Science.gov

Sample records for myelin basic protein-specific

  1. Myelin basic protein-specific T lymphocytes proliferation and programmed cell death in demyelinating diseases.

    PubMed

    Saresella, Marina; Marventano, Ivana; Guerini, Franca Rosa; Zanzottera, Milena; Delbue, Serena; Marchioni, Enrico; Maserati, Renato; Longhi, Renato; Ferrante, Pasquale; Clerici, Mario

    2008-12-01

    A dynamic equilibrium between proliferation and programmed cell death (PCD) of auto-reactive T lymphocytes plays a pivotal role in the prevention of autoimmune diseases. We analyzed T lymphocytes myelin basic protein (MBP)-specific PCD and proliferation in demyelinating diseases. Results showed that MBP-specific PCD was significantly decreased in CD4+ and CD8+ T lymphocytes of progressive multifocal leukoencephalopathy (PML), not determined leukoencephalopathy (NDLE), and acute MS (AMS) patients compared to patients with stable MS (SMS) and healthy controls. MBP-specific proliferation/PCD rates were high in CD4+ T lymphocytes of PML, NDLE, and AMS patients, and in CD8+ T cells of PML and AMS individuals alone. Alterations of the balance between MBP-specific proliferation and PCD are present in demyelinating diseases and could play a major role in the pathogenesis of these diseases.

  2. Transformation of human T-cell clones by Herpesvirus saimiri: intact antigen recognition by autonomously growing myelin basic protein-specific T cells.

    PubMed Central

    Weber, F; Meinl, E; Drexler, K; Czlonkowska, A; Huber, S; Fickenscher, H; Müller-Fleckenstein, I; Fleckenstein, B; Wekerle, H; Hohlfeld, R

    1993-01-01

    Herpesvirus saimiri has recently been shown to immortalize human T cells. It was unknown, however, whether Herpesvirus saimiri transformation affects T-cell receptor (TCR) expression and signal transduction. In the present study, we have transformed CD4+ human T-cell clones specific for human myelin basic protein. The transformed T cells were grown in interleukin 2 and divided in the absence of antigen and antigen-presenting cells. They retained the membrane phenotype of activated T cells and secreted the cytokines interferon gamma and lymphotoxin, but interleukin 4 was not detected. Further, the transformed T cells continued to express the original TCR as demonstrated by TCR variable-region-V beta-specific monoclonal antibodies and TCR sequencing. Antigen-specific recognition and signal transduction by the TCR were demonstrated by myelin-basic-protein-induced HLA-DR-restricted secretion of interferon gamma and lymphotoxin and by myelin-basic-protein-specific proliferation. Antigen specificity and reactivity have been maintained for > 1 year after transformation. Transformation with Herpesvirus saimiri now allows the production of virtually unlimited numbers of (auto)antigen-specific T cells expressing functional TCR and a stable membrane phenotype. This technology will facilitate studies of the pathogenesis of putative autoimmune diseases, such as multiple sclerosis, and may be of help in TCR-targeted immunotherapy. PMID:7504291

  3. Myelin basic protein-specific T helper 2 (Th2) cells cause experimental autoimmune encephalomyelitis in immunodeficient hosts rather than protect them from the disease.

    PubMed

    Lafaille, J J; Keere, F V; Hsu, A L; Baron, J L; Haas, W; Raine, C S; Tonegawa, S

    1997-07-21

    Chronic inflammatory autoimmune diseases such as multiple sclerosis, diabetes, and rheumatoid arthritis are caused by CD4(+) Th1 cells. Because Th2 cells antagonize Th1 cell functions in several ways, it is believed that immune deviation towards Th2 can prevent or cure autoimmune diseases. Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease used as a model for multiple sclerosis. Using an adoptive transfer system we assessed the role of Th1 and Th2 cells in EAE. In vitro generated Th1 and Th2 cells from myelin basic protein (MBP)-specific TCR transgenic mice were transferred into normal and immunodeficient mice. Th1 cells caused EAE in all recipients after a brief preclinical phase. Surprisingly, Th2 cells also caused EAE in RAG-1 KO mice and in alphabeta T cell-deficient mice, albeit after a longer preclinical phase. Normal or gammadelta T cell-deficient mice were resistant to EAE induced by Th2 cells. The histopathological features of this disease resembled those of an allergic process. In addition, disease induction by Th1 cells was not altered by coadmininstration of Th2 cells in any of the recipients. These findings indicate that MBP-specific Th2 cells have the potential to induce EAE and that the disease induced by previously activated Th1 cells cannot be prevented by normal lymphocytes nor by previously activated Th2 cells.

  4. Myelin basic protein-specific T lymphocyte repertoire in multiple sclerosis. Complexity of the response and dominance of nested epitopes due to recruitment of multiple T cell clones.

    PubMed Central

    Meinl, E; Weber, F; Drexler, K; Morelle, C; Ott, M; Saruhan-Direskeneli, G; Goebels, N; Ertl, B; Jechart, G; Giegerich, G

    1993-01-01

    The human T cell response to the myelin basic protein (MBP) has been studied with respect to T cell receptor (TCR) usage, HLA class II restriction elements, and epitope specificity using a total of 215 long-term MBP-specific T cell lines (TCL) isolated from the peripheral blood of 13 patients with multiple sclerosis (MS) and 10 healthy donors. In most donors, the anti-MBP response was exceedingly heterogeneous. Using a panel of overlapping synthetic peptides spanning the entire length of human MBP, at least 26 epitopes recognized by human TCL could be distinguished. The MBP domain most commonly recognized was sequence 80-105 (31% of MS TCL, and 24% of control TCL). Sequence 29-48 was recognized more frequently by control-derived TCL (24%) than by TCL from MS patients (5%). The MBP epitopes were recognized in the context of DRB1 *0101, DRB5*0101, DRB1*1501, DRB1*0301, DRB1*0401, DRB1*1402, and DRB3*0102, as demonstrated using a panel of DR gene-transfected L cells. The TCR gene usage was also heterogeneous. V beta 5.2, a peptide of which is currently being used in a clinical trial for treatment of MS patients, was expressed by only one of our TCL. However, within this complex pattern of MBP-specific T cell responses, a minority of MS patients were found to exhibit a more restricted response with respect to their TCL epitope specificity. In these patients 75-87% of the TCL responded to a single, patient-specific cluster of immunodominant T cell epitopes located within a small (20-amino acid) domain of MBP. These nested clusters of immunodominant epitopes were noted within the amino acids 80-105, 108-131, and 131-153. The T cell response to the immunodominant epitopes was not monoclonal, but heterogeneous, with respect to fine specificity, TCR usage, and even HLA restriction. In one patient (H.K.), this restricted epitope profile remained stable for > 2 yr. The TCR beta chain sequences of TCL specific for the immunodominant region of HK are consistent with an

  5. CSF myelin basic protein

    MedlinePlus

    ... done to see if myelin is breaking down. Multiple sclerosis is the most common cause for this, but ... Houtchens MK, Lublin FD, Miller AE, et al. Multiple sclerosis and other inflammatory demyelinating diseases of the central ...

  6. The myelin basic protein-specific T cell repertoire in (transgenic) Lewis rat/SCID mouse chimeras: preferential V beta 8.2 T cell receptor usage depends on an intact Lewis thymic microenvironment.

    PubMed

    Kääb, G; Brandl, G; Marx, A; Wekerle, H; Bradl, M

    1996-05-01

    In the Lewis rat, myelin basic protein (MBP)-specific, encephalitogenic T cells preferentially recognize sequence 68-88, and use the V beta 8.2 gene to encode their T cell receptors. To analyze the structural prerequisites for the development of the MBP-specific T cell repertoire, we reconstituted severe-combined immunodeficient (SCID) mice with fetal (embryonic day 15-16) Lewis rat lymphoid tissue, and then isolated MBP-specific T cell lines from the adult chimeras after immunization. Two types of chimera were constructed: SCID mice reconstituted with rat fetal liver cells only, allowing T cell maturation within a chimeric SCID thymus consisting of mouse thymic epithelium and rat interdigitating dendritic cells, and SCID mice reconstituted with rat fetal liver cells and rat fetal thymus grafts, allowing T cell maturation within the chimeric SCID and the intact Lewis rat thymic microenvironment. Without exception, the T cell lines isolated from MBP-immunized SCID chimeras were restricted by MHC class II of the Lewis rat (RT1.B1), and none by I-Ad of the SCID mouse. Most of the T cell lines recognized the immunodominant MBP epitope 68-88. In striking contrast to intact Lewis rats, in SCID mice reconstituted by rat fetal liver only, MBP-specific T cell clones used a seemingly random repertoire of V beta genes without a bias for V beta 8.2. In chimeras containing fetal Lewis liver plus fetal thymus grafted under the kidney capsule, however, dominant utilization of V beta 8.2 was restored. The migration of liver-derived stem cells through rat thymus grafts was documented by combining fetal tissues from wild-type and transgenic Lewis rats. The results confirm that the recognition of the immunodominant epitope 68-88 by MBP-specific encephalitogenic T cells is a genetically determined feature of the Lewis rat T cell repertoire. They further suggest that the formation of the repertoire requires T cell differentiation in a syngeneic thymic microenvironment.

  7. Molecular evolution of myelin basic protein, an abundant structural myelin component.

    PubMed

    Nawaz, Schanila; Schweitzer, Jörn; Jahn, Olaf; Werner, Hauke B

    2013-08-01

    Rapid nerve conduction in jawed vertebrates is facilitated by the myelination of axons, which evolved in ancient cartilaginous fish. We aim to understand the coevolution of myelin and the major myelin proteins. We found that myelin basic protein (MBP) derived from living cartilaginous fish (sharks and rays) associated with the plasma membrane of glial cells similar to the phosphatidylinositol (4,5)-bisphosphate (PIP₂)-binding marker PH-PLCδ1, and that ionomycin-induced PIP₂-hydrolysis led to its cellular redistribution. We identified two paralogous mbp genes in multiple teleost species, consistent with a genome duplication at the root of the teleost clade. Zebrafish mbpb is organized in a complex transcription unit together with the unrelated gene-of-the-oligodendrocyte-lineage (golli) while mbpa does not encode GOLLI. Moreover, the embryonic expression of mbpa and mbpb differed, indicating functional specialization after duplication. However, both mbpa and mbpb-mRNAs were detected in mature oligodendrocytes and Schwann cells, MBPa and MBPb were mass spectrometrically identified in zebrafish myelin, both associated with the plasma membrane via PIP₂, and the ratio of nonsynonymous to synonymous nucleotide-substitution rates (Ka/Ks) was low. Together, this indicates selective pressure to conserve many aspects of the cellular expression and function of MBP across vertebrate species. We propose that the PIP₂-binding function of MBP is evolutionarily old and that its emergence in ancient gnathostomata provided glial cells with the competence to myelinate.

  8. Biological methylation of myelin basic protein: enzymology and biological significance.

    PubMed

    Kim, S; Lim, I K; Park, G H; Paik, W K

    1997-05-01

    Myelin is a membrane characteristic of the nervous tissue and functions as an insulator to increase the velocity of the stimuli being transmitted between a nerve cell body and its target. Myelin isolated from human and bovine nervous tissue is composed of approximately 80% lipid and 20% protein, and 30% of the protein fraction constitutes myelin basic protein (MBP). MBP has an unusual amino acid at Res-107 as a mixture of NG-monomethylarginine and NG, N'G-dimethylarginine. The formation of these methylarginine derivatives is catalysed by one of the subtypes of protein methylase I, which specifically methylates Res-107 of this protein. Evidence is presented to demonstrate an involvement of this biological methylation in the integrity and maintenance of myelin.

  9. Synergistic interactions of lipids and myelin basic protein

    NASA Astrophysics Data System (ADS)

    Hu, Yufang; Doudevski, Ivo; Wood, Denise; Moscarello, Mario; Husted, Cynthia; Genain, Claude; Zasadzinski, Joseph A.; Israelachvili, Jacob

    2004-09-01

    This report describes force measurements and atomic force microscope imaging of lipid-protein interactions that determine the structure of a model membrane system that closely mimics the myelin sheath. Our results suggest that noncovalent, mainly electrostatic and hydrophobic, interactions are responsible for the multilamellar structure and stability of myelin. We find that myelin basic protein acts as a lipid coupler between two apposed bilayers and as a lipid "hole-filler," effectively preventing defect holes from developing. From our protein-mediated-adhesion and force-distance measurements, we develop a simple quantitative model that gives a reasonably accurate picture of the molecular mechanism and adhesion of bilayer-bridging proteins by means of noncovalent interactions. The results and model indicate that optimum myelin adhesion and stability depend on the difference between, rather than the product of, the opposite charges on the lipid bilayers and myelin basic protein, as well as on the repulsive forces associated with membrane fluidity, and that small changes in any of these parameters away from the synergistically optimum values can lead to large changes in the adhesion or even its total elimination. Our results also show that the often-asked question of which membrane species, the lipids or the proteins, are the "important ones" may be misplaced. Both components work synergistically to provide the adhesion and overall structure. A better appreciation of the mechanism of this synergy may allow for a better understanding of stacked and especially myelin membrane structures and may lead to better treatments for demyelinating diseases such as multiple sclerosis. lipid-protein interactions | myelin membrane structure | membrane adhesion | membrane regeneration/healing | demyelinating diseases

  10. Myelin

    MedlinePlus

    ... protein and fatty substances. This myelin sheath allows electrical impulses to transmit quickly and efficiently along the nerve cells. If myelin is damaged, these impulses slow down. This can cause diseases such as multiple sclerosis .

  11. Analogous structural motifs in myelin basic protein and in MARCKS.

    PubMed

    Harauz, G; Ishiyama, N; Bates, I R

    2000-06-01

    Myelin basic protein (MBP) and myristoylated alanine-rich C-kinase substrate (MARCKS) are similar in terms of having extended conformations regulated by their environment (i.e., solubilised or lipid-associated), N-terminal modifications, a dual nature of interactions with lipids, binding to actin and Ca2+-calmodulin, and being substrates for different kinds of protein kinases. The further sequence similarities of segments of MBP with lipid effector regions of MARCKS, and numerous reports in the literature, support the thesis that some developmental isoform of MBP functions in signal transduction.

  12. Lipid domains control myelin basic protein adsorption and membrane interactions between model myelin lipid bilayers.

    PubMed

    Lee, Dong Woog; Banquy, Xavier; Kristiansen, Kai; Kaufman, Yair; Boggs, Joan M; Israelachvili, Jacob N

    2014-02-25

    The surface forces apparatus and atomic force microscope were used to study the effects of lipid composition and concentrations of myelin basic protein (MBP) on the structure of model lipid bilayers, as well as the interaction forces and adhesion between them. The lipid bilayers had a lipid composition characteristic of the cytoplasmic leaflets of myelin from "normal" (healthy) and "disease-like" [experimental allergic encephalomyelitis (EAE)] animals. They showed significant differences in the adsorption mechanism of MBP. MBP adsorbs on normal bilayers to form a compact film (3-4 nm) with strong intermembrane adhesion (∼0.36 mJ/m(2)), in contrast to its formation of thicker (7-8 nm) swelled films with weaker intermembrane adhesion (∼0.13 mJ/m(2)) on EAE bilayers. MBP preferentially adsorbs to liquid-disordered submicron domains within the lipid membranes, attributed to hydrophobic attractions. These results show a direct connection between the lipid composition of membranes and membrane-protein adsorption mechanisms that affects intermembrane spacing and adhesion and has direct implications for demyelinating diseases.

  13. Myelin basic protein is affected by reduced synthesis of myelin proteolipid protein in the jimpy mouse.

    PubMed Central

    Fannon, A M; Moscarello, M A

    1990-01-01

    Myelin basic proteins (MBPs) from 6-day-old, 10-day-old, 20-day-old and adult normal mouse brain were compared with those from 20-day-old jimpy (dysmyelinating mutant) mouse brain to determine the effect of reduced levels of proteolipid protein (PLP) on MBPs. Alkaline-urea-gel electrophoresis showed that 6-day-old and 10-day-old normal and jimpy MBPs lacked charge microheterogeneity, since C8 (the least cationic of the components; not be confused with complement component C8) was the only charge isomer present. In contrast, MBPs from 20-day-old and adult normal mouse brain displayed extensive charge microheterogeneity, having at least eight components. A 32 kDa MBP was the major isoform observed on immunoblots of acid-soluble protein from 6-day-old and 10-day-old normal and 20-day-old jimpy mouse brain. There were eight bands present in 20-day-old and adult normal mouse brain. Purified human MBP charge heteromers C1, C2, C3 and C4 reacted strongly with rat 14 kDa MBP antiserum, whereas the reaction with human C8 was weak. This suggested that MBPs from early-myelinating and jimpy mice did not react to MBP antisera because C8 was the major charge isomer in these animals. Purification of MBPs from normal and jimpy brain by alkaline-gel electrophoresis showed that both normal and jimpy MBPs have size heterogeneity when subjected to SDS/PAGE. However, the size isoforms in normal mouse brain (32, 21, 18.5, 17 and 14 kDa) differed from those in jimpy brain (32, 21, 20, 17, 15 and 14 kDa) in both size and relative amounts. Amino acid analyses of MBPs from jimpy brain showed an increase in glutamic acid, alanine and ornithine, and a decrease in histidine, arginine and proline. The changes in glutamic acid, ornithine and arginine are characteristic of the differences observed in human C8 when compared with C1. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:1693071

  14. MyelStones: the executive roles of myelin basic protein in myelin assembly and destabilization in multiple sclerosis.

    PubMed

    Vassall, Kenrick A; Bamm, Vladimir V; Harauz, George

    2015-11-15

    The classic isoforms of myelin basic protein (MBP, 14-21.5 kDa) are essential to formation of the multilamellar myelin sheath of the mammalian central nervous system (CNS). The predominant 18.5-kDa isoform links together the cytosolic surfaces of oligodendrocytes, but additionally participates in cytoskeletal turnover and membrane extension, Fyn-mediated signalling pathways, sequestration of phosphoinositides and maintenance of calcium homoeostasis. All MBP isoforms are intrinsically disordered proteins (IDPs) that interact via molecular recognition fragments (MoRFs), which thereby undergo local disorder-to-order transitions. Their conformations and associations are modulated by environment and by a dynamic barcode of post-translational modifications, particularly phosphorylation by mitogen-activated and other protein kinases and deimination [a hallmark of demyelination in multiple sclerosis (MS)]. The MBPs are thus to myelin what basic histones are to chromatin. Originally thought to be merely structural proteins forming an inert spool, histones are now known to be dynamic entities involved in epigenetic regulation and diseases such as cancer. Analogously, the MBPs are not mere adhesives of compact myelin, but active participants in oligodendrocyte proliferation and in membrane process extension and stabilization during myelinogenesis. A central segment of these proteins is pivotal in membrane-anchoring and SH3 domain (Src homology 3) interaction. We discuss in the present review advances in our understanding of conformational conversions of this classic basic protein upon membrane association, including new thermodynamic analyses of transitions into different structural ensembles and how a shift in the pattern of its post-translational modifications is associated with the pathogenesis and potentially onset of demyelination in MS. © 2015 Authors; published by Portland Press Limited.

  15. Reactions of fluorescent probes with normal and chemically modified myelin basic protein and proteolipid. Comparisons with myelin.

    PubMed

    Feinstein, M B; Felsenfeld, H

    1975-07-15

    Basic (encephalitogenic) protein and water-soluble proteolipid apoprotein isolated from bovine brain myelin bind 8-anilino-1-naphthalenesulfonate and 2-p-toluidinylnaphthalene-6-sulfonate with resulting enhancement of dye fluorescence and a blue-shift of the emission spectrum. The dyes had a higher affinity and quantum yield, when bound to the proteolipid (Kans=2.3x10--6,=0.67) than to the basic protein (Kans=3.3x10--5,=0.40). From the efficiency of radiationless energy transfer from trytophan to bound ANS the intramolecular distances were calculated to be 17 and 27 A for the proteolipid and basic protein, respectively. Unlike myelin, incubation with proteolytic enzymes (e.g., Pronase and trypsin) abolished fluorescence enhancement of ANS or TNS by the extracted proteins. In contrast to myelin, the fluorescence of solutions of fluorescent probes plus proteolipid was reduced by Ca-2+,not affected by La-3+, local anesthetics, or polymyxin B, and only slightly increased by low pH or blockade of free carboxyl groups. The reactions of the basic protein were similar under these conditions except for a two- to threefold increase in dye binding in the presence of La-3+, or after blockade of carboxyl groups. N-Bromosuccinimide oxidation of tryptophan groups nearly abolished native protein fluorescence, but did not affect dye binding. However, alkylation of tryptophan groups of both proteins by 2-hydroxy (or methoxy)-5-nitrobenzyl bromide reduced the of bound ANS (excited at 380 nm) to 0.15 normal. The same effect was observed with human serum albumin. The fluorescence emission of ANS bound to myelin was not affected by alkylation of membrane tryptophan groups with the Koshland reagents, except for abolition of energy transfer from tryptophan to bound dye molecules. This suggests that dye binding to protein is negligible in the intact membrane. Proteolipid incorporated into lipid vesicles containing phosphatidylserine did not bind ANS or TNS unless Ca-2+, La-3+, polymyxin B

  16. Effects of active immunisation with myelin basic protein and myelin-derived altered peptide ligand on pain hypersensitivity and neuroinflammation.

    PubMed

    Perera, Chamini J; Lees, Justin G; Duffy, Samuel S; Makker, Preet G S; Fivelman, Brett; Apostolopoulos, Vasso; Moalem-Taylor, Gila

    2015-09-15

    Neuropathic pain is a debilitating condition in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Specific myelin basic protein (MBP) peptides are encephalitogenic, and myelin-derived altered peptide ligands (APLs) are capable of preventing and ameliorating EAE. We investigated the effects of active immunisation with a weakly encephalitogenic epitope of MBP (MBP87-99) and its mutant APL (Cyclo-87-99[A(91),A(96)]MBP87-99) on pain hypersensitivity and neuroinflammation in Lewis rats. MBP-treated rats exhibited significant mechanical and thermal pain hypersensitivity associated with infiltration of T cells, MHC class II expression and microglia activation in the spinal cord, without developing clinical signs of paralysis. Co-immunisation with APL significantly decreased pain hypersensitivity and neuroinflammation emphasising the important role of neuroimmune crosstalk in neuropathic pain. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Modulation of myelin basic protein gene expression by acetyl-L-carnitine.

    PubMed

    Traina, Giovanna; Federighi, Giuseppe; Macchi, Monica; Bernardi, Rodolfo; Durante, Mauro; Brunelli, Marcello

    2011-08-01

    Acetyl-L-carnitine (ALC), the acetyl ester of L-carnitine, is a naturally occurring molecule which plays an essential role in intermediary and mitochondrial metabolism. It has also neurotrophic and antioxidant actions, demonstrating efficacy and high tolerability in the treatment of neuropathies of various etiologies. ALC is a molecule of considerable interest for its clinical application in various neural disorders, although little is known regarding its effects on gene expression. Suppression subtractive hybridization methodology was used for the generation of subtracted complementary DNA libraries and the subsequent identification of differentially expressed transcripts in the rat brain after chronic ALC treatments. We provided evidence for a downregulation of the expression of all of the isoforms of myelin basic protein gene following prolonged ALC treatment, indicating a possible role in the modulation of myelin basic protein turnover, stabilizing and maintaining myelin integrity.

  18. MBP-8298, a synthetic peptide analog of myelin basic protein for the treatment of multiple sclerosis.

    PubMed

    Darlington, Cynthia

    2007-08-01

    BioMS Medical Corp, under license from the University of Alberta, is developing MBP-8298, a synthetic peptide analog of myelin basic protein, for the potential treatment of multiple sclerosis. Phase II and III clinical trials of MBP-8298 are underway.

  19. Classic and Golli Myelin Basic Protein have distinct developmental trajectories in human visual cortex.

    PubMed

    Siu, Caitlin R; Balsor, Justin L; Jones, David G; Murphy, Kathryn M

    2015-01-01

    Traditionally, myelin is viewed as insulation around axons, however, more recent studies have shown it also plays an important role in plasticity, axonal metabolism, and neuroimmune signaling. Myelin is a complex multi-protein structure composed of hundreds of proteins, with Myelin Basic Protein (MBP) being the most studied. MBP has two families: Classic-MBP that is necessary for activity driven compaction of myelin around axons, and Golli-MBP that is found in neurons, oligodendrocytes, and T-cells. Furthermore, Golli-MBP has been called a "molecular link" between the nervous and immune systems. In visual cortex specifically, myelin proteins interact with immune processes to affect experience-dependent plasticity. We studied myelin in human visual cortex using Western blotting to quantify Classic- and Golli-MBP expression in post-mortem tissue samples ranging in age from 20 days to 80 years. We found that Classic- and Golli-MBP have different patterns of change across the lifespan. Classic-MBP gradually increases to 42 years and then declines into aging. Golli-MBP has early developmental changes that are coincident with milestones in visual system sensitive period, and gradually increases into aging. There are three stages in the balance between Classic- and Golli-MBP expression, with Golli-MBP dominating early, then shifting to Classic-MBP, and back to Golli-MBP in aging. Also Golli-MBP has a wave of high inter-individual variability during childhood. These results about cortical MBP expression are timely because they compliment recent advances in MRI techniques that produce high resolution maps of cortical myelin in normal and diseased brain. In addition, the unique pattern of Golli-MBP expression across the lifespan suggests that it supports high levels of neuroimmune interaction in cortical development and in aging.

  20. Myelin Basic Protein and a Multiple Sclerosis-related MBP-peptide Bind to Oligonucleotides

    PubMed Central

    Rozenblum, Guido Tomás; Kaufman, Tomás; Vitullo, Alfredo Daniel

    2014-01-01

    Aptamer ligands for myelin basic protein (MBP) were obtained using the systematic evolution of ligand by exponential enrichment (SELEX) method. Two clones were isolated from a pool of oligonucleotides and tested for MBP targeting. Using purified MBP, we demonstrated the binding activity of the aptamers and we also showed the affinity of MBP for oligonucleotides of specific length. Moreover, one selected aptamer competitively inhibited the binding of an MBP-specific antibody to MBP and the aptamer was found more sensitive than a commercial antibody. In addition, we showed the ability of the aptamer to detect myelin-rich regions in paraffin-embedded mouse brain tissue. Therefore, the MBP-binding activity of the selected oligonucleotide may prove useful as a tool for life science and medical research for myelin detection and might be a good lead for testing it in autoimmune diseases such as multiple sclerosis. PMID:25202925

  1. Deimination of membrane-bound myelin basic protein in multiple sclerosis exposes an immunodominant epitope

    PubMed Central

    Musse, Abdiwahab A.; Boggs, Joan M.; Harauz, George

    2006-01-01

    The degradation of myelin in the CNS is the hallmark of multiple sclerosis. Reduction in the net positive charge of myelin basic protein (MBP), through deimination, correlates strongly with disease severity and may mediate myelin instability and loss of compaction. Using Cys scanning, spin labeling, EPR spectroscopy, and site-specific proteolysis, we show that in the membrane-bound state the primary immunodominant epitope, V83-T92, of the less cationic recombinant murine MBP C8 mimic (rmC8) forms a more highly surface-exposed and shorter amphipathic α-helix than in the unmodified form, recombinant murine MBP C1 mimic (rmC1), analogous to the most cationic and abundant isomer of MBP in normal myelin. Moreover, cathepsin D digested lipid-associated rmC8 3-fold faster than rmC1, and cleavage at F86–F87 occurred more readily in rmC8 than rmC1. These findings suggest a mechanism for initial loss of myelin stability and the autoimmune pathogenesis of multiple sclerosis. PMID:16537438

  2. Myelin basic protein accumulation is impaired in a model of protein deficiency during development.

    PubMed

    Montanha-Rojas, E A; Ferreira, A A; Tenório, F; Barradas, P C

    2005-02-01

    During the development of the central nervous system (CNS) there is a great possibility of permanent effects in consequence of environmental disturbances. Nutritional deficiency is one of the factors that impair the normal CNS formation. In general, the protein deficiency evokes, beyond the damages in the maturation of nervous system, several consequences in body growth, biochemical maturation, motor function and the major cognitive functions. These effects were observed in undernourished children all over the world. Even in a restricted period, the malnutrition status may evoke permanent impairments in feeding behavior and in metabolism. Rats submitted to malnutrition during development, showed a marked decrease in the number of myelinated fibers. This condition may reflect a failure in the beginning of the wrapping of axons by oligodendroglial processes and/or a delay in the myelin synthesis. Myelin basic protein (MBP) is an intracellular oligodendrocyte protein that is directly related to the formation of the myelin sheath. In this study we verified the temporal pattern of MBP expression, by immunohistochemical and immunoblotting analyses, in a model of protein malnutrition induced during the first half of the lactation period. We showed that MBP expression was impaired in our malnutrition model and that some of the effects were maintained in adulthood, with possible consequences in the maturation of myelin sheath.

  3. The role of myelin lipids in experimental allergic encephalomyelitis. Part 1. Influence on disease production by non-encephalitogenic doses of myelin basic protein.

    PubMed

    Hosein, Z Z; Gilbert, J J; Strejan, G H

    1984-12-01

    Hartley guinea pig central nervous system (CNS) myelin has been purified and fractionated into its protein and lipid components. Experimental allergic encephalomyelitis (EAE) was induced in juvenile strain 13 guinea pigs with both lyophilized and fresh 'wet' myelin. However, a larger dose of lyophilized myelin was required to induce chronic EAE. Total myelin lipids, galactocerebrosides, gangliosides, phospholipids or proteolipids were combined with a non-encephalitogenic dose of myelin basic protein (MBP) and injected in juvenile Hartley guinea pigs. No clinical or histological manifestations of disease were observed. Parameters of immune functions indicated that the total myelin lipids augmented cell-mediated immune responses as measured by in vitro lymphocyte transformation and by a significant decrease in the percentage of peripheral early T cells. Only the proteolipids elicited delayed hypersensitivity reactions. Animals that received the phospholipid-MBP combination showed no changes when compared to animals injected with MBP alone. The results suggest that although the myelin lipids did not act synergistically with a non-encephalitogenic dose of MBP to induce EAE, they induced immunological changes and potentiated the immune response to MBP.

  4. Myelin basic protein induces neuron-specific toxicity by directly damaging the neuronal plasma membrane.

    PubMed

    Zhang, Jie; Sun, Xin; Zheng, Sixin; Liu, Xiao; Jin, Jinghua; Ren, Yi; Luo, Jianhong

    2014-01-01

    The central nervous system (CNS) insults may cause massive demyelination and lead to the release of myelin-associated proteins including its major component myelin basic protein (MBP). MBP is reported to induce glial activation but its effect on neurons is still little known. Here we found that MBP specifically bound to the extracellular surface of the neuronal plasma membrane and induced neurotoxicity in vitro. This effect of MBP on neurons was basicity-dependent because the binding was blocked by acidic lipids and competed by other basic proteins. Further studies revealed that MBP induced damage to neuronal membrane integrity and function by depolarizing the resting membrane potential, increasing the permeability to cations and other molecules, and decreasing the membrane fluidity. At last, artificial liposome vesicle assay showed that MBP directly disturbed acidic lipid bilayer and resulted in increased membrane permeability. These results revealed that MBP induces neurotoxicity through its direct interaction with acidic components on the extracellular surface of neuronal membrane, which may suggest a possible contribution of MBP to the pathogenesis in the CNS disorders with myelin damage.

  5. Myelin management by the 18.5-kDa and 21.5-kDa classic myelin basic protein isoforms.

    PubMed

    Harauz, George; Boggs, Joan M

    2013-05-01

    The classic myelin basic protein (MBP) splice isoforms range in nominal molecular mass from 14 to 21.5 kDa, and arise from the gene in the oligodendrocyte lineage (Golli) in maturing oligodendrocytes. The 18.5-kDa isoform that predominates in adult myelin adheres the cytosolic surfaces of oligodendrocyte membranes together, and forms a two-dimensional molecular sieve restricting protein diffusion into compact myelin. However, this protein has additional roles including cytoskeletal assembly and membrane extension, binding to SH3-domains, participation in Fyn-mediated signaling pathways, sequestration of phosphoinositides, and maintenance of calcium homeostasis. Of the diverse post-translational modifications of this isoform, phosphorylation is the most dynamic, and modulates 18.5-kDa MBP's protein-membrane and protein-protein interactions, indicative of a rich repertoire of functions. In developing and mature myelin, phosphorylation can result in microdomain or even nuclear targeting of the protein, supporting the conclusion that 18.5-kDa MBP has significant roles beyond membrane adhesion. The full-length, early-developmental 21.5-kDa splice isoform is predominantly karyophilic due to a non-traditional P-Y nuclear localization signal, with effects such as promotion of oligodendrocyte proliferation. We discuss in vitro and recent in vivo evidence for multifunctionality of these classic basic proteins of myelin, and argue for a systematic evaluation of the temporal and spatial distributions of these protein isoforms, and their modified variants, during oligodendrocyte differentiation.

  6. Structure and function of the proline-rich region of myelin basic protein.

    PubMed

    Fraser, P E; Deber, C M

    1985-08-13

    Myelin basic protein (MBP)--the major extrinsic membrane protein of central nervous system myelin--from several species contains a rarely encountered highly conserved triproline segment as residues 99-101 of its 170-residue sequence. Cis peptide bonds are known to arise at X-Pro junctions in proteins and may be of functional significance in protein folding, chain reversal, and/or maintenance of tertiary structure. We have examined the conformation of this proline-rich region using principally 13C nuclear magnetic resonance spectroscopy (125 MHz) both in intact bovine MBP and in several MBP fragment peptides which we synthesized, including octapeptide 97-104 (Arg-Thr-Pro-Pro-Pro-Ser-Gln-Gly). Results suggested an all-trans conformation in aqueous solution for the triproline segment in MBP hexapeptide (99-104), heptapeptide (98-104), and octapeptide. Comparison with the 13C spectrum of intact MBP (125 MHz) suggested that the proline-rich region, as well as all other X-Pro MBP peptide junctures, was also essentially all trans in aqueous solution. Although experiments in which octapeptide 97-104 was bound to a lipid preparation (4:1 dipalmitoylphosphatidylcholine/dimyristoylphosphatidic acid) demonstrated that cis-proline bonds do arise (to the extent of ca. 5%) in the membrane environment, a role of linear chain propagation is suggested for the triproline segment of myelin basic protein.

  7. Charge effects modulate actin assembly by classic myelin basic protein isoforms

    SciTech Connect

    Hill, Christopher M.D.; Harauz, George . E-mail: gharauz@uoguelph.ca

    2005-04-01

    Myelin basic protein (MBP), a highly cationic structural protein of the myelin sheath, is believed to be associated with the cytoskeleton in vivo and interacts with actin in vitro, but little is known about the regulation of this interaction. The rate and extent of actin polymerization induced by 18.5 kDa MBP charge isomers were correlated to charge reduction by post-translational modifications. Increased ionic strength attenuated the initial rate but not the final extent of polymerization achieved. Reduced pH enhanced the rate and extent of polymerization, presumably via partial protonation of intrinsic histidyl residues. The polymerizing activities of the 21.5, 17, and 14 kDa MBP splice variants were not proportionate to their net charges or charge densities. The presence of at least one region derived from exon II or VI of the 'classic' MBP gene was required for effective bundling as assessed by light scattering and transmission electron microscopy.

  8. Crosspresentation by nonhematopoietic and direct presentation by hematopoietic cells induce central tolerance to myelin basic protein

    PubMed Central

    Perchellet, Antoine; Brabb, Thea; Goverman, Joan M.

    2008-01-01

    Central tolerance plays a critical role in eliminating self-reactive T cells specific for peripheral antigens. Here we show that central tolerance of MHC class I-restricted T cells specific for classic myelin basic protein (MBP), a component of the myelin sheath, is mediated by both bone marrow (BM)-derived and nonBM-derived cells. Unexpectedly, BM-derived cells induce tolerance directly by using classic MBP that they synthesize, whereas nonBM-derived cells mediate tolerance by crosspresenting classic MBP acquired from an exogenous source. Thus, tolerance to tissue-specific antigens can involve multiple cell types and mechanisms in the thymus, which may account for the limited spectrum of autoimmune syndromes observed when expression of tissue-specific antigens is impaired only in thymic epithelial cells. PMID:18772374

  9. An immunodominant epitope of myelin basic protein is an amphipathic alpha-helix.

    PubMed

    Bates, Ian R; Feix, Jimmy B; Boggs, Joan M; Harauz, George

    2004-02-13

    Myelin basic protein is a candidate autoantigen in multiple sclerosis. One of its dominant antigenic epitopes is segment Pro85 to Pro96 (human sequence numbering, corresponding to Pro82 to Pro93 in the mouse). There have been several, contradictory predictions of secondary structure in this region; either beta-sheet, alpha-helix, random coil, or combinations thereof have all been proposed. In this paper, molecular dynamics and site-directed spin labeling in aqueous solution indicate that this segment forms a transient alpha-helix, which is stabilized in 30% trifluoroethanol. When bound to a myelin-like membrane surface, this antigenic segment exhibits a depth profile that is characteristic of an amphipathic alpha-helix, penetrating up to 12 A into the bilayer. The alpha-helix is tilted approximately 9 degrees, and the central lysine is in an ideal snorkeling position for side-chain interaction with the negatively charged phospholipid head groups.

  10. Ubiquitin-independent proteosomal degradation of myelin basic protein contributes to development of neurodegenerative autoimmunity

    PubMed Central

    Belogurov, Alexey; Kuzina, Ekaterina; Kudriaeva, Anna; Kononikhin, Alexey; Kovalchuk, Sergey; Surina, Yelena; Smirnov, Ivan; Lomakin, Yakov; Bacheva, Anna; Stepanov, Alexey; Karpova, Yaroslava; Lyupina, Yulia; Kharybin, Oleg; Melamed, Dobroslav; Ponomarenko, Natalia; Sharova, Natalia; Nikolaev, Eugene; Gabibov, Alexander

    2015-01-01

    Recent findings indicate that the ubiquitin–proteasome system is involved in the pathogenesis of cancer as well as autoimmune and several neurodegenerative diseases, and is thus a target for novel therapeutics. One disease that is related to aberrant protein degradation is multiple sclerosis, an autoimmune disorder involving the processing and presentation of myelin autoantigens that leads to the destruction of axons. Here, we show that brain-derived proteasomes from SJL mice with experimental autoimmune encephalomyelitis (EAE) in an ubiquitin-independent manner generate significantly increased amounts of myelin basic protein peptides that induces cytotoxic lymphocytes to target mature oligodendrocytes ex vivo. Ten times enhanced release of immunogenic peptides by cerebral proteasomes from EAE-SJL mice is caused by a dramatic shift in the balance between constitutive and β1ihigh immunoproteasomes in the CNS of SJL mice with EAE. We found that during EAE, β1i is increased in resident CNS cells, whereas β5i is imported by infiltrating lymphocytes through the blood–brain barrier. Peptidyl epoxyketone specifically inhibits brain-derived β1ihigh immunoproteasomes in vitro (kobs/[I] = 240 M−1s−1), and at a dose of 0.5 mg/kg, it ameliorates ongoing EAE in vivo. Therefore, our findings provide novel insights into myelin metabolism in pathophysiologic conditions and reveal that the β1i subunit of the immunoproteasome is a potential target to treat autoimmune neurologic diseases.—Belogurov Jr., A., Kuzina, E., Kudriaeva, A., Kononikhin, A., Kovalchuk, S., Surina, Y., Smirnov, I., Lomakin, Y., Bacheva, A., Stepanov, A., Karpova, Y., Lyupina, Y., Kharybin, O., Melamed, D., Ponomarenko, N., Sharova, N., Nikolaev, E., Gabibov, A. Ubiquitin-independent proteosomal degradation of myelin basic protein contributes to development of neurodegenerative autoimmunity. PMID:25634956

  11. Binding of 125I myelin basic protein by serum and cerebrospinal fluid

    PubMed Central

    Lennon, Vanda; Mackay, I. R.

    1972-01-01

    A sensitive gel filtration redioimmunoassay was used to test for antibodies to the basic protein of myelin, the antigen of experimental autoimmune encephalomyelitis, in serum and cerebrospinal fluid (CSF) of patients with multiple sclerosis (MS) and other diseases. Sera and CSF from patients with MS gave results similar to those for controls including subjects with various neurological diseases. Binding of 125I-basic protein by seven-fold concentrated CSF was shown to be due to α-globulin. Free basic protein, as a possible auto-immunogen, was sought in the serum and seven-fold concentrated CSF of patients with MS and controls by competitive inhibition in the radioimmunoassay, but none was demonstrable. If an immunological mechanism is to be invoked in the initiation of destruction of the basic protein of myelin in MS, then either pathogenic `antibody' must be absorbed in vivo to the target antigen in the central nervous system or the initiating events must be mediated entirely by sensitized lymphocytes. ImagesFig. 2 PMID:4117459

  12. Small Angle X-Ray Scattering from Lipid-Bound Myelin Basic Protein in Solution

    PubMed Central

    Haas, H.; Oliveira, C. L. P.; Torriani, I. L.; Polverini, E.; Fasano, A.; Carlone, G.; Cavatorta, P.; Riccio, P.

    2004-01-01

    The structure of myelin basic protein (MBP), purified from the myelin sheath in both lipid-free (LF-MBP) and lipid-bound (LB-MBP) forms, was investigated in solution by small angle x-ray scattering. The water-soluble LF-MBP, extracted at pH < 3.0 from defatted brain, is the classical preparation of MBP, commonly regarded as an intrinsically unfolded protein. LB-MBP is a lipoprotein-detergent complex extracted from myelin with its native lipidic environment at pH > 7.0. Under all conditions, the scattering from the two protein forms was different, indicating different molecular shapes. For the LB-MBP, well-defined scattering curves were obtained, suggesting that the protein had a unique, compact (but not globular) structure. Furthermore, these data were compatible with earlier results from molecular modeling calculations on the MBP structure which have been refined by us. In contrast, the LF-MBP data were in accordance with the expected open-coil conformation. The results represent the first direct structural information from x-ray scattering measurements on MBP in its native lipidic environment in solution. PMID:14695288

  13. Early blood-brain barrier permeability in cerebella of PLSJL mice immunized with myelin basic protein.

    PubMed

    Spitsin, Sergei; Portocarrero, Carla; Phares, Timothy W; Kean, Rhonda B; Brimer, Christine M; Koprowski, Hilary; Hooper, D Craig

    2008-05-30

    The blood-brain barrier (BBB) is dramatically but transiently compromised in the cerebella of myelin basic protein immunized mice at least 1 week prior to the development of the paralytic phase of experimental allergic encephalomyelitis (EAE). Treatment of mice with the peroxynitrite-dependent radical scavenger uric acid (UA) during the first week after immunization blocks the early increase in cerebellar BBB permeability and the subsequent development of clinical signs of EAE. These results indicate that the early loss of BBB integrity in the cerebellum is likely to be a necessary step in the development of paralytic EAE.

  14. Early blood-brain barrier permeability in cerebella of PLSJL mice immunized with myelin basic protein

    PubMed Central

    Spitsin, Sergei; Portocarrero, Carla; Phares, Timothy W.; Kean, Rhonda B.; Brimer, Christine M.; Koprowski, Hilary; Hooper, D.Craig

    2008-01-01

    The blood-brain barrier (BBB) is dramatically but transiently compromised in the cerebella of myelin basic protein immunized mice at least one week prior to the development of the paralytic phase of experimental allergic encephalomyelitis (EAE). Treatment of mice with the peroxynitrite-dependent radical scavenger uric acid (UA) during the first week after immunization blocks the early increase in cerebellar BBB permeability and the subsequent development of clinical signs of EAE. These results indicate that the early loss of BBB integrity in the cerebellum is likely to be a necessary step in the development of paralytic EAE. PMID:18406473

  15. Absence of chicken myelin basic protein residues in commercial formulations of MMR vaccine.

    PubMed

    Afzal, M A; Pipkin, P A; Minor, P D

    2000-10-15

    Several preparations of MMR vaccines and their progenitor monovalent vaccine bulks produced by two different manufacturers were examined serologically for the presence of chicken myelin basic protein (MBP) residues. The products were challenged against several commercial preparations of anti-hMBP antisera that reacted positively with the control MBP preparations of human and chicken origins. There was no evidence of the presence of MBP components in MMR vaccines or their progenitor vaccine bulks as shown by the reactivity profiles of the antibody preparations against control and test antigens.

  16. Myelin management by the 18.5–kDa and 21.5–kDa classic myelin basic protein isoforms

    PubMed Central

    Harauz, George; Boggs, Joan M.

    2013-01-01

    The classic myelin basic protein (MBP) splice isoforms range in nominal molecular mass from 14 to 21.5 kDa, and arise from the gene in the oligodendrocyte lineage (Golli) in maturing oligodendrocytes. The 18.5-kDa isoform that predominates in adult myelin adheres the cytosolic surfaces of oligodendrocyte membranes together, and forms a two-dimensional molecular sieve restricting protein diffusion into compact myelin. However, this protein has additional roles including cytoskeletal assembly and membrane extension, binding to SH3-domains, participation in Fyn-mediated signaling pathways, sequestration of phosphoinositides, and maintenance of calcium homeostasis. Of the diverse post-translational modifications of this isoform, phosphorylation is the most dynamic, and modulates 18.5-kDa MBP’s protein-membrane and protein-protein interactions, indicative of a rich repertoire of functions. In developing and mature myelin, phosphorylation can result in microdomain or even nuclear targeting of the protein, supporting the conclusion that 18.5-kDa MBP has significant roles beyond membrane adhesion. The full-length, early-developmental 21.5-kDa splice isoform is predominantly karyophilic due to a non-traditional P-Y nuclear localization signal, with effects such as promotion of oligodendrocyte proliferation. We discuss in vitro and recent in vivo evidence for multifunctionality of these classic basic proteins of myelin, and argue for a systematic evaluation of the temporal and spatial distributions of these protein isoforms, and their modified variants, during oligodendrocyte differentiation. PMID:23398367

  17. Analysis of the induction of the myelin basic protein binding to the plasma membrane phospholipid monolayer

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Hao, Changchun; Feng, Ying; Gao, Feng; Lu, Xiaolong; Li, Junhua; Sun, Runguang

    2016-09-01

    Myelin basic protein (MBP) is an essential structure involved in the generation of central nervous system (CNS) myelin. Myelin shape has been described as liquid crystal structure of biological membrane. The interactions of MBP with monolayers of different lipid compositions are responsible for the multi-lamellar structure and stability of myelin. In this paper, we have designed MBP-incorporated model lipid monolayers and studied the phase behavior of MBP adsorbed on the plasma membrane at the air/water interface by thermodynamic method and atomic force microscopy (AFM). By analyzing the pressure-area (π-A) and pressure-time (π-T) isotherms, univariate linear regression equation was obtained. In addition, the elastic modulus, surface pressure increase, maximal insertion pressure, and synergy factor of monolayers were detected. These parameters can be used to modulate the monolayers binding of protein, and the results show that MBP has the strongest affinity for 1,2-dipalmitoyl-sn-glycero-3- phosphoserine (DPPS) monolayer, followed by DPPC/DPPS mixed and 1,2-dipalmitoyl-sn-glycero-3-phospho-choline (DPPC) monolayers via electrostatic and hydrophobic interactions. AFM images of DPPS and DPPC/DPPS mixed monolayers in the presence of MBP (5 nM) show a phase separation texture at the surface pressure of 20 mN/m and the incorporation of MBP put into the DPPC monolayers has exerted a significant effect on the domain structure. MBP is not an integral membrane protein but, due to its positive charge, interacts with the lipid head groups and stabilizes the membranes. The interaction between MBP and phospholipid membrane to determine the nervous system of the disease has a good biophysical significance and medical value. Project supported by the National Natural Science Foundation of China (Grant Nos. 21402114 and 11544009), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM2010), the Fundamental Research Funds for the Central

  18. Shark myelin basic protein: amino acid sequence, secondary structure, and self-association.

    PubMed

    Milne, T J; Atkins, A R; Warren, J A; Auton, W P; Smith, R

    1990-09-01

    Myelin basic protein (MBP) from the Whaler shark (Carcharhinus obscurus) has been purified from acid extracts of a chloroform/methanol pellet from whole brains. The amino acid sequence of the majority of the protein has been determined and compared with the sequences of other MBPs. The shark protein has only 44% homology with the bovine protein, but, in common with other MBPs, it has basic residues distributed throughout the sequence and no extensive segments that are predicted to have an ordered secondary structure in solution. Shark MBP lacks the triproline sequence previously postulated to form a hairpin bend in the molecule. The region containing the putative consensus sequence for encephalitogenicity in the guinea pig contains several substitutions, thus accounting for the lack of activity of the shark protein. Studies of the secondary structure and self-association have shown that shark MBP possesses solution properties similar to those of the bovine protein, despite the extensive differences in primary structure.

  19. Spinal activity of interleukin 6 mediates myelin basic protein-induced allodynia

    PubMed Central

    Ko, Justin S.; Eddinger, Kelly A.; Angert, Mila; Chernov, Andrei V.; Dolkas, Jennifer; Strongin, Alex Y.; Yaksh, Tony L.; Shubayev, Veronica I.

    2016-01-01

    Mechanosensory fibers are enveloped by myelin, a unique multilamellar membrane permitting salutatory neuronal conduction. Damage to myelin is thought to contribute to severe pain evoked by innocuous tactile stimulation (i.e. mechanical allodynia). Our earlier (Liu et al, J. Neuroinflammation, 9 (1): 119, 2012) and present data demonstrate that a single injection of a myelin basic protein-derived peptide (MBP84–104) into an intact sciatic nerve produces a robust and long-lasting (>30 days) mechanical allodynia in female rats. The MBP84-104 peptide represents the immunodominant epitope and requires T cells to maintain allodynia. Surprisingly, only systemic gabapentin (a ligand of voltage-gated calcium channel α2δ1), but not ketorolac (COX inhibitor), lidocaine (sodium channel blocker) or MK801 (NMDA antagonist) reverse allodynia induced by the intrasciatic MBP84-104. The genome-wide transcriptional profiling of the sciatic nerve followed by the bioinformatics analyses of the expression changes identified interleukin (IL)-6 as the major cytokine induced by MBP84-104 in both the control and athymic T cell-deficient nude rats. The intrasciatic MBP84-104 injection resulted in both unilateral allodynia and unilateral IL-6 increase the segmental spinal cord (neurons and astrocytes). An intrathecal delivery of a function-blocking IL-6 antibody reduced the allodynia in part by the transcriptional effects in large-diameter primary afferents in DRG. Our data suggest that MBP regulates IL-6 expression in the nervous system and that the spinal IL-6 activity mediates nociceptive processing stimulated by the MBP epitopes released after damage or disease of the somatosensory nervous system. PMID:26970355

  20. Charge Isomers of Myelin Basic Protein: Structure and Interactions with Membranes, Nucleotide Analogues, and Calmodulin

    PubMed Central

    Wang, Chaozhan; Neugebauer, Ute; Bürck, Jochen; Myllykoski, Matti; Baumgärtel, Peter; Popp, Jürgen; Kursula, Petri

    2011-01-01

    As an essential structural protein required for tight compaction of the central nervous system myelin sheath, myelin basic protein (MBP) is one of the candidate autoantigens of the human inflammatory demyelinating disease multiple sclerosis, which is characterized by the active degradation of the myelin sheath. In this work, recombinant murine analogues of the natural C1 and C8 charge components (rmC1 and rmC8), two isoforms of the classic 18.5-kDa MBP, were used as model proteins to get insights into the structure and function of the charge isomers. Various biochemical and biophysical methods such as size exclusion chromatography, calorimetry, surface plasmon resonance, small angle X-ray and neutron scattering, Raman and fluorescence spectroscopy, and conventional as well as synchrotron radiation circular dichroism were used to investigate differences between these two isoforms, both from the structural point of view, and regarding interactions with ligands, including calmodulin (CaM), various detergents, nucleotide analogues, and lipids. Overall, our results provide further proof that rmC8 is deficient both in structure and especially in function, when compared to rmC1. While the CaM binding properties of the two forms are very similar, their interactions with membrane mimics are different. CaM can be used to remove MBP from immobilized lipid monolayers made of synthetic lipids - a phenomenon, which may be of relevance for MBP function and its regulation. Furthermore, using fluorescently labelled nucleotides, we observed binding of ATP and GTP, but not AMP, by MBP; the binding of nucleoside triphosphates was inhibited by the presence of CaM. Together, our results provide important further data on the interactions between MBP and its ligands, and on the differences in the structure and function between MBP charge isomers. PMID:21647440

  1. Effects of Chronic Scopolamine Treatment on Cognitive Impairments and Myelin Basic Protein Expression in the Mouse Hippocampus.

    PubMed

    Park, Joon Ha; Choi, Hyun Young; Cho, Jeong-Hwi; Kim, In Hye; Lee, Tae-Kyeong; Lee, Jae-Chul; Won, Moo-Ho; Chen, Bai Hui; Shin, Bich-Na; Ahn, Ji Hyeon; Tae, Hyun-Jin; Choi, Jung Hoon; Chung, Jin-Young; Lee, Choong-Hyun; Cho, Jun Hwi; Kang, Il Jun; Kim, Jong-Dai

    2016-08-01

    Myelin plays an important role in learning and memory, and degradation of myelin is a key feature in the pathogenesis of neurological disorders involving cognitive dysfunction. Myelin basic protein (MBP) is one of the most abundant structural proteins in myelin and is essential for myelin formation and compaction. In this study, we first examined changes in the distribution of MBP-immunoreactive myelinated fibers and MBP levels according to hippocampal subregion in mice following chronic systemic treatment with 1 mg/kg scopolamine (SCO) for 4 weeks. We found that SCO-induced cognitive impairments, as assayed by the water maze and passive avoidance tests, were significantly reduced 1 week after SCO treatment and the impairments were maintained without any hippocampal neuronal loss. MBP-immunoreactive myelinated fibers were easily detected in the stratum radiatum and lacunosum-moleculare of the hippocampus proper (CA1-3 region) and in the molecular and polymorphic layers of the dentate gyrus. The distribution of MBP-immunoreactive myelinated fibers was not altered 1 week after SCO treatment. However, the density of MBP-immunoreactive myelinated fibers was significantly decreased 2 weeks after SCO treatment; thereafter, the density gradually, though not significantly, decreased with time. In addition, the changing pattern of MBP levels in the hippocampus following SCO treatment corresponded to immunohistochemical changes. In brief, this study shows that chronic systemic treatment with SCO induced significant degradation of MBP in the hippocampus without neuronal loss at least 2 weeks after SCO treatment, although cognitive impairments occurred 1 week after SCO treatment.

  2. Reduced myelin basic protein and actin-related gene expression in visual cortex in schizophrenia.

    PubMed

    Matthews, Paul R; Eastwood, Sharon L; Harrison, Paul J

    2012-01-01

    Most brain gene expression studies of schizophrenia have been conducted in the frontal cortex or hippocampus. The extent to which alterations occur in other cortical regions is not well established. We investigated primary visual cortex (Brodmann area 17) from the Stanley Neuropathology Consortium collection of tissue from 60 subjects with schizophrenia, bipolar disorder, major depression, or controls. We first carried out a preliminary array screen of pooled RNA, and then used RT-PCR to quantify five mRNAs which the array identified as differentially expressed in schizophrenia (myelin basic protein [MBP], myelin-oligodendrocyte glycoprotein [MOG], β-actin [ACTB], thymosin β-10 [TB10], and superior cervical ganglion-10 [SCG10]). Reduced mRNA levels were confirmed by RT-PCR for MBP, ACTB and TB10. The MBP reduction was limited to transcripts containing exon 2. ACTB and TB10 mRNAs were also decreased in bipolar disorder. None of the transcripts were altered in subjects with major depression. Reduced MBP mRNA in schizophrenia replicates findings in other brain regions and is consistent with oligodendrocyte involvement in the disorder. The decreases in expression of ACTB, and the actin-binding protein gene TB10, suggest changes in cytoskeletal organisation. The findings confirm that the primary visual cortex shows molecular alterations in schizophrenia and extend the evidence for a widespread, rather than focal, cortical pathophysiology.

  3. BHT-3009, a myelin basic protein-encoding plasmid for the treatment of multiple sclerosis.

    PubMed

    Correale, Jorge; Fiol, Marcela

    2009-08-01

    Even though the etiology of multiple sclerosis (MS) remains largely unknown, research data support the hypothesis that autoimmunity plays a major role in disease development. Several disease-modifying agents have been approved for the treatment of MS; however, there is still a need for antigen-specific treatments that combine efficacy and safety. DNA vaccination represents a new therapeutic alternative in this respect. Preclinical studies in different models of autoimmunity have demonstrated that injection of plasmid DNA encoding a self-antigen in mice restores self-tolerance, leaving immunity against infectious and tumor antigens intact. Based on this evidence, the first DNA vaccine for MS has been created. Bayhill Therapeutic Inc's BHT-3009 encodes full-length, human myelin basic protein (MBP), and has recently been evaluated in a phase I/II and a phase II clinical trial. BHT-3009 was safe and well tolerated in both trials, inducing immune tolerance that extended beyond MBP to other myelin antigens. In addition, a reduction in the number of active lesions was observed, which was accompanied by a decrease in clinical relapse rates, particularly in patients with high immunological activity at baseline. BHT-3009 appears to be a promising new approach for the treatment of MS, although further clinical trials are warranted to confirm the early findings.

  4. Interaction of myelin basic protein isoforms with lipid bilayers studied by FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Jackson, Michael; Choo, Lin-P'ing; Boulias, Christopher; Moscarello, Mario A.; Mantsch, Henry H.

    1993-05-01

    The secondary structure of the naturally occurring isoforms of myelin basic protein (MBP1-8) from human myelin was studied by Fourier transform infrared spectroscopy under a variety of experimental conditions. In aqueous solution each isoform was found to be unstructured. In the presence of negatively charged liquid bilayers MBP1-4 were shown to exhibit an amide I band maximum indicative of the adoption of (alpha) -helical secondary structures. A detailed analysis revealed that significant proportions of (beta) -sheet secondary structure were also present. MBP5 and MBP8, which have significantly less cationic charge than MBP1-4, exhibited an amide I maximum identical to that seen in solution, suggesting that no interaction with the bilayer occurred. Analysis of the lipid CH2 and C equals O stretching vibrations also pointed towards significant interaction of MBP1-4 with the bilayer. The changes in intensity and frequency of these bands which typically accompany the phase transition in the pure bilayer were abolished by addition of the proteins. No such effect was seen for MBP5 and 8, the normal lipid phase transition being apparent. The implications of these results in the aetiology of multiple sclerosis is discussed.

  5. Immunodominant fragments of myelin basic protein initiate T cell-dependent pain

    PubMed Central

    2012-01-01

    Background The myelin sheath provides electrical insulation of mechanosensory Aβ-afferent fibers. Myelin-degrading matrix metalloproteinases (MMPs) damage the myelin sheath. The resulting electrical instability of Aβ-fibers is believed to activate the nociceptive circuitry in Aβ-fibers and initiate pain from innocuous tactile stimulation (mechanical allodynia). The precise molecular mechanisms, responsible for the development of this neuropathic pain state after nerve injury (for example, chronic constriction injury, CCI), are not well understood. Methods and results Using mass spectrometry of the whole sciatic nerve proteome followed by bioinformatics analyses, we determined that the pathways, which are classified as the Infectious Disease and T-helper cell signaling, are readily activated in the nerves post-CCI. Inhibition of MMP-9/MMP-2 suppressed CCI-induced mechanical allodynia and concomitant TNF-α and IL-17A expression in nerves. MMP-9 proteolysis of myelin basic protein (MBP) generated the MBP84-104 and MBP68-86 digest peptides, which are prominent immunogenic epitopes. In agreement, the endogenous MBP69-86 epitope co-localized with MHCII and MMP-9 in Schwann cells and along the nodes of Ranvier. Administration of either the MBP84-104 or MBP68-86 peptides into the naïve nerve rapidly produced robust mechanical allodynia with a concomitant increase in T cells and MHCII-reactive cell populations at the injection site. As shown by the genome-wide expression profiling, a single intraneural MBP84-104 injection stimulated the inflammatory, immune cell trafficking, and antigen presentation pathways in the injected naïve nerves and the associated spinal cords. Both MBP84-104-induced mechanical allodynia and characteristic pathway activation were remarkably less prominent in the T cell-deficient athymic nude rats. Conclusions These data implicate MBP as a novel mediator of pain. Furthermore, the action of MMPs expressed within 1 day post-injury is critical

  6. An elevated level of circulating galanin promotes developmental expression of myelin basic protein in the mouse brain.

    PubMed

    Lyubetska, H; Zhang, L; Kong, J; Vrontakis, M

    2015-01-22

    Myelinogenesis is a scheduled process that is regulated by the intrinsic properties of the cell and extracellular signals. Galanin (GAL) is a bioactive neuropeptide that is widely distributed throughout the nervous system. Chronic increase in circulating GAL levels protects the demyelination processes. Furthermore, GAL is synthesized in myelin-producing glial cells, such as oligodendrocytes and its expression level is at its highest between postnatal days 10 and 40. In the present study, we use our GAL transgenic mouse model to examine the effects of GAL on postnatal myelinogenesis in the CNS. Although we observed no difference in the proliferation of oligodendrocyte precursor cells, we found that GAL has a strong pro-myelinating effect. The transgenic mice at postnatal day 10 appeared to undergo myelinogenesis at an accelerated rate, as demonstrated by the increase in myelin basic protein (MBP) synthesis. The immunohistochemical results are consistent with our preliminary findings that suggest that GAL is a regulator of myelination and may be one of the myelination promoters. This finding is especially important for studies focusing on endogenous molecules for treating myelin-related diseases, such as multiple sclerosis and other leukodystrophies.

  7. Interactions of myelin basic protein with mixed dodecylphosphocholine/palmitoyllysophosphatidic acid micelles

    SciTech Connect

    Mendz, G.L. ); Brown, L.R. ); Martenson, R.E. )

    1990-03-06

    The interactions of myelin basic protein and peptides derived from it with detergent micelles of lysophosphatidylglycerol, lysophosphatidylserine, palmitoyllysophosphatidic acid, and sodium lauryl sulfate, and with mixed micelles of the neutral detergent dodecylphosphocholine and the negatively charged detergent palmitoyllysophosphatidic acid, were investigated by {sup 1}H NMR spectroscopy and circular dichroic spectropolarimetry. The results with single detergents suggested that there are discrete interaction sites in the protein molecule for neutral and anionic detergent micelles and that at least some of these sites are different for each type of detergent. The data on the binding of the protein and peptides to mixed detergent micelles suggested that intramolecular interactions in the intact protein and in one of the longer peptides limited the formation of helices and also that a balance between hydrophobic and ionic forces is achieved in the interactions of the peptides with the detergents. At high detergent/protein molar ratios, hydrophobic interactions appeared to be favored.

  8. Antibody to myelin basic protein in extracts of multiple sclerosis brain.

    PubMed Central

    Bernard, C C; Randell, V B; Horvath, L B; Carnegie, P R; Mackay, I R

    1981-01-01

    Autoimmunity to a neural antigen is a suspected cause of multiple sclerosis (MS), and a candidate autoantigen is myelin basic protein (MBP). Accordingly, saline extracts of brain from patients with MS and other diseases were prepared and the content of immunoglobulin (Ig) determined. Antibody to MBP was measured with a highly-sensitive solid-phase radioimmunoassay using 125I-staphylococcal Protein A. Anti-MBP activity was detected in brain extracts of all eleven MS patients, and in seven out of the eight brain extracts from the patients with other diseases; however the level of anti-MBP activity was significantly higher in the MS extracts (P less than 0.01). Analysis of the MS brain extracts after purification by affinity chromatography columns revealed that the anti-MBP activity was specifically mediated by IgG and resided in the IgG1, IgG2, and/or IgG4 subclasses. PMID:6166547

  9. Improved haplotype analysis of human myelin basic protein short tandem repeat loci.

    PubMed

    Watanabe, G; Umetsu, K; Yuasa, I; Suzuki, T

    2000-06-01

    We report an improved haplotype analysis of the human myelin basic protein gene (MBP) short tandem repeat (STR) polymorphism. The polymorphic G-->A transition and 2 conventional STR polymorphisms, MBPA and MBPB, were simultaneously determined by an amplified product length polymorphism technique. After the MBPC fragments containing MBPA and MBPB were amplified, the linkage of these 2 STR loci was determined by a second amplification, using polymerase chain reaction (PCR) technique, of the isolated MBPC fragments. The present haplotype analysis dispensed with family studies for the haplotyping of MBPA and MBPB. Polymorphisms of the MBP loci studied in German and Japanese populations showed a high genomic variation. Haplotype analysis of the MBP loci showed distinct differences between the German and the Japanese populations. Consequently, haplotype analysis of the MBP loci promises to be useful in forensic identification and paternity testing.

  10. Deimination of the myelin basic protein decelerates its proteasome-mediated metabolism.

    PubMed

    Kuzina, E S; Kudriaeva, A A; Glagoleva, I S; Knorre, V D; Gabibov, A G; Belogurov, A A

    2016-07-01

    Deimination of myelin basic protein (MBP) by peptidylarginine deiminase (PAD) prevents its binding to the proteasome and decelerates its degradation by the proteasome in mammalian cells. Potential anticancer drug tetrazole analogue of chloramidine 2, at concentrations greater than 1 µM inhibits the enzymatic activity of PAD in vitro. The observed acceleration of proteasome hydrolysis of MBP to antigenic peptides in the presence of PAD inhibitor may increase the efficiency of lesion of the central nervous system by cytotoxic lymphocytes in multiple sclerosis. We therefore suggest that clinical trials and the introduction of PAD inhibitors in clinical practice for the treatment of malignant neoplasms should be performed only after a careful analysis of their potential effect on the induction of autoimmune neurodegeneration processes.

  11. Phase 2 trial of a DNA vaccine encoding myelin basic protein for multiple sclerosis.

    PubMed

    Garren, Hideki; Robinson, William H; Krasulová, Eva; Havrdová, Eva; Nadj, Congor; Selmaj, Krzysztof; Losy, Jacek; Nadj, Ilinka; Radue, Ernst-Wilhelm; Kidd, Brian A; Gianettoni, Jill; Tersini, Karen; Utz, Paul J; Valone, Frank; Steinman, Lawrence

    2008-05-01

    To evaluate the efficacy and safety of BHT-3009 in relapsing-remitting multiple sclerosis (MS) and to confirm that BHT-3009 causes immune tolerance. BHT-3009 is a tolerizing DNA vaccine for MS, encoding full-length human myelin basic protein. Relapsing-remitting MS patients were randomized 1:1:1 into three groups: placebo, 0.5 mg BHT-3009, or 1.5 mg BHT-3009, given intramuscularly at weeks 0, 2, 4, and every 4 weeks thereafter until week 44. The primary end point was the 4-week rate of occurrence of new gadolinium-enhancing lesions on brain magnetic resonance images from weeks 28 to 48. Protein microarrays were used to measure levels of anti-myelin autoantibodies. Compared with placebo, in the 267 patient analysis population the median 4-week rate of new enhancing lesions during weeks 28 to 48 was 50% lower with 0.5 mg BHT-3009 (p = 0.07) and during weeks 8 to 48 was 61% lower with 0.5 mg BHT-3009 (p = 0.05). The mean volume of enhancing lesions at week 48 was 51% lower on 0.5 mg BHT-3009 compared with placebo (p = 0.02). No significant improvement in magnetic resonance imaging lesion parameters was observed with 1.5 mg BHT-3009. Dramatic reductions in 23 myelin-specific autoantibodies in the 0.5 mg BHT-3009 arm were observed, but not with placebo or 1.5 mg BHT-3009. In relapsing-remitting MS patients, treatment with the lower dose (0.5 mg) of BHT-3009 for 44 weeks nearly attained the primary end point for reduction of the rate of new enhancing magnetic resonance imaging lesions (p = 0.07) and achieved several secondary end points including a reduction of the rate of enhancing magnetic resonance imaging lesions from weeks 8 to 48 (p = 0.05). Immunological data in a preselected subgroup of patients also indicated that treatment with 0.5 mg induced antigen-specific immune tolerance. The greater dose was ineffective.

  12. Myelin basic protein gene transcription. Identification of proximal and distal cis-acting regulatory elements.

    PubMed

    Devine-Beach, K; Lashgari, M S; Khalili, K

    1990-08-15

    Myelin basic proteins (MBPs) represent a major component of the myelin membrane which are exclusively expressed by glial cells in the nervous system. The cell type-specific expression of MBP is controlled preferentially at the level of RNA synthesis. To investigate the mechanisms by which the MBP gene is regulated, we analyzed transcriptional regulation of this gene in glial and non-glial cells. We have demonstrated that the 320 base pairs upstream of the MBP transcriptional start site contain regulatory elements that preferentially stimulate transcription of MBPs in glial cells. Using a test vector containing the simian virus 40 (SV40) early promoter placed upstream of the bacterial chloramphenicol acetyltransferase gene, we localized three major promoter elements within the 5'-upstream sequence. These elements, designated MB1, MB4, and MB7, spanning proximal (-14 to -50) and distal (-130 to -169 and -249 to -288) positions with respect to the RNA initiation site, activated SV40 promoter transcription more than 40-fold in glial cells. The promoter distal elements, MB4 and MB7, enhanced SV40 promoter activity 2- and 8-fold, respectively, in L cells. Using the gel mobility shift assay, we have demonstrated that the MBP activators (MB1, MB4, and MB7) interact with multiple proteins derived from glial and L cell extract and result in the formation of several complexes. Comparison of band intensity of these complexes implies that these cells contain both unique and ubiquitous DNA binding proteins that recognize the DNA sequences within these activators. These studies suggest that the MBP promoter consists of several regulatory sequences in which the proximal element, MB1, and one of the distal elements, MB4, are selectively more active in glial cells than in L cells. Thus, these novel regulatory elements, in concert with other sequences, appear to stimulate MBP promoter transcription in glial cells.

  13. LOCALIZATION OF A BASIC PROTEIN IN THE MYELIN OF VARIOUS SPECIES WITH THE AID OF FLUORESCENCE AND ELECTRON MICROSCOPY

    PubMed Central

    Kornguth, Steven Edward; Anderson, John Walberg

    1965-01-01

    In this study, alanine was shown to be the N-terminal amino acid of a basic protein of low molecular weight that was isolated from either human or guinea pig brain. Antibodies prepared against the guinea pig protein were labeled with either fluorescein or ferritin. Studies with the labeled antibodies showed that an immunohistochemically similar protein is found in the myelin sheaths of central and peripheral nervous tissues of chicken and frog and a variety of mammalian species. Loss of integrity of the myelin during processing was shown to enhance markedly the antigen-antibody reaction. PMID:5323606

  14. Post-translational Modifications of Chicken Myelin Basic Protein Charge Components

    SciTech Connect

    Kim, Jeongkwon; Zhang, Rui; Strittmatter, Eric F.; Smith, Richard D.; Zand, Robert

    2008-07-11

    Purified myelin basic protein (MBP) from various species contains several post-translationally modified forms termed charge components or charge isomers. Chicken MBP contains four charge components denoted as C1, C2, C3 and C8. (The C8 isomer is a complex mixture and was not investigated in this study.) These findings are in contrast to those found for human, bovine and other mammalian MBP’s. Mammalian MBP’s, each of which contain seven or eight charge components depending on the analysis of the CM-52 chromatographic curves and the PAGE gels obtained under basic pH conditions. Chicken MBP components C1, C2 and C3 were treated with trypsin and endoproteinase Glu-C. The resulting digests were analyzed by capillary liquid chromatography combined with either an ion trap tandem mass spectrometer or with a Fourier transform ion cyclotron resonance mass spectrometer. This instrumentation permitted establishing the amino acid composition and the determination of the posttranslational modifications for each of the three charge components C1-C3. With the exception of N-terminal acetylation, the post-translational modifications were partial.

  15. Interaction between the C-terminal region of human myelin basic protein and calmodulin: analysis of complex formation and solution structure.

    PubMed

    Majava, Viivi; Petoukhov, Maxim V; Hayashi, Nobuhiro; Pirilä, Päivi; Svergun, Dmitri I; Kursula, Petri

    2008-02-19

    The myelin sheath is a multilamellar membrane structure wrapped around the axon, enabling the saltatory conduction of nerve impulses in vertebrates. Myelin basic protein, one of the most abundant myelin-specific proteins, is an intrinsically disordered protein that has been shown to bind calmodulin. In this study, we focus on a 19-mer synthetic peptide from the predicted calmodulin-binding segment near the C-terminus of human myelin basic protein. The interaction of native human myelin basic protein with calmodulin was confirmed by affinity chromatography. The binding of the myelin basic protein peptide to calmodulin was tested with isothermal titration calorimetry (ITC) in different temperatures, and Kd was observed to be in the low muM range, as previously observed for full-length myelin basic protein. Surface plasmon resonance showed that the peptide bound to calmodulin, and binding was accompanied by a conformational change; furthermore, gel filtration chromatography indicated a decrease in the hydrodynamic radius of calmodulin in the presence of the peptide. NMR spectroscopy was used to map the binding area to reside mainly within the hydrophobic pocket of the C-terminal lobe of calmodulin. The solution structure obtained by small-angle X-ray scattering indicates binding of the myelin basic protein peptide into the interlobal groove of calmodulin, while calmodulin remains in an extended conformation. Taken together, our results give a detailed structural insight into the interaction of calmodulin with a C-terminal segment of a major myelin protein, the myelin basic protein. The used 19-mer peptide interacts mainly with the C-terminal lobe of calmodulin, and a conformational change accompanies binding, suggesting a novel mode of calmodulin-target protein interaction. Calmodulin does not collapse and wrap around the peptide tightly; instead, it remains in an extended conformation in the solution structure. The observed affinity can be physiologically relevant

  16. Myelin Basic Protein Cleaves Cell Adhesion Molecule L1 and Promotes Neuritogenesis and Cell Survival*

    PubMed Central

    Lutz, David; Loers, Gabriele; Kleene, Ralf; Oezen, Iris; Kataria, Hardeep; Katagihallimath, Nainesh; Braren, Ingke; Harauz, George; Schachner, Melitta

    2014-01-01

    The cell adhesion molecule L1 is a Lewisx-carrying glycoprotein that plays important roles in the developing and adult nervous system. Here we show that myelin basic protein (MBP) binds to L1 in a Lewisx-dependent manner. Furthermore, we demonstrate that MBP is released by murine cerebellar neurons as a sumoylated dynamin-containing protein upon L1 stimulation and that this MBP cleaves L1 as a serine protease in the L1 extracellular domain at Arg687 yielding a transmembrane fragment that promotes neurite outgrowth and neuronal survival in cell culture. L1-induced neurite outgrowth and neuronal survival are reduced in MBP-deficient cerebellar neurons and in wild-type cerebellar neurons in the presence of an MBP antibody or L1 peptide containing the MBP cleavage site. Genetic ablation of MBP in shiverer mice and mutagenesis of the proteolytically active site in MBP or of the MBP cleavage site within L1 as well as serine protease inhibitors and an L1 peptide containing the MBP cleavage site abolish generation of the L1 fragment. Our findings provide evidence for novel functions of MBP in the nervous system. PMID:24671420

  17. Conformational studies of immunodominant myelin basic protein 1-11 analogues using NMR and molecular modeling.

    PubMed

    Laimou, Despina; Lazoura, Eliada; Troganis, Anastassios N; Matsoukas, Minos-Timotheos; Deraos, Spyros N; Katsara, Maria; Matsoukas, John; Apostolopoulos, Vasso; Tselios, Theodore V

    2011-11-01

    Τwo dimensional nuclear magnetic resonance studies complimented by molecular dynamics simulations were conducted to investigate the conformation of the immunodominant epitope of acetylated myelin basic protein residues 1-11 (Ac-MBP(1-11)) and its altered peptide ligands, mutated at position 4 to an alanine (Ac-MBP(1-11)[4A]) or a tyrosine residue (Ac-MBP(1-11)[4Y]). Conformational analysis of the three analogues indicated that they adopt an extended conformation in DMSO solution as no long distance NOE connectivities were observed and seem to have a similar conformation when bound to the active site of the major histocompatibility complex (MHC II). The interaction of each peptide with MHC class II I-A(u) was further investigated in order to explore the molecular mechanism of experimental autoimmune encephalomyelitis induction/inhibition in mice. The present findings indicate that the Gln(3) residue, which serves as a T-cell receptor (TCR) contact site in the TCR/peptide/I-A(u) complex, has a different orientation in the mutated analogues especially in the Ac-MBP(1-11)[4A] peptide. In particular the side chain of Gln(3) is not solvent exposed as for the native Ac-MBP(1-11) and it is not available for interaction with the TCR.

  18. Conformational studies of immunodominant myelin basic protein 1-11 analogues using NMR and molecular modeling

    NASA Astrophysics Data System (ADS)

    Laimou, Despina; Lazoura, Eliada; Troganis, Anastassios N.; Matsoukas, Minos-Timotheos; Deraos, Spyros N.; Katsara, Maria; Matsoukas, John; Apostolopoulos, Vasso; Tselios, Theodore V.

    2011-11-01

    Τwo dimensional nuclear magnetic resonance studies complimented by molecular dynamics simulations were conducted to investigate the conformation of the immunodominant epitope of acetylated myelin basic protein residues 1-11 (Ac-MBP1-11) and its altered peptide ligands, mutated at position 4 to an alanine (Ac-MBP1-11[4A]) or a tyrosine residue (Ac-MBP1-11[4Y]). Conformational analysis of the three analogues indicated that they adopt an extended conformation in DMSO solution as no long distance NOE connectivities were observed and seem to have a similar conformation when bound to the active site of the major histocompatibility complex (MHC II). The interaction of each peptide with MHC class II I-Au was further investigated in order to explore the molecular mechanism of experimental autoimmune encephalomyelitis induction/inhibition in mice. The present findings indicate that the Gln3 residue, which serves as a T-cell receptor (TCR) contact site in the TCR/peptide/I-Au complex, has a different orientation in the mutated analogues especially in the Ac-MBP1-11[4A] peptide. In particular the side chain of Gln3 is not solvent exposed as for the native Ac-MBP1-11 and it is not available for interaction with the TCR.

  19. Myelin basic protein and ischemia modified albumin levels in acute ischemic stroke cases.

    PubMed

    Can, Serdar; Akdur, Okhan; Yildirim, Ahmet; Adam, Gurhan; Cakir, Dilek Ulker; Karaman, Handan Isin Ozisik

    2015-01-01

    To investigate early diagnostic effects of serum myelin basic protein (MBP) and ischemic modified albumin (IMA) levels in patients with ischemic stroke. Fifty patients who presented to an emergency service with acute ischemic stroke between June 2013 to March 2014 were evaluated with the National Institute of Health Stroke Scale (NIHSS) and diffusion-weighted magnetic resonance imaging (MRI). Thirty four healthy cases were included as control group. All patients' serum IMA and MBP level were assessed. Mean IMA value was 0.52±0.25 cases with acute ischemic stroke and serum IMA levels were significantly higher than the control group (p<0.01). No statistical significance was observed between acute ischemic stroke group and control group related to the MBP serum levels (P>0.05). Statistically significant correlation was detected between the volumes of diffusion restriction on MRI and NIHSS score (P=0.002, r=0.43) and IMA (P=0.015, r=0.344) levels. We have found that serum IMA levels are elevated in acute ischemic stroke cases and these levels are correlated with the ischemic tissue volume. MBP levels do not increase in early period of stroke cases.

