Science.gov

Sample records for myeloid leukemia reveals

  1. What Is Chronic Myeloid Leukemia?

    MedlinePlus

    ... About Chronic Myeloid Leukemia What Is Chronic Myeloid Leukemia? Cancer starts when cells in the body begin ... is the same as for adults. What is leukemia? Leukemia is a cancer that starts in the ...

  2. Can Acute Myeloid Leukemia Be Prevented?

    MedlinePlus

    ... Causes, Risk Factors, and Prevention Can Acute Myeloid Leukemia Be Prevented? It’s not clear what causes most ... Myeloid Leukemia Be Prevented? More In Acute Myeloid Leukemia About Acute Myeloid Leukemia Causes, Risk Factors, and ...

  3. Genome-scale expression and transcription factor binding profiles reveal therapeutic targets in transgenic ERG myeloid leukemia

    PubMed Central

    Goldberg, Liat; Tijssen, Marloes R.; Birger, Yehudit; Hannah, Rebecca L.; Kinston, Sarah J.; Schütte, Judith; Beck, Dominik; Knezevic, Kathy; Schiby, Ginette; Jacob-Hirsch, Jasmine; Biran, Anat; Kloog, Yoel; Marcucci, Guido; Bloomfield, Clara D.; Aplan, Peter D.; Pimanda, John E.

    2013-01-01

    The ETS transcription factor ERG plays a central role in definitive hematopoiesis, and its overexpression in acute myeloid leukemia (AML) is associated with a stem cell signature and poor prognosis. Yet how ERG causes leukemia is unclear. Here we show that pan-hematopoietic ERG expression induces an early progenitor myeloid leukemia in transgenic mice. Integrated genome-scale analysis of gene expression and ERG binding profiles revealed that ERG activates a transcriptional program similar to human AML stem/progenitor cells and to human AML with high ERG expression. This transcriptional program was associated with activation of RAS that was required for leukemia cells growth in vitro and in vivo. We further show that ERG induces expression of the Pim1 kinase oncogene through a novel hematopoietic enhancer validated in transgenic mice and human CD34+ normal and leukemic cells. Pim1 inhibition disrupts growth and induces apoptosis of ERG-expressing leukemic cells. The importance of the ERG/PIM1 axis is further underscored by the poorer prognosis of AML highly expressing ERG and PIM1. Thus, integrative genomic analysis demonstrates that ERG causes myeloid progenitor leukemia characterized by an induction of leukemia stem cell transcriptional programs. Pim1 and the RAS pathway are potential therapeutic targets of these high-risk leukemias. PMID:23974202

  4. Genetics Home Reference: chronic myeloid leukemia

    MedlinePlus

    ... Home Health Conditions chronic myeloid leukemia chronic myeloid leukemia Printable PDF Open All Close All Enable Javascript ... view the expand/collapse boxes. Description Chronic myeloid leukemia is a slow-growing cancer of the blood- ...

  5. Treating Chronic Myeloid Leukemia by Phase

    MedlinePlus

    ... Myeloid Leukemia Targeted Therapies for Chronic Myeloid Leukemia Interferon Therapy for Chronic Myeloid Leukemia Chemotherapy for Chronic ... to help decide what drug would be best. Interferon or chemotherapy (chemo) may be tried for those ...

  6. Integrated genome-wide genotyping and gene expression profiling reveals BCL11B as a putative oncogene in acute myeloid leukemia with 14q32 aberrations.

    PubMed

    Abbas, Saman; Sanders, Mathijs A; Zeilemaker, Annelieke; Geertsma-Kleinekoort, Wendy M C; Koenders, Jasper E; Kavelaars, Francois G; Abbas, Zabiollah G; Mahamoud, Souad; Chu, Isabel W T; Hoogenboezem, Remco; Peeters, Justine K; van Drunen, Ellen; van Galen, Janneke; Beverloo, H Berna; Löwenberg, Bob; Valk, Peter J M

    2014-05-01

    Acute myeloid leukemia is a neoplasm characterized by recurrent molecular aberrations traditionally demonstrated by cytogenetic analyses. We used high density genome-wide genotyping and gene expression profiling to reveal acquired cryptic abnormalities in acute myeloid leukemia. By genome-wide genotyping of 137 cases of primary acute myeloid leukemia, we disclosed a recurrent focal amplification on chromosome 14q32, which included the genes BCL11B, CCNK, C14orf177 and SETD3, in two cases. In the affected cases, the BCL11B gene showed consistently high mRNA expression, whereas the expression of the other genes was unperturbed. Fluorescence in situ hybridization on 40 cases of acute myeloid leukemia with high BCL11B mRNA expression [2.5-fold above median; 40 out of 530 cases (7.5%)] revealed 14q32 abnormalities in two additional cases. In the four BCL11B-rearranged cases the 14q32 locus was fused to different partner chromosomes. In fact, in two cases, we demonstrated that the focal 14q32 amplifications were integrated into transcriptionally active loci. The translocations involving BCL11B result in increased expression of full-length BCL11B protein. The BCL11B-rearranged acute myeloid leukemias expressed both myeloid and T-cell markers. These biphenotypic acute leukemias all carried FLT3 internal tandem duplications, a characteristic marker of acute myeloid leukemia. BCL11B mRNA expression in acute myeloid leukemia appeared to be strongly associated with expression of other T-cell-specific genes. Myeloid 32D(GCSF-R) cells ectopically expressing Bcl11b showed decreased proliferation rate and less maturation. In conclusion, by an integrated approach involving high-throughput genome-wide genotyping and gene expression profiling we identified BCL11B as a candidate oncogene in acute myeloid leukemia.

  7. Integrated genome-wide genotyping and gene expression profiling reveals BCL11B as a putative oncogene in acute myeloid leukemia with 14q32 aberrations

    PubMed Central

    Abbas, Saman; Sanders, Mathijs A.; Zeilemaker, Annelieke; Geertsma-Kleinekoort, Wendy M.C.; Koenders, Jasper E.; Kavelaars, Francois G.; Abbas, Zabiollah G.; Mahamoud, Souad; Chu, Isabel W.T.; Hoogenboezem, Remco; Peeters, Justine K.; van Drunen, Ellen; van Galen, Janneke; Beverloo, H. Berna; Löwenberg, Bob; Valk, Peter J.M.

    2014-01-01

    Acute myeloid leukemia is a neoplasm characterized by recurrent molecular aberrations traditionally demonstrated by cytogenetic analyses. We used high density genome-wide genotyping and gene expression profiling to reveal acquired cryptic abnormalities in acute myeloid leukemia. By genome-wide genotyping of 137 cases of primary acute myeloid leukemia, we disclosed a recurrent focal amplification on chromosome 14q32, which included the genes BCL11B, CCNK, C14orf177 and SETD3, in two cases. In the affected cases, the BCL11B gene showed consistently high mRNA expression, whereas the expression of the other genes was unperturbed. Fluorescence in situ hybridization on 40 cases of acute myeloid leukemia with high BCL11B mRNA expression [2.5-fold above median; 40 out of 530 cases (7.5%)] revealed 14q32 abnormalities in two additional cases. In the four BCL11B-rearranged cases the 14q32 locus was fused to different partner chromosomes. In fact, in two cases, we demonstrated that the focal 14q32 amplifications were integrated into transcriptionally active loci. The translocations involving BCL11B result in increased expression of full-length BCL11B protein. The BCL11B-rearranged acute myeloid leukemias expressed both myeloid and T-cell markers. These biphenotypic acute leukemias all carried FLT3 internal tandem duplications, a characteristic marker of acute myeloid leukemia. BCL11B mRNA expression in acute myeloid leukemia appeared to be strongly associated with expression of other T-cell-specific genes. Myeloid 32D(GCSF-R) cells ectopically expressing Bcl11b showed decreased proliferation rate and less maturation. In conclusion, by an integrated approach involving high-throughput genome-wide genotyping and gene expression profiling we identified BCL11B as a candidate oncogene in acute myeloid leukemia. PMID:24441149

  8. Acute Myeloid Leukemia (AML) (For Parents)

    MedlinePlus

    ... TV, Video Games, and the Internet Acute Myeloid Leukemia (AML) KidsHealth > For Parents > Acute Myeloid Leukemia (AML) ... Treatment Coping en español Leucemia mieloide aguda About Leukemia Leukemia is a type of cancer that affects ...

  9. Myeloid leukemia after hematotoxins

    SciTech Connect

    Larson, R.A.; LeBeau, M.M.; Vardiman, J.W.; Rowley, J.D.

    1996-12-01

    One of the most serious consequences of cancer therapy is the development of a second cancer, especially leukemia. Several distinct subsets of therapy-related leukemia can now be distinguished. Classic therapy-related myeloid leukemia typically occurs 5 to 7 years after exposure to alkylating agents and/or irradiation, has a myelodysplastic phase with trilineage involvement, and is characterized by abnormalities of the long arms of chromosomes 5 and/or 7. Response to treatment is poor, and allogeneic bone marrow transplantation is recommended. Leukemia following treatment with agents that inhibit topoisomerase 11, however, has a shorter latency, no preleukemic phase, a monoblastic, myelomonocytic, or myeloblastic phenotype, and balanced translocations, most commonly involving chromosome bands 11 q23 or 21 q22. The MLL gene at 11 q23 or the AML1 gene at 21 q22 are almost uniformly rearranged. MLL is involved with many fusion gene partners. Therapy-related acute lymphoblastic leukemia also occurs with 1 1 q23 rearrangements. Therapy-related leukemias with 11 q23 or 21 q22 rearrangements, inv(16) or t(15;17), have a more favorable response to treatment and a clinical course similar to their de novo counterparts. 32 refs., 4 tabs.

  10. Clonal evolution in relapsed acute myeloid leukemia revealed by whole genome sequencing

    PubMed Central

    Ding, Li; Ley, Timothy J.; Larson, David E.; Miller, Christopher A.; Koboldt, Daniel C.; Welch, John S.; Ritchey, Julie K.; Young, Margaret A.; Lamprecht, Tamara; McLellan, Michael D.; McMichael, Joshua F.; Wallis, John W.; Lu, Charles; Shen, Dong; Harris, Christopher C.; Dooling, David J.; Fulton, Robert S.; Fulton, Lucinda L.; Chen, Ken; Schmidt, Heather; Kalicki-Veizer, Joelle; Magrini, Vincent J.; Cook, Lisa; McGrath, Sean D.; Vickery, Tammi L.; Wendl, Michael C.; Heath, Sharon; Watson, Mark A.; Link, Daniel C.; Tomasson, Michael H.; Shannon, William D.; Payton, Jacqueline E.; Kulkarni, Shashikant; Westervelt, Peter; Walter, Matthew J.; Graubert, Timothy A.; Mardis, Elaine R.; Wilson, Richard K.; DiPersio, John F.

    2011-01-01

    Summary Most patients with acute myeloid leukemia (AML) die from progressive disease after relapse, which is associated with clonal evolution at the cytogenetic level1,2. To determine the mutational spectrum associated with relapse, we sequenced the primary tumor and relapse genomes from 8 AML patients, and validated hundreds of somatic mutations using deep sequencing; this allowed us to precisely define clonality and clonal evolution patterns at relapse. Besides discovering novel, recurrently mutated genes (e.g. WAC, SMC3, DIS3, DDX41, and DAXX) in AML, we found two major clonal evolution patterns during AML relapse: 1) the founding clone in the primary tumor gained mutations and evolved into the relapse clone, or 2) a subclone of the founding clone survived initial therapy, gained additional mutations, and expanded at relapse. In all cases, chemotherapy failed to eradicate the founding clone. The comparison of relapse-specific vs. primary tumor mutations in all 8 cases revealed an increase in transversions, probably due to DNA damage caused by cytotoxic chemotherapy. These data demonstrate that AML relapse is associated with the addition of new mutations and clonal evolution, which is shaped in part by the chemotherapy that the patients receive to establish and maintain remissions. PMID:22237025

  11. Decitabine in Treating Children With Relapsed or Refractory Acute Myeloid Leukemia or Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-01-22

    Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Promyelocytic Leukemia (M3); Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  12. What Should You Ask Your Doctor about Chronic Myeloid Leukemia?

    MedlinePlus

    ... Should You Ask Your Doctor About Chronic Myeloid Leukemia? As you cope with cancer and cancer treatment, ... About Chronic Myeloid Leukemia? More In Chronic Myeloid Leukemia About Chronic Myeloid Leukemia Causes, Risk Factors, and ...

  13. What Are the Risk Factors for Chronic Myeloid Leukemia?

    MedlinePlus

    ... What Are the Risk Factors for Chronic Myeloid Leukemia? A risk factor is something that affects a ... Myeloid Leukemia Be Prevented? More In Chronic Myeloid Leukemia About Chronic Myeloid Leukemia Causes, Risk Factors, and ...

  14. Decitabine in Treating Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-18

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  15. 8-Chloro-Adenosine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-11-08

    Recurrent Adult Acute Myeloid Leukemia; Relapsed Adult Acute Myeloid Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia Arising From Previous Myeloproliferative Disorder

  16. Microarray analysis reveals genetic pathways modulated by tipifarnib in acute myeloid leukemia

    PubMed Central

    Raponi, Mitch; Belly, Robert T; Karp, Judith E; Lancet, Jeffrey E; Atkins, David; Wang, Yixin

    2004-01-01

    Background Farnesyl protein transferase inhibitors (FTIs) were originally developed to inhibit oncogenic ras, however it is now clear that there are several other potential targets for this drug class. The FTI tipifarnib (ZARNESTRA™, R115777) has recently demonstrated clinical responses in adults with refractory and relapsed acute leukemias. This study was conducted to identify genetic markers and pathways that are regulated by tipifarnib in acute myeloid leukemia (AML). Methods Tipifarnib-mediated gene expression changes in 3 AML cell lines and bone marrow samples from two patients with AML were analyzed on a cDNA microarray containing approximately 7000 human genes. Pathways associated with these expression changes were identified using the Ingenuity Pathway Analysis tool. Results The expression analysis identified a common set of genes that were regulated by tipifarnib in three leukemic cell lines and in leukemic blast cells isolated from two patients who had been treated with tipifarnib. Association of modulated genes with biological functional groups identified several pathways affected by tipifarnib including cell signaling, cytoskeletal organization, immunity, and apoptosis. Gene expression changes were verified in a subset of genes using real time RT-PCR. Additionally, regulation of apoptotic genes was found to correlate with increased Annexin V staining in the THP-1 cell line but not in the HL-60 cell line. Conclusions The genetic networks derived from these studies illuminate some of the biological pathways affected by FTI treatment while providing a proof of principle for identifying candidate genes that might be used as surrogate biomarkers of drug activity. PMID:15329151

  17. Vosaroxin and Infusional Cytarabine in Treating Patients With Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-04-05

    Acute Myeloid Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia With Multilineage Dysplasia; Myeloid Sarcoma; Secondary Acute Myeloid Leukemia; Therapy-Related Acute Myeloid Leukemia; Therapy-Related Myelodysplastic Syndrome

  18. PROGRESS IN ACUTE MYELOID LEUKEMIA

    PubMed Central

    Kadia, Tapan M.; Ravandi, Farhad; O’Brien, Susan; Cortes, Jorge; Kantarjian, Hagop M.

    2014-01-01

    Significant progress has been made in the treatment of acute myeloid leukemia (AML). Steady gains in clinical research and a renaissance of genomics in leukemia have led to improved outcomes. The recognition of tremendous heterogeneity in AML has allowed individualized treatments of specific disease entities within the context of patient age, cytogenetics, and mutational analysis. The following is a comprehensive review of the current state of AML therapy and a roadmap of our approach to these distinct disease entities. PMID:25441110

  19. Acute Myeloid Leukemia

    MedlinePlus

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, however, the bone marrow produces abnormal white blood ...

  20. Chronic Myeloid Leukemia

    MedlinePlus

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, the bone marrow produces abnormal white blood cells. ...

  1. Tipifarnib in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-03-19

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  2. Genetics Home Reference: core binding factor acute myeloid leukemia

    MedlinePlus

    ... acute myeloid leukemia core binding factor acute myeloid leukemia Printable PDF Open All Close All Enable Javascript ... collapse boxes. Description Core binding factor acute myeloid leukemia (CBF-AML) is one form of a cancer ...

  3. Genetics Home Reference: cytogenetically normal acute myeloid leukemia

    MedlinePlus

    ... normal acute myeloid leukemia cytogenetically normal acute myeloid leukemia Printable PDF Open All Close All Enable Javascript ... expand/collapse boxes. Description Cytogenetically normal acute myeloid leukemia (CN-AML) is one form of a cancer ...

