four unrelated patients in Iran. Conventional phenotypic tests indicated that these four isolates were identical to Mycobacterium lentiflavum while 16S rRNA gene sequencing yielded a unique sequence separated from that of M. lentiflavum. One representative strain AFP-003 T was characterized as comprising a 6,121,237-bp chromosome (66.24% guanosine-cytosine content) encoding for 5,758 protein-coding genes, 50 tRNA and one complete rRNA operon. A total of 2,876 proteins were found to be associated with the mobilome, including 195 phage proteins. A total of 1,235 proteins were found to be associated with virulence and 96 with toxin/antitoxin systems. The genome of AFP-003 T has the genetic potential to produce secondary metabolites, with 39 genes found to be associated with polyketide synthases and non-ribosomal peptide syntases and 11 genes encoding for bacteriocins. Two regions encoding putative prophages and three OriC regions separated by the dnaA gene were predicted. Strain AFP-003 T genome exhibits 86% average nucleotide identity with Mycobacterium genavense genome. Genetic and genomic data indicate that strain AFP-003 T is representative of a novel Mycobacterium species that we named Mycobacterium ahvazicum, the nineteenth species of the expanding Mycobacterium simiae complex.
Sechi, Leonardo A.; Leori, Guido; Lollai, Stefano A.; Duprè, Ilaria; Molicotti, Paola; Fadda, Giovanni; Zanetti, Stefania
1999-01-01
Different genetic markers were used to analyze 22 Mycobacterium bovis strains isolated from cattle in Sardinia and one human isolate. IS6110 DNA fingerprinting differentiated the strains into six patterns, whereas with enterobacterial repetitive consensus sequence primers produced seven clusters. PCR ribotyping followed by digestion with HaeIII and PvuII produced five and seven patterns, respectively. PCR with the (GTG)5 oligonucleotide primer showed the best discriminatory power, generating eight clusters among the strains analyzed. PMID:10103282
Rodríguez, Juan Germán; Pino, Camilo; Tauch, Andreas
2015-01-01
We report here the whole-genome sequence of the multidrug-resistant Beijing-like strain Mycobacterium tuberculosis 323, isolated from a 15-year-old female patient who died shortly after the initiation of second-line drug treatment. This strain is representative of the Beijing-like isolates from Colombia, where this lineage is becoming a public health concern. PMID:25931600
Mattow, J; Jungblut, P R; Schaible, U E; Mollenkopf, H J; Lamer, S; Zimny-Arndt, U; Hagens, K; Müller, E C; Kaufmann, S H
2001-08-01
A proteome approach, combining high-resolution two-dimensional electrophoresis (2-DE) with mass spectrometry, was used to compare the cellular protein composition of two virulent strains of Mycobacterium tuberculosis with two attenuated strains of Mycobacterium bovis Bacillus Calmette-Guerin (BCG), in order to identify unique proteins of these strains. Emphasis was given to the identification of M. tuberculosis specific proteins, because we consider these proteins to represent putative virulence factors and interesting candidates for vaccination and diagnosis of tuberculosis. The genome of M. tuberculosis strain H37Rv comprises nearly 4000 predicted open reading frames. In contrast, the separation of proteins from whole mycobacterial cells by 2-DE resulted in silver-stained patterns comprising about 1800 distinct protein spots. Amongst these, 96 spots were exclusively detected either in the virulent (56 spots) or in the attenuated (40 spots) mycobacterial strains. Fifty-three of these spots were analyzed by mass spectrometry, of which 41 were identified, including 32 M. tuberculosis specific spots. Twelve M. tuberculosis specific spots were identified as proteins, encoded by genes previously reported to be deleted in M. bovis BCG. The remaining 20 spots unique for M. tuberculosis were identified as proteins encoded by genes that are not known to be missing in M. bovis BCG.
Asif, Siddiqui M; Asad, Amir; Faizan, Ahmad; Anjali, Malik S; Arvind, Arya; Neelesh, Kapoor; Hirdesh, Kumar; Sanjay, Kumar
2009-12-31
Mycobacterium tuberculosis is the causative agent of the disease, tuberculosis and H37Rv is the most studied clinical strain. We use comparative genome analysis of Mycobacterium tuberculosis H37Rv and human for the identification of potential targets dataset. We used DEG (Database of Essential Genes) to identify essential genes in the H37Rv strain. The analysis shows that 628 of the 3989 genes in Mycobacterium tuberculosis H37Rv were found to be essential of which 324 genes lack similarity to the human genome. Subsequently hypothetical proteins were removed through manual curation. This further resulted in a dataset of 135 proteins with essential function and no homology to human.
Draft Genome Sequence of Mycobacterium chimaera Type ...
We report the draft genome sequence of the type strain Mycobacterium chimaera Fl-0169T, a member of the Mycobacterium avium complex (MAC). M. chimaera Fl-0169T was isolated from a patient in Italy and is highly similar to strains of M. chimaera isolated in Ireland, though Fl-0169T possesses unique virulence genes. Evidence suggests that M. avium, M. intracellulare, and M. chimaera are differently virulent and a comparative genomic analysis is critically needed to identify diagnostic targets that reliably differentiate species of MAC. With treatment costs for Mycobacterium infections estimated to be >$1.8 B annually in the U.S., correct species identification will result in improved treatment selection, lower costs, and improved patient outcomes.
Sweeney, Noreena L.; Lipker, Lauren; Hanson, Alicia M.; Bohl, Chris J.; Engel, Katie E.; Kalous, Kelsey S.; Stemper, Mary E.; Sem, Daniel S.; Schwan, William R.
2017-01-01
The thioredoxin/thioredoxin reductase system (Trx/TrxR) is an attractive drug target because of its involvement in a number of important physiological processes, from DNA synthesis to regulating signal transduction. This study describes the finding of pyrazolone compounds that are active against Staphylococcus aureus. Initially, the project was focused on discovering small molecules that may have antibacterial properties targeting the Mycobacterium tuberculosis thioredoxin reductase. This led to the discovery of a pyrazolone scaffold-containing compound series that showed bactericidal capability against S. aureus strains, including drug-resistant clinical isolates. The findings support continued development of the pyrazolone compounds as potential anti-S. aureus antibiotics. PMID:28134858
Bim is a crucial regulator of apoptosis induced by Mycobacterium tuberculosis
Aguiló, N; Uranga, S; Marinova, D; Martín, C; Pardo, J
2014-01-01
Mycobacterium tuberculosis, the causative agent of tuberculosis, induces apoptosis in infected macrophages in vitro and in vivo. However, the molecular mechanism controlling this process is not known. In order to study the involvement of the mitochondrial apoptotic pathway in M. tuberculosis-induced apoptosis, we analysed cell death in M. tuberculosis-infected embryonic fibroblasts (MEFs) derived from different knockout mice for genes involved in this route. We found that apoptosis induced by M. tuberculosis is abrogated in the absence of Bak and Bax, caspase 9 or the executioner caspases 3 and 7. Notably, we show that MEF deficient in the BH3-only BCL-2-interacting mediator of cell death (Bim) protein were also resistant to this process. The relevance of these results has been confirmed in the mouse macrophage cell line J774, where cell transfection with siRNA targeting Bim impaired apoptosis induced by virulent mycobacteria. Notably, only infection with a virulent strain, but not with attenuated ESX-1-defective strains, such as Bacillus Calmette-Guerin and live-attenuated M. tuberculosis vaccine strain MTBVAC, induced Bim upregulation and apoptosis, probably implicating virulence factor early secreted antigenic target 6-kDa protein in this process. Our results suggest that Bim upregulation and apoptosis is mediated by the p38MAPK-dependent pathway. Our findings show that Bim is a master regulator of apoptosis induced by M. tuberculosis. PMID:25032866
Draft Genome Sequence of Mycobacterium bohemicum Strain DSM 44277T.
Asmar, Shady; Phelippeau, Michael; Robert, Catherine; Croce, Olivier; Drancourt, Michel
2015-08-06
The Mycobacterium bohemicum strain is a nontuberculosis species mainly responsible for pediatric cervical lymphadenitis. The draft genome of M. bohemicum DSM 44277(T) comprises 5,097,190 bp exhibiting a 68.64% G+C content, 4,840 protein-coding genes, and 75 predicted RNA genes. Copyright © 2015 Asmar et al.
Vilaplana, Cristina; Velasco, Juan; Pluvinet, Raquel; Santín, Sheila; Prat, Cristina; Julián, Esther; Alcaide, Fernando; Comas, Iñaki; Sumoy, Lauro; Cardona, Pere-Joan
2015-01-01
We present here the draft genome sequences of two Mycobacterium setense strains. One of them corresponds to the M. setense type strain DSM-45070, originally isolated from a patient with a posttraumatic chronic skin abscess. The other one corresponds to the nonpathogenic M. setense strain Manresensis, isolated from the Cardener River crossing Manresa, Catalonia, Spain. A comparative genomic analysis shows a smaller genome size and fewer genes in M. setense strain Manresensis relative to those of the type strain, and it shows the genome segments unique to each strain. PMID:25657273
Lu, Jun; Jiang, Shan; Ye, Song; Deng, Yun; Ma, Shuai; Li, Chao-Pin
2014-04-01
The aim of the present study was to investigate the mutational characteristics of the drug‑resistant Mycobacterium tuberculosis L‑form of the rpoB gene isolated from patients with pneumoconiosis complicated by tuberculosis, in order to reduce the occurrence of the drug resistance of patients and gain a more complete information on the resistance of the Mycobacterium tuberculosis L‑form. A total of 42 clinically isolated strains of Mycobacterium tuberculosis L‑form were collected, including 31 drug‑resistant strains. The genomic DNA was extracted, then the target genes were amplified by polymerase chain reaction and the hot mutational regions of the rpoB gene were analyzed by direct sequencing. The results revealed that no rpoB gene mutation was present in 11 rifampicin (RFP)‑sensitive strains, while conformational changes were identified in 31 RFP‑resistant strains. The mutation rate was 93.55% (29/31) in the resistant strains, and was frequently concentrated in codons 531 (51.61%; 16/31) and 526 (32.26%; 10/31), mainly occurring by case substitutions, including 27 unit point mutations and two two‑point mutations. The novel mutation identified in codon 516 had not been previously reported. The substitution of highly‑conserved amino acids encoded by the rpoB gene resulted in the molecular mechanism responsible for RFP resistance in the Mycobacterium tuberculosis L‑form. This also demonstrated that the rpoB gene is diversiform.
Maltez, Fernando; Martins, Teresa; Póvoas, Diana; Cabo, João; Peres, Helena; Antunes, Francisco; Perdigão, João; Portugal, Isabel
2017-03-31
Beijing family strains of Mycobacterium tuberculosis are associated with multidrug-resistance. Although strains of the Lisboa family are the most common among multidrug-resistant and extensively drug-resistant patients in the region, several studies have reported the presence of the Beijing family. However, the features of patients from whom they were isolated, are not yet known. Retrospective study involving 104 multidrug-resistant and extensively drug-resistant strains of Mycobacterium tuberculosis, from the same number of patients, isolated and genotyped between 1993 and 2015 in Lisbon. We assessed the prevalence of strains of both families and the epidemiologic and clinical features of those infected with Beijing family strains. Seventy-four strains (71.2%) belonged to the Lisboa family, 25 (24.0%) showed a unique genotypic pattern and five (4.8%) belonged to the Beijing family, the latter identified after 2009. Those infected with Beijing family strains were angolan (n = 1), ukrainian (n = 2) and portuguese (n = 2), mainly young-aged and, four of five immunocompetent and with no past history of tuberculosis. All had multidrug-resistant tuberculosis. We did not find any distinctive clinical or radiological features, neither a predominant resistance pattern. Cure rate was high (four patients). Although the number of infected patients with Beijing strains was small, it suggests an important proportion of primary tuberculosis, a potential for transmission in the community but also a better clinical outcome when compared to other reported strains, such as W-Beijing and Lisboa. Although Lisboa family strains account for most of the multidrug and extensively drug-resistant tuberculosis cases in Lisbon area, Beijing strains are transmitted in the city and might change the local characteristics of the epidemics.
Aga, Roxanne S.; Fair, Elizabeth; Abernethy, Neil F.; DeRiemer, Kathryn; Paz, E. Antonio; Kawamura, L. Masae; Small, Peter M.; Kato-Maeda, Midori
2006-01-01
We describe a microevolutionary event of a prevalent strain of Mycobacterium tuberculosis that caused two outbreaks in San Francisco. During the second outbreak, a direct variable repeat was lost. We discuss the mechanisms of this change and the implications of analyzing multiple genetic loci in this context. PMID:16597893
We report the draft genome sequences of four Mycobacterium chelonae group strains from biofilms obtained after a ‘chlorine burn’ in a chloraminated drinking water distribution system simulator. These opportunistic pathogens have been detected in drinking and hospital water distr...
USDA-ARS?s Scientific Manuscript database
The immune responses of 390 BALB/c mice fed the probiotic Lactobacillus acidophilus strain NP51® and infected with Mycobacterium avium subspecies paratuberculosis (MAP) were evaluated in a 6-month trial. Mice were randomized to nine treatment groups fed either viable- or heat-killed NP51 and inocula...
In vitro activity of cefoxitin and imipenem against Mycobacterium abscessus complex.
Lavollay, M; Dubée, V; Heym, B; Herrmann, J-L; Gaillard, J-L; Gutmann, L; Arthur, M; Mainardi, J-L
2014-05-01
The in vitro activity of cefoxitin and imipenem was compared for 43 strains of the Mycobacterium abscessus complex, mostly isolated from cystic fibrosis patients. The MICs of imipenem were lower than those of cefoxitin, although the number of imipenem-resistant strains was higher according to the CLSI breakpoints. Strain comparisons indicated that the MICs of cefoxitin were significantly higher for Mycobacterium bolletii than for M. abscessus. The MICs of both β-lactams were higher for the rough morphotype than for the smooth morphotype. The clinical impact of the in vitro difference between the activity of imipenem and that of cefoxitin remains to be determined. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.
Nogueira, Christiane Lourenço; Whipps, Christopher M.; Matsumoto, Cristianne Kayoko; Chimara, Erica; Droz, Sara; Tortoli, Enrico; de Freitas, Denise; Cnockaert, Margo; Palomino, Juan Carlos; Martin, Anandi; Vandamme, Peter
2015-01-01
Five isolates of non-pigmented, rapidly growing mycobacteria were isolated from three patients and, in an earlier study, from zebrafish. Phenotypic and molecular tests confirmed that these isolates belong to the Mycobacterium chelonae–Mycobacterium abscessus group, but they could not be confidently assigned to any known species of this group. Phenotypic analysis and biochemical tests were not helpful for distinguishing these isolates from other members of the M. chelonae–M. abscessus group. The isolates presented higher drug resistance in comparison with other members of the group, showing susceptibility only to clarithromycin. The five isolates showed a unique PCR restriction analysis pattern of the hsp65 gene, 100 % similarity in 16S rRNA gene and hsp65 sequences and 1–2 nt differences in rpoB and internal transcribed spacer (ITS) sequences. Phylogenetic analysis of a concatenated dataset including 16S rRNA gene, hsp65, and rpoB sequences from type strains of more closely related species placed the five isolates together, as a distinct lineage from previously described species, suggesting a sister relationship to a group consisting of M. chelonae, Mycobacterium salmoniphilum, Mycobacterium franklinii and Mycobacterium immunogenum. DNA–DNA hybridization values >70 % confirmed that the five isolates belong to the same species, while values < 70 % between one of the isolates and the type strains of M. chelonae and M. abscessus confirmed that the isolates belong to a distinct species. The polyphasic characterization of these isolates, supported by DNA–DNA hybridization results, demonstrated that they share characteristics with M. chelonae–M. abscessus members, but constitute a different species, for which the name Mycobacterium saopaulense sp. nov. is proposed. The type strain is EPM 10906T ( = CCUG 66554T = LMG 28586T = INCQS 0733T). PMID:26358475
Kim, Byoung-Jun; Kim, Ga-Na; Kim, Bo-Ram; Jeon, Che Ok; Jeong, Joseph; Lee, Seon Ho; Lim, Ji-Hun; Lee, Seung-Heon; Kim, Chang Ki; Kook, Yoon-Hoh; Kim, Bum-Joon
2017-10-01
Three rapidly growing mycobacterial strains, QIA-37 T , QIA-40 and QIA-41, were isolated from the lymph nodes of three separate Korean native cattle, Hanwoo (Bos taurus coreanae). These strains were previously shown to be phylogenetically distinct but closely related to Mycobacterium chelonae ATCC 35752 T by taxonomic approaches targeting three genes (16S rRNA, hsp6 and rpoB) and were further characterized using a polyphasic approach in this study. The 16S rRNA gene sequences of all three strains showed 99.7 % sequence similarity with that of the M. chelonae type strain. A multilocus sequence typing analysis targeting 10 housekeeping genes, including hsp65 and rpoB, revealed a phylogenetic cluster of these strains with M. chelonae. DNA-DNA hybridization values of 78.2 % between QIA-37 T and M. chelonae indicated that it belongs to M. chelonae but is a novel subspecies distinct from M. chelonae. Phylogenetic analysis based on whole-genome sequences revealed a 95.44±0.06 % average nucleotide identity (ANI) value with M. chelonae, slightly higher than the 95.0 % ANI criterion for determining a novel species. In addition, distinct phenotypic characteristics such as positive growth at 37 °C, at which temperature M. chelonae does not grow, further support the taxonomic status of these strains as representatives of a novel subspecies of M. chelonae. Therefore, we propose an emended description of Mycobacterium chelonae, and descriptions of M. chelonae subsp. chelonae subsp. nov. and M. chelonae subsp. bovis subsp. nov. are presented; strains ATCC 35752 T (=CCUG 47445 T =CIP 104535 T =DSM 43804 T =JCM 6388 T =NCTC 946 T ) and QIA-37 T (=KCTC 39630 T =JCM 30986 T ) are the type strains of the two novel subspecies.
Datta, Gargi; Nieto, Luisa M; Davidson, Rebecca M; Mehaffy, Carolina; Pederson, Caroline; Dobos, Karen M; Strong, Michael
2016-05-01
Tuberculosis (TB) is one of the leading causes of death due to an infectious disease in the world. Understanding the mechanisms of drug resistance has become pivotal in the detection and treatment of newly emerging resistant TB cases. We have analyzed three pairs of Mycobacterium tuberculosis strains pre- and post-drug treatment to identify mutations involved in the progression of resistance to the drugs rifampicin and isoniazid. In the rifampicin resistant strain, we confirmed a mutation in rpoB (S450L) that is known to confer resistance to rifampicin. We discovered a novel L101R mutation in the katG gene of an isoniazid resistant strain, which may directly contribute to isoniazid resistance due to the proximity of the mutation to the katG isoniazid-activating site. Another isoniazid resistant strain had a rare mutation in the start codon of katG. We also identified a number of mutations in each longitudinal pair, such as toxin-antitoxin mutations that may influence the progression towards resistance or may play a role in compensatory fitness. These findings improve our knowledge of drug resistance progression during therapy and provide a methodology to monitor longitudinal strains using whole genome sequencing, polymorphism comparison, and functional annotation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
BIOLOGICAL AND CHEMICAL STUDIES ON MYCOBACTERIA
Fregnan, G. B.; Smith, D. W.; Randall, H. M.
1961-01-01
Fregnan, G. B. (University of Wisconsin, Madison), D. W. Smith, and H. M. Randall. Biological and chemical studies on mycobacteria. Relationship of colony morphology to mycoside content for Mycobacterium kansasii and Mycobacterium fortuitum. J. Bacteriol. 82:517–527. 1961.—Using a suitable technique and an adequate medium it was possible to show a unique and uniform type of colony characteristic for Mycobacterium kansasii (photochromogen) and for Mycobacterium fortuitum strains freshly isolated either from patients, or from the soil, or kept in our stock culture collection for several years. New symbols have been proposed to represent these colony types. It was demonstrated that colony morphology is closely related to the specific mycoside present in a given strain; for example, M. kansasii strains showed in each instance colony type K and mycoside A, and M. fortuitum strains showed colony type F and mycoside F. Attention is called to the importance of the technique and the medium used. No change in colony morphology resulted from incubation in the presence of air containing 5 to 10% CO2, although this improved growth. Better growth of mycobacteria occurred in the presence of glycerol, or lipids of a human strain of mycobacteria, or sodium bicarbonate, but the specificity of colony form was lost. Images PMID:13894938
Extended spectrum of antibiotic susceptibility for tuberculosis, Djibouti.
Bouzid, Fériel; Astier, Hélène; Osman, Djaltou Aboubaker; Javelle, Emilie; Hassan, Mohamed Osman; Simon, Fabrice; Garnotel, Eric; Drancourt, Michel
2018-02-01
In the Horn of Africa, there is a high prevalence of tuberculosis that is reported to be partly driven by multidrug-resistant (MDR) Mycobacterium tuberculosis strictu sensu strains. We conducted a prospective study to investigate M. tuberculosis complex species causing tuberculosis in Djibouti, and their in vitro susceptibility to standard anti-tuberculous antibiotics in addition to clofazimine, minocycline, chloramphenicol and sulfadiazine. Among the 118 mycobacteria isolates from 118 successive patients with suspected pulmonary tuberculosis, 111 strains of M. tuberculosis, five Mycobacterium canettii, one 'Mycobacterium simulans' and one Mycobacterium kansasii were identified. Drug-susceptibility tests performed on the first 78 isolates yielded nine MDR M. tuberculosis isolates. All isolates were fully susceptible to clofazimine, minocycline and chloramphenicol, and 75 of 78 isolates were susceptible to sulfadiazine. In the Horn of Africa, patients with confirmed pulmonary tuberculosis caused by an in vitro susceptible strain may benefit from anti-leprosy drugs, sulfamides and phenicol antibiotics. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Proteome analysis of the Mycobacterium tuberculosis Beijing B0/W148 cluster
Bespyatykh, Julia; Shitikov, Egor; Butenko, Ivan; Altukhov, Ilya; Alexeev, Dmitry; Mokrousov, Igor; Dogonadze, Marine; Zhuravlev, Viacheslav; Yablonsky, Peter; Ilina, Elena; Govorun, Vadim
2016-01-01
Beijing B0/W148, a “successful” clone of Mycobacterium tuberculosis, is widespread in the Russian Federation and some countries of the former Soviet Union. Here, we used label-free gel-LC-MS/MS shotgun proteomics to discover features of Beijing B0/W148 strains that could explain their success. Qualitative and quantitative proteome analyses of Beijing B0/W148 strains allowed us to identify 1,868 proteins, including 266 that were differentially abundant compared with the control strain H37Rv. To predict the biological effects of the observed differences in protein abundances, we performed Gene Ontology analysis together with analysis of protein-DNA interactions using a gene regulatory network. Our results demonstrate that Beijing B0/W148 strains have increased levels of enzymes responsible for long-chain fatty acid biosynthesis, along with a coincident decrease in the abundance of proteins responsible for their degradation. Together with high levels of HsaA (Rv3570c) protein, involved in steroid degradation, these findings provide a possible explanation for the increased transmissibility of Beijing B0/W148 strains and their survival in host macrophages. Among other, we confirmed a very low level of the SseA (Rv3283) protein in Beijing B0/W148 characteristic for all «modern» Beijing strains, which could lead to increased DNA oxidative damage, accumulation of mutations, and potentially facilitate the development of drug resistance. PMID:27356881
A Mycobacterium Strain with Extended Capacities for Degradation of Gasoline Hydrocarbons
Solano-Serena, Floriane; Marchal, Rémy; Casarégola, Serge; Vasnier, Christelle; Lebeault, Jean-Michel; Vandecasteele, Jean-Paul
2000-01-01
A bacterial strain (strain IFP 2173) was selected from a gasoline-polluted aquifer on the basis of its capacity to use 2,2,4-trimethylpentane (isooctane) as a sole carbon and energy source. This isolate, the first isolate with this capacity to be characterized, was identified by 16S ribosomal DNA analysis, and 100% sequence identity with a reference strain of Mycobacterium austroafricanum was found. Mycobacterium sp. strain IFP 2173 used an unusually wide spectrum of hydrocarbons as growth substrates, including n-alkanes and multimethyl-substituted isoalkanes with chains ranging from 5 to 16 carbon atoms long, as well as substituted monoaromatic hydrocarbons. It also attacked ethers, such as methyl t-butyl ether. During growth on gasoline, it degraded 86% of the substrate. Our results indicated that strain IFP 2173 was capable of degrading 3-methyl groups, possibly by a carboxylation and deacetylation mechanism. Evidence that it attacked the quaternary carbon atom structure by an as-yet-undefined mechanism during growth on 2,2,4-trimethylpentane and 2,2-dimethylpentane was also obtained. PMID:10831416
Bacteriological and virulence study of a Mycobacterium chimaera isolate from a patient in China.
Liu, Guan; Chen, Su-Ting; Yu, Xia; Li, Yu-Xun; Ling, Ying; Dong, Ling-Ling; Zheng, Su-Hua; Huang, Hai-Rong
2015-04-01
A clinical isolate from a patient was identified as Mycobacterium chimaera, a recently identified species of nontuberculous Mycobacteria. The biochemical and molecular identity, drug sensitivity and virulence of this isolated strain were investigated. 16S rRNA, the 16S-23S ITS, hsp65 and rpoB were amplified, and their sequence similarities with other mycobacteria were analyzed. The minimum inhibitory concentrations of 22 anti-microbial agents against this isolate were established, and the virulence of the isolate was evaluated by intravenous injection into C57BL/6 mice using Mycobacterium tuberculosis H37Rv as a control strain. Growth and morphological characteristics and mycolic acid profile analysis revealed that this isolated strain was a member of the Mycobacterium avium complex. BLAST analysis of the amplified sequences showed that the isolated strain was closely related to M. chimaera. Susceptibility testing showed that the isolate was sensitive to rifabutin, rifapentine, clarithromycin, azithromycin, imipenem and cefoxitin. Bacterial load determination and tissue histopathology of the infected mice indicated that the isolate was highly virulent. The first case of M. chimaera infection in China was evaluated. The information derived from this case may offer valuable guidance for clinical diagnosis and treatment.
Lopes Ferreira, Nicolas; Mathis, Hugues; Labbé, Diane; Monot, Frédéric; Greer, Charles W; Fayolle-Guichard, Françoise
2007-06-01
Mycobacterium austroafricanum IFP 2012, which grows on methyl tert-butyl ether (MTBE) and on tert-butyl alcohol (TBA), the main intermediate of MTBE degradation, also grows on a broad range of n-alkanes (C2 to C16). A single alkB gene copy, encoding a non-heme alkane monooxygenase, was partially amplified from the genome of this bacterium. Its expression was induced after growth on n-propane, n-hexane, n-hexadecane and on TBA but not after growth on LB. The capacity of other fast-growing mycobacteria to grow on n-alkanes (C1 to C16) and to degrade TBA after growth on n-alkanes was compared to that of M. austroafricanum IFP 2012. We studied M. austroafricanum IFP 2012 and IFP 2015 able to grow on MTBE, M. austroafricanum IFP 2173 able to grow on isooctane, Mycobacterium sp. IFP 2009 able to grow on ethyl tert-butyl ether (ETBE), M. vaccae JOB5 (M. austroaafricanum ATCC 29678) able to degrade MTBE and TBA and M. smegmatis mc2 155 with no known degradation capacity towards fuel oxygenates. The M. austroafricanum strains grew on a broad range of n-alkanes and three were able to degrade TBA after growth on propane, hexane and hexadecane. An alkB gene was partially amplified from the genome of all mycobacteria and a sequence comparison demonstrated a close relationship among the M. austroafricanum strains. This is the first report suggesting the involvement of an alkane hydroxylase in TBA oxidation, a key step during MTBE metabolism.
Daniel, Jaiyanth; Sirakova, Tatiana; Kolattukudy, Pappachan
2014-01-01
Latent infection with dormant Mycobacterium tuberculosis is one of the major reasons behind the emergence of drug-resistant strains of the pathogen worldwide. In its dormant state, the pathogen accumulates lipid droplets containing triacylglycerol synthesized from fatty acids derived from host lipids. In this study, we show that Rv1206 (FACL6), which is annotated as an acyl-CoA synthetase and resembles eukaryotic fatty acid transport proteins, is able to stimulate fatty acid uptake in E. coli cells. We show that purified FACL6 displays acyl-coenzyme A synthetase activity with a preference towards oleic acid, which is one of the predominant fatty acids in host lipids. Our results indicate that the expression of FACL6 protein in Mycobacterium tuberculosis is significantly increased during in vitro dormancy. The facl6-deficient Mycobacterium tuberculosis mutant displayed a diminished ability to synthesize acyl-coenzyme A in cell-free extracts. Furthermore, during in vitro dormancy, the mutant synthesized lower levels of intracellular triacylglycerol from exogenous fatty acids. Complementation partially restored the lost function. Our results suggest that FACL6 modulates triacylglycerol accumulation as the pathogen enters dormancy by activating fatty acids.
Ichikawa, Kazuya; van Ingen, Jakko; Koh, Won-Jung; Wagner, Dirk; Salfinger, Max; Inagaki, Takayuki; Uchiya, Kei-Ichi; Nakagawa, Taku; Ogawa, Kenji; Yamada, Kiyofumi; Yagi, Tetsuya
2015-12-01
Mycobacterium avium complex (MAC) infections are increasing annually in many countries. MAC strains are the most common nontuberculous mycobacterial pathogens isolated from respiratory samples and predominantly consist of two species, Mycobacterium avium and Mycobacterium intracellulare. The aim of this study was to analyze the molecular epidemiology and genetic backgrounds of clinical MAC isolates collected from The Netherlands, Germany, United States, Korea and Japan. Variable numbers of tandem repeats (VNTR) analysis was used to examine the genetic relatedness of clinical isolates of M. avium subsp. hominissuis (n=261) and M. intracellulare (n=116). Minimum spanning tree and unweighted pair group method using arithmetic averages analyses based on the VNTR data indicated that M. avium subsp. hominissuis isolates from Japan shared a high degree of genetic relatedness with Korean isolates, but not with isolates from Europe or the United States, whereas M. intracellulare isolates did not show any specific clustering by geographic origin. The findings from the present study indicate that strains of M. avium subsp. hominissuis, but not M. intracellulare, exhibit geographical differences in genetic diversity and imply that MAC strains may have different sources, routes of transmission and perhaps clinical manifestations. Copyright © 2015 Elsevier B.V. All rights reserved.
Valdés, Iliana; Montoro, Ernesto; Mata-Espinoza, Dulce; Asín, Odalys; Barrios-Payan, Jorge; Francisco-Cruz, Alejandro; Valdivia, José Antonio; Hernández-Pando, Rogelio
2014-01-01
Mycobacterium habana was isolated in Cuba in 1971. Later, was demonstrated its protection capacity in mycobacterial infection. Here we determined the level of virulence, immunogenicity and the efficacy of three different M. habana strains as attenuated live vaccines. Intratracheal infection of BALB/c mice with high dose M. habana TMC 5135 or IPK-337 strains permitted 100% survival and limited tissue damage. Mice infected with M. habana IPK-220 showed lower attenuation, so it was discarded for the vaccination experiments. Strains IPK-337 and TMC 5135 were used as subcutaneous vaccine and compared with BCG. Nude mice vaccinated with strain 5135 showed longer but non-significant survival than BCG vaccinated animals. Cell suspensions from M. habana vaccinated mice produced higher IFNγ after stimulation with mycobacterial antigens than BCG recipients. After four months of challenge with Mycobacterium tuberculosis strain H37Rv, mice vaccinated with BCG substrain Phipps or strain TMC 5135 showed total survival, while 60% survival was exhibited by animals vaccinated with M. habana IPK-337. Both M. habana strains do not prevent the infection with M. tuberculosis but avoided the progression of the experimental disease; strain TMC 5135 showed similar level of protection than BCG. Copyright © 2013 Elsevier Ltd. All rights reserved.
Saelens, Joseph W.; Lau-Bonilla, Dalia; Moller, Anneliese; Medina, Narda; Guzmán, Brenda; Calderón, Maylena; Herrera, Raúl; Sisk, Dana M.; Xet-Mull, Ana M.; Stout, Jason E.; Arathoon, Eduardo; Samayoa, Blanca; Tobin, David M.
2015-01-01
Summary Limited data are available regarding the molecular epidemiology of Mycobacterium tuberculosis (Mtb) strains circulating in Guatemala. Beijing-lineage Mtb strains have gained prevalence worldwide and are associated with increased virulence and drug resistance, but there have been only a few cases reported in Central America. Here we report the first whole genome sequencing of Central American Beijing-lineage strains of Mtb. We find that multiple Beijing-lineage strains, derived from independent founding events, are currently circulating in Guatemala, but overall still represent a relatively small proportion of disease burden. Finally, we identify a specific Beijing-lineage outbreak centered on a poor neighborhood in Guatemala City. PMID:26542222
Koeck, J L; Bernatas, J J; Gerome, P; Fabre, M; Houmed, A; Herve, V; Teyssou, R
2002-01-01
Tuberculosis is a major cause of death in the Republic of Djibouti. Tuberculous lymphadenitis represents about 25% of the clinical forms of tuberculosis in this country. Between January 1999 and April 1999, 196 lymph node specimens were consecutively collected from 153 patients living in Djibouti. Testing of susceptibility to the major anti-tuberculosis drugs was performed by the proportion method. Growth of Mycobacterium tuberculosis complex strains was obtained from specimens of 85 patients including 9 with prior treatment. Strains were identified as Mycobacterium tuberculosis in 78 cases, Mycobacterium canetti in 3, Mycobacterium africanum in 3, and Mycobacterium bovis in 1. Prevalence of HIV infection was 15%. Assessment of primary resistance demonstrated that the overall resistance rate, i.e., resistance to 1 or more drugs, was 18 (21.2%). Results showed resistance to isoniazid (H) in 6 cases (7.1%), rifampicin (R) in 3 (3.5%), ethambutol (E) in 1 (1.2%), streptomycin (S) in 13 (15.3%) and pyrazinamide (Z) in 1 (1.2%). Multidrug resistance (MDR) was found in 2 cases (2.4%). Assessment of acquired resistance demonstrated resistance to H in 4 cases (44%), R in 2 (22%), S in 2 (22%), E in 0, Z in 0 and MDR in 1 (11%). These findings were not significantly different from data obtained from sputum samples analysed between 1997 and 2000 or from those described in a study conducted in 1985.
Jaén-Luchoro, Daniel; Aliaga-Lozano, Francisco; Gomila, Rosa Maria; Gomila, Margarita; Salvà-Serra, Francisco; Lalucat, Jorge; Bennasar-Figueras, Antoni
2017-01-01
A putative type II toxin-antitoxin (TA) system was found in the clinical isolate Mycobacterium sp. MHSD3, a strain closely related to Mycobacterium chelonae. Further analyses of the protein sequences of the two genes revealed the presence of domains related to a TA system. BLAST analyses indicated the presence of closely related proteins in the genomes of other recently published M. chelonae strains. The functionality of both elements of the TA system was demonstrated when expressed in Escherichia coli cells, and the predicted structure of the toxin is very similar to those of well-known zeta-toxins, leading to the definition of a type II TA system similar to epsilon/zeta TA systems in strains that are closely related to M. chelonae.
Mycobacterium bovis and Other Uncommon Members of the Mycobacterium tuberculosis Complex.
Esteban, Jaime; Muñoz-Egea, Maria-Carmen
2016-12-01
Since its discovery by Theobald Smith, Mycobacterium bovis has been a human pathogen closely related to animal disease. At present, M. bovis tuberculosis is still a problem of importance in many countries and is considered the main cause of zoonotic tuberculosis throughout the world. Recent development of molecular epidemiological tools has helped us to improve our knowledge about transmission patterns of this organism, which causes a disease indistinguishable from that caused by Mycobacterium tuberculosis. Diagnosis and treatment of this mycobacterium are similar to those for conventional tuberculosis, with the important exceptions of constitutive resistance to pyrazinamide and the fact that multidrug-resistant and extremely drug-resistant M. bovis strains have been described. Among other members of this complex, Mycobacterium africanum is the cause of many cases of tuberculosis in West Africa and can be found in other areas mainly in association with immigration. M. bovis BCG is the currently available vaccine for tuberculosis, but it can cause disease in some patients. Other members of the M. tuberculosis complex are mainly animal pathogens with only exceptional cases of human disease, and there are even some strains, like "Mycobacterium canettii," which is a rare human pathogen that could have an important role in the knowledge of the evolution of tuberculosis in the history.
Mycobacterium intermedium sp. nov.
Meier, A; Kirschner, P; Schröder, K H; Wolters, J; Kroppenstedt, R M; Böttger, E C
1993-04-01
Strains of a new type of slowly growing mycobacterium were repeatedly isolated from sputum from a patient with pulmonary disease. This photochromogenic organism grew at 22, 31, 37, and 41 degrees C, possessed catalase, acid phosphatase, esterase, beta-galactosidase, and arylsulfatase activities, and hydrolyzed Tween. It did not produce nicotinic acid or have nitrate reductase, acetamidase, benzamidase, isonicotinamidase, nicotinamidase, pyrazinamidase, succinidamidase, and acid phosphatase activities. Urease activity was variable. The organism is susceptible to ethambutol and resistant to isoniazid and streptomycin. A mycolic acid analysis revealed the presence of alpha-mycolates, alpha'-mycolates, and keto-mycolates. The results of comparative 16S rRNA sequencing placed this organism at an intermediate position between the rapidly and slowly growing mycobacteria. On the basis of the pattern of enzymatic activities and metabolic properties, the results of fatty acid analyses, and the unique 16S rRNA sequence, we propose that this organism represents a new species, for which we propose the name Mycobacterium intermedium. The type strain is strain 1669/91; a culture of this strain has been deposited in the Deutsche Sammlung von Mikroorganismen und Zellkulturen as strain DSM 44049.
Alonso, Henar; Gavín, Patricia; Hernández-Febles, Melissa; Campos-Herrero, María Isolina; Copado, Rodolfo; Cañas, Fernando; Kremer, Kristin; Caminero, José Antonio; Martín, Carlos; Samper, Sofía
2012-01-01
The development of a rapid test to identify Mycobacterium tuberculosis Beijing isolates and specifically strain GC1237, coming from a sub-Saharan country, is needed due to its alarming wide spread on Gran Canaria Island (Spain). A rapid test that detects IS6110 present between dnaA and dnaN in the Beijing strains and in a specific site for GC1237 (Rv2180c) has been developed. This test would be a useful tool in the surveillance of subsequent cases. PMID:22116140
Spheroplastic phase of mycobacteria isolated from patients with Crohn's disease.
Chiodini, R J; Van Kruiningen, H J; Thayer, W R; Coutu, J A
1986-01-01
Two strains of an unclassified Mycobacterium species were isolated after 18 and 30 months of incubation of media inoculated with resected intestinal tissues from patients with Crohn's disease. These strains represented the third and fourth isolates of this organism from Crohn's disease patients. Ultrastructural examination of this strain and two previously isolated strains revealed the presence of spheroplasts which eventually transformed into the bacillary form of a previously unrecognized Mycobacterium species. These cell wall-deficient forms did not stain with conventional dyes and failed to grow on hypertonic media. Restriction polymorphism of the ribosomal DNA genes was used to determine the relationship between the cell wall-deficient and bacillary forms. Identical restriction patterns of the ribosomal DNA genes were found between the spheroplasts and Mycobacterium sp. isolates with EcoRI, BamHI, and XhoI restriction endonucleases, thus providing definitive evidence of their origin. Unidentified spheroplasts were isolated from an additional 12 patients with Crohn's disease, of which 7 of 10 seroagglutinated with antiserum prepared against the Mycobacterium sp. Spheroplasts were isolated from 16 of 26 (61%) patients with Crohn's disease but not from tissues of 13 patients with ulcerative colitis or 13 patients with other diseases of the bowel. These findings support the role of mycobacteria as etiologic agents in some cases of Crohn's disease. Images PMID:3760132
Wang, Guirong; Yu, Xia; Liang, Qian; Chen, Suting; Wilson, Stuart; Huang, Hairong
2013-01-01
The timely differentiation of Mycobacterium tuberculosis complex (MTC) and non-tubercular mycobacterium (NTM) species is urgently needed in patient care since the routine laboratory method is time consuming and cumbersome. An easy and cheap method which can successfully distinguish MTC from NTM was established and evaluated. 38 mycobacterial type and reference strains and 65 clinical isolates representing 10 species of mycobacterium were included in this study. Metabolites of p-nitrobenzoic acid (PNB) reduction were identified using liquid chromatography and tandem mass spectrometry (LC/MS/MS). A spectrophotometric method was developed to detect these metabolites, which was evaluated on a number of MTC and NTM species. All of the tested NTM species and strains reduced PNB to p-aminobenzoic acid (PABA), while none of the MTC strains showed a similar activity. Spectrophotometric detection of PABA had 100% sensitivity and specificity for MTC and NTM differentiation among the type strains and the clinical isolates tested. PABA was identified as one of the metabolites of PNB reduction. All the tested NTM species metabolized PNB to PABA whereas the MTC members lacked this activity. A simple, specific and cost-effective method based on PABA production was established in order to discriminate MTC from NTM from cultured organisms. PMID:24260497
Gut bacterium of Dendrobaena veneta (Annelida: Oligochaeta) possesses antimycobacterial activity.
Fiołka, Marta J; Zagaja, Mirosław P; Piersiak, Tomasz D; Wróbel, Marek; Pawelec, Jarosław
2010-09-01
The new bacterial strain with antimycobacterial activity has been isolated from the midgut of Dendrobaena veneta (Annelida). Biochemical and molecular characterization of isolates from 18 individuals identified all as Raoultella ornithinolytica genus with 99% similarity. The bacterium is a possible symbiont of the earthworm D. veneta. The isolated microorganism has shown the activity against four strains of fast-growing mycobacteria: Mycobacterium butiricum, Mycobacterium jucho, Mycobacterium smegmatis and Mycobacterium phlei. The multiplication of the gut bacterium on plates with Sauton medium containing mycobacteria has caused a lytic effect. After the incubation of the cell free extract prepared from the gut bacterium with four strains of mycobacteria in liquid Sauton medium, the cells of all tested strains were deformed and divided to small oval forms and sometimes created long filaments. The effect was observed by the use of light, transmission and scanning microscopy. Viability of all examined species of mycobacteria was significantly decreased. The antimycobacterial effect was probably the result of the antibiotic action produced by the gut bacterium of the earthworm. The application of ultrafiltration procedure allowed to demonstrate that antimicrobial substance with strong antimycobacterial activity from bacterial culture supernatant, is a protein with the molecular mass above 100 kDa. Copyright 2010 Elsevier Inc. All rights reserved.
Mixed infections in tuberculosis: The missing part in a puzzle.
Tarashi, Samira; Fateh, Abolfazl; Mirsaeidi, Mehdi; Siadat, Seyed Davar; Vaziri, Farzam
2017-12-01
The mixed strains infection phenomenon is a major problem posing serious challenges in control of tuberculosis (TB). In patients with mixed infection, several different strains of Mycobacterium tuberculosis can be isolated simultaneously. Although different genotyping methods and various molecular approaches can be employed for detection of mixed infection in clinical samples, the MIRU-VNTR technique is more sensitive with higher discriminative power than many widely used techniques. Furthermore, the recent introduction of whole genome sequencing (WGS) promises to reveal more details about mixed infection with high resolution. WGS has been used for detection of mixed infection with high sensitivity and discriminatory, but the technology is currently limited to developed countries. Mixed infection may involve strains with different susceptibility patterns, which may alter the treatment outcome. In this report, we review the current concepts of mixed strains infection and also infection involving strains with a different susceptibility pattern in TB. We evaluate the importance of identifying mixed infection for diagnosis as well as treatment and highlight the accuracy and clinical utility of direct genotyping of clinical specimens. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yoshida, Mitsunori; Fukano, Hanako; Miyamoto, Yuji; Shibayama, Keigo; Suzuki, Masato; Hoshino, Yoshihiko
2018-05-17
Mycobacterium marinum is a slowly growing, broad-host-range mycobacterial species. Here, we report the complete genome sequence of a Mycobacterium marinum type strain that was isolated from tubercles of diseased fish. This sequence will provide essential information for future taxonomic and comparative genome studies of its relatives. Copyright © 2018 Yoshida et al.
Gene Deletions in Mycobacterium bovis BCG Stimulate Increased CD8+ T Cell Responses
Panas, Michael W.; Sixsmith, Jaimie D.; White, KeriAnn; Korioth-Schmitz, Birgit; Shields, Shana T.; Moy, Brian T.; Lee, Sunhee; Schmitz, Joern E.; Jacobs, William R.; Porcelli, Steven A.; Haynes, Barton F.; Letvin, Norman L.
2014-01-01
Mycobacteria, the etiological agents of tuberculosis and leprosy, have coevolved with mammals for millions of years and have numerous ways of suppressing their host's immune response. It has been suggested that mycobacteria may contain genes that reduce the host's ability to elicit CD8+ T cell responses. We screened 3,290 mutant Mycobacterium bovis bacillus Calmette Guerin (BCG) strains to identify genes that decrease major histocompatibility complex (MHC) class I presentation of mycobacterium-encoded epitope peptides. Through our analysis, we identified 16 mutant BCG strains that generated increased transgene product-specific CD8+ T cell responses. The genes disrupted in these mutant strains had disparate predicted functions. Reconstruction of strains via targeted deletion of genes identified in the screen recapitulated the enhanced immunogenicity phenotype of the original mutant strains. When we introduced the simian immunodeficiency virus (SIV) gag gene into several of these novel BCG strains, we observed enhanced SIV Gag-specific CD8+ T cell responses in vivo. This study demonstrates that mycobacteria carry numerous genes that act to dampen CD8+ T cell responses and suggests that genetic modification of these genes may generate a novel group of recombinant BCG strains capable of serving as more effective and immunogenic vaccine vectors. PMID:25287928
Gene deletions in Mycobacterium bovis BCG stimulate increased CD8+ T cell responses.
Panas, Michael W; Sixsmith, Jaimie D; White, KeriAnn; Korioth-Schmitz, Birgit; Shields, Shana T; Moy, Brian T; Lee, Sunhee; Schmitz, Joern E; Jacobs, William R; Porcelli, Steven A; Haynes, Barton F; Letvin, Norman L; Gillard, Geoffrey O
2014-12-01
Mycobacteria, the etiological agents of tuberculosis and leprosy, have coevolved with mammals for millions of years and have numerous ways of suppressing their host's immune response. It has been suggested that mycobacteria may contain genes that reduce the host's ability to elicit CD8(+) T cell responses. We screened 3,290 mutant Mycobacterium bovis bacillus Calmette Guerin (BCG) strains to identify genes that decrease major histocompatibility complex (MHC) class I presentation of mycobacterium-encoded epitope peptides. Through our analysis, we identified 16 mutant BCG strains that generated increased transgene product-specific CD8(+) T cell responses. The genes disrupted in these mutant strains had disparate predicted functions. Reconstruction of strains via targeted deletion of genes identified in the screen recapitulated the enhanced immunogenicity phenotype of the original mutant strains. When we introduced the simian immunodeficiency virus (SIV) gag gene into several of these novel BCG strains, we observed enhanced SIV Gag-specific CD8(+) T cell responses in vivo. This study demonstrates that mycobacteria carry numerous genes that act to dampen CD8(+) T cell responses and suggests that genetic modification of these genes may generate a novel group of recombinant BCG strains capable of serving as more effective and immunogenic vaccine vectors. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Fakhar, Zeynab; Naiker, Suhashni; Alves, Claudio N; Govender, Thavendran; Maguire, Glenn E M; Lameira, Jeronimo; Lamichhane, Gyanu; Kruger, Hendrik G; Honarparvar, Bahareh
2016-11-01
An alarming rise of multidrug-resistant Mycobacterium tuberculosis strains and the continuous high global morbidity of tuberculosis have reinvigorated the need to identify novel targets to combat the disease. The enzymes that catalyze the biosynthesis of peptidoglycan in M. tuberculosis are essential and noteworthy therapeutic targets. In this study, the biochemical function and homology modeling of MurI, MurG, MraY, DapE, DapA, Alr, and Ddl enzymes of the CDC1551 M. tuberculosis strain involved in the biosynthesis of peptidoglycan cell wall are reported. Generation of the 3D structures was achieved with Modeller 9.13. To assess the structural quality of the obtained homology modeled targets, the models were validated using PROCHECK, PDBsum, QMEAN, and ERRAT scores. Molecular dynamics simulations were performed to calculate root mean square deviation (RMSD) and radius of gyration (Rg) of MurI and MurG target proteins and their corresponding templates. For further model validation, RMSD and Rg for selected targets/templates were investigated to compare the close proximity of their dynamic behavior in terms of protein stability and average distances. To identify the potential binding mode required for molecular docking, binding site information of all modeled targets was obtained using two prediction algorithms. A docking study was performed for MurI to determine the potential mode of interaction between the inhibitor and the active site residues. This study presents the first accounts of the 3D structural information for the selected M. tuberculosis targets involved in peptidoglycan biosynthesis.
[Mechanism study on difference of biotransformation between Mycobacterium fortuitum MF2 and MF96].
Ling, Liang-Fei; Ge, Mei; Fu, Lei; Huang, Wei-Yi; Chen, Dai-Jie
2005-08-01
Biotransformation difference between parent strain (MF2) and mutant strain (MF96) of Mycobacterium fortuitum was observed. Biotransformation with resting cells showed that the major products of biotransformation by both parent and mutant strains are delta4-androstenedione(4AD) and testosterone(TS). Experiments with cell-free extract system showed that the proportion of 4AD/TS obtained from parent and mutant strains was almost same when enough NAD+ and NADH were supplied in this system. It was suggested that the difference of the ratio of products transformed by both strains in resting cell system may result from their different ratio of NAD+/NADH. This speculation was verified to be true by determination of the amount of NAD+ and NADH presented in both strains.
Saelens, Joseph W; Lau-Bonilla, Dalia; Moller, Anneliese; Medina, Narda; Guzmán, Brenda; Calderón, Maylena; Herrera, Raúl; Sisk, Dana M; Xet-Mull, Ana M; Stout, Jason E; Arathoon, Eduardo; Samayoa, Blanca; Tobin, David M
2015-12-01
Limited data are available regarding the molecular epidemiology of Mycobacterium tuberculosis (Mtb) strains circulating in Guatemala. Beijing-lineage Mtb strains have gained prevalence worldwide and are associated with increased virulence and drug resistance, but there have been only a few cases reported in Central America. Here we report the first whole genome sequencing of Central American Beijing-lineage strains of Mtb. We find that multiple Beijing-lineage strains, derived from independent founding events, are currently circulating in Guatemala, but overall still represent a relatively small proportion of disease burden. Finally, we identify a specific Beijing-lineage outbreak centered on a poor neighborhood in Guatemala City. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Characterization of exochelins of the Mycobacterium bovis type strain and BCG substrains.
Gobin, J; Wong, D K; Gibson, B W; Horwitz, M A
1999-04-01
Pathogenic mycobacteria must acquire iron in the host in order to multiply and cause disease. To do so, they release abundant quantities of siderophores called exochelins, which have the capacity to scavenge iron from host iron-binding proteins and deliver it to the mycobacteria. In this study, we have characterized the exochelins of Mycobacterium bovis, the causative agent of bovine and occasionally of human tuberculosis, and the highly attenuated descendant of M. bovis, bacillus Calmette-Guérin (BCG), widely used as a vaccine against human tuberculosis. The M. bovis type strain, five substrains of M. bovis BCG (Copenhagen, Glaxo, Japanese, Pasteur, and Tice), and two strains of virulent Mycobacterium tuberculosis all produce the same set of exochelins, although the relative amounts of individual exochelins may differ. Among these mycobacteria, the total amount of exochelins produced is greatest in M. tuberculosis, intermediate in M. bovis, and smallest in M. bovis BCG.
Furuya, Toshiki; Hirose, Satomi; Semba, Hisashi; Kino, Kuniki
2011-01-01
The mimABCD gene cluster encodes the binuclear iron monooxygenase that oxidizes propane and phenol in Mycobacterium smegmatis strain MC2 155 and Mycobacterium goodii strain 12523. Interestingly, expression of the mimABCD gene cluster is induced by acetone. In this study, we investigated the regulator gene responsible for this acetone-responsive expression. In the genome sequence of M. smegmatis strain MC2 155, the mimABCD gene cluster is preceded by a gene designated mimR, which is divergently transcribed. Sequence analysis revealed that MimR exhibits amino acid similarity with the NtrC family of transcriptional activators, including AcxR and AcoR, which are involved in acetone and acetoin metabolism, respectively. Unexpectedly, many homologs of the mimR gene were also found in the sequenced genomes of actinomycetes. A plasmid carrying a transcriptional fusion of the intergenic region between the mimR and mimA genes with a promoterless green fluorescent protein (GFP) gene was constructed and introduced into M. smegmatis strain MC2 155. Using a GFP reporter system, we confirmed by deletion and complementation analyses that the mimR gene product is the positive regulator of the mimABCD gene cluster expression that is responsive to acetone. M. goodii strain 12523 also utilized the same regulatory system as M. smegmatis strain MC2 155. Although transcriptional activators of the NtrC family generally control transcription using the σ54 factor, a gene encoding the σ54 factor was absent from the genome sequence of M. smegmatis strain MC2 155. These results suggest the presence of a novel regulatory system in actinomycetes, including mycobacteria. PMID:21856847
Bigi, María Mercedes; Lopez, Beatriz; Blanco, Federico Carlos; Sasiain, María Del Carmen; De la Barrera, Silvia; Marti, Marcelo A; Sosa, Ezequiel Jorge; Fernández Do Porto, Darío Augusto; Ritacco, Viviana; Bigi, Fabiana; Soria, Marcelo Abel
2017-03-01
Globally, about 4.5% of new tuberculosis (TB) cases are multi-drug-resistant (MDR), i.e. resistant to the two most powerful first-line anti-TB drugs. Indeed, 480,000 people developed MDR-TB in 2015 and 190,000 people died because of MDR-TB. The MDR Mycobacterium tuberculosis M family, which belongs to the Haarlem lineage, is highly prosperous in Argentina and capable of building up further drug resistance without impairing its ability to spread. In this study, we sequenced the whole genomes of a highly prosperous M-family strain (Mp) and its contemporary variant, strain 410, which produced only one recorded tuberculosis case in the last two decades. Previous reports have demonstrated that Mp induced dysfunctional CD8 + cytotoxic T cell activity, suggesting that this strain has the ability to evade the immune response against M. tuberculosis. Comparative analysis of Mp and 410 genomes revealed non-synonymous polymorphisms in eleven genes and five intergenic regions with polymorphisms between both strains. Some of these genes and promoter regions are involved in the metabolism of cell wall components, others in drug resistance and a SNP in Rv1861, a gene encoding a putative transglycosylase that produces a truncated protein in Mp. The mutation in Rv3787c, a putative S-adenosyl-l-methionine-dependent methyltransferase, is conserved in all of the other prosperous M strains here analysed and absent in non-prosperous M strains. Remarkably, three polymorphic promoter regions displayed differential transcriptional activity between Mp and 410. We speculate that the observed mutations/polymorphisms are associated with the reported higher capacity of Mp for modulating the host's immune response. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yuan, Youhua; Wen, Yan; You, Yuangang; Xing, Yan; Li, Huanying; Weng, Xiaoman; Wu, Nan; Liu, Shuang; Zhang, Shanshan; Zhang, Wenhong; Zhang, Ying
2015-01-01
Leprosy continues to be prevalent in some mountainous regions of China, and genotypes of leprosy strains endemic to the country are not known. Mycobacterium lepromatosis is a new species that was discovered in Mexico in 2008, and it remains unclear whether this species exists in China. Here, we conducted PCR- restriction fragment length polymorphism (RFLP) analysis to classify genotypes of 85 DNA samples collected from patients from 18 different provinces. All 171 DNA samples from skin biopsies of leprosy patients were tested for the presence of Mycobacterium leprae and Mycobacterium lepromatosis by amplifying the 16S rRNA gene using nested PCR, followed by DNA sequencing. The new species M. lepromatosis was not found among the 171 specimens from leprosy patients in 22 provinces in China. However, we found three SNP genotypes among 85 leprosy patients. A mutation at C251T in the 16S rRNA gene was found in 76% of the strains. We also found that the strains that showed the 16S rRNA C251T mutation belonged to SNP type 3, whereas strains without the point mutation belonged to SNP type 1. The SNP type 3 leprosy strains were observed in patients from both the inner and coastal regions of China, but the SNP type 1 strains were focused only in the coastal region. This indicated that the SNP type 3 leprosy strains were more prevalent than the SNP type 1 strains in China. In addition, the 16S rRNA gene sequence mutation at C251T also indicated a difference in the geographical distribution of the strains. To our knowledge, this is the first report of a new polymorphism in 16S rRNA gene in M. leprae in China. Our findings shed light on the prevalent genotypes and provide insight about leprosy transmission that are important for leprosy control in China.
Herrera, Laura; Valverde, Azucena; Saiz, Pilar; Sáez-Nieto, Juan A; Portero, José L; Jiménez, M Soledad
2004-06-01
The prevalence of mutations in the katG, inhA and oxyR-ahpC genes of isoniazid (INH)-resistant Mycobacterium tuberculosis isolates in the Philippines were determined. Of 306 M. tuberculosis isolates studied, 81 (26.5%) exhibited INH-resistance. Forty-four strains (54.3%) had mutations in the katG gene, eighteen strains (22.2%) had mutations in the putative inhA locus region, seven had mutations in both regions and five strains had mutations in the oxyR-ahpC operon. Only seven strains had no mutations. A total of 71 of the 81 (87.6%) resistant strains and 65 of the 72 (90.3%) INH sensitive randomly selected strains showed amino acid substitution in codon 463 (Arg to Leu) (88.9%). This fact supports the hypothesis that mutations at codon 463 are independent of INH-resistance and are linked to the geographical origins of the strains. Copyright 2004 Elsevier B.V.
Lutze-Wallace, Cyril; Turcotte, Claude; Glover, Gordon; Cousins, Debby; Bell, John; Berlie-Surujballi, Gloria; Barbeau, Yvon; Randall, Geoff
2006-01-01
A Mycobacterium tuberculosis complex organism was isolated from a zoo resident rock hyrax (Procavia capensis) imported into Canada from South Africa. The strain was identified biochemically as Mycobacterium microti. The spoligotype pattern obtained for this isolate was found to be rare. This represents the first report of isolation and spoligotyping of M. microti in North America. PMID:17078252
Du, Yanfen; Qi, Yingfang; Yu, Lu; Lin, Jingkai; Liu, Siguo; Ni, Hongbo; Pang, Hai; Liu, Huifang; Si, Wei; Zhao, Hailing; Wang, Chunlai
2011-06-01
We studied throat swabs and corresponding serum samples collected from 1067 protein purified derivative (PPD)-tuberculin skin test (TST) positive cattle from different regions of China. The 1067 throat swabs were inoculated onto modified Löwenstein-Jensen medium for the isolation and culture of Mycobacteria. Acid-fast bacilli were identified using traditional biochemical methods, polymerase chain reaction (PCR) amplification and multiplex PCR. They were distinguished as Mycobacterium tuberculosis complex (MTBC) and non-tuberculous mycobacteria (NTM) strains. An indirect Enzyme-Linked Immunosorbent Assay (ELISA) was applied to detect specific antibodies against bovine TB (bTB). Correlations among the ELISA, bacteriology and TST were analyzed and compared. Spoligotyping and variable number tandem repeats-mycobacterial interspersed repetitive unit (VNTR-MIRU) analysis were used to genotype the MTBC. In total, 111 strains of Mycobacteria were cultured from the 1067 throat swab samples, including 43 stains of MTBC (14 strains of Mycobacterium bovis and 29 of Mycobacterium tuberculosis) and 68 strains of NTM. Thirty-eight MTBC strains and four NTM strains were isolated from 72 throat swab samples that the ELISA determined were antibody positive; five MTBC strains and 64 NTM strains were isolated from 995 throat swab samples that were antibody negative on the ELISA. The positive isolation rates of MTBC and NTM were 38.7% (43/111) and 61.3% (68/111), respectively. The concordance rate of cultured MTBC with a positive result on the indirect ELISA for antibody was 52.8% (38/72), which was much higher than the positive rate for TST (4.0%; 43/1067). Genotyping of the 43 strains of MTBC isolated, using spoligotyping and VNTR-MIRU, showed that the 43 isolates had 26 genotypes; 16 strains had a unique genotype. Two groups of six strains and two strains, respectively, showed the same spoligotyping pattern, and belonged to the Beijing family and Beijing-like family, respectively. Combined application of spoligotyping and VNTR-MIRU typing would improve the molecular epidemiological investigation and monitoring of the etiology of bTB in China. Copyright © 2010 Elsevier Ltd. All rights reserved.
1990-05-01
Sta58 antigen and the Sta56 strain- GroES, C. burnetii HtpA, Mycobacterium tuberculosis 12- specific major antigen of R. tsutsugamushi (strain Karp...kb HindlIl fragment carrying the gene for the Sta58 tuberculosis, and Mycobacterium smegmatis (65-kDa anti- protein was subjected to DNA sequence...the Hsp6O and HsplO proteins. R. tsu., R. isutsugamushi; M. lep., Mvtcobacteriutn leprae : C. bur., C. burneiii; Synech.. Synechococcus strain 6301; T
In vitro antimycobacterial activities of Physalis angulata L.
Pietro, R C; Kashima, S; Sato, D N; Januário, A H; França, S C
2000-07-01
The HIV-tuberculosis co-infection has caused an impact on tuberculosis epidemiology all over the world and the efficacies of the therapeutic schemes traditionally prescribed in the treatment of tuberculosis, such as isoniazid, rifampicin and pyrazinamide, have decreased due to the appearance of multidrug-resistant M. tuberculosis strains (MDR). This work is part of research on natural antimicrobial agents from plant extracts through bioassay-guided fractionation, by in vitro determination of the minimum inhibitory concentration (MIC) using the microdilution method with Alamar blue oxidation-reduction dye. Crude CHCl3 Physalis angulata extracts and physalin-containing fractions displayed antimycobacterial activity against Mycobacterium tuberculosis, Mycobacterium avium, Mycobacterium kansasii, Mycobacterium malmoense and Mycobacterium intracellulare.
Alonso, María; Palacios, Juan José; Herranz, Marta; Penedo, Ana; Menéndez, Ángela; Bouza, Emilio; García de Viedma, Darío
2011-01-01
Our study provides an alert regarding the transmission of rifampin-susceptible strains of Mycobacterium tuberculosis with a silent substitution in codon 514 of rpoB. Among 1,450 cases, we identified 12 isolates sharing this mutation and related restriction fragment length polymorphism (RFLP) types. The mutation impaired hybridization with the wild-type probes in three independent commercial assays, which could lead to misassignment of resistance. PMID:21562104
Cho, Yong-Joon; Yi, Hana; Chun, Jongsik; Cho, Sang-Nae; Daley, Charles L; Koh, Won-Jung; Shin, Sung Jae
2013-01-01
Members of the Mycobacterium abscessus complex are rapidly growing mycobacteria that are emerging as human pathogens. The M. abscessus complex was previously composed of three species, namely M. abscessus sensu stricto, 'M. massiliense', and 'M. bolletii'. In 2011, 'M. massiliense' and 'M. bolletii' were united and reclassified as a single subspecies within M. abscessus: M. abscessus subsp. bolletii. However, the placement of 'M. massiliense' within the boundary of M. abscessus subsp. bolletii remains highly controversial with regard to clinical aspects. In this study, we revisited the taxonomic status of members of the M. abscessus complex based on comparative analysis of the whole-genome sequences of 53 strains. The genome sequence of the previous type strain of 'Mycobacterium massiliense' (CIP 108297) was determined using next-generation sequencing. The genome tree based on average nucleotide identity (ANI) values supported the differentiation of 'M. bolletii' and 'M. massiliense' at the subspecies level. The genome tree also clearly illustrated that 'M. bolletii' and 'M. massiliense' form a distinct phylogenetic clade within the radiation of the M. abscessus complex. The genomic distances observed in this study suggest that the current M. abscessus subsp. bolletii taxon should be divided into two subspecies, M. abscessus subsp. massiliense subsp. nov. and M. abscessus subsp. bolletii, to correspondingly accommodate the previously known 'M. massiliense' and 'M. bolletii' strains.
Bastiaens, Leen; Springael, Dirk; Wattiau, Pierre; Harms, Hauke; deWachter, Rupert; Verachtert, Hubert; Diels, Ludo
2000-01-01
Two different procedures were compared to isolate polycyclic aromatic hydrocarbon (PAH)-utilizing bacteria from PAH-contaminated soil and sludge samples, i.e., (i) shaken enrichment cultures in liquid mineral medium in which PAHs were supplied as crystals and (ii) a new method in which PAH degraders were enriched on and recovered from hydrophobic membranes containing sorbed PAHs. Both techniques were successful, but selected from the same source different bacterial strains able to grow on PAHs as the sole source of carbon and energy. The liquid enrichment mainly selected for Sphingomonas spp., whereas the membrane method exclusively led to the selection of Mycobacterium spp. Furthermore, in separate membrane enrichment set-ups with different membrane types, three repetitive extragenic palindromic PCR-related Mycobacterium strains were recovered. The new Mycobacterium isolates were strongly hydrophobic and displayed the capacity to adhere strongly to different surfaces. One strain, Mycobacterium sp. LB501T, displayed an unusual combination of high adhesion efficiency and an extremely high negative charge. This strain may represent a new bacterial species as suggested by 16S rRNA gene sequence analysis. These results indicate that the provision of hydrophobic sorbents containing sorbed PAHs in the enrichment procedure discriminated in favor of certain bacterial characteristics. The new isolation method is appropriate to select for adherent PAH-degrading bacteria, which might be useful to biodegrade sorbed PAHs in soils and sludge. PMID:10788347
Fabre, Michel; Koeck, Jean-Louis; Le Flèche, Philippe; Simon, Fabrice; Hervé, Vincent; Vergnaud, Gilles; Pourcel, Christine
2004-01-01
We have analyzed, using complementary molecular methods, the diversity of 43 strains of “Mycobacterium canettii” originating from the Republic of Djibouti, on the Horn of Africa, from 1998 to 2003. Genotyping by multiple-locus variable-number tandem repeat analysis shows that all the strains belong to a single but very distant group when compared to strains of the Mycobacterium tuberculosis complex (MTBC). Thirty-one strains cluster into one large group with little variability and five strains form another group, whereas the other seven are more diverged. In total, 14 genotypes are observed. The DR locus analysis reveals additional variability, some strains being devoid of a direct repeat locus and others having unique spacers. The hsp65 gene polymorphism was investigated by restriction enzyme analysis and sequencing of PCR amplicons. Four new single nucleotide polymorphisms were discovered. One strain was characterized by three nucleotide changes in 441 bp, creating new restriction enzyme polymorphisms. As no sequence variability was found for hsp65 in the whole MTBC, and as a single point mutation separates M. tuberculosis from the closest “M. canettii” strains, this diversity within “M. canettii” subspecies strongly suggests that it is the most probable source species of the MTBC rather than just another branch of the MTBC. PMID:15243089
Next-Generation Vaccines Based on Bacille Calmette–Guérin
Nieuwenhuizen, Natalie E.; Kaufmann, Stefan H. E.
2018-01-01
Tuberculosis (TB), caused by the intracellular bacterium Mycobacterium tuberculosis (Mtb), remains a major health threat. A live, attenuated mycobacterium known as Bacille Calmette–Guérin (BCG), derived from the causative agent of cattle TB, Mycobacterium bovis, has been in clinical use as a vaccine for 90 years. The current incidence of TB demonstrates that BCG fails to protect sufficiently against pulmonary TB, the major disease manifestation and source of dissemination. The protective efficacy of BCG is on average 50% but varies substantially with geographical location and is poorer in those with previous exposure to mycobacteria. BCG can also cause adverse reactions in immunocompromised individuals. However, BCG has contributed to reduced infant TB mortality by protecting against extrapulmonary TB. In addition, BCG has been associated with reduced general childhood mortality by stimulating immune responses. In order to improve the efficacy of BCG, two major strategies have been employed. The first involves the development of recombinant live mycobacterial vaccines with improved efficacy and safety. The second strategy is to boost BCG with subunit vaccines containing Mtb antigens. This article reviews recombinant BCG strains that have been tested against TB in animal models. This includes BCG strains that have been engineered to induce increased immune responses by the insertion of genes for Mtb antigens, mammalian cytokines, or host resistance factors, the insertion of bacterial toxin-derived adjuvants, and the manipulation of bacterial genes in order to increase antigen presentation and immune activation. Subunit vaccines for boosting BCG are also briefly discussed. PMID:29459859
Kolk, A H; Noordhoek, G T; de Leeuw, O; Kuijper, S; van Embden, J D
1994-01-01
For the detection of Mycobacterium tuberculosis by PCR, the IS6110 sequence was used. A modified target was constructed by insertion of 56 nucleotides in the IS6110 insertion element of Mycobacterium bovis BCG. This modified insertion sequence was integrated into the genome of Mycobacterium smegmatis, a mycobacterium species which does not contain the IS6110 element. When DNA from the modified M. smegmatis 1008 strain was amplified with IS6110-specific primers INS1 and INS2, a band of 301 bp was seen on agarose gel, whereas the PCR product of M. tuberculosis complex DNA was a 245-bp fragment with these primers. The addition of a small number of M. smegmatis 1008 cells to clinical samples before DNA purification enables the detection of problems which may be due to the loss of DNA in the isolation procedure or to the presence of inhibitors. The presence of inhibitors of the amplification reaction can be confirmed by the addition of M. smegmatis 1008 DNA after the DNA isolation procedure. Furthermore, competition between the different target DNAs of M. smegmatis 1008 DNA and M. tuberculosis complex DNA enables the estimation of the number of IS6110 elements in the clinical sample. Images PMID:8051267
Gormley, E; Corner, L A L; Costello, E; Rodriguez-Campos, S
2014-10-01
The primary isolation of a Mycobacterium sp. of the Mycobacterium tuberculosis complex from an infected animal provides a definitive diagnosis of tuberculosis. However, as Mycobacterium bovis and Mycobacterium caprae are difficult to isolate, particularly for animals in the early stages of disease, success is dependent on the optimal performance of all aspects of the bacteriological process, from the initial choice of tissue samples at post-mortem examination or clinical samples, to the type of media and conditions used to cultivate the microorganism. Each step has its own performance characteristics, which can contribute to sensitivity and specificity of the procedure, and may need to be optimized in order to achieve the gold standard diagnosis. Having isolated the slow-growing mycobacteria, species identification and fine resolution strain typing are keys to understanding the epidemiology of the disease and to devise strategies to limit transmission of infection. New technologies have emerged that can now even discriminate different isolates from the same animal. In this review we highlight the key factors that contribute to the accuracy of bacteriological diagnosis of M. bovis and M. caprae, and describe the development of advanced genotyping techniques that are increasingly used in diagnostic laboratories for the purpose of supporting detailed epidemiological investigations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Patiño W, Lena C; Monge, Otto; Suzán, Gerardo; Gutiérrez-Espeleta, Gustavo; Chaves, Andrea
2018-04-01
We conducted a study of the two main populations of free-living Scarlet Macaws ( Ara macao) in Costa Rica to detect the causal agents of avian tuberculosis using noninvasive techniques. We analyzed 83 fecal samples collected between February and May 2016 from the central and southern Pacific areas in the country. Using PCR, we first amplified the 16S region of the ribosomal RNA, common to all Mycobacterium species. Then, products from the insertion sequence IS901 and from a 155-base pair DNA fragment evidenced the presence of the avian pathogenic Mycobacterium avium subsp. avium strain and a Mycobacterium genavense strain, respectively. Seven of 38 (18%) samples collected in the central Pacific area were positive for Mycobacterium spp. and 3 of 38 (8%) were positive for M. genavense, with one sample amplifying regions for both. Two of the 45 (4%) samples collected in the south Pacific area of Costa Rica were positive to M. a. avium. Our detection of avian tuberculosis pathogens in free-living Scarlet Macaws suggests that free-living macaws could excrete in their feces M. genavense, bird-pathogenic M. a. avium, and possibly other Mycobacteria (not detected in our study).
Bragin, E Yu; Shtratnikova, V Yu; Dovbnya, D V; Schelkunov, M I; Pekov, Yu A; Malakho, S G; Egorova, O V; Ivashina, T V; Sokolov, S L; Ashapkin, V V; Donova, M V
2013-11-01
A comparative genome analysis of Mycobacterium spp. VKM Ac-1815D, 1816D and 1817D strains used for efficient production of key steroid intermediates (androst-4-ene-3,17-dione, AD, androsta-1,4-diene-3,17-dione, ADD, 9α-hydroxy androst-4-ene-3,17-dione, 9-OH-AD) from phytosterol has been carried out by deep sequencing. The assembled contig sequences were analyzed for the presence putative genes of steroid catabolism pathways. Since 3-ketosteroid-9α-hydroxylases (KSH) and 3-ketosteroid-Δ(1)-dehydrogenase (Δ(1) KSTD) play key role in steroid core oxidation, special attention was paid to the genes encoding these enzymes. At least three genes of Δ(1) KSTD (kstD), five genes of KSH subunit A (kshA), and one gene of KSH subunit B of 3-ketosteroid-9α-hydroxylases (kshB) have been found in Mycobacterium sp. VKM Ac-1817D. Strains of Mycobacterium spp. VKM Ac-1815D and 1816D were found to possess at least one kstD, one kshB and two kshA genes. The assembled genome sequence of Mycobacterium sp. VKM Ac-1817D differs from those of 1815D and 1816D strains, whereas these last two are nearly identical, differing by 13 single nucleotide substitutions (SNPs). One of these SNPs is located in the coding region of a kstD gene and corresponds to an amino acid substitution Lys (135) in 1816D for Ser (135) in 1815D. The findings may be useful for targeted genetic engineering of the biocatalysts for biotechnological application. Copyright © 2013. Published by Elsevier Ltd.
Blouin, Yann; Cazajous, Géraldine; Dehan, Céline; Soler, Charles; Vong, Rithy; Hassan, Mohamed Osman; Hauck, Yolande; Boulais, Christian; Andriamanantena, Dina; Martinaud, Christophe; Martin, Émilie; Pourcel, Christine; Vergnaud, Gilles
2014-01-01
“Mycobacterium canettii,” an opportunistic human pathogen living in an unknown environmental reservoir, is the progenitor species from which Mycobacterium tuberculosis emerged. Since its discovery in 1969, most of the ≈70 known M. canettii strains were isolated in the Republic of Djibouti, frequently from expatriate children and adults. We show here, by whole-genome sequencing, that most strains collected from February 2010 through March 2013, and associated with 2 outbreaks of lymph node tuberculosis in children, belong to a unique epidemic clone within M. canettii. Evolution of this clone, which has been recovered regularly since 1983, may mimic the birth of M. tuberculosis. Thus, recognizing this organism and identifying its reservoir are clinically important.
Progenitor “Mycobacterium canettii” Clone Responsible for Lymph Node Tuberculosis Epidemic, Djibouti
Blouin, Yann; Cazajous, Géraldine; Dehan, Céline; Soler, Charles; Vong, Rithy; Hassan, Mohamed Osman; Hauck, Yolande; Boulais, Christian; Andriamanantena, Dina; Martinaud, Christophe; Martin, Émilie; Pourcel, Christine
2014-01-01
“Mycobacterium canettii,” an opportunistic human pathogen living in an unknown environmental reservoir, is the progenitor species from which Mycobacterium tuberculosis emerged. Since its discovery in 1969, most of the ≈70 known M. canettii strains were isolated in the Republic of Djibouti, frequently from expatriate children and adults. We show here, by whole-genome sequencing, that most strains collected from February 2010 through March 2013, and associated with 2 outbreaks of lymph node tuberculosis in children, belong to a unique epidemic clone within M. canettii. Evolution of this clone, which has been recovered regularly since 1983, may mimic the birth of M. tuberculosis. Thus, recognizing this organism and identifying its reservoir are clinically important. PMID:24520560
Differential Identification of Mycobacterium kansasii and Mycobacterium marinum
Silcox, Vella A.; David, Hugo L.