  20. Myelin oligodendrocyte basic protein and prognosis in behavioral-variant frontotemporal dementia

    PubMed Central

    McMillan, Corey T.; Suh, EunRan; Powers, John; Rascovsky, Katya; Wood, Elisabeth M.; Toledo, Jon B.; Arnold, Steven E.; Lee, Virginia M.-Y.; Van Deerlin, Vivianna M.; Trojanowski, John Q.; Grossman, Murray

    2014-01-01

    Objective: To determine the prognostic utility of tauopathy-associated single nucleotide polymorphisms (SNPs) in sporadic behavioral-variant frontotemporal dementia (bvFTD). Methods: Eighty-one patients with sporadic bvFTD were genotyped for tauopathy-associated SNPs at rs8070723 (microtubule-associated protein tau [MAPT]) and rs1768208 (myelin-associated oligodendrocyte basic protein [MOBP]). We performed a retrospective case-control study comparing age at onset and disease duration between carriers of ≥1 polymorphism allele and noncarriers for these SNPs. Subanalyses were performed for autopsied subgroups with tauopathy (n = 20) and TDP-43 proteinopathy (n = 12). To identify a potential biological basis for disease duration, neuroimaging measures of white matter integrity were evaluated (n = 37). Results: Carriers of risk allele (T) in rs1768208 (i.e., MOBP RA+) had a shorter median disease duration (TC/TT = 5.5 years, CC = 9.5 years; p = 0.02). This was also found in the subset of cases with autopsy-confirmed tauopathies (p = 0.04) but not with TDP-43 proteinopathies (p > 0.1). By comparison, polymorphisms at rs8070723 (MAPT) had no effect on disease duration (p > 0.1), although carriers of protective allele (G) in rs8070723 had a younger median age at onset (AG/GG = 54.5 years, AA = 58 years; p < 0.01). MOBP RA+ patients had increased radial diffusivity in the superior corona radiata and midbrain, and reduced fractional anisotropy in the superior corona radiata as well as superior and inferior longitudinal fasciculi compared with noncarriers (p < 0.01). Conclusions: The rs1768208 risk polymorphism in MOBP may have prognostic value in bvFTD. MOBP RA+ patients have more severe white matter degeneration in bvFTD that may contribute to shorter disease duration. Future studies are needed to help confirm these findings. PMID:24994843

  1. IgG reactivity against citrullinated myelin basic protein in multiple sclerosis.

    PubMed

    de Seze, J; Dubucquoi, S; Lefranc, D; Virecoulon, F; Nuez, I; Dutoit, V; Vermersch, P; Prin, L

    2001-07-02

    An increased level of citrullinated myelin basic protein (MBP-C8) has been reported in the brains of multiple sclerosis (MS) patients. However, the involvement of the immune response to post-translational modified MBP in the pathophysiology of MS remains speculative. The aim of this study was to compare the levels of immunoglobulin G antibodies to several MBP epitopes, before and after citrullination, in the cerebrospinal fluid (CSF) and sera of MS patients using enzyme-linked immunosorbent assay (ELISA). We analyzed antibody reactivity against various MBP-peptides in the CSF and sera of 60 MS patients, and 30 patients with other neurological diseases (OND) as controls. The peptides tested were: MBP(75-98) (peptide 1), native (peptide 2) and citrullinated (peptide 3) MBP(108-126) (ARG(122)-->Cit(122)), and native (peptide 4) and citrullinated (peptide 5) MBP(151-170) (ARG(159, 170)-->Cit(159, 170)). All selected peptides could support an immune reactivity in CSF and sera of MS and OND patients. A higher reactivity against peptide 4 was found in the CSF of MS patients compared with OND patients (P<0.0001), but not against citrullinated peptides (peptides 3 and 5). However, we observed that the citrullination state of peptide 2 modified the patterns of immune reactivity more markedly in MS patients (P<0.0001) than in OND patients (P<0.02). Although some MBP epitopes could be a potential target in MS, our data did not demonstrate any difference of antibody response to MBP peptides in their citrullinated forms.

  2. Post-translational modifications of chicken myelin basic protein charge components.

    PubMed

    Kim, Jeongkwon; Zhang, Rui; Strittmatter, Eric F; Smith, Richard D; Zand, Robert

    2009-02-01

    Purified myelin basic protein (MBP) from various species contains several post-translationally modified forms termed charge components or charge isomers. Chicken MBP contains four charge components denoted as C1, C2, C3 and C8. (The C8 isomer is a complex mixture and was not investigated in this study.) These findings are in contrast to those found for human, bovine and other mammalian MBP's. Mammalian MBP's, each of which contain seven or eight charge components depending on the analysis of the CM-52 chromatographic curves and the PAGE gels obtained under basic pH conditions. Chicken MBP components C1, C2 and C3 were treated with trypsin and endoproteinase Glu-C. The resulting digests were analyzed by capillary liquid chromatography combined with either an ion trap tandem mass spectrometer or with a Fourier transform ion cyclotron resonance mass spectrometer. This instrumentation permitted establishing the amino acid composition and the determination of the post-translational modifications for each of the three charge components C1-C3. With the exception of N-terminal acetylation, the post-translational modifications were partial. The C1 component lacks any phosphorylated sites, a finding in agreement with the analysis of other MBP species. It also had a single methylation at R105 as did the components C2 and C3. The C2 component contains ten phosphorylated sites (S7, S18, S33, S64, S73, T96, S113, S141, S164, and S168), and modified arginine to citrulline residues at R24, and R165. Component C3 contains eight phosphorylated sites (S7, S33, S64, T96, S113, S141, S164, and S168), and citrulline residues at Arginine 41, R24 and R165. Partial deamidation of glutamine residues Q71, Q101 and Q146 were present in addition to asparagine N90 that was found in all three charge components. The glutamine at residue 3 is partially deamidated in isomers C1 and C2, whereas glutamine 74 and asparagine 83 were found not to be deamidated. Comparison of the PTM's of MBP's isolated

  3. Structural analysis of the complex between calmodulin and full-length myelin basic protein, an intrinsically disordered molecule.

    PubMed

    Majava, Viivi; Wang, Chaozhan; Myllykoski, Matti; Kangas, Salla M; Kang, Sung Ung; Hayashi, Nobuhiro; Baumgärtel, Peter; Heape, Anthony M; Lubec, Gert; Kursula, Petri

    2010-06-01

    Myelin basic protein (MBP) is present between the cytoplasmic leaflets of the compact myelin membrane in both the peripheral and central nervous systems, and characterized to be intrinsically disordered in solution. One of the best-characterized protein ligands for MBP is calmodulin (CaM), a highly acidic calcium sensor. We pulled down MBP from human brain white matter as the major calcium-dependent CaM-binding protein. We then used full-length brain MBP, and a peptide from rodent MBP, to structurally characterize the MBP-CaM complex in solution by small-angle X-ray scattering, NMR spectroscopy, synchrotron radiation circular dichroism spectroscopy, and size exclusion chromatography. We determined 3D structures for the full-length protein-protein complex at different stoichiometries and detect ligand-induced folding of MBP. We also obtained thermodynamic data for the two CaM-binding sites of MBP, indicating that CaM does not collapse upon binding to MBP, and show that CaM and MBP colocalize in myelin sheaths. In addition, we analyzed the post-translational modifications of rat brain MBP, identifying a novel MBP modification, glucosylation. Our results provide a detailed picture of the MBP-CaM interaction, including a 3D model of the complex between full-length proteins.

  4. Thermodynamic study of the binding of calcium and magnesium ions with myelin basic protein using the extended solvation theory.

    PubMed

    Behbehani, G Rezaei; Saboury, A A; Divsalar, A

    2008-11-01

    The interaction of myelin basic protein (MBP) from the bovine central nervous system with Ca2+ and Mg2+ ions, named as M2+, was studied by isothermal titration calorimetry at 27 degrees C in aqueous solution. The extended solvation model was used to reproduce the enthalpies of MBP+M2+ interactions. The solvation parameters recovered from the extended solvation model were attributed to the structural change of MBP due to the metal ion interaction. It was found that there is a set of two identical and noninteracting binding sites for Ca2+ and Mg2+ ions.

  5. Molecular cloning of the myelin basic proteins in the shark, Squalus acanthias, and the ray, Raja erinacia.

    PubMed

    Spivack, W D; Zhong, N; Salerno, S; Saavedra, R A; Gould, R M

    1993-08-15

    Myelin basic proteins (MBPs) are a family of alternatively spliced isoforms present in myelin sheaths of most vertebrates. A reverse transcriptase-polymerase chain reaction (RT-PCR) approach was used to clone MBP isoforms in species representing two superorders of elasmobranchs: Squalus acanthias, representing Squalomorph sharks, and Raja erinacia, representing Batoidea rays. Two products were generated from each species. The larger product encoded a 155 amino acid protein, the same size as MBPs from two Galeomorph sharks, Heterodontus francisci and Carcharhinus obscurus, which, based upon alignment with other vertebrate MBPs, contained six of the seven MBP exons; only exon II was absent. The smaller product encoded a 141 amino acid protein that lacked exon II and exon V. There were 26 and 30 nucleotide differences between Squalus and Heterodontus, and Raja and Heterodontus, respectively. Sequences from Squalus and Raja were far more similar, having only five nucleotide differences. Both isoforms of elasmobranch MBP contain 18.5% basic (lysine plus arginine) amino acids, compared with 17.5% in mammalian MBPs comprised of the corresponding exons. Northern blot analysis of whole brain total RNA revealed a single band of 2.5 kb in Squalus, and three bands of 1.2, 1.4, and 2.3 kb in Raja. The finding that MBPs of a Squalomorph shark and a Batoidea ray are closer to one another than either is to the Galeomorph sharks suggests that MBP sequence information may prove useful in classifying modern day Chondrichthytes.

  6. Force measurements on myelin basic protein adsorbed to mica and lipid bilayer surfaces done with the atomic force microscope.

    PubMed Central

    Mueller, H; Butt, H J; Bamberg, E

    1999-01-01

    The mechanical and adhesion properties of myelin basic protein (MBP) are important for its function, namely the compaction of the myelin sheath. To get more information about these properties we used atomic force microscopy to study tip-sample interaction of mica and mixed dioleoylphosphatidylserine (DOPS) (20%)/egg phosphatidylcholine (EPC) (80%) lipid bilayer surfaces in the absence and presence of bovine MBP. On mica or DOPS/EPC bilayers a short-range repulsive force (decay length 1.0-1.3 nm) was observed during the approach. The presence of MBP always led to an attractive force between tip and sample. When retracting the tip again, force curves on mica and on lipid layers were different. While attached to the mica surface, the MBP molecules exhibited elastic stretching behavior that agreed with the worm-like chain model, yielding a persistence length of 0.5 +/- 0.25 nm and an average contour length of 53 +/- 19 nm. MBP attached to a lipid bilayer did not show elastic stretching behavior. This shows that the protein adopts a different conformation when in contact with lipids. The lipid bilayer is strongly modified by MBP attachment, indicating formation of MBP-lipid complexes and possibly disruption of the original bilayer structure. PMID:9916039

  7. Lack of evidence for a role of the myelin basic protein gene in multiple sclerosis susceptibility in Sardinian patients.

    PubMed

    Cocco, Eleonora; Mancosu, Cristina; Fadda, Elisabetta; Murru, Maria Rita; Costa, Gianna; Murru, Raffaele; Marrosu, Maria Giovanna

    2002-11-01

    A link between myelin basic protein (MBP) polymorphism and multiple sclerosis (MS) has been reported in some populations but not in others. We analysed two polymorphisms in the 5' flanking region of the MBP exon 1 gene in MS patients from the founder population of Sardinia. Using the transmission disequilibrium test (TDT), MBP polymorphisms were analysed in 363 singleton MS families. No distortion in transmission of the tetranucleotide repeat (ATGG)12 and of the 1116-1540 nt alleles was found. Moreover, we discovered no epistatic effect of the MBP gene on the HLA/MHC DRB1,DQB1, DPB1 loci or on alleles defined by D6S1683 marker found to be associated with MS in Sardinians. We concluded that the MBP gene does not play a role in MS susceptibility in Sardinians.

  8. Myelin basic protein interaction with zinc and phosphate: fluorescence studies on the water-soluble form of the protein.

    PubMed Central

    Cavatorta, P; Giovanelli, S; Bobba, A; Riccio, P; Szabo, A G; Quagliariello, E

    1994-01-01

    The interaction of myelin basic protein (MBP) with zinc and phosphate ions has been studied by using the emission properties of the single tryptophan residue of the protein (Trp-115). The studies have been carried out by means of both static and time-resolved fluorescence techniques. The addition of either zinc to MBP in the presence of phosphate or phosphate to MBP in the presence of zinc resulted in an increase of fluorescence intensity and a blue shift of the emission maximum wavelength. Furthermore, a concomitant increase in the scattering was also detected. Anisotropy decay experiments demonstrated that these effects are due to the formation of MBP molecules into large aggregates. A possible physiological role for such interaction is discussed. PMID:7518704

  9. Simultaneous quantification of Myelin Basic Protein and Tau proteins in cerebrospinal fluid and serum of Multiple Sclerosis patients using nanoimmunosensor.

    PubMed

    Derkus, Burak; Acar Bozkurt, Pinar; Tulu, Metin; Emregul, Kaan C; Yucesan, Canan; Emregul, Emel

    2017-03-15

    This study was aimed at the development of an immunosensor for the simultaneous quantification of Myelin Basic Protein (MBP) and Tau proteins in cerebrospinal fluid (CSF) and serum, obtained from Multiple Sclerosis (MS) patients. The newly developed GO/pPG/anti-MBP/anti-Tau nanoimmunosensor has been established by immobilization of MBP and Tau antibodies. The newly developed nanoimmunosensor was tested, optimized and characterized using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The developed nanoimmunosensor was seen to have detection limits of 0.30nM for MBP and 0.15nM for Tau proteins which were sufficient for the levels to be analysed in neuro-clinic. The clinical study performed using CSF and serum of MS patients showed that the designed nanoimmunosensor was capable of detecting the proteins properly, that were essentially proven by ELISA.

  10. Design of protease-resistant myelin basic protein-derived peptides by cleavage site directed amino acid substitutions.

    PubMed

    Burster, Timo; Marin-Esteban, Viviana; Boehm, Bernhard O; Dunn, Shannon; Rotzschke, Olaf; Falk, Kirsten; Weber, Ekkehard; Verhelst, Steven H L; Kalbacher, Hubert; Driessen, Christoph

    2007-11-15

    Multiple Sclerosis (MS) is considered to be a T cell-mediated autoimmune disease. An attractive strategy to prevent activation of autoaggressive T cells in MS, is the use of altered peptide ligands (APL), which bind to major histocompatibility complex class II (MHC II) molecules. To be of clinical use, APL must be capable of resisting hostile environments including the proteolytic machinery of antigen presenting cells (APC). The current design of APL relies on cost- and labour-intensive strategies. To overcome these major drawbacks, we used a deductive approach which involved modifying proteolytic cleavage sites in APL. Cleavage site-directed amino acid substitution of the autoantigen myelin basic protein (MBP) resulted in lysosomal protease-resistant, high-affinity binding peptides. In addition, these peptides mitigated T cell activation in a similar fashion as conventional APL. The strategy outlined allows the development of protease-resistant APL and provides a universal design strategy to improve peptide-based immunotherapeutics.

  11. Sera of glaucoma patients show autoantibodies against myelin basic protein and complex autoantibody profiles against human optic nerve antigens.

    PubMed

    Joachim, Stephanie C; Reichelt, Jan; Berneiser, Simone; Pfeiffer, Norbert; Grus, Franz H

    2008-04-01

    The aim of this study was to gain more information about the possible immunological mechanisms in glaucoma. We analyzed the complex autoantibody patterns against human optic nerve antigens in sera of patients with glaucoma and tried to identify important antigens. Sera of 133 patients were included: healthy control subjects (n = 44), primary open-angle glaucoma (n = 44), and normal tension glaucoma patients (n = 45). The sera were tested against Western blots of human optic nerve, and antibody bands were visualized with chloronaphthol. IgG antibody patterns were analyzed by multivariate statistical techniques, and the most significant antigens were identified by mass spectrometry (Maldi-TOFTOF). All subjects, even healthy ones, showed different and complex antibody patterns. Glaucoma groups showed specific up- and down-regulations of antibody reactivities compared to the control group. The multivariate analysis of discriminance found significant differences (P < 0.05) in IgG antibody profiles against human optic nerve antigens between both glaucoma groups and healthy subjects. The identified antigens include: myelin basic protein (up-regulated in the POAG group), glial fibrillary acidic protein (down-regulated in the glaucoma groups), and vimentin (down-regulated in the glaucoma groups in comparison to controls). Using human optic nerve antigen, we were able to demonstrate that complex IgG autoantibody patterns exist in sera of patients with glaucoma. Large correlations between the given and our previous studies using bovine optic nerve antigens could be seen. Furthermore, anti-myelin basic protein antibodies, which can also be detected in patients with multiple sclerosis, were found in sera of glaucoma patients.

  12. Isoaspartic acid is present at specific sites in myelin basic protein from multiple sclerosis patients: could this represent a trigger for disease onset?

    PubMed

    Friedrich, Michael G; Hancock, Sarah E; Raftery, Mark J; Truscott, Roger J W

    2016-08-12

    Multiple sclerosis (MS) is associated with breakdown of the myelin sheath that coats neurons in the central nervous system. The cause of MS is not known, although the pathogenesis involves destruction of myelin by the immune system. It was the aim of this study to examine the abundant myelin protein, myelin basic protein (MBP), to determine if there are sites of modification that may be characteristic for MS. MBP from the cerebellum was examined from controls and MS patients across the age range using mass spectrometry and amino acid analysis. Amino acid racemization data indicated that myelin basic protein is long-lived and proteomic analysis of MBP showed it to be highly modified. A common modification of MBP was racemization of Asp and this was significantly greater in MS patients. In long-lived proteins, L-Asp and L-Asn can racemize to three other isomers, D-isoAsp, L-isoAsp and D-Asp and this is significant because isoAsp formation in peptides renders them immunogenic.Proteomic analysis revealed widespread modifications of MBP with two surface regions that are altered in MS. In particular, isoAsp was significantly elevated at these sites in MS patients. The generation of isoAsp could be responsible for eliciting an immune response to modified MBP and therefore be implicated in the etiology of MS.

  13. Structured Functional Domains of Myelin Basic Protein: Cross Talk between Actin Polymerization and Ca2+-Dependent Calmodulin Interaction

    PubMed Central

    Bamm, Vladimir V.; De Avila, Miguel; Smith, Graham S.T.; Ahmed, Mumdooh A.M.; Harauz, George

    2011-01-01

    The 18.5-kDa myelin basic protein (MBP), the most abundant isoform in human adult myelin, is a multifunctional, intrinsically disordered protein that maintains compact assembly of the sheath. Solution NMR spectroscopy and a hydrophobic moment analysis of MBP's amino-acid sequence have previously revealed three regions with high propensity to form strongly amphipathic α-helices. These regions, located in the central, N- and C-terminal parts of the protein, have been shown to play a role in the interactions of MBP with cytoskeletal proteins, Src homology 3-domain-containing proteins, Ca2+-activated calmodulin (Ca2+-CaM), and myelin-mimetic membrane bilayers. Here, we have further characterized the structure-function relationship of these three domains. We constructed three recombinant peptides derived from the 18.5-kDa murine MBP: (A22–K56), (S72–S107), and (S133–S159) (which are denoted α1, α2, and α3, respectively). We used a variety of biophysical methods (circular dichroism spectroscopy, isothermal titration calorimetry, transmission electron microscopy, fluorimetry, and solution NMR spectroscopy and chemical shift index analysis) to characterize the interactions of these peptides with actin and Ca2+-CaM. Our results show that all three peptides can adopt α-helical structure inherently even in aqueous solution. Both α1- and α3-peptides showed strong binding with Ca2+-CaM, and both adopted an α-helical conformation upon interaction, but the binding of the α3-peptide appeared to be more dynamic. Only the α1-peptide exhibited actin polymerization and bundling activity, and the addition of Ca2+-CaM resulted in depolymerization of actin that had been polymerized by α1. The results of this study proved that there is an N-terminal binding domain in MBP for Ca2+-CaM (in addition to the primary site located in the C-terminus), and that it is sufficient for CaM-induced actin depolymerization. These three domains of MBP represent molecular recognition

  14. Treatment of experimental encephalomyelitis with a novel chimeric fusion protein of myelin basic protein and proteolipid protein.

    PubMed

    Elliott, E A; McFarland, H I; Nye, S H; Cofiell, R; Wilson, T M; Wilkins, J A; Squinto, S P; Matis, L A; Mueller, J P

    1996-10-01

    It has been shown that peripheral T cell tolerance can be induced by systemic antigen administration. We have been interested in using this phenomenon to develop antigen-specific immunotherapies for T cell-mediated autoimmune diseases. In patients with the demyelinating disease multiple sclerosis (MS), multiple potentially autoantigenic epitopes have been identified on the two major proteins of the myelin sheath, myelin basic protein (MBP) and proteolipid protein (PLP). To generate a tolerogenic protein for the therapy of patients with MS, we have produced a protein fusion between the 21.5-kD isoform of MBP (MBP21.5) and a genetically engineered form of PLP (deltaPLP4). In this report, we describe the effects of treatment with this agent (MP4) on clinical disease in a murine model of demyelinating disease, experimental autoimmune encephalomyelitis (EAE). Treatment of SJL/J mice with MP4 after induction of EAE either by active immunization or by adoptive transfer of activated T cells completely prevented subsequent clinical paralysis. Importantly, the administration of MP4 completely suppressed the development of EAE initiated by the cotransfer of both MBP- and PLP-activated T cells. Prevention of clinical disease after the intravenous injection of MP4 was paralleled by the formation of long-lived functional peptide-MHC complexes in vivo, as well as by a significant reduction in both MBP- and PLP-specific T cell proliferative responses. Mice treated with MP4 were resistant to disease when rechallenged with an encephalitogenic PLP peptide emulsified in CFA, indicating that MP4 administration had a prolonged effect in vivo. Administration of MP4 was also found to markedly ameliorate the course of established clinical disease. Finally, MP4 therapy was equally efficacious in mice defective in Fas expression. These results support the conclusion that MP4 protein is highly effective in suppressing disease caused by multiple neuroantigen epitopes in experimentally induced

  15. Treatment of experimental encephalomyelitis with a novel chimeric fusion protein of myelin basic protein and proteolipid protein.

    PubMed Central

    Elliott, E A; McFarland, H I; Nye, S H; Cofiell, R; Wilson, T M; Wilkins, J A; Squinto, S P; Matis, L A; Mueller, J P

    1996-01-01

    It has been shown that peripheral T cell tolerance can be induced by systemic antigen administration. We have been interested in using this phenomenon to develop antigen-specific immunotherapies for T cell-mediated autoimmune diseases. In patients with the demyelinating disease multiple sclerosis (MS), multiple potentially autoantigenic epitopes have been identified on the two major proteins of the myelin sheath, myelin basic protein (MBP) and proteolipid protein (PLP). To generate a tolerogenic protein for the therapy of patients with MS, we have produced a protein fusion between the 21.5-kD isoform of MBP (MBP21.5) and a genetically engineered form of PLP (deltaPLP4). In this report, we describe the effects of treatment with this agent (MP4) on clinical disease in a murine model of demyelinating disease, experimental autoimmune encephalomyelitis (EAE). Treatment of SJL/J mice with MP4 after induction of EAE either by active immunization or by adoptive transfer of activated T cells completely prevented subsequent clinical paralysis. Importantly, the administration of MP4 completely suppressed the development of EAE initiated by the cotransfer of both MBP- and PLP-activated T cells. Prevention of clinical disease after the intravenous injection of MP4 was paralleled by the formation of long-lived functional peptide-MHC complexes in vivo, as well as by a significant reduction in both MBP- and PLP-specific T cell proliferative responses. Mice treated with MP4 were resistant to disease when rechallenged with an encephalitogenic PLP peptide emulsified in CFA, indicating that MP4 administration had a prolonged effect in vivo. Administration of MP4 was also found to markedly ameliorate the course of established clinical disease. Finally, MP4 therapy was equally efficacious in mice defective in Fas expression. These results support the conclusion that MP4 protein is highly effective in suppressing disease caused by multiple neuroantigen epitopes in experimentally induced

  16. Endogenous interferon-β-inducible gene expression and interferon-β-treatment are associated with reduced T cell responses to myelin basic protein in multiple sclerosis.

    PubMed

    Börnsen, Lars; Romme Christensen, Jeppe; Ratzer, Rikke; Hedegaard, Chris; Søndergaard, Helle B; Krakauer, Martin; Hesse, Dan; Nielsen, Claus H; Sorensen, Per S; Sellebjerg, Finn

    2015-01-01

    Autoreactive CD4+ T-cells are considered to play a major role in the pathogenesis of multiple sclerosis. In experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, exogenous and endogenous type I interferons restrict disease severity. Recombinant interferon-β is used for treatment of multiple sclerosis, and some untreated multiple sclerosis patients have increased expression levels of type I interferon-inducible genes in immune cells. The role of endogenous type I interferons in multiple sclerosis is controversial: some studies found an association of high expression levels of interferon-β-inducible genes with an increased expression of interleukin-10 and a milder disease course in untreated multiple sclerosis patients, whereas other studies reported an association with a poor response to treatment with interferon-β. In the present study, we found that untreated multiple sclerosis patients with an increased expression of interferon-β-inducible genes in peripheral blood mononuclear cells and interferon-β-treated multiple sclerosis patients had decreased CD4+ T-cell reactivity to the autoantigen myelin basic protein ex vivo. Interferon-β-treated multiple sclerosis patients had increased IL10 and IL27 gene expression levels in monocytes in vivo. In vitro, neutralization of interleukin-10 and monocyte depletion increased CD4+ T-cell reactivity to myelin basic protein while interleukin-10, in the presence or absence of monocytes, inhibited CD4+ T-cell reactivity to myelin basic protein. Our findings suggest that spontaneous expression of interferon-β-inducible genes in peripheral blood mononuclear cells from untreated multiple sclerosis patients and treatment with interferon-β are associated with reduced myelin basic protein-induced T-cell responses. Reduced myelin basic protein-induced CD4+ T-cell autoreactivity in interferon-β-treated multiple sclerosis patients may be mediated by monocyte-derived interleukin-10.

  17. Epitope recognition and T cell receptors in recurrent autoimmune anterior uveitis in Lewis rats immunized with myelin basic protein.

    PubMed

    Adamus, G; Manczak, M; Sugden, B; Arendt, A; Hargrave, P A; Offner, H

    2000-08-01

    Lewis rats immunized with myelin basic protein (MBP) develop experimental autoimmune encephalomyelitis (EAE) and associated anterior uveitis (AU). Rats recover and become resistant to further reinduction of EAE. We investigated whether the resistance to reinduction of EAE was associated with the resistance to AU in LEW rats reinjected with MBP. We demonstrated that while rats remained resistant to EAE, they become susceptible to uveitis after recovery, and suffered a second episode of disease. The susceptibility to reinduced disease was associated with the recognition of new MBP epitopes. In contrast to the initial episode of AU, TCR Vbeta8.2 predominance was not observed in the iris/ciliary body. Our results suggest that T cells specific for MBP, which are rapidly reactivated when re-exposed to antigen, are sufficient to induce clinical uveitis in LEW rats. This process may involve a shifting of T cell specificity from the major encephalitogenic peptide utilizing the Vbeta8.2 receptor to a more diverse cell repertoire.

  18. Golli Myelin Basic Proteins Modulate Voltage-Operated Ca(++) Influx and Development in Cortical and Hippocampal Neurons.

    PubMed

    Vt, Cheli; DA, Santiago González; V, Spreuer; V, Handley; At, Campagnoni; Pm, Paez

    2016-10-01

    The golli proteins, products of the myelin basic protein gene, are widely expressed in oligodendrocyte progenitor cells and neurons during the postnatal development of the brain. While golli appears to be important for oligodendrocyte migration and differentiation, its function in neuronal development is completely unknown. We have found that golli proteins function as new and novel modulators of voltage-operated Ca(++) channels (VOCCs) in neurons. In vitro, golli knock-out (KO) neurons exhibit decreased Ca(++) influx after plasma membrane depolarization and a substantial maturational delay. Increased expression of golli proteins enhances L-type Ca(++) entry and processes outgrowth in cortical neurons, and pharmacological activation of L-type Ca(++) channels stimulates maturation and prevents cell death in golli-KO neurons. In situ, Ca(++) influx mediated by L-type VOCCs was significantly decreased in cortical and hippocampal neurons of the golli-KO brain. These Ca(++) alterations affect cortical and hippocampal development and the proliferation and survival of neural progenitor cells during the postnatal development of the golli-KO brain. The CA1/3 sections and the dentate gyrus of the hippocampus were reduced in the golli-KO mice as well as the density of dendrites in the somatosensory cortex. Furthermore, the golli-KO mice display abnormal behavior including deficits in episodic memory and reduced anxiety. Because of the expression of the golli proteins within neurons in learning and memory centers of the brain, this work has profound implication in neurodegenerative diseases and neurological disorders.

  19. Myelin basic protein gene is associated with MS in DR4- and DR5-positive Italians and Russians.

    PubMed

    Guerini, F R; Ferrante, P; Losciale, L; Caputo, D; Lombardi, M L; Pirozzi, G; Luongo, V; Sudomoina, M A; Andreewski, T V; Alekseenkov, A D; Boiko, A N; Gusev, E I; Favorova, O O

    2003-08-26

    The myelin basic protein (MBP) gene may confer genetic susceptibility to multiple sclerosis (MS). The association of MS with alleles of the (TGGA)n variable number tandem repeat (VNTR) 5' to the MBP gene is the subject of conflicting reports. To study possible MS association with VNTR alleles of MBP gene in ethnic Italians and ethnic Russians. Two hundred sixty-nine unrelated patients with definite MS and 385 unrelated healthy control subjects from Italy and Russia were genotyped for the MBP VNTR region and for the human leukocyte antigen (HLA) class II DRB1 gene. The phenotype, allele, and genotype frequencies for two groups of MBP alleles were determined. Patients and control subjects were stratified according to HLA-DRB1 phenotypes. The distribution of MBP alleles and genotypes in the two ethnic groups, including both MS patients and control subjects, was very similar. When MS patients and healthy control subjects were stratified according to HLA-DRB1 phenotypes, a significant association of MS with MBP alleles was found only in the DR4- and DR5-positive subgroups. A significant association with MBP alleles was also observed in the nonstratified groups, owing mainly to the contribution of the DR4- and DR5-positive individuals. Polymorphism of the MBP or another gene in its vicinity appears to contribute to the etiology of MS for the subgroups of DR4- and DR5-positive Italians and Russians.

  20. Adsorption mechanism of myelin basic protein on model substrates and its bridging interaction between the two surfaces.

    PubMed

    Lee, Dong Woog; Banquy, Xavier; Kristiansen, Kai; Min, Younjin; Ramachandran, Arun; Boggs, Joan M; Israelachvili, Jacob N

    2015-03-17

    Myelin basic protein (MBP) is an intrinsically disordered (unstructured) protein known to play an important role in the stability of myelin's multilamellar membrane structure in the central nervous system. The adsorption of MBP and its capacity to interact with and bridge solid substrates has been studied using a surface forces apparatus (SFA) and a quartz crystal microbalance with dissipation (QCM-D). Adsorption experiments show that MBP molecules adsorb to the surfaces in a swollen state before undergoing a conformational change into a more compact structure with a thickness of ∼3 nm. Moreover, this compact structure is able to interact with nearby mica surfaces to form adhesive bridges. The measured adhesion force (energy) between two bridged surfaces is 1.0 ± 0.1 mN/m, (Ead = 0.21 ± 0.02 mJ/m(2)), which is slightly smaller than our previously reported adhesion force of 1.7 mN/m (Ead = 0.36 mJ/m(2)) for MBP adsorbed on two supported lipid bilayers (Lee et al., Proc. Natl. Acad. Sci. U.S.A. 2014, 111, E768-E775). The saturated surface concentration of compact MBP on a single SiO2 surface reaches a stable value of 310 ± 10 ng/cm(2) regardless of the bulk MBP concentration. A kinetic three-step adsorption model was developed that accurately fits the adsorption data. The developed model is a general model, not limited to intrinsically disordered proteins, that can be extended to the adsorption of various chemical compounds that undergo chemical reactions and/or conformational changes upon adsorbing to surfaces. Taken together with our previously published data (Lee et al., Proc. Natl. Acad. Sci. U.S.A. 2014, 111, E768-E775), the present results confirm that conformational changes of MBP upon adsorption are a key for strong adhesion, and that such conformational changes are strongly dependent on the nature of the surfaces.

  1. Myelin basic protein associates with AβPP, Aβ1-42, and amyloid plaques in cortex of Alzheimer's disease brain.

    PubMed

    Zhan, Xinhua; Jickling, Glen C; Ander, Bradley P; Stamova, Boryana; Liu, DaZhi; Kao, Patricia F; Zelin, Mariko A; Jin, Lee-Way; DeCarli, Charles; Sharp, Frank R

    2015-01-01

    The goal of this study was to show that myelin and axons in cortical gray matter are damaged in Alzheimer's disease (AD) brain. Superior temporal gyrus gray matter of AD patients (9 male, 14 female) was compared to cognitively normal controls (8 male, 7 female). Myelin basic protein (MBP) and a degraded myelin basic protein complex (dMBP) were quantified by Western blot. Brain sections were immunostained for MBP, dMBP, axonal neurofilament protein (NF), autophagy marker microtubule-associated proteins 1A/B light chain 3B precursor (LC3B), amyloid-β protein precursor (AβPP), and amyloid markers amyloid β1-42 (Aβ1-42) and FSB. Co-immunoprecipitation and mass spectroscopy evaluated interaction of AβPP/Aβ1-42 with MBP/dMBP. Evidence of axonal injury in AD cortex included appearance of AβPP in NF stained axons, and NF at margins of amyloid plaques. Evidence of myelin injury in AD cortex included (1) increased dMBP in AD gray matter compared to control (p < 0.001); (2) dMBP in AD neurons; and (3) increased LC3B that co-localized with MBP. Evidence of interaction of AβPP/Aβ1-42 with myelin or axonal components included (1) greater binding of dMBP with AβPP in AD brain; (2) MBP at the margins of amyloid plaques; (3) dMBP co-localized with Aβ1-42 in the core of amyloid plaques in AD brains; and (4) interactions between Aβ1-42 and MBP/dMBP by co-immunoprecipitation and mass spectrometry. We conclude that damaged axons may be a source of AβPP. dMBP, MBP, and NF associate with amyloid plaques and dMBP associates with AβPP and Aβ1-42. These molecules could be involved in formation of amyloid plaques.

  2. Metal-dependent hydrolysis of myelin basic protein by IgGs from the sera of patients with multiple sclerosis.

    PubMed

    Polosukhina, Dar'ya I; Kanyshkova, Tat'yana G; Doronin, Boris M; Tyshkevich, Olga B; Buneva, Valentina N; Boiko, Alexey N; Gusev, Evgenii I; Nevinsky, Georgy A; Favorova, Olga O

    2006-02-28

    Homogeneous IgG fractions were obtained by chromatography of the sera of patients with multiple sclerosis (MS) on Protein G-Sepharose under conditions that remove non-specifically bound proteins. These IgGs contained several chelated metals, the relative amount of which decreases in the order: Fe>or=Ca>Cu>or=Zn>or=Mg>or=Mn>or=Pb>or=Co>or=Ni. In contrast to homogeneous IgGs of healthy individuals, Abs of MS patients effectively hydrolyzed human myelin basic protein (MBP). A minor metal-dependent fraction was obtained by chromatography of highly purified IgGs from MS patient on Chelex-100. This IgG fraction did not hydrolyze human MBP in the absence of Me(2+) ions but was activated after addition of Me(2+) ions: Mg(2+)>Mn(2+)>Cu(2+)>Ca(2+). Proteolytic activities of IgGs from other MS patients were also activated by other metal ions (Ni(2+), Fe(2+), Co(2+), Zn(2+), Pb(2+), and Co(2+)) and especially Ni(2+). Ni(2+)-activated IgGs were separated into distinct MBP-hydrolyzing fractions by chromatography on HiTraptrade mark Chelating Sepharose charged with Ni(2+). Detection of Mg(2+)-dependent proteolytic activity in the SDS-PAGE area corresponding only to IgG provided direct evidence that IgG from sera of MS patients possesses metal-dependent human MBP-hydrolyzing activity. Observed properties of MS abzymes distinguish them from other known mammalian metalloproteases and demonstrate their pronounced catalytic diversity. Metal-dependent IgGs from MS patients represent the first example of abzymes with metal-dependent proteolytic activity.

  3. Vaccination with dendritic cells pulsed with peptides of myelin basic protein promotes functional recovery from spinal cord injury.

    PubMed

    Hauben, Ehud; Gothilf, Amalia; Cohen, Avi; Butovsky, Oleg; Nevo, Uri; Smirnov, Igor; Yoles, Eti; Akselrod, Solange; Schwartz, Michal

    2003-09-24

    Injury-induced self-destructive processes cause significant functional loss after incomplete spinal cord injury (SCI). Cellular elements of both the innate (macrophage) and the adaptive (T-cell) immune response can, if properly activated and controlled, promote post-traumatic regrowth and protection after SCI. Dendritic cells (DCs) trigger activation of effector and regulatory T-cells, providing a link between the functions of the innate and the adaptive immune systems. They also initiate and control the body's response to pathogenic agents and regulate immune responses to both foreign and self-antigens. Here we show that post-injury injection of bone marrow-derived DCs pulsed with encephalitogenic or nonencephalitogenic peptides derived from myelin basic protein, when administered (either systemically or locally by injection into the lesion site) up to 12 d after the injury, led to significant and pronounced recovery from severe incomplete SCI. No significant protection was seen in DC recipients deprived of mature T-cells. Flow cytometry, RT-PCR, and proliferation assays indicated that the DCs prepared and used here were mature and immunogenic. Taken together, the results suggest that the DC-mediated neuroprotection was achieved via the induction of a systemic T-cell-dependent immune response. Better preservation of neural tissue and diminished formation of cysts and scar tissue accompanied the improved functional recovery in DC-treated rats. The use of antigen-specific DCs may represent an effective way to obtain, via transient induction of an autoimmune response, the maximal benefit of immune-mediated repair and maintenance as well as protection against self-destructive compounds.

  4. Gene Expression in the Spinal Cord in Female Lewis Rats with Experimental Autoimmune Encephalomyelitis Induced with Myelin Basic Protein

    PubMed Central

    Inglis, Hayley R.; Greer, Judith M.; McCombe, Pamela A.

    2012-01-01

    Background Experimental autoimmune encephalomyelitis (EAE), the best available model of multiple sclerosis, can be induced in different animal strains using immunization with central nervous system antigens. EAE is associated with inflammation and demyelination of the nervous system. Micro-array can be used to investigate gene expression and biological pathways that are altered during disease. There are few studies of the changes in gene expression in EAE, and these have mostly been done in a chronic mouse EAE model. EAE induced in the Lewis with myelin basic protein (MBP-EAE) is well characterised, making it an ideal candidate for the analysis of gene expression in this disease model. Methodology/Principal Findings MBP-EAE was induced in female Lewis rats by inoculation with MBP and adjuvants. Total RNA was extracted from the spinal cords and used for micro-array analysis using AffimetrixGeneChip Rat Exon 1.0 ST Arrays. Gene expression in the spinal cords was compared between healthy female rats and female rats with MBP-EAE. Gene expression in the spinal cord of rats with MBP-EAE differed from that in the spinal cord of normal rats, and there was regulation of pathways involved with immune function and nervous system function. For selected genes the change in expression was confirmed with real-time PCR. Conclusions/Significance EAE leads to modulation of gene expression in the spinal cord. We have identified the genes that are most significantly regulated in MBP-EAE in the Lewis rat and produced a profile of gene expression in the spinal cord at the peak of disease. PMID:23139791

  5. Do antibodies to myelin basic protein isolated from multiple sclerosis cross-react with measles and other common virus antigens?

    PubMed Central

    Bernard, C C; Townsend, E; Randell, V B; Williamson, H G

    1983-01-01

    Immunological activity to various antigens, including brain components, measles and other viruses, has been associated with IgG in multiple sclerosis (MS). One possible explanation for the presence of anti-viral antibodies and antibody to myelin basic protein (MBP) in MS patients is that there are antigenic determinants common to certain viruses and MBP. To assess this possibility, IgG from individual brains and sera from patients with MS, subacute sclerosing panencephalitis (SSPE) and controls was isolated by protein A and MBP-Sepharose affinity chromatography. Antibody to MBP was measured with a solid phase radioimmunoassay and antibody to measles and other viruses by immunofluorescence and/or complement fixation. Anti-MBP activity was detected in brain extracts and sera of all MS patients tested. In contrast to the low levels of antibody to MBP in control brains, high levels of anti-MBP antibodies were found in most of the normal sera. There was no correlation between the presence and levels of serum anti-measles antibodies and the anti-MBP activity. None of the anti-MBP antibodies affinity purified from brain and serum of MS patients reacted with any of the viruses tested, including measles. IgG purified from SSPE patients or from a rabbit hyperimmunized with measles antigen had no reactivity to MBP, despite high levels of anti-measles antibody. It is concluded that there is not direct link between the presence of antibody to MBP and antibody to measles and other viruses in MS patients. PMID:6190599

  6. Comparison of Antibodies Hydrolyzing Myelin Basic Protein from the Cerebrospinal Fluid and Serum of Patients with Multiple Sclerosis

    PubMed Central

    Doronin, Visilii B.; Parkhomenko, Taisiya A.; Castellazzi, Massimiliano; Padroni, Marina; Pastore, Michela; Buneva, Valentina N.; Granieri, Enrico; Nevinsky, Georgy A.

    2014-01-01

    It was found that antibodies (Abs) against myelin basic protein (MBP) are the major components of the antibody response in multiple sclerosis (MS) patients. We have recently shown that IgGs from sera of MS patients are active in the hydrolysis of MBP. However, in literature there are no available data concerning possible MBP-hydrolyzing Abs in cerebrospinal fluid (CSF) of MS patients. We have shown that the average content of IgGs in their sera is about 195-fold higher than that in their CSF. Here we have compared, for the first time, the average content of lambda- and kappa-IgGs as well as IgGs of four different subclasses (IgG1-IgG4) in CSF and sera of MS patients. The average relative content of lambda-IgGs and kappa –IgGs in the case of CSFs (8.0 and 92.0%) and sera (12.3 and 87.7%) are comparable, while IgG1, IgG2, IgG3, and IgG4: CSF - 40.4, 49.0, 8.2, and 2.5% of total IgGs, respectively and the sera - 53.6, 36.0, 5.6, and 4.8%, decreased in different order. Electrophoretically and immunologically homogeneous IgGs were obtained by sequential affinity chromatography of the CSF proteins on protein G-Sepharose and FPLC gel filtration. We present first evidence showing that IgGs from CSF efficiently hydrolyze MBP and that their average specific catalytic activity is unpredictably ∼54-fold higher than that of Abs from sera of the same MS patients. Some possible reasons of these findings are discussed. We suggest that anti-MBP abzymes of CSF may promote important neuropathologic mechanisms in this chronic inflammatory disorder and in MS pathogenesis development. PMID:25265393

  7. Catalytic autoantibodies against myelin basic protein (MBP) isolated from serum of autistic children impair in vitro models of synaptic plasticity in rat hippocampus.

    PubMed

    Gonzalez-Gronow, Mario; Cuchacovich, Miguel; Francos, Rina; Cuchacovich, Stephanie; Blanco, Angel; Sandoval, Rodrigo; Gomez, Cristian Farias; Valenzuela, Javier A; Ray, Rupa; Pizzo, Salvatore V

    2015-10-15

    Autoantibodies from autistic spectrum disorder (ASD) patients react with multiple proteins expressed in the brain. One such autoantibody targets myelin basic protein (MBP). ASD patients have autoantibodies to MBP of both the IgG and IgA classes in high titers, but no autoantibodies of the IgM class. IgA autoantibodies act as serine proteinases and degrade MBP in vitro. They also induce a decrease in long-term potentiation in the hippocampi of rats either perfused with or previously inoculated with this IgA. Because this class of autoantibody causes myelin sheath destruction in multiple sclerosis (MS), we hypothesized a similar pathological role for them in ASD. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Effects of Olig2-overexpressing neural stem cells and myelin basic protein-activated T cells on recovery from spinal cord injury.

    PubMed

    Hu, Jian-Guo; Shen, Lin; Wang, Rui; Wang, Qi-Yi; Zhang, Chen; Xi, Jin; Ma, Shan-Feng; Zhou, Jian-Sheng; Lü, He-Zuo

    2012-04-01

    Neural stem cell (NSC) transplantation is a major focus of current research for treatment of spinal cord injury (SCI). However, it is very important to promote the survival and differentiation of NSCs into myelinating oligodendrocytes (OLs). In this study, myelin basic protein-activated T (MBP-T) cells were passively immunized to improve the SCI microenvironment. Olig2-overexpressing NSCs were infected with a lentivirus carrying the enhanced green fluorescent protein (GFP) reporter gene to generate Olig2-GFP-NSCs that were transplanted into the injured site to differentiate into OLs. Transferred MBP-T cells infiltrated the injured spinal cord, produced neurotrophic factors, and induced the differentiation of resident microglia and/or infiltrating blood monocytes into an "alternatively activated" anti-inflammatory macrophage phenotype by producing interleukin-13. As a result, the survival of transplanted NSCs increased fivefold in MBP-T cell-transferred rats compared with that of the vehicle-treated control. In addition, the differentiation of MBP-positive OLs increased 12-fold in Olig2-GFP-NSC-transplanted rats compared with that of GFP-NSC-transplanted controls. In the MBP-T cell and Olig2-GFP-NSC combined group, the number of OL-remyelinated axons significantly increased compared with those of all other groups. However, a significant decrease in spinal cord lesion volume and an increase in spared myelin and behavioral recovery were observed in Olig2-NSC- and NSC-transplanted MBP-T cell groups. Collectively, these results suggest that MBP-T cell adoptive immunotherapy combined with NSC transplantation has a synergistic effect on histological and behavioral improvement after traumatic SCI. Although Olig2 overexpression enhances OL differentiation and myelination, the effect on functional recovery may be surpassed by MBP-T cells.

  9. The requirement of ammonium or other cations linked with p-cresol sulfate for cross-reactivity with a peptide of myelin basic protein.

    PubMed

    Jackson, Patricia L; Cao, Ligong; Blalock, J Edwin; Whitaker, John N

    2003-10-15

    Urinary myelin basic protein-like material (MBPLM), so designated because of its immunoreactivity with a polyclonal antibody directed against a cryptic epitope located in residues 83-89 of myelin basic protein (MBP), exists in humans normally but increases in concentration in patients with multiple sclerosis who have progressive disease. Given its possible role in reflecting events of neural tissue destruction occurring in multiple sclerosis, urinary MBPLM is a candidate surrogate marker for this phase of the disease. Previously, it has been demonstrated that p-cresol sulfate (PCS) is the dominant component of MBPLM; however, another component(s) was essential in enabling p-cresol sulfate to have molecular mimicry with MBP peptide 83-89 detected by immunoreactivity. In the present investigation, this remaining component(s) was characterized by a combination of high performance size exclusion chromatography followed by nuclear magnetic resonance spectroscopy and shown to be ammonium. The monovalent cation ammonium could be substituted in vitro by several different monovalent and divalent cations, most notably zinc, in restoring to deprotonated p-cresol sulfate its immunoreactivity as MBPLM. These findings indicate the basis for the unexpected molecular mimicry between an epitope of an encephalitogenic protein and a complex containing a small organic molecule, p-cresol sulfate. Furthermore, the reaction of either ammonium or other cations with p-cresol sulfate may represent an in vivo process directly related to damage of axonal membranes.

  10. Hypothermia attenuates apoptosis and protects contact between myelin basic protein-expressing oligodendroglial-lineage cells and neurons against hypoxia-ischemia.

    PubMed

    Ichinose, Mari; Kamei, Yoshimasa; Iriyama, Takayuki; Imada, Shinya; Seyama, Takahiro; Toshimitsu, Masatake; Asou, Hiroaki; Yamamoto, Masahiro; Fujii, Tomoyuki

    2014-10-01

    Periventricular leukomalacia (PVL) is a major form of brain injury among preterm infants, which is characterized by extensive loss and dysfunction of premyelinating oligodendrocytes (pre-OLs) induced by hypoxia-ischemia (HI). Therapeutic hypothermia, which is a standard treatment for term infants with HI encephalopathy, is not indicated for preterm infants because its safety and effect have not been established. Here we investigate the effectiveness and mechanism of hypothermia for the inhibition of pre-OLs damage in PVL. For in vivo studies, 6-day-old rats underwent left carotid artery ligation, followed by exposure to 6% oxygen for 1 hr under hypothermic or normothermic conditions. The loss of myelin basic protein (MBP) was inhibited by hypothermia. For in vitro studies, primary pre-OLs cultures were subjected to oxygen-glucose deprivation (OGD) under normothermic or hypothermic conditions, and dorsal root ganglion neurons were subsequently added. Hypothermia inhibited apoptosis of pre-OLs, and, despite specific downregulation of 21.5- and 17-kDa MBP mRNA expression during hypothermia, recovery of the expression after OGD was superior compared with normothermia. OGD caused disarrangement of MBP distribution, decreased the levels of phosphorylated 21.5-kDa MBP, and disturbed the capacity to contact with neurons, all of which were restored by hypothermia. Pharmacological inhibition of ERK1/2 phosphorylation with U0126 during and after OGD significantly reduced the protective effects of hypothermia on apoptosis and myelination, respectively. These data suggest that phosphorylated exon 2-containing (21.5- and possibly 17-kDa) MBP isoforms may play critical roles in myelination and that hypothermia attenuates apoptosis and preserves the contact between OLs and neurons via ERK1/2 phosphorylation.

  11. RNA on the road to myelin.

    PubMed

    Barbarese, E; Brumwell, C; Kwon, S; Cui, H; Carson, J H

    1999-01-01

    In oligodendrocytes some mRNAs are transported from the perikaryon to the distal processes and localized in the myelin compartment where they are translated. This review describes the cis-acting signals and trans-acting factors that mediate intracellular trafficking of myelin basic protein (MBP) RNA, the prototype for such mRNAs in myelinating glia.

  12. Development and Pre-Clinical Evaluation of Recombinant Human Myelin Basic Protein Nano Therapeutic Vaccine in Experimental Autoimmune Encephalomyelitis Mice Animal Model

    NASA Astrophysics Data System (ADS)

    Al-Ghobashy, Medhat A.; Elmeshad, Aliaa N.; Abdelsalam, Rania M.; Nooh, Mohammed M.; Al-Shorbagy, Muhammad; Laible, Götz

    2017-04-01

    Recombinant human myelin basic protein (rhMBP) was previously produced in the milk of transgenic cows. Differences in molecular recognition of either hMBP or rhMBP by surface-immobilized anti-hMBP antibodies were demonstrated. This indicated differences in immunological response between rhMBP and hMBP. Here, the activity of free and controlled release rhMBP poly(ε-caprolactone) nanoparticles (NPs), as a therapeutic vaccine against multiple sclerosis (MS) was demonstrated in experimental autoimmune encephalomyelitis (EAE) animal model. Following optimization of nanoformulation, discrete spherical, rough-surfaced rhMBP NPs with high entrapment efficiency and controlled release pattern were obtained. Results indicated that rhMBP was loaded into and electrostatically adsorbed onto the surface of NPs. Subcutaneous administration of free or rhMBP NPs before EAE-induction reduced the average behavioral score in EAE mice and showed only mild histological alterations and preservation of myelin sheath, with rhMBP NPs showing increased protection. Moreover, analysis of inflammatory cytokines (IFN-γ and IL-10) in mice brains revealed that pretreatment with free or rhMBP NPs significantly protected against induced inflammation. In conclusion: i) rhMBP ameliorated EAE symptoms in EAE animal model, ii) nanoformulation significantly enhanced efficacy of rhMBP as a therapeutic vaccine and iii) clinical investigations are required to demonstrate the activity of rhMBP NPs as a therapeutic vaccine for MS.

  13. Identification of Novel Site-Specific Alterations in the Modification Level of Myelin Basic Protein Isolated from Mouse Brain at Different Ages Using Capillary Electrophoresis-Mass Spectrometry.

    PubMed

    Sarg, Bettina; Faserl, Klaus; Lindner, Herbert H

    2017-10-01

    Myelin basic protein (MBP) is a multifunctional protein involved in maintaining the stability and integrity of the myelin sheath by a variety of interactions with membranes and other proteins. MBP is subjected to extensive posttranslational modifications (PTMs) that are known to be crucial for the regulation of these interactions. Here, we report capillary electrophoresis-mass spectrometric (CE-MS) analysis for the separation and identification of MBP peptides that incorporate the same PTM at different sites, creating multiple localization variants, and the ability to analyze challenging modifications such as asparagine and glutamine deamidation, isomerization, and arginine citrullination. Moreover, we observed site-specific alterations in the modification level of MBP purified from brain of mice of different age. In total, we identified 40 modifications at 33 different sites, which include both previously reported and seven novel modifications. The identified modifications include Nα-terminal acetylation, mono- and dimethylation, phosphorylation, oxidation, deamidation, and citrullination. Notably, some new sites of arginine methylation overlap with the sites of citrullination. Our results highlight the need for sensitive and efficient techniques for a comprehensive analysis of PTMs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. PDGF-alpha receptor and myelin basic protein mRNAs are not coexpressed by oligodendrocytes in vivo: a double in situ hybridization study in the anterior medullary velum of the neonatal rat.

    PubMed

    Butt, A M; Hornby, M F; Ibrahim, M; Kirvell, S; Graham, A; Berry, M

    1997-01-01

    Platelet-derived growth factor (PDGF) is a growth-regulatory dimer with A and B subunits. PDGF-AA, acting via PDGF receptors of the alpha-unit subtype (PDGF-alphaR), is implicated in the differentiation of oligodendrocyte precursors and in the survival of newly formed oligodendrocytes, which gradually lose expression of PDGF-alphaR. However, it is unclear whether terminally differentiated oligodendrocytes express PDGF-alphaR in vivo. To address this question, and to help clarify the role of PDGF-AA in late oligodendrocyte differentiation, we have used double in situ hybridization with digoxigenin- and fluorescein-labeled riboprobes to relate PDGF-alphaR mRNA and myelin basic protein (MBP) mRNA expression in the isolated intact anterior medullary velum (AMV) of rats ages Postnatal Day (P) 10-12 and P30-32. In parallel experiments, AMV were immunolabeled with the oligodendrocyte-specific monoclonal antibody Rip to provide information on oligodendrocyte development and the extent of myelination. At P10, the AMV contained tracts in which axons ranged from unmyelinated to fully myelinated, whereas myelination was complete in P30-32 AMV. The first oligodendrocytes to express MBP mRNA or Rip were promyelinating oligodendrocytes, which had a "star-burst" morphology and had not yet begun to form myelin sheaths. As myelination proceeded, MBP mRNA became dispersed throughout oligodendrocyte units, comprising cell somata, processes, and internodal myelin sheaths. By P30-32, MBP mRNA had been redistributed to the myelin sheaths only, reflecting a change in the site of protein synthesis in mature myelinated axon tracts. At no stage of oligodendrocyte differentiation did we observe cellular coexpression of mRNA for PDGFalphaR and MBP. Our results indicated that oligodendrocytes lost the expression of PDGFalphaR prior to gaining that of myelin gene products, and preclude an action of PDGF-AA on Rip+/MBP+ star-burst promyelinating oligodendrocytes. The spatial and temporal

  15. Epstein-Barr virus and Mycobacterium avium subsp. paratuberculosis peptides are cross recognized by anti-myelin basic protein antibodies in multiple sclerosis patients.

    PubMed

    Mameli, Giuseppe; Cossu, Davide; Cocco, Eleonora; Masala, Speranza; Frau, Jessica; Marrosu, Maria Giovanna; Sechi, Leonardo A

    2014-05-15

    Epstein-Barr virus and Mycobacterium avium subsp. paratuberculosis (MAP) have been associated to multiple sclerosis (MS). We searched for antibodies against the homologous peptides Epstein-Barr virus nuclear antigen 1 (EBNA1)400-413, MAP_0106c protein (MAP)121-132, and myelin basic protein (MBP)85-98 on a MS Sardinian cohort, showing that these antibodies are highly prevalent among MS patients compared to healthy controls. Competitive assay demonstrated that antibodies recognizing EBNA1400-413 and MAP121-132 cross-react with MBP85-98, possibly through a molecular mimicry mechanism. Indeed, the fact that peptides from different pathogens can be cross-recognized by antibodies targeting self-epitopes supports the hypothesis that EBV and MAP might trigger autoimmunity through a common target.

  16. Calcium receptor expression and function in oligodendrocyte commitment and lineage progression: potential impact on reduced myelin basic protein in CaR-null mice.

    PubMed

    Chattopadhyay, Naibedya; Espinosa-Jeffrey, Araceli; Tfelt-Hansen, Jacob; Yano, Shozo; Bandyopadhyay, Sanghamitra; Brown, Edward M; de Vellis, Jean

    2008-08-01

    Oligodendrocytes develop from oligodendrocyte progenitor cells (OPCs), which in turn arise from a subset of neuroepithelial precursor cells during midneurogenesis. Development of the oligodendrocyte lineage involves a plethora of cell-intrinsic and -extrinsic signals. A cell surface calcium-sensing receptor (CaR) has been shown to be functionally expressed in immature oligodendrocytes. Here, we investigated the expression and function of the CaR during oligodendrocyte development. We show that the order of CaR mRNA expression as assessed by quantitative polymerase chain reaction is mature oligodendrocyte > neuron > astrocyte. We next determined the rank order of CaR expression on inducing specification of neural stem cells to the neuronal, oligodendroglial, or astrocytic lineages and found that the relative levels of CaR mRNA expression are OPC > neuron > astrocytes. CaR mRNA expression in cells at various stages of development along the oligodendrocyte lineage revealed that its expression is robustly up-regulated during the OPC stage and remains high until the premyelinating stage, decreasing thereafter by severalfold in the mature oligodendrocyte. In OPCs, high Ca(2+) acting via the CaR promotes cellular proliferation. We further observed that high Ca(2+) stimulates the mRNA levels of myelin basic protein in preoligodendrocytes, which is also CaR mediated. Finally, myelin basic protein levels were significantly reduced in the cerebellum of CaR-null mice during development. Our results show that CaR expression is up-regulated when neural stem cells are specified to the oligodendrocyte lineage and that activation of the receptor results in OPC expansion and differentiation. We conclude that the CaR may be a novel regulator of oligodendroglial development and function.

  17. [Normal myelination patterns].

    PubMed

    González Alenda, F J; Pérez-Romero, M; Sánchez, I; Frutos, R; Fraile, E; Romero, J; Carrasco, E G

    1991-12-01

    The MR images obtained of brain during the process of myelination taking place from birth to 2 years of age are analyzed. Basically, the study focuses on the changes in signal intensity experienced by the elements of the brain in the different sequences, consisting in an increase (T1 weighted sequence) or decrease (T2 sequences) in the signal. The chronological evolution of these changes is compared with the classic myelination pattern, described prior to the development of MR, based on necropsies. Also assessed were the progressive changes in the signals of the gray and white matter, reflecting their hydric contents, throughout the period of maturation of the brain structures. It is concluded that MR imaging is presently the diagnostic method of choice in the monitoring of myelination. MR spectroscopy studies offer important perspectives for assessment and follow up of this process from the metabolic point of view.

  18. The effects of threonine phosphorylation on the stability and dynamics of the central molecular switch region of 18.5-kDa myelin basic protein.

    PubMed

    Vassall, Kenrick A; Bessonov, Kyrylo; De Avila, Miguel; Polverini, Eugenia; Harauz, George

    2013-01-01

    The classic isoforms of myelin basic protein (MBP) are essential for the formation and maintenance of myelin in the central nervous system of higher vertebrates. The protein is involved in all facets of the development, compaction, and stabilization of the multilamellar myelin sheath, and also interacts with cytoskeletal and signaling proteins. The predominant 18.5-kDa isoform of MBP is an intrinsically-disordered protein that is a candidate auto-antigen in the human demyelinating disease multiple sclerosis. A highly-conserved central segment within classic MBP consists of a proline-rich region (murine 18.5-kDa sequence -T92-P93-R94-T95-P96-P97-P98-S99-) containing a putative SH3-ligand, adjacent to a region that forms an amphipathic α-helix (P82-I90) upon interaction with membranes, or under membrane-mimetic conditions. The T92 and T95 residues within the proline-rich region can be post-translationally modified through phosphorylation by mitogen-activated protein (MAP) kinases. Here, we have investigated the structure of the α-helical and proline-rich regions in dilute aqueous buffer, and have evaluated the effects of phosphorylation at T92 and T95 on the stability and dynamics of the α-helical region, by utilizing four 36-residue peptides (S72-S107) with differing phosphorylation status. Nuclear magnetic resonance spectroscopy reveals that both the α-helical as well as the proline-rich regions are disordered in aqueous buffer, whereas they are both structured in a lipid environment (cf., Ahmed et al., Biochemistry 51, 7475-9487, 2012). Thermodynamic analysis of trifluoroethanol-titration curves monitored by circular dichroism spectroscopy reveals that phosphorylation, especially at residue T92, impedes formation of the amphipathic α-helix. This conclusion is supported by molecular dynamics simulations, which further illustrate that phosphorylation reduces the folding reversibility of the α-helix upon temperature perturbation and affect the global structure

  19. The Effects of Threonine Phosphorylation on the Stability and Dynamics of the Central Molecular Switch Region of 18.5-kDa Myelin Basic Protein

    PubMed Central

    De Avila, Miguel; Polverini, Eugenia; Harauz, George

    2013-01-01

    The classic isoforms of myelin basic protein (MBP) are essential for the formation and maintenance of myelin in the central nervous system of higher vertebrates. The protein is involved in all facets of the development, compaction, and stabilization of the multilamellar myelin sheath, and also interacts with cytoskeletal and signaling proteins. The predominant 18.5-kDa isoform of MBP is an intrinsically-disordered protein that is a candidate auto-antigen in the human demyelinating disease multiple sclerosis. A highly-conserved central segment within classic MBP consists of a proline-rich region (murine 18.5-kDa sequence –T92-P93-R94-T95-P96-P97-P98-S99–) containing a putative SH3-ligand, adjacent to a region that forms an amphipathic α-helix (P82-I90) upon interaction with membranes, or under membrane-mimetic conditions. The T92 and T95 residues within the proline-rich region can be post-translationally modified through phosphorylation by mitogen-activated protein (MAP) kinases. Here, we have investigated the structure of the α-helical and proline-rich regions in dilute aqueous buffer, and have evaluated the effects of phosphorylation at T92 and T95 on the stability and dynamics of the α-helical region, by utilizing four 36-residue peptides (S72–S107) with differing phosphorylation status. Nuclear magnetic resonance spectroscopy reveals that both the α-helical as well as the proline-rich regions are disordered in aqueous buffer, whereas they are both structured in a lipid environment (cf., Ahmed et al., Biochemistry 51, 7475-9487, 2012). Thermodynamic analysis of trifluoroethanol-titration curves monitored by circular dichroism spectroscopy reveals that phosphorylation, especially at residue T92, impedes formation of the amphipathic α-helix. This conclusion is supported by molecular dynamics simulations, which further illustrate that phosphorylation reduces the folding reversibility of the α-helix upon temperature perturbation and affect the global

  20. Synthesis and incorporation of myelin polypeptides into CNS myelin

    PubMed Central

    1982-01-01

    The distribution of newly synthesized proteolipid protein (PLP, 23 kdaltons) and myelin basic proteins (MBPs, 14-21.5 kdaltons) was determined in microsomal and myelin fractions prepared from the brainstems o1 10-30 d-old rats sacrificed at different times after an intracranial injection of 35S-methionine. Labeled MBPs were found in the myelin fraction 2 min after the injection, whereas PLP appeared first in the rough microsomal fraction and only after a lag of 30 min in the myelin fraction. Cell-free translation experiments using purified mRNAs demonstrated that PLP and MBPs are synthesized in bound and free polysomes, respectively. A mechanism involving the cotranslational insertion into the ER membrane and subsequent passage of the polypeptides through the Golgi apparatus is consistent with the lag observed in the appearance of the in vivo-labeled PLP in the myelin membrane. Newly synthesized PLP and MBPs are not proteolytically processed, because the primary translation products synthesized in vitro had the same electrophoretic mobility and N-terminal amino acid sequence as the mature PLP and MBP polypeptides. It was found that crude myelin fractions are highly enriched in mRNAs coding for the MBPs but not in mRNA coding for PLP. This suggests that whereas the bound polysomes synthesizing PLP are largely confined to the cell body, free polysomes synthesizing MBPs are concentrated in oligodendrocyte processes involved in myelination, which explains the immediate incorporation of MBPs into the developing myelin sheath. PMID:6183276

  1. Membrane-anchoring and charge effects in the interaction of myelin basic protein with lipid bilayers studied by site-directed spin labeling.

    PubMed

    Bates, Ian R; Boggs, Joan M; Feix, Jimmy B; Harauz, George

    2003-08-01

    Myelin basic protein (MBP) maintains the compaction of the myelin sheath in the central nervous system by anchoring the cytoplasmic face of the two apposing bilayers and may also play a role in signal transduction. Site-directed spin labeling was done at eight matching sites in each of two recombinant murine MBPs, qC1 (charge +19) and qC8 charge (+13), which, respectively, emulate the native form of the protein (C1) and a post-translationally modified form (C8) that is increased in multiple sclerosis. When interacting with large unilamellar vesicles, most spin-labeled sites in qC8 were more mobile than those in qC1. Depth measurement via continuous wave power saturation indicated that the N-terminal and C-terminal sites in qC1 were located below the plane of the phospholipid headgroups. In qC8, the C-terminal domain dissociated from the membrane, suggesting a means by which the exposure of natural C8 to cytosolic enzymes and ligands might increase in vivo in multiple sclerosis. The importance of two Phe-Phe pairs in MBP to its interactions with lipids was investigated by separately mutating each pair to Ala-Ala. The mobility at F42A/F43A and especially F86A/F87A increased significantly. Depth measurements and helical wheel analysis indicated that the Phe-86/Phe-87 region could form a surface-seeking amphipathic alpha-helix.

  2. Role of very-late antigen-4 (VLA-4) in myelin basic protein-primed T cell contact-induced expression of proinflammatory cytokines in microglial cells.

    PubMed

    Dasgupta, Subhajit; Jana, Malabendu; Liu, Xiaojuan; Pahan, Kalipada

    2003-06-20

    The presence of neuroantigen-primed T cells recognizing self-myelin antigens within the CNS is necessary for the development of demyelinating autoimmune disease like multiple sclerosis. This study was undertaken to investigate the role of myelin basic protein (MBP)-primed T cells in the expression of proinflammatory cytokines in microglial cells. MBP-primed T cells alone induced specifically the microglial expression of interleukin (IL)-1beta, IL-1alpha tumor necrosis factor alpha, and IL-6, proinflammatory cytokines that are primarily involved in the pathogenesis of MS. This induction was primarily dependent on the contact between MBP-primed T cells and microglia. The activation of microglial NF-kappaB and CCAAT/enhancer-binding protein beta (C/EBPbeta) by MBP-primed T cell contact and inhibition of contact-mediated microglial expression of proinflammatory cytokines by dominant-negative mutants of p65 and C/EBPbeta suggest that MBP-primed T cells induce microglial expression of cytokines through the activation of NF-kappaB and C/EBPbeta. In addition, we show that MBP-primed T cells express very late antigen-4 (VLA-4), and functional blocking antibodies to alpha4 chain of VLA-4 (CD49d) inhibited the ability of MBP-primed T cells to induce microglial proinflammatory cytokines. Interestingly, the blocking of VLA-4 impaired the ability of MBP-primed T cells to induce microglial activation of only C/EBPbeta but not that of NF-kappaB. This study illustrates a novel role of VLA-4 in regulating neuroantigen-primed T cell-induced activation of microglia through C/EBPbeta

  3. The 21.5-kDa isoform of myelin basic protein has a non-traditional PY-nuclear-localization signal

    SciTech Connect

    Smith, Graham S.T.; Seymour, Lauren V.; Boggs, Joan M.; Harauz, George

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Full-length 21.5-kDa MBP isoform is translocated to the nucleus. Black-Right-Pointing-Pointer We hypothesized that the exon-II-encoded sequence contained the NLS. Black-Right-Pointing-Pointer We mutated this sequence in RFP-tagged constructs and transfected N19-cells. Black-Right-Pointing-Pointer Abolition of two key positively-charged residues resulted in loss of nuclear-trafficking. Black-Right-Pointing-Pointer The 21.5-kDa isoform of classic MBP contains a non-traditional PY-NLS. -- Abstract: The predominant 18.5-kDa classic myelin basic protein (MBP) is mainly responsible for compaction of the myelin sheath in the central nervous system, but is multifunctional, having numerous interactions with Ca{sup 2+}-calmodulin, actin, tubulin, and SH3-domains, and can tether these proteins to a lipid membrane in vitro. The full-length 21.5-kDa MBP isoform has an additional 26 residues encoded by exon-II of the classic gene, which causes it to be trafficked to the nucleus of oligodendrocytes (OLGs). We have performed site-directed mutagenesis of selected residues within this segment in red fluorescent protein (RFP)-tagged constructs, which were then transfected into the immortalized N19-OLG cell line to view protein localization using epifluorescence microscopy. We found that 21.5-kDa MBP contains two non-traditional PY-nuclear-localization signals, and that arginine and lysine residues within these motifs were involved in subcellular trafficking of this protein to the nucleus, where it may have functional roles during myelinogenesis.

  4. Differential effects of myelin basic protein-activated Th1 and Th2 cells on the local immune microenvironment of injured spinal cord.

    PubMed

    Hu, Jian-Guo; Shi, Ling-Ling; Chen, Yue-Juan; Xie, Xiu-Mei; Zhang, Nan; Zhu, An-You; Jiang, Zheng-Song; Feng, Yi-Fan; Zhang, Chen; Xi, Jin; Lü, He-Zuo

    2016-03-01

    Myelin basic protein (MBP) activated T cells (MBP-T) play an important role in the damage and repair process of the central nervous system (CNS). However, whether these cells play a beneficial or detrimental role is still a matter of debate. Although some studies showed that MBP-T cells are mainly helper T (Th) cells, their subtypes are still not very clear. One possible explanation for MBP-T immunization leading to conflicting results may be the different subtypes of T cells are responsible for distinct effects. In this study, the Th1 and Th2 type MBP-T cells (MBP-Th1 and -Th2) were polarized in vitro, and their effects on the local immune microenvironment and tissue repair of spinal cord injury (SCI) after adoptive immunization were investigated. In MBP-Th1 cell transferred rats, the high levels of pro-inflammatory cells (Th1 cells and M1 macrophages) and cytokines (IFN-γ, TNF-α, -β, IL-1β) were detected in the injured spinal cord; however, the anti-inflammatory cells (Th2 cells, regulatory T cells, and M2 macrophages) and cytokines (IL-4, -10, and -13) were found in MBP-Th2 cell transferred animals. MBP-Th2 cell transfer resulted in decreased lesion volume, increased myelination of axons, and preservation of neurons. This was accompanied by significant locomotor improvement. These results indicate that MBP-Th2 adoptive transfer has beneficial effects on the injured spinal cord, in which the increased number of Th2 cells may alter the local microenvironment from one primarily populated by Th1 and M1 cells to another dominated by Th2, Treg, and M2 cells and is conducive for SCI repair.

  5. Systemic lupus erythematosus: molecular cloning and analysis of 22 individual recombinant monoclonal kappa light chains specifically hydrolyzing human myelin basic protein.

    PubMed

    Timofeeva, Anna M; Buneva, Valentina N; Nevinsky, Georgy A

    2015-10-01

    Antibodies hydrolyzing myelin basic protein (MBP) can play an important role in the pathogenesis of multiple sclerosis (MS) and systemic lupus erythematosus (SLE). An immunoglobulin light chain phagemid library derived from peripheral blood lymphocytes of patients with SLE was used. Small pools of phage particles displaying light chains with different affinities for MBP were isolated by affinity chromatography on MBP-Sepharose, and the fraction eluted with 0.5 M NaCl was used for preparation of individual monoclonal light chains (MLChs, 26-27 kDa). Seventy-two of 440 individual colonies were randomly chosen, expressed in Escherichia coli in a soluble form, and MLChs were purified by metal chelating chromatography. Twenty-two of 72 MLChs have high affinity and efficiently hydrolyze only MBP (not other control proteins) demonstrating various pH optima in a 5.7-9.0 range and different substrate specificity in the hydrolysis of four different MBP oligopeptides. Four MLChs demonstrated serine protease-like and three thiol protease-like activities, while 11 MLChs were metalloproteases. The activity of three MLChs was inhibited by both phenylmethylsulfonyl fluoride (PMSF) and Ethylenediaminetetraacetic acid (EDTA), two other by EDTA and iodoacetamide, and one by PMSF, EDTA, and iodoacetamide. The ratio of relative activity in the presence of Ca(2+), Mg(2+), Mn(2+), Ni(2+), Zn(2+), Cu(2+), and Co(2+) was individual for each of 22 MLCh preparations. It is the first examples of human MLChs, which probably can possess two or even three different proteolytic activities. These observations suggest an extreme diversity of anti-MBP abzymes in SLE patients. The immune systems of individual SLE patients can generate a variety of anti-MBP abzymes, which can attack MBP of myelin-proteolipid sheath of axons and play an important role in MS and SLE pathogenesis.

  6. Coupled solid phase extraction and microparticle-based stability and purity-indicating immunosensor for the determination of recombinant human myelin basic protein in transgenic milk.

    PubMed

    Al-Ghobashy, Medhat A; Williams, Martin A K; Laible, Götz; Harding, David R K

    2013-05-15

    An optical immunosensor was developed and validated on the surface of microparticles for the determination of a biopharmaceutical protein. The recombinant human myelin basic protein (rhMBP) was produced in milk of transgenic cows as a His-tagged fusion protein. Previous work indicated exclusive association of rhMBP with milk casein micelles that hindered direct determination of the protein in milk. In this work, a solid phase extraction using a cation exchange matrix was developed in order to liberate rhMBP from casein micelles. A sandwich-type immunoassay was then used for in-process monitoring of the full-length protein in the presence of major milk proteins. The assay was successfully employed for detection of ultra-traces of rhMBP (LOD=6.04 ng mL(-1)≈0.3 n mol L(-1)) and for quantitative determination over a wide concentration range (10.00-10,000.00 ng mL(-1)). The assay was able also to detect the rhMBP in the presence of its human counterpart that lacks the His-tag. The high sensitivity along with the ability of the assay to determine the full length protein enabled monitoring of the stability of rhMBP. The testing protocol is particularly useful for intrinsically unstructured proteins that are extremely sensitive to proteolysis and lack a traceable enzymatic activity. This immunosensor provides a specific, ultrasensitive high throughput tool for in-process monitoring in biopharmaceutical industry.

  7. On-line casein micelle disruption for downstream purification of recombinant human myelin basic protein produced in the milk of transgenic cows.

    PubMed

    Al-Ghobashy, Medhat A; Williams, Martin A K; Brophy, Brigid; Laible, Götz; Harding, David R K

    2009-06-01

    Downstream purification of a model recombinant protein (human myelin basic protein) from milk of transgenic cows is described. The recombinant protein was expressed as a His tagged fusion protein in the milk of transgenic cows and was found associated with the casein micellar phase. While difficulties in obtaining good recoveries were found when employing conventional micelle disruption procedures, direct capture using the cation exchanger SP Sepharose Big Beads was found successful in the extraction of the recombinant protein. Early breakthrough suggested a slow release of the recombinant protein from the micelles and dictated micelle disruption in order to obtain good yields. A new approach for deconstruction of the calcium core of the casein micelles, employing the interaction between the micellar calcium and the active sites of the cation exchanger resin was developed. Milk samples were loaded to the column in aliquots with a column washing step after each aliquot. This sequential loading approach successfully liberated the recombinant protein from the micelles and was found superior to the conventional sample loading approach. It increased the recovery by more than 25%, reduced fouling due to milk components and improved the column hydrodynamic properties as compared to the conventional sample loading approach. Hardware and software modifications to the chromatography system were necessary in order to keep the whole process automated. A second purification step using a Ni2+ affinity column was used to isolate the recombinant protein at purity more than 90% and a recovery percentage of 78%.

  8. Neuron-specific enolase, but not S100B or myelin basic protein, increases in peripheral blood corresponding to lesion volume after cortical impact in piglets.

    PubMed

    Costine, Beth A; Quebeda-Clerkin, Patricia B; Dodge, Carter P; Harris, Brent T; Hillier, Simon C; Duhaime, Ann-Christine

    2012-11-20

    A peripheral indicator of the presence and magnitude of brain injury has been a sought-after tool by clinicians. We measured neuron-specific enolase (NSE), myelin basic protein (MBP), and S100B, prior to and after scaled cortical impact in immature pigs, to determine if these purported markers increase after injury, correlate with the resulting lesion volume, and if these relationships vary with maturation. Scaled cortical impact resulted in increased lesion volume with increasing age. Concentrations of NSE, but not S100B or MBP, increased after injury in all age groups. The high variability of S100B concentrations prior to injury may have precluded detection of an increase due to injury. Total serum markers were estimated, accounting for the allometric growth of blood volume, and resulted in a positive correlation of both NSE and S100B with lesion volume. Even with allometric scaling of blood volume and a uniform mechanism of injury, NSE had only a fair to poor predictive value. In a clinical setting, where the types of injuries are varied, more investigation is required to yield a panel of serum markers that can reliably predict the extent of injury. Allometric scaling may improve estimation of serum marker release in pediatric populations.

  9. Passive immunization with myelin basic protein activated T cells suppresses axonal dieback but does not promote axonal regeneration following spinal cord hemisection in adult rats.