  4. What's New in Chronic Myeloid Leukemia Research and Treatment?

    MedlinePlus

    ... Myeloid Leukemia (CML) About Chronic Myeloid Leukemia What's New in Chronic Myeloid Leukemia Research and Treatment? Studies ... such as cyclosporine or hydroxychloroquine, with a TKI. New drugs for CML Because researchers now know the ...

  5. What Are the Key Statistics about Acute Myeloid Leukemia?

    MedlinePlus

    ... Acute Myeloid Leukemia (AML) What Are the Key Statistics About Acute Myeloid Leukemia? The American Cancer Society’s ... myeloid leukemia . Visit the American Cancer Society’s Cancer Statistics Center for more key statistics. Written by References ...

  6. Endometrial and acute myeloid leukemia cancer genomes characterized

    Cancer.gov

    Two studies from The Cancer Genome Atlas (TCGA) program reveal details about the genomic landscapes of acute myeloid leukemia (AML) and endometrial cancer. Both provide new insights into the molecular underpinnings of these cancers.

  7. Co-operative leukemogenesis in acute myeloid leukemia and acute promyelocytic leukemia reveals C/EBPα as a common target of TRIB1 and PML/RARA

    PubMed Central

    Keeshan, Karen; Vieugué, Pauline; Chaudhury, Shahzya; Rishi, Loveena; Gaillard, Coline; Liang, Lu; Garcia, Elaine; Nakamura, Takuro; Omidvar, Nader; Kogan, Scott C.

    2016-01-01

    The PML/RARA fusion protein occurs as a result of the t(15;17) translocation in the acute promyelocytic leukemia subtype of human acute myeloid leukemia. Gain of chromosome 8 is the most common chromosomal gain in human acute myeloid leukemia, including acute promyelocytic leukemia. We previously demonstrated that gain of chromosome 8-containing MYC is of central importance in trisomy 8, but the role of the nearby TRIB1 gene has not been experimentally addressed in this context. We have now tested the hypothesis that both MYC and TRIB1 have functional roles underlying leukemogenesis of trisomy 8 by using retroviral vectors to express MYC and TRIB1 in wild-type bone marrow and in marrow that expressed a PML/RARA transgene. Interestingly, although MYC and TRIB1 readily co-operated in leukemogenesis for wild-type bone marrow, TRIB1 provided no selective advantage to cells expressing PML/RARA. We hypothesized that this lack of co-operation between PML/RARA and TRIB1 reflected a common pathway for their effect: both proteins targeting the myeloid transcription factor C/EBPα. In support of this idea, TRIB1 expression abrogated the all-trans retinoic acid response of acute promyelocytic leukemia cells in vitro and in vivo. Our data delineate the common and redundant inhibitory effects of TRIB1 and PML/RARA on C/EBPα providing a potential explanation for the lack of selection of TRIB1 in human acute promyelocytic leukemia, and highlighting the key role of C/EBPs in acute promyelocytic leukemia pathogenesis and therapeutic response. In addition, the co-operativity we observed between MYC and TRIB1 in the absence of PML/RARA show that, outside of acute promyelocytic leukemia, gain of both genes may drive selection for trisomy 8. PMID:27390356

  8. Gemtuzumab Ozogamicin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Acute Promyelocytic Leukemia

    ClinicalTrials.gov

    2017-02-20

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Childhood Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia

  9. Clonal Evolution Revealed by Whole Genome Sequencing in a Case of Primary Myelofibrosis Transformed to Secondary Acute Myeloid Leukemia

    PubMed Central

    Engle, Elizabeth K.; Fisher, Daniel A.C.; Miller, Christopher A.; McLellan, Michael D.; Fulton, Robert S.; Moore, Deborah M.; Wilson, Richard K.; Ley, Timothy J.; Oh, Stephen T.

    2014-01-01

    Clonal architecture in myeloproliferative neoplasms (MPNs) is poorly understood. Here we report genomic analyses of a patient with primary myelofibrosis (PMF) transformed to secondary acute myeloid leukemia (sAML). Whole genome sequencing (WGS) was performed on PMF and sAML diagnosis samples, with skin included as a germline surrogate. Deep sequencing validation was performed on the WGS samples and an additional sample obtained during sAML remission/relapsed PMF. Clustering analysis of 649 validated somatic single nucleotide variants revealed four distinct clonal groups, each including putative driver mutations. The first group (including JAK2 and U2AF1), representing the founding clone, included mutations with high frequency at all three disease stages. The second clonal group (including MYB) was present only in PMF, suggesting the presence of a clone that was dispensable for transformation. The third group (including ASXL1) contained mutations with low frequency in PMF and high frequency in subsequent samples, indicating evolution of the dominant clone with disease progression. The fourth clonal group (including IDH1 and RUNX1) was acquired at sAML transformation and was predominantly absent at sAML remission/relapsed PMF. Taken together, these findings illustrate the complex clonal dynamics associated with disease evolution in MPNs and sAML. PMID:25252869

  10. Lenalidomide in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-07-25

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  11. Whole exome sequencing reveals a C-terminal germline variant in CEBPA-associated acute myeloid leukemia: 45-year follow up of a large family

    PubMed Central

    Pathak, Anand; Seipel, Katja; Pemov, Alexander; Dewan, Ramita; Brown, Christina; Ravichandran, Sarangan; Luke, Brian T.; Malasky, Michael; Suman, Shalabh; Yeager, Meredith; Gatti, Richard A.; Caporaso, Neil E.; Mulvihill, John J.; Goldin, Lynn R.; Pabst, Thomas; McMaster, Mary L.; Stewart, Douglas R.

    2016-01-01

    Familial acute myeloid leukemia is rare and linked to germline mutations in RUNX1, GATA2 or CCAAT/enhancer binding protein-α (CEBPA). We re-evaluated a large family with acute myeloid leukemia originally seen at NIH in 1969. We used whole exome sequencing to study this family, and conducted in silico bioinformatics analysis, protein structural modeling and laboratory experiments to assess the impact of the identified CEBPA Q311P mutation. Unlike most previously identified germline mutations in CEBPA, which were N-terminal frameshift mutations, we identified a novel Q311P variant that was located in the C-terminal bZip domain of C/EBPα. Protein structural modeling suggested that the Q311P mutation alters the ability of the CEBPA dimer to bind DNA. Electrophoretic mobility shift assays showed that the Q311P mu-tant had attenuated binding to DNA, as predicted by the protein modeling. Consistent with these findings, we found that the Q311P mutation has reduced transactivation, consistent with a loss-of-function mutation. From 45 years of follow up, we observed incomplete penetrance (46%) of CEBPA Q311P. This study of a large multi-generational pedigree reveals that a germline mutation in the C-terminal bZip domain can alter the ability of C/EBP-α to bind DNA and reduces transactivation, leading to acute myeloid leukemia. PMID:26721895

  12. Decitabine, Cytarabine, and Daunorubicin Hydrochloride in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-09-04

    Acute Myeloid Leukemia; Adult Acute Basophilic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With t(9;11)(p22.3;q23.3); MLLT3-KMT2A; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  13. Decitabine With or Without Bortezomib in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-08-30

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  14. Cilengitide in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-01-23

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b)

  15. What's New in Adult Acute Myeloid Leukemia Research and Treatment?

    MedlinePlus

    ... Leukemia (AML) About Acute Myeloid Leukemia (AML) What’s New in Acute Myeloid Leukemia Research and Treatment? Researchers ... benefit from current treatments. Researchers are studying many new chemo drugs for use in AML, including: Sapacitabine, ...

  16. Bosutinib for Chronic Myeloid Leukemia.

    PubMed

    Breccia, Massimo; Binotto, Gianni

    In recent years the availability of several tyrosine kinase inhibitors (TKI) in the therapeutic armamentarium for chronic myeloid leukemia has dramatically changed the objectives and expectations of healthcare providers and patients. For many, but not all, patients the forerunner of TKI, imatinib, is still an excellent treatment option. Unfortunately, nearly 30-40% of imatinib-treated patients discontinue therapy in the long-term, because of failure and/or intolerance. Second-generation tyrosine kinase inhibitors are more potent drugs which are suitable for treatment of approximately 50% of patents for whom imatinib is unsuitable, and with high success and rapid responses. Bosutinib, an orally bioavailable Src/Abl tyrosine kinase inhibitor, has proved to be effective in vitro against resistant chronic myeloid leukemia cells that do not harbor the T315I or V299L ABL kinase domain mutations. During clinical development the manageable safety profile of bosutinib have become evident for both simple and more advanced treatment. In this review we summarize preclinical and clinical data for bosutinib and discuss its ideal field of action in comparison with other TKI.

  17. Therapy-related Myeloid Leukemia

    PubMed Central

    Godley, Lucy A.; Larson, Richard A.

    2008-01-01

    Therapy-related myelodysplastic syndrome and acute myeloid leukemia (t-MDS/t-AML) are thought to be the direct consequence of mutational events induced by chemotherapy, radiation therapy, immunosuppressive therapy, or a combination of these modalities, given for a pre-existing condition. The outcomes for these patients have been poor historically compared to people who develop de novo AML. The spectrum of cytogenetic abnormalities in t-AML is similar to de novo AML, but the frequency of unfavorable cytogenetics, such as a complex karyotype or deletion or loss of chromosomes 5 and/or 7, is considerably higher in t-AML. Survival varies according to cytogenetic risk group in t-AML patients, with better outcomes being observed in those with favorable-risk karyotypes. Treatment recommendations should be based on performance status and karyotype. A deeper understanding of the factors that predispose patients to the development of therapy-related myeloid leukemia would help clinicians monitor patients more carefully after treatment for a primary condition. Ultimately, this knowledge could influence initial treatment strategies with the goal of decreasing the incidence of this serious complication. PMID:18692692

  18. MS-275 and Azacitidine in Treating Patients With Myelodysplastic Syndromes, Chronic Myelomonocytic Leukemia, or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-01-31

    Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndrome; Leukemia; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  19. Phase I Trial of AZD1775 and Belinostat in Treating Patients With Relapsed or Refractory Myeloid Malignancies or Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-09-12

    Acute Myeloid Leukemia; Blast Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Recurrent Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Refractory Acute Myeloid Leukemia; Refractory Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Secondary Acute Myeloid Leukemia; Therapy-Related Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  20. Azacitidine, Mitoxantrone Hydrochloride, and Etoposide in Treating Older Patients With Poor-Prognosis Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-08-18

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  1. 5-Fluoro-2'-Deoxycytidine and Tetrahydrouridine in Treating Patients With Acute Myeloid Leukemia or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2015-06-03

    Adult Acute Myeloid Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  2. New Treatment Approved for Acute Myeloid Leukemia

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_167596.html New Treatment Approved for Acute Myeloid Leukemia Vyxeos combines ... projections from the U.S. National Cancer Institute. The new therapy is sanctioned for high-risk forms of ...

  3. Acute myeloid leukemia presenting as galactorrhea

    PubMed Central

    Nambiar, K. Rakul; Devi, R. Nandini

    2016-01-01

    Acute myeloid leukemia (AML) presents with symptoms related to pancytopenia (weakness, infections, bleeding diathesis) and organ infiltration with leukemic cells. Galactorrhea is an uncommon manifestation of AML. We report a case of AML presenting with galactorrhea. PMID:27695173

  4. [Molecular monitoring of myeloid leukemia].

    PubMed

    Kiss, Richárd; Király, Attila Péter; Gaál-Weisinger, Júlia; Marosvári, Dóra; Gángó, Péter Ambrus; Demeter, Judit; Bödör, Csaba

    2017-03-08

    The last fifteen years brought a revolution both in treatment and diagnostics of chronic myeloid leukemia. Nowadays, the main method for monitoring of the disease is molecular monitoring with real-time PCR technology which can indicate treatment modification. With the development of the international scale and inter-laboratory standardization the residual tumor mass can be measured accurately and the results are comparable between the different laboratories. By the growing experience in the field of molecular responses we can now accurately predict treatment outcome early on with the so called early molecular response and BCR-ABL1 kinetics, allowing the selection of the best TKI with the treatment-free remission representing real option of the near future. Nevertheless, further advancements can be expected, including the workflow automatization and detection of even deeper molecular responses.

  5. Recurrent deletions of IKZF1 in pediatric acute myeloid leukemia

    PubMed Central

    de Rooij, Jasmijn D.E.; Beuling, Eva; van den Heuvel-Eibrink, Marry M.; Obulkasim, Askar; Baruchel, André; Trka, Jan; Reinhardt, Dirk; Sonneveld, Edwin; Gibson, Brenda E.S.; Pieters, Rob; Zimmermann, Martin; Zwaan, C. Michel; Fornerod, Maarten

    2015-01-01

    IKAROS family zinc finger 1/IKZF1 is a transcription factor important in lymphoid differentiation, and a known tumor suppressor in acute lymphoid leukemia. Recent studies suggest that IKZF1 is also involved in myeloid differentiation. To investigate whether IKZF1 deletions also play a role in pediatric acute myeloid leukemia, we screened a panel of pediatric acute myeloid leukemia samples for deletions of the IKZF1 locus using multiplex ligation-dependent probe amplification and for mutations using direct sequencing. Three patients were identified with a single amino acid variant without change of IKZF1 length. No frame-shift mutations were found. Out of 11 patients with an IKZF1 deletion, 8 samples revealed a complete loss of chromosome 7, and 3 cases a focal deletion of 0.1–0.9Mb. These deletions included the complete IKZF1 gene (n=2) or exons 1–4 (n=1), all leading to a loss of IKZF1 function. Interestingly, differentially expressed genes in monosomy 7 cases (n=8) when compared to non-deleted samples (n=247) significantly correlated with gene expression changes in focal IKZF1-deleted cases (n=3). Genes with increased expression included genes involved in myeloid cell self-renewal and cell cycle, and a significant portion of GATA target genes and GATA factors. Together, these results suggest that loss of IKZF1 is recurrent in pediatric acute myeloid leukemia and might be a determinant of oncogenesis in acute myeloid leukemia with monosomy 7 PMID:26069293

  6. Selinexor and Chemotherapy in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-05-11

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  7. Flavopiridol in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2013-06-03

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia

  8. Sorafenib in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2013-01-08

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia

  9. BMS-214662 in Treating Patients With Acute Leukemia, Myelodysplastic Syndrome, or Chronic Myeloid Leukemia

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Promyelocytic Leukemia (M3); Blastic Phase Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia

  10. Vaccine Therapy Plus Immune Adjuvant in Treating Patients With Chronic Myeloid Leukemia, Acute Myeloid Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2013-01-04

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Myeloid Leukemia in Remission; Chronic Phase Chronic Myelogenous Leukemia; Previously Treated Myelodysplastic Syndromes; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia

  11. Clofarabine, Cytarabine, and G-CSF in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-05-05

    Acute Myeloid Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia

  12. Romidepsin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-12-03

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia

  13. Idhifa Approved for Some with Acute Myeloid Leukemia

    MedlinePlus

    ... html Idhifa Approved for Some With Acute Myeloid Leukemia For adults with specific genetic mutation To use ... that leads to relapsed or refractory acute myeloid leukemia (AML). The mutation in the IDH2 gene can ...

  14. Phase I Combination of Midostaurin, Bortezomib, and Chemo in Relapsed/Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-04

    Acute Myeloid Leukemia; Acute Myeloid Leukemia With Multilineage Dysplasia Following; Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  15. AR-42 and Decitabine in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-01-19

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  16. [Chronic myeloid leukemia. Karyotype changes].

    PubMed

    Rojas-Atencio, A; Pineda-Del Villar, L; Avila-León, E; González-Ferrer, S; Prieto-Carrasquero, M; Soto, M; González, R

    1996-09-01

    Chronic Myeloid Leukemia (CML) is a clonal disease of bone marrow, citogenetically characterized by the presence of the Philadelphia chromosome (Ph). Additional anomalies in the Ph cromosome have been found during the evolution of CML. This paper will show evidence of cytogenetic abnormalities during the evolution of CML in this region, and its correlation with clinical evolution. 55 samples of bone marrow, 81.3% (45/55) in chronic phase (CP), 12.7% (7/55) in an accelerated phase (AP), and 5.4% (3/55) in blastic phase (BP) were received. In 12/45 patients in CP the karyotype was repeated at least once a year during the evolution of their illness. 9/12 presented the Ph chromosome as a single anomaly at the moment of diagnosis; the other 3 presented a distinct anomaly. 4/9 presented additional abnormalities moving to the stages AP or BP between 4-8 months after initial discovery. 7/10 patients referred in AP or BP presented additional abnormalities in the Ph chromosome. It is evident that the chromosome study of each patient with CML must be carried out at least once a year in order to detect chromosomal abnormalities in addition to the Ph chromosome. Thus, a greater therapeutic control of the disease is possible.