1971-01-01
This report deals with the differential diagnosis between Mycobacterium marinum and M. kansasii. We found that the two species could be differentiated by using six main tests, namely, the nitrate reduction test, the arylsulfatase test, the ability to grow in the presence of 10.0 μg of amithiazone per ml, the ability to grow in the presence of 5.0 μg of kanamycin per ml, the temperature-ratio test, and the rate of growth on solid medium. In contrast to M. kansasii, considerable variation was observed among strains of M. marinum. However, the evidence obtained was not considered sufficient to justify the conclusion that more than one species was represented among the strains identified as M. marinum. PMID:4925535
Alba Álvarez, Luz María; García García, José María; Pérez Hernández, M Dolores; Martínez González, Susana; Palacios Gutiérrez, Juan José
2017-04-01
To determine the utility of molecular techniques in the diagnosis of resistance and the extent of resistance to first-line drugs in our region. From 2004 to 2013, 1,889 strains of Mycobacterium tuberculosis complex isolated in Asturias, Spain, were studied using phenotypic (Clinical and Laboratory Standards Institute guidelines) and molecular (INNOLiPA RIF-TB © ; GenotypeMDRplus © ; GenotypeMDRsl © ) sensitivity tests. 1,759 strains (94.52%) were sensitive to all first-line drugs, and 102 strains (5.48%) showed some resistance: 81 strains (4.35%) were resistant to 1 single drug, 14 (0.75%) were polyresistant, and 7 (0.37%) were multiresistant (resistant to rifampicin and isoniazid). In total, 137 resistances were identified: 60 to isoniazid (3.22%), 7 to rifampicin (0.37%), 9 to pyrazinamide (0.48%), 11 to ethambutol (0.59%), and 50 to streptomycin (2.68%). Of the mutations detected, 75.9% (63/83) correlated with resistance, while 24.09% of mutations detected (20/83) were not associated with resistance; 16 of these involved a silent mutation at codon 514 of the rpoB gene. Between 0 and 90% of strains, depending on the drug under consideration, were resistant even when no gene mutations were detected using marketed systems. Molecular techniques are very useful, particularly for obtaining rapid results, but these must be confirmed with standard phenotypic sensitivity testing. The rate of resistance in our region is low and multi-drug resistantcases (0.37%) are sporadic. Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.
Ritacco, Viviana; Iglesias, María-José; Ferrazoli, Lucilaine; Monteserin, Johana; Dalla Costa, Elis R; Cebollada, Alberto; Morcillo, Nora; Robledo, Jaime; de Waard, Jacobus H; Araya, Pamela; Aristimuño, Liselotte; Díaz, Raúl; Gavin, Patricia; Imperiale, Belen; Simonsen, Vera; Zapata, Elsa M; Jiménez, María S; Rossetti, Maria L; Martin, Carlos; Barrera, Lucía; Samper, Sofia
2012-06-01
Multidrug-resistant Mycobacterium tuberculosis strain diversity in Ibero-America was examined by comparing extant genotype collections in national or state tuberculosis networks. To this end, genotypes from over 1000 patients with multidrug-resistant tuberculosis diagnosed from 2004 through 2008 in Argentina, Brazil, Chile, Colombia, Venezuela and Spain were compared in a database constructed ad hoc. Most of the 116 clusters identified by IS6110 restriction fragment length polymorphism were small and restricted to individual countries. The three largest clusters, of 116, 49 and 25 patients, were found in Argentina and corresponded to previously documented locally-epidemic strains. Only 13 small clusters involved more than one country, altogether accounting for 41 patients, of whom 13 were, in turn, immigrants from Latin American countries different from those participating in the study (Peru, Ecuador and Bolivia). Most of these international clusters belonged either to the emerging RD(Rio) LAM lineage or to the Haarlem family of M. tuberculosis and four were further split by country when analyzed with spoligotyping and rifampin resistance-conferring mutations, suggesting that they did not represent ongoing transnational transmission events. The Beijing genotype accounted for 1.3% and 10.2% of patients with multidrug-resistant tuberculosis in Latin America and Spain, respectively, including one international cluster of two cases. In brief, Euro-American genotypes were widely predominant among multidrug-resistant M. tuberculosis strains in Ibero-America, reflecting closely their predominance in the general M. tuberculosis population in the region, and no evidence was found of acknowledged outbreak strains trespassing country borders. Copyright © 2011 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Mycobacterium avium subsp. paratuberculosis (MAP) purified protein derivatives (PPDs) are immunologic reagents prepared from cultured filtrates of the type strain ATCC 19698. Traditional production consists of floating culture incubation at 37oC, organism inactivation by autoclaving, coarse filtrat...
Synthesis of biocompatible nanoparticle drug complexes for inhibition of mycobacteria
NASA Astrophysics Data System (ADS)
Bhave, Tejashree; Ghoderao, Prachi; Sanghavi, Sonali; Babrekar, Harshada; Bhoraskar, S. V.; Ganesan, V.; Kulkarni, Anjali
2013-12-01
Tuberculosis (TB) is one of the most critical infectious diseases affecting the world today. Current TB treatment involves six months long daily administration of four oral doses of antibiotics. Due to severe side effects and the long treatment, a patient's adherence is low and this results in relapse of symptoms causing an alarming increase in the prevalence of multi-drug resistant (MDR) TB. Hence, it is imperative to develop a new drug delivery technology wherein these effects can be reduced. Rifampicin (RIF) is one of the widely used anti-tubercular drugs (ATD). The present study discusses the development of biocompatible nanoparticle-RIF complexes with superior inhibitory activity against both Mycobacterium smegmatis (M. smegmatis) and Mycobacterium tuberculosis (M. tuberculosis). Iron oxide nanoparticles (NPs) synthesized by gas phase condensation and NP-RIF complexes were tested against M. smegmatis SN2 strain as well as M. tuberculosis H37Rv laboratory strain. These complexes showed significantly better inhibition of M. smegmatis SN2 strain at a much lower effective concentration (27.5 μg ml-1) as compared to neat RIF (125 μg ml-1). Similarly M. tuberculosis H37Rv laboratory strain was susceptible to both nanoparticle-RIF complex and neat RIF at a minimum inhibitory concentration of 0.22 and 1 μg ml-1, respectively. Further studies are underway to determine the efficacy of NPs-RIF complexes in clinical isolates of M. tuberculosis as well as MDR isolates.
Oligonucleotide (GTG)5 as a marker for Mycobacterium tuberculosis strain identification.
Wiid, I J; Werely, C; Beyers, N; Donald, P; van Helden, P D
1994-01-01
Culture of Mycobacterium tuberculosis provides no information on the identity of a strain or the distribution of such a strain in the community. Strain identification of M. tuberculosis can help to address important epidemiological questions, e.g., the origin of an infection in a patient's household or community, whether reactivation of infection is endogenous or exogenous in origin, and the spread and early detection of organisms with acquired antibiotic resistance. To research this problem, strain identification must be reliable and accurate. Although genetic identification techniques already exist, it is valuable to have genetic identification techniques based on a number of genetic markers to improve the accurate identification of M. tuberculosis strains. We show that oligonucleotide (GTG)5 can be successfully applied to the identification of M. tuberculosis strains. This technique may be particularly useful in cases in which M. tuberculosis strains have few or no insertion elements (e.g., IS6110) or in identifying other strains of mycobacteria when informative probes are lacking. Images PMID:7914207
Jiang, Haiqin; Jin, Yali; Vissa, Varalakshmi; Zhang, Liangfen; Liu, Weijun; Qin, Lianhua; Wan, Kanglin; Wu, Xiaocui; Wang, Hongsheng; Liu, Weida; Wang, Baoxi
2017-04-06
Cutaneous tuberculosis (CTB) is probably underreported due to difficulties in detection and diagnosis. To address this issue, genotypes of Mycobacterium tuberculosis strains isolated from 30 patients with CTB were mapped at multiple loci, namely, RD105 deletions, spacer oligonucleotides, and Mycobacterial Interspersed Repetitive Unit-Variable Number Tandem Repeats (MIRU-VNTRs). Fifty-eight strains of pulmonary tuberculosis (PTB) were mapped as experimental controls. Drug resistance-associated gene mutations were determined by amplicon sequencing of target regions within 7 genes. Beijing family isolates were the most prevalent strains in CTB and PTB. MIRU-VNTR typing separated the Beijing strains from the non-Beijing strains, and the majority of CTB could be separated from PTB counterparts. Drug resistance determining regions showed only one CTB strain expressing isomazid resistance. Thus, while the CTB strains belonged to the same phylogenetic lineages and sub-lineages as the PTB strains, they differed at the level of several MIRU-VNTRs and in the proportion of drug resistance.
Shur, K V; Zaychikova, M V; Mikheecheva, N E; Klimina, K M; Bekker, O B; Zhdanova, S N; Ogarkov, O B; Danilenko, V N
2016-12-01
We report a draft genome sequence of Mycobacterium tuberculosis strain B9741 belonging to Beijing B0/W lineage isolated from a HIV patient from Siberia, Russia. This clinical isolate showed MDR phenotype and resistance to isoniazid, rifampin, streptomycin and pyrazinamide. We analyzed SNPs associated with virulence and resistance. The draft genome sequence and annotation have been deposited at GenBank under the accession NZ_LVJJ00000000.
Jurado, Valme; Kroppenstedt, Reiner M; Saiz-Jimenez, Cesáreo; Klenk, Hans-Peter; Mouniée, Delphine; Laiz, Leonila; Couble, Andrée; Pötter, Gabriele; Boiron, Patrick; Rodríguez-Nava, Verónica
2009-12-01
A novel actinomycete, strain OFN S31(T), was isolated from a complex biofilm in the Altamira Cave, Spain. A polyphasic study was carried out to clarify the taxonomic position of this strain. Phylogenetic analysis with 16S rRNA gene sequences of representatives of the genera Corynebacterium, Dietzia, Gordonia, Millisia, Mycobacterium, Nocardia, Rhodococcus, Segniliparus, Skermania, Tsukamurella and Williamsia indicated that strain OFN S31(T) formed a distinct taxon in the 16S rRNA gene tree that was more closely associated with the Mycobacterium clade. The type strain of Mycobacterium fallax was the closest relative of strain OFN S31(T) (95.6 % similarity). The cell wall contained meso-diaminopimelic acid, arabinose and galactose, which are characteristic components of cell-wall chemotype IV of actinomycetes. The sugars of the peptidoglycan were acetylated. The polar lipid pattern was composed of phosphatidylinositol, phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol. Strain OFN S31(T) is characterized by the absence of mycelium and mycolic acids. Strain OFN S31(T) had MK-8 as the major menaquinone. The DNA G+C content was 49.3 mol%, the lowest found among all taxa included in the suborder Corynebacterineae. Based on morphological, chemotaxonomic, phenotypic and genetic characteristics, strain OFN S31(T) is considered to represent a novel species of a new genus, for which the name Hoyosella altamirensis gen. nov., sp. nov. is proposed. The type strain of Hoyosella altamirensis is strain OFN S31(T) (=CIP 109864(T) =DSM 45258(T)).
Nasr Esfahani, Bahram; Moghim, Sharareh; Ghasemian Safaei, Hajieh; Moghoofei, Mohsen; Sedighi, Mansour; Hadifar, Shima
2016-01-01
Background Taxonomic and phylogenetic studies of Mycobacterium species have been based around the 16sRNA gene for many years. However, due to the high strain similarity between species in the Mycobacterium genus (94.3% - 100%), defining a valid phylogenetic tree is difficult; consequently, its use in estimating the boundaries between species is limited. The sequence of the rpoB gene makes it an appropriate gene for phylogenetic analysis, especially in bacteria with limited variation. Objectives In the present study, a 360bp sequence of rpoB was used for precise classification of Mycobacterium strains isolated in Isfahan, Iran. Materials and Methods From February to October 2013, 57 clinical and environmental isolates were collected, subcultured, and identified by phenotypic methods. After DNA extraction, a 360bp fragment was PCR-amplified and sequenced. The phylogenetic tree was constructed based on consensus sequence data, using MEGA5 software. Results Slow and fast-growing groups of the Mycobacterium strains were clearly differentiated based on the constructed tree of 56 common Mycobacterium isolates. Each species with a unique title in the tree was identified; in total, 13 nods with a bootstrap value of over 50% were supported. Among the slow-growing group was Mycobacterium kansasii, with M. tuberculosis in a cluster with a bootstrap value of 98% and M. gordonae in another cluster with a bootstrap value of 90%. In the fast-growing group, one cluster with a bootstrap value of 89% was defined, including all fast-growing members present in this study. Conclusions The results suggest that only the application of the rpoB gene sequence is sufficient for taxonomic categorization and definition of a new Mycobacterium species, due to its high resolution power and proper variation in its sequence (85% - 100%); the resulting tree has high validity. PMID:27284397
Kurtz, Sherry L.
2015-01-01
A critical hindrance to the development of a novel vaccine against Mycobacterium tuberculosis is a lack of understanding of protective correlates of immunity and of host factors involved in a successful adaptive immune response. Studies from our group and others have used a mouse-based in vitro model system to assess correlates of protection. Here, using this coculture system and a panel of whole-cell vaccines with varied efficacy, we developed a comprehensive approach to understand correlates of protection. We compared the gene and protein expression profiles of vaccine-generated immune peripheral blood lymphocytes (PBLs) to the profiles found in immune splenocytes. PBLs not only represent a clinically relevant cell population, but comparing the expression in these populations gave insight into compartmentally specific mechanisms of protection. Additionally, we performed a direct comparison of host responses induced when immune cells were cocultured with either the vaccine strain Mycobacterium bovis BCG or virulent M. tuberculosis. These comparisons revealed host-specific and bacterium-specific factors involved in protection against virulent M. tuberculosis. Most significantly, we identified a set of 13 core molecules induced in the most protective vaccines under all of the conditions tested. Further validation of this panel of mediators as a predictor of vaccine efficacy will facilitate vaccine development, and determining how each promotes adaptive immunity will advance our understanding of antimycobacterial immune responses. PMID:26269537
Elghoul, M T; Joshi, R M; Rizghalla, T
1989-10-01
Drug resistance in Mycobacterium tuberculosis strains prevalent in the Western Region of Libyan Arab Jamahiriya was studied for the years 1984, 1985 and 1986 at the regional tuberculosis control centre at Gurgi, Tripoli. Records of resistance to streptomycin, isoniazid, ethambutol and rifampicin were analysed. Whereas primary drug resistance was observed in 5.1%, 19.5% and 3.8%, acquired drug resistance was found in 12.2%, 34.0% and 15.3% of the strains in 1984, 1985 and 1986 respectively. Only 3 out of 598 strains (1.2%) were found to show acquired resistance to rifampicin. No primary resistance to rifampicin was observed. The situation of drug resistance in pulmonary tuberculosis in the Jamahiriya is discussed.
Kozińska, Monika; Augustynowicz-Kopeć, Ewa
2015-01-01
In total, 1095 Mycobacterium tuberculosis clinical isolates from 282 patients with drug-resistant and 813 with drug-sensitive tuberculosis (TB) in Poland during 2007-2011 were analysed. Seventy-one (6.5%) patients were found to have strains of Beijing genotype as defined by spoligotyping. The majority of patients were Polish-born; among foreign-born a large proportion came from Chechnya and Vietnam. Analysis showed strong associations between Beijing genotype infection and MDR, pre-XDR and XDR resistance, with a considerable relative risk among new patients, suggesting that this is due to increased spread of drug-resistant strains rather than acquisition of resistance during treatment.
van Helden, Paul D.; Wilson, Douglas; Colijn, Caroline; McLaughlin, Megan M.; Abubakar, Ibrahim; Warren, Robin M.
2012-01-01
Summary: Numerous studies have reported that individuals can simultaneously harbor multiple distinct strains of Mycobacterium tuberculosis. To date, there has been limited discussion of the consequences for the individual or the epidemiological importance of mixed infections. Here, we review studies that documented mixed infections, highlight challenges associated with the detection of mixed infections, and discuss possible implications of mixed infections for the diagnosis and treatment of patients and for the community impact of tuberculosis control strategies. We conclude by highlighting questions that should be resolved in order to improve our understanding of the importance of mixed-strain M. tuberculosis infections. PMID:23034327
2011-01-01
Background Studies of Mycobacterium bovis BCG strains used in different countries and vaccination programs show clear variations in the genomes and immune protective properties of BCG strains. The aim of this study was to characterise the genomic and immune proteomic profile of the BCG 1931 strain used in Mexico. Results BCG Mexico 1931 has a circular chromosome of 4,350,386 bp with a G+C content and numbers of genes and pseudogenes similar to those of BCG Tokyo and BCG Pasteur. BCG Mexico 1931 lacks Region of Difference 1 (RD1), RD2 and N-RD18 and one copy of IS6110, indicating that BCG Mexico 1931 belongs to DU2 group IV within the BCG vaccine genealogy. In addition, this strain contains three new RDs, which are 53 (RDMex01), 655 (RDMex02) and 2,847 bp (REDMex03) long, and 55 single-nucleotide polymorphisms representing non-synonymous mutations compared to BCG Pasteur and BCG Tokyo. In a comparative proteomic analysis, the BCG Mexico 1931, Danish, Phipps and Tokyo strains showed 812, 794, 791 and 701 protein spots, respectively. The same analysis showed that BCG Mexico 1931 shares 62% of its protein spots with the BCG Danish strain, 61% with the BCG Phipps strain and only 48% with the BCG Tokyo strain. Thirty-nine reactive spots were detected in BCG Mexico 1931 using sera from subjects with active tuberculosis infections and positive tuberculin skin tests. Conclusions BCG Mexico 1931 has a smaller genome than the BCG Pasteur and BCG Tokyo strains. Two specific deletions in BCG Mexico 1931 are described (RDMex02 and RDMex03). The loss of RDMex02 (fadD23) is associated with enhanced macrophage binding and RDMex03 contains genes that may be involved in regulatory pathways. We also describe new antigenic proteins for the first time. PMID:21981907
Rónai, Z; Eszterbauer, E; Csivincsik, Á; Guti, C F; Dencső, L; Jánosi, S; Dán, Á
2016-07-01
Besides Mycobacterium avium numerous nontuberculous Mycobacterium (NTM) species exist, which pose constant health risk to both humans and animals. The aim of our study was to identify non-avium NTM isolates from veterinary origin in Hungary, and to detect the occurrence of rifampicin resistance among them. Two hundred and twenty-five strains isolated between 2006 and 2013 from domestic and wild animals and veterinary important samples were identified on the basis of partial DNA sequences of different structural or coding genes, besides commercial kits and multiplex PCR. From 14 different sources, 28 NTM strains and 8 hitherto unidentified strain types were detected. Mycobacterium nonchromogenicum was the most frequently occurring strain (25·78%). Besides, new hosts and mycobacteria-related pathological symptoms were detected. Noticeable rifampicin resistance (42·76%) was found among 159 strains from six different host species. Furthermore, we described the problematics of strain-misidentifications using commercial kits. Our study identified the most common non-avium NTM strains in Hungary, and provided account of their occurrence, host range, and pathogenicity. The detected high rifampicin resistance among the strains isolated mainly from fallow and red deer clearly shows that more attention should be paid to the examination of wild animals especially to those ones which may have contact or shared territory with farmed animals. In domestic animal husbandry the maintenance of tuberculosis free status is of primary importance. As immunological cross-reactions due to NTM hamper the diagnosis of bovine tuberculosis, the precise identification of NTM strains would be essential in the veterinary diagnostics, especially for potentially zoonotic strains. This is the first study investigating the strain diversity of non-avium NTM in Hungary. © 2016 The Society for Applied Microbiology.
Chai, Norin; Bronchain, Odile; Panteix, Gilles; Godreuil, Sylvain; de Medeiros, Christophe; Saunders, Richard; Bouts, Tim; de Luze, Amaury
2012-03-01
Mycobacterium liflandii has been responsible for an emerging infection reported in the international trade of Western clawed frogs (Silurana tropicalis). This study shows that this mycolactone-producing Mycobacterium (MPM) has expanded its distribution range to France. The results of this study suggest that the use of in vitro fertilization to maintain genetic lines could be a temporary solution for valuable S. tropicalis propagation.
Ranjith, P Karuvalam; Rajeesh, P; Haridas, Karickal R; Susanta, Nayak K; Row, Tayur N Guru; Rishikesan, R; Kumari, N Suchetha
2013-09-15
In this Letter, we report the structure-activity relationship (SAR) studies on series of positional isomers of 5(6)-bromo-1-[(phenyl)sulfonyl]-2-[(4-nitrophenoxy)methyl]-1H-benzimidazoles derivatives 7(a-j) and 8(a-j) synthesized in good yields and characterized by (1)H NMR, (13)C NMR and mass spectral analyses. The crystal structure of 7a was evidenced by X-ray diffraction study. The newly synthesized compounds were evaluated for their in vitro antibacterial activity against Staphylococcus aureus, (Gram-positive), Escherichia coli and Klebsiella pneumoniae (Gram-negative), antifungal activity against Candida albicans, Aspergillus flavus and Rhizopus sp. and antitubercular activity against Mycobacterium tuberculosis H37Rv, Mycobacterium smegmatis, Mycobacterium fortuitum and MDR-TB strains. The synthesized compounds displayed interesting antimicrobial activity. The compounds 7b, 7e and 7h displayed significant activity against Mycobacterium tuberculosis H37Rv strain. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gcebe, Nomakorinte; Rutten, Victor P M G; van Pittius, Nicolaas Gey; Naicker, Brendon; Michel, Anita L
2018-05-01
Some species of non-tuberculous mycobacteria (NTM) have been reported to be opportunistic pathogens of animals and humans. Recently there has been an upsurge in the number of cases of NTM infections, such that some NTM species are now recognized as pathogens of humans and animals. From a veterinary point of view, the major significance of NTM is the cross-reactive immune response they elicit against Mycobacterium bovis antigens, leading to misdiagnosis of bovine tuberculosis. Four NTM isolates were detected from a bovine nasal swab, soil and water, during an NTM survey in South Africa. These were all found using 16S rRNA gene sequence analysis to be closely related to Mycobacterium moriokaense. The isolates were further characterised by sequence analysis of the partial fragments of hsp65, rpoB and sodA. The genome of the type strain was also elucidated. Gene (16S rRNA, hsp65, rpoB and sodA) and protein sequence data analysis of 6 kDa early secretory antigenic target (ESAT 6) and 10 kDa culture filtrate protein (CFP-10) revealed that these isolates belong to a unique Mycobacterium species. Differences in phenotypic and biochemical traits between the isolates and closely related species further supported that these isolates belong to novel Mycobacterium species. We proposed the name Mycobacterium komaniense sp. nov. for this new species. The type strain is GPK 1020 T (=CIP 110823T=ATCC BAA-2758).
Liu, Jie; Wang, Hui Zhu; Lian, Lu Lu; Yu, Yan Hua; Zhao, Xiu Qin; Guo, Cai Ping; Liu, Hai Can; Liu, Shu Mei; Zhao, Hui; Zeng, Zhao Ying; Zhao, Xiu Ying; Wan, Kang Lin
2015-03-01
70 clinical Mycobacterium tuberculosis strains isolated from AIDS patients in two HIV/AIDS referral hospitals in Beijing were used in this study. M. tuberculosis and non-tuberculosis mycobacterium (NTM) were identified by using multi-locus PCR. M. tuberculosis was genotyped by using 15-locus MIRU-VNTR technique and spoligotyping afterwards. Meanwhile, the drug susceptibilities of the strains to the four first-line anti TB drugs (rifampin, isoniazid, streptomycin, and ethambutol) and the four second-line anti-TB drugs (capreomycin, kanamycin, ofloxacin, and ethionanide) were tested with proportional method. In this study, M. tuberculosis and NTM strains isolated from AIDS patients with TB-like symptoms were identified and genotyping analysis indicated that Beijing genotype was the predominant genotype. In addition, the prevalence of drug-resistant TB, especially the prevalence of XDR-TB, was higher than that in TB patients without HIV infection. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Jiang, Yi; Liu, Hai-can; Zheng, Huajun; Dou, Xiangfeng; Tang, Biao; Zhao, Xiu-qin; Zhu, Yongqiang; Lu, Bing; Wang, Shengyue; Dong, Hai-yan; Zhang, Yuan-yuan; Zhao, Guoping; Wan, Kanglin
2013-07-01
Recently, tandem repeat typing has emerged as a rapid and easy method for the molecular epidemiology of the Mycobacterium tuberculosis (M. tuberculosis) complex. In this study, a collection of 19 VNTRs incorporating 15 previously described loci and 4 newly evaluated markers were used to genotype 206 Chinese M. tuberculosis isolates and 9 BCG strains. The discriminatory power was evaluated and compared with that obtained by Spoligotyping. It turned out that 15-locus VNTR could be very useful in M. tuberculosis complex strains genotyping in China. The 4 newly evaluated loci were proved informative and could be useful for future epidemiology studies, especially in Beijing family strains. In addition, a unique pattern of the latter 4 loci were found in Chinese BCG strains. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Taheri, Mohammad Mohammad; Mosavari, Nader; Feizabadi, Mohammad Mehdi; Tadayon, Keyvan; Keshavarz, Rouholah; Pajoohi, Reza Aref; Soleimani, Kioomars; Pour, Shojaat Dashti
2016-12-01
Mycobacterium avium ssp paratuberculosis (MAP) causes paratuberculosis (Johne's disease) in ruminants. As a species, M. avium comprises M. avium subsp. hominissuis and a number of clones that are known to have evolved from this subspecies, namely M. avium subsp. avium (MAA), M. avium subsp. silvaticum, and MAP. Despite the very high genomic similarity of MAP and MAA, the insertion sequence IS900, which is 1,451-bp long, is now understood to be exclusively present in 10-20 copies in the genome of MAP. In the present study, a multidiscipline polymerase chain reaction (PCR)-based algorithm targeting16SrRNA, IS6110, IS901, IS1245, and IS900 markers has been employed to differentiate between six laboratory strains of M. avium complex (including MAP 316F, III&V, and 2e plus MAA D4), Mycobacterium tuberculosis DT, and Mycobacterium bovis AN5 strains used at the Razi Institute (Tehran, Iran) for the preparation of paratuberculin, avian, human, and bovine tuberculin, respectively. Three laboratory strains of III&V, 2e, and 316F were subcultured on Herrold's egg yolk medium, whereas the MAA strain of D4 along with M. bovis AN5 and M. tuberculosis DT were subcultured on Lowenstein-Jensen slopes. All the inoculated culture tubes were incubated for 8weeks at 37°C. Eventually, their genomic DNA was extracted according to the method of van Soolingen. Five individual PCRs were conducted on these templates to amplify 16SrRNA (genus-specific marker shared by all mycobacteria), IS900 (MAP-specific marker), IS901 (MAA-specific marker), IS1245 (M. avium complex (MAC)-specific marker), and IS6110 (M. tuberculosis complex (MTC)-specific marker) loci. Consequently, a 543-bp amplicon was amplified by all the six strains in PCR against 16SrRNA, an indication of their identity as members of Mycobacterium genus. A 245-bp fragment was detected in only IS6110-PCR with M. bovis AN5 as well as M. tuberculosis DT. In the IS1245 assessment, the MAA strain of D4 produced a 427-bp amplicon, whereas none of the other studied strains produced this amplicon. A 1,108-bp amplicon fragment of the IS901 marker was successfully produced by MAA strain, whereas no PCR product was achieved in amplification of all the three MAP strains. In IS900-nested PCR, the three MAP strains produced the expected 400-bp and 298-bp fragments CONCLUTION: However, no amplification was observed with other strains. Two main achievements of this work are the development of an efficient means of differentiation between the six Razi laboratory mycobacterial strains and characterization of the genomic profile of these strains, a capability that is vital when cross contamination is potentially an important concern. Copyright © 2016.
Lasserre, Moira; Fresia, Pablo; Greif, Gonzalo; Iraola, Gregorio; Castro-Ramos, Miguel; Juambeltz, Arturo; Nuñez, Álvaro; Naya, Hugo; Robello, Carlos; Berná, Luisa
2018-01-02
Bovine tuberculosis (bTB) poses serious risks to animal welfare and economy, as well as to public health as a zoonosis. Its etiological agent, Mycobacterium bovis, belongs to the Mycobacterium tuberculosis complex (MTBC), a group of genetically monomorphic organisms featured by a remarkably high overall nucleotide identity (99.9%). Indeed, this characteristic is of major concern for correct typing and determination of strain-specific traits based on sequence diversity. Due to its historical economic dependence on cattle production, Uruguay is deeply affected by the prevailing incidence of Mycobacterium bovis. With the world's highest number of cattle per human, and its intensive cattle production, Uruguay represents a particularly suited setting to evaluate genomic variability among isolates, and the diversity traits associated to this pathogen. We compared 186 genomes from MTBC strains isolated worldwide, and found a highly structured population in M. bovis. The analysis of 23 new M. bovis genomes, belonging to strains isolated in Uruguay evidenced three groups present in the country. Despite presenting an expected highly conserved genomic structure and sequence, these strains segregate into a clustered manner within the worldwide phylogeny. Analysis of the non-pe/ppe differential areas against a reference genome defined four main sources of variability, namely: regions of difference (RD), variable genes, duplications and novel genes. RDs and variant analysis segregated the strains into clusters that are concordant with their spoligotype identities. Due to its high homoplasy rate, spoligotyping failed to reflect the true genomic diversity among worldwide representative strains, however, it remains a good indicator for closely related populations. This study introduces a comprehensive population structure analysis of worldwide M. bovis isolates. The incorporation and analysis of 23 novel Uruguayan M. bovis genomes, sheds light onto the genomic diversity of this pathogen, evidencing the existence of greater genetic variability among strains than previously contemplated.
Photodynamic inactivation of the models Mycobacterium phlei and Mycobacterium smegmatis in vitro
NASA Astrophysics Data System (ADS)
Bruce-Micah, R.; Gamm, U.; Hüttenberger, D.; Cullum, J.; Foth, H.-J.
2009-07-01
Photodynamic inactivation (PDI) of bacterial strains presents an attractive potential alternative to antibiotic therapies. Success is dependent on the effective accumulation in bacterial cells of photochemical substances called photosensitizers, which are usually porphyrins or their derivatives. The kinetics of porphyrin synthesis after treatment with the precursor ALA and the accumulation of the Chlorin e6 and the following illumination were studied. The goal was to estimate effectivity of the destructive power of these PS in vitro in respect of the physiological states of Mycobacteria. So the present results examine the cell destruction by PDI using ALA-induced Porphyrins and Chlorin e6 accumulated in Mycobacterium phlei and Mycobacterium smegmatis, which serve as models for the important pathogens Mycobacterium tuberculosis, Mycobacterium leprae and Mycobacterium bovis. We could show that both Mycobacterium after ALA and Chlorin e6 application were killed by illumination with light of about 662 nm. A reduction of about 97% could be reached by using a lightdose of 70 mW/cm2.
We report the draft genome sequences of six Mycobacterium immunogenum isolated from a chloraminated drinking water distribution system simulator subjected to changes in operational parameters. M. immunogenum, a rapidly growing mycobacteria previously reported as the cause of hyp...
USDA-ARS?s Scientific Manuscript database
Previous work in small animal laboratory models of tuberculosis have shown that vaccination strategies based on heterologous prime-boost protocols using Mycobacterium bovis bacille Calmette-Guerin (BCG) to prime and Modified Vaccinia Ankara strain (MVA85A) or recombinant attenuated adenoviruses (Ad8...
Dehalogenation of Haloalkanes by Mycobacterium tuberculosis H37Rv and Other Mycobacteria
Jesenská, Andrea; Sedlác̆ek, Ivo; Damborský, Jir̆í
2000-01-01
Haloalkane dehalogenases convert haloalkanes to their corresponding alcohols by a hydrolytic mechanism. To date, various haloalkane dehalogenases have been isolated from bacteria colonizing environments that are contaminated with halogenated compounds. A search of current databases with the sequences of these known haloalkane dehalogenases revealed the presence of three different genes encoding putative haloalkane dehalogenases in the genome of the human parasite Mycobacterium tuberculosis H37Rv. The ability of M. tuberculosis and several other mycobacterial strains to dehalogenate haloaliphatic compounds was therefore studied. Intact cells of M. tuberculosis H37Rv were found to dehalogenate 1-chlorobutane, 1-chlorodecane, 1-bromobutane, and 1,2-dibromoethane. Nine isolates of mycobacteria from clinical material and four strains from a collection of microorganisms were found to be capable of dehalogenating 1,2-dibromoethane. Crude extracts prepared from two of these strains, Mycobacterium avium MU1 and Mycobacterium smegmatis CCM 4622, showed broad substrate specificity toward a number of halogenated substrates. Dehalogenase activity in the absence of oxygen and the identification of primary alcohols as the products of the reaction suggest a hydrolytic dehalogenation mechanism. The presence of dehalogenases in bacterial isolates from clinical material, including the species colonizing both animal tissues and free environment, indicates a possible role of parasitic microorganisms in the distribution of degradation genes in the environment. PMID:10618227
2017-01-01
For over a century, it has been widely accepted that leprosy did not exist in the Americas before the arrival of Europeans. This proposition was based on a combination of historical, paleopathological, and representational studies. Further support came from molecular studies in 2005 and 2009 that four Mycobacterium leprae single-nucleotide polymorphisms (SNPs) and then 16 SNP subtypes correlated with general geographic regions, suggesting the M. leprae subtypes in the Americas were consistent with European strains. Shortly thereafter, a number of studies proposed that leprosy first came to the Americas with human migrations around 12,000 or 13,000 years ago. These studies are based primarily on subsequent molecular data, especially the discovery of a new leprosy species Mycobacterium lepromatosis and its close association with diffuse lepromatous leprosy, a severe, aggressive form of lepromatous leprosy, which is most common in Mexico and the Caribbean Islands. A review of these and subsequent molecular data finds no evidence for either leprosy species in the Americas before the arrival of Europeans, and strains of both species of leprosy found in eastern Mexico, Caribbean Islands, and Brazil came from Europe while strains found in western Mexico are consistent with their arrival via direct voyages from the Philippines. PMID:29250112
Mark, Samuel
2017-01-01
For over a century, it has been widely accepted that leprosy did not exist in the Americas before the arrival of Europeans. This proposition was based on a combination of historical, paleopathological, and representational studies. Further support came from molecular studies in 2005 and 2009 that four Mycobacterium leprae single-nucleotide polymorphisms (SNPs) and then 16 SNP subtypes correlated with general geographic regions, suggesting the M. leprae subtypes in the Americas were consistent with European strains. Shortly thereafter, a number of studies proposed that leprosy first came to the Americas with human migrations around 12,000 or 13,000 years ago. These studies are based primarily on subsequent molecular data, especially the discovery of a new leprosy species Mycobacterium lepromatosis and its close association with diffuse lepromatous leprosy, a severe, aggressive form of lepromatous leprosy, which is most common in Mexico and the Caribbean Islands. A review of these and subsequent molecular data finds no evidence for either leprosy species in the Americas before the arrival of Europeans, and strains of both species of leprosy found in eastern Mexico, Caribbean Islands, and Brazil came from Europe while strains found in western Mexico are consistent with their arrival via direct voyages from the Philippines.
Revisiting the role of phospholipases C in virulence and the lifecycle of Mycobacterium tuberculosis
Le Chevalier, Fabien; Cascioferro, Alessandro; Frigui, Wafa; Pawlik, Alexandre; Boritsch, Eva C.; Bottai, Daria; Majlessi, Laleh; Herrmann, Jean Louis; Brosch, Roland
2015-01-01
Mycobacterium tuberculosis, the agent of human tuberculosis has developed different virulence mechanisms and virulence-associated tools during its evolution to survive and multiply inside the host. Based on previous reports and by analogy with other bacteria, phospholipases C (PLC) of M. tuberculosis were thought to be among these tools. To get deeper insights into the function of PLCs, we investigated their putative involvement in the intracellular lifestyle of M. tuberculosis, with emphasis on phagosomal rupture and virulence, thereby re-visiting a research theme of longstanding interest. Through the construction and use of an M. tuberculosis H37Rv PLC-null mutant (ΔPLC) and control strains, we found that PLCs of M. tuberculosis were not required for induction of phagosomal rupture and only showed marginal, if any, impact on virulence of M. tuberculosis in the cellular and mouse infection models used in this study. In contrast, we found that PLC-encoding genes were strongly upregulated under phosphate starvation and that PLC-proficient M. tuberculosis strains survived better than ΔPLC mutants under conditions where phosphatidylcholine served as sole phosphate source, opening new perspectives for studies on the role of PLCs in the lifecycle of M. tuberculosis. PMID:26603639
New Approaches and Therapeutic Options for Mycobacterium tuberculosis in a Dormant State.
Caño-Muñiz, Santiago; Anthony, Richard; Niemann, Stefan; Alffenaar, Jan-Willem C
2018-01-01
We are far away from the days when tuberculosis (TB) accounted for 1 in 4 deaths during the 19th century. However, Mycobacterium tuberculosis complex (MTBC) strains are still the leading cause of morbidity and mortality by a single infectious disease, with 9.6 million cases and 1.5 million deaths reported. One-third of the world's population is estimated by the WHO to be infected with latent TB. During the last decade, several studies have aimed to define the characteristics of dormant bacteria in these latent infections. General features of the shift to a dormant state encompass several phenotypic changes that reduce metabolic activity. This low metabolic state is thought to increase the resistance of MTBC strains to host/environmental stresses, including antibiotic action. Once the stress ceases (e.g., interruption of treatment), dormant cells can reactivate and cause symptomatic disease again. Therefore, a proper understanding of dormancy could guide the rational development of new treatment regimens that target dormant cells, reducing later relapse. Here, we briefly summarize the latest data on the genetics involved in the regulation of dormancy and discuss new approaches to TB treatment. Copyright © 2017 American Society for Microbiology.
2012-01-01
Background Mycobacterium avium subspecies paratuberculosis (Map) is the aetiological agent of Johne’s disease or paratuberculosis and is included within the Mycobacterium avium complex (MAC). Map strains are of two major types often referred to as ‘Sheep’ or ‘S-type’ and ‘Cattle’ or ‘C-type’. With the advent of more discriminatory typing techniques it has been possible to further classify the S-type strains into two groups referred to as Type I and Type III. This study was undertaken to genotype a large panel of S-type small ruminant isolates from different hosts and geographical origins and to compare them with a large panel of well documented C-type isolates to assess the genetic diversity of these strain types. Methods used included Mycobacterial Interspersed Repetitive Units - Variable-Number Tandem Repeat analysis (MIRU-VNTR), analysis of Large Sequence Polymorphisms by PCR (LSP analysis), Single Nucleotide Polymorphism (SNP) analysis of gyr genes, Pulsed-Field Gel Electrophoresis (PFGE) and Restriction Fragment Length Polymorphism analysis coupled with hybridization to IS900 (IS900-RFLP) analysis. Results The presence of LSPA4 and absence of LSPA20 was confirmed in all 24 Map S-type strains analysed. SNPs within the gyr genes divided the S-type strains into types I and III. Twenty four PFGE multiplex profiles and eleven different IS900-RFLP profiles were identified among the S-type isolates, some of them not previously published. Both PFGE and IS900-RFLP segregated the S-type strains into types I and III and the results concurred with those of the gyr SNP analysis. Nine MIRU-VNTR genotypes were identified in these isolates. MIRU-VNTR analysis differentiated Map strains from other members of Mycobacterium avium Complex, and Map S-type from C-type but not type I from III. Pigmented Map isolates were found of type I or III. Conclusion This is the largest panel of S-type strains investigated to date. The S-type strains could be further divided into two subtypes, I and III by some of the typing techniques (IS900-RFLP, PFGE and SNP analysis of the gyr genes). MIRU-VNTR did not divide the strains into the subtypes I and III but did detect genetic differences between isolates within each of the subtypes. Pigmentation is not exclusively associated with type I strains. PMID:23164429
Beta-lactamases of Mycobacterium tuberculosis and Mycobacterium kansasii.
Segura, C; Salvadó, M
1997-09-01
Re-emergence of infectious diseases caused by mycobacteria as well as the emergence of multiresistant strains of Mycobacterium has promoted the research on the use of beta-lactames in the treatment of such diseases. Mycobacteria produce beta-lactamases: M. tuberculosis produces a wide-spectrum beta-lactamase whose behaviour mimicks those of Gram-negative bacteria. M. kansasii produces also beta-lactamase which can be inhibited by clavulanic acid. An overview on beta-lactamases from both species is reported.
Mandewale, Mustapha C.; Thorat, Bapu; Shelke, Dnyaneshwar; Yamgar, Ramesh
2015-01-01
A new series of quinoline hydrazone derivatives and their metal complexes have been synthesized and their biological properties have been evaluated against Mycobacterium tuberculosis (H37 RV strain). Most of the newly synthesized compounds displayed 100% inhibitory activity at a concentration of 6.25–25 μg/mL, against Mycobacterium tuberculosis. Fluorescence properties of all the synthesized compounds have been studied. PMID:26759537
Schena, Elisa; Nedialkova, Lubov; Borroni, Emanuele; Battaglia, Simone; Cabibbe, Andrea Maurizio; Niemann, Stefan; Utpatel, Christian; Merker, Matthias; Trovato, Alberto; Hofmann-Thiel, Sabine; Hoffmann, Harald; Cirillo, Daniela Maria
2016-06-01
The objective of this study was to develop standardized protocols for rapid delamanid drug susceptibility testing (DST) using the colorimetric resazurin microtitre assay (REMA) and semi-automated BACTEC™ MGIT™ 960 system (MGIT) by establishing breakpoints that accurately discriminate between susceptibility and resistance of Mycobacterium tuberculosis to delamanid. MICs of delamanid were determined by the MGIT, the REMA and the solid agar method for 19 pre-characterized strains. The MIC distribution of delamanid was then established for a panel of clinical strains never exposed to the drug and characterized by different geographical origins and susceptibility patterns. WGS was used to investigate genetic polymorphisms in five genes (ddn, fgd1, fbiA, fbiB and fbiC) involved in intracellular delamanid activation. We demonstrated that the REMA and MGIT can both be used for the rapid and accurate determination of delamanid MIC, showing excellent concordance with the solid agar reference method, as well as high reproducibility and repeatability. We propose the tentative breakpoint of 0.125 mg/L for the REMA and MGIT, allowing reliable discrimination between M. tuberculosis susceptible and resistant to delamanid. Stop codon mutations in ddn (Trp-88 → STOP) and fbiA (Lys-250 → STOP) have only been observed in strains resistant to delamanid. We established protocols for DST of delamanid in the MGIT and REMA, confirming their feasibility in routine TB diagnostics, utilizing the same discriminative concentration for both methods. Moreover, taking advantage of WGS analysis, we identified polymorphisms potentially associated with resistance in two genes involved in delamanid activation. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Colavecchia, Silvia B; Fernández, Bárbara; Jolly, Ana; Minatel, Leonardo; Hajos, Silvia E; Paolicchi, Fernando A; Mundo, Silvia L
2016-08-01
Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of ruminant paratuberculosis. The aim of this study was to evaluate the biological behavior of different Argentinean strains of MAP in two bovine infection models: macrophage (in vitro) and calf (in vivo) through the evaluation of early immune responses at the peripheral and local levels. Two MAP strains (A and C) were selected taking into account the different patterns of TNF-α and IL-10 secretion displayed by infected bovine macrophages in vitro. Two groups of calves were infected with 250mg of total wet weight live MAP: strain A infected group (MA, n=3), strain C infected group (MC, n=2). Another group of animals was mock-infected (MI, n=3). Infection was confirmed by MAP culture of feces and microscopic observation of granulomatous lesions in the gut tissue. All infected calves showed positive results in the DTH skin test. A significant increase in peripheral CD4CD25(+) cells in MC group on day 150 was detected. The specific cellular immune response developed allowed the identification of the infection as early as 30days in the MA group. However, the percentage of CD8CD25(+) cells was significantly increased on day 120 in MC group. Significant differences between groups in proliferation and cellular responses were also detected in ileocecal lymph node samples. In summary, the strains of MAP employed herein induced differential immune responses in peripheral cells, in the proliferative responses and in cell functionality at the local level. Our findings support the hypotheses that the in vitro behavior displayed by macrophages could be a tool to identify differences among MAP strains infecting bovines and that the host-pathogen interactions occurring upon infection are dependent on the strain of MAP involved. Copyright © 2016 Elsevier B.V. All rights reserved.
Mycobacterium bovis in Panama, 2013
Acosta, Fermín; Chernyaeva, Ekatherina; Mendoza, Libardo; Sambrano, Dilcia; Correa, Ricardo; Rotkevich, Mikhail; Tarté, Miroslava; Hernández, Humberto; Velazco, Bredio; de Escobar, Cecilia; de Waard, Jacobus H.
2015-01-01
Panama remains free of zoonotic tuberculosis caused by Mycobacterium bovis. However, DNA fingerprinting of 7 M. bovis isolates from a 2013 bovine tuberculosis outbreak indicated minimal homology with strains previously circulating in Panama. M. bovis dispersion into Panama highlights the need for enhanced genotype testing to track zoonotic infections. PMID:25988479
Members of the Mycobacterium avium complex (MAC) are naturally occurring bacteria in the environment. A link has been suggested between M. avium strains in drinking water and clinical isolates from infected individuals. There is a need to develop new screening methodologies tha...
Moreno, C; Garrigó, M; Sánchez, F; Coll, P
1994-05-01
The usefulness of the microscopic examination of Bactec 12B and 13A growth medium as a method for the possible identification of M. tuberculosis complex, M. avium complex, M. xenopi, and M. kansasii was performed out to guide the selection of different genetic identification probes and, in the case of M. xenopi, the selection of the temperature of subcultures incubation. Upon detection of an index of growth greater than 100 in Bactec tubes, staining was performed by the Ziehl-Neelsen technique. On the basis of the morphology observed, the possible identification was performed by genetic probes. Subcultures were used for definitive identification. Three hundred forty-four positive samples were studied by radiometric technique. A total of 190 strains were identified as M. tuberculosis, 88 strains as M. avium-intracellulare (MAI), 33 strains as M. xenopi, 14 strains as M. kansasii and 19 strains were identified as: M. gordonae (10), unpigmented rapid growth microbacteria (7), and M. simiae (2). Sensitivity, specificity, positive predictive value, and negative predictive value were 97.9%, 95.4%, 96.4%, and 97.3%, respectively for M. tuberculosis complex, 84.0%, 99.2%, 97.3% 94.7% for M. avium complex; 63.6%, 98.3%, 80.7%, 96.2% for M. xenopi; 35.7%, 98.1%, 45.5% 97.2% for M. kansasii. The morphology of M. tuberculosis complex examined in the radiometric system in useful to differentiate this species from other microbacteria (MOTT), allowing the selection of specific probe used. Within the MOTT, M. avium complex also has morphological characteristics which are useful for its differentiation, the morphology usually described for the remaining species was frequently not observed.
Singh, Rambir; Hussain, Shariq; Verma, Rajesh; Sharma, Poonam
2013-05-13
To find out the anti-mycobacterial potential of Cassia sophera (C. sophera), Urtica dioica (U. dioica), Momordica dioica, Tribulus terrestris and Coccinia indica plants against multi-drug resistant (MDR) strain of Mycobacterium tuberculosis (M. tuberculosis). Plant materials were extracted successively with solvents of increasing polarity. Solvent extracts were screened for anti-mycobacterial activity against fast growing, non-pathogenic mycobacterium strain, Mycobacterium semegmatis, by disk diffusion method. The active extracts were tested against MDR and clinical isolates of M. tuberculosis by absolute concentration and proportion methods. The active extracts were subjected to bio-autoassay on TLC followed by silica column chromatography for isolation of potential drug leads. Hexane extract of U. dioica (HEUD) and methanol extract of C. sophera (MECS) produced inhibition zone of 20 mm in disc diffusion assay and MIC of 250 and 125 μ g/mL respectively in broth dilution assay against Mycobacterium semegmatis. Semipurified fraction F2 from MECS produced 86% inhibition against clinical isolate and 60% inhibition against MDR strain of M. tuberculosis. F18 from HEUD produced 81% inhibition against clinical isolate and 60% inhibition against MDR strain of M. tuberculosis. Phytochemical analysis indicated that anti-mycobacterial activity of MECS may be due to presence of alkaloids or flavonoids and that of HEUD due to terpenoids. C. sophera and U. dioica plant extracts exhibited promising anti-mycobacterial activity against MDR strain of M. tuberculosis. This is the first report of anti-mycobacterial activity form C. sophera. This study showed possibility of purifying novel anti-mycobacterial compound(s) from C. sophera and U. dioica. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Ocheretina, Oksana; Escuyer, Vincent E.; Mabou, Marie-Marcelle; Royal-Mardi, Gertrude; Collins, Sean; Vilbrun, Stalz C.; Pape, Jean W.; Fitzgerald, Daniel W.
2014-01-01
The World Health Organization has recommended use of molecular-based tests MTBDRplus and GeneXpert MTB/RIF to diagnose multidrug-resistant tuberculosis in developing and high-burden countries. Both tests are based on detection of mutations in the Rifampin (RIF) Resistance-Determining Region of DNA-dependent RNA Polymerase gene (rpoB). Such mutations are found in 95–98% of Mycobacterium tuberculosis strains determined to be RIF-resistant by the “gold standard” culture-based drug susceptibility testing (DST). We report the phenotypic and genotypic characterization of 153 consecutive clinical Mycobacterium tuberculosis strains diagnosed as RIF-resistant by molecular tests in our laboratory in Port-au-Prince, Haiti. 133 isolates (86.9%) were resistant to both RIF and Isoniazid and 4 isolates (2.6%) were RIF mono-resistant in MGIT SIRE liquid culture-based DST. However the remaining 16 isolates (10.5%) tested RIF-sensitive by the assay. Five strains with discordant genotypic and phenotypic susceptibility results had RIF minimal inhibitory concentration (MIC) close to the cut-off value of 1 µg/ml used in phenotypic susceptibility assays and were confirmed as resistant by DST on solid media. Nine strains had sub-critical RIF MICs ranging from 0.063 to 0.5 µg/ml. Finally two strains were pan-susceptible and harbored a silent rpoB mutation. Our data indicate that not only detection of the presence but also identification of the nature of rpoB mutation is needed to accurately diagnose resistance to RIF in Mycobacterium tuberculosis. Observed clinical significance of low-level resistance to RIF supports the re-evaluation of the present critical concentration of the drug used in culture-based DST assays. PMID:24599230
Fomukong, N G; Tang, T H; al-Maamary, S; Ibrahim, W A; Ramayah, S; Yates, M; Zainuddin, Z F; Dale, J W
1994-12-01
DNA fingerprinting with the insertion sequence IS6110 (also known as IS986) has become established as a major tool for investigating the spread of tuberculosis. Most strains of Mycobacterium tuberculosis have multiple copies of IS6110, but a small minority carry a single copy only. We have examined selected strains from Malaysia, Tanzania and Oman, in comparison with M. bovis isolates and BCG strains carrying one or two copies of IS6110. The insertion sequence appears to be present in the same position in all these strains, which suggests that in these organisms the element is defective in transposition and that the loss of transposability may have occurred at an early stage in the evolution of the M. tuberculosis complex.
Bakala N'Goma, Jean Claude; Le Moigne, Vincent; Soismier, Nathalie; Laencina, Laura; Le Chevalier, Fabien; Roux, Anne-Laure; Poncin, Isabelle; Serveau-Avesque, Carole; Rottman, Martin; Gaillard, Jean-Louis; Etienne, Gilles; Brosch, Roland; Canaan, Stéphane
2014-01-01
Mycobacterium abscessus is a pathogenic, rapidly growing mycobacterium involved in pulmonary and cutaneo-mucous infections worldwide, to which cystic fibrosis patients are exquisitely susceptible. The analysis of the genome sequence of M. abscessus showed that this bacterium is endowed with the metabolic pathways typically found in environmental microorganisms that come into contact with soil, plants, and aquatic environments, where free-living amoebae are frequently present. M. abscessus also contains several genes that are characteristically found only in pathogenic bacteria. One of them is MAB_0555, encoding a putative phospholipase C (PLC) that is absent from most other rapidly growing mycobacteria, including Mycobacterium chelonae and Mycobacterium smegmatis. Here, we report that purified recombinant M. abscessus PLC is highly cytotoxic to mouse macrophages, presumably due to hydrolysis of membrane phospholipids. We further showed by constructing and using an M. abscessus PLC knockout mutant that loss of PLC activity is deleterious to M. abscessus intracellular survival in amoebae. The importance of PLC is further supported by the fact that M. abscessus PLC was found to be expressed only in amoebae. Aerosol challenge of mice with M. abscessus strains that were precultured in amoebae enhanced M. abscessus lung infectivity relative to M. abscessus grown in broth culture. Our study underlines the importance of PLC for the virulence of M. abscessus. Despite the difficulties of isolating M. abscessus from environmental sources, our findings suggest that M. abscessus has evolved in close contact with environmental protozoa, which supports the argument that amoebae may contribute to the virulence of opportunistic mycobacteria. PMID:25486995
Kim, Byoung-Jun; Kim, Ga-Na; Kim, Bo-Ram; Shim, Tae-Sun; Kook, Yoon-Hoh; Kim, Bum-Joon
2017-01-01
Recent multi locus sequence typing (MLST) and genome based studies indicate that lateral gene transfer (LGT) events in the rpoB gene are prevalent between Mycobacterium abscessus complex strains. To check the prevalence of the M. massiliense strains subject to rpoB LGT (Rec-mas), we applied rpoB typing (711 bp) to 106 Korean strains of M. massiliense infection that had already been identified by hsp65 sequence analysis (603 bp). The analysis indicated 6 smooth strains in M. massiliense Type I (10.0%, 6/60) genotypes but no strains in M. massiliense Type II genotypes (0%, 0/46), showing a discrepancy between the 2 typing methods. Further MLST analysis based on the partial sequencing of seven housekeeping genes, argH, cya, glpK, gnd, murC, pta and purH, as well as erm(41) PCR proved that these 6 Rec-mas strains consisted of two distinct genotypes belonging to M. massiliense and not M. abscessus. The complete rpoB sequencing analysis showed that these 6 Rec-mas strains have an identical hybrid rpoB gene, of which a 478 bp partial rpoB fragment may be laterally transferred from M. abscessus. Notably, five of the 6 Rec-mas strains showed complete identical sequences in a total of nine genes, including the seven MLST genes, hsp65, and rpoB, suggesting their clonal propagation in South Korea. In conclusion, we identified 6 M. massiliense smooth strains of 2 phylogenetically distinct genotypes with a specific hybrid rpoB gene laterally transferred from M. abscessus from Korean patients. Their clinical relevance and bacteriological traits remain to be elucidated.
Kim, Byoung-Jun; Kim, Ga-Na; Kim, Bo-Ram; Shim, Tae-Sun; Kook, Yoon-Hoh
2017-01-01
Recent multi locus sequence typing (MLST) and genome based studies indicate that lateral gene transfer (LGT) events in the rpoB gene are prevalent between Mycobacterium abscessus complex strains. To check the prevalence of the M. massiliense strains subject to rpoB LGT (Rec-mas), we applied rpoB typing (711 bp) to 106 Korean strains of M. massiliense infection that had already been identified by hsp65 sequence analysis (603 bp). The analysis indicated 6 smooth strains in M. massiliense Type I (10.0%, 6/60) genotypes but no strains in M. massiliense Type II genotypes (0%, 0/46), showing a discrepancy between the 2 typing methods. Further MLST analysis based on the partial sequencing of seven housekeeping genes, argH, cya, glpK, gnd, murC, pta and purH, as well as erm(41) PCR proved that these 6 Rec-mas strains consisted of two distinct genotypes belonging to M. massiliense and not M. abscessus. The complete rpoB sequencing analysis showed that these 6 Rec-mas strains have an identical hybrid rpoB gene, of which a 478 bp partial rpoB fragment may be laterally transferred from M. abscessus. Notably, five of the 6 Rec-mas strains showed complete identical sequences in a total of nine genes, including the seven MLST genes, hsp65, and rpoB, suggesting their clonal propagation in South Korea. In conclusion, we identified 6 M. massiliense smooth strains of 2 phylogenetically distinct genotypes with a specific hybrid rpoB gene laterally transferred from M. abscessus from Korean patients. Their clinical relevance and bacteriological traits remain to be elucidated. PMID:28604829
Moisoiu, Adriana; Mitran, Cristina Iulia; Mitran, Mãdãlina Irina; Huhu, Mihaela Roxana; Ioghen, Octavian Costin; Gheorghe, Adelina-Silvana; Tampa, Mircea; Georgescu, Simona Roxana; Popa, Mircea Ioan
2016-01-01
Multi-drug resistant tuberculosis (MDR-TB) is a major concern in the medical community. Knowledge about the drug resistance pattern of Mycobacterium tuberculosis strains plays an essential role in the management of the disease. We conducted a retrospective, 3-year study (2009-2011), in an urban area. We collected data on the drug resistance for 497 M. tuberculosis strains, isolated from patients with pulmonary TB. Among the 497 strains, we identified 158 MDR strains. Eighty medical recorders of patients infected with MDR strains were available and we included those patients in the study group. Of the 497 analysed strains, 8% were resistant to a single anti-TB drug. We identified 5.2% polyresistant drug strains, the most frequent combination being INH+EMB (1.4%). Of the 158 MDR strains identified (31.8%), over 60% were resistant to all first line anti-TB drugs tested. Most of them presented resistance to STM (86.1%) and EMB (67.7%). With respect to second line anti-TB drugs resistance to KM (23.4%) was the most common, followed by OFX (8.2%). With respect to the patients with MDR-TB, a percentage of 61.2% of them had a history of anti-TB treatment. Regarding lifestyle habits, 61.2% of the patients were smokers and 18.8% were abusing alcohol. Out of 51 patients, for whom information was available regarding their occupation, only 33.3 % were employees. MDR strains of Mycobacterium tuberculosis display an increased resistance to first line anti-TB drugs. Extension of resistance to second line anti-TB drugs narrows the therapeutic options. Knowledge of MDR-TB risk factors is imperative for the correct and rapid initiation of the treatment.
Loraine, Jessica K; Smith, Margaret C M
2017-01-01
Mycobacterium neoaurum is a saprophytic, soil-dwelling bacterium. The strain NRRL B-3805 converts phytosterols to androst-4-ene-3,17-dione (androstenedione; AD), a precursor of multiple C19 steroids of importance to industry. NRRL B-3805 itself is able to convert AD to other steroid products, including testosterone (Ts) and androst-1,4-diene-3,17-dione (androstadienedione; ADD). However to improve this strain for industrial use, genetic modification is a priority. In this chapter, we describe a range of genetic techniques that can be used for M. neoaurum NRRL B-3805. Methods for transformation, expression, and gene knockouts are presented as well as plasmid maintenance and stability.
Chlorine, Chloramine, Chlorine Dioxide, and Ozone Susceptibility of Mycobacterium avium
Taylor, Robert H.; Falkinham, Joseph O.; Norton, Cheryl D.; LeChevallier, Mark W.
2000-01-01
Environmental and patient isolates of Mycobacterium avium were resistant to chlorine, monochloramine, chlorine dioxide, and ozone. For chlorine, the product of the disinfectant concentration (in parts per million) and the time (in minutes) to 99.9% inactivation for five M. avium strains ranged from 51 to 204. Chlorine susceptibility of cells was the same in washed cultures containing aggregates and in reduced aggregate fractions lacking aggregates. Cells of the more slowly growing strains were more resistant to chlorine than were cells of the more rapidly growing strains. Water-grown cells were 10-fold more resistant than medium-grown cells. Disinfectant resistance may be one factor promoting the persistence of M. avium in drinking water. PMID:10742264
Li, Yanan; Cao, Xinrui; Li, Shiming; Wang, Hao; Wei, Jianlin; Liu, Peng; Wang, Jing; Zhang, Zhi; Gao, Huixia; Li, Machao; Wan, Kanglin; Dai, Erhei
2016-03-03
Tuberculosis remains a major public health problem in China. The Hebei province is located in the Beijing-Tianjin-Hebei integration region; however little information about the genetic diversity of Mycobacterium tuberculosis was available in this area. This study describes the first attempt to map the molecular epidemiology of MTB strains isolated from Hebei. Spoligotyping and 15-locus MIRU-VNTR were performed in combination to yield specific genetic profiles of 1017 MTB strains isolated from ten cities in the Hebei province in China during 2014. Susceptibility testing to first line anti-TB drugs was also conducted for all strains using the L-J proportion method. Based on the SpolDB4.0 database, the predominant spoligotype belonged to the Beijing family (90.5%), followed by T family (6.3%). Using 15-locus MIRU-VNTR clustering analysis, 846 different patterns were identified, including 84 clusters (2-17 strains per cluster) and 764 individual types. Drug susceptibility pattern showed that 347 strains (34.1%) were resistant to at least one of the first line drugs, including 134 (13.2%) multi-drug resistance strains. Statistical analysis indicated that drug resistance was associated with treatment history. The Beijing family was associated with genetic clustering. However, no significant difference was observed between the Beijing and non-Beijing family in gender, age, treatment history and drug resistance. The Mycobacterium tuberculosis strains in Hebei exhibit high genetic diversity. The Beijing family is the most prevalent lineage in this area. Spoligotyping in combination with 15-locus MIRU-VNTR is a useful tool to study the molecular epidemiology of the MTB strains in Hebei.
Kabongo-Kayoka, Prudence N; Eloff, Jacobus N; Obi, Chikwelu L; McGaw, Lyndy J
2016-12-01
Treatment of tuberculosis (TB) is a challenge because of multidrug-resistant and extremely drug-resistant strains of Mycobacterium tuberculosis. Plant species contain antimicrobial compounds that may lead to new anti-TB drugs. Previous screening of some tree species from the Anacardiaceae family revealed the presence of antimicrobial activity, justifying further investigations. Leaf extracts of 15 Anacardiaceae tree species were screened for antimycobacterial activity using a twofold serial microdilution assay against the pathogenic Mycobacterium bovis and multidrug resistant M. tuberculosis and rapidly growing mycobacteria, Mycobacterium smegmatis, Mycobacterium fortuitum and Mycobacterium aurum. The vaccine strain, M. bovis and an avirulent strain, H37Ra M. tuberculosis, were also used. Cytotoxicity was assessed using a colorimetric assay against Vero kidney, human hepatoma and murine macrophage cells. Four out of 15 crude acetone extracts showed significant antimycobacterial activity with minimum inhibitory concentration varying from 50 to 100 µg/mL. Searsia undulata had the highest activity against most mycobacteria, followed by Protorhus longifolia. M. fortuitum was the strongest predictor of activity against multidrug-resistant TB (correlation coefficient = 0.65). Bioautography against M. aurum and M. fortuitum worked well as indicators of the Rf values of active compounds yielding strong zones of inhibition. The leaf extracts of S. undulata and P. longifolia had more than ten different antimycobacterial compounds and had low cytotoxicity with LC 50 values above 100 µg/mL. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Lee, Jihye; Tupasi, Thelma E; Park, Young Kil
2014-05-01
With increasing international interchange of personnel, international monitoring is necessary to decrease tuberculosis incidence in the world. This study aims to develop a new tool to determine origin of Mycobacterium tuberculosis strains isolated from Filipino patients living in Korea. Thirty-two variable number tandem repeat (VNTR) loci were used for discrimination of 50 Filipino M. tuberculosis strains isolated in the Philippines, 317 Korean strains isolated in Korea, and 8 Filipino strains isolated in Korea. We found that the VNTR loci 0580, 0960, 2531, 2687, 2996, 0802, 2461, 2163a, 4052, 0424, 1955, 2074, 2347, 2401, 3171, 3690, 2372, 3232, and 4156 had different mode among copy numbers or exclusively distinct copy number in VNTR typing between Filipino and Korean M. tuberculosis strains. When these differences of the VNTR loci were applied to 8 Filipino M. tuberculosis strains isolated in Korea, 6 of them revealed Filipino type while 2 of them had Korean type. Using the differences of mode or repeated number of VNTR loci were very useful in distinguishing the Filipino strain from Korean strain.
Liu, Zhonghua; Gao, Yulu; Yang, Hua; Bao, Haiyang; Qin, Lianhua; Zhu, Changtai; Chen, Yawen; Hu, Zhongyi
2016-01-01
Mycobacterium tuberculosis (MTB) is a specific aerobic bacterium, but can survive under hypoxic conditions, such as those in lung cheese necrosis, granulomas, or macrophages. It is not clear whether the drug sensitivity and growth characteristics of MTB under hypoxic conditions are different from those under aerobic conditions. In this study, we examined the drug resistance and growth characteristics of MTB clinical isolates by a large sample of in vitro drug susceptibility tests, using an automatic growth instrument. Under hypoxic conditions, variance in drug resistance was observed in nearly one-third of the MTB strains and was defined as MTB strains with changed drug sensitivity (MTB-CDS). Among these strains, resistance in a considerable proportion of clinical strains was significantly increased, and some strains emerged as multi-drug resistant. Growth test results revealed a high growth rate and large survival number in macrophages under hypoxia in MTB-CDS. According to the results of fluorescence quantitative PCR, the expression of some genes, including RegX3 (involving RIF resistance), Rv0194 (efflux pump gene), four genes related to transcription regulation (KstR, DosR, Rv0081 and WhiB3) and gene related to translation regulation (DATIN), were upregulated significantly under hypoxic conditions compared to that under aerobic conditions (p < 0.05). Thus, we concluded that some MTB clinical isolates can survive under hypoxic conditions and their resistance could change. As for poor clinical outcomes in patients, based on routine drug susceptibility testing, drug susceptibility tests for tuberculosis under hypoxic conditions should also be recommended. However, the detailed mechanisms of the effect of hypoxia on drug sensitivity and growth characteristics of MTB clinical isolates still requires further study.
Siméone, Roxane; Constant, Patricia; Guilhot, Christophe; Daffé, Mamadou; Chalut, Christian
2007-07-01
Phthiocerol dimycocerosates (DIM) and phenolglycolipids (PGL) are functionally important surface-exposed lipids of Mycobacterium tuberculosis. Their biosynthesis involves the products of several genes clustered in a 70-kb region of the M. tuberculosis chromosome. Among these products is PpsD, one of the modular type I polyketide synthases responsible for the synthesis of the lipid core common to DIM and PGL. Bioinformatic analyses have suggested that this protein lacks a functional enoyl reductase activity domain required for the synthesis of these lipids. We have identified a gene, Rv2953, that putatively encodes an enoyl reductase. Mutation in Rv2953 prevents conventional DIM formation and leads to the accumulation of a novel DIM-like product. This product is unsaturated between C-4 and C-5 of phthiocerol. Consistently, complementation of the mutant with a functional pks15/1 gene from Mycobacterium bovis BCG resulted in the accumulation of an unsaturated PGL-like substance. When an intact Rv2953 gene was reintroduced into the mutant strain, the phenotype reverted to the wild type. These findings indicate that Rv2953 encodes a trans-acting enoyl reductase that acts with PpsD in phthiocerol and phenolphthiocerol biosynthesis.
Kwak, Yunyoung; Li, Qing X; Shin, Jae-Ho
2016-01-01
Mycobacterium rufum JS14(T) (=ATCC BAA-1377(T), CIP 109273(T), JCM 16372(T), DSM 45406(T)), a type strain of the species Mycobacterium rufum sp. . belonging to the family Mycobacteriaceae, was isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soil in Hilo (HI, USA) because it harbors the capability of degrading PAH. Here, we describe the first genome sequence of strain JS14(T), with brief phenotypic characteristics. The genome is composed of 6,176,413 bp with 69.25 % G + C content and contains 5810 protein-coding genes with 54 RNA genes. The genome information on M. rufum JS14(T) will provide a better understanding of the complexity of bacterial catabolic pathways for degradation of specific chemicals.
Ghosh, Pallab; Hsu, Chungyi; Alyamani, Essam J; Shehata, Maher M; Al-Dubaib, Musaad A; Al-Naeem, Abdulmohsen; Hashad, Mahmoud; Mahmoud, Osama M; Alharbi, Khalid B J; Al-Busadah, Khalid; Al-Swailem, Abdulaziz M; Talaat, Adel M
2012-01-01
Mycobacterium avium subspecies paratuberculosis (M. ap) is the causative agent of paratuberculosis or Johne's disease (JD) in herbivores with potential involvement in cases of Crohn's disease in humans. JD is spread worldwide and is economically important for both beef and dairy industries. Generally, pathogenic ovine strains (M. ap-S) are mainly found in sheep while bovine strains (M. ap-C) infect other ruminants (e.g. cattle, goat, deer), as well as sheep. In an effort to characterize this emerging infection in dromedary/Arabian camels, we successfully cultured M. ap from several samples collected from infected camels suffering from chronic, intermittent diarrhea suggestive of JD. Gene-based typing of isolates indicated that all isolates belong to sheep lineage of strains of M. ap (M. ap-S), suggesting a putative transmission from infected sheep herds. Screening sheep and goat herds associated with camels identified the circulation of this type in sheep but not goats. The current genome-wide analysis recognizes these camel isolates as a sub-lineage of the sheep strain with a significant number of single nucleotide polymorphisms (SNPs) between sheep and camel isolates (∼1000 SNPs). Such polymorphism could represent geographical differences among isolates or host adaptation of M. ap during camel infection. To our knowledge, this is the first attempt to examine the genomic basis of this emerging infection in camels with implications on the evolution of this important pathogen. The sequenced genomes of M. ap isolates from camels will further assist our efforts to understand JD pathogenesis and the dynamic of disease transmission across animal species.
Ghosh, Pallab; Hsu, Chungyi; Alyamani, Essam J.; Shehata, Maher M.; Al-Dubaib, Musaad A.; Al-Naeem, Abdulmohsen; Hashad, Mahmoud; Mahmoud, Osama M.; Alharbi, Khalid B. J.; Al-Busadah, Khalid; Al-Swailem, Abdulaziz M.; Talaat, Adel M.
2012-01-01
Mycobacterium avium subspecies paratuberculosis (M. ap) is the causative agent of paratuberculosis or Johne's disease (JD) in herbivores with potential involvement in cases of Crohn's disease in humans. JD is spread worldwide and is economically important for both beef and dairy industries. Generally, pathogenic ovine strains (M. ap-S) are mainly found in sheep while bovine strains (M. ap-C) infect other ruminants (e.g. cattle, goat, deer), as well as sheep. In an effort to characterize this emerging infection in dromedary/Arabian camels, we successfully cultured M. ap from several samples collected from infected camels suffering from chronic, intermittent diarrhea suggestive of JD. Gene-based typing of isolates indicated that all isolates belong to sheep lineage of strains of M. ap (M. ap-S), suggesting a putative transmission from infected sheep herds. Screening sheep and goat herds associated with camels identified the circulation of this type in sheep but not goats. The current genome-wide analysis recognizes these camel isolates as a sub-lineage of the sheep strain with a significant number of single nucleotide polymorphisms (SNPs) between sheep and camel isolates (∼1000 SNPs). Such polymorphism could represent geographical differences among isolates or host adaptation of M. ap during camel infection. To our knowledge, this is the first attempt to examine the genomic basis of this emerging infection in camels with implications on the evolution of this important pathogen. The sequenced genomes of M. ap isolates from camels will further assist our efforts to understand JD pathogenesis and the dynamic of disease transmission across animal species. PMID:22393374
Möbius, Petra; Hölzer, Martin; Felder, Marius; Nordsiek, Gabriele; Groth, Marco; Köhler, Heike; Reichwald, Kathrin; Platzer, Matthias; Marz, Manja
2015-01-01
Mycobacterium avium (M. a.) subsp. paratuberculosis (MAP)—the etiologic agent of Johne’s disease—affects cattle, sheep, and other ruminants worldwide. To decipher phenotypic differences among sheep and cattle strains (belonging to MAP-S [Type-I/III], respectively, MAP-C [Type-II]), comparative genome analysis needs data from diverse isolates originating from different geographic regions of the world. This study presents the so far best assembled genome of a MAP-S-strain: Sheep isolate JIII-386 from Germany. One newly sequenced cattle isolate (JII-1961, Germany), four published MAP strains of MAP-C and MAP-S from the United States and Australia, and M. a. subsp. hominissuis (MAH) strain 104 were used for assembly improvement and comparisons. All genomes were annotated by BacProt and results compared with NCBI (National Center for Biotechnology Information) annotation. Corresponding protein-coding sequences (CDSs) were detected, but also CDSs that were exclusively determined by either NCBI or BacProt. A new Shine–Dalgarno sequence motif (5′-AGCTGG-3′) was extracted. Novel CDSs including PE-PGRS family protein genes and about 80 noncoding RNAs exhibiting high sequence conservation are presented. Previously found genetic differences between MAP-types are partially revised. Four of ten assumed MAP-S-specific large sequence polymorphism regions (LSPSs) are still present in MAP-C strains; new LSPSs were identified. Independently of the regional origin of the strains, the number of individual CDSs and single nucleotide variants confirms the strong similarity of MAP-C strains and shows higher diversity among MAP-S strains. This study gives ambiguous results regarding the hypothesis that MAP-S is the evolutionary intermediate between MAH and MAP-C, but it clearly shows a higher similarity of MAP to MAH than to Mycobacterium intracellulare. PMID:26384038
Jyoti, Md Anirban; Nam, Kung-Woo; Jang, Woong Sik; Kim, Young-Hee; Kim, Su-Kyung; Lee, Byung-Eui; Song, Ho-Yeon
2016-04-01
In order to protect against Mycobacterium tuberculosis (MTB) infection, novel drugs and new targets should be screened from the vast source of plants. We investigated the potentiality of the herbal plant of Artemisia capillaris extract (AC) against Mycobacterium tuberculosis. In this study, we isolated ursolic acid and hydroquinone by bio-activity guided fractionation from the methanol extracts of AC, and tested the inhibitory effects against several strains of MTB. Anti-mycobacterial evaluation of these compounds was carried out using the MGIT™ 960 and resazurin assay. Mycobacterial morphological changes due to the treatment of these compounds were further evaluated by Transmission electron microscopy (TEM). Ursolic acid (UA) and hydroquinone (HQ) inhibited the growth of both susceptible and resistant strains of M. tuberculosis. The MIC (minimum inhibitory concentration) values of both UA and HQ were 12.5 μg/ml against the susceptible strains of M. tuberculosis. Also both UA and HQ showed 12.5-25 μg/ml of MIC values against MDR/XDR MTB strains. However, against clinical strains of MTB, UA was found sensitive against those strains that are sensitive against both INH and RFP but resistant against those strains that are resistant to INH. On the other hand HQ was sensitive against all clinical strains. TEM image-analysis of the strain H37Ra after treatment with UA revealed cell wall lysis, whereas HQ-treated cells showed deformed cytoplasmic morphology. All these results indicate that AC extracts containing UA and HQ possess promising chemotherapeutic potency against MTB for future use. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Khatri, Bhagwati; Fielder, Mark; Jones, Gareth; Newell, William; Abu-Oun, Manal; Wheeler, Paul R.