    PubMed

    Wang, Hong-Ju; Hu, Jian-Guo; Shen, Lin; Wang, Rui; Wang, Qi-Yi; Zhang, Chen; Xi, Jin; Zhou, Jian-Sheng; Lü, He-Zuo

    2012-08-01

    The previous studies suggested that some subpopulations of T lymphocytes against central nervous system (CNS) antigens, such as myelin basic protein (MBP), are neuroprotective. But there were few reports about the effect of these T cells on axon regeneration. In this study, the neonatally thymectomied (Tx) adult rats which contain few T lymphocytes were subjected to spinal cord hemisection and then passively immunized with MBP-activated T cells (MBP-T). The regeneration and dieback of transected axons of cortico-spinal tract (CST) were detected by biotin dextran amine (BDA) tracing. The behavioral assessments were performed using the Basso, Beattie, and Bresnahan locomotor rating scale. We found that passive transferring of MBP-T could attenuate axonal dieback. However, no significant axon regeneration and behavioral differences were observed among the normal, Tx and sham-Tx (sTx) rats with or without MBP-T passive immunization. These results indicate that passive transferring of MBP-T cells can attenuate axonal dieback and promote neuroprotection following spinal cord injury (SCI), but may not promote axon regeneration.

  10. N-terminal region of myelin basic protein reduces fibrillar amyloid-β deposition in Tg-5xFAD mice.

    PubMed

    Ou-Yang, Ming-Hsuan; Xu, Feng; Liao, Mei-Chen; Davis, Judianne; Robinson, John K; Van Nostrand, William E

    2015-02-01

    Alzheimer's disease is a progressive neurodegenerative disorder that is characterized by extensive deposition of fibrillar amyloid-β (Aβ) in the brain. Previously, myelin basic protein (MBP) was identified to be a potent inhibitor to Aβ fibril formation, and this inhibitory activity was localized to the N-terminal residues 1-64, a fragment designated MBP1. Here, we show that the modest neuronal expression of a fusion protein of the biologically active MBP1 fragment and the enhanced green fluorescent protein (MBP1-EGFP) significantly improved the performance of spatial learning memory in Tg-5xFAD mice, a model of pathologic Aβ accumulation in brain. The levels of insoluble Aβ and fibrillar amyloid were significantly reduced in bigenic Tg-5xFAD/Tg-MBP1-EGFP mice. Quantitative stereological analysis revealed that the reduction in amyloid was because of a reduction in the size of fibrillar plaques rather than a decrease in plaque numbers. The current findings support previous studies showing that MBP1 inhibits Aβ fibril formation in vitro and demonstrate the ability of MBP1 to reduce Aβ pathology and improve behavioral performance.

  11. Effects of endurance exercise on expressions of glial fibrillary acidic protein and myelin basic protein in developing rats with maternal infection-induced cerebral palsy

    PubMed Central

    Kim, Kijeong; Shin, Mal-Soon; Cho, Han-Sam; Kim, Young-Pyo

    2014-01-01

    Periventricular leukomalacia (PVL) is a common white matter lesion affecting the neonatal brain. PVL is closely associated with cerebral palsy (CP) and characterized by increase in the number of astrocytes, which can be detected by positivity for glial fibrillary acidic protein (GFAP). Change in myelin basic protein (MBP) is an early sign of white matter abnormality. Maternal or placental infection can damage the neonatal brain. In the present study, we investigated the effects of treadmill walking exercise on GFAP and MBP expressions in rats with maternal lipopolysaccharide (LPS)-induced PVL. Immunohistochemistry was performed for the detection of GFAP and MBP. The present results showed that intracervical maternal LPS injection during pregnancy increased GFAP expression in the striatum and decreased MBP expression in the corpus callosum of rats. The results also showed that treadmill walking exercise suppressed GFAP expression and enhanced MBP expression in the brains of rats with maternal LPS-induced PVL. The present study revealed that treadmill walking exercise is effective for the suppressing astrogliosis and hypomyelination associated with PVL. Here in this study, we showed that treadmill walking exercise may be effective therapeutic strategy for alleviating the detrimental effects of CP. PMID:24678499

  12. Effects of endurance exercise on expressions of glial fibrillary acidic protein and myelin basic protein in developing rats with maternal infection-induced cerebral palsy.

    PubMed

    Kim, Kijeong; Shin, Mal-Soon; Cho, Han-Sam; Kim, Young-Pyo

    2014-02-01

    Periventricular leukomalacia (PVL) is a common white matter lesion affecting the neonatal brain. PVL is closely associated with cerebral palsy (CP) and characterized by increase in the number of astrocytes, which can be detected by positivity for glial fibrillary acidic protein (GFAP). Change in myelin basic protein (MBP) is an early sign of white matter abnormality. Maternal or placental infection can damage the neonatal brain. In the present study, we investigated the effects of treadmill walking exercise on GFAP and MBP expressions in rats with maternal lipopolysaccharide (LPS)-induced PVL. Immunohistochemistry was performed for the detection of GFAP and MBP. The present results showed that intracervical maternal LPS injection during pregnancy increased GFAP expression in the striatum and decreased MBP expression in the corpus callosum of rats. The results also showed that treadmill walking exercise suppressed GFAP expression and enhanced MBP expression in the brains of rats with maternal LPS-induced PVL. The present study revealed that treadmill walking exercise is effective for the suppressing astrogliosis and hypomyelination associated with PVL. Here in this study, we showed that treadmill walking exercise may be effective therapeutic strategy for alleviating the detrimental effects of CP.

  13. Myelin basic protein kinase activity in tomato leaves is induced systemically by wounding and increases in response to systemin and oligosaccharide elicitors

    PubMed Central

    Stratmann, Johannes W.; Ryan, Clarence A.

    1997-01-01

    In response to wounding, a 48-kDa myelin basic protein (MBP) kinase is activated within 2 min, both locally and systemically, in leaves of young tomato plants. The activating signal is able to pass through a steam girdle on the stem, indicating that it moves through the xylem and does not require intact phloem tissue. A 48-kDa MBP kinase is also activated by the 18-amino acid polypeptide systemin, a potent wound signal for the synthesis of systemic wound response proteins (swrps). The kinase activation by systemin is strongly inhibited by a systemin analog having a Thr-17 → Ala-17 substitution, which is a powerful antagonist of systemin activation of swrp genes. A 48-kDa MBP kinase activity also increases in response to polygalacturonic acid and chitosan but not in response to jasmonic acid or phytodienoic acid. In def1, a mutant tomato line having a defective octadecanoid pathway, the 48-kDa MBP kinase is activated by wounding and systemin as in the wild-type plants. This indicates that MBP kinase functions between the perception of primary signals and the DEF1 gene product. In response to wounding, the MBP kinase is phosphorylated on phosphotyrosine residues, indicating a relationship to the mitogen-activated protein kinase family of protein kinases. PMID:9380763

  14. Psychiatric disorder in a familial 15;18 translocation and sublocalization of myelin basic protein to 18q22.3

    SciTech Connect

    Calzolari, E.; Aiello, V.; Palazzi, P.; Sensi, A.

    1996-04-09

    Two related patients with similar clinical features consisting of a few dysmorphic signs and psychiatric disturbance were reported to have a partial trisomy of chromosomes 15(pter-q13.3) and 18(q23-qter) deriving from a familial translocation t(15;18). One patient is affected by bipolar disorder and the other by schizoaffective disorder. Both cases have a predominantly affective course; nevertheless, a clear diagnosis is difficult in the first patient, who is 15 years of age, and only a longitudinal course will allow us to establish a definite diagnosis. The possibility that these two pathologies belong to a single category is discussed, and the presence of a susceptibility locus on chromosome 18 is hypothesized. Cytogenetic data, FISH, and DNA studies indicate that the myelin basic protein (MPB) gene is not involved in the translocation, and localize it centromeric to the breakpoint on chromosome 18(q22.3). Thus, it is unlikely to be involved in the disease. 58 refs., 8 figs.

  15. Neuron-Specific Enolase, but Not S100B or Myelin Basic Protein, Increases in Peripheral Blood Corresponding to Lesion Volume after Cortical Impact in Piglets

    PubMed Central

    Quebeda-Clerkin, Patricia B.; Dodge, Carter P.; Harris, Brent T.; Hillier, Simon C.; Duhaime, Ann-Christine

    2012-01-01

    Abstract A peripheral indicator of the presence and magnitude of brain injury has been a sought-after tool by clinicians. We measured neuron-specific enolase (NSE), myelin basic protein (MBP), and S100B, prior to and after scaled cortical impact in immature pigs, to determine if these purported markers increase after injury, correlate with the resulting lesion volume, and if these relationships vary with maturation. Scaled cortical impact resulted in increased lesion volume with increasing age. Concentrations of NSE, but not S100B or MBP, increased after injury in all age groups. The high variability of S100B concentrations prior to injury may have precluded detection of an increase due to injury. Total serum markers were estimated, accounting for the allometric growth of blood volume, and resulted in a positive correlation of both NSE and S100B with lesion volume. Even with allometric scaling of blood volume and a uniform mechanism of injury, NSE had only a fair to poor predictive value. In a clinical setting, where the types of injuries are varied, more investigation is required to yield a panel of serum markers that can reliably predict the extent of injury. Allometric scaling may improve estimation of serum marker release in pediatric populations. PMID:22867012

  16. T helper cell type 1 (Th1), Th2 and Th17 responses to myelin basic protein and disease activity in multiple sclerosis

    PubMed Central

    Hedegaard, Chris J; Krakauer, Martin; Bendtzen, Klaus; Lund, Henrik; Sellebjerg, Finn; Nielsen, Claus H

    2008-01-01

    Autoreactive T cells are thought to play an essential role in the pathogenesis of multiple sclerosis (MS). We examined the stimulatory effect of human myelin basic protein (MBP) on mononuclear cell (MNC) cultures from 22 patients with MS and 22 sex-matched and age-matched healthy individuals, and related the patient responses to disease activity, as indicated by magnetic resonance imaging. The MBP induced a dose-dependent release of interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α) and interleukin-10 (IL-10) by patient-derived MNCs. The patients’ cells produced higher amounts of IFN-γ and TNF-α, and lower amounts of IL-10, than cells from healthy controls (P < 0·03 to P < 0·04). Five patients with MS and no controls, displayed MBP-induced CD4+ T-cell proliferation. These high-responders exhibited enhanced production of IL-17, IFN-γ, IL-5 and IL-4 upon challenge with MBP, as compared with the remaining patients and the healthy controls (P < 0·002 to P < 0·01). A strong correlation was found between the MBP-induced CD4+ T-cell proliferation and production of IL-17, IFN-γ, IL-5 and IL-4 (P < 0·0001 to P < 0·01) within the patient group, and the production of IL-17 and IL-5 correlated with the number of active plaques on magnetic resonance images (P = 0·04 and P = 0·007). These data suggest that autoantigen-driven CD4+ T-cell proliferation and release of IL-17 and IL-5 may be associated with disease activity. Larger studies are needed to confirm this. PMID:18397264

  17. Distinct accessory cell requirements define two types of rat T cell hybridomas specific for unique determinants in the encephalitogenic 68-86 region of myelin basic protein

    SciTech Connect

    Mannie, M.D.; Paterson, P.Y.; Thomas, D.W.; Nairn, R. )

    1990-01-15

    Six clonotypically unique T cell hybridomas from Lewis rats were used to study accessory cell activities required for class II MHC restricted T cell responses to the 68-86 encephalitogenic sequence of myelin basic protein (MBP). T cell hybrids which were cultured with GP68-86 68-86 sequence of guinea pig MBP (GPMBP) and naive splenocytes (SPL) were induced to produce IL-2 as measured by the CTLL indicator cell line. The hybrids were categorized into two subsets (designated THYB-1 and THYB-2), because two distinct subset-specific pathways of communication between accessory cells and T cells were involved in GPMBP-induced IL-2 production. These pathways were distinguished by the following six observations. First, when the duration of a pulse of SPL with GPMBP was lengthened from 1 to 4 h, these SPL lost their ability to induce IL-2 production by THYB-2 hybrids yet nevertheless retained full stimulatory activity for THYB-1 hybrids. Second, paraformaldehyde fixation of GPMBP-pulsed SPL abrogated an activity necessary for Ag-induced IL-2 production by THYB-2 hybrids. These fixed SPL were nevertheless able to stimulate THYB-1 hybrids, albeit to a lesser extent than viable unfixed SPL. Third, the addition of either cycloheximide, cytochalasin B, or 2-deoxyglucose to an Ag pulse of SPL with GPMBP dramatically inhibited the subsequent responses of THYB-2 hybrids yet had little or no effect upon the reactivity of THYB-1 hybrids. Fourth, thymocytes lacked necessary activities for GPMBP evoked IL-2 production by THYB-2 hybrids yet strongly promoted THYB-1 hybrid responses. Fifth, exposure of SPL to as little as 500 rad of gamma-irradiation markedly attenuated THYB-2 hybrid response to GPMBP but did not affect THYB-1 responses. Sixth, anti-GPMBP responses by THYB-2 hybrids were observed only in the presence of both radioresistant adherent SPL and a distinct population of radiosensitive nonadherent SPL.

  18. Autoantibodies to myelin basic protein (MBP) in healthy individuals and in patients with multiple sclerosis: a role in regulating cytokine responses to MBP.

    PubMed

    Hedegaard, Chris J; Chen, Ning; Sellebjerg, Finn; Sørensen, Per Soelberg; Leslie, R Graham Q; Bendtzen, Klaus; Nielsen, Claus H

    2009-09-01

    Anti-myelin basic protein (-MBP) autoantibodies have generally been considered to be absent from sera from healthy individuals, but to be detectable in sera from some patients with multiple sclerosis (MS). However, their pathogenic role is uncertain. We demonstrate the presence of MBP-reactive autoantibodies in sera from 17 healthy individuals and 17 MS patients. The addition of MBP to the sera caused a dose-dependent deposition of MBP and co-deposition of immunoglobulin M (IgM) and fragments of complement component 3 (C3) on allogeneic monocytes. Calcium chelation abrogated the immunoglobulin deposition, indicating that formation of complement-activating immune complexes played a role in the binding process. Furthermore, MBP elicited tumour necrosis factor (TNF)-alpha and interleukin (IL)-10 production by normal mononuclear cells in the presence of serum from both patients and controls. Mononuclear cells from MS patients responded to MBP with the production of interferon (IFN)-gamma, IL-4 and IL-5, in addition to TNF-alpha and IL-10. The production of IFN-gamma and IL-5 was increased when MS serum was added rather than normal serum. Denaturation of MBP strongly inhibited MBP deposition and the MBP-induced IgM deposition and cytokine production, indicating that these events were facilitated by autoantibodies recognizing conformational epitopes on MBP. We infer that MBP-elicited TNF-alpha and IL-10 responses are promoted to equal extents by naturally occurring MBP autoantibodies and autoantibodies contained in MS sera. However, the latter seem to be more efficient in facilitating the production of IFN-gamma and IL-5.

  19. A lack of association between hyperserotonemia and the increased frequency of serum anti-myelin basic protein auto-antibodies in autistic children

    PubMed Central

    2011-01-01

    Background One of the most consistent biological findings in autism is the elevated blood serotonin levels. Immune abnormalities, including autoimmunity with production of brain specific auto-antibodies, are also commonly observed in this disorder. Hyperserotonemia may be one of the contributing factors to autoimmunity in some patients with autism through the reduction of T-helper (Th) 1-type cytokines. We are the first to investigate the possible role of hyperserotonemia in the induction of autoimmunity, as indicated by serum anti-myelin-basic protein (anti-MBP) auto-antibodies, in autism. Methods Serum levels of serotonin and anti-MBP auto-antibodies were measured, by ELISA, in 50 autistic patients, aged between 5 and 12 years, and 30 healthy-matched children. Results Autistic children had significantly higher serum levels of serotonin and anti-MBP auto-antibodies than healthy children (P < 0.001 and P < 0.001, respectively). Increased serum levels of serotonin and anti-MBP auto-antibodies were found in 92% and 80%, respectively of autistic patients. Patients with severe autism had significantly higher serum serotonin levels than children with mild to moderate autism (P < 0.001). Serum serotonin levels had no significant correlations with serum levels of anti-MBP auto-antibodies in autistic patients (P = 0.39). Conclusions Hyperserotonemia may not be one of the contributing factors to the increased frequency of serum anti-MBP auto-antibodies in some autistic children. These data should be treated with caution until further investigations are performed. However, inclusion of serum serotonin levels as a correlate may be useful in other future immune studies in autism to help unravel the long-standing mystery of hyperserotonemia and its possible role in the pathophysiology of this disorder. PMID:21696608

  20. The human myelin basic protein gene is included within a 179-kilobase transcription unit: Expression in the immune and central nervous systems

    SciTech Connect

    Pribyl, T.M.; Campagnoni, C.W.; Kampf, K.; Kashima, T.; Handley, V.W.; Campagnoni, A.T. ); McMahon, J. )

    1993-11-15

    Two human Golli (for gene expressed in the oligodendrocyte lineage)-MBP (for myelin basic protein) cDNAs have been isolated from a human oligodendroglioma cell line. Analysis of these cDNAs has enabled the authors to determine the entire structure of the human Golli-MBP gene. The Golli-MBP gene, which encompasses the MBP transcription unit, is [approx] 179 kb in length and consists of 10 exons, seven of which constitute the MBP gene. The human Golli-MBP gene contains two transcription start sites, each of which gives rise to a family of alternatively spliced transcipts. At least two Golli-MBP transcripts, containing the first three exons of the gene and one or more MBP exons, are produced from the first transcription start site. The second family of transcripts contains only MBP exons and produces the well-known MBPs. In humans, RNA blot analysis revealed that Golli-MBP transcripts were expressed in fetal thymus, spleen, and human B-cell and macrophage cell lines, as well as in fetal spinal cord. These findings clearly link the expression of exons encoding the autoimmunogen/encephalitogen MBP in the central nervous system to cells and tissues of the immune system through normal expression of the Golli-MBP gene. They also establish that this genetic locus, which includes the MBP gene, is conserved among species, providing further evidence that the MBP transcription unit is an integral part of the Golli transcription unit and suggest that this structural arrangement is important for the genetic function and/or regulation of these genes.

  1. A lack of association between hyperserotonemia and the increased frequency of serum anti-myelin basic protein auto-antibodies in autistic children.

    PubMed

    Mostafa, Gehan Ahmed; Al-Ayadhi, Laila Yousef

    2011-06-22

    One of the most consistent biological findings in autism is the elevated blood serotonin levels. Immune abnormalities, including autoimmunity with production of brain specific auto-antibodies, are also commonly observed in this disorder. Hyperserotonemia may be one of the contributing factors to autoimmunity in some patients with autism through the reduction of T-helper (Th) 1-type cytokines. We are the first to investigate the possible role of hyperserotonemia in the induction of autoimmunity, as indicated by serum anti-myelin-basic protein (anti-MBP) auto-antibodies, in autism. Serum levels of serotonin and anti-MBP auto-antibodies were measured, by ELISA, in 50 autistic patients, aged between 5 and 12 years, and 30 healthy-matched children. Autistic children had significantly higher serum levels of serotonin and anti-MBP auto-antibodies than healthy children (P < 0.001 and P < 0.001, respectively). Increased serum levels of serotonin and anti-MBP auto-antibodies were found in 92% and 80%, respectively of autistic patients. Patients with severe autism had significantly higher serum serotonin levels than children with mild to moderate autism (P < 0.001). Serum serotonin levels had no significant correlations with serum levels of anti-MBP auto-antibodies in autistic patients (P = 0.39). Hyperserotonemia may not be one of the contributing factors to the increased frequency of serum anti-MBP auto-antibodies in some autistic children. These data should be treated with caution until further investigations are performed. However, inclusion of serum serotonin levels as a correlate may be useful in other future immune studies in autism to help unravel the long-standing mystery of hyperserotonemia and its possible role in the pathophysiology of this disorder.

  2. Endogenous myelin basic protein-serum factors (MBP-SFs) in Lewis rats. Evidence for their heterogeneity and reactivity with anti-MBP antibodies of different affinities.

    PubMed

    Day, E D; Varitek, V A; Paterson, P Y

    1981-01-01

    MBP-SF, previously described as an endogenous myelin basic protein-serum factor in Lewis rats with a suggested function as a neuroautotolerogen, appears not to be a single factor but a heterogeneous collection of serum factors (MBP-SFs), most probably small fragments of MBP, each cross-reactive with a different region of the multideterminant parent molecule. The heterogeneity of the MBP-SFs in any serum sample is defined and limited by the spectrum of binding affinities of the antibody populations represented in a given reagent anti-MBP antiserum. Some samples of normal Lewis rat serum have been found to contain high affinity MBP-SFs which coexist with low affinity anti-MBP antibodies whereas other sera have shown the reversed pattern, viz. low affinity MBP-SFs and high affinity antibodies. Additional sera have been found to contain MBP-SFs of several different affinities. In time-course studies of rats sensitized to neuroantigen-adjuvant a variety of MBP-SFs and anti-MBP antibodies of different affinities may be observed in sequentially collected sera from a given animal. In no animal has any serum sample been found to contain the full spectrum of MBP-SFs. Although some MBP-SFs have been found to increase temporarily during the 2nd week after neuroantigen/CFA sensitization, all MBP-SFs tend to disappear in the 2nd week and to be replaced by anti-MBP antibodies of differing affinities 3-4 weeks following sensitization.

  3. Conformational choreography of a molecular switch region in myelin basic protein--molecular dynamics shows induced folding and secondary structure type conversion upon threonyl phosphorylation in both aqueous and membrane-associated environments.

    PubMed

    Polverini, Eugenia; Coll, Eoin P; Tieleman, D Peter; Harauz, George

    2011-03-01

    The 18.5 kDa isoform of myelin basic protein is essential to maintaining the close apposition of myelin membranes in central nervous system myelin, but its intrinsic disorder (conformational dependence on environment), a variety of post-translational modifications, and a diversity of protein ligands (e.g., actin and tubulin) all indicate it to be multifunctional. We have performed molecular dynamics simulations of a conserved central segment of 18.5 kDa myelin basic protein (residues Glu80-Gly103, murine sequence numbering) in aqueous and membrane-associated environments to ascertain the stability of constituent secondary structure elements (α-helix from Glu80-Val91 and extended poly-proline type II from Thr92-Gly103) and the effects of phosphorylation of residues Thr92 and Thr95, individually and together. In aqueous solution, all four forms of the peptide bent in the middle to form a hydrophobic cluster. The phosphorylated variants were stabilized further by electrostatic interactions and formation of β-structures, in agreement with previous spectroscopic data. In simulations performed with the peptide in association with a dimyristoylphosphatidylcholine bilayer, the amphipathic α-helical segment remained stable and membrane-associated, although the degree of penetration was less in the phosphorylated variants, and the tilt of the α-helix with respect to the plane of the membrane also changed significantly with the modifications. The extended segment adjacent to this α-helix represents a putative SH3-ligand and remained exposed to the cytoplasm (and thus accessible to binding partners). The results of these simulations demonstrate how this segment of the protein can act as a molecular switch: an amphipathic α-helical segment of the protein is membrane-associated and presents a subsequent proline-rich segment to the cytoplasm for interaction with other proteins. Phosphorylation of threonyl residues alters the degree of membrane penetration of the

  4. Nonsynaptic junctions on myelinating glia promote preferential myelination of electrically active axons

    PubMed Central

    Wake, Hiroaki; Ortiz, Fernando C.; Woo, Dong Ho; Lee, Philip R.; Angulo, María Cecilia; Fields, R. Douglas

    2015-01-01

    The myelin sheath on vertebrate axons is critical for neural impulse transmission, but whether electrically active axons are preferentially myelinated by glial cells, and if so, whether axo-glial synapses are involved, are long-standing questions of significance to nervous system development, plasticity and disease. Here we show using an in vitro system that oligodendrocytes preferentially myelinate electrically active axons, but synapses from axons onto myelin-forming oligodendroglial cells are not required. Instead, vesicular release at nonsynaptic axo-glial junctions induces myelination. Axons releasing neurotransmitter from vesicles that accumulate in axon varicosities induces a local rise in cytoplasmic calcium in glial cell processes at these nonsynaptic functional junctions, and this signalling stimulates local translation of myelin basic protein to initiate myelination. PMID:26238238

  5. Polarization and Myelination in Myelinating Glia

    PubMed Central

    Masaki, Toshihiro

    2012-01-01

    Myelinating glia, oligodendrocytes in central nervous system and Schwann cells in peripheral nervous system, form myelin sheath, a multilayered membrane system around axons enabling salutatory nerve impulse conduction and maintaining axonal integrity. Myelin sheath is a polarized structure localized in the axonal side and therefore is supposed to be formed based on the preceding polarization of myelinating glia. Thus, myelination process is closely associated with polarization of myelinating glia. However, cell polarization has been less extensively studied in myelinating glia than other cell types such as epithelial cells. The ultimate goal of this paper is to provide insights for the field of myelination research by applying the information obtained in polarity study in other cell types, especially epithelial cells, to cell polarization of myelinating glia. Thus, in this paper, the main aspects of cell polarization study in general are summarized. Then, they will be compared with polarization in oligodendrocytes. Finally, the achievements obtained in polarization study for epithelial cells, oligodendrocytes, and other types of cells will be translated into polarization/myelination process by Schwann cells. Then, based on this model, the perspectives in the study of Schwann cell polarization/myelination will be discussed. PMID:23326681

  6. Nucleus-localized 21.5-kDa myelin basic protein promotes oligodendrocyte proliferation and enhances neurite outgrowth in coculture, unlike the plasma membrane-associated 18.5-kDa isoform.

    PubMed

    Smith, Graham S T; Samborska, Bożena; Hawley, Steven P; Klaiman, Jordan M; Gillis, Todd E; Jones, Nina; Boggs, Joan M; Harauz, George

    2013-03-01

    The classic myelin basic protein (MBP) family of central nervous system (CNS) myelin arises from transcription start site 3 of the Golli (gene of oligodendrocyte lineage) complex and comprises splice isoforms ranging in nominal molecular mass from 14 kDa to (full-length) 21.5 kDa. We have determined here a number of distinct functional differences between the major 18.5-kDa and minor 21.5-kDa isoforms of classic MBP with respect to oligodendrocyte (OLG) proliferation. We have found that, in contrast to 18.5-kDa MBP, 21.5-kDa MBP increases proliferation of early developmental immortalized N19-OLGs by elevating the levels of phosphorylated ERK1/2 and Akt1 kinases and of ribosomal protein S6. Coculture of N2a neuronal cells with N19-OLGs transfected with the 21.5-kDa isoform (or conditioned medium from), but not the 18.5-kDa isoform, caused the N2a cells to have increased neurite outgrowth and process branching complexity. These roles were dependent on subcellular localization of 21.5-kDa MBP to the nucleus and on the exon II-encoded segment, suggesting that the nuclear localization of early minor isoforms of MBP may play a crucial role in regulating and/or initiating myelin and neuronal development in the mammalian CNS.

  7. Could Intrathymic Injection of Myelin Basic Protein Suppress Inflammatory Response After Co-culture of T Lymphocytes and BV-2 Microglia Cells?

    PubMed Central

    Cui, Zhan-Qun; Liu, Bao-Long; Wu, Qiao-Li; Cai, Ying; Fan, Wei-Jia; Zhang, Ming-Chao; Ding, Wei-Liang; Zhang, Bo; Kang, Jian-Min; Yan, Hua

    2016-01-01

    Background: The interaction between activated microglia and T lymphocytes can yield abundant pro-inflammatory cytokines. Our previous study proved that thymus immune tolerance could alleviate the inflammatory response. This study aimed to investigate whether intrathymic injection of myelin basic protein (MBP) in mice could suppress the inflammatory response after co-culture of T lymphocytes and BV-2 microglia cells. Methods: Totally, 72 male C57BL/6 mice were randomly assigned to three groups (n = 24 in each): Group A: intrathymic injection of 100 μl MBP (1 mg/ml); Group B: intrathymic injection of 100 μl phosphate-buffered saline (PBS); and Group C: sham operation group. Every eight mice in each group were sacrificed to obtain the spleen at postoperative days 3, 7, and 14, respectively. T lymphocytes those were extracted and purified from the spleens were then co-cultured with activated BV-2 microglia cells at a proportion of 1:2 in the medium containing MBP for 3 days. After identified the T lymphocytes by CD3, surface antigens of T lymphocytes (CD4, CD8, CD152, and CD154) and BV-2 microglia cells (CD45 and CD54) were detected by flow cytometry. The expressions of pro-inflammatory factors of BV-2 microglia cells (interleukin [IL]-1β, tumor necrosis factor-α [TNF-α], and inducible nitric oxide synthase [iNOS]) were detected by quantitative real-time polymerase chain reaction (PCR). One-way analysis of variance (ANOVA) and the least significant difference test were used for data analysis. Results: The levels of CD152 in Group A showed an upward trend from the 3rd to 7th day, with a downward trend from the 7th to 14th day (20.12 ± 0.71%, 30.71 ± 1.14%, 13.50 ± 0.71% at postoperative days 3, 7, and 14, respectively, P < 0.05). The levels of CD154 in Group A showed a downward trend from the 3rd to 7th day, with an upward trend from the 7th to 14th day (10.00 ± 0.23%, 5.28 ± 0.69%, 14.67 ± 2.71% at postoperative days 3, 7, and 14, respectively, P < 0

  8. Thermodynamic analysis of the disorder-to-α-helical transition of 18.5-kDa myelin basic protein reveals an equilibrium intermediate representing the most compact conformation.

    PubMed

    Vassall, Kenrick A; Jenkins, Andrew D; Bamm, Vladimir V; Harauz, George

    2015-05-22

    The intrinsically disordered, 18.5-kDa isoform of myelin basic protein (MBP) is a peripheral membrane protein that is essential to proper myelin formation in the central nervous system. MBP acts in oligodendrocytes both to adjoin membrane leaflets to each other in forming myelin and as a hub in numerous protein-protein and protein-membrane interaction networks. Like many intrinsically disordered proteins (IDPs), MBP multifunctionality arises from its high conformational plasticity and its ability to undergo reversible disorder-to-order transitions. One such transition is the disorder-to-α-helical conformational change that is induced upon MBP-membrane binding. Here, we have investigated the disorder-to-α-helical transition of MBP-derived α-peptides and the full-length 18.5-kDa protein. This transition was induced through titration of the membrane-mimetic solvent trifluoroethanol into both protein and peptide solutions, and conformational change was monitored using circular dichroism spectroscopy, 1-anilinonaphthalene-8-sulfonic acid binding, tryptophan fluorescence quenching, and Förster (fluorescence) resonance energy transfer measurements. The data suggest that the disorder-to-α-helical transition of MBP follows a 3-state model: disordered↔intermediate↔α-helical, with each of the identified equilibrium states likely representing a conformational ensemble. The disordered state is characterized by slight compaction with little regular secondary structure, whereas the intermediate is also disordered but globally more compact. Surprisingly, the α-helical conformation is less compact than the intermediate. This study suggests that multifunctionality in MBP could arise from differences in the population of energetically distinct ensembles under different conditions and also provides an example of an IDP that undergoes cooperative global conformation change.

  9. Schwann Cell Myelination

    PubMed Central

    Salzer, James L.

    2015-01-01

    Myelinated nerve fibers are essential for the rapid propagation of action potentials by saltatory conduction. They form as the result of reciprocal interactions between axons and Schwann cells. Extrinsic signals from the axon, and the extracellular matrix, drive Schwann cells to adopt a myelinating fate, whereas myelination reorganizes the axon for its role in conduction and is essential for its integrity. Here, we review our current understanding of the development, molecular organization, and function of myelinating Schwann cells. Recent findings into the extrinsic signals that drive Schwann cell myelination, their cognate receptors, and the downstream intracellular signaling pathways they activate will be described. Together, these studies provide important new insights into how these pathways converge to activate the transcriptional cascade of myelination and remodel the actin cytoskeleton that is critical for morphogenesis of the myelin sheath. PMID:26054742

  10. Molecular mimicry between Mycobacterium leprae proteins (50S ribosomal protein L2 and Lysyl-tRNA synthetase) and myelin basic protein: a possible mechanism of nerve damage in leprosy.

    PubMed

    Singh, Itu; Yadav, Asha Ram; Mohanty, Keshar Kunja; Katoch, Kiran; Sharma, Prashant; Mishra, Bishal; Bisht, Deepa; Gupta, U D; Sengupta, Utpal

    2015-04-01

    Autoantibodies against various components of host are known to occur in leprosy. Nerve damage is the primary cause of disability associated with leprosy. The aim of this study was to detect the level of autoantibodies and lympho-proliferative response against myelin basic protein (MBP) in leprosy patients (LPs) and their correlation with clinical phenotypes of LPs. Further, probable role of molecular mimicry in nerve damage of LPs was investigated. We observed significantly high level of anti-MBP antibodies in LPs across the spectrum and a positive significant correlation between the level of anti-MBP antibodies and the number of nerves involved in LPs. We report here that 4 B cell epitopes of myelin A1 and Mycobacterium leprae proteins, 50S ribosomal L2 and lysyl tRNA synthetase are cross-reactive. Further, M. leprae sonicated antigen hyperimmunization was responsible for induction of autoantibody response in mice which could be adoptively transferred to naive mice. For the first time our findings suggest the role of molecular mimicry in nerve damage in leprosy. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  11. Mammalian-Specific Central Myelin Protein Opalin Is Redundant for Normal Myelination: Structural and Behavioral Assessments

    PubMed Central

    Tohyama, Koujiro; Akagi, Takumi; Furuse, Tamio; Sadakata, Tetsushi; Tanaka, Mika; Shinoda, Yo; Hashikawa, Tsutomu; Itohara, Shigeyoshi; Sano, Yoshitake; Ghandour, M. Said; Wakana, Shigeharu

    2016-01-01

    Opalin, a central nervous system-specific myelin protein phylogenetically unique to mammals, has been suggested to play a role in mammalian-specific myelin. To elucidate the role of Opalin in mammalian myelin, we disrupted the Opalin gene in mice and analyzed the impacts on myelination and behavior. Opalin-knockout (Opalin−/−) mice were born at a Mendelian ratio and had a normal body shape and weight. Interestingly, Opalin−/− mice had no obvious abnormalities in major myelin protein compositions, expression of oligodendrocyte lineage markers, or domain organization of myelinated axons compared with WT mice (Opalin+/+) mice. Electron microscopic observation of the optic nerves did not reveal obvious differences between Opalin+/+ and Opalin−/− mice in terms of fine structures of paranodal loops, transverse bands, and multi-lamellae of myelinated axons. Moreover, sensory reflex, circadian rhythm, and locomotor activity in the home cage, as well as depression-like behavior, in the Opalin−/− mice were indistinguishable from the Opalin+/+ mice. Nevertheless, a subtle but significant impact on exploratory activity became apparent in Opalin−/− mice exposed to a novel environment. These results suggest that Opalin is not critical for central nervous system myelination or basic sensory and motor activities under conventional breeding conditions, although it might be required for fine-tuning of exploratory behavior. PMID:27855200

  12. Soluble amyloid beta-peptide and myelin basic protein strongly stimulate, alone and in synergism with combined proinflammatory cytokines, the expression of functional nitric oxide synthase-2 in normal adult human astrocytes.

    PubMed

    Chiarini, Anna; Dal Pra, Ilaria; Menapace, Lia; Pacchiana, Raffaella; Whitfield, James F; Armato, Ubaldo

    2005-11-01

    The accumulation of amyloid beta (Abeta)-peptides and their collection in fibrillar plaques in the human brain are believed to be responsible for Alzheimer's disease. The major neuron killers in the Alzheimer brain include proinflammatory cytokines and NO made by NOS-2 (inducible nitric oxide synthase-2). We have determined the effect of a soluble Abeta peptide, Abeta(1-40), on the expression of NOS-2 in astrocytes using a novel model system consisting of pure cultures of cells from adult human brains that, after the first three passages in vitro, become stably locked into the normal astrocytic phenotype like their counterparts in the adult human brain. Abeta(1-40) alone stimulated quiescent astrocytes to start expressing functional NOS-2 and dumping NO into the culture medium during the next 4 days. But adding three of the proinflammatory cytokines commonly produced in the Alzheimer brain--IFN-gamma, IL-1beta, and TNF-alpha--along with Abeta(1-40) more than trebled NOS-2 expression and doubled NO production. In view of the possibility of myelin breakdown in the Alzheimer brain, we also tested the capability of myelin basic protein (MBP) to stimulate NO production using human astrocytes. We found that MBP mimicked the ability of Abeta(1-40) to induce cells to release NO and adding the cytokine triad along with MBP more than doubled NO production and release. Thus, it appears that Abeta peptides and MBP can join forces with proinflammatory cytokines to enhance the NO-mediated killing of neurons in the Alzheimer brain.

  13. Proline substitutions and threonine pseudophosphorylation of the SH3 ligand of 18.5-kDa myelin basic protein decrease its affinity for the Fyn-SH3 domain and alter process development and protein localization in oligodendrocytes.

    PubMed

    Smith, Graham S T; De Avila, Miguel; Paez, Pablo M; Spreuer, Vilma; Wills, Melanie K B; Jones, Nina; Boggs, Joan M; Harauz, George

    2012-01-01

    The developmentally regulated myelin basic proteins (MBPs), which arise from the golli (gene of oligodendrocyte lineage) complex, are highly positively charged, intrinsically disordered, multifunctional proteins having several alternatively spliced isoforms and posttranslational modifications, and they play key roles in myelin compaction. The classic 18.5-kDa MBP isoform has a proline-rich region comprising amino acids 92-99 (murine sequence -T(92)PRTPPPS(99)-) that contains a minimal SH3 ligand domain. We have previously shown that 18.5-kDa MBP binds to several SH3 domains, including that of Fyn, a member of the Src family of tyrosine kinases involved in a number of signaling pathways during CNS development. To determine the physiological role of this binding as well as the role of phosphorylation of Thr92 and Thr95, in the current study we have produced several MBP variants specifically targeting phosphorylation sites and key structural regions of MBP's SH3 ligand domain. Using isothermal titration calorimetry, we have demonstrated that, compared with the wild-type protein, these variants have lower affinity for the SH3 domain of Fyn. Moreover, overexpression of N-terminal-tagged GFP versions in immortalized oligodendroglial N19 and N20.1 cell cultures results in aberrant elongation of membrane processes and increased branching complexity and inhibits the ability of MBP to decrease Ca(2+) influx. Phosphorylation of Thr92 can also cause MBP to traffic to the nucleus, where it may participate in additional protein-protein interactions. Coexpression of MBP with a constitutively active form of Fyn kinase resulted in membrane process elaboration, a phenomenon that was abolished by point amino acid substitutions in MBP's SH3 ligand domain. These results suggest that MBP's SH3 ligand domain plays a key role in intracellular protein interactions in vivo and may be required for proper membrane elaboration of developing oligodendrocytes and, further, that phosphorylation

  14. The history of myelin.

    PubMed

    Boullerne, Anne Isabelle

    2016-09-01

    Andreas Vesalius is attributed the discovery of white matter in the 16th century but van Leeuwenhoek is arguably the first to have observed myelinated fibers in 1717. A globular myelin theory followed, claiming all elements of the nervous system except for Fontana's primitive cylinder with outer sheath in 1781. Remak's axon revolution in 1836 relegated myelin to the unknown. Ehrenberg described nerve tubes with double borders in 1833, and Schwann with nuclei in 1839, but the medullary sheath acquired its name of myelin, coined by Virchow, only in 1854. Thanks to Schultze's osmium specific staining in 1865, myelin designates the structure known today. The origin of myelin though was baffling. Only after Ranvier discovered a periodic segmentation, which came to us as nodes of Ranvier, did he venture suggesting in 1872 that the nerve internode was a fatty cell secreting myelin in cytoplasm. Ranvier's hypothesis was met with high skepticism, because nobody could see the cytoplasm, and the term Schwann cell very slowly emerged into the vocabulary with von Lenhossék in 1895. When Cajal finally admitted the concept of Schwann cell internode in 1912, he still firmly believed myelin was secreted by the axon. Del Río-Hortega re-discovered oligodendrocytes in 1919 (after Robertson in 1899) and named them oligodendroglia in 1921, thereby antagonizing Cajal for discovering a second cell type in his invisible third element. Penfield had to come to del Río-Hortega's rescue in 1924 for oligodendrocytes to be accepted. They jointly hypothesized myelin could be made by oligodendrocytes, considered the central equivalent of Schwann cells. Meanwhile myelin birefringence properties observed by Klebs in 1865 then Schmidt in 1924 confirmed its high fatty content, ascertained by biochemistry by Thudichum in 1884. The 20th century saw X-ray diffraction developed by Schmitt, who discovered in 1935 the crystal-like organization of this most peculiar structure, and devised the g

  15. The history of myelin

    PubMed Central

    Boullerne, Anne Isabelle

    2016-01-01

    Andreas Vesalius is attributed the discovery of white matter in the 16th century but van Leeuwenhoek is arguably the first to have observed myelinated fibers in 1717. A globular myelin theory followed, claiming all elements of the nervous system except for Fontana’s primitive cylinder with outer sheath in 1781. Remak’s axon revolution in 1836 relegated myelin to the unknown. Ehrenberg described nerve tubes with double borders in 1833, and Schwann with nuclei in 1839, but the medullary sheath acquired its name of myelin, coined by Virchow, only in 1854. Thanks to Schultze’s osmium specific staining in 1865, myelin designates the structure known today. The origin of myelin though was baffling. Only after Ranvier discovered a periodic segmentation, which came to us as nodes of Ranvier, did he venture suggesting in 1872 that the nerve internode was a fatty cell secreting myelin in cytoplasm. Ranvier’s hypothesis was met with high skepticism, because nobody could see the cytoplasm, and the term Schwann cell very slowly emerged into the vocabulary with von Lenhossék in 1895. When Cajal finally admitted the concept of Schwann cell internode in 1912, he still firmly believed myelin was secreted by the axon. Del Río-Hortega re-discovered oligodendrocytes in 1919 (after Robertson in 1899) and named them oligodendroglia in 1921, thereby antagonizing Cajal for discovering a second cell type in his invisible third element. Penfield had to come to del Río-Hortega’s rescue in 1924 for oligodendrocytes to be accepted. They jointly hypothesized myelin could be made by oligodendrocytes, considered the central equivalent of Schwann cells. Meanwhile myelin birefringence properties observed by Klebs in 1865 then Schmidt in 1924 confirmed its high fatty content, ascertained by biochemistry by Thudichum in 1884. The 20th century saw X-ray diffraction developed by Schmitt, who discovered in 1935 the crystal-like organization of this most peculiar structure, and devised the g

  16. Molecular dynamics at the receptor level of immunodominant myelin basic protein epitope 87-99 implicated in multiple sclerosis and its antagonists altered peptide ligands: triggering of immune response.

    PubMed

    Mantzourani, Efthimia D; Platts, James A; Brancale, Andrea; Mavromoustakos, Thomas M; Tselios, Theodore V

    2007-09-01

    This work reports molecular dynamics studies at the receptor level of the immunodominant myelin basic protein (MBP) epitope 87-99 implicated in multiple sclerosis, and its antagonists altered peptide ligands (APLs), namely [Arg91, Ala96] MBP87-99 and [Ala91,96] MBP87-99. The interaction of each peptide ligand with the receptor human leukocyte antigen HLA-DR2b was studied, starting from X-ray structure with pdb code: 1ymm. This is the first such study of APL-HLA-DR2b complexes, and hence the first attempt to gain a better understanding of the molecular recognition mechanisms that underlie TCR antagonism by these APLs. The amino acids His88 and Phe89 serve as T-cell receptor (TCR) anchors in the formation of the trimolecular complex TCR-peptide-HLA-DR2b, where the TCR binds in a diagonal, off-centered mode to the peptide-HLA complex. The present findings indicate that these two amino acids have a different orientation in the APLs [Arg91, Ala96] MBP87-99 and [Ala91,96] MBP87-99: His88 and Phe89 remain buried in HLA grooves and are not available for interaction with the TCR. We propose that this different topology could provide a possible mechanism of action for TCR antagonism.

  17. Docking and molecular dynamics simulations of the Fyn-SH3 domain with free and phospholipid bilayer-associated 18.5-kDa myelin basic protein (MBP) - Insights into a non-canonical and fuzzy interaction.

    PubMed

    Bessonov, Kyrylo; Vassall, Kenrick A; Harauz, George

    2017-04-05

    The molecular details of the association between the human Fyn-SH3 domain, and the fragment of 18.5-kDa myelin basic protein (MBP) spanning residues S38-S107 (denoted as xα2-peptide, murine sequence numbering), were studied in silico via docking and molecular dynamics over 50-ns trajectories. The results show that interaction between the two proteins is energetically favorable and heavily-dependent on the MBP proline-rich region (P93-P98) in both aqueous and membrane environments. In aqueous conditions, the xα2-peptide/Fyn-SH3 complex adopts a "sandwich"-like structure. In the membrane context, the xα2-peptide interacts with the Fyn-SH3 domain via the proline-rich region and the β-sheets of Fyn-SH3, with the latter wrapping around the proline-rich region in a form of a clip. Moreover, the simulations corroborate prior experimental evidence of the importance of upstream segments beyond the canonical SH3-ligand. This study thus provides a more-detailed glimpse into the context-dependent interaction dynamics and importance of the β-sheets in Fyn-SH3 and proline-rich region of MBP. This article is protected by copyright. All rights reserved.

  18. Regional differences in myelination of chick vestibulocochlear ganglion cells.

    PubMed

    Sun, Ying-Jie; Kobayashi, Hiroto; Yoshida, Saori; Shirasawa, Nobuyuki; Naito, Akira

    2013-11-01

    In vertebrates, vestibular and cochlear ganglion (VG and CG, respectively) cells are bipolar neurons with myelinated axons and perikarya. The time course of the myelination of the VG and CG cells during development of chick embryos was investigated. Chick VG and CG from embryonic day at 7-20 (E7-20) were prepared for a transmission electron microscopy, myelin basic protein immunohistochemistry, and real-time quantitative RT-PCR. In the VG cells, myelination was first observed on the peripheral axons of the ampullar nerves at E10, on the utricular and saccular nerves at E12, and on the lagenar and neglecta nerves at E13. In the VG central axons, myelination was first seen on the ampullar nerves at E11, on the utricular and saccular nerves at E13, and on the lagenar nerves at E13. In the CG cells, the myelination was first observed on the peripheral and central axons at E14. In both VG and CG, myelination was observed on the perikarya at E17. These results suggest that the onset of the axonal myelination on the VG cells occurred earlier than that on the CG cells, whereas the perikaryal myelination occurred at about the same time on the both types of ganglion cells. Moreover, the myelination on the ampullar nerves occurred earlier than that on the utricular and saccular nerves. The myelination on the peripheral axons occurred earlier than that on the central axons of the VG cells, whereas that on the central and peripheral axons of the CG cells occurred at about the same time. The regional differences in myelination in relation to the onset of functional activities in the VG and CG cells are discussed. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.

  19. IRS-2 branch of IGF-1 receptor signaling is essential for appropriate timing of myelination.

    PubMed

    Freude, Susanna; Leeser, Uschi; Müller, Marita; Hettich, Moritz M; Udelhoven, Michael; Schilbach, Katharina; Tobe, Kazuyuki; Kadowaki, Takashi; Köhler, Christoph; Schröder, Hannsjörg; Krone, Wilhelm; Brüning, Jens C; Schubert, Markus

    2008-11-01

    Insulin-like growth factor (IGF)-1 increases proliferation, inhibits apoptosis and promotes differentiation of oligodendrocytes and their precursor cells, indicating an important function for IGF-1 receptor (IGF-1R) signaling in myelin development. The insulin receptor substrates (IRS), IRS-1 and -2 serve as intracellular IGF-1R adaptor proteins and are expressed in neurons, oligodendrocytes and their precursors. To address the role of IRS-2 in myelination, we analyzed myelination in IRS-2 deficient (IRS-2(-/-)) mice and age-matched controls during postnatal development. Interestingly, expression of the most abundant myelin proteins, myelin basic protein and proteolipid protein was reduced in IRS-2(-/-) brains at postnatal day 10 (P10) as compared to controls. myelin basic protein immunostaining in P10-IRS-2(-/-) mice revealed a reduced immunostaining, but an unchanged regional distribution pattern. In cerebral myelin isolates at P10 unaltered relative expression of different myelin proteins was found, indicating quantitatively reduced but not qualitatively altered myelination. Interestingly, up-regulation of IRS-1 expression and increased IGF-1R signaling were observed in IRS-2(-/-) mice at P10-14, indicating a compensatory mechanism to overcome IRS-2 deficiency. Adult IRS-2(-/-) mice showed unaltered myelination and motor function. Furthermore, in neuronal/brain-specific insulin receptor knockout mice myelination was unchanged. Thus, our experiments reveal that IGF-1R/IRS-2 mediated signals are critical for appropriate timing of myelination in vivo.

  20. Calpain secreted by activated human lymphoid cells degrades myelin.

    PubMed

    Deshpande, R V; Goust, J M; Hogan, E L; Banik, N L

    1995-10-01

    Calpain secreted by lymphoid (MOLT-3, M.R.) or monocytic (U-937, THP-1) cell lines activated with PMA and A23187 degraded myelin antigens. The degradative effect of enzymes released in the extracellular medium was tested on purified myelin basic protein and rat central nervous system myelin in vitro. The extent of protein degradation was determined by SDS-PAGE and densitometric analysis. Various proteinase inhibitors were used to determine to what extent protein degradation was mediated by calpain and/or other enzymes. Lysosomal and serine proteinase inhibitors inhibited 20-40% of the myelin-degradative activity found in the incubation media of cell lines, whereas the calcium chelator (EGTA), the calpain-specific inhibitor (calpastatin), and a monoclonal antibody to m calpain blocked myelin degradation by 60-80%. Since breakdown products of MBP generated by calpain may include fragments with antigenic epitopes, this enzyme may play an important role in the initiation of immune-mediated demyelination.

  1. Emergence of three myelin proteins in oligodendrocytes cultured without neurons

    PubMed Central

    1986-01-01

    Oligodendrocytes, the myelin-forming cells of the central nervous system, were cultured from newborn rat brain and optic nerve to allow us to analyze whether two transmembranous myelin proteins, myelin- associated glycoprotein (MAG) and proteolipid protein (PLP), were expressed together with myelin basic protein (MBP) in defined medium with low serum and in the absence of neurons. Using double label immunofluorescence, we investigated when and where these three myelin proteins appeared in cells expressing galactocerebroside (GC), a specific marker for the oligodendrocyte membrane. We found that a proportion of oligodendrocytes derived from brain and optic nerve invariably express MBP, MAG, and PLP about a week after the emergence of GC, which occurs around birth. In brain-derived oligodendrocytes, MBP and MAG first emerge between the fifth and the seventh day after birth, followed by PLP 1 to 2 d later. All three proteins were confined to the cell body at that time, although an extensive network of GC positive processes had already developed. Each protein shows a specific cytoplasmic localization: diffuse for MBP, mostly perinuclear for MAG, and particulate for PLP. Interestingly, MAG, which may be involved in glial-axon interactions, is the first myelin protein detected in the processes at approximately 10 d after birth. MBP and PLP are only seen in these locations after 15 d. All GC-positive cells express the three myelin proteins by day 19. Simultaneously, numerous membrane and myelin whorls accumulate along the oligodendrocyte surface. The sequential emergence, cytoplasmic location, and peak of expression of these three myelin proteins in vitro follow a pattern similar to that described in vivo and, therefore, are independent of continuous neuronal influences. Such cultures provide a convenient system to study factors regulating expression of myelin proteins. PMID:2418030

  2. Nogo-A and myelin-associated glycoprotein differently regulate oligodendrocyte maturation and myelin formation.

    PubMed

    Pernet, Vincent; Joly, Sandrine; Christ, Franziska; Dimou, Leda; Schwab, Martin E

    2008-07-16

    Nogo-A is one of the most potent oligodendrocyte-derived inhibitors for axonal regrowth in the injured adult CNS. However, the physiological function of Nogo-A in development and in healthy oligodendrocytes is still unknown. In the present study, we investigated the role of Nogo-A for myelin formation in the developing optic nerve. By quantitative real-time PCR, we found that the expression of Nogo-A increased faster in differentiating oligodendrocytes than that of the major myelin proteins MBP (myelin basic protein), PLP (proteolipid protein)/DM20, and CNP (2',3'-cyclic nucleotide 3'-phosphodiesterase). The analysis of optic nerves and cerebella of mice deficient for Nogo-A (Nogo-A(-/-)) revealed a marked delay of oligodendrocyte differentiation, myelin sheath formation, and axonal caliber growth within the first postnatal month. The combined deletion of Nogo-A and MAG caused a more severe transient hypomyelination. In contrast to MAG(-/-) mice, Nogo-A(-/-) mutants did not present abnormalities in the structure of myelin sheaths and Ranvier nodes. The common binding protein for Nogo-A and MAG, NgR1, was exclusively upregulated in MAG(-/-) animals, whereas the level of Lingo-1, a coreceptor, remained unchanged. Together, our results demonstrate that Nogo-A and MAG are differently involved in oligodendrocyte maturation in vivo, and suggest that Nogo-A may influence also remyelination in pathological conditions such as multiple sclerosis.

  3. Myelin basic protein-primed T cells of female but not male mice induce nitric-oxide synthase and proinflammatory cytokines in microglia: implications for gender bias in multiple sclerosis.

    PubMed

    Dasgupta, Subhajit; Jana, Malabendu; Liu, Xiaojuan; Pahan, Kalipada

    2005-09-23

    Females are more susceptible than males to multiple sclerosis (MS). However, the underlying mechanism behind this gender difference is poorly understood. Because the presence of neuroantigen-primed T cells within the CNS is necessary for the development of MS, the present study was undertaken to investigate the activation of microglia by myelin basic protein (MBP)-primed T cells of male, female, and castrated male mice. Interestingly, MBP-primed T cells isolated from female and castrated male but not from male mice induced the expression of inducible nitric-oxide synthase (iNOS) and proinflammatory cytokines (interleukin-1beta (IL-1beta), IL-1alpha, IL-6, and tumor necrosis factor-alpha) in microglia by cell-cell contact. Again there was no apparent defect in male microglia, because MBP-primed T cells isolated from female and castrated male but not male mice were capable of inducing the production of NO in male primary microglia. Inhibition of female T cell contact-mediated microglial expression of proinflammatory molecules by dominant-negative mutants of p65 and C/EBPbeta suggest that female MBP-primed T cells induce microglial expression of proinflammatory molecules through the activation of NF-kappaB and C/EBPbeta. Interestingly, MBP-primed T cells of male, female, and castrated male mice were able to induce microglial activation of NF-kappaB. However, MBP-primed T cells of female and castrated male but not male mice induced microglial activation of C/EBPbeta. These studies suggest that microglial activation of C/EBPbeta but not NF-kappaB by T cell:microglial contact is a gender-specific event and that male MBP-primed T cells are not capable of inducing microglial expression of proinflammatory molecules due to their inability to induce the activation of C/EBPbeta in microglia. This novel gender-sensitive activation of microglia by neuroantigen-primed T cell contact could be one of the mechanisms behind the female-loving nature of MS.

  4. IgGs containing light chains of the λ- and κ- type and of all subclasses (IgG1-IgG4) from the sera of patients with systemic lupus erythematosus hydrolyze myelin basic protein.

    PubMed

    Bezuglova, Anna M; Konenkova, Ludmila P; Buneva, Valentina N; Nevinsky, Georgy A

    2012-12-01

    Human myelin basic protein (hMBP)-hydrolyzing activity was recently shown to be an intrinsic property of antibodies from systemic lupus erythematosus (SLE) patients. Here, we present the first evidence demonstrating a significant diversity of different fractions of polyclonal IgGs (pIgGs) from SLE patients in their affinity for hMBP and in the ability of pIgGs to hydrolyze hMBP at different optimal pH values (5.3-9.5); the pH profiles of IgG1, IgG2, IgG3 and IgG4 were unique. IgGs containing the λ-type of light chains demonstrated higher relative activities (RAs) in the hydrolysis of hMBP and its oligopeptides (OPs) than κ-IgGs. IgGs of all four subclasses were catalytically active; their RAs in the hydrolysis of hMBP increased in the following order: IgG4 < IgG2 < IgG3 < IgG1. Metal-dependent proteolytic activity of λ-IgG, IgG1, IgG2 and IgG3 was higher than their serine protease-like activity, while these activities of κ-IgG were comparable. Phenylmethylsulfonylfluoride had almost no effect on the activity of IgG4, while EDTA significantly suppressed its activity. The RAs of λ-IgG in the hydrolysis of four OPs corresponding to different cleavage sites of hMBP were remarkably higher than those for κ-IgGs. IgG1-IgG4 demonstrated different RAs and patterns of hydrolysis of these four OPs. Although combination of Ca²⁺ plus Mg²⁺ was the best in the activation of IgG1 and IgG2, IgG3 and IgG4 demonstrated the highest activity in the presence of Ca²⁺ plus Co²⁺. The ratio of the RAs of λ-IgG, κ-IgG and IgG1-IgG4 preparations in all analyzed cases was individual for each preparation.

  5. Myelin imaging compound (MIC) enhanced magnetic resonance imaging of myelination.

    PubMed

    Frullano, Luca; Zhu, Junqing; Wang, Changning; Wu, Chunying; Miller, Robert H; Wang, Yanming

    2012-01-12

    The vertebrate nervous system is characterized by myelination, a fundamental biological process that protects the axons and facilitates electric pulse transduction. Damage to myelin is considered a major effect of autoimmune diseases such as multiple sclerosis (MS). Currently, therapeutic interventions are focused on protecting myelin integrity and promoting myelin repair. These efforts need to be accompanied by an effective imaging tool that correlates the disease progression with the extent of myelination. To date, magnetic resonance imaging (MRI) is the primary imaging technique to detect brain lesions in MS. However, conventional MRI cannot differentiate demyelinated lesions from other inflammatory lesions and therefore cannot predict disease progression in MS. To address this problem, we have prepared a Gd-based contrast agent, termed MIC (myelin imaging compound), which binds to myelin with high specificity. In this work, we demonstrate that MIC exhibits a high kinetic stability toward transmetalation with promising relaxometric properties. MIC was used for in vivo imaging of myelination following intracerebroventricular infusion in the rat brain. MIC was found to distribute preferentially in highly myelinated regions and was able to detect regions of focally induced demyelination.

  6. Formation of compact myelin is required for maturation of the axonal cytoskeleton

    NASA Technical Reports Server (NTRS)

    Brady, S. T.; Witt, A. S.; Kirkpatrick, L. L.; de Waegh, S. M.; Readhead, C.; Tu, P. H.; Lee, V. M.

    1999-01-01

    Although traditional roles ascribed to myelinating glial cells are structural and supportive, the importance of compact myelin for proper functioning of the nervous system can be inferred from mutations in myelin proteins and neuropathologies associated with loss of myelin. Myelinating Schwann cells are known to affect local properties of peripheral axons (de Waegh et al., 1992), but little is known about effects of oligodendrocytes on CNS axons. The shiverer mutant mouse has a deletion in the myelin basic protein gene that eliminates compact myelin in the CNS. In shiverer mice, both local axonal features like phosphorylation of cytoskeletal proteins and neuronal perikaryon functions like cytoskeletal gene expression are altered. This leads to changes in the organization and composition of the axonal cytoskeleton in shiverer unmyelinated axons relative to age-matched wild-type myelinated fibers, although connectivity and patterns of neuronal activity are comparable. Remarkably, transgenic shiverer mice with thin myelin sheaths display an intermediate phenotype indicating that CNS neurons are sensitive to myelin sheath thickness. These results indicate that formation of a normal compact myelin sheath is required for normal maturation of the neuronal cytoskeleton in large CNS neurons.

  7. Formation of compact myelin is required for maturation of the axonal cytoskeleton

    NASA Technical Reports Server (NTRS)

    Brady, S. T.; Witt, A. S.; Kirkpatrick, L. L.; de Waegh, S. M.; Readhead, C.; Tu, P. H.; Lee, V. M.

    1999-01-01

    Although traditional roles ascribed to myelinating glial cells are structural and supportive, the importance of compact myelin for proper functioning of the nervous system can be inferred from mutations in myelin proteins and neuropathologies associated with loss of myelin. Myelinating Schwann cells are known to affect local properties of peripheral axons (de Waegh et al., 1992), but little is known about effects of oligodendrocytes on CNS axons. The shiverer mutant mouse has a deletion in the myelin basic protein gene that eliminates compact myelin in the CNS. In shiverer mice, both local axonal features like phosphorylation of cytoskeletal proteins and neuronal perikaryon functions like cytoskeletal gene expression are altered. This leads to changes in the organization and composition of the axonal cytoskeleton in shiverer unmyelinated axons relative to age-matched wild-type myelinated fibers, although connectivity and patterns of neuronal activity are comparable. Remarkably, transgenic shiverer mice with thin myelin sheaths display an intermediate phenotype indicating that CNS neurons are sensitive to myelin sheath thickness. These results indicate that formation of a normal compact myelin sheath is required for normal maturation of the neuronal cytoskeleton in large CNS neurons.

  8. Changes in microtubule stability and density in myelin-deficient shiverer mouse CNS axons

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, L. L.; Witt, A. S.; Payne, H. R.; Shine, H. D.; Brady, S. T.

    2001-01-01

    Altered axon-Schwann cell interactions in PNS myelin-deficient Trembler mice result in changed axonal transport rates, neurofilament and microtubule-associated protein phosphorylation, neurofilament density, and microtubule stability. To determine whether PNS and CNS myelination have equivalent effects on axons, neurofilaments, and microtubules in CNS, myelin-deficient shiverer axons were examined. The genetic defect in shiverer is a deletion in the myelin basic protein (MBP) gene, an essential component of CNS myelin. As a result, shiverer mice have little or no compact CNS myelin. Slow axonal transport rates in shiverer CNS axons were significantly increased, in contrast to the slowing in demyelinated PNS nerves. Even more striking were substantial changes in the composition and properties of microtubules in shiverer CNS axons. The density of axonal microtubules is increased, reflecting increased expression of tubulin in shiverer, and the stability of microtubules is drastically reduced in shiverer axons. Shiverer transgenic mice with two copies of a wild-type myelin basic protein transgene have an intermediate level of compact myelin, making it possible to determine whether the actual level of compact myelin is an important regulator of axonal microtubules. Both increased microtubule density and reduced microtubule stability were still observed in transgenic mouse nerves, indicating that signals beyond synaptogenesis and the mere presence of compact myelin are required for normal regulation of the axonal microtubule cytoskeleton.

  9. Changes in microtubule stability and density in myelin-deficient shiverer mouse CNS axons

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, L. L.; Witt, A. S.; Payne, H. R.; Shine, H. D.; Brady, S. T.

    2001-01-01

    Altered axon-Schwann cell interactions in PNS myelin-deficient Trembler mice result in changed axonal transport rates, neurofilament and microtubule-associated protein phosphorylation, neurofilament density, and microtubule stability. To determine whether PNS and CNS myelination have equivalent effects on axons, neurofilaments, and microtubules in CNS, myelin-deficient shiverer axons were examined. The genetic defect in shiverer is a deletion in the myelin basic protein (MBP) gene, an essential component of CNS myelin. As a result, shiverer mice have little or no compact CNS myelin. Slow axonal transport rates in shiverer CNS axons were significantly increased, in contrast to the slowing in demyelinated PNS nerves. Even more striking were substantial changes in the composition and properties of microtubules in shiverer CNS axons. The density of axonal microtubules is increased, reflecting increased expression of tubulin in shiverer, and the stability of microtubules is drastically reduced in shiverer axons. Shiverer transgenic mice with two copies of a wild-type myelin basic protein transgene have an intermediate level of compact myelin, making it possible to determine whether the actual level of compact myelin is an important regulator of axonal microtubules. Both increased microtubule density and reduced microtubule stability were still observed in transgenic mouse nerves, indicating that signals beyond synaptogenesis and the mere presence of compact myelin are required for normal regulation of the axonal microtubule cytoskeleton.

  10. Interactions between oligodendrocyte precursors control the onset of CNS myelination

    PubMed Central

    Yang, Yan; Lewis, Rebecca; Miller, Robert H.

    2011-01-01

    The formation of CNS myelin is dependent on the differentiation of oligodendrocyte precursor cells (OPCs) and oligodendrocyte maturation. How the initiation of myelination is regulated is unclear but it is likely to depend on the development of competence by oligodendrocytes and receptivity by target axons. Here we identify an additional level of control of oligodendrocyte maturation mediated by interactions between the different cellular components of the oligodendrocyte lineage. During development oligodendrocyte precursors mature through a series of stages defined by labeling with monoclonal antibodies A2B5 and O4. Newly differentiated oligodendrocytes begin to express galactocerebroside recognized by O1 antibodies and subsequently mature to myelin basic protein (MBP) positive cells prior to formation of compact myelin. Using an in vitro brain slice culture system that supports robust myelination, the consequences of ablating cells at different stages of the oligodendrocyte lineage on myelination has been assayed. Elimination of all OPC lineage cells through A2B5+, O4+ and O1+ complement mediated cell lysis resulted in a delay in development of MBP cells and myelination. Selective elimination of early OPCs (A2B5+) also unexpectedly resulted in delayed MBP expression compared to controls suggesting early OPCs contribute to the timing of myelination onset. By contrast, elimination of differentiated (O1+) immature oligodendrocytes permanently inhibited the appearance of MBP+ cells suggesting that oligodendrocytes are critical to facilitate the maturation of OPCs. These data illuminate that the presence of intra-lineage feed-forward and feedback cues are important for timely myelination by oligodendrocytes. PMID:21144846

  11. Coculture of Primary Motor Neurons and Schwann Cells as a Model for In Vitro Myelination.

    PubMed

    Hyung, Sujin; Yoon Lee, Bo; Park, Jong-Chul; Kim, Jinseok; Hur, Eun-Mi; Francis Suh, Jun-Kyo

    2015-10-12

    A culture system that can recapitulate myelination in vitro will not only help us better understand the mechanism of myelination and demyelination, but also find out possible therapeutic interventions for treating demyelinating diseases. Here, we introduce a simple and reproducible myelination culture system using mouse motor neurons (MNs) and Schwann cells (SCs). Dissociated motor neurons are plated on a feeder layer of SCs, which interact with and wrap around the axons of MNs as they differentiate in culture. In our MN-SC coculture system, MNs survived over 3 weeks and extended long axons. Both viability and axon growth of MNs in the coculture were markedly enhanced as compared to those of MN monoculture. Co-labeling of myelin basic proteins (MBPs) and neuronal microtubules revealed that SC formed myelin sheaths by wrapping around the axons of MNs. Furthermore, using the coculture system we found that treatment of an antioxidant substance coenzyme Q10 (Co-Q10) markedly facilitated myelination.

  12. Coculture of Primary Motor Neurons and Schwann Cells as a Model for In Vitro Myelination

    PubMed Central

    Hyung, Sujin; Yoon Lee, Bo; Park, Jong-Chul; Kim, Jinseok; Hur, Eun-Mi; Francis Suh, Jun-Kyo

    2015-01-01

    A culture system that can recapitulate myelination in vitro will not only help us better understand the mechanism of myelination and demyelination, but also find out possible therapeutic interventions for treating demyelinating diseases. Here, we introduce a simple and reproducible myelination culture system using mouse motor neurons (MNs) and Schwann cells (SCs). Dissociated motor neurons are plated on a feeder layer of SCs, which interact with and wrap around the axons of MNs as they differentiate in culture. In our MN-SC coculture system, MNs survived over 3 weeks and extended long axons. Both viability and axon growth of MNs in the coculture were markedly enhanced as compared to those of MN monoculture. Co-labeling of myelin basic proteins (MBPs) and neuronal microtubules revealed that SC formed myelin sheaths by wrapping around the axons of MNs. Furthermore, using the coculture system we found that treatment of an antioxidant substance coenzyme Q10 (Co-Q10) markedly facilitated myelination. PMID:26456300

  13. A zinc finger protein that regulates oligodendrocyte specification, migration and myelination in zebrafish

    PubMed Central

    Sidik, Harwin; Talbot, William S.

    2015-01-01

    Precise control of oligodendrocyte migration and development is crucial for myelination of axons in the central nervous system (CNS), but important questions remain unanswered about the mechanisms controlling these processes. In a zebrafish screen for myelination mutants, we identified a mutation in zinc finger protein 16-like (znf16l). znf16l mutant larvae have reduced myelin basic protein (mbp) expression and reduced CNS myelin. Marker, time-lapse and ultrastructural studies indicated that oligodendrocyte specification, migration and myelination are disrupted in znf16l mutants. Transgenic studies indicated that znf16l acts autonomously in oligodendrocytes. Expression of Zfp488 from mouse rescued mbp expression in znf16l mutants, indicating that these homologs have overlapping functions. Our results defined the function of a new zinc finger protein with specific function in oligodendrocyte specification, migration and myelination in the developing CNS. PMID:26459222

  14. Selective myelin defects in the anterior medullary velum of the taiep mutant rat.

    PubMed

    Song, J; Goetz, B D; Kirvell, S L; Butt, A M; Duncan, I D

    2001-01-01

    The taiep rat is a myelin mutant in which initial hypomyelination is followed by progressive demyelination of the CNS. An in vitro study suggests that accumulation of microtubules within oligodendrocytes is the cause of the taiep myelin defects (Song et al., 1999). In this article, we analyze microtubule accumulation in relation to taiep myelin defects in vivo in the anterior medullary velum (AMV), a CNS tissue that enables entire oligodendrocyte units to be resolved. Immunohistochemical analysis demonstrated notably high levels of beta-tubulin and the microtubule associated protein tau in the somata and processes of taiep oligodendrocytes. This was correlated with markedly reduced expression of the myelin proteins, proteolipid protein (PLP), myelin basic protein (MBP), 2',3 -cyclic nucleotide 3'-phosphodiesterase, and both large (L) and small (S) isoforms of myelin-associated glycoprotein (MAG). Moreover, PLP and L-MAG, which are dependent on the microtubule system for intracellular transport, accumulated in the perinuclear cytoplasm of the taiep oligodendrocyte. The myelin deficit was most marked in the area of the AMV populated by the small somata oligodendrocytes that have fine long processes that support numerous myelin sheaths of small diameter axons. Type III/IV oligodendrocytes, which have large somata and short processes that support a small number of myelin sheaths of large diameter axons, were also affected to a certain degree in compact myelin sheath formation. These results support the hypothesis that myelin loss and oligodendrocyte disruption in the taiep mutant result from a defect in the microtubule system that transports myelin components from the somata to the myelin sheath.

  15. Metabolic turnover of myelin glycerophospholipids.

    PubMed

    Morell, P; Ousley, A H

    1994-08-01

    The apparent half life for metabolic turnover of glycerophospholipids in the myelin sheath, as determined by measuring the rate of loss of label in a myelin glycerophospholipid following radioactive precursor injection, varies with the radioactive precursor used, age of animal, and time after injection during which metabolic turnover is studied. Experimental strategies for resolving apparent inconsistencies consequent to these variables are discussed. Illustrative data concerning turnover of phosphatidylcholine (PC) in myelin of rat brain are presented. PC of the myelin membrane exhibits heterogeneity with respect to metabolic turnover rates. There are at least two metabolic pools of PC in myelin, one with a half life of the order of days, and another with a half life of the order of weeks. To a significant extent biphasic turnover is due to differential turnover of individual molecular species (which differ in acyl chain composition). The two predominant molecular species of myelin PC turnover at very different rates (16:0, 18:1 PC turning over several times more rapidly than 18:0, 18:1 PC). Therefore, within the same membrane, individual molecular species of a phospholipid class are metabolized at different rates. Possible mechanisms for differential turnover of molecular species are discussed, as are other factors that may contribute to a multiphasic turnover of glycerophospholipids.

  16. The proline-rich region of 18.5 kDa myelin basic protein binds to the SH3-domain of Fyn tyrosine kinase with the aid of an upstream segment to form a dynamic complex in vitro.

    PubMed

    De Avila, Miguel; Vassall, Kenrick A; Smith, Graham S T; Bamm, Vladimir V; Harauz, George

    2014-12-08

    The intrinsically disordered 18.5 kDa classic isoform of MBP (myelin basic protein) interacts with Fyn kinase during oligodendrocyte development and myelination. It does so primarily via a central proline-rich SH3 (Src homology 3) ligand (T92-R104, murine 18.5 kDa MBP sequence numbering) that is part of a molecular switch due to its high degree of conservation and modification by MAP (mitogen-activated protein) and other kinases, especially at residues T92 and T95. Here, we show using co-transfection experiments of an early developmental oligodendroglial cell line (N19) that an MBP segment upstream of the primary ligand is involved in MBP-Fyn-SH3 association in cellula. Using solution NMR spectroscopy in vitro, we define this segment to comprise MBP residues (T62-L68), and demonstrate further that residues (V83-P93) are the predominant SH3-target, assessed by the degree of chemical shift change upon titration. We show by chemical shift index analysis that there is no formation of local poly-proline type II structure in the proline-rich segment upon binding, and by NOE (nuclear Overhauser effect) and relaxation measurements that MBP remains dynamic even while complexed with Fyn-SH3. The association is a new example first of a non-canonical SH3-domain interaction and second of a fuzzy MBP complex.

  17. Lipid metabolism in myelinating glial cells: lessons from human inherited disorders and mouse models

    PubMed Central

    Chrast, Roman; Saher, Gesine; Nave, Klaus-Armin; Verheijen, Mark H. G.

    2011-01-01

    The integrity of central and peripheral nervous system myelin is affected in numerous lipid metabolism disorders. This vulnerability was so far mostly attributed to the extraordinarily high level of lipid synthesis that is required for the formation of myelin, and to the relative autonomy in lipid synthesis of myelinating glial cells because of blood barriers shielding the nervous system from circulating lipids. Recent insights from analysis of inherited lipid disorders, especially those with prevailing lipid depletion and from mouse models with glia-specific disruption of lipid metabolism, shed new light on this issue. The particular lipid composition of myelin, the transport of lipid-associated myelin proteins, and the necessity for timely assembly of the myelin sheath all contribute to the observed vulnerability of myelin to perturbed lipid metabolism. Furthermore, the uptake of external lipids may also play a role in the formation of myelin membranes. In addition to an improved understanding of basic myelin biology, these data provide a foundation for future therapeutic interventions aiming at preserving glial cell integrity in metabolic disorders. PMID:21062955

  18. A STRUCTURAL ANALYSIS OF THE MYELIN SHEATH IN THE CENTRAL NERVOUS SYSTEM

    PubMed Central

    Hirano, Asao; Dembitzer, Herbert M.

    1967-01-01

    The cerebral white matter of rats subjected to a variety of noxious experimental conditions was examined in the electron microscope. Several unusual configurations of the myelin sheath are identified in addition to the usual configuration. These variations include the presence of (a) formed organelles within the inner and outer loops, (b) isolated islands of cytoplasm in unfused portions of the major dense lines, (c) apparently unconnected cell processes between the sheath and the axon, and (d) concentric, double myelin sheaths. A generalized model of the myelin sheath based on a hypothetical unrolling of the sheath is described. It consists of a shovel-shaped myelin sheet surrounded by a continuous thickened rim of cytoplasm. Most of the unusual myelin configurations are explained as simple variations on this basic theme. With the help of this model, an explanation of the formation of the myelin sheath is offered. This explanation involves the concept that myelin formation can occur at all cytoplasmic areas adjacent to the myelin proper and that adjacent myelin lamellae can move in relation to each other. PMID:6035645

  19. Protein-induced surface structuring in myelin membrane monolayers.

    PubMed

    Rosetti, Carla M; Maggio, Bruno

    2007-12-15

    Monolayers prepared from myelin conserve all the compositional complexity of the natural membrane when spread at the air-water interface. They show a complex pressure-dependent surface pattern that, on compression, changes from the coexistence of two liquid phases to a viscous fractal phase embedded in a liquid phase. We dissected the role of major myelin protein components, myelin basic protein (MBP), and Folch-Lees proteolipid protein (PLP) as crucial factors determining the structural dynamics of the interface. By analyzing mixtures of a single protein with the myelin lipids we found that MBP and PLP have different surface pressure-dependent behaviors. MBP stabilizes the segregation of two liquid phases at low pressures and becomes excluded from the film under compression, remaining adjacent to the interface. PLP, on the contrary, organizes a fractal-like pattern at all surface pressures when included in a monolayer of the protein-free myelin lipids but it remains mixed in the MBP-induced liquid phase. The resultant surface topography and dynamics is regulated by combined near to equilibrium and out-of-equilibrium effects. PLP appears to act as a surface skeleton for the whole components whereas MBP couples the structuring to surface pressure-dependent extrusion and adsorption processes.

  20. The myelin brake: when enough is enough.

    PubMed

    Macklin, Wendy B

    2010-09-21

    Myelination by Schwann cells in the peripheral nervous system and by oligodendrocytes in the central nervous system is tightly regulated by interactions with axons. Various investigations have shed light on the signaling pathways that mediate the production of myelin, but an important question remains; that is, which signals determine when the cell stops myelinating. New studies demonstrate that in Schwann cells, this is controlled by the abundance of Dlg1, which acts to stop active myelination.

  1. The naturally occurring food mycotoxin fumonisin B1 impairs myelin formation in aggregating brain cell culture.

    PubMed

    Monnet-Tschudi, F; Zurich, M G; Sorg, O; Matthieu, J M; Honegger, P; Schilter, B

    1999-02-01

    The effects of subchronical applications of the mycotoxin Fumonisin B1 (FB1) were analyzed in vitro, using aggregating cell cultures of fetal rat telencephalon as a model. As cells in the aggregates developed from an immature state to a highly differentiated state, with synapse and compact myelin formation, it was possible to study the effects of FB1 at different developmental stages. The results showed that FB1 did not cause cell loss and it had no effects on neurons. However it decreased strongly the total content of myelin basic protein, the main constituent of the myelin sheath, during the myelination period (DIV 18-28). The loss of myelin was not accompanied by a loss of oligodendrocytes, the myelinating cells. However FB1 had effects on the maturation of oligodendrocytes, as revealed by a decrease in the expression of galactocerebroside, and on the compaction of myelin, as shown by a reduction of the expression of the mnyelin/oligodendrocyte glycoprotein MOG. The content of the cytoskeletal component glial fibrillary acidic protein (GFAP) was decreased in differentiated astrocytes, exclusively, while neurons were not affected by 40 microM of FB1 applied continuously for 10 days. In summary, FB1 selectively affected glial cells. In particular, FB1 delayed oligodendrocyte development and impaired myelin formation and deposition.

  2. Diabetes alters myelin lipid profile in rat cerebral cortex: Protective effects of dihydroprogesterone.

    PubMed

    Cermenati, Gaia; Giatti, Silvia; Audano, Matteo; Pesaresi, Marzia; Spezzano, Roberto; Caruso, Donatella; Mitro, Nico; Melcangi, Roberto Cosimo

    2017-04-01

    Due to the emerging association of diabetes with several psychiatric and neurodegenerative events, the evaluation of the effects of this pathology on the brain function has now a high priority in biomedical research. In particular, the effects of diabetes on myelin compartment have been poorly taken into consideration. To this purpose, we performed a deep lipidomic analysis of cortical myelin in the streptozotocin-induced diabetic rat model. In male rats three months of diabetes induced an extensive alterations in levels of phosphatidylcholines and phosphatidylethanolamines (the main species present in myelin membranes), plasmalogens as well as phosphatidylinositols and phosphatidylserines. In addition, the levels of cholesterol and myelin basic protein were also decreased. Because these lipids exert important functional and structural roles in the myelin compartment, our data indicate that cerebral cortex myelin is severely compromised in diabetic status. Treatment for one-month with a metabolite of progesterone, dihydroprogesterone, restored the lipid and protein myelin profiles to the levels observed in non-diabetic animals. These data suggest the potential of therapeutic efficacy of DHP to restore myelin in the diabetic brain.