  17. Tipifarnib in Treating Older Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-03-22

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Erythroid Leukemia (M6); Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monoblastic Leukemia and Acute Monocytic Leukemia (M5); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Cellular Diagnosis, Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  18. Selumetinib in Treating Patients With Recurrent or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-07-06

    Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Promyelocytic Leukemia (M3); Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasms; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  19. A Case of T-cell Acute Lymphoblastic Leukemia Relapsed As Myeloid Acute Leukemia.

    PubMed

    Paganin, Maddalena; Buldini, Barbara; Germano, Giuseppe; Seganfreddo, Elena; Meglio, Annamaria di; Magrin, Elisa; Grillo, Francesca; Pigazzi, Martina; Rizzari, Carmelo; Cazzaniga, Giovanni; Khiabanian, Hossein; Palomero, Teresa; Rabadan, Raul; Ferrando, Adolfo A; Basso, Giuseppe

    2016-09-01

    A 4-year-old male with the diagnosis of T-cell acute lymphoblastic leukemia (T-ALL) relapsed after 19 months with an acute myeloid leukemia (AML). Immunoglobulin and T-cell receptor gene rearrangements analyses reveal that both leukemias were rearranged with a clonal relationship between them. Comparative genomic hybridization (Array-CGH) and whole-exome sequencing analyses of both samples suggest that this leukemia may have originated from a common T/myeloid progenitor. The presence of homozygous deletion of p16/INK4A, p14/ARF, p15/INK4B, and heterozygous deletion of WT1 locus remained stable in the leukemia throughout phenotypic switch, revealing that this AML can be genetically associated to T-ALL.

  20. Vaccine Therapy and Basiliximab in Treating Patients With Acute Myeloid Leukemia in Complete Remission

    ClinicalTrials.gov

    2017-01-03

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)

  1. CPI-613, Cytarabine, and Mitoxantrone Hydrochloride in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-12-23

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia

  2. Lenalidomide and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-03-28

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia

  3. Clofarabine and Cytarabine in Treating Patients With Acute Myeloid Leukemia With Minimal Residual Disease

    ClinicalTrials.gov

    2013-05-07

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia

  4. Laboratory-Treated Donor Cord Blood Cell Infusion Following Combination Chemotherapy in Treating Younger Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-06-29

    Acute Leukemia of Ambiguous Lineage; Adult Acute Myeloid Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  5. Chronic myeloid leukemia: reminiscences and dreams

    PubMed Central

    Mughal, Tariq I.; Radich, Jerald P.; Deininger, Michael W.; Apperley, Jane F.; Hughes, Timothy P.; Harrison, Christine J.; Gambacorti-Passerini, Carlo; Saglio, Giuseppe; Cortes, Jorge; Daley, George Q.

    2016-01-01

    With the deaths of Janet Rowley and John Goldman in December 2013, the world lost two pioneers in the field of chronic myeloid leukemia. In 1973, Janet Rowley, unraveled the cytogenetic anatomy of the Philadelphia chromosome, which subsequently led to the identification of the BCR-ABL1 fusion gene and its principal pathogenetic role in the development of chronic myeloid leukemia. This work was also of major importance to support the idea that cytogenetic changes were drivers of leukemogenesis. John Goldman originally made seminal contributions to the use of autologous and allogeneic stem cell transplantation from the late 1970s onwards. Then, in collaboration with Brian Druker, he led efforts to develop ABL1 tyrosine kinase inhibitors for the treatment of patients with chronic myeloid leukemia in the late 1990s. He also led the global efforts to develop and harmonize methodology for molecular monitoring, and was an indefatigable organizer of international conferences. These conferences brought together clinicians and scientists, and accelerated the adoption of new therapies. The abundance of praise, tributes and testimonies expressed by many serve to illustrate the indelible impressions these two passionate and affable scholars made on so many people’s lives. This tribute provides an outline of the remarkable story of chronic myeloid leukemia, and in writing it, it is clear that the historical triumph of biomedical science over this leukemia cannot be considered without appreciating the work of both Janet Rowley and John Goldman. PMID:27132280

  6. Chronic myeloid leukemia: reminiscences and dreams.

    PubMed

    Mughal, Tariq I; Radich, Jerald P; Deininger, Michael W; Apperley, Jane F; Hughes, Timothy P; Harrison, Christine J; Gambacorti-Passerini, Carlo; Saglio, Giuseppe; Cortes, Jorge; Daley, George Q

    2016-05-01

    With the deaths of Janet Rowley and John Goldman in December 2013, the world lost two pioneers in the field of chronic myeloid leukemia. In 1973, Janet Rowley, unraveled the cytogenetic anatomy of the Philadelphia chromosome, which subsequently led to the identification of the BCR-ABL1 fusion gene and its principal pathogenetic role in the development of chronic myeloid leukemia. This work was also of major importance to support the idea that cytogenetic changes were drivers of leukemogenesis. John Goldman originally made seminal contributions to the use of autologous and allogeneic stem cell transplantation from the late 1970s onwards. Then, in collaboration with Brian Druker, he led efforts to develop ABL1 tyrosine kinase inhibitors for the treatment of patients with chronic myeloid leukemia in the late 1990s. He also led the global efforts to develop and harmonize methodology for molecular monitoring, and was an indefatigable organizer of international conferences. These conferences brought together clinicians and scientists, and accelerated the adoption of new therapies. The abundance of praise, tributes and testimonies expressed by many serve to illustrate the indelible impressions these two passionate and affable scholars made on so many people's lives. This tribute provides an outline of the remarkable story of chronic myeloid leukemia, and in writing it, it is clear that the historical triumph of biomedical science over this leukemia cannot be considered without appreciating the work of both Janet Rowley and John Goldman. Copyright© Ferrata Storti Foundation.

  7. Bortezomib in Treating Patients With High-Risk Acute Myeloid Leukemia in Remission

    ClinicalTrials.gov

    2017-02-17

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia

  8. Acute Myeloid Leukemia, Version 2.2013

    PubMed Central

    O'Donnell, Margaret R.; Tallman, Martin S.; Abboud, Camille N.; Altman, Jessica K.; Appelbaum, Frederick R.; Arber, Daniel A.; Attar, Eyal; Borate, Uma; Coutre, Steven E.; Damon, Lloyd E.; Lancet, Jeffrey; Maness, Lori J.; Marcucci, Guido; Martin, Michael G.; Millenson, Michael M.; Moore, Joseph O.; Ravandi, Farhad; Shami, Paul J.; Smith, B. Douglas; Stone, Richard M.; Strickland, Stephen A.; Wang, Eunice S.; Gregory, Kristina M.; Naganuma, Maoko

    2014-01-01

    These NCCN Guidelines Insights summarize several key updates to the NCCN Guidelines for Acute Myeloid Leukemia and discuss the clinical evidence that support the recommendations. The updates described in this article focus on the acute promyelocytic leukemia (APL) section, featuring recommendations for additional induction/consolidation regimens in patients with low- or intermediate-risk APL, and providing guidance on maintenance strategies for APL. PMID:24029121

  9. Biomarkers in Bone Marrow Samples From Pediatric Patients With High-Risk Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-17

    Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Recurrent Childhood Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  10. Whole-exome sequencing reveals potential molecular predictors of relapse after discontinuation of the targeted therapy in chronic myeloid leukemia patients.

    PubMed

    Smirnikhina, Svetlana A; Lavrov, Alexander V; Chelysheva, Ekaterina Yu; Adilgereeva, Elmira P; Shukhov, Oleg A; Turkina, Anna; Kutsev, Sergey I

    2016-07-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disease well treated by tyrosine kinase inhibitors (TKIs). The aim was to identify genes with a predictive value for relapse-free survival after TKI cessation in CML patients. We performed whole-exome sequencing of DNA from six CML patients in long-lasting deep molecular remission. Patients were divided into two groups with relapse (n = 3) and without relapse (n = 3) after TKI discontinuation. We found variants in genes CYP1B1, ALPK2, and IRF1 in group of patients with relapse and one variant in gene PARP9 in group of patients without relapse. We verified prognostic value of the found markers in a small group of patients with TKI discontinuation and demonstrated their high sensitivity (77%), specificity (86%), positive (85%), and negative (79%) predictive values. Thus we revealed genetic variants, which are potential markers of outcome prediction in CML patients after TKI discontinuation.

  11. Bortezomib and Combination Chemotherapy in Treating Younger Patients With Recurrent, Refractory, or Secondary Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-05-13

    Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myelomonocytic Leukemia (M4); Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  12. Lenalidomide in Treating Older Patients With Acute Myeloid Leukemia Who Have Undergone Stem Cell Transplant

    ClinicalTrials.gov

    2015-03-02

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia

  13. Tipifarnib in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-02-01

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Erythroid Leukemia (M6); Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monoblastic Leukemia and Acute Monocytic Leukemia (M5); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  14. RNA-Seq profiling reveals aberrant RNA splicing in patient with adult acute myeloid leukemia during treatment.

    PubMed

    Li, X-y; Yao, X; Li, S-n; Suo, A-l; Ruan, Z-p; Liang, X; Kong, Y; Zhang, W-g; Yao, Y

    2014-01-01

    Multiple genetic alterations that affect the process of acute myeloid leukemia (AML) have been discovered, and more evidence also indicates that aberrant splicing plays an important role in cancer. We present a RNA-Seq profiling of an AML patient with complete remission after treatment, to analyze the aberrant splicing of genes during treatment. We sequenced 3.97 and 3.32 Gbp clean data of the AML and remission sample, respectively. Firstly, by analyzing biomarkers associated with AML, to assist normal clinical tests, we confirmed that the patient was anormal karyo type, with NPM1 and IDH2 mutations and deregulation patterns of related genes, such as BAALC, ERG, MN1 and HOX family. Then, we performed alternative splicing detection of the AML and remission sample. We detected 91 differentially splicing events in 68 differentially splicing genes (DSGs) by mixture of isoforms (MISO). Considering Psi values (Ψ) and confidence intervals, 25 differentially expressed isoforms were identified as more confident isoforms, which were associated with RNA processing, cellular macromolecule catabolic process and DNA binding according to GO enrichment analysis. An exon2-skipping event in oncogene FOS (FBJ murine osteosarcoma viral oncogene homolog) were detected and validated in this study. FOS has a critical function in regulating cell proliferation, differentiation and transformation. The exon2-skipping isoform of FOS was increased significantly after treatment. All the data and information of RNA-Seq provides highly accurate and comprehensive supplements to conventional clinical tests of AML. Moreover, the splicing aberrations would be another source for biomarker and even therapeutic target discovery. More information of splicing may also assist the better understanding of leukemogenesis.

  15. Recurrent deletions of IKZF1 in pediatric acute myeloid leukemia.

    PubMed

    de Rooij, Jasmijn D E; Beuling, Eva; van den Heuvel-Eibrink, Marry M; Obulkasim, Askar; Baruchel, André; Trka, Jan; Reinhardt, Dirk; Sonneveld, Edwin; Gibson, Brenda E S; Pieters, Rob; Zimmermann, Martin; Zwaan, C Michel; Fornerod, Maarten

    2015-09-01

    IKAROS family zinc finger 1/IKZF1 is a transcription factor important in lymphoid differentiation, and a known tumor suppressor in acute lymphoid leukemia. Recent studies suggest that IKZF1 is also involved in myeloid differentiation. To investigate whether IKZF1 deletions also play a role in pediatric acute myeloid leukemia, we screened a panel of pediatric acute myeloid leukemia samples for deletions of the IKZF1 locus using multiplex ligation-dependent probe amplification and for mutations using direct sequencing. Three patients were identified with a single amino acid variant without change of IKZF1 length. No frame-shift mutations were found. Out of 11 patients with an IKZF1 deletion, 8 samples revealed a complete loss of chromosome 7, and 3 cases a focal deletion of 0.1-0.9Mb. These deletions included the complete IKZF1 gene (n=2) or exons 1-4 (n=1), all leading to a loss of IKZF1 function. Interestingly, differentially expressed genes in monosomy 7 cases (n=8) when compared to non-deleted samples (n=247) significantly correlated with gene expression changes in focal IKZF1-deleted cases (n=3). Genes with increased expression included genes involved in myeloid cell self-renewal and cell cycle, and a significant portion of GATA target genes and GATA factors. Together, these results suggest that loss of IKZF1 is recurrent in pediatric acute myeloid leukemia and might be a determinant of oncogenesis in acute myeloid leukemia with monosomy 7. Copyright© Ferrata Storti Foundation.

  16. Decitabine in Treating Patients With Myelodysplastic Syndromes or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-09-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; de Novo Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  17. Chronic myeloid leukemia from basics to bedside.

    PubMed

    Thijsen, S; Schuurhuis, G; van Oostveen, J; Ossenkoppele, G

    1999-11-01

    The discovery of the Philadelphia chromosome and its consistent involvement in chronic myeloid leukemia (CML) was the first time that a relationship between a cytogenetic abnormality and malignancy was demonstrated. This review will try to provide an insight into the molecular mechanisms underlying this disease and outline the therapeutical options for patients with CML.

  18. Studying Biomarkers in Samples From Younger Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-17

    Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myeloid Leukemia/Other Myeloid Malignancies; Childhood Acute Myelomonocytic Leukemia (M4)

  19. Eltrombopag Olamine in Improving Platelet Recovery in Older Patients With Acute Myeloid Leukemia Undergoing Chemotherapy

    ClinicalTrials.gov

    2017-07-26

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia

  20. Rebeccamycin Analog in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Myelodysplastic Syndrome, Acute Lymphoblastic Leukemia, or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  1. Midostaurin and Decitabine in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia and FLT3 Mutation

    ClinicalTrials.gov

    2016-10-10

    Acute Myeloid Leukemia With FLT3/ITD Mutation; Acute Myeloid Leukemia With Gene Mutations; FLT3 Tyrosine Kinase Domain Point Mutation; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  2. Genetically Modified T-cell Immunotherapy in Treating Patients With Relapsed/Refractory Acute Myeloid Leukemia and Persistent/Recurrent Blastic Plasmacytoid Dendritic Cell Neoplasm

    ClinicalTrials.gov

    2017-09-14

    Adult Acute Myeloid Leukemia in Remission; Donor; Early Relapse of Acute Myeloid Leukemia; Late Relapse of Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Blastic Plasmacytoid Dendritic Cell Neoplasm

  3. Idarubicin and Cytarabine With or Without Bevacizumab in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-01-23

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  4. Decitabine, Donor Natural Killer Cells, and Aldesleukin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-12-02

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  5. Ipilimumab and Decitabine in Treating Patients With Relapsed or Refractory Myelodysplastic Syndrome or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-02-06

    Chimerism; Hematopoietic Cell Transplantation Recipient; Myelodysplastic Syndrome With Excess Blasts-1; Myelodysplastic Syndrome With Excess Blasts-2; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  6. Filgrastim, Cladribine, Cytarabine, and Mitoxantrone Hydrochloride in Treating Patients With Newly Diagnosed or Relapsed/Refractory Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndromes

    ClinicalTrials.gov

    2017-03-27

    Acute Biphenotypic Leukemia; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  7. Choline Magnesium Trisalicylate and Combination Chemotherapy in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-02-01

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  8. Azacitidine, Cytarabine, and Mitoxantrone Hydrochloride in Treating Patients With High-Risk Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-09-08

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  9. Alvocidib, Cytarabine, and Mitoxantrone in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-06-03

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  10. Tipifarnib and Etoposide in Treating Older Patients With Newly Diagnosed, Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-10-01

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  11. Omacetaxine Mepesuccinate, Cytarabine, and Decitabine in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-05

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  12. S0432 Tipifarnib in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-01-14

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  13. Acute Myeloid Leukemia: A Concise Review

    PubMed Central

    Saultz, Jennifer N.; Garzon, Ramiro

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogeneous clonal disorder characterized by immature myeloid cell proliferation and bone marrow failure. Cytogenetics and mutation testing remain a critical prognostic tool for post induction treatment. Despite rapid advances in the field including new drug targets and increased understanding of the biology, AML treatment remains unchanged for the past three decades with the majority of patients eventually relapsing and dying of the disease. Allogenic transplant remains the best chance for cure for patients with intermediate or high risk disease. In this review, we discuss the landmark genetic studies that have improved outcome prediction and novel therapies. PMID:26959069

  14. Azacitidine With or Without Entinostat in Treating Patients With Myelodysplastic Syndromes, Chronic Myelomonocytic Leukemia, or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-12-08

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  15. Acute myeloid leukemia: update in diagnosis and treatment in Brazil.