2013-01-01
Tuberculosis is a major human and animal disease of major importance worldwide. Genetically, the closely related strains within the Mycobacterium tuberculosis complex which cause disease are well-characterized but there is an urgent need better to understand their phenotypes. To search rapidly for metabolic differences, a working method using Biolog Phenotype MicroArray analysis was developed. Of 380 substrates surveyed, 71 permitted tetrazolium dye reduction, the readout over 7 days in the method. By looking for ≥5-fold differences in dye reduction, 12 substrates differentiated M. tuberculosis H37Rv and Mycobacterium bovis AF2122/97. H37Rv and a Beijing strain of M. tuberculosis could also be distinguished in this way, as could field strains of M. bovis; even pairs of strains within one spoligotype could be distinguished by 2 to 3 substrates. Cluster analysis gave three clear groups: H37Rv, Beijing, and all the M. bovis strains. The substrates used agreed well with prior knowledge, though an unexpected finding that AF2122/97 gave greater dye reduction than H37Rv with hexoses was investigated further, in culture flasks, revealing that hexoses and Tween 80 were synergistic for growth and used simultaneously rather than in a diauxic fashion. Potential new substrates for growth media were revealed, too, most promisingly N-acetyl glucosamine. Osmotic and pH arrays divided the mycobacteria into two groups with different salt tolerance, though in contrast to the substrate arrays the groups did not entirely correlate with taxonomic differences. More interestingly, these arrays suggested differences between the amines used by the M. tuberculosis complex and enteric bacteria in acid tolerance, with some hydrophobic amino acids being highly effective. In contrast, γ-aminobutyrate, used in the enteric bacteria, had no effect in the mycobacteria. This study proved principle that Phenotype MicroArrays can be used with slow-growing pathogenic mycobacteria and already has generated interesting data worthy of further investigation. PMID:23326347
Chen, L Y; Yang, X; Ru, H H; Yang, H J; Yan, S Q; Ma, L; Chen, J O; Yang, R; Xu, L
2018-01-06
Objective: To understand the characteristics of genotypes of Mycobacterium tuberculosis isolates in Yunnan province, and provide the molecular epidemiological evidence for prevention and control of tuberculosis in Yunnan Province. Methods: Mycobacterium Tuberculosis isolates were collected from 6 prefectures of Yunnan province in 2014 and their Genetypes of Mycobacterium tuberculosis isolates were obtained using spoligotyping and multiple locus variable numbers of tandem repeats analysis (MLVA). The results of spoligotyping were entered into the SITVITWEB database to obtain the Spoligotyping International Type (SIT) patterns and the sublineages of MTB isolates. The genoyping patterns were clustered with BioNumerics (version 5.0). Results: A total of 271 MTB isolates represented patients were collected from six prefectures in Yunnan province. Out of these patients, 196 (72.3%) were male. The mean age of the patients was (41.9±15.1) years. The most MTB isolates were from Puer, totally 94 iusolates(34.69%). Spoligotyping analysis revealed that 151 (55.72%) MTB isolates belonged to the Beijing genotype, while the other 120 (44.28%) were from non-Beijing genotype; 40 genotypes were consisted of 24 unique genotypes and 16 clusters. The 271 isolates were differentiated into 30 clusters (2 to 17 isolates per cluster) and 177 unique genotypes, showing a clustering rate of 23.62%. Beijing genotype strains showed higher clustering rate than non-Beijing genotype strains (29.14% vs 16.67%). The HGI of 12-locus VNTR in total MTB strains, Beijing genotype strains and non-Beijing genotype was 0.993, 0.982 and 0.995 respectively. Conclusion: The Beijing genotype was the predominant genotype in Yunnan Province, the characteristics of Mycobacterium tuberculosis showed high genetic diversity. The genotyping data reflect the potential recent ongoing transmission in some area, which highlights the urgent need for early diagnosis and treatment of the infectious TB cases, to cut off the transmission and avoid a large TB outbreak.
High clustering rates of multidrug-resistant Mycobacterium tuberculosis genotypes in Panama
2013-01-01
Background Tuberculosis continues to be one of the leading causes of death worldwide and in the American region. Although multidrug-resistant tuberculosis (MDR-TB) remains a threat to TB control in Panama, few studies have focused in typing MDR-TB strains. The aim of our study was to characterize MDR Mycobacterium tuberculosis clinical isolates using PCR-based genetic markers. Methods From 2002 to 2004, a total of 231 Mycobacterium tuberculosis isolates from TB cases country-wide were screened for antibiotic resistance, and MDR-TB isolates were further genotyped by double repetitive element PCR (DRE-PCR), (GTG)5-PCR and spoligotyping. Results A total of 37 isolates (0.85%) were resistant to both isoniazid (INH) and rifampicin (RIF). Among these 37 isolates, only two (5.4%) were resistant to all five drugs tested. Dual genotyping using DRE-PCR and (GTG)5-PCR of MDR Mycobacterium tuberculosis isolates revealed eight clusters comprising 82.9% of the MDR-TB strain collection, and six isolates (17.1%) showed unique fingerprints. The spoligotyping of MDR-TB clinical isolates identified 68% as members of the 42 (LAM9) family genotype. Conclusion Our findings suggest that MDR Mycobacterium tuberculosis is highly clustered in Panama’s metropolitan area corresponding to Panama City and Colon City, and our study reveals the genotype distribution across the country. PMID:24053690
Draft Genome Sequence of Mycobacterium triplex DSM 44626.
Sassi, Mohamed; Croce, Olivier; Robert, Catherine; Raoult, Didier; Drancourt, Michel
2014-05-29
We announce the draft genome sequence of Mycobacterium triplex strain DSM 44626, a nontuberculosis species responsible for opportunistic infections. The genome described here is composed of 6,382,840 bp, with a G+C content of 66.57%, and contains 5,988 protein-coding genes and 81 RNA genes. Copyright © 2014 Sassi et al.
Species within the Mycobacterium avium Complex (MAC) group are found to be both prevalent and persistent in drinking water distribution systems. The MAC is composed of two predominant species: M. avium and M. intracellulare. These species have the ability to survive drinking ...
USDA-ARS?s Scientific Manuscript database
The objective of this study was to examine effects of feeding Lactobacillus acidophilus strain NP51 to mice challenged with Mycobacterium avium subspecies paratuberculosis (MAP). Mice were randomized to ten treatment groups; sentinels, control, heat-killed MAP, viable MAP, heat-killed NP51, viable ...
USDA-ARS?s Scientific Manuscript database
The objective of this study was to examine effects of feeding Lactobacillus acidophilus strain NP51 to mice challenged with Mycobacterium avium subspecies paratuberculosis (MAP). Mice were randomized to ten treatment groups; sentinels, control, heat-killed MAP, viable MAP, heat-killed NP51, viable ...
USDA-ARS?s Scientific Manuscript database
Purified protein derivatives (PPD’s) were prepared from the cultured filtrate of Mycobacterium avium subsp. paratuberculosis (MAP) ATCC strain 19698. Production of PPD has historically been problematic for maintaining optimal floating cultures yielding defined immunogenic components. To obtain mor...
Tian, Roger B D; Asmar, Shady; Napez, Claude; Lépidi, Hubert; Drancourt, Michel
2017-03-01
Mycobacterium ulcerans is responsible for Buruli ulcer, characterised by extensive, disabling ulcers. Standard treatment combining rifampicin and streptomycin exposes patients to toxicity and daily painful injections. In this study, the in vitro susceptibilities of 3 M. ulcerans strains, 1 Mycobacterium marinum strain and 18 strains representative of eleven other Mycobacterium species and subspecies to methylene blue were determined. Whilst growth of M. ulcerans was inhibited by 0.0125 g/L methylene blue, growth of all other tested strains was not inhibited by 1 g/L methylene blue. The effectiveness of methylene blue in a murine model of M. ulcerans infection was then tested. Topical treatment by brushing a methylene blue solution on the skin lesion, systemic treatment by intraperitoneal injection of methylene blue, and a combined treatment (topical and systemic) were tested. The three treatment groups exhibited a significantly lower clinical score compared with the non-treated control group (P <0.05). Moreover, subcutaneous nodules were significantly smaller in the systemic treatment group (excluding males) (3 ± 0.7 mm) compared with the other groups (P <0.05). The M. ulcerans insertion sequence IS2404 and the KR-B gene were detected in all challenged mice, but not in negative controls. The density of M. ulcerans (mycobacteria/cell) was significantly lower in the combined treatment group compared with the other groups. These data provide evidence for the effectiveness of purified methylene blue against the initial stage of Buruli ulcer. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Adaptation of Mycobacterium smegmatis to Stationary Phase
Smeulders, Marjan J.; Keer, Jacquie; Speight, Richard A.; Williams, Huw D.
1999-01-01
Mycobacterium tuberculosis can persist for many years within host lung tissue without causing clinical disease. Little is known about the state in which the bacilli survive, although it is frequently referred to as dormancy. Some evidence suggests that cells survive in nutrient-deprived stationary phase. Therefore, we are studying stationary-phase survival of Mycobacterium smegmatis as a model for mycobacterial persistence. M. smegmatis cultures could survive 650 days of either carbon, nitrogen, or phosphorus starvation. In carbon-limited medium, cells entered stationary phase before the carbon source (glycerol) had been completely depleted and glycerol uptake from the medium continued during the early stages of stationary phase. These results suggest that the cells are able to sense when the glycerol is approaching limiting concentrations and initiate a shutdown into stationary phase, which involves the uptake of the remaining glycerol from the medium. During early stationary phase, cells underwent reductive cell division and became more resistant to osmotic and acid stress and pool mRNA stabilized. Stationary-phase cells were also more resistant to oxidative stress, but this resistance was induced during late exponential phase in a cell-density-dependent manner. Upon recovery in fresh medium, stationary-phase cultures showed an immediate increase in protein synthesis irrespective of culture age. Colony morphology variants accumulated in stationary-phase cultures. A flat colony variant was seen in 75% of all long-term-stationary-phase cultures and frequently took over the whole population. Cryo scanning electron microscopy showed that the colony organization was different in flat colony strains, flat colonies appearing less well organized than wild-type colonies. Competition experiments with an exponential-phase-adapted wild-type strain showed that the flat strain had a competitive advantage in stationary phase, as well a providing evidence that growth and cell division occur in stationary-phase cultures of M. smegmatis. These results argue against stationary-phase M. smegmatis cultures entering a quiescent state akin to dormancy but support the idea that they are a dynamic population of cells. PMID:9864340
Odermatt, Nina T; Sala, Claudia; Benjak, Andrej; Kolly, Gaëlle S; Vocat, Anthony; Lupien, Andréanne; Cole, Stewart T
2017-08-15
A handful of nucleoid-associated proteins (NAPs) regulate the vast majority of genes in a bacterial cell. H-NS, the h istone-like n ucleoid- s tructuring protein, is one of these NAPs and protects Escherichia coli from foreign gene expression. Though lacking any sequence similarity with E. coli H-NS, Rv3852 was annotated as the H-NS ortholog in Mycobacterium tuberculosis , as it resembles human histone H1. The role of Rv3852 was thoroughly investigated by immunoblotting, subcellular localization, construction of an unmarked rv3852 deletion in the M. tuberculosis genome, and subsequent analysis of the resulting Δ rv3852 strain. We found that Rv3852 was predominantly present in the logarithmic growth phase with a decrease in protein abundance in stationary phase. Furthermore, it was strongly associated with the cell membrane and not detected in the cytosolic fraction, nor was it secreted. The Δ rv3852 strain displayed no growth defect or morphological abnormalities. Quantitative measurement of nucleoid localization in the Δ rv3852 mutant strain compared to that in the parental H37Rv strain showed no difference in nucleoid position or spread. Infection of macrophages as well as severe combined immunodeficient (SCID) mice demonstrated that loss of Rv3852 had no detected influence on the virulence of M. tuberculosis We thus conclude that M. tuberculosis Rv3852 is not involved in pathogenesis and is not a typical NAP. The existence of an as yet undiscovered Rv3852 ortholog cannot be excluded, although this role is likely played by the well-characterized Lsr2 protein. IMPORTANCE Mycobacterium tuberculosis is the causative agent of the lung infection tuberculosis, claiming more than 1.5 million lives each year. To understand the mechanisms of latent infection, where M. tuberculosis can stay dormant inside the human host, we require deeper knowledge of the basic biology and of the regulatory networks. In our work, we show that Rv3852, previously annotated as H-NS, is not a typical nucleoid-associated protein (NAP) as expected from its initial annotation. Rv3852 from M. tuberculosis has neither influence on nucleoid shape or compaction nor a role in virulence. Our findings reduce the repertoire of identified nucleoid-associated proteins in M. tuberculosis to four transcription regulators and underline the importance of genetic studies to assign a function to bacterial genes. Copyright © 2017 American Society for Microbiology.
Genotyping of ancient Mycobacterium tuberculosis strains reveals historic genetic diversity.
Müller, Romy; Roberts, Charlotte A; Brown, Terence A
2014-04-22
The evolutionary history of the Mycobacterium tuberculosis complex (MTBC) has previously been studied by analysis of sequence diversity in extant strains, but not addressed by direct examination of strain genotypes in archaeological remains. Here, we use ancient DNA sequencing to type 11 single nucleotide polymorphisms and two large sequence polymorphisms in the MTBC strains present in 10 archaeological samples from skeletons from Britain and Europe dating to the second-nineteenth centuries AD. The results enable us to assign the strains to groupings and lineages recognized in the extant MTBC. We show that at least during the eighteenth-nineteenth centuries AD, strains of M. tuberculosis belonging to different genetic groups were present in Britain at the same time, possibly even at a single location, and we present evidence for a mixed infection in at least one individual. Our study shows that ancient DNA typing applied to multiple samples can provide sufficiently detailed information to contribute to both archaeological and evolutionary knowledge of the history of tuberculosis.
Ren, Lei; Jia, Yang; Ruth, Nahurira; Qiao, Cheng; Wang, Junhuan; Zhao, Baisuo; Yan, Yanchun
2016-08-01
Bacterial strain YC-RL4, capable of utilizing phthalic acid esters (PAEs) as the sole carbon source for growth, was isolated from petroleum-contaminated soil. Strain YC-RL4 was identified as Mycobacterium sp. by 16S rRNA gene analysis and Biolog tests. Mycobacterium sp. YC-RL4 could rapidly degrade dibutyl phthalate (DBP), diethyl phthalate (DEP), dimethyl phthalate (DMP), dicyclohexyl phthalate (DCHP), and di-(2-ethylhexyl) phthalate (DEHP) under both individual and mixed conditions, and all the degradation rates were above 85.0 % within 5 days. The effects of environmental factors which might affect the degrading process were optimized as 30 °C and pH 8.0. The DEHP metabolites were detected by HPLC-MS and the degradation pathway was deduced tentatively. DEHP was transformed into phthalic acid (PA) via mono (2-ethylhexyl) phthalate (MEHP) and PA was further utilized for growth via benzoic acid (BA) degradation pathway. Cell surface hydrophobicity (CSH) assays illuminated that the strain YC-RL4 was of higher hydrophobicity while grown on DEHP and CSH increased with the higher DEHP concentration. The degradation rates of DEHP by strain YC-RL4 in different environmental samples was around 62.0 to 83.3 % and strain YC-RL4 survived well in the soil sample. These results suggested that the strain YC-RL4 could be used as a potential and efficient PAE degrader for the bioremediation of contaminated sites.
Caceres, Neus; Llopis, Isaac; Marzo, Elena; Prats, Clara; Vilaplana, Cristina; de Viedma, Dario Garcia; Samper, Sofía; Lopez, Daniel; Cardona, Pere-Joan
2012-01-01
Evaluation of a quick and easy model to determine the intrinsic ability of clinical strains to generate active TB has been set by assuming that this is linked to the fitness of Mycobacterium tuberculosis strain at the innate phase of the infection. Thus, the higher the bacillary load, the greater the possibility of inducting liquefaction, and thus active TB, once the adaptive response is set. The virulence of seven clinical Mycobacterium tuberculosis strains isolated in Spain was tested by determining the bacillary concentration in the spleen and lung of mice at weeks 0, 1 and 2 after intravenous (IV) inoculation of 10⁴ CFU, and by determining the growth in vitro until the stationary phase had been reached. Cord distribution automated analysis showed two clear patterns related to the high and low fitness in the lung after IV infection. This pattern was not seen in the in vitro fitness tests, which clearly favored the reference strain (H37Rv). Subsequent determination using a more physiological low-dose aerosol (AER) inoculation with 10² CFU showed a third pattern in which the three best values coincided with the highest dissemination capacity according to epidemiological data. The fitness obtained after low dose aerosol administration in the presence of the innate immune response is the most predictive factor for determining the virulence of clinical strains. This gives support to a mechanism of the induction of active TB derived from the dynamic hypothesis of latent tuberculosis infection.
Crandall, Philip G; Ricke, Steven C; O'Bryan, Corliss A; Parrish, Nicole M
2012-01-01
We evaluated the in vitro activity of citrus oils against Mycobacterium tuberculosis and other non-tuberculous Mycobacterium species. Citrus essential oils were tested against a variety of Mycobacterium species and strains using the BACTEC radiometric growth system. Cold pressed terpeneless Valencia oil (CPT) was further tested using the Wayne model of in vitro latency. Exposure of M. tuberculosis and M. bovis BCG to 0.025 % cold pressed terpeneless Valencia orange oil (CPT) resulted in a 3-log decrease in viable counts versus corresponding controls. Inhibition of various clinical isolates of the M. avium complex and M. abscessus ranged from 2.5 to 5.2-logs. Some species/strains were completely inhibited in the presence of CPT including one isolate each of the following: the M. avium complex, M. chelonae and M. avium subsp. paratuberculosis. CPT also inhibited the growth of BCG more than 99 % in an in vitro model of latency which mimics anaerobic dormancy thought to occur in vivo. The activity of CPT against drug-resistant strains of the M. avium complex and M. abscessus suggest that the mechanism of action for CPT is different than that of currently available drugs. Inhibition of latently adapted bacilli offers promise for treatment of latent infections of MTB. These results suggest that the antimycobacterial properties of CPT warrant further study to elucidate the specific mechanism of action and clarify the spectrum of activity.
Molecular characterisation of Mycobacterium caprae strains isolated in Poland.
Krajewska-Wędzina, Monika; Kozińska, Monika; Orłowska, Blanka; Weiner, Marcin; Szulowski, Krzysztof; Augustynowicz-Kopeć, Ewa; Anusz, Krzysztof; Smith, Noel H
2018-03-10
Bovine tuberculosis (bovine TB, bTB) is caused by bovine bacilli: Mycobacterium bovis and M caprae The studies conducted in Poland, in the National Bovine Tuberculosis Reference Laboratory in the Department of Microbiology of the National Veterinary Research Institute in Pulawy, show that animal tuberculosis in Poland is also caused by M caprae We here describe the identification and genotypic assessment of 52 isolates of M caprae obtained from Polish cattle and wild animals over the last five years. We show that strains isolated from bison have significant genotypic diversity and are distinct compared with the genotypes of strains isolated from cattle. Similarly, isolates from cattle herds can be highly genotypically variable. Formal designation of the members of the Mycobacterium tuberculosis complex is controversial in Poland; there is a gap in veterinary legislation with regard to bTB and no explicit mention of M caprae causing tuberculosis in animal. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Multilocus Variable-Number Tandem Repeat Typing of Mycobacterium ulcerans
Ablordey, Anthony; Swings, Jean; Hubans, Christine; Chemlal, Karim; Locht, Camille; Portaels, Françoise; Supply, Philip
2005-01-01
The apparent genetic homogeneity of Mycobacterium ulcerans contributes to the poorly understood epidemiology of M. ulcerans infection. Here, we report the identification of variable number tandem repeat (VNTR) sequences as novel polymorphic elements in the genome of this species. A total of 19 potential VNTR loci identified in the closely related M. marinum genome sequence were screened in a collection of 23 M. ulcerans isolates, one Mycobacterium species referred to here as an intermediate species, and five M. marinum strains. Nine of the 19 loci were polymorphic in the three species (including the intermediate species) and revealed eight M. ulcerans and five M. marinum genotypes. The results from the VNTR analysis corroborated the genetic relationships of M. ulcerans isolates from various geographical origins, as defined by independent molecular markers. Although these results further highlight the extremely high clonal homogeneity within certain geographic regions, we report for the first time the discrimination of the two South American strains from Surinam and French Guyana. These findings support the potential of a VNTR-based genotyping method for strain discrimination within M. ulcerans and M. marinum. PMID:15814964
Kohli, Sakshi; Singh, Yadvir; Sharma, Khushbu; Mittal, Aditya; Ehtesham, Nasreen Z.; Hasnain, Seyed E.
2012-01-01
Tuberculosis, caused by Mycobacterium tuberculosis, remains a leading infectious disease taking one human life every 15 s globally. The two well-characterized strains H37Rv and H37Ra, derived from the same parental strain M. tuberculosis H37, show dramatically different pathogenic phenotypes. PE/PPE gene family, comprising of 176 open reading frames and present exclusively in genus Mycobacterium, accounts for ∼10% of the M. tuberculosis genome. Our comprehensive in silico analyses of PE/PPE family of H37Ra and virulent H37Rv strains revealed genetic differences between these strains in terms of several single nucleotide variations and InDels and these manifested in changes in physico-chemical properties, phosphorylation sites, and protein: protein interacting domains of the corresponding proteomes. Similar comparisons using the 13 sigma factor genes, 36 members of the mammalian cell entry family, 13 mycobacterial membrane protein large family members and 11 two-component signal transduction systems along with 5 orphaned response regulators and 2 orphaned sensor kinases failed to reveal very significant difference between H37Rv and H37Ra, reinforcing the importance of PE/PPE genes. Many of these changes between H37Rv and H37Ra can be correlated to differences in pathogenesis and virulence of the two strains. PMID:22618876
Liu, Jingbo; Yan, Zihe; Han, Min; Han, Zhijun; Jin, Lingjie; Zhao, Yanlin
2012-01-01
The CapitalBio Mycobacterium identification microarray system is a rapid system for the detection of Mycobacterium tuberculosis. The performance of this system was assessed with 24 reference strains, 486 Mycobacterium tuberculosis clinical isolates, and 40 clinical samples and then compared to the “gold standard” of DNA sequencing. The CapitalBio Mycobacterium identification microarray system showed highly concordant identification results of 100% and 98.4% for Mycobacterium tuberculosis complex (MTC) and nontuberculous mycobacteria (NTM), respectively. The sensitivity and specificity of the CapitalBio Mycobacterium identification array for identification of Mycobacterium tuberculosis isolates were 99.6% and 100%, respectively, for direct detection and identification of clinical samples, and the overall sensitivity was 52.5%. It was 100% for sputum, 16.7% for pleural fluid, and 10% for bronchoalveolar lavage fluid, respectively. The total assay was completed in 6 h, including DNA extraction, PCR, and hybridization. The results of this study confirm the utility of this system for the rapid identification of mycobacteria and suggest that the CapitalBio Mycobacterium identification array is a molecular diagnostic technique with high sensitivity and specificity that has the capacity to quickly identify most mycobacteria. PMID:22090408
Non-contiguous genome sequence of Mycobacterium simiae strain DSM 44165(T.).
Sassi, Mohamed; Robert, Catherine; Raoult, Didier; Drancourt, Michel
2013-01-01
Mycobacterium simiae is a non-tuberculosis mycobacterium causing pulmonary infections in both immunocompetent and imunocompromized patients. We announce the draft genome sequence of M. simiae DSM 44165(T). The 5,782,968-bp long genome with 65.15% GC content (one chromosome, no plasmid) contains 5,727 open reading frames (33% with unknown function and 11 ORFs sizing more than 5000 -bp), three rRNA operons, 52 tRNA, one 66-bp tmRNA matching with tmRNA tags from Mycobacterium avium, Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium microti, Mycobacterium marinum, and Mycobacterium africanum and 389 DNA repetitive sequences. Comparing ORFs and size distribution between M. simiae and five other Mycobacterium species M. simiae clustered with M. abscessus and M. smegmatis. A 40-kb prophage was predicted in addition to two prophage-like elements, 7-kb and 18-kb in size, but no mycobacteriophage was seen after the observation of 10(6) M. simiae cells. Fifteen putative CRISPRs were found. Three genes were predicted to encode resistance to aminoglycosides, betalactams and macrolide-lincosamide-streptogramin B. A total of 163 CAZYmes were annotated. M. simiae contains ESX-1 to ESX-5 genes encoding for a type-VII secretion system. Availability of the genome sequence may help depict the unique properties of this environmental, opportunistic pathogen.
García, Ana-Belén; Palacios, Juan J.; Ruiz, María-Jesús; Barluenga, José; Aznar, Fernando; Cabal, María-Paz; García, José María; Díaz, Natalia
2010-01-01
Two new rifabutin analogs, RFA-1 and RFA-2, show high in vitro antimycobacterial activities against Mycobacterium tuberculosis. MIC values of RFA-1 and RFA-2 were ≤0.02 μg/ml against rifamycin-susceptible strains and 0.5 μg/ml against a wide selection of multidrug-resistant strains, compared to ≥50 μg/ml for rifampin and 10 μg/ml for rifabutin. Molecular dynamic studies indicate that the compounds may exert tighter binding to mutants of RNA polymerase that have adapted to the rifamycins. PMID:20855731
Molecular characteristics of "Mycobacterium canettii" the smooth Mycobacterium tuberculosis bacilli.
Fabre, Michel; Hauck, Yolande; Soler, Charles; Koeck, Jean-Louis; van Ingen, Jakko; van Soolingen, Dick; Vergnaud, Gilles; Pourcel, Christine
2010-12-01
Since the first discovery of the smooth tubercle (SmTB) bacilli "Mycobacterium canettii" less than 60 isolates have been reported, all but one originating from a limited geographical location, the Horn of Africa. In spite of its rarity, the SmTB lineage deserves special attention. Previous investigations suggested that SmTB isolates represent an ancestral lineage of the Mycobacterium tuberculosis complex (MTBC) and that consequently they might provide essential clues on the origin and evolution of the MTBC. There is evidence that unlike the rest of the MTBC, SmTB strains recombine chromosomal sequences with a yet unknown Mycobacterium species. This behavior contributes to the much larger genetic heterogeneity observed in the SmTB isolates compared to the other members of the MTBC. We have collected 59 SmTB isolates of which 14 were newly recovered since previous reports, and performed extensive phenotypical and genotypical characterization. We take advantage of these investigations to review the current knowledge of "M. canettii". Their characteristics and the apparent lack of human to human transmission are consistent with the previously proposed existence of non-human sources of infection. SmTB strains show remarkably common features together with secondary and taxonomically minor genetic differences such as the presence or absence of the CRISPR (Clustered Regularly Interspersed Palindromic Repeat) locus (usually called Direct Repeat or DR region) or number of IS sequences. Multiple Locus Variable number of tandem repeat Analysis (MLVA) and DR region analyses reveal one predominant clone, one minor clone and a number of more distantly related strains. This suggests that the two most frequent clones may represent successfully emerging lineages. Copyright © 2010 Elsevier B.V. All rights reserved.
Baldwin, Patrick R.; Reeves, Analise Z.; Powell, Kimberly R.; Napier, Ruth J.; Swimm, Alyson I.; Sun, Aiming; Giesler, Kyle; Bommarius, Bettina; Shinnick, Thomas M.; Snyder, James P.; Liotta, Dennis C.; Kalman, Daniel
2016-01-01
Tuberculosis (TB) is a major public health concern worldwide with over 2 billion people currently infected. The rise of strains of Mycobacterium tuberculosis (Mtb) that are resistant to some or all first and second line antibiotics, including multidrug-resistant (MDR), extensively drug resistant (XDR) and totally drug resistant (TDR) strains, is of particular concern and new anti-TB drugs are urgently needed. Curcumin, a natural product used in traditional medicine in India, exhibits anti-microbial activity that includes Mtb, however it is relatively unstable and suffers from poor bioavailability. To improve activity and bioavailability, mono-carbonyl analogs of curcumin were synthesized and screened for their capacity to inhibit the growth of Mtb and the related Mycobacterium marinum (Mm). Using disk diffusion and liquid culture assays, we found several analogs that inhibit in vitro growth of Mm and Mtb, including rifampicin-resistant strains. Structure activity analysis of the analogs indicated that Michael acceptor properties are critical for inhibitory activity. However, no synergistic effects were evident between the monocarbonyl analogs and rifampicin on inhibiting growth. Together, these data provide a structural basis for the development of analogs of curcumin with pronounced anti-mycobacterial activity and provide a roadmap to develop additional structural analogs that exhibit more favorable interactions with other anti-TB drugs. PMID:25618016
Chernyaeva, Ekaterina; Rotkevich, Mikhail; Krasheninnikova, Ksenia; Yurchenko, Andrey; Vyazovaya, Anna; Mokrousov, Igor; Solovieva, Natalia; Zhuravlev, Viacheslav; Yablonsky, Piotr; O'Brien, Stephen J
2018-03-01
Whole-genome analysis of Mycobacterium tuberculosis isolates collected in Russia (N = 71) from patients with tuberculous spondylitis supports a detailed characterization of pathogen strain distributions and drug resistance phenotype, plus distinguished occurrence and association of known resistance mutations. We identify known and novel genome determinants related to bacterial virulence, pathogenicity, and drug resistance.
USDA-ARS?s Scientific Manuscript database
The objective of this study was to examine effects of feeding Lactobacillus acidophilus strain NP51 to mice challenged with Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne’s disease. We hypothesized that feeding NP51 would increase Th-1 responses and decrease prog...
USDA-ARS?s Scientific Manuscript database
The objective of this study was to examine effects of feeding Lactobacillus acidophilus strain NP51 to mice challenged with Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne’s disease. We hypothesized that feeding NP51 would increase Th-1 responses and decrease prog...
Bakala N'Goma, Jean Claude; Le Moigne, Vincent; Soismier, Nathalie; Laencina, Laura; Le Chevalier, Fabien; Roux, Anne-Laure; Poncin, Isabelle; Serveau-Avesque, Carole; Rottman, Martin; Gaillard, Jean-Louis; Etienne, Gilles; Brosch, Roland; Herrmann, Jean-Louis; Canaan, Stéphane; Girard-Misguich, Fabienne
2015-02-01
Mycobacterium abscessus is a pathogenic, rapidly growing mycobacterium involved in pulmonary and cutaneo-mucous infections worldwide, to which cystic fibrosis patients are exquisitely susceptible. The analysis of the genome sequence of M. abscessus showed that this bacterium is endowed with the metabolic pathways typically found in environmental microorganisms that come into contact with soil, plants, and aquatic environments, where free-living amoebae are frequently present. M. abscessus also contains several genes that are characteristically found only in pathogenic bacteria. One of them is MAB_0555, encoding a putative phospholipase C (PLC) that is absent from most other rapidly growing mycobacteria, including Mycobacterium chelonae and Mycobacterium smegmatis. Here, we report that purified recombinant M. abscessus PLC is highly cytotoxic to mouse macrophages, presumably due to hydrolysis of membrane phospholipids. We further showed by constructing and using an M. abscessus PLC knockout mutant that loss of PLC activity is deleterious to M. abscessus intracellular survival in amoebae. The importance of PLC is further supported by the fact that M. abscessus PLC was found to be expressed only in amoebae. Aerosol challenge of mice with M. abscessus strains that were precultured in amoebae enhanced M. abscessus lung infectivity relative to M. abscessus grown in broth culture. Our study underlines the importance of PLC for the virulence of M. abscessus. Despite the difficulties of isolating M. abscessus from environmental sources, our findings suggest that M. abscessus has evolved in close contact with environmental protozoa, which supports the argument that amoebae may contribute to the virulence of opportunistic mycobacteria. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Sequeira, Patrícia Carvalho de; Fonseca, Leila de Souza; Silva, Marlei Gomes da; Saad, Maria Helena Féres
2005-11-01
Simple double repetitive element polymerase chain reaction (MaDRE-PCR) and Pvu II-IS1245 restriction fragment length polymorphism (RFLP) typing methods were used to type 41 Mycobacterium avium isolates obtained from 14 AIDS inpatients and 10 environment and animals specimens identified among 53 mycobacteria isolated from 237 food, chicken, and pig. All environmental and animals strains showed orphan patterns by both methods. By MaDRE-PCR four patients, with multiple isolates, showed different patterns, suggesting polyclonal infection that was confirmed by RFLP in two of them. This first evaluation of MaDRE-PCR on Brazilian M. avium strains demonstrated that the method seems to be useful as simple and less expensive typing method for screening genetic diversity in M. avium strains on selected epidemiological studies, although with limitation on analysis identical patterns except for one band.
Sharp, Jonathan O; Sales, Christopher M; Alvarez-Cohen, Lisa
2010-12-15
Propane-induced cometabolic degradation of n-nitrosodimethylamine (NDMA) by two propanotrophs is characterized through kinetic, gene presence, and expression studies. After growth on propane, resting cells of Rhodococcus sp. RR1 possessed a maximum transformation rate (v(max,n)) of 44 ± 5 µg NDMA (mg protein)(-1) h(-1); the rate for Mycobacterium vaccae (austroafricanum) JOB-5 was modestly lower with v(max,n) of 28 ± 3 µg NDMA (mg protein)(-1) h(-1). Both strains were capable of degrading environmentally relevant, trace quantities of NDMA to below the experimental limit of detection, calculated as 20 ng NDMA L(-1). However, a comparison of half saturation constants (K(s,n)) and NDMA degradation in the presence of propane revealed pronounced differences between the strains. The K(s,n) for strain RR1 was 36 ± 10 µg NDMA L(-1) while the propane concentration needed to inhibit NDMA rates by 50% (K(inh)) occurred at 7,700 µg propane L(-1) (R(2) = 0.9669). In contrast, strain JOB-5 had a markedly lower affinity for NDMA verses propane with a calculated K(s,n) of 2,200 ± 1,000 µg NDMA L(-1) and K(inh) of 120 µg propane L(-1) (R(2) = 0.9895). Genomic and transcriptional investigations indicated that the functional enzymes involved in NDMA degradation and propane metabolism are different for each strain. For Rhodococcus sp. RR1, a putative propane monooxygenase (PrMO) was identified and implicated in NDMA oxidation. In contrast, JOB-5 was not found to possess a PrMO homologue and two functionally analogous alkane monoxygenases (AlkMOs) were not induced by growth on propane. Differences between the PrMO in this Rhodococcus and the unidentified enzyme(s) in the Mycobacterium may explain differences in NDMA degradation and inhibition kinetics between these strains. © 2010 Wiley Periodicals, Inc.
Eckelt, Elke; Meißner, Thorsten; Meens, Jochen; Laarmann, Kristin; Nerlich, Andreas; Jarek, Michael; Weiss, Siegfried; Gerlach, Gerald-F.; Goethe, Ralph
2015-01-01
The ferric uptake regulator A (FurA) is known to be involved in iron homeostasis and stress response in many bacteria. In mycobacteria the precise role of FurA is still unclear. In the presented study, we addressed the functional role of FurA in the ruminant pathogen Mycobacterium avium ssp. paratuberculosis (MAP) by construction of a furA deletion strain (MAPΔfurA). RNA deep sequencing revealed that the FurA regulon consists of repressed and activated genes associated to stress response or intracellular survival. Not a single gene related to metal homeostasis was affected by furA deletion. A decisive role of FurA during intracellular survival in macrophages was shown by significantly enhanced survival of MAPΔfurA compared to the wildtype, indicating that a principal task of mycobacterial FurA is oxidative stress response regulation in macrophages. This resistance was not associated with altered survival of mice after long term infection with MAP. Our results demonstrate for the first time, that mycobacterial FurA is not involved in the regulation of iron homeostasis. However, they provide strong evidence that FurA contributes to intracellular survival as an oxidative stress sensing regulator. PMID:25705205
Eckelt, Elke; Meißner, Thorsten; Meens, Jochen; Laarmann, Kristin; Nerlich, Andreas; Jarek, Michael; Weiss, Siegfried; Gerlach, Gerald-F; Goethe, Ralph
2015-01-01
The ferric uptake regulator A (FurA) is known to be involved in iron homeostasis and stress response in many bacteria. In mycobacteria the precise role of FurA is still unclear. In the presented study, we addressed the functional role of FurA in the ruminant pathogen Mycobacterium avium ssp. paratuberculosis (MAP) by construction of a furA deletion strain (MAPΔfurA). RNA deep sequencing revealed that the FurA regulon consists of repressed and activated genes associated to stress response or intracellular survival. Not a single gene related to metal homeostasis was affected by furA deletion. A decisive role of FurA during intracellular survival in macrophages was shown by significantly enhanced survival of MAPΔfurA compared to the wildtype, indicating that a principal task of mycobacterial FurA is oxidative stress response regulation in macrophages. This resistance was not associated with altered survival of mice after long term infection with MAP. Our results demonstrate for the first time, that mycobacterial FurA is not involved in the regulation of iron homeostasis. However, they provide strong evidence that FurA contributes to intracellular survival as an oxidative stress sensing regulator.
2010-01-01
Background The prevalence of infections with Mycobacterium tuberculosis (MTb) and nontuberculous mycobacteria (NTM) species in HIV-infected patients in Mexico is unknown. The aims of this study were to determine the frequency of MTb and NTM species in HIV-infected patients from Mexico City, to evaluate the genotypic diversity of the Mycobacterium tuberculosis complex strains, to determine their drug resistance profiles by colorimetric microplate Alamar Blue assay (MABA), and finally, to detect mutations present in katG, rpoB and inhA genes, resulting in isoniazid (INH) and rifampin (RIF) resistance. Results Of the 67 mycobacterial strains isolated, 48 were identified as MTb, 9 as M. bovis, 9 as M. avium and 1 as M. intracellulare. IS6110-RFLP of 48 MTb strains showed 27 profiles. Spoligotyping of the 48 MTb strains yielded 21 patterns, and 9 M. bovis strains produced 7 patterns. Eleven new spoligotypes patterns were found. A total of 40 patterns were produced from the 48 MTb strains when MIRU-VNTR was performed. Nineteen (39.6%) MTb strains were resistant to one or more drugs. One (2.1%) multidrug-resistant (MDR) strain was identified. A novel mutation was identified in a RIF-resistant strain, GAG → TCG (Glu → Ser) at codon 469 of rpoB gene. Conclusions This is the first molecular analysis of mycobacteria isolated from HIV-infected patients in Mexico, which describe the prevalence of different mycobacterial species in this population. A high genetic diversity of MTb strains was identified. New spoligotypes and MIRU-VNTR patterns as well as a novel mutation associated to RIF-resistance were found. This information will facilitate the tracking of different mycobacterial species in HIV-infected individuals, and monitoring the spread of these microorganisms, leading to more appropriate measures for tuberculosis control. PMID:20236539
Hernandez Pando, Rogelio; Aguilar, Leon Diana; Smith, Issar; Manganelli, Riccardo
2010-07-01
Tuberculosis is still one of the main challenges to human global health, leading to about two million deaths every year. One of the reasons for its success is the lack of efficacy of the widely used vaccine Mycobacterium bovis BCG. In this article, we analyze the potential use of an attenuated mutant of Mycobacterium tuberculosis H37Rv lacking the sigma factor sigma(E) as a live vaccine. We have demonstrated that BALB/c mice infected by the intratracheal route with this mutant strain showed significantly higher survival rates and less tissue damage than animals infected with the parental or complemented mutant strain. Although animals infected with the sigE mutant had low bacillary loads, their lungs showed significantly higher production of the protective factors gamma interferon (IFN-gamma), tumor necrosis factor alpha (TNF-alpha), inducible nitric oxide synthase (iNOS), and beta-defensins than those of animals infected with the parental or complemented mutant strain. Moreover, we demonstrate that the sigE mutant, when inoculated subcutaneously, was more attenuated than BCG in immunodeficient nude mice, thus representing a good candidate for a novel attenuated live vaccine strain. Finally, when we used the sigE mutant as a subcutaneous vaccine, it was able to induce a higher level of protection than did BCG with both H37Rv and a highly virulent strain of M. tuberculosis (Beijing code 9501000). Taken together, our findings suggest that the sigE mutant is a very promising strain for the development of a new vaccine against tuberculosis.
Mycobacterium leprae genomes from naturally infected nonhuman primates
Pfister, Luz-Andrea; Housman, Genevieve; Mills, Sarah; Tarara, Ross P.; Suzuki, Koichi; Cuozzo, Frank P.; Sauther, Michelle L.; Rosenberg, Michael S.; Stone, Anne C.
2018-01-01
Leprosy is caused by the bacterial pathogens Mycobacterium leprae and Mycobacterium lepromatosis. Apart from humans, animals such as nine-banded armadillos in the Americas and red squirrels in the British Isles are naturally infected with M. leprae. Natural leprosy has also been reported in certain nonhuman primates, but it is not known whether these occurrences are due to incidental infections by human M. leprae strains or by M. leprae strains specific to nonhuman primates. In this study, complete M. leprae genomes from three naturally infected nonhuman primates (a chimpanzee from Sierra Leone, a sooty mangabey from West Africa, and a cynomolgus macaque from The Philippines) were sequenced. Phylogenetic analyses showed that the cynomolgus macaque M. leprae strain is most closely related to a human M. leprae strain from New Caledonia, whereas the chimpanzee and sooty mangabey M. leprae strains belong to a human M. leprae lineage commonly found in West Africa. Additionally, samples from ring-tailed lemurs from the Bezà Mahafaly Special Reserve, Madagascar, and chimpanzees from Ngogo, Kibale National Park, Uganda, were screened using quantitative PCR assays, to assess the prevalence of M. leprae in wild nonhuman primates. However, these samples did not show evidence of M. leprae infection. Overall, this study adds genomic data for nonhuman primate M. leprae strains to the existing M. leprae literature and finds that this pathogen can be transmitted from humans to nonhuman primates as well as between nonhuman primate species. While the prevalence of natural leprosy in nonhuman primates is likely low, nevertheless, future studies should continue to explore the prevalence of leprosy-causing pathogens in the wild. PMID:29381722
Mycobacterium leprae genomes from naturally infected nonhuman primates.
Honap, Tanvi P; Pfister, Luz-Andrea; Housman, Genevieve; Mills, Sarah; Tarara, Ross P; Suzuki, Koichi; Cuozzo, Frank P; Sauther, Michelle L; Rosenberg, Michael S; Stone, Anne C
2018-01-01
Leprosy is caused by the bacterial pathogens Mycobacterium leprae and Mycobacterium lepromatosis. Apart from humans, animals such as nine-banded armadillos in the Americas and red squirrels in the British Isles are naturally infected with M. leprae. Natural leprosy has also been reported in certain nonhuman primates, but it is not known whether these occurrences are due to incidental infections by human M. leprae strains or by M. leprae strains specific to nonhuman primates. In this study, complete M. leprae genomes from three naturally infected nonhuman primates (a chimpanzee from Sierra Leone, a sooty mangabey from West Africa, and a cynomolgus macaque from The Philippines) were sequenced. Phylogenetic analyses showed that the cynomolgus macaque M. leprae strain is most closely related to a human M. leprae strain from New Caledonia, whereas the chimpanzee and sooty mangabey M. leprae strains belong to a human M. leprae lineage commonly found in West Africa. Additionally, samples from ring-tailed lemurs from the Bezà Mahafaly Special Reserve, Madagascar, and chimpanzees from Ngogo, Kibale National Park, Uganda, were screened using quantitative PCR assays, to assess the prevalence of M. leprae in wild nonhuman primates. However, these samples did not show evidence of M. leprae infection. Overall, this study adds genomic data for nonhuman primate M. leprae strains to the existing M. leprae literature and finds that this pathogen can be transmitted from humans to nonhuman primates as well as between nonhuman primate species. While the prevalence of natural leprosy in nonhuman primates is likely low, nevertheless, future studies should continue to explore the prevalence of leprosy-causing pathogens in the wild.
Caceres, Neus; Llopis, Isaac; Marzo, Elena; Prats, Clara; Vilaplana, Cristina; de Viedma, Dario Garcia; Samper, Sofía; Lopez, Daniel; Cardona, Pere-Joan
2012-01-01
Background Evaluation of a quick and easy model to determine the intrinsic ability of clinical strains to generate active TB has been set by assuming that this is linked to the fitness of Mycobacterium tuberculosis strain at the innate phase of the infection. Thus, the higher the bacillary load, the greater the possibility of inducting liquefaction, and thus active TB, once the adaptive response is set. Methodology/Principal Findings The virulence of seven clinical Mycobacterium tuberculosis strains isolated in Spain was tested by determining the bacillary concentration in the spleen and lung of mice at weeks 0, 1 and 2 after intravenous (IV) inoculation of 104 CFU, and by determining the growth in vitro until the stationary phase had been reached. Cord distribution automated analysis showed two clear patterns related to the high and low fitness in the lung after IV infection. This pattern was not seen in the in vitro fitness tests, which clearly favored the reference strain (H37Rv). Subsequent determination using a more physiological low-dose aerosol (AER) inoculation with 102 CFU showed a third pattern in which the three best values coincided with the highest dissemination capacity according to epidemiological data. Conclusions/Significance The fitness obtained after low dose aerosol administration in the presence of the innate immune response is the most predictive factor for determining the virulence of clinical strains. This gives support to a mechanism of the induction of active TB derived from the dynamic hypothesis of latent tuberculosis infection. PMID:22235258
Masaki, S; Sugimori, G; Okamoto, A; Imose, J; Hayashi, Y
1991-01-01
The effects of Tween 80 supplementation of liquid culture medium on the formation of the superficial L1 layer of the Mycobacterium avium-Mycobacterium intracellulare complex (MAC) were examined by serological and scanning electron microscopic experiments. Specific antiserum to the glycopeptidolipids on the L1 layer of M. avium S-139, made in a rabbit, was used for seroagglutination reactions with antigens prepared from strain S-139 grown in medium supplemented with various levels of Tween 80 (0, 0.05, 0.5, 5, and 50 mg/ml). The agglutination titers gradually decreased as the concentration of Tween 80 rose. Scanning electron microscopy showed that the fibrillar materials consisting mainly of glycopeptidolipids on the L1 layer of strain S-139 also disappeared with increases in the concentration of Tween 80. In addition, there was no obvious correlation between (i) the plasmid DNAs and serotypes of MAC and (ii) formation of the L1 layer of MAC. It is therefore concluded that Tween 80 used to supplement liquid culture medium affects formation of the L1 layer, which has been considered to be one of the pathogenic factors of MAC. Images PMID:1885740
Xu, Zheng Zhong; Chen, Xiang; Hu, Ting; Meng, Chuang; Wang, Xiao Bo; Rao, Yan; Zhang, Xiao Ming; Yin, Yue Lan; Pan, Zhi Ming; Jiao, Xin An
2016-01-01
Mycobacterium bovis bacillus Calmette-Guérin (BCG) is currently the only vaccine available for preventing tuberculosis (TB), however, BCG has varying success in preventing pulmonary TB. In this study, a recombinant BCG (rBCG::Ag85A) strain overexpressing the immunodominant Ag85A antigen was constructed, and its immunogenicity and protective efficacy were evaluated. Our results indicated that the Ag85A protein was successfully overexpressed in rBCG::Ag85A, and the Ag85A peptide-MHC complexes on draining lymph node dendritic cells of C57BL/6 mice infected with rBCG::Ag85A were detectable 4 h post-infection. The C57BL/6 mice infected with this strain had stronger antigen-specific interferon-gamma (IFN-γ) responses and higher antibody titers than those immunized with BCG, and the protective experiments showed that rBCG::Ag85A can enhance protection against Mycobacterium tuberculosis (M. tuberculosis) H37Rv infection compared to the BCG vaccine alone. Our results demonstrate the potential of rBCG::Ag85A as a candidate vaccine against TB.
Jensen, Kirsty; Gallagher, Iain J; Johnston, Nicholas; Welsh, Michael; Skuce, Robin; Williams, John L; Glass, Elizabeth J
2018-03-01
Bovine tuberculosis has been an escalating animal health issue in the United Kingdom since the 1980s, even though control policies have been in place for over 60 years. The importance of the genetics of the etiological agent, Mycobacterium bovis , in the reemergence of the disease has been largely overlooked. We compared the interaction between bovine monocyte-derived macrophages (bMDM) and two M. bovis strains, AF2122/97 and G18, representing distinct genotypes currently circulating in the United Kingdom. These M. bovis strains exhibited differences in survival and growth in bMDM. Although uptake was similar, the number of viable intracellular AF2122/97 organisms increased rapidly, while G18 growth was constrained for the first 24 h. AF2122/97 infection induced a greater transcriptional response by bMDM than G18 infection with respect to the number of differentially expressed genes and the fold changes measured. AF2122/97 infection induced more bMDM cell death, with characteristics of necrosis and apoptosis, more inflammasome activation, and a greater type I interferon response than G18. In conclusion, the two investigated M. bovis strains interact in significantly different ways with the host macrophage. In contrast to the relatively silent infection by G18, AF2122/97 induces greater signaling to attract other immune cells and induces host cell death, which may promote secondary infections of naive macrophages. These differences may affect early events in the host-pathogen interaction, including granuloma development, which could in turn alter the progression of the disease. Therefore, the potential involvement of M. bovis genotypes in the reemergence of bovine tuberculosis in the United Kingdom warrants further investigation. Copyright © 2018 Jensen et al.
Clarke, Charlene; Van Helden, Paul; Miller, Michele; Parsons, Sven
2016-04-26
Members of the Mycobacterium tuberculosis complex (MTC) cause tuberculosis (TB) in both animals and humans. In this article, three animal-adapted MTC strains that are endemic to the southern African subregion - that is, Mycobacterium suricattae, Mycobacterium mungi, and the dassie bacillus - are reviewed with a focus on clinical and pathological presentations, geographic distribution, genotyping methods, diagnostic tools and evolution. Moreover, factors influencing the transmission and establishment of TB pathogens in novel host populations, including ecological, immunological and genetic factors of both the host and pathogen, are discussed. The risks associated with these infections are currently unknown and further studies will be required for greater understanding of this disease in the context of the southern African ecosystem.
Clarke, Charlene; Van Helden, Paul; Miller, Michele; Parsons, Sven
2016-04-26
Members of the Mycobacterium tuberculosis complex (MTC) cause tuberculosis (TB) in both animals and humans. In this article, three animal-adapted MTC strains that are endemic to the southern African subregion - that is, Mycobacterium suricattae, Mycobacterium mungi, and the dassie bacillus - are reviewed with a focus on clinical and pathological presentations, geographic distribution, genotyping methods, diagnostic tools and evolution. Moreover, factors influencing the transmission and establishment of TB pathogens in novel host populations, including ecological, immunological and genetic factors of both the host and pathogen, are discussed. The risks associated with these infections are currently unknown and further studies will be required for greater understanding of this disease in the context of the southern African ecosystem.
Pseudo-Outbreak of Actinomyces graevenitzii Associated with Bronchoscopy
Peaper, David R.; Havill, Nancy L.; Aniskiewicz, Michael; Callan, Deborah; Pop, Olivia; Towle, Dana
2014-01-01
Outbreaks and pseudo-outbreaks of infection related to bronchoscopy typically involve Gram-negative bacteria, Mycobacterium species or Legionella species. We report an unusual bronchoscopy-related pseudo-outbreak due to Actinomyces graevenitzii. Extensive epidemiological and microbiological investigation failed to identify a common source. Strain typing revealed that the cluster was comprised of heterogeneous strains of A. graevenitzii. A change in laboratory procedures for Actinomyces cultures was coincident with the emergence of the pseudo-outbreak, and we determined that A. graevenitzii isolates more readily adopted a white, dry, molar tooth appearance on anaerobic colistin nalidixic acid (CNA) agar which likely facilitated its detection and identification in bronchoscopic specimens. This unusual pseudo-outbreak was related to frequent requests of bronchoscopists for Actinomyces cultures combined with a change in microbiology laboratory practices. PMID:25355767
Manning, Thomas; Mikula, Rachel; Wylie, Greg; Phillips, Dennis; Jarvis, Jackie; Zhang, Fengli
2015-02-01
The bacterium responsible for tuberculosis is increasing its resistance to antibiotics resulting in new multidrug-resistant Mycobacterium tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). In this study, several analytical techniques including NMR, FT-ICR, MALDI-MS, LC-MS and UV/Vis are used to study the copper-Rifampicin-Polyethylene glycol (PEG-3350) complex. The copper (II) cation is a carrier for the antibiotic Rifampicin as well as nutrients for the bacterium. The NIH-NIAID cell line containing several Tb strains (including antibiotic resistant strains) is tested against seven copper-PEG-RIF complex variations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Billones, Junie B; Carrillo, Maria Constancia O; Organo, Voltaire G; Sy, Jamie Bernadette A; Clavio, Nina Abigail B; Macalino, Stephani Joy Y; Emnacen, Inno A; Lee, Alexandra P; Ko, Paul Kenny L; Concepcion, Gisela P
2017-01-01
Computer-aided drug discovery and development approaches such as virtual screening, molecular docking, and in silico drug property calculations have been utilized in this effort to discover new lead compounds against tuberculosis. The enzyme 7,8-diaminopelargonic acid aminotransferase (BioA) in Mycobacterium tuberculosis ( Mtb ), primarily involved in the lipid biosynthesis pathway, was chosen as the drug target due to the fact that humans are not capable of synthesizing biotin endogenously. The computational screening of 4.5 million compounds from the Enamine REAL database has ultimately yielded 45 high-scoring, high-affinity compounds with desirable in silico absorption, distribution, metabolism, excretion, and toxicity properties. Seventeen of the 45 compounds were subjected to bioactivity validation using the resazurin microtiter assay. Among the 4 actives, compound 7 (( Z )- N -(2-isopropoxyphenyl)-2-oxo-2-((3-(trifluoromethyl)cyclohexyl)amino)acetimidic acid) displayed inhibitory activity up to 83% at 10 μg/mL concentration against the growth of the Mtb H37Ra strain.
Billones, Junie B; Carrillo, Maria Constancia O; Organo, Voltaire G; Sy, Jamie Bernadette A; Clavio, Nina Abigail B; Macalino, Stephani Joy Y; Emnacen, Inno A; Lee, Alexandra P; Ko, Paul Kenny L; Concepcion, Gisela P
2017-01-01
Computer-aided drug discovery and development approaches such as virtual screening, molecular docking, and in silico drug property calculations have been utilized in this effort to discover new lead compounds against tuberculosis. The enzyme 7,8-diaminopelargonic acid aminotransferase (BioA) in Mycobacterium tuberculosis (Mtb), primarily involved in the lipid biosynthesis pathway, was chosen as the drug target due to the fact that humans are not capable of synthesizing biotin endogenously. The computational screening of 4.5 million compounds from the Enamine REAL database has ultimately yielded 45 high-scoring, high-affinity compounds with desirable in silico absorption, distribution, metabolism, excretion, and toxicity properties. Seventeen of the 45 compounds were subjected to bioactivity validation using the resazurin microtiter assay. Among the 4 actives, compound 7 ((Z)-N-(2-isopropoxyphenyl)-2-oxo-2-((3-(trifluoromethyl)cyclohexyl)amino)acetimidic acid) displayed inhibitory activity up to 83% at 10 μg/mL concentration against the growth of the Mtb H37Ra strain. PMID:28280303
Lavania, Mallika; Singh, Itu; Turankar, Ravindra P; Gupta, Anuj Kumar; Ahuja, Madhvi; Pathak, Vinay; Sengupta, Utpal
2018-01-01
Despite more than three decades of multidrug therapy (MDT), leprosy remains a major public health issue in several endemic countries, including India. The emergence of drug resistance in Mycobacterium leprae (M. leprae) is a cause of concern and poses a threat to the leprosy-control program, which might ultimately dampen the achievement of the elimination program of the country. Rifampicin resistance in clinical strains of M. leprae are supposed to arise from harboring bacterial strains with mutations in the 81-bp rifampicin resistance determining region (RRDR) of the rpoB gene. However, complete dynamics of rifampicin resistance are not explained only by this mutation in leprosy strains. To understand the role of other compensatory mutations and transmission dynamics of drug-resistant leprosy, a genome-wide sequencing of 11 M. leprae strains - comprising five rifampicin-resistant strains, five sensitive strains, and one reference strain - was done in this study. We observed the presence of compensatory mutations in two rifampicin-resistant strains in rpoC and mmpL7 genes, along with rpoB , that may additionally be responsible for conferring resistance in those strains. Our findings support the role for compensatory mutation(s) in RNA polymerase gene(s), resulting in rifampicin resistance in relapsed leprosy patients.
Tuberculosis in Antelopes in a Zoo in Poland--Problem of Public Health.
Krajewska, Monika; Załuski, Michał; Zabost, Anna; Orłowska, Blanka; Augustynowicz-Kopeć, Ewa; Anusz, Krzysztof; Lipiec, Marek; Weiner, Marcin; Szulowski, Krzysztof
2015-01-01
Bovine tuberculosis is an infectious disease that occurs in many species of both domestic and wild animals, as well as those held in captivity. The etiological factor is the acid resistant bacillus (Mycobacterium bovis or Mycobacterium caprae), which is characterized by the major pathogenicity among mycobacteria belonging to the Mycobacterium tuberculosis complex. The material from 8 antelopes from the zoo, suspected for tuberculosis were examined, and M. bovis strains were isolated from 6 of them. The spoligotyping method showing spoligo pattern 676763777777600. In Poland, this spoligotype has not been observed so far.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bastiaens, L.; Springael, D.; Wattiau, P.
Two different procedures were compared to isolate polycyclic aromatic hydrocarbon (PAH)-utilizing bacteria from PAH-contaminated soil and sludge samples, i.e., (i) shaken enrichment cultures in liquid mineral medium in which PAHs were supplied as crystals and (ii) a new method in which PAH degraders were enriched on and recovered from hydrophobic membranes containing sorbed PAHs. Both techniques were successful, but selected from the same source different bacterial strains able to grow on PAHs as the sole source of carbon and energy. The liquid enrichment mainly selected for Sphingomonas spp., whereas the membrane method exclusively led to the selection of Mycobacterium spp.more » Furthermore, in separate membrane enrichment set-ups with different membrane types, three repetitive extragenic palindromic PCR-related Mycobacterium strains were recovered. The new Mycobactereium isolates were strongly hydrophobic and displayed the capacity to adhere strongly to different surfaces. One strain, Mycobacterium sp. LB501T, displayed an unusual combination of high adhesion efficiency and an extremely high negative charge. This strain may represent a new bacterial species as suggested by 16S rRNA gene sequence analysis. These results indicate that the provision of hydrophobic sorbents containing sorbed PAHs in the enrichment procedure discriminated in favor of certain bacterial characteristics. The new isolation method is appropriate to select for adherent PAH-degrading bacteria, which might be useful to biodegrade sorbed PAHs in soils and sludge.« less
The Association between Mycobacterium Tuberculosis Genotype and Drug Resistance in Peru
Grandjean, Louis; Iwamoto, Tomotada; Lithgow, Anna; Gilman, Robert H; Arikawa, Kentaro; Nakanishi, Noriko; Martin, Laura; Castillo, Edith; Alarcon, Valentina; Coronel, Jorge; Solano, Walter; Aminian, Minoo; Guezala, Claudia; Rastogi, Nalin; Couvin, David; Sheen, Patricia; Zimic, Mirko; Moore, David AJ
2015-01-01
Background The comparison of Mycobacterium tuberculosis bacterial genotypes with phenotypic, demographic, geospatial and clinical data improves our understanding of how strain lineage influences the development of drug-resistance and the spread of tuberculosis. Methods To investigate the association of Mycobacterium tuberculosis bacterial genotype with drug-resistance. Drug susceptibility testing together with genotyping using both 15-loci MIRU-typing and spoligotyping, was performed on 2,139 culture positive isolates, each from a different patient in Lima, Peru. Demographic, geospatial and socio-economic data were collected using questionnaires, global positioning equipment and the latest national census. Results The Latin American Mediterranean (LAM) clade (OR 2.4, p<0.001) was significantly associated with drug-resistance and alone accounted for more than half of all drug resistance in the region. Previously treated patients, prisoners and genetically clustered cases were also significantly associated with drug-resistance (OR's 2.5, 2.4 and 1.8, p<0.001, p<0.05, p<0.001 respectively). Conclusions Tuberculosis disease caused by the LAM clade was more likely to be drug resistant independent of important clinical, genetic and socio-economic confounding factors. Explanations for this include; the preferential co-evolution of LAM strains in a Latin American population, a LAM strain bacterial genetic background that favors drug-resistance or the "founder effect" from pre-existing LAM strains disproportionately exposed to drugs. PMID:25984723
Gurjav, Ulziijargal; Outhred, Alexander C.; Jelfs, Peter; McCallum, Nadine; Wang, Qinning; Hill-Cawthorne, Grant A.; Marais, Ben J.; Sintchenko, Vitali
2016-01-01
Australia has a low tuberculosis incidence rate with most cases occurring among recent immigrants. Given suboptimal cluster resolution achieved with 24-locus mycobacterium interspersed repetitive unit (MIRU-24) genotyping, the added value of whole genome sequencing was explored. MIRU-24 profiles of all Mycobacterium tuberculosis culture-confirmed tuberculosis cases diagnosed between 2009 and 2013 in New South Wales (NSW), Australia, were examined and clusters identified. The relatedness of cases within the largest MIRU-24 clusters was assessed using whole genome sequencing and phylogenetic analyses. Of 1841 culture-confirmed TB cases, 91.9% (1692/1841) had complete demographic and genotyping data. East-African Indian (474; 28.0%) and Beijing (470; 27.8%) lineage strains predominated. The overall rate of MIRU-24 clustering was 20.1% (340/1692) and was highest among Beijing lineage strains (35.7%; 168/470). One Beijing and three East-African Indian (EAI) clonal complexes were responsible for the majority of observed clusters. Whole genome sequencing of the 4 largest clusters (30 isolates) demonstrated diverse single nucleotide polymorphisms (SNPs) within identified clusters. All sequenced EAI strains and 70% of Beijing lineage strains clustered by MIRU-24 typing demonstrated distinct SNP profiles. The superior resolution provided by whole genome sequencing demonstrated limited M. tuberculosis transmission within NSW, even within identified MIRU-24 clusters. Routine whole genome sequencing could provide valuable public health guidance in low burden settings. PMID:27737005
Multilocus sequence analysis and rpoB sequencing of Mycobacterium abscessus (sensu lato) strains.
Macheras, Edouard; Roux, Anne-Laure; Bastian, Sylvaine; Leão, Sylvia Cardoso; Palaci, Moises; Sivadon-Tardy, Valérie; Gutierrez, Cristina; Richter, Elvira; Rüsch-Gerdes, Sabine; Pfyffer, Gaby; Bodmer, Thomas; Cambau, Emmanuelle; Gaillard, Jean-Louis; Heym, Beate
2011-02-01
Mycobacterium abscessus, Mycobacterium bolletii, and Mycobacterium massiliense (Mycobacterium abscessus sensu lato) are closely related species that currently are identified by the sequencing of the rpoB gene. However, recent studies show that rpoB sequencing alone is insufficient to discriminate between these species, and some authors have questioned their current taxonomic classification. We studied here a large collection of M. abscessus (sensu lato) strains by partial rpoB sequencing (752 bp) and multilocus sequence analysis (MLSA). The final MLSA scheme developed was based on the partial sequences of eight housekeeping genes: argH, cya, glpK, gnd, murC, pgm, pta, and purH. The strains studied included the three type strains (M. abscessus CIP 104536(T), M. massiliense CIP 108297(T), and M. bolletii CIP 108541(T)) and 120 isolates recovered between 1997 and 2007 in France, Germany, Switzerland, and Brazil. The rpoB phylogenetic tree confirmed the existence of three main clusters, each comprising the type strain of one species. However, divergence values between the M. massiliense and M. bolletii clusters all were below 3% and between the M. abscessus and M. massiliense clusters were from 2.66 to 3.59%. The tree produced using the concatenated MLSA gene sequences (4,071 bp) also showed three main clusters, each comprising the type strain of one species. The M. abscessus cluster had a bootstrap value of 100% and was mostly compact. Bootstrap values for the M. massiliense and M. bolletii branches were much lower (71 and 61%, respectively), with the M. massiliense cluster having a fuzzy aspect. Mean (range) divergence values were 2.17% (1.13 to 2.58%) between the M. abscessus and M. massiliense clusters, 2.37% (1.5 to 2.85%) between the M. abscessus and M. bolletii clusters, and 2.28% (0.86 to 2.68%) between the M. massiliense and M. bolletii clusters. Adding the rpoB sequence to the MLSA-concatenated sequence (total sequence, 4,823 bp) had little effect on the clustering of strains. We found 10/120 (8.3%) isolates for which the concatenated MLSA gene sequence and rpoB sequence were discordant (e.g., M. massiliense MLSA sequence and M. abscessus rpoB sequence), suggesting the intergroup lateral transfers of rpoB. In conclusion, our study strongly supports the recent proposal that M. abscessus, M. massiliense, and M. bolletii should constitute a single species. Our findings also indicate that there has been a horizontal transfer of rpoB sequences between these subgroups, precluding the use of rpoB sequencing alone for the accurate identification of the two proposed M. abscessus subspecies.
Infection of great apes and a zoo keeper with the same Mycobacterium tuberculosis spoligotype.
Akkerman, Onno W; van der Werf, Tjip S; Rietkerk, Frank; Eger, Tony; van Soolingen, Dick; van der Loo, Kees; van der Zanden, Adri G M
2014-04-01
An animal keeper was diagnosed with pulmonary tuberculosis (TB) after bi-annual screening for latent TB infection in zoo employees. In the same period, several bonobos of the zoo were suffering from TB as well. The Mycobacterium tuberculosis strains from both the animal keeper and the bonobos appeared identical. We provide evidence that the animals infected their keeper.
Dou, Horng-Yunn; Chen, Yih-Yuan; Kou, Shu-Chen; Su, Ih-Jen
2015-06-01
Taiwan is a relatively isolated island, serving as a mixing vessel for colonization by different waves of ethnic and migratory groups over the past 4 centuries. The potential transmission pattern of Mycobacterium tuberculosis in different ethnic and migratory populations remains to be elucidated. By using mycobacterial tandem repeat sequences as genetic markers, the prevalence of M. tuberculosis strains in Taiwan revealed a close link to the historical migration. Interestingly, the M. tuberculosis strain in the aborigines of Eastern and Central Taiwan had a dominance of the Haarlem (Dutch) strain while those in Southern Taiwan had a dominance of the East-African Indian (EAI) strain. The prevalence of different M. tuberculosis strains in specific ethnic populations suggests that M. tuberculosis transmission is limited and restricted to close contact. The prevalence of the Beijing modern strain in the young population causes a concern for M. tuberculosis control, because of high virulence and drug resistance. Furthermore, our data using molecular genotyping should provide valuable information on the historical study of the origin and migration of aborigines in Taiwan. Copyright © 2014. Published by Elsevier B.V.
New Mycobacterium tuberculosis Complex Sublineage, Brazzaville, Congo
Malm, Sven; Linguissi, Laure S. Ghoma; Tekwu, Emmanuel M.; Vouvoungui, Jeannhey C.; Kohl, Thomas A.; Beckert, Patrick; Sidibe, Anissa; Rüsch-Gerdes, Sabine; Madzou-Laboum, Igor K.; Kwedi, Sylvie; Penlap Beng, Véronique; Frank, Matthias; Ntoumi, Francine
2017-01-01
Tuberculosis is a leading cause of illness and death in Congo. No data are available about the population structure and transmission dynamics of the Mycobacterium tuberculosis complex strains prevalent in this central Africa country. On the basis of single-nucleotide polymorphisms detected by whole-genome sequencing, we phylogenetically characterized 74 MTBC isolates from Brazzaville, the capital of Congo. The diversity of the study population was high; most strains belonged to the Euro-American lineage, which split into Latin American Mediterranean, Uganda I, Uganda II, Haarlem, X type, and a new dominant sublineage named Congo type (n = 26). Thirty strains were grouped in 5 clusters (each within 12 single-nucleotide polymorphisms), from which 23 belonged to the Congo type. High cluster rates and low genomic diversity indicate recent emergence and transmission of the Congo type, a new Euro-American sublineage of MTBC. PMID:28221129
New Mycobacterium tuberculosis Complex Sublineage, Brazzaville, Congo.
Malm, Sven; Linguissi, Laure S Ghoma; Tekwu, Emmanuel M; Vouvoungui, Jeannhey C; Kohl, Thomas A; Beckert, Patrick; Sidibe, Anissa; Rüsch-Gerdes, Sabine; Madzou-Laboum, Igor K; Kwedi, Sylvie; Penlap Beng, Véronique; Frank, Matthias; Ntoumi, Francine; Niemann, Stefan
2017-03-01
Tuberculosis is a leading cause of illness and death in Congo. No data are available about the population structure and transmission dynamics of the Mycobacterium tuberculosis complex strains prevalent in this central Africa country. On the basis of single-nucleotide polymorphisms detected by whole-genome sequencing, we phylogenetically characterized 74 MTBC isolates from Brazzaville, the capital of Congo. The diversity of the study population was high; most strains belonged to the Euro-American lineage, which split into Latin American Mediterranean, Uganda I, Uganda II, Haarlem, X type, and a new dominant sublineage named Congo type (n = 26). Thirty strains were grouped in 5 clusters (each within 12 single-nucleotide polymorphisms), from which 23 belonged to the Congo type. High cluster rates and low genomic diversity indicate recent emergence and transmission of the Congo type, a new Euro-American sublineage of MTBC.
Aubry, Alexandra; Sougakoff, Wladimir; Bodzongo, Pamela; Delcroix, Guy; Armand, Sylvie; Millot, Gérald; Jarlier, Vincent; Courcol, René; Lemaître, Nadine
2014-01-01
Tuberculosis (TB) is one of the major public health problems in Congo. However, data concerning Mycobacterium tuberculosis drug resistance are lacking because of the insufficient processing capacity. So, the aim of this study was to investigate for the first time the resistance patterns and the strain lineages of a sample of M. tuberculosis complex (MTBC) isolates collected in the two main cities of Congo. Over a 9-day period, 114 smear-positive sputa isolated from 114 patients attending centers for the diagnosis and treatment of TB in Brazzaville and Pointe Noire were collected for culture and drug susceptibility testing (DST). Detection of mutations conferring drug resistance was performed by using line probe assays (GenoType MTBDRplus and MTBDRsl) and DNA sequencing. Strain lineages were determined by MIRU-VNTR genotyping. Of the 114 sputa, 46 were culture positive for MTBC. Twenty-one (46%) were resistant to one or more first-line antiTB drugs. Of these, 15 (71%) were multidrug resistant (MDR). The most prevalent mutations involved in rifampin and isoniazid resistance, D516V (60%) in rpoB and S315T (87%) in katG respectively, were well detected by MTBDRplus assay. All the 15 MDR strains were susceptible to fluoroquinolone and injectable second-line drug. No mutation was detected in the rrs locus involved in resistance to amikacin and capreomycin by both the MTBDRsl assay and DNA sequencing. By contrast, 9 MDR strains belonging to the same cluster related to T-family were identified as being falsely resistant to fluoroquinolone by the MTBDRsl assay due to the presence of a double substitution T80A-A90G in GyrA. Taken together, these data revealed a possible spread of a particular MDR clone in Congo, misidentified as fluoroquinolone resistant by MTBDRsl assay. Thus, this test cannot replace gold-standard culture method and should be interpreted carefully in view of the patient's native land.
2017-01-01
ABSTRACT While isoniazid and rifampin have been the cornerstone of tuberculosis therapy caused by drug-susceptible Mycobacterium tuberculosis for more than 40 years, their combined action has never been thoroughly assessed by modern quantitative pharmacology approaches. The aims of this work were to perform in vitro experiments and mathematical modeling of the antibacterial effect of isoniazid and rifampin alone and in combination against various strains of Mycobacterium tuberculosis. After MIC determination of H37Rv and three strains belonging to the Beijing, Euro-American, and Indo-Oceanic lineages, the antibacterial effects of isoniazid and rifampin alone and in combination were studied in static time-kill experiments. A sigmoidal maximum effect model (Hill equation) and a response-surface model were used to describe the effect of the drugs alone and in combination, respectively. The killing effect of isoniazid and rifampin alone were well described by the Hill equation. Rifampin displayed a more concentration-dependent effect than isoniazid around the MIC. The pharmacodynamics parameters of each drug (maximal effect, median effect concentration, and coefficient of sigmoidicity) were quite similar between the four strains. The response-surface model from Minto et al. fit data of combined effect very well with low bias and imprecision (C. F. Minto, T. W. Schnider, T. G. Short, K. M. Gregg, A. Gentilini, Anesthesiology 92:1603–1616, 2000, https://doi.org/10.1097/00000542-200006000-00017). Response-surface modeling showed that the combined action of isoniazid and rifampin was synergistic for the H37Rv, Beijing, and Euro-American strains but only additive for the Indo-Oceanic strain. This study can serve as a motivating example for preclinical evaluation of combined action of antituberculous drugs. PMID:29061753
Balseiro, Ana; Altuzarra, Raúl; Vidal, Enric; Moll, Xavier; Espada, Yvonne; Sevilla, Iker A; Domingo, Mariano; Garrido, Joseba M; Juste, Ramón A; Prieto, Miguel; Pérez de Val, Bernat
2017-01-01
Animal tuberculosis (TB) is a complex animal health problem that causes disruption to trade and significant economic losses. TB involves a multi-host system where sheep, traditionally considered a rare host of this infection, have been recently included. The aims of this study were to develop an experimental TB infection model in sheep with a Mycobacterium caprae field strain isolated from a tuberculous diseased ewe, and to use this to evaluate the safety and efficacy of two vaccines against TB in sheep, the live-attenuated M. bovis BCG vaccine (Danish strain) and a heat-inactivated M. bovis (HIMB) vaccine. Eighteen 2 month-old lambs were experimentally challenged with M. caprae by the endotracheal route (1.5 × 103 CFU). They were separated per treatment group into parenterally vaccinated with a live BCG Danish strain vaccine (n = 6), orally vaccinated with a suspension of HIMB (n = 6) and unvaccinated controls (n = 6). Clinical, immunological, pathological and bacteriological parameters of infection were measured. All lambs were successfully infected and developed gross TB lesions in the respiratory system. The BCG vaccine conferred considerable protection against experimental TB in lambs, as measured by a reduction of the gross lesion volumes and bacterial load. However, HIMB vaccinated animals did not show protection. This study proposes a reliable new experimental model for a better understanding of tuberculosis in sheep. BCG vaccination offers an effective prospect for controlling the disease. Moreover alternative doses and/or routes of administration should be considered to evaluate the efficacy of the HIMB vaccine candidate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freundlich, Joel S.; Wang, Feng; Vilchèze, Catherine
Isoniazid (INH) is a frontline antitubercular drug that inhibits the enoyl acyl carrier protein reductase InhA. Novel inhibitors of InhA that are not cross-resistant to INH represent a significant goal in antitubercular chemotherapy. The design, synthesis, and biological activity of a series of triclosan-based inhibitors is reported, including their promising efficacy against INH-resistant strains of M. tuberculosis. Triclosan has been previously shown to inhibit InhA, an essential enoyl acyl carrier protein reductase involved in mycolic acid biosynthesis, the inhibition of which leads to the lysis of Mycobacterium tuberculosis. Using a structure-based drug design approach, a series of 5-substituted triclosan derivativesmore » was developed. Two groups of derivatives with alkyl and aryl substituents, respectively, were identified with dramatically enhanced potency against purified InhA. The most efficacious inhibitor displayed an IC{sub 50} value of 21 nM, which was 50-fold more potent than triclosan. X-ray crystal structures of InhA in complex with four triclosan derivatives revealed the structural basis for the inhibitory activity. Six selected triclosan derivatives were tested against isoniazid-sensitive and resistant strains of M. tuberculosis. Among those, the best inhibitor had an MIC value of 4.7 {mu}g mL{sup -1} (13 {mu}M), which represents a tenfold improvement over the bacteriocidal activity of triclosan. A subset of these triclosan analogues was more potent than isoniazid against two isoniazid-resistant M. tuberculosis strains, demonstrating the significant potential for structure-based design in the development of next generation antitubercular drugs.« less
rpoB-Based Identification of Nonpigmented and Late-Pigmenting Rapidly Growing Mycobacteria
Adékambi, Toïdi; Colson, Philippe; Drancourt, Michel
2003-01-01
Nonpigmented and late-pigmenting rapidly growing mycobacteria (RGM) are increasingly isolated in clinical microbiology laboratories. Their accurate identification remains problematic because classification is labor intensive work and because new taxa are not often incorporated into classification databases. Also, 16S rRNA gene sequence analysis underestimates RGM diversity and does not distinguish between all taxa. We determined the complete nucleotide sequence of the rpoB gene, which encodes the bacterial β subunit of the RNA polymerase, for 20 RGM type strains. After using in-house software which analyzes and graphically represents variability stretches of 60 bp along the nucleotide sequence, our analysis focused on a 723-bp variable region exhibiting 83.9 to 97% interspecies similarity and 0 to 1.7% intraspecific divergence. Primer pair Myco-F-Myco-R was designed as a tool for both PCR amplification and sequencing of this region for molecular identification of RGM. This tool was used for identification of 63 RGM clinical isolates previously identified at the species level on the basis of phenotypic characteristics and by 16S rRNA gene sequence analysis. Of 63 clinical isolates, 59 (94%) exhibited <2% partial rpoB gene sequence divergence from 1 of 20 species under study and were regarded as correctly identified at the species level. Mycobacterium abscessus and Mycobacterium mucogenicum isolates were clearly distinguished from Mycobacterium chelonae; Mycobacterium mageritense isolates were clearly distinguished from “Mycobacterium houstonense.” Four isolates were not identified at the species level because they exhibited >3% partial rpoB gene sequence divergence from the corresponding type strain; they belonged to three taxa related to M. mucogenicum, Mycobacterium smegmatis, and Mycobacterium porcinum. For M. abscessus and M. mucogenicum, this partial sequence yielded a high genetic heterogeneity within the clinical isolates. We conclude that molecular identification by analysis of the 723-bp rpoB sequence is a rapid and accurate tool for identification of RGM. PMID:14662964
Prolonged Outbreak of Mycobacterium chimaera Infection After Open-Chest Heart Surgery.