  3. Delayed myelination in a mouse model of fragile X syndrome.

    PubMed

    Pacey, Laura K K; Xuan, Ingrid C Y; Guan, Sihui; Sussman, Dafna; Henkelman, R Mark; Chen, Yan; Thomsen, Christian; Hampson, David R

    2013-10-01

    Fragile X Syndrome is the most common inherited cause of autism. Fragile X mental retardation protein (FMRP), which is absent in fragile X, is an mRNA binding protein that regulates the translation of hundreds of different mRNA transcripts. In the adult brain, FMRP is expressed primarily in the neurons; however, it is also expressed in developing glial cells, where its function is not well understood. Here, we show that fragile X (Fmr1) knockout mice display abnormalities in the myelination of cerebellar axons as early as the first postnatal week, corresponding roughly to the equivalent time in human brain development when symptoms of the syndrome first become apparent (1-3 years of age). At postnatal day (PND) 7, diffusion tensor magnetic resonance imaging showed reduced volume of the Fmr1 cerebellum compared with wild-type mice, concomitant with an 80-85% reduction in the expression of myelin basic protein, fewer myelinated axons and reduced thickness of myelin sheaths, as measured by electron microscopy. Both the expression of the proteoglycan NG2 and the number of PDGFRα+/NG2+ oligodendrocyte precursor cells were reduced in the Fmr1 cerebellum at PND 7. Although myelin proteins were still depressed at PND 15, they regained wild-type levels by PND 30. These findings suggest that impaired maturation or function of oligodendrocyte precursor cells induces delayed myelination in the Fmr1 mouse brain. Our results bolster an emerging recognition that white matter abnormalities in early postnatal brain development represent an underlying neurological deficit in Fragile X syndrome.

  4. Altered Oligodendrocyte Maturation and Myelin Maintenance: The Role of Anti-Retrovirals in HIV-Associated Neurocognitive Disorders

    PubMed Central

    Jensen, Brigid K.; Monnerie, Hubert; Mannell, Maggie V.; Gannon, Patrick J.; Espinoza, Cagla Akay; Erickson, Michelle A.; Bruce-Keller, Annadora J.; Gelman, Benjamin B.; Briand, Lisa A.; Pierce, R. Christopher; Jordan-Sciutto, Kelly L.; Grinspan, Judith B.

    2015-01-01

    Despite effective viral suppression through combined antiretroviral therapy (cART), approximately half of HIV-positive individuals suffer from HIV-Associated Neurocognitive Disorders (HAND). Studies of antiretroviral treated patients have revealed persistent white matter pathologies including diffuse myelin pallor, diminished white matter tracts, and decreased myelin protein mRNAs. Loss of myelin can contribute to neurocognitive dysfunction as the myelin membrane generated by oligodendrocytes is essential for rapid signal transduction and axonal maintenance. We hypothesized that myelin changes in HAND are partly due to effects of antiretroviral drugs on oligodendrocyte survival and/or maturation. We showed that primary mouse oligodendrocyte precursor cell cultures treated with therapeutic concentrations of HIV protease inhibitors Ritonavir or Lopinavir displayed dose-dependent decreases in oligodendrocyte maturation; however, this effect was rapidly reversed following drug removal. Conversely, nucleoside reverse transcriptase inhibitor Zidovudine had no effect. Furthermore, in vivo Ritonavir administration to adult mice reduced frontal cortex myelin protein levels. Finally, prefrontal cortex tissue from HIV-positive individuals with HAND on cART showed a significant decrease in myelin basic protein compared with untreated HIV-positive individuals with HAND or HIV-negative controls. These findings demonstrate that antiretrovirals can impact myelin integrity, and have implications for myelination in juvenile HIV patients, and myelin maintenance in adults on lifelong therapy. PMID:26469251

  5. Myelin changes in Alexander disease.

    PubMed

    Gómez-Pinedo, U; Duran-Moreno, M; Sirerol-Piquer, S; Matias-Guiu, J

    2017-03-22

    Alexander disease (AxD) is a type of leukodystrophy. Its pathological basis, along with myelin loss, is the appearance of Rosenthal bodies, which are cytoplasmic inclusions in astrocytes. Mutations in the gene coding for GFAP have been identified as a genetic basis for AxD. However, the mechanism by which these variants produce the disease is not understood. The most widespread hypothesis is that AxD develops when a gain of function mutation causes an increase in GFAP. However, this mechanism does not explain myelin loss, given that experimental models in which GFAP expression is normal or mutated do not exhibit myelin disorders. This review analyses other possibilities that may explain this alteration, such as epigenetic or inflammatory alterations, presence of NG2 (+) - GFAP (+) cells, or post-translational modifications in GFAP that are unrelated to increased expression. The different hypotheses analysed here may explain the myelin alteration affecting these patients, and multiple mechanisms may coexist. These theories raise the possibility of designing therapies based on these mechanisms. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Influence of myelin proteins on the structure and dynamics of a model membrane with emphasis on the low temperature regime

    SciTech Connect

    Knoll, W.; Peters, J.; Kursula, P.; Gerelli, Y.; Natali, F.

    2014-11-28

    Myelin is an insulating, multi-lamellar membrane structure wrapped around selected nerve axons. Increasing the speed of nerve impulses, it is crucial for the proper functioning of the vertebrate nervous system. Human neurodegenerative diseases, such as multiple sclerosis, are linked to damage to the myelin sheath through demyelination. Myelin exhibits a well defined subset of myelin-specific proteins, whose influence on membrane dynamics, i.e., myelin flexibility and stability, has not yet been explored in detail. In a first paper [W. Knoll, J. Peters, P. Kursula, Y. Gerelli, J. Ollivier, B. Demé, M. Telling, E. Kemner, and F. Natali, Soft Matter 10, 519 (2014)] we were able to spotlight, through neutron scattering experiments, the role of peripheral nervous system myelin proteins on membrane stability at room temperature. In particular, the myelin basic protein and peripheral myelin protein 2 were found to synergistically influence the membrane structure while keeping almost unchanged the membrane mobility. Further insight is provided by this work, in which we particularly address the investigation of the membrane flexibility in the low temperature regime. We evidence a different behavior suggesting that the proton dynamics is reduced by the addition of the myelin basic protein accompanied by negligible membrane structural changes. Moreover, we address the importance of correct sample preparation and characterization for the success of the experiment and for the reliability of the obtained results.

  7. Influence of myelin proteins on the structure and dynamics of a model membrane with emphasis on the low temperature regime

    NASA Astrophysics Data System (ADS)

    Knoll, W.; Peters, J.; Kursula, P.; Gerelli, Y.; Natali, F.

    2014-11-01

    Myelin is an insulating, multi-lamellar membrane structure wrapped around selected nerve axons. Increasing the speed of nerve impulses, it is crucial for the proper functioning of the vertebrate nervous system. Human neurodegenerative diseases, such as multiple sclerosis, are linked to damage to the myelin sheath through demyelination. Myelin exhibits a well defined subset of myelin-specific proteins, whose influence on membrane dynamics, i.e., myelin flexibility and stability, has not yet been explored in detail. In a first paper [W. Knoll, J. Peters, P. Kursula, Y. Gerelli, J. Ollivier, B. Demé, M. Telling, E. Kemner, and F. Natali, Soft Matter 10, 519 (2014)] we were able to spotlight, through neutron scattering experiments, the role of peripheral nervous system myelin proteins on membrane stability at room temperature. In particular, the myelin basic protein and peripheral myelin protein 2 were found to synergistically influence the membrane structure while keeping almost unchanged the membrane mobility. Further insight is provided by this work, in which we particularly address the investigation of the membrane flexibility in the low temperature regime. We evidence a different behavior suggesting that the proton dynamics is reduced by the addition of the myelin basic protein accompanied by negligible membrane structural changes. Moreover, we address the importance of correct sample preparation and characterization for the success of the experiment and for the reliability of the obtained results.

  8. Serum autoantibodies to myelin peptides distinguish acute disseminated encephalomyelitis from relapsing-remitting multiple sclerosis

    PubMed Central

    Van Haren, Keith; Tomooka, Beren H; Kidd, Brian A; Banwell, Brenda; Bar-Or, Amit; Chitnis, Tanuja; Tenembaum, Silvia N; Pohl, Daniela; Rostasy, Kevin; Dale, Russell C; O’Connor, Kevin C; Hafler, David A; Steinman, Lawrence; Robinson, William H

    2015-01-01

    Background and objective Acute disseminated encephalomyelitis (ADEM) and relapsing remitting multiple sclerosis share overlapping clinical, radiologic, and laboratory features at onset. Because autoantibodies may contribute to the pathogenesis of both diseases, we sought to identify autoantibody biomarkers capable of distinguishing them. Methods We used custom antigen arrays to profile anti-myelin-peptide autoantibodies in sera derived from individuals with pediatric ADEM (n = 15), pediatric multiple sclerosis (n = 11), and adult multiple sclerosis (n = 15). Using isotype-specific secondary antibodies,we profiled both IgG and IgM reactivities. We used Statistical Analysis of Microarrays to confirm differences in autoantibody reactivity profiles between ADEM and multiple sclerosis samples. We used Prediction Analysis of Microarrays to generate and validate prediction algorithms based on the autoantibody reactivity profiles. Results ADEM was characterized by IgG autoantibodies targeting epitopes derived from myelin basic protein, proteolipid protein, myelin-associated oligodendrocyte basic glycoprotein, and alpha-B-crystallin. In contrast, multiple sclerosis was characterized by IgM autoantibodies targeting myelin basic protein, proteolipid protein, myelin-associated oligodendrocyte basic glycoprotein, and oligodendrocyte specific protein. We generated and validated prediction algorithms that distinguish ADEM serum (sensitivity 62–86%; specificity 56–79%) from multiple sclerosis serum (sensitivity 40–87%; specificity 62–86%) on the basis of combined IgG and IgM anti-myelin autoantibody reactivity to a small number of myelin peptides. Conclusions Combined profiles of serum IgG and IgM autoantibodies identify myelin antigens that may be useful for distinguishing multiple sclerosis from ADEM. Further studies are required to establish clinical utility. Further biological assays are required to delineate the pathogenic potential of these antibodies. PMID:23612879

  9. Expression and distribution of CD9 in myelin of the central and peripheral nervous systems.

    PubMed Central

    Nakamura, Y.; Iwamoto, R.; Mekada, E.

    1996-01-01

    CD9 is a member of the newly identified tetra-membrane-spanning protein family. We show here that CD9 is a constituent of myelin in the central and peripheral nervous systems. Expression of CD9 was detected in human cerebral white matter and sciatic nerve by Northern and Western blotting. Myelin in the central and peripheral nervous systems was strongly stained with a monoclonal antibody against human CD9 antigen in paraffin-embedded sections. CD9 was detected in adult nervous tissue but not in developing brain at less than 20 weeks of gestation. Immunohistochemical studies indicated that expression of CD9 is correlated with myelination and is somewhat delayed compared with expression of myelin basic protein, a major component protein of myelin. In the central nervous system, CD9 was detected along the outermost membrane of compact myelin but not inside compact myelin or the periaxonal region. Although the membrane-anchored form of heparin-binding epidermal-growth-factor-like growth factor (proHB-EGF), which is identical to the diphtheria toxin receptor, forms a complex with CD9 in some human and monkey cell lines, proHB-EGF was not detected in myelin immunocytochemically. The distribution of CD9 in the outer surface of myelin and its relatively late developmental appearance suggest that CD9 may interact with the extracellular matrix or cell adhesion molecules and participate in the maintenance of the entire myelin sheath. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8701996

  10. Progesterone and Nestorone promote myelin regeneration in chronic demyelinating lesions of corpus callosum and cerebral cortex

    PubMed Central

    el-Etr, Martine; Rame, Marion; Boucher, Celine; Ghoumari, Abdel; Kumar, Narender; Liere, Philippe; Pianos, Antoine; Schumacher, Michael; Sitruk-Ware, Regine

    2014-01-01

    Multiple Sclerosis affects mainly women and consists in intermittent or chronic damages to the myelin sheaths, focal inflammation and axonal degeneration. Current therapies are limited to immunomodulators and anti-inflammatory drugs, but there is no efficient treatment for stimulating the endogenous capacity of myelin repair. Progesterone and synthetic progestins have been shown in animal models of demyelination to attenuate myelin loss, reduce clinical symptoms severity, modulate inflammatory responses and partially reverse the age-dependent decline in remyelination. Moreover, progesterone has been demonstrated to promote myelin formation in organotypic cultures of cerebellar slices. In the present study, we show that progesterone and the synthetic 19-nor-progesterone derivative Nestorone® promote the repair of severe chronic demyelinating lesions induced by feeding cuprizone to female mice for up to 12 weeks. Progesterone and Nestorone increase the density of NG2+ oligodendrocyte progenitor cells and CA II+ mature oligodendrocytes and enhance the formation of myelin basic protein (MBP)- and proteolipid protein (PLP)-immunoreactive myelin. However, while demyelination in response to cuprizone was less marked in corpus callosum than in cerebral cortex, remyelination appeared earlier in the former. The remyelinating effect of progesterone was progesterone receptor (PR)-dependent, as it was absent in PR knockout mice. Progesterone and Nestorone also decreased (but did not suppress) neuroinflammatory responses, specifically astrocyte and microglial cell activation. Therefore, some progestogens are promising therapeutic candidates for promoting the regeneration of myelin. PMID:25092805

  11. Progesterone and nestorone promote myelin regeneration in chronic demyelinating lesions of corpus callosum and cerebral cortex.

    PubMed

    El-Etr, Martine; Rame, Marion; Boucher, Celine; Ghoumari, Abdel M; Kumar, Narender; Liere, Philippe; Pianos, Antoine; Schumacher, Michael; Sitruk-Ware, Regine

    2015-01-01

    Multiple Sclerosis affects mainly women and consists in intermittent or chronic damages to the myelin sheaths, focal inflammation, and axonal degeneration. Current therapies are limited to immunomodulators and antiinflammatory drugs, but there is no efficient treatment for stimulating the endogenous capacity of myelin repair. Progesterone and synthetic progestins have been shown in animal models of demyelination to attenuate myelin loss, reduce clinical symptoms severity, modulate inflammatory responses and partially reverse the age-dependent decline in remyelination. Moreover, progesterone has been demonstrated to promote myelin formation in organotypic cultures of cerebellar slices. In the present study, we show that progesterone and the synthetic 19-nor-progesterone derivative Nestorone® promote the repair of severe chronic demyelinating lesions induced by feeding cuprizone to female mice for up to 12 weeks. Progesterone and Nestorone increase the density of NG2(+) oligodendrocyte progenitor cells and CA II(+) mature oligodendrocytes and enhance the formation of myelin basic protein (MBP)- and proteolipid protein (PLP)-immunoreactive myelin. However, while demyelination in response to cuprizone was less marked in corpus callosum than in cerebral cortex, remyelination appeared earlier in the former. The remyelinating effect of progesterone was progesterone receptor (PR)-dependent, as it was absent in PR-knockout mice. Progesterone and Nestorone also decreased (but did not suppress) neuroinflammatory responses, specifically astrocyte and microglial cell activation. Therefore, some progestogens are promising therapeutic candidates for promoting the regeneration of myelin.

  12. Direct magnitude and phase imaging of myelin using ultrashort echo time (UTE) pulse sequences: A feasibility study.

    PubMed

    He, Qun; Ma, Yajun; Fan, Shujuan; Shao, Hongda; Sheth, Vipul; Bydder, Graeme M; Du, Jiang

    2017-02-20

    In this paper, we aimed to investigate the feasibility of direct visualization of myelin, including myelin lipid and myelin basic protein (MBP), using two-dimensional ultrashort echo time (2D UTE) sequences and utilize phase information as a contrast mechanism in phantoms and in volunteers. The standard UTE sequence was used to detect both myelin and long T2 signal. An adiabatic inversion recovery UTE (IR-UTE) sequence was used to selectively detect myelin by suppressing signal from long T2 water protons. Magnitude and phase imaging and T2* were investigated on myelin lipid and MBP in the forms of lyophilized powders as well as paste-like phantoms with the powder mixed with D2O, and rubber phantoms as well as healthy volunteers. Contrast to noise ratio (CNR) between white and gray matter was measured. Both magnitude and phase images were generated for myelin and rubber phantoms as well white matter in vivo using the IR-UTE sequence. T2* values of ~300μs were comparable for myelin paste phantoms and the short T2* component in white matter of the brain in vivo. Mean CNR between white and gray matter in IR-UTE imaging was increased from -7.3 for the magnitude images to 57.4 for the phase images. The preliminary results suggest that the IR-UTE sequence allows simultaneous magnitude and phase imaging of myelin in vitro and in vivo.

  13. Myelin structure and composition of myelinated tissue in the African lungfish.

    PubMed

    Kirschner, Daniel A; Karthigesan, Jothie; Bizzozero, Oscar A; Kosaras, Bela; Inouye, Hideyo

    2008-05-01

    To analyze myelin structure and the composition of myelinated tissue in the African lungfish (Protopterus dolloi), we used a combination of ultrastructural and biochemical techniques. Electron microscopy showed typical multilamellar myelin: CNS sheaths abutted one another, and PNS sheaths were separated by endoneurial collagen. The radial component, prominent in CNS myelin of higher vertebrates, was suggested by the pattern of staining but was poorly organized. The lipid and myelin protein compositions of lungfish tissues more closely resembled those of teleost than those of higher vertebrates (frog, mouse). Of particular note, for example, lungfish glycolipids lacked hydroxy fatty acids. Native myelin periodicities from unfixed nerves were in the range of those for higher vertebrates rather than for teleost fish. Lungfish PNS myelin had wider inter-membrane spaces compared with other vertebrates, and lungfish CNS myelin had spaces that were closer in value to those in mammalian than to amphibian or teleost myelins. The membrane lipid bilayer was narrower in lungfish PNS myelin compared to other vertebrates, whereas in the CNS myelin the bilayer was in the typical range. Lungfish PNS myelin showed typical compaction and swelling responses to incubation in acidic or alkaline hypotonic saline. The CNS myelin, by contrast, did not compact in acidic saline but did swell in the alkaline solution. This lability was more similar to that for the higher vertebrates than for teleost.

  14. The opioid system and brain development: methadone effects on the oligodendrocyte lineage and the early stages of myelination

    PubMed Central

    Vestal-Laborde, Allison A.; Eschenroeder, Andrew C.; Bigbee, John W.; Robinson, Susan E.; Sato-Bigbee, Carmen

    2014-01-01

    Oligodendrocytes express opioid receptors throughout development but the role of the opioid system in myelination remains poorly understood. This is a significant problem as opioid use and abuse continue to increase in two particular populations: pregnant addicts where drug effects could target early myelination in the fetus and newborns; and adolescents and young adults where late myelination of “higher-order” regions takes place. Maintenance treatments for opioid addicts include the long-lasting opioids methadone and buprenorphine. Similar to our previous findings on buprenorphine effects, we now find that early myelination in the developing rat brain is also altered by perinatal exposure to therapeutic doses of methadone. Pups exposed to this drug exhibit elevated brain levels of the four major splicing variants of myelin basic proteins (MBPs), myelin proteolipid protein (PLP), and myelin-oligodendrocyte glycoprotein (MOG). Consistent with the enrichment and function of these proteins in mature myelin, analysis of the corpus callosum in these young animals also indicated elevated number of axons with already highly compacted myelin sheaths. Moreover, studies in cultured cells showed that methadone exerts direct effects at specific stages of the oligodendrocyte lineage, stimulating the proliferation of the progenitor cells while on the other hand accelerating the maturation of the more differentiated but still immature pre-oligodendrocytes. While the long-term effects of these observations remain unknown, accelerated or increased oligodendrocyte maturation and myelination could both disrupt the complex sequence of synchronized events leading to normal connectivity in the developing brain. Together with our previous observations on buprenorphine effects, the present findings further underscore a crucial function of the endogenous opioid system in the control of oligodendrocyte development and the timing of myelination. Interference with these regulatory

  15. The opioid system and brain development: effects of methadone on the oligodendrocyte lineage and the early stages of myelination.

    PubMed

    Vestal-Laborde, Allison A; Eschenroeder, Andrew C; Bigbee, John W; Robinson, Susan E; Sato-Bigbee, Carmen

    2014-01-01

    Oligodendrocytes express opioid receptors throughout development, but the role of the opioid system in myelination remains poorly understood. This is a significant problem as opioid use and abuse continue to increase in two particular populations: pregnant addicts (in whom drug effects could target early myelination in the fetus and newborn) and adolescents and young adults (in whom late myelination of 'higher-order' regions takes place). Maintenance treatments for opioid addicts include the long-lasting opioids methadone and buprenorphine. Similar to our previous findings on the effects of buprenorphine, we have now found that early myelination in the developing rat brain is also altered by perinatal exposure to therapeutic doses of methadone. Pups exposed to this drug exhibited elevated brain levels of the 4 major splicing variants of myelin basic protein, myelin proteolipid protein, and myelin-oligodendrocyte glycoprotein. Consistent with the enrichment and function of these proteins in mature myelin, analysis of the corpus callosum in these young animals also indicated an elevated number of axons with already highly compacted myelin sheaths. Moreover, studies in cultured cells showed that methadone exerts direct effects at specific stages of the oligodendrocyte lineage, stimulating the proliferation of progenitor cells while on the other hand accelerating the maturation of the more differentiated but still immature preoligodendrocytes. While the long-term effects of these observations remain unknown, accelerated or increased oligodendrocyte maturation and myelination could both disrupt the complex sequence of synchronized events leading to normal connectivity in the developing brain. Together with our previous observations on the effects of buprenorphine, the present findings further underscore a crucial function of the endogenous opioid system in the control of oligodendrocyte development and the timing of myelination. Interference with these regulatory

  16. Definition of encephalitogenic and immunodominant epitopes of guinea pig myelin basic protein (Gp-BP) in Lewis rats tolerized neonatally with Gp-BP or Gp-BP peptides.

    PubMed

    Vandenbark, A A; Vainiene, M; Celnik, B; Hashim, G A; Buenafe, A; Offner, H

    1994-07-15

    Two distinct epitopes of guinea pig basic protein (Gp-BP), residues 72-89 and 87-99, possess encephalitogenic activity in Lewis rats. The purpose of this study was to determine to what degree the 87-99 epitope functions in rats that have been injected with whole Gp-BP, and whether additional epitopes in Gp-BP are encephalitogenic. To address these questions, we induced neonatal tolerance to the dominant synthetic (S)72-89 peptide or to the combination of both S72-89 and S87-99 peptides, and evaluated resistance to experimental autoimmune encephalomyelitis (EAE) induced by Gp-BP, as well as T cell responses to peptides that encompassed most of the Gp-BP molecule. The results demonstrated that virtually all of the encephalitogenic activity of Gp-BP resides within the two described encephalitogenic epitopes. Moreover, deletion of responses to the dominant epitopes prompted T cell responses to other nonencephalitogenic epitopes of Gp-BP, a pattern of response observed previously in rats that had recovered from EAE and in those protected from EAE by vaccination with TCR peptides. These data may have relevance to human autoimmune diseases such as multiple sclerosis in that naturally or immunologically regulated responses to dominant epitopes that are likely to be encephalitogenic may be obscured by increased responses to relatively innocuous determinants of basic protein. Elevated responses to potentially pathogenic autoantigens will likely involve both types of determinants, thus, underscoring the importance of distinguishing encephalitogenic from nonencephalitogenic determinants.

  17. Structure and expression of a novel compact myelin protein – Small VCP-interacting protein (SVIP)

    SciTech Connect

    Wu, Jiawen; Peng, Dungeng; Voehler, Markus; Sanders, Charles R.; Li, Jun

    2013-10-11

    Highlights: •SVIP (small p97/VCP-interacting protein) co-localizes with myelin basic protein (MBP) in compact myelin. •We determined that SVIP is an intrinsically disordered protein (IDP). •The helical content of SVIP increases dramatically during its interaction with negatively charged lipid membrane. •This study provides structural insight into interactions between SVIP and myelin membranes. -- Abstract: SVIP (small p97/VCP-interacting protein) was initially identified as one of many cofactors regulating the valosin containing protein (VCP), an AAA+ ATPase involved in endoplasmic-reticulum-associated protein degradation (ERAD). Our previous study showed that SVIP is expressed exclusively in the nervous system. In the present study, SVIP and VCP were seen to be co-localized in neuronal cell bodies. Interestingly, we also observed that SVIP co-localizes with myelin basic protein (MBP) in compact myelin, where VCP was absent. Furthermore, using nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopic measurements, we determined that SVIP is an intrinsically disordered protein (IDP). However, upon binding to the surface of membranes containing a net negative charge, the helical content of SVIP increases dramatically. These findings provide structural insight into interactions between SVIP and myelin membranes.

  18. Myelin water weighted diffusion tensor imaging.

    PubMed

    Avram, Alexandru V; Guidon, Arnaud; Song, Allen W

    2010-10-15

    In this study we describe our development and implementation of a magnetization transfer (MT) prepared stimulated-echo diffusion tensor imaging (DTI) technique that can be made sensitive to the microanatomy of myelin tissue. The short echo time (TE) enabled by the stimulated-echo acquisition preserves significant signal from the short T(2) component (myelin water), and the MT preparation further provides differentiating sensitization to this signal. It was found that this combined strategy could provide sufficient sensitivity in our first attempt to image myelin microstructure. Compared to the diffusion tensor derived from the conventional DTI technique, the myelin water weighted (MWW) tensor has the same principal diffusion direction but exhibits a significant increase in fractional anisotropy (FA), which is mainly due to a decrease in radial diffusivity. These findings are consistent with the microstructural organization of the myelin sheaths that wrap around the axons in the white matter and therefore hinder radial diffusion. Given that many white matter diseases (e.g. multiple sclerosis) begin with a degradation of myelin microanatomy but not a loss of myelin content (e.g. loosening of the myelin sheaths), our newly implemented MWW DTI has the potential to lead to improved assessment of myelin pathology and early detection of demyelination.

  19. Altered hippocampal myelinated fiber integrity in a lithium-pilocarpine model of temporal lobe epilepsy: a histopathological and stereological investigation.

    PubMed

    Ye, Yuanzhen; Xiong, Jiajia; Hu, Jun; Kong, Min; Cheng, Li; Chen, Hengsheng; Li, Tingsong; Jiang, Li

    2013-07-19

    The damage of white matter, primarily myelinated fibers, in the central nervous system (CNS) of temporal lobe epilepsy (TLE) patients has been recently reported. However, limited data exist addressing the types of changes that occur to myelinated fibers inside the hippocampus as a result of TLE. The current study was designed to examine this issue in a lithium-pilocarpine rat model. Investigated by electroencephalography (EEG), Gallyas silver staining, immunohistochemistry, western blotting, transmission electron microscopy, and stereological methods, the results showed that hippocampal myelinated fibers of the epilepsy group were degenerated with significantly less myelin basic protein (MBP) expression relative to those of control group rats. Stereological analysis revealed that the total volumes of hippocampal formation, myelinated fibers, and myelin sheaths in the hippocampus of epilepsy group rats were decreased by 20.43%, 49.16%, and 52.60%, respectively. In addition, epilepsy group rats showed significantly greater mean diameters of myelinated fibers and axons, whereas the mean thickness of myelin sheaths was less, especially for small axons with diameters from 0.1 to 0.8µm, compared to control group rats. Finally, the total length of the myelinated fibers in the hippocampus of epilepsy group rats was significantly decreased by 56.92%, compared to that of the control group, with the decreased length most prominent for myelinated fibers with diameters from 0.4 to 0.8µm. This study is the first to provide experimental evidence that the integrity of hippocampal myelinated fibers is negatively affected by inducing epileptic seizures with pilocarpine, which may contribute to the abnormal propagation of epileptic discharge.

  20. BRAIN MYELINATION IN PREVALENT NEUROPSYCHIATRIC DEVELOPMENTAL DISORDERS

    PubMed Central

    BARTZOKIS, GEORGE

    2008-01-01

    Current concepts of addiction focus on neuronal neurocircuitry and neurotransmitters and are largely based on animal model data, but the human brain is unique in its high myelin content and extended developmental (myelination) phase that continues until middle age. The biology of our exceptional myelination process and factors that influence it have been synthesized into a recently published myelin model of human brain evolution and normal development that cuts across the current symptom-based classification of neuropsychiatric disorders. The developmental perspective of the model suggests that dysregulations in the myelination process contribute to prevalent early-life neuropsychiatric disorders, as well as to addictions. These disorders share deficits in inhibitory control functions that likely contribute to their high rates of comorbidity with addiction and other impulsive behaviors. The model posits that substances such as alcohol and psychostimulants are toxic to the extremely vulnerable myelination process and contribute to the poor outcomes of primary and comorbid addictive disorders in susceptible individuals. By increasing the scientific focus on myelination, the model provides a rational biological framework for the development of novel, myelin-centered treatments that may have widespread efficacy across multiple disease states and could potentially be used in treating, delaying, or even preventing some of the most prevalent and devastating neuropsychiatric disorders. PMID:18668184

  1. Mechanisms for differential block among single myelinated and non-myelinated axons by procaine

    PubMed Central

    Franz, Donald N.; Perry, Roger S.

    1974-01-01

    1. The differential sensitivity of saphenous nerve fibres in the cat to block by procaine HCl was re-examined by recording identifiable unit action potentials from small nerve filaments. 2. Small myelinated axons were blocked more quickly than large myelinated axons, but this differential effect could not be accounted for by differences in anaesthetic concentration requirements. 3. The onset of block in non-myelinated axons was slower than or equal to that of small myelinated axons depending on anaesthetic concentration. 4. Absolute differential block of non-myelinated and small myelinated axons was obtained by limiting the length of axons exposed to procaine to 2 mm. 5. Differential rates of blocking among myelinated axons appear to depend on differences in the length of axons that must be exposed to blocking concentrations of procaine and to arise from the irregular distribution of such concentrations within an exposed nerve. PMID:4818493

  2. All Wrapped Up: Environmental Effects on Myelination.

    PubMed

    Forbes, Thomas A; Gallo, Vittorio

    2017-09-01

    To date, studies have demonstrated the dynamic influence of exogenous environmental stimuli on multiple regions of the brain. This environmental influence positively and negatively impacts programs governing myelination, and acts on myelinating oligodendrocyte (OL) cells across the human lifespan. Developmentally, environmental manipulation of OL progenitor cells (OPCs) has profound effects on the establishment of functional cognitive, sensory, and motor programs. Furthermore, central nervous system (CNS) myelin remains an adaptive entity in adulthood, sensitive to environmentally induced structural changes. Here, we discuss the role of environmental stimuli on mechanisms governing programs of CNS myelination under normal and pathological conditions. Importantly, we highlight how these extrinsic cues can influence the intrinsic power of myelin plasticity to promote functional recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A suspended carbon fiber culture to model myelination by human Schwann cells.

    PubMed

    Merolli, Antonio; Mao, Yong; Kohn, Joachim

    2017-04-01

    Understanding of myelination/remyelination process is essential to guide tissue engineering for nerve regeneration. In vitro models currently used are limited to cell population studies and cannot easily identify individual cell contribution to the process. We established a novel model to study the contribution of human Schwann cells to the myelination process. The model avoids the presence of neurons in culture; Schwann cells respond solely to the biophysical properties of an artificial axon. The model uses a single carbon fiber suspended in culture media far from the floor of the well. The fiber provides an elongated structure of defined diameter with 360-degree of surface available for human Schwann cells to wrap around. This model enabled us to spatially and temporally track the myelination by individual Schwann cells along the fiber. We observed cell attachment, elongation and wrapping over a period of 9 days. Cells remained alive and expressed Myelin Basic Protein and Myelin Associated Glycoprotein as expected. Natural and artificial molecules, and external physical factors (e.g., p atterned electrical impulses), may be tested with this model as possible regulators of myelination.

  4. Hypothyroxinemia induced by maternal mild iodine deficiency impairs hippocampal myelinated growth in lactational rats.

    PubMed

    Wei, Wei; Wang, Yi; Dong, Jing; Wang, Yuan; Min, Hui; Song, Binbin; Shan, Zhongyan; Teng, Weiping; Xi, Qi; Chen, Jie

    2015-11-01

    Hypothyroxinemia induced by maternal mild iodine deficiency causes neurological deficits and impairments of brain function in offspring. Hypothyroxinemia is prevalent in developing and developed countries alike. However, the mechanism underlying these deficits remains less well known. Given that the myelin plays an important role in learning and memory function, we hypothesize that hippocampal myelinated growth may be impaired in rat offspring exposed to hypothyroxinemia induced by maternal mild iodine deficiency. To test this hypothesis, the female Wistar rats were used and four experimental groups were prepared: (1) control; (2) maternal mild iodine deficiency diet inducing hypothyroxinemia; (3) hypothyroidism induced by maternal severe iodine deficiency diet; (4) hypothyroidism induced by maternal methimazole water. The rats were fed the diet from 3 months before pregnancy to the end of lactation. Our results showed that the physiological changes occuring in the hippocampal myelin were altered in the mild iodine deficiency group as indicated by the results of immunofluorescence of myelin basic proteins on postnatal day 14 and postnatal day 21. Moreover, hypothyroxinemia reduced the expressions of oligodendrocyte lineage transcription factor 2 and myelin-related proteins in the treatments on postnatal day 14 and postnatal day 21. Our data suggested that hypothyroxinemia induced by maternal mild iodine deficiency may impair myelinated growth of the offspring.

  5. Increased axonal mitochondrial activity as an adaptation to myelin deficiency in the Shiverer mouse.

    PubMed

    Andrews, Helen; White, Kathryn; Thomson, Christine; Edgar, Julia; Bates, David; Griffiths, Ian; Turnbull, Douglass; Nichols, Philip

    2006-06-01

    Axonal pathology in multiple sclerosis (MS) has been described for over a century, but new insights into axonal loss and disability have refocused interest in this area. There is evidence of oxidative damage to mitochondrial DNA in chronic MS plaques, suggesting that mitochondrial failure may play a role in MS pathology. We propose that in the chronic absence of myelin the maintenance of conduction relies partially on an increase in mitochondria to provide energy. This increased energy requirement also promotes reactive oxygen species (ROS), because most intraaxonal ROS are generated by mitochondria. If antioxidant defenses are overwhelmed by an excess of ROS, this may result in damage to the axon. Our aim was to investigate whether a chronic lack of myelin results in adaptive changes involving mitochondria within the axon. We investigated this in the shiverer mouse. This myelin basic protein gene mutant provides a model of how adult central nervous system (CNS) axons cope with the chronic absence of a compact myelin sheath. Cytochrome c histochemistry demonstrated a twofold increase in mitochondrial activity in white matter tracts of shiverer, and electron microscopy confirmed a significantly higher number of mitochondria within the dysmyelinated axons. Our data demonstrate that there are adaptive changes involving mitochondria occurring within CNS axons in shiverer mice in response to a lack of myelin. This work contributes to our understanding of the adaptive changes occurring in response to a lack of myelin in a noninflammatory environment similar to the situation seen in chronically demyelinated MS plaques.

  6. Immune deficiency in mouse models for inherited peripheral neuropathies leads to improved myelin maintenance.

    PubMed

    Schmid, C D; Stienekemeier, M; Oehen, S; Bootz, F; Zielasek, J; Gold, R; Toyka, K V; Schachner, M; Martini, R

    2000-01-15

    The adhesive cell surface molecule P(0) is the most abundant glycoprotein in peripheral nerve myelin and fulfills pivotal functions during myelin formation and maintenance. Mutations in the corresponding gene cause hereditary demyelinating neuropathies. In mice heterozygously deficient in P(0) (P(0)(+/-) mice), an established animal model for a subtype of hereditary neuropathies, T-lymphocytes are present in the demyelinating nerves. To monitor the possible involvement of the immune system in myelin pathology, we cross-bred P(0)(+/-) mice with null mutants for the recombination activating gene 1 (RAG-1) or with mice deficient in the T-cell receptor alpha-subunit. We found that in P(0)(+/-) mice myelin degeneration and impairment of nerve conduction properties is less severe when the immune system is deficient. Moreover, isolated T-lymphocytes from P(0)(+/-) mice show enhanced reactivity to myelin components of the peripheral nerve, such as P(0), P(2), and myelin basic protein. We hypothesize that autoreactive immune cells can significantly foster the demyelinating phenotype of mice with a primarily genetically based peripheral neuropathy.

  7. Microbial Neuraminidase Induces a Moderate and Transient Myelin Vacuolation Independent of Complement System Activation.

    PubMed

    Granados-Durán, Pablo; López-Ávalos, María Dolores; Cifuentes, Manuel; Pérez-Martín, Margarita; Fernández-Arjona, María Del Mar; Hughes, Timothy R; Johnson, Krista; Morgan, B Paul; Fernández-Llebrez, Pedro; Grondona, Jesús M

    2017-01-01

    Some central nervous system pathogens express neuraminidase (NA) on their surfaces. In the rat brain, a single intracerebroventricular (ICV) injection of NA induces myelin vacuolation in axonal tracts. Here, we explore the nature, the time course, and the role of the complement system in this damage. The spatiotemporal analysis of myelin vacuolation was performed by optical and electron microscopy. Myelin basic protein-positive area and oligodendrocyte transcription factor (Olig2)-positive cells were quantified in the damaged bundles. Neuronal death in the affected axonal tracts was assessed by Fluoro-Jade B and anti-caspase-3 staining. To evaluate the role of the complement, membrane attack complex (MAC) deposition on damaged bundles was analyzed using anti-C5b9. Rats ICV injected with the anaphylatoxin C5a were studied for myelin damage. In addition, NA-induced vacuolation was studied in rats with different degrees of complement inhibition: normal rats treated with anti-C5-blocking antibody and C6-deficient rats. The stria medullaris, the optic chiasm, and the fimbria were the most consistently damaged axonal tracts. Vacuolation peaked 7 days after NA injection and reverted by day 15. Olig2+ cell number in the damaged tracts was unaltered, and neurodegeneration associated with myelin alterations was not detected. MAC was absent on damaged axonal tracts, as revealed by C5b9 immunostaining. Rats ICV injected with the anaphylatoxin C5a displayed no myelin injury. When the complement system was experimentally or constitutively inhibited, NA-induced myelin vacuolation was similar to that observed in normal rats. Microbial NA induces a moderate and transient myelin vacuolation that is not caused either by neuroinflammation or complement system activation.

  8. Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination

    PubMed Central

    Bonin, Sawyer R.; Gibeault, Sabrina; De Repentigny, Yves; Kothary, Rashmi

    2016-01-01

    Oligodendrocyte differentiation and central nervous system myelination require massive reorganization of the oligodendrocyte cytoskeleton. Loss of specific actin- and tubulin-organizing factors can lead to impaired morphological and/or molecular differentiation of oligodendrocytes, resulting in a subsequent loss of myelination. Dystonin is a cytoskeletal linker protein with both actin- and tubulin-binding domains. Loss of function of this protein results in a sensory neuropathy called Hereditary Sensory Autonomic Neuropathy VI in humans and dystonia musculorum in mice. This disease presents with severe ataxia, dystonic muscle and is ultimately fatal early in life. While loss of the neuronal isoforms of dystonin primarily leads to sensory neuron degeneration, it has also been shown that peripheral myelination is compromised due to intrinsic Schwann cell differentiation abnormalities. The role of this cytoskeletal linker in oligodendrocytes, however, remains unclear. We sought to determine the effects of the loss of neuronal dystonin on oligodendrocyte differentiation and central myelination. To address this, primary oligodendrocytes were isolated from a severe model of dystonia musculorum, Dstdt-27J, and assessed for morphological and molecular differentiation capacity. No defects could be discerned in the differentiation of Dstdt-27J oligodendrocytes relative to oligodendrocytes from wild-type littermates. Survival was also compared between Dstdt-27J and wild-type oligodendrocytes, revealing no significant difference. Using a recently developed migration assay, we further analysed the ability of primary oligodendrocyte progenitor cell motility, and found that Dstdt-27J oligodendrocyte progenitor cells were able to migrate normally. Finally, in vivo analysis of oligodendrocyte myelination was done in phenotype-stage optic nerve, cerebral cortex and spinal cord. The density of myelinated axons and g-ratios of Dstdt-27J optic nerves was normal, as was myelin basic

  9. Propagation Speed in Myelinated Nerve

    PubMed Central

    Hardy, W. L.

    1973-01-01

    The Hodgkin-Huxley (H.H.) equations modified by Dodge for Rana pipiens myelinated nerve have been solved to determine how well the theory predicts the effects of changes of temperature and [Na+]0 on propagation. Conduction speed θ was found to have an approximately exponential dependence on temperature as was found experimentally, but the theoretical temperature coefficient (Q10) was low; 1.5 compared with the experimental finding of 2.95. θ was found to be a linear function of log ([Na+]0) in contrast to the experimental finding of a square root dependence on [Na+]0. θ is 50% greater at one-fourth normal [Na+]0 than the theory predicts. The difference between the theoretical θ([Na+]0) and the experimental θ([Na+]0) is probably due to an imprecisely known variation of parameters and not to a fundamental inadequacy of the theory. PMID:4542941

  10. LINGO-1 negatively regulates myelination by oligodendrocytes.

    PubMed

    Mi, Sha; Miller, Robert H; Lee, Xinhua; Scott, Martin L; Shulag-Morskaya, Svetlane; Shao, Zhaohui; Chang, Jufang; Thill, Greg; Levesque, Melissa; Zhang, Mingdi; Hession, Cathy; Sah, Dinah; Trapp, Bruce; He, Zhigang; Jung, Vincent; McCoy, John M; Pepinsky, R Blake

    2005-06-01

    The control of myelination by oligodendrocytes in the CNS is poorly understood. Here we show that LINGO-1 is an important negative regulator of this critical process. LINGO-1 is expressed in oligodendrocytes. Attenuation of its function by dominant-negative LINGO-1, LINGO-1 RNA-mediated interference (RNAi) or soluble human LINGO-1 (LINGO-1-Fc) leads to differentiation and increased myelination competence. Attenuation of LINGO-1 results in downregulation of RhoA activity, which has been implicated in oligodendrocyte differentiation. Conversely, overexpression of LINGO-1 leads to activation of RhoA and inhibition of oligodendrocyte differentiation and myelination. Treatment of oligodendrocyte and neuron cocultures with LINGO-1-Fc resulted in highly developed myelinated axons that have internodes and well-defined nodes of Ranvier. The contribution of LINGO-1 to myelination was verified in vivo through the analysis of LINGO-1 knockout mice. The ability to recapitulate CNS myelination in vitro using LINGO-1 antagonists and the in vivo effects seen in the LINGO-1 knockout indicate that LINGO-1 signaling may be critical for CNS myelination.

  11. Differential expression of the L- and S-isoforms of myelin associated glycoprotein (MAG) in oligodendrocyte unit phenotypes in the adult rat anterior medullary velum.

    PubMed

    Butt, A M; Ibrahim, M; Gregson, N; Berry, M

    1998-04-01

    We have previously demonstrated differences in the expression of carbonic anhydrase II (CAII) in oligodendrocyte units myelinating small and large diameter fibres in the anterior medullary velum (AMV) of the adult rat (each unit comprises the cell body, processes and myelin sheaths). Others have indicated that myelin composition may also vary with respect to myelin basic protein (MBP) and proteolipid protein (PLP), and the small (S)- and large (L)-isoforms of myelin associated glycoprotein (MAG). In this study, we have determined the expression of myelin proteins in oligodendrocyte unit phenotypes I-IV, which myelinate fibres ranging in diameter from 0.3-12 microns diameter in the AMV, by using double immunolabelling for Rip, which labels entire units, and MBP, PLP, myelin oligodendrocyte glycoprotein (MOG), L-MAG and S-MAG. We show differences in the expression of L- and S-MAG in units which myelinate different diameter fibres: (1) type I/II units myelinating small diameter fibres had a L-MAG+/S-MAG-/CAII+ phenotype; (2) type II/III units myelinating different diameter fibres had a L-MAG+/S-MAG+/CAII+ phenotype; (3) type III/IV units myelinated large diameter fibres had a L-MAG+/S-MAG+/CAII- phenotype. All units, irrespective of fibre diameter, expressed Rip, MBP, PLP and MOG. The results indicate that type I-IV units may be variants of a single oligodendrocyte population and that phenotypic differences are determined by the diameter of fibres within the unit. The possible significance of metabolic and biochemical differences between oligodendrocytes myelinating small and large diameter axons are discussed with reference to the pathology of demyelination.

  12. Structure and molecular arrangement of proteolipid protein of central nervous system myelin.

    PubMed Central

    Stoffel, W; Hillen, H; Giersiefen, H

    1984-01-01

    Proteolipid protein (PLP) of central nervous system myelin is one of the most hydrophobic integral membrane proteins. It consists of a 276-residue-long polypeptide chain with five strongly hydrophobic sequences of 26, 30, 39, 12, and 36 residues, respectively, linked by highly charged hydrophilic sequences. Hyposmotically dissociated bovine myelin membranes were treated with trypsin. PLP was completely cleaved into smaller fragments, whereas basic myelin protein remained essentially unaltered. The proteins and tryptic peptides of myelin were separated after the removal of the short, water-soluble peptides into three large fragments of 11, 7.3, and 9.0 kDA, respectively. They were characterized by their molecular mass and NH2-terminal amino acid sequences, which proved that trypsin cleaved predominantly at Arg-97 yielding the 11-kDa fragment from Gly-1 through Arg-97, at Arg-126 releasing the 7.3-kDa fragment from Gly-127 through Lys-191, and at Lys-191 releasing the 9-kDa fragment from Thr-192 through Phe-276. We propose that PLP is integrated into the lipid bilayer of myelin with the NH2 terminus and three positively charged hydrophilic loops oriented toward the extracytosolic side of the membrane, whereas one strongly negative hydrophilic loop and the positively charged COOH terminus cover the cytosolic side of the lipid bilayer. Basic myelin protein remains protected against tryptic cleavage, which indicates its apposition to the cytosolic side of the membrane. These cleavage sites of trypsin support the suggested orientation of PLP in the myelin membrane and thereby extend our knowledge about the molecular arrangement of the components of this membrane. In demyelinating processes membrane desintegration could be initiated by proteolysis at the external surfaces of proteolipid protein in a similar way as described here. Images PMID:6206491

  13. Quantification of myelin loss in frontal lobe white matter in vascular dementia, Alzheimer's disease, and dementia with Lewy bodies.

    PubMed

    Ihara, Masafumi; Polvikoski, Tuomo M; Hall, Ros; Slade, Janet Y; Perry, Robert H; Oakley, Arthur E; Englund, Elisabet; O'Brien, John T; Ince, Paul G; Kalaria, Raj N

    2010-05-01

    The aim of this study was to characterize myelin loss as one of the features of white matter abnormalities across three common dementing disorders. We evaluated post-mortem brain tissue from frontal and temporal lobes from 20 vascular dementia (VaD), 19 Alzheimer's disease (AD) and 31 dementia with Lewy bodies (DLB) cases and 12 comparable age controls. Images of sections stained with conventional luxol fast blue were analysed to estimate myelin attenuation by optical density. Serial adjacent sections were then immunostained for degraded myelin basic protein (dMBP) and the mean percentage area containing dMBP (%dMBP) was determined as an indicator of myelin degeneration. We further assessed the relationship between dMBP and glutathione S-transferase (a marker of mature oligodendrocytes) immunoreactivities. Pathological diagnosis significantly affected the frontal but not temporal lobe myelin attenuation: myelin density was most reduced in VaD compared to AD and DLB, which still significantly exhibited lower myelin density compared to ageing controls. Consistent with this, the degree of myelin loss was correlated with greater %dMBP, with the highest %dMBP in VaD compared to the other groups. The %dMBP was inversely correlated with the mean size of oligodendrocytes in VaD, whereas it was positively correlated with their density in AD. A two-tier regression model analysis confirmed that the type of disorder (VaD or AD) determines the relationship between %dMBP and the size or density of oligodendrocytes across the cases. Our findings, attested by the use of three markers, suggest that myelin loss may evolve in parallel with shrunken oligodendrocytes in VaD but their increased density in AD, highlighting partially different mechanisms are associated with myelin degeneration, which could originate from hypoxic-ischaemic damage to oligodendrocytes in VaD whereas secondary to axonal degeneration in AD.

  14. Direct magnetic resonance detection of myelin and prospects for quantitative imaging of myelin density

    PubMed Central

    Wilhelm, Michael J.; Ong, Henry H.; Tsai, Ping-Huei; Hackney, David B.; Wehrli, Felix W.

    2012-01-01

    Magnetic resonance imaging has previously demonstrated its potential for indirectly mapping myelin density, either by relaxometric detection of myelin water or magnetization transfer. Here, we investigated whether myelin can be detected and possibly quantified directly. We identified the spectrum of myelin in the spinal cord in situ as well as in myelin lipids extracted via a sucrose gradient method, and investigated its spectral properties. High-resolution solution NMR spectroscopy showed the extract composition to be in agreement with myelin’s known chemical make-up. The 400-MHz 1H spectrum of the myelin extract, at 20 °C (room temperature) and 37 °C, consists of a narrow water resonance superimposed on a broad envelope shifted ∼3.5 ppm upfield, suggestive of long-chain methylene protons. Superimposed on this signal are narrow components resulting from functional groups matching the chemical shifts of the constituents making up myelin lipids. The spectrum could be modeled as a sum of super-Lorentzians with a T2* distribution covering a wide range of values (0.008–26 ms). Overall, there was a high degree of similarity between the spectral properties of extracted myelin lipids and those found in neural tissue. The normalized difference spectrum had the hallmarks of membrane proteins, not present in the myelin extract. Using 3D radially ramp-sampled proton MRI, with a combination of adiabatic inversion and echo subtraction, the feasibility of direct myelin imaging in situ is demonstrated. Last, the integrated signal from myelin suspensions is shown, both spectroscopically and by imaging, to scale with concentration, suggesting the potential for quantitative determination of myelin density. PMID:22628562

  15. In vitro myelin formation using embryonic stem cells

    PubMed Central

    Kerman, Bilal E.; Kim, Hyung Joon; Padmanabhan, Krishnan; Mei, Arianna; Georges, Shereen; Joens, Matthew S.; Fitzpatrick, James A. J.; Jappelli, Roberto; Chandross, Karen J.; August, Paul; Gage, Fred H.

    2015-01-01

    Myelination in the central nervous system is the process by which oligodendrocytes form myelin sheaths around the axons of neurons. Myelination enables neurons to transmit information more quickly and more efficiently and allows for more complex brain functions; yet, remarkably, the underlying mechanism by which myelination occurs is still not fully understood. A reliable in vitro assay is essential to dissect oligodendrocyte and myelin biology. Hence, we developed a protocol to generate myelinating oligodendrocytes from mouse embryonic stem cells and established a myelin formation assay with embryonic stem cell-derived neurons in microfluidic devices. Myelin formation was quantified using a custom semi-automated method that is suitable for larger scale analysis. Finally, early myelination was followed in real time over several days and the results have led us to propose a new model for myelin formation. PMID:26015546

  16. β1 integrins are required for normal CNS myelination and promote AKT-dependent myelin outgrowth

    PubMed Central

    Barros, Claudia S.; Nguyen, Tom; Spencer, Kathryn S. R.; Nishiyama, Akiko; Colognato, Holly; Müller, Ulrich

    2009-01-01

    Summary Oligodendrocytes in the central nervous system (CNS) produce myelin sheaths that insulate axons to ensure fast propagation of action potentials. β1 integrins regulate the myelination of peripheral nerves, but their function during the myelination of axonal tracts in the CNS is unclear. Here we show that genetically modified mice lacking β1 integrins in the CNS present a deficit in myelination but no defects in the development of the oligodendroglial lineage. Instead, in vitro data show that β1 integrins regulate the outgrowth of myelin sheaths. Oligodendrocytes derived from mutant mice are unable to efficiently extend myelin sheets and fail to activate AKT (also known as AKT1), a kinase that is crucial for axonal ensheathment. The inhibition of PTEN, a negative regulator of AKT, or the expression of a constitutively active form of AKT restores myelin outgrowth in cultured β1-deficient oligodendrocytes. Our data suggest that β1 integrins play an instructive role in CNS myelination by promoting myelin wrapping in a process that depends on AKT. PMID:19633169

  17. Protein-specific scoring method for ligand discovery.

    PubMed

    Lu, I-Lin; Wang, Hsiuying

    2012-11-01

    Protein-based virtual screening plays an important role in modern drug discovery process. Most protein-based virtual screening experiments are carried out with docking programs. The accuracy of a docking program highly relies on the incorporated scoring function based on various energy terms. The existing scoring functions deal all the energy terms with the equal weight function or other weight function derived by physical characteristics. These existing scoring functions are not protein dependent. We expect that a protein-specific scoring function, which can reflect the protein characteristics, may improve the docking results. Therefore, we propose a protein-specific rescoring approach to select potential ligands by adjusting the weights of energy terms. The protein-specific scoring function is based on the linear regression analysis associated with an outlier detection approach. The scoring function incorporated in DOCK program is used as the model system. The performance of our method was evaluated by the DUD docked data set, which contains 40 protein targets. The study results show that this method can improve the enrichment factors for most of the 40 protein targets. We further expend the protein-specific scoring function to a larger database, and the results also show significant improvement. Our method is not limited to improving the DOCK scoring function. It can be adopted to improve other programs such as GOLD and Glide. We believe that this method can be applied to virtual screening experiments and elevates the hits rate significantly, which can be beneficial to the modern drug discovery process.

  18. Myelination: an overlooked mechanism of synaptic plasticity?

    PubMed

    Fields, R Douglas

    2005-12-01

    Myelination of the brain continues through childhood into adolescence and early adulthood--the question is, Why? Two new articles provide intriguing evidence that myelination may be an underappreciated mechanism of activity-dependent nervous system plasticity: one study reported increased myelination associated with extensive piano playing, another indicated that rats have increased myelination of the corpus callosum when raised in environments providing increased social interaction and cognitive stimulation. These articles make it clear that activity-dependent effects on myelination cannot be considered strictly a developmental event. They raise the question of whether myelination is an overlooked mechanism of activity-dependent plasticity, extending in humans until at least age 30. It has been argued that regulating the speed of conduction across long fiber tracts would have a major influence on synaptic response, by coordinating the timing of afferent input to maximize temporal summation. The increase in synaptic amplitude could be as large as neurotransmitter-based mechanisms of plasticity, such as LTP. These new findings raise a larger question: How did the oligodendrocytes know they were practicing the piano or that their environment was socially complex?

  19. Characterization of the M2 autoantigen of central nervous system (CNS) myelin as a glycoproteins(s) also expressed on oligodendrocyte membrane

    SciTech Connect

    Lebar, R.; Lubetzki, C.; Vincent, C.; Lombrail, P.; Boutry, J.M.

    1986-03-01

    Guinea pigs immunized with homologous brain tissue develop an acute experimental allergic encephalomyelitis and their sera contain demyelinating antibodies. These antibodies were used to characterize the target: the unidentified autoantigen M2. Using both the Dot immunobinding technique and autoradiography of immunoprecipitates formed with radiolabelled guinea-pig myelin and analyzed in SDS acrylamide gel electrophoresis, M2 was found to be a component of CNS myelin and not peripheral nervous system (PNS) myelin. In the Dot technique anti-M2 serum did not react with myelin basic protein (BP), proteolipid and galactocerebroside (GC). On electrophoresis, in reducing and non reducing conditions, M2 appeared as two CNS myelin protein bands at the 27,000 and 54,000 molecular weight levels, distinct from the CNS myelin major protein bands of proteolipid protein and BP. Affinity chromatography of CNS myelin on wheat germ agglutinin Sepharose showed that M2 bands were of glycoprotein nature. The same M2 bands were formed with guinea pig antibodies and rat, rabbit or bovine CNS myelin. The same type of anti-M2 antibodies were induced in rabbits immunized with homologous CNS tissue. As a component of myelin, M2 was present in white matter tracts of CNS tissue sections tested by immunofluorescence. Furthermore, M2 was expressed on rat oligodendrocyte membrane in one day and 8 day in vitro cultures.

  20. Activation of Sterol Regulatory Element Binding Factors by Fenofibrate and Gemfibrozil Stimulates Myelination in Zebrafish

    PubMed Central

    Ashikawa, Yoshifumi; Nishimura, Yuhei; Okabe, Shiko; Sasagawa, Shota; Murakami, Soichiro; Yuge, Mizuki; Kawaguchi, Koki; Kawase, Reiko; Tanaka, Toshio

    2016-01-01

    Oligodendrocytes are major myelin-producing cells and play essential roles in the function of a healthy nervous system. However, they are also one of the most vulnerable neural cell types in the central nervous system (CNS), and myelin abnormalities in the CNS are found in a wide variety of neurological disorders, including multiple sclerosis, adrenoleukodystrophy, and schizophrenia. There is an urgent need to identify small molecular weight compounds that can stimulate myelination. In this study, we performed comparative transcriptome analysis to identify pharmacodynamic effects common to miconazole and clobetasol, which have been shown to stimulate myelination by mouse oligodendrocyte progenitor cells (OPCs). Of the genes differentially expressed in both miconazole- and clobetasol-treated mouse OPCs compared with untreated cells, we identified differentially expressed genes (DEGs) common to both drug treatments. Gene ontology analysis revealed that these DEGs are significantly associated with the sterol biosynthetic pathway, and further bioinformatics analysis suggested that sterol regulatory element binding factors (SREBFs) might be key upstream regulators of the DEGs. In silico screening of a public database for chemicals associated with SREBF activation identified fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, as a drug that increases the expression of known SREBF targets, raising the possibility that fenofibrate may also stimulate myelination. To test this, we performed in vivo imaging of zebrafish expressing a fluorescent reporter protein under the control of the myelin basic protein (mbp) promoter. Treatment of zebrafish with fenofibrate significantly increased expression of the fluorescent reporter compared with untreated zebrafish. This increase was attenuated by co-treatment with fatostatin, a specific inhibitor of SREBFs, confirming that the fenofibrate effect was mediated via SREBFs. Furthermore, incubation of zebrafish

  1. The T3-induced gene KLF9 regulates oligodendrocyte differentiation and myelin regeneration.

    PubMed

    Dugas, Jason C; Ibrahim, Adiljan; Barres, Ben A

    2012-05-01

    Hypothyroidism is a well-described cause of hypomyelination. In addition, thyroid hormone (T3) has recently been shown to enhance remyelination in various animal models of CNS demyelination. What are the ways in which T3 promotes the development and regeneration of healthy myelin? To begin to understand the mechanisms by which T3 drives myelination, we have identified genes regulated specifically by T3 in purified oligodendrocyte precursor cells (OPCs). Among the genes identified by genomic expression analyses were four transcription factors, Kruppel-like factor 9 (KLF9), basic helix-loop-helix family member e22 (BHLHe22), Hairless (Hr), and Albumin D box-binding protein (DBP), all of which were induced in OPCs by both brief and long term exposure to T3. To begin to investigate the role of these genes in myelination, we focused on the most rapidly and robustly induced of these, KLF9, and found it is both necessary and sufficient to promote oligodendrocyte differentiation in vitro. Surprisingly, we found that loss of KLF9 in vivo negligibly affects the formation of CNS myelin during development, but does significantly delay remyelination in cuprizone-induced demyelinated lesions. These experiments indicate that KLF9 is likely a novel integral component of the T3-driven signaling cascade that promotes the regeneration of lost myelin. Future analyses of the roles of KLF9 and other identified T3-induced genes in myelination may lead to novel insights into how to enhance the regeneration of myelin in demyelinating diseases such as multiple sclerosis.

  2. The formation of lipid droplets favors intracellular Mycobacterium leprae survival in SW-10, non-myelinating Schwann cells

    PubMed Central

    Jin, Song-Hyo; An, Sung-Kwan

    2017-01-01

    Leprosy is a chronic infectious disease that is caused by the obligate intracellular pathogen Mycobacterium leprae (M.leprae), which is the leading cause of all non-traumatic peripheral neuropathies worldwide. Although both myelinating and non-myelinating Schwann cells are infected by M.leprae in patients with lepromatous leprosy, M.leprae preferentially invades the non-myelinating Schwann cells. However, the effect of M.leprae infection on non-myelinating Schwann cells has not been elucidated. Lipid droplets (LDs) are found in M.leprae-infected Schwann cells in the nerve biopsies of lepromatous leprosy patients. M.leprae-induced LD formation favors intracellular M.leprae survival in primary Schwann cells and in a myelinating Schwann cell line referred to as ST88-14. In the current study, we initially characterized SW-10 cells and investigated the effects of LDs on M.leprae-infected SW-10 cells, which are non-myelinating Schwann cells. SW-10 cells express S100, a marker for cells from the neural crest, and NGFR p75, a marker for immature or non-myelinating Schwann cells. SW-10 cells, however, do not express myelin basic protein (MBP), a marker for myelinating Schwann cells, and myelin protein zero (MPZ), a marker for precursor, immature, or myelinating Schwann cells, all of which suggests that SW-10 cells are non-myelinating Schwann cells. In addition, SW-10 cells have phagocytic activity and can be infected with M. leprae. Infection with M. leprae induces the formation of LDs. Furthermore, inhibiting the formation of M. leprae-induced LD enhances the maturation of phagosomes containing live M.leprae and decreases the ATP content in the M. leprae found in SW-10 cells. These facts suggest that LD formation by M. leprae favors intracellular M. leprae survival in SW-10 cells, which leads to the logical conclusion that M.leprae-infected SW-10 cells can be a new model for investigating the interaction of M.leprae with non-myelinating Schwann cells. PMID:28636650

  3. Structure and Expression of a Novel Compact Myelin Protein - Small VCP-Interacting Protein (SVIP)

    PubMed Central

    Wu, Jiawen; Peng, Dungeng; Voehler, Markus; Sanders, Charles R.; Li, Jun

    2013-01-01

    SVIP (small p97/VCP-interacting protein) was initially identified as one of many cofactors regulating the valosin containing protein (VCP), an AAA+ ATPase involved in endoplasmic-reticulum-associated protein degradation (ERAD). Our previous study showed that SVIP is expressed exclusively in the nervous system. In the present study, SVIP and VCP were seen to be co-localized in neuronal cell bodies. Interestingly, we also observed that SVIP co-localizes with myelin basic protein (MBP) in compact myelin, where VCP was absent. Furthermore, using nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopic measurements, we determined that SVIP is an intrinsically disordered protein (IDP). However, upon binding to the surface of membranes containing a net negative charge, the helical content of SVIP increases dramatically. These findings provide structural insight into interactions between SVIP and myelin membranes. PMID:24055875

  4. Internodal myelin volume and axon surface area. A relationship determining myelin thickness?

    PubMed

    Smith, K J; Blakemore, W F; Murray, J A; Patterson, R C

    1982-08-01

    Internodes from normal, remyelinated and regenerated nerve fibres have been isolated from rat spinal roots and sciatic nerve. The internodes have been examined quantitatively by light and electron microscopy to determine their internodal length, myelin thickness, and the circumference and cross-sectional area of both the axons and fibre. Comparison of these measurements of the axon and myelin sheath has revealed a close relationship between the volume of myelin comprising the internode and the area over which the Schwann cell and axon are in close proximity, i.e. the surface area of the axolemma beneath the internodal myelin sheath. The same relationship described not only the internodes on normal nerve fibres, where internodal length is proportional to axon diameter, but also the short and thinly myelinated internodes formed in the adult animal on remyelinated and on regenerated axons. Examination of data presented by Berthold (1978) revealed that a closely similar relationship is also present in feline nerve fibres. In view of the constancy of the relationship between such different types of internode it is suggested that the regulation of myelin volume, and thereby of myelin thickness, may be mediated via the area of the axolemma or of the Schwann cell membrane beneath the myelin sheath.

  5. In vivo actions of insulin-like growth factor-I (IGF-I) on brain myelination: studies of IGF-I and IGF binding protein-1 (IGFBP-1) transgenic mice.

    PubMed

    Ye, P; Carson, J; D'Ercole, A J

    1995-11-01

    To study the effects and mechanisms of insulin-like growth factor I (IGF-I) on brain myelination in vivo, the morphology of myelinated axons and the expression of myelin specific protein genes have been examined in transgenic (Tg) mice that overexpress IGF-I and that those ectopically express IGF binding protein-1 (IGFBP-1), a protein that inhibits IGF-I actions when present in molar excess. Our data show that the percentage of myelinated axons and the thickness of myelin sheaths are significantly increased in IGF-I Tg and decreased in the IGFBP-1 mice. Cerebral cortical proteolipid protein (PLP) and myelin basic protein (MBP) mRNAs consistently exhibit approximately 200% increases in IGF-I Tg mice and approximately 50% decreases in IGFBP-1 Tg mice. The percentage of oligodendrocytes labeled with a PLP cRNA probe in the corpus callosum and cerebral cortex also is increased in IGF-I Tg mice and reduced in IGFBP-1 Tg mice, suggesting that IGF-I promotes oligodendrocyte survival and/or proliferation. The alterations in the number of oligodendrocytes, however, can not completely account for the changes in myelin gene expression. These results strongly indicate that IGF-I increases myelination by increasing the number of myelinated axons and the thickness of myelin sheaths, the latter by mechanisms that involve stimulation of the expression of myelin protein genes and increase of oligodendrocyte number.

  6. Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy

    PubMed Central

    Turcotte, Raphaël; Rutledge, Danette J.; Bélanger, Erik; Dill, Dorothy; Macklin, Wendy B.; Côté, Daniel C.

    2016-01-01

    Myelin plays an essential role in the nervous system and its disruption in diseases such as multiple sclerosis may lead to neuronal death, thus causing irreversible functional impairments. Understanding myelin biology is therefore of fundamental and clinical importance, but no tools currently exist to describe the fine spatial organization of myelin sheaths in vivo. Here we demonstrate intravital quantification of the myelin molecular structure using a microscopy method based on polarization-resolved coherent Raman scattering. Developmental myelination was imaged noninvasively in live zebrafish. Longitudinal imaging of individual axons revealed changes in myelin organization beyond the diffraction limit. Applied to promyelination drug screening, the method uniquely enabled the identification of focal myelin regions with differential architectures. These observations indicate that the study of myelin biology and the identification of therapeutic compounds will largely benefit from a method to quantify the myelin molecular organization in vivo. PMID:27538357

  7. Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Turcotte, Raphaël; Rutledge, Danette J.; Bélanger, Erik; Dill, Dorothy; Macklin, Wendy B.; Côté, Daniel C.

    2016-08-01

    Myelin plays an essential role in the nervous system and its disruption in diseases such as multiple sclerosis may lead to neuronal death, thus causing irreversible functional impairments. Understanding myelin biology is therefore of fundamental and clinical importance, but no tools currently exist to describe the fine spatial organization of myelin sheaths in vivo. Here we demonstrate intravital quantification of the myelin molecular structure using a microscopy method based on polarization-resolved coherent Raman scattering. Developmental myelination was imaged noninvasively in live zebrafish. Longitudinal imaging of individual axons revealed changes in myelin organization beyond the diffraction limit. Applied to promyelination drug screening, the method uniquely enabled the identification of focal myelin regions with differential architectures. These observations indicate that the study of myelin biology and the identification of therapeutic compounds will largely benefit from a method to quantify the myelin molecular organization in vivo.

  8. Erythropoietin (EPO) increases myelin gene expression in CG4 oligodendrocyte cells through the classical EPO receptor.

    PubMed

    Cervellini, Ilaria; Annenkov, Alexander; Brenton, Thomas; Chernajovsky, Yuti; Ghezzi, Pietro; Mengozzi, Manuela

    2013-08-28

    Erythropoietin (EPO) has protective effects in neurodegenerative and neuroinflammatory diseases, including in animal models of multiple sclerosis, where EPO decreases disease severity. EPO also promotes neurogenesis and is protective in models of toxic demyelination. In this study, we asked whether EPO could promote neurorepair by also inducing remyelination. In addition, we investigated whether the effect of EPO could be mediated by the classical erythropoietic EPO receptor (EPOR), since it is still questioned if EPOR is functional in nonhematopoietic cells. Using CG4 cells, a line of rat oligodendrocyte precursor cells, we found that EPO increases the expression of myelin genes (myelin oligodendrocyte glycoprotein [MOG] and myelin basic protein [MBP]). EPO had no effect in wild-type CG4 cells, which do not express EPOR, whereas it increased MOG and MBP expression in cells engineered to overexpress EPOR (CG4-EPOR). This was reflected in a marked increase in MOG protein levels, as detected by Western blot. In these cells, EPO induced by 10-fold the early growth response gene 2 (Egr2), which is required for peripheral myelination. However, Egr2 silencing with a siRNA did not reverse the effect of EPO, indicating that EPO acts through other pathways. In conclusion, EPO induces the expression of myelin genes in oligodendrocytes and this effect requires the presence of EPOR. This study demonstrates that EPOR can mediate neuroreparative effects.

  9. The development of myelin in the brain of the juvenile rat.

    PubMed

    Downes, Noel; Mullins, Pamela

    2014-07-01

    The development process of myelination varies between region and species. Fully myelinated fibers are required if mammalian neural circuits are to function normally. Histology samples at staggered time points throughout the study were examined at days 4, 5, 7, 8, 10, 14, 17, 24, 37, and 44. We suggest that the development of myelin in the juvenile rodent brain can be conveniently separated into 3 phases. Evaluation of myelin basic protein-stained sections of the areas of brain that contain the elements of the developing limbic system over the sensitive period from postnatal day (PND) 14 to 34 may provide an insight into possible toxicity that may lead to cognition and learning issues in adults. We will hope to develop this notion further in the future. The precise chronology of the development of the blood-brain barrier in rats has yet to be established; thus, there is potential for significant exposure of the juvenile brain to chemicals that do not cross the blood-brain barrier in the adult. Thus, it is suggested that evaluation of myelin development should probably be extended to all new chemical entities intended for pediatric use, and not just those that are intended for central nervous system use.

  10. Synaptic development and neuronal myelination are altered with growth restriction in fetal guinea pigs.

    PubMed

    Piorkowska, Karolina; Thompson, Jennifer; Nygard, Karen; Matushewski, Brad; Hammond, Robert; Richardson, Bryan

    2014-01-01

    This study examines aberrant synaptogenesis and myelination of neuronal connections as possible links to neurological sequelae in growth-restricted fetuses. Pregnant guinea pig sows were subjected to uterine blood flow restriction or sham surgeries at midgestation. The animals underwent necropsy at term with fetuses grouped according to body weight and brain-to-liver weight ratios as follows: appropriate for gestational age (n = 12); asymmetrically fetal growth restricted (aFGR; n = 8); symmetrically fetal growth restricted (sFGR; n = 8), and large for gestational age (n = 8). Fetal brains were perfusion fixed and paraffin embedded to determine immunoreactivity for synaptophysin and synaptopodin as markers of synaptic development and maturation, respectively, and for myelin basic protein as a marker for myelination, which was further assessed using Luxol fast blue staining. The most pertinent findings were that growth-restricted guinea pig fetuses exhibited reduced synaptogenesis and synaptic maturation as well as reduced myelination, which were primarily seen in subareas of the hippocampus and associated efferent tracts. These neurodevelopmental changes were more pronounced in the sFGR compared to the aFGR animals. Accordingly, altered hippocampal development involving synaptogenesis and myelination may represent a mechanism by which cognitive deficits manifest in human growth-restricted offspring in later life. © 2014 S. Karger AG, Basel.

  11. Functional organization of an Mbp enhancer exposes striking transcriptional regulatory diversity within myelinating glia.

    PubMed

    Dionne, Nancy; Dib, Samar; Finsen, Bente; Denarier, Eric; Kuhlmann, Tanja; Drouin, Régen; Kokoeva, Maia; Hudson, Thomas J; Siminovitch, Kathy; Friedman, Hana C; Peterson, Alan C

    2016-01-01

    In mammals, large caliber axons are ensheathed by myelin, a glial specialization supporting axon integrity and conferring accelerated and energy-efficient action potential conduction. Myelin basic protein (MBP) is required for normal myelin elaboration with maximal mbp transcription in oligodendrocytes requiring the upstream M3 enhancer. To further characterize the mechanism regulating mbp transcription, we defined M3 structure/function relationships by evaluating its evolutionary conservation, DNA footprints and the developmental programing conferred in mice by M3 derivatives. Multiple M3 regulatory element combinations were found to drive expression in oligodendrocytes and Schwann cells with a minimal 129 bp sequence conferring expression in oligodendrocytes throughout myelin elaboration, maintenance and repair. Unexpectedly, M3 derivatives conferred markedly different spatial and temporal expression programs thus illuminating striking transcriptional heterogeneity within post-mitotic oligodendrocytes. Finally, one M3 derivative engaged only during primary myelination, not during adult remyelination, demonstrating that transcriptional regulation in the two states is not equivalent. © 2015 Wiley Periodicals, Inc.

  12. Crystal structure of the extracellular domain of human myelin protein zero

    SciTech Connect

    Liu, Zhigang; Wang, Yong; Yedidi, Ravikiran S.; Brunzelle, Joseph S.; Kovari, Iulia A.; Sohi, Jasloveleen; Kamholz, John; Kovari, Ladislau C.

    2012-03-27

    Charcot-Marie-Tooth disease (CMT), a hereditary motor and sensory neuropathy, is the most common genetic neuropathy with an incidence of 1 in 2600. Several forms of CMT have been identified arising from different genomic abnormalities such as CMT1 including CMT1A, CMT1B, and CMTX. CMT1 with associated peripheral nervous system (PNS) demyelination, the most frequent diagnosis, demonstrates slowed nerve conduction velocities and segmental demyelination upon nerve biopsy. One of its subtypes, CMT1A, presents a 1.5-Mb duplication in the p11-p12 region of the human chromosome 17 which encodes peripheral myelin protein 22 (PMP22). CMT1B, a less common form, arises from the mutations in the myelin protein zero (MPZ) gene on chromosome 1, region q22-q23, which encodes the major structural component of the peripheral myelin. A rare type of CMT1 has been found recently and is caused by point mutations in early growth response gene 2 (EGR2), encoding a zinc finger transcription factor in Schwann cells. In addition, CMTX, an X-linked form of CMT, arises from a mutation in the connexin-32 gene. Myelin protein zero, associated with CMT1B, is a transmembrane protein of 219 amino acid residues. Human MPZ consists of three domains: 125 residues constitute the glycosylated immunoglobulin-like extracellular domain; 27 residues span the membrane; and 67 residues comprise the highly basic intracellular domain. MPZ makes up approximately 50% of the protein content of myelin, and is expressed predominantly in Schwann cells, the myelinating cell of the PNS. Myelin protein zero, a homophilic adhesion molecule, is a member of the immunoglobulin super-family and is essential for normal myelin structure and function. In addition, MPZ knockout mice displayed abnormal myelin that severely affects the myelination pathway, and overexpression of MPZ causes congenital hypomyelination of peripheral nerves. Myelin protein zero mutations account for {approx}5% of patients with CMT. To date, over 125

  13. TACE (ADAM17) inhibits Schwann cell myelination.

    PubMed

    La Marca, Rosa; Cerri, Federica; Horiuchi, Keisuke; Bachi, Angela; Feltri, M Laura; Wrabetz, Lawrence; Blobel, Carl P; Quattrini, Angelo; Salzer, James L; Taveggia, Carla

    2011-06-12

    Tumor necrosis factor-α-converting enzyme (TACE; also known as ADAM17) is a proteolytic sheddase that is responsible for the cleavage of several membrane-bound molecules. We report that TACE cleaves neuregulin-1 (NRG1) type III in the epidermal growth factor domain, probably inactivating it (as assessed by deficient activation of the phosphatidylinositol-3-OH kinase pathway), and thereby negatively regulating peripheral nervous system (PNS) myelination. Lentivirus-mediated knockdown of TACE in vitro in dorsal root ganglia neurons accelerates the onset of myelination and results in hypermyelination. In agreement, motor neurons of conditional knockout mice lacking TACE specifically in these cells are significantly hypermyelinated, and small-caliber fibers are aberrantly myelinated. Further, reduced TACE activity rescues hypomyelination in NRG1 type III haploinsufficient mice in vivo. We also show that the inhibitory effect of TACE is neuron-autonomous, as Schwann cells lacking TACE elaborate myelin of normal thickness. Thus, TACE is a modulator of NRG1 type III activity and is a negative regulator of myelination in the PNS.

  14. Human habenula segmentation using myelin content.

    PubMed

    Kim, Joo-won; Naidich, Thomas P; Ely, Benjamin A; Yacoub, Essa; De Martino, Federico; Fowkes, Mary E; Goodman, Wayne K; Xu, Junqian

    2016-04-15

    The habenula consists of a pair of small epithalamic nuclei located adjacent to the dorsomedial thalamus. Despite increasing interest in imaging the habenula due to its critical role in mediating subcortical reward circuitry, in vivo neuroimaging research targeting the human habenula has been limited by its small size and low anatomical contrast. In this work, we have developed an objective semi-automated habenula segmentation scheme consisting of histogram-based thresholding, region growing, geometric constraints, and partial volume estimation steps. This segmentation scheme was designed around in vivo 3 T myelin-sensitive images, generated by taking the ratio of high-resolution T1w over T2w images. Due to the high myelin content of the habenula, the contrast-to-noise ratio with the thalamus in the in vivo 3T myelin-sensitive images was significantly higher than the T1w or T2w images alone. In addition, in vivo 7 T myelin-sensitive images (T1w over T2*w ratio images) and ex vivo proton density-weighted images, along with histological evidence from the literature, strongly corroborated the in vivo 3 T habenula myelin contrast used in the proposed segmentation scheme. The proposed segmentation scheme represents a step toward a scalable approach for objective segmentation of the habenula suitable for both morphological evaluation and habenula seed region selection in functional and diffusion MRI applications.

  15. Targeting human oligodendrocyte progenitors for myelin repair.

    PubMed

    Dietz, Karen C; Polanco, Jessie J; Pol, Suyog U; Sim, Fraser J

    2016-09-01

    Oligodendrocyte development has been studied for several decades, and has served as a model system for both neurodevelopmental and stem/progenitor cell biology. Until recently, the vast majority of studies have been conducted in lower species, especially those focused on rodent development and remyelination. In humans, the process of myelination requires the generation of vastly more myelinating glia, occurring over a period of years rather than weeks. Furthermore, as evidenced by the presence of chronic demyelination in a variety of human neurologic diseases, it appears likely that the mechanisms that regulate development and become dysfunctional in disease may be, in key ways, divergent across species. Improvements in isolation techniques, applied to primary human neural and oligodendrocyte progenitors from both fetal and adult brain, as well as advancements in the derivation of defined progenitors from human pluripotent stem cells, have begun to reveal the extent of both species-conserved signaling pathways and potential key differences at cellular and molecular levels. In this article, we will review the commonalities and differences in myelin development between rodents and man, describing the approaches used to study human oligodendrocyte differentiation and myelination, as well as heterogeneity within targetable progenitor pools, and discuss the advances made in determining which conserved pathways may be both modeled in rodents and translate into viable therapeutic strategies to promote myelin repair.