    PubMed

    Helman, Ricardo; Santos, Fabio Pires de Souza; Simões, Belinda; Atta, Elias Hallack; Callera, Fernando; Dobbin, Jane de Almeida; Mattos, Éderson Roberto; Atalla, Angelo; Maiolino, Angelo; Zanichelli, Maria Aparecida; Diefenbach, Cristiane Fração; Delamain, Marcia Torresan; Hamerschlak, Nelson

    2011-06-01

    To identify how the Brazilian hematology centers treated and diagnosed cases of acute myeloid leukemia in 2009. An epidemiological observational multicenter study of 11 listed Brazilian centers that treat acute myeloid leukemia and perform bone marrow transplantation. Data were collected from clinical charts of patients with acute myeloid leukemia treated at the said centers between 2005 and 2009. The availability for immunophenotyping and cytogenetic tests was assessed. During 2009, a total of 345 new cases of acute myeloid leukemia were diagnosed. Differences were noted in the tests performed between patients who initiated treatment at the center and those referred for treatment. Of the participating centers, 72% conducted some type of molecular study in acute myeloid leukemia upon diagnosis. Treatment for acute myeloid leukemia in Brazil shows significantly inferior results when compared to other centers worldwide.

  16. Combination Chemotherapy and Dasatinib in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-04-04

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21); (q22; q22.1); RUNX1-RUNX1T1; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  17. Tipifarnib in Treating Patients With Chronic Myeloid Leukemia, Chronic Myelomonocytic Leukemia, or Undifferentiated Myeloproliferative Disorders

    ClinicalTrials.gov

    2017-05-08

    Accelerated Phase of Disease; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Myelomonocytic Leukemia; Chronic Phase of Disease; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Recurrent Disease

  18. Donor Stem Cell Transplant in Treating Patients With High Risk Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-04-18

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myeloid Leukemia in Remission; Childhood Acute Myelomonocytic Leukemia (M4); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  19. High-Dimensional Analysis of Acute Myeloid Leukemia Reveals Phenotypic Changes in Persistent Cells during Induction Therapy.

    PubMed

    Ferrell, Paul Brent; Diggins, Kirsten Elizabeth; Polikowsky, Hannah Grace; Mohan, Sanjay Ram; Seegmiller, Adam C; Irish, Jonathan Michael

    2016-01-01

    The plasticity of AML drives poor clinical outcomes and confounds its longitudinal detection. However, the immediate impact of treatment on the leukemic and non-leukemic cells of the bone marrow and blood remains relatively understudied. Here, we conducted a pilot study of high dimensional longitudinal monitoring of immunophenotype in AML. To characterize changes in cell phenotype before, during, and immediately after induction treatment, we developed a 27-antibody panel for mass cytometry focused on surface diagnostic markers and applied it to 46 samples of blood or bone marrow tissue collected over time from 5 AML patients. Central goals were to determine whether changes in AML phenotype would be captured effectively by cytomic tools and to implement methods for describing the evolving phenotypes of AML cell subsets. Mass cytometry data were analyzed using established computational techniques. Within this pilot study, longitudinal immune monitoring with mass cytometry revealed fundamental changes in leukemia phenotypes that occurred over time during and after induction in the refractory disease setting. Persisting AML blasts became more phenotypically distinct from stem and progenitor cells due to expression of novel marker patterns that differed from pre-treatment AML cells and from all cell types observed in healthy bone marrow. This pilot study of single cell immune monitoring in AML represents a powerful tool for precision characterization and targeting of resistant disease.

  20. Molecularly targeted therapies for acute myeloid leukemia.

    PubMed

    Stein, Eytan M

    2015-01-01

    The past 15 years have seen major leaps in our understanding of the molecular genetic mutations that act as drivers of acute myeloid leukemia (AML). Clinical trials of agents against specific mutant proteins, such as FLT3-internal tandem duplications (ITDs) and isocitrate dehydrogenase mutations (IDHs) are ongoing. This review discusses agents in clinical trials that target specific gene mutations and/or epigenetic targets. © 2015 by The American Society of Hematology. All rights reserved.

  1. Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia

    PubMed Central

    Herhaus, Peter; Habringer, Stefan; Philipp-Abbrederis, Kathrin; Vag, Tibor; Gerngross, Carlos; Schottelius, Margret; Slotta-Huspenina, Julia; Steiger, Katja; Altmann, Torben; Weißer, Tanja; Steidle, Sabine; Schick, Markus; Jacobs, Laura; Slawska, Jolanta; Müller-Thomas, Catharina; Verbeek, Mareike; Subklewe, Marion; Peschel, Christian; Wester, Hans-Jürgen; Schwaiger, Markus; Götze, Katharina; Keller, Ulrich

    2016-01-01

    Acute myeloid leukemia originates from leukemia-initiating cells that reside in the protective bone marrow niche. CXCR4/CXCL12 interaction is crucially involved in recruitment and retention of leukemia-initiating cells within this niche. Various drugs targeting this pathway have entered clinical trials. To evaluate CXCR4 imaging in acute myeloid leukemia, we first tested CXCR4 expression in patient-derived primary blasts. Flow cytometry revealed that high blast counts in patients with acute myeloid leukemia correlate with high CXCR4 expression. The wide range of CXCR4 surface expression in patients was reflected in cell lines of acute myeloid leukemia. Next, we evaluated the CXCR4-specific peptide Pentixafor by positron emission tomography imaging in mice harboring CXCR4 positive and CXCR4 negative leukemia xenografts, and in 10 patients with active disease. [68Ga]Pentixafor-positron emission tomography showed specific measurable disease in murine CXCR4 positive xenografts, but not when CXCR4 was knocked out with CRISPR/Cas9 gene editing. Five of 10 patients showed tracer uptake correlating well with leukemia infiltration assessed by magnetic resonance imaging. The mean maximal standard uptake value was significantly higher in visually CXCR4 positive patients compared to CXCR4 negative patients. In summary, in vivo molecular CXCR4 imaging by means of positron emission tomography is feasible in acute myeloid leukemia. These data provide a framework for future diagnostic and theranostic approaches targeting the CXCR4/CXCL12-defined leukemia-initiating cell niche. PMID:27175029

  2. Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia.

    PubMed

    Herhaus, Peter; Habringer, Stefan; Philipp-Abbrederis, Kathrin; Vag, Tibor; Gerngross, Carlos; Schottelius, Margret; Slotta-Huspenina, Julia; Steiger, Katja; Altmann, Torben; Weißer, Tanja; Steidle, Sabine; Schick, Markus; Jacobs, Laura; Slawska, Jolanta; Müller-Thomas, Catharina; Verbeek, Mareike; Subklewe, Marion; Peschel, Christian; Wester, Hans-Jürgen; Schwaiger, Markus; Götze, Katharina; Keller, Ulrich

    2016-08-01

    Acute myeloid leukemia originates from leukemia-initiating cells that reside in the protective bone marrow niche. CXCR4/CXCL12 interaction is crucially involved in recruitment and retention of leukemia-initiating cells within this niche. Various drugs targeting this pathway have entered clinical trials. To evaluate CXCR4 imaging in acute myeloid leukemia, we first tested CXCR4 expression in patient-derived primary blasts. Flow cytometry revealed that high blast counts in patients with acute myeloid leukemia correlate with high CXCR4 expression. The wide range of CXCR4 surface expression in patients was reflected in cell lines of acute myeloid leukemia. Next, we evaluated the CXCR4-specific peptide Pentixafor by positron emission tomography imaging in mice harboring CXCR4 positive and CXCR4 negative leukemia xenografts, and in 10 patients with active disease. [(68)Ga]Pentixafor-positron emission tomography showed specific measurable disease in murine CXCR4 positive xenografts, but not when CXCR4 was knocked out with CRISPR/Cas9 gene editing. Five of 10 patients showed tracer uptake correlating well with leukemia infiltration assessed by magnetic resonance imaging. The mean maximal standard uptake value was significantly higher in visually CXCR4 positive patients compared to CXCR4 negative patients. In summary, in vivo molecular CXCR4 imaging by means of positron emission tomography is feasible in acute myeloid leukemia. These data provide a framework for future diagnostic and theranostic approaches targeting the CXCR4/CXCL12-defined leukemia-initiating cell niche.

  3. Cytarabine With or Without SCH 900776 in Treating Adult Patients With Relapsed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-20

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia

  4. Treosulfan, Fludarabine Phosphate, and Total-Body Irradiation Before Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Myeloid Leukemia, Myelodysplastic Syndrome, Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2017-04-05

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  5. Idarubicin, Cytarabine, and Tipifarnib in Treating Patients With Newly Diagnosed Myelodysplastic Syndromes or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-05-09

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  6. CCI-779 in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Myelodysplastic Syndromes, or Chronic Myelogenous Leukemia in Blastic Phase

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes

  7. Targeting MTHFD2 in acute myeloid leukemia

    PubMed Central

    Pikman, Yana; Puissant, Alexandre; Alexe, Gabriela; Furman, Andrew; Chen, Liying M.; Frumm, Stacey M.; Ross, Linda; Fenouille, Nina; Bassil, Christopher F.; Lewis, Caroline A.; Ramos, Azucena; Gould, Joshua; Stone, Richard M.; DeAngelo, Daniel J.; Galinsky, Ilene; Clish, Clary B.; Kung, Andrew L.; Hemann, Michael T.; Vander Heiden, Matthew G.; Banerji, Versha

    2016-01-01

    Drugs targeting metabolism have formed the backbone of therapy for some cancers. We sought to identify new such targets in acute myeloid leukemia (AML). The one-carbon folate pathway, specifically methylenetetrahydrofolate dehydrogenase-cyclohydrolase 2 (MTHFD2), emerged as a top candidate in our analyses. MTHFD2 is the most differentially expressed metabolic enzyme in cancer versus normal cells. Knockdown of MTHFD2 in AML cells decreased growth, induced differentiation, and impaired colony formation in primary AML blasts. In human xenograft and MLL-AF9 mouse leukemia models, MTHFD2 suppression decreased leukemia burden and prolonged survival. Based upon primary patient AML data and functional genomic screening, we determined that FLT3-ITD is a biomarker of response to MTHFD2 suppression. Mechanistically, MYC regulates the expression of MTHFD2, and MTHFD2 knockdown suppresses the TCA cycle. This study supports the therapeutic targeting of MTHFD2 in AML. PMID:27325891

  8. Trebananib With or Without Low-Dose Cytarabine in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-02-14

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  9. Topotecan Hydrochloride and Carboplatin With or Without Veliparib in Treating Advanced Myeloproliferative Disorders and Acute Myeloid Leukemia or Chronic Myelomonocytic Leukemia

    ClinicalTrials.gov

    2017-09-21

    Acute Myeloid Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Chronic Myelomonocytic Leukemia; Essential Thrombocythemia; Myelodysplastic/Myeloproliferative Neoplasm; Myelofibrosis; Polycythemia Vera; Recurrent Adult Acute Myeloid Leukemia; Refractory Acute Myeloid Leukemia

  10. Decitabine, Vorinostat, and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-12-19

    Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  11. Eltrombopag Olamine in Treating Patients With Relapsed/Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-04

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  12. Alvocidib, Cytarabine, and Mitoxantrone in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-07-14

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  13. Ipilimumab in Treating Patients With Relapsed or Refractory High-Risk Myelodysplastic Syndrome or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-02-09

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome

  14. WEE1 Inhibitor AZD1775 With or Without Cytarabine in Treating Patients With Advanced Acute Myeloid Leukemia or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-09-12

    Chronic Myelomonocytic Leukemia; Myelodysplastic Syndrome With Isolated Del(5q); Myelodysplastic/Myeloproliferative Neoplasm; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  15. Molecular biomarkers in acute myeloid leukemia.

    PubMed

    Prada-Arismendy, Jeanette; Arroyave, Johanna C; Röthlisberger, Sarah

    2017-01-01

    Acute myeloid leukemia (AML) is the most common acute leukemia in adults. The pathophysiology of this disease is just beginning to be understood at the cellular and molecular level, and currently cytogenetic markers are the most important for risk stratification and treatment of AML patients. However, with the advent of new technologies, the detection of other molecular markers such as point mutations and characterization of epigenetic and proteomic profiles, have begun to play an important role in how the disease is approached. Recent evidence shows that the identification of new AML biomarkers contributes to a better understanding of the molecular basis of the disease, is significantly useful in screening, diagnosis, prognosis and monitoring of AML, as well as the possibility of predicting each individual's response to treatment. This review summarizes the most relevant molecular (genetic, epigenetic, and protein) biomarkers associated with acute myeloid leukemia and discusses their clinical importance in terms of risk prediction, diagnosis and prognosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Minimal Residual Disease in Acute Myeloid Leukemia

    PubMed Central

    Hourigan, Christopher S.; Karp, Judith E.

    2014-01-01

    Technological advances in the laboratory have lead to substantial improvements in clinical decision-making by the use of pre-treatment prognostic risk stratification factors in acute myeloid leukemia (AML). Unfortunately similar progress has not been made in treatment response criteria, with the definition of “complete remission” in AML largely unchanged for over half a century. Several recent clinical trials have demonstrated that higher sensitivity measurements of residual disease burden during or after treatment can be performed, that results are predictive for clinical outcome and can be used to improve outcomes by guiding additional therapeutic intervention to patients in clinical complete remission but at increased relapse risk. We review here these recent trials, the characteristics and challenges of the modalities currently used to detect minimal residual disease (MRD), and outline opportunities to both refine detection and better clinically utilize MRD measurements. MRD measurement is already the standard of care in other myeloid malignancies such as chronic myelogenous leukemia (CML) and acute promyelocytic leukemia (APL). It is our belief that response criteria for non-APL AML should be updated to include assessment for molecular complete remission (mCR) and that recommendations for post-consolidation surveillance should include regular monitoring for molecular relapse as a standard of care. PMID:23799371

  17. Hematopoietic differentiation is required for initiation of acute myeloid leukemia

    PubMed Central

    Ye, Min; Zhang, Hong; Yang, Henry; Koche, Richard; Staber, Philipp B.; Cusan, Monica; Levantini, Elena; Welner, Robert S.; Bach, Christian S.; Zhang, Junyan; Krivtsov, Andrei; Armstrong, Scott A.; Tenen, Daniel G.

    2015-01-01

    Summary Mutations in acute myeloid leukemia (AML)-associated oncogenes often arise in hematopoietic stem cells (HSCs) and promote acquisition of leukemia stem cell (LSC) phenotypes. However, as LSCs often share features of lineage-restricted progenitors, the relative contribution of differentiation status to LSC transformation is unclear. Using murine MLL-AF9 and MOZ-TIF2 AML models, we show that myeloid differentiation to granulocyte macrophage progenitors (GMPs) is critical for LSC generation. Disrupting GMP formation by deleting the lineage-restricted transcription factor C/EBPa blocked normal granulocyte formation and prevented initiation of AML. However, restoring myeloid differentiation in C/EBPa mutants with inflammatory cytokines reestablished AML transformation capacity. Genomic analyses of GMPs, including gene expression and H3K79me2 profiling in conjunction with ATAC-seq, revealed a permissive genomic environment for activation of a minimal transcription program shared by GMPs and LSCs. Together, these findings show myeloid differentiation is a prerequisite for LSC formation and AML development, providing insights for therapeutic development. PMID:26412561

  18. Precision Medicine for Acute Myeloid Leukemia

    PubMed Central

    Lai, Catherine; Karp, Judith E.; Hourigan, Christopher S.

    2016-01-01

    The goal of precision medicine is to personalize therapy based on individual patient variation, to correctly select the right treatment, for the right patient, at the right time. Acute myeloid leukemia (AML) is a heterogeneous collection of myeloid malignancies with diverse genetic etiology and the potential for intra-patient clonal evolution over time. We discuss here how the precision medicine paradigm might be applied to the care of AML patients by focusing on the potential roles of targeting therapy by patient-specific somatic mutations and aberrant pathways, ex-vivo drug sensitivity and resistance testing, high sensitivity measurements of residual disease burden and biology along with potential clinical trial and regulatory constraints. PMID:26514194

  19. Precision medicine for acute myeloid leukemia.

    PubMed

    Lai, Catherine; Karp, Judith E; Hourigan, Christopher S

    2016-01-01

    The goal of precision medicine is to personalize therapy based on individual patient variation, to correctly select the right treatment, for the right patient, at the right time. Acute myeloid leukemia (AML) is a heterogeneous collection of myeloid malignancies with diverse genetic etiology and the potential for intra-patient clonal evolution over time. We discuss here how the precision medicine paradigm might be applied to the care of AML patients by focusing on the potential roles of targeting therapy by patient-specific somatic mutations and aberrant pathways, ex-vivo drug sensitivity and resistance testing, high sensitivity measurements of residual disease burden and biology along with potential clinical trial and regulatory constraints.