Sax, Hugo; Bloemberg, Guido; Hasse, Barbara; Sommerstein, Rami; Kohler, Philipp; Achermann, Yvonne; Rössle, Matthias; Falk, Volkmar; Kuster, Stefan P; Böttger, Erik C; Weber, Rainer
2015-07-01
Invasive Mycobacterium chimaera infections were diagnosed in 2012 in 2 heart surgery patients on extracorporeal circulation. We launched an outbreak investigation to identify the source and extent of the potential outbreak and to implement preventive measures. We collected water samples from operating theaters, intensive care units, and wards, including air samples from operating theaters. Mycobacterium chimaera strains were characterized by randomly amplified polymorphic DNA polymerase chain reaction (RAPD-PCR). Case detection was performed based on archived histopathology samples and M. chimaera isolates since 2006, and the patient population at risk was prospectively surveyed. We identified 6 male patients aged between 49 and 64 years with prosthetic valve endocarditis or vascular graft infection due to M. chimaera, which became clinically manifest with a latency of between 1.5 and 3.6 years after surgery. Mycobacterium chimaera was isolated from cardiac tissue specimens, blood cultures, or other biopsy specimens. We were able also to culture M. chimaera from water circuits of heater-cooler units connected to the cardiopulmonary bypass, and air samples collected when the units were in use. RAPD-PCR demonstrated identical patterns among M. chimaera strains from heater-cooler unit water circuits and air samples, and strains in 2 patient clusters. The epidemiological and microbiological features of this prolonged outbreak provided evidence for the airborne transmission of M. chimaera from contaminated heater-cooler unit water tanks to patients during open-heart surgery. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Broset, Esther; Martín, Carlos; Gonzalo-Asensio, Jesús
2015-10-20
Different members of the Mycobacterium genus have evolved to cause tuberculosis in diverse human populations and in a variety of animal species. Our cumulative knowledge of mycobacterial genomes indicates that mutations in the PhoPR two-component virulence system were acquired not only during the natural evolution of mycobacterial species but also during in vitro subculture, which has given rise to the attenuated reference strain H37Ra or to different daughter strains of Mycobacterium bovis BCG. PhoPR is a well-known regulator of pathogenic phenotypes, including secretion of the virulence factor ESAT-6, biosynthesis of acyltrehalose-based lipids, and modulation of antigen export, in members of the Mycobacterium tuberculosis complex (MTBC). Evolutionarily conserved polymorphisms in PhoPR from Mycobacterium africanum, M. bovis, or M. tuberculosis H37Ra result in loss of functional phenotypes. Interestingly, some members of the MTBC have acquired compensatory mutations to counteract these polymorphisms and, probably, to maintain their pathogenic potential. Some of these compensatory mutations include the insertion of the IS6110 element upstream from phoPR in a particular M. bovis strain that is able to transmit between humans or polymorphisms in M. africanum and M. bovis that affect the regulatory region of the espACD operon, allowing PhoPR-independent ESAT-6 secretion. This review highlights the increasing knowledge of the significance of PhoPR in the evolution of the MTBC and its potential application in the construction of new attenuated vaccines based on phoPR inactivation. In this context, the live attenuated vaccine MTBVAC, based on a phoP fadD26 deletion mutant of M. tuberculosis, is the first vaccine of this kind to successfully enter into clinical development, representing a historic milestone in the field of human vaccinology. Copyright © 2015 Broset et al.
Broset, Esther
2015-01-01
ABSTRACT Different members of the Mycobacterium genus have evolved to cause tuberculosis in diverse human populations and in a variety of animal species. Our cumulative knowledge of mycobacterial genomes indicates that mutations in the PhoPR two-component virulence system were acquired not only during the natural evolution of mycobacterial species but also during in vitro subculture, which has given rise to the attenuated reference strain H37Ra or to different daughter strains of Mycobacterium bovis BCG. PhoPR is a well-known regulator of pathogenic phenotypes, including secretion of the virulence factor ESAT-6, biosynthesis of acyltrehalose-based lipids, and modulation of antigen export, in members of the Mycobacterium tuberculosis complex (MTBC). Evolutionarily conserved polymorphisms in PhoPR from Mycobacterium africanum, M. bovis, or M. tuberculosis H37Ra result in loss of functional phenotypes. Interestingly, some members of the MTBC have acquired compensatory mutations to counteract these polymorphisms and, probably, to maintain their pathogenic potential. Some of these compensatory mutations include the insertion of the IS6110 element upstream from phoPR in a particular M. bovis strain that is able to transmit between humans or polymorphisms in M. africanum and M. bovis that affect the regulatory region of the espACD operon, allowing PhoPR-independent ESAT-6 secretion. This review highlights the increasing knowledge of the significance of PhoPR in the evolution of the MTBC and its potential application in the construction of new attenuated vaccines based on phoPR inactivation. In this context, the live attenuated vaccine MTBVAC, based on a phoP fadD26 deletion mutant of M. tuberculosis, is the first vaccine of this kind to successfully enter into clinical development, representing a historic milestone in the field of human vaccinology. PMID:26489860
Warren, R; Richardson, M; Sampson, S; Hauman, J H; Beyers, N; Donald, P R; van Helden, P D
1996-01-01
Two highly polymorphic Mycobacterium tuberculosis genomic domains, characterized by hybridization to the oligonucleotide (GTG)5, were identified as potential DNA fingerprinting probes. These domains were cloned [pMTB484(1) and pMTB484(2K4), respectively] and shown to be useful for genotype analysis by Southern blotting. These probes were used to genotype geographically linked strains of M. tuberculosis previously shown to have identical IS6110 fingerprints. Subsequent DNA fingerprints generated with MTB484(1) and MTB484(2K4) showed a high degree of polymorphism, allowing subclassification of IS6110-defined clusters into composites of smaller clusters and unique strains. Correlation of the molecular data with patient interviews and clinical records confirmed the sensitivity of these probes, as contacts were established only within subclusters. These findings demonstrate the requirement for multiple probes to accurately classify M. tuberculosis strains, even those with high copy numbers of IS6110. The enhanced accuracy of strain typing should, in turn, further our understanding of the epidemiology of tuberculosis. PMID:8862588
Vyazovaya, A A; Mokrousov, I V; Zhuravlev, V Yu; Solovieva, N S; Otten, T F; Manicheva, O A; Vishnevsky, B I; Narvskaya, O V
2016-01-01
The goal of this work was to study the genotypic characteristics of the multidrug-resistant (MDR, i.e., resistant to at least rifampicine and isoniazid) Mycobacterium tuberculosis strains isolated in 2011-2012 from tuberculosis (TB) patients in the Northwest Russia. Spoligotyping of 195 M. tuberculosis isolates identified 14 different spoligotypes and assigned isolates to the genetic families Beijing (n = 162, 83%), LAM (n = 15), H3/URAL (n = 14), as well as T, Haarlem and X. Spoligotypes SIT1 (Beijing), SIT42 (LAM) and SIT262 (H3/URAL) were the most prevalent. Irrespective to the genotype, all the isolates were resistant to streptomycin. The multidrug resistance was accompanied by the resistance to ethionamide (56%), amikacin (31%), kanamycin (40%), and capreomycin (33%). The ethambutol resistance was found in 71% (n = 115) and 42% (n = 14) of the Beijing and non-Beijing strains, respectively (p < 0.05). In conclusion, the multidrug resistant M. tuberculosis population circulating in the Northwest Russia continues to be dominated by the Beijing family strains.
Mycobacterium leprae: genes, pseudogenes and genetic diversity
Singh, Pushpendra; Cole, Stewart T
2011-01-01
Leprosy, which has afflicted human populations for millenia, results from infection with Mycobacterium leprae, an unculturable pathogen with an exceptionally long generation time. Considerable insight into the biology and drug resistance of the leprosy bacillus has been obtained from genomics. M. leprae has undergone reductive evolution and pseudogenes now occupy half of its genome. Comparative genomics of four different strains revealed remarkable conservation of the genome (99.995% identity) yet uncovered 215 polymorphic sites, mainly single nucleotide polymorphisms, and a handful of new pseudogenes. Mapping these polymorphisms in a large panel of strains defined 16 single nucleotide polymorphism-subtypes that showed strong geographical associations and helped retrace the evolution of M. leprae. PMID:21162636
Genome-wide re-sequencing of multidrug-resistant Mycobacterium leprae Airaku-3.
Singh, P; Benjak, A; Carat, S; Kai, M; Busso, P; Avanzi, C; Paniz-Mondolfi, A; Peter, C; Harshman, K; Rougemont, J; Matsuoka, M; Cole, S T
2014-10-01
Genotyping and molecular characterization of drug resistance mechanisms in Mycobacterium leprae enables disease transmission and drug resistance trends to be monitored. In the present study, we performed genome-wide analysis of Airaku-3, a multidrug-resistant strain with an unknown mechanism of resistance to rifampicin. We identified 12 unique non-synonymous single-nucleotide polymorphisms (SNPs) including two in the transporter-encoding ctpC and ctpI genes. In addition, two SNPs were found that improve the resolution of SNP-based genotyping, particularly for Venezuelan and South East Asian strains of M. leprae. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.
Gaafar, Ayman; Josebe Unzaga, M.; Cisterna, Ramón; Clavo, Felicitas Elena; Urra, Elena; Ayarza, Rafael; Martín, Gloria
2003-01-01
The usefulness of single-enzyme amplified-fragment length polymorphism (AFLP) analysis for the subtyping of Mycobacterium kansasii type I isolates was evaluated. This simplified technique classified 253 type I strains into 12 distinct clusters. The discriminating power of this technique was high, and the technique easily distinguished between the epidemiologically unrelated control strains and our clinical isolates. Overall, the technique was relatively rapid and technically simple, yet it gave reproducible and discriminatory results. This technique provides a powerful typing tool which may be helpful in solving many questions concerning the reservoirs, pathogenicities, and modes of transmission of these isolates. PMID:12904399
Clustering of Mycobacterium tuberculosis strains from foreign-born patients in Korea.
Jeon, Christie Y; Kang, Heeyoon; Kim, Mihye; Murray, Megan B; Kim, Heejin; Cho, Eun Hee; Park, Young Kil
2011-12-01
Information on drug resistance and transmission patterns of tuberculosis (TB) in foreign-born patients is lacking in Asia where immigration is increasing. We examined the drug-resistance profiles of 288 Mycobacterium tuberculosis isolates from foreign-born patients in South Korea, and assessed for potential transmission in the host country by analysing their IS6110 genotypes, as well as those of 4780 strains from native Korean TB patients. The prevalence of multidrug-resistant (MDR) TB was 9.7% and 42% among new and previously treated patients, respectively. Chinese nationality was associated with MDR TB (OR(China)=3.0, 95% CI 1.1-9.3). Of the 288 strains, 51 (17.7%) formed 31 clusters, of which 22 were identical to strains from native Koreans. A number of strains belonged to the K family, subtypes known to occur endemically in Korea. MDR TB was common, and clustering patterns showed potential cross-cultural transmission among foreign-born TB patients. Further molecular epidemiological studies of all isolates in the area are needed to determine the extent of international TB transmission in Asia. © 2011 SGM
Chandramuki, Akepati; Khanna, Neelam; Shashkina, Elena; Kurepina, Natalia; Mathema, Barun; Kreiswirth, Barry N; Venkataswamy, Manjunatha M
2017-01-01
Specific genotypes of Mycobacterium tuberculosis (MTB) have been reported to cause outbreaks of pulmonary tuberculosis (TB) in geographical areas that are endemic to TB. However, since there is little epidemiological evidence on the association of particular genotypes that cause tuberculous meningitis (TBM), we sought to investigate the association of specific MTB strains with infection of the central nervous system (CNS). We carried out a genetic characterisation of 89 MTB isolates from TBM patients at a Southern Indian tertiary neurocare centre and compared the genotypes with strains of pulmonary TB isolated from Indian immigrants in New York City. We applied the standard methods of genotyping of MTB, namely, IS6110-based restriction fragment length polymorphism and spoligotyping for strain identification, along with principal genetic grouping and single-nucleotide polymorphism cluster analysis. The analysis revealed a high-level of diversity amongst the strain population. The genotypes of the isolates from TBM patients paralleled the pulmonary TB strain population recovered from the Indian immigrants in NYC. We conclude that there is no apparent association between genotypes of MTB and propensity to infect CNS tissue.
First report of a mycolactone-producing Mycobacterium infection in fish agriculture in Belgium.
Stragier, Pieter; Hermans, Katleen; Stinear, Tim; Portaels, Françoise
2008-09-01
In the past few years, a mycolactone-producing subgroup of the Mycobacterium marinum complex has been identified and analyzed. These IS2404-positive species cause pathology in frogs and fish. A recently isolated mycobacterial strain from a fish in Belgium was analyzed using a variety of molecular methods and the results were identical to those obtained from a mycolactone-producing M. marinum from Israel.
Complete Genome Sequence of Mycobacterium chimaera Strain AH16.
Hasan, Nabeeh A; Honda, Jennifer R; Davidson, Rebecca M; Epperson, L Elaine; Bankowski, Matthew J; Chan, Edward D; Strong, Michael
2016-11-23
Mycobacterium chimaera is a nontuberculous mycobacterial species that causes cardiovascular, pulmonary, and postsurgical infections. Here, we report the first complete genome sequence of M. chimaera This genome is 6.33 Mbp, with a G+C content of 67.56%, and encodes 4,926 protein-coding genes, as well as 74 tRNAs, one ncRNA, and three rRNA genes. Copyright © 2016 Hasan et al.
USDA-ARS?s Scientific Manuscript database
The objective of this study was to examine the immune-modulating effects of feeding a novel probiotic Lactobacillus acidophilus strain NP51 to specific pathogen-free Balb/c mice challenged with Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne’s disease (JD) in rumi...
USDA-ARS?s Scientific Manuscript database
The objective of this study was to examine immune effects of feeding novel probiotic Lactobacillus acidophilus strain NP51 to specific pathogen-free Balb/c mice challenged with Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne’s disease (JD). We hypothesized that fe...
Shipley, Steven T; Johnson, David K; Roodgar, Morteza; Smith, David Glenn; Montgomery, Charles A; Lloyd, Steven M; Higgins, James A; Kriel, Edwin H; Klein, Hilton J; Porter, William P; Nazareno, Jerome B; Houghton, Paul W; Panda, Aruna; DeTolla, Louis J
2017-08-01
Mycobacterial infections are of primary health concern in NHP colonies in biomedical research. NHP are constantly monitored and screened for Mycobacterium spp. We report 6 Chinese-origin rhesus macaques infected with Mycobacterium kansasii that exhibited positive tuberculin skin tests in the absence of disease. Two of these macaques were being used for research purposes; the remaining 4 macaques were residing at the contract quarantine company. Histopathology and acid-fast staining of fixed tissues from all macaques showed that all were free of disease. Thoracic radiographs were negative for any signs of disease or infection. Samples from bronchial lavage and tissues including lung, spleen, hilar and mesenteric lymph nodes tested negative by PCR assay for Mycobacterium spp. One of the research macaques tested culture-positive for M. kansasii and a poorly characterized M. avium complex organism. One macaque from the contract quarantine facility tested culture positive for M. kansasii. Genomic testing and target gene RNA expression analysis of the 2 M. kansasii isolates were performed to evaluate possible kinship and affected genes that might contribute to susceptibility to mycobacterial infection. Genotyping of the 2 isolates revealed 2 genetically distinct strains (strains 1 and 4). The presence of positive tuberculin skin tests in the absence of disease raises serious concerns regarding diagnostic methods used for infected NHP.
Chang, Carolyn T.; Colicino, Erica G.; DiPaola, Elizabeth J.; Al-Hasnawi, Hadi Jabbar; Whipps, Christopher M.
2016-01-01
Mycobacteriosis is a bacterial disease that is common in captive, wild and research fish. There is no one causative agent of mycobacteriosis, as several strains and species of Mycobacterium have been identified in zebrafish. With increased usage and investment in wild-type and mutant zebrafish strains, considerable value is placed on preserving zebrafish health. One control measure used to prevent mycobacterial spread within and between zebrafish facilities is egg disinfection. Here we investigate the effectiveness of three disinfectants [chlorine bleach, hydrogen peroxide, and povidone iodine (PVPI)] commonly included in egg disinfection protocols for laboratory fish as well as aquaculture fish and compare the knockdown effect of these treatments on Mycobacterium spp. in vitro. Despite current usage, comparison of these disinfection regimes’ abilities to prevent mycobacterial growth has not been tested. We found that the germicidal effect of different disinfectants vary by Mycobacterium spp.. Hydrogen peroxide was the least effective disinfectant, followed by unbuffered chlorine bleach, which is commonly used to disinfect embryos in zebrafish facilities. Disinfection with 25 ppm PVPI for 5 min was very effective, and may be an improved alternative to chlorine bleach for embryo disinfection. Results from this study can be utilized by laboratory fish facilities in order to prevent the spread of mycobacteriosis in research fish. PMID:26423444
Liu, Y; Wang, S; Lu, H; Chen, W; Wang, W
2016-06-01
Among the most prevalent Mycobacterium tuberculosis (Mtb) strains worldwide is the Beijing genotype, which has caused large outbreaks of tuberculosis (TB). Characteristics facilitating the dissemination of Beijing family strains remain unknown, but they are presumed to have been acquired through evolution of the lineage. To explore the genetic diversity of the Beijing family Mtb and explore the discriminatory ability of mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) loci in several regions of East Asia, a cross-sectional study was conducted with a total of 163 Beijing strains collected from registered TB patients between 1 June 2009 and 31 November 2010 in Funing County, China. The isolated strains were analysed by 15-MIRU-VNTR loci typing and compared with published MIRU-VNTR profiles of Beijing strains. Synonymous single nucleotide polymorphisms at 10 chromosomal positions were also analysed. The combination of SNP and MIRU-VNTR typing may be used to assess Mtb genotypes in areas dominated by Beijing strains. The modern subfamily in Shanghai overlapped with strains from other countries, whereas the ancient subfamily was genetically differentiated across several countries. Modern subfamilies, especially ST10, were prevalent. Qub11b and four other loci (MIRU 26, Mtub21, Qub26, Mtub04) could be used to discriminate Beijing strains.
Tuberculosis: An Inorganic Medicinal Chemistry Perspective.
Viganor, Livia; Skerry, Ciaran; McCann, Malachy; Devereux, Michael
2015-01-01
Tuberculosis (TB) which is caused by the resilient pathogen Mycobacterium tuberculosis (MTB) has re-emerged to become a leading public health problem in the world. The growing number of multi-drug resistant MTB strains and the more recently emerging problem with the extensively drug resistant strains of the pathogen are greatly undermining conventional anti-TB therapeutic strategies which are lengthy and expose patients to toxicity and other unwanted side effects. The search for new anti-TB drugs essentially involves either the repurposing of existing organic drugs which are now off patent and already FDA approved, the synthesis of modified analogues of existing organic drugs, with the aim of shortening and improving drug treatment for the disease, or the search for novel structures that offer the possibility of new mechanisms of action against the mycobacterium. Inorganic medicinal chemistry offers an alternative to organic drugs through opportunities for the design of therapeutics that target different biochemical pathways. The incorporation of metal ions into the molecular structure of a potential drug offers the medicinal chemist an opportunity to exploit structural diversity, have access to various oxidation states of the metal and also offer the possibility of enhancing the activity of an established organic drug through its coordination to the metal centre. In this review, we summarize what is currently known about the antitubercular capability of metal complexes, their mechanisms of action and speculate on their potential applications in the clinic.
Liu, Jun; Nikaido, Hiroshi
1999-01-01
Mycolic acids are a major constituent of the mycobacterial cell wall, and they form an effective permeability barrier to protect mycobacteria from antimicrobial agents. Although the chemical structures of mycolic acids are well established, little is known on their biosynthesis. We have isolated a mycolate-deficient mutant strain of Mycobacterium smegmatis mc2-155 by chemical mutagenesis followed by screening for increased sensitivity to novobiocin. This mutant also was hypersensitive to other hydrophobic compounds such as crystal violet, rifampicin, and erythromycin. Entry of hydrophobic probes into mutant cells occurred much more rapidly than that into the wild-type cells. HPLC and TLC analysis of fatty acid composition after saponification showed that the mutant failed to synthesize full-length mycolic acids. Instead, it accumulated a series of long-chain fatty acids, which were not detected in the wild-type strain. Analysis by 1H NMR, electrospray and electron impact mass spectroscopy, and permanganate cleavage of double bonds showed that these compounds corresponded to the incomplete meromycolate chain of mycolic acids, except for the presence of a β-hydroxyl group. This direct identification of meromycolates as precursors of mycolic acids provides a strong support for the previously proposed pathway for mycolic acid biosynthesis involving the separate synthesis of meromycolate chain and the α-branch of mycolic acids, followed by the joining of these two branches. PMID:10097154
Pseudo-outbreak of Actinomyces graevenitzii associated with bronchoscopy.
Peaper, David R; Havill, Nancy L; Aniskiewicz, Michael; Callan, Deborah; Pop, Olivia; Towle, Dana; Boyce, John M
2015-01-01
Outbreaks and pseudo-outbreaks of infection related to bronchoscopy typically involve Gram-negative bacteria, Mycobacterium species or Legionella species. We report an unusual bronchoscopy-related pseudo-outbreak due to Actinomyces graevenitzii. Extensive epidemiological and microbiological investigation failed to identify a common source. Strain typing revealed that the cluster was comprised of heterogeneous strains of A. graevenitzii. A change in laboratory procedures for Actinomyces cultures was coincident with the emergence of the pseudo-outbreak, and we determined that A. graevenitzii isolates more readily adopted a white, dry, molar tooth appearance on anaerobic colistin nalidixic acid (CNA) agar which likely facilitated its detection and identification in bronchoscopic specimens. This unusual pseudo-outbreak was related to frequent requests of bronchoscopists for Actinomyces cultures combined with a change in microbiology laboratory practices. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Perdigão, João; Clemente, Sofia; Ramos, Jorge; Masakidi, Pedro; Machado, Diana; Silva, Carla; Couto, Isabel; Viveiros, Miguel; Taveira, Nuno; Portugal, Isabel
2017-02-23
Tuberculosis (TB) poses a serious public health problem in Angola. No surveillance data on drug resistance is available and nothing is known regarding the genetic diversity and population structure of circulating Mycobacterium tuberculosis strains. Here, we have genotyped and evaluated drug susceptibility of 89 Mycobacterium tuberculosis clinical isolates from Luanda. Thirty-three different spoligotype profiles corresponding to 24 different Shared International Types (SIT) and 9 orphan profiles were detected. SIT 20 (LAM1) was the most prevalent (n = 16, 18.2%) followed by SIT 42 (LAM9; n = 15, 17.1%). Overall, the M. tuberculosis population structure in this sample was dominated by LAM (64.8%) and T (33.0%) strains. Twenty-four-loci MIRU-VNTR analysis revealed that a total of 13 isolates were grouped in 5 distinct clusters. Drug susceptibility data showed that 22 (24.7%) of the 89 clinical isolates were resistant to one or more antibacillary drugs of which 4 (4.5%) were multidrug resistant. In conclusion, this study demonstrates a high predominance of LAM strains circulating in the Luanda setting and the presence of recent transmission events. The rate and the emergence dynamics of drug resistant TB found in this sample are significant and highlight the need of further studies specifically focused on MDR-TB transmission.
Villela, Anne Drumond; Pham, Ha; Jones, Victoria; Grzegorzewicz, Anna E; Rodrigues-Junior, Valnês da Silva; Campos, Maria Martha; Basso, Luiz Augusto; Jackson, Mary; Santos, Diógenes Santiago
2017-02-01
The upp (Rv3309c)-encoded uracil phosphoribosyltransferase from Mycobacterium tuberculosis (MtUPRT) converts uracil and 5-phosphoribosyl-α-1-pyrophosphate into pyrophosphate and uridine 5΄-monophosphate, the precursor of all pyrimidine nucleotides. A M. tuberculosis knockout strain for upp gene was generated by allelic replacement. Knockout and complemented strains were validated by a functional assay of uracil incorporation. A basal level of MtUPRT expression is shown to be independent of either growth medium used, addition of bases, or oxygen presence/absence. The upp disruption does not affect M. tuberculosis growth in Middlebrook 7H9 medium, and it is not required for M. tuberculosis virulence in a mouse model of infection. Thus, MtUPRT is unlikely to be a good target for drugs against M. tuberculosis. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Manson, Abigail L.; Cohen, Keira A.; Abeel, Thomas; Desjardins, Christopher A.; Armstrong, Derek T.; Barry, Clifton E.; Brand, Jeannette; Chapman, Sinéad B.; Cho, Sang-Nae; Gabrielian, Andrei; Gomez, James; Jodals, Andreea M.; Joloba, Moses; Jureen, Pontus; Lee, Jong Seok; Malinga, Lesibana; Maiga, Mamoudou; Nordenberg, Dale; Noroc, Ecaterina; Romancenco, Elena; Salazar, Alex; Ssengooba, Willy; Velayati, A. A.; Winglee, Kathryn; Zalutskaya, Aksana; Via, Laura E.; Cassell, Gail H.; Dorman, Susan E.; Ellner, Jerrold; Farnia, Parissa; Galagan, James E.; Rosenthal, Alex; Crudu, Valeriu; Homorodean, Daniela; Hsueh, Po-Ren; Narayanan, Sujatha; Pym, Alexander S.; Skrahina, Alena; Swaminathan, Soumya; Van der Walt, Martie; Alland, David; Bishai, William R.; Cohen, Ted; Hoffner, Sven; Birren, Bruce W.; Earl, Ashlee M.
2017-01-01
Multidrug-resistant tuberculosis (MDR-TB), caused by drug resistant strains of Mycobacterium tuberculosis, is an increasingly serious problem worldwide. In this study, we examined a dataset of 5,310 M. tuberculosis whole genome sequences from five continents. Despite great diversity with respect to geographic point of isolation, genetic background and drug resistance, patterns of drug resistance emergence were conserved globally. We have identified harbinger mutations that often precede MDR. In particular, the katG S315T mutation, conferring resistance to isoniazid, overwhelmingly arose before rifampicin resistance across all lineages, geographic regions, and time periods. Molecular diagnostics that include markers for rifampicin resistance alone will be insufficient to identify pre-MDR strains. Incorporating knowledge of pre-MDR polymorphisms, particularly katG S315, into molecular diagnostics will enable targeted treatment of patients with pre-MDR-TB to prevent further development of MDR-TB. PMID:28092681
Shared characteristics between Mycobacterium tuberculosis and fungi contribute to virulence.
Willcocks, Sam; Wren, Brendan W
2014-01-01
Mycobacterium tuberculosis, an etiologic agent of tuberculosis, exacts a heavy toll in terms of human morbidity and mortality. Although an ancient disease, new strains are emerging as human population density increases. The emergent virulent strains appear adept at steering the host immune response from a protective Th1 type response towards a Th2 bias, a feature shared with some pathogenic fungi. Other common characteristics include infection site, metabolic features, the composition and display of cell surface molecules, the range of innate immune receptors engaged during infection, and the ability to form granulomas. Literature from these two distinct fields of research are reviewed to propose that the emergent virulent strains of M. tuberculosis are in the process of convergent evolution with pathogenic fungi, and are increasing the prominence of conserved traits from environmental phylogenetic ancestors that facilitate their evasion of host defenses and dissemination.
Engström, Anna
2016-01-01
Tuberculosis (TB) is an ancient disease, but not a disease of the past. The increasing prevalence of drug-resistant strains of Mycobacterium tuberculosis, the causative agent of TB, demands new measures to combat the situation. Rapid and accurate detection of the pathogen, and its drug susceptibility pattern, is essential for timely initiation of treatment, and ultimately, control of the disease. Molecular-based methods offer a great chance to improve detection of drug-resistant TB; however, their development and usage should be accompanied with a profound understanding of drug resistance mechanisms and circulating M. tuberculosis strains in specific settings, as otherwise, the usefulness of such tests may be limited. This review gives an overview of the history of TB treatment and drug resistance, drug resistance mechanisms for the most commonly used drugs and molecular methods designed to detect drug-resistant strains.
Sander, Peter; Clark, Simon; Petrera, Agnese; Vilaplana, Cristina; Meuli, Michael; Selchow, Petra; Zelmer, Andrea; Mohanan, Deepa; Andreu, Nuria; Rayner, Emma; Dal Molin, Michael; Bancroft, Gregory J; Johansen, Pål; Cardona, Pere-Joan; Williams, Ann; Böttger, Erik C
2015-03-10
Having demonstrated previously that deletion of zinc metalloprotease zmp1 in Mycobacterium bovis BCG increased immunogenicity of BCG vaccines, we here investigated the protective efficacy of BCG zmp1 deletion mutants in a guinea pig model of tuberculosis infection. zmp1 deletion mutants of BCG provided enhanced protection by reducing the bacterial load of tubercle bacilli in the lungs of infected guinea pigs. The increased efficacy of BCG due to zmp1 deletion was demonstrated in both BCG Pasteur and BCG Denmark indicating that the improved protection by zmp1 deletion is independent from the BCG sub-strain. In addition, unmarked BCG Δzmp1 mutant strains showed a better safety profile in a CB-17 SCID mouse survival model than the parental BCG strains. Together, these results support the further development of BCG Δzmp1 for use in clinical trials. Copyright © 2015 Elsevier Ltd. All rights reserved.
Strain variation in Mycobacterium marinum fish isolates.
Ucko, M; Colorni, A; Kvitt, H; Diamant, A; Zlotkin, A; Knibb, W R
2002-11-01
A molecular characterization of two Mycobacterium marinum genes, 16S rRNA and hsp65, was carried out with a total of 21 isolates from various species of fish from both marine and freshwater environments of Israel, Europe, and the Far East. The nucleotide sequences of both genes revealed that all M. marinum isolates from fish in Israel belonged to two different strains, one infecting marine (cultured and wild) fish and the other infecting freshwater (cultured) fish. A restriction enzyme map based on the nucleotide sequences of both genes confirmed the divergence of the Israeli marine isolates from the freshwater isolates and differentiated the Israeli isolates from the foreign isolates, with the exception of one of three Greek isolates from marine fish which was identical to the Israeli marine isolates. The second isolate from Greece exhibited a single base alteration in the 16S rRNA sequence, whereas the third isolate was most likely a new Mycobacterium species. Isolates from Denmark and Thailand shared high sequence homology to complete identity with reference strain ATCC 927. Combined analysis of the two gene sequences increased the detection of intraspecific variations and was thus of importance in studying the taxonomy and epidemiology of this aquatic pathogen. Whether the Israeli M. marinum strain infecting marine fish is endemic to the Red Sea and found extremely susceptible hosts in the exotic species imported for aquaculture or rather was accidentally introduced with occasional imports of fingerlings from the Mediterranean Sea could not be determined.
Zhang, Qiufen; Wan, Baoshan; Zhou, Aiping; Ni, Jinjing; Xu, Zhihong; Li, Shuxian; Tao, Jing; Yao, YuFeng
2016-05-15
Mycobacterium tuberculosis (M.tb) is one of the most prevalent bacterial pathogens in the world. With geographical wide spread and hypervirulence, Beijing/W family is the most successful M.tb lineage. China is a country of high tuberculosis (TB) and high multiple drug-resistant TB (MDR-TB) burden, and the Beijing/W family strains take the largest share of MDR strains. To study the genetic basis of Beijing/W family strains' virulence and drug resistance, we performed the whole genome sequencing of M.tb strain W146, a clinical Beijing/W genotype MDR isolated from Wuxi, Jiangsu province, China. Compared with genome sequence of M.tb strain H37Rv, we found that strain W146 lacks three large fragments and the missing of furA-katG operon confers isoniazid resistance. Besides the missing of furA-katG operon, strain W146 harbored almost all known drug resistance-associated mutations. Comparison analysis of single nucleotide polymorphisms (SNPs) and indels between strain W146 and Beijing/W genotype strains and non-Beijing/W genotype strains revealed that strain W146 possessed some unique mutations, which may be related to drug resistance, transmission and pathogenicity. These findings will help to understand the large sequence polymorphisms (LSPs) and the transmission and drug resistance related genetic characteristics of the Beijing/W genotype of M.tb. Copyright © 2016 Elsevier B.V. All rights reserved.
Multilocus Sequence Analysis and rpoB Sequencing of Mycobacterium abscessus (Sensu Lato) Strains▿
Macheras, Edouard; Roux, Anne-Laure; Bastian, Sylvaine; Leão, Sylvia Cardoso; Palaci, Moises; Sivadon-Tardy, Valérie; Gutierrez, Cristina; Richter, Elvira; Rüsch-Gerdes, Sabine; Pfyffer, Gaby; Bodmer, Thomas; Cambau, Emmanuelle; Gaillard, Jean-Louis; Heym, Beate
2011-01-01
Mycobacterium abscessus, Mycobacterium bolletii, and Mycobacterium massiliense (Mycobacterium abscessus sensu lato) are closely related species that currently are identified by the sequencing of the rpoB gene. However, recent studies show that rpoB sequencing alone is insufficient to discriminate between these species, and some authors have questioned their current taxonomic classification. We studied here a large collection of M. abscessus (sensu lato) strains by partial rpoB sequencing (752 bp) and multilocus sequence analysis (MLSA). The final MLSA scheme developed was based on the partial sequences of eight housekeeping genes: argH, cya, glpK, gnd, murC, pgm, pta, and purH. The strains studied included the three type strains (M. abscessus CIP 104536T, M. massiliense CIP 108297T, and M. bolletii CIP 108541T) and 120 isolates recovered between 1997 and 2007 in France, Germany, Switzerland, and Brazil. The rpoB phylogenetic tree confirmed the existence of three main clusters, each comprising the type strain of one species. However, divergence values between the M. massiliense and M. bolletii clusters all were below 3% and between the M. abscessus and M. massiliense clusters were from 2.66 to 3.59%. The tree produced using the concatenated MLSA gene sequences (4,071 bp) also showed three main clusters, each comprising the type strain of one species. The M. abscessus cluster had a bootstrap value of 100% and was mostly compact. Bootstrap values for the M. massiliense and M. bolletii branches were much lower (71 and 61%, respectively), with the M. massiliense cluster having a fuzzy aspect. Mean (range) divergence values were 2.17% (1.13 to 2.58%) between the M. abscessus and M. massiliense clusters, 2.37% (1.5 to 2.85%) between the M. abscessus and M. bolletii clusters, and 2.28% (0.86 to 2.68%) between the M. massiliense and M. bolletii clusters. Adding the rpoB sequence to the MLSA-concatenated sequence (total sequence, 4,823 bp) had little effect on the clustering of strains. We found 10/120 (8.3%) isolates for which the concatenated MLSA gene sequence and rpoB sequence were discordant (e.g., M. massiliense MLSA sequence and M. abscessus rpoB sequence), suggesting the intergroup lateral transfers of rpoB. In conclusion, our study strongly supports the recent proposal that M. abscessus, M. massiliense, and M. bolletii should constitute a single species. Our findings also indicate that there has been a horizontal transfer of rpoB sequences between these subgroups, precluding the use of rpoB sequencing alone for the accurate identification of the two proposed M. abscessus subspecies. PMID:21106786
Methodology of mycobacteria tuberculosis bacteria detection by Raman spectroscopy
NASA Astrophysics Data System (ADS)
Zyubin, A.; Lavrova, A.; Manicheva, O.; Dogonadze, M.; Tsibulnikova, A.; Samusev, I.
2018-01-01
We have developed a methodology for the study of deactivated strains of Mycobacterium tuberculosis. Strains of the Beijing species obtained from pulmonary patient secrete (XDR strain) and reference strain (H37Rv) were investigated by Raman spectrometry with He-Ne (632,8 nm) laser excitation source. As a result of the research, the optimal experimental parameters have been obtained to get spectra of mycolic acids, which are part of the cell wall of mycobacteria.
Van Bac, Nguyen; Son, Nguyen Thai; Lien, Vu Thi Kim; Ha, Chu Hoang; Cuong, Nguyen Huu; Mai, Cung Thi Ngoc; Le, Thanh Hoa
2012-01-01
Molecular characterization of the drug resistance of Mycobacterium tuberculosis strains with different origins can generate information that is useful for developing molecular methods. These methods are widely applicable for rapid detection of drug resistance. A total of 166 rifampin (RIF)- and/or isoniazid (INH)-resistant strains of M. tuberculosis have been isolated from different parts of Vietnam; they were screened for mutations associated with resistance to these drugs by sequence analysis investigating genetic mutations associated with RIF and INH resistance. Seventeen different mutations were identified in 74 RIF-resistant strains, 56 of which (approximately 76%) had mutations in the so-called 81-bp “hot-spot” region of the rpoB gene. The most common point mutations were in codons 531 (37.8%), 526 (23%), and 516 (9.46%) of the rpoB gene. Mutations were not found in three strains (4.05%). In the case of INH resistance, five different mutations in the katG genes of 82 resistant strains were detected, among which the nucleotide substitution at codon 315 (76.83%) is the most common mutation. This study provided the first molecular characterization of INH and RIF resistance of M. tuberculosis strains from Vietnam, and detection of the katG and rpoB mutations of the INH and RIF-resistant strains should be useful for rapid detection of the INH- and RIF-resistant strains by molecular tests. PMID:22170905
Minh, Nghiem Ngoc; Van Bac, Nguyen; Son, Nguyen Thai; Lien, Vu Thi Kim; Ha, Chu Hoang; Cuong, Nguyen Huu; Mai, Cung Thi Ngoc; Le, Thanh Hoa
2012-03-01
Molecular characterization of the drug resistance of Mycobacterium tuberculosis strains with different origins can generate information that is useful for developing molecular methods. These methods are widely applicable for rapid detection of drug resistance. A total of 166 rifampin (RIF)- and/or isoniazid (INH)-resistant strains of M. tuberculosis have been isolated from different parts of Vietnam; they were screened for mutations associated with resistance to these drugs by sequence analysis investigating genetic mutations associated with RIF and INH resistance. Seventeen different mutations were identified in 74 RIF-resistant strains, 56 of which (approximately 76%) had mutations in the so-called 81-bp "hot-spot" region of the rpoB gene. The most common point mutations were in codons 531 (37.8%), 526 (23%), and 516 (9.46%) of the rpoB gene. Mutations were not found in three strains (4.05%). In the case of INH resistance, five different mutations in the katG genes of 82 resistant strains were detected, among which the nucleotide substitution at codon 315 (76.83%) is the most common mutation. This study provided the first molecular characterization of INH and RIF resistance of M. tuberculosis strains from Vietnam, and detection of the katG and rpoB mutations of the INH and RIF-resistant strains should be useful for rapid detection of the INH- and RIF-resistant strains by molecular tests.
Nasr Esfahani, Bahram; Rezaei Yazdi, Hadi; Moghim, Sharareh; Ghasemian Safaei, Hajieh; Zarkesh Esfahani, Hamid
2012-11-01
Rapid and accurate identification of mycobacteria isolates from primary culture is important due to timely and appropriate antibiotic therapy. Conventional methods for identification of Mycobacterium species based on biochemical tests needs several weeks and may remain inconclusive. In this study, a novel multiplex real-time PCR was developed for rapid identification of Mycobacterium genus, Mycobacterium tuberculosis complex (MTC) and the most common non-tuberculosis mycobacteria species including M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and the M. gordonae in three reaction tubes but under same PCR condition. Genetic targets for primer designing included the 16S rDNA gene, the dnaJ gene, the gyrB gene and internal transcribed spacer (ITS). Multiplex real-time PCR was setup with reference Mycobacterium strains and was subsequently tested with 66 clinical isolates. Results of multiplex real-time PCR were analyzed with melting curves and melting temperature (T (m)) of Mycobacterium genus, MTC, and each of non-tuberculosis Mycobacterium species were determined. Multiplex real-time PCR results were compared with amplification and sequencing of 16S-23S rDNA ITS for identification of Mycobacterium species. Sensitivity and specificity of designed primers were each 100 % for MTC, M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and M. gordonae. Sensitivity and specificity of designed primer for genus Mycobacterium was 96 and 100 %, respectively. According to the obtained results, we conclude that this multiplex real-time PCR with melting curve analysis and these novel primers can be used for rapid and accurate identification of genus Mycobacterium, MTC, and the most common non-tuberculosis Mycobacterium species.
Zhang, Lu; Ru, Huan-wei; Chen, Fu-zeng; Jin, Chun-yan; Sun, Rui-feng; Fan, Xiao-yong; Guo, Ming; Mai, Jun-tao; Xu, Wen-xi; Lin, Qing-xia; Liu, Jun
2016-01-01
Bacille Calmette–Guérin (BCG), an attenuated strain of Mycobacterium bovis, is the only vaccine available for tuberculosis (TB) control. However, BCG is not an ideal vaccine and has two major limitations: BCG exhibits highly variable effectiveness against the development of TB both in pediatric and adult populations and can cause disseminated BCG disease in immunocompromised individuals. BCG comprises a number of substrains that are genetically distinct. Whether and how these genetic differences affect BCG efficacy remains largely unknown. In this study, we performed comparative analyses of the virulence and efficacy of 13 BCG strains, representing different genetic lineages, in SCID and BALB/c mice. Our results show that BCG strains of the DU2 group IV (BCG-Phipps, BCG-Frappier, BCG-Pasteur, and BCG-Tice) exhibit the highest levels of virulence, and BCG strains of the DU2 group II (BCG-Sweden, BCG-Birkhaug) are among the least virulent group. These distinct levels of virulence may be explained by strain-specific duplications and deletions of genomic DNA. There appears to be a general trend that more virulent BCG strains are also more effective in protection against Mycobacterium tuberculosis challenge. Our findings have important implications for current BCG vaccine programs and for future TB vaccine development. PMID:26643797
Zhang, Lu; Ru, Huan-Wei; Chen, Fu-Zeng; Jin, Chun-Yan; Sun, Rui-Feng; Fan, Xiao-Yong; Guo, Ming; Mai, Jun-Tao; Xu, Wen-Xi; Lin, Qing-Xia; Liu, Jun
2016-02-01
Bacille Calmette-Guérin (BCG), an attenuated strain of Mycobacterium bovis, is the only vaccine available for tuberculosis (TB) control. However, BCG is not an ideal vaccine and has two major limitations: BCG exhibits highly variable effectiveness against the development of TB both in pediatric and adult populations and can cause disseminated BCG disease in immunocompromised individuals. BCG comprises a number of substrains that are genetically distinct. Whether and how these genetic differences affect BCG efficacy remains largely unknown. In this study, we performed comparative analyses of the virulence and efficacy of 13 BCG strains, representing different genetic lineages, in SCID and BALB/c mice. Our results show that BCG strains of the DU2 group IV (BCG-Phipps, BCG-Frappier, BCG-Pasteur, and BCG-Tice) exhibit the highest levels of virulence, and BCG strains of the DU2 group II (BCG-Sweden, BCG-Birkhaug) are among the least virulent group. These distinct levels of virulence may be explained by strain-specific duplications and deletions of genomic DNA. There appears to be a general trend that more virulent BCG strains are also more effective in protection against Mycobacterium tuberculosis challenge. Our findings have important implications for current BCG vaccine programs and for future TB vaccine development.
Takii, T; Abe, C; Tamura, A; Ramayah, S; Belisle, J T; Brennan, P J; Onozaki, K
2001-03-01
Mycobacteria-induced in vitro events reflecting human tuberculosis can contribute to the evaluation of the pathogenesis of Mycobacterium tuberculosis (MTB). In this study, we propose such an in vitro method based on live mycobacteria-induced cytotoxicity to human cell lines. When human lung-derived normal fibroblast cell line MRC-5 was infected with various strains of mycobacteria (M. tuberculosis H(37)Rv and H(37) Ra, Mycobacterium avium 427S and 2151SmO, and Mycobacterium bovis BCG Pasteur and Tokyo), the fibroblasts were killed by mycobacteria according to the degree of virulence. Other human originated macrophage (U-937, THP-1), myeloid (HL-60), and epithelial carcinoma (A549) cell lines exhibited a similar cytotoxic response to virulent mycobacteria. MRC-5 was most susceptible to virulent mycobacteria among various human cell lines examined. The cytotoxicity was enhanced by the proinflammatory cytokines, interleukin-1 (IL-1) and tumor necrosis factor-a (TNF-alpha), which in the absence of mycobacteria stimulate the growth of normal human fibroblasts. This in vitro evaluation system was applied to clinical isolates of drug-sensitive MTB (DS-MTB), drug-resistant MTB (DR-MTB) including multidrug-resistant (MDR-MTB), and M. avium complex (MAC). MTB strains (n = 24) exhibited strong cytotoxic activity, but MAC strains (n = 5) had only weak activity. Furthermore, there was no significant difference in cytotoxicity between DS-MTB (n = 11) and DR-MTB (n = 13). Collectively, these results suggest that this new in vitro system is useful for evaluating the pathogenesis of mycobacteria and that there was no difference in the pathogenesis between drug-susceptible and drug-resistant clinical isolates.
Séraphin, Marie Nancy; Lauzardo, Michael; Morris, J. Glenn; Blackburn, Jason K.
2016-01-01
Background Tuberculosis (TB) is caused by members of the Mycobacterium tuberculosis complex (MTBC). Although the MTBC is highly clonal, between-strain genetic diversity has been observed. In low TB incidence settings, immigration may facilitate the importation of MTBC strains with a potential to complicate TB control efforts. Methods We investigated the genetic diversity and spatiotemporal clustering of 2,510 MTBC strains isolated in Florida, United States, between 2009 and 2013 and genotyped using spoligotyping and 24-locus MIRU-VNTR. We mapped the genetic diversity to the centroid of patient residential zip codes using a geographic information system (GIS). We assessed transmission dynamics and the influence of immigration on genotype clustering using space-time permutation models adjusted for foreign-born population density and county-level HIV risk and multinomial models stratified by country of birth and timing of immigration in SaTScan. Principal Findings Among the 2,510 strains, 1,245 were reported among foreign-born persons; including 408 recent immigrants (<5 years). Strain allelic diversity (h) ranged from low to medium in most locations and was most diverse in urban centers where foreign-born population density was also high. Overall, 21.5% of cases among U.S.-born persons and 4.6% among foreign-born persons clustered genotypically and spatiotemporally and involved strains of the Haarlem family. One Haarlem space-time cluster identified in the mostly rural northern region of Florida included US/Canada-born individuals incarcerated at the time of diagnosis; two clusters in the mostly urban southern region of Florida were composed predominantly of foreign-born persons. Both groups had HIV prevalence above twenty percent. Conclusions/Significance Almost five percent of TB cases reported in Florida during 2009–2013 were potentially due to recent transmission. Improvements to TB screening practices among the prison population and recent immigrants are likely to impact TB control. Due to the monomorphic nature of available markers, whole genome sequencing is needed to conclusively delineate recent transmission events between U.S. and foreign-born persons. PMID:27093156
Rosen, Brandon C.; Dillon, Nicholas A.; Peterson, Nicholas D.; Minato, Yusuke
2016-01-01
ABSTRACT Pyrazinamide (PZA) is a first-line tuberculosis (TB) drug that has been in clinical use for 60 years yet still has an unresolved mechanism of action. Based upon the observation that the minimum concentration of PZA required to inhibit the growth of Mycobacterium tuberculosis is approximately 1,000-fold higher than that of other first-line drugs, we hypothesized that M. tuberculosis expresses factors that mediate intrinsic resistance to PZA. To identify genes associated with intrinsic PZA resistance, a library of transposon-mutagenized Mycobacterium bovis BCG strains was screened for strains showing hypersusceptibility to the active form of PZA, pyrazinoic acid (POA). Disruption of the long-chain fatty acyl coenzyme A (CoA) ligase FadD2 enhanced POA susceptibility by 16-fold on agar medium, and the wild-type level of susceptibility was restored upon expression of fadD2 from an integrating mycobacterial vector. Consistent with the recent observation that POA perturbs mycobacterial CoA metabolism, the fadD2 mutant strain was more vulnerable to POA-mediated CoA depletion than the wild-type strain. Ectopic expression of the M. tuberculosis pyrazinamidase PncA, necessary for conversion of PZA to POA, in the fadD2 transposon insertion mutant conferred at least a 16-fold increase in PZA susceptibility under active growth conditions in liquid culture at neutral pH. Importantly, deletion of fadD2 in M. tuberculosis strain H37Rv also resulted in enhanced susceptibility to POA. These results indicate that FadD2 is associated with intrinsic PZA and POA resistance and provide a proof of concept for the target-based potentiation of PZA activity in M. tuberculosis. PMID:27855077
Antimycobacterial and cytotoxic activity of selected medicinal plant extracts
Nguta, Joseph M.; Appiah-Opong, Regina; Nyarko, Alexander K.; Yeboah-Manu, Dorothy; Addo, Phyllis G.A.; Otchere, Isaac; Kissi-Twum, Abena
2016-01-01
Ethnopharmacological relevance Tuberculosis (TB) caused by Mycobacterium tuberculosis remains an ongoing threat to human health. Several medicinal plants are used traditionally to treat tuberculosis in Ghana. The current study was designed to investigate the antimycobacterial activity and cytotoxicity of crude extracts from five selected medicinal plants. Material and methods The microplate alamar blue assay (MABA) was used for antimycobacterial studies while the CellTiter 96® AQueous Assay, which is composed of solutions of a novel tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] and an electron coupling reagent (phenazine methosulfate) PMS, was used for cytotoxic studies. Correlation coefficients were used to compare the activity of crude extracts against nonpathogenic strains and the pathogenic Mycobacterium tuberculosis subsp.tuberculosis. Results Results of the MIC determinations indicated that all the crude extracts were active on all the three tested mycobacterial strains. Minimum inhibitory concentration values as low as 156.3 µg/mL against M. tuberculosis; Strain H37Ra (ATCC® 25,177™) were recorded from the leaves of Solanum torvum Sw. (Solanaceae). Cytotoxicity of the extracts varied, and the leaves from S. torvum had the most promising selectivity index. Activity against M. tuberculosis; Strain H37Ra was the best predictor of activity against pathogenic Mycobacterium tuberculosis subsp.tuberculosis (correlation coefficient=0.8). Conclusion The overall results of the present study provide supportive data on the use of some medicinal plants for tuberculosis treatment. The leaves of Solanum torvum are a potential source of anti-TB natural products and deserve further investigations to develop novel anti-TB agents against sensitive and drug resistant strains of M. tuberculosis. PMID:26875647
Sahraoui, Naima; Müller, Borna; Guetarni, Djamel; Boulahbal, Fadéla; Yala, Djamel; Ouzrout, Rachid; Berg, Stefan; Smith, Noel H; Zinsstag, Jakob
2009-01-01
Background Bovine Tuberculosis is prevalent in Algeria despite governmental attempts to control the disease. The objective of this study was to conduct, for the first time, molecular characterization of a population sample of Mycobacterium bovis strains isolated from slaughter cattle in Algeria. Between August and November 2007, 7250 animals were consecutively screened at the abattoirs of Algiers and Blida. In 260 animals, gross visible granulomatous lesions were detected and put into culture. Bacterial isolates were subsequently analysed by molecular methods. Results Altogether, 101 bacterial strains from 100 animals were subjected to molecular characterization. M. bovis was isolated from 88 animals. Other bacteria isolated included one strain of M. caprae, four Rhodococcus equi strains, three Non-tuberculous Mycobacteria (NTM) and five strains of other bacterial species. The M. bovis strains isolated showed 22 different spoligotype patterns; four of them had not been previously reported. The majority of M. bovis strains (89%) showed spoligotype patterns that were previously observed in strains from European cattle. Variable Number of Tandem Repeat (VNTR) typing supported a link between M. bovis strains from Algeria and France. One spoligotype pattern has also been shown to be frequent in M. bovis strains from Mali although the VNTR pattern of the Algerian strains differed from the Malian strains. Conclusion M. bovis infections account for a high amount of granulomatous lesions detected in Algerian slaughter cattle during standard meat inspection at Algiers and Blida abattoir. Molecular typing results suggested a link between Algerian and European strains of M. bovis. PMID:19173726
Leiba, Jade; Syson, Karl; Baronian, Grégory; Zanella-Cléon, Isabelle; Kalscheuer, Rainer; Kremer, Laurent; Bornemann, Stephen; Molle, Virginie
2013-01-01
GlgE is a maltosyltransferase involved in the biosynthesis of α-glucans that has been genetically validated as a potential therapeutic target against Mycobacterium tuberculosis. Despite also making α-glucan, the GlgC/GlgA glycogen pathway is distinct and allosterically regulated. We have used a combination of genetics and biochemistry to establish how the GlgE pathway is regulated. M. tuberculosis GlgE was phosphorylated specifically by the Ser/Thr protein kinase PknB in vitro on one serine and six threonine residues. Furthermore, GlgE was phosphorylated in vivo when expressed in Mycobacterium bovis bacillus Calmette–Guérin (BCG) but not when all seven phosphorylation sites were replaced by Ala residues. The GlgE orthologues from Mycobacterium smegmatis and Streptomyces coelicolor were phosphorylated by the corresponding PknB orthologues in vitro, implying that the phosphorylation of GlgE is widespread among actinomycetes. PknB-dependent phosphorylation of GlgE led to a 2 orders of magnitude reduction in catalytic efficiency in vitro. The activities of phosphoablative and phosphomimetic GlgE derivatives, where each phosphorylation site was substituted with either Ala or Asp residues, respectively, correlated with negative phosphoregulation. Complementation studies of a M. smegmatis glgE mutant strain with these GlgE derivatives, together with both classical and chemical forward genetics, were consistent with flux through the GlgE pathway being correlated with GlgE activity. We conclude that the GlgE pathway appears to be negatively regulated in actinomycetes through the phosphorylation of GlgE by PknB, a mechanism distinct from that known in the classical glycogen pathway. Thus, these findings open new opportunities to target the GlgE pathway therapeutically. PMID:23609448
Leiba, Jade; Syson, Karl; Baronian, Grégory; Zanella-Cléon, Isabelle; Kalscheuer, Rainer; Kremer, Laurent; Bornemann, Stephen; Molle, Virginie
2013-06-07
GlgE is a maltosyltransferase involved in the biosynthesis of α-glucans that has been genetically validated as a potential therapeutic target against Mycobacterium tuberculosis. Despite also making α-glucan, the GlgC/GlgA glycogen pathway is distinct and allosterically regulated. We have used a combination of genetics and biochemistry to establish how the GlgE pathway is regulated. M. tuberculosis GlgE was phosphorylated specifically by the Ser/Thr protein kinase PknB in vitro on one serine and six threonine residues. Furthermore, GlgE was phosphorylated in vivo when expressed in Mycobacterium bovis bacillus Calmette-Guérin (BCG) but not when all seven phosphorylation sites were replaced by Ala residues. The GlgE orthologues from Mycobacterium smegmatis and Streptomyces coelicolor were phosphorylated by the corresponding PknB orthologues in vitro, implying that the phosphorylation of GlgE is widespread among actinomycetes. PknB-dependent phosphorylation of GlgE led to a 2 orders of magnitude reduction in catalytic efficiency in vitro. The activities of phosphoablative and phosphomimetic GlgE derivatives, where each phosphorylation site was substituted with either Ala or Asp residues, respectively, correlated with negative phosphoregulation. Complementation studies of a M. smegmatis glgE mutant strain with these GlgE derivatives, together with both classical and chemical forward genetics, were consistent with flux through the GlgE pathway being correlated with GlgE activity. We conclude that the GlgE pathway appears to be negatively regulated in actinomycetes through the phosphorylation of GlgE by PknB, a mechanism distinct from that known in the classical glycogen pathway. Thus, these findings open new opportunities to target the GlgE pathway therapeutically.
Baranyai, Zsuzsa; Krátký, Martin; Vinšová, Jarmila; Szabó, Nóra; Senoner, Zsuzsanna; Horváti, Kata; Stolaříková, Jiřina; Dávid, Sándor; Bősze, Szilvia
2015-08-28
In the Mycobacterium genus over one hundred species are already described and new ones are periodically reported. Species that form colonies in a week are classified as rapid growers, those requiring longer periods (up to three months) are the mostly pathogenic slow growers. More recently, new emerging species have been identified to lengthen the list, all rapid growers. Of these, Mycobacterium abscessus is also an intracellular pathogen and it is the most chemotherapy-resistant rapid-growing mycobacterium. In addition, the cases of multidrug-resistant Mycobacterium tuberculosis infection are also increasing. Therefore there is an urgent need to find new active molecules against these threatening strains. Based on previous results, a series of salicylanilides, salicylanilide 5-chloropyrazinoates and carbamates was designed, synthesized and characterised. The compounds were evaluated for their in vitro activity on M. abscessus, susceptible M. tuberculosis H37Rv, multidrug-resistant (MDR) M. tuberculosis MDR A8, M. tuberculosis MDR 9449/2006 and on the extremely-resistant Praha 131 (XDR) strains. All derivatives exhibited a significant activity with minimum inhibitory concentrations (MICs) in the low micromolar range. Eight salicylanilide carbamates and two salicylanilide esters exhibited an excellent in vitro activity on M. abscessus with MICs from 0.2 to 2.1 μM, thus being more effective than ciprofloxacin and gentamicin. This finding is potentially promising, particularly, as M. abscessus is a threateningly chemotherapy-resistant species. M. tuberculosis H37Rv was inhibited with MICs from 0.2 μM, and eleven compounds have lower MICs than isoniazid. Salicylanilide esters and carbamates were found that they were effective also on MDR and XDR M. tuberculosis strains with MICs ≥1.0 μM. The in vitro cytotoxicity (IC50) was also determined on human MonoMac-6 cells, and selectivity index (SI) of the compounds was established. In general, salicylanilide derivatives substituted by halogens on both salicyl and aniline rings showed better activity, than 4-benzoylaniline derivatives. The ester or carbamate bond formation of parent salicylanilides mostly retained or improved antimycobacterial potency with moderate selectivity. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Balcázar, José Luis; Planas, Miquel; Pintado, José
2014-09-01
A Gram-positive, aerobic, non-motile, non-sporulating, acid-fast, and rod-shaped bacterium (BFLP-6(T)), previously isolated from a seahorse (Hippocampus guttulatus) with tail rot, was studied using a polyphasic taxonomic approach. Growth occurred at 15-35 °C (optimum 25 °C), at pH 5.0-10.0 (optimum pH 7.0) and at NaCl concentrations between 0 and 6 % (w/v). The G+C content of DNA was 66.7 mol%. The predominant fatty acids were C(18:1) ω9c, C(16:0) and C(16:1) ω6c. A mycolic acid pattern of alpha-mycolates and keto-mycolates was detected. Analysis of concatenated sequences (16S rRNA, rpoB, ssrA and tuf genes), and chemotaxonomic and phenotypic features indicated that strain BFLP-6(T) represents a novel species within the genus Mycobacterium, for which the name Mycobacterium hippocampi sp. nov. is proposed. The type strain is BFLP-6(T) (=DSM 45391(T) =LMG 25372(T)).
Larsson, L
1983-08-01
Mycobacterium avium-intracellulare and M.gastri were analyzed with capillary gas chromatography after each strain had been subjected to acidic methanolysis or to alkaline saponification followed by methylation. Prominent peaks of myristic, palmitoleic, palmitic, oleic, stearic and tuberculostearic acids were found in the chromatograms of both species, whereas 2-octadecanol and 2-eicosanol were detected only in M. avium-intracellulare. In initial runs, both of the derivatization principles yielded virtually identical chromatograms for a given strain. After repeated injections of extracts from alkaline saponification, however, the alcohol peaks showed pronounced tailing and finally almost disappeared from the chromatograms. This disadvantage, which was not observed when only acid methanolysis was used, could be overcome with trifluoroacetylation. Restored peak shape of the underivatized alcohols could be achieved by washing the cross-linked stationary phase in the capillary tubing with organic solvents. The study demonstrated the importance of conditions which enable separation of 2-octadecanol and 2-eicosanol when gas chromatography is used for species identification of mycobacteria.
Schaefer, Christin M.; Lu, Rui; Nesbitt, Natasha M.; Schiebel, Johannes; Sampson, Nicole S.; Kisker, Caroline
2014-01-01
Summary With the exception of HIV, tuberculosis (TB) is the leading cause of mortality among infectious diseases. The urgent need to develop new anti-tubercular drugs is apparent due to the increasing number of drug resistant Mycobacterium tuberculosis (Mtb) strains. Proteins involved in cholesterol import and metabolism have recently been discovered as potent targets against TB. FadA5, a thiolase from Mtb, is catalyzing the last step of the β-oxidation reaction of the cholesterol side-chain degradation under release of critical metabolites and was shown to be of importance during the chronic stage of TB infections. To gain structural and mechanistic insight on FadA5 we characterized the enzyme in different stages of the cleavage reaction and with a steroid bound to the binding pocket. Structural comparisons to human thiolases revealed that it should be possible to target FadA5 specifically and the steroid-bound structure provides a solid basis for the development of inhibitors against FadA5. PMID:25482540
Supply, Philip; Marceau, Michael; Mangenot, Sophie; Roche, David; Rouanet, Carine; Khanna, Varun; Majlessi, Laleh; Criscuolo, Alexis; Tap, Julien; Pawlik, Alexandre; Fiette, Laurence; Orgeur, Mickael; Fabre, Michel; Parmentier, Cécile; Frigui, Wafa; Simeone, Roxane; Boritsch, Eva C.; Debrie, Anne-Sophie; Willery, Eve; Walker, Danielle; Quail, Michael A.; Ma, Laurence; Bouchier, Christiane; Salvignol, Grégory; Sayes, Fadel; Cascioferro, Alessandro; Seemann, Torsten; Barbe, Valérie; Locht, Camille; Gutierrez, Maria-Cristina; Leclerc, Claude; Bentley, Stephen; Stinear, Timothy P.; Brisse, Sylvain; Médigue, Claudine; Parkhill, Julian; Cruveiller, Stéphane; Brosch, Roland
2013-01-01
Global spread and genetic monomorphism are hallmarks of Mycobacterium tuberculosis, the agent of human tuberculosis. In contrast, Mycobacterium canettii, and related tubercle bacilli that also cause human tuberculosis and exhibit unusual smooth colony morphology, are restricted to East-Africa. Here, we sequenced and analyzed the genomes of five representative strains of smooth tubercle bacilli (STB) using Sanger (4-5x coverage), 454/Roche (13-18x coverage) and/or Illumina DNA sequencing (45-105x coverage). We show that STB are highly recombinogenic and evolutionary early-branching, with larger genome sizes, 25-fold more SNPs, fewer molecular scars and distinct CRISPR-Cas systems relative to M. tuberculosis. Despite the differences, all tuberculosis-causing mycobacteria share a highly conserved core genome. Mouse-infection experiments revealed that STB are less persistent and virulent than M. tuberculosis. We conclude that M. tuberculosis emerged from an ancestral, STB-like pool of mycobacteria by gain of persistence and virulence mechanisms and we provide genome-wide insights into the molecular events involved. PMID:23291586
Keller, Christine; Hoffmann, Reinhard; Lang, Roland; Brandau, Sven; Hermann, Corinna; Ehlers, Stefan
2006-01-01
Classical twin studies and recent linkage analyses of African populations have revealed a potential involvement of host genetic factors in susceptibility or resistance to Mycobacterium tuberculosis infection. In order to identify the candidate genes involved and test their causal implication, we capitalized on the mouse model of tuberculosis, since inbred mouse strains also differ substantially in their susceptibility to infection. Two susceptible and two resistant mouse strains were aerogenically infected with 1,000 CFU of M. tuberculosis, and the regulation of gene expression was examined by Affymetrix GeneChip U74A array with total lung RNA 2 and 4 weeks postinfection. Four weeks after infection, 96 genes, many of which are involved in inflammatory cell recruitment and activation, were regulated in common. One hundred seven genes were differentially regulated in susceptible mouse strains, whereas 43 genes were differentially expressed only in resistant mice. Data mining revealed a bias towards the expression of genes involved in granulocyte pathophysiology in susceptible mice, such as an upregulation of those for the neutrophil chemoattractant LIX (CXCL5), interleukin 17 receptor, phosphoinositide kinase 3 delta, or gamma interferon-inducible protein 10. Following M. tuberculosis challenge in both airways or peritoneum, granulocytes were recruited significantly faster and at higher numbers in susceptible than in resistant mice. When granulocytes were efficiently depleted by either of two regimens at the onset of infection, only susceptible mice survived aerosol challenge with M. tuberculosis significantly longer than control mice. We conclude that initially enhanced recruitment of granulocytes contributes to susceptibility to tuberculosis. PMID:16790804
Zhao, Ji-Li; Liu, Wei; Xie, Wan-Ying; Cao, Xu-Dong; Yuan, Li
2018-01-01
Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) is one of the most common chronic infectious amphixenotic diseases worldwide. Prevention and control of TB are greatly difficult, due to the increase in drug-resistant TB, particularly multidrug-resistant TB. We speculated that there were some differences between drug-sensitive and drug-resistant MTB strains and that mazEF 3,6,9 toxin-antitoxin systems (TASs) were involved in MTB viability. This study aimed to investigate differences in viability, biofilm formation, and MazEF expression between drug-sensitive and drug-resistant MTB strains circulating in Xinjiang, China, and whether mazEF 3,6,9 TASs contribute to MTB viability under stress conditions. Growth profiles and biofilm-formation abilities of drug-sensitive, drug-resistant MTB strains and the control strain H37Rv were monitored. Using molecular biology experiments, the mRNA expression of the mazF 3, 6, and 9 toxin genes, the mazE 3, 6, and 9 antitoxin genes, and expression of the MazF9 protein were detected in the different MTB strains, H37RvΔ mazEF 3,6,9 mutants from the H37Rv parent strain were generated, and mutant viability was tested. Ex vivo culture analyses demonstrated that drug-resistant MTB strains exhibit higher survival rates than drug-sensitive strains and the control strain H37Rv. However, there was no statistical difference in biofilm-formation ability in the drug-sensitive, drug-resistant, and H37Rv strains. mazE 3,6 mRNA-expression levels were relatively reduced in the drug-sensitive and drug-resistant strains compared to H37Rv. Conversely, mazE 3,9 expression was increased in drug-sensitive strains compared to drug-resistant strains. Furthermore, compared with the H37Rv strain, mazF 3,6 expression was increased in drug-resistant strains, mazF 9 expression was increased in drug-sensitive strains, and mazF 9 exhibited reduced expression in drug-resistant strains compared with drug-sensitive strains. Protein expression of mazF9 was increased in drug-sensitive and drug-resistant strains compared to H37Rv, while drug-resistant strains exhibited reduced mazF9 expression compared to drug-sensitive strains. Compared to H37Rv, H37RvΔ mazEF 3,6,9-deletion mutants grew more slowly under both stress conditions, and their ability to survive in host macrophages was also weaker. Furthermore, the host macrophage-apoptosis rate was higher after infection with any of the H37RvΔ mazE F3,6,9 mutants than with the H37Rv strain. The increased viability of MTB drug-resistant strains compared with drug-sensitive strains is likely to be related to differential MazEF mRNA and protein expression. mazEF 3,6,9 TASs contribute to MTB viability under stress conditions.
Characterisation of Mycobacterium tuberculosis isolates lacking IS6110 in Viet Nam.
Huyen, M N T; Tiemersma, E W; Kremer, K; de Haas, P; Lan, N T N; Buu, T N; Sola, C; Cobelens, F G J; van Soolingen, D
2013-11-01
The molecular diagnosis of tuberculosis (TB) in Viet Nam is often based on the detection of insertion sequence (IS) 6110 in Mycobacterium tuberculosis. However, 8-11% of M. tuberculosis strains in South-East Asia do not contain this target and this undermines the validity of these molecular tests. We quantified the frequency of M. tuberculosis strains lacking IS6110 in rural Viet Nam and studied their epidemiological and clinical characteristics. Consecutively diagnosed adult TB patients in rural Southern Viet Nam submitted two sputum samples for culture, IS6110 restriction fragment length polymorphism (RFLP) spoligotyping and 15-loci variable number tandem repeat typing. Polymerase chain reaction (PCR) was performed to confirm the absence of IS6110 elements in strains lacking IS6110 hybridisation in RFLP. Among 2664 TB patient isolates examined, 109 (4.1%) had no IS6110 element. Compared to other strains, these no-copy strains were less often resistant to anti-tuberculosis drugs, particularly to streptomycin (adjusted OR 0.2, 95%CI 0.1-0.5), and showed significant geographic variation. No associations with TB history or demographic factors were found. Strains without the IS6110 target pose a problem in Viet Nam as regards false-negative molecular TB diagnosis in PCR. Compared to other strains circulating in Viet Nam, no-copy strains are more susceptible to anti-tuberculosis drugs.
Characterization of biofilm formation by clinical isolates of Mycobacterium avium.
Carter, George; Wu, Martin; Drummond, Daryl C; Bermudez, Luiz E
2003-09-01
Mycobacterium avium is an environmental organism encountered in natural and urban water sources as well as soil. M. avium biofilm has recently been identified on sauna walls and in city water pipes and might have a role in the survival of virulent strains in the environment and in the host. To characterize the M. avium biofilm, an in vitro model was adapted wherein biofilm develops on a PVC surface. Biofilm was detected by staining with crystal violet and visualization by optical microscopy and quantified by A(570). M. avium strains MAC 101, MAC 100, MAC 104, MAC 109, MAC A5 and MAC 5501 (all isolated from the blood of AIDS patients) were used in the assays. Biofilm formation was dependent on the presence of Ca(2+), Mg(2+) or Zn(2+) ions in the water, with the maximal effect seen at a concentration of 1 micro M. The presence of 2 % glucose and peptone as sources of carbon increased the formation of biofilm, while this was partially inhibited by humic acid. Since sliding motility has been associated with the amount of glycopeptidolipid (GPL), TLC was used to determine the presence of GPL. The supernatant of a biofilm-forming culture induced formation of a stable biofilm and amikacin blocked the establishment of biofilm by M. avium strains at subinhibitory concentrations. Bacteria in the biofilm were more resistant to chlorine as well as to exposure to potassium monopersulfate and chloroheximide acetate than were planktonic bacteria. Identification of M. avium genes involved in biofilm formation and further studies of the effect of antimicrobials on the establishment of biofilm may identify approaches for inhibiting M. avium biofilm formation and colonization.
Sekizuka, Tsuyoshi; Yamashita, Akifumi; Murase, Yoshiro; Iwamoto, Tomotada; Mitarai, Satoshi; Kato, Seiya; Kuroda, Makoto
2015-01-01
Whole-genome sequencing (WGS) with next-generation DNA sequencing (NGS) is an increasingly accessible and affordable method for genotyping hundreds of Mycobacterium tuberculosis (Mtb) isolates, leading to more effective epidemiological studies involving single nucleotide variations (SNVs) in core genomic sequences based on molecular evolution. We developed an all-in-one web-based tool for genotyping Mtb, referred to as the Total Genotyping Solution for TB (TGS-TB), to facilitate multiple genotyping platforms using NGS for spoligotyping and the detection of phylogenies with core genomic SNVs, IS6110 insertion sites, and 43 customized loci for variable number tandem repeat (VNTR) through a user-friendly, simple click interface. This methodology is implemented with a KvarQ script to predict MTBC lineages/sublineages and potential antimicrobial resistance. Seven Mtb isolates (JP01 to JP07) in this study showing the same VNTR profile were accurately discriminated through median-joining network analysis using SNVs unique to those isolates. An additional IS6110 insertion was detected in one of those isolates as supportive genetic information in addition to core genomic SNVs. The results of in silico analyses using TGS-TB are consistent with those obtained using conventional molecular genotyping methods, suggesting that NGS short reads could provide multiple genotypes to discriminate multiple strains of Mtb, although longer NGS reads (≥300-mer) will be required for full genotyping on the TGS-TB web site. Most available short reads (~100-mer) can be utilized to discriminate the isolates based on the core genome phylogeny. TGS-TB provides a more accurate and discriminative strain typing for clinical and epidemiological investigations; NGS strain typing offers a total genotyping solution for Mtb outbreak and surveillance. TGS-TB web site: https://gph.niid.go.jp/tgs-tb/. PMID:26565975
Kox, L F; Noordhoek, G T; Kunakorn, M; Mulder, S; Sterrenburg, M; Kolk, A H
1996-01-01
A microwell hybridization assay was developed for the detection of the PCR products from both Mycobacterium tuberculosis complex bacteria and the recombinant Mycobacterium smegmatis strain 1008 that is used as an internal control to monitor inhibition in the PCR based on the M. tuberculosis complex-specific insertion sequence IS6110. The test is based on specific detection with digoxigenin-labeled oligonucleotide probes of biotinylated PCR products which are captured in a microtiter plate coated with streptavidin. The captured PCR products are hybridized separately with two probes, one specific for the PCR product from IS6110 from M. tuberculosis complex and the other specific for the PCR fragment from the modified IS6110 fragment from the recombinant M. smegmatis 1008. The microwell hybridization assay discriminates perfectly between the two types of amplicon. The amount of PCR product that can be detected by this assay is 10 times less than that which can be detected by agarose gel electrophoresis. The test can be performed in 2 h. It is much faster and less laborious than Southern blot hybridization. Furthermore, the interpretation of results is objective. The assay was used with 172 clinical samples in a routine microbiology laboratory, and the results were in complete agreement with those of agarose gel electrophoresis and Southern blot hybridization. PMID:8862568
Kouzaki, Yuji; Maeda, Takuya; Sasaki, Hiroaki; Tamura, Shinsuke; Hamamoto, Takaaki; Yuki, Atsushi; Sato, Akinori; Miyahira, Yasushi; Kawana, Akihiko
2015-01-01
Bacillus Calmette-Guérin (BCG) is widely used as a live attenuated vaccine against Mycobacterium tuberculosis and is an agent for standard prophylaxis against the recurrence of bladder cancer. Unfortunately, it can cause severe infectious diseases, especially in immunocompromised patients, and the ability to immediately distinguish BCG from other M. tuberculosis complexes is therefore important. In this study, we developed a simple and easy-to-perform identification procedure using loop-mediated amplification (LAMP) to detect deletions within the region of difference, which is deleted specifically in all M. bovis BCG strains. Reactions were performed at 64 °C for 30 min and successful targeted gene amplifications were detected by real-time turbidity using a turbidimeter and visual inspection of color change. The assay had an equivalent detection limit of 1.0 pg of genomic DNA using a turbidimeter whereas it was 10 pg with visual inspection, and it showed specificity against 49 strains of 44 pathogens, including M. tuberculosis complex. The expected LAMP products were confirmed through identical melting curves in real-time LAMP procedures. We employed the Procedure for Ultra Rapid Extraction (PURE) kit to isolate mycobacterial DNA and found that the highest sensitivity limit with a minimum total cell count of mycobacterium (including DNA purification with PURE) was up to 1 × 10(3) cells/reaction, based on color changes under natural light with FDA reagents. The detection limit of this procedure when applied to artificial serum, urine, cerebrospinal fluid, and bronchoalveolar lavage fluid samples was also about 1 × 10(3) cells/reaction. Therefore, this substitute method using conventional culture or clinical specimens followed by LAMP combined with PURE could be a powerful tool to enable the rapid identification of M. bovis BCG as point-of-care testing. It is suitable for practical use not only in resource-limited situations, but also in any clinical situation involving immunocompromised patients because of its convenience, rapidity, and cost effectiveness.