  16. Erbin regulates NRG1 signaling and myelination

    PubMed Central

    Tao, Yanmei; Dai, Penggao; Liu, Yu; Marchetto, Sylvie; Xiong, Wen-Cheng; Borg, Jean-Paul; Mei, Lin

    2009-01-01

    Neuregulin 1 (NRG1) plays a critical role in myelination. However, little is known about regulatory mechanisms of NRG1 signaling. We show here that Erbin, a protein that contains leucine-rich repeats (LRR) and a PSD95-Dlg-Zol (PDZ) domain and that interacts specifically with ErbB2, is necessary for NRG1 signaling and myelination of peripheral nervous system (PNS). In Erbin null mice, myelinated axons were hypomyelinated with reduced expression of P0, a marker of mature myelinating Schwann cells (SCs), whereas unmyelinated axons were aberrantly ensheathed in Remak bundles, with increased numbers of axons in the bundles and in pockets. The morphological deficits were associated with decreased nerve conduction velocity and increased sensory threshold to mechanistic stimulation. These phenotypes were duplicated in erbinΔC/ΔC mice, in which Erbin lost the PDZ domain to interact with ErbB2. Moreover, ErbB2 was reduced at protein levels in both Erbin mutant sciatic nerves, and ErbB2 became unstable and NRG1 signaling compromised when Erbin expression was suppressed. These observations indicate a critical role of Erbin in myelination and identify a regulatory mechanism of NRG1 signaling. Our results suggest that Erbin, via the PDZ domain, binds to and stabilizes ErbB2, which is necessary for NRG1 signaling that has been implicated in tumorigenesis, heart development, and neural function. PMID:19458253

  17. Myelin damage and repair in pathologic CNS: challenges and prospects

    PubMed Central

    Alizadeh, Arsalan; Dyck, Scott M.; Karimi-Abdolrezaee, Soheila

    2015-01-01

    Injury to the central nervous system (CNS) results in oligodendrocyte cell death and progressive demyelination. Demyelinated axons undergo considerable physiological changes and molecular reorganizations that collectively result in axonal dysfunction, degeneration and loss of sensory and motor functions. Endogenous adult oligodendrocyte precursor cells and neural stem/progenitor cells contribute to the replacement of oligodendrocytes, however, the extent and quality of endogenous remyelination is suboptimal. Emerging evidence indicates that optimal remyelination is restricted by multiple factors including (i) low levels of factors that promote oligodendrogenesis; (ii) cell death among newly generated oligodendrocytes, (iii) inhibitory factors in the post-injury milieu that impede remyelination, and (iv) deficient expression of key growth factors essential for proper re-construction of a highly organized myelin sheath. Considering these challenges, over the past several years, a number of cell-based strategies have been developed to optimize remyelination therapeutically. Outcomes of these basic and preclinical discoveries are promising and signify the importance of remyelination as a mechanism for improving functions in CNS injuries. In this review, we provide an overview on: (1) the precise organization of myelinated axons and the reciprocal axo-myelin interactions that warrant properly balanced physiological activities within the CNS; (2) underlying cause of demyelination and the structural and functional consequences of demyelination in axons following injury and disease; (3) the endogenous mechanisms of oligodendrocyte replacement; (4) the modulatory role of reactive astrocytes and inflammatory cells in remyelination; and (5) the current status of cell-based therapies for promoting remyelination. Careful elucidation of the cellular and molecular mechanisms of demyelination in the pathologic CNS is a key to better understanding the impact of remyelination for

  18. RADIOAUTOGRAPHIC STUDIES OF CHOLINE INCORPORATION INTO PERIPHERAL NERVE MYELIN

    PubMed Central

    Hendelman, Walter J.; Bunge, Richard P.

    1969-01-01

    This radioautographic study was designed to localize the cytological sites involved in the incorporation of a lipid precursor into the myelin and the myelin-related cell of the peripheral nervous system. Both myelinating and fully myelinated cultures of rat dorsal root ganglia were exposed to a 30-min pulse of tritiated choline and either fixed immediately or allowed 6 or 48 hr of chase incubation before fixation. After Epon embedding, light and electron microscopic radioautograms were prepared with Ilford L-4 emulsion. Analysis of the pattern of choline incorporation into myelinating cultures indicated that radioactivity appeared all along the length of the internode, without there being a preferential site of initial incorporation. Light microscopic radioautograms of cultures at varying states of maturity were compared in order to determine the relative degree of myelin labeling. This analysis indicated that the myelin-Schwann cell unit in the fully myelinated cultures incorporated choline as actively as did this unit in the myelinating cultures. Because of technical difficulties, it was not possible to determine the precise localization of the incorporated radioactivity within the compact myelin. These data are related to recent biochemical studies indicating that the mature myelin of the central nervous system does incorporate a significant amount of lipid precursor under the appropriate experimental conditions. These observations support the concept that a significant amount of myelin-related metabolic activity occurs in mature tissue; this activity is considered part of an essential and continuous process of myelin maintenance and repair. PMID:5782444

  19. Gene expression profile of the nucleus accumbens of human cocaine abusers: evidence for dysregulation of myelin

    PubMed Central

    Albertson, Dawn N.; Pruetz, Barb; Schmidt, Carl J.; Kuhn, Donald M.; Kapatos, Gregory; Bannon, Michael J.

    2008-01-01

    Chronic cocaine abuse induces long-term neural adaptations as a consequence of alterations in gene expression. This study was undertaken to identify those transcripts differentially regulated in the nucleus accumbens of human cocaine abusers. Affymetrix microarrays were used to measure transcript abundance in 10 cocaine abusers and 10 control subjects matched for age, race, sex, and brain pH. As expected, gene expression of cocaine- and amphetamine-regulated transcript (CART) was increased in the nucleus accumbens of cocaine abusers. The most robust and consistent finding, however, was a decrease in the expression of a number of myelin-related genes, including myelin basic protein (MBP), proteolipid protein (PLP), and myelin-associated oligodendrocyte basic protein (MOBP). The differential expression seen by microarray for CART as well as MBP, MOBP, and PLP was verified by RT–PCR. In addition, immunohistochemical experiments revealed a decrease in the number of MBP-immunoreactive oligodendrocytes present in the nucleus accumbens and surrounding white matter of cocaine abusers. These findings suggest a dysregulation of myelin in human cocaine abusers. PMID:15009677

  20. Dual-mode Modulation of Smad Signaling by Smad-interacting Protein Sip1 is Required for Myelination in the CNS

    PubMed Central

    Weng, Qinjie; Chen, Ying; Wang, Haibo; Xu, Xiaomei; Yang, Bo; He, Qiaojun; Shou, Weinian; Chen, Yan; Higashi, Yujiro; van den Berghe, Veronique; Seuntjens, Eve; Kernie, Steven G.; Bukshpun, Polina; Sherr, Elliott H.; Huylebroeck, Danny; Lu, Q. Richard

    2012-01-01

    Myelination by oligodendrocytes in the central nervous system (CNS) is essential for proper brain function, yet the molecular determinants that control this process remain poorly understood. The basic helix-loop-helix transcription factors Olig1 and Olig2 promote myelination, whereas bone morphogenetic protein (BMP) and Wnt/β-catenin signaling inhibit myelination. Here we show that these opposing regulators of myelination are functionally linked by the Olig1/2 common target Smad-interacting protein-1 (Sip1). We demonstrate that Sip1 is an essential modulator of CNS myelination. Sip1 represses differentiation inhibitory signals by antagonizing BMP receptor activated-Smad activity while activating crucial oligodendrocyte-promoting factors. Importantly, a key Sip1-activated target, Smad7, is required for oligodendrocyte differentiation, and partially rescues differentiation defects caused by Sip1 loss. Smad7 promotes myelination by blocking the BMP and β-catenin negative regulatory pathways. Thus, our findings reveal that Sip1-mediated antagonism of inhibitory signaling is critical for promoting CNS myelination and point to new mediators for myelin repair. PMID:22365546

  1. Dual-mode modulation of Smad signaling by Smad-interacting protein Sip1 is required for myelination in the central nervous system.

    PubMed

    Weng, Qinjie; Chen, Ying; Wang, Haibo; Xu, Xiaomei; Yang, Bo; He, Qiaojun; Shou, Weinian; Chen, Yan; Higashi, Yujiro; van den Berghe, Veronique; Seuntjens, Eve; Kernie, Steven G; Bukshpun, Polina; Sherr, Elliott H; Huylebroeck, Danny; Lu, Q Richard

    2012-02-23

    Myelination by oligodendrocytes in the central nervous system (CNS) is essential for proper brain function, yet the molecular determinants that control this process remain poorly understood. The basic helix-loop-helix transcription factors Olig1 and Olig2 promote myelination, whereas bone morphogenetic protein (BMP) and Wnt/β-catenin signaling inhibit myelination. Here we show that these opposing regulators of myelination are functionally linked by the Olig1/2 common target Smad-interacting protein-1 (Sip1). We demonstrate that Sip1 is an essential modulator of CNS myelination. Sip1 represses differentiation inhibitory signals by antagonizing BMP receptor-activated Smad activity while activating crucial oligodendrocyte-promoting factors. Importantly, a key Sip1-activated target, Smad7, is required for oligodendrocyte differentiation and partially rescues differentiation defects caused by Sip1 loss. Smad7 promotes myelination by blocking the BMP- and β-catenin-negative regulatory pathways. Thus, our findings reveal that Sip1-mediated antagonism of inhibitory signaling is critical for promoting CNS myelination and point to new mediators for myelin repair.

  2. Myelination changes in the rat optic nerve after prenatal exposure to methamphetamine.

    PubMed

    Melo, Pedro; Moreno, Vicente Zanón; Vázquez, Sheila Pons; Pinazo-Durán, Maria Dolores; Tavares, Maria Amélia

    2006-08-23

    The use of psychostimulants during adolescence and early adult life has increased in recent years. It is known that these substances affect the sensory systems, and the optic nerve has been shown to be a target tissue. This work was conducted to evaluate the effects of prenatal exposure to methamphetamine (MA) on the developmental pattern of the rat optic nerve. Pregnant female rats were given 5 mg/kg body weight/day MA, s.c., in 0.9% saline from gestational days 8 to 22. The control group was injected with an isovolumetric dose of 0.9% saline. Animal model parameters, such as gestational body weight evolution, food intake and pups parameters were registered. The offspring were sacrificed at postnatal days (PND) 7, 14 and 21. Morphometric analyses were performed at light and electron microscopic levels on optic nerve cross sections; parameters measured included optic nerve diameter and area, axonal density, total number of axons and myelin thickness. Myelin basic protein (MBP) was measured by western blotting in optic nerve samples at PND14 and PND21. The animal model parameters, such as maternal and pup weight, showed no significant differences between MA and control groups. Optic nerve diameter was smaller at PND7 in the male MA group and in both male and female MA groups at PND21. The mean cross-sectional area was smaller at PND14 in the male MA group and in both male and female groups at PND21. The total number of myelinated axons did not vary between groups at any of the studied ages. The myelin thickness of the axons in MA-treated females was thinner when compared with the respective control group at PND21. No other differences were found concerning myelin thickness. There was a reduction of MBP protein expression in MA-injected females at PND14 and PND21. The combined results suggest that prenatal exposure to MA affects the myelination process.

  3. Effect of leptin administration on myelination in ob/ob mouse cerebrum after birth.

    PubMed

    Hashimoto, Ryuju; Matsumoto, Akihiro; Udagawa, Jun; Hioki, Kyoji; Otani, Hiroki

    2013-01-09

    Brain weight and size are known to be reduced in adult leptin-deficient Lep/Lep (OB) mice when compared with the wild-type (+/+) mice (C57BL/6: B6). We here analyzed leptin's effects on myelination by examining morphometrically the myelin sheath (MS) in the cerebrum of postnatal day (P) 14 and P28 OB that had received leptin 1 nmol/capita/day from P7 to P14 or P28 (OB+lep), in comparison with OB and B6. We examined myelin basic protein (MBP) mRNA levels and the differentiation of oligodendrocytes by comparing the number of oligodendrocyte precursor cells (OPCs) and the mature oligodendrocytes in the cerebrum between OB, OB+lep, and B6 on P14 and P28. MBP-mRNA expression was lower in OB than in B6 on P14 and P28. On P14, it was higher in OB+lep than in OB but was still lower than in B6, whereas on P28 it was even higher in OB+lep than in B6. On P28, the radii of myelinated axons were larger in OB than in B6 and OB+lep. The MS on P28 was significantly thinner in OB than in B6, but there was no significant difference between OB and OB+lep. There were significantly fewer mature oligodendrocytes in OB and OB+lep than in B6 on P28, whereas on P14 there were significantly fewer OPCs in OB and OB+lep than in B6. Our results suggested that leptin regulates the myelination of oligodendrocytes and that the replenishment of leptin in OB recovered myelination but did not affect the differentiation of OPCs from P7 to P28.

  4. Alcohol Binge Drinking during Adolescence or Dependence during Adulthood Reduces Prefrontal Myelin in Male Rats

    PubMed Central

    Vargas, Wanette M.; Bengston, Lynn; Gilpin, Nicholas W.; Whitcomb, Brian W.

    2014-01-01

    Teen binge drinking is associated with low frontal white matter integrity and increased risk of alcoholism in adulthood. This neuropathology may result from alcohol exposure or reflect a pre-existing condition in people prone to addiction. Here we used rodent models with documented clinical relevance to adolescent binge drinking and alcoholism in humans to test whether alcohol damages myelinated axons of the prefrontal cortex. In Experiment 1, outbred male Wistar rats self-administered sweetened alcohol or sweetened water intermittently for 2 weeks during early adolescence. In adulthood, drinking behavior was tested under nondependent conditions or after dependence induced by 1 month of alcohol vapor intoxication/withdrawal cycles, and prefrontal myelin was examined 1 month into abstinence. Adolescent binge drinking or adult dependence induction reduced the size of the anterior branches of the corpus callosum, i.e., forceps minor (CCFM), and this neuropathology correlated with higher relapse-like drinking in adulthood. Degraded myelin basic protein in the gray matter medial to the CCFM of binge rats indicated myelin was damaged on axons in the mPFC. In follow-up studies we found that binge drinking reduced myelin density in the mPFC in adolescent rats (Experiment 2) and heavier drinking predicted worse performance on the T-maze working memory task in adulthood (Experiment 3). These findings establish a causal role of voluntary alcohol on myelin and give insight into specific prefrontal axons that are both sensitive to alcohol and could contribute to the behavioral and cognitive impairments associated with early onset drinking and alcoholism. PMID:25355229

  5. Alcohol binge drinking during adolescence or dependence during adulthood reduces prefrontal myelin in male rats.

    PubMed

    Vargas, Wanette M; Bengston, Lynn; Gilpin, Nicholas W; Whitcomb, Brian W; Richardson, Heather N

    2014-10-29

    Teen binge drinking is associated with low frontal white matter integrity and increased risk of alcoholism in adulthood. This neuropathology may result from alcohol exposure or reflect a pre-existing condition in people prone to addiction. Here we used rodent models with documented clinical relevance to adolescent binge drinking and alcoholism in humans to test whether alcohol damages myelinated axons of the prefrontal cortex. In Experiment 1, outbred male Wistar rats self-administered sweetened alcohol or sweetened water intermittently for 2 weeks during early adolescence. In adulthood, drinking behavior was tested under nondependent conditions or after dependence induced by 1 month of alcohol vapor intoxication/withdrawal cycles, and prefrontal myelin was examined 1 month into abstinence. Adolescent binge drinking or adult dependence induction reduced the size of the anterior branches of the corpus callosum, i.e., forceps minor (CCFM), and this neuropathology correlated with higher relapse-like drinking in adulthood. Degraded myelin basic protein in the gray matter medial to the CCFM of binge rats indicated myelin was damaged on axons in the mPFC. In follow-up studies we found that binge drinking reduced myelin density in the mPFC in adolescent rats (Experiment 2) and heavier drinking predicted worse performance on the T-maze working memory task in adulthood (Experiment 3). These findings establish a causal role of voluntary alcohol on myelin and give insight into specific prefrontal axons that are both sensitive to alcohol and could contribute to the behavioral and cognitive impairments associated with early onset drinking and alcoholism. Copyright © 2014 the authors 0270-6474/14/3414777-06$15.00/0.

  6. Chronic intermittent ethanol induced axon and myelin degeneration is attenuated by calpain inhibition

    PubMed Central

    Samantaray, Supriti; Knaryan, Varduhi H.; Patel, Kaushal S.; Mulholland, Patrick J.; Becker, Howard C.; Banik, Naren L.

    2015-01-01

    Chronic alcohol consumption causes multifaceted damage to the central nervous system (CNS), underlying mechanisms of which are gradually being unraveled. In our previous studies, activation of calpain, a calcium-activated neutral protease has been found to cause detrimental alterations in spinal motor neurons following ethanol (EtOH) exposure in vitro. However, it is not known whether calpain plays a pivotal role in chronic EtOH exposure-induced structural damage to CNS in vivo. To test the possible involvement of calpain in EtOH-associated neurodegenerative mechanisms the present investigation was conducted in a well-established mouse model of alcohol dependence - chronic intermittent EtOH (CIE) exposure and withdrawal. Our studies indicated significant loss of axonal proteins (neurofilament light and heavy, 50-60 %), myelin proteins (myelin basic protein, 20-40 % proteolipid protein, 25 %) and enzyme (2′, 3′-cyclic-nucleotide 3′-phosphodiesterase, 21-55 %) following CIE in multiple regions of brain including hippocampus, corpus callosum, cerebellum, and importantly in spinal cord. These CIE-induced deleterious effects escalated after withdrawal in each CNS region tested. Increased expression and activity of calpain along with enhanced ratio of active calpain to calpastatin (sole endogenous inhibitor) was observed after withdrawal compared to EtOH exposure. Pharmacological inhibition of calpain with calpeptin (25 μg/kg) prior to each EtOH vapor inhalation significantly attenuated damage to axons and myelin as demonstrated by immuno-profiles of axonal and myelin proteins, and Luxol Fast Blue staining. Calpain inhibition significantly protected the ultrastructural integrity of axons and myelin compared to control as confirmed by electron microscopy. Together, these findings confirm CIE exposure and withdrawal induced structural alterations in axons and myelin, predominantly after withdrawal and corroborate calpain inhibition as a potential protective strategy

  7. On the resemblance of synapse formation and CNS myelination.

    PubMed

    Almeida, R G; Lyons, D A

    2014-09-12

    The myelination of axons in the central nervous system (CNS) is essential for nervous system formation, function and health. CNS myelination continues well into adulthood, but not all axons become myelinated. Unlike the peripheral nervous system, where we know of numerous axon-glial signals required for myelination, we have a poor understanding of the nature or identity of such molecules that regulate which axons are myelinated in the CNS. Recent studies have started to elucidate cell behavior during myelination in vivo and indicate that the choice of which axons are myelinated is made prior to myelin sheath generation. Here we propose that interactions between axons and the exploratory processes of oligodendrocyte precursor cells (OPCs) lead to myelination and may be similar to those between dendrites and axons that prefigure and lead to synapse formation. Indeed axons and OPCs form synapses with striking resemblance to those of neurons, suggesting a similar mode of formation. We discuss families of molecules with specific functions at different stages of synapse formation and address studies that implicate the same factors during axon-OPC synapse formation and myelination. We also address the possibility that the function of such synapses might directly regulate the myelinating behavior of oligodendrocyte processes in vivo. In the future it may be of benefit to consider these similarities when taking a candidate-based approach to dissect mechanisms of CNS myelination. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. The oligodendrocyte-specific G protein-coupled receptor GPR17 is a cell-intrinsic timer of myelination.

    PubMed

    Chen, Ying; Wu, Heng; Wang, Shuzong; Koito, Hisami; Li, Jianrong; Ye, Feng; Hoang, Jenny; Escobar, Sabine S; Gow, Alexander; Arnett, Heather A; Trapp, Bruce D; Karandikar, Nitin J; Hsieh, Jenny; Lu, Q Richard

    2009-11-01

    The basic helix-loop-helix transcription factor Olig1 promotes oligodendrocyte maturation and is required for myelin repair. We characterized an Olig1-regulated G protein-coupled receptor, GPR17, whose function is to oppose the action of Olig1. Gpr17 was restricted to oligodendrocyte lineage cells, but was downregulated during the peak period of myelination and in adulthood. Transgenic mice with sustained Gpr17 expression in oligodendrocytes exhibited stereotypic features of myelinating disorders in the CNS. Gpr17 overexpression inhibited oligodendrocyte differentiation and maturation both in vivo and in vitro. Conversely, Gpr17 knockout mice showed early onset of oligodendrocyte myelination. The opposing action of Gpr17 on oligodendrocyte maturation reflects, at least partially, upregulation and nuclear translocation of the potent oligodendrocyte differentiation inhibitors ID2/4. Collectively, these findings suggest that GPR17 orchestrates the transition between immature and myelinating oligodendrocytes via an ID protein-mediated negative regulation and may serve as a potential therapeutic target for CNS myelin repair.

  9. Adult myelination: wrapping up neuronal plasticity

    PubMed Central

    O’Rourke, Megan; Gasperini, Robert; Young, Kaylene M.

    2014-01-01

    In this review, we outline the major neural plasticity mechanisms that have been identified in the adult central nervous system (CNS), and offer a perspective on how they regulate CNS function. In particular we examine how myelin plasticity can operate alongside neurogenesis and synaptic plasticity to influence information processing and transfer in the mature CNS. PMID:25221576

  10. Exposure to As, Cd and Pb-mixture impairs myelin and axon development in rat brain, optic nerve and retina.

    PubMed

    Rai, Nagendra Kumar; Ashok, Anushruti; Rai, Asit; Tripathi, Sachin; Nagar, Geet Kumar; Mitra, Kalyan; Bandyopadhyay, Sanghamitra

    2013-12-01

    Arsenic (As), lead (Pb) and cadmium (Cd) are the major metal contaminants of ground water in India. We have reported the toxic effect of their mixture (metal mixture, MM), at human relevant doses, on developing rat astrocytes. Astrocyte damage has been shown to be associated with myelin disintegration in CNS. We, therefore, hypothesized that the MM would perturb myelinating white matter in cerebral cortex, optic nerve (O.N.) and retina. We observed modulation in the levels of myelin and axon proteins, such as myelin basic protein (MBP), proteolipid protein, 2'-, 3'-cyclic-nucleotide-3'-phosphodiesterase, myelin-associated glycoprotein and neurofilament (NF) in the brain of developing rats. Dose and time-dependent synergistic toxic effect was noted. The MBP- and NF-immunolabeling, as well as luxol-fast blue (LFB) staining demonstrated a reduction in the area of intact myelin-fiber, and an increase in vacuolated axons, especially in the corpus-callosum. Transmission electron microscopy (TEM) of O.N. revealed a reduction in myelin thickness and axon-density. The immunolabeling with MBP, NF, and LFB staining in O.N. supported the TEM data. The hematoxylin and eosin staining of retina displayed a decrease in the thickness of nerve-fiber, plexiform-layer, and retinal ganglion cell (RGC) count. Investigating the mechanism revealed a loss in glutamine synthetase activity in the cerebral cortex and O.N., and a fall in the brain derived neurotrophic factor in retina. An enhanced apoptosis in MBP, NF and Brn3b-containing cells justified the diminution in myelinating axons in CNS. Our findings for the first time indicate white matter damage by MM, which may have significance in neurodevelopmental-pediatrics, neurotoxicology and retinal-cell biology.

  11. Gemfibrozil, a Lipid-lowering Drug, Increases Myelin Genes in Human Oligodendrocytes via Peroxisome Proliferator-activated Receptor-β*

    PubMed Central

    Jana, Malabendu; Mondal, Susanta; Gonzalez, Frank J.; Pahan, Kalipada

    2012-01-01

    An increase in CNS remyelination and a decrease in CNS inflammation are important steps to halt the progression of multiple sclerosis. Earlier studies have shown that gemfibrozil, a lipid-lowering drug, has anti-inflammatory properties. The current study identified another novel property of gemfibrozil in stimulating the expression of myelin-specific genes (myelin basic protein, myelin oligodendrocyte glycoprotein, 2′,3′-cyclic-nucleotide 3′-phosphodiesterase, and proteolipid protein (PLP)) in primary human oligodendrocytes, mixed glial cells, and spinal cord organotypic cultures. Although gemfibrozil is a known activator of peroxisome proliferator-activated receptor-α (PPAR-α), we were unable to detect PPAR-α in either gemfibrozil-treated or untreated human oligodendrocytes, and gemfibrozil increased the expression of myelin genes in oligodendrocytes isolated from both wild type and PPAR-α(−/−) mice. On the other hand, gemfibrozil markedly increased the expression of PPAR-β but not PPAR-γ. Consistently, antisense knockdown of PPAR-β, but not PPAR-γ, abrogated the stimulatory effect of gemfibrozil on myelin genes in human oligodendrocytes. Gemfibrozil also did not up-regulate myelin genes in oligodendroglia isolated from PPAR-β(−/−) mice. Chromatin immunoprecipitation analysis showed that gemfibrozil induced the recruitment of PPAR-β to the promoter of PLP and myelin oligodendrocyte glycoprotein genes in human oligodendrocytes. Furthermore, gemfibrozil treatment also led to the recruitment of PPAR-β to the PLP promoter in vivo in the spinal cord of experimental autoimmune encephalomyelitis mice and suppression of experimental autoimmune encephalomyelitis symptoms in PLP-T cell receptor transgenic mice. These results suggest that gemfibrozil stimulates the expression of myelin genes via PPAR-β and that gemfibrozil, a prescribed drug for humans, may find further therapeutic use in demyelinating diseases. PMID:22879602

  12. Aging and the myelinated fibers in prefrontal cortex and corpus callosum of the monkey.

    PubMed

    Peters, Alan; Sethares, Claire

    2002-01-14

    In the rhesus monkey, the myelin sheaths of nerve fibers in area 46 of prefrontal cortex and in splenium of the corpus callosum show age-related alterations in their structure. The alterations are of four basic types. Most common is splitting of the dense line of myelin sheaths to accommodate electron dense cytoplasm derived from the oligodendroglia. Less common are splits of the intraperiod line to form balloons or blisters that appear to contain fluid, the occurrence of sheaths with redundant myelin, and thick sheaths that are almost completely split so that one set of compact lamellae is surrounded by another set. But despite these alterations in the sheaths, few nerve fibers show axonal degeneration. To quantify the frequency of the age-related alterations in myelin, transversely sectioned nerve fibers from the splenium of the corpus callosum and from the vertical bundles of nerve fibers within area 46 were examined in electron photomicrographs. The material was taken from 19 monkeys, ranging between 5 and 35 years of age. It was found that the frequency of alterations in myelin sheaths from both locations correlates significantly with age. In area 46, the age-related alterations also significantly correlate (P < 0.001) with an overall assessment of impairment in cognition, i.e., the cognitive impairment index, displayed by individual monkeys. The correlation is also significant when only the old monkeys are considered as a group. A similar result was obtained previously in our examination of the effects of age on the myelin sheaths of nerve fibers in primary visual cortex (Peters et al. [2000] J Comp Neurol. 419:364-376). However, in the corpus callosum the myelin alterations correlate significantly with only one component of the cognitive impairment index, namely the delayed nonmatching to sample task with a 2-minute delay. It is proposed that age-related myelin alterations are ubiquitous and that the correlations between their frequency and impairments in

  13. Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves

    PubMed Central

    Gomez-Sanchez, Jose A.; Carty, Lucy; Iruarrizaga-Lejarreta, Marta; Palomo-Irigoyen, Marta; Varela-Rey, Marta; Griffith, Megan; Hantke, Janina; Macias-Camara, Nuria; Azkargorta, Mikel; Aurrekoetxea, Igor; De Juan, Virginia Gutiérrez; Jefferies, Harold B.J.; Aspichueta, Patricia; Elortza, Félix; Aransay, Ana M.; Martínez-Chantar, María L.; Baas, Frank; Mato, José M.; Mirsky, Rhona

    2015-01-01

    Although Schwann cell myelin breakdown is the universal outcome of a remarkably wide range of conditions that cause disease or injury to peripheral nerves, the cellular and molecular mechanisms that make Schwann cell–mediated myelin digestion possible have not been established. We report that Schwann cells degrade myelin after injury by a novel form of selective autophagy, myelinophagy. Autophagy was up-regulated by myelinating Schwann cells after nerve injury, myelin debris was present in autophagosomes, and pharmacological and genetic inhibition of autophagy impaired myelin clearance. Myelinophagy was positively regulated by the Schwann cell JNK/c-Jun pathway, a central regulator of the Schwann cell reprogramming induced by nerve injury. We also present evidence that myelinophagy is defective in the injured central nervous system. These results reveal an important role for inductive autophagy during Wallerian degeneration, and point to potential mechanistic targets for accelerating myelin clearance and improving demyelinating disease. PMID:26150392

  14. LINGO-1 antibody ameliorates myelin impairment and spatial memory deficits in experimental autoimmune encephalomyelitis mice.

    PubMed

    Sun, Jun-Jun; Ren, Qing-Guo; Xu, Lin; Zhang, Zhi-Jun

    2015-09-18

    More than 50% of multiple sclerosis patients develop cognitive impairment. However, the underlying mechanisms are still unclear, and there is no effective treatment. LINGO-1 (LRR and Ig domain containing NOGO receptor interacting protein 1) has been identified as an inhibitor of oligodendrocyte differentiation and myelination. Using the experimental autoimmune encephalomyelitis (EAE) mouse model, we assessed cognitive function at early and late stages of EAE, determined brain expression of myelin basic protein (MBP) and investigated whether the LINGO-1 antibody could restore deficits in learning and memory and ameliorate any loss of MBP. We found that deficits in learning and memory occurred in late EAE and identified decreased expression of MBP in the parahippocampal cortex (PHC) and fimbria-fornix. Moreover, the LINGO-1 antibody significantly improved learning and memory in EAE and partially restored MBP in PHC. Furthermore, the LINGO-1 antibody activated the AKT/mTOR signaling pathway regulating myelin growth. Our results suggest that demyelination in the PHC and fimbria-fornix might contribute to cognitive deficits and the LINGO-1 antibody could ameliorate these deficits by promoting myelin growth in the PHC. Our research demonstrates that LINGO-1 antagonism may be an effective approach to the treatment of the cognitive impairment of multiple sclerosis patients.

  15. Transcriptional and Epigenetic Regulation of Oligodendrocyte Development and Myelination in the Central Nervous System

    PubMed Central

    Emery, Ben; Lu, Q. Richard

    2015-01-01

    Central nervous system (CNS) myelination by oligodendrocytes (OLs) is a highly orchestrated process involving well-defined steps from specification of neural stem cells into proliferative OL precursors followed by terminal differentiation and subsequent maturation of these precursors into myelinating OLs. These specification and differentiation processes are mediated by profound global changes in gene expression, which are in turn subject to control by both extracellular signals and regulatory networks intrinsic to the OL lineage. Recently, basic transcriptional mechanisms that control OL differentiation and myelination have begun to be elucidated at the molecular level and on a genome scale. The interplay between transcription factors activated by differentiation-promoting signals and master regulators likely exerts a crucial role in controlling stage-specific progression of the OL lineage. In this review, we describe the current state of knowledge regarding the transcription factors and the epigenetic programs including histone methylation, acetylation, chromatin remodeling, micro-RNAs, and noncoding RNAs that regulate development of OLs and myelination. PMID:26134004

  16. Progesterone Synthesis in the Nervous System: Implications for Myelination and Myelin Repair

    PubMed Central

    Schumacher, Michael; Hussain, Rashad; Gago, Nathalie; Oudinet, Jean-Paul; Mattern, Claudia; Ghoumari, Abdel M.

    2011-01-01

    Progesterone is well known as a female reproductive hormone and in particular for its role in uterine receptivity, implantation, and the maintenance of pregnancy. However, neuroendocrine research over the past decades has established that progesterone has multiple functions beyond reproduction. Within the nervous system, its neuromodulatory and neuroprotective effects are much studied. Although progesterone has been shown to also promote myelin repair, its influence and that of other steroids on myelination and remyelination is relatively neglected. Reasons for this are that hormonal influences are still not considered as a central problem by most myelin biologists, and that neuroendocrinologists are not sufficiently concerned with the importance of myelin in neuron functions and viability. The effects of progesterone in the nervous system involve a variety of signaling mechanisms. The identification of the classical intracellular progesterone receptors as therapeutic targets for myelin repair suggests new health benefits for synthetic progestins, specifically designed for contraceptive use and hormone replacement therapies. There are also major advantages to use natural progesterone in neuroprotective and myelin repair strategies, because progesterone is converted to biologically active metabolites in nervous tissues and interacts with multiple target proteins. The delivery of progesterone however represents a challenge because of its first-pass metabolism in digestive tract and liver. Recently, the intranasal route of progesterone administration has received attention for easy and efficient targeting of the brain. Progesterone in the brain is derived from the steroidogenic endocrine glands or from local synthesis by neural cells. Stimulating the formation of endogenous progesterone is currently explored as an alternative strategy for neuroprotection, axonal regeneration, and myelin repair. PMID:22347156

  17. Signaling through ERK1/2 controls myelin thickness during myelin repair in the adult central nervous system.

    PubMed

    Fyffe-Maricich, Sharyl L; Schott, Alexandra; Karl, Molly; Krasno, Janet; Miller, Robert H

    2013-11-20

    Oligodendrocytes, the myelin-forming cells of the CNS, exquisitely tailor the thickness of individual myelin sheaths to the diameter of their target axons to maximize the speed of action potential propagation, thus ensuring proper neuronal connectivity and function. Following demyelinating injuries to the adult CNS, newly formed oligodendrocytes frequently generate new myelin sheaths. Following episodes of demyelination such as those that occur in patients with multiple sclerosis, however, the matching of myelin thickness to axon diameter fails leaving remyelinated axons with thin myelin sheaths potentially compromising function and leaving axons vulnerable to damage. How oligodendrocytes determine the appropriate thickness of myelin for an axon of defined size during repair is unknown and identifying the signals that regulate myelin thickness has obvious therapeutic implications. Here, we show that sustained activation of extracellular-regulated kinases 1 and 2 (ERK1/2) in oligodendrocyte lineage cells results in accelerated myelin repair after injury, and is sufficient for the generation of thick myelin sheaths around remyelinated axons in the adult mouse spinal cord. Our findings suggest a model where ERK1/2 MAP kinase signaling acts as a myelin thickness rheostat that instructs oligodendrocytes to generate axon-appropriate quantities of myelin.

  18. Transverse Magnetic Waves in Myelinated Nerves

    DTIC Science & Technology

    2007-11-02

    IN MYELINATED NERVES M. Mª Villapecellín-Cid1, L. Mª Roa2, and J. Reina-Tosina1 1Área de Teoría de la Señal y Comunicaciones , E.S. de Ingeniería...y Comunicaciones , E.S. de Ingeniería, University of Seville, Seville, Spain Performing Organization Report Number Sponsoring/Monitoring Agency Name(s

  19. Signaling Mechanisms Regulating Myelination in the Central Nervous System

    PubMed Central

    AHRENDSEN, Jared T.; MACKLIN, Wendy B.

    2014-01-01

    The precise and coordinated production of myelin is essential for proper development and function of the nervous system. Diseases that disrupt myelin, including multiple sclerosis (MS), cause significant functional disability. Current treatment aims to reduce the inflammatory component of the disease, thereby preventing damage resulting from demyelination. However, therapies are not yet available to improve natural repair processes after damage has already occurred. A thorough understanding of the signaling mechanisms that regulate myelin generation will improve our ability to enhance repair. In this review, we summarize the positive and negative regulators of myelination, focusing primarily on central nervous system myelination. Axon-derived signals, extracellular signals from both diffusible factors and the extracellular matrix, and intracellular signaling pathways within myelinating oligodendrocytes are discussed. Much more is known about the positive regulators that drive myelination, while less is known about the negative regulators that shift active myelination to myelin maintenance at the appropriate time. Therefore, we also provide new data on potential negative regulators of CNS myelination. PMID:23558589

  20. Uncompacted myelin lamellae in peripheral nerve biopsy.

    PubMed

    Vital, Claude; Vital, Anne; Bouillot, Sandrine; Favereaux, Alexandre; Lagueny, Alain; Ferrer, Xavier; Brechenmacher, Christiane; Petry, Klaus G

    2003-01-01

    Since 1979, the authors have studied 49 peripheral nerve biopsies presenting uncompacted myelin lamellae (UML). Based on the ultrastructural pattern of UML they propose a 3-category classification. The first category includes cases displaying regular UML, which was observed in 43 cases; it was more frequent in 9 cases with polyneuropathy organomegaly endocrinopathy m-protein skin changes (POEMS) syndrome as well as in 1 case of Charcot-Marie-Tooth 1B with a novel point mutation in the P0 gene. The second category consists of cases showing irregular UML, observed in 4 cases with IgM monoclonal gammopathy and anti-myelin-associated glycoprotein (MAG) activity. This group included 1 benign case and 3 B-cell malignant lymphomas. The third category is complex UML, which was present in 2 unrelated patients with an Arg 98 His missense mutation in the P0 protein gene. Irregular and complex UML are respectively related to MAG and P0, which play a crucial role in myelin lamellae compaction and adhesion.

  1. rMAL is a glycosphingolipid-associated protein of myelin and apical membranes of epithelial cells in kidney and stomach.

    PubMed

    Frank, M; van der Haar, M E; Schaeren-Wiemers, N; Schwab, M E

    1998-07-01

    rMAL, the rat myelin and lymphocyte protein, is a small hydrophobic protein of 17 kDa with four putative transmembrane domains and is expressed in oligodendrocytes and Schwann cells, the myelinating cells of the nervous system. In addition, transcript expression has been found in kidney, spleen, and intestine. Confocal microscopy and immunoelectron microscopy with an affinity-purified antibody localized rMAL to compact myelin in a pattern similar to the structural myelin proteins: myelin basic protein and proteolipid protein. In kidney and stomach epithelia, rMAL is located almost exclusively on the apical (luminal) membranes of the cells lining distal tubuli in kidney and the glandular part of the stomach. Biochemical analysis of plasma membranes isolated from spinal cord and kidney demonstrated that rMAL is a proteolipid that is present in detergent insoluble complexes typical for proteins associated with glycosphingolipids. Lipid and protein analysis showed a co-enrichment of glycosphingolipids and rMAL protein within these complexes, indicating a close association of rMAL to glycosphingolipids in myelin and in kidney in vivo. We conclude that specific rMAL-glycosphingolipid interactions may lead to the formation and maintenance of stable protein-lipid microdomains in myelin and apical epithelial membranes. They may contribute to specific properties of these highly specialized plasma membranes.

  2. Effects of maternal marginal zinc deficiency on myelin protein profiles in the suckling rat and infant rhesus monkey.

    PubMed

    Liu, H; Oteiza, P I; Gershwin, M E; Golub, M S; Keen, C L

    1992-07-01

    In the current study, the effects of marginal Zn deficiency on myelin protein profiles in neonatal rats and rhesus monkeys were investigated. Following mating, rats were fed a Zn-adequate diet, ad libitum (50 micrograms Zn/g; 50 Zn AL), or a marginal Zn diet (10 micrograms Zn/g) from day 0 (10 Zn d0) or day 14 (10 Zn d14) of gestation to day 20 postnatal. An additional group of dams was restricted-fed the control diet to the food intake of the 10 Zn d0 group (50 Zn RF). Day 20 pup plasma and liver Zn concentrations in the 10 Zn groups were lower than in the 50 Zn groups. In a parallel experiment, rhesus monkeys were fed a Zn-adequate ad libitum diet (100 micrograms Zn/g) or a marginal Zn diet (4 micrograms Zn/g diet; MZD) throughout gestation and lactation. Day 30 monkey infant plasma and liver Zn levels were similar in the MZD and control groups. Rat brain and monkey brain cortex weights were similar among the dietary groups. The amount of myelin recovered (mg protein/g brain) from day 20 rat pups from the 10 Zn groups was lower than that recovered from the 50 Zn rat pups. Myelin recovery from the MZD and control monkey infants was similar. When myelin protein profiles were characterized, it was found that the percentages of high-molecular-weight (HMW) proteins and Wolfgram protein were higher, whereas the percentages of small and large basic proteins were lower in myelin from the 10 Zn d0 and 50 Zn RF pups compared to the distribution in the 50 Zn AL rat pups. Results for the 10 Zn d0 and 10 Zn d14 pups were similar for all of the parameters studied. The percentage of HMW proteins was higher and that of basic protein lower in myelin from MZD monkey infants compared to the percentage of these proteins in myelin from controls. Although the interpretation of the rat data is complicated because of the anorexia associated with Zn deficiency, the observed changes in monkey myelin protein profiles provide strong evidence that maternal Zn deficiency affects myelination

  3. Adult Ceramide Synthase 2 (CERS2)-deficient Mice Exhibit Myelin Sheath Defects, Cerebellar Degeneration, and Hepatocarcinomas*

    PubMed Central

    Imgrund, Silke; Hartmann, Dieter; Farwanah, Hany; Eckhardt, Matthias; Sandhoff, Roger; Degen, Joachim; Gieselmann, Volkmar; Sandhoff, Konrad; Willecke, Klaus

    2009-01-01

    (Dihydro)ceramide synthase 2 (cers2, formerly called lass2) is the most abundantly expressed member of the ceramide synthase gene family, which includes six isoforms in mice. CERS2 activity has been reported to be specific toward very long fatty acid residues (C22–C24). In order to study the biological role of CERS2, we have inactivated its coding region in transgenic mice using gene-trapped embryonic stem cells that express lacZ reporter DNA under control of the cers2 promoter. The resulting mice lack ceramide synthase activity toward C24:1 in the brain as well as the liver and show only very low activity toward C18:0–C22:0 in liver and reduced activity toward C22:0 residues in the brain. In addition, these mice exhibit strongly reduced levels of ceramide species with very long fatty acid residues (≥C22) in the liver, kidney, and brain. From early adulthood on, myelin stainability is progressively lost, biochemically accompanied by about 50% loss of compacted myelin and 80% loss of myelin basic protein. Starting around 9 months, both the medullary tree and the internal granular layer of the cerebellum show significant signs of degeneration associated with the formation of microcysts. Predominantly in the peripheral nervous system, we observed vesiculation and multifocal detachment of the inner myelin lamellae in about 20% of the axons. Beyond 7 months, the CERS2-deficient mice developed hepatocarcinomas with local destruction of tissue architecture and discrete gaps in renal parenchyma. Our results indicate that CERS2 activity supports different biological functions: maintenance of myelin, stabilization of the cerebellar as well as renal histological architecture, and protection against hepatocarcinomas. PMID:19801672

  4. Adult ceramide synthase 2 (CERS2)-deficient mice exhibit myelin sheath defects, cerebellar degeneration, and hepatocarcinomas.

    PubMed

    Imgrund, Silke; Hartmann, Dieter; Farwanah, Hany; Eckhardt, Matthias; Sandhoff, Roger; Degen, Joachim; Gieselmann, Volkmar; Sandhoff, Konrad; Willecke, Klaus

    2009-11-27

    (Dihydro)ceramide synthase 2 (cers2, formerly called lass2) is the most abundantly expressed member of the ceramide synthase gene family, which includes six isoforms in mice. CERS2 activity has been reported to be specific toward very long fatty acid residues (C22-C24). In order to study the biological role of CERS2, we have inactivated its coding region in transgenic mice using gene-trapped embryonic stem cells that express lacZ reporter DNA under control of the cers2 promoter. The resulting mice lack ceramide synthase activity toward C24:1 in the brain as well as the liver and show only very low activity toward C18:0-C22:0 in liver and reduced activity toward C22:0 residues in the brain. In addition, these mice exhibit strongly reduced levels of ceramide species with very long fatty acid residues (>or=C22) in the liver, kidney, and brain. From early adulthood on, myelin stainability is progressively lost, biochemically accompanied by about 50% loss of compacted myelin and 80% loss of myelin basic protein. Starting around 9 months, both the medullary tree and the internal granular layer of the cerebellum show significant signs of degeneration associated with the formation of microcysts. Predominantly in the peripheral nervous system, we observed vesiculation and multifocal detachment of the inner myelin lamellae in about 20% of the axons. Beyond 7 months, the CERS2-deficient mice developed hepatocarcinomas with local destruction of tissue architecture and discrete gaps in renal parenchyma. Our results indicate that CERS2 activity supports different biological functions: maintenance of myelin, stabilization of the cerebellar as well as renal histological architecture, and protection against hepatocarcinomas.

  5. SWI/SNF enzymes promote SOX10- mediated activation of myelin gene expression.

    PubMed

    Marathe, Himangi G; Mehta, Gaurav; Zhang, Xiaolu; Datar, Ila; Mehrotra, Aanchal; Yeung, Kam C; de la Serna, Ivana L

    2013-01-01

    SOX10 is a Sry-related high mobility (HMG)-box transcriptional regulator that promotes differentiation of neural crest precursors into Schwann cells, oligodendrocytes, and melanocytes. Myelin, formed by Schwann cells in the peripheral nervous system, is essential for propagation of nerve impulses. SWI/SNF complexes are ATP dependent chromatin remodeling enzymes that are critical for cellular differentiation. It was recently demonstrated that the BRG1 subunit of SWI/SNF complexes activates SOX10 expression and also interacts with SOX10 to activate expression of OCT6 and KROX20, two transcriptional regulators of Schwann cell differentiation. To determine the requirement for SWI/SNF enzymes in the regulation of genes that encode components of myelin, which are downstream of these transcriptional regulators, we introduced SOX10 into fibroblasts that inducibly express dominant negative versions of the SWI/SNF ATPases, BRM or BRG1. Dominant negative BRM and BRG1 have mutations in the ATP binding site and inhibit gene activation events that require SWI/SNF function. Ectopic expression of SOX10 in cells derived from NIH 3T3 fibroblasts led to the activation of the endogenous Schwann cell specific gene, myelin protein zero (MPZ) and the gene that encodes myelin basic protein (MBP). Thus, SOX10 reprogrammed these cells into myelin gene expressing cells. Ectopic expression of KROX20 was not sufficient for activation of these myelin genes. However, KROX20 together with SOX10 synergistically activated MPZ and MBP expression. Dominant negative BRM and BRG1 abrogated SOX10 mediated activation of MPZ and MBP and synergistic activation of these genes by SOX10 and KROX20. SOX10 was required to recruit BRG1 to the MPZ locus. Similarly, in immortalized Schwann cells, BRG1 recruitment to SOX10 binding sites at the MPZ locus was dependent on SOX10 and expression of dominant negative BRG1 inhibited expression of MPZ and MBP in these cells. Thus, SWI/SNF enzymes cooperate with SOX10 to

  6. Iron Level and Myelin Content in the Ventral Striatum Predict Memory Performance in the Aging Brain

    PubMed Central

    Weiskopf, Nikolaus

    2016-01-01

    are accompanied by a negative correlation of iron and myelin in the ventral striatum, which predicted individual memory performance. As such, our findings provide unprecedented insights into the basic mechanisms of memory decline in the elderly. PMID:27013683

  7. Iron Level and Myelin Content in the Ventral Striatum Predict Memory Performance in the Aging Brain.

    PubMed

    Steiger, Tineke K; Weiskopf, Nikolaus; Bunzeck, Nico

    2016-03-23

    correlation of iron and myelin in the ventral striatum, which predicted individual memory performance. As such, our findings provide unprecedented insights into the basic mechanisms of memory decline in the elderly. Copyright © 2016 Steiger et al.

  8. In vivo longitudinal Myelin Water Imaging in rat spinal cord following dorsal column transection injury.

    PubMed

    Kozlowski, Piotr; Rosicka, Paulina; Liu, Jie; Yung, Andrew C; Tetzlaff, Wolfram

    2014-04-01

    Longitudinal Myelin Water Imaging was carried out in vivo to characterize white matter damage following dorsal column transection (DC Tx) injury at the lumbar level L1 of rat spinal cords. A transmit-receive implantable coil system was used to acquire multiple spin-echo (MSE) quantitative T2 data from the lumbar spinal cords of 16 rats at one week pre-injury as well as 3 and 8weeks post-injury (117 microns in-plane resolution and 1.5mm slice thickness). In addition, ex vivo MSE and DTI data were acquired from cords fixed and excised at 3 or 8weeks post injury using a solenoid coil. The MSE data were used to generate Myelin Water Fractions (MWFs) as a surrogate measure of myelin content, while DTI data were acquired to study damage to the axons. Myelin damage was assessed histologically with Eriochrome cyanine (EC) and Myelin Basic Protein in degenerated myelin (dgen-MBP) staining, and axonal damage was assessed by neurofilament-H in combination with neuron specific beta-III-tubulin (NF/Tub) staining. These MRI and histological measures of injury were studied in the dorsal column at 5mm cranial and 5mm caudal to injury epicenter. MWF increased significantly at 3weeks post-injury at both the cranial and caudal sites, relative to baseline. The values on the cranial side of injury returned to baseline at 8weeks post-injury but remained elevated on the caudal side. This trend was found in both in vivo and ex vivo data. This MWF increase was likely due to the presence of myelin debris, which were cleared by 8 weeks on the cranial, but not the caudal, side. Both EC and dgen-MBP stains displayed similar trends. MWF showed significant correlation with EC staining (R=0.63, p=0.005 in vivo and R=0.74, p=0.0001 ex vivo). MWF also correlated strongly with the dgen-MBP stain, but only on the cranial side (R=0.64, p=0.05 in vivo; R=0.63, p=0.038 ex vivo). This study demonstrates that longitudinal MWI in vivo can accurately characterize white matter damage in DC Tx model of injury

  9. Social Experience-Dependent Myelination: An Implication for Psychiatric Disorders

    PubMed Central

    Toritsuka, Michihiro; Kishimoto, Toshifumi

    2015-01-01

    Myelination is one of the strategies to promote the conduction velocity of axons in order to adjust to evolving environment in vertebrates. It has been shown that myelin formation depends on genetic programing and experience, including multiple factors, intracellular and extracellular molecules, and neuronal activities. Recently, accumulating studies have shown that myelination in the central nervous system changes more dynamically in response to neuronal activities and experience than expected. Among experiences, social experience-dependent myelination draws attention as one of the critical pathobiologies of psychiatric disorders. In this review, we summarize the mechanisms of neuronal activity-dependent and social experience-dependent myelination and discuss the contribution of social experience-dependent myelination to the pathology of psychiatric disorders. PMID:26078885

  10. Myelin figures: the buckling and flow of wet soap.

    PubMed

    Zou, Ling-Nan

    2009-06-01

    Myelin figures are interfacial structures formed when certain surfactants swell in excess water. Here, I present data and model calculations suggesting the formation and growth of myelins is due to the fluid flow of surfactant, driven by the hydration gradient at the dry surfactant/water interface; a simple model based on this idea qualitatively reproduces various myelin growth behaviors observed in different experiments. From a detailed experimental observation of how myelins develop from a planar precursor structure, I identify a mechanical instability that may underlie myelin formation. These results indicate the mixed mechanical character of the surfactant lamellar structure, where fluid and elastic properties coexist, is what enables the formation and growth of myelins.

  11. Myelin figures: The buckling and flow of wet soap

    NASA Astrophysics Data System (ADS)

    Zou, Ling-Nan

    2009-06-01

    Myelin figures are interfacial structures formed when certain surfactants swell in excess water. Here, I present data and model calculations suggesting the formation and growth of myelins is due to the fluid flow of surfactant, driven by the hydration gradient at the dry surfactant/water interface; a simple model based on this idea qualitatively reproduces various myelin growth behaviors observed in different experiments. From a detailed experimental observation of how myelins develop from a planar precursor structure, I identify a mechanical instability that may underlie myelin formation. These results indicate the mixed mechanical character of the surfactant lamellar structure, where fluid and elastic properties coexist, is what enables the formation and growth of myelins.

  12. Myelin structures formed by thermotropic smectic liquid crystals.

    PubMed

    Peddireddy, Karthik; Kumar, Pramoda; Thutupalli, Shashi; Herminghaus, Stephan; Bahr, Christian

    2013-12-17

    We report on transient structures, formed by thermotropic smectic-A liquid crystals, resembling the myelin figures of lyotropic lamellar liquid crystals. The thermotropic myelin structures form during the solubilization of a smectic-A droplet in an aqueous phase containing a cationic surfactant at concentrations above the critical micelle concentration. Similar to the lyotropic myelin figures, the thermotropic myelins appear in an optical microscope as flexible tubelike structures growing at the smectic/aqueous interface. Polarizing microscopy and confocal fluorescence microscopy show that the smectic layers are parallel to the tube surface and form a cylindrically bent arrangement around a central line defect in the tube. We study the growth behavior of this new type of myelins and discuss similarities to and differences from the classical lyotropic myelin figures.

  13. Endogenous glucocorticoids improve myelination via Schwann cells after peripheral nerve injury: An in vivo study using a crush injury model.

    PubMed

    Morisaki, Shinsuke; Nishi, Mayumi; Fujiwara, Hiroyoshi; Oda, Ryo; Kawata, Mitsuhiro; Kubo, Toshikazu

    2010-06-01

    Glucocorticoids improve the symptoms of peripheral nerve disorders, such as carpal tunnel syndrome and peripheral neuropathy. The effects of glucocorticoids are mainly anti-inflammatory, but the mechanisms of their effects in peripheral nerve disorders remain unclear. Schwann cells of the peripheral nerves express glucocorticoid receptors (GR), and glucocorticoids enhance the rate of myelin formation in vitro. Therefore, it is possible that the clinical improvement of peripheral nerve disorders by glucocorticoids is due, at least in part, to the modulation of myelination. In this study, an adrenalectomy (ADX) was performed, and followed by a daily injection of either low dose (1 mg/kg) or high dose (10 mg/kg) corticosterone (CORT). We then simulated a crush injury of the sciatic nerves. A sham ADX operation, followed by a simulated crush injury, was conducted as a control. Immunohistochemistry showed that the nuclei of in vivo Schwann cells expressed GR and that glucocorticoids impacted the GR immunoreactivity of the Schwann cells. The mRNA and protein expression of myelin basic protein was significantly lower in the animals given ADX with vehicle than in the sham operation group. However, the expression was restored in the low-dose CORT replacement group. Morphological analyses showed that the ADX with vehicle group had a significantly lower myelin thickness than did the low-dose CORT replacement group and the sham operation group. These results suggest that endogenous glucocorticoids have an important role in myelination through the GR in Schwann cells after an in vivo peripheral nerve injury.

  14. Myocilin is involved in NgR1/Lingo-1-mediated oligodendrocyte differentiation and myelination of the optic nerve.

    PubMed

    Kwon, Heung Sun; Nakaya, Naoki; Abu-Asab, Mones; Kim, Hong Sug; Tomarev, Stanislav I

    2014-04-16

    Myocilin is a secreted glycoprotein that belongs to a family of olfactomedin domain-containing proteins. Although myocilin is detected in several ocular and nonocular tissues, the only reported human pathology related to mutations in the MYOCILIN gene is primary open-angle glaucoma. Functions of myocilin are poorly understood. Here we demonstrate that myocilin is a mediator of oligodendrocyte differentiation and is involved in the myelination of the optic nerve in mice. Myocilin is expressed and secreted by optic nerve astrocytes. Differentiation of optic nerve oligodendrocytes is delayed in Myocilin-null mice. Optic nerves of Myocilin-null mice contain reduced levels of several myelin-associated proteins including myelin basic protein, myelin proteolipid protein, and 2'3'-cyclic nucleotide 3'-phosphodiesterase compared with those of wild-type littermates. This leads to reduced myelin sheath thickness of optic nerve axons in Myocilin-null mice compared with wild-type littermates, and this difference is more pronounced at early postnatal stages compared with adult mice. Myocilin also affects differentiation of oligodendrocyte precursors in vitro. Its addition to primary cultures of differentiating oligodendrocyte precursors increases levels of tested markers of oligodendrocyte differentiation and stimulates elongation of oligodendrocyte processes. Myocilin stimulation of oligodendrocyte differentiation occurs through the NgR1/Lingo-1 receptor complex. Myocilin physically interacts with Lingo-1 and may be considered as a Lingo-1 ligand. Myocilin-induced elongation of oligodendrocyte processes may be mediated by activation of FYN and suppression of RhoA GTPase.

  15. Myelin injury induces axonal transport impairment but not AD-like pathology in the hippocampus of cuprizone-fed mice

    PubMed Central

    Sun, Junjun; Zhou, Hong; Bai, Feng; Ren, Qingguo; Zhang, Zhijun

    2016-01-01

    Both multiple sclerosis (MS) and Alzheimer's disease (AD) are progressive neurological disorders with myelin injury and memory impairment. However, whether myelin impairment could cause AD-like neurological pathology remains unclear. To explore neurological pathology following myelin injury, we assessed cognitive function, the expression of myelin proteins, axonal transport-associated proteins, axonal structural proteins, synapse-associated proteins, tau and beta amyloid and the status of neurons, using the cuprizone mouse model of demyelination. We found the mild impairment of learning ability in cuprizone-fed mice and the decreased expression of myelin basic protein (MBP) in the hippocampus. And anti-LINGO-1 improved learning ability and partly restored MBP level. Furthermore, we also found kinesin light chain (KLC), neurofilament light chain (NFL) and neurofilament heavy chain (NF200) were declined in demyelinated hippocampus, which could be partly improved by treatment with anti-LINGO-1. However, we did not observe the increased expression of beta amyloid, hyperphosphorylation of tau and loss of neurons in demyelinated hippocampus. Our results suggest that demyelination might lead to the impairment of neuronal transport, but not cause increased level of hyperphosphorylated tau and beta amyloid. Our research demonstrates remyelination might be an effective pathway to recover the function of neuronal axons and cognition in MS. PMID:27129150

  16. Temporal and spatial expression of major myelin proteins in the human fetal spinal cord during the second trimester

    SciTech Connect

    Weidenheim, K.M.; Bodhireddy, S.R.; Rashbaum, W.K.; Lyman, W.D.

    1996-06-01

    Immunohistochemical identification of myelin basic protein (MBP) is a sensitive method for assessing myelination in the human fetal central nervous system (CNS). However, the temporospatial relationship of expression of two other major myelin proteins, proteolipid protein (PLP) and myelin-associated glycoprotein (MAG) to that of MBP during fetal development has not been assessed in human tissues. Vibratome sections of cervical, thoracic and lumbosacral levels from 37 normal spinal cords of {le} 10 to 24 gestational week (GW) fetuses were analyzed using immunohistochemical methods. Using light microscopy, MBP was the first oligodendrocyte marker detected, present by 10 GW at more rostral levels. PLP and MAG were detected rostrally between 12 to 14 GW. All myelin proteins were expressed in anterior to posterior and rostral to caudal gradients. By the late second trimester, expression of MBP, PLP and MAG was noted in all locations in the spinal white matter except for the corticospinal tract. Expression of MAG was particularly marked in the posterior root entry zone and propriospinal tracts. The results suggest that PLP and MAG are expressed later than MBP but follow similar spatial gradients. 44 refs., 11 figs., 2 tabs.

  17. Effect of recombinant Lactococcus lactis producing myelin peptides on neuroimmunological changes in rats with experimental allergic encephalomyelitis.

    PubMed

    Kasarełło, K; Szczepankowska, A; Kwiatkowska-Patzer, B; Lipkowski, A W; Gadamski, R; Sulejczak, D; Łachwa, M; Biały, M; Bardowski, J

    2016-01-01

    Multiple sclerosis (MS) is a human autoimmune neurodegenerative disease with an unknown etiology. Despite various therapies, there is no effective cure for MS. Since the mechanism of the disease is based on autoreactive T-cell responses directed against myelin antigens, oral tolerance is a promising approach for the MS treatment. Here, the experiments were performed to assess the impact of oral administration of recombinant Lactococcus lactis producing encephalogenic fragments of three myelin proteins: myelin basic protein, proteolipid protein, and myelin oligodendrocyte glycoprotein, on neuroimmunological changes in rats with experimental allergic encephalomyelitis (EAE) - an animal model of MS. Lactococcus lactis whole-cell lysates were administered intragastrically at two doses (103 and 106 colony forming units) in a twenty-fold feeding regimen to Lewis rats with EAE. Spinal cord slices were subjected to histopathological analysis and morphometric evaluation, and serum levels of cytokines (IL-1b, IL-10, TNF-α and IFN-γ) were measured. Results showed that administration of the L. lactis preparations at the tested doses to rats with EAE, diminished the histopathological changes observed in EAE rats and reduced the levels of serum IL-1b, IL-10 and TNF-α, previously increased by evoking EAE. This suggests that oral delivery of L. lactis producing myelin peptide fragments could be an alternative strategy to induce oral tolerance for the treatment of MS.

  18. Plasmalogen phospholipids protect internodal myelin from oxidative damage.

    PubMed

    Luoma, Adrienne M; Kuo, Fonghsu; Cakici, Ozgur; Crowther, Michelle N; Denninger, Andrew R; Avila, Robin L; Brites, Pedro; Kirschner, Daniel A

    2015-07-01

    Reactive oxygen species (ROS) are implicated in a range of degenerative conditions, including aging, neurodegenerative diseases, and neurological disorders. Myelin is a lipid-rich multilamellar sheath that facilitates rapid nerve conduction in vertebrates. Given the high energetic demands and low antioxidant capacity of the cells that elaborate the sheaths, myelin is considered intrinsically vulnerable to oxidative damage, raising the question whether additional mechanisms prevent structural damage. We characterized the structural and biochemical basis of ROS-mediated myelin damage in murine tissues from both central nervous system (CNS) and peripheral nervous system (PNS). To determine whether ROS can cause structural damage to the internodal myelin, whole sciatic and optic nerves were incubated ex vivo with a hydroxyl radical-generating system consisting of copper (Cu), hydrogen peroxide (HP), and ortho-phenanthroline (OP). Quantitative assessment of unfixed tissue by X-ray diffraction revealed irreversible compaction of myelin membrane stacking in both sciatic and optic nerves. Incubation in the presence of the hydroxyl radical scavenger sodium formate prevented this damage, implicating hydroxyl radical species. Myelin membranes are particularly enriched in plasmalogens, a class of ether-linked phospholipids proposed to have antioxidant properties. Myelin in sciatic nerve from plasmalogen-deficient (Pex7 knockout) mice was significantly more vulnerable to Cu/OP/HP-mediated ROS-induced compaction than myelin from WT mice. Our results directly support the role of plasmalogens as endogenous antioxidants providing a defense that protects ROS-vulnerable myelin. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Deciphering peripheral nerve myelination by using Schwann cell expression profiling.

    PubMed

    Nagarajan, Rakesh; Le, Nam; Mahoney, Heather; Araki, Toshiyuki; Milbrandt, Jeffrey

    2002-06-25

    Although mutations in multiple genes are associated with inherited demyelinating neuropathies, the molecular components and pathways crucial for myelination remain largely unknown. To approach this question, we performed genome-wide expression analysis in several paradigms where the status of peripheral nerve myelination is dynamically changing. Anchor gene correlation analysis, a form of microarray analysis that integrates functional information, using correlation-based clustering, with a statistically rigorous test, the Westfall and Young step-down algorithm, was applied to this data set. Biological pathways active in myelination, genes encoding proteins involved in myelin synthesis, and genes whose mutation results in myelination defects were identified. Many known genes and previously uncharacterized ESTs not heretofore associated with myelination were also identified. One of these ESTs, MASR (myelin-associated SUR4 protein), encodes a member of the SUR4 family of fatty acid desaturases, enzymes involved in elongation of very long chain fatty acids. Its specific localization in myelinating Schwann cells indicates a crucial role for MASR in normal myelin lipid synthesis.

  20. Zebrafish as a Model to Investigate CNS Myelination

    PubMed Central

    Preston, Marnie A.; Macklin, Wendy B.

    2015-01-01

    Myelin plays a critical role in proper neuronal function by providing trophic and metabolic support to axons and facilitating energy-efficient saltatory conduction. Myelination is influenced by numerous molecules including growth factors, hormones, transmembrane receptors and extracellular molecules, which activate signaling cascades that drive cellular maturation. Key signaling molecules and downstream signaling cascades controlling myelination have been identified in cell culture systems. However, in vitro systems are not able to faithfully replicate the complex in vivo signaling environment that occurs during development or following injury. Currently, it remains time-consuming and expensive to investigate myelination in vivo in rodents, the most widely used model for studying mammalian myelination. As such, there is a need for alternative in vivo myelination models, particularly ones that can test molecular mechanisms without removing oligodendrocyte lineage cells from their native signaling environment or disrupting intercellular interactions with other cell types present during myelination. Here, we review the ever-increasing role of zebrafish in studies uncovering novel mechanisms controlling vertebrate myelination. These innovative studies range from observations of the behavior of single cells during in vivo myelination as well as mutagenesis- and pharmacology-based screens in whole animals. Additionally, we discuss recent efforts to develop novel models of demyelination and oligodendrocyte cell death in adult zebrafish for the study of cellular behavior in real time during repair and regeneration of damaged nervous systems. PMID:25263121

  1. Acquired myelinated nerve fibers in association with optic disk drusen.

    PubMed

    Duval, Renaud; Hammamji, Karim; Aroichane, Maryam; Michaud, Jacques L; Ospina, Luis H

    2010-12-01

    Myelinated retinal nerve fibers are a well-recognized anomaly of the ocular fundus associated with many ocular and systemic conditions. Myelination is almost always congenital and stable, but progression has been documented in rare cases. Optic disk drusen are the result of a degenerative process at the optic nerve head and are often found incidentally on ophthalmologic examination. To our knowledge, optic disk drusen have only been reported once in association with acquired and progressive myelinated retinal nerve fibers. We present 2 such cases and consider the implications for the pathogenesis of myelinated nerve fibers.

  2. White matter rafting--membrane microdomains in myelin.

    PubMed

    Debruin, Lillian S; Harauz, George

    2007-02-01

    The myelin membrane comprises a plethora of regions that are compositionally, ultrastructurally, and functionally distinct. Biochemical dissection of oligodendrocytes, Schwann cells, and central and peripheral nervous system myelin by means such as cold-detergent extraction and differential fractionation has led to the identification of a variety of detergent-resistant membrane assemblies, some of which represent putative signalling platforms. We review here the different microdomains that have hitherto been identified in the myelin membrane, particularly lipid rafts, caveolae, and cellular junctions such as the tight junctions that are found in the radial component of the CNS myelin sheath.

  3. Interspecies variation in axon-myelin relationships.

    PubMed

    Fraher, J P; O'Sullivan, A W

    2000-01-01

    The primary objective of this paper was to determine the extent and nature of interspecies differences in axon calibre and myelin sheath thickness and in the various relationships between these. Morphometric analysis of the axon perimeter-myelin sheath thickness relationship was performed on an equivalent nerve fibre population in a mammal, the rat, a bird, the chicken, an amphibian, the frog, a bony fish, the trout, and a cartilaginous fish, the dogfish. The abducent nerve was studied. It is especially suitable for this purpose because its fibres are closely similar in type and in peripheral distribution across the species studied. The relationship differed substantially between species. Differences were present in its setting, as described by the positions of the scatterplots, in the g ratio and in the regression and correlation data relating the parameters. Both parameters were markedly larger in the fish species than in all of the others. In addition, in rat, chicken, frog and trout, where large and small fibre classes could be differentiated clearly, the setting of the relationship between the two parameters was different for the two classes. In the main, variation in each of the parameters was greater between than within species. The larger fibres in the fish species were closely similar in axon perimeter and sheath thickness despite their long evolutionary separation. From this study and from others in the series, it may be concluded that there is no fixed or constant relationship between axon calibre and the thickness of the surrounding myelin sheath. Each nerve tends to have its own particular relationship and this differs between species.

  4. Colchicine reduces myelin thickness and axoplasm volume.

    PubMed

    Hughes, S E; Sloan, H E; Jones, L B; Oakley, B

    1983-06-16

    A Silastic cuff containing either colchicine (1% w/v) or no colchicine was placed around the lingual disorder tympani nerve of the Mongolian gerbil. After 3 days of exposure to colchicine, the mean period of the myelin sheaths was 23% less than the period observed in nerves treated with cuffs lacking colchicine, while the average number of lamellae was unaltered. At the same time colchicine reduced the volume of axoplasm by an average of 19%, an effect which was independent of fiber diameter.

  5. KV1 channels identified in rodent myelinated axons, linked to Cx29 in innermost myelin: support for electrically active myelin in mammalian saltatory conduction

    PubMed Central

    Vanderpool, Kimberly G.; Yasumura, Thomas; Hickman, Jordan; Beatty, Jonathan T.; Nagy, James I.

    2016-01-01

    Saltatory conduction in mammalian myelinated axons was thought to be well understood before recent discoveries revealed unexpected subcellular distributions and molecular identities of the K+-conductance pathways that provide for rapid axonal repolarization. In this study, we visualize, identify, localize, quantify, and ultrastructurally characterize axonal KV1.1/KV1.2 channels in sciatic nerves of rodents. With the use of light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling electron microscopy, KV1.1/KV1.2 channels are localized to three anatomically and compositionally distinct domains in the internodal axolemmas of large myelinated axons, where they form densely packed “rosettes” of 9-nm intramembrane particles. These axolemmal KV1.1/KV1.2 rosettes are precisely aligned with and ultrastructurally coupled to connexin29 (Cx29) channels, also in matching rosettes, in the surrounding juxtaparanodal myelin collars and along the inner mesaxon. As >98% of transmembrane proteins large enough to represent ion channels in these specialized domains, ∼500,000 KV1.1/KV1.2 channels define the paired juxtaparanodal regions as exclusive membrane domains for the voltage-gated K+ conductance that underlies rapid axonal repolarization in mammals. The 1:1 molecular linkage of KV1 channels to Cx29 channels in the apposed juxtaparanodal collars, plus their linkage to an additional 250,000–400,000 Cx29 channels along each inner mesaxon in every large-diameter myelinated axon examined, supports previously proposed K+ conductance directly from juxtaparanodal axoplasm into juxtaparanodal myeloplasm in mammalian axons. With neither Cx29 protein nor myelin rosettes detectable in frog myelinated axons, these data showing axon-to-myelin linkage by abundant KV1/Cx29 channels in rodent axons support renewed consideration of an electrically active role for myelin in increasing both saltatory conduction velocity and maximum propagation frequency in

  6. Tuning PAK Activity to Rescue Abnormal Myelin Permeability in HNPP.

    PubMed

    Hu, Bo; Arpag, Sezgi; Zhang, Xuebao; Möbius, Wiebke; Werner, Hauke; Sosinsky, Gina; Ellisman, Mark; Zhang, Yang; Hamilton, Audra; Chernoff, Jonathan; Li, Jun

    2016-09-01

    Schwann cells in the peripheral nervous systems extend their membranes to wrap axons concentrically and form the insulating sheath, called myelin. The spaces between layers of myelin are sealed by myelin junctions. This tight insulation enables rapid conduction of electric impulses (action potentials) through axons. Demyelination (stripping off the insulating sheath) has been widely regarded as one of the most important mechanisms altering the action potential propagation in many neurological diseases. However, the effective nerve conduction is also thought to require a proper myelin seal through myelin junctions such as tight junctions and adherens junctions. In the present study, we have demonstrated the disruption of myelin junctions in a mouse model (Pmp22+/-) of hereditary neuropathy with liability to pressure palsies (HNPP) with heterozygous deletion of Pmp22 gene. We observed a robust increase of F-actin in Pmp22+/- nerve regions where myelin junctions were disrupted, leading to increased myelin permeability. These abnormalities were present long before segmental demyelination at the late phase of Pmp22+/- mice. Moreover, the increase of F-actin levels correlated with an enhanced activity of p21-activated kinase (PAK1), a molecule known to regulate actin polymerization. Pharmacological inhibition of PAK normalized levels of F-actin, and completely prevented the progression of the myelin junction disruption and nerve conduction failure in Pmp22+/- mice. Our findings explain how abnormal myelin permeability is caused in HNPP, leading to impaired action potential propagation in the absence of demyelination. We call it "functional demyelination", a novel mechanism upstream to the actual stripping of myelin that is relevant to many demyelinating diseases. This observation also provides a potential therapeutic approach for HNPP.

  7. Tuning PAK Activity to Rescue Abnormal Myelin Permeability in HNPP

    PubMed Central

    Hu, Bo; Zhang, Xuebao; Möbius, Wiebke; Werner, Hauke; Sosinsky, Gina; Ellisman, Mark; Zhang, Yang; Hamilton, Audra; Chernoff, Jonathan; Li, Jun

    2016-01-01

    Schwann cells in the peripheral nervous systems extend their membranes to wrap axons concentrically and form the insulating sheath, called myelin. The spaces between layers of myelin are sealed by myelin junctions. This tight insulation enables rapid conduction of electric impulses (action potentials) through axons. Demyelination (stripping off the insulating sheath) has been widely regarded as one of the most important mechanisms altering the action potential propagation in many neurological diseases. However, the effective nerve conduction is also thought to require a proper myelin seal through myelin junctions such as tight junctions and adherens junctions. In the present study, we have demonstrated the disruption of myelin junctions in a mouse model (Pmp22+/-) of hereditary neuropathy with liability to pressure palsies (HNPP) with heterozygous deletion of Pmp22 gene. We observed a robust increase of F-actin in Pmp22+/- nerve regions where myelin junctions were disrupted, leading to increased myelin permeability. These abnormalities were present long before segmental demyelination at the late phase of Pmp22+/- mice. Moreover, the increase of F-actin levels correlated with an enhanced activity of p21-activated kinase (PAK1), a molecule known to regulate actin polymerization. Pharmacological inhibition of PAK normalized levels of F-actin, and completely prevented the progression of the myelin junction disruption and nerve conduction failure in Pmp22+/- mice. Our findings explain how abnormal myelin permeability is caused in HNPP, leading to impaired action potential propagation in the absence of demyelination. We call it “functional demyelination”, a novel mechanism upstream to the actual stripping of myelin that is relevant to many demyelinating diseases. This observation also provides a potential therapeutic approach for HNPP. PMID:27583434

  8. Exposure to As, Cd and Pb-mixture impairs myelin and axon development in rat brain, optic nerve and retina

    SciTech Connect

    Rai, Nagendra Kumar; Ashok, Anushruti; Rai, Asit; Tripathi, Sachin; Nagar, Geet Kumar; Mitra, Kalyan; Bandyopadhyay, Sanghamitra

    2013-12-01

    Arsenic (As), lead (Pb) and cadmium (Cd) are the major metal contaminants of ground water in India. We have reported the toxic effect of their mixture (metal mixture, MM), at human relevant doses, on developing rat astrocytes. Astrocyte damage has been shown to be associated with myelin disintegration in CNS. We, therefore, hypothesized that the MM would perturb myelinating white matter in cerebral cortex, optic nerve (O.N.) and retina. We observed modulation in the levels of myelin and axon proteins, such as myelin basic protein (MBP), proteolipid protein, 2′-, 3′-cyclic-nucleotide-3′-phosphodiesterase, myelin-associated glycoprotein and neurofilament (NF) in the brain of developing rats. Dose and time-dependent synergistic toxic effect was noted. The MBP- and NF-immunolabeling, as well as luxol-fast blue (LFB) staining demonstrated a reduction in the area of intact myelin-fiber, and an increase in vacuolated axons, especially in the corpus-callosum. Transmission electron microscopy (TEM) of O.N. revealed a reduction in myelin thickness and axon-density. The immunolabeling with MBP, NF, and LFB staining in O.N. supported the TEM data. The hematoxylin and eosin staining of retina displayed a decrease in the thickness of nerve-fiber, plexiform-layer, and retinal ganglion cell (RGC) count. Investigating the mechanism revealed a loss in glutamine synthetase activity in the cerebral cortex and O.N., and a fall in the brain derived neurotrophic factor in retina. An enhanced apoptosis in MBP, NF and Brn3b-containing cells justified the diminution in myelinating axons in CNS. Our findings for the first time indicate white matter damage by MM, which may have significance in neurodevelopmental-pediatrics, neurotoxicology and retinal-cell biology. - Highlights: • As, Cd and Pb-mixture, at human relevant dose, demyelinate developing rat CNS. • The attenuation in myelin and axon is synergistic. • The optic nerve and brain demonstrate reduced glutamine synthetase.

  9. Detergent activation and solubilization of 2':3'-cyclic nucleotide 3'-phosphodiesterase from isolated myelin and c6 cells.

    PubMed Central

    Sims, N R; Horvath, L B; Carnegie, P R

    1979-01-01

    Several detergents were investigated for their ability to increase activity of 2':3'-cyclic nucleotide 3'-phosphodiesterase in isolated myelin. The ability of Triton X-100 and Sulfobetaine DLH to solubilize the enzyme was also examined. Solubilization with Triton X-100 was only effective in the presence of salt, for example with NaCl 51% of the activity was solubilized. A single extraction with Sulfobetaine DLH yielded slightly more solubilized enzyme and did not require added salt. Both activation and solubilization of 2':3'-cyclic nucleotide 3'-phosphodiesterase appeared to be similarly dependent on detergent concentration, suggesting a common action of the detergent in the two processes. Myelin basic protein was solubilized more readily than the enzyme. In contrast with the enzyme in myelin, 2':3'-cyclic nucleotide 3'-phosphodiesterase activity in C6 cells was not increased in the presence of Triton X-100, and was partially solubilized by either Triton X-100 or NaCl alone. No myelin basic protein could be detected in C6 cells by radioimmunoassay. PMID:227362

  10. Myelin Repair Strategies: A Cellular View

    PubMed Central

    Gallo, Vittorio; Armstrong, Regina

    2009-01-01

    Purpose of review The development of successful myelin repair strategies depends on the detailed knowledge of the cellular and molecular processes underlying demyelination and remyelination in the CNS of animal models and in patients with multiple sclerosis (MS). Based on the complexity of the demyelination and remyelination processes, it should be expected that effective therapeutic approaches will require a combination of strategies for immunomodulation, neuroprotection, and myelin replacement. This brief review highlights recent cellular and molecular findings and indicates that future therapeutic strategies to enhance remyelination may also require combinatorial treatment to accomplish. Recent findings The relapsing-remitting course of some forms of MS has typically fueled hope for effective repair of MS lesions if demyelinating activity could be attenuated. Recent findings support the potential of endogenous neural stem cells and progenitor cells to generate remyelinating oligodendrocytes. Importantly, interactions with viable axons and supportive astrocytic responses are required for endogenous immature cells to fulfill their potential remyelinating capacity. Summary The research described here will help in identifying the major obstacles to effective remyelination and potential therapeutic targets to guide development of comprehensive approaches for testing in animal models and eventual treatment of patients with MS. PMID:18451710

  11. The origin of the myelination program in vertebrates.

    PubMed

    Zalc, B; Goujet, D; Colman, D

    2008-06-24

    The myelin sheath was a transformative vertebrate acquisition, enabling great increases in impulse propagation velocity along axons. Not all vertebrates possess myelinated axons, however, and when myelin first appeared in the vertebrate lineage is an important open question. It has been suggested that the dual, apparently unrelated acquisitions of myelin and the hinged jaw were actually coupled in evolution [1,2]. If so, it would be expected that myelin was first acquired during the Devonian period by the oldest jawed fish, the placoderms [3]. Although myelin itself is not retained in the fossil record, within the skulls of fossilized Paleozoic vertebrate fish are exquisitely preserved imprints of cranial nerves and the foramina they traversed. Examination of these structures now suggests how the nerves functioned in vivo. In placoderms, the first hinge-jawed fish, oculomotor nerve diameters remained constant, but nerve lengths were ten times longer than in the jawless osteostraci. We infer that to accommodate this ten-fold increase in length, while maintaining a constant diameter, the oculomotor system in placoderms must have been myelinated to function as a rapidly conducting motor pathway. Placoderms were the first fish with hinged jaws and some can grow to formidable lengths, requiring a rapid conduction system, so it is highly likely that they were the first organisms with myelinated axons in the craniate lineage.