  20. Idarubicin, Cytarabine, and Pravastatin Sodium in Treating Patients With Acute Myeloid Leukemia or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2015-03-03

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Refractory Anemia With Excess Blasts; Untreated Adult Acute Myeloid Leukemia

  1. Three hematologic malignancies in the same patient: chronic lymphocytic leukemia, followed by chronic myeloid leukemia and acute myeloid leukemia.

    PubMed

    Fattizzo, Bruno; Radice, Tommaso; Cattaneo, Daniele; Pomati, Mauro; Barcellini, Wilma; Iurlo, Alessandra

    2014-01-01

    The co-existence of both chronic myeloid leukemia (CML) and chronic lymphocytic leukemia (CLL) have been described in a few cases, either simultaneously or subsequently presenting. We report an unusual case of three he-matological malignancies in the same patient: CLL, CML, and acute myeloid leukemia (AML). None of the three malignancies shared the same origin, since the marrow sample was negative for BCR-ABL1 transcript at the time of CLL diagnosis, CLL was in remission at CML diagnosis, and CML was in complete cytogenetic response at AML onset, indicating that this was not a blast crisis. Background: Chronic lymphocytic leukemia (CLL) and chronic myeloid leukemia (CML) are the most common proliferative disorders in Western countries, with an incidence of 4.2/100,000/year and 1-1.5/100,000/year, respectively. The co-existence of both CML and CLL is an extremely rare event, even if it has been described in a few cases, either simultaneously or subsequently presenting. Above all, the presence of more than two different hematologic neoplasms has not been described in literature so far. In the present study we report a particular case of a CLL patient, who first developed CML and then acute myeloid leukemia (AML).

  2. Cyclophosphamide and Busulfan Followed by Donor Stem Cell Transplant in Treating Patients With Myelofibrosis, Acute Myeloid Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2014-04-03

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Childhood Acute Myeloid Leukemia in Remission; Childhood Myelodysplastic Syndromes; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Myelodysplastic Syndrome With Isolated Del(5q); Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Secondary Myelofibrosis; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  3. Azacitidine and Gemtuzumab Ozogamicin in Treating Older Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-04-05

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21); (q22; q22.1); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22.3;q23.3); MLLT3-KMT2A; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  4. Blood group change in acute myeloid leukemia

    PubMed Central

    Nambiar, Rakul K.; Prakash, N. P.; Vijayalakshmi, K.

    2017-01-01

    Blood group antigens are either sugars or proteins found attached to the red blood cell membrane. ABO blood group antigens are the most clinically important antigens because they are the most immunogenic. As red blood cell antigens are inherited traits, they are usually not altered throughout the life of an individual. There have been occasional case reports of ABO blood group antigen change in malignant conditions. We report two such cases of ABO antigen alteration associated with acute myeloid leukemia. These patients had suppression of their blood group antigens during their leukemic phase, and the antigens were reexpressed when the patients attained remission. PMID:28127141

  5. Molecular diagnosis of acute myeloid leukemia.

    PubMed

    Watt, Christopher D; Bagg, Adam

    2010-11-01

    The diagnosis and classification of acute myeloid leukemia is multifaceted, requiring the integration of a variety of laboratory findings, with genetic approaches now firmly established as a central component. Molecular genetic technologies continue to evolve and provide additional tiers of both clarity and complexity. Many have rapidly moved into clinical laboratories; others remain as relevant discovery tools, while some are poised to take their place in diagnostic testing menus. Here, we attempt to synthesize the role of various testing modalities and exciting nascent fundamental discoveries, with a view as to how these might be integrated into the contemporary and future evaluation of this group of aggressive hematologic malignancies.

  6. Orbital myeloid sarcoma in an adult with acute myeloid leukemia, FAB M1, and 12p-deletion.

    PubMed

    Ple-plakon, Patricia A; Demirci, Hakan; Cheng, Jason X; Elner, Victor M

    2013-01-01

    A 49-year-old woman with acute myeloid leukemia, FAB M1 subtype, and 12p deletion, presented with progressive right proptosis and diplopia for 1 week. Orbital CT revealed a homogenously enhancing, orbital mass engulfing the inferior rectus muscle. Histopathology revealed myeloid sarcoma for which she underwent external beam radiotherapy. Subsequently, there was no sign of local recurrence, but she succumbed to leukemia involving the central nervous system. This is the first case, to the authors' knowledge, of an orbital sarcoma of FAB M1 myeloblasts bearing a 12p deletion.

  7. Sorafenib Tosylate and Chemotherapy in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-11-14

    Acute Myeloid Leukemia (Megakaryoblastic) With t(1;22)(p13;q13); RBM15-MKL1; Acute Myeloid Leukemia With a Variant RARA Translocation; Acute Myeloid Leukemia With Inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1; Acute Myeloid Leukemia With t(6;9)(p23;q34); DEK-NUP214; Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Acute Myeloid Leukemia With Variant MLL Translocations; Untreated Adult Acute Myeloid Leukemia

  8. Decitabine as Maintenance Therapy After Standard Therapy in Treating Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-09-04

    Acute Myeloid Leukemia; Acute Myeloid Leukemia With Myelodysplasia-Related Changes; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21); (q22; q22.1); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22.3;q23.3); MLLT3-KMT2A; Untreated Adult Acute Myeloid Leukemia

  9. Tanespimycin and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myelogenous Leukemia, Chronic Myelomonocytic Leukemia, or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-09-27

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  10. PS-341 in Treating Patients With Refractory or Relapsed Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myeloid Leukemia in Blast Phase, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Promyelocytic Leukemia (M3); Blastic Phase Chronic Myelogenous Leukemia; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia

  11. CPX-351 in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-04-25

    Adult Acute Erythroid Leukemia (M6); Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia and Acute Monocytic Leukemia (M5); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  12. Arsenic Trioxide in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-10-04

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  13. Ixazomib (MLN9708) in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-01-20

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  14. AKT Inhibitor MK-2206 in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-12-23

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  15. Combination Chemotherapy With or Without Valspodar in Treating Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-06-03

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  16. Lenalidomide and Combination Chemotherapy in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-06-12

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  17. Bortezomib, Daunorubicin, and Cytarabine in Treating Older Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-09-04

    Acute Myeloid Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  18. Bortezomib, Mitoxantrone, Etoposide, and Cytarabine in Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-08-12

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  19. Vorinostat and Gemtuzumab Ozogamicin in Treating Older Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-05-30

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  20. Tipifarnib and Etoposide in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-01-08

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  1. Combination Chemotherapy in Treating Young Patients With Down Syndrome and Acute Myeloid Leukemia or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2017-07-10

    Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Childhood Myelodysplastic Syndromes; de Novo Myelodysplastic Syndromes; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  2. Therapeutic Allogeneic Lymphocytes and Aldesleukin in Treating Patients With High-Risk or Recurrent Myeloid Leukemia After Undergoing Donor Stem Cell Transplant

    ClinicalTrials.gov

    2017-02-13

    Accelerated Phase Chronic Myelogenous Leukemia; Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia

  3. Biology and treatment of chronic myeloid leukemia.

    PubMed

    Jones, R J

    1997-01-01

    The BCR-ABL gene rearrangement, the initial event in the development of chronic myeloid leukemia, primarily produces clonal expansion in CML by blocking apoptosis, a genetically programmed process of autonomous cell death. The mechanism by which BCR-ABL blocks apoptosis remains unclear, although recent data are beginning to shed light on the signaling pathway. As with other antiapoptotic signals, BCR-ABL induces cellular resistance to a wide spectrum of cytotoxic antitumor agents. However, apoptosis induced by both cytotoxic T lymphocytes and natural killer or lymphokine-activated killer cells is not blocked by BCR-ABL. A substantial number of patients with chronic myeloid leukemia can now be cured, and the prognosis has improved even for those patients who are not cured. Interferon-alpha has emerged as the treatment of choice for patients who do not undergo an allogeneic bone marrow transplantation. The availability of allogeneic bone marrow transplantation has been increased by the ability to find unrelated donors, although graft-versus-host disease remains a major problem. Adoptive immunotherapy with donor lymphocyte transfusions will induce durable remissions and possibly cures in many patients who relapse after allogeneic BMT. Moreover, a number of investigational approaches, especially autologous BMT, appear promising.

  4. Parallel targeted next generation sequencing of childhood and adult acute myeloid leukemia patients reveals uniform genomic profile of the disease.

    PubMed

    Marjanovic, Irena; Kostic, Jelena; Stanic, Bojana; Pejanovic, Nadja; Lucic, Bojana; Karan-Djurasevic, Teodora; Janic, Dragana; Dokmanovic, Lidija; Jankovic, Srdja; Vukovic, Nada Suvajdzic; Tomin, Dragica; Perisic, Ognjen; Rakocevic, Goran; Popovic, Milos; Pavlovic, Sonja; Tosic, Natasa

    2016-10-01

    The age-specific differences in the genetic mechanisms of myeloid leukemogenesis have been observed and studied previously. However, NGS technology has provided a possibility to obtain a large amount of mutation data. We analyzed DNA samples from 20 childhood (cAML) and 20 adult AML (aAML) patients, using NGS targeted sequencing. The average coverage of high-quality sequences was 2981 × per amplicon. A total of 412 (207 cAML, 205 aAML) variants in the coding regions were detected; out of which, only 122 (62 cAML and 60 aAML) were potentially protein-changing. Our results confirmed that AML contains small number of genetic alterations (median 3 mutations/patient in both groups). The prevalence of the most frequent single gene AML associated mutations differed in cAML and aAML patient cohorts: IDH1 (0 % cAML, 5 % aAML), IDH2 (0 % cAML, 10 % aAML), NPM1 (10 % cAML, 35 % aAML). Additionally, potentially protein-changing variants were found in tyrosine kinase genes or genes encoding tyrosine kinase associated proteins (JAK3, ABL1, GNAQ, and EGFR) in cAML, while among aAML, the prevalence is directed towards variants in the methylation and histone modifying genes (IDH1, IDH2, and SMARCB1). Besides uniform genomic profile of AML, specific genetic characteristic was exclusively detected in cAML and aAML.

  5. Symptom-Adapted Physical Activity Intervention in Minimizing Physical Function Decline in Older Patients With Acute Myeloid Leukemia Undergoing Chemotherapy

    ClinicalTrials.gov

    2017-05-30

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  6. Caspofungin Acetate or Fluconazole in Preventing Invasive Fungal Infections in Patients With Acute Myeloid Leukemia Who Are Undergoing Chemotherapy

    ClinicalTrials.gov

    2017-01-31

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myeloid Leukemia in Remission; Childhood Acute Myelomonocytic Leukemia (M4); Fungal Infection; Neutropenia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  7. Lenalidomide, Cytarabine, and Idarubicin in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-12-22

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  8. ADAR1 promotes malignant progenitor reprogramming in chronic myeloid leukemia

    PubMed Central

    Jiang, Qingfei; Crews, Leslie A.; Barrett, Christian L.; Chun, Hye-Jung; Court, Angela C.; Isquith, Jane M.; Zipeto, Maria A.; Goff, Daniel J.; Minden, Mark; Sadarangani, Anil; Rusert, Jessica M.; Dao, Kim-Hien T.; Morris, Sheldon R.; Goldstein, Lawrence S. B.; Marra, Marco A.; Frazer, Kelly A.; Jamieson, Catriona H. M.

    2013-01-01

    The molecular etiology of human progenitor reprogramming into self-renewing leukemia stem cells (LSC) has remained elusive. Although DNA sequencing has uncovered spliceosome gene mutations that promote alternative splicing and portend leukemic transformation, isoform diversity also may be generated by RNA editing mediated by adenosine deaminase acting on RNA (ADAR) enzymes that regulate stem cell maintenance. In this study, whole-transcriptome sequencing of normal, chronic phase, and serially transplantable blast crisis chronic myeloid leukemia (CML) progenitors revealed increased IFN-γ pathway gene expression in concert with BCR-ABL amplification, enhanced expression of the IFN-responsive ADAR1 p150 isoform, and a propensity for increased adenosine-to-inosine RNA editing during CML progression. Lentiviral overexpression experiments demonstrate that ADAR1 p150 promotes expression of the myeloid transcription factor PU.1 and induces malignant reprogramming of myeloid progenitors. Moreover, enforced ADAR1 p150 expression was associated with production of a misspliced form of GSK3β implicated in LSC self-renewal. Finally, functional serial transplantation and shRNA studies demonstrate that ADAR1 knockdown impaired in vivo self-renewal capacity of blast crisis CML progenitors. Together these data provide a compelling rationale for developing ADAR1-based LSC detection and eradication strategies. PMID:23275297

  9. ADAR1 promotes malignant progenitor reprogramming in chronic myeloid leukemia.

    PubMed

    Jiang, Qingfei; Crews, Leslie A; Barrett, Christian L; Chun, Hye-Jung; Court, Angela C; Isquith, Jane M; Zipeto, Maria A; Goff, Daniel J; Minden, Mark; Sadarangani, Anil; Rusert, Jessica M; Dao, Kim-Hien T; Morris, Sheldon R; Goldstein, Lawrence S B; Marra, Marco A; Frazer, Kelly A; Jamieson, Catriona H M

    2013-01-15

    The molecular etiology of human progenitor reprogramming into self-renewing leukemia stem cells (LSC) has remained elusive. Although DNA sequencing has uncovered spliceosome gene mutations that promote alternative splicing and portend leukemic transformation, isoform diversity also may be generated by RNA editing mediated by adenosine deaminase acting on RNA (ADAR) enzymes that regulate stem cell maintenance. In this study, whole-transcriptome sequencing of normal, chronic phase, and serially transplantable blast crisis chronic myeloid leukemia (CML) progenitors revealed increased IFN-γ pathway gene expression in concert with BCR-ABL amplification, enhanced expression of the IFN-responsive ADAR1 p150 isoform, and a propensity for increased adenosine-to-inosine RNA editing during CML progression. Lentiviral overexpression experiments demonstrate that ADAR1 p150 promotes expression of the myeloid transcription factor PU.1 and induces malignant reprogramming of myeloid progenitors. Moreover, enforced ADAR1 p150 expression was associated with production of a misspliced form of GSK3β implicated in LSC self-renewal. Finally, functional serial transplantation and shRNA studies demonstrate that ADAR1 knockdown impaired in vivo self-renewal capacity of blast crisis CML progenitors. Together these data provide a compelling rationale for developing ADAR1-based LSC detection and eradication strategies.

  10. Decitabine and Valproic Acid in Treating Patients With Refractory or Relapsed Acute Myeloid Leukemia or Previously Treated Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2013-09-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Untreated Adult Acute Myeloid Leukemia

  11. Azacitidine in Treating Patients With Relapsed Myelodysplastic Syndrome, Chronic Myelomonocytic Leukemia, or Acute Myeloid Leukemia Who Have Undergone Stem Cell Transplant

    ClinicalTrials.gov

    2017-04-17

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  12. Unilateral Gynaecomastia in a Young Man with Chronic Myeloid Leukemia.

    PubMed

    Jain, Ankur; Varma, Subhash; Garg, Rashi; Malhotra, Pankaj

    2017-09-01

    Male reproductive issues are frequently overlooked in patients of chronic myeloid leukemia (CML) on imatinib therapy. Current article describes a young man with CML on imatinib mesylate since 13 years who presented to us with painful left sided breast swelling. Mammography and fine needle aspiration cytology confirmed the diagnosis of gynaecomastia and hormone profile revealed low testosterone levels. Gynaecomastia was attributed to imatinib related hypogonadism. Gynaecomastia improved after hormone replacement therapy. Need for long term monitoring of reproductive hormones in patients of CML on imatinib therapy is emphasized in this report.

  13. Esophageal Candidiasis as the Initial Manifestation of Acute Myeloid Leukemia.

    PubMed

    Komeno, Yukiko; Uryu, Hideki; Iwata, Yuko; Hatada, Yasumasa; Sakamoto, Jumpei; Iihara, Kuniko; Ryu, Tomiko

    2015-01-01

    A 47-year-old woman presented with persistent dysphagia. A gastroendoscopy revealed massive esophageal candidiasis, and oral miconazole was prescribed. Three weeks later, she returned to our hospital without symptomatic improvement. She was febrile, and blood tests showed leukocytosis (137,150 /μL, blast 85%), anemia and thrombocytopenia. She was diagnosed with acute myeloid leukemia (AML). She received chemotherapy and antimicrobial agents. During the recovery from the nadir, bilateral ocular candidiasis was detected, suggesting the presence of preceding candidemia. Thus, esophageal candidiasis can be an initial manifestation of AML. Thorough examination to detect systemic candidiasis is strongly recommended when neutropenic patients exhibit local candidiasis prior to chemotherapy.