Kouzaki, Yuji; Maeda, Takuya; Sasaki, Hiroaki; Tamura, Shinsuke; Hamamoto, Takaaki; Yuki, Atsushi; Sato, Akinori; Miyahira, Yasushi; Kawana, Akihiko
2015-01-01
Bacillus Calmette-Guérin (BCG) is widely used as a live attenuated vaccine against Mycobacterium tuberculosis and is an agent for standard prophylaxis against the recurrence of bladder cancer. Unfortunately, it can cause severe infectious diseases, especially in immunocompromised patients, and the ability to immediately distinguish BCG from other M. tuberculosis complexes is therefore important. In this study, we developed a simple and easy-to-perform identification procedure using loop-mediated amplification (LAMP) to detect deletions within the region of difference, which is deleted specifically in all M. bovis BCG strains. Reactions were performed at 64°C for 30 min and successful targeted gene amplifications were detected by real-time turbidity using a turbidimeter and visual inspection of color change. The assay had an equivalent detection limit of 1.0 pg of genomic DNA using a turbidimeter whereas it was 10 pg with visual inspection, and it showed specificity against 49 strains of 44 pathogens, including M. tuberculosis complex. The expected LAMP products were confirmed through identical melting curves in real-time LAMP procedures. We employed the Procedure for Ultra Rapid Extraction (PURE) kit to isolate mycobacterial DNA and found that the highest sensitivity limit with a minimum total cell count of mycobacterium (including DNA purification with PURE) was up to 1 × 103 cells/reaction, based on color changes under natural light with FDA reagents. The detection limit of this procedure when applied to artificial serum, urine, cerebrospinal fluid, and bronchoalveolar lavage fluid samples was also about 1 × 103 cells/reaction. Therefore, this substitute method using conventional culture or clinical specimens followed by LAMP combined with PURE could be a powerful tool to enable the rapid identification of M. bovis BCG as point-of-care testing. It is suitable for practical use not only in resource-limited situations, but also in any clinical situation involving immunocompromised patients because of its convenience, rapidity, and cost effectiveness. PMID:26208001
Florou, M; Leontides, L; Kostoulas, P; Billinis, C; Sofia, M; Kyriazakis, I; Lykotrafitis, F
2008-05-01
This study aimed to: (1) investigate whether non-ruminant wildlife interfacing with dairy sheep and goats of four Greek flocks endemically infected with Mycobacterium avium subspecies paratuberculosis (MAP) harboured MAP and (2) genetically compare the strains isolated from the wildlife to those isolated from the small ruminants of these flocks. We cultured and screened, by polymerase chain reaction (PCR), pooled-tissue samples from 327 wild animals of 11 species for the MAP-specific IS900 insertion sequence. We also cultured faecal samples from 100 sheep or goats from each of the four flocks. MAP was detected in samples from 11 sheep, 12 goats, two mice, two rats, a hare and a fox. Only one rat had histopathological findings. Genetic typing categorized 21 isolates as cattle-type strains and two, from a house mouse and a goat respectively, as sheep-type strains; this is the first report of a rodent harbouring a sheep-type strain. The MAP types that were most frequently isolated amongst the sheep and goats of each flock were also the ones isolated from sympatric rodents; those isolated from the fox and hare also belonged to the predominant ruminant strains.
Li, Ziwei; You, Qiumei; Ossa, Faisury; Mead, Philip; Quinton, Margaret; Karrow, Niel A
2016-03-01
Since yeast Saccharomyces cerevisiae and its components are being used for the prevention and treatment of enteric diseases in different species, they may also be useful for preventing Johne's disease, a chronic inflammatory bowel disease of ruminants caused by Mycobacterium avium spp. paratuberculosis (MAP). This study aimed to identify potential yeast derivatives that may be used to help prevent MAP infection. The adherence of mCherry-labeled MAP to bovine mammary epithelial cell line (MAC-T cells) and bovine primary epithelial cells (BECs) co-cultured with yeast cell wall components (CWCs) from four different yeast strains (A, B, C and D) and two forms of dead yeast from strain A was investigated. The CWCs from all four yeast strains and the other two forms of dead yeast from strain A reduced MAP adhesion to MAC-T cells and BECs in a concentration-dependent manner after 6-h of exposure, with the dead yeast having the greatest effect. The following in vitro binding studies suggest that dead yeast and its' CWCs may be useful for reducing risk of MAP infection.
Mycobacterium bovis infection at the interface between domestic and wild animals in Zambia.
Hang'ombe, Mudenda B; Munyeme, Musso; Nakajima, Chie; Fukushima, Yukari; Suzuki, Haruka; Matandiko, Wigganson; Ishii, Akihiro; Mweene, Aaron S; Suzuki, Yasuhiko
2012-11-14
In Zambia, the presence of bovine tuberculosis in both wild and domestic animals has long been acknowledged and mutual transmission between them has been predicted without any direct evidence. Elucidation of the circulating Mycobacterium bovis strains at wild and domestic animals interphase area in Zambia, where bovine tuberculosis was diagnosed in wildlife seemed to be important. A PCR identified 15 and 37 M. bovis isolates from lechwe and cattle, respectively. Spoligotype analysis revealed that M. bovis strains from lechwe and cattle in Kafue basin clustered into a major node SB0120, where isolates outside the Kafue basin clustered into different nodes of SB0131 and SB0948. The comparatively higher variety of strains in cattle compared to lechwe elucidated by Mycobacterial Interspersed Repetitive Units-Variable Number Tandem Repeats analyses are consistent with cattle being the probable source of M. bovis in wild and domestic animals interphase area in Zambia. These results provide strong evidence of M. bovis strains transfer between cattle and lechwe, with the latter having developed into a sylvatic reservoir host.
Mycobacterium bovis infection at the interface between domestic and wild animals in Zambia
2012-01-01
Background In Zambia, the presence of bovine tuberculosis in both wild and domestic animals has long been acknowledged and mutual transmission between them has been predicted without any direct evidence. Elucidation of the circulating Mycobacterium bovis strains at wild and domestic animals interphase area in Zambia, where bovine tuberculosis was diagnosed in wildlife seemed to be important. Results A PCR identified 15 and 37 M. bovis isolates from lechwe and cattle, respectively. Spoligotype analysis revealed that M. bovis strains from lechwe and cattle in Kafue basin clustered into a major node SB0120, where isolates outside the Kafue basin clustered into different nodes of SB0131 and SB0948. The comparatively higher variety of strains in cattle compared to lechwe elucidated by Mycobacterial Interspersed Repetitive Units–Variable Number Tandem Repeats analyses are consistent with cattle being the probable source of M. bovis in wild and domestic animals interphase area in Zambia. Conclusions These results provide strong evidence of M. bovis strains transfer between cattle and lechwe, with the latter having developed into a sylvatic reservoir host. PMID:23151267
Yin, Yuelan; Zhao, Dan; Kang, Meiqin; Tan, Weijun; Lian, Kai; Hu, Maozhi; Chen, Xiang; Pan, Zhiming; Jiao, Xin'an
2013-12-04
Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis complex. Hence, novel vaccines against TB are urgently needed and important to the public health. Immunobiologic characteristics of a recombinant attenuated Listeria monocytogenes strain LMdeltahly: :Ag85b-esat-6 was evaluated. LMdeltahly: :Ag85b-esat-6 had lost the hemolytic activity. It was completely cleared from the livers and spleens of mice 5 days after inoculation via intravenous route. Furthermore, the LD50 of the recombinant strain increased by 4 Logs comparing to that of the parent strain. Histopathology reveals no obvious pathological changes following administration of the recombinant strain to mice, indicating its safety. In addition, the potential protective immune response was evaluated on C57BL/6 mice via intravenous immunization route. The results indicate that the antigen delivered by the recombination LM could induce Th1 type immune response and elicit strong cytotoxic lymphocyte effect against Ag85B-ESAT-6. Thus, LMdeltahly::Ag85b-esat-6 had high safety to mice, and could be used as a novel vaccines candidate for preventing tuberculosis.
Consaul, Sandra A.; Wright, Lori F.; Mahapatra, Sebabrata; Crick, Dean C.; Pavelka, Martin S.
2005-01-01
Mycobacterial peptidoglycan contains l-alanyl-d-iso-glutaminyl-meso-diaminopimelyl-d-alanyl-d-alanine peptides, with the exception of the peptidoglycan of Mycobacterium leprae, in which glycine replaces the l-alanyl residue. The third-position amino acid of the peptides is where peptidoglycan cross-linking occurs, either between the meso-diaminopimelate (DAP) moiety of one peptide and the penultimate d-alanine of another peptide or between two DAP residues. We previously described a collection of spontaneous mutants of DAP-auxotrophic strains of Mycobacterium smegmatis that can grow in the absence of DAP. The mutants are grouped into seven classes, depending on how well they grow without DAP and whether they are sensitive to DAP, temperature, or detergent. Furthermore, the mutants are hypersusceptible to β-lactam antibiotics when grown in the absence of DAP, suggesting that these mutants assemble an abnormal peptidoglycan. In this study, we show that one of these mutants, M. smegmatis strain PM440, utilizes lanthionine, an unusual bacterial metabolite, in place of DAP. We also demonstrate that the abilities of PM440 to grow without DAP and use lanthionine for peptidoglycan biosynthesis result from an unusual mutation in the putative ribosome binding site of the cbs gene, encoding cystathionine β-synthase, an enzyme that is a part of the cysteine biosynthetic pathway. PMID:15716431
Urease Activity Represents an Alternative Pathway for Mycobacterium tuberculosis Nitrogen Metabolism
Lin, Wenwei; Mathys, Vanessa; Ang, Emily Lei Yin; Koh, Vanessa Hui Qi; Martínez Gómez, Julia María; Ang, Michelle Lay Teng; Zainul Rahim, Siti Zarina; Tan, Mai Ping; Pethe, Kevin
2012-01-01
Urease represents a critical virulence factor for some bacterial species through its alkalizing effect, which helps neutralize the acidic microenvironment of the pathogen. In addition, urease serves as a nitrogen source provider for bacterial growth. Pathogenic mycobacteria express a functional urease, but its role during infection has yet to be characterized. In this study, we constructed a urease-deficient Mycobacterium tuberculosis strain and confirmed the alkalizing effect of the urease activity within the mycobacterium-containing vacuole in resting macrophages but not in the more acidic phagolysosomal compartment of activated macrophages. However, the urease-mediated alkalizing effect did not confer any growth advantage on M. tuberculosis in macrophages, as evidenced by comparable growth profiles for the mutant, wild-type (WT), and complemented strains. In contrast, the urease-deficient mutant exhibited impaired in vitro growth compared to the WT and complemented strains when urea was the sole source of nitrogen. Substantial amounts of ammonia were produced by the WT and complemented strains, but not with the urease-deficient mutant, which represents the actual nitrogen source for mycobacterial growth. However, the urease-deficient mutant displayed parental colonization profiles in the lungs, spleen, and liver in mice. Together, our data demonstrate a role for the urease activity in M. tuberculosis nitrogen metabolism that could be crucial for the pathogen's survival in nutrient-limited microenvironments where urea is the sole nitrogen source. Our work supports the notion that M. tuberculosis virulence correlates with its unique metabolic versatility and ability to utilize virtually any carbon and nitrogen sources available in its environment. PMID:22645285
Bainomugisa, Arnold; Duarte, Tania; Lavu, Evelyn; Pandey, Sushil; Coulter, Chris; Marais, Ben J; Coin, Lachlan M
2018-06-15
A better understanding of the genomic changes that facilitate the emergence and spread of drug-resistant Mycobacterium tuberculosis strains is currently required. Here, we report the use of the MinION nanopore sequencer (Oxford Nanopore Technologies) to sequence and assemble an extensively drug-resistant (XDR) isolate, which is part of a modern Beijing sub-lineage strain, prevalent in Western Province, Papua New Guinea. Using 238-fold coverage obtained from a single flow-cell, de novo assembly of nanopore reads resulted into one contiguous assembly with 99.92 % assembly accuracy. Incorporation of complementary short read sequences (Illumina) as part of consensus error correction resulted in a 4 404 064 bp genome with 99.98 % assembly accuracy. This assembly had an average nucleotide identity of 99.7 % relative to the reference genome, H37Rv. We assembled nearly all GC-rich repetitive PE/PPE family genes (166/168) and identified variants within these genes. With an estimated genotypic error rate of 5.3 % from MinION data, we demonstrated identification of variants to include the conventional drug resistance mutations, and those that contribute to the resistance phenotype (efflux pumps/transporter) and virulence. Reference-based alignment of the assembly allowed detection of deletions and insertions. MinION sequencing provided a fully annotated assembly of a transmissible XDR strain from an endemic setting and showed its utility to provide further understanding of genomic processes within Mycobacterium tuberculosis.
Characterization of a novel variant of Mycobacterium chimaera.
van Ingen, J; Hoefsloot, W; Buijtels, P C A M; Tortoli, E; Supply, P; Dekhuijzen, P N R; Boeree, M J; van Soolingen, D
2012-09-01
In this study, nonchromogenic mycobacteria were isolated from pulmonary samples of three patients in the Netherlands. All isolates had identical, unique 16S rRNA gene and 16S-23S ITS sequences, which were closely related to those of Mycobacterium chimaera and Mycobacterium marseillense. The biochemical features of the isolates differed slightly from those of M. chimaera, suggesting that the isolates may represent a possible separate species within the Mycobacterium avium complex (MAC). However, the cell-wall mycolic acid pattern, analysed by HPLC, and the partial sequences of the hsp65 and rpoB genes were identical to those of M. chimaera. We concluded that the isolates represent a novel variant of M. chimaera. The results of this analysis have led us to question the currently used methods of species definition for members of the genus Mycobacterium, which are based largely on 16S rRNA or rpoB gene sequencing. Definitions based on a single genetic target are likely to be insufficient. Genetic divergence, especially in the MAC, yields strains that cannot be confidently assigned to a specific species based on the analysis of a single genetic target.
Wang, Xiaoyu; Zhao, Xiaokang; Wang, Hao; Huang, Xue; Duan, Xiangke; Gu, Yinzhong; Lambert, Nzungize; Zhang, Ke; Kou, Zhenhao; Xie, Jianping
2018-06-11
Bacterial toxin-antitoxin (TA) systems are emerging important regulators of multiple cellular physiological events and candidates for novel antibiotic targets. To explore the role of Mycobacterium tuberculosis function, unknown toxin gene Rv2872 was heterologously expressed in Mycobacterium smegmatis (MS_Rv2872). Upon induction, MS_Rv2872 phenotype differed significantly from the control, such as increased vancomycin resistance, retarded growth, cell wall, and biofilm structure. This phenotype change might result from the RNase activity of Rv2872 as purified Rv2872 toxin protein can cleave the products of several key genes involved in abovementioned phenotypes. In summary, toxin Rv2872 was firstly reported to be a endonuclease involved in antibiotic stress responses, cell wall structure, and biofilm development.
González-Pérez, Mónica; Mariño-Ramírez, Leonardo; Parra-López, Carlos Alberto; Murcia, Martha Isabel; Marquina, Brenda; Mata-Espinoza, Dulce; Rodriguez-Míguez, Yadira; Baay-Guzman, Guillermina J.; Huerta-Yepez, Sara
2013-01-01
The genus Mycobacterium comprises more than 150 species, including important pathogens for humans which cause major public health problems. The vast majority of efforts to understand the genus have been addressed in studies with Mycobacterium tuberculosis. The biological differentiation between M. tuberculosis and nontuberculous mycobacteria (NTM) is important because there are distinctions in the sources of infection, treatments, and the course of disease. Likewise, the importance of studying NTM is not only due to its clinical significance but also due to the mechanisms by which some species are pathogenic while others are not. Mycobacterium avium complex (MAC) is the most important group of NTM opportunistic pathogens, since it is the second largest medical complex in the genus after the M. tuberculosis complex. Here, we evaluated the virulence and immune response of M. avium subsp. avium and Mycobacterium colombiense, using experimental models of progressive pulmonary tuberculosis and subcutaneous infection in BALB/c mice. Mice infected intratracheally with a high dose of MAC strains showed high expression of tumor necrosis factor alpha (TNF-α) and inducible nitric oxide synthase with rapid bacillus elimination and numerous granulomas, but without lung consolidation during late infection in coexistence with high expression of anti-inflammatory cytokines. In contrast, subcutaneous infection showed high production of the proinflammatory cytokines TNF-α and gamma interferon with relatively low production of anti-inflammatory cytokines such as interleukin-10 (IL-10) or IL-4, which efficiently eliminate the bacilli but maintain extensive inflammation and fibrosis. Thus, MAC infection evokes different immune and inflammatory responses depending on the MAC species and affected tissue. PMID:23959717
Viveiros, Miguel; Leandro, Clara; Rodrigues, Liliana; Almeida, Josefina; Bettencourt, Rosário; Couto, Isabel; Carrilho, Lurdes; Diogo, José; Fonseca, Ana; Lito, Luís; Lopes, João; Pacheco, Teresa; Pessanha, Mariana; Quirim, Judite; Sancho, Luísa; Salfinger, Max; Amaral, Leonard
2005-01-01
The INNO-LiPA Rif.TB assay for the identification of Mycobacterium tuberculosis complex strains and the detection of rifampin (RIF) resistance has been evaluated with 360 smear-positive respiratory specimens from an area of high incidence of multidrug-resistant tuberculosis (MDR-TB). The sensitivity when compared to conventional identification/culture methods was 82.2%, and the specificity was 66.7%; the sensitivity and specificity were 100.0% and 96.9%, respectively, for the detection of RIF resistance. This assay has the potential to provide rapid information that is essential for the effective management of MDR-TB. PMID:16145166
Dubiley, Svetlana; Kirillov, Eugene; Ignatova, Anna; Stepanshina, Valentina; Shemyakin, Igor
2007-01-01
We analyzed IS6110-associated polymorphisms in the phospholipase C genes of 107 isolates of Mycobacterium tuberculosis selected to be representative of isolates circulating in central Russia. We found that the majority of Latin American-Mediterranean family strains contained an insertion in a unique position in the plcA gene, suggesting a common ancestor. This insertion can serve as a specific genetic marker for this group, which we designate the LAM-RUS family. PMID:17942651
Molecular characteristics of MDR Mycobacterium tuberculosis strains isolated in Fujian, China.
Chen, Qiuyang; Pang, Yu; Liang, Qingfu; Lin, Shufang; Wang, Yufeng; Lin, Jian; Zhao, Yong; Wei, Shuzhen; Zheng, Jinfeng; Zheng, Suhua
2014-03-01
Of 75 MDR isolates from Fujian Province, the sensitivity of RIF, INH, EMB, SM, OFLX and KAN resistance by DNA sequencing was 96.0%, 96.0%, 66.7%, 66.0%, 84.2% and 75.0%, respectively. We also identified that minority mutations in the mixed Mycobacterium tuberculosis population may be responsible for two "false-negative" results. In addition, Beijing genotype is still the predominant sublineage in the MDR TB cases from Fujian. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lari, Nicoletta; Cavallini, Michela; Rindi, Laura; Iona, Elisabetta; Fattorini, Lanfranco; Garzelli, Carlo
1998-01-01
All but 2 of 63 Mycobacterium avium isolates from distinct geographic areas of Italy exhibited markedly polymorphic, multibanded IS1245 restriction fragment length polymorphism (RFLP) patterns; 2 isolates showed the low-number banding pattern typical of bird isolates. By computer analysis, 41 distinct IS1245 patterns and 10 clusters of essentially identical strains were detected; 40% of the 63 isolates showed genetic relatedness, suggesting the existence of a predominant AIDS-associated IS1245 RFLP pattern. PMID:9817900
Deep Whole-Genome Sequencing to Detect Mixed Infection of Mycobacterium tuberculosis
Gan, Mingyu; Liu, Qingyun; Yang, Chongguang; Gao, Qian; Luo, Tao
2016-01-01
Mixed infection by multiple Mycobacterium tuberculosis (MTB) strains is associated with poor treatment outcome of tuberculosis (TB). Traditional genotyping methods have been used to detect mixed infections of MTB, however, their sensitivity and resolution are limited. Deep whole-genome sequencing (WGS) has been proved highly sensitive and discriminative for studying population heterogeneity of MTB. Here, we developed a phylogenetic-based method to detect MTB mixed infections using WGS data. We collected published WGS data of 782 global MTB strains from public database. We called homogeneous and heterogeneous single nucleotide variations (SNVs) of individual strains by mapping short reads to the ancestral MTB reference genome. We constructed a phylogenomic database based on 68,639 homogeneous SNVs of 652 MTB strains. Mixed infections were determined if multiple evolutionary paths were identified by mapping the SNVs of individual samples to the phylogenomic database. By simulation, our method could specifically detect mixed infections when the sequencing depth of minor strains was as low as 1× coverage, and when the genomic distance of two mixed strains was as small as 16 SNVs. By applying our methods to all 782 samples, we detected 47 mixed infections and 45 of them were caused by locally endemic strains. The results indicate that our method is highly sensitive and discriminative for identifying mixed infections from deep WGS data of MTB isolates. PMID:27391214
Beijing Sublineages of Mycobacterium tuberculosis Differ in Pathogenicity in the Guinea Pig
Shanley, Crystal A.; Ackart, David; Jarlsberg, Leah G.; Shang, Shaobin; Obregon-Henao, Andres; Harton, Marisabel; Basaraba, Randall J.; Henao-Tamayo, Marcela; Barrozo, Joyce C.; Rose, Jordan; Kawamura, L. Masae; Coscolla, Mireia; Fofanov, Viacheslav Y.; Koshinsky, Heather; Gagneux, Sebastien; Hopewell, Philip C.; Ordway, Diane J.; Orme, Ian M.
2012-01-01
The Beijing family of Mycobacterium tuberculosis strains is part of lineage 2 (also known as the East Asian lineage). In clinical studies, we have observed that isolates from the sublineage RD207 of lineage 2 were more readily transmitted among humans. To investigate the basis for this difference, we tested representative strains with the characteristic Beijing spoligotype from four of the five sublineages of lineage 2 in the guinea pig model and subjected these strains to comparative whole-genome sequencing. The results of these studies showed that all of the clinical strains were capable of growing and causing lung pathology in guinea pigs after low-dose aerosol exposure. Differences between the abilities of the four sublineages to grow in the lungs of these animals were not overt, but members of RD207 were significantly more pathogenic, resulting in severe lung damage. The RD207 strains also induced much higher levels of markers associated with regulatory T cells and showed a significant loss of activated T cells in the lungs over the course of the infections. Whole-genome sequencing of the strains revealed mutations specific for RD207 which may explain this difference. Based on these data, we hypothesize that the sublineages of M. tuberculosis are associated with distinct pathological and clinical phenotypes and that these differences influence the transmissibility of particular M. tuberculosis strains in human populations. PMID:22718126
Chauhan, Priyanka
2018-01-01
ABSTRACT Previously we had developed a triple gene mutant of Mycobacterium tuberculosis (MtbΔmms) harboring disruption in three genes, namely mptpA, mptpB and sapM. Though vaccination with MtbΔmms strain induced protection in the lungs of guinea pigs, the mutant strain failed to control the hematogenous spread of the challenge strain to the spleen. Additionally, inoculation with MtbΔmms resulted in some pathological damage to the spleens in the early phase of infection. In order to generate a strain that overcomes the pathology caused by MtbΔmms in spleen of guinea pigs and controls dissemination of the challenge strain, MtbΔmms was genetically modified by disrupting bioA gene to generate MtbΔmmsb strain. Further, in vivo attenuation of MtbΔmmsb was evaluated and its protective efficacy was assessed against virulent M. tuberculosis challenge in guinea pigs. MtbΔmmsb mutant strain was highly attenuated for growth and virulence in guinea pigs. Vaccination with MtbΔmmsb mutant generated significant protection in comparison to sham-immunized animals at 4 and 12 weeks post-infection in lungs and spleen of infected animals. However, the protection imparted by MtbΔmmsb was significantly less in comparison to BCG immunized animals. This study indicates the importance of attenuated multiple gene deletion mutants of M. tuberculosis for generating protection against tuberculosis. PMID:29242198
Walsh, S E; Maillard, J Y; Russell, A D; Hann, A C
2001-07-01
This investigation compared glutaraldehyde (GTA)-sensitive and -resistant strains of Mycobacterium chelonae and examined the effects of pretreatment of GTA-sensitive and -resistant strains of Myco. chelonae with chemical agents that interfere with cell wall synthesis. When exposed to 2% (v/v) GTA at 25 degrees C, GTA-resistant strains of Myco. chelonae dried on to glass carriers were not inactivated to any significant extent. By contrast, GTA-sensitive strains of Myco. chelonae and a strain of Myco. terrae suffered a > 6 log reduction in viability in 5 min. However, ortho-phthalaldehyde (OPA; 0.5% w/v) achieved a corresponding inactivation against two GTA-resistant strains within 5-10 and 10-20 min, respectively. Electron microscopy, using a non-aldehyde fixation process and also negative staining, failed to detect any extensive changes in GTA-sensitive and -resistant cultures exposed to GTA or OPA. Thin-layer chromatography was unsuccessful in detecting differences between GTA-resistant and -sensitive strains of Myco. chelonae. However, pretreatment of GTA-resistant cells with mycobacterial cell wall synthesis inhibitors increased their subsequent susceptibility further to OPA but not to GTA. Ortho-phthalaldehyde is an effective new biocidal agent that, at its in-use concentration, is rapidly bactericidal to non-sporulating bacteria, including GTA-sensitive and -resistant mycobacteria. Pretreatment of GTA-resistant cells with mycobacterial cell wall synthesis inhibitors increased their subsequent susceptibility to OPA but not to GTA.
Genetic features of Mycobacterium tuberculosis modern Beijing sublineage
Liu, Qingyun; Luo, Tao; Dong, Xinran; Sun, Gang; Liu, Zhu; Gan, Mingyun; Wu, Jie; Shen, Xin; Gao, Qian
2016-01-01
Mycobacterium tuberculosis (MTB) Beijing strains have caused a great concern because of their rapid emergence and increasing prevalence in worldwide regions. Great efforts have been made to investigate the pathogenic characteristics of Beijing strains such as hypervirulence, drug resistance and favoring transmission. Phylogenetically, MTB Beijing family was divided into modern and ancient sublineages. Modern Beijing strains displayed enhanced virulence and higher prevalence when compared with ancient Beijing strains, but the genetic basis for this difference remains unclear. In this study, by analyzing previously published sequencing data of 1082 MTB Beijing isolates, we determined the genetic changes that were commonly present in modern Beijing strains but absent in ancient Beijing strains. These changes include 44 single-nucleotide polymorphisms (SNPs) and two short genomic deletions. Through bioinformatics analysis, we demonstrated that these genetic changes had high probability of functional effects. For example, 4 genes were frameshifted due to premature stop mutation or genomic deletions, 19 nonsynonymous SNPs located in conservative codons, and there is a significant enrichment in regulatory network for all nonsynonymous mutations. Besides, three SNPs located in promoter regions were verified to alter downstream gene expressions. Our study precisely defined the genetic features of modern Beijing strains and provided interesting clues for future researches to elucidate the mechanisms that underlie this sublineage's successful expansion. These findings from the analysis of the modern Beijing sublineage could provide us a model to understand the dynamics of pathogenicity of MTB. PMID:26905026
Chaidir, Lidya; Sengstake, Sarah; de Beer, Jessica; Oktavian, Antonius; Krismawati, Hana; Muhapril, Erfin; Kusumadewi, Inri; Annisa, Jessi; Anthony, Richard; van Soolingen, Dick; Achmad, Tri Hanggono; Marzuki, Sangkot; Alisjahbana, Bachti; van Crevel, Reinout
2016-04-01
Mycobacterium tuberculosis genotype distribution is different between West and Central Indonesia, but there are no data on the most Eastern part, Papua. We aimed to identify the predominant genotypes of M. tuberculosis responsible for tuberculosis in coastal Papua, their transmission, and the association with patient characteristics. A total of 199 M. tuberculosis isolates were collected. Spoligotyping was applied to describe the population structure of M. tuberculosis, lineage identification was performed using a combination of lineage-specific markers, and genotypic clusters were identified using a combination of 24-locus-MIRU-VNTR and spoligotyping. A high degree of genetic diversity was observed among isolates based on their spoligopatterns. Strains from modern lineage 4 made up almost half of strains (46.9%), being more abundant than the ancient lineage 1 (33.7%), and modern lineage 2 (19.4%). Thirty-five percent of strains belonged to genotypic clusters, especially strains in the Beijing genotype. Previous TB treatment and mutations associated with drug resistance were more common in patients infected with strains of the Beijing genotype. Papua shows a different distribution of M. tuberculosis genotypes compared to other parts of Indonesia. Clustering and drug resistance of modern strains recently introduced to Papua may contribute to the high tuberculosis burden in this region. Copyright © 2016 Elsevier B.V. All rights reserved.
LÓPEZ, B; AGUILAR, D; OROZCO, H; BURGER, M; ESPITIA, C; RITACCO, V; BARRERA, L; KREMER, K; HERNANDEZ-PANDO, R; HUYGEN, K; VAN SOOLINGEN, D
2003-01-01
In the last decade, an unprecedented genetic diversity has been disclosed among Mycobacterium tuberculosis strains found worldwide. However, well-conserved genotypes seem to prevail in areas with high incidence of tuberculosis. As this may be related to selective advantages, such as advanced mechanisms to circumvent [M. bovis Bacille Calmette–Guerin (BCG)-induced] host defence mechanisms, we investigated the influence of strain diversity on the course of experimental disease. Twelve M. tuberculosis strains, representing four major genotype families found worldwide today, and the laboratory strain H37Rv were each used to infect BALB/c mice by direct intratracheal injection. Compared with H37Rv, infections with Beijng strains were characterized by extensive pneumonia, early but ephemeral tumour necrosis factor-alpha (TNF-α) and inducible isoform of nitric oxide synthetase (iNOS) expression, and significantly higher earlier mortality. Conversely, Canetti strains induced limited pneumonia, sustained TNF-α and iNOS expression in lungs, and almost 100% survival. Strains of the Somali and the Haarlem genotype families displayed less homogeneous, intermediate rates of survival. Previous BCG vaccination protected less effectively against infection with Beijing strains than against the H37Rv strain. In conclusion, genetically different M. tuberculosis strains evoked markedly different immunopathological events. Bacteria with the Beijing genotype, highly prevalent in Asia and the former USSR, elicited a non-protective immune response in mice and were the most virulent. Future immunological research, particularly on candidate vaccines, should include a broad spectrum of M. tuberculosis genotypes rather than a few laboratory strains. PMID:12823275
Genotypic analysis of the earliest known prehistoric case of tuberculosis in Britain.
Taylor, G Michael; Young, Douglas B; Mays, Simon A
2005-05-01
The earliest known case of human tuberculosis in Britain dates to the middle period of the Iron Age, approximately 2,200 years before present. Bone lesions on the spine of a male skeleton excavated at Tarrant Hinton in Dorset, United Kingdom, show evidence of Pott's disease and are supported by molecular evidence of Mycobacterium tuberculosis complex DNA amplified by IS6110 PCR (19). In the present study, we used a further series of sensitive PCR methods to confirm the diagnosis of tuberculosis and to determine the genotype of the infecting strain. These tests demonstrated that this individual was infected with a strain of M. tuberculosis rather than Mycobacterium bovis. The strain had undergone the tuberculosis D1 deletion affecting the mmpS6 and mmpL6 genes and can therefore be identified as a member of the family of "modern" M. tuberculosis isolates. All evidence obtained was consistent with surviving mycobacterial DNA being highly fragmented in this case.
NASA Astrophysics Data System (ADS)
Ashok, Dongamanti; Gundu, Srinivas; Aamate, Vikas Kumar; Devulapally, Mohan Gandhi; Bathini, Raju; Manga, Vijjulatha
2018-04-01
The present study demonstrated the synthesis of new series of coumarin-1,2,3-triazole hybrids under microwave irradiation method. Several dimers of coumarin based 1,2,3-triazole derivatives were synthesized and their antimycobacterial and antimicrobial activities were investigated. The antimycobacterial activity screening results revealed that compounds 6i and 6j were the most active against Mycobacterium tuberculosis H37Rv strain. The active compounds were further evaluated for cytotoxicity with HEK cell lines and exhibited less % of inhibition. The same synthetic hybrids were evaluated for their antimicrobial activity against various bacterial strains and fungal strains and compounds 6e, 6h, 6i and 6j were found to be the most promising antimicrobial potent molecules. Furthermore, the active compounds against Mycobacterium tuberculosis were evaluated for their molecular docking studies against pantothenate synthetase (PS) enzyme of MTB and the docking results are in well agreement with the antitubercular evaluation results.
Sriraman, Kalpana; Nilgiriwala, Kayzad; Saranath, Dhananjaya; Chatterjee, Anirvan; Mistry, Nerges
2018-04-01
Alternate mechanisms of drug resistance involving intrinsic defense pathways play an important role in development of drug resistance. Deregulation of drug efflux, cellular metabolism, and DNA repair have been indicated to have effect on drug tolerance and persistence. Here we chose eight genes from these pathways to investigate their association with development of multidrug resistance (MDR). We generated mono drug resistant and MDR strains of rifampicin and isoniazid and examined the differential expression of genes belonging to efflux, DNA repair and cell wall lipid synthesis pathways. Rv1687c, recB, ppsD and embC genes showed significant (P <0.05) upregulation in mono-resistant (both rifampicin and isoniazid) as well as MDR strains. mmr showed significant upregulation with rifampicin resistance while Rv1457c showed significant upregulation only with mono-resistant strains. Highest expression change was observed with Rv1687c and ppsD. The study identified potential key genes that are significantly associated with development of drug resistance in vitro. These genes may help identify clinical strains predisposed to acquiring drug resistance in patients during the course of treatment or help in management of MDR forms of tuberculosis.
Mvubu, Nontobeko Eunice; Pillay, Balakrishna; Gamieldien, Junaid; Bishai, William; Pillay, Manormoney
2016-12-01
Although pulmonary epithelial cells are integral to innate and adaptive immune responses during Mycobacterium tuberculosis infection, global transcriptomic changes in these cells remain largely unknown. Changes in gene expression induced in pulmonary epithelial cells infected with M. tuberculosis F15/LAM4/KZN, F11, F28, Beijing and Unique genotypes were investigated by RNA sequencing (RNA-Seq). The Illumina HiSeq 2000 platform generated 50 bp reads that were mapped to the human genome (Hg19) using Tophat (2.0.10). Differential gene expression induced by the different strains in infected relative to the uninfected cells was quantified and compared using Cufflinks (2.1.0) and MeV (4.0.9), respectively. Gene expression varied among the strains with the total number of genes as follows: F15/LAM4/KZN (1187), Beijing (1252), F11 (1639), F28 (870), Unique (886) and H37Rv (1179). A subset of 292 genes was commonly induced by all strains, where 52 genes were down-regulated while 240 genes were up-regulated. Differentially expressed genes were compared among the strains and the number of induced strain-specific gene signatures were as follows: F15/LAM4/KZN (138), Beijing (52), F11 (255), F28 (55), Unique (186) and H37Rv (125). Strain-specific molecular gene signatures associated with functional pathways were observed only for the Unique and H37Rv strains while certain biological functions may be associated with other strain signatures. This study demonstrated that strains of M. tuberculosis induce differential gene expression and strain-specific molecular signatures in pulmonary epithelial cells. Specific signatures induced by clinical strains of M. tuberculosis can be further explored for novel host-associated biomarkers and adjunctive immunotherapies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Qun; Ge, Fanglan; Tan, Yunya; Zhang, Guangxiang; Li, Wei
2016-01-01
Mycobacterium smegmatis strain MC2 155 is an attractive model organism for the study of M. tuberculosis and other mycobacterial pathogens, as it can grow well using cholesterol as a carbon resource. However, its global transcriptomic response remains largely unrevealed. In this study, M. smegmatis MC2 155 cultivated in androstenedione, cholesterol and glycerol supplemented media were collected separately for a RNA-Sequencing study. The results showed that 6004, 6681 and 6348 genes were expressed in androstenedione, cholesterol and glycerol supplemented media, and 5891 genes were expressed in all three conditions, with 237 specially expressed in cholesterol added medium. A total of 1852 and 454 genes were significantly up-regulated by cholesterol compared with the other two supplements. Only occasional changes were observed in basic carbon and nitrogen metabolism, while almost all of the genes involved in cholesterol catabolism and mammalian cell entry (MCE) were up-regulated by cholesterol, but not by androstenedione. Eleven and 16 gene clusters were induced by cholesterol when compared with glycerol or androstenedione, respectively. This study provides a comprehensive analysis of the cholesterol responsive transcriptome of M. smegmatis. Our results indicated that cholesterol induced many more genes and increased the expression of the majority of genes involved in cholesterol degradation and MCE in M. smegmatis, while androstenedione did not have the same effect. PMID:27164097
Rohini, Karunakaran; Srikumar, Padmalayam Sadanandan
2013-01-01
A great challenge is posed to the treatment of tuberculosis due to the evolution of multidrug-resistant (MDR) and extensively drugresistant (XDR) strains of Mycobacterium tuberculosis in recent times. The complex cell envelope of the bacterium contains unusual structures of lipids which protects the bacterium from host enzymes and escape immune response. To overcome the drug resistance, targeting "drug targets" which have a critical role in growth and virulence factor is a novel approach for better tuberculosis treatment. The enzyme Phosphopantetheinyl transferase (PptT) is an attractive drug target as it is primarily involved in post translational modification of various types-I polyketide synthases and assembly of mycobactin, which is required for lipid virulence factors. Our in silico studies reported that the structural model of M.tuberculosis PptT characterizes the structure-function activity. The refinement of the model was carried out with molecular dynamics simulations and was analyzed with root mean square deviation (RMSD), and radius of gyration (Rg). This confirmed the structural behavior of PptT in dynamic system. Molecular docking with substrate coenzyme A (CoA) identified the binding pocket and key residues His93, Asp114 and Arg169 involved in PptT-CoA binding. In conclusion, our results show that the M.tuberculosis PptT model and critical CoA binding pocket initiate the inhibitor design of PptT towards tuberculosis treatment.
2013-01-01
Background The cell wall of pathogenic mycobacteria is known to possess poly-L-glutamine (PLG) layer. PLG synthesis has been directly linked to glutamine synthetase (GS) enzyme. glnA1 gene encodes for GS enzyme in mycobacteria. PLG layer is absent in cell wall of avirulent Mycobacterium smegmatis, although M. smegmatis strain expressing GS enzyme of pathogenic mycobacteria can synthesize PLG layer in the cell wall. The role of GS enzyme has been extensively studied in Mycobacterium tuberculosis, however, little is known about GS enzyme in other mycobacterial species. Mycobacterium bovis, as an intracellular pathogen encounters nitrogen stress inside macrophages, thus it has developed nitrogen assimilatory pathways to survive in adverse conditions. We have investigated the expression and activity of M. bovis GS in response to nitrogen availability and effect on synthesis of PLG layer in the cell wall. M. smegmatis was used as a model to study the behaviour of glnA1 locus of M. bovis. Results We observed that GS expression and activity decreased significantly in high nitrogen grown conditions. In high nitrogen conditions, the amount of PLG in cell wall was drastically reduced (below detectable limits) as compared to low nitrogen condition in M. bovis and in M. smegmatis strain complemented with M. bovis glnA1. Additionally, biofilm formation by M. smegmatis strain complemented with M. bovis glnA1 was increased than the wild type M. smegmatis strain. Conclusions The physiological regulation of GS in M. bovis was found to be similar to that reported in other mycobacteria but this data revealed that PLG synthesis in the cell wall of pathogenic mycobacteria occurs only in nitrogen limiting conditions and on the contrary high nitrogen conditions inhibit PLG synthesis. This indicates that PLG synthesis may be a form of nitrogen assimilatory pathway during ammonium starvation in virulent mycobacteria. Also, we have found that M. smegmatis complemented with M. bovis glnA1 was more efficient in biofilm formation than the wild type strain. This indicates that PLG layer favors biofilm formation. This study demonstrate that the nitrogen availability not only regulates GS expression and activity in M. bovis but also affects cell surface properties by modulating synthesis of PLG. PMID:24112767
Definition of the Beijing/W lineage of Mycobacterium tuberculosis on the basis of genetic markers.
Kremer, Kristin; Glynn, Judith R; Lillebaek, Troels; Niemann, Stefan; Kurepina, Natalia E; Kreiswirth, Barry N; Bifani, Pablo J; van Soolingen, Dick
2004-09-01
Mycobacterium tuberculosis Beijing genotype strains are highly prevalent in Asian countries and in the territory of the former Soviet Union. They are increasingly reported in other areas of the world and are frequently associated with tuberculosis outbreaks and drug resistance. Beijing genotype strains, including W strains, have been characterized by their highly similar multicopy IS6110 restriction fragment length polymorphism (RFLP) patterns, deletion of spacers 1 to 34 in the direct repeat region (Beijing spoligotype), and insertion of IS6110 in the genomic dnaA-dnaN locus. In this study the suitability and comparability of these three genetic markers to identify members of the Beijing lineage were evaluated. In a well-characterized collection of 1,020 M. tuberculosis isolates representative of the IS6110 RFLP genotypes found in The Netherlands, strains of two clades had spoligotypes characteristic of the Beijing lineage. A set of 19 Beijing reference RFLP patterns was selected to retrieve all Beijing strains from the Dutch database. These reference patterns gave a sensitivity of 98.1% and a specificity of 99.7% for identifying Beijing strains (defined by spoligotyping) in an international database of 1,084 strains. The usefulness of the reference patterns was also assessed with large DNA fingerprint databases in two other European countries and for identification strains from the W lineage found in the United States. A standardized definition for the identification of M. tuberculosis strains belonging to the Beijing/W lineage, as described in this work, will facilitate further studies on the spread and characterization of this widespread genotype family of M. tuberculosis strains.
Gunawardena, Harsha P.; Feltcher, Meghan E.; Wrobel, John A.; Gu, Sheng; Braunstein, Miriam; Chen, Xian
2015-01-01
The Mycobacterium tuberculosis (MTB) membrane is rich in antigens that are potential targets for diagnostics and the development of new vaccines. To better understand the mechanisms underlying MTB virulence and identify new targets for therapeutic intervention we investigated the differential composition of membrane proteomes between virulent M. tuberculosis H37Rv (MTB) and the Mycobacterium bovis BCG vaccine strain. To compare the membrane proteomes, we used LC-MS/MS analysis in combination with label-free quantitative (LFQ) proteomics, utilizing the area-under-curve (AUC) of the extracted ion chromatograms (XIC) of peptides obtained from m/z and retention time alignment of MS1 features. With this approach, we obtained relative abundance ratios for 2,203 identified membrane-associated proteins in high confidence. Of these proteins, 294 showed statistically significant differences of at least 2 fold, in relative abundance between MTB and BCG membrane fractions. Our comparative analysis detected several proteins associated with known genomic regions of difference between MTB and BCG as being absent, which validated the accuracy of our approach. In further support of our label-free quantitative data, we verified select protein differences by immunoblotting. To our knowledge we have generated the first comprehensive and high coverage profile of comparative membrane proteome changes between virulent MTB and its attenuated relative BCG, which helps elucidate the proteomic basis of the intrinsic virulence of the MTB pathogen. PMID:24093440
Bourai, Neema; Jacobs, William R; Narayanan, Sujatha
2012-02-01
Mycobacterium tuberculosis genome encodes several high and low molecular mass penicillin binding proteins. One such low molecular mass protein is DacB2 encoded by open reading frame Rv2911 of M. tuberculosis which is predicted to play a role in peptidoglycan synthesis. In this study we have tried to gain an insight into the role of this accessory cell division protein in mycobacterial physiology by performing overexpression and deletion studies. The overproduction of DacB2 in non-pathogenic, fast growing mycobacterium Mycobacterium smegmatis mc(2)155 resulted in reduced growth, an altered colony morphology, a defect in sliding motility and biofilm formation. A point mutant of DacB2 was made wherein the active site serine residue was mutated to cysteine to abolish the penicillin binding function of protein. The overexpression of mutant protein showed similar results indicating that the effects produced were independent of protein's penicillin binding function. The gene encoding DacB2 was deleted in M. tuberculosis by specialized transduction method. The deletion mutant showed reduced growth in Sauton's medium under acidic and low oxygen availability. The in vitro infection studies with THP-1 cells showed increased intracellular survival of dacB2 mutant compared to parent and complemented strains. The colony morphology and antibiotic sensitivity of mutant and wild-type strains were similar. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hammer, P; Richter, E; Rüsch-Gerdes, S; Walte, H-G C; Matzen, S; Kiesner, C
2015-03-01
Experiments to determine the efficacy of high temperature, short time (HTST) pasteurization of milk in terms of inactivation of pathogenic microorganisms were mainly performed between 1930 and 1960. Among the target organisms were Mycobacterium bovis and Mycobacterium tuberculosis. As a result, the Codex Alimentarius prescribes that HTST treatment of milk should lead to a significant reduction of pathogenic microorganisms during milk pasteurization. Due to the development of improved methods for the detection of survivors and of more advanced heating technology, verification of this requirement seemed to be necessary. To address recent outbreaks of tuberculosis in cattle caused by M. bovis ssp. caprae (M. caprae) in the southern regions of Germany, this organism was tested and compared with M. bovis ssp. bovis (M. bovis). Experiments were performed in a pilot plant for HTST pasteurization of milk with 3 strains of M. caprae and 1 strain of M. bovis. In preliminary trials at a fixed holding time of 25 s, the temperature at which significant inactivation occurred was 62.5°C for all strains. To determine D-values (decimal reduction times) for the inactivation kinetics, the strains were tested at 65, 62.5, and 60°C at holding times of 16.5, 25, and 35 s. At 65°C, the D-values of all strains ranged from 6.8 to 7.8 s, and at 62.5°C, D-values ranged from 14.5 to 18.1 s. Low inactivation was observed at 60°C. When the low slope of the inactivation curve allowed calculation of a D-value, these ranged from 40.8 to 129.9 s. In terms of log10 reductions, the highest values for all strains were 4.1 to 4.9 log at 65°C, with a holding time of 35 s. The tested strains of M. caprae and M. bovis showed similar low resistance to heat. Standard HTST treatment should result in a high reduction of these organisms and thus the requirements of the Codex Alimentarius for inactivation of pathogens by this process are far exceeded. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Song, Houhui
2012-01-01
Knowledge of the metabolic pathways used by Mycobacterium tuberculosis during infection is important for understanding its nutrient requirements and host adaptation. However, uptake, the first step in the utilization of nutrients, is poorly understood for many essential nutrients, such as inorganic anions. Here, we show that M. tuberculosis utilizes nitrate as the sole nitrogen source, albeit at lower efficiency than asparagine, glutamate, and arginine. The growth of the porin triple mutant M. smegmatis ML16 in media with limiting amounts of nitrate and sulfate as sole nitrogen and sulfur sources, respectively, was delayed compared to that of the wild-type strain. The uptake of sulfate was 40-fold slower than that of the wild-type strain, indicating that the efficient uptake of these anions is dependent on porins. The uptake by M. tuberculosis of sulfate and phosphate was approximately 40- and 10-fold slower than that of M. smegmatis, respectively, which is consistent with the slower growth of M. tuberculosis. However, the uptake of these anions by M. tuberculosis is orders of magnitude faster than diffusion through lipid membranes, indicating that unknown outer membrane proteins are required to facilitate this process. PMID:22194452
Modeling tuberculosis pathogenesis through ex vivo lung tissue infection.
Carranza-Rosales, Pilar; Carranza-Torres, Irma Edith; Guzmán-Delgado, Nancy Elena; Lozano-Garza, Gerardo; Villarreal-Treviño, Licet; Molina-Torres, Carmen; Villarreal, Javier Vargas; Vera-Cabrera, Lucio; Castro-Garza, Jorge
2017-12-01
Tuberculosis (TB) is one of the top 10 causes of death worldwide. Several in vitro and in vivo experimental models have been used to study TB pathogenesis and induction of immune response during Mycobacterium tuberculosis infection. Precision cut lung tissue slices (PCLTS) is an experimental model, in which all the usual cell types of the organ are found, the tissue architecture and the interactions amongst the different cells are maintained. PCLTS in good physiological conditions, monitored by MTT assay and histology, were infected with either virulent Mycobacterium tuberculosis strain H37Rv or the TB vaccine strain Mycobacterium bovis BCG. Histological analysis showed that bacilli infecting lung tissue slices were observed in the alveolar septa, alveolar light spaces, near to type II pneumocytes, and inside macrophages. Mycobacterial infection of PCLTS induced TNF-α production, which is consistent with previous M. tuberculosis in vitro and in vivo studies. This is the first report of using PCLTS as a system to study M. tuberculosis infection. The PCLTS model provides a useful tool to evaluate the innate immune responses and other aspects during the early stages of mycobacterial infection. Copyright © 2017. Published by Elsevier Ltd.
Piseddu, E; Trotta, M; Tortoli, E; Avanzi, M; Tasca, S; Solano-Gallego, L
2011-01-01
Mycobacterium celatum is a slow growing non-tuberculous mycobacterium described mainly as occurring in human patients. Only two cases of infection with this pathogen have been reported previously in animals. A 5-year-old, neutered male ferret was presented with progressive weight loss and muscle atrophy. Pale mucous membranes, slight alopecia of the tail and splenomegaly, confirmed by abdominal ultrasound, were observed. Fine-needle aspirations of the spleen revealed extramedullary haematopoiesis and marked macrophage-dominated inflammation associated with mycobacterial infection. Ziehl-Neelsen staining demonstrated sporadic acid-fast bacilli within macrophages. These organisms were identified as M. celatum by microbiological and molecular methods. Phylogenetic analysis based on the 16S rDNA gene compared this isolate with previously reported strains and demonstrated close relatedness to the human strains of M. celatum types 1 and 3. The ferret was treated with enrofloxacin, rifampicin and azithromycin, resulting in clinical improvement. After 40 days of treatment, the spleen was re-evaluated. Cytological evaluation revealed only extramedullary haematopoiesis without evidence of infection. Discontinuation of therapy was followed by rapid deterioration and death. Copyright © 2010 Elsevier Ltd. All rights reserved.
Multiprimer PCR system for differential identification of mycobacteria in clinical samples.
Del Portillo, P; Thomas, M C; Martínez, E; Marañón, C; Valladares, B; Patarroyo, M E; Carlos López, M
1996-01-01
A novel multiprimer PCR method with the potential to identify mycobacteria in clinical samples is presented. The assay relies on the simultaneous amplification of three bacterial DNA genomic fragments by using different sets of oligonucleotide primers. The first set of primers amplifies a 506-bp fragment from the gene for the 32-kDa antigen of Mycobacterium tuberculosis, which is present in most of the species belonging to the genus Mycobacterium. The second set of primers amplifies a 984-bp fragment from the IS6110 insertion sequence of the bacteria belonging to the M. tuberculosis complex. The third set of primers, derived from an M. tuberculosis species-specific sequence named MTP40, amplifies a 396-bp genomic fragment. Thus, while the multiprimer system would render three amplification fragments from the M. tuberculosis genome and two fragments from the Mycobacterium bovis genome, a unique amplification fragment would be obtained from nontuberculous mycobacteria. The results obtained, using reference mycobacterial strains and typed clinical isolates, show that the multiprimer PCR method may be a rapid, sensitive, and specific tool for the differential identification of various mycobacterial strains in a single-step assay. PMID:8789008
Multidrug resistant tuberculosis diagnosed by synovial fluid analysis.
van Zeller, M; Monteiro, R; Ramalho, J; Almeida, I; Duarte, R
2012-01-01
Tuberculosis remains a major public health problem worldwide. HIV co-infection is contributing to an increased incidence of the disease, particularly that caused by multidrug resistant strains of Mycobacterium tuberculosis (MT). We describe an HIV-infected patient with pleural and lymph node tuberculosis diagnosed by pleural effusion characteristics and biopsy specimens, without MT identification, that further presented with knee-joint involvement. Arthrocentesis allowed MT isolation and drug susceptibility testing, resulting in a diagnosis of multidrug-resistant tuberculosis and an appropriate treatment regimen. MT identification and drug susceptibility tests are very important, especially for HIV co-infected patients. Copyright © 2011 Sociedade Portuguesa de Pneumologia. Published by Elsevier España. All rights reserved.
Middleton, A M; Chadwick, M V; Nicholson, A G; Dewar, A; Groger, R K; Brown, E J; Wilson, R
2000-10-01
Mycobacterium avium complex (MAC) are opportunistic respiratory pathogens that infect non-immunocompromised patients with established lung disease, although they can also cause primary infections. The ability to bind fibronectin is conserved among many mycobacterial species. We have investigated the adherence of a sputum isolate of MAC to the mucosa of organ cultures constructed with human tissue and the contribution of M. avium fibronectin attachment protein (FAP) to the process. MAC adhered to fibrous, but not globular mucus, and to extracellular matrix (ECM) in areas of epithelial damage, but not to intact extruded cells and collagen fibres. Bacteria occasionally adhered to healthy unciliated epithelium and to cells that had degenerated exposing their contents, but never to ciliated cells. The results obtained with different respiratory tissues were similar. Two ATCC strains of MAC gave similar results. There was a significant reduction (P < 0.05) in the number of bacteria adhering to ECM after preincubation of bacteria with fibronectin and after preincubation of the tissue with M. avium FAP in a concentration-dependant manner. The number of bacteria adhering to fibrous mucus was unchanged. Immunogold labelling demonstrated fibronectin in ECM as well as in other areas of epithelial damage, but only ECM bound FAP. A Mycobacterium smegmatis strain had the same pattern of adherence to the mucosa as MAC. When the FAP gene was deleted, the strain demonstrated reduced adherence to ECM, and adherence was restored when the strain was transfected with an M. avium FAP expression construct. We conclude that MAC adheres to ECM in areas of epithelial damage via FAP and to mucus with a fibrous appearance via another adhesin. Epithelial damage exposing ECM and poor mucus clearance will predispose to MAC airway infection.
Flores-Treviño, Samantha; Morfín-Otero, Rayo; Rodríguez-Noriega, Eduardo; González-Díaz, Esteban; Pérez-Gómez, Héctor R; Bocanegra-García, Virgilio; Vera-Cabrera, Lucio; Garza-González, Elvira
2015-01-01
Determining the genetic diversity of M. tuberculosis strains allows identification of the distinct Mycobacterium tuberculosis genotypes responsible for tuberculosis in different regions. Several studies have reported the genetic diversity of M. tuberculosis strains in Mexico, but little information is available from the state of Jalisco. Therefore, the aim of this study was to determine the genetic diversity of Mycobacterium tuberculosis clinical isolates from Western Mexico. Sixty-eight M. tuberculosis isolates were tested for susceptibility to first-line drugs using manual Mycobacteria Growth Indicator Tube method and genotyped using spoligotyping and IS6110-restriction fragment length polymorphism (RFLP) pattern analyses. Forty-seven (69.1%) isolates were grouped into 10 clusters and 21 isolates displayed single patterns by spoligotyping. Three of the 21 single patterns corresponded to orphan patterns in the SITVITWEB database, and 1 new type that contained 2 isolates was created. The most prevalent lineages were T (38.2%), Haarlem (17.7%), LAM (17.7%), X (7.4%), S (5.9%), EAI (1.5%) and Beijing (1.5%). Six (12.8%) of the clustered isolates were MDR, and type 406 of the Beijing family was among the MDR isolates. Seventeen (26.2%) isolates were grouped into 8 clusters and 48 isolates displayed single patterns by IS6110-RFLP. Combination of IS6110-RFLP and spoligotyping reduced the clustering rate to 20.0%. The results show that T, Haarlem, and LAM are predominant lineages among clinical isolates of M. tuberculosis in Guadalajara, Mexico. Clustering rates indicated low transmission of MDR strains. We detected a rare Beijing genotype, SIT406, which was a highly resistant strain. This is the first report of this Beijing genotype in Latin America.
Flores-Treviño, Samantha; Morfín-Otero, Rayo; Rodríguez-Noriega, Eduardo; González-Díaz, Esteban; Pérez-Gómez, Héctor R.; Bocanegra-García, Virgilio; Vera-Cabrera, Lucio; Garza-González, Elvira
2015-01-01
Determining the genetic diversity of M. tuberculosis strains allows identification of the distinct Mycobacterium tuberculosis genotypes responsible for tuberculosis in different regions. Several studies have reported the genetic diversity of M. tuberculosis strains in Mexico, but little information is available from the state of Jalisco. Therefore, the aim of this study was to determine the genetic diversity of Mycobacterium tuberculosis clinical isolates from Western Mexico. Sixty-eight M. tuberculosis isolates were tested for susceptibility to first-line drugs using manual Mycobacteria Growth Indicator Tube method and genotyped using spoligotyping and IS6110-restriction fragment length polymorphism (RFLP) pattern analyses. Forty-seven (69.1%) isolates were grouped into 10 clusters and 21 isolates displayed single patterns by spoligotyping. Three of the 21 single patterns corresponded to orphan patterns in the SITVITWEB database, and 1 new type that contained 2 isolates was created. The most prevalent lineages were T (38.2%), Haarlem (17.7%), LAM (17.7%), X (7.4%), S (5.9%), EAI (1.5%) and Beijing (1.5%). Six (12.8%) of the clustered isolates were MDR, and type 406 of the Beijing family was among the MDR isolates. Seventeen (26.2%) isolates were grouped into 8 clusters and 48 isolates displayed single patterns by IS6110-RFLP. Combination of IS6110-RFLP and spoligotyping reduced the clustering rate to 20.0%. The results show that T, Haarlem, and LAM are predominant lineages among clinical isolates of M. tuberculosis in Guadalajara, Mexico. Clustering rates indicated low transmission of MDR strains. We detected a rare Beijing genotype, SIT406, which was a highly resistant strain. This is the first report of this Beijing genotype in Latin America. PMID:25695431
Juréen, P; Angeby, K; Sturegård, E; Chryssanthou, E; Giske, C G; Werngren, J; Nordvall, M; Johansson, A; Kahlmeter, G; Hoffner, S; Schön, T
2010-05-01
The aminoglycosides and cyclic polypeptides are essential drugs in the treatment of multidrug-resistant tuberculosis, underscoring the need for accurate and reproducible drug susceptibility testing (DST). The epidemiological cutoff value (ECOFF) separating wild-type susceptible strains from non-wild-type strains is an important but rarely used tool for indicating susceptibility breakpoints against Mycobacterium tuberculosis. In this study, we established wild-type MIC distributions on Middlebrook 7H10 medium for amikacin, kanamycin, streptomycin, capreomycin, and viomycin using 90 consecutive clinical isolates and 21 resistant strains. Overall, the MIC variation between and within runs did not exceed +/-1 MIC dilution step, and validation of MIC values in Bactec 960 MGIT demonstrated good agreement. Tentative ECOFFs defining the wild type were established for all investigated drugs, including amikacin and viomycin, which currently lack susceptibility breakpoints for 7H10. Five out of seven amikacin- and kanamycin-resistant isolates were classified as susceptible to capreomycin according to the current critical concentration (10 mg/liter) but were non-wild type according to the ECOFF (4 mg/liter), suggesting that the critical concentration may be too high. All amikacin- and kanamycin-resistant isolates were clearly below the ECOFF for viomycin, and two of them were below the ECOFF for streptomycin, indicating that these two drugs may be considered for treatment of amikacin-resistant strains. Pharmacodynamic indices (peak serum concentration [Cmax]/MIC) were more favorable for amikacin and viomycin compared to kanamycin and capreomycin. In conclusion, our data emphasize the importance of establishing wild-type MIC distributions for improving the quality of drug susceptibility testing against Mycobacterium tuberculosis.
Juréen, P.; Ängeby, K.; Sturegård, E.; Chryssanthou, E.; Giske, C. G.; Werngren, J.; Nordvall, M.; Johansson, A.; Kahlmeter, G.; Hoffner, S.; Schön, T.
2010-01-01
The aminoglycosides and cyclic polypeptides are essential drugs in the treatment of multidrug-resistant tuberculosis, underscoring the need for accurate and reproducible drug susceptibility testing (DST). The epidemiological cutoff value (ECOFF) separating wild-type susceptible strains from non-wild-type strains is an important but rarely used tool for indicating susceptibility breakpoints against Mycobacterium tuberculosis. In this study, we established wild-type MIC distributions on Middlebrook 7H10 medium for amikacin, kanamycin, streptomycin, capreomycin, and viomycin using 90 consecutive clinical isolates and 21 resistant strains. Overall, the MIC variation between and within runs did not exceed ±1 MIC dilution step, and validation of MIC values in Bactec 960 MGIT demonstrated good agreement. Tentative ECOFFs defining the wild type were established for all investigated drugs, including amikacin and viomycin, which currently lack susceptibility breakpoints for 7H10. Five out of seven amikacin- and kanamycin-resistant isolates were classified as susceptible to capreomycin according to the current critical concentration (10 mg/liter) but were non-wild type according to the ECOFF (4 mg/liter), suggesting that the critical concentration may be too high. All amikacin- and kanamycin-resistant isolates were clearly below the ECOFF for viomycin, and two of them were below the ECOFF for streptomycin, indicating that these two drugs may be considered for treatment of amikacin-resistant strains. Pharmacodynamic indices (peak serum concentration [Cmax]/MIC) were more favorable for amikacin and viomycin compared to kanamycin and capreomycin. In conclusion, our data emphasize the importance of establishing wild-type MIC distributions for improving the quality of drug susceptibility testing against Mycobacterium tuberculosis. PMID:20237102
FLOROU, M.; LEONTIDES, L.; KOSTOULAS, P.; BILLINIS, C.; SOFIA, M.; KYRIAZAKIS, I.; LYKOTRAFITIS, F.
2008-01-01
SUMMARY This study aimed to: (1) investigate whether non-ruminant wildlife interfacing with dairy sheep and goats of four Greek flocks endemically infected with Mycobacterium avium subspecies paratuberculosis (MAP) harboured MAP and (2) genetically compare the strains isolated from the wildlife to those isolated from the small ruminants of these flocks. We cultured and screened, by polymerase chain reaction (PCR), pooled-tissue samples from 327 wild animals of 11 species for the MAP-specific IS900 insertion sequence. We also cultured faecal samples from 100 sheep or goats from each of the four flocks. MAP was detected in samples from 11 sheep, 12 goats, two mice, two rats, a hare and a fox. Only one rat had histopathological findings. Genetic typing categorized 21 isolates as cattle-type strains and two, from a house mouse and a goat respectively, as sheep-type strains; this is the first report of a rodent harbouring a sheep-type strain. The MAP types that were most frequently isolated amongst the sheep and goats of each flock were also the ones isolated from sympatric rodents; those isolated from the fox and hare also belonged to the predominant ruminant strains. PMID:17578601
Jiménez-Pajares, María Soledad; Herrera, Laura; Valverde, Azucena; Saiz, Pilar; Sáez-Nieto, Juan Antonio
2005-05-01
Mycobacterium kansasii is an opportunistic pathogen that mainly causes pulmonary infections. This species accounted for 9.7% of Mycobacteria other than tuberculosis complex identified in the reference laboratory of the Spanish Centro Nacional de Microbiologia during the period of 2000-2003. In this study we analyzed the phenotypic and genotypic characteristics of 298 M. kansasii strains isolated over this 4-year period. The phenotypic characteristics were determined by conventional methods: biochemical testing, culture and morphological study. Genotypic characteristics were studied using PCR restriction fragment analysis of a fragment of the hsp65 gene and digestion with BstEII and HaeIII, according to the method of Telenti. Among the total of tested strains, 57.4% had the typical phenotypic characteristics described for M. kansasii. The rest had atypical patterns that we grouped into 17 biotypes. Strains belonging to six of the seven described genotypes were identified, with 86.6% of the strains falling into genotype I. Analysis of the phenotypic characteristics of M. kansasii showed a higher discrimination index for intraspecific differentiation than genotypic methods. Nevertheless, the high variability of phenotypic characteristics, some of which were very specific for the species (e.g., photochromogenicity), could complicate their identification. Hence both conventional and molecular methods should be used to accurately identify the atypical isolates.
Proteogenomic Investigation of Strain Variation in Clinical Mycobacterium tuberculosis Isolates.
Heunis, Tiaan; Dippenaar, Anzaan; Warren, Robin M; van Helden, Paul D; van der Merwe, Ruben G; Gey van Pittius, Nicolaas C; Pain, Arnab; Sampson, Samantha L; Tabb, David L
2017-10-06
Mycobacterium tuberculosis consists of a large number of different strains that display unique virulence characteristics. Whole-genome sequencing has revealed substantial genetic diversity among clinical M. tuberculosis isolates, and elucidating the phenotypic variation encoded by this genetic diversity will be of the utmost importance to fully understand M. tuberculosis biology and pathogenicity. In this study, we integrated whole-genome sequencing and mass spectrometry (GeLC-MS/MS) to reveal strain-specific characteristics in the proteomes of two clinical M. tuberculosis Latin American-Mediterranean isolates. Using this approach, we identified 59 peptides containing single amino acid variants, which covered ∼9% of all coding nonsynonymous single nucleotide variants detected by whole-genome sequencing. Furthermore, we identified 29 distinct peptides that mapped to a hypothetical protein not present in the M. tuberculosis H37Rv reference proteome. Here, we provide evidence for the expression of this protein in the clinical M. tuberculosis SAWC3651 isolate. The strain-specific databases enabled confirmation of genomic differences (i.e., large genomic regions of difference and nonsynonymous single nucleotide variants) in these two clinical M. tuberculosis isolates and allowed strain differentiation at the proteome level. Our results contribute to the growing field of clinical microbial proteogenomics and can improve our understanding of phenotypic variation in clinical M. tuberculosis isolates.
Evaluation of the flora of northern Mexico for in vitro antimicrobial and antituberculosis activity.
Molina-Salinas, G M; Pérez-López, A; Becerril-Montes, P; Salazar-Aranda, R; Said-Fernández, S; de Torres, N Waksman
2007-02-12
The aim of the present study was to evaluate the potential antimicrobial activity of 14 plants used in northeast México for the treatment of respiratory diseases, against drug-sensitive and drug-resistant strains of Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae type b and Mycobacterium tuberculosis. Forty-eight organic and aqueous extracts were tested against these bacterial strains using a broth microdilution test. No aqueous extracts showed antimicrobial activity, whereas most of the organic extracts presented antimicrobial activity against at least one of the drug-resistant microorganisms tested. Methanol-based extracts from the roots and leaves of Leucophyllum frutescens and ethyl ether extract from the roots of Chrysanctinia mexicana showed the greatest antimicrobial activity against the drug-resistant strain of Mycobacterium tuberculosis; the minimal inhibitory concentration (MIC) were 62.5, 125 and 62.5 microg/mL, respectively; methanol-based extract from the leaves of Cordia boissieri showed the best antimicrobial activity against the drug-resistant strain of Staphylococcus aureus (MIC 250 microg/mL); the hexane-based extract from the fruits of Schinus molle showed considerable antimicrobial activity against the drug-resistant strain of Streptococcus pneumoniae (MIC 62.5 microg/mL). This study supports that selecting plants by ethnobotanical criteria enhances the possibility of finding species with activity against resistant microorganisms.
Begg, Douglas J.; Dhand, Navneet K.; Watt, Bruce; Whittington, Richard J.
2014-01-01
The duration of survival of both the S and C strains of Mycobacterium avium subsp. paratuberculosis in feces was quantified in contrasting climatic zones of New South Wales, Australia, and detailed environmental temperature data were collected. Known concentrations of S and C strains in feces placed on soil in polystyrene boxes were exposed to the environment with or without the provision of shade (70%) at Bathurst, Armidale, Condobolin, and Broken Hill, and subsamples taken every 2 weeks were cultured for the presence of M. avium subsp. paratuberculosis. The duration of survival ranged from a minimum of 1 week to a maximum of 16 weeks, and the provision of 70% shade was the most important factor in extending the survival time. The hazard of death for exposed compared to shaded samples was 20 and 9 times higher for the S and C strains, respectively. Site did not affect the survival of the C strain, but for the S strain, the hazard of death was 2.3 times higher at the two arid zone sites (Broken Hill and Condobolin) than at the two temperate zone sites (Bathurst and Armidale). Temperature measurements revealed maximum temperatures exceeding 60°C and large daily temperature ranges at the soil surface, particularly in exposed boxes. PMID:24463974
Gomes, Lia Lima; Vasconcellos, Sidra Ezidrio Gonçalves; Gomes, Harrison Magdinier; Elias, Atina Ribeiro; da Silva Rocha, Adalgiza; Ribeiro, Simone C M; Panunto, Alessandra Costa; Ferrazoli, Lucilaine; da Silva Telles, Maria Alice; Ivens de, Araujo Marelo Emanuel; Kritski, Afranio Lineu; Mokrousov, Igor; Manicheva, Olga A; Lasunskaia, Elena; Suffys, Philip Noel
2015-06-01
The success of the Mycobacterium tuberculosis Beijing (MtbB) lineage in different geographical regions has been attributed to high transmission, increased virulence, drug resistance and rapid adaptation to the host. In some countries of secondary MtbB dispersion like South Africa and Peru, rising prevalence of the Beijing strains is registered. However, in neighboring countries to affected regions such as Mozambique and Brazil, respectively, the prevalence of these strains is still low and this could be due to biological particularities of the circulating MtbB strains and/or differentiated host susceptibility. To characterize genetically and phenotypically MtbB strains isolated in Brazil (n = 8) and Mozambique (n = 17). This is a descriptive study of genotypes of the MtbB isolates, determined by spoligotyping, MIRU-VNTR typing, analysis of the IS6110 copy number in the NTF region and screening for mutations in mutT2, mutT4, rpoB, katG and pks 15/1 genes. Virulence-associated properties of the studied isolates were verified in the in vitro model of infection of human THP-1 cells. The genotypes defined by the 24VNTRs were distinct for all isolates included in this study and presented an HGDI of 0.997. The VNTR patterns with seven copies of MIRU26 and seven copies of QUB26, representative for the previously described MtbB genotype B0, dominant in Russia, were detected in 38.5% of the studied isolates. In addition, all isolates presented RD105 deletion and a 7 bp insertion in pks15/1 gene. Almost all tested strains belonged to the RD181 sublineage, with the exception of two strains from Mozambique of RD150 sublineage. Combined analysis of the NTF region integrity and mutations in mutT genes showed that 62.5% and 47% of isolates obtained in Brazil and Mozambique, respectively, were of the ancestral genotype. The virulence index of the ancient isolates, evaluated in the THP-1 cells, was significantly lower than that of the modern genotype group. These data demonstrate genotype particularities of the Beijing strains isolated in Brazil and Mozambique, two countries of low prevalence of the MtbB lineage in local Mtb populations. In contrast to the neighboring countries with high prevalence of the MtbB strains of modern sublineage, significant proportions of the isolates obtained in Brazil and Mozambique were presented by the strains of the ancient sublineage. Our data suggest that lower virulence of the ancient strains, compared with the modern strains, could be involved in the slow spread of the MtbB strains in some regions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Torticollis in Mice Intravenously Infected with Mycobacterium tuberculosis
Magden, Elizabeth R; Weiner, Cristina M; Gilliland, Janet C; DeGroote, Mary Ann; Lenaerts, Anne J; Kendall, Lon V
2011-01-01
Female BALB/cAnNCrl (n = 170; age, 6 to 9 wk) mice were infected by intravenous inoculation of 5 × 106 cfu Mycobacterium tuberculosis strain Erdman (ATCC 35801). Between day 52 and 5 mo after infection, 10 of the 170 mice infected according to this protocol developed torticollis, including mice in treatment groups that received combination antibiotic therapy of rifampin–pyrazinamide or moxifloxacin–rifampin–pyrazinamide. Torticollis did not develop in mice receiving isoniazid–rifampin–pyrazinamide therapy, nor was it present in the cohort of aerogenically infected mice. Affected mice were euthanized, and complete necropsy evaluation was performed on 4 mice. Gross necropsy evaluation revealed typical tuberculosis lesions in lungs of infected mice. Histologic evaluation of tissues revealed granulomatous otitis media with intralesional acid-fast bacilli consistent with Mycobacterium tuberculosis. These cases represent an unusual finding specific to the intravenous mouse model of Mycobacterium tuberculosis and may represent a model of a similar condition in humans that is known as tuberculous otitis media. PMID:21439219
Torticollis in mice intravenously infected with Mycobacterium tuberculosis.
Magden, Elizabeth R; Weiner, Cristina M; Gilliland, Janet C; DeGroote, Mary Ann; Lenaerts, Anne J; Kendall, Lon V
2011-03-01
Female BALB/cAnNCrl (n = 170; age, 6 to 9 wk) mice were infected by intravenous inoculation of 5 × 10(6) cfu Mycobacterium tuberculosis strain Erdman (ATCC 35801). Between day 52 and 5 mo after infection, 10 of the 170 mice infected according to this protocol developed torticollis, including mice in treatment groups that received combination antibiotic therapy of rifampin-pyrazinamide or moxifloxacin-rifampin-pyrazinamide. Torticollis did not develop in mice receiving isoniazid- rifampin-pyrazinamide therapy, nor was it present in the cohort of aerogenically infected mice. Affected mice were euthanized, and complete necropsy evaluation was performed on 4 mice. Gross necropsy evaluation revealed typical tuberculosis lesions in lungs of infected mice. Histologic evaluation of tissues revealed granulomatous otitis media with intralesional acid-fast bacilli consistent with Mycobacterium tuberculosis. These cases represent an unusual finding specific to the intravenous mouse model of Mycobacterium tuberculosis and may represent a model of a similar condition in humans that is known as tuberculous otitis media.
Mycobacterium minnesotense sp. nov., a photochromogenic bacterium isolated from sphagnum peat bogs.