  12. A Functional High-Throughput Assay of Myelination in Vitro

    DTIC Science & Technology

    2014-07-01

    potential therapies for myelin disorders such as multiple sclerosis . Tissues engineered from human induced pluripotent stem (iPS) may be effective at...Human induced pluripotent stem cells , hydrogels, 3D culture, electrophysiology, high-throughput assay 16. SECURITY CLASSIFICATION OF: 17...or remyelination would substantially speed the development and testing of potential therapies for myelin disorders such as multiple sclerosis

  13. Cortical maturation and myelination in healthy toddlers and young children.

    PubMed

    Deoni, Sean C L; Dean, Douglas C; Remer, Justin; Dirks, Holly; O'Muircheartaigh, Jonathan

    2015-07-15

    The maturation of cortical structures, and the establishment of their connectivity, are critical neurodevelopmental processes that support and enable cognitive and behavioral functioning. Measures of cortical development, including thickness, curvature, and gyrification have been extensively studied in older children, adolescents, and adults, revealing regional associations with cognitive performance, and alterations with disease or pathology. In addition to these gross morphometric measures, increased attention has recently focused on quantifying more specific indices of cortical structure, in particular intracortical myelination, and their relationship to cognitive skills, including IQ, executive functioning, and language performance. Here we analyze the progression of cortical myelination across early childhood, from 1 to 6 years of age, in vivo for the first time. Using two quantitative imaging techniques, namely T1 relaxation time and myelin water fraction (MWF) imaging, we characterize myelination throughout the cortex, examine developmental trends, and investigate hemispheric and gender-based differences. We present a pattern of cortical myelination that broadly mirrors established histological timelines, with somatosensory, motor and visual cortices myelinating by 1 year of age; and frontal and temporal cortices exhibiting more protracted myelination. Developmental trajectories, defined by logarithmic functions (increasing for MWF, decreasing for T1), were characterized for each of 68 cortical regions. Comparisons of trajectories between hemispheres and gender revealed no significant differences. Results illustrate the ability to quantitatively map cortical myelination throughout early neurodevelopment, and may provide an important new tool for investigating typical and atypical development.

  14. Accelerated myelination along fiber tracts in patients with hemimegalencephaly.

    PubMed

    Kamiya, Kouhei; Sato, Noriko; Saito, Yuko; Nakata, Yasuhiro; Ito, Kimiteru; Shigemoto, Yoko; Ota, Miho; Sasaki, Masayuki; Ohtomo, Kuni

    2014-07-01

    In infants with hemimegalencephaly, asymmetrical white-matter intensities suggestive of advanced myelination are observed as well as aberrant midsagittal fibers (AMFs) specific to hemimegalencephaly. Also noted are otherwise unreported abnormally enlarged periventricular fibers (APVFs) running anteroposteriorly along the caudate nucleus. This study investigated the degree of myelination and presence of aberrant fibers in hemimegalencephaly through a retrospective review of MRI scans in relation to histopathological findings. MRI scans of 24 infants with hemimegalencephaly (13 boys and 11 girls, 1-9 months old) were evaluated, focusing on the presence and signal intensities of AMFs and APVFs. White-matter signal intensities on T1- and T2-weighted imaging of the cerebral hemisphere were also evaluated and compared with the timetable for normal myelination. Surgical specimens were pathologically examined with Klüver-Barrera staining in four patients. AMFs and APVFs were observed in 18 and nine patients, respectively, while 22 patients had accelerated myelination of the megalencephalic hemisphere that tended to extend along fiber pathways including AMFs and APVFs. In six cases, accelerated myelination even extended into the contralateral hemisphere via the corpus callosum or AMFs. Histopathological analysis identified hypermyelination with disarrayed myelinated fibers corresponding to MRI findings. Accelerated myelination is frequently observed in patients with hemimegalencephaly and tends to extend along fiber pathways, including aberrant or abnormal fibers, as seen in 75% of hemimegalencephaly patients. Accelerated myelination may reflect propagation pathways of abnormal brain activity in such patients. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  15. Cortical maturation and myelination in healthy toddlers and young children

    PubMed Central

    Deoni, Sean C.L.; Dean, Douglas C.; Remer, Justin; Dirks, Holly; O’Muircheartaigh, Jonathan

    2015-01-01

    The maturation of cortical structures, and the establishment of their connectivity, are critical neurodevelopmental processes that support and enable cognitive and behavioral functioning. Measures of cortical development, including thickness, curvature, and gyrification have been extensively studied in older children, adolescents, and adults, revealing regional associations with cognitive performance, and alterations with disease or pathology. In addition to these gross morphometric measures, increased attention has recently focused on quantifying more specific indices of cortical structure, in particular intracortical myelination, and their relationship to cognitive skills, including IQ, executive functioning, and language performance. Here we analyze the progression of cortical myelination across early childhood, from 1 to 6 years of age, in vivo for the first time. Using two quantitative imaging techniques, namely T1 relaxation time and myelin water fraction (MWF) imaging, we characterize myelination throughout the cortex, examine developmental trends, and investigate hemispheric and gender-based differences. We present a pattern of cortical myelination that broadly mirrors established histological timelines, with somatosensory, motor and visual cortices myelinating by 1 year of age; and frontal and temporal cortices exhibiting more protracted myelination. Developmental trajectories, defined by logarithmic functions (increasing for MWF, decreasing for T1), were characterized for each of 68 cortical regions. Comparisons of trajectories between hemispheres and gender revealed no significant differences. Results illustrate the ability to quantitatively map cortical myelination throughout early neurodevelopment, and may provide an important new tool for investigating typical and atypical development. PMID:25944614

  16. Proposed evolutionary changes in the role of myelin.

    PubMed

    Stiefel, Klaus M; Torben-Nielsen, Benjamin; Coggan, Jay S

    2013-01-01

    Myelin is the multi-layered lipid sheet periodically wrapped around neuronal axons. It is most frequently found in vertebrates. Myelin allows for saltatory action potential (AP) conduction along axons. During this form of conduction, the AP travels passively along the myelin-covered part of the axon, and is recharged at the intermittent nodes of Ranvier. Thus, myelin can reduce the energy load needed and/or increase the speed of AP conduction. Myelin first evolved during the Ordovician period. We hypothesize that myelin's first role was mainly energy conservation. During the later "Mesozoic marine revolution," marine ecosystems changed toward an increase in marine predation pressure. We hypothesize that the main purpose of myelin changed from energy conservation to conduction speed increase during this Mesozoic marine revolution. To test this hypothesis, we optimized models of myelinated axons for a combination of AP conduction velocity and energy efficiency. We demonstrate that there is a trade-off between these objectives. We then compared the simulation results to empirical data and conclude that while the data are consistent with the theory, additional measurements are necessary for a complete evaluation of the proposed hypothesis.

  17. Evaluation of dermal myelinated nerve fibers in diabetes mellitus

    PubMed Central

    Peltier, Amanda C.; Myers, M. Iliza; Artibee, Kay J.; Hamilton, Audra D.; Yan, Qing; Guo, Jiasong; Shi, Yaping; Wang, Lily; Li, Jun

    2013-01-01

    Skin biopsies have primarily been used to study the non-myelinated nerve fibers of the epidermis in a variety of neuropathies. In the present study, we have expanded the skin biopsy technique to glabrous, non-hairy skin to evaluate myelinated nerve fibers in the most highly prevalent peripheral nerve disease, diabetic polyneuropathy (DPN). Twenty patients with DPN (Type I, n=9; Type II, n=11) and sixteen age-matched healthy controls (ages 29–73) underwent skin biopsy of the index finger, nerve conduction studies, and composite neuropathy scoring. In patients with DPN, we found a statistically significant reduction of both mechanoreceptive Meissner corpuscles (MC) and their afferent myelinated nerve fibers (p=0.01). This myelinated nerve fiber loss was correlated with the decreased amplitudes of sensory/motor responses in nerve conduction studies. This study supports the utilization of skin biopsy to quantitatively evaluate axonal loss of myelinated nerve fibers in patients with DPN. PMID:23781963

  18. Evaluating dermal myelinated nerve fibers in skin biopsy

    PubMed Central

    Myers, M. Iliza; Peltier, Amanda C.; Li, Jun

    2012-01-01

    Although there has been extensive research on small, unmyelinated fibers in the skin, little research has investigated dermal myelinated fibers in comparison. Glabrous, non-hairy skin contains mechanoreceptors that afford a vantage point for observation of myelinated fibers that have previously been seen only with invasively obtained nerve biopsies. This review discusses current morphometric and molecular expression data of normative and pathogenic glabrous skin obtained by various processing and analysis methods for cutaneous myelinated fibers. Recent publications have shed light on the role of glabrous skin biopsy in identifying signs of peripheral neuropathy and as a potential biomarker of distal myelin and mechanoreceptor integrity. The clinical relevance of a better understanding of the role of dermal myelinated nerve terminations in peripheral neuropathy will be addressed in light of recent publications in the growing field of skin biopsy. PMID:23192899

  19. Neuronal activity biases axon selection for myelination in vivo

    PubMed Central

    Hines, Jacob H.; Ravanelli, Andrew M.; Schwindt, Rani; Scott, Ethan K.; Appel, Bruce

    2015-01-01

    An essential feature of vertebrate neural development is ensheathment of axons with myelin, an insulating membrane formed by oligodendrocytes. Not all axons are myelinated, but mechanisms directing myelination of specific axons are unknown. Using zebrafish we show that activity-dependent secretion stabilizes myelin sheath formation on select axons. When VAMP2-dependent exocytosis is silenced in single axons, oligodendrocytes preferentially ensheath neighboring axons. Nascent sheaths formed on silenced axons are shorter in length, but when activity of neighboring axons is also suppressed, inhibition of sheath growth is relieved. Using in vivo time-lapse microscopy, we show that only 25% of oligodendrocyte processes that initiate axon wrapping are stabilized during normal development, and that initiation does not require activity. Instead, oligodendrocyte processes wrapping silenced axons are retracted more frequently. We propose that axon selection for myelination results from excessive and indiscriminate initiation of wrapping followed by refinement that is biased by activity-dependent secretion from axons. PMID:25849987

  20. Robust myelin water quantification: averaging vs. spatial filtering.

    PubMed

    Jones, Craig K; Whittall, Kenneth P; MacKay, Alex L

    2003-07-01

    The myelin water fraction is calculated, voxel-by-voxel, by fitting decay curves from a multi-echo data acquisition. Curve-fitting algorithms require a high signal-to-noise ratio to separate T(2) components in the T(2) distribution. This work compared the effect of averaging, during acquisition, to data postprocessed with a noise reduction filter. Forty regions, from five volunteers, were analyzed. A consistent decrease in the myelin water fraction variability with no bias in the mean was found for all 40 regions. Images of the myelin water fraction of white matter were more contiguous and had fewer "holes" than images of myelin water fractions from unfiltered echoes. Spatial filtering was effective for decreasing the variability in myelin water fraction calculated from 4-average multi-echo data.

  1. Evaluation of dermal myelinated nerve fibers in diabetes mellitus.

    PubMed

    Peltier, Amanda C; Myers, M Iliza; Artibee, Kay J; Hamilton, Audra D; Yan, Qing; Guo, Jiasong; Shi, Yaping; Wang, Lily; Li, Jun

    2013-06-01

    Skin biopsies have primarily been used to study the non-myelinated nerve fibers of the epidermis in a variety of neuropathies. In this study, we have expanded the skin biopsy technique to glabrous, non-hairy skin to evaluate myelinated nerve fibers in the most highly prevalent peripheral nerve disease, diabetic polyneuropathy (DPN). Twenty patients with DPN (Type I, n = 9; Type II, n = 11) and 16 age-matched healthy controls (age 29-73) underwent skin biopsy of the index finger, nerve conduction studies (NCS), and composite neuropathy scoring. In patients with DPN, we found a statistically significant reduction of both mechanoreceptive Meissner corpuscles (MCs) and their afferent myelinated nerve fibers (p = 0.01). This myelinated nerve fiber loss was correlated with the decreased amplitudes of sensory/motor responses in NCS. This study supports the utilization of skin biopsy to quantitatively evaluate axonal loss of myelinated nerve fibers in patients with DPN.

  2. Unconventional myosin ID is expressed in myelinating oligodendrocytes.

    PubMed

    Yamazaki, Reiji; Ishibashi, Tomoko; Baba, Hiroko; Yamaguchi, Yoshihide

    2014-10-01

    Myelin is a dynamic multilamellar structure that ensheathes axons and is crucial for normal neuronal function. In the central nervous system (CNS), myelin is produced by oligodendrocytes that wrap many layers of plasma membrane around axons. The dynamic membrane trafficking system, which relies on motor proteins, is required for myelin formation and maintenance. Previously, we found that myosin ID (Myo1d), a class I myosin, is enriched in the rat CNS myelin fraction. Myo1d is an unconventional myosin and has been shown to be involved in membrane trafficking in the recycling pathway in an epithelial cell line. Western blotting revealed that Myo1d expression begins early in myelinogenesis and continues to increase into adulthood. The localization of Myo1d in CNS myelin has not been reported, and the function of Myo1d in vivo remains unknown. To demonstrate the expression of Myo1d in CNS myelin and to begin to explore the function of Myo1d in myelination, we produced a new antibody against Myo1d that has a high titer and specificity for rat Myo1d. By using this antibody, we demonstrated that Myo1d is expressed in rat CNS myelin and is especially abundant in abaxonal and adaxonal regions (the outer and inner cytoplasm-containing loops, respectively), but that expression is low in peripheral nervous system myelin. In culture, Myo1d was expressed in mature rat oligodendrocytes. Furthermore, an increase in expression of Myo1d during maturation of CNS white matter (cerebellum and corpus callosum) was demonstrated by histological analysis. These results suggest that Myo1d may be involved in the formation and/or maintenance of CNS myelin. © 2014 Wiley Periodicals, Inc.

  3. Assessing white matter ischemic damage in dementia patients by measurement of myelin proteins

    PubMed Central

    Barker, Rachel; Wellington, Dannielle; Esiri, Margaret M; Love, Seth

    2013-01-01

    White matter ischemia is difficult to quantify histologically. Myelin-associated glycoprotein (MAG) is highly susceptible to ischemia, being expressed only adaxonally, far from the oligodendrocyte cell body. Myelin-basic protein (MBP) and proteolipid protein (PLP) are expressed throughout the myelin sheath. We compared MAG, MBP, and PLP levels in parietal white matter homogenates from 17 vascular dementia (VaD), 49 Alzheimer's disease (AD), and 33 control brains, after assessing the post-mortem stability of these proteins. Small vessel disease (SVD) and cerebral amyloid angiopathy (CAA) severity had been assessed in paraffin sections. The concentration of MAG remained stable post-mortem, declined with increasing SVD, and was significantly lower in VaD than controls. The concentration of MBP fell progressively post-mortem, limiting its diagnostic utility in this context. Proteolipid protein was stable post-mortem and increased significantly with SVD severity. The MAG/PLP ratio declined significantly with SVD and CAA severity. The MAG and PLP levels and MAG/PLP did not differ significantly between AD and control brains. We validated the utility of MAG and MAG/PLP measurements on analysis of 74 frontal white matter samples from an Oxford cohort in which SVD had previously been scored. MAG concentration and the MAG/PLP ratio are useful post-mortem measures of ante-mortem white matter ischemia. PMID:23532085

  4. Individual axons regulate the myelinating potential of single oligodendrocytes in vivo

    PubMed Central

    Almeida, Rafael G.; Czopka, Tim; ffrench-Constant, Charles; Lyons, David A.

    2011-01-01

    The majority of axons in the central nervous system (CNS) are eventually myelinated by oligodendrocytes, but whether the timing and extent of myelination in vivo reflect intrinsic properties of oligodendrocytes, or are regulated by axons, remains undetermined. Here, we use zebrafish to study CNS myelination at single-cell resolution in vivo. We show that the large caliber Mauthner axon is the first to be myelinated (shortly before axons of smaller caliber) and that the presence of supernumerary large caliber Mauthner axons can profoundly affect myelination by single oligodendrocytes. Oligodendrocytes that typically myelinate just one Mauthner axon in wild type can myelinate multiple supernumerary Mauthner axons. Furthermore, oligodendrocytes that exclusively myelinate numerous smaller caliber axons in wild type can readily myelinate small caliber axons in addition to the much larger caliber supernumerary Mauthner axons. These data indicate that single oligodendrocytes can myelinate diverse axons and that their myelinating potential is actively regulated by individual axons. PMID:21880787

  5. The lateral membrane organization and dynamics of myelin proteins PLP and MBP are dictated by distinct galactolipids and the extracellular matrix.

    PubMed

    Ozgen, Hande; Schrimpf, Waldemar; Hendrix, Jelle; de Jonge, Jenny C; Lamb, Don C; Hoekstra, Dick; Kahya, Nicoletta; Baron, Wia

    2014-01-01

    In the central nervous system, lipid-protein interactions are pivotal for myelin maintenance, as these interactions regulate protein transport to the myelin membrane as well as the molecular organization within the sheath. To improve our understanding of the fundamental properties of myelin, we focused here on the lateral membrane organization and dynamics of peripheral membrane protein 18.5-kDa myelin basic protein (MBP) and transmembrane protein proteolipid protein (PLP) as a function of the typical myelin lipids galactosylceramide (GalC), and sulfatide, and exogenous factors such as the extracellular matrix proteins laminin-2 and fibronectin, employing an oligodendrocyte cell line, selectively expressing the desired galactolipids. The dynamics of MBP were monitored by z-scan point fluorescence correlation spectroscopy (FCS) and raster image correlation spectroscopy (RICS), while PLP dynamics in living cells were investigated by circular scanning FCS. The data revealed that on an inert substrate the diffusion rate of 18.5-kDa MBP increased in GalC-expressing cells, while the diffusion coefficient of PLP was decreased in sulfatide-containing cells. Similarly, when cells were grown on myelination-promoting laminin-2, the lateral diffusion coefficient of PLP was decreased in sulfatide-containing cells. In contrast, PLP's diffusion rate increased substantially when these cells were grown on myelination-inhibiting fibronectin. Additional biochemical analyses revealed that the observed differences in lateral diffusion coefficients of both proteins can be explained by differences in their biophysical, i.e., galactolipid environment, specifically with regard to their association with lipid rafts. Given the persistence of pathological fibronectin aggregates in multiple sclerosis lesions, this fundamental insight into the nature and dynamics of lipid-protein interactions will be instrumental in developing myelin regenerative strategies.

  6. Role of tumor necrosis factor-alpha in zebrafish retinal neurogenesis and myelination

    PubMed Central

    Lei, Xu-Dan; Sun, Yan; Cai, Shi-Jiao; Fang, Yang-Wu; Cui, Jian-Lin; Li, Yu-Hao

    2016-01-01

    AIM To investigate the role of tumor necrosis factor-alpha (TNF-α) in zebrafish retinal development and myelination. METHODS Morpholino oligonucleotides (MO), which are complementary to the translation start site of the wild-type embryonic zebrafish TNF-α mRNA sequence, were synthesized and injected into one- to four-cell embryos. The translation blocking specificity was verified by Western blotting using an anti-TNF-α antibody, whole-mount in situ hybridization using a hepatocyte-specific mRNA probe ceruloplasmin (cp), and co-injection of TNF-α MO and TNF-α mRNA. An atonal homolog 7 (atoh7) mRNA probe was used to detect neurogenesis onset. The retinal neurodifferentiation was analyzed by immunohistochemistry using antibodies Zn12, Zpr1, and Zpr3 to label ganglion cells, cones, and rods, respectively. Myelin basic protein (mbp) was used as a marker to track and observe the myelination using whole-mount in situ hybridization. RESULTS Targeted knockdown of TNF-α resulted in specific suppression of TNF-α expression and a severely underdeveloped liver. The co-injection of TNF-α MO and mRNA rescued the liver development. Retinal neurogenesis in TNF-α morphants was initiated on time. The retina was fully laminated, while ganglion cells, cones, and rods were well differentiated at 72 hours post-fertilization (hpf). mbp was expressed in Schwann cells in the lateral line nerves and cranial nerves from 3 days post-fertilization (dpf) as well as in oligodendrocytes linearly along the hindbrain bundles and the spinal cord from 4 dpf, which closely resembled its endogenous profile. CONCLUSION TNF-α is not an essential regulator for retinal neurogenesis and optic myelination. PMID:27366683

  7. Enhanced Expression of Trib3 during the Development of Myelin Breakdown in dmy Myelin Mutant Rats

    PubMed Central

    Shimotsuma, Yukako; Tanaka, Miyuu; Izawa, Takeshi; Yamate, Jyoji; Kuwamura, Mitsuru

    2016-01-01

    The demyelination (dmy) rat exhibits hind limb ataxia and severe myelin breakdown in the central nervous system. The causative gene of dmy rats is the MRS2 magnesium transporter gene. Tribbles homolog 3 (Trib3) is a pseudokinase molecule that modifies certain signal pathways, and its expression is increased in response to various stresses. Here we sought to clarify the mechanism of myelin breakdown by focusing Trib3, which is remarkably up-regulated in dmy rats. The expression of Trib3 mRNA was significantly increased at 4, 5, 6, 7 and 8 weeks of age in the dmy rats, prior to the prominent myelin breakdown between 7 and 10 weeks of age. The expression level of Trib3 was increased concurrently with the progression of the clinical and pathological conditions in the dmy rats. Double immunofluorescence demonstrated that TRIB3 was mainly expressed in neurons and oligodendrocytes and localized in the Golgi apparatus. Our findings indicate that Trib3 may be associated with the pathogenic mechanism of dmy rats. PMID:27977799

  8. Regulation of prefrontal cortex myelination by the microbiota.

    PubMed

    Hoban, A E; Stilling, R M; Ryan, F J; Shanahan, F; Dinan, T G; Claesson, M J; Clarke, G; Cryan, J F

    2016-04-05

    The prefrontal cortex (PFC) is a key region implicated in a range of neuropsychiatric disorders such as depression, schizophrenia and autism. In parallel, the role of the gut microbiota in contributing to these disorders is emerging. Germ-free (GF) animals, microbiota-deficient throughout life, have been instrumental in elucidating the role of the microbiota in many aspects of physiology, especially the role of the microbiota in anxiety-related behaviours, impaired social cognition and stress responsivity. Here we aim to further elucidate the mechanisms of the microbial influence by investigating changes in the homeostatic regulation of neuronal transcription of GF mice within the PFC using a genome-wide transcriptome profiling approach. Our results reveal a marked, concerted upregulation of genes linked to myelination and myelin plasticity. This coincided with upregulation of neural activity-induced pathways, potentially driving myelin plasticity. Subsequent investigation at the ultrastructural level demonstrated the presence of hypermyelinated axons within the PFC of GF mice. Notably, these changes in myelin and activity-related gene expression could be reversed by colonization with a conventional microbiota following weaning. In summary, we believe we demonstrate for the first time that the microbiome is necessary for appropriate and dynamic regulation of myelin-related genes with clear implications for cortical myelination at an ultrastructural level. The microbiota is therefore a potential therapeutic target for psychiatric disorders involving dynamic myelination in the PFC.

  9. Regulation of prefrontal cortex myelination by the microbiota

    PubMed Central

    Hoban, A E; Stilling, R M; Ryan, F J; Shanahan, F; Dinan, T G; Claesson, M J; Clarke, G; Cryan, J F

    2016-01-01

    The prefrontal cortex (PFC) is a key region implicated in a range of neuropsychiatric disorders such as depression, schizophrenia and autism. In parallel, the role of the gut microbiota in contributing to these disorders is emerging. Germ-free (GF) animals, microbiota-deficient throughout life, have been instrumental in elucidating the role of the microbiota in many aspects of physiology, especially the role of the microbiota in anxiety-related behaviours, impaired social cognition and stress responsivity. Here we aim to further elucidate the mechanisms of the microbial influence by investigating changes in the homeostatic regulation of neuronal transcription of GF mice within the PFC using a genome-wide transcriptome profiling approach. Our results reveal a marked, concerted upregulation of genes linked to myelination and myelin plasticity. This coincided with upregulation of neural activity-induced pathways, potentially driving myelin plasticity. Subsequent investigation at the ultrastructural level demonstrated the presence of hypermyelinated axons within the PFC of GF mice. Notably, these changes in myelin and activity-related gene expression could be reversed by colonization with a conventional microbiota following weaning. In summary, we believe we demonstrate for the first time that the microbiome is necessary for appropriate and dynamic regulation of myelin-related genes with clear implications for cortical myelination at an ultrastructural level. The microbiota is therefore a potential therapeutic target for psychiatric disorders involving dynamic myelination in the PFC. PMID:27045844

  10. Stimulation of Adult Oligodendrogenesis by Myelin-Specific T Cells

    PubMed Central

    Hvilsted Nielsen, Helle; Toft-Hansen, Henrik; Lambertsen, Kate Lykke; Owens, Trevor; Finsen, Bente

    2011-01-01

    In multiple sclerosis (MS), myelin-specific T cells are normally associated with destruction of myelin and axonal damage. However, in acute MS plaque, remyelination occurs concurrent with T-cell infiltration, which raises the question of whether T cells might stimulate myelin repair. We investigated the effect of myelin-specific T cells on oligodendrocyte formation at sites of axonal damage in the mouse hippocampal dentate gyrus. Infiltrating T cells specific for myelin proteolipid protein stimulated proliferation of chondroitin sulfate NG2–expressing oligodendrocyte precursor cells early after induction via axonal transection, resulting in a 25% increase in the numbers of oligodendrocytes. In contrast, T cells specific for ovalbumin did not stimulate the formation of new oligodendrocytes. In addition, infiltration of myelin-specific T cells enhanced the sprouting response of calretinergic associational/commissural fibers within the dentate gyrus. These results have implications for the perception of MS pathogenesis because they show that infiltrating myelin-specific T cells can stimulate oligodendrogenesis in the adult central nervous system. PMID:21872562

  11. Rapid Assessment of Internodal Myelin Integrity in CNS Tissue

    PubMed Central

    Kirschner, Daniel A.; Avila, Robin L.; Gamez Sazo, Rodolfo E.; Luoma, Adrienne; Enzmann, Gaby U.; Agrawal, Deepika; Inouye, Hideyo; Bunge, Mary Bartlett; Kocsis, Jeffery; Peters, Alan; Whittemore, Scott R.

    2009-01-01

    Monitoring pathology/regeneration in experimental models of de-/remyelination requires an accurate measure not only of functional changes but also of the amount of myelin. We tested whether x-ray diffraction (XRD), which measures periodicity in unfixed myelin, can assess the structural integrity of myelin in fixed tissue. From laboratories involved in spinal cord injury research and in studying the aging primate brain, we solicited “blind” samples and used an electronic detector to rapidly record diffraction patterns (30 minutes each pattern) from them. We assessed myelin integrity by measuring its periodicity and relative amount. Fixation of tissue itself introduced ±10% variation in periodicity and ±40% variation in relative amount of myelin. For samples having the most native-like periods the relative amounts of myelin detected allowed distinctions to be made between normal vs. demyelinating segments and motor vs. sensory tracts within the spinal cord, and aged vs. young primate CNS. Different periodicities also allowed distinctions to be made between samples from spinal cord and nerve roots, and between well-fixed vs. poorly-fixed samples. Our findings suggest that in addition to evaluating the effectiveness of different fixatives, XRD could also be used as a robust and rapid technique for quantitating the relative amount of myelin among spinal cords and other CNS tissue samples from experimental models of de- and remyelination. PMID:19795370

  12. A role for nociceptive, myelinated nerve fibers in itch sensation

    PubMed Central

    Ringkamp, M.; Schepers, R. J.; Shimada, S.G.; Johanek, L.M.; Hartke, T.V.; Borzan, J.; Shim, B.; LaMotte, R.H.; Meyer, R.A.

    2011-01-01

    Despite its clinical importance, the underlying neural mechanisms of itch sensation are poorly understood. In many diseases, pruritus is not effectively treated with antihistamines, indicating the involvement of non-histaminergic mechanisms. To investigate the role of small myelinated afferents in non-histaminergic itch, we tested, in psychophysical studies in humans, the effect of a differential nerve block on itch produced by intradermal insertion of spicules from the pods of a cowhage plant (Mucuna pruriens). Electrophysiological experiments in anesthetized monkey were used to investigate the responsiveness of cutaneous, nociceptive, myelinated afferents to different chemical stimuli (cowhage spicules, histamine, capsaicin). Our results provide several lines of evidence for an important role of myelinated fibers in cowhage-induced itch: 1) a selective conduction block in myelinated fibers substantially reduces itch in a sub-group of subjects with A-fiber dominated itch, 2) the time course of itch sensation differs between subjects with A-fiber versus C-fiber dominated itch, 3) cowhage activates a subpopulation of myelinated and unmyelinated afferents in monkey, 4) the time course of the response to cowhage is different in myelinated and unmyelinated fibers, 5) the time of peak itch sensation for subjects with A-fiber dominated itch matches the time for peak response in myelinated fibers, and 6) the time for peak itch sensation for subjects with C-fiber dominated itch matches the time for the peak response in unmyelinated fibers. These findings demonstrate that activity in nociceptive, myelinated afferents contributes to cowhage-induced sensations, and that non-histaminergic itch is mediated through activity in both unmyelinated and myelinated afferents. PMID:22016517

  13. Evolution of the CNS myelin gene regulatory program.

    PubMed

    Li, Huiliang; Richardson, William D

    2016-06-15

    Myelin is a specialized subcellular structure that evolved uniquely in vertebrates. A myelinated axon conducts action potentials many times faster than an unmyelinated axon of the same diameter; for the same conduction speed, the unmyelinated axon would need a much larger diameter and volume than its myelinated counterpart. Hence myelin speeds information transfer and saves space, allowing the evolution of a powerful yet portable brain. Myelination in the central nervous system (CNS) is controlled by a gene regulatory program that features a number of master transcriptional regulators including Olig1, Olig2 and Myrf. Olig family genes evolved from a single ancestral gene in non-chordates. Olig2, which executes multiple functions with regard to oligodendrocyte identity and development in vertebrates, might have evolved functional versatility through post-translational modification, especially phosphorylation, as illustrated by its evolutionarily conserved serine/threonine phospho-acceptor sites and its accumulation of serine residues during more recent stages of vertebrate evolution. Olig1, derived from a duplicated copy of Olig2 in early bony fish, is involved in oligodendrocyte development and is critical to remyelination in bony vertebrates, but is lost in birds. The origin of Myrf orthologs might be the result of DNA integration between an invading phage or bacterium and an early protist, producing a fusion protein capable of self-cleavage and DNA binding. Myrf seems to have adopted new functions in early vertebrates - initiation of the CNS myelination program as well as the maintenance of mature oligodendrocyte identity and myelin structure - by developing new ways to interact with DNA motifs specific to myelin genes. This article is part of a Special Issue entitled SI: Myelin Evolution. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. A role for nociceptive, myelinated nerve fibers in itch sensation.

    PubMed

    Ringkamp, Matthias; Schepers, Raf J; Shimada, Steven G; Johanek, Lisa M; Hartke, Timothy V; Borzan, Jasenka; Shim, Beom; LaMotte, Robert H; Meyer, Richard A

    2011-10-19

    Despite its clinical importance, the underlying neural mechanisms of itch sensation are poorly understood. In many diseases, pruritus is not effectively treated with antihistamines, indicating the involvement of nonhistaminergic mechanisms. To investigate the role of small myelinated afferents in nonhistaminergic itch, we tested, in psychophysical studies in humans, the effect of a differential nerve block on itch produced by intradermal insertion of spicules from the pods of a cowhage plant (Mucuna pruriens). Electrophysiological experiments in anesthetized monkey were used to investigate the responsiveness of cutaneous, nociceptive, myelinated afferents to different chemical stimuli (cowhage spicules, histamine, capsaicin). Our results provide several lines of evidence for an important role of myelinated fibers in cowhage-induced itch: (1) a selective conduction block in myelinated fibers substantially reduces itch in a subgroup of subjects with A-fiber-dominated itch, (2) the time course of itch sensation differs between subjects with A-fiber- versus C-fiber-dominated itch, (3) cowhage activates a subpopulation of myelinated and unmyelinated afferents in monkey, (4) the time course of the response to cowhage is different in myelinated and unmyelinated fibers, (5) the time of peak itch sensation for subjects with A-fiber-dominated itch matches the time for peak response in myelinated fibers, and (6) the time for peak itch sensation for subjects with C-fiber-dominated itch matches the time for the peak response in unmyelinated fibers. These findings demonstrate that activity in nociceptive, myelinated afferents contributes to cowhage-induced sensations, and that nonhistaminergic itch is mediated through activity in both unmyelinated and myelinated afferents.

  15. A unified cell biological perspective on axon–myelin injury

    PubMed Central

    2014-01-01

    Demyelination and axon loss are pathological hallmarks of the neuroinflammatory disorder multiple sclerosis (MS). Although we have an increasingly detailed understanding of how immune cells can damage axons and myelin individually, we lack a unified view of how the axon–myelin unit as a whole is affected by immune-mediated attack. In this review, we propose that as a result of the tight cell biological interconnection of axons and myelin, damage to either can spread, which might convert a local inflammatory disease process early in MS into the global progressive disorder seen during later stages. This mode of spreading could also apply to other neurological disorders. PMID:25092654

  16. The phylogeny of invertebrates and the evolution of myelin.

    PubMed

    Roots, Betty I

    2008-05-01

    Current concepts of invertebrate phylogeny are reviewed. Annelida and Arthropoda, previously regarded as closely related, are now placed in separate clades. Myelin, a sheath of multiple layers of membranes around nerve axons, is found in members of the Annelida, Arthropoda and Chordata. The structure, composition and function of the sheaths in Annelida and Arthropoda are examined and evidence for the separate evolutionary origins of myelin in the three clades is presented. That myelin has arisen independently at least three times, namely in Annelids, Arthropodas and Chordates, provides a remarkable example of convergent evolution.

  17. The Major Myelin-Resident Protein PLP Is Transported to Myelin Membranes via a Transcytotic Mechanism: Involvement of Sulfatide

    PubMed Central

    Ozgen, Hande; Klunder, Bert; de Jonge, Jenny C.; Nomden, Anita; Plat, Annechien; Trifilieff, Elisabeth; de Vries, Hans; Hoekstra, Dick

    2014-01-01

    Myelin membranes are sheet-like extensions of oligodendrocytes that can be considered membrane domains distinct from the cell's plasma membrane. Consistent with the polarized nature of oligodendrocytes, we demonstrate that transcytotic transport of the major myelin-resident protein proteolipid protein (PLP) is a key element in the mechanism of myelin assembly. Upon biosynthesis, PLP traffics to myelin membranes via syntaxin 3-mediated docking at the apical-surface-like cell body plasma membrane, which is followed by subsequent internalization and transport to the basolateral-surface-like myelin sheet. Pulse-chase experiments, in conjunction with surface biotinylation and organelle fractionation, reveal that following biosynthesis, PLP is transported to the cell body surface in Triton X-100 (TX-100)-resistant microdomains. At the plasma membrane, PLP transiently resides within these microdomains and its lateral dissipation is followed by segregation into 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS)-resistant domains, internalization, and subsequent transport toward the myelin membrane. Sulfatide triggers PLP's reallocation from TX-100- into CHAPS-resistant membrane domains, while inhibition of sulfatide biosynthesis inhibits transcytotic PLP transport. Taking these findings together, we propose a model in which PLP transport to the myelin membrane proceeds via a transcytotic mechanism mediated by sulfatide and characterized by a conformational alteration and dynamic, i.e., transient, partitioning of PLP into distinct membrane microdomains involved in biosynthetic and transcytotic transport. PMID:25368380

  18. Autophagy Is Involved in the Reduction of Myelinating Schwann Cell Cytoplasm during Myelin Maturation of the Peripheral Nerve

    PubMed Central

    Jang, So Young; Shin, Yoon Kyung; Park, So Young; Park, Joo Youn; Rha, Seo-Hee; Kim, Jong Kuk; Lee, Hye Jeong; Park, Hwan Tae

    2015-01-01

    Peripheral nerve myelination involves dynamic changes in Schwann cell morphology and membrane structure. Recent studies have demonstrated that autophagy regulates organelle biogenesis and plasma membrane dynamics. In the present study, we investigated the role of autophagy in the development and differentiation of myelinating Schwann cells during sciatic nerve myelination. Electron microscopy and biochemical assays have shown that Schwann cells remove excess cytoplasmic organelles during myelination through macroautophagy. Inhibition of autophagy via Schwann cell-specific removal of ATG7, an essential molecule for macroautophagy, using a conditional knockout strategy, resulted in abnormally enlarged abaxonal cytoplasm in myelinating Schwann cells that contained a large number of ribosomes and an atypically expanded endoplasmic reticulum. Small fiber hypermyelination and minor anomalous peripheral nerve functions are observed in this mutant. Rapamycin-induced suppression of mTOR activity during the early postnatal period enhanced not only autophagy but also developmental reduction of myelinating Schwann cells cytoplasm in vivo. Together, our findings suggest that autophagy is a regulatory mechanism of Schwann cells structural plasticity during myelination. PMID:25581066

  19. Autophagy is involved in the reduction of myelinating Schwann cell cytoplasm during myelin maturation of the peripheral nerve.

    PubMed

    Jang, So Young; Shin, Yoon Kyung; Park, So Young; Park, Joo Youn; Rha, Seo-Hee; Kim, Jong Kuk; Lee, Hye Jeong; Park, Hwan Tae

    2015-01-01

    Peripheral nerve myelination involves dynamic changes in Schwann cell morphology and membrane structure. Recent studies have demonstrated that autophagy regulates organelle biogenesis and plasma membrane dynamics. In the present study, we investigated the role of autophagy in the development and differentiation of myelinating Schwann cells during sciatic nerve myelination. Electron microscopy and biochemical assays have shown that Schwann cells remove excess cytoplasmic organelles during myelination through macroautophagy. Inhibition of autophagy via Schwann cell-specific removal of ATG7, an essential molecule for macroautophagy, using a conditional knockout strategy, resulted in abnormally enlarged abaxonal cytoplasm in myelinating Schwann cells that contained a large number of ribosomes and an atypically expanded endoplasmic reticulum. Small fiber hypermyelination and minor anomalous peripheral nerve functions are observed in this mutant. Rapamycin-induced suppression of mTOR activity during the early postnatal period enhanced not only autophagy but also developmental reduction of myelinating Schwann cells cytoplasm in vivo. Together, our findings suggest that autophagy is a regulatory mechanism of Schwann cells structural plasticity during myelination.

  20. Structure-function analysis of protein complexes involved in the molecular architecture of juxtaparanodal regions of myelinated fibers.

    PubMed

    Tzimourakas, Alexandros; Giasemi, Sevasti; Mouratidou, Maria; Karagogeos, Domna

    2007-05-01

    Demyelinating disorders, including multiple sclerosis (MS), are common causes of neurological disability. One critical step towards the management and therapy of demyelinating diseases is to understand the basic functions of myelinating glia and their relationship with axons. Axons and myelinating glia, oligodendrocytes in the central (CNS) and Schwann cells in the peripheral (PNS) nervous systems, reciprocally influence each other's development and trophism. These interactions are critical for the formation of distinct axonal domains in myelinated fibers that ensure the rapid propagation of action potentials. Macromolecular complexes mediating axo-glial interactions in these domains have been identified, consisting of members of the immunoglobulin superfamily (IgSF) of adhesion molecules and the neurexin/NCP superfamily as well as other proteins. We have investigated the molecular details of axo-glial interactions in the juxtaparanodal region of myelinated fibers by utilizing domain-specific GFP constructs and immunoprecipitation assays on transfected cells. We have shown that the immunoglobulin domains of the IgSF member TAG-1/Cnt-2 are necessary and sufficient for the direct, cis interaction of this protein with Caspr2 and potassium channels.

  1. A simple protocol for paraffin-embedded myelin sheath staining with osmium tetroxide for light microscope observation.

    PubMed

    Di Scipio, Federica; Raimondo, Stefania; Tos, Pierluigi; Geuna, Stefano

    2008-07-01

    Experimental investigation of peripheral nerve fiber regeneration is attracting more and more attention among both basic and clinical researchers. Assessment of myelinated nerve fiber morphology is a pillar of peripheral nerve regeneration research. The gold standard for light microscopic imaging of myelinated nerve fibers is toluidine blue staining of resin-embedded semithin sections. However, many researchers are unaware that the dark staining of myelin sheaths typically produced by this procedure is due to osmium tetroxide postfixation and not due to toluidine blue. In this article, we describe a simple pre-embedding protocol for staining myelin sheaths in paraffin-embedded nerve specimens using osmium tetroxide. The method involves immersing the specimen in 2% osmium tetroxide for 2 h after paraformaldehyde fixation, followed by routine dehydration and paraffin embedding. Sections can then be observed directly under the microscope or counterstained using routine histological methods. Particularly good results were obtained with Masson's trichrome counterstain, which permits the imaging of connective structures in nerves that are not detectable in toluidine blue-stained resin sections. Finally, we describe a simple protocol for osmium etching of sections, which makes further immunohistochemical analysis possible on the same specimens. Taken together, our results suggest that the protocol described in this article is a valid alternative to the conventional resin embedding-based protocol: it is much cheaper, can be adopted by any histological laboratory, and allows immunohistochemical analysis to be conducted.

  2. Myelinated fibers of the mouse spinal cord after a 30-day space flight.

    PubMed

    Povysheva, T V; Rezvyakov, P N; Shaimardanova, G F; Nikolskii, E E; Islamov, R R; Chelyshev, Yu A; Grygoryev, A I

    2016-07-01

    Myelinated fibers and myelin-forming cells in the spinal cord at the L3-L5 level were studied in C57BL/6N mice that had spent 30 days in space. Signs of destruction of myelin in different areas of white matter, reduction of the thickness of myelin sheath and axon diameter, decreased number of myelin-forming cells were detected in "flight" mice. The stay of mice in space during 30 days had a negative impact on the structure of myelinated fibers and caused reduced expression of the markers myelin-forming cells. These findings can complement the pathogenetic picture of the development of hypogravity motor syndrome.

  3. Peripheral neuropathies caused by mutations in the myelin protein zero.

    PubMed

    Shy, Michael E

    2006-03-15

    Charcot-Marie-Tooth disease type 1B (CMT1B) is caused by mutations in the major PNS myelin protein myelin protein zero (MPZ). MPZ is a member of the immunoglobulin supergene family and functions as an adhesion molecule helping to mediate compaction of PNS myelin. Mutations in MPZ appear to either disrupt myelination during development, leading to severe early onset neuropathies, or to disrupt axo-glial interactions leading to late onset neuropathies in adulthood. Identifying molecular pathways involved in early and late onset CMT1B will be crucial to understand how MPZ mutations cause CMT1B so that rational therapies for both early and late onset neuropathies can be developed.

  4. Myelin vs Axon Abnormalities in White Matter in Bipolar Disorder

    PubMed Central

    Lewandowski, Kathryn E; Ongür, Dost; Sperry, Sarah H; Cohen, Bruce M; Sehovic, Selma; Goldbach, Jacqueline R; Du, Fei

    2015-01-01

    White matter (WM) abnormalities are among the most commonly reported neuroimaging findings in bipolar disorder. Nonetheless, the specific nature and pathophysiology of these abnormalities remain unclear. Use of a combination of magnetization transfer ratio (MTR) and diffusion tensor spectroscopy (DTS) permits examination of myelin and axon abnormalities separately. We aimed to examine myelination and axon geometry in euthymic patients with bipolar disorder with psychosis (BDP) by combining these two complementary noninvasive MRI techniques. We applied a combined MRI approach using MTR to study myelin content and DTS to study metabolite (N-acetylaspartate, NAA) diffusion within axons in patients with BDP (n=21) and healthy controls (n=24). Data were collected from a 1 × 3 × 3-cm voxel within the right prefrontal cortex WM at 4 Tesla. Clinical and cognitive data were examined in association with MTR and DTS data. MTR was significantly reduced in BDP, suggesting reduced myelin content. The apparent diffusion coefficient of NAA did not differ from healthy controls, suggesting no changes in axon geometry in patients with BDP. These findings suggest that patients with BDP exhibit reduced myelin content, but no changes in axon geometry compared with controls. These findings are in contrast with our recent findings, using the same techniques, in patients with schizophrenia (SZ), which suggest both myelination and axon abnormalities in SZ. This difference may indicate that alterations in WM in BDP may have unique causes and may be less extensive than WM abnormalities seen in SZ. PMID:25409595

  5. Self-segregation of myelin membrane lipids in model membranes.

    PubMed

    Yurlova, Larisa; Kahya, Nicoletta; Aggarwal, Shweta; Kaiser, Hermann-Josef; Chiantia, Salvatore; Bakhti, Mostafa; Pewzner-Jung, Yael; Ben-David, Oshrit; Futerman, Anthony H; Brügger, Britta; Simons, Mikael

    2011-12-07

    Rapid conduction of nerve impulses requires coating of axons by myelin sheaths, which are multilamellar, lipid-rich membranes produced by oligodendrocytes in the central nervous system. To act as an insulator, myelin has to form a stable and firm membrane structure. In this study, we have analyzed the biophysical properties of myelin membranes prepared from wild-type mice and from mouse mutants that are unable to form stable myelin. Using C-Laurdan and fluorescence correlation spectroscopy, we find that lipids are tightly organized and highly ordered in myelin isolated from wild-type mice, but not from shiverer and ceramide synthase 2 null mice. Furthermore, only myelin lipids from wild-type mice laterally segregate into physically distinct lipid phases in giant unilamellar vesicles in a process that requires very long chain glycosphingolipids. Taken together, our findings suggest that oligodendrocytes exploit the potential of lipids to self-segregate to generate a highly ordered membrane for electrical insulation of axons. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. The heme precursor delta-aminolevulinate blocks peripheral myelin formation

    PubMed Central

    Felitsyn, Natalia; McLeod, Colin; Shroads, Albert L.; Stacpoole, Peter W.; Notterpek, Lucia

    2008-01-01

    Delta-aminolevulinic acid (δ-ALA) is a heme precursor implicated in neurological complications associated with porphyria and tyrosinemia type I. Delta-ALA is also elevated in the urine of animals and patients treated with the investigational drug dichloroacetate (DCA). We postulated that δ-ALA may be responsible, in part, for the peripheral neuropathy observed in subjects receiving DCA. To test this hypothesis, myelinating cocultures of Schwann cells and sensory neurons were exposed to δ-ALA (0.1–1 mM) and analyzed for the expression of neural proteins and lipids and markers of oxidative stress. Exposure of myelinating samples to δ-ALA is associated with a pronounced reduction in the levels of myelin-associated lipids and proteins, including myelin protein zero and peripheral myelin protein 22. We also observed an increase in protein carbonylation and the formation of hydroxynonenal and malondialdehyde after treatment with δ-ALA. Studies of isolated Schwann cells and neurons indicate that glial cells are more vulnerable to this pro-oxidant than neurons, based on a selective decrease in the expression of mitochondrial respiratory chain proteins in glial, but not in neuronal, cells. These results suggest that the neuropathic effects of δ-ALA are attributable, at least in part, to its pro-oxidant properties which damage myelinating Schwann cells. PMID:18665889

  7. YAP/TAZ initiate and maintain Schwann cell myelination.

    PubMed

    Grove, Matthew; Kim, Hyukmin; Santerre, Maryline; Krupka, Alexander J; Han, Seung Baek; Zhai, Jinbin; Cho, Jennifer Y; Park, Raehee; Harris, Michele; Kim, Seonhee; Sawaya, Bassel E; Kang, Shin H; Barbe, Mary F; Cho, Seo-Hee; Lemay, Michel A; Son, Young-Jin

    2017-01-26

    Nuclear exclusion of the transcriptional regulators and potent oncoproteins, YAP/TAZ, is considered necessary for adult tissue homeostasis. Here we show that nuclear YAP/TAZ are essential regulators of peripheral nerve development and myelin maintenance. To proliferate, developing Schwann cells (SCs) require YAP/TAZ to enter S-phase and, without them, fail to generate sufficient SCs for timely axon sorting. To differentiate, SCs require YAP/TAZ to upregulate Krox20 and, without them, completely fail to myelinate, resulting in severe peripheral neuropathy. Remarkably, in adulthood, nuclear YAP/TAZ are selectively expressed by myelinating SCs, and conditional ablation results in severe peripheral demyelination and mouse death. YAP/TAZ regulate both developmental and adult myelination by driving TEAD1 to activate Krox20. Therefore, YAP/TAZ are crucial for SCs to myelinate developing nerve and to maintain myelinated nerve in adulthood. Our study also provides a new insight into the role of nuclear YAP/TAZ in homeostatic maintenance of an adult tissue.

  8. YAP/TAZ initiate and maintain Schwann cell myelination

    PubMed Central

    Grove, Matthew; Kim, Hyukmin; Santerre, Maryline; Krupka, Alexander J; Han, Seung Baek; Zhai, Jinbin; Cho, Jennifer Y; Park, Raehee; Harris, Michele; Kim, Seonhee; Sawaya, Bassel E; Kang, Shin H; Barbe, Mary F; Cho, Seo-Hee; Lemay, Michel A; Son, Young-Jin

    2017-01-01

    Nuclear exclusion of the transcriptional regulators and potent oncoproteins, YAP/TAZ, is considered necessary for adult tissue homeostasis. Here we show that nuclear YAP/TAZ are essential regulators of peripheral nerve development and myelin maintenance. To proliferate, developing Schwann cells (SCs) require YAP/TAZ to enter S-phase and, without them, fail to generate sufficient SCs for timely axon sorting. To differentiate, SCs require YAP/TAZ to upregulate Krox20 and, without them, completely fail to myelinate, resulting in severe peripheral neuropathy. Remarkably, in adulthood, nuclear YAP/TAZ are selectively expressed by myelinating SCs, and conditional ablation results in severe peripheral demyelination and mouse death. YAP/TAZ regulate both developmental and adult myelination by driving TEAD1 to activate Krox20. Therefore, YAP/TAZ are crucial for SCs to myelinate developing nerve and to maintain myelinated nerve in adulthood. Our study also provides a new insight into the role of nuclear YAP/TAZ in homeostatic maintenance of an adult tissue. DOI: http://dx.doi.org/10.7554/eLife.20982.001 PMID:28124973

  9. Myelin Recovery in Multiple Sclerosis: The Challenge of Remyelination

    PubMed Central

    Podbielska, Maria; Banik, Naren L.; Kurowska, Ewa; Hogan, Edward L.

    2013-01-01

    Multiple sclerosis (MS) is the most common demyelinating and an autoimmune disease of the central nervous system characterized by immune-mediated myelin and axonal damage, and chronic axonal loss attributable to the absence of myelin sheaths. T cell subsets (Th1, Th2, Th17, CD8+, NKT, CD4+CD25+ T regulatory cells) and B cells are involved in this disorder, thus new MS therapies seek damage prevention by resetting multiple components of the immune system. The currently approved therapies are immunoregulatory and reduce the number and rate of lesion formation but are only partially effective. This review summarizes current understanding of the processes at issue: myelination, demyelination and remyelination—with emphasis upon myelin composition/architecture and oligodendrocyte maturation and differentiation. The translational options target oligodendrocyte protection and myelin repair in animal models and assess their relevance in human. Remyelination may be enhanced by signals that promote myelin formation and repair. The crucial question of why remyelination fails is approached is several ways by examining the role in remyelination of available MS medications and avenues being actively pursued to promote remyelination including: (i) cytokine-based immune-intervention (targeting calpain inhibition), (ii) antigen-based immunomodulation (targeting glycolipid-reactive iNKT cells and sphingoid mediated inflammation) and (iii) recombinant monoclonal antibodies-induced remyelination. PMID:24961530

  10. Dynamics of myelin content decrease in the rat stroke model

    NASA Astrophysics Data System (ADS)

    Kisel, A.; Khodanovich, M.; Atochin, D.; Mustafina, L.; Yarnykh, V.

    2017-08-01

    The majority of studies were usually focused on neuronal death after brain ischemia; however, stroke affects all cell types including oligodendrocytes that form myelin sheath in the CNS. Our study is focused on the changes of myelin content in the ischemic core and neighbor structures in early terms (1, 3 and 10 days) after stroke. Stroke was modeled with middle cerebral artery occlusion (MCAo) in 15 male rats that were divided into three groups by time points after operation. Brain sections were histologically stained with Luxol Fast Blue (LFB) for myelin quantification. The significant demyelination was found in the ischemic core, corpus callosum, anterior commissure, whereas myelin content was increased in caudoputamen, internal capsule and piriform cortex compared with the contralateral hemisphere. The motor cortex showed a significant increase of myelin content on the 1st day and a significant decrease on the 3rd and 10th days after MCAo. These results suggest that stroke influences myelination not only in the ischemic core but also in distant structures.

  11. Myelin vs axon abnormalities in white matter in bipolar disorder.

    PubMed

    Lewandowski, Kathryn E; Ongür, Dost; Sperry, Sarah H; Cohen, Bruce M; Sehovic, Selma; Goldbach, Jacqueline R; Du, Fei

    2015-03-13

    White matter (WM) abnormalities are among the most commonly reported neuroimaging findings in bipolar disorder. Nonetheless, the specific nature and pathophysiology of these abnormalities remain unclear. Use of a combination of magnetization transfer ratio (MTR) and diffusion tensor spectroscopy (DTS) permits examination of myelin and axon abnormalities separately. We aimed to examine myelination and axon geometry in euthymic patients with bipolar disorder with psychosis (BDP) by combining these two complementary noninvasive MRI techniques. We applied a combined MRI approach using MTR to study myelin content and DTS to study metabolite (N-acetylaspartate, NAA) diffusion within axons in patients with BDP (n=21) and healthy controls (n=24). Data were collected from a 1 × 3 × 3-cm voxel within the right prefrontal cortex WM at 4 Tesla. Clinical and cognitive data were examined in association with MTR and DTS data. MTR was significantly reduced in BDP, suggesting reduced myelin content. The apparent diffusion coefficient of NAA did not differ from healthy controls, suggesting no changes in axon geometry in patients with BDP. These findings suggest that patients with BDP exhibit reduced myelin content, but no changes in axon geometry compared with controls. These findings are in contrast with our recent findings, using the same techniques, in patients with schizophrenia (SZ), which suggest both myelination and axon abnormalities in SZ. This difference may indicate that alterations in WM in BDP may have unique causes and may be less extensive than WM abnormalities seen in SZ.

  12. Clobetasol and Halcinonide Act as Smoothened Agonists to Promote Myelin Gene Expression and RxRγ Receptor Activation.

    PubMed

    Porcu, Giampiero; Serone, Eliseo; De Nardis, Velia; Di Giandomenico, Daniele; Lucisano, Giuseppe; Scardapane, Marco; Poma, Anna; Ragnini-Wilson, Antonella

    2015-01-01

    One of the causes of permanent disability in chronic multiple sclerosis patients is the inability of oligodendrocyte progenitor cells (OPCs) to terminate their maturation program at lesions. To identify key regulators of myelin gene expression acting at the last stages of OPC maturation we developed a drug repositioning strategy based on the mouse immortalized oligodendrocyte (OL) cell line Oli-neu brought to the premyelination stage by stably expressing a key factor regulating the last stages of OL maturation. The Prestwick Chemical Library of 1,200 FDA-approved compound(s) was repositioned at three dosages based on the induction of Myelin Basic Protein (MBP) expression. Drug hits were further validated using dosage-dependent reproducibility tests and biochemical assays. The glucocorticoid class of compounds was the most highly represented and we found that they can be divided in three groups according to their efficacy on MBP up-regulation. Since target identification is crucial before bringing compounds to the clinic, we searched for common targets of the primary screen hits based on their known chemical-target interactomes, and the pathways predicted by top ranking compounds were validated using specific inhibitors. Two of the top ranking compounds, Halcinonide and Clobetasol, act as Smoothened (Smo) agonists to up-regulate myelin gene expression in the Oli-neuM cell line. Further, RxRγ activation is required for MBP expression upon Halcinonide and Clobetasol treatment. These data indicate Clobetasol and Halcinonide as potential promyelinating drugs and also provide a mechanistic understanding of their mode of action in the pathway leading to myelination in OPCs. Furthermore, our classification of glucocorticoids with respect to MBP expression provides important novel insights into their effects in the CNS and a rational criteria for their choice in combinatorial therapies in de-myelinating diseases.

  13. Clobetasol and Halcinonide Act as Smoothened Agonists to Promote Myelin Gene Expression and RxRγ Receptor Activation

    PubMed Central

    De Nardis, Velia; Di Giandomenico, Daniele; Lucisano, Giuseppe; Scardapane, Marco; Poma, Anna; Ragnini-Wilson, Antonella

    2015-01-01

    One of the causes of permanent disability in chronic multiple sclerosis patients is the inability of oligodendrocyte progenitor cells (OPCs) to terminate their maturation program at lesions. To identify key regulators of myelin gene expression acting at the last stages of OPC maturation we developed a drug repositioning strategy based on the mouse immortalized oligodendrocyte (OL) cell line Oli-neu brought to the premyelination stage by stably expressing a key factor regulating the last stages of OL maturation. The Prestwick Chemical Library® of 1,200 FDA-approved compound(s) was repositioned at three dosages based on the induction of Myelin Basic Protein (MBP) expression. Drug hits were further validated using dosage-dependent reproducibility tests and biochemical assays. The glucocorticoid class of compounds was the most highly represented and we found that they can be divided in three groups according to their efficacy on MBP up-regulation. Since target identification is crucial before bringing compounds to the clinic, we searched for common targets of the primary screen hits based on their known chemical-target interactomes, and the pathways predicted by top ranking compounds were validated using specific inhibitors. Two of the top ranking compounds, Halcinonide and Clobetasol, act as Smoothened (Smo) agonists to up-regulate myelin gene expression in the Oli-neuM cell line. Further, RxRγ activation is required for MBP expression upon Halcinonide and Clobetasol treatment. These data indicate Clobetasol and Halcinonide as potential promyelinating drugs and also provide a mechanistic understanding of their mode of action in the pathway leading to myelination in OPCs. Furthermore, our classification of glucocorticoids with respect to MBP expression provides important novel insights into their effects in the CNS and a rational criteria for their choice in combinatorial therapies in de-myelinating diseases. PMID:26658258

  14. Unmyelinated axons are more vulnerable to degeneration than myelinated axons of the cardiac nerve in Parkinson's disease.

    PubMed

    Orimo, S; Uchihara, T; Kanazawa, T; Itoh, Y; Wakabayashi, K; Kakita, A; Takahashi, H

    2011-12-01

    We recently demonstrated accumulation of α-synuclein aggregates of the cardiac sympathetic nerve in Parkinson's disease (PD) and a possible relationship between degeneration of the cardiac sympathetic nerve and α-synuclein aggregates. The aim of this study is to determine whether there is a difference in the degenerative process between unmyelinated and myelinated axons of the cardiac nerve. We immunohistochemically examined cardiac tissues from four pathologically verified PD patients, nine patients with incidental Lewy body disease (ILBD) and five control subjects, using antibodies against neurofilament, myelin basic protein (MBP) and α-synuclein. First, we counted the number of neurofilament-immunoreactive axons not surrounded by MBP (unmyelinated axons) and those surrounded by MBP (myelinated axons). Next, we counted the number of unmyelinated and myelinated axons with α-synuclein aggregates. (i) The percentage of unmyelinated axons in PD (77.5 ± 9.14%) was significantly lower compared to that in control subjects (92.2 ± 2.40%). (ii) The ratio of unmyelinated axons with α-synuclein aggregates to total axons with α-synuclein aggregates in ILBD ranged from 94.4 to 100 (98.2 ± 2.18%). Among axons with α-synuclein aggregates, unmyelinated axons were the overwhelming majority, comprising 98.2%. These findings suggest that in PD unmyelinated axons are more vulnerable to degeneration than myelinated axons of the cardiac nerve, because α-synuclein aggregates accumulate much more abundantly in unmyelinated axons. © 2011 The Authors. Neuropathology and Applied Neurobiology © 2011 British Neuropathological Society.

  15. Schwann cell myelination requires integration of laminin activities.

    PubMed

    McKee, Karen K; Yang, Dong-Hua; Patel, Rajesh; Chen, Zu-Lin; Strickland, Sidney; Takagi, Junichi; Sekiguchi, Kiyotoshi; Yurchenco, Peter D

    2012-10-01

    Laminins promote early stages of peripheral nerve myelination by assembling basement membranes (BMs) on Schwann cell surfaces, leading to activation of β1 integrins and other receptors. The BM composition, structural bonds and ligands needed to mediate this process, however, are not well understood. Mice hypomorphic for laminin γ1-subunit expression that assembled endoneurial BMs with reduced component density exhibited an axonal sorting defect with amyelination but normal Schwann cell proliferation, the latter unlike the null. To identify the basis for this, and to dissect participating laminin interactions, LAMC1 gene-inactivated dorsal root ganglia were treated with recombinant laminin-211 and -111 lacking different architecture-forming and receptor-binding activities, to induce myelination. Myelin-wrapping of axons by Schwann cells was found to require higher laminin concentrations than either proliferation or axonal ensheathment. Laminins that were unable to polymerize through deletions that removed critical N-terminal (LN) domains, or that lacked cell-adhesive globular (LG) domains, caused reduced BMs and almost no myelination. Laminins engineered to bind weakly to α6β1 and/or α7β1 integrins through their LG domains, even though they could effectively assemble BMs, decreased myelination. Proliferation depended upon both integrin binding to LG domains and polymerization. Collectively these findings reveal that laminins integrate scaffold-forming and cell-adhesion activities to assemble an endoneurial BM, with myelination and proliferation requiring additional α6β1/α7β1-laminin LG domain interactions, and that a high BM ligand/structural density is needed for efficient myelination.

  16. Schwann cell myelination requires integration of laminin activities

    PubMed Central

    McKee, Karen K.; Yang, Dong-Hua; Patel, Rajesh; Chen, Zu-Lin; Strickland, Sidney; Takagi, Junichi; Sekiguchi, Kiyotoshi; Yurchenco, Peter D.

    2012-01-01

    Summary Laminins promote early stages of peripheral nerve myelination by assembling basement membranes (BMs) on Schwann cell surfaces, leading to activation of β1 integrins and other receptors. The BM composition, structural bonds and ligands needed to mediate this process, however, are not well understood. Mice hypomorphic for laminin γ1-subunit expression that assembled endoneurial BMs with reduced component density exhibited an axonal sorting defect with amyelination but normal Schwann cell proliferation, the latter unlike the null. To identify the basis for this, and to dissect participating laminin interactions, LAMC1 gene-inactivated dorsal root ganglia were treated with recombinant laminin-211 and -111 lacking different architecture-forming and receptor-binding activities, to induce myelination. Myelin-wrapping of axons by Schwann cells was found to require higher laminin concentrations than either proliferation or axonal ensheathment. Laminins that were unable to polymerize through deletions that removed critical N-terminal (LN) domains, or that lacked cell-adhesive globular (LG) domains, caused reduced BMs and almost no myelination. Laminins engineered to bind weakly to α6β1 and/or α7β1 integrins through their LG domains, even though they could effectively assemble BMs, decreased myelination. Proliferation depended upon both integrin binding to LG domains and polymerization. Collectively these findings reveal that laminins integrate scaffold-forming and cell-adhesion activities to assemble an endoneurial BM, with myelination and proliferation requiring additional α6β1/α7β1-laminin LG domain interactions, and that a high BM ligand/structural density is needed for efficient myelination. PMID:22767514

  17. Schwann Cell Glycogen Selectively Supports Myelinated Axon Function

    PubMed Central

    Brown, Angus M; Evans, Richard D; Black, Joel; Ransom, Bruce R

    2012-01-01

    Objectives Interruption of energy supply to peripheral axons is a cause of axon loss. We determined if glycogen was present in mammalian peripheral nerve, and if it supported axon conduction during aglycemia. Methods We used biochemical assay and electron microscopy to determine the presence of glycogen, and electrophysiology to monitor axon function. Results Glycogen was present in sciatic nerve, its concentration varying directly with ambient [glucose]. Electron microscopy detected glycogen granules primarily in myelinating Schwann cell cytoplasm and these diminished after exposure to aglycemia. During aglycemia, conduction failure in large myelinated axons (A fibers) mirrored the time-course of glycogen loss. Latency to CAP failure was directly related to nerve glycogen content at aglycemia onset. Glycogen did not benefit the function of slow-conducting, small diameter unmyelinated axons (C fibers) during aglycemia. Blocking glycogen breakdown pharmacologically accelerated CAP failure during aglycemia in A fibers, but not in C fibers. Lactate was as effective as glucose in supporting sciatic nerve function, and was continuously released into the extracellular space in the presence of glucose and fell rapidly during aglycemia. Interpretation Our findings indicated that glycogen is present in peripheral nerve, primarily in myelinating Schwann cells, and exclusively supports large diameter, myelinated axon conduction during aglycemia. Available evidence suggests that peripheral nerve glycogen breaks down during aglycemia and is passed, probably as lactate, to myelinated axons to support function. Unmyelinated axons are not protected by glycogen and are more vulnerable to dysfunction during periods of hypoglycemia. PMID:23034913

  18. Exportability of the mitochondrial oxidative phosphorylation machinery into myelin sheath.

    PubMed

    Morelli, Alessandro; Ravera, Silvia; Calzia, Daniela; Panfoli, Isabella

    2011-01-01

    White matter comprises over half of the brain, and its role in axonal survival is being reconsidered, consistently with the observation that axonal degeneration follows demyelination. The recent evidence of an extra-mitochondrial aerobic ATP production in isolated myelin vesicles, thanks to the expression therein of the mitochondrial Oxydative Phosphorylation (OXPHOS) machinery, stands in for myelin playing a functional bioenergetic role in ATP supply for the axon. The observation that subunits of the OXPHOS encoded by the mitochondrial genome are expressed in myelin, suggests that they can be the same as those of the inner mitochondrial membrane. This would mean that the OXPHOS is exportable. Here the hypothesis is exposed that the mitochondrion is the unique site of the assembly of the OXPHOS, so that this is exported to those sub cellular districts displaying high energy demand, such as myelin sheath. There the OXPHOS would display a higher efficiency in oxidative ATP production than inside the mitochondrion itself In this respect, the role of the glia in the nervous conduction is shed new light and the oligodendrocyte mitochondrial OXPHOS are hypothesized to be delivered to nascent myelin.

  19. Motor Skill Acquisition Promotes Human Brain Myelin Plasticity

    PubMed Central

    Lakhani, Bimal; Borich, Michael R.; Jackson, Jacob N.; Wadden, Katie P.; Peters, Sue; Villamayor, Anica; MacKay, Alex L.; Vavasour, Irene M.; Rauscher, Alexander; Boyd, Lara A.

    2016-01-01

    Experience-dependent structural changes are widely evident in gray matter. Using diffusion weighted imaging (DWI), the neuroplastic effect of motor training on white matter in the brain has been demonstrated. However, in humans it is not known whether specific features of white matter relate to motor skill acquisition or if these structural changes are associated to functional network connectivity. Myelin can be objectively quantified in vivo and used to index specific experience-dependent change. In the current study, seventeen healthy young adults completed ten sessions of visuomotor skill training (10,000 total movements) using the right arm. Multicomponent relaxation imaging was performed before and after training. Significant increases in myelin water fraction, a quantitative measure of myelin, were observed in task dependent brain regions (left intraparietal sulcus [IPS] and left parieto-occipital sulcus). In addition, the rate of motor skill acquisition and overall change in myelin water fraction in the left IPS were negatively related, suggesting that a slower rate of learning resulted in greater neuroplastic change. This study provides the first evidence for experience-dependent changes in myelin that are associated with changes in skilled movements in healthy young adults. PMID:27293906

  20. PIKE is essential for oligodendroglia development and CNS myelination.

    PubMed

    Chan, Chi Bun; Liu, Xia; Zhao, Lixia; Liu, Guanglu; Lee, Chi Wai; Feng, Yue; Ye, Keiqang

    2014-02-04

    Oligodendrocyte (OL) differentiation and myelin development are complex events regulated by numerous signal transduction factors. Here, we report that phosphoinositide-3 kinase enhancer L (PIKE-L) is required for OL development and myelination. PIKE-L expression is up-regulated when oligodendrocyte progenitor cells commit to differentiation. Conversely, depleting phosphoinositide-3 kinase enhancer (PIKE) expression by shRNA prevents oligodendrocyte progenitor cell differentiation. In both conventional PIKE knockout (PIKE(-/-)) and OL-specific PIKE knockout mice, the number of OLs is reduced in the corpus callosum. PIKE(-/-) OLs also display defects when forming myelin sheath on neuronal axons during neonatal development, which is partially rescued when PTEN is ablated. In addition, Akt/mTOR signaling is impaired in OL-enriched tissues of the PIKE(-/-) mutant, leading to reduced expression of critical proteins for myelin development and hypomyelination. Moreover, myelin repair of lysolecithin-induced lesions is delayed in PIKE(-/-) brain. Thus, PIKE plays pivotal roles to advance OL development and myelinogenesis through Akt/mTOR activation.

  1. Myelin-associated glycoprotein (MAG): past, present and beyond.

    PubMed

    Quarles, Richard H

    2007-03-01

    The myelin-associated glycoprotein (MAG) is a type I transmembrane glycoprotein localized in periaxonal Schwann cell and oligodendroglial membranes of myelin sheaths where it functions in glia-axon interactions. It contains five immunoglobulin (Ig)-like domains and is in the sialic acid-binding subgroup of the Ig superfamily. It appears to function both as a ligand for an axonal receptor that is needed for the maintenance of myelinated axons and as a receptor for an axonal signal that promotes the differentiation, maintenance and survival of oligodendrocytes. Its function in the maintenance of myelinated axons may be related to its role as one of the white matter inhibitors of neurite outgrowth acting through a receptor complex involving the Nogo receptor and/or gangliosides containing 2,3-linked sialic acid. MAG is expressed as two developmentally regulated isoforms with different cytoplasmic domains that may activate different signal transduction pathways in myelin-forming cells. MAG contains a carbohydrate epitope shared with other glycoconjugates that is a target antigen in autoimmune peripheral neuropathy associated with IgM gammopathy and has been implicated in a dying back oligodendrogliopathy in multiple sclerosis.

  2. TRPM3 is expressed in sphingosine-responsive myelinating oligodendrocytes.

    PubMed

    Hoffmann, Anja; Grimm, Christian; Kraft, Robert; Goldbaum, Olaf; Wrede, Arne; Nolte, Christiane; Hanisch, Uwe-Karsten; Richter-Landsberg, Christiane; Brück, Wolfgang; Kettenmann, Helmut; Harteneck, Christian

    2010-08-01

    Oligodendrocytes are the myelin-forming cells of the CNS and guarantee proper nerve conduction. Sphingosine, one major component of myelin, has recently been identified to activate TRPM3, a member of the melastatin-related subfamily of transient receptor potential (TRP) channels. TRPM3 has been demonstrated to be expressed in brain with unknown cellular distribution. Here, we show for the first time that TRPM3 is expressed in oligodendrocytes in vitro and in vivo. TRPM3 is present during oligodendrocyte differentiation. Immunohistochemistry of adult rat brain slices revealed staining of white matter areas, which co-localized with oligodendrocyte markers. Analysis of the developmental distribution revealed that, prior to myelination, TRPM3 channels are localized on neurons. On oligodendrocytes they are found after the onset of myelination. RT-PCR studies showed that the transcription of TRPM3 splice variants is also developmentally regulated in vitro. Ca(2+) imaging approaches revealed the presence of a sphingosine-induced Ca(2+) entry mechanism in oligodendrocytes - with a pharmacological profile similar to the profile published for heterologously expressed TRPM3. These findings indicate that TRPM3 participates as a Ca(2+)-permeable and sphingosine-activated channel in oligodendrocyte differentiation and CNS myelination.

  3. The Polarity Protein Scribble Regulates Myelination and Remyelination in the Central Nervous System

    PubMed Central

    Jarjour, Andrew A.; Boyd, Amanda; Dow, Lukas E.; Holloway, Rebecca K.; Goebbels, Sandra; Humbert, Patrick O.; Williams, Anna; ffrench-Constant, Charles

    2015-01-01

    The development and regeneration of myelin by oligodendrocytes, the myelin-forming cells of the central nervous system (CNS), requires profound changes in cell shape that lead to myelin sheath initiation and formation. Here, we demonstrate a requirement for the basal polarity complex protein Scribble in CNS myelination and remyelination. Scribble is expressed throughout oligodendroglial development and is up-regulated in mature oligodendrocytes where it is localised to both developing and mature CNS myelin sheaths. Knockdown of Scribble expression in cultured oligodendroglia results in disrupted morphology and myelination initiation. When Scribble expression is conditionally eliminated in the myelinating glia of transgenic mice, myelin initiation in CNS is disrupted, both during development and following focal demyelination, and longitudinal extension of the myelin sheath is disrupted. At later stages of myelination, Scribble acts to negatively regulate myelin thickness whilst suppressing the extracellular signal-related kinase (ERK)/mitogen-activated protein kinase (MAP) kinase pathway, and localises to non-compact myelin flanking the node of Ranvier where it is required for paranodal axo-glial adhesion. These findings demonstrate an essential role for the evolutionarily-conserved regulators of intracellular polarity in myelination and remyelination. PMID:25807062

  4. Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction

    PubMed Central

    Patzig, Julia; Erwig, Michelle S; Tenzer, Stefan; Kusch, Kathrin; Dibaj, Payam; Möbius, Wiebke; Goebbels, Sandra; Schaeren-Wiemers, Nicole; Nave, Klaus-Armin; Werner, Hauke B

    2016-01-01

    Myelination of axons facilitates rapid impulse propagation in the nervous system. The axon/myelin-unit becomes impaired in myelin-related disorders and upon normal aging. However, the molecular cause of many pathological features, including the frequently observed myelin outfoldings, remained unknown. Using label-free quantitative proteomics, we find that the presence of myelin outfoldings correlates with a loss of cytoskeletal septins in myelin. Regulated by phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2)-levels, myelin septins (SEPT2/SEPT4/SEPT7/SEPT8) and the PI(4,5)P2-adaptor anillin form previously unrecognized filaments that extend longitudinally along myelinated axons. By confocal microscopy and immunogold-electron microscopy, these filaments are localized to the non-compacted adaxonal myelin compartment. Genetic disruption of these filaments in Sept8-mutant mice causes myelin outfoldings as a very specific neuropathology. Septin filaments thus serve an important function in scaffolding the axon/myelin-unit, evidently a late stage of myelin maturation. We propose that pathological or aging-associated diminishment of the septin/anillin-scaffold causes myelin outfoldings that impair the normal nerve conduction velocity. DOI: http://dx.doi.org/10.7554/eLife.17119.001 PMID:27504968

  5. Concentration of astrocytic filaments at the retinal optic nerve junction is coincident with the absence of intra-retinal myelination: comparative and developmental evidence.

    PubMed

    Morcos, Y; Chan-Ling, T

    2000-09-01

    The structure of the lamina cribrosa (LC) and astrocytic density were examined in various species with and without intra-retinal myelination. Sections of optic nerve from various species were stained with Milligan's trichrome or antibodies to glial fibrillary acidic protein, myelin basic protein (MBP) and antibody O4. Marmoset, flying fox, cat, and sheep, which lack intraretinal myelination, were shown to possess a well-developed LC as well as a marked concentration of astrocytic filaments distal to the LC. Rat and mouse, which lack intraretinal myelination, lacked a well-developed LC but exhibited a marked concentration of astrocytic filaments in this region. Rabbit and chicken, which exhibit intraretinal myelination, lacked both a well-developed LC and a concentration of astrocytes at the retinal optic nerve junction (ROJ). A marked concentration of astrocytes at the ROJ of human fetuses was also apparent at 13 weeks of gestation, prior to myelination of the optic nerve; in contrast, the LC was not fully developed even at birth. This concentration of astrocytes was located distal to O4 and MBP immunoreactivity in human optic nerve, and coincided with the site of initial myelination of ganglion cell axons in marmoset and rat. Myelination proceeded from the chiasm towards the retinal end of the human optic nerve. Moreover, the outer limit of oligodendrocyte precursor cells (OPC) migration into the rabbit retina was restricted by the outer limit of astrocyte spread. These observations indicate that a concentration of astrocytic filaments at the ROJ is coincident with the absence of intraretinal myelination. Differential expression of tenascin-C by astrocytes at the ROJ appears to contribute to the molecular barrier to OPC migration (see Bartsch et al., 1994), while expression of the homedomain protein Vax 1 by glial cells at the optic nerve head appears to inhibit migration of retinal pigment epithelial cells into the optic nerve (see Bertuzzi et al., 1999). These

  6. Review: Glial lineages and myelination in the central nervous system

    PubMed Central

    COMPSTON, ALASTAIR; ZAJICEK, JOHN; SUSSMAN, JON; WEBB, ANNA; HALL, GILLIAN; MUIR, DAVID; SHAW, CHRISTOPHER; WOOD, ANDREW; SCOLDING, NEIL

    1997-01-01

    Oligodendrocytes, derived from stem cell precursors which arise in subventricular zones of the developing central nervous system, have as their specialist role the synthesis and maintenance of myelin. Astrocytes contribute to the cellular architecture of the central nervous system and act as a source of growth factors and cytokines; microglia are bone-marrow derived macrophages which function as primary immunocompetent cells in the central nervous system. Myelination depends on the establishment of stable relationships between each differentiated oligodendrocyte and short segments of several neighbouring axons. There is growing evidence, especially from studies of glial cell implantation, that oligodendrocyte precursors persist in the adult nervous system and provide a limited capacity for the restoration of structure and function in myelinated pathways damaged by injury or disease. PMID:9061442

  7. miR-219 Cooperates with miR-338 in Myelination and Promotes Myelin Repair in the CNS.