  14. Donor Umbilical Cord Blood Transplant With or Without Ex-vivo Expanded Cord Blood Progenitor Cells in Treating Patients With Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myelogenous Leukemia, or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2017-09-14

    Acute Biphenotypic Leukemia; Acute Erythroid Leukemia; Acute Lymphoblastic Leukemia in Remission; Acute Megakaryoblastic Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia in Remission; Blasts Under 10 Percent of Bone Marrow Nucleated Cells; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Mixed Phenotype Acute Leukemia; Myelodysplastic Syndrome; Myelodysplastic Syndrome With Excess Blasts; Pancytopenia; Refractory Anemia; Secondary Acute Myeloid Leukemia

  15. [Transformation of secondary myelodysplastic syndrome to atypical chronic myeloid leukemia in a female patient with acute myeloid leukemia].

    PubMed

    Gritsaev, S V; Kostroma, I I; Zapreeva, I M; Shmidt, A V; Tiranova, S A; Balashova, V A; Martynkevich, I S; Chubukina, Zh V; Semenova, N Yu; Chechetkin, A V

    Secondary myeloid neoplasia may be a complication of intensive cytostatic therapy. The most common types of secondary neoplasias are acute myeloid leukemia and myelodysplastic syndrome. The development of secondary atypical chronic myeloid leukemia (aCML) is an extremely rare phenomenon. The paper describes transformation of secondary myelodysplastic syndrome to aCML 6 months after its diagnosis. The development of aCML was accompanied by additional chromosomal aberration as monosomy of chromosome 17. No mutations in the JAK2, MPL, and CalR genes were detected. It is concluded that the clinical course of secondary myeloid neoplasias is variable.

  16. Gemtuzumab ozogamicin in acute myeloid leukemia.

    PubMed

    Godwin, C D; Gale, R P; Walter, R B

    2017-09-01

    CD33 is variably expressed on leukemia blasts in almost all patients with acute myeloid leukemia (AML) and possibly leukemia stem cells in some. Efforts to target CD33 therapeutically have focused on gemtuzumab ozogamicin (GO; Mylotarg), an antibody-drug conjugate delivering a DNA-damaging calicheamicin derivative. GO is most effective in acute promyelocytic leukemia but induces remissions in other AML types and received accelerated approval in the US in 2000. However, because a large follow-up study showed no survival improvement and increased early deaths the drug manufacturer voluntarily withdrew the US New Drug Application in 2010. More recently, a meta-analysis of data from several trials reported better survival in adults with favorable- and intermediate-risk cytogenetics but not adverse-risk AML randomized to receive GO along with intensive induction chemotherapy. As a result, GO is being re-evaluated by regulatory agencies. Responses to GO are diverse and predictive biological response markers are needed. Besides cytogenetic risk, ATP-binding cassette transporter activity and possibly CD33 display on AML blasts may predict response, but established clinical assays and prospective validation are lacking. Single-nucleotide polymorphisms in CD33 may also be predictive, most notably rs12459419 where the minor T-allele leads to decreased display of full-length CD33 and preferential translation of a splice variant not recognized by GO. Data from retrospective analyses suggest only patients with the rs12459419 CC genotype may benefit from GO therapy but confirmation is needed. Most important may be markers for AML cell sensitivity to calicheamicin, which varies over 100 000-fold, but useful assays are unavailable. Novel CD33-targeted drugs may overcome some of GO's limitations but it is currently unknown whether such drugs will be more effective in patients benefitting from GO and/or improve outcomes in patients not benefitting from GO, and what the supportive

  17. Genetics Home Reference: familial acute myeloid leukemia with mutated CEBPA

    MedlinePlus

    ... terminal C/EBPalpha mutation. Genes Chromosomes Cancer. 2010 Mar;49(3):237-41. doi: 10.1002/gcc. ... EBPalpha), in acute myeloid leukemia. Nat Genet. 2001 Mar;27(3):263-70. Citation on PubMed Renneville ...

  18. Dendritic cell vaccination in acute myeloid leukemia.

    PubMed

    Anguille, Sébastien; Willemen, Yannick; Lion, Eva; Smits, Evelien L; Berneman, Zwi N

    2012-07-01

    The prognosis of patients with acute myeloid leukemia (AML) remains dismal, with a 5-year overall survival rate of only 5.2% for the continuously growing subgroup of AML patients older than 65 years. These patients are generally not considered eligible for intensive chemotherapy and/or allogeneic hematopoietic stem cell transplantation because of high treatment-related morbidity and mortality, emphasizing the need for novel, less toxic, treatment alternatives. It is within this context that immunotherapy has gained attention in recent years. In this review, we focus on the use of dendritic cell (DC) vaccines for immunotherapy of AML. DC are central orchestrators of the immune system, bridging innate and adaptive immunity and critical to the induction of anti-leukemic immunity. We discuss the rationale and basic principles of DC-based therapy for AML and review the clinical experience that has been obtained so far with this form of immunotherapy for patients with AML.

  19. Total body irradiation in chronic myeloid leukemia

    SciTech Connect

    Advani, S.H.; Dinshaw, K.A.; Nair, C.N.; Ramakrishnan, G.

    1983-04-01

    Total body irradiation (TBI), given as 10 rad daily for five days a week for a total dose of 150 rad has been used in an attempt to control the chronic phase of chronic myeloid leukemia (CML). Thirteen patients with CML received fractionated TBI leading to rapid and good control of WBC count without any adverse reaction. The chronic phase of CML could also be controlled with TBI, even in three patients who were resistant to busulfan. Following TBI, WBC count remained under control for a period of 32 weeks as compared to 40 weeks following vusulfan alone. Repeat TBI was also well tolerated with good response. It appears that TBI is an effective and safe therapy for controlling the chronic phase of CML.

  20. Biological Therapy in Treating Patients With Advanced Myelodysplastic Syndrome, Acute or Chronic Myeloid Leukemia, or Acute Lymphoblastic Leukemia Who Are Undergoing Stem Cell Transplantation

    ClinicalTrials.gov

    2017-03-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; Essential Thrombocythemia; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  1. Lithium Carbonate and Tretinoin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-04-25

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  2. Cholecalciferol in Treating Patients With Acute Myeloid Leukemia Undergoing Intensive Induction Chemotherapy

    ClinicalTrials.gov

    2015-06-18

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  3. Comparing Three Different Combination Chemotherapy Regimens in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-07-02

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  4. Sirolimus, Idarubicin, and Cytarabine in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-05-10

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  5. Busulfan and Etoposide Followed by Peripheral Blood Stem Cell Transplant and Low-Dose Aldesleukin in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-08-04

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Childhood Acute Myeloid Leukemia in Remission; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia

  6. GTI-2040 and High-Dose Cytarabine in Treating Patients With Refractory or Relapsed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-06-03

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia

  7. Targeted alpha particle immunotherapy for myeloid leukemia.

    PubMed

    Jurcic, Joseph G; Larson, Steven M; Sgouros, George; McDevitt, Michael R; Finn, Ronald D; Divgi, Chaitanya R; Ballangrud, Ase M; Hamacher, Klaus A; Ma, Dangshe; Humm, John L; Brechbiel, Martin W; Molinet, Roger; Scheinberg, David A

    2002-08-15

    Unlike beta particle-emitting isotopes, alpha emitters can selectively kill individual cancer cells with a single atomic decay. HuM195, a humanized anti-CD33 monoclonal antibody, specifically targets myeloid leukemia cells and has activity against minimal disease. When labeled with the beta-emitters (131)I and (90)Y, HuM195 can eliminate large leukemic burdens in patients, but it produces prolonged myelosuppression requiring hematopoietic stem cell transplantation at high doses. To enhance the potency of native HuM195 yet avoid the nonspecific cytotoxicity of beta-emitting constructs, the alpha-emitting isotope (213)Bi was conjugated to HuM195. Eighteen patients with relapsed and refractory acute myelogenous leukemia or chronic myelomonocytic leukemia were treated with 10.36 to 37.0 MBq/kg (213)Bi-HuM195. No significant extramedullary toxicity was seen. All 17 evaluable patients developed myelosuppression, with a median time to recovery of 22 days. Nearly all the (213)Bi-HuM195 rapidly localized to and was retained in areas of leukemic involvement, including the bone marrow, liver, and spleen. Absorbed dose ratios between these sites and the whole body were 1000-fold greater than those seen with beta-emitting constructs in this antigen system and patient population. Fourteen (93%) of 15 evaluable patients had reductions in circulating blasts, and 14 (78%) of 18 patients had reductions in the percentage of bone marrow blasts. This study demonstrates the safety, feasibility, and antileukemic effects of (213)Bi-HuM195, and it is the first proof-of-concept for systemic targeted alpha particle immunotherapy in humans.

  8. Alvocidib, Cytarabine, and Mitoxantrone Hydrochloride or Cytarabine and Daunorubicin Hydrochloride in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-07-03

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  9. Yttrium Y 90 Anti-CD45 Monoclonal Antibody BC8 Followed by Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2017-03-27

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Secondary Acute Myeloid Leukemia

  10. Cediranib Maleate in Treating Patients With Relapsed, Refractory, or Untreated Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-12-28

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  11. Pseudomonas Aeruginosa Endocarditis in Acute Myeloid Leukemia: A Rare Complication

    PubMed Central

    J, Barshay; A, Nemets; A, Ducach; G, Lugassy

    2008-01-01

    Infectious endocarditis is a rarely encountered complication among leukemia patient during induction therapy. We describe a young patient who developed prolonged high fever after aggressive chemotherapy for Acute Myeloid Leukemia. Pseudomonas Aeruginosa endocarditis was found to be the etiology for the febrile state. Our purpose is to emphasize the need for an early diagnosis of this rare, albeit treatable complication. PMID:23675106

  12. Report of an Unusual Case: Testicular Involvement of Chronic Myeloid Leukemia 10 Years after the Complete Response

    PubMed Central

    Ozgur, Berat Cem; Sarici, Hasmet; Borcek, Pelin; Telli, Onur

    2014-01-01

    Testicular extra-medullary myeloid cell tumours are rare tumours presenting in most cases with painless testicular swelling. We are representing here along of a case of 21-year-old man with painless scrotal swelling. From his medical history, he was treated by allogenic bone-marrow transplantation and chemotherapy 10 years ago because of chronic myeloid leukemia. The pathology of orchiectomy specimen revealed malign cells with blastic cell infiltration means a late relapse of chronic myeloid leukemia. The patient has been in hematological remission and no evidence of any myeloid disorders by 10 years’ follow up. Although testicular involvement is a rare and an unusual event in blast crisis of chronic myeloid leukemia, extramedullary myeloid cell tumour should be considered in the diagnosis of intratesticular tumours. PMID:24959476

  13. The role of natural killer cells in chronic myeloid leukemia

    PubMed Central

    Danier, Anna Carolyna Araújo; de Melo, Ricardo Pereira; Napimoga, Marcelo Henrique; Laguna-Abreu, Maria Theresa Cerávolo

    2011-01-01

    Chronic myeloid leukemia is a neoplasia resulting from a translocation between chromosomes 9 and 22 producing the BCR-ABL hybrid known as the Philadelphia chromosome (Ph). In chronic myeloid leukemia a proliferation of malignant myeloid cells occurs in the bone marrow due to excessive tyrosine kinase activity. In order to maintain homeostasis, natural killer cells, by means of receptors, identify the major histocompatibility complex on the surface of tumor cells and subsequently induce apoptosis. The NKG2D receptor in the natural killer cells recognizes the transmembrane proteins related to major histocompatibility complex class I chain-related genes A and B (MICA and MICB), and it is by the interaction between NKG2D and MICA that natural killer cells exert cytotoxic activity against chronic myeloid leukemia tumor cells. However, in the case of chronic exposure of the NKG2D receptor, the MICA ligand releases soluble proteins called sMICA from the tumor cell surface, which negatively modulate NKG2D and enable the tumor cells to avoid lysis mediated by the natural killer cells. Blocking the formation of sMICA may be an important antitumor strategy. Treatment using tyrosine kinase inhibitors induces modulation of NKG2DL expression, which could favor the activity of the natural killer cells. However this mechanism has not been fully described in chronic myeloid leukemia. In the present study, we analyze the role of natural killer cells to reduce proliferation and in the cellular death of tumor cells in chronic myeloid leukemia. PMID:23049299

  14. Cutaneous myeloid sarcoma: natural history and biology of an uncommon manifestation of acute myeloid leukemia.

    PubMed

    Hurley, M Yadira; Ghahramani, Grant K; Frisch, Stephanie; Armbrecht, Eric S; Lind, Anne C; Nguyen, Tudung T; Hassan, Anjum; Kreisel, Friederike H; Frater, John L

    2013-05-01

    We conducted a retrospective study of patients with cutaneous myeloid sarcoma, from 2 tertiary care institutions. Eighty-three patients presented, with a mean age of 52 years. Diagnosis of myeloid sarcoma in the skin was difficult due to the low frequency of myeloperoxidase and/or CD34+ cases (56% and 19% of tested cases, respectively). Seventy-one of the 83 patients (86%) had ≥ 1 bone marrow biopsy. Twenty-eight (39%) had acute myeloid leukemia with monocytic differentiation. Twenty-three had other de novo acute myeloid leukemia subtypes. Thirteen patients had other myeloid neoplasms, of which 4 ultimately progressed to an acute myeloid leukemia. Seven had no bone marrow malignancy. Ninety-eight percent of the patients received chemotherapy, and approximately 89% died of causes related to their disease. Cutaneous myeloid sarcoma in most cases represents an aggressive manifestation of acute myeloid leukemia. Diagnosis can be challenging due to lack of myeloblast-associated antigen expression in many cases, and difficulty in distinguishing monocyte-lineage blasts from neoplastic and non-neoplastic mature monocytes.

  15. Vorinostat and Azacitidine in Treating Patients With Myelodysplastic Syndromes or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-01-31

    Acute Erythroid Leukemia; Acute Megakaryoblastic Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Chronic Myelomonocytic Leukemia; Myelodysplastic Syndrome; Myelodysplastic Syndrome With Excess Blasts; Myelodysplastic Syndrome With Ring Sideroblasts; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia; Refractory Anemia With Excess Blasts in Transformation

  16. 211^At-BC8-B10 Before Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2017-09-13

    Acute Lymphoblastic Leukemia in Remission; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia in Remission; CD45-Positive Neoplastic Cells Present; Chronic Myelomonocytic Leukemia; Myelodysplastic Syndrome With Excess Blasts; Recurrent Adult Acute Myeloid Leukemia; Refractory Adult Acute Lymphoblastic Leukemia

  17. Dendritic Cell-Based Immunotherapy for Myeloid Leukemias

    PubMed Central

    Schürch, Christian M.; Riether, Carsten; Ochsenbein, Adrian F.