Hannigan, Geoffrey D; Krivogorsky, Bogdana; Fordice, Daniel; Welch, Jacqueline B; Dahl, John L
2013-01-01
Several intermediate-growing, photochromogenic bacteria were isolated from sphagnum peat bogs in northern Minnesota, USA. Acid-fast staining and 16S rRNA gene sequence analysis placed these environmental isolates in the genus Mycobacterium, and colony morphologies and PCR restriction analysis patterns of the isolates were similar. Partial sequences of hsp65 and dnaJ1 from these isolates showed that Mycobacterium arupense ATCC BAA-1242(T) was the closest mycobacterial relative, and common biochemical characteristics and antibiotic susceptibilities existed between the isolates and M. arupense ATCC BAA-1242(T). However, compared to nonchromogenic M. arupense ATCC BAA-1242(T), the environmental isolates were photochromogenic, had a different mycolic acid profile and had reduced cell-surface hydrophobicity in liquid culture. The data reported here support the conclusion that the isolates are representatives of a novel mycobacterial species, for which the name Mycobacterium minnesotense sp. nov. is proposed. The type strain is DL49(T) (=DSM 45633(T) = JCM 17932(T) = NCCB 100399(T)).
Abhale, Yogita K; Sasane, Amit V; Chavan, Abhijit P; Deshmukh, Keshav K; Kotapalli, Sudha Sravanti; Ummanni, Ramesh; Sayyad, Sadikali F; Mhaske, Pravin C
2015-04-13
A series of 2'-aryl/benzyl-2-aryl-4-methyl-4',5-bithiazolyl derivatives, 25-64 were synthesized and evaluated for inhibitory activity against Mycobacterium smegmatis MC(2) 155 strain and antimicrobial activities against four pathogenic bacteria Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Proteus vulgaris. Among them, compounds 40, 49, 50, and 54 exhibited moderate to good inhibition on the growth of the bacteria Mycobacterium smegmatis at the concentration of 30 μM. Compounds 26, 40, 44, 54 and 56 exhibited moderate to good antibacterial activity. Compound 5-(2'-(4-fluorobenzyl)thiazol-4'-yl)-2-(4-fluorophenyl)-4-methyl-thiazole (54) exhibited both antitubercular as well as antimicrobial activity against all tested strains. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Ortiz, R Hurtado; Leon, D Aguilar; Estevez, H Orozco; Martin, A; Herrera, J Luna; Romo, L Flores; Portaels, F; Pando, R Hernandez
2009-01-01
Buruli ulcer (BU) is the third most common mycobacterial disease in immunocompetent hosts. BU is caused by Mycobacterium ulcerans, which produces skin ulcers and necrosis at the site of infection. The principal virulence factor of M. ulcerans is a polyketide-derived macrolide named mycolactone, which has cytotoxic and immunosuppresive activities. We determined the severity of inflammation, histopathology and bacillary loads in the subcutaneous footpad tissue of BALB/c mice infected with 11 different M. ulcerans isolates from diverse geographical areas. Strains from Africa (Benin, Ghana, Ivory Coast) induced the highest inflammation, necrosis and bacillary loads, whereas the strains collected from Australia, Asia (Japan, Malaysia, New Guinea), Europe (France) and America (Mexico) induced mild inflammation. Subsequently, animals were infected with the strain that exhibited the highest (Benin) or lowest (Mexico) level of virulence in order to analyse the local immune response generated. The Mexican strain, which does not produce mycolactone, induced a predominantly T helper type 1 (Th1) cytokine profile with constant high expression of the anti-microbial peptides beta defensins 3 and 4, in co-existence with low expression of the anti-inflammatory cytokines interleukin (IL)-10, IL-4 and transforming growth factor (TGF)-β. The highly virulent strain from Benin which produces mycolactone A/B induced the opposite pattern. Thus, different local immune responses were found depending on the infecting M. ulcerans strain. PMID:19604267
Ritacco, Viviana; López, Beatriz; Cafrune, Patricia I; Ferrazoli, Lucilaine; Suffys, Philip N; Candia, Norma; Vásquez, Lucy; Realpe, Teresa; Fernández, Jorge; Lima, Karla V; Zurita, Jeannete; Robledo, Jaime; Rossetti, Maria L; Kritski, Afranio L; Telles, Maria A; Palomino, Juan C; Heersma, Herre; van Soolingen, Dick; Kremer, Kristin; Barrera, Lucía
2008-08-01
The frequency of the Beijing genotype of Mycobacterium tuberculosis as a cause of tuberculosis (TB) in South America was determined by analyzing genotypes of strains isolated from patients that had been diagnosed with the disease between 1997 and 2003 in seven countries of the subcontinent. In total, 19 of the 1,202 (1.6%) TB cases carried Beijing isolates, including 11 of the 185 patients from Peru (5.9%), five of the 512 patients from Argentina (1.0%), two of the 252 Brazilian cases (0.8%), one of the 166 patients from Paraguay (0.6%) and none of the samples obtained from Chile (35), Colombia (36) and Ecuador (16). Except for two patients that were East Asian immigrants, all cases with Beijing strains were native South Americans. No association was found between carrying a strain with the Beijing genotype and having drug or multi-drug resistant disease. Our data show that presently transmission of M. tuberculosis strains of the Beijing genotype is not frequent in Latin America. In addition, the lack of association of drug resistant TB and infection with M. tuberculosis of the Beijing genotype observed presently demands efforts to define better the contribution of the virulence and lack of response to treatment to the growing spread of Beijing strains observed in other parts of the world.
Epidemiologic Consequences of Microvariation in Mycobacterium tuberculosis
Mathema, Barun; Kurepina, Natalia; Yang, Guibin; Shashkina, Elena; Manca, Claudia; Mehaffy, Carolina; Bielefeldt-Ohmann, Helle; Ahuja, Shama; Fallows, Dorothy A.; Izzo, Angelo; Bifani, Pablo; Dobos, Karen; Kaplan, Gilla
2012-01-01
Background. Evidence from genotype-phenotype studies suggests that genetic diversity in pathogens have clinically relevant manifestations that can impact outcome of infection and epidemiologic success. We studied 5 closely related Mycobacterium tuberculosis strains that collectively caused extensive disease (n = 862), particularly among US-born tuberculosis patients. Methods. Representative isolates were selected using population-based genotyping data from New York City and New Jersey. Growth and cytokine/chemokine response were measured in infected human monocytes. Survival was determined in aerosol-infected guinea pigs. Results. Multiple genotyping methods and phylogenetically informative synonymous single nucleotide polymorphisms showed that all strains were related by descent. In axenic culture, all strains grew similarly. However, infection of monocytes revealed 2 growth phenotypes, slower (doubling ∼55 hours) and faster (∼25 hours). The faster growing strains elicited more tumor necrosis factor α and interleukin 1β than the slower growing strains, even after heat killing, and caused accelerated death of infected guinea pigs (∼9 weeks vs 24 weeks) associated with increased lung inflammation/pathology. Epidemiologically, the faster growing strains were associated with human immunodeficiency virus and more limited in spread, possibly related to their inherent ability to induce a strong protective innate immune response in immune competent hosts. Conclusions. Natural variation, with detectable phenotypic changes, among closely related clinical isolates of M. tuberculosis may alter epidemiologic patterns in human populations. PMID:22315279
Temple, Brian; Kwara, Awewura; Sunesara, Imran; Mena, Leandro; Dobbs, Thomas; Henderson, Harold; Holcomb, Mike; Webb, Risa
2011-12-01
The objective of this study was to investigate risk factors associated with tuberculosis (TB) transmission that was caused by Mycobacterium tuberculosis strain MS0006 from 2004 to 2009 in Hinds County, Mississippi. DNA fingerprinting using spoligotyping, mycobacterial interspersed repetitive unit, and IS6110-based restriction fragment length polymorphism of culture-confirmed cases of TB was performed. Clinical and demographic factors associated with strain MS0006 were analyzed by univariate and multivariate analysis. Of the 144 cases of TB diagnosed during the study period, 117 were culture positive with fingerprints available. There were 48 different strains, of which 6 clustered strains were distributed among 74 patients. The MS0006 strain accounted for 46.2% of all culture-confirmed cases. Risk factors for having the MS0006 strain in a univariate analysis included homelessness, HIV co-infection, sputum smear negativity, tuberculin skin test negativity, and noninjectable drug use. Multivariate analysis identified homelessness (odds ratio 7.88, 95% confidence interval 2.90-21.35) and African American race (odds ratio 5.80, 95% confidence interval 1.37-24.55) as independent predictors of having TB caused by the MS0006 strain of M. tuberculosis. Our findings suggest that a majority of recently transmitted TB in the studied county was caused by the MS0006 strain. African American race and homelessness were significant risk factors for inclusion in the cluster. Molecular epidemiology techniques continue to provide in-depth analysis of disease transmission and play a vital role in effective contact tracing and interruption of ongoing transmission.
Rodwell, Timothy C.; Kapasi, Anokhi J.; Moore, Marisa; Milian-Suazo, Feliciano; Harris, Beth; Guerrero, L.P.; Moser, Kathleen; Strathdee, Steffanie A.; Garfein, Richard S.
2010-01-01
Objectives To compare genotypes of Mycobacterium bovis strains from humans in Southern California with genotypes of M. bovis strains in cattle in Mexico and the USA to explore the possible origins of human infections. Methods We conducted a descriptive analysis of M. bovis genotypes from a binational population of humans and cattle using spacer oligonucleotide typing (spoligotyping). Results One hundred six human M. bovis spoligotypes were compared to spoligotypes from 496 Mexican cattle and 219 US cattle. Twelve spoligotype patterns were identified among human cases and 126 spoligotype patterns were detected in cattle. Over 91% (97/106) of the human M. bovis isolates had spoligotypes that were identical to those found in Mexican cattle. Four human cases had spoligotypes that matched both cattle born in Mexico and in the USA. Nine human cases had spoligotypes that did not match cattle born in Mexico or the USA. Conclusions Our data indicate that the population of M. bovis strains causing human TB disease in Southern California is closely related to the M. bovis strain population found in Mexican cattle and supports existing epidemiological evidence that human M. bovis disease in San Diego likely originated from Mexican cattle. PMID:20399697
Molecular Analysis of Mycobacterium avium Isolates by Using Pulsed-Field Gel Electrophoresis and PCR
Pestel-Caron, Martine; Graff, Gabriel; Berthelot, Gilles; Pons, Jean-Louis; Lemeland, Jean-François
1999-01-01
Genetic relationships among 46 isolates of Mycobacterium avium recovered from 37 patients in a 2,500-bed hospital from 1993 to 1998 were assessed by pulsed-field gel electrophoresis (PFGE) and PCR amplification of genomic sequences located between the repetitive elements IS1245 and IS1311. Each technique enabled the identification of 27 to 32 different patterns among the 46 isolates, confirming that the genetic heterogeneity of M. avium strains is high in a given community. Furthermore, this retrospective analysis of sporadic isolates allowed us (i) to suggest the existence of two remanent strains in our region, (ii) to raise the question of the possibility of nosocomial acquisition of M. avium strains, and (iii) to document laboratory contamination. The methods applied in the present study were found to be useful for the typing of M. avium isolates. In general, both methods yielded similar results for both related and unrelated isolates. However, the isolates in five of the six PCR clusters were distributed among two to three PFGE patterns, suggesting that this PCR-based method may have limitations for the analysis of strains with low insertion sequence copy numbers or for resolution of extended epidemiologic relationships. PMID:10405383
Yzquierdo, Sergio Luis; Lemus, Dihadenys; Echemendia, Miguel; Montoro, Ernesto; McNerney, Ruth; Martin, Anandi; Palomino, Juan Carlos
2006-01-01
Background Conventional methods for susceptibility testing require several months before results can be reported. However, rapid methods to determine drug susceptibility have been developed recently. Phage assay have been reported as a rapid useful tools for antimicrobial susceptibility testing. The aim of this study was to apply the Phage assay for rapid detection of resistance on Mycobacterium tuberculosis strains in Cuba. Methods Phage D29 assay was performed on 102 M. tuberculosis strains to detect rifampicin resistance. The results were compared with the proportion method (gold standard) to evaluate the sensitivity and specificity of Phage assay. Results Phage assay results were available in 2 days whereas Proportion Methods results were obtain in 42 days. A total of 44 strains were detected as rifampicin resistant by both methods. However, one strains deemed resistant by Proportion Methods was susceptible by Phage assay. The sensitivity and specificity of Phage assay were 97.8 % and 100% respectively. Conclusion Phage assay provides rapid and reliable results for susceptibility testing; it's easy to perform, requires no specialized equipment and is applicable to drug susceptibility testing in low income countries where tuberculosis is a major public health problem. PMID:16630356
Microbial Desulfurization of Gasoline in a Mycobacterium goodii X7B Immobilized-Cell System
Li, Fuli; Xu, Ping; Feng, Jinhui; Meng, Ling; Zheng, Yuan; Luo, Lailong; Ma, Cuiqing
2005-01-01
Mycobacterium goodii X7B, which had been primarily isolated as a bacterial strain capable of desulfurizing dibenzothiophene to produce 2-hydroxybiphenyl via the 4S pathway, was also found to desulfurize benzothiophene. The desulfurization product was identified as o-hydroxystyrene by gas chromatography (GC)-mass spectrometry analysis. This strain appeared to have the ability to remove organic sulfur from a broad range of sulfur species in gasoline. When Dushanzi straight-run gasoline (DSRG227) containing various organic sulfur compounds was treated with immobilized cells of strain X7B for 24 h, the total sulfur content significantly decreased, from 227 to 71 ppm at 40°C. GC flame ionization detection and GC atomic emission detection analysis were used to qualitatively evaluate the effects of M. goodii X7B treatment on the contents of gasoline. In addition, when immobilized cells were incubated at 40°C with DSRG275, the sulfur content decreased from 275 to 54 ppm in two consecutive reactions. With this excellent efficiency, strain X7B is considered a good potential candidate for industrial applications for the biodesulfurization of gasoline. PMID:15640198
Yang, Chongguang; Gao, Qian
2018-02-01
Tuberculosis (TB) has remained an ongoing concern in China. The national scale-up of the Directly Observed Treatment, Short Course (DOTS) program has accelerated the fight against TB in China. Nevertheless, many challenges still remain, including the spread of drug-resistant strains, high disease burden in rural areas, and enormous rural-to-urban migrations. Whether incident active TB represents recent transmission or endogenous reactivation has helped to prioritize the strategies for TB control. Evidence from molecular epidemiology studies has delineated the recent transmission of Mycobacterium tuberculosis (M. tuberculosis) strains in many settings. However, the transmission patterns of TB in most areas of China are still not clear. Studies carried out to date could not capture the real burden of recent transmission of the disease in China because of the retrospective study design, incomplete sampling, and use of low-resolution genotyping methods. We reviewed the implementations of molecular epidemiology of TB in China, the estimated disease burden due to recent transmission of M. tuberculosis strains, the primary transmission of drug-resistant TB, and the evaluation of a feasible genotyping method of M. tuberculosis strains in circulation.
Leechawengwongs, Manoon; Prammananan, Therdsak; Jaitrong, Sarinya; Billamas, Pamaree; Makhao, Nampueng; Thamnongdee, Nongnard; Thanormchat, Arirat; Phurattanakornkul, Arisa; Rattanarangsee, Somcharn; Ratanajaraya, Chate; Disratthakit, Areeya
2017-01-01
ABSTRACT New fluoroquinolones (FQs) have been shown to be more active against drug-resistant Mycobacterium tuberculosis strains than early FQs, such as ofloxacin. Sitafloxacin (STFX) is a new fluoroquinolone with in vitro activity against a broad range of bacteria, including M. tuberculosis. This study aimed to determine the in vitro activity of STFX against all groups of drug-resistant strains, including multidrug-resistant M. tuberculosis (MDR M. tuberculosis), MDR M. tuberculosis with quinolone resistance (pre-XDR), and extensively drug-resistant (XDR) strains. A total of 374 drug-resistant M. tuberculosis strains were tested for drug susceptibility by the conventional proportion method, and 95 strains were randomly submitted for MIC determination using the microplate alamarBlue assay (MABA). The results revealed that all the drug-resistant strains were susceptible to STFX at a critical concentration of 2 μg/ml. Determination of the MIC90s of the strains showed different MIC levels; MDR M. tuberculosis strains had a MIC90 of 0.0625 μg/ml, whereas pre-XDR and XDR M. tuberculosis strains had identical MIC90s of 0.5 μg/ml. Common mutations within the quinolone resistance-determining region (QRDR) of gyrA and/or gyrB did not confer resistance to STFX, except that double mutations of GyrA at Ala90Val and Asp94Ala were found in strains with a MIC of 1.0 μg/ml. The results indicated that STFX had potent in vitro activity against all the groups of drug-resistant M. tuberculosis strains and should be considered a new repurposed drug for treatment of multidrug-resistant and extensively drug-resistant TB. PMID:29061759
Li, Feng; Li, Hua; Zuo, Wei-Ze; Mi, Ligu; Wang, Xian; Wang, Yuanzhi; Wang, Hong; Shen, Aiping; Cao, Shuaili; Yuan, Li
2015-05-01
Beijing/W lineage strains of Mycobacterium tuberculosis spread faster than other strains, tend to be more virulent and frequently associated with drug resistance. In this study, to distinguish the characteristics of Beijing/W lineage and non-Beijing/W lineage M. tuberculosis, we assessed the growth between the two groups under conditions of hypoxia, nutrient starvation, and intracellular growth in murine macrophages. We also examined the DNA, RNA, and protein levels of 5 major M. tuberculosis proteins, including HspX, Hsp65, 38 kDa, Ag85B, and MPT64 of the different types of strains by sequencing, quantitative RT-PCR, and Western blotting. The results showed that Beijing/W and non-Beijing/W lineage strains of M. tuberculosis have similar viability in ex vivo culture but differ in their ability to survive within macrophages, and the intracellular viability of the Beijing/W lineage strains was significantly more than the viability of the non-Beijing/W lineage strains at 2, 3, and 5 days after infection (P < 0.05). Psts1 and fbpB were expressed at statistically lower levels in Beijing/W lineage strains in their mRNA expression levels (P < 0.05). The expression of their corresponding 38 kDa and Ag85B was lower in the Beijing/W lineage strains than the non-Beijing/W lineage strains (P < 0.05). The expression of HspX and Hsp65 was higher in the Beijing/W lineage strains in their protein expression levels at 24 h after infection of RAW264.7 macrophages (P < 0.05). In conclusion, the increased viability of the Beijing/W lineage strains might be related to the expression levels of these proteins.
Van der Merwe, M; Michel, A L
2010-09-01
The risk for humans to contract bovine tuberculosis through the consumption of undercooked game meat as well as biltong (traditionally dried game meat) is a concern. The survival potential of Mycobacterium bovis during the cooking and drying processes was researched in a preceding study on beef and the positive results compelled the authors to investigate the results with a similar preliminary study on game meat. Muscular, lymphatic and visceral tissues from skin test positive African buffalo (Syncerus caffer) and greater kudu (Tragelaphus strepsiceros) with tuberculous lesions were collected from the Hluhluwe iMfolozi Park during the park's culling programme. The different tissues were exposed to cooking and the muscular tissue to the drying process prior to culture. All acid-fast isolates were analysed by polymerase chain reaction for the presence of Mycobacterium bovis. All tissues were found negative for Mycobacterium bovis but non-tuberculous mycobacteria were isolated from kidney, liver, heart and lymph nodes. The results showed that these processes will kill Mycobacterium bovis but the unexpected recovery of non-tuberculous mycobacteria suggests possible survival and resistance characteristics of these strains which might be of veterinary public health interest.
Impact of Genetic Diversity on the Biology of Mycobacterium tuberculosis Complex Strains.
Niemann, Stefan; Merker, Matthias; Kohl, Thomas; Supply, Philip
2016-11-01
Tuberculosis (TB) remains the most deadly bacterial infectious disease worldwide. Its treatment and control are threatened by increasing numbers of multidrug-resistant (MDR) or nearly untreatable extensively drug-resistant (XDR) strains. New concepts are therefore urgently needed to understand the factors driving the TB epidemics and the spread of different strain populations, especially in association with drug resistance. Classical genotyping and, more recently, whole-genome sequencing (WGS) revealed that the world population of tubercle bacilli is more diverse than previously thought. Several major phylogenetic lineages can be distinguished, which are associated with their sympatric host population. Distinct clonal (sub)populations can even coexist within infected patients. WGS is now used as the ultimate approach for differentiating clinical isolates and for linking phenotypic to genomic variation from lineage to strain levels. Multiple lines of evidence indicate that the genetic diversity of TB strains translates into pathobiological consequences, and key molecular mechanisms probably involved in differential pathoadaptation of some main lineages have recently been identified. Evidence also accumulates on molecular mechanisms putatively fostering the emergence and rapid expansion of particular MDR and XDR strain groups in some world regions. However, further integrative studies will be needed for complete elucidation of the mechanisms that allow the pathogen to infect its host, acquire multidrug resistance, and transmit so efficiently. Such knowledge will be key for the development of the most effective new diagnostics, drugs, and vaccination strategies.
Mendoza Lopez, Pablo; Golby, Paul; Wooff, Esen; Garcia, Javier Nunez; Garcia Pelayo, M. Carmen; Conlon, Kevin; Gema Camacho, Ana; Hewinson, R. Glyn; Polaina, Julio; Suárez García, Antonio; Gordon, Stephen V.
2010-01-01
A number of single-nucleotide polymorphisms (SNPs) have been identified in the genome of Mycobacterium bovis BCG Pasteur compared with the sequenced strain M. bovis 2122/97. The functional consequences of many of these mutations remain to be described; however, mutations in genes encoding regulators may be particularly relevant to global phenotypic changes such as loss of virulence, since alteration of a regulator's function will affect the expression of a wide range of genes. One such SNP falls in bcg3145, encoding a member of the AfsR/DnrI/SARP class of global transcriptional regulators, that replaces a highly conserved glutamic acid residue at position 159 (E159G) with glycine in a tetratricopeptide repeat (TPR) located in the bacterial transcriptional activation (BTA) domain of BCG3145. TPR domains are associated with protein–protein interactions, and a conserved core (helices T1–T7) of the BTA domain seems to be required for proper function of SARP-family proteins. Structural modelling predicted that the E159G mutation perturbs the third α-helix of the BTA domain and could therefore have functional consequences. The E159G SNP was found to be present in all BCG strains, but absent from virulent M. bovis and Mycobacterium tuberculosis strains. By overexpressing BCG3145 and Rv3124 in BCG and H37Rv and monitoring transcriptome changes using microarrays, we determined that BCG3145/Rv3124 acts as a positive transcriptional regulator of the molybdopterin biosynthesis moa1 locus, and we suggest that rv3124 be renamed moaR1. The SNP in bcg3145 was found to have a subtle effect on the activity of MoaR1, suggesting that this mutation is not a key event in the attenuation of BCG. PMID:20378651
He, Xiaoyuan; Wang, Liqin; Wang, Shuishu
2016-04-15
The transcriptional regulator PhoP is an essential virulence factor in Mycobacterium tuberculosis, and it presents a target for the development of new anti-tuberculosis drugs and attenuated tuberculosis vaccine strains. PhoP binds to DNA as a highly cooperative dimer by recognizing direct repeats of 7-bp motifs with a 4-bp spacer. To elucidate the PhoP-DNA binding mechanism, we determined the crystal structure of the PhoP-DNA complex. The structure revealed a tandem PhoP dimer that bound to the direct repeat. The surprising tandem arrangement of the receiver domains allowed the four domains of the PhoP dimer to form a compact structure, accounting for the strict requirement of a 4-bp spacer and the highly cooperative binding of the dimer. The PhoP-DNA interactions exclusively involved the effector domain. The sequence-recognition helix made contact with the bases of the 7-bp motif in the major groove, and the wing interacted with the adjacent minor groove. The structure provides a starting point for the elucidation of the mechanism by which PhoP regulates the virulence of M. tuberculosis and guides the design of screening platforms for PhoP inhibitors.
Casonato, Stefano; Cervantes Sánchez, Axel; Haruki, Hirohito; Rengifo González, Monica; Provvedi, Roberta; Dainese, Elisa; Jaouen, Thomas; Gola, Susanne; Bini, Estela; Vicente, Miguel; Johnsson, Kai; Ghisotti, Daniela; Palù, Giorgio; Hernández-Pando, Rogelio
2012-01-01
The proteins belonging to the WhiB superfamily are small global transcriptional regulators typical of actinomycetes. In this paper, we characterize the role of WhiB5, a Mycobacterium tuberculosis protein belonging to this superfamily. A null mutant was constructed in M. tuberculosis H37Rv and was shown to be attenuated during both progressive and chronic mouse infections. Mice infected with the mutant had smaller bacillary burdens in the lungs but a larger inflammatory response, suggesting a role of WhiB5 in immunomodulation. Most interestingly, the whiB5 mutant was not able to resume growth after reactivation from chronic infection, suggesting that WhiB5 controls the expression of genes involved in this process. The mutant was also more sensitive than the wild-type parental strain to S-nitrosoglutathione (GSNO) and was less metabolically active following prolonged starvation, underscoring the importance of GSNO and starvation in development and maintenance of chronic infection. DNA microarray analysis identified 58 genes whose expression is influenced by WhiB5, including sigM, encoding an alternative sigma factor, and genes encoding the constituents of two type VII secretion systems, namely, ESX-2 and ESX-4. PMID:22733573
Lee, Yie-Vern; Wahab, Habibah A.
2015-01-01
Isocitrate lyase (ICL) is the first enzyme involved in glyoxylate cycle. Many plants and microorganisms are relying on glyoxylate cycle enzymes to survive upon downregulation of tricarboxylic acid cycle (TCA cycle), especially Mycobacterium tuberculosis (MTB). In fact, ICL is a potential drug target for MTB in dormancy. With the urge for new antitubercular drug to overcome tuberculosis treat such as multidrug resistant strain and HIV-coinfection, the pace of drug discovery has to be increased. There are many approaches to discovering potential inhibitor for MTB ICL and we hereby review the updated list of them. The potential inhibitors can be either a natural compound or synthetic compound. Moreover, these compounds are not necessary to be discovered only from MTB ICL, as it can also be discovered by a non-MTB ICL. Our review is categorized into four sections, namely, (a) MTB ICL with natural compounds; (b) MTB ICL with synthetic compounds; (c) non-MTB ICL with natural compounds; and (d) non-MTB ICL with synthetic compounds. Each of the approaches is capable of overcoming different challenges of inhibitor discovery. We hope that this paper will benefit the discovery of better inhibitor for ICL. PMID:25649791
Naqvi, Ahmad Abu Turab; Ahmad, Faizan; Hassan, Md Imtaiyaz
2015-01-01
Mycobacterium leprae is an intracellular obligate parasite that causes leprosy in humans, and it leads to the destruction of peripheral nerves and skin deformation. Here, we report an extensive analysis of the hypothetical proteins (HPs) from M. leprae strain Br4923, assigning their functions to better understand the mechanism of pathogenesis and to search for potential therapeutic interventions. The genome of M. leprae encodes 1604 proteins, of which the functions of 632 are not known (HPs). In this paper, we predicted the probable functions of 312 HPs. First, we classified all HPs into families and subfamilies on the basis of sequence similarity, followed by domain assignment, which provides many clues for their possible function. However, the functions of 320 proteins were not predicted because of low sequence similarity with proteins of known function. Annotated HPs were categorized into enzymes, binding proteins, transporters, and proteins involved in cellular processes. We found several novel proteins whose functions were unknown for M. leprae. These proteins have a requisite association with bacterial virulence and pathogenicity. Finally, our sequence-based analysis will be helpful for further validation and the search for potential drug targets while developing effective drugs to cure leprosy.
Morcillo, N; Zumarraga, M; Imperiale, B; Di Giulio, B; Chirico, C; Kuriger, A; Alito, A; Kremer, K; Cataldi, A
2007-01-01
In 2003, the incidence of tuberculosis in Argentina showed an increase compared to 2002. The severe national crisis at the end of the 90s has probably strongly contributed to this situation. The goal of this work was to estimate the extent of the spread of the most predominant Mycobacterium tuberculosis strains and to assess the spread of predominant M. tuberculosis clusters as determined by spoligotyping and IS6110 RFLP. The study involved 590 pulmonary, smear-positive TB cases receiving medical attention at health centers and hospitals in Northern Buenos Aires (NBA) suburbs, from October 2001 to December 2002. From a total of 208 clinical isolates belonging to 6 major clusters, 63 (30.2%) isolates had identical spoligotyping and IS6110 RFLP pattern. Only 22.2% were shown to have epidemiological connections with another member of their respective cluster. In these major clusters, 30.2% of the 208 TB cases studied by both molecular techniques and contact tracing could be convincingly attributable to a recently acquired infection. This knowledge may be useful to assess the clonal distribution of predominant M. tuberculosis clusters in Argentina, which may make an impact on TB control strategies.
Gordillo, S; Guirado, E; Gil, O; Díaz, J; Amat, I; Molinos, S; Vilaplana, C; Ausina, V; Cardona, P-J
2006-07-01
Real-time RT-PCR was used to quantify the expression of genes possibly involved in Mycobacterium tuberculosis latency in in vitro and murine models. Exponential and stationary phase (EP and SP) bacilli were exposed to decreasing pH levels (from 6.5 to 4.5) in an unstirred culture, and mRNA levels for 16S rRNA, sigma factors sigA,B,E,F,G,H and M, Rv0834c, icl, nirA, narG, fpbB, acr, rpoA, recA and cysH were quantified. The expression of acr was the one that best correlated with the CFU decrease observed in SP bacilli. In the murine model, the expressions of icl, acr and sigF tended to decrease when bacillary counts increased and vice versa. Values from immunodepressed mice (e.g. alpha/beta T cells, TNF, IFN-gamma and iNOs knock out strains), with accelerated bacillary growth rate, confirmed this fact. Finally, the expression of acr was maintained in mice following long-term treatment with antibiotics. The quantification of acr expression could be useful for monitoring the presence of latent bacilli in some murine models of tuberculosis.
Rhodes, M.W.; Kator, H.; McNabb, A.; Deshayes, C.; Reyrat, J.-M.; Brown-Elliott, B. A.; Wallace, R.; Trott, K.A.; Parker, J.M.; Lifland, B.; Osterhout, G.; Kaattari, I.; Reece, K.; Vogelbein, W.; Ottinger, C.A.
2005-01-01
A group of slowly growing photochromogenic mycobacteria was isolated from Chesapeake Bay striped bass (Morone saxatilis) during an epizootic of mycobacteriosis. Growth characteristics, acid-fastness and 16S rRNA gene sequencing results were consistent with those of the genus Mycobacterium. Biochemical reactions, growth characteristics and mycolic acid profiles (HPLC) resembled those of Mycobacterium shottsii, a non-pigmented mycobacterium also isolated during the same epizootic. Sequencing of the 16S rRNA genes, the gene encoding the exported repeated protein (erp) and the gene encoding the 65 kDa heat-shock protein (hsp65) and restriction enzyme analysis of the hsp65 gene demonstrated that this group of isolates is unique. Insertion sequences associated with Mycobacterium ulcerans, IS2404 and IS2606, were detected by PCR. These isolates could be differentiated from other slowly growing pigmented mycobacteria by their inability to grow at 37 ??C, production of niacin and urease, absence of nitrate reductase, negative Tween 80 hydrolysis and resistance to isoniazid (1 ??g ml-1), p-nitrobenzoic acid, thiacetazone and thiophene-2-carboxylic hydrazide. On the basis of this polyphasic study, it is proposed that these isolates represent a novel species, Mycobacterium pseudoshottsii sp. nov. The type strain, L15T, has been deposited in the American Type Culture Collection as ATCC BAA-883T and the National Collection of Type Cultures (UK) as NCTC 13318T. ?? 2005 IUMS.
Rhodes, M.W.; Kator, H.; Kotob, S.; van Berkum, P.; Kaattari, I.; Vogelbein, W.; Quinn, F.; Floyd, M.M.; Butler, W.R.; Ottinger, C.A.
2003-01-01
Slowly growing, non-pigmented mycobacteria were isolated from striped bass (Morone saxatilis) during an epizootic of mycobacteriosis in the Chesapeake Bay. Growth characteristics, acid-fastness and results of 16S rRNA gene sequencing were consistent with those of the genus Mycobacterium. A unique profile of biochemical reactions was observed among the 21 isolates. A single cluster of eight peaks identified by analysis of mycolic acids (HPLC) resembled those of reference patterns but differed in peak elution times from profiles of reference species of the Mycobacterium tuberculosis complex. One isolate (M175T) was placed within the slowly growing mycobacteria by analysis of aligned 16S rRNA gene sequences and was proximate in phylogeny to Mycobacterium ulcerans and Mycobacterium marinum. However, distinct nucleotide differences were detected in the 16S rRNA gene sequence among M175T, M. ulcerans and M. marinum (99.2% similarity). Isolate M175T could be differentiated from other slowly growing, non-pigmented mycobacteria by its inability to grow at 37??C, production of niacin and urease, absence of nitrate reductase and resistance to isoniazid (1 ??g ml-1), thiacetazone and thiophene-2-carboxylic hydrazide. Based upon these genetic and phenotypic differences, isolate M175T (= ATCC 700981T = NCTC 13215T) is proposed as the type strain of a novel species, Mycobacterium shottsii sp. nov.
Human multidrug-resistant Mycobacterium bovis infection in Mexico.
Vazquez-Chacon, Carlos A; Martínez-Guarneros, Armando; Couvin, David; González-Y-Merchand, Jorge A; Rivera-Gutierrez, Sandra; Escobar-Gutierrez, Alejandro; De-la-Cruz López, Juan J; Gomez-Bustamante, Adriana; Gonzalez-Macal, Gabriela A; Gonçalves Rossi, Livia Maria; Muñiz-Salazar, Raquel; Rastogi, Nalin; Vaughan, Gilberto
2015-12-01
Here, we describe the molecular characterization of six human Mycobacterium bovis clinical isolates, including three multidrug resistant (MDR) strains, collected in Mexico through the National Survey on Tuberculosis Drug Resistance (ENTB-2008), a nationally representative survey conducted during 2008-2009 in nine states with a stratified cluster sampling design. The genetic background of bovine M. bovis strains identified in three different states of Mexico was studied in parallel to assess molecular relatedness of bovine and human strains. Additionally, resistance to first and second line anti-tuberculosis (TB) drugs and molecular identification of mutations conferring drug resistance was also performed. All strains were characterized by spoligotyping and 24-loci MIRU-VNTRs, and analyzed using the SITVIT2 (n = 112,000 strains) and SITVITBovis (n = 25,000 strains) proprietary databases of Institut Pasteur de la Guadeloupe. Furthermore, data from this study (n = 55 isolates), were also compared with genotypes recorded for M. bovis from USA (n = 203), Argentina (n = 726), as well as other isolates from Mexico (independent from the present study; n = 147), to determine any evidence for genetic relatedness between circulating M. bovis strains. The results showed that all human M. bovis cases were not genetically related between them or to any bovine strain. Interestingly, a high degree of genetic variability was observed among bovine strains. Several autochthonous and presumably imported strains were identified. The emergence of drug-resistant M. bovis is an important public health problem that jeopardizes the success of TB control programs in the region. Copyright © 2015 Elsevier Ltd. All rights reserved.
De Groote, Mary A; Gruppo, Veronica; Woolhiser, Lisa K; Orme, Ian M; Gilliland, Janet C; Lenaerts, Anne J
2012-02-01
In preclinical testing of antituberculosis drugs, laboratory-adapted strains of Mycobacterium tuberculosis are usually used both for in vitro and in vivo studies. However, it is unknown whether the heterogeneity of M. tuberculosis stocks used by various laboratories can result in different outcomes in tests of antituberculosis drug regimens in animal infection models. In head-to-head studies, we investigated whether bactericidal efficacy results in BALB/c mice infected by inhalation with the laboratory-adapted strains H37Rv and Erdman differ from each other and from those obtained with clinical tuberculosis strains. Treatment of mice consisted of dual and triple drug combinations of isoniazid (H), rifampin (R), and pyrazinamide (Z). The results showed that not all strains gave the same in vivo efficacy results for the drug combinations tested. Moreover, the ranking of HRZ and RZ efficacy results was not the same for the two H37Rv strains evaluated. The magnitude of this strain difference also varied between experiments, emphasizing the risk of drawing firm conclusions for human trials based on single animal studies. The results also confirmed that the antagonism seen within the standard HRZ regimen by some investigators appears to be an M. tuberculosis strain-specific phenomenon. In conclusion, the specific identity of M. tuberculosis strain used was found to be an important variable that can change the apparent outcome of in vivo efficacy studies in mice. We highly recommend confirmation of efficacy results in late preclinical testing against a different M. tuberculosis strain than the one used in the initial mouse efficacy study, thereby increasing confidence to advance potent drug regimens to clinical trials.
Destruction of Various Kinds of Mycobacteria in Milk by Pasteurization
Harrington, Rube; Karlson, Alfred G.
1965-01-01
Various strains of unclassified mycobacteria, Mycobacterium tuberculosis (including H37Rv strains), M. bovis, M. avium, M. fortuitum, and bacille Calmette-Guerin, were exposed to the temperature and time of pasteurization in skim milk in test tubes. Of the 195 strains tested, there were a few surviving colonies among 6 of 33 skotochromogens, 1 of 26 photochromogens, 10 of 79 nonchromogens, and 1 of 9 rapid growers. Subcultures of the surviving colonies failed to resist the pasteurization tests on subsequent trials. PMID:14325295
Faksri, Kiatichai; Chaiprasert, Angkana; Pardieu, Clarie; Casali, Nicola; Palaga, Tanapat; Prammananan, Therdsak; Palittapongarnpim, Prasit; Prayoonwiwat, Naraporn; Drobniewski, Francis
2014-06-01
The Beijing strain of Mycobacterium tuberculosis (MTB) is of great concern because this hypervirulent strain has caused numerous tuberculosis outbreaks. However, the mechanisms that allow the MTB Beijing strain to be highly pathogenic remain unclear and previous studies have revealed heterogeneity within this family. To determine the association between some phenotypic characteristics and phylogroups of the Beijing strain of MTB. Eight Beijing strains, 5 modern and 3 ancestral sublineages, were selected from the phylogroups of MTB. The selection was based on copy number of IS6110 at NTF, region of differences, and single nucleotide polymorphisms. The abilities of these strains to grow intracellularly in THP-1 macrophages, to induce apoptosis, necrosis, and cytokines production were examined using quantitative real-time PCR and commercially available ELISA kits, respectively. There were some significant differences between the two sublineages of the Beijing strain of MTB. The ancestral Beijing sublineages showed higher intracellular growth rates (p < 0.05) and necrosis induction rates (p < 0.01) than the modern Beijing sublineages. By contrast, the modern Beijing sublineages induced lower apoptosis and protective cytokine responses, i.e., TNF-α (p < 0.05) and IL-6 (p < 0.01) and higher non-protective IL-10 response. The modern Beijing sublineages may have evolved so that they have greater ability to diminish host defense mechanisms. The slower growth rate and reduced necrosis induction in host cells might allow the bacteria to cause a persistent infection. The results revealed a phylogroup-associated heterogeneity of phenotypes among MTB Beijing sublineages.
A monoacylglycerol lipase from Mycobacterium smegmatis Involved in bacterial cell interaction.
Dhouib, Rabeb; Laval, Françoise; Carrière, Frédéric; Daffé, Mamadou; Canaan, Stéphane
2010-09-01
MSMEG_0220 from Mycobacterium smegmatis, the ortholog of the Rv0183 gene from M. tuberculosis, recently identified and characterized as encoding a monoacylglycerol lipase, was cloned and expressed in Escherichia coli. The recombinant protein (rMSMEG_0220), which exhibits 68% amino acid sequence identity with Rv0183, showed the same substrate specificity and similar patterns of pH-dependent activity and stability as the M. tuberculosis enzyme. rMSMEG_0220 was found to hydrolyze long-chain monoacylglycerol with a specific activity of 143 +/- 6 U mg(-1). Like Rv0183 in M. tuberculosis, MSMEG_0220 was found to be located in the cell wall. To assess the in vivo role of the homologous proteins, an MSMEG_0220 disrupted mutant of M. smegmatis (MsDelta0220) was produced. An intriguing change in the colony morphology and in the cell interaction, which were partly restored in the complemented mutant containing either an active (ComMsDelta0220) or an inactive (ComMsDelta0220S111A) enzyme, was observed. Growth studies performed in media supplemented with monoolein showed that the ability of both MsDelta0220 and ComMsDelta0220S111A to grow in the presence of this lipid was impaired. Moreover, studies of the antimicrobial susceptibility of the MsDelta0220 strain showed that this mutant is more sensitive to rifampin and more resistant to isoniazid than the wild-type strain, pointing to a critical structural role of this enzyme in mycobacterial physiology, in addition to its function in the hydrolysis of exogenous lipids.
A Monoacylglycerol Lipase from Mycobacterium smegmatis Involved in Bacterial Cell Interaction▿ †
Dhouib, Rabeb; Laval, Françoise; Carrière, Frédéric; Daffé, Mamadou; Canaan, Stéphane
2010-01-01
MSMEG_0220 from Mycobacterium smegmatis, the ortholog of the Rv0183 gene from M. tuberculosis, recently identified and characterized as encoding a monoacylglycerol lipase, was cloned and expressed in Escherichia coli. The recombinant protein (rMSMEG_0220), which exhibits 68% amino acid sequence identity with Rv0183, showed the same substrate specificity and similar patterns of pH-dependent activity and stability as the M. tuberculosis enzyme. rMSMEG_0220 was found to hydrolyze long-chain monoacylglycerol with a specific activity of 143 ± 6 U mg−1. Like Rv0183 in M. tuberculosis, MSMEG_0220 was found to be located in the cell wall. To assess the in vivo role of the homologous proteins, an MSMEG_0220 disrupted mutant of M. smegmatis (MsΔ0220) was produced. An intriguing change in the colony morphology and in the cell interaction, which were partly restored in the complemented mutant containing either an active (ComMsΔ0220) or an inactive (ComMsΔ0220S111A) enzyme, was observed. Growth studies performed in media supplemented with monoolein showed that the ability of both MsΔ0220 and ComMsΔ0220S111A to grow in the presence of this lipid was impaired. Moreover, studies of the antimicrobial susceptibility of the MsΔ0220 strain showed that this mutant is more sensitive to rifampin and more resistant to isoniazid than the wild-type strain, pointing to a critical structural role of this enzyme in mycobacterial physiology, in addition to its function in the hydrolysis of exogenous lipids. PMID:20601476
Sayes, Fadel; Pawlik, Alexandre; Frigui, Wafa; Gröschel, Matthias I.; Crommelynck, Samuel; Fayolle, Catherine; Cia, Felipe; Bancroft, Gregory J.; Bottai, Daria; Leclerc, Claude; Brosch, Roland; Majlessi, Laleh
2016-01-01
Mycobacterium tuberculosis (Mtb), possesses at least three type VII secretion systems, ESX-1, -3 and -5 that are actively involved in pathogenesis and host-pathogen interaction. We recently showed that an attenuated Mtb vaccine candidate (Mtb Δppe25-pe19), which lacks the characteristic ESX-5-associated pe/ppe genes, but harbors all other components of the ESX-5 system, induces CD4+ T-cell immune responses against non-esx-5-associated PE/PPE protein homologs. These T cells strongly cross-recognize the missing esx-5-associated PE/PPE proteins. Here, we characterized the fine composition of the functional cross-reactive Th1 effector subsets specific to the shared PE/PPE epitopes in mice immunized with the Mtb Δppe25-pe19 vaccine candidate. We provide evidence that the Mtb Δppe25-pe19 strain, despite its significant attenuation, is comparable to the WT Mtb strain with regard to: (i) its antigenic repertoire related to the different ESX systems, (ii) the induced Th1 effector subset composition, (iii) the differentiation status of the Th1 cells induced, and (iv) its particular features at stimulating the innate immune response. Indeed, we found significant contribution of PE/PPE-specific Th1 effector cells in the protective immunity against pulmonary Mtb infection. These results offer detailed insights into the immune mechanisms underlying the remarkable protective efficacy of the live attenuated Mtb Δppe25-pe19 vaccine candidate, as well as the specific potential of PE/PPE proteins as protective immunogens. PMID:27467705
Chandra, Pallavi; Rajmani, R S; Verma, Garima; Bhavesh, Neel Sarovar; Kumar, Dhiraj
2016-01-01
In view of emerging drug resistance among bacterial pathogens, including Mycobacterium tuberculosis, the development of novel therapeutic strategies is increasingly being sought. A recent paradigm in antituberculosis (anti-TB) drug development is to target the host molecules that are crucial for intracellular survival of the pathogen. We previously showed the importance of Src tyrosine kinases in mycobacterial pathogenesis. Here, we report that inhibition of Src significantly reduced survival of H37Rv as well as multidrug-resistant (MDR) and extremely drug-resistant (XDR) strains of M. tuberculosis in THP-1 macrophages. Src inhibition was also effective in controlling M. tuberculosis infection in guinea pigs. In guinea pigs, reduced M. tuberculosis burden due to Src inhibition also led to a marked decline in the disease pathology. In agreement with the theoretical framework of host-directed approaches against the pathogen, Src inhibition was equally effective against an XDR strain in controlling infection in guinea pigs. We propose that Src inhibitors could be developed into effective host-directed anti-TB drugs, which could be indiscriminately used against both drug-sensitive and drug-resistant strains of M. tuberculosis. IMPORTANCE The existing treatment regimen for tuberculosis (TB) suffers from deficiencies like high doses of antibiotics, long treatment duration, and inability to kill persistent populations in an efficient manner. Together, these contribute to the emergence of drug-resistant tuberculosis. Recently, several host factors were identified which help intracellular survival of Mycobacterium tuberculosis within the macrophage. These factors serve as attractive targets for developing alternate therapeutic strategies against M. tuberculosis. This strategy promises to be effective against drug-resistant strains. The approach also has potential to considerably lower the risk of emergence of new drug-resistant strains. We explored tyrosine kinase Src as a host factor exploited by virulent M. tuberculosis for intracellular survival. We show that Src inhibition can effectively control tuberculosis in infected guinea pigs. Moreover, Src inhibition ameliorated TB-associated pathology in guinea pigs. Thus, Src inhibitors have strong potential to be developed as possible anti-TB drugs.
Manson, Abigail L; Cohen, Keira A; Abeel, Thomas; Desjardins, Christopher A; Armstrong, Derek T; Barry, Clifton E; Brand, Jeannette; Chapman, Sinéad B; Cho, Sang-Nae; Gabrielian, Andrei; Gomez, James; Jodals, Andreea M; Joloba, Moses; Jureen, Pontus; Lee, Jong Seok; Malinga, Lesibana; Maiga, Mamoudou; Nordenberg, Dale; Noroc, Ecaterina; Romancenco, Elena; Salazar, Alex; Ssengooba, Willy; Velayati, A A; Winglee, Kathryn; Zalutskaya, Aksana; Via, Laura E; Cassell, Gail H; Dorman, Susan E; Ellner, Jerrold; Farnia, Parissa; Galagan, James E; Rosenthal, Alex; Crudu, Valeriu; Homorodean, Daniela; Hsueh, Po-Ren; Narayanan, Sujatha; Pym, Alexander S; Skrahina, Alena; Swaminathan, Soumya; Van der Walt, Martie; Alland, David; Bishai, William R; Cohen, Ted; Hoffner, Sven; Birren, Bruce W; Earl, Ashlee M
2017-03-01
Multidrug-resistant tuberculosis (MDR-TB), caused by drug-resistant strains of Mycobacterium tuberculosis, is an increasingly serious problem worldwide. Here we examined a data set of whole-genome sequences from 5,310 M. tuberculosis isolates from five continents. Despite the great diversity of these isolates with respect to geographical point of isolation, genetic background and drug resistance, the patterns for the emergence of drug resistance were conserved globally. We have identified harbinger mutations that often precede multidrug resistance. In particular, the katG mutation encoding p.Ser315Thr, which confers resistance to isoniazid, overwhelmingly arose before mutations that conferred rifampicin resistance across all of the lineages, geographical regions and time periods. Therefore, molecular diagnostics that include markers for rifampicin resistance alone will be insufficient to identify pre-MDR strains. Incorporating knowledge of polymorphisms that occur before the emergence of multidrug resistance, particularly katG p.Ser315Thr, into molecular diagnostics should enable targeted treatment of patients with pre-MDR-TB to prevent further development of MDR-TB.
Schiavano, Giuditta Fiorella; De Santi, Mauro; Sisti, Maurizio; Amagliani, Giulia; Brandi, Giorgio
2017-09-13
Nontuberculous mycobacteria are resistant to conventional water treatments, and are opportunistic human pathogen, particularly in hospitalized patients. The aim of this investigation was to assess the effectiveness of an ultraviolet UV-C lamp treatment against Mycobacterium avium subspecies hominissuis in drinking tap water. Ultraviolet treatments (0-192 mJ/cm 2 ) were performed using UV lamp immerged onto cylindrical glass tubes containing artificially contaminated water. The results showed that susceptibility to UV varied considerably according to the strains and the diameter of the tube. With a dose of 32 mJ/cm 2 , a significant inactivation (p < .05) of 3 log (99.9%) or more was obtained in only 5 of the 14 strains. To obtain a complete inactivation of all strains an irradiation of 192 mJ/cm 2 was needed, a dose that is much higher than the limits recommended by the international standards for UV disinfection of drinking water. In conclusion, it may be difficult to standardize a UV dose for the elimination of waterborne mycobacteria.
Trombone, Ana Paula Fávaro; Pedrini, Sílvia Cristina Barbosa; Diório, Suzana Madeira; Belone, Andréa de Faria Fernandes; Fachin, Luciana Raquel Vicenzi; do Nascimento, Dejair Caitano; Rosa, Patricia Sammarco
2014-03-23
Leprosy, caused by Mycobacterium leprae, is an important infectious disease that is still endemic in many countries around the world, including Brazil. There are currently no known methods for growing M. leprae in vitro, presenting a major obstacle in the study of this pathogen in the laboratory. Therefore, the maintenance and growth of M. leprae strains are preferably performed in athymic nude mice (NU-Foxn1(nu)). The laboratory conditions for using mice are readily available, easy to perform, and allow standardization and development of protocols for achieving reproducible results. In the present report, we describe a simple protocol for purification of bacilli from nude mouse footpads using trypsin, which yields a suspension with minimum cell debris and with high bacterial viability index, as determined by fluorescent microscopy. A modification to the standard method for bacillary counting by Ziehl-Neelsen staining and light microscopy is also demonstrated. Additionally, we describe a protocol for freezing and thawing bacillary stocks as an alternative protocol for maintenance and storage of M. leprae strains.
O'Toole, Ronan F; Gautam, Sanjay S
2017-10-01
The genome sequence of Mycobacterium tuberculosis strain H37Rv is an important and valuable reference point in the study of M. tuberculosis phylogeny, molecular epidemiology, and drug-resistance mutations. However, it is becoming apparent that use of H37Rv as a sole reference genome in analysing clinical isolates presents some limitations to fully investigating M. tuberculosis virulence. Here, we examine the presence of single locus variants and the absence of entire genes in H37Rv with respect to strains that are responsible for cases and outbreaks of tuberculosis. We discuss how these polymorphisms may affect phenotypic properties of H37Rv including pathogenicity. Based on our observations and those of other researchers, we propose that use of a single reference genome, H37Rv, is not sufficient for the detection and characterisation of M. tuberculosis virulence-related loci. We recommend incorporation of genome sequences of other reference strains, in particular, direct clinical isolates, in such analyses in addition to H37Rv. Copyright © 2017 Elsevier Inc. All rights reserved.
BACKGROUND: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa are opportunistic premise plumbing pathogens (OPPPs) that persist and grow in household plumbing, habitats they share with humans. Infections caused by these OPPPs involve individuals with preexis...
Antimycobacterial physalins from Physalis angulata L. (Solanaceae).
Januário, A H; Filho, E Rodrigues; Pietro, R C L R; Kashima, S; Sato, D N; França, S C
2002-08-01
Crude extracts and fractions from aerial parts of Physalis angulata have been bioassayed for antimycobacterial activity. Fraction A1-29-12 containing physalins B, F and D exhibited a minimum inhibitory concentration value (MIC) against Mycobacterium tuberculosis H(37)Rv strain of 32 microg/mL. Purified physalin B and physalin D were also tested showing MIC values against Mycobacterium tuberculosis H(37)Rv strain of > 128 microg/mL and 32 microg/mL respectively, suggesting that physalin D plays a relevant role in the antimycobacterial activity displayed. Structural elucidation of both physalins D and B was based on detailed (13)C and (1)H NMR spectral analysis with the aid of 2D-correlation spectroscopy ((1)H-(1)H, COSY, HSQC and HMBC). The assignment of the (13)C chemical shift for physalin D is reported here for the first time. Copyright 2002 John Wiley & Sons, Ltd.
Bianco, María V; Clark, Simon; Blanco, Federico C; Garbaccio, Sergio; García, Elizabeth; Cataldi, Angel A; Williams, Ann; Bigi, Fabiana
2014-01-01
A Mycobacterium bovis knockout in p27-p55 operon was tested as an antituberculosis experimental vaccine in animal models. The mutant MbΔp27-p55 was significantly more attenuated in nude mice than its parental strain but more virulent than BCG Pasteur. Challenge experiments in mice and guinea pigs using M. bovis or M. tuberculosis strains showed similar protection conferred by MbΔp27-p55 mutant than BCG in terms of pathology and bacterial loads in spleen but lower protection than BCG in lungs. When tested in cattle, MbΔp27-p55 did not induce IL-2 expression and induced a very low production of IFNγ, suggesting that the lack of P27/P55 reduces the capacity of M. bovis of triggering an adequate Th1 response.
Molecular typing of Mycobacterium Abscessus isolated from cystic fibrosis patients.
Trovato, Alberto; Baldan, Rossella; Costa, Danila; Simonetti, Tullia M; Cirillo, Daniela M; Tortoli, Enrico
2017-01-01
The possibility of inter-human transmission of Mycobacterium abscessus in cystic fibrosis centres has been recently hypothesized suggesting the need for the molecular characterization of strains isolated from such patients. One hundred and forty one isolates of M. abscessus grown from sputum samples of 29 patients with cystic fibrosis were genotyped resorting to variable number of tandem repeats (VNTR) determination and whole genome sequencing (WGS). Out of 29 VNTR profiles, 15 were unique to the same number of patients while seven were shared by multiple patients. WGS showed that only two of the patients sharing common VNTR patterns were indeed infected by the same strain. The shared VNTR patterns were mostly present among the isolates of M. abscessus subsp. abscessus. As expected WGS showed a clearly higher discriminatory power in comparison with VNTR and appeared the only molecular epidemiology tool suitable to effectively discriminate the isolates of M. abscessus subsp. abscessus.
2017-01-01
The phenoxy alkyl benzimidazoles (PABs) have good antitubercular activity. We expanded our structure–activity relationship studies to determine the core components of PABs required for activity. The most potent compounds had minimum inhibitory concentrations against Mycobacterium tuberculosis in the low nanomolar range with very little cytotoxicity against eukaryotic cells as well as activity against intracellular bacteria. We isolated resistant mutants against PAB compounds, which had mutations in either Rv1339, of unknown function, or qcrB, a component of the cytochrome bc1 oxidase of the electron transport chain. QcrB mutant strains were resistant to all PAB compounds, whereas Rv1339 mutant strains were only resistant to a subset, suggesting that QcrB is the target. The discovery of the target for PAB compounds will allow for the improved design of novel compounds to target intracellular M. tuberculosis. PMID:29035551
Mycobacterium lentiflavum in Drinking Water Supplies, Australia
Carter, Robyn; Torbey, Matthew J.; Minion, Sharri; Tolson, Carla; Sidjabat, Hanna E.; Huygens, Flavia; Hargreaves, Megan; Thomson, Rachel M.
2011-01-01
Mycobacterium lentiflavum, a slow-growing nontuberculous mycobacterium, is a rare cause of human disease. It has been isolated from environmental samples worldwide. To assess the clinical significance of M. lentiflavum isolates reported to the Queensland Tuberculosis Control Centre, Australia, during 2001–2008, we explored the genotypic similarity and geographic relationship between isolates from humans and potable water in the Brisbane metropolitan area. A total of 47 isolates from 36 patients were reported; 4 patients had clinically significant disease. M. lentiflavum was cultured from 13 of 206 drinking water sites. These sites overlapped geographically with home addresses of the patients who had clinically significant disease. Automated repetitive sequence–based PCR genotyping showed a dominant environmental clone closely related to clinical strains. This finding suggests potable water as a possible source of M. lentiflavum infection in humans. PMID:21392429
Marquina-Castillo, Brenda; García-García, Lourdes; Ponce-de-León, Alfredo; Jimenez-Corona, Maria-Eugenia; Bobadilla-del Valle, Miriam; Cano-Arellano, Bulmaro; Canizales-Quintero, Sergio; Martinez-Gamboa, Areli; Kato-Maeda, Midori; Robertson, Brian; Young, Douglas; Small, Peter; Schoolnik, Gary; Sifuentes-Osornio, Jose; Hernandez-Pando, Rogelio
2009-01-01
After encounter with Mycobacterium tuberculosis, a series of non-uniform immune responses are triggered that define the course of the infection. Eight M. tuberculosis strains were selected from a prospective population-based study of pulmonary tuberculosis patients (1995–2003) based on relevant clinical/epidemiological patterns and tested in a well-characterized BALB/c mouse model of progressive pulmonary tuberculosis. In addition, a new mouse model of transmissibility consisting of prolonged cohousing (up to 60 days) of infected and naïve animals was tested. Four phenotypes were defined based on strain virulence (mouse survival, lung bacillary load and tissue damage), immunology response (cytokine expression determined by real-time polymerase chain reaction) and transmissibility (lung bacillary loads and cutaneous delayed-type hypersensitivity in naïve animals).We identified four clearly defined strain phenotypes: (1) hypervirulent strain with non-protective immune response and highly transmissible; (2) virulent strain, associated with high expression of proinflammatory cytokines (tumour necrosis factor and interferon) and very low anti-inflammatory cytokine expression (interleukins 4 and 10), which induced accelerated death by immunopathology; (3) strain inducing efficient protective immunity with lower virulence, and (4) strain demonstrating strong and early macrophage activation (innate immunity) with delayed participation of acquired immunity (interferon expression). We were able to correlate virulent and transmissible phenotypes in the mouse model and markers of community transmission such as tuberculin reactivity among contacts, rapid progression to disease and cluster status. However, we were not able to find correlation with the other two phenotypes. Our new transmission model supported the hypothesis that among these strains increased virulence was linked to increased transmission. PMID:19191912
Davidson, Rebecca M.; Hasan, Nabeeh A.; de Moura, Vinicius Calado Nogueira; Duarte, Rafael Silva; Jackson, Mary; Strong, Michael
2013-01-01
Rapidly growing, non-tuberculous mycobacteria (NTM) in the Mycobacterium abscessus (MAB) species are emerging pathogens that cause various diseases including skin and respiratory infections. The species has undergone recent taxonomic nomenclature refinement, and is currently recognized as two subspecies, M. abscessus subsp. abscessus (MAB-A) and M. abscessus subsp. bolletii (MAB-B). The recently reported outbreaks of MAB-B in surgical patients in Brazil from 2004 to 2009 and in cystic fibrosis patients in the United Kingdom (UK) in 2006 to 2012 underscore the need to investigate the genetic diversity of clinical MAB strains. To this end, we sequenced the genomes of two Brazilian MAB-B epidemic isolates (CRM-0019 and CRM-0020) derived from an outbreak of skin infections in Rio de Janeiro, two unrelated MAB strains from patients with pulmonary infections in the United States (US) (NJH8 and NJH11) and one type MAB-B strain (CCUG 48898) and compared them to 25 publically available genomes of globally diverse MAB strains. Genome-wide analyses of 27,598 core genome single nucleotide polymorphisms (SNPs) revealed that the two Brazilian derived CRM strains are nearly indistinguishable from one another and are more closely related to UK outbreak isolates infecting CF patients than to strains from the US, Malaysia or France. Comparative genomic analyses of six closely related outbreak strains revealed geographic-specific large-scale insertion/deletion variation that corresponds to bacteriophage insertions and recombination hotspots. Our study integrates new genome sequence data with existing genomic information to explore the global diversity of infectious M. abscessus isolates and to compare clinically relevant outbreak strains from different continents. PMID:24055961
Diesel pollution biodegradation: synergetic effect of Mycobacterium and filamentous fungi.
Li, You-Qing; Liu, Hong-Fang; Tian, Zhen-Le; Zhu, Li-Hua; Wu, Ying-Hui; Tang, He-Qing
2008-06-01
To biodegrade the diesel pollution in aqueous solution inoculated with Mycobacterium and filamentous fungi. Bacteria sampled from petroleum hydrocarbons contaminated sites in Karamay Oilfield were isolated and identified as Mycobacterium hyalinum (MH) and cladosporium. Spectrophotometry and gas chromatography (GC) were used to analyze of the residual concentrations of diesel oil and its biodegradation products. From the GC data, the values of apparent biodegradation ratio of the bacterial strain MH to diesel oil were close to those obtained in the control experiments. Moreover, the number of MH did not increase with degradation time. However, by using n-octadecane instead of diesel oil, the real biotic degradation ratio increased to 20.9% over 5 days of degradation. Cladosporium strongly biodegraded diesel oil with a real degradation ratio of up to 34% after 5 days treatment. When the two strains were used simultaneously, a significant synergistic effect between them resulted in almost complete degradation of diesel oil, achieving a total diesel removal of 99% over 5 days of treatment, in which one part of about 80% and another part of about 19% were attributed to biotic and abiotic processes, respectively. The observed synergistic effect was closely related to the aromatics-degrading ability of Cladosporium, which favored the growth of MH and promoted the bioavailability of diesel oil.
Grange, J M; Yates, M D
1989-08-01
A total of 210 new cases of tuberculosis due to Mycobacterium africanum were registered at the South-East Regional Centre for Tuberculosis Bacteriology, Dulwich, between 1977 and 1987 inclusive. This represented 1.25% of bacteriologically-confirmed cases of tuberculosis in South-East England, an incidence slightly higher than that of disease due to M. bovis. Two variants were identified: 150 strains were typed as African I (a type associated with East Africa) and 60 as African II (a type more prevalent in West Africa). Over half the patients infected with African I strains were of Indian subcontinent ethnic origin; patients of African ethnic origin predominated in the African II group while about a fifth o patients infected with either type were of European origin. The European patients with tuberculosis due to M. africanum were notably younger than those in the same region with disease due to other tubercle bacilli. The distribution of lesions due to M. africanum was similar to that due to other tubercle bacilli in the various ethnic groups, except that genito-urinary tuberculosis was uncommon. The importance of a clinical awareness that M. africanum is a highly pathogenic and transmissible tubercle bacillus rather than an opportunist or 'atypical' mycobacterium is stressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Anna I.; Sarsam, Reta D.; Fisher, Andrew J., E-mail: ajfisher@ucdavis.edu
The cysQ gene from Mycobacterium tuberculosis was cloned and the expressed protein, a 3′-phosphoadenosine-5′’-phosphatase, was purified and crystallized. X-ray diffraction data were collected to 1.7 Å resolution.
Harn, H J; Shen, K L; Ho, L I; Yu, K W; Liu, G C; Yueh, K C; Lee, J H
1997-01-01
AIMS: To determine, by strain identification of Mycobacterium tuberculosis, whether transmission has occurred between individuals or whether new strains are present. METHODS: A rapid protocol for random amplified polymorphic DNA (RAPD) analysis was developed. This protocol was applied to 64 strains of M tuberculosis that had been confirmed by culture and microbiological methods. RESULTS: There are five groups of M tuberculosis prevalent in Taipei city, Taiwan. The major types are groups I and III. Groups I and II had been prevalent until the end of last year when, according to our group analysis, they had been eradicated. However, group III was continuously present from the middle of 1995 to the middle of 1996, and group IV was present at the end of both years, which indicated that both groups were transmitted continuously. These clustered strains had demographic characteristics consistent with a finding of transmission tuberculosis. Also, there were 13 of 64 strains with unique RAPD fingerprints that were inferred to be due primarily to the reactivation of infection. In the drug resistance analysis, the major type represented included group III and part of group IV. CONCLUSIONS: Our preliminary data imply, not only that the prevalence of M tuberculosis in Taipei city is due to transmission rather than reactivation, but that drug resistance also may play a role in tuberculosis transmission. Images PMID:9378819
2016-01-01
The general secretion (Sec) pathway is a conserved essential pathway in bacteria and is the primary route of protein export across the cytoplasmic membrane. During protein export, the signal peptidase LepB catalyzes the cleavage of the signal peptide and subsequent release of mature proteins into the extracellular space. We developed a target-based whole cell assay to screen for potential inhibitors of LepB, the sole signal peptidase in Mycobacterium tuberculosis, using a strain engineered to underexpress LepB (LepB-UE). We screened 72,000 compounds against both the Lep-UE and wild-type (wt) strains. We identified the phenylhydrazone (PHY) series as having higher activity against the LepB-UE strain. We conducted a limited structure–activity relationship determination around a representative PHY compound with differential activity (MICs of 3.0 μM against the LepB-UE strain and 18 μM against the wt); several analogues were less potent against the LepB overexpressing strain. A number of chemical modifications around the hydrazone moiety resulted in improved potency. Inhibition of LepB activity was observed for a number of compounds in a biochemical assay using cell membrane fraction derived from M. tuberculosis. Compounds did not increase cell permeability, dissipate membrane potential, or inhibit an unrelated mycobacterial enzyme, suggesting a specific mode of action related to the LepB secretory mechanism. PMID:27642770
Cappelli, G; Volpe, P; Sanduzzi, A; Sacchi, A; Colizzi, V; Mariani, F
2001-12-01
Mycobacterium tuberculosis is an intracellular pathogen that readily survives and replicates in human macrophages (MPhi). Host cells have developed different mycobactericidal mechanisms, including the production of inflammatory cytokines. The aim of this study was to compare the MPhi response, in terms of cytokine gene expression, to infection with the M. tuberculosis laboratory strain H37Rv and the clinical M. tuberculosis isolate CMT97. Both strains induce the production of interleukin-12 (IL-12) and IL-16 at comparable levels. However, the clinical isolate induces a significantly higher and more prolonged MPhi activation, as shown by reverse transcription-PCR analysis of IL-1beta, IL-6, IL-10, transforming growth factor beta, tumor necrosis factor alpha, and gamma interferon (IFN-gamma) transcripts. Interestingly, when IFN-gamma transcription is high, the number of M. tuberculosis genes expressed decreases and vice versa, whereas no mycobactericidal effect was observed in terms of bacterial growth. Expression of 11 genes was also studied in the two M. tuberculosis strains by infecting resting or activated MPhi and compared to bacterial intracellular survival. In both cases, a peculiar inverse correlation between expression of these genes and multiplication was observed. The number and type of genes expressed by the two strains differed significantly.
Perdigão, João; Silva, Hugo; Machado, Diana; Macedo, Rita; Maltez, Fernando; Silva, Carla; Jordao, Luisa; Couto, Isabel; Mallard, Kim; Coll, Francesc; Hill-Cawthorne, Grant A; McNerney, Ruth; Pain, Arnab; Clark, Taane G; Viveiros, Miguel; Portugal, Isabel
2014-11-18
Multidrug- (MDR) and extensively drug resistant (XDR) tuberculosis (TB) presents a challenge to disease control and elimination goals. In Lisbon, Portugal, specific and successful XDR-TB strains have been found in circulation for almost two decades. In the present study we have genotyped and sequenced the genomes of 56 Mycobacterium tuberculosis isolates recovered mostly from Lisbon. The genotyping data revealed three major clusters associated with MDR-TB, two of which are associated with XDR-TB. Whilst the genomic data contributed to elucidate the phylogenetic positioning of circulating MDR-TB strains, showing a high predominance of a single SNP cluster group 5. Furthermore, a genome-wide phylogeny analysis from these strains, together with 19 publicly available genomes of Mycobacterium tuberculosis clinical isolates, revealed two major clades responsible for M/XDR-TB in the region: Lisboa3 and Q1 (LAM).The data presented by this study yielded insights on microevolution and identification of novel compensatory mutations associated with rifampicin resistance in rpoB and rpoC. The screening for other structural variations revealed putative clade-defining variants. One deletion in PPE41, found among Lisboa3 isolates, is proposed to contribute to immune evasion and as a selective advantage. Insertion sequence (IS) mapping has also demonstrated the role of IS6110 as a major driver in mycobacterial evolution by affecting gene integrity and regulation. Globally, this study contributes with novel genome-wide phylogenetic data and has led to the identification of new genomic variants that support the notion of a growing genomic diversity facing both setting and host adaptation.
Toka Özer, Türkan; Yula, Erkan; Doğan, Metin; Baskın, Hüseyin
2018-04-27
Incidence of mycobacterial infections has been increasing. However, diagnosis and treatment of mycobacterial infections can be difficult. The aim of this study was to investigate high-performance liquid chromatography (HPLC) analysis of the mycolic acids for rapid identification and dendrogram cluster analysis of mycobacterium species. Clinical specimens received for mycobacterial culture and antimicrobial susceptibility test were processed by standard laboratory protocols. Positive cultures were analyzed with HPLC method. Mycolic acid analysis with HPLC was used for diagnosis of tuberculosis and other mycobacterial infections. These reports were compared with Sherlock Library mycobacterial species, and the similarity index was analyzed. This value was formed by a software in multidimensional space that was the calculation of the average distance between the nearest library profile and unknown profile. The ninety-two samples were identified as M. tuberculosis. (similarity index between 0.593 and 0.994). One of the other strains was identified as M. avium intracellulare (strain No. 82) (SI = 0.906); one of them was identified as M. interjectum (strain no. 89) (SI = 0.644). Total 94 samples were identified, and dendrogram was applied to these samples. Profile A (10.6%), profile B (59.6%), profile C (11.7%), profile D (3.2%), and other profiles as single different profiles were identified. Rates for each as 1% (89, 94, 1, 82, 26, 42, 32, 41, 100, 43, 47, 44, 40, 35). High-performance liquid chromatography is a useful, rapid, reliable, and practical method for diagnosis of mycobacterium species. © 2018 Wiley Periodicals, Inc.
Patel, S; Yates, M; Saunders, N A
1997-01-01
A PCR-enzyme-linked immunosorbent assay (ELISA) for amplification and rapid identification of mycobacterial DNA coding for 16S rRNA was developed. The PCR selectively targeted and amplified part of the 16S rRNA gene from all mycobacteria while simultaneously labelling one strand of the amplified product with a 5' fluorescein-labelled primer. The identity of the labelled strand was subsequently determined by hybridization to a panel of mycobacterial species-specific capture probes, which were immobilized via their 5' biotin ends to a streptavidin-coated microtiter plate. Specific hybridization of a 5' fluorescein-labelled strand to a species probe was detected colorimetrically with an anti-fluorescein enzyme conjugate. The assay was able to identify 10 Mycobacterium spp. A probe able to hybridize to all Mycobacterium species (All1) was also included. By a heminested PCR, the assay was sensitive enough to detect as little as 10 fg of DNA, which is equivalent to approximately three bacilli. The assay was able to detect and identify mycobacteria directly from sputa. The specificities of the capture probes were assessed by analysis of 60 mycobacterial strains corresponding to 18 species. Probes Avi1, Int1, Kan1, Xen1, Che1, For1, Mal1, Ter1, and Gor1 were specific. The probe Tbc1 cross-hybridized with the Mycobacterium terrae amplicon. Analysis of 35 strains tested blind resulted in 34 strains being correctly identified. This method could be used for rapid identification of early cultures and may be suitable for the detection and concurrent identification of mycobacteria within clinical specimens. PMID:9276419
Screening mutations in drug-resistant Mycobacterium tuberculosis strains in Yunnan, China.
Li, Daoqun; Song, Yuzhu; Zhang, Cheng-Lin; Li, Xiaofei; Xia, Xueshan; Zhang, A-Mei
Drug-resistant tuberculosis (DR-TB), especially multidrug-resistant tuberculosis (MDR-TB), is a serious medical and societal problem in China. The purpose of this study was to evaluate the mutation characteristics of drug-resistant Mycobacterium tuberculosis (M. tuberculosis) isolates in Yunnan, China. Drug susceptibility testing (DST) was performed in 523 clinical M. tuberculosis isolates. Six drug resistance genes (katG, inhA, rpoB, rpsL, embB, and pncA) were selected to screen for mutations. In total, 54 clinical M. tuberculosis strains were identified as drug-resistant by DST, including 18 single drug-resistant (SDR) strains and 36 multidrug-resistant (MDR) strains. Twenty-four types of mutations in five genes (excluding the inhA gene) were screened in forty-one strains. Six novel mutations were identified in this study, including three missense mutations (p.S302R in katG, p.D78G in embB, and p.M1I in pncA), two frameshift mutations (408 ins A and 538-580 del in pncA), and one mutation in a control region (-6 C>T located upstream of rpsL). The mutation frequencies in the hotspot mutation regions in the katG, rpoB, rpsL, embB, and pncA genes were 92.5%, 44.4%, 54.2%, 52.6%, and 37.5%, respectively. The mutation spectra and frequencies seemed somewhat unique in the Yunnan DR-TB strains. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Djouadi, Lydia Neïla; Selama, Okba; Abderrahmani, Ahmed; Bouanane-Darenfed, Amel; Abdellaziz, Lamia; Amziane, Meriam; Fardeau, Marie-Laure; Nateche, Farida
2017-08-01
Opportunistic infections constitute a major challenge for modern medicine mainly because the involved bacteria are usually multiresistant to antibiotics. Most of these bacteria possess remarkable ability to adapt to various ecosystems, including those exposed to anthropogenic activities. This study isolated and identified 21 multiresistant opportunistic bacteria from two polluted rivers, located in Algiers. Cadmium, lead, and copper concentrations were determined for both water samples to evaluate heavy metal pollution. High prevalence of Enterobacteria and non-fermentative Gram-negative rods was found and a nontuberculous Mycobacterium (NTM) strain was isolated. To the best of our knowledge, this is the first detection of NTM in the Algerian environment. The strains were tested for their resistance against 34 antibiotics and 8 heavy metals. Multiple antibiotics and heavy metals resistance was observed in all isolates. The two most resistant strains, identified as Acinetobacter sp. and Citrobacter freundii, were submitted to plasmid curing to determine if resistance genes were plasmid or chromosome encoded. Citrobacter freundii strain P18 showed a high molecular weight plasmid which seems to code for resistance to zinc, lead, and tetracycline, at the same time. These findings strongly suggest that anthropized environments constitute a reservoir for multiresistant opportunistic bacteria and for circulating resistance genes.
Involvement of Linear Plasmids in Aerobic Biodegradation of Vinyl Chloride
DOE Office of Scientific and Technical Information (OSTI.GOV)
BRIGMON, ROBINL.