    PubMed

    Wang, Haibo; Moyano, Ana Lis; Ma, Zhangyan; Deng, Yaqi; Lin, Yifeng; Zhao, Chuntao; Zhang, Liguo; Jiang, Minqing; He, Xuelian; Ma, Zhixing; Lu, Fanghui; Xin, Mei; Zhou, Wenhao; Yoon, Sung Ok; Bongarzone, Ernesto R; Lu, Q Richard

    2017-03-27

    A lack of sufficient oligodendrocyte myelination contributes to remyelination failure in demyelinating disorders. miRNAs have been implicated in oligodendrogenesis; however, their functions in myelin regeneration remained elusive. Through developmentally regulated targeted mutagenesis, we demonstrate that miR-219 alleles are critical for CNS myelination and remyelination after injury. Further deletion of miR-338 exacerbates the miR-219 mutant hypomyelination phenotype. Conversely, miR-219 overexpression promotes precocious oligodendrocyte maturation and regeneration processes in transgenic mice. Integrated transcriptome profiling and biotin-affinity miRNA pull-down approaches reveal stage-specific miR-219 targets in oligodendrocytes and further uncover a novel network for miR-219 targeting of differentiation inhibitors including Lingo1 and Etv5. Inhibition of Lingo1 and Etv5 partially rescues differentiation defects of miR-219-deficient oligodendrocyte precursors. Furthermore, miR-219 mimics enhance myelin restoration following lysolecithin-induced demyelination as well as experimental autoimmune encephalomyelitis, principal animal models of multiple sclerosis. Together, our findings identify context-specific miRNA-regulated checkpoints that control myelinogenesis and a therapeutic role for miR-219 in CNS myelin repair.

  8. The mechanical importance of myelination in the central nervous system.

    PubMed

    Weickenmeier, Johannes; de Rooij, Rijk; Budday, Silvia; Ovaert, Timothy C; Kuhl, Ellen

    2017-04-19

    Neurons in the central nervous system are surrounded and cross-linked by myelin, a fatty white substance that wraps around axons to create an electrically insulating layer. The electrical function of myelin is widely recognized; yet, its mechanical importance remains underestimated. Here we combined nanoindentation testing and histological staining to correlate brain stiffness to the degree of myelination in immature, pre-natal brains and mature, post-natal brains. We found that both gray and white matter tissue stiffened significantly (p≪0.001) upon maturation: the gray matter stiffness doubled from 0.31±0.20kPa pre-natally to 0.68±0.20kPa post-natally; the white matter stiffness tripled from 0.45±0.18kPa pre-natally to 1.33±0.64kPa post-natally. At the same time, the white matter myelin content increased significantly (p≪0.001) from 58±2% to 74±9%. White matter stiffness and myelin content were correlated with a Pearson correlation coefficient of ρ=0.92 (p≪0.001). Our study suggests that myelin is not only important to ensure smooth electrical signal propagation in neurons, but also to protect neurons against physical forces and provide a strong microstructural network that stiffens the white matter tissue as a whole. Our results suggest that brain tissue stiffness could serve as a biomarker for multiple sclerosis and other forms of demyelinating disorders. Understanding how tissue maturation translates into changes in mechanical properties and knowing the precise brain stiffness at different stages of life has important medical implications in development, aging, and neurodegeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Inhibition of Epidermal Growth Factor Receptor Improves Myelination and Attenuates Tissue Damage of Spinal Cord Injury.

    PubMed

    Zhang, Si; Ju, Peijun; Tjandra, Editha; Yeap, Yeeshan; Owlanj, Hamed; Feng, Zhiwei

    2016-10-01

    Preventing demyelination and promoting remyelination of denuded axons are promising therapeutic strategies for spinal cord injury (SCI). Epidermal growth factor receptor (EGFR) inhibition was reported to benefit the neural functional recovery and the axon regeneration after SCI. However, its role in de- and remyelination of axons in injured spinal cord is unclear. In the present study, we evaluated the effects of EGFR inhibitor, PD168393 (PD), on the myelination in mouse contusive SCI model. We found that expression of myelin basic protein (MBP) in the injured spinal cords of PD treated mice was remarkably elevated. The density of glial precursor cells and oligodendrocytes (OLs) was increased and the cell apoptosis in lesions was attenuated after PD168393 treatment. Moreover, PD168393 treatment reduced both the numbers of OX42 + microglial cells and glial fibrillary acidic protein + astrocytes in damaged area of spinal cords. We thus conclude that the therapeutic effects of EGFR inhibition after SCI involves facilitating remyelination of the injured spinal cord, increasing of oligodendrocyte precursor cells and OLs, as well as suppressing the activation of astrocytes and microglia/macrophages.

  10. Binding of normal human IgG to myelin sheaths, glia and neurons.

    PubMed Central

    Aarli, J A; Aparicio, S R; Lumsden, C E; Tönder, O

    1975-01-01

    The binding of normal human serum, purified IgG and IgG fragments to central nervous tissue was studied by the anti-globulin consumption (AGCT) and immunofluorescence (IF) techniques. In the AGCT, F(ab')2 fragments failed to react, whereas IgG and Fc fragments did so. In IF experiments, the binding was localized to myelin sheaths, glia and neurons; Fab monomers at a protein concentration of 1-3 mg/ml dod not react with the tissue, but purified Fc fragments at 0-0625 mg/ml did. The binding is neither tissue- nor species-specific. Lipid and protein extraction procedures indicated that the factor responsible for binding to myelin was basic protein. It was concluded that the binding of normal IgG to central nervous tissue is medicated by the Fc part of the molecule. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:803915

  11. Melatonin promotes myelination by decreasing white matter inflammation after neonatal stroke.

    PubMed

    Villapol, Sonia; Fau, Sébastien; Renolleau, Sylvain; Biran, Valérie; Charriaut-Marlangue, Christiane; Baud, Olivier

    2011-01-01

    Melatonin demonstrates neuroprotective properties in adult models of cerebral ischemia, acting as a potent antioxidant and anti-inflammatory agent. We investigated the effect of melatonin in a 7-d-old rat model of ischemia-reperfusion, leading to both cortical infarct and injury in the underlying white matter observed using MRI and immunohistochemistry. Melatonin was given i.p. as either a single dose before ischemia or a double-dose regimen, combining one before ischemia and one 24 h after reperfusion. At 48 h after injury, neither a significant reduction in cortical infarct volume nor a variation in the number of TUNEL- and nitrotyrosine-positive cells within the ipsilateral lesion was observed in melatonin-treated animals compared with controls. However, a decrease in the density of tomato lectin-positive cells after melatonin treatment was found in the white matter underlying cortical lesion. Furthermore, we showed a marked increase in the myelin basic protein-immunoreactivity in the cingulum and in the density of mature oligodendrocytes (APC-immunoreactive) in both the ipsilateral cingulum and external capsule. These results suggest that melatonin is not able to reduce cortical infarct volume in a neonatal stroke model but strongly reduces inflammation and promotes subsequent myelination in the white matter.

  12. A Novel Approach for Studying the Physiology and Pathophysiology of Myelinated and Non-Myelinated Axons in the CNS White Matter

    PubMed Central

    Samoilova, Marina

    2016-01-01

    Advances in brain connectomics set the need for detailed knowledge of functional properties of myelinated and non-myelinated (if present) axons in specific white matter pathways. The corpus callosum (CC), a major white matter structure interconnecting brain hemispheres, is extensively used for studying CNS axonal function. Unlike another widely used CNS white matter preparation, the optic nerve where all axons are myelinated, the CC contains also a large population of non-myelinated axons, making it particularly useful for studying both types of axons. Electrophysiological studies of optic nerve use suction electrodes on nerve ends to stimulate and record compound action potentials (CAPs) that adequately represent its axonal population, whereas CC studies use microelectrodes (MEs), recording from a limited area within the CC. Here we introduce a novel robust isolated "whole" CC preparation comparable to optic nerve. Unlike ME recordings where the CC CAP peaks representing myelinated and non-myelinated axons vary broadly in size, "whole" CC CAPs show stable reproducible ratios of these two main peaks, and also reveal a third peak, suggesting a distinct group of smaller caliber non-myelinated axons. We provide detailed characterization of "whole" CC CAPs and conduction velocities of myelinated and non-myelinated axons along the rostro-caudal axis of CC body and show advantages of this preparation for comparing axonal function in wild type and dysmyelinated shiverer mice, studying the effects of temperature dependence, bath-applied drugs and ischemia modeled by oxygen-glucose deprivation. Due to the isolation from gray matter, our approach allows for studying CC axonal function without possible "contamination" by reverberating signals from gray matter. Our analysis of "whole" CC CAPs revealed higher complexity of myelinated and non-myelinated axonal populations, not noticed earlier. This preparation may have a broad range of applications as a robust model for studying

  13. Normal metabolism but different physical properties of myelin from mice deficient in proteolipid protein.

    PubMed

    Jurevics, Helga; Hostettler, Janell; Sammond, Deanne W; Nave, Klaus-Armin; Toews, Arrel D; Morell, Pierre

    2003-03-15

    Proteolipid protein (PLP) is the primary protein component of CNS myelin, yet myelin from the PLP(null) mouse has only minor ultrastructural abnormalities. Might compensation for a potentially unstable structure involve increased myelin synthesis and turnover? This was not the case; neither accumulation nor in vivo synthesis rates for the myelin-specific lipid cerebroside was altered in PLP(null) mice relative to wild-type (wt) animals. However, the yield of myelin from PLP(null) mice, assayed as levels of cerebroside, was only about 55% of wt control levels. Loss of myelin occurred during initial centrifugation of brain homogenate at 20,000g for 20 min, which is sufficient to sediment almost all myelin from wt mice. Cerebroside-containing fragments from PLP(null) mice remaining in the supernatant could be sedimented by more stringent centrifugation, 100,000g for 60 min. Both the rapidly and the more slowly sedimenting cerebroside-containing membranes banded at the 0.85/0.32 M sucrose interface of a density gradient, as did myelin from wt mice. These results suggest at least some myelin from PLP(null) mice differs from wt myelin with respect to physical stability (fragmented into smaller particles during dispersion) and/or density. Alternatively, slowly sedimenting cerebroside-containing particles could be myelin precursor membranes that, lacking PLP, were retarded in their processing toward mature myelin and thus differ from mature myelin in physical properties. If this is so, recently synthesized cerebroside should be preferentially found in these "slower-sedimenting" myelin precursor fragments. Metabolic tracer experiments showed this was not the case. We conclude that PLP(null) myelin is physically less stable and/or less dense than wt myelin.

  14. Asthma Basics

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Asthma Basics KidsHealth > For Parents > Asthma Basics Print A ... Asthma Categories en español Asma: aspectos fundamentales About Asthma Asthma is a common lung condition in kids ...

  15. Regionally-specific alterations in myelin proteins in nonhuman primate white matter following prolonged cocaine self-administration.

    PubMed

    Smith, Hilary R; Beveridge, Thomas J R; Nader, Michael A; Porrino, Linda J

    2014-04-01

    Neuroimaging studies of cocaine users have demonstrated white matter abnormalities associated with behavioral measures of impulsivity and decision-making deficits. The underlying bases for this dysregulation in white matter structure and function have yet to be determined. The aim of the present studies was to investigate the influence of prolonged cocaine self-administration on the levels of myelin-associated proteins and mRNAs in nonhuman primate white matter. Rhesus monkeys (N=4) self-administered cocaine (0.3mg/kg/inj, 30 reinforcers per session) for 300 sessions. Control animals (N=4) responded for food. Following the final session monkeys were euthanized and white matter tissue at three brain levels was processed for immunoblotting analysis of proteolipid protein (PLP) and myelin basic protein (MBP), as well as for in situ hybridization histochemical analysis of PLP and MBP mRNAs. Both MBP and PLP immunoreactivities in white matter at the level of the precommissural striatum were significantly lower in tissue from monkeys self-administering cocaine as compared to controls. No significant differences were seen for either protein at the levels of the prefrontal cortex or postcommissural striatum. In addition, no differences were observed in expression of mRNA for either protein. These preliminary findings, in a nonhuman model of prolonged cocaine self-administration, provide further evidence that compromised myelin may underlie the deficits in white matter integrity described in studies of human cocaine users. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Quetiapine Ameliorates Schizophrenia-Like Behaviors and Protects Myelin Integrity in Cuprizone Intoxicated Mice: The Involvement of Notch Signaling Pathway

    PubMed Central

    Wang, Hua-ning; Liu, Gao-hua; Zhang, Rui-guo; Xue, Fen; Wu, Di; Chen, Yun-chun; Peng, Ye

    2016-01-01

    Background: White matter disturbances and myelin impairment are key features of schizophrenia. The antipsychotic drug quetiapine can promote the maturation of oligodendrocytes, but the molecular mechanisms remain largely unknown. Methods: The schizophrenia-like behaviors, degrees of demyelination, and levels of Notch signaling molecules in forebrains of adult male C57BL/6 mice were examined after fed with cuprizone (0.2% wt/wt) in the presence or absence of 10mg/kg/d quetiapine for 6 weeks. These parameters were also observed after the transcranial injection of Notch signaling inhibitor MW167 (1mM) daily during the last week of the treatment period. Results: Quetiapine ameliorated the schizophrenia-like behaviors and decreased expression of myelin basic protein and inhibition of Notch signaling molecules, such as Notch1, Hes1, and Hes5, in the forebrain that induced by cuprizone. These beneficial effects of quetiapine were abolished by MW167. Conclusions: The antipsychotic and myelin protective effects of quetiapine are mediated by Notch signaling in a mouse model of cuprizone-induced demyelination associated with schizophrenia-like behaviors. The Notch pathway might therefore be a novel target for the development of antipsychotic drugs. PMID:26232790

  17. Quetiapine Ameliorates Schizophrenia-Like Behaviors and Protects Myelin Integrity in Cuprizone Intoxicated Mice: The Involvement of Notch Signaling Pathway.

    PubMed

    Wang, Hua-ning; Liu, Gao-hua; Zhang, Rui-guo; Xue, Fen; Wu, Di; Chen, Yun-chun; Peng, Ye; Peng, Zheng-wu; Tan, Qing-rong

    2015-08-01

    White matter disturbances and myelin impairment are key features of schizophrenia. The antipsychotic drug quetiapine can promote the maturation of oligodendrocytes, but the molecular mechanisms remain largely unknown. The schizophrenia-like behaviors, degrees of demyelination, and levels of Notch signaling molecules in forebrains of adult male C57BL/6 mice were examined after fed with cuprizone (0.2% wt/wt) in the presence or absence of 10mg/kg/d quetiapine for 6 weeks. These parameters were also observed after the transcranial injection of Notch signaling inhibitor MW167 (1mM) daily during the last week of the treatment period. Quetiapine ameliorated the schizophrenia-like behaviors and decreased expression of myelin basic protein and inhibition of Notch signaling molecules, such as Notch1, Hes1, and Hes5, in the forebrain that induced by cuprizone. These beneficial effects of quetiapine were abolished by MW167. The antipsychotic and myelin protective effects of quetiapine are mediated by Notch signaling in a mouse model of cuprizone-induced demyelination associated with schizophrenia-like behaviors. The Notch pathway might therefore be a novel target for the development of antipsychotic drugs. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  18. Fast computation of myelin maps from MRI T₂ relaxation data using multicore CPU and graphics card parallelization.

    PubMed

    Yoo, Youngjin; Prasloski, Thomas; Vavasour, Irene; MacKay, Alexander; Traboulsee, Anthony L; Li, David K B; Tam, Roger C

    2015-03-01

    To develop a fast algorithm for computing myelin maps from multiecho T2 relaxation data using parallel computation with multicore CPUs and graphics processing units (GPUs). Using an existing MATLAB (MathWorks, Natick, MA) implementation with basic (nonalgorithm-specific) parallelism as a guide, we developed a new version to perform the same computations but using C++ to optimize the hybrid utilization of multicore CPUs and GPUs, based on experimentation to determine which algorithmic components would benefit from CPU versus GPU parallelization. Using 32-echo T2 data of dimensions 256 × 256 × 7 from 17 multiple sclerosis patients and 18 healthy subjects, we compared the two methods in terms of speed, myelin values, and the ability to distinguish between the two patient groups using Student's t-tests. The new method was faster than the MATLAB implementation by 4.13 times for computing a single map and 14.36 times for batch-processing 10 scans. The two methods produced very similar myelin values, with small and explainable differences that did not impact the ability to distinguish the two patient groups. The proposed hybrid multicore approach represents a more efficient alternative to MATLAB, especially for large-scale batch processing. © 2014 Wiley Periodicals, Inc.

  19. Neuroimaging evidence of deficient axon myelination in Wolfram syndrome

    PubMed Central

    Lugar, Heather M.; Koller, Jonathan M.; Rutlin, Jerrel; Marshall, Bess A.; Kanekura, Kohsuke; Urano, Fumihiko; Bischoff, Allison N.; Shimony, Joshua S.; Hershey, Tamara; Austin, P.; Beato, B.; Bihun, E.; Doty, T.; Earhart, G.; Eisenstein, S.; Hoekel, J.; Karzon, R.; Licis, A.; Manwaring, L.; Paciorkowski, A. R.; Pepino de Gruev, Y.; Permutt, A.; Pickett, K.; Ranck, S.; Reiersen, A.; Tychsen, L.; Viehoever, A.; Wasson, J.; White, N. H.

    2016-01-01

    Wolfram syndrome is a rare autosomal recessive genetic disease characterized by insulin dependent diabetes and vision, hearing and brain abnormalities which generally emerge in childhood. Mutations in the WFS1 gene predispose cells to endoplasmic reticulum stress-mediated apoptosis and may induce myelin degradation in neuronal cell models. However, in vivo evidence of this phenomenon in humans is lacking. White matter microstructure and regional volumes were measured using magnetic resonance imaging in children and young adults with Wolfram syndrome (n = 21) and healthy and diabetic controls (n = 50). Wolfram patients had lower fractional anisotropy and higher radial diffusivity in major white matter tracts and lower volume in the basilar (ventral) pons, cerebellar white matter and visual cortex. Correlations were found between key brain findings and overall neurological symptoms. This pattern of findings suggests that reduction in myelin is a primary neuropathological feature of Wolfram syndrome. Endoplasmic reticulum stress-related dysfunction in Wolfram syndrome may interact with the development of myelin or promote degeneration of myelin during the progression of the disease. These measures may provide objective indices of Wolfram syndrome pathophysiology that will be useful in unraveling the underlying mechanisms and in testing the impact of treatments on the brain. PMID:26888576

  20. Clozapine promotes glycolysis and myelin lipid synthesis in cultured oligodendrocytes

    PubMed Central

    Steiner, Johann; Martins-de-Souza, Daniel; Schiltz, Kolja; Sarnyai, Zoltan; Westphal, Sabine; Isermann, Berend; Dobrowolny, Henrik; Turck, Christoph W.; Bogerts, Bernhard; Bernstein, Hans-Gert; Horvath, Tamas L.; Schild, Lorenz; Keilhoff, Gerburg

    2014-01-01

    Clozapine displays stronger systemic metabolic side effects than haloperidol and it has been hypothesized that therapeutic antipsychotic and adverse metabolic effects of these drugs are related. Considering that cerebral disconnectivity through oligodendrocyte dysfunction has been implicated in schizophrenia, it is important to determine the effect of these drugs on oligodendrocyte energy metabolism and myelin lipid production. Effects of clozapine and haloperidol on glucose and myelin lipid metabolism were evaluated and compared in cultured OLN-93 oligodendrocytes. First, glycolytic activity was assessed by measurement of extra- and intracellular glucose and lactate levels. Next, the expression of glucose (GLUT) and monocarboxylate (MCT) transporters was determined after 6 and 24 h. And finally mitochondrial respiration, acetyl-CoA carboxylase, free fatty acids, and expression of the myelin lipid galactocerebroside were analyzed. Both drugs altered oligodendrocyte glucose metabolism, but in opposite directions. Clozapine improved the glucose uptake, production and release of lactate, without altering GLUT and MCT. In contrast, haloperidol led to higher extracellular levels of glucose and lower levels of lactate, suggesting reduced glycolysis. Antipsychotics did not alter significantly the number of functionally intact mitochondria, but clozapine enhanced the efficacy of oxidative phosphorylation and expression of galactocerebroside. Our findings support the superior impact of clozapine on white matter integrity in schizophrenia as previously observed, suggesting that this drug improves the energy supply and myelin lipid synthesis in oligodendrocytes. Characterizing the underlying signal transduction pathways may pave the way for novel oligodendrocyte-directed schizophrenia therapies. PMID:25477781

  1. Endoplasmic Reticulum Protein Quality Control Failure in Myelin Disorders

    PubMed Central

    Volpi, Vera G.; Touvier, Thierry; D'Antonio, Maurizio

    2017-01-01

    Reaching the correct three-dimensional structure is crucial for the proper function of a protein. The endoplasmic reticulum (ER) is the organelle where secreted and transmembrane proteins are synthesized and folded. To guarantee high fidelity of protein synthesis and maturation in the ER, cells have evolved ER-protein quality control (ERQC) systems, which assist protein folding and promptly degrade aberrant gene products. Only correctly folded proteins that pass ERQC checkpoints are allowed to exit the ER and reach their final destination. Misfolded glycoproteins are detected and targeted for degradation by the proteasome in a process known as endoplasmic reticulum-associated degradation (ERAD). The excess of unstructured proteins in the ER triggers an adaptive signal transduction pathway, called unfolded protein response (UPR), which in turn potentiates ERQC activities in order to reduce the levels of aberrant molecules. When the situation cannot be restored, the UPR drives cells to apoptosis. Myelin-forming cells of the central and peripheral nervous system (oligodendrocytes and Schwann cells) synthesize a large amount of myelin proteins and lipids and therefore are particularly susceptible to ERQC failure. Indeed, deficits in ERQC and activation of ER stress/UPR have been implicated in several myelin disorders, such as Pelizaeus-Merzbacher and Krabbe leucodystrophies, vanishing white matter disease and Charcot-Marie-Tooth neuropathies. Here we discuss recent evidence underlying the importance of proper ERQC functions in genetic disorders of myelinating glia. PMID:28101003

  2. Clozapine promotes glycolysis and myelin lipid synthesis in cultured oligodendrocytes.

    PubMed

    Steiner, Johann; Martins-de-Souza, Daniel; Schiltz, Kolja; Sarnyai, Zoltan; Westphal, Sabine; Isermann, Berend; Dobrowolny, Henrik; Turck, Christoph W; Bogerts, Bernhard; Bernstein, Hans-Gert; Horvath, Tamas L; Schild, Lorenz; Keilhoff, Gerburg

    2014-01-01

    Clozapine displays stronger systemic metabolic side effects than haloperidol and it has been hypothesized that therapeutic antipsychotic and adverse metabolic effects of these drugs are related. Considering that cerebral disconnectivity through oligodendrocyte dysfunction has been implicated in schizophrenia, it is important to determine the effect of these drugs on oligodendrocyte energy metabolism and myelin lipid production. Effects of clozapine and haloperidol on glucose and myelin lipid metabolism were evaluated and compared in cultured OLN-93 oligodendrocytes. First, glycolytic activity was assessed by measurement of extra- and intracellular glucose and lactate levels. Next, the expression of glucose (GLUT) and monocarboxylate (MCT) transporters was determined after 6 and 24 h. And finally mitochondrial respiration, acetyl-CoA carboxylase, free fatty acids, and expression of the myelin lipid galactocerebroside were analyzed. Both drugs altered oligodendrocyte glucose metabolism, but in opposite directions. Clozapine improved the glucose uptake, production and release of lactate, without altering GLUT and MCT. In contrast, haloperidol led to higher extracellular levels of glucose and lower levels of lactate, suggesting reduced glycolysis. Antipsychotics did not alter significantly the number of functionally intact mitochondria, but clozapine enhanced the efficacy of oxidative phosphorylation and expression of galactocerebroside. Our findings support the superior impact of clozapine on white matter integrity in schizophrenia as previously observed, suggesting that this drug improves the energy supply and myelin lipid synthesis in oligodendrocytes. Characterizing the underlying signal transduction pathways may pave the way for novel oligodendrocyte-directed schizophrenia therapies.

  3. Comparable myelinated nerve pathology in feline and human diabetes mellitus.

    PubMed

    Mizisin, Andrew P; Nelson, Richard W; Sturges, B K; Vernau, Karen M; Lecouteur, Richard A; Williams, D Colette; Burgers, Monica L; Shelton, G Diane

    2007-04-01

    The occurrence of diabetic neuropathy in cats provides an opportunity to study the development and treatment of neurological complications not present in diabetic rodent models, where few pathological alterations are evident. The present study further defines pathological alterations in nerve biopsies from 12 cats with spontaneously occurring diabetes mellitus. Peroneal nerve biopsies displayed concurrent injury to both Schwann cells and axons of myelinated fibers that was remarkably similar to that present in human diabetic neuropathy. In addition to demyelination, remyelination (constituting 20-84% of the total myelinated fiber population) was indicated by fibers with inappropriately thin myelin sheaths. Unlike our previous investigations, striking axonal injury was apparent, and consisted of dystrophic accumulations of membranous debris or neurofilaments, as well as degenerative fiber loss resulting in a 50% decrease in myelinated fiber density. In spite of extensive fiber loss, regenerative clusters were apparent, suggesting that axonal regeneration was not completely frustrated. These data highlight the potential utility of feline diabetic neuropathy as a model that faithfully replicates the nerve injury in human diabetes mellitus.

  4. Human Neuroma-in-Continuity Contains Focal Deficits in Myelination.

    PubMed

    van Vliet, Arie C; Tannemaat, Martijn R; van Duinen, Sjoerd G; Verhaagen, Joost; Malessy, Martijn J A; De Winter, Fred

    2015-09-01

    Functional recovery does not occur in 10% of patients with neonatal brachial plexus palsy. In these patients, resection of a neuroma-in-continuity (NIC) and surgical nerve reconstruction are required. The formation of a NIC seems to prohibit functional recovery, but the underlying biologic mechanisms for this failure are poorly understood. We systematically analyzed a large series of NIC tissue samples from 17 neonatal and 3 adult patients using an array of immunohistochemical techniques. In a large proportion of patients (74%), the NIC contained multiple focal globular areas with markedly diminished myelination. These focal myelin deficits (FMDs) contain Schwann cells that enwrap axons in an apparently normal configuration but do not form myelin. Biomathematical analysis of a 2-cm neuroma predicted a higher-than-95% probability that an axon would encounter 10 FMDs. Axon segments in FMDs also had disturbed nodes of Ranvier (i.e., FMDs contained significantly fewer clustered Na(v)1.6 channels and decreased Caspr and ankyrin G). These observations indicate that axons in NIC course through multiple FMDs and that this may be the pathobiologic basis for conduction blocks in patients with neonatal brachial plexus palsy. These observations indicate the need for novel strategies to promote functional recovery after neonatal brachial plexus palsy by improving myelination in the NIC.

  5. High resolution myelin water imaging incorporating local tissue susceptibility analysis.

    PubMed

    Wu, Zhe; He, Hongjian; Sun, Yi; Du, Yiping; Zhong, Jianhui

    2017-10-01

    Quantitative myelin water imaging (MWI) from signal T2* decay acquired with multiple Gradient-Recalled Echo (mGRE) sequence has been widely used since its first report. A recent study showed that with low resolution data (2mm isotropic voxels), direct application of complex fitting to a three-pool WM model with frequency shift terms could produce more stable parameter estimation for myelin water fraction mapping. MWI maps of higher spatial resolution resulting in more detailed tissue structures and reduced partial volume effects around white matter/gray matter (WM/GM) interface, however, is more desirable. Furthermore, as signal-to-noise ratio (SNR) of original images decreases due to reduced voxel size, the direct complex fitting procedure of myelin water imaging becomes more prone to systematic errors which severely compromised stability and reliability of the result. Instead of using the original part of T2* decay, this work presents a new method based on the WM-induced phase from tissue susceptibility calculated with the same mGRE dataset, in a three-pool WM model (water of myelin, axonal and extracellular water), to improve high resolution MWI. Compared with direct complex fitting for the higher spatial resolution case, the proposed method is shown to provide a more stable and accurate estimation of MWI parameters, and finer details near WM/GM boundaries with greatly reduced partial volume effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Dynamic Modulation of Myelination in Response to Visual Stimuli Alters Optic Nerve Conduction Velocity

    PubMed Central

    Etxeberria, Ainhoa; Hokanson, Kenton C.; Dao, Dang Q.; Mayoral, Sonia R.; Mei, Feng; Redmond, Stephanie A.; Ullian, Erik M.

    2016-01-01

    Myelin controls the time required for an action potential to travel from the neuronal soma to the axon terminal, defining the temporal manner in which information is processed within the CNS. The presence of myelin, the internodal length, and the thickness of the myelin sheath are powerful structural factors that control the velocity and fidelity of action potential transmission. Emerging evidence indicates that myelination is sensitive to environmental experience and neuronal activity. Activity-dependent modulation of myelination can dynamically alter action potential conduction properties but direct functional in vivo evidence and characterization of the underlying myelin changes is lacking. We demonstrate that in mice long-term monocular deprivation increases oligodendrogenesis in the retinogeniculate pathway but shortens myelin internode lengths without affecting other structural properties of myelinated fibers. We also demonstrate that genetically attenuating synaptic glutamate neurotransmission from retinal ganglion cells phenocopies the changes observed after monocular deprivation, suggesting that glutamate may constitute a signal for myelin length regulation. Importantly, we demonstrate that visual deprivation and shortened internodes are associated with a significant reduction in nerve conduction velocity in the optic nerve. Our results reveal the importance of sensory input in the building of myelinated fibers and suggest that this activity-dependent alteration of myelination is important for modifying the conductive properties of brain circuits in response to environmental experience. SIGNIFICANCE STATEMENT Oligodendrocyte precursor cells differentiate into mature oligodendrocytes and are capable of ensheathing axons with myelin without molecular cues from neurons. However, this default myelination process can be modulated by changes in neuronal activity. Here, we show, for the first time, that experience-dependent activity modifies the length of myelin

  7. Generalized cable equation model for myelinated nerve fiber.

    PubMed

    Einziger, Pinchas D; Livshitz, Leonid M; Mizrahi, Joseph

    2005-10-01

    Herein, the well-known cable equation for nonmyelinated axon model is extended analytically for myelinated axon formulation. The myelinated membrane conductivity is represented via the Fourier series expansion. The classical cable equation is thereby modified into a linear second order ordinary differential equation with periodic coefficients, known as Hill's equation. The general internal source response, expressed via repeated convolutions, uniformly converges provided that the entire periodic membrane is passive. The solution can be interpreted as an extended source response in an equivalent nonmyelinated axon (i.e., the response is governed by the classical cable equation). The extended source consists of the original source and a novel activation function, replacing the periodic membrane in the myelinated axon model. Hill's equation is explicitly integrated for the specific choice of piecewise constant membrane conductivity profile, thereby resulting in an explicit closed form expression for the transmembrane potential in terms of trigonometric functions. The Floquet's modes are recognized as the nerve fiber activation modes, which are conventionally associated with the nonlinear Hodgkin-Huxley formulation. They can also be incorporated in our linear model, provided that the periodic membrane point-wise passivity constraint is properly modified. Indeed, the modified condition, enforcing the periodic membrane passivity constraint on the average conductivity only leads, for the first time, to the inclusion of the nerve fiber activation modes in our novel model. The validity of the generalized transmission-line and cable equation models for a myelinated nerve fiber, is verified herein through a rigorous Green's function formulation and numerical simulations for transmembrane potential induced in three-dimensional myelinated cylindrical cell. It is shown that the dominant pole contribution of the exact modal expansion is the transmembrane potential solution of our

  8. Neural Stem Cell Engraftment and Myelination in the Human Brain

    PubMed Central

    Gupta, Nalin; Henry, Roland G.; Strober, Jonathan; Kang, Sang-Mo; Lim, Daniel A.; Bucci, Monica; Caverzasi, Eduardo; Gaetano, Laura; Mandelli, Maria Luisa; Ryan, Tamara; Perry, Rachel; Farrell, Jody; Jeremy, Rita J.; Ulman, Mary; Huhn, Stephen L.; Barkovich, A. James; Rowitch, David H.

    2013-01-01

    Pelizaeus-Merzbacher disease (PMD) is a rare leukodystrophy caused by mutation of the proteolipid protein 1 gene. Defective oligodendrocytes in PMD fail to myelinate axons, causing global neurological dysfunction. Human central nervous system stem cells (HuCNS-SCs) can develop into oligodendrocytes and confer structurally normal myelin when transplanted into a hypomyelinating mouse model. A 1-year open-label phase 1 study was undertaken to evaluate safety and to detect evidence of myelin formation after HuCNS-SC transplantation. Allogeneic HuCNS-SCs were surgically implanted into the frontal lobe white matter in four male subjects with an early-onset severe form of PMD. Immunosuppression was administered for 9 months. Serial neurological evaluations, developmental assessments, and cranial magnetic resonance imaging (MRI) and MR spectroscopy, including high-angular resolution diffusion tensor imaging (DTI), were performed at baseline and after transplantation. The neurosurgical procedure, immunosuppression regimen, and HuCNS-SC transplantation were well tolerated. Modest gains in neurological function were observed in three of the four subjects. No clinical or radiological adverse effects were directly attributed to the donor cells. Reduced T1 and T2 relaxation times were observed in the regions of transplantation 9 months after the procedure in the three subjects. Normalized DTI showed increasing fractional anisotropy and reduced radial diffusivity, consistent with myelination, in the region of transplantation compared to control white matter regions remote to the transplant sites. These phase 1 findings indicate a favorable safety profile for HuCNS-SCs in subjects with PMD. The MRI results suggest durable cell engraftment and donor-derived myelin in the transplanted host white matter. PMID:23052294

  9. N,N-diethyldithiocarbamate promotes oxidative stress prior to myelin structural changes and increases myelin copper content

    SciTech Connect

    Viquez, Olga M.; Lai, Barry; Ahn, Jae Hee; Does, Mark D.; Valentine, Holly L.; Valentine, William M.

    2009-08-15

    Dithiocarbamates are a commercially important class of compounds that can produce peripheral neuropathy in humans and experimental animals. Previous studies have supported a requirement for copper accumulation and enhanced lipid peroxidation in dithiocarbamate-mediated myelinopathy. The study presented here extends previous investigations in two areas. Firstly, although total copper levels have been shown to increase within the nerve it has not been determined whether copper is increased within the myelin compartment, the primary site of lesion development. Therefore, the distribution of copper in sciatic nerve was characterized using synchrotron X-ray fluorescence microscopy to determine whether the neurotoxic dithiocarbamate, N,N-diethyldithiocarbamate, increases copper levels in myelin. Secondly, because lipid peroxidation is an ongoing process in normal nerve and the levels of lipid peroxidation products produced by dithiocarbamate exposure demonstrated an unusual cumulative dose response in previous studies the biological impact of dithiocarbamate-mediated lipid peroxidation was evaluated. Experiments were performed to determine whether dithiocarbamate-mediated lipid peroxidation products elicit an antioxidant response through measuring the protein expression levels of three enzymes, superoxide dismutase 1, heme oxygenase 1, and glutathione transferase {alpha}, that are linked to the antioxidant response element promoter. To establish the potential of oxidative injury to contribute to myelin injury the temporal relationship of the antioxidant response to myelin injury was determined. Myelin structure in peripheral nerve was assessed using multi-exponential transverse relaxation measurements (MET{sub 2}) as a function of exposure duration, and the temporal relationship of protein expression changes relative to the onset of changes in myelin integrity were determined. Initial assessments were also performed to explore the potential contribution of

  10. N,N-diethyldithiocarbamate promotes oxidative stress prior to myelin structural changes and increases myelin copper content.

    PubMed

    Viquez, Olga M; Lai, Barry; Ahn, Jae Hee; Does, Mark D; Valentine, Holly L; Valentine, William M

    2009-08-15

    Dithiocarbamates are a commercially important class of compounds that can produce peripheral neuropathy in humans and experimental animals. Previous studies have supported a requirement for copper accumulation and enhanced lipid peroxidation in dithiocarbamate-mediated myelinopathy. The study presented here extends previous investigations in two areas. Firstly, although total copper levels have been shown to increase within the nerve it has not been determined whether copper is increased within the myelin compartment, the primary site of lesion development. Therefore, the distribution of copper in sciatic nerve was characterized using synchrotron X-ray fluorescence microscopy to determine whether the neurotoxic dithiocarbamate, N,N-diethyldithiocarbamate, increases copper levels in myelin. Secondly, because lipid peroxidation is an ongoing process in normal nerve and the levels of lipid peroxidation products produced by dithiocarbamate exposure demonstrated an unusual cumulative dose response in previous studies the biological impact of dithiocarbamate-mediated lipid peroxidation was evaluated. Experiments were performed to determine whether dithiocarbamate-mediated lipid peroxidation products elicit an antioxidant response through measuring the protein expression levels of three enzymes, superoxide dismutase 1, heme oxygenase 1, and glutathione transferase alpha, that are linked to the antioxidant response element promoter. To establish the potential of oxidative injury to contribute to myelin injury the temporal relationship of the antioxidant response to myelin injury was determined. Myelin structure in peripheral nerve was assessed using multi-exponential transverse relaxation measurements (MET(2)) as a function of exposure duration, and the temporal relationship of protein expression changes relative to the onset of changes in myelin integrity were determined. Initial assessments were also performed to explore the potential contribution of dithiocarbamate

  11. Modeling the action-potential-sensitive nonlinear-optical response of myelinated nerve fibers and short-term memory

    NASA Astrophysics Data System (ADS)

    Shneider, M. N.; Voronin, A. A.; Zheltikov, A. M.

    2011-11-01

    The Goldman-Albus treatment of the action-potential dynamics is combined with a phenomenological description of molecular hyperpolarizabilities into a closed-form model of the action-potential-sensitive second-harmonic response of myelinated nerve fibers with nodes of Ranvier. This response is shown to be sensitive to nerve demyelination, thus enabling an optical diagnosis of various demyelinating diseases, including multiple sclerosis. The model is applied to examine the nonlinear-optical response of a three-neuron reverberating circuit—the basic element of short-term memory.

  12. Neutron scattering from myelin revisited: bilayer asymmetry and water-exchange kinetics

    SciTech Connect

    Denninger, Andrew R.; Demé, Bruno; Cristiglio, Viviana; LeDuc, Géraldine; Feller, W. Bruce; Kirschner, Daniel A.

    2014-12-01

    The structure of internodal myelin in the rodent central and peripheral nervous systems has been determined using neutron diffraction. The kinetics of water exchange in these tissues is also described. Rapid nerve conduction in the central and peripheral nervous systems (CNS and PNS, respectively) of higher vertebrates is brought about by the ensheathment of axons with myelin, a lipid-rich, multilamellar assembly of membranes. The ability of myelin to electrically insulate depends on the regular stacking of these plasma membranes and on the presence of a number of specialized membrane-protein assemblies in the sheath, including the radial component, Schmidt–Lanterman incisures and the axo–glial junctions of the paranodal loops. The disruption of this fine-structure is the basis for many demyelinating neuropathies in the CNS and PNS. Understanding the processes that govern myelin biogenesis, maintenance and destabilization requires knowledge of myelin structure; however, the tight packing of internodal myelin and the complexity of its junctional specializations make myelin a challenging target for comprehensive structural analysis. This paper describes an examination of myelin from the CNS and PNS using neutron diffraction. This investigation revealed the dimensions of the bilayers and aqueous spaces of myelin, asymmetry between the cytoplasmic and extracellular leaflets of the membrane, and the distribution of water and exchangeable hydrogen in internodal multilamellar myelin. It also uncovered differences between CNS and PNS myelin in their water-exchange kinetics.

  13. Of mothers and myelin: Aberrant myelination phenotypes in mouse model of Angelman syndrome are dependent on maternal and dietary influences.

    PubMed

    Grier, Mark D; Carson, Robert P; Lagrange, Andre H

    2015-09-15

    Angelman syndrome (AS) is a neurodevelopmental disorder characterized by a number of neurological problems, including developmental delay, movement disorders, and epilepsy. AS results from the loss of UBE3A (an imprinted gene) expressed from the maternal chromosome in neurons. Given the ubiquitous expression of Ube3a and the devastating nature of AS, the role of environmental and maternal effects has been largely ignored. Severe ataxia, anxiety-like behaviors and learning deficits are well-documented in patients and AS mice. More recently, clinical imaging studies of AS patients suggest myelination may be delayed or reduced. Utilizing a mouse model of AS, we found disrupted expression of cortical myelin proteins, the magnitude of which is influenced by maternal status, in that the aberrant myelination in the AS pups of AS affected mothers were more pronounced than those seen in AS pups raised by unaffected (Ube3a (m+/p-)) Carrier mothers. Furthermore, feeding the breeding mothers a higher fat (11% vs 5%) diet normalizes these myelin defects. These effects are not limited to myelin proteins. Since AS mice have abnormal stress responses, including altered glucocorticoid receptor (GR) expression, we measured GR expression in pups from Carrier and affected AS mothers. AS pups had higher GR expression than their WT littermates. However, we also found an effect of maternal status, with reduced GR levels in pups from affected mothers compared to genotypically identical pups raised by unaffected Carrier mothers. Taken together, our findings suggest that the phenotypes observed in AS mice may be modulated by factors independent of Ube3a genotype.

  14. Of mothers and myelin: Aberrant myelination phenotypes in mouse model of Angelman Syndrome are dependent on maternal and dietary influences

    PubMed Central

    Grier, Mark D.; Carson, Robert P.; Lagrange, Andre H.

    2015-01-01

    Angelman Syndrome (AS) is a neurodevelopmental disorder characterized by a number of neurological problems, including developmental delay, movement disorders and epilepsy. AS results from the loss of UBE3A (an imprinted gene) expressed from the maternal chromosome in neurons. Given the ubiquitous expression of Ube3a and the devastating nature of AS, the role of environmental and maternal effects has been largely ignored. Severe ataxia, anxiety-like behaviors and learning deficits are well-documented in patients and AS mice. More recently, clinical imaging studies of AS patients suggest myelination may be delayed or reduced. Utilizing a mouse model of AS, we found disrupted expression of cortical myelin proteins, the magnitude of which is influenced by maternal status, in that the aberrant myelination in the AS pups of AS affected mothers were more pronounced than those seen in AS pups raised by unaffected (Ube3a (m+/p-)) Carrier mothers. Furthermore, feeding the breeding mothers a higher fat (11% vs 5%) diet normalizes these myelin defects. These effects are not limited to myelin proteins. Since AS mice have abnormal stress responses, including altered glucocorticoid receptor (GR) expression, we measured GR expression in pups from Carrier and affected AS mothers. AS pups had higher GR expression than their WT littermates. However, we also found an effect of maternal status, with reduced GR levels in pups from affected mothers compared to genotypically identical pups raised by unaffected Carrier mothers. Taken together, our findings suggest that the phenotypes observed in AS mice may be modulated by factors independent of Ube3a genotype. PMID:26028516

  15. Regulation of Myelin Genes Implicated in Psychiatric Disorders by Functional Activity in Axons

    PubMed Central

    Lee, Philip R.; Fields, R. Douglas

    2009-01-01

    Myelination is a highly dynamic process that continues well into adulthood in humans. Several recent gene expression studies have found abnormal expression of genes involved in myelination in the prefrontal cortex of brains from patients with schizophrenia and other psychiatric illnesses. Defects in myelination could contribute to the pathophysiology of psychiatric illness by impairing information processing as a consequence of altered impulse conduction velocity and synchrony between cortical regions carrying out higher level cognitive functions. Myelination can be altered by impulse activity in axons and by environmental experience. Psychiatric illness is treated by psychotherapy, behavioral modification, and drugs affecting neurotransmission, raising the possibility that myelinating glia may not only contribute to such disorders, but that activity-dependent effects on myelinating glia could provide one of the cellular mechanisms contributing to the therapeutic effects of these treatments. This review examines evidence showing that genes and gene networks important for myelination can be regulated by functional activity in axons. PMID:19521541

  16. The role of myelination in measures of white matter integrity: Combination of diffusion tensor imaging and two-photon microscopy of CLARITY intact brains.

    PubMed

    Chang, Eric H; Argyelan, Miklos; Aggarwal, Manisha; Chandon, Toni-Shay S; Karlsgodt, Katherine H; Mori, Susumu; Malhotra, Anil K

    2017-02-15

    Diffusion tensor imaging (DTI) is used extensively in neuroscience to noninvasively estimate white matter (WM) microarchitecture. However, the diffusion signal is inherently ambiguous because it infers WM structure from the orientation of water diffusion and cannot identify the biological sources of diffusion changes. To compare inferred WM estimates to directly labeled axonal elements, we performed a novel within-subjects combination of high-resolution ex vivo DTI with two-photon laser microscopy of intact mouse brains rendered optically transparent by Clear Lipid-exchanged, Anatomically Rigid, Imaging/immunostaining compatible, Tissue hYdrogel (CLARITY). We found that myelin basic protein (MBP) immunofluorescence significantly correlated with fractional anisotropy (FA), especially in WM regions with coherent fiber orientations and low fiber dispersion. Our results provide evidence that FA is particularly sensitive to myelination in WM regions with these characteristics. Furthermore, we found that radial diffusivity (RD) was only sensitive to myelination in a subset of WM tracts, suggesting that the association of RD with myelin should be used cautiously. This combined DTI-CLARITY approach illustrates, for the first time, a framework for using brain-wide immunolabeling of WM targets to elucidate the relationship between the diffusion signal and its biological underpinnings. This study also demonstrates the feasibility of a within-subject combination of noninvasive neuroimaging and tissue clearing techniques that has broader implications for neuroscience research.

  17. BASIC Programming.

    ERIC Educational Resources Information Center

    Jennings, Carol Ann

    Designed for use by both secondary- and postsecondary-level business teachers, this curriculum guide consists of 10 units of instructional materials dealing with Beginners All-Purpose Symbol Instruction Code (BASIC) programing. Topics of the individual lessons are numbering BASIC programs and using the PRINT, END, and REM statements; system…

  18. Protein-Specific Differential Glycosylation of Immunoglobulins in Serum of Ovarian Cancer Patients.

    PubMed

    Ruhaak, L Renee; Kim, Kyoungmi; Stroble, Carol; Taylor, Sandra L; Hong, Qiuting; Miyamoto, Suzanne; Lebrilla, Carlito B; Leiserowitz, Gary

    2016-03-04

    Previous studies indicated that glycans in serum may serve as biomarkers for diagnosis of ovarian cancer; however, it was unclear to which proteins these glycans belong. We hypothesize that protein-specific glycosylation profiles of the glycans may be more informative of ovarian cancer and can provide insight into biological mechanisms underlying glycan aberration in serum of diseased individuals. Serum samples from women diagnosed with epithelial ovarian cancer (EOC, n = 84) and matched healthy controls (n = 84) were obtained from the Gynecologic Oncology Group. Immunoglobulin (IgG, IgA, and IgM) concentrations and glycosylation profiles were quantified using multiple reaction monitoring mass spectrometry. Differential and classification analyses were performed to identify aberrant protein-specific glycopeptides using a training set. All findings were validated in an independent test set. Multiple glycopeptides from immunoglubins IgA, IgG, and IgM were found to be differentially expressed in serum of EOC patients compared with controls. The protein-specific glycosylation profiles showed their potential in the diagnosis of EOC. In particular, IgG-specific glycosylation profiles are the most powerful in discriminating between EOC case and controls. Additional studies of protein- and site-specific glycosylation profiles of immunoglobulins and other proteins will allow further elaboration on the characteristics of biological functionality and causality of the differential glycosylation in ovarian cancer and thus ultimately lead to increased sensitivity and specificity of diagnosis.

  19. ENCEPHALOMYELITIS ACCOMPANIED BY MYELIN DESTRUCTION EXPERIMENTALLY PRODUCED IN MONKEYS

    PubMed Central

    Rivers, Thomas M.; Schwentker, Francis F.

    1935-01-01

    The repeated intramuscular injections of aqueous emulsions and alcohol-ether extracts of sterile normal rabbit brains in some manner produced pathological changes accompanied by myelin destruction in the brains of 7 of 8 monkeys (Macacus rhesus). Eight, control monkeys remained well. Cultures from the involved brains remained sterile, and no transmissible agent was demonstrated by means of intracerebral inoculations of emulsions of bits of the brains into monkeys, rabbits, guinea pigs, and white mice. PMID:19870385

  20. Activation of MAPK overrides the termination of myelin growth and replaces Nrg1/ErbB3 signals during Schwann cell development and myelination

    PubMed Central

    Sheean, Maria E.; McShane, Erik; Cheret, Cyril; Walcher, Jan; Müller, Thomas; Wulf-Goldenberg, Annika; Hoelper, Soraya; Garratt, Alistair N.; Krüger, Markus; Rajewsky, Klaus; Meijer, Dies; Birchmeier, Walter; Lewin, Gary R.; Selbach, Matthias; Birchmeier, Carmen

    2014-01-01

    Myelination depends on the synthesis of large amounts of myelin transcripts and proteins and is controlled by Nrg1/ErbB/Shp2 signaling. We developed a novel pulse labeling strategy based on stable isotope labeling with amino acids in cell culture (SILAC) to measure the dynamics of myelin protein production in mice. We found that protein synthesis is dampened in the maturing postnatal peripheral nervous system, and myelination then slows down. Remarkably, sustained activation of MAPK signaling by expression of the Mek1DD allele in mice overcomes the signals that end myelination, resulting in continuous myelin growth. MAPK activation leads to minor changes in transcript levels but massively up-regulates protein production. Pharmacological interference in vivo demonstrates that the effects of activated MAPK signaling on translation are mediated by mTOR-independent mechanisms but in part also by mTOR-dependent mechanisms. Previous work demonstrated that loss of ErbB3/Shp2 signaling impairs Schwann cell development and disrupts the myelination program. We found that activated MAPK signaling strikingly compensates for the absence of ErbB3 or Shp2 during Schwann cell development and myelination. PMID:24493648

  1. Subtle changes in myelination due to childhood experiences: label-free microscopy to infer nerve fibers morphology and myelination in brain (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gasecka, Alicja; Tanti, Arnaud; Lutz, Pierre-Eric; Mechawar, Naguib; Cote, Daniel C.

    2017-02-01

    Adverse childhood experiences have lasting detrimental effects on mental health and are strongly associated with impaired cognition and increased risk of developing psychopathologies. Preclinical and neuroimaging studies have suggested that traumatic events during brain development can affect cerebral myelination particularly in areas and tracts implicated in mood and emotion. Although current neuroimaging techniques are quite powerful, they lack the resolution to infer myelin integrity at the cellular level. Recently demonstrated coherent Raman microscopy has accomplished cellular level imaging of myelin sheaths in the nervous system. However, a quantitative morphometric analysis of nerve fibers still remains a challenge. In particular, in brain, where fibres exhibit small diameters and varying local orientation. In this work, we developed an automated myelin identification and analysis method that is capable of providing a complete picture of axonal myelination and morphology in brain samples. This method performs three main procedures 1) detects molecular anisotropy of membrane phospholipids based on polarization resolved coherent Raman microscopy, 2) identifies regions of different molecular organization, 3) calculates morphometric features of myelinated axons (e.g. myelin thickness, g-ratio). We applied this method to monitor white matter areas from suicides adults that suffered from early live adversity and depression compared to depressed suicides adults and psychiatrically healthy controls. We demonstrate that our method allows for the rapid acquisition and automated analysis of neuronal networks morphology and myelination. This is especially useful for clinical and comparative studies, and may greatly enhance the understanding of processes underlying the neurobiological and psychopathological consequences of child abuse.

  2. Organization of myelin in the mouse somatosensory barrel cortex and the effects of sensory deprivation.

    PubMed

    Barrera, Kyrstle; Chu, Philip; Abramowitz, Jason; Steger, Robert; Ramos, Raddy L; Brumberg, Joshua C

    2013-04-01

    In rodents, the barrel cortex is a specialized area within the somatosensory cortex that processes signals from the mystacial whiskers. We investigated the normal development of myelination in the barrel cortex of mice, as well as the effects of sensory deprivation on this pattern. Deprivation was achieved by trimming the whiskers on one side of the face every other day from birth. In control mice, myelin was not present until postnatal day 14 and did not show prominence until postnatal day 30; adult levels of myelination were reached by the end of the second postnatal month. Unbiased stereology was used to estimate axon density in the interbarrel septal region and barrel walls as well as the barrel centers. Myelin was significantly more concentrated in the interbarrel septa/barrel walls than in the barrel centers in both control and sensory-deprived conditions. Sensory deprivation did not impact the onset of myelination but resulted in a significant decrease in myelinated axons in the barrel region and decreased the amount of myelin ensheathing each axon. Visualization of the oligodendrocyte nuclear marker Olig2 revealed a similar pattern of myelin as seen using histochemistry, but with no significant changes in Olig2+ nuclei following sensory deprivation. Consistent with the anatomical results showing less myelination, local field potentials revealed slower rise times following trimming. Our results suggest that myelination develops relatively late and can be influenced by sensory experience.

  3. GlcNAc6ST-1 regulates sulfation of N-glycans and myelination in the peripheral nervous system

    PubMed Central

    Yoshimura, Takeshi; Hayashi, Akiko; Handa-Narumi, Mai; Yagi, Hirokazu; Ohno, Nobuhiko; Koike, Takako; Yamaguchi, Yoshihide; Uchimura, Kenji; Kadomatsu, Kenji; Sedzik, Jan; Kitamura, Kunio; Kato, Koichi; Trapp, Bruce D.; Baba, Hiroko; Ikenaka, Kazuhiro

    2017-01-01

    Highly specialized glial cells wrap axons with a multilayered myelin membrane in vertebrates. Myelin serves essential roles in the functioning of the nervous system. Axonal degeneration is the major cause of permanent neurological disability in primary myelin diseases. Many glycoproteins have been identified in myelin, and a lack of one myelin glycoprotein results in abnormal myelin structures in many cases. However, the roles of glycans on myelin glycoproteins remain poorly understood. Here, we report that sulfated N-glycans are involved in peripheral nervous system (PNS) myelination. PNS myelin glycoproteins contain highly abundant sulfated N-glycans. Major sulfated N-glycans were identified in both porcine and mouse PNS myelin, demonstrating that the 6-O-sulfation of N-acetylglucosamine (GlcNAc-6-O-sulfation) is highly conserved in PNS myelin between these species. P0 protein, the most abundant glycoprotein in PNS myelin and mutations in which at the glycosylation site cause Charcot-Marie-Tooth neuropathy, has abundant GlcNAc-6-O-sulfated N-glycans. Mice deficient in N-acetylglucosamine-6-O-sulfotransferase-1 (GlcNAc6ST-1) failed to synthesize sulfated N-glycans and exhibited abnormal myelination and axonal degeneration in the PNS. Taken together, this study demonstrates that GlcNAc6ST-1 modulates PNS myelination and myelinated axonal survival through the GlcNAc-6-O-sulfation of N-glycans on glycoproteins. These findings may provide novel insights into the pathogenesis of peripheral neuropathy. PMID:28186137

  4. Cortical network dysfunction caused by a subtle defect of myelination

    PubMed Central

    Poggi, Giulia; Boretius, Susann; Möbius, Wiebke; Moschny, Nicole; Baudewig, Jürgen; Ruhwedel, Torben; Hassouna, Imam; Wieser, Georg L.; Werner, Hauke B.; Goebbels, Sandra

    2016-01-01

    Subtle white matter abnormalities have emerged as a hallmark of brain alterations in magnetic resonance imaging or upon autopsy of mentally ill subjects. However, it is unknown whether such reduction of white matter and myelin contributes to any disease‐relevant phenotype or simply constitutes an epiphenomenon, possibly even treatment‐related. Here, we have re‐analyzed Mbp heterozygous mice, the unaffected parental strain of shiverer, a classical neurological mutant. Between 2 and 20 months of age, Mbp+/‐ versus Mbp+/+ littermates were deeply phenotyped by combining extensive behavioral/cognitive testing with MRI, 1H‐MR spectroscopy, electron microscopy, and molecular techniques. Surprisingly, Mbp‐dependent myelination was significantly reduced in the prefrontal cortex. We also noticed a mild but progressive hypomyelination of the prefrontal corpus callosum and low‐grade inflammation. While most behavioral functions were preserved, Mbp+/‐ mice exhibited defects of sensorimotor gating, as evidenced by reduced prepulse‐inhibition, and a late‐onset catatonia phenotype. Thus, subtle but primary abnormalities of CNS myelin can be the cause of a persistent cortical network dysfunction including catatonia, features typical of neuropsychiatric conditions. GLIA 2016;64:2025–2040 PMID:27470661

  5. Structural basis of myelin-associated glycoprotein adhesion and signalling

    PubMed Central

    Pronker, Matti F.; Lemstra, Suzanne; Snijder, Joost; Heck, Albert J. R.; Thies-Weesie, Dominique M. E.; Pasterkamp, R. Jeroen; Janssen, Bert J. C.

    2016-01-01

    Myelin-associated glycoprotein (MAG) is a myelin-expressed cell-adhesion and bi-directional signalling molecule. MAG maintains the myelin–axon spacing by interacting with specific neuronal glycolipids (gangliosides), inhibits axon regeneration and controls myelin formation. The mechanisms underlying MAG adhesion and signalling are unresolved. We present crystal structures of the MAG full ectodomain, which reveal an extended conformation of five Ig domains and a homodimeric arrangement involving membrane-proximal domains Ig4 and Ig5. MAG-oligosaccharide complex structures and biophysical assays show how MAG engages axonal gangliosides at domain Ig1. Two post-translational modifications were identified—N-linked glycosylation at the dimerization interface and tryptophan C-mannosylation proximal to the ganglioside binding site—that appear to have regulatory functions. Structure-guided mutations and neurite outgrowth assays demonstrate MAG dimerization and carbohydrate recognition are essential for its regeneration-inhibiting properties. The combination of trans ganglioside binding and cis homodimerization explains how MAG maintains the myelin–axon spacing and provides a mechanism for MAG-mediated bi-directional signalling. PMID:27922006

  6. Oligodendrocyte progenitor programming and reprogramming: Toward myelin regeneration.

    PubMed

    Lopez Juarez, Alejandro; He, Danyang; Richard Lu, Q

    2016-05-01

    Demyelinating diseases such as multiple sclerosis (MS) are among the most disabling and cost-intensive neurological disorders. The loss of myelin in the central nervous system, produced by oligodendrocytes (OLs), impairs saltatory nerve conduction, leading to motor and cognitive deficits. Immunosuppression therapy has a limited efficacy in MS patients, arguing for a paradigm shift to strategies that target OL lineage cells to achieve myelin repair. The inhibitory microenvironment in MS lesions abrogates the expansion and differentiation of resident OL precursor cells (OPCs) into mature myelin-forming OLs. Recent studies indicate that OPCs display a highly plastic ability to differentiate into alternative cell lineages under certain circumstances. Thus, understanding the mechanisms that maintain and control OPC fate and differentiation into mature OLs in a hostile, non-permissive lesion environment may open new opportunities for regenerative therapies. In this review, we will focus on 1) the plasticity of OPCs in terms of their developmental origins, distribution, and differentiation potentials in the normal and injured brain; 2) recent discoveries of extrinsic and intrinsic factors and small molecule compounds that control OPC specification and differentiation; and 3) therapeutic potential for motivation of neural progenitor cells and reprogramming of differentiated cells into OPCs and their likely impacts on remyelination. OL-based therapies through activating regenerative potentials of OPCs or cell replacement offer exciting opportunities for innovative strategies to promote remyelination and neuroprotection in devastating demyelinating diseases like MS. This article is part of a Special Issue entitled SI:NG2-glia(Invited only).

  7. A functional role for EGFR signaling in myelination and remyelination.

    PubMed

    Aguirre, Adan; Dupree, Jeff L; Mangin, J M; Gallo, Vittorio

    2007-08-01

    Cellular strategies for oligodendrocyte regeneration and remyelination involve characterizing endogenous neural progenitors that are capable of generating oligodendrocytes during normal development and after demyelination, and identifying the molecular signals that enhance oligodendrogenesis from these progenitors. Using both gain- and loss-of-function approaches, we explored the role of epidermal growth factor receptor (EGFR) signaling in adult myelin repair and in oligodendrogenesis. We show that 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) promoter-driven overexpression of human EGFR (hEGFR) accelerated remyelination and functional recovery following focal demyelination of mouse corpus callosum. Lesion repopulation by Cspg4+ (also known as NG2) Ascl1+ (also known as Mash1) Olig2+ progenitors and functional remyelination were accelerated in CNP-hEGFR mice compared with wild-type mice. EGFR overexpression in subventricular zone (SVZ) and corpus callosum during early postnatal development also expanded this NG2+Mash1+Olig2+ progenitor population and promoted SVZ-to-lesion migration, enhancing oligodendrocyte generation and axonal myelination. Analysis of hypomorphic EGFR-mutant mice confirmed that EGFR signaling regulates oligodendrogenesis and remyelination by NG2+Mash1+Olig2+ progenitors. EGFR targeting holds promise for enhancing oligodendrocyte regeneration and myelin repair.

  8. Axonal Transport and Morphology: How Myelination gets Nerves into Shape

    NASA Astrophysics Data System (ADS)

    Jung, Peter; Zhao, Peng; Monsma, Paula; Brown, Tony

    2011-03-01

    The local caliber of mature axons is largely determined by neurofilament (NF) content. The axoskeleton, mainly consisting of NFs, however, is dynamic. NFs are assembled in the cell body and are transported by molecular motors on microtubule tracks along the axon at a slow rate of fractions of mm per day. We combine live cell fluorescent imaging techniques to access NF transport in myelinated and non-myelinated segments of axons with computational modeling of the active NF flow to show that a), myelination locally slows NF transport rates by regulating duty ratios and b), that the predicted increase in axon caliber agrees well with experiments. This study, for the first time, links NF kinetics directly to axonal morphology, providing a novel conceptual framework for the physical understanding of processes leading to the formation of axonal structures such as the ``Nodes of Ranvier'' as well as abnormal axonal swellings associated with neurodegenerative diseases like Amyotrophic lateral sclerosis (ALS). NSF grants # IOS-0818412(PJ) and IOS-0818653 (AB).

  9. n-3 PUFA supplementation benefits microglial responses to myelin pathology

    PubMed Central

    Chen, Songela; Zhang, Haiyue; Pu, Hongjian; Wang, Guohua; Li, Wenjin; Leak, Rehana K.; Chen, Jun; Liou, Anthony K.; Hu, Xiaoming

    2014-01-01

    Microglia represent rational but challenging targets for improving white matter integrity because of their dualistic protective and toxic roles. The present study examines the effect of Omega-3 polyunsaturated fatty acids (n-3 PUFAs) on microglial responses to myelin pathology in primary cultures and in the cuprizone mouse model of multiple sclerosis (MS), a devastating demyelination disease. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), the two main forms of n-3 PUFAs in the brain, inhibited the release of nitric oxide and tumor necrosis factor-α from primary microglia upon IFN-γ and myelin stimulation. DHA and EPA also enhanced myelin phagocytosis in vitro. Therefore, n-3 PUFAs can inhibit inflammation while at the same time enhancing beneficial immune responses such as microglial phagocytosis. In vivo studies demonstrated that n-3 PUFA supplementation reduced cuprizone-induced demyelination and improved motor and cognitive function. The positive effects of n-3 PUFAs were accompanied by a shift in microglial polarization toward the beneficial M2 phenotype both in vitro and in vivo. These results suggest that n-3 PUFAs may be clinically useful as immunomodulatory agents for demyelinating diseases through a novel mechanism involving microglial phenotype switching. PMID:25500548

  10. Development of a central nervous system axonal myelination assay for high throughput screening.

    PubMed

    Lariosa-Willingham, Karen D; Rosler, Elen S; Tung, Jay S; Dugas, Jason C; Collins, Tassie L; Leonoudakis, Dmitri

    2016-04-22

    Regeneration of new myelin is impaired in persistent multiple sclerosis (MS) lesions, leaving neurons unable to function properly and subject to further degeneration. Current MS therapies attempt to ameliorate autoimmune-mediated demyelination, but none directly promote the regeneration of lost and damaged myelin of the central nervous system (CNS). Development of new drugs that stimulate remyelination has been hampered by the inability to evaluate axonal myelination in a rapid CNS culture system. We established a high throughput cell-based assay to identify compounds that promote myelination. Culture methods were developed for initiating myelination in vitro using primary embryonic rat cortical cells. We developed an immunofluorescent phenotypic image analysis method to quantify the morphological alignment of myelin characteristic of the initiation of myelination. Using γ-secretase inhibitors as promoters of myelination, the optimal growth, time course and compound treatment conditions were established in a 96 well plate format. We have characterized the cortical myelination assay by evaluating the cellular composition of the cultures and expression of markers of differentiation over the time course of the assay. We have validated the assay scalability and consistency by screening the NIH clinical collection library of 727 compounds and identified ten compounds that promote myelination. Half maximal effective concentration (EC50) values for these compounds were determined to rank them according to potency. We have designed the first high capacity in vitro assay that assesses myelination of live axons. This assay will be ideal for screening large compound libraries to identify new drugs that stimulate myelination. Identification of agents capable of promoting the myelination of axons will likely lead to the development of new therapeutics for MS patients.

  11. Insulin Basics

    MedlinePlus

    ... Text Size: A A A Listen En Español Insulin Basics There are different types of insulin depending ... you may be experiencing a reaction. Types of Insulin Rapid-acting insulin , begins to work about 15 ...

  12. Basic Finance

    NASA Technical Reports Server (NTRS)

    Vittek, J. F.

    1972-01-01

    A discussion of the basic measures of corporate financial strength, and the sources of the information is reported. Considered are: balance sheet, income statement, funds and cash flow, and financial ratios.

  13. The Basics

    ERIC Educational Resources Information Center

    Indrisano, Roselmina; And Others

    1976-01-01

    These articles are presented as an aide in teaching basic subjects. This issue examines reading diagnosis, food preservation, prime numbers, electromagnets, acting out in language arts, self-directed spelling activities, and resources for environmental education. (Editor/RK)

  14. The Basics

    ERIC Educational Resources Information Center

    Indrisano, Roselmina; And Others

    1976-01-01

    These articles are presented as an aide in teaching basic subjects. This issue examines reading diagnosis, food preservation, prime numbers, electromagnets, acting out in language arts, self-directed spelling activities, and resources for environmental education. (Editor/RK)

  15. Fluoridation Basics

    MedlinePlus

    ... Water Fluoridation Journal Articles for Community Water Fluoridation Water Fluoridation Basics Recommend on Facebook Tweet Share Compartir ... because of tooth decay. History of Fluoride in Water In the 1930s, scientists examined the relationship between ...

  16. Lipid rafts mediate the interaction between myelin-associated glycoprotein (MAG) on myelin and MAG-receptors on neurons.

    PubMed

    Vinson, Mary; Rausch, Oliver; Maycox, Peter R; Prinjha, Rab K; Chapman, Debra; Morrow, Rachel; Harper, Alex J; Dingwall, Colin; Walsh, Frank S; Burbidge, Stephen A; Riddell, David R

    2003-03-01

    The interaction between myelin-associated glycoprotein (MAG), expressed at the periaxonal membrane of myelin, and receptors on neurons initiates a bidirectional signalling system that results in inhibition of neurite outgrowth and maintenance of myelin integrity. We show that this involves a lipid-raft to lipid-raft interaction on opposing cell membranes. MAG is exclusively located in low buoyancy Lubrol WX-insoluble membrane fractions isolated from whole brain, primary oligodendrocytes, or MAG-expressing CHO cells. Localisation within these domains is dependent on cellular cholesterol and occurs following terminal glycosylation in the trans-Golgi network, characteristics of association with lipid rafts. Furthermore, a recombinant form of MAG interacts specifically with lipid-raft fractions from whole brain and cultured cerebellar granule cells, containing functional MAG receptors GT1b and Nogo-66 receptor and molecules required for transduction of signal from MAG into neurons. The localisation of both MAG and MAG receptors within lipid rafts on the surface of opposing cells may create discrete areas of high avidity multivalent interaction, known to be critical for signalling into both cell types. Localisation within lipid rafts may provide a molecular environment that facilitates the interaction between MAG and multiple receptors and also between MAG ligands and molecules involved in signal transduction.

  17. Apotransferrin-induced recovery after hypoxic/ischaemic injury on myelination

    PubMed Central

    Guardia Clausi, Mariano; Pasquini, Laura A; Soto, Eduardo F; Pasquini, Juana M

    2010-01-01

    We have previously demonstrated that aTf (apotransferrin) accelerates maturation of OLs (oligodendrocytes) in vitro as well as in vivo. The purpose of this study is to determine whether aTf plays a functional role in a model of H/I (hypoxia/ischaemia) in the neonatal brain. Twenty-four hours after H/I insult, neonatal rats were intracranially injected with aTf and the effects of this treatment were evaluated in the CC (corpus callosum) as well as the SVZ (subventricular zone) at different time points. Similar to previous studies, the H/I event produced severe demyelination in the CC. Demyelination was accompanied by microglial activation, astrogliosis and iron deposition. Ferritin levels increased together with lipid peroxidation and apoptotic cell death. Histological examination after the H/I event in brain tissue of aTf-treated animals (H/I aTF) revealed a great number of mature OLs repopulating the CC compared with saline-treated animals (H/I S). ApoTf treatment induced a gradual increase in MBP (myelin basic protein) and myelin lipid staining in the CC reaching normal levels after 15 days. Furthermore, significant increase in the number of OPCs (oligodendroglial progenitor cells) was found in the SVZ of aTf-treated brains compared with H/I S. Specifically, there was a rise in cells positive for OPC markers, i.e. PDGFRα and SHH+ cells, with a decrease in cleaved-caspase-3+ cells compared with H/I S. Additionally, neurospheres from aTf-treated rats were bigger in size and produced more O4/MBP+ cells. Our findings indicate a role for aTf as a potential inducer of OLs in neonatal rat brain in acute demyelination caused by H/I and a contribution to the differentiation/maturation of OLs and survival/migration of SVZ progenitors after demyelination in vivo. PMID:21113232

  18. The effects of thyroid hormones on myelination in the developing rat brain.

    PubMed

    Freundl, K; Van Wynsberghe, D M

    1978-01-01

    Rats radiothyroidectomized 1 day after birth received daily subcutaneous injections of 1 microgram/10 g body weight of thyroxine (T4) or an equimolar amount of triiodothyroacetic acid (T3AC) from day 6 through day 25. The number of myelinated axons, myelinated axon area, and area of the myelin sheath in the corpus striatum were investigated. Hypothyroid neonates demonstrated a normal number of myelinated axons with a decrease in the area of these axons. T4 treatment resulted in an increased number of smaller axons while T3AC treatment produced fewer but larger axons than the T4 treatment. The myelin area changed as the axon area changed with the myelin thickness remaining constant in all groups.

  19. Effect of benzene and lead on relationship between. delta. -aminolevulinic acid and brain myelin proteins

    SciTech Connect

    Muzyka, V.I.; Bogovskii, L.A.

    1986-03-01

    The aim of this investigation was to study binding of ALA by brain myelin under normal conditions and under the influence of lead and benzene. Rabbits of three different groups were given an intercranial injection of /sup 14/C-ALA (50 microCi) in physiological saline in a volume of 0.25 ml. The myelin fraction was obtained by differential centrifugation and the /sup 14/C-ALA in it was assayed on an LKB liquid scintillation counter. By determining the quantity of exogenous /sup 14/C-ALA bound with myelin, the authors found that myelin of white matter in the brain contains more of the acid than myelin of the gray matter. Data on binding of /sup 14/C-ALA calculated per milligram of each group of myelin proteins isolated is given.

  20. Contactin orchestrates assembly of the septate-like junctions at the paranode in myelinated peripheral nerve.

    PubMed

    Boyle, M E; Berglund, E O; Murai, K K; Weber, L; Peles, E; Ranscht, B

    2001-05-01

    Rapid nerve impulse conduction depends on specialized membrane domains in myelinated nerve, the node of Ranvier, the paranode, and the myelinated internodal region. We report that GPI-linked contactin enables the formation of the paranodal septate-like axo-glial junctions in myelinated peripheral nerve. Contactin clusters at the paranodal axolemma during Schwann cell myelination. Ablation of contactin in mutant mice disrupts junctional attachment at the paranode and reduces nerve conduction velocity 3-fold. The mutation impedes intracellular transport and surface expression of Caspr and leaves NF155 on apposing paranodal myelin disengaged. The contactin mutation does not affect sodium channel clustering at the nodes of Ranvier but alters the location of the Shaker-type Kv1.1 and Kv1.2 potassium channels. Thus, contactin is a crucial part in the machinery that controls junctional attachment at the paranode and ultimately the physiology of myelinated nerve.

  1. A Phenotypic Culture System for the Molecular Analysis of CNS Myelination in the Spinal Cord

    PubMed Central

    Davis, Hedvika; Gonzalez, Mercedes; Stancescu, Maria; Love, Rachal; Hickman, James J.; Lambert, Stephen

    2014-01-01

    Studies of central nervous system myelination lack defined in vitro models which would effectively dissect molecular mechanisms of myelination that contain cells of the correct phenotype. Here we describe a co-culture of purified motoneurons and oligodendrocyte progenitor cells, isolated from rat embryonic spinal cord using a combination of immunopanning techniques. This model illustrates differentiation of oligodendrocyte progenitors into fully functional mature oligodendrocytes that myelinate axons. It also illustrates a contribution of axons to the rate of oligodendrocyte maturation and myelin gene expression. The defined conditions used allow molecular analysis of distinct stages of myelination and precise manipulation of inductive cues affecting axonal–oligodendrocyte interactions. This phenotypic in vitro myelination model can provide valuable insight into our understanding of demyelinating disorders, such as multiple sclerosis and traumatic diseases such as spinal cord injury where demyelination represents a contributing factor to the pathology of the disorder. PMID:25064806

  2. Functional Delay of Myelination of Auditory Delay Lines in the Nucleus Laminaris of the Barn Owl

    PubMed Central

    Cheng, Shih-Min; Carr, Catherine E.

    2012-01-01

    In the barn owl, maps of interaural time difference (ITD) are created in the nucleus laminaris (NL) by interdigitating axons that act as delay lines. Adult delay line axons are myelinated, and this myelination is timely, coinciding with the attainment of adult head size, and stable ITD cues. The proximal portions of the axons become myelinated in late embryonic life, but the delay line portions of the axon in NL remain unmyelinated until the first postnatal week. Myelination of the delay lines peaks at the third week posthatch, and myelinating oligodendrocyte density approaches adult levels by one month, when the head reaches its adult width. Migration of oligodendrocyte progenitors into NL and the subsequent onset of myelination may be restricted by a glial barrier in late embryonic stages and the first posthatch week, since the loss of tenascin-C immunoreactivity in NL is correlated with oligodendrocyte progenitor migration into NL. PMID:17918244

  3. In Vivo Pet Imaging of Myelin Damage and Repair in the Spinal Cord

    DTIC Science & Technology

    2011-10-01

    synergistic collaboration to develop an imaging guided drug discovery approach to myelin repair in MS. Body With the continuation of this...screening of drugs targeted at myelination . In addition, DBT showed no adverse pharmacological or behavioral effects in vivo when up to 50 mg/kg of...powerful tool for drug screening at preclinical stage to directly monitor time course of myelin changes. Figure 19. [11C]CIC-PET imaging of the

  4. Guanine nucleotides stimulate hydrolysis of phosphatidyl inositol bis phosphate in human myelin membranes

    SciTech Connect

    Boulias, C.; Moscarello, M.A. )

    1989-07-14

    Phosphodiesterase activity was stimulated in myelin membranes in the presence of guanine nucleotide analogues. This activity was reduced in myelin membranes which had been adenosine diphosphate ribosylated in the presence of cholera toxin which ADP-ribosylated three proteins of Mr 46,000, 43,000 and 18,500. Aluminum fluoride treatment of myelin had the same stimulatory effects on phosphodiesterase activity as did the guanine nucleotides.

  5. Zebrafish regenerate full thickness optic nerve myelin after demyelination, but this fails with increasing age.

    PubMed

    Münzel, Eva Jolanda; Becker, Catherina G; Becker, Thomas; Williams, Anna

    2014-07-15

    In the human demyelinating central nervous system (CNS) disease multiple sclerosis, remyelination promotes recovery and limits neurodegeneration, but this is inefficient and always ultimately fails. Furthermore, these regenerated myelin sheaths are thinner and shorter than the original, leaving the underlying axons potentially vulnerable. In rodent models, CNS remyelination is more efficient, so that in young animals (but not old) the number of myelinated axons is efficiently restored to normal, but in both young and old rodents, regenerated myelin sheaths are still short and thin. The reasons for these differences in remyelination efficiency, the thinner remyelinated myelin sheaths compared to developmental myelin and the subsequent effect on the underlying axon are unclear. We studied CNS remyelination in the highly regenerative adult zebrafish (Danio rerio), to better understand mechanisms of what we hypothesised would be highly efficient remyelination, and to identify differences to mammalian CNS remyelination, as larval zebrafish are increasingly used for high throughput screens to identify potential drug targets to improve myelination and remyelination. We developed a novel method to induce a focal demyelinating lesion in adult zebrafish optic nerve with no discernible axonal damage, and describe the cellular changes over time. Remyelination is indeed efficient in both young and old adult zebrafish optic nerves, and at 4 weeks after demyelination, the number of myelinated axons is restored to normal, but internode lengths are short. However, unlike in rodents or in humans, in young zebrafish these regenerated myelin sheaths were of normal thickness, whereas in aged zebrafish, they were thin, and remained so even 3 months later. This inability to restore normal myelin thickness in remyelination with age was associated with a reduced macrophage/microglial response. Zebrafish are able to efficiently restore normal thickness myelin around optic nerve axons after

  6. Myelinated mouse nerves studied by X-ray phase contrast zoom tomography.

    PubMed

    Bartels, M; Krenkel, M; Cloetens, P; Möbius, W; Salditt, T

    2015-12-01

    We have used X-ray phase contrast tomography to resolve the structure of uncut, entire myelinated optic, saphenous and sciatic mouse nerves. Intrinsic electron density contrast suffices to identify axonal structures. Specific myelin labeling by an osmium tetroxide stain enables distinction between axon and surrounding myelin sheath. Utilization of spherical wave illumination enables zooming capabilities which enable imaging of entire sciatic internodes as well as identification of sub-structures such as nodes of Ranvier and Schmidt-Lanterman incisures.

  7. Three-dimensional ultra-structures of myelin and the axons in the spinal cord: application of SEM with the osmium maceration method to the central nervous system in two mouse models.