    2013-01-01

    Acute and chronic myeloid leukemia (AML, CML) are hematologic malignancies arising from oncogene-transformed hematopoietic stem/progenitor cells known as leukemia stem cells (LSCs). LSCs are selectively resistant to various forms of therapy including irradiation or cytotoxic drugs. The introduction of tyrosine kinase inhibitors has dramatically improved disease outcome in patients with CML. For AML, however, prognosis is still quite dismal. Standard treatments have been established more than 20 years ago with only limited advances ever since. Durable remission is achieved in less than 30% of patients. Minimal residual disease (MRD), reflected by the persistence of LSCs below the detection limit by conventional methods, causes a high rate of disease relapses. Therefore, the ultimate goal in the treatment of myeloid leukemia must be the eradication of LSCs. Active immunotherapy, aiming at the generation of leukemia-specific cytotoxic T cells (CTLs), may represent a powerful approach to target LSCs in the MRD situation. To fully activate CTLs, leukemia antigens have to be successfully captured, processed, and presented by mature dendritic cells (DCs). Myeloid progenitors are a prominent source of DCs under homeostatic conditions, and it is now well established that LSCs and leukemic blasts can give rise to “malignant” DCs. These leukemia-derived DCs can express leukemia antigens and may either induce anti-leukemic T cell responses or favor tolerance to the leukemia, depending on co-stimulatory or -inhibitory molecules and cytokines. This review will concentrate on the role of DCs in myeloid leukemia immunotherapy with a special focus on their generation, application, and function and how they could be improved in order to generate highly effective and specific anti-leukemic CTL responses. In addition, we discuss how DC-based immunotherapy may be successfully integrated into current treatment strategies to promote remission and potentially cure myeloid leukemias

  18. Dendritic cell-based immunotherapy for myeloid leukemias.

    PubMed

    Schürch, Christian M; Riether, Carsten; Ochsenbein, Adrian F

    2013-12-31

    Acute and chronic myeloid leukemia (AML, CML) are hematologic malignancies arising from oncogene-transformed hematopoietic stem/progenitor cells known as leukemia stem cells (LSCs). LSCs are selectively resistant to various forms of therapy including irradiation or cytotoxic drugs. The introduction of tyrosine kinase inhibitors has dramatically improved disease outcome in patients with CML. For AML, however, prognosis is still quite dismal. Standard treatments have been established more than 20 years ago with only limited advances ever since. Durable remission is achieved in less than 30% of patients. Minimal residual disease (MRD), reflected by the persistence of LSCs below the detection limit by conventional methods, causes a high rate of disease relapses. Therefore, the ultimate goal in the treatment of myeloid leukemia must be the eradication of LSCs. Active immunotherapy, aiming at the generation of leukemia-specific cytotoxic T cells (CTLs), may represent a powerful approach to target LSCs in the MRD situation. To fully activate CTLs, leukemia antigens have to be successfully captured, processed, and presented by mature dendritic cells (DCs). Myeloid progenitors are a prominent source of DCs under homeostatic conditions, and it is now well established that LSCs and leukemic blasts can give rise to "malignant" DCs. These leukemia-derived DCs can express leukemia antigens and may either induce anti-leukemic T cell responses or favor tolerance to the leukemia, depending on co-stimulatory or -inhibitory molecules and cytokines. This review will concentrate on the role of DCs in myeloid leukemia immunotherapy with a special focus on their generation, application, and function and how they could be improved in order to generate highly effective and specific anti-leukemic CTL responses. In addition, we discuss how DC-based immunotherapy may be successfully integrated into current treatment strategies to promote remission and potentially cure myeloid leukemias.

  19. Fatal stimulation of acute myeloid leukemia blasts by pegfilgrastim.

    PubMed

    Duval, Celine; Boucher, Stephanie; Moulin, Jean-Charles; Gourieux, Benedicte; Mauvieux, Laurent; Leveque, Dominique; Herbrecht, Raoul

    2014-11-01

    We herein report the case of a male patient with acute myeloid leukemia with fatal outcome attributable to pharmacokinetics of pegfilgrastim. An unexplained blast proliferation in a patient with acute myeloid leukemia following cytotoxic induction chemotherapy was investigated in depth. Myeloblast hyperstimulation was likely related to pegfilgrastim, the long half-life of which extended the duration of side-effects, resulting in massive and rapidly fatal leukemia cell proliferation. Pegfilgrastim can cause unexpected deleterious effects in acute myeloid leukemia. We, thus, recommend administering drugs with a shorter half-life, such as filgrastim or lenograstim, to reduce infection incidence in patients receiving myelosuppressive chemotherapy associated with a clinically significant incidence of febrile neutropenia. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  20. Entinostat and Sorafenib Tosylate in Treating Patients With Advanced or Metastatic Solid Tumors or Refractory or Relapsed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-09-18

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; Recurrent Adult Acute Myeloid Leukemia; Unspecified Adult Solid Tumor, Protocol Specific

  1. Perinatal risk factors for acute myeloid leukemia.

    PubMed

    Crump, Casey; Sundquist, Jan; Sieh, Weiva; Winkleby, Marilyn A; Sundquist, Kristina

    2015-12-01

    Infectious etiologies have been hypothesized for acute leukemias because of their high incidence in early childhood, but have seldom been examined for acute myeloid leukemia (AML). We conducted the first large cohort study to examine perinatal factors including season of birth, a proxy for perinatal infectious exposures, and risk of AML in childhood through young adulthood. A national cohort of 3,569,333 persons without Down syndrome who were born in Sweden in 1973-2008 were followed up for AML incidence through 2010 (maximum age 38 years). There were 315 AML cases in 69.7 million person-years of follow-up. We found a sinusoidal pattern in AML risk by season of birth (P < 0.001), with peak risk among persons born in winter. Relative to persons born in summer (June-August), incidence rate ratios for AML were 1.72 (95 % CI 1.25-2.38; P = 0.001) for winter (December-February), 1.37 (95 % CI 0.99-1.90; P = 0.06) for spring (March-May), and 1.27 (95 % CI 0.90-1.80; P = 0.17) for fall (September-November). Other risk factors for AML included high fetal growth, high gestational age at birth, and low maternal education level. These findings did not vary by sex or age at diagnosis. Sex, birth order, parental age, and parental country of birth were not associated with AML. In this large cohort study, birth in winter was associated with increased risk of AML in childhood through young adulthood, possibly related to immunologic effects of early infectious exposures compared with summer birth. These findings warrant further investigation of the role of seasonally varying perinatal exposures in the etiology of AML.

  2. Early Discharge and Outpatients Care in Patients With Myelodysplastic Syndrome or Acute Myeloid Leukemia Previously Treated With Intensive Chemotherapy

    ClinicalTrials.gov

    2015-02-05

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia

  3. Myeloid Sarcoma in an Eyelid That Developed during Chemotherapy for Acute Myeloid Leukemia

    PubMed Central

    Kang, Hyera; Takahashi, Yasuhiro; Takahashi, Emiko; Kakizaki, Hirohiko

    2016-01-01

    An 80-year-old female presented with a mass in the left upper eyelid margin that had developed during chemotherapy for acute myeloid leukemia. The mass was elastic, hard, and pinkish, with a relatively smooth surface but without madarosis. The histopathological findings corresponded to a myeloid sarcoma. No blast cells were shown in the peripheral blood at the time of biopsy, and she subsequently underwent an azacitidine injection regimen. The size of the eyelid tumor decreased 3 months after the biopsy, when the course of azacitidine injections was completed. However, acute myeloid leukemia recurred, and the patient died PMID:26889156

  4. Isolated Uterine Myeloid Sarcoma Preceding the Diagnosis of Acute Myeloid Leukemia.

    PubMed

    Aleem, Aamer; Aziz, Shahid; Hussain, Sajjad; Algahtani, Fatmah; Alsaleh, Khalid

    2016-06-01

    Myeloid sarcoma (MS) is an extramedullary solid tumor composed of leukemic myeloid cells. MS is an uncommon tumor complicating acute myeloid leukemia (AML), or less often myelodysplestic syndrome (MDS) and myeloproliferative disorders. Rarely, MS may precede the systemic onset of AML, which usually follows within months. We report a 36 year-old lady who presented with a cervical-uterine mass, which proved to be MS. Initially, she had no systemic AMLand was treated with hysterectomy and systemic chemotherapy. She developed bilateral-flank pain and renal impairment after 9 months. Imaging revealed a soft-tissue mass in the para-aortic and peri-sacral region with bilateral hydronephrosis. Biopsy from the mass confirmed recurrence of MS. Bone marrow (BM) biopsy revealed 20% blasts consistent with AML. She was treated with aggressive chemotherapy and local radiotherapy. Despite these measures, she died of progressive disease. MS should be considered and treated as systemic AML, rather than an isolated mass; and we discuss management issues in such patients.

  5. Decitabine and Total-Body Irradiation Followed By Donor Bone Marrow Transplant and Cyclophosphamide in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-01-09

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  6. An HSEF for murine myeloid leukemia

    SciTech Connect

    Bond, V.P.; Cronkite, E.P.; Bullis, J.E.; Wuu, C.S.; Marino, S.A.; Zaider, M.

    1996-10-01

    In the past decade, a large amount of effort has gone into the development of hit size effectiveness functions (HSEFs), with the ultimate aim of replacing the present absorbed dose-RBE-Q system. However, the absorbed dose determined at the tissue level is incapable of providing information on single hits on (doses to) the single cell. As a result, it is necessary to resort to microdosimetry, which is capable of providing not only the number of hits on cells, but the distribution of hit sizes as well. From this information, an HSEF can be derived. However, to date there have been no sets of data available on animals exposed to radiations of several qualities, and for which microdosimetric data were available. The objective of the present set of experiments was to remedy this situation. Large numbers of mice were exposed to radiations of several different qualities, and were observed throughout their entire lifespan for the appearance of myeloid leukemia. The HSEF developed for this neoplasm is presented and discussed.

  7. The allometry of chronic myeloid leukemia.

    PubMed

    Pacheco, Jorge M; Traulsen, Arne; Dingli, David

    2009-08-07

    Chronic myeloid leukemia (CML) is an acquired neoplastic hematopoietic stem cell (HSC) disorder characterized by the expression of the BCR-ABL oncoprotein. This gene product is necessary and sufficient to explain the chronic phase of CML. The only known cause of CML is radiation exposure leading to a mutation of at least one HSC, although the vast majority of patients with CML do not have a history of radiation exposure. Nonetheless, in humans, significant radiation exposure (after exposure to atomic bomb fallout) leads to disease diagnosis in 3-5 years. In murine models, disease dynamics are much faster and CML is fatal over the span of a few months. Our objective is to develop a model that accounts for CML across all mammals. In the following, we combine a model of CML dynamics in humans with allometric scaling of hematopoiesis across mammals to illustrate the natural history of chronic phase CML in various mammals. We show how a single cell can lead to a fatal illness in mice and humans but a higher burden of CML stem cells is necessary to induce disease in larger mammals such as elephants. The different dynamics of the disease is rationalized in terms of mammalian mass. Our work illustrates the relevance of animal models to understand human disease and highlights the importance of considering the re-scaling of the dynamics that accrues to the same biological process when planning experiments involving different species.

  8. Diffuse Alveolar Hemorrhage in Acute Myeloid Leukemia.

    PubMed

    Nanjappa, Sowmya; Jeong, Daniel K; Muddaraju, Manjunath; Jeong, Katherine; Hill, Ebone D; Greene, John N

    2016-07-01

    Diffuse alveolar hemorrhage is a potentially fatal pulmonary disease syndrome that affects individuals with hematological and nonhematological malignancies. The range of inciting factors is wide for this syndrome and includes thrombocytopenia, underlying infection, coagulopathy, and the frequent use of anticoagulants, given the high incidence of venous thrombosis in this population. Dyspnea, fever, and cough are commonly presenting symptoms. However, clinical manifestations can be variable. Obvious bleeding (hemoptysis) is not always present and can pose a potential diagnostic challenge. Without prompt treatment, hypoxia that rapidly progresses to respiratory failure can occur. Diagnosis is primarily based on radiological and bronchoscopic findings. This syndrome is especially common in patients with hematological malignancies, given an even greater propensity for thrombocytopenia as a result of bone marrow suppression as well as the often prolonged immunosuppression in this patient population. The syndrome also has an increased incidence in individuals with hematological malignancies who have received a bone marrow transplant. We present a case series of 5 patients with acute myeloid leukemia presenting with diffuse alveolar hemorrhage at our institution. A comparison of clinical manifestations, radiographic findings, treatment course, and outcomes are described. A review of the literature and general overview of the diagnostic evaluation, differential diagnoses, pathophysiology, and treatment of this syndrome are discussed.

  9. Optimized Treatment Schedules for Chronic Myeloid Leukemia

    PubMed Central

    He, Qie; Dingli, David; Foo, Jasmine; Leder, Kevin Zox

    2016-01-01

    Over the past decade, several targeted therapies (e.g. imatinib, dasatinib, nilotinib) have been developed to treat Chronic Myeloid Leukemia (CML). Despite an initial response to therapy, drug resistance remains a problem for some CML patients. Recent studies have shown that resistance mutations that preexist treatment can be detected in a substantial number of patients, and that this may be associated with eventual treatment failure. One proposed method to extend treatment efficacy is to use a combination of multiple targeted therapies. However, the design of such combination therapies (timing, sequence, etc.) remains an open challenge. In this work we mathematically model the dynamics of CML response to combination therapy and analyze the impact of combination treatment schedules on treatment efficacy in patients with preexisting resistance. We then propose an optimization problem to find the best schedule of multiple therapies based on the evolution of CML according to our ordinary differential equation model. This resulting optimization problem is nontrivial due to the presence of ordinary different equation constraints and integer variables. Our model also incorporates drug toxicity constraints by tracking the dynamics of patient neutrophil counts in response to therapy. We determine optimal combination strategies that maximize time until treatment failure on hypothetical patients, using parameters estimated from clinical data in the literature. PMID:27764087

  10. Chronic myeloid leukemia data from India

    PubMed Central

    Bansal, Shweta; Prabhash, Kumar; Parikh, Purvish

    2013-01-01

    In an effort to collaborate the data of chronic myeloid leukemia (CML) patient from all over India,meeting was conceived by ICON (Indian Cooperative Oncology Network) in 2010. This article presents the summarized picture of the data presented in the meeting. In the meeting 8115 patients data was presented and 18 centres submitted their manuscripts comprising of 6677 patients. This data represents large series of patients from all over the country treated on day to day clinical practice and presents the actual outcomes of CML patients in India. The compilation of data confirms the younger age at presentation, increased incidence of resistance and poor outcomes in patients with late chronic phase. It also addresses the issues like Glivec versus Generic drug outcomes, safety of Imatinib during pregnancy and mutational analysis among resistant patients. It concludes that survival and quality of life of CML patients in India has improved over the years especially when treated in early chronic phase. The generic drug is a good option where original is unable to reach the patient due to various reasons. Hopefully, this effort will provide a platform to conduct systematic studies in learning the best treatment options among CML patients in Indian settings. PMID:24516297

  11. Identification of de Novo Fanconi Anemia in Younger Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-13

    Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Fanconi Anemia; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Anemia With Ringed Sideroblasts; Secondary Myelodysplastic Syndromes; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  12. MicroRNA profiling can classify acute leukemias of ambiguous lineage as either acute myeloid leukemia or acute lymphoid leukemia.

    PubMed

    de Leeuw, David C; van den Ancker, Willemijn; Denkers, Fedor; de Menezes, Renée X; Westers, Theresia M; Ossenkoppele, Gert J; van de Loosdrecht, Arjan A; Smit, Linda

    2013-04-15

    Classification of acute leukemia is based on the commitment of leukemic cells to the myeloid or the lymphoid lineage. However, a small percentage of acute leukemia cases lack straightforward immunophenotypical lineage commitment. These leukemias of ambiguous lineage represent a heterogeneous category of acute leukemia that cannot be classified as either acute myeloid leukemia (AML) or acute lymphoid leukemia (ALL). The lack of clear classification of acute leukemias of ambiguous lineage as either AML or ALL is a hurdle in treatment choice for these patients. Here, we compared the microRNA (miRNA) expression profiles of 17 cases with acute leukemia of ambiguous lineage and 16 cases of AML, B-cell acute lymphoid leukemia (B-ALL), and T-cell acute lymphoid leukemia (T-ALL). We show that leukemias of ambiguous lineage do not segregate as a separate entity but exhibit miRNA expression profiles similar to AML, B-ALL, or T-ALL. We show that by using only 5 of the most lineage-discriminative miRNAs, we are able to define acute leukemia of ambiguous lineage as either AML or ALL. Our results indicate the presence of a myeloid or lymphoid lineage-specific genotype, as reflected by miRNA expression, in these acute leukemias despite their ambiguous immunophenotype. miRNA-based classification of acute leukemia of ambiguous lineage might be of additional value in therapeutic decision making.

  13. Genome Wide Mapping of NR4A Binding Reveals Cooperativity with ETS Factors to Promote Epigenetic Activation of Distal Enhancers in Acute Myeloid Leukemia Cells

    PubMed Central

    Duren, Ryan P.; Boudreaux, Seth P.; Conneely, Orla M.