2004-06-14
Pseudomonas putida strain AJ and Ochrobactrum strain TD were isolated from hazardous waste sites based on their ability to use vinyl chloride (VC) as a sole source of carbon and energy under aerobic conditions. Strains AJ and TD also use ethene and ethylene oxide as growth substrates. Strain AJ contained a linear megaplasmid (approximately 260 kb) when grown on VC or ethene, but no circular plasmids. While growing on ethylene oxide, the size of the linear plasmid in strain AJ decreased to approximately 100 kb, although its ability to use VC as a substrate was retained. The linear plasmids inmore » strain AJ were cured and its ability to consume VC, ethene, and ethylene oxide was lost following growth on a rich substrate (Luria-Bertani broth) through at least three transfers. Strain TD contained three linear plasmids, ranging in size from approximately 100 kb to 320 kb, when growing on VC or ethene. As with strain AJ, the linear plasmids in strain TD were cured following growth on Luria -Bertani broth and its ability to consume VC and ethene was lost. Further analysis of these linear plasmids may help reveal the pathway for VC biodegradation in strains AJ and TD and explain why this process occurs at many but not all sites where groundwater is contaminated with chloroethenes. Metabolism of VC and ethene by strains AJ and TD is initiated by an alkene monooxygenase. Their yields during growth on VC (0.15-0.20 mg total suspended solids per mg VC) are similar to the yields reported for other isolates i.e., Mycobacterium sp., Nocardioides sp., and Pseudomonas sp.« less
Akselband, Y; Cabral, C; Shapiro, D S; McGrath, P
2005-08-01
Control of multi-drug-resistant tuberculosis has been hampered by the lack of simple, rapid and sensitive methods for assessing bacterial growth and antimicrobial susceptibility. Due to the increasing incidence and high frequency of mutations, it is unlikely that culture methods will disappear in the foreseeable future. Therefore, the need to modernize methods for rapid detection of viable clinical isolates, at a minimum as a gold standard, will persist. Previously, we confirmed the feasibility of using the Gel Microdrop (GMD) Growth Assay for identifying sub-populations of resistant Mycobacteria by testing different laboratory strains. Briefly, this assay format relies on encapsulating single bacterium in agarose microspheres and identifying clonogenic growth using flow cytometry and fluorescent staining. In this study, we modified the GMD Growth Assay to make it suitable for clinical applications. We demonstrated the effectiveness and safety of this novel approach for detecting drug susceptibility in clinically relevant laboratory strains as well as clinical isolates of Mycobacterium tuberculosis. Correlation between results using the GMD Growth Assay format and results using two well characterized methods (Broth Microdilution MIC and BACTEC 460TB) was 87.5% and 90%, respectively. However, due to the inherent sensitivity of flow cytometry and the ability to detect small (<1%) sub-populations of resistant mycobacteria, the GMD Growth Assay identified more cases of drug resistance. Using 4 clinically relevant mycobacterial strains, we assessed susceptibility to primary anti-tuberculosis drugs using both the Broth Microdilution MIC method and the GMD Growth Assay. We performed 24 tests on isoniazid-resistant BCG, Mycobacterium tuberculosis H37Ra and Mycobacterium avium strains. The Broth Microdilution MIC method identified 7 cases (29.1%) of resistance to INH and EMB compared to the GMD Growth Assay which identified resistance in 10 cases (41.6%); in 3 cases (12.5%), resistance to INH and EMB was detected only with the GMD Growth Assay. In addition, using 20 Mycobacterium tuberculosis clinical isolates, we compared results using BACTEC 460TB method performed by collaborators and the GMD Growth Assay. Eight of 20 (40%) clinical isolates, which were not identified as drug-resistant using the conventional BACTEC 460TB method, were resistant to 1, 2, or 3 different concentrations of drugs using the GMD Growth Assay (13 cases of 140 experiments). In one case (isolate 1879), resistance to 10.0 microg/ml of STR detected using BACTEC 460TB method was not confirmed by the GMD Growth Assay. Thus, the overall agreement between these methods was 90% (14 discrepant results of 140 experiments). These data demonstrate that the GMD Growth Assay is an accurate and sensitive method for rapid susceptibility testing of Mycobacterium tuberculosis for use in clinical reference laboratory settings.
Intra- and Extra-cellular Proteome Analyses of Steroid-Producer Mycobacteria.
Barreiro, Carlos; Morales, Alejandro; Vázquez-Iglesias, Inés; Sola-Landa, Alberto
2017-01-01
The importance of the pathogenic mycobacteria has mainly focused the omic analyses on different aspects of their clinical significance. In contrast, those industrially relevant mycobacteria have received less attention, even though the steroids market sales in 2011, in example, were estimated in $8 billion.The extra-cellular proteome, due to its relevance in the sterols processing and uptake; as well as the intra-cellular proteome, because of its role in steroids bioconversion, are the core of the present chapter. As a proof of concept, the obtaining methods for both sub-proteomes of Mycobacterium neoaurum NRRL B-3805, a relevant industrial strain involved in steroids production, have been developed. Thus, procedures and relevant key points of these proteomes analyses are fully described.
Ostland, V E; Watral, V; Whipps, C M; Austin, F W; St-Hilaire, S; Westerman, M E; Kent, M L
2008-04-01
A panel of 15 Mycobacterium marinum isolates was characterized by biochemical tests, sequencing the ribosomal DNA intergenic spacer (ITS) region and the heat shock protein 65 gene (hsp65) and pulsed-field gel electrophoresis (PFGE). The biochemical characteristics of all isolates were similar, except for Tween 80 hydrolysis. DNA sequence of hsp65 for a subset of isolates were identical; however, at position 5 of the ITS rDNA, a single nucleotide polymorphism was identified. Isolates possessing a guanine residue at this position (G strains) were unable to hydrolyze Tween 80, while isolates that contained an adenine residue at this position (A strains) were positive for Tween 80 hydrolysis. PFGE successfully discriminated between the G and A strains; all G strains had identical AseI restriction enzyme-cutting patterns while the A strains exhibited a variety of cutting patterns. Eight isolates (4 G and 4 A strains) were further characterized for virulence by experimental infection of hybrid striped bass (HSB) Morone chrysops x M. saxatilis and zebrafish Danio rerio. Seven of the 8 strains produced cumulative mortality ranging from 13.3 to 83.3% in the HSB virulence trial. The M. marinum reference strain ATCC 927T did not produce mortality in HSB. HSB exposed to the G strains had significantly higher cumulative mortality than those exposed to the A strains. When these same isolates were tested in zebrafish, 6 of the 8 strains caused 100% cumulative mortality, with 2 of the A strains being the most pathogenic. In zebrafish, however, ATCC 927T was virulent and produced 28.5% mortality. Collectively, we conclude that the M. marinum G strains are unique and may represent a distinct virulence phenotype in HSB, but this trend was not consistent in zebrafish.
Gopal, Pooja; Tasneen, Rokeya; Yee, Michelle; Lanoix, Jean-Philippe; Sarathy, Jansy; Rasic, George; Li, Liping; Dartois, Véronique; Nuermberger, Eric; Dick, Thomas
2017-07-14
Through mutant selection on agar containing pyrazinoic acid (POA), the bioactive form of the prodrug pyrazinamide (PZA), we recently showed that missense mutations in the aspartate decarboxylase PanD and the unfoldase ClpC1, and loss-of-function mutation of polyketide synthases Mas and PpsA-E involved in phthiocerol dimycocerosate synthesis, cause resistance to POA and PZA in Mycobacterium tuberculosis. Here we first asked whether these in vitro-selected POA/PZA-resistant mutants are attenuated in vivo, to potentially explain the lack of evidence of these mutations among PZA-resistant clinical isolates. Infection of mice with panD, clpC1, and mas/ppsA-E mutants showed that whereas growth of clpC1 and mas/ppsA-E mutants was attenuated, the panD mutant grew as well as the wild-type. To determine whether these resistance mechanisms can emerge within the host, mice infected with wild-type M. tuberculosis were treated with POA, and POA-resistant colonies were confirmed for PZA and POA resistance. Genome sequencing revealed that 82 and 18% of the strains contained missense mutations in panD and clpC1, respectively. Consistent with their lower fitness and POA resistance level, independent mas/ppsA-E mutants were not found. In conclusion, we show that the POA/PZA resistance mechanisms due to panD and clpC1 missense mutations are recapitulated in vivo. Whereas the representative clpC1 mutant was attenuated for growth in the mouse infection model, providing a possible explanation for their absence among clinical isolates, the growth kinetics of the representative panD mutant was unaffected. Why POA/PZA resistance-conferring panD mutations are observed in POA-treated mice but not yet among clinical strains isolated from PZA-treated patients remains to be determined.
New secondary metabolites from bioactive extracts of the fungus Armillaria tabescens
USDA-ARS?s Scientific Manuscript database
Ethyl acetate extracts of Armillaria tabescens (strain JNB-OZ344) mycelium showed significant fungistatic and bacteristatic activities against several major human pathogens including Candida albicans, Cryptococcus neoformans, Escherichia coli and Mycobacterium intracellulare. Chemical analysis of th...
Yamamoto, Tomoyo Matsushita; Nakano, Takashi; Yamaguchi, Masaki; Shimizu, Mitsuhide; Wu, Hong; Aoki, Hiroaki; Ota, Rie; Kobayashi, Toyohide; Sano, Kouichi
2012-12-01
Electrolyzed acid water (EAW) has been studied for its disinfective potential against pathogenic microbes; however, the bactericidal process against Mycobacteria has not been clearly presented. In this study, to clarify the disinfective process against Mycobacteria, EAW-treated bacteria were examined against laboratory strains of Mycobacterium bovis (M. bovis), Mycobacterium smegmatis (M. smegmatis), and Mycobacterium terrae (M. terrae) by recovery culture and observation of morphology, enzymatic assay, and the detection of DNA. All experiments were performed with the use of EAW containing 30 ppm free chlorine that kills Mycobacteria, including three pathogenic clinical isolates of Mycobacterium tuberculosis (M. tuberculosis) and six isolates of other Mycobacteria, within 5 min. In morphology, the bacterial surface became rough, and a longitudinal concavity-like structure appeared. The intrabacterial enzyme of EAW-contacted bacteria was inactivated, but chromosomal DNA was not totally denatured. These results suggest that the bactericidal effect of EAW against Mycobacteria occurs by degradation of the cell wall, followed by denaturation of cytoplasmic proteins, but degeneration of the nucleic acid is not always necessary.
Activity of amikacin against Mycobacterium avium complex under simulated in vivo conditions.
Gangadharam, P R; Kesavalu, L; Rao, P N; Perumal, V K; Iseman, M D
1988-01-01
We studied the activity of amikacin against Mycobacterium avium complex strain 101 by using continuous-level, changing concentrations which simulated levels in serum in a patient, and pulsed exposures. Amikacin at a concentration of 5 or 15 micrograms/ml showed rapid bactericidal action following constant exposure of the organisms. With the in vitro model, using a peak concentration of 10 or 20 micrograms/ml, complete sterilization was obtained by day 7. In pulsed-exposure studies, a minimum period of contact of 72 or 96 h at a concentration of 10 micrograms/ml was needed for complete sterilization. PMID:3415209
Mycobacterium marinum infection in a blue-fronted Amazon parrot (Amazona aestiva).
Hannon, David E; Bemis, David A; Garner, Michael M
2012-12-01
A blue-fronted Amazon parrot (Amazona aestiva) was presented with a granuloma involving the proximal rhinotheca and extending into the rostral sinuses. Mycobacterium marinum was diagnosed based on results of biopsy and culture. Treatment was initiated with clarithromycin, rifampin, and ethambutol, but the bird died 4 months after the onset of antimicrobial therapy. Additional granulomas were found in the left lung and liver on postmortem examination. Mycobacterial isolation on postmortem samples was unsuccessful. This is the first report of Mycobacterium marinum in a bird.
USDA-ARS?s Scientific Manuscript database
It has been shown that Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) activates the Mitogen Activated Protein Kinase (MAPK) p38 pathway, yet it is unclear which components of M. paratuberculosis are involved in the process. Therefore, a set of 42 M. paratuberculosis recombinan...
UTILIZATION OF CARBOHYDRATES AND POLYHYDRIC ALCOHOLS BY MYCOBACTERIUM TUBERCULOSIS
Sweeney, Edward E.; Jann, Gregory J.
1962-01-01
Sweeney, Edward E. (University of California, Los Angeles) and Gregory J. Jann. Utilization of carbohydrates and polyhydric alcohols by Mycobacterium tuberculosis. J. Bacteriol. 84:459–465. 1962.—A new procedure, using a massive inoculum and nongrowth basal medium, was employed for testing carbohydrate and polyhydric alcohol utilization by human tubercle bacilli. A positive reaction was represented by acidification of the test medium rather than by growth, which was the criterion for carbohydrate utilization in studies by earlier workers. The new procedure was both more sensitive and more rapid than growth techniques; results were obtained within days, compared to weeks or months required for growth testing. The massive-inoculum technique may be applied to compounds other than carbohydrates and polyhydric alcohols, and is a sensitive means of detecting changes wrought by various chemical and physical agents upon the metabolism of tubercle bacilli. Three H37Rv strains and six strains of human tubercle bacilli freshly isolated from patients were tested with 21 carbohydrates and polyhydric alcohols. All nine strains gave strong positive reactions for glucose and glycerol, and usually weak positive reactions for ribose and sorbose. Five of the nine strains were trehalose positive, and six (all fresh patient isolates) of the nine were mannose positive. PMID:13979661
Rodwell, Timothy C; Kapasi, Anokhi J; Moore, Marisa; Milian-Suazo, Feliciano; Harris, Beth; Guerrero, L P; Moser, Kathleen; Strathdee, Steffanie A; Garfein, Richard S
2010-09-01
To compare genotypes of Mycobacterium bovis strains from humans in Southern California with genotypes of M. bovis strains in cattle in Mexico and the USA to explore the possible origins of human infections. We conducted a descriptive analysis of M. bovis genotypes from a binational population of humans and cattle using spacer oligonucleotide typing (spoligotyping). One hundred six human M. bovis spoligotypes were compared to spoligotypes from 496 Mexican cattle and 219 US cattle. Twelve spoligotype patterns were identified among human cases and 126 spoligotype patterns were detected in cattle. Over 91% (97/106) of the human M. bovis isolates had spoligotypes that were identical to those found in Mexican cattle. Four human cases had spoligotypes that matched both cattle born in Mexico and in the USA. Nine human cases had spoligotypes that did not match cattle born in Mexico or the USA. Our data indicate that the population of M. bovis strains causing human TB disease in Southern California is closely related to the M. bovis strain population found in Mexican cattle and supports existing epidemiological evidence that human M. bovis disease in San Diego likely originated from Mexican cattle. Copyright © 2010 International Society for Infectious Diseases. All rights reserved.
Spoligotyping of Mycobacterium tuberculosis isolates at a tertiary care hospital in India.
Suzana, Shirly; Shanmugam, Sivakumar; Uma Devi, K R; Swarna Latha, P N; Michael, Joy S
2017-06-01
Spoligotyping is a valuable genotyping tool to study the genetic diversity and molecular epidemiology of Mycobacterium tuberculosis (M. tb). The aim of this study was to analyse different spoligotype patterns of M. tb strains isolated from patients with tuberculosis from different parts of India. A total of 163 M. tb isolates were spoligotyped between January 2014 and January 2015. About 47% (n = 77) were from patients with extrapulmonary tuberculosis; of these, 10 were MDR, and seven were Pre-XDR. Of the 86 M. tb isolates from patients with pulmonary tuberculosis, 25 were MDR, and 25 were Pre-XDR. We found 61 spoligo patterns, 128 clusters in the spoligotype data base (spoldb4 data base) with spoligo international type (SIT) number and 35 true unique isolates. The most pre-dominant spoligotype was EAI lineage (56), followed by Beijing (28), CAS (20), T(9), U(7), X(3), H(3), BOVIS_1 BCG(1) and LAM(1). Although our study identified EAI, CAS and Beijing strain lineages as pre-dominant, we also found a large number of orphan strains (20%) in our study. Beijing strains were more significantly associated with MDR TB than CAS and EAI lineages. Further studies on large sample sizes would help to clearly describe the epidemiology of M. tb in India. © 2017 John Wiley & Sons Ltd.
Adetunji, Victoria; Kehinde, Aderemi; Bolatito, Olayemi; Chen, Jinru
2014-04-01
This study assessed the biofilms formed by selected strains of Mycobacterium tuberculosis and investigated the efficacy of three different treatments to control the biofilms. Two M. tuberculosis strains were inoculated separately in 150 ml of Middlebrook 7H9-Tween 80 (0.1%) broth with 5% liver extract and 10% oleic albumin dextrose catalase (OADC) supplement, 5% liver extract alone, or 10% OADC alone in sterile jars, each containing a 2-cm2 coupon of cement, ceramic, or stainless steel for biofilm development at 37 °C, with agitation for 2, 3, or 4 weeks. Biofilms on the coupons were exposed to 10 ml of 2% sanitizer A or 0.5% sanitizer B at 28 and 45 °C and to hot water at 85 °C for 5 min. Residual biofilms on treated and untreated coupons were assessed. Both strains of M. tuberculosis formed biofilms on the three surfaces; however, one strain formed more biofilms. More biofilms were formed when media containing 5% liver extract was used. Biofilm mass increased as incubation time increased until the third week. More biofilms were formed on cement than on ceramic and stainless steel coupons. Sanitizing treatments at 45 °C removed more biofilms than those at 28 °C. However, neither treatment completely eliminated the biofilms.
Guirado, Evelyn; Gordillo, Sergi; Gil, Olga; Díaz, Jorge; Tapia, Gustavo; Vilaplana, Cristina; Ausina, Vicenç; Cardona, Pere-Joan
2006-04-01
Intragranulomatous necrosis is a primary feature in the natural history of human tuberculosis (TB). Unfortunately, this phenomenon is not usually seen in the experimental TB murine model. Artificial induction of this necrosis in pulmonary granulomas (INPG) may be achieved through aerosol inoculation of lipopolysaccharide (LPS) 3 weeks after Mycobacterium tuberculosis infection. At week 9 post-infection, the centre of primary granulomas became larger, showing eosinophilic necrosis. Interestingly, INPG induction was related to mice strains C57BL/6 and 129/Sv, but not to BALB/c and DBA/2. Furthermore, the same pattern was obtained with the induction of infection using a clinical M. tuberculosis strain (UTE 0335R) that naturally induces INPG. In all the mice strains tested, the study of pulmonary mRNA expression revealed a tendency to increase or to maintain the expression of RANTES, interferon-gamma, tumour necrosis factor and iNOS, in both LPS- and UTE 0335R-induced INPG, thus suggesting that this response must be necessary but not sufficient for inducing INPG. Our work supports that INPG induction is a local phenomenon unrelated to the resistant (C57BL/6 and BALB/c) or susceptible (129/Sv and DBA/2) background of mice strains against M. tuberculosis infection.
Xiong, Liang-Bin; Liu, Hao-Hao; Xu, Li-Qin; Sun, Wan-Ju; Wang, Feng-Qing; Wei, Dong-Zhi
2017-05-22
The strategy of modifying the sterol catabolism pathway in mycobacteria has been adopted to produce steroidal pharmaceutical intermediates, such as 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC), which is used to synthesize various steroids in the industry. However, the productivity is not desirable due to some inherent problems, including the unsatisfactory uptake rate and the low metabolic efficiency of sterols. The compact cell envelope of mycobacteria is a main barrier for the uptake of sterols. In this study, a combined strategy of improving the cell envelope permeability as well as the intracellular sterol metabolism efficiency was investigated to increase the productivity of 4-HBC. MmpL3, encoding a transmembrane transporter of trehalose monomycolate, is an important gene influencing the assembly of mycobacterial cell envelope. The disruption of mmpL3 in Mycobacterium neoaurum ATCC 25795 significantly enhanced the cell permeability by 23.4% and the consumption capacity of sterols by 15.6%. Therefore, the inactivation of mmpL3 was performed in a 4-HBC-producing strain derived from the wild type M. neoaurum and the 4-HBC production in the engineered strain was increased by 24.7%. Subsequently, to enhance the metabolic efficiency of sterols, four key genes, choM1, choM2, cyp125, and fadA5, involved in the sterol conversion pathway were individually overexpressed in the engineered mmpL3-deficient strain. The production of 4-HBC displayed the increases of 18.5, 8.9, 14.5, and 12.1%, respectively. Then, the more efficient genes (choM1, cyp125, and fadA5) were co-overexpressed in the engineered mmpL3-deficient strain, and the productivity of 4-HBC was ultimately increased by 20.3% (0.0633 g/L/h, 7.59 g/L 4-HBC from 20 g/L phytosterol) compared with its original productivity (0.0526 g/L/h, 6.31 g/L 4-HBC from 20 g/L phytosterol) in an industrial resting cell bio-transformation system. Increasing cell permeability combined with the co-overexpression of the key genes (cyp125, choM1, and fadA5) involved in the conversion pathway of sterol to 4-HBC was effective to enhance the productivity of 4-HBC. The strategy might also be useful for the conversion of sterol to other steroidal intermediates by mycobacteria.
Nieto R, Luisa Maria; Mehaffy, Carolina; Creissen, Elizabeth; Troudt, JoLynn; Troy, Amber; Bielefeldt-Ohmann, Helle; Burgos, Marcos; Izzo, Angelo; Dobos, Karen M
2016-01-01
In the last decade, there were 10 million new tuberculosis cases per year globally. Around 9.5% of these cases were caused by isoniazid resistant (INHr) Mycobacterium tuberculosis (Mtb) strains. Although isoniazid resistance in Mtb is multigenic, mutations in the catalase-peroxidase (katG) gene predominate among the INHr strains. The effect of these drug-resistance-conferring mutations on Mtb fitness and virulence is variable. Here, we assessed differences in bacterial growth, immune response and pathology induced by Mtb strains harboring mutations at the N-terminus of the katG gene. We studied one laboratory and one clinically isolated Mtb clonal pair from different genetic lineages. The INHr strain in each pair had one and two katG mutations with significantly reduced levels of the enzyme and peroxidase activity. Both strains share the V1A mutation, while the double mutant clinical INHr had also the novel E3V katG mutation. Four groups of C57BL/6 mice were infected with one of the Mtb strains previously described. We observed a strong reduction in virulence (reduced bacterial growth), lower induction of proinflammatory cytokines and significantly reduced pathology scores in mice infected with the clinical INHr strain compared to the infection caused by its INHs progenitor strain. On the other hand, there was a subtle reduction of bacteria growth without differences in the pathology scores in mice infected with the laboratory INHr strain. Our results also showed distinct alkyl-hydroperoxidase C (AhpC) levels in the katG mutant strains, which could explain the difference in the virulence profile observed. The difference in the AhpC levels between clonal strains was not related to a genetic defect in the gene or its promoter. Cumulatively, our results indicate that the virulence, pathology and fitness of INHr strains could be negatively affected by multiple mutations in katG, lack of the peroxidase activity and reduced AhpC levels.
Iwamoto, Tomotada; Grandjean, Louis; Arikawa, Kentaro; Nakanishi, Noriko; Caviedes, Luz; Coronel, Jorge; Sheen, Patricia; Wada, Takayuki; Taype, Carmen A.; Shaw, Marie-Anne; Moore, David A. J.; Gilman, Robert H.
2012-01-01
Beijing family strains of Mycobacterium tuberculosis have attracted worldwide attention because of their wide geographical distribution and global emergence. Peru, which has a historical relationship with East Asia, is considered to be a hotspot for Beijing family strains in South America. We aimed to unveil the genetic diversity and transmission characteristics of the Beijing strains in Peru. A total of 200 Beijing family strains were identified from 2140 M. tuberculosis isolates obtained in Lima, Peru, between December 2008 and January 2010. Of them, 198 strains were classified into sublineages, on the basis of 10 sets of single nucleotide polymorphisms (SNPs). They were also subjected to variable number tandem-repeat (VNTR) typing using an international standard set of 15 loci (15-MIRU-VNTR) plus 9 additional loci optimized for Beijing strains. An additional 70 Beijing family strains, isolated between 1999 and 2006 in Lima, were also analyzed in order to make a longitudinal comparison. The Beijing family was the third largest spoligotyping clade in Peru. Its population structure, by SNP typing, was characterized by a high frequency of Sequence Type 10 (ST10), which belongs to a modern subfamily of Beijing strains (178/198, 89.9%). Twelve strains belonged to the ancient subfamily (ST3 [n = 3], ST25 [n = 1], ST19 [n = 8]). Overall, the polymorphic information content for each of the 24 loci values was low. The 24 loci VNTR showed a high clustering rate (80.3%) and a high recent transmission index (RTIn−1 = 0.707). These strongly suggest the active and on-going transmission of Beijing family strains in the survey area. Notably, 1 VNTR genotype was found to account for 43.9% of the strains. Comparisons with data from East Asia suggested the genotype emerged as a uniquely endemic clone in Peru. A longitudinal comparison revealed the genotype was present in Lima by 1999. PMID:23185395
Iwamoto, Tomotada; Grandjean, Louis; Arikawa, Kentaro; Nakanishi, Noriko; Caviedes, Luz; Coronel, Jorge; Sheen, Patricia; Wada, Takayuki; Taype, Carmen A; Shaw, Marie-Anne; Moore, David A J; Gilman, Robert H
2012-01-01
Beijing family strains of Mycobacterium tuberculosis have attracted worldwide attention because of their wide geographical distribution and global emergence. Peru, which has a historical relationship with East Asia, is considered to be a hotspot for Beijing family strains in South America. We aimed to unveil the genetic diversity and transmission characteristics of the Beijing strains in Peru. A total of 200 Beijing family strains were identified from 2140 M. tuberculosis isolates obtained in Lima, Peru, between December 2008 and January 2010. Of them, 198 strains were classified into sublineages, on the basis of 10 sets of single nucleotide polymorphisms (SNPs). They were also subjected to variable number tandem-repeat (VNTR) typing using an international standard set of 15 loci (15-MIRU-VNTR) plus 9 additional loci optimized for Beijing strains. An additional 70 Beijing family strains, isolated between 1999 and 2006 in Lima, were also analyzed in order to make a longitudinal comparison. The Beijing family was the third largest spoligotyping clade in Peru. Its population structure, by SNP typing, was characterized by a high frequency of Sequence Type 10 (ST10), which belongs to a modern subfamily of Beijing strains (178/198, 89.9%). Twelve strains belonged to the ancient subfamily (ST3 [n=3], ST25 [n=1], ST19 [n=8]). Overall, the polymorphic information content for each of the 24 loci values was low. The 24 loci VNTR showed a high clustering rate (80.3%) and a high recent transmission index (RTI(n-1)=0.707). These strongly suggest the active and on-going transmission of Beijing family strains in the survey area. Notably, 1 VNTR genotype was found to account for 43.9% of the strains. Comparisons with data from East Asia suggested the genotype emerged as a uniquely endemic clone in Peru. A longitudinal comparison revealed the genotype was present in Lima by 1999.
Vijay, Srinivasan; Vinh, Dao N.; Hai, Hoang T.; Ha, Vu T. N.; Dung, Vu T. M.; Dinh, Tran D.; Nhung, Hoang N.; Tram, Trinh T. B.; Aldridge, Bree B.; Hanh, Nguyen T.; Thu, Do D. A.; Phu, Nguyen H.; Thwaites, Guy E.; Thuong, Nguyen T. T.
2017-01-01
Mycobacterial cellular variations in growth and division increase heterogeneity in cell length, possibly contributing to cell-to-cell variation in host and antibiotic stress tolerance. This may be one of the factors influencing Mycobacterium tuberculosis persistence to antibiotics. Tuberculosis (TB) is a major public health problem in developing countries, antibiotic persistence, and emergence of antibiotic resistance further complicates this problem. We wanted to investigate the factors influencing cell-length distribution in clinical M. tuberculosis strains. In parallel we examined M. tuberculosis cell-length distribution in a large set of clinical strains (n = 158) from ex vivo sputum samples, in vitro macrophage models, and in vitro cultures. Our aim was to understand the influence of clinically relevant factors such as host stresses, M. tuberculosis lineages, antibiotic resistance, antibiotic concentrations, and disease severity on the cell size distribution in clinical M. tuberculosis strains. Increased cell size and cell-to-cell variation in cell length were associated with bacteria in sputum and infected macrophages rather than liquid culture. Multidrug-resistant (MDR) strains displayed increased cell length heterogeneity compared to sensitive strains in infected macrophages and also during growth under rifampicin (RIF) treatment. Importantly, increased cell length was also associated with pulmonary TB disease severity. Supporting these findings, individual host stresses, such as oxidative stress and iron deficiency, increased cell-length heterogeneity of M. tuberculosis strains. In addition we also observed synergism between host stress and RIF treatment in increasing cell length in MDR-TB strains. This study has identified some clinical factors contributing to cell-length heterogeneity in clinical M. tuberculosis strains. The role of these cellular adaptations to host and antibiotic tolerance needs further investigation. PMID:29209302
Li, C; Li, G L; Luo, Q; Li, S J; Wang, R B; Lou, Y L; Lyu, J X; Wan, K L
2017-02-10
Objective: To investigate the relationship between D-cycloserine resistance and the gene mutations of alrA , ddlA and cycA of Mycobacterium ( M. ) tuberculosis , as well as the association between D-cycloserine resistance and spoligotyping genotyping. Methods: A total of 145 M. tuberculosis strains were selected from the strain bank. D-cycloserine resistant phenotypes of the strains were determined by the proportion method and the minimal inhibitory concentration was determined by resazurin microtiter assay. PCR amplification and DNA direct sequencing methods were used for the analysis of gene mutations. Relationship between the resistance phenotype and genotype was analyzed by chi -square test. Results: Of the 145 clinically collected strains, 24 (16.6%) of them were D-cycloserine resistant and 121 (83.4%) were sensitive. There were only synonymous mutations noticed on alrA , ddlA and cycA in sensitive strains. Of the 24 D-cycloserine resistant strains, 3 (12.5%) isolates' cycA and 1 (4.2%) isolates' alrA happened to be non-synonymous mutations, in which the codes were 188, 318 and 508 of cycA , and 261 of alrA , respectively. Results on drug sensitivity tests confirmed the minimal inhibitory concentration of the mutant strains were all increased to some degrees. The D-cycloserine resistant rates of 88 Beijing genotype and 57 non-Beijing genotype strains were 20.5% and 10.5% , respectively, but with no statistically significant difference ( χ (2) =2.47, P >0.05). Conclusions: The non-synonymous mutations of alrA and cycA might contribute to one of the mechanisms of M. tuberculosis D-cycloserine resistance. M. tuberculosis Beijing genotype or non-Beijing genotype was not considered to be associated with the D-cycloserine resistance.
Furuya, Toshiki; Hirose, Satomi; Osanai, Hisashi; Semba, Hisashi; Kino, Kuniki
2011-01-01
Mycobacterium goodii strain 12523 is an actinomycete that is able to oxidize phenol regioselectively at the para position to produce hydroquinone. In this study, we investigated the genes responsible for this unique regioselective oxidation. On the basis of the fact that the oxidation activity of M. goodii strain 12523 toward phenol is induced in the presence of acetone, we first identified acetone-induced proteins in this microorganism by two-dimensional electrophoretic analysis. The N-terminal amino acid sequence of one of these acetone-induced proteins shares 100% identity with that of the protein encoded by the open reading frame Msmeg_1971 in Mycobacterium smegmatis strain mc2155, whose genome sequence has been determined. Since Msmeg_1971, Msmeg_1972, Msmeg_1973, and Msmeg_1974 constitute a putative binuclear iron monooxygenase gene cluster, we cloned this gene cluster of M. smegmatis strain mc2155 and its homologous gene cluster found in M. goodii strain 12523. Sequence analysis of these binuclear iron monooxygenase gene clusters revealed the presence of four genes designated mimABCD, which encode an oxygenase large subunit, a reductase, an oxygenase small subunit, and a coupling protein, respectively. When the mimA gene (Msmeg_1971) of M. smegmatis strain mc2155, which was also found to be able to oxidize phenol to hydroquinone, was deleted, this mutant lost the oxidation ability. This ability was restored by introduction of the mimA gene of M. smegmatis strain mc2155 or of M. goodii strain 12523 into this mutant. Interestingly, we found that these gene clusters also play essential roles in propane and acetone metabolism in these mycobacteria. PMID:21183637
Yu, Zhaoxiao; Zhang, Chenhui; Zhou, Mingliang; Li, Qiming; Li, Hui; Duan, Wei; Li, Xue; Feng, Yonghong; Xie, Jianping
2017-09-01
Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains a formidable threat to global public health. The successful intracellular persistence of M. tuberculosis significantly contributes to the intractability of tuberculosis. Proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) are mycobacterial exclusive protein families that widely reported to be involved in the bacterial virulence, physiology and interaction with host. Rv2770c (PPE44), a predicted virulence factor, was up-regulated upon the infected guinea pig lungs. To investigate the role of Rv2770c, we heterologously expressed the PPE44 in the nonpathogenic fast-growing M. smegmatis strain. Subcellular location analysis demonstrated that Rv2770c is a cell wall associated protein, suggestive of a potential candidate involved in host-pathogen interaction. The Rv2770c can enhance M. smegmatis survival within macrophages and under stresses such as H 2 O 2 , SDS, diamide exposure, and low pH condition. M. smegmatis expressing Rv2770c is more virulent as testified by the increased death of macrophages and the increased expression of interlukin-6 (IL-6) and interlukin-12p40 (IL-12p40). Moreover, Rv2770c altered the secretion of IL-6 and IL-12p40 of macrophages via NF-κB, ERK1/2 and p38 MAPK axis. Taken together, this study implicated that Rv2770c was a virulent factor actively engaged in the interaction with host macrophage. Copyright © 2017. Published by Elsevier B.V.
Novel Mycobacterium tuberculosis complex pathogen, M. mungi.
Alexander, Kathleen A; Laver, Pete N; Michel, Anita L; Williams, Mark; van Helden, Paul D; Warren, Robin M; Gey van Pittius, Nicolaas C
2010-08-01
Seven outbreaks involving increasing numbers of banded mongoose troops and high death rates have been documented. We identified a Mycobacterium tuberculosis complex pathogen, M. mungi sp. nov., as the causative agent among banded mongooses that live near humans in Chobe District, Botswana. Host spectrum and transmission dynamics remain unknown.
Disseminated Mycobacterium chimaera Infection After Cardiothoracic Surgery
Tan, Nicholas; Sampath, Rahul; Abu Saleh, Omar M.; Tweet, Marysia S.; Jevremovic, Dragan; Alniemi, Saba; Wengenack, Nancy L.; Sampathkumar, Priya; Badley, Andrew D.
2016-01-01
Ten case reports of disseminated Mycobacterium chimaera infections associated with cardiovascular surgery were published from Europe. We report 3 cases of disseminated M chimaera infections with histories of aortic graft and/or valvular surgery within the United States. Two of 3 patients demonstrated ocular involvement, a potentially important clinical finding. PMID:27703994
Disseminated Mycobacterium chimaera Infection After Cardiothoracic Surgery.
Tan, Nicholas; Sampath, Rahul; Abu Saleh, Omar M; Tweet, Marysia S; Jevremovic, Dragan; Alniemi, Saba; Wengenack, Nancy L; Sampathkumar, Priya; Badley, Andrew D
2016-09-01
Ten case reports of disseminated Mycobacterium chimaera infections associated with cardiovascular surgery were published from Europe. We report 3 cases of disseminated M chimaera infections with histories of aortic graft and/or valvular surgery within the United States. Two of 3 patients demonstrated ocular involvement, a potentially important clinical finding.
Evolution of Mycobacterium tuberculosis.
Behr, Marcel A
2013-01-01
Genomic studies have provided a refined understanding of the genetic diversity within the Mycobacterium genus, and more specifically within Mycobacterium tuberculosis. These results have informed a new perspective on the macro- and micro-evolution of the tubercle bacillus. In the first step, a M. kansasii-like opportunistic pathogen acquired new genes, through horizontal gene transfer, that enabled it to better exploit an intracellular niche and ultimately evolve into a professional pathogen. In the second step, different subspecies and strains of the M. tuberculosis complex emerged through mutation and deletion of unnecessary DNA. Understanding the differences between M. tuberculosis and related less pathogenic mycobacteria is expected to reveal key bacterial virulence mechanisms and provide opportunities to understand host resistance to mycobacterial infection. Understanding differences within the M. tuberculosis complex and the evolutionary forces shaping these differences is important for investigating the basis of its success as both a symbiont and a pathogen.
Laub, R; Delville, J; Cocito, C
1978-01-01
Serological relatedness of ribosomes from microorganisms of the Mycobacterium, Nocardia, and Corynebacterium genera has been analyzed by the microplate immunodiffusion technique. Mycobacterium and Nocardia proved homogeneous and closely related taxa, whereas Corynebacterium was found to be a heterogeneous phylum connected by remote links to the others. The taxonomic position of "diphtheroid microorganisms" (non-acid-fast, gram-positive bacteria morphologically similar to corynebactria), which were found together with Mycobacterium leprae in human leprosy lesions, was also investigated. Ribosomes of diphtheroid bacteria strongly cross-reacted with antisera against several mycobacteria and nocardiae but not against corynebacteria. Moreover, ribosomes from independently isolated diphtheroid strains proved serologically related and yielded strong cross-reactions with antisera against M. leprae as well as with sera from leprosy patients. Hence, diphtheroid microorganisms represent a homogeneous group immunologically related to mycobacteria in general and more specifically to M. leprae. Images PMID:730371
Wang, QingBiao; Xu, Yiqin; Gu, Zhuoya; Liu, Nian; Jin, Ke; Li, Yao; Crabbe, M James C; Zhong, Yang
2018-04-01
Bacterial RNA polymerase (RNAP) is an effective target for antibacterial treatment. In order to search new potential targets in RNAP of Mycobacterium, we detected adaptive selections of RNAP related genes in 13 strains of Mycobacterium by phylogenetic analysis. We first collected sequences of 17 genes including rpoA, rpoB, rpoC, rpoZ, and sigma factor A-M. Then maximum likelihood trees were constructed, followed by positive selection detection. We found that sigG shows positive selection along the clade (M. tuberculosis, M. bovis), suggesting its important evolutionary role and its potential to be a new antibacterial target. Moreover, the regions near 933Cys and 935His on the rpoB subunit of M. tuberculosis showed significant positive selection, which could also be a new attractive target for anti-tuberculosis drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Machowski, Edith Erika; Kana, Bavesh Davandra
2017-12-01
Molecular diagnostics have revolutionized the management of health care through enhanced detection of disease or infection and effective enrollment into treatment. In recognition of this, the World Health Organization approved the rollout of nucleic acid amplification technologies for identification of Mycobacterium tuberculosis using platforms such as GeneXpert MTB/RIF, the GenoType MTBDR plus line probe assay, and, more recently, GeneXpert MTB/RIF Ultra. These assays can simultaneously detect tuberculosis infection and assess rifampin resistance. However, their widespread use in health systems requires verification and quality assurance programs. To enable development of these, we report the construction of genetically modified strains of Mycobacterium smegmatis that mimic the profile of Mycobacterium tuberculosis on both the GeneXpert MTB/RIF and the MTBDR plus line probe diagnostic tests. Using site-specific gene editing, we also created derivatives that faithfully mimic the diagnostic result of rifampin-resistant M. tuberculosis , with mutations at positions 513, 516, 526, 531, and 533 in the rifampin resistance-determining region of the rpoB gene. Next, we extended this approach to other diseases and demonstrated that a Staphylococcus aureus gene sequence can be introduced into M. smegmatis to generate a positive response for the SCC mec probe in the GeneXpert SA Nasal Complete molecular diagnostic cartridge, designed for identification of methicillin-resistant S. aureus These biomimetic strains are cost-effective, have low biohazard content, accurately mimic drug resistance, and can be produced with relative ease, thus illustrating their potential for widespread use as verification standards for diagnosis of a variety of diseases. Copyright © 2017 American Society for Microbiology.
Lau, Susanna KP; Lam, Ching-Wan; Curreem, Shirly OT; Lee, Kim-Chung; Lau, Candy CY; Chow, Wang-Ngai; Ngan, Antonio HY; To, Kelvin KW; Chan, Jasper FW; Hung, Ivan FN; Yam, Wing-Cheong; Yuen, Kwok-Yung; Woo, Patrick CY
2015-01-01
Although previous studies have reported the use of metabolomics for Mycobacterium species differentiation, little is known about the potential of extracellular metabolites of Mycobacterium tuberculosis (MTB) as specific biomarkers. Using an optimized ultrahigh performance liquid chromatography–electrospray ionization–quadruple time of flight–mass spectrometry (UHPLC–ESI–Q–TOF–MS) platform, we characterized the extracellular metabolomes of culture supernatant of nine MTB strains and nine non-tuberculous Mycobacterium (NTM) strains (four M. avium complex, one M. bovis Bacillus Calmette–Guérin (BCG), one M. chelonae, one M. fortuitum and two M. kansasii). Principal component analysis readily distinguished the metabolomes between MTB and NTM. Using multivariate and univariate analysis, 24 metabolites with significantly higher levels in MTB were identified. While seven metabolites were identified by tandem mass spectrometry (MS/MS), the other 17 metabolites were unidentified by MS/MS against database matching, suggesting that they may be potentially novel compounds. One metabolite was identified as dexpanthenol, the alcohol analog of pantothenic acid (vitamin B5), which was not known to be produced by bacteria previously. Four metabolites were identified as 1-tuberculosinyladenosine (1-TbAd), a product of the virulence-associated enzyme Rv3378c, and three previously undescribed derivatives of 1-TbAd. Two derivatives differ from 1-TbAd by the ribose group of the nucleoside while the other likely differs by the base. The remaining two metabolites were identified as a tetrapeptide, Val-His-Glu-His, and a monoacylglycerophosphoglycerol, phosphatidylglycerol (PG) (16∶0/0∶0), respectively. Further studies on the chemical structure and biosynthetic pathway of these MTB-specific metabolites would help understand their biological functions. Studies on clinical samples from tuberculosis patients are required to explore for their potential role as diagnostic biomarkers. PMID:26038762
Jensen, Kara; dela Pena-Ponce, Myra Grace; Piatak, Michael; Shoemaker, Rebecca; Oswald, Kelli; Jacobs, William R.; Fennelly, Glenn; Lucero, Carissa; Mollan, Katie R.; Hudgens, Michael G.; Amedee, Angela; Kozlowski, Pamela A.; Estes, Jacob D.; Lifson, Jeffrey D.; Van Rompay, Koen K. A.; Larsen, Michelle
2016-01-01
ABSTRACT Our goal is to develop a pediatric combination vaccine to protect the vulnerable infant population against human immunodeficiency virus type 1 (HIV-1) and tuberculosis (TB) infections. The vaccine consists of an auxotroph Mycobacterium tuberculosis strain that coexpresses HIV antigens. Utilizing an infant rhesus macaque model, we have previously shown that this attenuated M. tuberculosis (AMtb)-simian immunodeficiency virus (SIV) vaccine is immunogenic, and although the vaccine did not prevent oral SIV infection, a subset of vaccinated animals was able to partially control virus replication. However, unexpectedly, vaccinated infants required fewer SIV exposures to become infected compared to naive controls. Considering that the current TB vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), can induce potent innate immune responses and confer pathogen-unspecific trained immunity, we hypothesized that an imbalance between enhanced myeloid cell function and immune activation might have influenced the outcome of oral SIV challenge in AMtb-SIV-vaccinated infants. To address this question, we used archived samples from unchallenged animals from our previous AMtb-SIV vaccine studies and vaccinated additional infant macaques with BCG or AMtb only. Our results show that vaccinated infants, regardless of vaccine strain or regimen, had enhanced myeloid cell responses. However, CD4+ T cells were concurrently activated, and the persistence of these activated target cells in oral and/or gastrointestinal tissues may have facilitated oral SIV infection. Immune activation was more pronounced in BCG-vaccinated infant macaques than in AMtb-vaccinated infant macaques, indicating a role for vaccine attenuation. These findings underline the importance of understanding the interplay of vaccine-induced immunity and immune activation and its effect on HIV acquisition risk and outcome in infants. PMID:27655885
Foddai, A C G; Grant, I R
2017-05-01
To validate an optimized peptide-mediated magnetic separation (PMS)-phage assay for detection of viable Mycobacterium avium subsp. paratuberculosis (MAP) in milk. Inclusivity, specificity and limit of detection 50% (LOD 50 ) of the optimized PMS-phage assay were assessed. Plaques were obtained for all 43 MAP strains tested. Of 12 other Mycobacterium sp. tested, only Mycobacterium bovis BCG produced small numbers of plaques. LOD 50 of the PMS-phage assay was 0·93 MAP cells per 50 ml milk, which was better than both PMS-qPCR and PMS-culture. When individual milks (n = 146) and bulk tank milk (BTM, n = 22) obtained from Johne's affected herds were tested by the PMS-phage assay, viable MAP were detected in 31 (21·2%) of 146 individual milks and 13 (59·1%) of 22 BTM, with MAP numbers detected ranging from 6-948 plaque-forming-units per 50 ml milk. PMS-qPCR and PMS-MGIT culture proved to be less sensitive tests than the PMS-phage assay. The optimized PMS-phage assay is the most sensitive and specific method available for the detection of viable MAP in milk. Further work is needed to streamline the PMS-phage assay, because the assay's multistep format currently makes it unsuitable for adoption by the dairy industry as a screening test. The inclusivity (ability to detect all MAP strains), specificity (ability to detect only MAP) and detection sensitivity (ability to detect low numbers of MAP) of the optimized PMS-phage assay have been comprehensively demonstrated for the first time. © 2017 The Society for Applied Microbiology.
Venisse, A; Berjeaud, J M; Chaurand, P; Gilleron, M; Puzo, G
1993-06-15
It was recently shown that mycobacterial lipoarabinomannan (LAM) can be classified into two types (Chatterjee, D., Lowell, K., Rivoire B., McNeil M. R., and Brennan, P. J. (1992) J. Biol. Chem. 267, 6234-6239) according to the presence or absence of mannosyl residues (Manp) located at the nonreducing end of the oligoarabinosyl side chains. These two types of LAM were found in a pathogenic Mycobacterium tuberculosis strain and in an avirulent M. tuberculosis strain, respectively, suggesting that LAM with Manp characterizes virulent and "disease-inducing strains." We now report the structure of the LAM from Mycobacterium bovis Bacille Calmette-Guérin (BCG) strain Pasteur, largely used throughout the world as vaccine against tuberculosis. Using an up-to-date analytical approach, we found that the LAM of M. bovis BCG belongs to the class of LAMs capped with Manp. By means of two-dimensional homonuclear and heteronuclear scalar coupling NMR analysis and methylation data, the sugar spin system assignments were partially established, revealing that the LAM contained two types of terminal Manp and 2-O-linked Manp. From the following four-step process: (i) partial hydrolysis of deacylated LAM (dLAM), (ii) oligosaccharide derivatization with aminobenzoic ethyl ester, (iii) HPLC purification, (iv) FAB/MS-MS analysis; it was shown that the dimannosyl unit alpha-D-Manp-(1-->2)-alpha-D-Manp is the major residue capping the termini of the arabinan of the LAM. In this report, LAM molecular mass determination was established using matrix-assisted UV-laser desorption/ionization mass spectrometry which reveals that the LAM molecular mass is around 17.4 kDa. The similarity of the LAM structures between M. bovis BCG and M. tuberculosis H37Rv is discussed in regard to their function in the immunopathology of mycobacterial infection.
Ali, Asho; Hasan, Zahra; McNerney, Ruth; Mallard, Kim; Hill-Cawthorne, Grant; Coll, Francesc; Nair, Mridul; Pain, Arnab; Clark, Taane G; Hasan, Rumina
2015-01-01
Improved molecular diagnostic methods for detection drug resistance in Mycobacterium tuberculosis (MTB) strains are required. Resistance to first- and second- line anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs) in particular genes. However, these SNPs can vary between MTB lineages therefore local data is required to describe different strain populations. We used whole genome sequencing (WGS) to characterize 37 extensively drug-resistant (XDR) MTB isolates from Pakistan and investigated 40 genes associated with drug resistance. Rifampicin resistance was attributable to SNPs in the rpoB hot-spot region. Isoniazid resistance was most commonly associated with the katG codon 315 (92%) mutation followed by inhA S94A (8%) however, one strain did not have SNPs in katG, inhA or oxyR-ahpC. All strains were pyrazimamide resistant but only 43% had pncA SNPs. Ethambutol resistant strains predominantly had embB codon 306 (62%) mutations, but additional SNPs at embB codons 406, 378 and 328 were also present. Fluoroquinolone resistance was associated with gyrA 91-94 codons in 81% of strains; four strains had only gyrB mutations, while others did not have SNPs in either gyrA or gyrB. Streptomycin resistant strains had mutations in ribosomal RNA genes; rpsL codon 43 (42%); rrs 500 region (16%), and gidB (34%) while six strains did not have mutations in any of these genes. Amikacin/kanamycin/capreomycin resistance was associated with SNPs in rrs at nt1401 (78%) and nt1484 (3%), except in seven (19%) strains. We estimate that if only the common hot-spot region targets of current commercial assays were used, the concordance between phenotypic and genotypic testing for these XDR strains would vary between rifampicin (100%), isoniazid (92%), flouroquinolones (81%), aminoglycoside (78%) and ethambutol (62%); while pncA sequencing would provide genotypic resistance in less than half the isolates. This work highlights the importance of expanded targets for drug resistance detection in MTB isolates.
Kleiveland, Charlotte R.; Minic, Rajna; Moen, Lars F.; Øverland, Lise; Tjåland, Rannei; Carlsen, Harald; Lea, Tor; Eijsink, Vincent G. H.
2016-01-01
ABSTRACT Tuberculosis (TB) remains among the most deadly diseases in the world. The only available vaccine against tuberculosis is the bacille Calmette-Guérin (BCG) vaccine, which does not ensure full protection in adults. There is a global urgency for the development of an effective vaccine for preventing disease transmission, and it requires novel approaches. We are exploring the use of lactic acid bacteria (LAB) as a vector for antigen delivery to mucosal sites. Here, we demonstrate the successful expression and surface display of a Mycobacterium tuberculosis fusion antigen (comprising Ag85B and ESAT-6, referred to as AgE6) on Lactobacillus plantarum. The AgE6 fusion antigen was targeted to the bacterial surface using two different anchors, a lipoprotein anchor directing the protein to the cell membrane and a covalent cell wall anchor. AgE6-producing L. plantarum strains using each of the two anchors induced antigen-specific proliferative responses in lymphocytes purified from TB-positive donors. Similarly, both strains induced immune responses in mice after nasal or oral immunization. The impact of the anchoring strategies was reflected in dissimilarities in the immune responses generated by the two L. plantarum strains in vivo. The present study comprises an initial step toward the development of L. plantarum as a vector for M. tuberculosis antigen delivery. IMPORTANCE This work presents the development of Lactobacillus plantarum as a candidate mucosal vaccine against tuberculosis. Tuberculosis remains one of the top infectious diseases worldwide, and the only available vaccine, bacille Calmette-Guérin (BCG), fails to protect adults and adolescents. Direct antigen delivery to mucosal sites is a promising strategy in tuberculosis vaccine development, and lactic acid bacteria potentially provide easy, safe, and low-cost delivery vehicles for mucosal immunization. We have engineered L. plantarum strains to produce a Mycobacterium tuberculosis fusion antigen and to anchor this antigen to the bacterial cell wall or to the cell membrane. The recombinant strains elicited proliferative antigen-specific T-cell responses in white blood cells from tuberculosis-positive humans and induced specific immune responses after nasal and oral administrations in mice. PMID:27815271
Kuczkowska, Katarzyna; Kleiveland, Charlotte R; Minic, Rajna; Moen, Lars F; Øverland, Lise; Tjåland, Rannei; Carlsen, Harald; Lea, Tor; Mathiesen, Geir; Eijsink, Vincent G H
2017-01-15
Tuberculosis (TB) remains among the most deadly diseases in the world. The only available vaccine against tuberculosis is the bacille Calmette-Guérin (BCG) vaccine, which does not ensure full protection in adults. There is a global urgency for the development of an effective vaccine for preventing disease transmission, and it requires novel approaches. We are exploring the use of lactic acid bacteria (LAB) as a vector for antigen delivery to mucosal sites. Here, we demonstrate the successful expression and surface display of a Mycobacterium tuberculosis fusion antigen (comprising Ag85B and ESAT-6, referred to as AgE6) on Lactobacillus plantarum The AgE6 fusion antigen was targeted to the bacterial surface using two different anchors, a lipoprotein anchor directing the protein to the cell membrane and a covalent cell wall anchor. AgE6-producing L. plantarum strains using each of the two anchors induced antigen-specific proliferative responses in lymphocytes purified from TB-positive donors. Similarly, both strains induced immune responses in mice after nasal or oral immunization. The impact of the anchoring strategies was reflected in dissimilarities in the immune responses generated by the two L. plantarum strains in vivo The present study comprises an initial step toward the development of L. plantarum as a vector for M. tuberculosis antigen delivery. This work presents the development of Lactobacillus plantarum as a candidate mucosal vaccine against tuberculosis. Tuberculosis remains one of the top infectious diseases worldwide, and the only available vaccine, bacille Calmette-Guérin (BCG), fails to protect adults and adolescents. Direct antigen delivery to mucosal sites is a promising strategy in tuberculosis vaccine development, and lactic acid bacteria potentially provide easy, safe, and low-cost delivery vehicles for mucosal immunization. We have engineered L. plantarum strains to produce a Mycobacterium tuberculosis fusion antigen and to anchor this antigen to the bacterial cell wall or to the cell membrane. The recombinant strains elicited proliferative antigen-specific T-cell responses in white blood cells from tuberculosis-positive humans and induced specific immune responses after nasal and oral administrations in mice. Copyright © 2016 American Society for Microbiology.
Admixed Phylogenetic Distribution of Drug Resistant Mycobacterium tuberculosis in Saudi Arabia
Varghese, Bright; Supply, Philip; Allix-Béguec, Caroline; Shoukri, Mohammed; Al-Omari, Ruba; Herbawi, Mais; Al-Hajoj, Sahal
2013-01-01
Background The phylogeographical structure of Mycobacterium tuberculosis is generally bimodal in low tuberculosis (TB) incidence countries, where genetic lineages of the isolates generally differ with little strain clustering between autochthonous and foreign-born TB patients. However, less is known on this structure in Saudi Arabia—the most important hub of human migration as it hosts a total population of expatriates and pilgrims from all over the world which is equal to that of its citizens. Methodology We explored the mycobacterial phylogenetic structure and strain molecular clustering in Saudi Arabia by genotyping 322 drug-resistant clinical isolates collected over a 12-month period in a national drug surveillance survey, using 24 locus-based MIRU-VNTR typing and spoligotyping. Principal Findings In contrast to the cosmopolitan population of the country, almost all the known phylogeographic lineages of M. tuberculosis complex (with noticeable exception of Mycobacterium africanum/West-African 1 and 2) were detected, with Delhi/CAS (21.1%), EAI (11.2%), Beijing (11.2%) and main branches of the Euro-American super-lineage such as Ghana (14.9%), Haarlem (10.6%) and Cameroon (7.8%) being represented. Statistically significant associations of strain lineages were observed with poly-drug resistance and multi drug resistance especially among previously treated cases (p value of < = 0.001 for both types of resistance), with relative over-representation of Beijing strains in the latter category. However, there was no significant difference among Saudi and non-Saudi TB patients regarding distribution of phylogenetic lineages (p = 0.311). Moreover, 59.5% (22/37) of the strain molecular clusters were shared between the Saudi born and immigrant TB patients. Conclusions Specific distribution of M. tuberculosis phylogeographic lineages is not observed between the autochthonous and foreign-born populations. These observations might reflect both socially favored ongoing TB transmission between the two population groups, and historically deep-rooted, prolonged contacts and trade relations of the peninsula with other world regions. More vigorous surveillance and strict adherence to tuberculosis control policies are urgently needed in the country. PMID:23383340
Tsukamoto, Yumiko; Maeda, Yumi; Tamura, Toshiki; Mukai, Tetsu; Mitarai, Satoshi; Yamamoto, Saburo; Makino, Masahiko
2016-12-07
Enhancement of the T cell-stimulating ability of Mycobacterium bovis BCG (BCG) is necessary to develop an effective tuberculosis vaccine. For this purpose, we introduced the PEST-HSP70-major membrane protein-II (MMPII)-PEST fusion gene into ureC-gene depleted recombinant (r) BCG to produce BCG-PEST. The PEST sequence is involved in the proteasomal processing of antigens. BCG-PEST secreted the PEST-HSP70-MMPII-PEST fusion protein and more efficiently activated human monocyte-derived dendritic cells (DCs) in terms of phenotypic changes and cytokine productions than an empty-vector-introduced BCG or HSP70-MMPII gene-introduced ureC gene-depleted BCG (BCG-DHTM). Autologous human naïve CD8 + T cells and naïve CD4 + T cells were effectively activated by BCG-PEST and produced IFN-γ in an antigen-specific manner through DCs. These T cell activations were closely associated with phagosomal maturation and intraproteasomal protein degradation in antigen-presenting cells. Furthermore, BCG-PEST produced long-lasting memory-type T cells in C57BL/6 mice more efficiently than control rBCGs. Moreover, a single subcutaneous injection of BCG-PEST more effectively reduced the multiplication of subsequent aerosol-challenged Mycobacterium tuberculosis of the standard H37Rv strain and clinically isolated Beijing strain in the lungs than control rBCGs. The vaccination effect of BCG-PEST lasted for at least 6months. These results indicate that BCG-PEST may be able to efficiently control the spread of tuberculosis in human. Copyright © 2016 Elsevier Ltd. All rights reserved.
Florea, Dragoş; Oţelea, Dan; Olaru, Ioana D.; Hristea, Adriana
2016-01-01
Background The need to limit the spread of drug-resistant Mycobacterium tuberculosis requires rapid detection of resistant strains. The present study aimed to evaluate a commercial assay using broad-range PCR coupled with electrospray ionization mass spectrometry (PCR/ESI-MS) for the rapid detection of isoniazid (INH) and rifampin (RIF) resistance in M. tuberculosis strains isolated from Romanian patients with pulmonary tuberculosis. Methods PCR/ESI-MS was used to detect genotypic resistance to RIF and INH in a panel of 63 M. tuberculosis isolates phenotypically characterized using the absolute concentration method on Löwenstein-Jensen medium. Results Thirty-eight (60%) strains were susceptible to both drugs, 22 (35%) were RIF and INH resistant, one was INH mono-resistant and two were RIF mono-resistant. The sensitivity for INH and RIF resistance mutations detection were 100% and 92% respectively, with a specificity of more than 95% for each drug. Conclusion PCR/ESI-MS is a good method for the detection of RIF and INH resistance and might represent an alternative to other rapid diagnostic tests for the detection of genetic markers of resistance in M. tuberculosis isolates. PMID:27019827
Genetic markers, genotyping methods & next generation sequencing in Mycobacterium tuberculosis
Desikan, Srinidhi; Narayanan, Sujatha
2015-01-01
Molecular epidemiology (ME) is one of the main areas in tuberculosis research which is widely used to study the transmission epidemics and outbreaks of tubercle bacilli. It exploits the presence of various polymorphisms in the genome of the bacteria that can be widely used as genetic markers. Many DNA typing methods apply these genetic markers to differentiate various strains and to study the evolutionary relationships between them. The three widely used genotyping tools to differentiate Mycobacterium tuberculosis strains are IS6110 restriction fragment length polymorphism (RFLP), spacer oligotyping (Spoligotyping), and mycobacterial interspersed repeat units - variable number of tandem repeats (MIRU-VNTR). A new prospect towards ME was introduced with the development of whole genome sequencing (WGS) and the next generation sequencing (NGS) methods, where the entire genome is sequenced that not only helps in pointing out minute differences between the various sequences but also saves time and the cost. NGS is also found to be useful in identifying single nucleotide polymorphisms (SNPs), comparative genomics and also various aspects about transmission dynamics. These techniques enable the identification of mycobacterial strains and also facilitate the study of their phylogenetic and evolutionary traits. PMID:26205019
Mirabal, Niuris C.; Yzquierdo, Sergio L.; Lemus, Dihadenys; Madruga, Mariela; Milián, Yoslaine; Echemendía, Miguel; Takiff, Howard; Martin, Anandi; Van der Stuyf, Patrick; Palomino, Juan Carlos; Montoro, Ernesto
2010-01-01
The direct detection of pyrazinamide resistance in Mycobacterium tuberculosis is sufficiently difficult that many laboratories do not attempt it. Most pyrazinamide resistance is caused by mutations that inactivate the pyrazinamidase enzyme needed to convert the prodrug pyrazinamide to its active form. We evaluated two newer and simpler methods to assess pyrazinamidase activity, the nitrate reductase and malachite green microtube assays, using nicotinamide in place of pyrazinamide. A total of 102 strains were tested by these methods and the results compared with those obtained by the classic Wayne assay. Mutations in the pncA gene were identified by sequencing the pncA genes from all isolates in which pyrazinamide resistance was detected by any of the three methods. Both the nitrate reductase and malachite green microtube assays showed sensitivities of 93.75% and specificities of 97.67%. Mutations in the pncA gene were found in 14 of 16 strains that were pyrazinamide resistant and in 1 of 4 strains that were sensitive by the Wayne assay. Both of these simple methods, used with nicotinamide, are promising and inexpensive alternatives for the rapid detection of pyrazinamide resistance in limited-resource countries. PMID:20554826
Sinha, Indrajit; Dick, Thomas
2004-06-01
To determine whether the fatty acid synthesis enzyme malonyl coenzyme A:acyl carrier protein transacylase (MCAT) is involved in the growth-inhibitory effect of trifluoperazine in the tubercle bacillus Mycobacterium bovis BCG. BCG was grown in liquid culture with various concentrations of trifluoperazine and growth was monitored by OD measurement. To determine the effect of trifluoperazine on MCAT protein level, total protein was extracted from BCG cultures and was analysed by 2D gel electrophoresis and western blot. To confirm trifluoperazine-dependent reduction in the MCAT protein level, two BCG strains overexpressing MCAT at a low and high constitutive level were similarly tested. The synergic effect of trifluoperazine and isoniazid was tested at sub-MIC levels in liquid cultures. Trifluoperazine inhibition of growth correlates with reduction in the steady-state level of MCAT protein. Overexpression of MCAT confers resistance to trifluoperazine. Trifluoperazine acts synergically (albeit weakly) with isoniazid and no resistance towards isoniazid alone was observed due to overexpression of MCAT. This suggests MCAT to be a specific target of trifluoperazine. These results indicate MCAT as a target of trifluoperazine and provide an explanation for the inhibitory effect of trifluoperazine on mycobacterial lipid synthesis observed earlier. This makes MCAT a potential target for new antimycobacterials.
Otal, Isabel; Pérez-Herrán, Esther; Garcia-Morales, Lazaro; Menéndez, María C.; Gonzalez-y-Merchand, Jorge A.; Martín, Carlos; García, María J.
2017-01-01
In vitro transposition is a powerful genetic tool for identifying mycobacterial virulence genes and studying virulence factors in relation to the host. Transposon shuttle mutagenesis is a method for constructing stable insertions in the genome of different microorganisms including mycobacteria. Using an IS1096 derivative, we have constructed the Tngfp, a transposon containing a promoterless green fluorescent protein (gfp) gene. This transposon was able to transpose randomly in Mycobacterium bovis BCG. Bacteria with a single copy of the gfp gene per chromosome from an M. bovis BCG::Tngfp library were analyzed and cells exhibiting high levels of fluorescence were detected by flow cytometry. Application of this approach allowed for the selection of a mutant, BCG_2177c::Tngfp (BCG-Tn), on the basis of high level of long-standing fluorescence at stationary phase. This BCG-Tn mutant showed some particular phenotypic features compared to the wild type strain, mainly during stationary phase, when cholesterol was used as a sole carbon source, thus supporting the relationships of the targeted gene with the regulation of cholesterol metabolism in this bacteria. This approach showed that Tngfp is a potentially useful tool for studying the involvement of the targeted loci in metabolic pathways of mycobacteria. PMID:28321208
Wu, Chia-wei; Schmoller, Shelly K.; Bannantine, John P.; Eckstein, Torsten M.; Inamine, Julie M.; Livesey, Michael; Albrecht, Ralph; Talaat, Adel M.
2009-01-01
Biofilm formation by pathogenic bacteria plays a key role in their pathogenesis. Previously, the pstA gene was shown to be involved in the virulence of Mycobacterium avium subspecies paratuberculosis (M. ap), the causative agent of Johne's disease in cattle and a potential risk factor for Crohn's disease. Scanning electron microscopy and colonization levels of the M. ap mutant indicated that the pstA gene significantly contributes to the ability of M. ap to form biofilms. Digital measurements taken during electron microscopy identified a unique morphology for the ΔpstA mutant, which consisted of significantly shorter bacilli than the wild type. Analysis of the lipid profiles of the mycobacterial strains identified a novel lipopeptide that was present in the cell wall extracts of wild-type M. ap, but missing from the ΔpstA mutant. Interestingly, the calf infection model suggested that pstA contributes to intestinal invasion of M. ap. Furthermore, immunoblot analysis of peptides encoded by pstA identified a specific and significant level of immunogenicity. Taken together, our analysis revealed a novel cell wall component that could contribute to biofilm formation and to the virulence and immunogenicity of M. ap. Molecular tools to better control M. ap infections could be developed utilizing the presented findings. PMID:19490829
Role of the Mce1 transporter in the lipid homeostasis of Mycobacterium tuberculosis.
Forrellad, Marina Andrea; McNeil, Michael; Santangelo, María de la Paz; Blanco, Federico Carlos; García, Elizabeth; Klepp, Laura Inés; Huff, Jason; Niederweis, Michael; Jackson, Mary; Bigi, Fabiana
2014-03-01
Tuberculosis is one of the leading causes of mortality throughout the world. Mycobacterium tuberculosis, the causative agent of human tuberculosis, has developed several strategies involving proteins and other compounds known collectively as virulence factors to subvert human host defences and invade the human host. The Mce proteins are among these virulence-related proteins and are encoded by the mce1, mce2, mce3 and mce4 operons in the genome of M. tuberculosis. It has been proposed that these operons encode ABC-like lipid transporters; however, the nature of their substrates has only been revealed in the case of the Mce4 proteins. Here we found that the knockout of the mce1 operon alters the lipid profile of M. tuberculosis H37Rv and the uptake of palmitic acid. Thin layer chromatography and liquid chromatography-mass spectrometry analysis showed that the mce1 mutant accumulates more mycolic acids than the wild type and complemented strains. Interestingly, this accumulation of mycolic acid is exacerbated when bacteria are cultured in the presence of palmitic acid or arachidonic acid. These results suggest that the mce1 operon may serve as a mycolic acid re-importer. Copyright © 2013 Elsevier Ltd. All rights reserved.
Boakye-Appiah, Justice K; Steinmetz, Alexis R; Pupulampu, Peter; Ofori-Yirenkyi, Stephen; Tetteh, Ishmael; Frimpong, Michael; Oppong, Patrick; Opare-Sem, Ohene; Norman, Betty R; Stienstra, Ymkje; van der Werf, Tjip S; Wansbrough-Jones, Mark; Bonsu, Frank; Obeng-Baah, Joseph; Phillips, Richard O
2016-06-01
Drug-resistant strains of tuberculosis (TB) represent a major threat to global TB control. In low- and middle-income countries, resource constraints make it difficult to identify and monitor cases of resistance using drug susceptibility testing and culture. Molecular assays such as the GeneXpert Mycobacterium tuberculosis/rifampicin may prove to be a cost-effective solution to this problem in these settings. The objective of this study is to evaluate the use of GeneXpert in the diagnosis of pulmonary TB since it was introduced into two tertiary hospitals in Ghana in 2013. A 2-year retrospective audit of clinical cases involving patients who presented with clinically suspected TB or documented TB not improving on standard therapy and had samples sent for GeneXpert testing. GeneXpert identified 169 cases of TB, including 17 cases of rifampicin-resistant TB. Of the seven cases with final culture and drug susceptibility testing results, six demonstrated further drug resistance and five of these were multidrug-resistant TB. These findings call for a scale-up of TB control in Ghana and provide evidence that the expansion of GeneXpert may be an optimal means to improve case finding and guide treatment of drug-resistant TB in this setting. Copyright © 2016. Published by Elsevier Ltd.
Mishra, Arun K; Driessen, Nicole N; Appelmelk, Ben J; Besra, Gurdyal S
2011-01-01
Approximately one third of the world's population is infected with Mycobacterium tuberculosis, the causative agent of tuberculosis. This bacterium has an unusual lipid-rich cell wall containing a vast repertoire of antigens, providing a hydrophobic impermeable barrier against chemical drugs, thus representing an attractive target for vaccine and drug development. Apart from the mycolyl–arabinogalactan–peptidoglycan complex, mycobacteria possess several immunomodulatory constituents, notably lipomannan and lipoarabinomannan. The availability of whole-genome sequences of M. tuberculosis and related bacilli over the past decade has led to the identification and functional characterization of various enzymes and the potential drug targets involved in the biosynthesis of these glycoconjugates. Both lipomannan and lipoarabinomannan possess highly variable chemical structures, which interact with different receptors of the immune system during host–pathogen interactions, such as Toll-like receptors-2 and C-type lectins. Recently, the availability of mutants defective in the synthesis of these glycoconjugates in mycobacteria and the closely related bacterium, Corynebacterium glutamicum, has paved the way for host–pathogen interaction studies, as well as, providing attenuated strains of mycobacteria for the development of new vaccine candidates. This review provides a comprehensive account of the structure, biosynthesis and immunomodulatory properties of these important glycoconjugates. PMID:21521247
2012-01-01
Background The genome of Mycobacterium avium subspecies paratuberculosis (MAP) is remarkably homogeneous among the genomes of bovine, human and wildlife isolates. However, previous work in our laboratories with the bovine K-10 strain has revealed substantial differences compared to sheep isolates. To systematically characterize all genomic differences that may be associated with the specific hosts, we sequenced the genomes of three U.S. sheep isolates and also obtained an optical map. Results Our analysis of one of the isolates, MAP S397, revealed a genome 4.8 Mb in size with 4,700 open reading frames (ORFs). Comparative analysis of the MAP S397 isolate showed it acquired approximately 10 large sequence regions that are shared with the human M. avium subsp. hominissuis strain 104 and lost 2 large regions that are present in the bovine strain. In addition, optical mapping defined the presence of 7 large inversions between the bovine and ovine genomes (~ 2.36 Mb). Whole-genome sequencing of 2 additional sheep strains of MAP (JTC1074 and JTC7565) further confirmed genomic homogeneity of the sheep isolates despite the presence of polymorphisms on the nucleotide level. Conclusions Comparative sequence analysis employed here provided a better understanding of the host association, evolution of members of the M. avium complex and could help in deciphering the phenotypic differences observed among sheep and cattle strains of MAP. A similar approach based on whole-genome sequencing combined with optical mapping could be employed to examine closely related pathogens. We propose an evolutionary scenario for M. avium complex strains based on these genome sequences. PMID:22409516
Garzelli, Carlo; Lari, Nicoletta; Rindi, Laura
2016-03-01
The Beijing genotype of Mycobacterium tuberculosis is cause of global concern as it is rapidly spreading worldwide, is considered hypervirulent, and is most often associated to massive spread of MDR/XDR TB, although these epidemiological or pathological properties have not been confirmed for all strains and in all geographic settings. In this paper, to gain new insights into the biogeographical heterogeneity of the Beijing family, we investigated a global sample of Beijing strains (22% from Italian-born, 78% from foreign-born patients) by determining large sequence polymorphism of regions RD105, RD181, RD150 and RD142, single nucleotide polymorphism of putative DNA repair genes mutT4 and mutT2 and MIRU-VNTR profiles based on 11 discriminative loci. We found that, although our sample of Beijing strains showed a considerable genomic heterogeneity, yielding both ancient and recent phylogenetic strains, the prevalent successful Beijing subsets were characterized by deletions of RD105 and RD181 and by one nucleotide substitution in one or both mutT genes. MIRU-VNTR analysis revealed 47 unique patterns and 9 clusters including a total of 33 isolates (41% of total isolates); the relatively high proportion of Italian-born Beijing TB patients, often occurring in mixed clusters, supports the possibility of an ongoing cross-transmission of the Beijing genotype to autochthonous population. High rates of extra-pulmonary localization and drug-resistance, particularly MDR, frequently reported for Beijing strains in other settings, were not observed in our survey. Copyright © 2015 Elsevier Ltd. All rights reserved.
Patiño, Margareth A; Abadía, Edgar; Solalba Gómez; Maes, Mailis; Muñoz, Mariana; Gómez, Daniela; Guzmán, Patricia; Méndez, María Victoria; Ramirez, Carmen; Mercedes, España; de Waard, Jacobus; Takiff, Howard
2014-12-01
Sucre municipality is a large, densely populated marginal area in the eastern part of Caracas, Venezuela that consistently has more cases of tuberculosis than other municipalities in the country. To identify the neighborhoods in the municipality with the highest prevalence of tuberculosis, and determine whether the Mycobacterium tuberculosis strain distribution in this municipality is different from that previously found in the western part of Caracas and the rest of Venezuela, we collected data on all tuberculosis cases in the municipality diagnosed in 2005-6. We performed two separate molecular epidemiological studies, spoligotyping 44 strains in a first study, and spoligotyping 131 strains, followed by MIRU-VNTR 15 on 21 clustered isolates in the second. With spoligotyping, the most common patterns were Shared International Type SIT17 (21%); SIT42 (15%); SIT93 (11%); SIT20 (7%); SIT53 (6%), a distribution similar to other parts of Venezuela, except that SIT42 and SIT20 were more common. MIRU-VNTR 15 showed that six of seven SIT17 strains examined belonged to a large cluster previously found circulating in Venezuela, but all of the SIT42 strains were related to a cluster centered in the neighborhoods of Unión and Maca, with a MIRU-VNTR pattern not previously seen in Venezuela. It appears that a large percentage of the tuberculosis in the Sucre municipality is caused by the active transmission of two strain families centered within distinct neighborhoods, one reflecting communication with the rest of the country, and the other suggesting the insular, isolated nature of some sectors.
Via, Laura E.; Weiner, Danielle M.; Schimel, Daniel; Lin, Philana Ling; Dayao, Emmanuel; Tankersley, Sarah L.; Cai, Ying; Coleman, M. Teresa; Tomko, Jaime; Paripati, Praveen; Orandle, Marlene; Kastenmayer, Robin J.; Tartakovsky, Michael; Rosenthal, Alexander; Portevin, Damien; Eum, Seok Yong; Lahouar, Saher; Gagneux, Sebastien; Young, Douglas B.; Flynn, JoAnne L.
2013-01-01
Existing small-animal models of tuberculosis (TB) rarely develop cavitary disease, limiting their value for assessing the biology and dynamics of this highly important feature of human disease. To develop a smaller primate model with pathology similar to that seen in humans, we experimentally infected the common marmoset (Callithrix jacchus) with diverse strains of Mycobacterium tuberculosis of various pathogenic potentials. These included recent isolates of the modern Beijing lineage, the Euro-American X lineage, and M. africanum. All three strains produced fulminant disease in this animal with a spectrum of progression rates and clinical sequelae that could be monitored in real time using 2-deoxy-2-[18F]fluoro-d-glucose (FDG) positron emission tomography (PET)/computed tomography (CT). Lesion pathology at sacrifice revealed the entire spectrum of lesions observed in human TB patients. The three strains produced different rates of progression to disease, various extents of extrapulmonary dissemination, and various degrees of cavitation. The majority of live births in this species are twins, and comparison of results from siblings with different infecting strains allowed us to establish that the infection was highly reproducible and that the differential virulence of strains was not simply host variation. Quantitative assessment of disease burden by FDG-PET/CT provided an accurate reflection of the pathology findings at necropsy. These results suggest that the marmoset offers an attractive small-animal model of human disease that recapitulates both the complex pathology and spectrum of disease observed in humans infected with various M. tuberculosis strain clades. PMID:23716617
Persistence of Mycobacterium paratuberculosis during Manufacture and Ripening of Cheddar Cheese
Donaghy, J. A.; Totton, N. L.; Rowe, M. T.