    PubMed

    Nomura, Taichi; Bando, Yoshio; Bochimoto, Hiroki; Koga, Daisuke; Watanabe, Tsuyoshi; Yoshida, Shigetaka

    2013-03-01

    Axonal injury and demyelination are observed in demyelinating diseases such as multiple sclerosis. However, pathological changes that underlie these morphologies are not fully understood. We examined in vivo morphological changes using a new histological technique, scanning electron microscopy (SEM) with osmium maceration method to observe three-dimensional structures such as myelin and axons in the spinal cord. Myelin basic protein-deficient shiverer mice and mice with experimental autoimmune encephalomyelitis (EAE) were used to visualize how morphological changes in myelin and axons are induced by dysmyelination and demyelination. SEM revealed following morphological changes during dysmyelination of shiverer mice. First, enriched mitochondria and well-developed sER in axons were observed in shiverer, but not in wild-type mice. Second, the processes from some perinodal glial cells ran parallel to internodes of axons in addition to the process that covered the nodal region of the axon in shiverer mice. Last, this technique left myelin and axonal structures undisturbed. Moreover, SEM images showed clear variations in the ultrastructural abnormalities of myelin and axons in the white matter of the EAE spinal cord. This technique will be a powerful tool for identifying the mechanisms underlying the pathogenesis in demyelination.

  8. Altering the expression balance of hnRNP C1 and C2 changes the expression of myelination-related genes.

    PubMed

    Iwata, Keiko; Matsuzaki, Hideo; Manabe, Takayuki; Mori, Norio

    2011-12-30

    The expression level of hnRNP C1/C2 protein has been reported to be significantly decreased in the post-mortem brain of schizophrenic patients. In this study, we investigated whether overexpression of the hnRNP C variants hnRNP C1 and C2 changed the expression of myelination-related genes in the human neuroblastoma cell line SK-N-SH. In both hnRNP C1- and C2-overexpressing cells, the expression of quaking (QKI)-6 and QKI-7 significantly increased or decreased compared to the control, respectively. Intriguingly, QKI-5 and myelin basic protein were markedly up- or down-regulated by overexpressing hnRNP C2, respectively. Our findings are the first to demonstrate distinct functions of hnRNP C1 and C2, and may be helpful in understanding the functions of these molecules. These findings indicate that altered expression levels of hnRNP C in the brain of patients with schizophrenia could be involved in the pathophysiology of this disease through alteration of the QKI isoform and myelin basic protein expression. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. In Vivo Imaging of Myelin in the Vertebrate Central Nervous System Using Third Harmonic Generation Microscopy

    PubMed Central

    Farrar, Matthew J.; Wise, Frank W.; Fetcho, Joseph R.; Schaffer, Chris B.

    2011-01-01

    Loss of myelin in the central nervous system (CNS) leads to debilitating neurological deficits. High-resolution optical imaging of myelin in the CNS of animal models is limited by a lack of in vivo myelin labeling strategies. We demonstrated that third harmonic generation (THG) microscopy—a coherent, nonlinear, dye-free imaging modality—provides micrometer resolution imaging of myelin in the mouse CNS. In fixed tissue, we found that THG signals arose from white matter tracts and were colocalized with two-photon excited fluorescence (2PEF) from a myelin-specific dye. In vivo, we used simultaneous THG and 2PEF imaging of the mouse spinal cord to resolve myelin sheaths surrounding individual fluorescently-labeled axons, and followed myelin disruption after spinal cord injury. Finally, we suggest optical mechanisms that underlie the myelin specificity of THG. These results establish THG microscopy as an ideal tool for the study of myelin loss and recovery. PMID:21354410

  10. Excitation block in a nerve fibre model owing to potassium-dependent changes in myelin resistance

    PubMed Central

    Brazhe, A. R.; Maksimov, G. V.; Mosekilde, E.; Sosnovtseva, O. V.

    2011-01-01

    The myelinated nerve fibre is formed by an axon and Schwann cells or oligodendrocytes that sheath the axon by winding around it in tight myelin layers. Repetitive stimulation of a fibre is known to result in accumulation of extracellular potassium ions, especially between the axon and the myelin. Uptake of potassium leads to Schwann cell swelling and myelin restructuring that impacts the electrical properties of the myelin. In order to further understand the dynamic interaction that takes place between the myelin and the axon, we have modelled submyelin potassium accumulation and related changes in myelin resistance during prolonged high-frequency stimulation. We predict that potassium-mediated decrease in myelin resistance leads to a functional excitation block with various patterns of altered spike trains. The patterns are found to depend on stimulation frequency and amplitude and to range from no block (less than 100 Hz) to a complete block (greater than 500 Hz). The transitional patterns include intermittent periodic block with interleaved spiking and non-spiking intervals of different relative duration as well as an unstable regime with chaotic switching between the spiking and non-spiking states. Intermittent conduction blocks are accompanied by oscillations of extracellular potassium. The mechanism of conductance block based on myelin restructuring complements the already known and modelled block via hyperpolarization mediated by the axonal sodium pump and potassium depolarization. PMID:22419976

  11. BMP7 retards peripheral myelination by activating p38 MAPK in Schwann cells

    PubMed Central

    Liu, Xiaoyu; Zhao, Yahong; Peng, Su; Zhang, Shuqiang; Wang, Meihong; Chen, Yeyue; Zhang, Shan; Yang, Yumin; Sun, Cheng

    2016-01-01

    Schwann cell (SC) myelination is pivotal for the proper physiological functioning of the nervous system, but the underlying molecular mechanism remains less well understood. Here, we showed that the expression of bone morphogenetic protein 7 (BMP7) inversely correlates with myelin gene expression during peripheral myelination, which suggests that BMP7 is likely a negative regulator for myelin gene expression. Our experiments further showed that the application of BMP7 attenuates the cAMP induced myelin gene expression in SCs. Downstream pathway analysis suggested that both p38 MAPK and SMAD are activated by exogenous BMP7 in SCs. The pharmacological intervention and gene silence studies revealed that p38 MAPK, not SMAD, is responsible for BMP7-mediated suppression of myelin gene expression. In addition, c-Jun, a potential negative regulator for peripheral myelination, was up-regulated by BMP7. In vivo experiments showed that BMP7 treatment greatly impaired peripheral myelination in newborn rats. Together, our results established that BMP7 is a negative regulator for peripheral myelin gene expression and that p38 MAPK/c-Jun axis might be the main downstream target of BMP7 in this process. PMID:27491681

  12. Damage and repair of the peripheral myelin sheath and node of Ranvier after treatment with trypsin.

    PubMed

    Yu, R C; Bunge, R P

    1975-01-01

    Cultures of whole fetal rat sensory ganglia which had matured and myelinated in culture were treated for 1-3 h with a pulse of 0.2% trypsin. The tissue was observed during the period of treatment and during subsequent weeks using both light and electron microscopy. Within minutes after trypsin addition the matrix of the culture was altered and the nerve fascicles loosened. Progressive changes included the retraction of Schwann cell processes from the nodal region the detachment of the myelin-related paranodal Schwann cell loops from the axon, and lengthening of the nodal region as the axon was bared. The retraction of myelin from nodal stabilized several hours after trypsin withdrawal. Breakdown of the altered myelin segments was rare. There were no discernable changes in neurons or their processes after this exposure to trypsin. The partial repair which occured over a period of several weeks included the reattachment of paranodal Schwann cell loops to the axolemma and the insertion of new myelin segments where a substantial length of axolemma had been bared. The significance of these observations to the characterization of the Schwann cell-axolemmal junctions on myelinated nerve fibers is discussed. The dramatic degree of myelin change that can occur without concomitant myelin breakdown is particularly noted, as is the observation that these altered myelin segments are, in part, repaired.

  13. Simulations on the influence of myelin water in diffusion-weighted imaging.

    PubMed

    Harkins, K D; Does, M D

    2016-07-07

    While myelinated axons present an important barrier to water diffusion, many models used to interpret DWI signal neglect other potential influences of myelin. In this work, Monte Carlo simulations were used to test the sensitivity of DWI results to the diffusive properties of water within myelin. Within these simulations, the apparent diffusion coefficient (D app) varied slowly over several orders of magnitude of the coefficient of myelin water diffusion (D m), but exhibited important differences compared to D app values simulated that neglect D m (=0). Compared to D app, the apparent diffusion kurtosis (K app) was generally more sensitive to D m. Simulations also tested the sensitivity of D app and K app to the amount of myelin present. Unique variations in D app and K app caused by differences in the myelin volume fraction were diminished when myelin water diffusion was included. Also, expected trends in D app and K app with experimental echo time were reduced or inverted when accounting for myelin water diffusion, and these reduced/inverted trends were seen experimentally in ex vivo rat brain DWI experiments. In general, myelin water has the potential to subtly influence DWI results and bias models of DWI that neglect these components of white matter.

  14. Simulations on the influence of myelin water in diffusion-weighted imaging

    NASA Astrophysics Data System (ADS)

    Harkins, K. D.; Does, M. D.

    2016-07-01

    While myelinated axons present an important barrier to water diffusion, many models used to interpret DWI signal neglect other potential influences of myelin. In this work, Monte Carlo simulations were used to test the sensitivity of DWI results to the diffusive properties of water within myelin. Within these simulations, the apparent diffusion coefficient (D app) varied slowly over several orders of magnitude of the coefficient of myelin water diffusion (D m), but exhibited important differences compared to D app values simulated that neglect D m (=0). Compared to D app, the apparent diffusion kurtosis (K app) was generally more sensitive to D m. Simulations also tested the sensitivity of D app and K app to the amount of myelin present. Unique variations in D app and K app caused by differences in the myelin volume fraction were diminished when myelin water diffusion was included. Also, expected trends in D app and K app with experimental echo time were reduced or inverted when accounting for myelin water diffusion, and these reduced/inverted trends were seen experimentally in ex vivo rat brain DWI experiments. In general, myelin water has the potential to subtly influence DWI results and bias models of DWI that neglect these components of white matter.

  15. Rab27a/Slp2-a complex is involved in Schwann cell myelination

    PubMed Central

    Su, Wen-feng; Gu, Yun; Wei, Zhong-ya; Shen, Yun-tian; Jin, Zi-han; Yuan, Ying; Gu, Xiao-song; Chen, Gang

    2016-01-01

    Myelination of Schwann cells in the peripheral nervous system is an intricate process involving myelin protein trafficking. Recently, the role and mechanism of the endosomal/lysosomal system in myelin formation were emphasized. Our previous results demonstrated that a small GTPase Rab27a regulates lysosomal exocytosis and myelin protein trafficking in Schwann cells. In this present study, we established a dorsal root ganglion (DRG) neuron and Schwann cell co-culture model to identify the signals associated with Rab27a during myelination. First, Slp2-a, as the Rab27a effector, was endogenously expressed in Schwann cells. Second, Rab27a expression significantly increased during Schwann cell myelination. Finally, Rab27a and Slp2-a silencing in Schwann cells not only reduced myelin protein expression, but also impaired formation of myelin-like membranes in DRG neuron and Schwann cell co-cultures. Our findings suggest that the Rab27a/Slp2-a complex affects Schwann cell myelination in vitro. PMID:28123429

  16. Dendritic cells, engineered to overexpress 25-hydroxyvitamin D 1α-hydroxylase and pulsed with a myelin antigen, provide myelin-specific suppression of ongoing experimental allergic encephalomyelitis

    PubMed Central

    Li, Chih-Huang; Zhang, Jintao; Baylink, David J.; Wang, Xiaohua; Goparaju, Naga Bharani; Xu, Yi; Wasnik, Samiksha; Cheng, Yanmei; Berumen, Edmundo Carreon; Qin, Xuezhong; Lau, Kin-Hing William; Tang, Xiaolei

    2017-01-01

    Multiple sclerosis (MS) is caused by immune-mediated damage of myelin sheath. Current therapies aim to block such immune responses. However, this blocking is not sufficiently specific and hence compromises immunity, leading to severe side effects. In addition, blocking medications usually provide transient effects and require frequent administration, which further increases the chance to compromise immunity. In this regard, myelin-specific therapy may provide the desired specificity and a long-lasting therapeutic effect by inducing myelin-specific regulatory T (Treg) cells. Tolerogenic dendritic cells (TolDCs) are one such therapy. However, ex vivo generated TolDCs may be converted into immunogenic DCs in a proinflammatory environment. In this study, we identified a potential novel myelin-specific therapy that works with immunogenic DCs, hence without the in vivo conversion concern. We showed that immunization with DCs, engineered to overexpress 25-hydroxyvitamin D 1α-hydroxylase for de novo synthesis of a focally high 1,25-dihydroxyvitamin D concentration in the peripheral lymphoid tissues, induced Treg cells. In addition, such engineered DCs, when pulsed with a myelin antigen, led to myelin-specific suppression of ongoing experimental allergic encephalomyelitis (an MS animal model), and the disease suppression depended on forkhead-box-protein-P3(foxp3)+ Treg cells. Our data support a novel concept that immunogenic DCs can be engineered for myelin-specific therapy for MS.—Li, C.-H., Zhang, J., Baylink, D. J., Wang, X., Goparaju, N. B., Xu, Y., Wasnik, S., Cheng, Y., Berumen, E. C., Qin, X., Lau, K.-H. W., Tang, X. Dendritic cells, engineered to overexpress 25-hydroxyvitamin D 1α-hydroxylase and pulsed with a myelin antigen, provide myelin-specific suppression of ongoing experimental allergic encephalomyelitis. PMID:28363955

  17. Basic Science.

    ERIC Educational Resources Information Center

    Mercer County Community Coll., Trenton, NJ.

    Instructional materials are provided for a course that covers basic concepts of physics and chemistry. Designed for use in a workplace literacy project developed by Mercer County Community College (New Jersey) and its partners, the course describes applications of these concepts to real-life situations, with an emphasis on applications of…

  18. Ethanol Basics

    SciTech Connect

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  19. Basic Horticulture.

    ERIC Educational Resources Information Center

    Geer, Barbra Farabough

    This learning packet contains teaching suggestions and student learning materials for a course in basic horticulture aimed at preparing students for employment in a number of horticulture areas. The packet includes nine sections and twenty instructional units. Following the standard format established for Oklahoma vocational education materials in…

  20. Basic Skills.

    ERIC Educational Resources Information Center

    Addison-Rutland Supervisory Union, Fair Haven, VT.

    This publication lists basic skills curriculum objectives for kindergarten through eighth grade in the schools of the Addison-Rutland Supervisory Union in Fair Haven, Vermont. Objectives concern language arts, reading, mathematics, science, and social studies instruction. Kindergarten objectives for general skills, physical growth, motor skills,…

  1. Basic Education.

    ERIC Educational Resources Information Center

    Robinson, Virginia, Ed.

    1984-01-01

    This issue of "Basic Education" is devoted to the arts in education as a concern that should be addressed in a time of new priorities for the curriculum. Five articles and a book review are included. The opening article, "The State of the Arts in Education: Envisioning Active Participation By All" (Virginia Robinson),…

  2. Basic Backwardness.

    ERIC Educational Resources Information Center

    Weingartner, Charles

    This paper argues that the "back to basics" movement is regressive and that regression is the characteristic mode of fear-ridden personalities. It is argued that many people in American society today have lost their ability to laugh and do not have the sense of humor which is crucial to a healthy mental state. Such topics as necrophilia, mental…

  3. Body Basics

    MedlinePlus

    ... more about how the body works, what basic human anatomy is, and what happens when parts of the body don't function properly. Blood Bones, Muscles, and Joints Brain and Nervous System Digestive System Endocrine System Eyes Female Reproductive System ...

  4. Basic Horticulture.

    ERIC Educational Resources Information Center

    Geer, Barbra Farabough

    This learning packet contains teaching suggestions and student learning materials for a course in basic horticulture aimed at preparing students for employment in a number of horticulture areas. The packet includes nine sections and twenty instructional units. Following the standard format established for Oklahoma vocational education materials in…

  5. Rapid myelin water imaging in human cervical spinal cord.

    PubMed

    Ljungberg, Emil; Vavasour, Irene; Tam, Roger; Yoo, Youngjin; Rauscher, Alexander; Li, David K B; Traboulsee, Anthony; MacKay, Alex; Kolind, Shannon

    2017-10-01

    Myelin water imaging (MWI) using multi-echo T2 relaxation is a quantitative MRI technique that can be used as an in vivo biomarker for myelin in the central nervous system. MWI using a multi-echo spin echo sequence currently takes more than 20 min to acquire eight axial slices (5 mm thickness) in the cervical spinal cord, making spinal cord MWI impractical for implementation in clinical studies. In this study, an accelerated gradient and spin echo sequence (GRASE), previously validated for brain MWI, was adapted for spinal cord MWI. Ten healthy volunteers were scanned with the GRASE sequence (acquisition time 8.5 min) and compared with the multi-echo spin echo sequence (acquisition time 23.5 min). Using region of interest analysis, myelin estimates obtained from the two sequences were found to be in good agreement (mean difference = -0.0092, 95% confidence interval =  - 0.0092 ± 0.061; regression slope = 1.01, ρ = 0.9). MWI using GRASE was shown to be highly reproducible with an average coefficient of variation of 6.1%. The results from this study show that MWI can be performed in the cervical spinal cord in less than 10 min, allowing for practical implementation in multimodal clinical studies. Magn Reson Med 78:1482-1487, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  6. Ring-shaped myelinated retinal nerve fibers at fovea.

    PubMed

    Ozates, Serdar; Teke, Mehmet Yasin

    2017-07-01

    We aim to report an unusual case of myelinated retinal nerve fibers (MRNFs) at fovea. A 39-year-old woman presented with visual impairment and her visual acuity was 20/80 in the right eye. Ophthalmologic examination revealed MRNF lesions at inferior and superior poles of optic disc in the right eye. Furthermore, a ring-shaped MRNF lesion with feathery edges was observed at fovea. MRNF lesions are rarely seen at macula, and to our knowledge, this is the first report of an MRNF lesion at fovea.

  7. Ring-shaped myelinated retinal nerve fibers at fovea

    PubMed Central

    Ozates, Serdar; Teke, Mehmet Yasin

    2017-01-01

    We aim to report an unusual case of myelinated retinal nerve fibers (MRNFs) at fovea. A 39-year-old woman presented with visual impairment and her visual acuity was 20/80 in the right eye. Ophthalmologic examination revealed MRNF lesions at inferior and superior poles of optic disc in the right eye. Furthermore, a ring-shaped MRNF lesion with feathery edges was observed at fovea. MRNF lesions are rarely seen at macula, and to our knowledge, this is the first report of an MRNF lesion at fovea. PMID:28724828

  8. Calibration of the stereological estimation of the number of myelinated axons in the rat sciatic nerve: A multicenter study

    PubMed Central

    Kaplan, S.; Geuna, S.; Ronchi, G.; Ulkay, M.B.; von Bartheld, C.S.

    2010-01-01

    Several sources of variability can affect stereological estimates. Here we measured the impact of potential sources of variability on numerical stereological estimates of myelinated axons in the adult rat sciatic nerve. Besides biological variation, parameters tested included two variations of stereological methods (unbiased counting frame versus 2D-disector), two sampling schemes (few large versus frequent small sampling boxes), and workstations with varying degrees of sophistication. All estimates were validated against exhaustive counts of the same nerve cross sections to obtain calibrated true numbers of myelinated axons (gold standard). In addition, we quantified errors in particle identification by comparing light microscopic and electron microscopic images of selected consecutive sections. Biological variation was 15.6%. There was no significant difference between the two stereological approaches or workstations used, but sampling schemes with few large samples yielded larger differences (20.7%±3.7% SEM) of estimates from true values, while frequent small samples showed significantly smaller differences (12.7%±1.9% SEM). Particle identification was accurate in 94% of cases (range: 89–98%). The most common identification error was due to profiles of Schwann cell nuclei mimicking profiles of small myelinated nerve fibers. We recommend sampling frequent small rather than few large areas, and conclude that workstations with basic stereological equipment are sufficient to obtain accurate estimates. Electron microscopic verification showed that particle misidentification had a surprisingly variable and large impact of up to 11%, corresponding to 2/3 of the biological variation (15.6%). Thus, errors in particle identification require further attention, and we provide a simple nerve fiber recognition test to assist investigators with self-testing and training. PMID:20064555

  9. Dynamic Modulation of Myelination in Response to Visual Stimuli Alters Optic Nerve Conduction Velocity.

    PubMed

    Etxeberria, Ainhoa; Hokanson, Kenton C; Dao, Dang Q; Mayoral, Sonia R; Mei, Feng; Redmond, Stephanie A; Ullian, Erik M; Chan, Jonah R

    2016-06-29

    Myelin controls the time required for an action potential to travel from the neuronal soma to the axon terminal, defining the temporal manner in which information is processed within the CNS. The presence of myelin, the internodal length, and the thickness of the myelin sheath are powerful structural factors that control the velocity and fidelity of action potential transmission. Emerging evidence indicates that myelination is sensitive to environmental experience and neuronal activity. Activity-dependent modulation of myelination can dynamically alter action potential conduction properties but direct functional in vivo evidence and characterization of the underlying myelin changes is lacking. We demonstrate that in mice long-term monocular deprivation increases oligodendrogenesis in the retinogeniculate pathway but shortens myelin internode lengths without affecting other structural properties of myelinated fibers. We also demonstrate that genetically attenuating synaptic glutamate neurotransmission from retinal ganglion cells phenocopies the changes observed after monocular deprivation, suggesting that glutamate may constitute a signal for myelin length regulation. Importantly, we demonstrate that visual deprivation and shortened internodes are associated with a significant reduction in nerve conduction velocity in the optic nerve. Our results reveal the importance of sensory input in the building of myelinated fibers and suggest that this activity-dependent alteration of myelination is important for modifying the conductive properties of brain circuits in response to environmental experience. Oligodendrocyte precursor cells differentiate into mature oligodendrocytes and are capable of ensheathing axons with myelin without molecular cues from neurons. However, this default myelination process can be modulated by changes in neuronal activity. Here, we show, for the first time, that experience-dependent activity modifies the length of myelin internodes along axons

  10. Clemastine Enhances Myelination in the Prefrontal Cortex and Rescues Behavioral Changes in Socially Isolated Mice

    PubMed Central

    Dupree, Jeffrey L.; Gacias, Mar; Frawley, Rebecca; Sikder, Tamjeed; Naik, Payal; Casaccia, Patrizia

    2016-01-01

    Altered myelin structure and oligodendrocyte function have been shown to correlate with cognitive and motor dysfunction and deficits in social behavior. We and others have previously demonstrated that social isolation in mice induced behavioral, transcriptional, and ultrastructural changes in oligodendrocytes of the prefrontal cortex (PFC). However, whether enhancing myelination and oligodendrocyte differentiation could be beneficial in reversing such changes remains unexplored. To test this hypothesis, we orally administered clemastine, an antimuscarinic compound that has been shown to enhance oligodendrocyte differentiation and myelination in vitro, for 2 weeks in adult mice following social isolation. Clemastine successfully reversed social avoidance behavior in mice undergoing prolonged social isolation. Impaired myelination was rescued by oral clemastine treatment, and was associated with enhanced oligodendrocyte progenitor differentiation and epigenetic changes. Clemastine induced higher levels of repressive histone methylation (H3K9me3), a marker for heterochromatin, in oligodendrocytes, but not neurons, of the PFC. This was consistent with the capability of clemastine in elevating H3K9 histone methyltransferases activity in cultured primary mouse oligodendrocytes, an effect that could be antagonized by cotreatment with muscarine. Our data suggest that promoting adult myelination is a potential strategy for reversing depressive-like social behavior. SIGNIFICANCE STATEMENT Oligodendrocyte development and myelination are highly dynamic processes influenced by experience and neuronal activity. However, whether enhancing myelination and oligodendrocyte differentiation is beneficial to treat depressive-like behavior has been unexplored. Mice undergoing prolonged social isolation display impaired myelination in the prefrontal cortex. Clemastine, a Food and Drug Administration-approved antimuscarinic compound that has been shown to enhance myelination under

  11. Education: The Basics. The Basics

    ERIC Educational Resources Information Center

    Wood, Kay

    2011-01-01

    Everyone knows that education is important, we are confronted daily by discussion of it in the media and by politicians, but how much do we really know about education? "Education: The Basics" is a lively and engaging introduction to education as an academic subject, taking into account both theory and practice. Covering the schooling system, the…

  12. Drosophila FIT is a protein-specific satiety hormone essential for feeding control

    PubMed Central

    Sun, Jinghan; Liu, Chang; Bai, Xiaobing; Li, Xiaoting; Li, Jingyun; Zhang, Zhiping; Zhang, Yunpeng; Guo, Jing; Li, Yan

    2017-01-01

    Protein homeostasis is critical for health and lifespan of animals. However, the mechanisms for controlling protein feeding remain poorly understood. Here we report that in Drosophila, protein intake-induced feeding inhibition (PIFI) is specific to protein-containing food, and this effect is mediated by a fat body (FB) peptide named female-specific independent of transformer (FIT). Upon consumption of protein food, FIT expression is greatly elevated. Secreted FIT peptide in the fly haemolymph conveys this metabolic message to the brain, thereby promoting the release of Drosophila insulin-like peptide 2 (DILP2) and suppressing further protein intake. Interestingly, Fit is a sexually dimorphic gene, and consequently protein consumption-induced insulin release, as well as protein feeding behaviour, are also dimorphic between sexes. Thus, our findings reveal a protein-specific satiety hormone, providing important insights into the complex regulation of feeding decision, as well as the sexual dimorphism in feeding behaviour. PMID:28102207

  13. Japanese neuropathy patients with peripheral myelin protein-22 gene aneuploidy

    SciTech Connect

    Lebo, R.V.; Li, L.Y.; Flandermeyer, R.R.

    1994-09-01

    Peripheral myelin protein (PMP-22) gene aneuploidy results in Charcot-Marie-Tooth disease Type 1A (CMT1A) and the Hereditary Neuropathy with Liability to Pressure Palsy (HNPP) in Japanese patients as well as Caucasian Americans. Charcot-Marie-Tooth disease (CMT), the most common genetic neuropathy, results when expression of one of at least seven genes is defective. CMT1A, about half of all CMT mutations, is usually associated with a duplication spanning the peripheral myelin protein-22 gene on distal chromosome band 17p11.2. Autosomal dominant HNPP (hereditary pressure and sensory neuropathy, HPSN) results from a deletion of the CMT1A gene region. Multicolor in situ hybridization with PMP-22 gene region probe characterized HNPP deletion reliably and detected all different size duplications reported previously. In summary, 72% of 28 Japanese CMT1 (HMSNI) patients tested had the CMT1A duplication, while none of the CMT2 (HMSNII) or CMT3 (HMSNIII) patients had a duplication. Three cases of HNPP were identified by deletion of the CMT1A gene region on chromosome 17p. HNPP and CMT1A have been reported to result simultaneously from the same unequal recombination event. The lower frequency of HNPP compared to CMT1A suggests that HNPP patients have a lower reproductive fitness than CMT1A patients. This result, along with a CMT1A duplication found in an Asian Indian family, demonstrates the broad geographic distribution and high frequency of PMP-22 gene aneuploidy.

  14. Cross-Reactive Myelin Antibody Induces Renal Disease

    PubMed Central

    Peterson, Lisa K.; Masaki, Takahisa; Wheelwright, Steven R.; Tsunoda, Ikuo; Fujinami, Robert S.

    2011-01-01

    Experimental autoimmune encephalomyelitis (EAE) is an autoimmune model for multiple sclerosis (MS). Previously, we reported renal immunoglobulin (Ig) deposition in mice with myelin oligodendrocyte glycoprotein (MOG92-106) induced progressive-EAE and naïve mice injected with MOG92-106 hybridoma cells producing antibody that cross-reacts with various autoantigens including double-stranded DNA. To assess whether MOG92-106 antibodies actually induce kidney changes, the extent of renal Ig deposition and changes in glomerular histology and filtration were investigated. Mice with progressive-EAE exhibited Ig deposition, glomerular hypercellularity and proteinuria indicating kidney dysfunction. MOG92-106 hybridoma cell injected mice also had Ig in the kidneys and proteinuria. Therefore, sensitization with MOG92-106 and transfer of MOG92-106 antibodies can induce both central nervous system and renal pathology. The renal involvement reported in MS is believed to occur as a side effect of nephrotoxic drugs or neurogenic bladder. Our results demonstrate that an autoimmune response against myelin could induce pathologic changes in the kidney and may help explain renal changes reported in patients with progressive MS. PMID:18608179

  15. Statistical physics approach to quantifying differences in myelinated nerve fibers

    NASA Astrophysics Data System (ADS)

    Comin, César H.; Santos, João R.; Corradini, Dario; Morrison, Will; Curme, Chester; Rosene, Douglas L.; Gabrielli, Andrea; da F. Costa, Luciano; Stanley, H. Eugene

    2014-03-01

    We present a new method to quantify differences in myelinated nerve fibers. These differences range from morphologic characteristics of individual fibers to differences in macroscopic properties of collections of fibers. Our method uses statistical physics tools to improve on traditional measures, such as fiber size and packing density. As a case study, we analyze cross-sectional electron micrographs from the fornix of young and old rhesus monkeys using a semi-automatic detection algorithm to identify and characterize myelinated axons. We then apply a feature selection approach to identify the features that best distinguish between the young and old age groups, achieving a maximum accuracy of 94% when assigning samples to their age groups. This analysis shows that the best discrimination is obtained using the combination of two features: the fraction of occupied axon area and the effective local density. The latter is a modified calculation of axon density, which reflects how closely axons are packed. Our feature analysis approach can be applied to characterize differences that result from biological processes such as aging, damage from trauma or disease or developmental differences, as well as differences between anatomical regions such as the fornix and the cingulum bundle or corpus callosum.

  16. Perineural hematoma may result in nerve inflammation and myelin damage.

    PubMed

    Steinfeldt, Thorsten; Wiesmann, Thomas; Nimphius, Wilhelm; Cornelius, Valér; Eismann, Daniel; Kratz, Thomas; Hadzic, Admir; Wulf, Hinnerk; Werner, Tilmann

    2014-01-01

    Perineural hematoma may occur during performance of peripheral nerve blocks. The aim of this study was to test the hypothesis that an iatrogenic hematoma in the immediate vicinity of a peripheral nerve may cause histologic evidence of nerve injury. Fifty milliliters of autologous blood was injected adjacent to the right sciatic nerve in 20 anesthetized female pigs. In order to discern between blood-related volume and immune effects, 50 mL of albumin was injected at the same location in an additional 22 pigs. Either blood or albumin was injected in random order. The left sciatic nerve served as a negative control in all animals, that is, either no needle placement or needle placement without injection. After 48 hours, the nerves were resected. The grade of nerve injury was scored from 0 (no injury) to 3 (severe injury) by histologic analysis of myelin tissue and inflammatory cells. Eighty-two nerve specimens were examined. Injury scores were significantly (P < 0.01) higher in the blood injection (n = 20; median [interquartile range] 2 [2-2]) and albumin injection (n = 22, 1 [1-2]) conditions compared with the no needle placement (n = 22, 0 [0-1]) and "dry needle placement" (n = 20, 1 [0-1]) conditions. Widespread inflammatory changes were seen in the blood injection group, in which 15% of nerve specimens showed damage to myelin. Our data suggest that hematoma adjacent to nerve tissue may result in structural nerve injury and inflammatory changes.

  17. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination.

    PubMed

    Berer, Kerstin; Mues, Marsilius; Koutrolos, Michail; Rasbi, Zakeya Al; Boziki, Marina; Johner, Caroline; Wekerle, Hartmut; Krishnamoorthy, Gurumoorthy

    2011-10-26

    Active multiple sclerosis lesions show inflammatory changes suggestive of a combined attack by autoreactive T and B lymphocytes against brain white matter. These pathogenic immune cells derive from progenitors that are normal, innocuous components of the healthy immune repertoire but become autoaggressive upon pathological activation. The stimuli triggering this autoimmune conversion have been commonly attributed to environmental factors, in particular microbial infection. However, using the relapsing-remitting mouse model of spontaneously developing experimental autoimmune encephalomyelitis, here we show that the commensal gut flora-in the absence of pathogenic agents-is essential in triggering immune processes, leading to a relapsing-remitting autoimmune disease driven by myelin-specific CD4(+) T cells. We show further that recruitment and activation of autoantibody-producing B cells from the endogenous immune repertoire depends on availability of the target autoantigen, myelin oligodendrocyte glycoprotein (MOG), and commensal microbiota. Our observations identify a sequence of events triggering organ-specific autoimmune disease and these processes may offer novel therapeutic targets. ©2011 Macmillan Publishers Limited. All rights reserved

  18. A model of injury potential for myelinated nerve fiber.

    PubMed

    Guang-Hao, Zhang; Xiao-Lin, Huo; Ai-Hua, Wang; Cheng, Zhang; Chang-Zhe, Wu

    2015-01-01

    Excellent models have been described in literatures which related membrane potential to extracellular electric or magnetic stimulation and which described the formation and propagation of action potentials along the axon, for both myelinated and nonmyelinated fibers. There is not, however, an adequate model for nerve injury which allows to compute the distribution of injury potential, a direct current potential difference between intact and injured nerve, because its importance has been ignored in the shadow of the well-known action potential. This paper focus on the injury potential and presents a model of the electrical properties of myelinated nerve which describes the time course of events following injury. The time-varying current and potential at all nodes can be computed from the model, and the factors relate to the amplitude of injury potential can be determined. It is shown that the amplitude of injury potential decreased gradually with injury time, and the recession curve was exponential. Results also showed that the initial amplitude of injury potential is positively related to the grade of injury and fiber diameter. This model explained the mechanism of formation of injury potential and can provide instruction for applied electric field to prevent the formation injury potential.

  19. Statistical physics approach to quantifying differences in myelinated nerve fibers.

    PubMed

    Comin, César H; Santos, João R; Corradini, Dario; Morrison, Will; Curme, Chester; Rosene, Douglas L; Gabrielli, Andrea; Costa, Luciano da F; Stanley, H Eugene

    2014-03-28

    We present a new method to quantify differences in myelinated nerve fibers. These differences range from morphologic characteristics of individual fibers to differences in macroscopic properties of collections of fibers. Our method uses statistical physics tools to improve on traditional measures, such as fiber size and packing density. As a case study, we analyze cross-sectional electron micrographs from the fornix of young and old rhesus monkeys using a semi-automatic detection algorithm to identify and characterize myelinated axons. We then apply a feature selection approach to identify the features that best distinguish between the young and old age groups, achieving a maximum accuracy of 94% when assigning samples to their age groups. This analysis shows that the best discrimination is obtained using the combination of two features: the fraction of occupied axon area and the effective local density. The latter is a modified calculation of axon density, which reflects how closely axons are packed. Our feature analysis approach can be applied to characterize differences that result from biological processes such as aging, damage from trauma or disease or developmental differences, as well as differences between anatomical regions such as the fornix and the cingulum bundle or corpus callosum.

  20. Myelination in coculture of established neuronal and Schwann cell lines.

    PubMed

    Sango, Kazunori; Kawakami, Emiko; Yanagisawa, Hiroko; Takaku, Shizuka; Tsukamoto, Masami; Utsunomiya, Kazunori; Watabe, Kazuhiko

    2012-06-01

    Establishing stable coculture systems with neuronal and Schwann cell lines has been considered difficult, presumably because of their high proliferative activity and phenotypic differences from primary cultured cells. The present study is aimed at developing methods for myelin formation under coculture of the neural crest-derived pheochromocytoma cell line PC12 and the immortalized adult rat Schwann cell line IFRS1. Prior to coculture, PC12 cells were seeded at low density (3 × 10(2)/cm(2)) and maintained in serum-free medium with N2 supplement, ascorbic acid (50 μg/ml), and nerve growth factor (NGF) (50 ng/ml) for a week. Exposure to such a NGF-rich environment with minimum nutrients accelerated differentiation and neurite extension, but not proliferation, of PC12 cells. When IFRS1 cells were added to NGF-primed PC12 cells, the cell density ratio of PC12 cells to IFRS1 cells was adjusted from 1:50 to 1:100. The cocultured cells were then maintained in serum-free medium with B27 supplement, ascorbic acid (50 μg/ml), NGF (10 ng/ml), and recombinant soluble neuregulin-1 type III (25 ng/ml). Myelin formation was illustrated by light and electron microscopy performed at day 28 of coculture. The stable PC12-IFRS1 coculture system is free of technical and ethical problems arising from the primary culture and can be a valuable tool to study peripheral nerve degeneration and regeneration.

  1. Myelination of the corpus callosum in male and female rats following complex environment housing during adulthood

    PubMed Central

    Markham, Julie A.; Herting, Megan M.; Luszpak, Agatha E.; Juraska, Janice M.; Greenough, William T.

    2009-01-01

    Myelination is an important process in brain development, and delays or abnormalities in this process have been associated with a number of conditions including autism, developmental delay, attention deficit disorder, and schizophrenia. Myelination can be sensitive to developmental experience; however, although the adult brain remains highly plastic, it is unknown whether myelination continues to be sensitive to experience during adulthood. Male and female rats were socially housed until four months of age, at which time they were moved into either a complex or “enriched” environment (EC) or an isolated condition (IC). Although the area of the splenium (posterior 20% of the callosum, which contains axons from visual cortical neurons) increased by about 10% following two months of EC housing, the area occupied by myelinated axons was not influenced by adult housing condition. Instead, it was the area occupied by glial cell processes and unmyelinated axons which significantly increased following EC housing. Neither the size nor the myelin content of the genu (anterior 15% of the callosum) was sensitive to manipulations of adult housing condition, but males had more area occupied by myelinated axons in both callosal regions. Finally, the inability of two months of complex environment housing during adulthood to impact the number of myelinated axons in the splenium was confirmed in a subset of animals using quantitative electron microscopy. We conclude that the sensitivity of myelination to experience is reduced in adulthood relative to development in both sexes. PMID:19596280

  2. Predicting degree of myelination based on diffusion tensor imagining of canines with mucopolysaccharidosis type I

    PubMed Central

    Choi, Joshua; Dickson, Patricia; Calabrese, Evan; Chen, Steven; White, Leonard; Ellingwood, Matthew

    2015-01-01

    Objective This study examined the effect of mucopolysaccharidosis (MPS) type 1 on diffusion tensor imaging (DTI) metrics in the canine brain. We hypothesized 1) white matter regions in the MPS brain would show decreased fractional anisotropy (FA) and increased radial diffusivity (RD) compared to the same regions in normal brain, 2) compared to FA, RD would more closely correlate with myelin density and fiber coherence, and 3) DTI and histological data from the normal brain could be used to accurately predict degree of myelination in the MPS brain using DTI metrics. Methods We performed DTI imaging on one normal canine brain and two MPS brains on a 7T MR scanner and generated FA and RD maps. Brains were sectioned and stained with a gold chloride stain for myelin to obtain myelin optical density and fiber coherence values. The three brains were compared using the DTI and histology metrics. Results Most measured regions in one MPS brain and all measured regions in the other MPS brain exhibited decreased FA, increased RD, and decreased myelin density in white matter. FA and RD significantly correlated with myelin density in the normal brain but failed to reach significance in either MPS brain. A predictive model using FA but not RD was able to accurately predict degree of myelination in one MPS brain. Conclusion Dysmyelination in the MPS brain results in decreased FA and increased RD. However, in the small sample, FA and RD were values not significantly correlated with myelination in either MPS brain. PMID:26475483

  3. A reliable in vitro model for studying peripheral nerve myelination in mouse.

    PubMed

    Stettner, Mark; Wolffram, Kathleen; Mausberg, Anne K; Wolf, Christian; Heikaus, Sebastian; Derksen, Angelika; Dehmel, Thomas; Kieseier, Bernd C

    2013-03-30

    The rat dorsal root ganglia (DRG) model is a long-standing in vitro model for analysis of myelination in the peripheral nervous system. For performing systematic, high throughput analysis with transgenic animals, a simplified BL6 mouse protocol is indispensable. Here we present a stable and reliable protocol for myelinating co-cultures producing a high myelin ratio using cells from C57BL/6 mice. As an easy accessible and operable method, Sudan staining proved to be efficient in myelin detection for fixed cultures. Green fatty acid stain turned out to be highly reliable for analysis of the dynamic biological processes of myelination in vital cultures. Once myelinated we were able to induce demyelination by the addition of forskolin into the model system. In addition, we provide an optimised rat DRG protocol with significantly improved myelin ratio and a comparison of the protocols presented. Our results strengthen the value of ex vivo myelination models in neurobiology. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. The Effects of Normal Aging on Myelinated Nerve Fibers in Monkey Central Nervous System

    PubMed Central

    Peters, Alan

    2009-01-01

    The effects of aging on myelinated nerve fibers of the central nervous system are complex. Many myelinated nerve fibers in white matter degenerate and are lost, leading to some disconnections between various parts of the central nervous system. Other myelinated nerve fibers are affected differently, because only their sheaths degenerate, leaving the axons intact. Such axons are remyelinated by a series of internodes that are much shorter than the original ones and are composed of thinner sheaths. Thus the myelin-forming cells of the central nervous system, the oligodendrocytes, remain active during aging. Indeed, not only do these neuroglial cell remyelinate axons, with age they also continue to add lamellae to the myelin sheaths of intact nerve fibers, so that sheaths become thicker. It is presumed that the degeneration of myelin sheaths is due to the degeneration of the parent oligodendrocyte, and that the production of increased numbers of internodes as a consequence of remyelination requires additional oligodendrocytes. Whether there is a turnover of oligodendrocytes during life has not been studied in primates, but it has been established that over the life span of the monkey, there is a substantial increase in the numbers of oligodendrocytes. While the loss of some myelinated nerve fibers leads to some disconnections, the degeneration of other myelin sheaths and the subsequent remyelination of axons by shorter internodes slow down the rate conduction along nerve fibers. These changes affect the integrity and timing in neuronal circuits, and there is evidence that they contribute to cognitive decline. PMID:19636385

  5. Involvement of ADAM10 in axonal outgrowth and myelination of the peripheral nerve.

    PubMed

    Jangouk, Parastoo; Dehmel, Thomas; Meyer Zu Hörste, Gerd; Ludwig, Andreas; Lehmann, Helmar C; Kieseier, Bernd C

    2009-12-01

    The disintegrin and metalloproteinase 10 (ADAM10) is a membrane-anchored metalloproteinase with both proteolytic and disintegrin characteristics. Here, we investigate the expression, regulation, and functional role of ADAM10 in axonal outgrowth and myelination of the peripheral nerve. Expression pattern analysis of 11 ADAM family members in co-cultures of rat dorsal root ganglia (DRG) neurons and Schwann cells (SCs) demonstrated the most pronounced mRNA expression for ADAM10. In further studies, ADAM10 was found to be consistently upregulated in DRG-SC co-cultures before the induction of myelination. Neurons as well as SCs widely expressed ADAM10 at the protein level. In neurons, the expression of ADAM10 was exclusively limited to the axons before the induction of myelination. Inhibition of ADAM10 activity by the hydroxamate-based inhibitors GI254023X and GW280264X resulted in a significant decrease in the mean axonal length. These data suggest that ADAM10 represents a prerequisite for myelination, although its activity is not required during the process of myelination itself as demonstrated by expression analysis of myelin protein zero (P0) and Sudan black staining. Hence, during the process of myelin formation, ADAM10 is highly upregulated and appears to be critically involved in axonal outgrowth that is a requirement for myelination in the peripheral nerve.

  6. The onset and rate of myelination in six peripheral and autonomic nerves of the rat.

    PubMed Central

    Schäfer, K; Friede, R L

    1988-01-01

    A light and electron microscopic study was carried out of the numbers of myelinated fibres in 6 nerves of the rat for 7 age groups from birth to 73 weeks. The hypoglossal nerve and the mandibular branch of the facial nerve had short and early myelination periods, essentially complete by the second week. The glossopharyngeal nerve and the sympathetic rami communicantes myelinated late and over a protracted period. Myelination of the rami communicantes continued up to 20 weeks, followed by a marked loss of fibres in the 73 week animals. Intercostal and saphenous nerves had intermediary patterns. There was evidence of subpopulations myelinating at different times. Measurements of myelin sheath thickness showed variations of relative sheath thickness with age, between nerves and for subpopulations of nerves. Late myelination corresponded to relatively thin myelin sheaths. Statistical two-stage-density cluster analysis by computer was used for analysing complex fibre populations. The developmental changes of three subpopulations of the intercostal nerve are documented. Nerves also differed in their rates of axon growth. The increment in axon calibre was small and late for sympathetic fibres. Intercostal and facial nerve fibres had rapid axon growth with different growth rates for subpopulations. PMID:3248966

  7. DDIT4/REDD1/RTP801 Is a Novel Negative Regulator of Schwann Cell Myelination

    PubMed Central

    Noseda, Roberta; Belin, Sophie; Piguet, Françoise; Vaccari, Ilaria; Scarlino, Stefania; Brambilla, Paola; Boneschi, Filippo Martinelli; Feltri, Maria Laura; Wrabetz, Lawrence; Quattrini, Angelo; Feinstein, Elena; Huganir, Richard L.

    2013-01-01

    Signals that promote myelination must be tightly modulated to adjust myelin thickness to the axonal diameter. In the peripheral nervous system, axonal neuregulin 1 type III promotes myelination by activating erbB2/B3 receptors and the PI3K/AKT/mTOR pathway in Schwann cells. Conversely, PTEN (phosphatase and tensin homolog on chromosome 10) dephosphorylates PtdIns(3,4,5)P3 and negatively regulates the AKT pathway and myelination. Recently, the DLG1/SAP97 scaffolding protein was described to interact with PTEN to enhance PIP3 dephosphorylation. Here we now report that nerves from mice with conditional inactivation of Dlg1 in Schwann cells display only a transient increase in myelin thickness during development, suggesting that DLG1 is a transient negative regulator of myelination. Instead, we identified DDIT4/RTP801/REDD1 as a sustained negative modulator of myelination. We show that DDIT4 is expressed in Schwann cells and its maximum expression level precedes the peak of AKT activation and of DLG1 activity in peripheral nerves. Moreover, loss of DDIT4 expression both in vitro and in vivo in Ddit4-null mice provokes sustained hypermyelination and enhanced mTORC1 activation, thus suggesting that this molecule is a novel negative regulator of PNS myelination. PMID:24048858

  8. α6β4 integrin and dystroglycan cooperate to stabilize the myelin sheath

    PubMed Central

    Nodari, A.; Previtali, S.C.; Dati, G.; Occhi, S.; Court, FA.; Colombelli, C.; Zambroni, D.; Dina, G.; Del Carro, U.; Campbell, K. P.; Quattrini, A.; Wrabetz, L.; Feltri, ML.

    2008-01-01

    Schwann cells integrate signals deriving from the axon and the basal lamina to myelinate peripheral nerves. Integrin α6β4 is a laminin receptor synthesized by Schwann cells and displayed apposed to the basal lamina. α6β4 integrin expression in Schwann cells is induced by axons at the onset of myelination, and rise in adulthood. The β4 chain has a uniquely long cytoplasmic domain that interacts with intermediate filaments such as dystonin, important in peripheral myelination. Furthermore, α6β4 integrin binds peripheral myelin protein 22, whose alteration causes the most common demyelinating hereditary neuropathy. All these data suggest a role for α6β4 integrin in peripheral nerve myelination. Here we show that ablating α6β4 integrin specifically in Schwann cells of transgenic mice does not affect peripheral nerve development, myelin formation, maturation or regeneration. However, consistent with maximal expression in adult nerves, α6β4 integrin-null myelin is more prone to abnormal folding with aging. When the laminin receptor dystroglycan is also ablated, major folding abnormalities occur, associated with acute demyelination in some peripheral nervous system districts. These data indicate that, similar to its role in skin, α6β4 integrin confers stability to myelin in peripheral nerves. PMID:18579745

  9. The progeroid gene BubR1 regulates axon myelination and motor function

    PubMed Central

    Choi, Chan-Il; Yoo, Ki Hyun; Qasim Hussaini, Syed Mohammed; Tak Jeon, Byeong; Welby, John; Gan, Haiyun; Scarisbrick, Isobel A.; Zhang, Zhiguo; Baker, Darren J.; van Deursen, Jan M.; Rodriguez, Moses; Jang, Mi-Hyeon

    2016-01-01

    Myelination, the process by which oligodendrocytes form the myelin sheath around axons, is key to axonal signal transduction and related motor function in the central nervous system (CNS). Aging is characterized by degenerative changes in the myelin sheath, although the molecular underpinnings of normal and aberrant myelination remain incompletely understood. Here we report that axon myelination and related motor function are dependent on BubR1, a mitotic checkpoint protein that has been linked to progeroid phenotypes when expressed at low levels and healthy lifespan when overabundant. We found that oligodendrocyte progenitor cell proliferation and oligodendrocyte density is markedly reduced in mutant mice with low amounts of BubR1 (BubR1H/H mice), causing axonal hypomyelination in both brain and spinal cord. Expression of essential myelin-related genes such as MBP and PLP1 was significantly reduced in these tissues. Consistent with defective myelination, BubR1H/H mice exhibited various motor deficits, including impaired motor strength, coordination, and balance, irregular gait patterns and reduced locomotor activity. Collectively, these data suggest that BubR1 is a key determinant of oligodendrocyte production and function and provide a molecular entry point to understand age-related degenerative changes in axon myelination. PMID:27922816

  10. Conditional Ablation of Raptor or Rictor Has Differential Impact on Oligodendrocyte Differentiation and CNS Myelination

    PubMed Central

    Bercury, Kathryn K.; Dai, JinXiang; Sachs, Hilary H.; Ahrendsen, Jared T.; Wood, Teresa L.

    2014-01-01

    During CNS development, oligodendrocytes, the myelinating glia of the CNS, progress through multiple transitory stages before terminating into fully mature cells. Oligodendrocyte differentiation and myelination is a tightly regulated process requiring extracellular signals to converge to elicit specific translational and transcriptional changes. Our lab has previously shown that the protein kinases, Akt and mammalian Target of Rapamycin (mTOR), are important regulators of CNS myelination in vivo. mTOR functions through two distinct complexes, mTOR complex 1 (mTORC1) and mTORC2, by binding to either Raptor or Rictor, respectively. To establish whether the impact of mTOR on CNS myelination results from unique functions of mTORC1 or mTORC2 during CNS myelination, we conditionally ablated either Raptor or Rictor in the oligodendrocyte lineage, in vivo. We show that Raptor (mTORC1) is a positive regulator of developmental CNS mouse myelination when mTORC2 is functional, whereas Rictor (mTORC2) ablation has a modest positive effect on oligodendrocyte differentiation, and very little effect on myelination, when mTORC1 is functional. Also, we show that loss of Raptor in oligodendrocytes results in differential dysmyelination in specific areas of the CNS, with the greatest impact on spinal cord myelination. PMID:24671993

  11. Brain-derived neurotrophic factor promotes central nervous system myelination via a direct effect upon oligodendrocytes.

    PubMed

    Xiao, Junhua; Wong, Agnes W; Willingham, Melanie M; van den Buuse, Maarten; Kilpatrick, Trevor J; Murray, Simon S

    2010-01-01

    The extracellular factors that are responsible for inducing myelination in the central nervous system (CNS) remain elusive. We investigated whether brain-derived neurotrophic factor (BDNF) is implicated, by first confirming that BDNF heterozygous mice exhibit delayed CNS myelination during early postnatal development. We next established that the influence of BDNF upon myelination was direct, by acting on oligodendrocytes, using co-cultures of dorsal root ganglia neurons and oligodendrocyte precursor cells. Importantly, we found that BDNF retains its capacity to enhance myelination of neurons or by oligodendrocytes derived from p75NTR knockout mice, indicating the expression of p75NTR is not necessary for BDNF-induced myelination. Conversely, we observed that phosphorylation of TrkB correlated with myelination, and that inhibiting TrkB signalling also inhibited the promyelinating effect of BDNF, suggesting that BDNF enhances CNS myelination via activating oligodendroglial TrkB-FL receptors. Together, our data reveal a previously unknown role for BDNF in potentiating the normal development of CNS myelination, via signalling within oligodendrocytes.

  12. Myelin Breakdown Mediates Age-Related Slowing in Cognitive Processing Speed in Healthy Elderly Men

    ERIC Educational Resources Information Center

    Lu, Po H.; Lee, Grace J.; Tishler, Todd A.; Meghpara, Michael; Thompson, Paul M.; Bartzokis, George

    2013-01-01

    Background: To assess the hypothesis that in a sample of very healthy elderly men selected to minimize risk for Alzheimer's disease (AD) and cerebrovascular disease, myelin breakdown in late-myelinating regions mediates age-related slowing in cognitive processing speed (CPS). Materials and methods: The prefrontal lobe white matter and the genu of…

  13. Preliminary Evidence of Increased Hippocampal Myelin Content in Veterans with Posttraumatic Stress Disorder

    PubMed Central

    Chao, Linda L.; Tosun, Duygu; Woodward, Steven H.; Kaufer, Daniela; Neylan, Thomas C.

    2015-01-01

    Recent findings suggest the formation of myelin in the central nervous system by oligodendrocytes is a continuous process that can be modified with experience. For example, a recent study showed that immobilization stress increased oligodendrogensis in the dentate gyrus of adult rat hippocampus. Because changes in myelination represents an adaptive form of brain plasticity that has a greater reach in the adult brain than other forms of plasticity (e.g., neurogenesis), the objective of this “proof of concept” study was to examine whether there are differences in myelination in the hippocampi of humans with and without post-traumatic stress disorder (PTSD). We used the ratio of T1-weighted/T2-weighted magnetic resonance image (MRI) intensity to estimate the degree of hippocampal myelination in 19 male veterans with PTSD and 19 matched trauma-exposed male veterans without PTSD (mean age: 43 ± 12 years). We found that veterans with PTSD had significantly more hippocampal myelin than trauma-exposed controls. There was also found a positive correlation between estimates of hippocampal myelination and PTSD and depressive symptom severity. To our knowledge, this is the first study to examine hippocampal myelination in humans with PTSD. These results provide preliminary evidence for stress-induced hippocampal myelin formation as a potential mechanism underlying the brain abnormalities associated with vulnerability to stress. PMID:26696852

  14. Myelin Breakdown Mediates Age-Related Slowing in Cognitive Processing Speed in Healthy Elderly Men

    ERIC Educational Resources Information Center

    Lu, Po H.; Lee, Grace J.; Tishler, Todd A.; Meghpara, Michael; Thompson, Paul M.; Bartzokis, George

    2013-01-01

    Background: To assess the hypothesis that in a sample of very healthy elderly men selected to minimize risk for Alzheimer's disease (AD) and cerebrovascular disease, myelin breakdown in late-myelinating regions mediates age-related slowing in cognitive processing speed (CPS). Materials and methods: The prefrontal lobe white matter and the genu of…

  15. Direct visualization of membrane architecture of myelinating cells in transgenic mice expressing membrane-anchored EGFP.

    PubMed

    Deng, Yaqi; Kim, BongWoo; He, Xuelian; Kim, Sunja; Lu, Changqing; Wang, Haibo; Cho, Ssang-Goo; Hou, Yiping; Li, Jianrong; Zhao, Xianghui; Lu, Q Richard

    2014-04-01

    Myelinogenesis is a complex process that involves substantial and dynamic changes in plasma membrane architecture and myelin interaction with axons. Highly ramified processes of oligodendrocytes in the central nervous system (CNS) make axonal contact and then extrapolate to wrap around axons and form multilayer compact myelin sheathes. Currently, the mechanisms governing myelin sheath assembly and axon selection by myelinating cells are not fully understood. Here, we generated a transgenic mouse line expressing the membrane-anchored green fluorescent protein (mEGFP) in myelinating cells, which allow live imaging of details of myelinogenesis and cellular behaviors in the nervous systems. mEGFP expression is driven by the promoter of 2'-3'-cyclic nucleotide 3'-phosphodiesterase (CNP) that is expressed in the myelinating cell lineage. Robust mEGFP signals appear in the membrane processes of oligodendrocytes in the CNS and Schwann cells in the peripheral nervous system (PNS), wherein mEGFP expression defines the inner layers of myelin sheaths and Schmidt-Lanterman incisures in adult sciatic nerves. In addition, mEGFP expression can be used to track the extent of remyelination after demyelinating injury in a toxin-induced demyelination animal model. Taken together, the membrane-anchored mEGFP expression in the new transgenic line would facilitate direct visualization of dynamic myelin membrane formation and assembly during development and process remodeling during remyelination after various demyelinating injuries.

  16. Clinical syndromes associated with tomacula or myelin swellings in sural nerve biopsies

    PubMed Central

    Sander, S; Ouvrier, R; McLeod, J; Nicholson, G; Pollard, J

    2000-01-01

    OBJECTIVES—To describe the neuropathological features of clinical syndromes associated with tomacula or focal myelin swellings in sural nerve biospies and to discuss possible common aetiopathological pathways leading to their formation in this group of neuropathies.
METHODS—Fifty two patients with sural nerve biopsies reported to show tomacula or focal myelin swellings were reviewed, light and electron microscopy were performed, and tomacula were analysed on teased fibre studies. Molecular genetic studies were performed on those patients who were available for genetic testing.
RESULTS—Thirty seven patients were diagnosed with hereditary neuropathy with liability to pressure palsies (HNPP), four with hereditary motor and sensory neuropathy type I (HMSN I) or Charcot-Marie-Tooth disease type 1 (CMT1), four with HMSN with myelin outfolding (CMT4B), three with IgM paraproteinemic neuropathy, three with chronic inflammatory demyelinating polyneuropathy (CIDP), and one with HMSN III (CMT3).
CONCLUSIONS—Most of these syndromes were shown to be related to genetic or immunological defects of myelin components such as peripheral myelin protein 22 (PMP22), myelin protein zero (P0), or myelin associated glycoprotein (MAG). These proteins share the HNK-1 epitope which has been implicated in cell adhesion processes. Impaired myelin maintenance may therefore contribute to the formation of tomacula and subsequent demyelination.

 PMID:10727485

  17. Axon-myelin sheath relations of oligodendrocyte unit phenotypes in the adult rat anterior medullary velum.

    PubMed

    Butt, A M; Ibrahim, M; Berry, M

    1998-04-01

    Axon-oligodendrocyte relations of Rip-immunolabelled and dye-injected oligodendrocyte units are characterised in the adult rat anterior medullary velum (AMV). Each oligodendrocyte unit comprised the oligodendrocyte cell body, processes and the internodal myelin segments they support. Oligodendrocyte units corresponded to classically described type I/II or type III/IV unit phenotypes which respectively myelinated discrete populations of small and large diameter axons, delineated by a myelinated fire diameter of 2-4 microns (diameter of the axon plus its myelin sheath). Within units, mean fibre diameter was directly related to mean internodal length and inversely related to the number of myelin sheaths in the unit. The relationship between fibre diameter and internodal length was retained in units which myelinated axons of different diameters, indicating that axon diameter was an important determinant of the longitudinal dimensions of myelin sheaths. We also show that type III/IV units maintained a far greater volume of myelin than type I/II units. It was concluded that type I/II and III/IV oligodendrocytes represent two functionally and morphologically distinct phenotypes whose distribution densities were determined by the diameter and spatial dispersion of axons.

  18. Optimal myelin elongation relies on YAP activation by axonal growth and inhibition by Crb3/Hippo pathway

    PubMed Central

    Fernando, Ruani N.; Cotter, Laurent; Perrin-Tricaud, Claire; Berthelot, Jade; Bartolami, Sylvain; Pereira, Jorge A.; Gonzalez, Sergio; Suter, Ueli; Tricaud, Nicolas

    2016-01-01

    Fast nerve conduction relies on successive myelin segments that electrically isolate axons. Segment geometry—diameter and length—is critical for the optimization of nerve conduction and the molecular mechanisms allowing this optimized geometry are partially known. We show here that peripheral myelin elongation is dynamically regulated by stimulation of YAP (Yes-associated protein) transcription cofactor activity during axonal elongation and limited by inhibition of YAP activity via the Hippo pathway. YAP promotes myelin and non-myelin genes transcription while the polarity protein Crb3, localized at the tips of the myelin sheath, activates the Hippo pathway to temper YAP activity, therefore allowing for optimal myelin growth. Dystrophic Dy2j/2j mice mimicking human peripheral neuropathy with reduced internodal lengths have decreased nuclear YAP which, when corrected, leads to longer internodes. These data show a novel mechanism controlling myelin growth and nerve conduction, and provide a molecular ground for disease with short myelin segments. PMID:27435623

  19. The developmental loss of the ability of Purkinje cells to regenerate their axons occurs in the absence of myelin: an in vitro model to prevent myelination.

    PubMed

    Bouslama-Oueghlani, Lamia; Wehrlé, Rosine; Sotelo, Constantino; Dusart, Isabelle

    2003-09-10

    Axonal regeneration in the mammalian CNS is a property of immature neurons that is lost during development. Using organotypic culture of cerebellum, we have shown that in vitro Purkinje cells lose their regenerative capacity in parallel with the process of myelination. We have investigated whether myelination is involved in the age-dependent loss of regeneration of these neurons. By applying a high dose of bromodeoxyuridine in the culture medium of newborn cerebellar slices during the first 3 d in vitro, we have succeeded in obtaining cultures with oligodendrocyte depletion, together with a lack of ameboid microglia and enhancement of Purkinje cell survival. These cultures, after 14 d in vitro, are completely devoid of myelin. We have compared the ability of Purkinje cells to regenerate their axons in the presence or absence of myelin. Purkinje cells in cerebellar explants taken at birth, treated with bromodeoxyuridine and axotomized after 7 d in vitro, survive better than similar neurons in untreated cultures. However, despite the lack of myelin and the enhanced survival, Purkinje cells do not regenerate, whereas they do regenerate when the axotomy is done at postnatal day 0. Thus, the Purkinje cell developmental switch from axonal regeneration to lack of regeneration does not appear to be regulated by myelin.

  20. A Novel Function of RING Finger Protein 10 in Transcriptional Regulation of the Myelin-Associated Glycoprotein Gene and Myelin Formation in Schwann Cells

    PubMed Central

    Hoshikawa, Shinya; Ogata, Toru; Fujiwara, Sayaka; Nakamura, Kozo; Tanaka, Sakae

    2008-01-01

    Myelin-associated glycoprotein (MAG) has been detected in Schwann cells prior to the onset of myelination, suggesting its functions in the initiation of myelination. However, transcriptional regulatory mechanisms of MAG remain to be elucidated. Here, we analyzed the promoter of the MAG gene by using luciferase reporter systems in the primary rat Schwann cells. We identified a novel cis-acting element located 160 bp upstream from the MAG transcription initiation site. Using the identified cis-element as a bait, we performed yeast one-hybrid screening and isolated a cDNA encoding a RNF10 as a putative trans-acting protein. When overexpressed in Schwann cells, RNF10 enhanced the activity of the MAG promoter. When RNF10 expression in Schwann cells was knocked down by siRNA, endogenous MAG mRNA and protein expression decreased. Furthermore, we evaluated myelin synthesis using Schwann cell-DRG neuron cocultures. When Schwann cells were infected with retrovirus expressing RNF10 siRNA, myelin formation was inhibited. These data suggest that RNF10 regulates MAG expression and is required for myelin formation. PMID:18941509

  1. Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair

    PubMed Central

    Domingues, Helena S.; Portugal, Camila C.; Socodato, Renato; Relvas, João B.

    2016-01-01

    Oligodendrocytes are the myelinating glia of the central nervous system. Myelination of axons allows rapid saltatory conduction of nerve impulses and contributes to axonal integrity. Devastating neurological deficits caused by demyelinating diseases, such as multiple sclerosis, illustrate well the importance of the process. In this review, we focus on the positive and negative interactions between oligodendrocytes, astrocytes, and microglia during developmental myelination and remyelination. Even though many lines of evidence support a crucial role for glia crosstalk during these processes, the nature of such interactions is often neglected when designing therapeutics for repair of demyelinated lesions. Understanding the cellular and molecular mechanisms underlying glial cell communication and how they influence oligodendrocyte differentiation and myelination is fundamental to uncover novel therapeutic strategies for myelin repair. PMID:27551677

  2. Exploring the role of nerve growth factor in multiple sclerosis: implications in myelin repair.

    PubMed

    Acosta, C M R; Cortes, C; MacPhee, H; Namaka, M P

    2013-12-01

    Multiple sclerosis (MS) is a chronic disease resulting from targeted destruction of central nervous system (CNS) myelin. MS is suggested to be an autoimmune disease involving the pathogenic activation of CD4(+) T cells by a foreign antigen in the peripheral blood. The activated CD4(+) T cells liberate inflammatory cytokines that facilitate the breakdown of the blood-brain barrier (BBB) promoting their passage into the CNS. Inside the CNS, CD4(+) T cells become re-activated by myelin proteins sharing a similar structure to the foreign antigen that initially triggered the immune response. The CD4(+) T cells continue to liberate inflammatory cytokines, such as tumor necrosis factor α (TNFα), which activates macrophages and antibodies responsible for the phagocytosis of myelin. Acute CNS lesions can be re-myelinated, however, the repair of chronic demyelinating lesions is limited, leading to permanent neurological deficits. Although current MS treatments reduce severity and slow disease progression, they do not directly repair damaged myelin. Henceforth, recent treatment strategies have focused on neurotrophins, such as nerve growth factor (NGF) for myelin repair. NGF promotes axonal regeneration, survival, protection and differentiation of oligodendrocytes (OGs) and facilitates migration and proliferation of oligodendrocyte precursors (OPs) to the sites of myelin damage. NGF also directly regulates key structural proteins that comprise myelin. Interestingly, NGF also induces the production of brain-derived neurotrophic factor (BDNF), another integral neurotrophin involved in myelination. The intricate signaling between neurotrophins and cytokines that governs myelin repair supports the role of NGF as a leading therapeutic candidate in white matter disorders, such as MS.

  3. Dicer in Schwann cells is required for myelination and axonal integrity.

    PubMed

    Pereira, Jorge A; Baumann, Reto; Norrmén, Camilla; Somandin, Christian; Miehe, Michaela; Jacob, Claire; Lühmann, Tessa; Hall-Bozic, Heike; Mantei, Ned; Meijer, Dies; Suter, Ueli

    2010-05-12

    Dicer is responsible for the generation of mature micro-RNAs (miRNAs) and loading them into RNA-induced silencing complex (RISC). RISC functions as a probe that targets mRNAs leading to translational suppression and mRNA degradation. Schwann cells (SCs) in the peripheral nervous system undergo remarkable differentiation both in morphology and gene expression patterns throughout lineage progression to myelinating and nonmyelinating phenotypes. Gene expression in SCs is particularly tightly regulated and critical for the organism, as highlighted by the fact that a 50% decrease or an increase to 150% of normal gene expression of some myelin proteins, like PMP22, results in peripheral neuropathies. Here, we selectively deleted Dicer and consequently gene expression regulation by mature miRNAs from Mus musculus SCs. Our results show that in the absence of Dicer, most SCs arrest at the promyelinating stage and fail to start forming myelin. At the molecular level, the promyelinating transcription factor Krox20 and several myelin proteins [including myelin associated glycoprotein (MAG) and PMP22] were strongly reduced in mutant sciatic nerves. In contrast, the myelination inhibitors SOX2, Notch1, and Hes1 were increased, providing an additional potential basis for impaired myelination. A minor fraction of SCs, with some peculiar differences between sensory and motor fibers, overcame the myelination block and formed unusually thin myelin, in line with observed impaired neuregulin and AKT signaling. Surprisingly, we also found signs of axonal degeneration in Dicer mutant mice. Thus, our data indicate that miRNAs critically regulate Schwann cell gene expression that is required for myelination and to maintain axons via axon-glia interactions.

  4. Gray matter myelination of 1555 human brains using partial volume corrected MRI images

    PubMed Central

    Shafee, Rebecca; Buckner, Randy L.; Fischl, Bruce

    2014-01-01

    The myelin content of the cortex changes over the human lifetime and aberrant cortical myelination is associated with diseases such as schizophrenia and multiple sclerosis. Recently magnetic resonance imaging (MRI) techniques have shown potential in differentiating between myeloarchitectonically distinct cortical regions in vivo. Here we introduce a new algorithm for correcting partial volume effects present in mm-scale MRI images which was used to investigate the myelination pattern of the cerebral cortex in 1555 clinically normal subjects using the ratio of T1-weighted (T1w) and T2-weighted (T2w) MRI images. A significant linear cross-sectional age increase in T1w/T2w estimated myelin was detected across an 18 to 35 year age span (highest value of ~ 1%/year compared to mean T1w/T2w myelin value at 18 years). The cortex was divided at mid-thickness and the value of T1w/T2w myelin calculated for the inner and the outer layers separately. The increase in T1w/T2w estimated myelin occurs predominantly in the inner layer for most cortical regions. The ratio of the inner and outer layer T1w/T12w myelin was further validated using high-resolution in vivo MRI scans and also a high-resolution MRI scan of a postmortem brain. Additionally, the relationships between cortical thickness, curvature and T1w/T2w estimated myelin were found to be significant, although the relationships varied across the cortex. We discuss these observations as well as limitations of using the T1w/T2w ratio as an estimate of cortical myelin. PMID:25449739

  5. Myelination is Decreased in the Brain Stem of Small Piglets Compared to Larger Littermates During Late Gestation

    USDA-ARS?s Scientific Manuscript database

    Preweaning mortality is associated with low birth weights. Reduced myelination in the brain of low birth weight piglets has been reported, however, these studies measured brain cholesterol, which is not myelin. Thus, we compared myelination in brain regions associated with coordinated movement and r...

  6. A single prenatal exposure to the endocrine disruptor 2,3,7,8-tetrachlorodibenzo-p-dioxin alters developmental myelination and remyelination potential in the rat brain.

    PubMed

    Fernández, M; Paradisi, M; D'Intino, G; Del Vecchio, G; Sivilia, S; Giardino, L; Calzà, L

    2010-11-01

    Polychlorinated dibenzo-dioxins, furans and dioxin-like polychlorinated biphenyls are ubiquitous in foodstuffs of animal origin and accumulate in the fatty tissues of animals and humans. The most toxic congener is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a lipophilic endocrine-disrupting molecule that accumulates in adipose tissue, placenta and milk. polychlorinated biphenyls and TCDD are known to interfere with thyroid hormone metabolism and signaling in the developing brain. As thyroid hormone is critical in the myelination process during development, we investigated the effect of a single dose of TCDD prenatal exposure (gestational day 18) on the myelination process. A semi-quantitative analysis of oligodendrocyte markers at different stages of maturation was performed in the offspring's medulla oblongata, cerebellum, diencephalon and telenchephalon at different postnatal days (2/3, 14, 30 and 135). The most significant alterations observed were: (i) cerebellum and medulla oblongata: altered expression of oligodendroglial lineage and platelet-derived growth factor alpha receptor, myelin basic protein (MBP) mRNAs (P2/3, P135) and MBP protein (P135); (ii) diencephalon: increase in platelet- derived growth factor alpha receptor mRNA level (P2/3); (iii) telenchephalon: decrease in MBP mRNA expression. The oligodendroglial generation capability of adult neural stem/precursor cells obtained ex vivo from TCDD and vehicle-treated dams was then explored. TCDD impairs neurosphere proliferation and retards CNPase-positive cell generation from adult neurospheres.

  7. Potential role of ferric hemoglobin in MS pathogenesis: Effects of oxidative stress and extracellular methemoglobin or its degradation products on myelin components.

    PubMed

    Bamm, Vladimir V; Henein, Mary E L; Sproul, Shannon L J; Lanthier, Danielle K; Harauz, George

    2017-08-31

    There is a well-documented relationship between cerebral vasculature and multiple sclerosis (MS) lesions: abnormal accumulations of iron have been found in the walls of the dilated veins in cerebral MS plaques. The source of this iron is unknown, but could be related to the recognized phenomenon of capillary and venous hemorrhages leading to blood extravasation. In turn, hemorrhaging leading to hemolysis results in extracellular release of hemoglobin, a reactive molecule that could induce local oxidative stress, inflammation, and tissue damage. Our previous studies with a reduced form of hemoglobin (oxyHb) have demonstrated its ability to cause extensive lipid and protein oxidation in vitro, which would result in membrane destabilization. Here, we investigated in further detail the mechanism by which the more abundant oxidized form of extracellular hemoglobin (metHb), and dissociated hemin, cause direct oxidative damage to myelin components, specifically membrane-mimetic lipid vesicles and myelin basic protein (MBP), a highly-abundant protein in the CNS. Oxidation of lipids was assessed by the formation of conjugated diene/triene and malondialdehyde, and oxidation of MBP was demonstrated by the bityrosine formation and by the change in protein mass. Our results show that metHb causes oxidative damage to MBP and myelin lipids, partly by transferring its hemin moiety to protein and lipid, but mostly as an intact protein possibly via formation of a ferryl radical. These results elucidating the mechanism of extracellular hemoglobin-induced oxidative damage to myelin components support the need for further research into vascular pathology in MS pathogenesis, to gain insight into the role of iron deposits and/or in stimulation of different comorbidities associated with the disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. CONTINUOUS CONDUCTION OF IMPULSES IN PERIPHERAL MYELINATED NERVE FIBERS

    PubMed Central

    Laporte, Y.

    1951-01-01

    1. Conduction of impulses in peripheral myelinated fibers of a nerve trunk is a continuous process, since with uninjured nerve fibers: (a) within each internodal segment the conduction time increases continuously and linearly with increasing conduction distance; (b) the presence of nodes of Ranvier does not result in any detectable discontinuity in the conduction of the impulse; (c) the ascending phase of the spike always has an S shape and never presents signs of fractionation; (d) the shape and magnitude of the spike are constant at all points of each internodal segment. 2. Records have been presented of the external logitudinal current that flows during propagation of an impulse in undissected single nerve fiber (Fig. 6). 3. Propagation of impulses across a conduction block occurs with a readily demonstrable discontinuity. PMID:14898021

  9. Heterogeneity of Multiple Sclerosis Lesions in Multislice Myelin Water Imaging

    PubMed Central

    Faizy, Tobias Djamsched; Thaler, Christian; Kumar, Dushyant; Sedlacik, Jan; Broocks, Gabriel; Grosser, Malte; Stellmann, Jan-Patrick; Heesen, Christoph; Fiehler, Jens; Siemonsen, Susanne

    2016-01-01

    Purpose To assess neuroprotection and remyelination in Multiple Sclerosis (MS), we applied a more robust myelin water imaging (MWI) processing technique, including spatial priors into image reconstruction, which allows for lower SNR, less averages and shorter acquisition times. We sought to evaluate this technique in MS-patients and healthy controls (HC). Materials and Methods Seventeen MS-patients and 14 age-matched HCs received a 3T Magnetic Resonance Imaging (MRI) examination including MWI (8 slices, 12 minutes acquisition time), T2w and T1mprage pre and post gadolinium (GD) administration. Black holes (BH), contrast enhancing lesions (CEL) and T2 lesions were marked and registered to MWI. Additionally, regions of interest (ROI) were defined in the frontal, parietal and occipital normal appearing white matter (NAWM)/white matter (WM), the corticospinal tract (CST), the splenium (SCC) and genu (GCC) of the corpus callosum in patients and HCs. Mean values of myelin water fraction (MWF) were determined for each ROI. Results Significant differences (p≤0.05) of the MWF were found in all three different MS-lesion types (BH, CEL, T2 lesions), compared to the WM of HCs. The mean MWF values among the different lesion types were significantly differing from each other. Comparing MS-patients vs. HCs, we found a significant (p≤0.05) difference of the MWF in all measured ROIs except of GCC and SCC. The mean reduction of MWF in the NAWM of MS-patients compared to HCs was 37%. No age, sex, disability score and disease duration dependency was found for the NAWM MWF. Conclusion MWF measures were in line with previous studies and lesions were clearly visible in MWI. MWI allows for quantitative assessment of NAWM and lesions in MS, which could be used as an additional sensitive imaging endpoint for larger MS studies. Measurements of the MWF also differ between patients and healthy controls. PMID:26990645

  10. Ndrg1 in development and maintenance of the myelin sheath.

    PubMed

    King, Rosalind H M; Chandler, David; Lopaticki, Sash; Huang, Dexing; Blake, Julian; Muddle, John R; Kilpatrick, Trevor; Nourallah, Michelle; Miyata, Toshiyuki; Okuda, Tomohiko; Carter, Kim W; Hunter, Michael; Angelicheva, Dora; Morahan, Grant; Kalaydjieva, Luba

    2011-06-01

    CMT4D disease is a severe autosomal recessive demyelinating neuropathy with extensive axonal loss leading to early disability, caused by mutations in the N-myc downstream regulated gene 1 (NDRG1). NDRG1 is expressed at particularly high levels in the Schwann cell (SC), but its physiological function(s) are unknown. To help with their understanding, we characterise the phenotype of a new mouse model, stretcher (str), with total Ndrg1 deficiency, in comparison with the hypomorphic Ndrg1 knock-out (KO) mouse. While both models display normal initial myelination and a transition to overt pathology between weeks 3 and 5, the markedly more severe str phenotype suggests that even low Ndrg1 expression results in significant phenotype rescue. Neither model replicates fully the features of CMT4D: although axon damage is present, regenerative capacity is unimpaired and the mice do not display the early severe axonal loss typical of the human disease. The widespread large fibre demyelination coincides precisely with the period of rapid growth of the animals and the dramatic (160-500-fold) increase in myelin volume and length in large fibres. This is followed by stabilisation after week 10, while small fibres remain unaffected. Gene expression profiling of str peripheral nerve reveals non-specific secondary changes at weeks 5 and 10 and preliminary data point to normal proteasomal function. Our findings do not support the proposed roles of NDRG1 in growth arrest, terminal differentiation, gene expression regulation and proteasomal degradation. Impaired SC trafficking failing to meet the considerable demands of nerve growth, emerges as the likely pathogenetic mechanism in NDRG1 deficiency.

  11. A serendipitous discovery of antifreeze protein-specific activity in C-linked antifreeze glycoprotein analogs.

    PubMed

    Eniade, Adewale; Purushotham, Madhusudhan; Ben, Robert N; Wang, J B; Horwath, Kathleen

    2003-01-01

    Structurally diverse carbon-linked (C-linked) analogs of antifreeze glycoprotein (AFGP) have been prepared via linear or convergent solid phase synthesis. These analogs range in molecular weight from approx 1.5-4.1 KDa and do not possess the beta-D-galactose-1,3-alpha-D-N-acetylgalactosamine carbohydrate moiety or the L-threonine-L-alanine-L-alanine polypeptide backbone native to the AFGP wild-type. Despite these dramatic structural modifications, the 2.7-KDa and 4.1-KDa analogs possess antifreeze protein-specific activity as determined by recrystallization-inhibition (RI) and thermal hysteresis (TH) assays. These analogs are weaker than the wild-type in their activity, but nanoliter osmometry indicates that these compounds are binding to ice and affecting a localized freezing point depression. This is the first example of a C-linked AFGP analog that possesses TH and RI activity and suggests that the rational design and synthesis of chemically and biologically stable AFGP analogs is a feasible and worthwhile endeavor. Given the low degree of TH activity, these compounds may prove useful for the protection of cells during freezing and thawing cycles.

  12. Hybrid QM/MM study o