2004-01-01
Model Cheddar cheeses were prepared from pasteurized milk artificially contaminated with high 104 to 105 CFU/ml) and low (101 to 102 CFU/ml) inocula of three different Mycobacterium paratuberculosis strains. A reference strain, NCTC 8578, and two strains (806PSS and 796PSS) previously isolated from pasteurized milk for retail sale were investigated in this study. The manufactured Cheddar cheeses were similar in pH, salt, moisture, and fat composition to commercial Cheddar. The survival of M. paratuberculosis cells was monitored over a 27-week ripening period by plating homogenized cheese samples onto HEYM agar medium supplemented with the antibiotics vancomycin, amphotericin B, and nalidixic acid without a decontamination step. A concentration effect was observed in M. paratuberculosis numbers between the inoculated milk and the 1-day old cheeses for each strain. For all manufactured cheeses, a slow gradual decrease in M. paratuberculosis CFU in cheese was observed over the ripening period. In all cases where high levels (>3.6 log10) of M. paratuberculosis were present in 1-day cheeses, the organism was culturable after the 27-week ripening period. The D values calculated for strains 806PSS, 796PSS, and NCTC 8578 were 107, 96, and 90 days, respectively. At low levels of contamination, M. paratuberculosis was only culturable from 27-week-old cheese spiked with strain 806PSS. M. paratuberculosis was recovered from the whey fraction in 10 of the 12 manufactured cheeses. Up to 4% of the initial M. paratuberculosis load was recovered in the culture-positive whey fractions at either the high or low initial inoculum. PMID:15294829
de Keijzer, Jeroen; de Haas, Petra E.; de Ru, Arnoud H.; van Veelen, Peter A.; van Soolingen, Dick
2014-01-01
The Mycobacterium tuberculosis Beijing genotype, consisting of the more ancient (atypical) and modern (typical) emerging sublineage, is one of the most prevalent and genetically conserved genotype families and has often been associated with multidrug resistance. In this study, we employed a 2D-LC-FTICR MS approach, combined with dimethylation of tryptic peptides, to systematically compare protein abundance levels of ancient and modern Beijing strains and identify differences that could be associated with successful spread of the modern sublineage. The data is available via ProteomeXchange using the identifier PXD000931. Despite the highly uniform protein abundance ratios in both sublineages, we identified four proteins as differentially regulated between both sublineages, which could explain the apparent increased adaptation of the modern Beijing strains. These proteins are; Rv0450c/MmpL4, Rv1269c, Rv3137, and Rv3283/sseA. Transcriptional and functional analysis of these proteins in a large cohort of 29 Beijing strains showed that the mRNA levels of Rv0450c/MmpL4 are significantly higher in modern Beijing strains, whereas we also provide evidence that Rv3283/sseA is less abundant in the modern Beijing sublineage. Our findings provide a possible explanation for the increased virulence and success of the modern Beijing sublineage. In addition, in the established dataset of 1817 proteins, we demonstrate the pre-existence of several, possibly unique, antibiotic efflux pumps in the proteome of the Beijing strains. This may reflect an increased ability of Beijing strains to escape exposure to antituberculosis drugs. PMID:25022876
Molecular detection of multidrug-resistant Mycobacterium leprae from Indian leprosy patients.
Lavania, Mallika; Singh, Itu; Turankar, Ravindra P; Ahuja, Madhvi; Pathak, Vinay; Sengupta, Utpal; Das, Loretta; Kumar, Archana; Darlong, Joydeepa; Nathan, Rajeev; Maseey, Asha
2018-03-01
The emergence of multidrug-resistant (MDR) organisms for any infectious disease is a public health concern. Global efforts to control leprosy by intensive chemotherapy have led to a significant decrease in the number of registered patients. Currently recommended control measures for treating leprosy with multidrug therapy (MDT) were designed to prevent the spread of dapsone-resistant Mycobacterium leprae strains. Here we report the identification of MDR M. leprae from relapse leprosy patients from endemic regions in India. Resistance profiles to rifampicin, dapsone and ofloxacin of the isolated strains were confirmed by identification of mutations in genes previously shown to be associated with resistance to each drug. Between 2009-2016, slit-skin smear samples were collected from 239 relapse and 11 new leprosy cases from hospitals of The Leprosy Mission across India. DNA was extracted from the samples and was analysed by PCR targeting the rpoB, folP and gyrA genes associated with resistance to rifampicin, dapsone and ofloxacin, respectively, in M. leprae. M. leprae Thai-53 (wild-type) and Zensho-4 (MDR) were used as reference strains. Fifteen strains showed representative mutations in at least two resistance genes. Two strains showed mutations in all three genes responsible for drug resistance. Seven, seven and one strain, respectively, showed mutations in genes responsible for rifampicin and dapsone resistance, for dapsone and ofloxacin resistance and for rifampicin and ofloxacin resistance. This study showed the emergence of MDR M. leprae in MDT-treated leprosy patients from endemic regions of India. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.
Manson, Abigail L; Abeel, Thomas; Galagan, James E; Sundaramurthi, Jagadish Chandrabose; Salazar, Alex; Gehrmann, Thies; Shanmugam, Siva Kumar; Palaniyandi, Kannan; Narayanan, Sujatha; Swaminathan, Soumya; Earl, Ashlee M
2017-06-01
India is home to 25% of all tuberculosis cases and the second highest number of multidrug resistant cases worldwide. However, little is known about the genetic diversity and resistance determinants of Indian Mycobacterium tuberculosis, particularly for the primary lineages found in India, lineages 1 and 3. We whole genome sequenced 223 randomly selected M. tuberculosis strains from 196 patients within the Tiruvallur and Madurai districts of Tamil Nadu in Southern India. Using comparative genomics, we examined genetic diversity, transmission patterns, and evolution of resistance. Genomic analyses revealed (11) prevalence of strains from lineages 1 and 3, (11) recent transmission of strains among patients from the same treatment centers, (11) emergence of drug resistance within patients over time, (11) resistance gained in an order typical of strains from different lineages and geographies, (11) underperformance of known resistance-conferring mutations to explain phenotypic resistance in Indian strains relative to studies focused on other geographies, and (11) the possibility that resistance arose through mutations not previously implicated in resistance, or through infections with multiple strains that confound genotype-based prediction of resistance. In addition to substantially expanding the genomic perspectives of lineages 1 and 3, sequencing and analysis of M. tuberculosis whole genomes from Southern India highlight challenges of infection control and rapid diagnosis of resistant tuberculosis using current technologies. Further studies are needed to fully explore the complement of diversity and resistance determinants within endemic M. tuberculosis populations. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
Genetic profiling of Mycobacterium bovis strains from slaughtered cattle in Eritrea
Hlokwe, Tiny; Rutten, Victor P. M. G.; Allepuz, Alberto; Cadmus, Simeon; Muwonge, Adrian; Robbe-Austerman, Suelee; Michel, Anita L.
2018-01-01
Mycobacterium bovis (M.bovis) is the main causative agent for bovine tuberculosis (BTB) and can also be the cause of zoonotic tuberculosis in humans. In view of its zoonotic nature, slaughterhouse surveillance, potentially resulting in total or partial condemnation of the carcasses and organs, is conducted routinely. Spoligotyping, VNTR profiling, and whole genome sequencing (WGS) of M. bovis isolated from tissues with tuberculosis-like lesions collected from 14 cattle at Eritrea’s largest slaughterhouse in the capital Asmara, were conducted.The 14 M. bovis isolates were classified into three different spoligotype patterns (SB0120, SB0134 and SB0948) and six VNTR profiles. WGS results matched those of the conventional genotyping methods and further discriminated the six VNTR profiles into 14 strains. Furthermore, phylogenetic analysis of the M. bovis isolates suggests two independent introductions of BTB into Eritrea possibly evolving from a common ancestral strain in Europe.This molecular study revealed the most important strains of M. bovis in Eritrea and their (dis)similarities with the strains generally present in East Africa and Europe, as well as potential routes of introduction of M. bovis. Though the sample size is small, the current study provides important information as well as platform for future in-depth molecular studies on isolates from both the dairy and the traditional livestock sectors in Eritrea and the region. This study provides information onthe origin of some of the M. bovis strains in Eritrea, its genetic diversity, evolution and patterns of spread between dairy herds. Such information is essential in the development and implementation of future BTB control strategy for Eritrea. PMID:29664901
Gil, Olga; Guirado, Evelyn; Gordillo, Sergi; Díaz, Jorge; Tapia, Gustavo; Vilaplana, Cristina; Ariza, Aurelio; Ausina, Vicenç; Cardona, Pere-Joan
2006-03-01
Low dose aerosol infection of C57BL/6 mice with a clinical strain of Mycobacterium tuberculosis (UTE 0335 R) induced intragranulomatous necrosis in pulmonary granulomas (INPG) at week 9 postinfection. Infection of different knockout (KO) mouse strains with UTE 0335 R induced INPG in all strains and established two histopathological patterns. The first pattern was seen in SCID mice and in mice with deleted alpha/beta T receptor, TNF R1, IL-12, IFN-gamma, or iNOS genes, and showed a massive INPG with a high granulomatous infiltration of the lung, a large and homogeneous eosinophilic necrosis full of acid-fast bacilli, with marked karyorrhexis, coarse basophilic necrosis, and surrounded by patches delimited by partially conserved alveolar septum full of PMNs. The second pattern was seen in mice with deleted IL-1 R1, IL-6, IL-10, CD4, CD8 or gamma/delta T cell receptor genes, and showed more discrete lesions with predominant homogeneous eosinophilic necrosis with few bacilli and surrounded by a well-defined lymphocyte-based ring. Local expression of IFN-gamma, iNOS, TNF and RANTES showed no significant differences between these mouse strains generating a discrete INPG. Mouse strains showing a massive INPG showed higher, lower or equal expression values compared to the control strain. In conclusion, the severity of the INPG pattern correlated with pulmonary CFU counts, irrespective of the genetic absence or the infection-induced levels of cytokine mediators.
Antiprotozoal and antimycobacterial activities of Persea americana seeds.
Jiménez-Arellanes, Adelina; Luna-Herrera, Julieta; Ruiz-Nicolás, Ricardo; Cornejo-Garrido, Jorge; Tapia, Amparo; Yépez-Mulia, Lilián
2013-05-16
Persea americana seeds are widely used in traditional Mexican medicine to treat rheumatism, asthma, infectious processes as well as diarrhea and dysentery caused by intestinal parasites. The chloroformic and ethanolic extracts of P. americana seeds were prepared by maceration and their amoebicidal, giardicidal and trichomonicidal activity was evaluated. These extracts were also tested against Mycobacterium tuberculosis H37Rv, four mono-resistant and two multidrug resistant strains of M. tuberculosis as well as five non tuberculosis mycobacterium strains by MABA assay. The chloroformic and ethanolic extracts of P. americana seeds showed significant activity against E. histolytica, G. lamblia and T. vaginalis (IC50 <0.634 μg/ml). The chloroformic extract inhibited the growth of M. tuberculosis H37Rv, M. tuberculosis MDR SIN 4 isolate, three M. tuberculosis H37Rv mono-resistant reference strains and four non tuberculosis mycobacteria (M. fortuitum, M. avium, M. smegmatis and M. absessus) showing MIC values ≤50 μg/ml. Contrariwise, the ethanolic extract affected only the growth of two mono-resistant strains of M. tuberculosis H37Rv and M. smegmatis (MIC ≤50 μg/ml). The CHCl3 and EtOH seed extracts from P. americana showed amoebicidal and giardicidal activity. Importantly, the CHCl3 extract inhibited the growth of a MDR M. tuberculosis isolate and three out of four mono-resistant reference strains of M. tuberculosis H37Rv, showing a MIC = 50 μg/ml. This extract was also active against the NTM strains, M. fortuitum, M. avium, M. smegmatis and M. abscessus, with MIC values <50 μg/ml.
Tan, Joon Liang; Khang, Tsung Fei; Ngeow, Yun Fong; Choo, Siew Woh
2013-12-13
Mycobacterium abscessus is a rapidly growing mycobacterium that is often associated with human infections. The taxonomy of this species has undergone several revisions and is still being debated. In this study, we sequenced the genomes of 12 M. abscessus strains and used phylogenomic analysis to perform subspecies classification. A data mining approach was used to rank and select informative genes based on the relative entropy metric for the construction of a phylogenetic tree. The resulting tree topology was similar to that generated using the concatenation of five classical housekeeping genes: rpoB, hsp65, secA, recA and sodA. Additional support for the reliability of the subspecies classification came from the analysis of erm41 and ITS gene sequences, single nucleotide polymorphisms (SNPs)-based classification and strain clustering demonstrated by a variable number tandem repeat (VNTR) assay and a multilocus sequence analysis (MLSA). We subsequently found that the concatenation of a minimal set of three median-ranked genes: DNA polymerase III subunit alpha (polC), 4-hydroxy-2-ketovalerate aldolase (Hoa) and cell division protein FtsZ (ftsZ), is sufficient to recover the same tree topology. PCR assays designed specifically for these genes showed that all three genes could be amplified in the reference strain of M. abscessus ATCC 19977T. This study provides proof of concept that whole-genome sequence-based data mining approach can provide confirmatory evidence of the phylogenetic informativeness of existing markers, as well as lead to the discovery of a more economical and informative set of markers that produces similar subspecies classification in M. abscessus. The systematic procedure used in this study to choose the informative minimal set of gene markers can potentially be applied to species or subspecies classification of other bacteria.
Mamo, Gezahegne; Bayleyegn, Gizachew; Sisay Tessema, Tesfaye; Legesse, Mengistu; Medhin, Girmay; Bjune, Gunnar; Abebe, Fekadu; Ameni, Gobena
2011-01-01
A cross sectional study was conducted on 906 apparently healthy camels slaughtered at Akaki and Metehara abattoirs to investigate the pathology of camel tuberculosis (TB) and characterize its causative agents using postmortem examination, mycobacteriological culturing, and multiplex polymerase chain reaction (PCR), region of difference-4 (RD4)-based PCR and spoligotyping. The prevalence of camel TB was 10.04% (91/906) on the basis of pathology and it was significantly higher in females (χ2 = 4.789; P = 0.029). The tropism of TB lesions was significantly different among the lymph nodes (χ2 = 22.697; P = 0.002) and lung lobes (χ2 = 17.901; P = 0.006). Mycobacterial growth was observed in 34% (31/91) of camels with grossly suspicious TB lesions. Upon further molecular characterization using multiplex PCR, 68% (21/31) of the colonies showed a positive signal for the genus Mycobacterium, of which two were confirmed Mycobacterium bovis (M. bovis) by RD4 deletion typing. Further characterization of the two M. bovis at strains level revealed that one of the strains was SB0133 while the other strain was new and had not been reported to the M. bovis database prior to this study. Hence, it has now been reported to the database, and designated as SB1953. In conclusion, the results of the present study have shown that the majority of camel TB lesions are caused by mycobacteria other than Mycobacterium tuberculosis complex. And hence further identification and characterization of these species would be useful towards the efforts made to control TB in camels. PMID:21283668
Participation of fad and mbt Genes in Synthesis of Mycobactin in Mycobacterium smegmatis
LaMarca, B. Babbette D.; Zhu, Wenming; Arceneaux, Jean E. L.; Rowe Byers, B.; Lundrigan, Michael D.
2004-01-01
Colonies of Mycobacterium smegmatis LR222 on iron-limiting (0.1 μM Fe) minimal medium agar fluoresce under UV light due to the accumulation in the cells of the deferri form of the siderophore mycobactin. Two mutants with little or no fluorescence, designated LUN8 and LUN9, were isolated by screening colonies of transposon (Tn611)-mutagenized M. smegmatis. Ferrimycobactin prepared from iron-restricted cells of the wild type had an Rf of 0.62 on high-performance thin-layer chromatography (HPTLC) and a characteristic visible absorption spectrum with a peak near 450 nm. Similar extracts from LUN8 cells contained a small amount of ferrimycobactin with an Rf of 0.58 on HPTLC and an absorption spectrum with the peak shifted to a wavelength lower than that of the wild-type ferrimycobactin. Nuclear magnetic resonance spectroscopy studies suggested that the LUN8 mycobactin may have an altered fatty acid side chain. Mutant strain LUN9 produced no detectable mycobactin. Neither mutant strain produced measurable amounts of excreted mycobactin, although both excreted exochelin (the mycobacterial peptido-hydroxamate siderophore), and both mutants were more sensitive than the wild-type strain to growth inhibition by the iron chelator ethylenediamine-di(o-hydroxyphenylacetic acid). The transposon insertion sites were identified, and sequence analyses of the cloned flanking chromosome regions showed that the mutated gene in LUN9 was an orthologue of the Mycobacterium tuberculosis mycobactin biosynthetic gene mbtE. The mutated gene in LUN8 had homology with M. tuberculosis fadD33 (Rv1345), a gene that may encode an acyl-coenzyme A synthase and which previously was not known to participate in synthesis of mycobactin. PMID:14702306
Genotypic characteristics of Mycobacterium tuberculosis circulating in Xinjiang, China.
Yuan, Li; Mi, Ligu; Li, Yongxiang; Zhang, Hui; Zheng, Fang; Li, Zhuoya
2016-02-01
Tuberculosis (TB), a chronic infectious disease caused by Mycobacterium tuberculosis (MTB), poses a serious threat to human health. We investigated the genotypes of MTB in the high prevalence province Xinjiang, China. From March 2010 to May 2013, 381 MTB isolates from patients with pulmonary TB were analyzed by molecular typing of 24 mycobacterial interspersed repetitive unit-variable number tandem repeat loci and PCR detection of the deleted regions of difference of the Beijing/W lineage and its sublineages. These isolates were shown to be highly polymorphic and to be composed of 345 unique genotypes, including 30 genotype clusters consisting of 2 or 3 strains and 315 individual genotypes. The genotype clustering rate was 17.32% and recent transmission index was low (9.45%). The Beijing/W lineage strains accounted for 57.48% of the isolates, and this predominant family strain was further subdivided into four sublineages: 181 (69.86%), 207 (14.61%), 105 (10.96%), and 150 (4.56%). The Beijing/W lineage (especially sublineage 181) strains were predominant and were associated with the transmissibility of TB in Xinjiang. Based on our data, we hypothesize that the circulating MTB strains in Xinjiang have significant genetic diversity and that the majority of the TB in Xinjiang may be explained by non-recent transmission emerging by endogenous reactivation. The possibility of outbreak is low, and current measures to control TB should first focus on standardized treatment of TB patients to prevent reactivation of latent infections.
Balážová, Tereza; Makovcová, Jitka; Šedo, Ondrej; Slaný, Michal; Faldyna, Martin; Zdráhal, Zbyněk
2014-04-01
Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) represents a simple reliable approach for rapid bacterial identification based on specific peptide/protein fingerprints. However, cell-wall characteristics of mycobacterial species, and their well known stability, complicate MALDI-TOF MS profiling analysis. In this study, we tested two recently published protocols for inactivation and disruption of mycobacteria, and we also examined the influence of different culture conditions (four culture media and five cultivation times) on mass spectral quality and the discriminatory power of the method. We found a significant influence of sample pretreatment method and culture medium on species identification and differentiation for a total of 10 strains belonging to Mycobacterium phlei and Mycobacterium smegmatis. Optimum culture conditions yielding the highest identification success rate against the BioTyper database (Bruker Daltonics) and permitting the possibility of automatic acquisition of mass spectra were found to be distinct for the two mycobacterial species examined. Similarly, individual changes in growth conditions had diverse effects on the two species. For these reasons, thorough control over cultivation conditions should always be employed to maximize the performance and discriminatory power of MALDI-TOF MS profiling, and cultivation conditions must be optimized separately for individual groups of mycobacterial species/strains. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Mycobacterium tuberculosis infection in cattle from the Eastern Cape Province of South Africa.
Hlokwe, Tiny Motlatso; Said, Halima; Gcebe, Nomakorinte
2017-10-10
Mycobacterium tuberculosis is the main causative agent of tuberculosis (TB) in human and Mycobacterium bovis commonly causes tuberculosis in animals. Transmission of tuberculosis caused by both pathogens can occur from human to animals and vice versa. In the current study, M. tuberculosis, as confirmed by polymerase chain reaction (PCR) using primers targeting 3 regions of difference (RD4, RD9 and RD12) on the genomes, was isolated from cattle originating from two epidemiologically unrelated farms in the Eastern Cape (E.C) Province of South Africa. Although the isolates were genotyped with variable number of tandem repeat (VNTR) typing, no detailed epidemiological investigation was carried out on the respective farms to unequivocally confirm or link humans as sources of TB transmission to cattle, a move that would have embraced the 'One Health' concept. In addition, strain comparison with human M. tuberculosis in the database from the E.C Province and other provinces in the country did not reveal any match. This is the first report of cases of M. tuberculosis infection in cattle in South Africa. The VNTR profiles of the M. tuberculosis strains identified in the current study will form the basis for creating M. tuberculosis VNTR database for animals including cattle for future epidemiological studies. Our findings however, call for urgent reinforcement of collaborative efforts between the veterinary and the public health services of the country.
Rein, Arno; Adam, Iris K U; Miltner, Anja; Brumme, Katja; Kästner, Matthias; Trapp, Stefan
2016-04-05
Many attempts for bioremediation of polycyclic aromatic hydrocarbon (PAH) contaminated sites failed in the past, but the reasons for this failure are not well understood. Here we apply and improve a model for integrated assessment of mass transfer, biodegradation and residual concentrations for predicting the success of remediation actions. First, we provide growth parameters for Mycobacterium rutilum and Mycobacterium pallens growing on phenanthrene (PHE) or pyrene (PYR) degraded the PAH completely at all investigated concentrations. Maximum metabolic rates vmax and growth rates μ were similar for the substrates PHE and PYR and for both strains. The investigated Mycobacterium species were not superior in PHE degradation to strains investigated earlier with this method. Real-world degradation scenario simulations including diffusive flux to the microbial cells indicate: that (i) bioaugmentation only has a small, short-lived effect; (ii) Increasing sorption shifts the remaining PAH to the adsorbed/sequestered PAH pool; (iii) mobilizing by solvents or surfactants resulted in a significant decrease of the sequestered PAH, and (iv) co-metabolization e.g. by compost addition can contribute significantly to the reduction of PAH, because active biomass is maintained at a high level by the compost. The model therefore is a valuable contribution to the assessment of potential remediation action at PAH-polluted sites. Copyright © 2015 Elsevier B.V. All rights reserved.
Pettersson, B. M. Fredrik; Das, Sarbashis; Behra, Phani Rama Krishna; Jordan, Heather R.; Ramesh, Malavika; Mallick, Amrita; Root, Kate M.; Cheramie, Martin N.; de la Cruz Melara, Irma; Small, Pamela L. C.; Dasgupta, Santanu; Ennis, Don G.; Kirsebom, Leif A.
2015-01-01
We have used RNASeq and qRT-PCR to study mRNA levels for all σ-factors in different Mycobacterium marinum strains under various growth and stress conditions. We also studied their levels in M. marinum from infected fish and mosquito larvae. The annotated σ-factors were expressed and transcripts varied in relation to growth and stress conditions. Some were highly abundant such as sigA, sigB, sigC, sigD, sigE and sigH while others were not. The σ-factor mRNA profiles were similar after heat stress, during infection of fish and mosquito larvae. The similarity also applies to some of the known heat shock genes such as the α-crystallin gene. Therefore, it seems probable that the physiological state of M. marinum is similar when exposed to these different conditions. Moreover, the mosquito larvae data suggest that this is the state that the fish encounter when infected, at least with respect to σ-factor mRNA levels. Comparative genomic analysis of σ-factor gene localizations in three M. marinum strains and Mycobacterium tuberculosis H37Rv revealed chromosomal rearrangements that changed the localization of especially sigA, sigB, sigD, sigE, sigF and sigJ after the divergence of these two species. This may explain the variation in species-specific expression upon exposure to different growth conditions. PMID:26445268
Marini, Emanuela; Di Giulio, Mara; Magi, Gloria; Di Lodovico, Silvia; Cimarelli, Maria Enrica; Brenciani, Andrea; Nostro, Antonia; Cellini, Luigina; Facinelli, Bruna
2018-03-01
Curcumin, a phenolic compound extracted from Curcuma longa, exerts multiple pharmacological effects, including an antimicrobial action. Mycobacterium abscessus, an environmental, nontuberculous, rapidly growing mycobacterium, is an emerging human pathogen causing serious lung infections and one of the most difficult to treat, due to its multidrug resistance and biofilm-forming ability. We wanted to evaluate the antimicrobial and antivirulence activity of curcumin and its ability to synergize with antibiotics against a clinical M. abscessus strain (29904), isolated from the bronchoaspirate of a 66-year-old woman admitted to hospital for suspected tuberculosis. Curcumin [minimum inhibitory concentrations (MIC) = 128 mg/L] was synergic (fractional inhibitory concentration index ≤0.5) with amikacin, clarithromycin, ciprofloxacin, and linezolid, to which strain 29904 showed resistance/intermediate susceptibility. Curcumin at 1/8 × MIC significantly reduced motility, whereas at 4 × MIC, it completely inhibited 4- and 8-day mature biofilms. Synergistic combinations of curcumin and amikacin induced a general reduction in microbial aggregates and substantial loss in cell viability. Disruption of 4- and 8-day biofilms was the main effect detected when curcumin was the predominant compound. The present findings support previous evidence that curcumin is a potential antibiotic resistance breaker. Curcumin, either alone or combined with antibiotics, could provide a novel strategy to combat antibiotic resistance and virulence of M. abscessus. Copyright © 2017 John Wiley & Sons, Ltd.
Berg, Stefan; Schelling, Esther; Hailu, Elena; Firdessa, Rebuma; Gumi, Balako; Erenso, Girume; Gadisa, Endalamaw; Mengistu, Araya; Habtamu, Meseret; Hussein, Jemal; Kiros, Teklu; Bekele, Shiferaw; Mekonnen, Wondale; Derese, Yohannes; Zinsstag, Jakob; Ameni, Gobena; Gagneux, Sebastien; Robertson, Brian D; Tschopp, Rea; Hewinson, Glyn; Yamuah, Lawrence; Gordon, Stephen V; Aseffa, Abraham
2015-03-03
Ethiopia, a high tuberculosis (TB) burden country, reports one of the highest incidence rates of extra-pulmonary TB dominated by cervical lymphadenitis (TBLN). Infection with Mycobacterium bovis has previously been excluded as the main reason for the high rate of extrapulmonary TB in Ethiopia. Here we examined demographic and clinical characteristics of 953 pulmonary (PTB) and 1198 TBLN patients visiting 11 health facilities in distinct geographic areas of Ethiopia. Clinical characteristics were also correlated with genotypes of the causative agent, Mycobacterium tuberculosis. No major patient or bacterial strain factor could be identified as being responsible for the high rate of TBLN, and there was no association with HIV infection. However, analysis of the demographic data of involved patients showed that having regular and direct contact with live animals was more associated with TBLN than with PTB, although no M. bovis was isolated from patients with TBLN. Among PTB patients, those infected with Lineage 4 reported "contact with other TB patient" more often than patients infected with Lineage 3 did (OR = 1.6, CI 95% 1.0-2.7; p = 0.064). High fever, in contrast to low and moderate fever, was significantly associated with Lineage 4 (OR = 2.3; p = 0.024). On the other hand, TBLN cases infected with Lineage 4 tended to get milder symptoms overall for the constitutional symptoms than those infected with Lineage 3. The study suggests a complex role for multiple interacting factors in the epidemiology of extrapulmonary TB in Ethiopia, including factors that can only be derived from population-based studies, which may prove to be significant for TB control in Ethiopia.
Rindi, Laura; Medici, Chiara; Bimbi, Nicola; Buzzigoli, Andrea; Lari, Nicoletta; Garzelli, Carlo
2014-01-01
A sample of 260 Mycobacterium tuberculosis strains assigned to the Euro-American family was studied to identify phylogenetically informative genomic regions of difference (RD). Mutually exclusive deletions of regions RD115, RD122, RD174, RD182, RD183, RD193, RD219, RD726 and RD761 were found in 202 strains; the RDRio deletion was detected exclusively among the RD174-deleted strains. Although certain deletions were found more frequently in certain spoligotype families (i.e., deletion RD115 in T and LAM, RD174 in LAM, RD182 in Haarlem, RD219 in T and RD726 in the “Cameroon” family), the RD-defined sublineages did not specifically match with spoligotype-defined families, thus arguing against the use of spoligotyping for establishing exact phylogenetic relationships between strains. Notably, when tested for katG463/gyrA95 polymorphism, all the RD-defined sublineages belonged to Principal Genotypic Group (PGG) 2, except sublineage RD219 exclusively belonging to PGG3; the 58 Euro-American strains with no deletion were of either PGG2 or 3. A representative sample of 197 isolates was then analyzed by standard 15-locus MIRU-VNTR typing, a suitable approach to independently assess genetic relationships among the strains. Analysis of the MIRU-VNTR typing results by using a minimum spanning tree (MST) and a classical dendrogram showed groupings that were largely concordant with those obtained by RD-based analysis. Isolates of a given RD profile show, in addition to closely related MIRU-VNTR profiles, related spoligotype profiles that can serve as a basis for better spoligotype-based classification. PMID:25197794
Lamrabet, Otmane
2013-01-01
Mycobacteria are isolated from soil and water environments, where free-living amoebae live. Free-living amoebae are bactericidal, yet some rapidly growing mycobacteria are amoeba-resistant organisms that survive in the amoebal trophozoites and cysts. Such a capacity has not been studied for the environmental rapidly growing organism Mycobacterium gilvum. We investigated the ability of M. gilvum to survive in the trophozoites of Acanthamoeba polyphaga strain Linc-AP1 by using optical and electron microscopy and culture-based microbial enumerations in the presence of negative controls. We observed that 29% of A. polyphaga cells were infected by M. gilvum mycobacteria by 6 h postinfection. Surviving M. gilvum mycobacteria did not multiply and did not kill the amoebal trophozoites during a 5-day coculture. Extensive electron microscopy observations indicated that M. gilvum measured 1.4 ± 0.5 μm and failed to find M. gilvum organisms in the amoebal cysts. Further experimental study of two other rapidly growing mycobacteria, Mycobacterium rhodesiae and Mycobacterium thermoresistibile, indicated that both measured <2 μm and exhibited the same amoeba-mycobacterium relationships as M. gilvum. In general, we observed that mycobacteria measuring <2 μm do not significantly grow within and do not kill amoebal trophozoites, in contrast to mycobacteria measuring >2 μm (P < 0.05). The mechanisms underlying such an observation remain to be determined. PMID:23275502
Ruesen, Carolien; Riza, Anca Lelia; Florescu, Adriana; Chaidir, Lidya; Editoiu, Cornelia; Aalders, Nicole; Nicolosu, Dragos; Grecu, Victor; Ioana, Mihai; van Crevel, Reinout; van Ingen, Jakko
2018-06-26
Mycobacterium tuberculosis drug resistance poses a major threat to tuberculosis control. Current phenotypic tests for drug susceptibility are time-consuming, technically complex, and expensive. Whole genome sequencing is a promising alternative, though the impact of different drug resistance mutations on the minimum inhibitory concentration (MIC) remains to be investigated. We examined the genomes of 72 phenotypically drug-resistant Mycobacterium tuberculosis isolates from 72 Romanian patients for drug resistance mutations. MICs for first- and second-line drugs were determined using the MycoTB microdilution method. These MICs were compared to macrodilution critical concentration testing by the Mycobacterium Growth Indicator Tube (MGIT) platform and correlated to drug resistance mutations. Sixty-three (87.5%) isolates harboured drug resistance mutations; 48 (66.7%) were genotypically multidrug-resistant. Different drug resistance mutations were associated with different MIC ranges; katG S315T for isoniazid, and rpoB S450L for rifampicin were associated with high MICs. However, several mutations such as in rpoB, rrs and rpsL, or embB were associated with MIC ranges including the critical concentration for rifampicin, aminoglycosides or ethambutol, respectively. Different resistance mutations lead to distinct MICs, some of which may still be overcome by increased dosing. Whole genome sequencing can aid in the timely diagnosis of Mycobacterium tuberculosis drug resistance and guide clinical decision-making.
Viazovaia, A A; Solov'eva, N S; Zhuravlev, V Iu; Mokrousov, I V; Manicheva, O A; Vishnevskiĭ, B I; Narvskaia, O V
2013-01-01
Molecular-genetic characteristic of M. tuberculosis strains isolated from operation material of patients with tuberculous spondylitis. 107 strains of M. tuberculosis isolated in 2007 - 2011 from patients with spine tuberculosis were studied by methods of spoligotyping and MIRU-VNTR by 12 and 24 loci. Strains of genetic family Beijing dominated (n = 80), 78% of those had multiple drug resistance (MDR). Strains of genetic families T, H3 (Ural), LAM, Manu, H4 and S were also detected. Differentiating of 80 strains of Beijing genotype by MIRU-VNTR method by 24 loci revealed 24 variants (HGI = 0.83) including 7 clusters, the largest of those (100-32) included 23 strains (87% MDR). The leading role of Beijing genotype M. tuberculosis strains in development of tuberculous spondylitis with multiple drug resistance of the causative agent is shown.
Goldstone, Robert J.; McLuckie, Joyce; Smith, David G. E.
2015-01-01
Typing of Mycobacterium avium subspecies paratuberculosis strains presents a challenge, since they are genetically monomorphic and traditional molecular techniques have limited discriminatory power. The recent advances and availability of whole-genome sequencing have extended possibilities for the characterization of Mycobacterium avium subspecies paratuberculosis, and whole-genome sequencing can provide a phylogenetic context to facilitate global epidemiology studies. In this study, we developed a single nucleotide polymorphism (SNP) assay based on PCR and restriction enzyme digestion or sequencing of the amplified product. The SNP analysis was performed using genome sequence data from 133 Mycobacterium avium subspecies paratuberculosis isolates with different genotypes from 8 different host species and 17 distinct geographic regions around the world. A total of 28,402 SNPs were identified among all of the isolates. The minimum number of SNPs required to distinguish between all of the 133 genomes was 93 and between only the type C isolates was 41. To reduce the number of SNPs and PCRs required, we adopted an approach based on sequential detection of SNPs and a decision tree. By the analysis of 14 SNPs Mycobacterium avium subspecies paratuberculosis isolates can be characterized within 14 phylogenetic groups with a higher discriminatory power than mycobacterial interspersed repetitive unit–variable number tandem repeat assay and other typing methods. Continuous updating of genome sequences is needed in order to better characterize new phylogenetic groups and SNP profiles. The novel SNP assay is a discriminative, simple, reproducible method and requires only basic laboratory equipment for the large-scale global typing of Mycobacterium avium subspecies paratuberculosis isolates. PMID:26677250
Lipase-catalyzed kinetic resolution of novel antitubercular benzoxazole derivatives.
Łukowska-Chojnacka, Edyta; Kowalkowska, Anna; Napiórkowska, Agnieszka
2018-04-01
Novel benzoxazole derivatives were synthesized, and their antitubercular activity against sensitive and drug-resistant Mycobacterium tuberculosis strains (M. tuberculosis H 37 Rv, M. tuberculosis sp. 210, M. tuberculosis sp. 192, Mycobacterium scrofulaceum, Mycobacterium intracellulare, Mycobacterium fortuitum, Mycobacterium avium, and Mycobacterium kansasii) was evaluated. The chemical step included preparation of ketones, alcohols, and esters bearing benzoxazole moiety. All racemic mixtures of alcohols and esters were separated in Novozyme SP 435-catalyzed transesterification and hydrolysis, respectively. The transesterification reactions were carried out in various organic solvents (tert-butyl methyl ether, toluene, diethyl ether, and diisopropyl ether), and depending on the solvent, the enantioselectivity of the reactions ranged from 4 to >100. The enzymatic hydrolysis of esters was performed in 2 phase tert-butyl methyl ether/phosphate buffer (pH = 7.2) system and provided also enantiomerically enriched products (ee 88-99%). The antitubercular activity assay has shown that synthesized compounds exhibit an interesting antitubercular activity. Racemic mixtures of alcohols, (±)-4-(1,3-benzoxazol-2-ylsulfanyl)butan-2-ol ((±)-3a), (±)-4-[(5-bromo-1,3-benzoxazol-2-yl)sulfanyl]butan-2-ol ((±)-3b), and (±)-4-[(5,7-dibromo-1,3-benzoxazol-2-yl)sulfanyl]butan-2-ol ((±)-3c), displayed as high activity against M. scrofulaceum, M. intracellulare, M. fortuitum, and M. kansasii as commercially available antituberculosis drug-Isoniazid. Moreover, these compounds exhibited twice higher activity toward M. avium (MIC 12.5) compared with Isoniazid (MIC 50). © 2017 Wiley Periodicals, Inc.
Pathway-selective sensitization of Mycobacterium tuberculosis for target-based whole-cell screening
Abrahams, Garth L.; Kumar, Anuradha; Savvi, Suzana; Hung, Alvin W.; Wen, Shijun; Abell, Chris; Barry, Clifton E.; Sherman, David R.; Boshoff, Helena I.M.; Mizrahi, Valerie
2012-01-01
SUMMARY Whole-cell screening of Mycobacterium tuberculosis (Mtb) remains a mainstay of drug discovery but subsequent target elucidation often proves difficult. Conditional mutants that under-express essential genes have been used to identify compounds with known mechanism of action by target-based whole-cell screening (TB-WCS). Here, the feasibility of TB-WCS in Mtb was assessed by generating mutants that conditionally express pantothenate synthetase (panC), diaminopimelate decarboxylase (lysA) and isocitrate lyase (icl1). The essentiality of panC and lysA, and conditional essentiality of icl1 for growth on fatty acids, was confirmed. Depletion of PanC and Icl1 rendered the mutants hypersensitive to target-specific inhibitors. Stable reporter strains were generated for use in high-throughput screening, and their utility demonstrated by identifying compounds that display greater potency against a PanC-depleted strain. These findings illustrate the power of TB-WCS as a tool for tuberculosis drug discovery. PMID:22840772
Ahmad, Zahoor; Klinkenberg, Lee G; Pinn, Michael L; Fraig, Mostafa M; Peloquin, Charles A; Bishai, William R; Nuermberger, Eric L; Grosset, Jacques H; Karakousis, Petros C
2009-10-01
The marked reduction in the potent early bactericidal activity of isoniazid during the initial phase of antituberculosis (anti-TB) therapy has been attributed not only to the depletion of logarithmically growing bacilli but also to the emergence of isoniazid resistance. We studied the anti-TB activity of isoniazid and its ability to select for drug-resistant mutant strains in guinea pigs, in which the histopathology of TB closely resembles that of human TB. Prior mouse passage did not appear to enhance the virulence of Mycobacterium tuberculosis in guinea pigs. The human-equivalent dose of isoniazid was determined to be 60 mg/kg. Although isoniazid therapy caused rapid killing of bacilli in guinea pig lungs during the first 14 days of administration and rescued guinea pigs from acute death, its activity was dramatically reduced thereafter. This reduction in activity was not associated with the emergence of isoniazid-resistant mutant strains but, rather, with the selection of phenotypically tolerant "persisters."
Phylogenomics and antimicrobial resistance of the leprosy bacillus Mycobacterium leprae.
Benjak, Andrej; Avanzi, Charlotte; Singh, Pushpendra; Loiseau, Chloé; Girma, Selfu; Busso, Philippe; Fontes, Amanda N Brum; Miyamoto, Yuji; Namisato, Masako; Bobosha, Kidist; Salgado, Claudio G; da Silva, Moisés B; Bouth, Raquel C; Frade, Marco A C; Filho, Fred Bernardes; Barreto, Josafá G; Nery, José A C; Bührer-Sékula, Samira; Lupien, Andréanne; Al-Samie, Abdul R; Al-Qubati, Yasin; Alkubati, Abdul S; Bretzel, Gisela; Vera-Cabrera, Lucio; Sakho, Fatoumata; Johnson, Christian R; Kodio, Mamoudou; Fomba, Abdoulaye; Sow, Samba O; Gado, Moussa; Konaté, Ousmane; Stefani, Mariane M A; Penna, Gerson O; Suffys, Philip N; Sarno, Euzenir Nunes; Moraes, Milton O; Rosa, Patricia S; Baptista, Ida M F Dias; Spencer, John S; Aseffa, Abraham; Matsuoka, Masanori; Kai, Masanori; Cole, Stewart T
2018-01-24
Leprosy is a chronic human disease caused by the yet-uncultured pathogen Mycobacterium leprae. Although readily curable with multidrug therapy (MDT), over 200,000 new cases are still reported annually. Here, we obtain M. leprae genome sequences from DNA extracted directly from patients' skin biopsies using a customized protocol. Comparative and phylogenetic analysis of 154 genomes from 25 countries provides insight into evolution and antimicrobial resistance, uncovering lineages and phylogeographic trends, with the most ancestral strains linked to the Far East. In addition to known MDT-resistance mutations, we detect other mutations associated with antibiotic resistance, and retrace a potential stepwise emergence of extensive drug resistance in the pre-MDT era. Some of the previously undescribed mutations occur in genes that are apparently subject to positive selection, and two of these (ribD, fadD9) are restricted to drug-resistant strains. Finally, nonsense mutations in the nth excision repair gene are associated with greater sequence diversity and drug resistance.
Mathuria, Jitendra P; Srivastava, Govind N; Sharma, Pragya; Mathuria, Bharat L; Ojha, Sanjay; Katoch, Vishwa M; Anupurba, Shampa
The global presence and rapid dissemination of Beijing genotype of Mycobacterium tuberculosis, makes it an important issue of public health. Its presence and association with multi-drug resistance has been shown in many settings. In present study we tried to find its prevalence and association with drug resistance in North India. One hundred and twenty four M. tuberculosis isolates were analyzed with spoligotyping, further drug susceptibility testing was done by 1% proportional method. Out of these, 11 (8.9%) M. tuberculosis isolates were identified as Beijing and 113 (91.1%) as non-Beijing genotypes. While looking at their drug susceptibility patterns, 6 (54.5%) & 22 (19.5%) were found to be multi drug resistant (MDR) among Beijing and non-Beijing isolates respectively. Our study concluded that the Beijing strains were not so common in north India and these strains do not fully associate with MDR. Copyright © 2017 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.
Raras, Tri Yudani Mardining; Sholeh, Gamal; Lyrawati, Diana
2014-01-01
An evaluation of the humoral response based on secretory immunoglobulin A levels in the saliva of pulmonary tuberculosis (TB) acid-fast bacillus-positive (TB-AFB+) patients against a recombinant 38 kDa antigen (Ag38-rec) is reported. A total of 60 saliva samples consist of 30 TB-AFB+ patients and 30 healthy controls were tested against 500 ng of semi-purified antigen using the dot blot method. Results showed that the protein antigen could differentiate between healthy individuals and TB-AFB(+) patients. Whole saliva demonstrated better reactivity than centrifuged saliva. The Ag38-rec protein indicated statistically comparable sensitivity (80% versus 90%), but lower specificity (36.6% versus 70%) compared with purified protein derivative (PPD). Surprisingly, both antigens similarly recognized secretory immunoglobulin A in the saliva of the healthy group (50% versus 50%, respectively). These findings suggest that the Ag38-rec protein originating from a local strain of Mycobacterium tuberculosis may be used for TB screening, however require purity improvement.
Rapid molecular assays for detection of tuberculosis.
Eddabra, Rkia; Ait Benhassou, Hassan
2018-01-01
Tuberculosis (TB) is an infectious disease that remains an important public health problem at the global level. It is one of the main causes of morbidity and mortality, due to the emergence of antibiotic resistant Mycobacterium strains and HIV co-infection. Over the past decade, important progress has been made for better control of the disease. While microscopy and culture continue to be indispensible for laboratory diagnosis of tuberculosis, the range of several molecular diagnostic tests, including the nucleic acid amplification test (NAAT) and whole-genome sequencing (WGS), have expanded tremendously. They are becoming more accessible not only for detection and identification of Mycobacterium tuberculosis complex in clinical specimens, but now extend to diagnosing multi-drug resistant strains. Molecular diagnostic tests provide timely results useful for high-quality patient care, low contamination risk, and ease of performance and speed. This review focuses on the current diagnostic tests in use, including emerging technologies used for detection of tuberculosis in clinical specimens. The sensitivity and specificity of these tests have also been taken into consideration.
Manning, Thomas; Plummer, Sydney; Baker, Tess; Wylie, Greg; Clingenpeel, Amy C; Phillips, Dennis
2015-10-15
The bacterium responsible for causing tuberculosis has evolved resistance to antibiotics used to treat the disease, resulting in new multidrug resistant Mycobacterium tuberculosis (MDR-TB) and extensively drug resistant M. tuberculosis (XDR-TB) strains. Analytical techniques (1)H and (13)C Nuclear Magnetic Resonance (NMR), Fourier Transform-Ion Cyclotron Resonance with Electrospray Ionization (FT-ICR/ESI), and Matrix Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-TOF-MS) were used to study different aspects of the Cu(II)-polyethylene glycol (PEG-3350)-sucrose-isoniazid and Cu(II)-polyethylene glycol (PEG3350)-glucose-isoniazid complexes. The Cu(II) cation, sucrose or glucose, and the aggregate formed by PEG primarily serve as a composite drug delivery agent for the frontline antibiotic, however the improvement in MIC values produced with the CU-PEG-SUC-INH complex suggest an additional effect. Several Cu-PEG-SUC-INH complex variations were tested against INH resistant and nonresistant strains of M. tuberculosis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rivas-Santiago, Bruno; Rivas Santiago, Cesar E; Castañeda-Delgado, Julio E; León-Contreras, Juan C; Hancock, Robert E W; Hernandez-Pando, Rogelio
2013-02-01
Tuberculosis (TB) is a major worldwide health problem in part due to the lack of development of new treatments and the emergence of new strains such as multidrug-resistant (MDR) and extensively drug-resistant strains that are threatening and impairing the control of this disease. In this study, the efficacy of natural and synthetic cationic antimicrobial (host defence) peptides that have been shown often to possess broad-spectrum antimicrobial activity was tested. The natural antimicrobial peptides human LL-37 and mouse CRAMP as well as synthetic peptides E2, E6 and CP26 were tested for their activity against Mycobacterium tuberculosis both in in vitro and in vivo models. The peptides had moderate antimicrobial activities, with minimum inhibitory concentrations ranging from 2 μg/mL to 10 μg/mL. In a virulent model of M. tuberculosis lung infection, intratracheal therapeutic application of these peptides three times a week at doses of ca. 1mg/kg led to significant 3-10-fold reductions in lung bacilli after 28-30 days of treatment. The treatments worked both against the drug-sensitive H37Rv strain and a MDR strain. These results indicate that antimicrobial peptides might constitute a novel therapy against TB. Copyright © 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Yang, Mingkun; Wang, Yan; Chen, Ying; Cheng, Zhongyi; Gu, Jing; Deng, Jiaoyu; Bi, Lijun; Chen, Chuangbin; Mo, Ran; Wang, Xude; Ge, Feng
2015-01-01
Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, remains one of the most prevalent human pathogens and a major cause of mortality worldwide. Metabolic network is a central mediator and defining feature of the pathogenicity of Mtb. Increasing evidence suggests that lysine succinylation dynamically regulates enzymes in carbon metabolism in both bacteria and human cells; however, its extent and function in Mtb remain unexplored. Here, we performed a global succinylome analysis of the virulent Mtb strain H37Rv by using high accuracy nano-LC-MS/MS in combination with the enrichment of succinylated peptides from digested cell lysates and subsequent peptide identification. In total, 1545 lysine succinylation sites on 626 proteins were identified in this pathogen. The identified succinylated proteins are involved in various biological processes and a large proportion of the succinylation sites are present on proteins in the central metabolism pathway. Site-specific mutations showed that succinylation is a negative regulatory modification on the enzymatic activity of acetyl-CoA synthetase. Molecular dynamics simulations demonstrated that succinylation affects the conformational stability of acetyl-CoA synthetase, which is critical for its enzymatic activity. Further functional studies showed that CobB, a sirtuin-like deacetylase in Mtb, functions as a desuccinylase of acetyl-CoA synthetase in in vitro assays. Together, our findings reveal widespread roles for lysine succinylation in regulating metabolism and diverse processes in Mtb. Our data provide a rich resource for functional analyses of lysine succinylation and facilitate the dissection of metabolic networks in this life-threatening pathogen. PMID:25605462
USDA-ARS?s Scientific Manuscript database
Biofilm formation by pathogenic bacteria plays a key role in their pathogenesis. Previously, the pstA gene was shown to be involved in the virulence of Mycobacterium avium subspecies paratuberculosis (M. ap), the causative agent of Johne's disease in cattle and a potential risk factor for Crohn's d...
Wang, Hye-Young; Uh, Young; Kim, Seoyong; Shim, Tae-Sun; Lee, Hyeyoung
2017-08-01
The differentiation of Mycobacterium tuberculosis complex (MTBC) from non-tuberculous mycobacteria (NTM) is of primary importance for infection control and the selection of anti-tuberculosis drugs. Up to date data on rifampicin (RIF)-resistant tuberculosis (TB) is essential for the early management of multidrug-resistant TB. The aim of this study was to evaluate the usefulness of a newly developed multiplexed, bead-based bioassay (Quantamatrix Multiplexed Assay Platform, QMAP) for the rapid differentiation of 23 Mycobacterium species including MTBC and RIF-resistant strains. A total of 314 clinical Mycobacterium isolates cultured from respiratory specimens were used in this study. The sensitivity and specificity of the QMAP system for Mycobacterium species were 100% (95% CI 99.15-100%, p<0.0001) and 97.8% (95% CI 91.86-99.87%, p<0.0001), respectively. The results of conventional drug susceptibility testing and the QMAP Dual-ID assay were completely concordant for all clinical isolates (100%, 95% CI 98.56-100%). Out of 223 M. tuberculosis (MTB) isolates, 196 were pan-susceptible and 27 were resistant to RIF according to QMAP results. All of the mutations in the RIF resistance-determining region detected by the QMAP system were confirmed by rpoB sequence analysis and a REBA MTB-Rifa reverse blot hybridization assay. The majority of the mutations (n=26, 96.3%), including those missing wild-type probe signals, were located in three codons (529-534, 524-529, and 514-520), and 17 (65.4%) of these mutations were detected by three mutation probes (531TTG, 526TAC, and 516GTC). The entire QMAP system assay takes about 3h to complete, while results from the culture-based conventional method can take up to 48-72h. Although improvements to the QMAP system are needed for direct respiratory specimens, it may be useful for rapid screening, not only to identify and accurately discriminate MTBC from NTM, but also to identify RIF-resistant MTB strains in positive culture samples. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Niitsuma, Katsunao; Saito, Miwako; Koshiba, Shizuko; Kaneko, Michiyo
2014-05-01
Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) method is being played an important role for the inspection of clinical microorganism as a rapid and the price reduction. Mass spectra obtained by measuring become points of identification whether the peak pattern match any species mass spectral pattern. We currently use MALDI-TOF MS for rapid and accurate diagnosis of inactivated reference and clinical isolates of Mycobacterium because of the improved pretreatment techniques compared with former inspection methods that pose a higher risk of infection to the operator. The identification matching rate of score value (SV) peak pattern spectra was compared with that of conventional methods such as strain diffusion/amplification. Also, cultures were examined after a fixed number of days. Compared with the initial inspection technique, the pretreatment stage of current MALDI-TOF MS inspection techniques can improve the analysis of inactivated acid-fast bacteria that are often used as inspection criteria strains of clinical isolates. Next, we compared the concordance rate for identification between MALDI-TOF MS and conventional methods such as diffusion/amplification by comparison of peak pattern spectra and evaluated SV spectra to identify differences in the culture media after the retention period. In examination of 158 strains of clinical isolated Mycobacterium tuberculosis complex (MTC), the identification coincidence rate in the genus level in a matching pattern was 99.4%, when the species level was included 94.9%. About 37 strains of nontuberculous mycobacteria (NTM), the identification coincidence rate in the genus level was 94.6%. M. bovis BCG (Tokyo strain) in the reference strain was judged by the matching pattern to be MTC, and it suggested that they are M. tuberculosis and affinity species with high DNA homology. Nontuberculous mycobacterial M. gordonae strain JATA 33-01 shared peak pattern spectra, excluding the isolates, with each clinically isolated strain. However, the mass spectra of six M. gordonae clinical isolates suggested polymorphisms with similar mass-to-charge ratios compared with those of the reference strains. The peak pattern spectra of the clinical isolates and reference strains, excluding the NTM M. gordonae strain JATA33-01, were consistent with the peak pattern characteristics of each isolate. However, a comparison between the peak patterns of the reference strains and those of the six clinically isolated M. gordonae strains revealed a similar mass-to-charge ratio, which may indicate few polymorphisms. The SV spectrum of the improved inspection technique showed no fidelity, but it was acceptable after days of culture as indicated by the decrease in SV (0.3 degree). Also, the reproducibility of this method was good, but no difference was observed from the SV of the improved inspection technique, which decreased by approximately 0.3 because of the number of days of culture storage. In addition, expansion of the database and dissemination of regional specificity by genotype analysis of clinical isolates was relevant to the accumulated data, as expected. In future studies, the relevance and regional specificity of clinical isolates by genotype analysis can be determined by stacking the solid media and database penetration.
Jiang, Zhong-Ke; Tuo, Li; Huang, Da-Lin; Osterman, Ilya A; Tyurin, Anton P; Liu, Shao-Wei; Lukyanov, Dmitry A; Sergiev, Petr V; Dontsova, Olga A; Korshun, Vladimir A; Li, Fei-Na; Sun, Cheng-Hang
2018-01-01
Endophytic actinobacteria are one of the important pharmaceutical resources and well known for producing different types of bioactive substances. Nevertheless, detection of the novelty, diversity, and bioactivity on endophytic actinobacteria isolated from mangrove plants are scarce. In this study, five different mangrove plants, Avicennia marina, Aegiceras corniculatum, Kandelia obovota, Bruguiera gymnorrhiza , and Thespesia populnea , were collected from Beilun Estuary National Nature Reserve in Guangxi Zhuang Autonomous Region, China. A total of 101 endophytic actinobacteria strains were recovered by culture-based approaches. They distributed in 7 orders, 15 families, and 28 genera including Streptomyces, Curtobacterium, Mycobacterium, Micrococcus, Brevibacterium, Kocuria, Nocardioides, Kineococcus, Kytococcus, Marmoricola, Microbacterium, Micromonospora, Actinoplanes, Agrococcus, Amnibacterium, Brachybacterium, Citricoccus, Dermacoccus, Glutamicibacter, Gordonia, Isoptericola, Janibacter, Leucobacter, Nocardia, Nocardiopsis, Pseudokineococcus, Sanguibacter , and Verrucosispora . Among them, seven strains were potentially new species of genera Nocardioides, Streptomyces, Amnibacterium, Marmoricola , and Mycobacterium . Above all, strain 8BXZ-J1 has already been characterized as a new species of the genus Marmoricola . A total of 63 out of 101 strains were chosen to screen antibacterial activities by paper-disk diffusion method and inhibitors of ribosome and DNA biosynthesis by means of a double fluorescent protein reporter. A total of 31 strains exhibited positive results in at least one antibacterial assay. Notably, strain 8BXZ-J1 and three other potential novel species, 7BMP-1, 5BQP-J3, and 1BXZ-J1, all showed antibacterial bioactivity. In addition, 21 strains showed inhibitory activities against at least one "ESKAPE" resistant pathogens. We also found that Streptomyces strains 2BBP-J2 and 1BBP-1 produce bioactive compound with inhibitory activity on protein biosynthesis as result of translation stalling. Meanwhile, Streptomyces strain 3BQP-1 produces bioactive compound inducing SOS-response due to DNA damage. In conclusion, this study proved mangrove plants harbored a high diversity of cultivable endophytic actinobacteria, which can be a promising source for discovery of novel species and bioactive compounds.
Jiang, Zhong-ke; Tuo, Li; Huang, Da-lin; Osterman, Ilya A.; Tyurin, Anton P.; Liu, Shao-wei; Lukyanov, Dmitry A.; Sergiev, Petr V.; Dontsova, Olga A.; Korshun, Vladimir A.; Li, Fei-na; Sun, Cheng-hang
2018-01-01
Endophytic actinobacteria are one of the important pharmaceutical resources and well known for producing different types of bioactive substances. Nevertheless, detection of the novelty, diversity, and bioactivity on endophytic actinobacteria isolated from mangrove plants are scarce. In this study, five different mangrove plants, Avicennia marina, Aegiceras corniculatum, Kandelia obovota, Bruguiera gymnorrhiza, and Thespesia populnea, were collected from Beilun Estuary National Nature Reserve in Guangxi Zhuang Autonomous Region, China. A total of 101 endophytic actinobacteria strains were recovered by culture-based approaches. They distributed in 7 orders, 15 families, and 28 genera including Streptomyces, Curtobacterium, Mycobacterium, Micrococcus, Brevibacterium, Kocuria, Nocardioides, Kineococcus, Kytococcus, Marmoricola, Microbacterium, Micromonospora, Actinoplanes, Agrococcus, Amnibacterium, Brachybacterium, Citricoccus, Dermacoccus, Glutamicibacter, Gordonia, Isoptericola, Janibacter, Leucobacter, Nocardia, Nocardiopsis, Pseudokineococcus, Sanguibacter, and Verrucosispora. Among them, seven strains were potentially new species of genera Nocardioides, Streptomyces, Amnibacterium, Marmoricola, and Mycobacterium. Above all, strain 8BXZ-J1 has already been characterized as a new species of the genus Marmoricola. A total of 63 out of 101 strains were chosen to screen antibacterial activities by paper-disk diffusion method and inhibitors of ribosome and DNA biosynthesis by means of a double fluorescent protein reporter. A total of 31 strains exhibited positive results in at least one antibacterial assay. Notably, strain 8BXZ-J1 and three other potential novel species, 7BMP-1, 5BQP-J3, and 1BXZ-J1, all showed antibacterial bioactivity. In addition, 21 strains showed inhibitory activities against at least one “ESKAPE” resistant pathogens. We also found that Streptomyces strains 2BBP-J2 and 1BBP-1 produce bioactive compound with inhibitory activity on protein biosynthesis as result of translation stalling. Meanwhile, Streptomyces strain 3BQP-1 produces bioactive compound inducing SOS-response due to DNA damage. In conclusion, this study proved mangrove plants harbored a high diversity of cultivable endophytic actinobacteria, which can be a promising source for discovery of novel species and bioactive compounds. PMID:29780376
[Molecular strain typing contribution to epidemiology of tuberculosis in Limousin (1998 to 2006)].
Bezanahary, H; Baclet, M-C; Sola, C; Gazaille, V; Turlure, P; Weinbreck, P; Denis, F; Martin, C
2008-06-01
We conducted a molecular epidemiology of Mycobacterium tuberculosis in Limousin, a French area with a low incidence of tuberculosis (4.8/100,000 inhabitants in 2005) to define the molecular diversity and the pattern of transmission. Two hundred and fifty-nine strains were isolated (each strain corresponds to one patient) from 1998 to 2006. Both spoligotyping and MIRU15 were chosen for our study because of their discriminatory power. Only 165 medical records were available: 99M/66F, mean age 56.4 years (14-94), 32.7% foreign-born patients, 16.9% homeless or living in shelters, 21.8% of immunocompromised patients (three HIV positive), 14.5% of alcohol addicts. Pulmonary manifestations were predominant (81.8%) with 45.1% of positive smears. Two strains among the 259 presented a multidrug resistance. Spoligotyping identified 136/259 spoligotypes (110 unique, 26 clusters composed of two to 36 isolates); within these 26 clusters, ST53 (n=36) and ST50 (n=19) were the most frequent. Three major families were observed as follow: T1 (30%), Haarlem (30%) and LAM (20%). MIRU15 identified 28/36 isolates in the ST53 group and 14/19 in the ST50 group. Eleven clusters (32 strains) with identical ST-MIRU15 were obtained with a proved case of recent transmission. Alcohol dependence, immunosuppression and pulmonary infections seem to be involved in transmission factors. M. tuberculosis strains isolated in Limousin are characterized by their high genetic diversity. The rate of recent transmission (8.1%) is low and therefore a reactivation process is predominant in this area.
Conflicting Role of Mycobacterium Species in Multiple Sclerosis
Cossu, Davide; Yokoyama, Kazumasa; Hattori, Nobutaka
2017-01-01
Mycobacterium is a genus of aerobic and acid-fast bacteria, which include several pathogenic organisms that cause serious diseases in mammals. Previous studies have associated the immune response against mycobacteria with multiple sclerosis (MS), a chronic demyelinating disease of the central nervous system with unknown etiology. The role of mycobacteria in the pathological process has been controversial and often conflicting. We provide a detailed review of the mycobacteria that have been linked to MS over the last three decades, with a focus on Mycobacterium bovis bacille Calmette–Guérin vaccine for human and oral exposure to Mycobacterium avium subsp. paratuberculosis. We will also discuss the exposure and genetic susceptibility to mycobacterial infection, the protective role of vaccination, as well as the possible mechanisms involved in initiating or worsening MS symptoms, with particular emphasis on the molecular mimicry between mycobacterial and human proteins. Finally, we will introduce topics such as heat shock proteins and recognition by innate immunity, and toll-like receptor signaling-mediated responses to Mycobacterium exposure. PMID:28579973
Biadglegne, Fantahun; Merker, Matthias; Sack, Ulrich; Rodloff, Arne C.; Niemann, Stefan
2015-01-01
Background Recently, newly defined clades of Mycobacterium tuberculosis complex (MTBC) strains, namely Ethiopia 1–3 and Ethiopia H37Rv-like strains, and other clades associated with pulmonary TB (PTB) were identified in Ethiopia. In this study, we investigated whether these new strain types exhibit an increased ability to cause TB lymphadenitis (TBLN) and raised the question, if particular MTBC strains derived from TBLN patients in northern Ethiopia are genetically adapted to their local hosts and/or to the TBLN. Methods Genotyping of 196 MTBC strains isolated from TBLN patients was performed by spoligotyping and 24-loci mycobacterial interspersed repetitive unit-variable number of tandem repeats (MIRU-VNTR) typing. A statistical analysis was carried out to see possible associations between patient characteristics and phylogenetic MTBC strain classification. Results Among 196 isolates, the majority of strains belonged to the Delhi/CAS (38.8%) lineage, followed by Ethiopia 1 (9.7%), Ethiopia 3 (8.7%), Ethiopia H37RV-like (8.2%), Ethiopia 2 and Haarlem (7.7% each), URAL (3.6%), Uganda l and LAM (2% each), S-type (1.5%), X-type (1%), and 0.5% isolates of TUR, EAI, and Beijing genotype, respectively. Overall, 15 strains (7.7%) could not be allocated to a previously described phylogenetic lineage. The distribution of MTBC lineages is similar to that found in studies of PTB samples. The cluster rate (35%) in this study is significantly lower (P = 0.035) compared to 45% in the study of PTB in northwestern Ethiopia. Conclusion In the studied area, lymph node samples are dominated by Dehli/CAS genotype strains and strains of largely not yet defined clades based on MIRU-VNTR 24-loci nomenclature. We found no indication that strains of particular genotypes are specifically associated with TBLN. However, a detailed analysis of specific genetic variants of the locally contained Ethiopian clades by whole genome sequencing may reveal new insights into the host-pathogen co-evolution and specific features that are related to the local host immune system. PMID:26376441
Zhang, L L; Yang, H; Xiao, H P; Lu, J M; Sha, W; Zhang, Q
2016-06-01
In order to detect the in vitro synergistic effect of 4 drugs-pasiniazid (PA), moxifloxacin, rifabutin and rifapentini on multidrug-resistant mycobacterium tuberculosis (MDR-MTB) and extensively drug-resistant mycobacterium tuberculosis(XDR-MTB), which were core drugs of"The program of retreatment research of tuberculosis". The checkerboard method was used to detect the minimum inhibitory concentration (MIC) of antituberculosis drug combination schemes (moxifloxacin-PA, moxifloxacin-PA-rifabutin and moxifloxacin-PA-rifapentini) to 40 strains of clinical drug resistant MTB(20 strains of MDR-MTB and 20 XDR-MTB) and the standard strain H37Rv, by calculating the fractional inhibitory concentration index of joint action in vitro to judge the combined effect, with fractional inhibitory concentration index(FICI)≤0.5 and FICI≤0.75 as the basis of 2 drugs and 3 drugs showing synergy. The FICI of moxifloxacin-PA scheme for DR-MTB was 0.125 to 1.000, only 5 strains with a FICI ≤0.5, showing synergistic effect. The FICI of moxifloxacin-Pa-rifabutin scheme with 20 strains of MDR-MTB ranged from 0.310 to 1.260, 10 strains with a FICI≤0.75, showing synergistic effect. The FICI of moxifloxacin-PA-rifabutin scheme with 20 strains of XDR-MTB ranged from 0.215 to 1.250, 11 strains with a FICI≤0.75, showing synergistic effect. The FICI of moxifloxacin-PA-rifapentini scheme with 20 strains of MDR-MTB ranged from 0.150 to 0.780, 19 strains with a FICI≤0.75, showing synergistic effect. The FICI of moxifloxacin-PA-rifapentini scheme with 20 strains of XDR-MTB ranged from 0.200 to 1.280, 16 strains with a FICI≤0.75, showing synergistic effect. The synergistic effect of moxifloxacin-PA scheme was poor, but showing better synergy when further combined with rifabutin or rifapentini. Rifabutin showed better effect than rifapentini, but the synergistic effect of moxifloxacin-PA-rifabutin combination scheme was poor than that of moxifloxacin-PA-rifapentini combination scheme.
Avanzi, Charlotte; Busso, Philippe; Benjak, Andrej; Loiseau, Chloé; Fomba, Abdoulaye; Doumbia, Glodia; Camara, Idrissa; Lamou, André; Sock, Gouressy; Drame, Tiguidanké; Kodio, Mamadou; Sakho, Fatoumata; Sow, Samba O; Cole, Stewart T; Johnson, Roch Christian
2016-12-01
Molecular drug susceptibility testing was performed on skin biopsies from 24 leprosy patients from Guinea-Conakry for the first time. We identified primary drug resistance in 4 cases and a dapsone-resistant cluster caused by the same strain. Primary transmission of drug-resistant Mycobacterium leprae, including a rifampicin-resistant strain, is reported. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Zampieri, Daniele; Mamolo, Maria Grazia; Vio, Luciano; Romano, Maurizio; Skoko, Nataša; Baralle, Marco; Pau, Valentina; De Logu, Alessandro
2016-07-15
N(1)-[1-[1-aryl-3-[4-(1H-imidazol-1-yl)phenyl]-3-oxo]propyl]-pyridine-2-carboxamidrazone derivatives were design, synthesized and tested for their in vitro antimycobacterial activity. The new compounds showed a moderate antimycobacterial activity against the tested strain of Mycobacterium tuberculosis H37Ra and a significant antimycobacterial activity against several mycobacteria other than tuberculosis strains. Copyright © 2016 Elsevier Ltd. All rights reserved.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Copper-boosting compounds: a novel concept for antimycobacterial drug discovery.
Speer, Alexander; Shrestha, Tej B; Bossmann, Stefan H; Basaraba, Randall J; Harber, Gregory J; Michalek, Suzanne M; Niederweis, Michael; Kutsch, Olaf; Wolschendorf, Frank
2013-02-01
We and others recently identified copper resistance as important for virulence of Mycobacterium tuberculosis. Here, we introduce a high-throughput screening assay for agents that induce a copper hypersensitivity phenotype in M. tuberculosis and demonstrate that such copper-boosting compounds are effective against replicating and nonreplicating M. tuberculosis strains.
USDA-ARS?s Scientific Manuscript database
Total lipids from an M. avium subsp. paratuberculosis (Map) ovine strain (S-type) contained no identifiable glycopeptidolipids or lipopentapeptide, yet both lipids are present in other M. avium subspecies. We determined the genetic and phenotypic basis for this difference using sequence analysis and...
New secondary metabolites from bioactive extracts of the fungus Armillaria tabescens
H. M. T.Bandara Herath; Melissa Jacob; A. Alpus Wilson; Hamed K. Abbas; N.P. Dhammika Nanayakkara Nanayakkara
2012-01-01
Ethyl acetate extracts of Armillaria tabescens (strain JNB-OZ344) showed significant fungistatic and bacteristatic activities against several major human pathogens including Candida albicans, Cryptococcus neoformans, Escherichia coli and Mycobacterium intracellulare. Chemical analysis of these extracts led to the isolation and identification of four new compounds,...
Casali, Nicola; Clark, Simon O.; Hooper, Richard; Williams, Ann; Velji, Preya; Gonzalo, Ximena
2015-01-01
Virulence factors (VFs) contribute to the emergence of new human Mycobacterium tuberculosis strains, are lineage dependent, and are relevant to the development of M. tuberculosis drugs/vaccines. VFs were sought within M. tuberculosis lineage 3, which has the Central Asian (CAS) spoligotype. Three isolates were selected from clusters previously identified as dominant in London, United Kingdom. Strain-associated virulence was studied in guinea pig, monocyte-derived macrophage, and lysozyme resistance assays. Whole-genome sequencing, single nucleotide polymorphism (SNP) analysis, and a literature review contributed to the identification of SNPs of interest. The animal model revealed borderline differences in strain-associated pathogenicity. Ex vivo, isolate C72 exhibited statistically significant differences in intracellular growth relative to C6 and C14. SNP candidates inducing lower fitness levels included 123 unique nonsynonymous SNPs, including three located in genes (lysX, caeA, and ponA2) previously identified as VFs in the laboratory-adapted reference strain H37Rv and shown to confer lysozyme resistance. C72 growth was most affected by lysozyme in vitro. A BLAST search revealed that all three SNPs of interest (C35F, P76Q, and P780R) also occurred in Tiruvallur, India, and in Uganda. Unlike C72, however, no single isolate identified through BLAST carried all three SNPs simultaneously. CAS isolates representative of three medium-sized human clusters demonstrated differential outcomes in models commonly used to estimate strain-associated virulence, supporting the idea that virulence varies within, not just across, M. tuberculosis lineages. Three VF SNPs of interest were identified in two additional locations worldwide, which suggested independent selection and supported a role for these SNPs in virulence. The relevance of lysozyme resistance to strain virulence remains to be established. PMID:25776753
Antiprotozoal and antimycobacterial activities of Persea americana seeds
2013-01-01
Background Persea americana seeds are widely used in traditional Mexican medicine to treat rheumatism, asthma, infectious processes as well as diarrhea and dysentery caused by intestinal parasites. Methods The chloroformic and ethanolic extracts of P. americana seeds were prepared by maceration and their amoebicidal, giardicidal and trichomonicidal activity was evaluated. These extracts were also tested against Mycobacterium tuberculosis H37Rv, four mono-resistant and two multidrug resistant strains of M. tuberculosis as well as five non tuberculosis mycobacterium strains by MABA assay. Results The chloroformic and ethanolic extracts of P. americana seeds showed significant activity against E. histolytica, G. lamblia and T. vaginalis (IC50 <0.634 μg/ml). The chloroformic extract inhibited the growth of M. tuberculosis H37Rv, M. tuberculosis MDR SIN 4 isolate, three M. tuberculosis H37Rv mono-resistant reference strains and four non tuberculosis mycobacteria (M. fortuitum, M. avium, M. smegmatis and M. absessus) showing MIC values ≤50 μg/ml. Contrariwise, the ethanolic extract affected only the growth of two mono-resistant strains of M. tuberculosis H37Rv and M. smegmatis (MIC ≤50 μg/ml). Conclusions The CHCl3 and EtOH seed extracts from P. americana showed amoebicidal and giardicidal activity. Importantly, the CHCl3 extract inhibited the growth of a MDR M. tuberculosis isolate and three out of four mono-resistant reference strains of M. tuberculosis H37Rv, showing a MIC = 50 μg/ml. This extract was also active against the NTM strains, M. fortuitum, M. avium, M. smegmatis and M. abscessus, with MIC values <50 μg/ml. PMID:23680126
Idh, Jonna; Andersson, Blanka; Lerm, Maria; Raffetseder, Johanna; Eklund, Daniel; Woksepp, Hanna; Werngren, Jim; Mansjö, Mikael; Sundqvist, Tommy; Stendahl, Olle
2017-01-01
Background Drugs such as isoniazid (INH) and pretomanid (PRT), used against Mycobacterium tuberculosis are active partly through generation of reactive nitrogen species (RNS). The aim of this study was to explore variability in intracellular susceptibility to nitric oxide (NO) in clinical strains of M. tuberculosis. Method Luciferase-expressing clinical M. tuberculosis strains with or without INH resistance were exposed to RNS donors (DETA/NO and SIN-1) in broth cultures and bacterial survival was analysed by luminometry. NO-dependent intracellular killing in a selection of strains was assessed in interferon gamma/lipopolysaccharide-activated murine macrophages using the NO inhibitor L-NMMA. Results When M. tuberculosis H37Rv was compared to six clinical isolates and CDC1551, three isolates with inhA mediated INH resistance showed significantly reduced NO-susceptibility in broth culture. All strains showed a variable but dose-dependent susceptibility to RNS donors. Two clinical isolates with increased susceptibility to NO exposure in broth compared to H37Rv were significantly inhibited by activated macrophages whereas there was no effect on growth inhibition when activated macrophages were infected by clinical strains with higher survival to NO exposure in broth. Furthermore, the most NO-tolerant clinical isolate showed increased resistance to PRT both in broth culture and the macrophage model compared to H37Rv in the absence of mutational resistance in genes associated to reduced susceptibility against PRT or NO. Conclusion In a limited number of clinical M. tuberculosis isolates we found a significant difference in susceptibility to NO between clinical isolates, both in broth cultures and in macrophages. Our results indicate that mycobacterial susceptibility to cellular host defence mechanisms such as NO need to be taken into consideration when designing new therapeutic strategies. PMID:28704501
Rawat, Mamta; Newton, Gerald L.; Ko, Mary; Martinez, Gladys J.; Fahey, Robert C.; Av-Gay, Yossef
2002-01-01
Mycothiol (MSH; 1d-myo-inosityl 2-[N-acetyl-l-cysteinyl]amido-2-deoxy-α-d-glucopyranoside) is the major low-molecular-weight thiol produced by mycobacteria. Mutants of Mycobacterium smegmatis mc2155 deficient in MSH production were produced by chemical mutagenesis as well as by transposon mutagenesis. One chemical mutant (mutant I64) and two transposon mutants (mutants Tn1 and Tn2) stably deficient in MSH production were isolated by screening for reduced levels of MSH content. The MSH contents of transposon mutants Tn1 and Tn2 were found to be less than 0.1% that of the parent strain, and the MSH content of I64 was found to be 1 to 5% that of the parent strain. All three strains accumulated 1d-myo-inosityl 2-deoxy-α-d-glucopyranoside to levels 20- to 25-fold the level found in the parent strain. The cysteine:1d-myo-inosityl 2-amino-2-deoxy-α-d-glucopyranoside ligase (MshC) activities of the three mutant strains were ≤2% that of the parent strain. Phenotypic analysis revealed that these MSH-deficient mutants possess increased susceptibilities to free radicals and alkylating agents and to a wide range of antibiotics including erythromycin, azithromycin, vancomycin, penicillin G, rifamycin, and rifampin. Conversely, the mutants possess at least 200-fold higher levels of resistance to isoniazid than the wild type. We mapped the mutation in the chemical mutant by sequencing the mshC gene and showed that a single amino acid substitution (L205P) is responsible for reduced MSH production and its associated phenotype. Our results demonstrate that there is a direct correlation between MSH depletion and enhanced sensitivity to toxins and antibiotics. PMID:12384335