    2016-01-01

    Members of the NR4A subfamily of orphan nuclear receptors regulate cell fate decisions via both genomic and non-genomic mechanisms in a cell and tissue selective manner. NR4As play a key role in maintenance of hematopoietic stem cell homeostasis and are critical tumor suppressors of acute myeloid leukemia (AML). Expression of NR4As is broadly silenced in leukemia initiating cell enriched populations from human patients relative to normal hematopoietic stem/progenitor cells. Rescue of NR4A expression in human AML cells inhibits proliferation and reprograms AML gene signatures via transcriptional mechanisms that remain to be elucidated. By intersecting an acutely regulated NR4A1 dependent transcriptional profile with genome wide NR4A binding distribution, we now identify an NR4A targetome of 685 genes that are directly regulated by NR4A1. We show that NR4As regulate gene transcription primarily through interaction with distal enhancers that are co-enriched for NR4A1 and ETS transcription factor motifs. Using a subset of NR4A activated genes, we demonstrate that the ETS factors ERG and FLI-1 are required for activation of NR4A bound enhancers and NR4A target gene induction. NR4A1 dependent recruitment of ERG and FLI-1 promotes binding of p300 histone acetyltransferase to epigenetically activate NR4A bound enhancers via acetylation at histone H3K27. These findings disclose novel epigenetic mechanisms by which NR4As and ETS factors cooperate to drive NR4A dependent gene transcription in human AML cells. PMID:26938745

  14. Acute Myeloid Leukemia: Focus on Novel Therapeutic Strategies

    PubMed Central

    Lin, Tara L.; Levy, M. Yair

    2012-01-01

    Acute myeloid leukemia (AML) is a heterogeneous disease with variable clinical outcomes. Cytogenetic analysis reveals which patients may have favorable risk disease, but 5-year survival in this category is only approximately 60%, with intermediate and poor risk groups faring far worse. Advances in our understanding of the biology of leukemia pathogenesis and prognosis have not been matched with clinical improvements. Unsatisfactory outcomes persist for the majority of patients with AML, particularly the elderly. Novel agents and treatment approaches are needed in the induction, post-remission and relapsed settings. The additions of clofarabine for relapsed or refractory disease and the hypomethylating agents represent recent advances. Clinical trials of FLT3 inhibitors have yielded disappointing results to date, with ongoing collaborations attempting to identify the optimal role for these agents. Potential leukemia stem cell targeted therapies and treatments in the setting of minimal residual disease are also under investigation. In this review, we will discuss recent advances in AML treatment and novel therapeutic strategies. PMID:22654526

  15. MEK Inhibitor MEK162, Idarubicin, and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-01-26

    Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  16. DNA profiling analysis of 100 consecutive de novo acute myeloid leukemia cases reveals patterns of genomic instability that affect all cytogenetic risk groups.

    PubMed

    Suela, J; Alvarez, S; Cifuentes, F; Largo, C; Ferreira, B I; Blesa, D; Ardanaz, M; García, R; Marquez, J A; Odero, M D; Calasanz, M J; Cigudosa, J C

    2007-06-01

    We have carried out a high-resolution whole genome DNA profiling analysis on 100 bone marrow samples from a consecutive series of de novo acute myeloid leukemia (AML) cases. After discarding copy number changes that are known to be genetic polymorphisms, we found that genomic aberrations (GA) in the form of gains or losses of genetic material were present in 74% of the samples, with a median of 2 GA per case (range 0-35). In addition to the cytogenetically detected aberration, GA were present in cases from all cytogenetic prognostic groups: 79% in the favorable group, 60% in the intermediate group (including 59% of cases with normal karyotype) and 83% in the adverse group. Five aberrant deleted regions were recurrently associated with cases with a highly aberrant genome (e.g., a 1.5 Mb deletion at 17q11.2 and a 750 kb deletion at 5q31.1). Different degrees of genomic instability showed a statistically significant impact on survival curves, even within the normal karyotype cases. This association was independent of other clinical and genetic parameters. Our study provides, for the first time, a detailed picture of the nature and frequency of DNA copy number aberrations in de novo AML.

  17. Vertigo as the First Sign of Chronic Myeloid Leukemia: A Case Report and Literature Review

    PubMed Central

    Martín-Hernández, Rubén; Macías-Rodríguez, Diego Hernando; Martín-Sánchez, Víctor; Cordero-Civantos, Cristina; Santa Cruz-Ruiz, Santiago; Batuecas-Caletrio, Ángel

    2013-01-01

    Acute vestibular deficit as the first sign of leukemia is extremely rare. The literature shows some cases of sudden hearing loss accompanied by instability and associated with hyperviscosity syndrome. We present the case of a patient who presents a harmonic vestibular deficit of the right ear. The complementary studies revealed an abnormally high level of leukocytes. A peripheral blood cytogenetic analysis is performed due to a high suspicion of leukemia, and the results show BCR/ABL fusion gene with a cut point in the M-BCR region, which confirms the diagnosis of chronic myeloid leukemia. In this case we detail the importance of taking hematological disorders into consideration in the differential diagnosis of patients with otoneurological symptoms, and we also review the etiopathogenic mechanisms, symptoms, diagnosis, and therapeutic options for chronic myeloid leukemia with sudden hearing loss and vertigo. PMID:23476855

  18. Laboratory-Treated T Cells in Treating Patients With High-Risk Relapsed Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Chronic Myelogenous Leukemia Previously Treated With Donor Stem Cell Transplant

    ClinicalTrials.gov

    2017-01-05

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Myelodysplastic Syndrome; Childhood Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Secondary Acute Myeloid Leukemia; Therapy-Related Acute Myeloid Leukemia

  19. Leukomogenic factors downregulate heparanase expression in acute myeloid leukemia cells

    SciTech Connect

    Eshel, Rinat; Ben-Zaken, Olga; Vainas, Oded; Nadir, Yona; Minucci, Saverio; Polliack, Aaron; Naparstek, Ella; Vlodavsky, Israel; Katz, Ben-Zion; E-mail: bkatz@tasmc.healt.gov.il

    2005-10-07

    Heparanase is a heparan sulfate-degrading endoglycosidase expressed by mature monocytes and myeloid cells, but not by immature hematopoietic progenitors. Heparanase gene expression is upregulated during differentiation of immature myeloid cells. PML-RAR{alpha} and PLZF-RAR{alpha} fusion gene products associated with acute promyelocytic leukemia abrogate myeloid differentiation and heparanase expression. AML-Eto, a translocation product associated with AML FAB M2, also downregulates heparanase gene expression. The common mechanism that underlines the activity of these three fusion gene products involves the recruitment of histone deacetylase complexes to specific locations within the DNA. We found that retinoic acid that dissociates PML-RAR{alpha} from the DNA, and which is used to treat acute promyelocytic leukemia patients, restores heparanase expression to normal levels in an acute promyelocytic leukemia cell line. The retinoic acid effects were also observed in primary acute promyelocytic leukemia cells and in a retinoic acid-treated acute promyelocytic leukemia patient. Histone deacetylase inhibitor reverses the downregulation of heparanase expression induced by the AML-Eto fusion gene product in M2 type AML. In summary, we have characterized a link between leukomogenic factors and the downregulation of heparanase in myeloid leukemic cells.

  20. Cyclosporine, Pravastatin Sodium, Etoposide, and Mitoxantrone Hydrochloride in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-06-27

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  1. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations

    PubMed Central

    Lindsley, R. Coleman; Mar, Brenton G.; Mazzola, Emanuele; Grauman, Peter V.; Shareef, Sarah; Allen, Steven L.; Pigneux, Arnaud; Wetzler, Meir; Stuart, Robert K.; Erba, Harry P.; Damon, Lloyd E.; Powell, Bayard L.; Lindeman, Neal; Steensma, David P.; Wadleigh, Martha; DeAngelo, Daniel J.; Neuberg, Donna

    2015-01-01

    Acute myeloid leukemia (AML) can develop after an antecedent myeloid malignancy (secondary AML [s-AML]), after leukemogenic therapy (therapy-related AML [t-AML]), or without an identifiable prodrome or known exposure (de novo AML). The genetic basis of these distinct pathways of AML development has not been determined. We performed targeted mutational analysis of 194 patients with rigorously defined s-AML or t-AML and 105 unselected AML patients. The presence of a mutation in SRSF2, SF3B1, U2AF1, ZRSR2, ASXL1, EZH2, BCOR, or STAG2 was >95% specific for the diagnosis of s-AML. Analysis of serial samples from individual patients revealed that these mutations occur early in leukemogenesis and often persist in clonal remissions. In t-AML and elderly de novo AML populations, these alterations define a distinct genetic subtype that shares clinicopathologic properties with clinically confirmed s-AML and highlights a subset of patients with worse clinical outcomes, including a lower complete remission rate, more frequent reinduction, and decreased event-free survival. This trial was registered at www.clinicaltrials.gov as #NCT00715637. PMID:25550361

  2. Therapeutic Effects of Myeloid Cell Leukemia-1 siRNA on Human Acute Myeloid Leukemia Cells

    PubMed Central

    Karami, Hadi; Baradaran, Behzad; Esfahani, Ali; Sakhinia, Masoud; Sakhinia, Ebrahim

    2014-01-01

    Purpose: Up-regulation of Mcl-1, a known anti-apoptotic protein, is associated with the survival and progression of various malignancies including leukemia. The aim of this study was to explore the effect of Mcl-1 small interference RNA (siRNA) on the proliferation and apoptosis of HL-60 acute myeloid leukemia (AML) cells. Methods: siRNA transfection was performed using Lipofectamine™2000 reagent. Relative mRNA and protein expressions were quantified by quantitative real-time PCR and Western blotting, respectively. Trypan blue assay was performed to assess tumor cell proliferation after siRNA transfection. The cytotoxic effect of Mcl-1 siRNA on leukemic cells was measured using MTT assay. Apoptosis was detected using ELISA cell death assay. Results: Mcl-1 siRNA clearly lowered both Mcl-1 mRNA and protein levels in a time-dependent manner, leading to marked inhibition of cell survival and proliferation. Furthermore, Mcl-1 down-regulation significantly enhanced the extent of HL-60 apoptotic cells. Conclusion: Our results suggest that the down-regulation of Mcl-1 by siRNA can effectively trigger apoptosis and inhibit the proliferation of leukemic cells. Therefore, Mcl-1 siRNA may be a potent adjuvant in AML therapy. PMID:24754007

  3. Dasatinib-induced chylothorax in chronic myeloid leukemia

    PubMed Central

    Abbas, Shabber Agha; Bhatti, Hammad; Braver, Yvonne; Ali, Sayed K.

    2017-01-01

    Pulmonary adverse events are common abnormalities associated with the use of dasatinib in chronic myeloid leukemia. We present a case of a 69-year-old man who suddenly developed a rare chylothorax pulmonary adverse event following 10 months of dasatinib treatment. PMID:28127140

  4. Acute myeloid leukemia therapeutics: CARs in the driver's seat.

    PubMed

    Mardiros, Armen; Brown, Christine E; Budde, L Elizabeth; Wang, Xiuli; Forman, Stephen J

    2013-12-01

    Acute myeloid leukemia remains a difficult disease to cure and novel therapeutic approaches are needed. To this end, we developed CD123 chimeric antigen receptor (CAR) redirected T cells which exhibited potent antileukemic activity. We discuss what we learned during the development of CD123 CARs and future directions for this immunotherapy.

  5. Small molecule activation of NOTCH signaling inhibits acute myeloid leukemia

    PubMed Central

    Ye, Qi; Jiang, Jue; Zhan, Guanqun; Yan, Wanyao; Huang, Liang; Hu, Yufeng; Su, Hexiu; Tong, Qingyi; Yue, Ming; Li, Hua; Yao, Guangmin; Zhang, Yonghui; Liu, Hudan

    2016-01-01

    Aberrant activation of the NOTCH signaling pathway is crucial for the onset and progression of T cell leukemia. Yet recent studies also suggest a tumor suppressive role of NOTCH signaling in acute myeloid leukemia (AML) and reactivation of this pathway offers an attractive opportunity for anti-AML therapies. N-methylhemeanthidine chloride (NMHC) is a novel Amaryllidaceae alkaloid that we previously isolated from Zephyranthes candida, exhibiting inhibitory activities in a variety of cancer cells, particularly those from AML. Here, we report NMHC not only selectively inhibits AML cell proliferation in vitro but also hampers tumor development in a human AML xenograft model. Genome-wide gene expression profiling reveals that NMHC activates the NOTCH signaling. Combination of NMHC and recombinant human NOTCH ligand DLL4 achieves a remarkable synergistic effect on NOTCH activation. Moreover, pre-inhibition of NOTCH by overexpression of dominant negative MAML alleviates NMHC-mediated cytotoxicity in AML. Further mechanistic analysis using structure-based molecular modeling as well as biochemical assays demonstrates that NMHC docks in the hydrophobic cavity within the NOTCH1 negative regulatory region (NRR), thus promoting NOTCH1 proteolytic cleavage. Our findings thus establish NMHC as a potential NOTCH agonist that holds great promises for future development as a novel agent beneficial to patients with AML. PMID:27211848

  6. Azacitidine in Combination With Mitoxantrone, Etoposide Phosphate, and Cytarabine in Treating Patients With Relapsed and Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-01-31

    Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21); (q22; q22.1); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22.3;q23.3); MLLT3-KMT2A; Adult Acute Promyelocytic Leukemia With PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia

  7. Clofarabine, Cytarabine, and Filgrastim Followed by Infusion of Non-HLA Matched Ex Vivo Expanded Cord Blood Progenitors in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-08-13

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  8. Small-molecule Hedgehog inhibitor attenuates the leukemia-initiation potential of acute myeloid leukemia cells.

    PubMed

    Fukushima, Nobuaki; Minami, Yosuke; Kakiuchi, Seiji; Kuwatsuka, Yachiyo; Hayakawa, Fumihiko; Jamieson, Catoriona; Kiyoi, Hitoshi; Naoe, Tomoki

    2016-10-01

    Aberrant activation of the Hedgehog signaling pathway has been implicated in the maintenance of leukemia stem cell populations in several model systems. PF-04449913 (PF-913) is a selective, small-molecule inhibitor of Smoothened, a membrane protein that regulates the Hedgehog pathway. However, details of the proof-of-concept and mechanism of action of PF-913 following administration to patients with acute myeloid leukemia (AML) are unclear. This study examined the role of the Hedgehog signaling pathway in AML cells, and evaluated the in vitro and in vivo effects of the Smoothened inhibitor PF-913. In primary AML cells, activation of the Hedgehog signaling pathway was more pronounced in CD34(+) cells than CD34(-) cells. In vitro treatment with PF-913 induced a decrease in the quiescent cell population accompanied by minimal cell death. In vivo treatment with PF-913 attenuated the leukemia-initiation potential of AML cells in a serial transplantation mouse model, while limiting reduction of tumor burden in a primary xenotransplant system. Comprehensive gene set enrichment analysis revealed that PF-913 modulated self-renewal signatures and cell cycle progression. Furthermore, PF-913 sensitized AML cells to cytosine arabinoside, and abrogated resistance to cytosine arabinoside in AML cells cocultured with HS-5 stromal cells. These findings imply that pharmacologic inhibition of Hedgehog signaling attenuates the leukemia-initiation potential, and also enhanced AML therapy by sensitizing dormant leukemia stem cells to chemotherapy and overcoming resistance in the bone marrow microenvironment. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  9. Monoclonal Antibody Therapy in Treating Patients With Chronic Lymphocytic Leukemia, Lymphocytic Lymphoma, Acute Lymphoblastic Leukemia, or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-06-03

    Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Splenic Marginal Zone Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma

  10. Contribution of Protein Tyrosine Phosphateses to the Ontogeny and Progression of Chronic Myeloid Leukemia

    DTIC Science & Technology

    2006-04-01

    potential caused of the reduced phoshorylation of the JAK kinases in CML. 15. SUBJECT TERMS TYROSINE PHOSPHATASE SIGNALING JAK STAT CANCER LEUKEMIA ...1-0837 TITLE: Contribution of Protein Tyrosine Phosphateses to the Ontogeny and Progression of Chronic Myeloid Leukemia ...Contribution of Protein Tyrosine Phosphateses to the Ontogeny and Progression of 5a. CONTRACT NUMBER Chronic Myeloid Leukemia 5b. GRANT NUMBER

  11. Clofarabine or Daunorubicin Hydrochloride and Cytarabine Followed By Decitabine or Observation in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-09-16

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  12. Reduced Intensity Donor Peripheral Blood Stem Cell Transplant in Treating Patients With De Novo or Secondary Acute Myeloid Leukemia in Remission

    ClinicalTrials.gov

    2017-01-25

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia

  13. cDNA cloning, tissue distribution, and chromosomal localization of myelodysplasia/Myeloid Leukemia Factor 2 (MLF2)

    SciTech Connect

    Kuefer, M.U.; Valentine, V.; Behm, F.G.

    1996-07-15

    A fusion gene between nucleophosmin (NPM) and myelodysplasia/myeloid leukemia factor 1 (MLF1) and myelodysplasia/myeloid leukemia factor 1 (MLF1) is formed by a recurrent t(3;5)(q25.1;q34) in myelodysplastic syndrome and acute myeloid leukemia. Here we report the identification of a novel gene, MLF2, which contains an open reading frame of 744 bp encoding a 248-amino-acid protein highly related to the previously identified MLF1 protein (63% similarity, 40% identity). In contrast to the tissue-restricted expression pattern of MLF1, and MLF2 messenger RNA is expressed ubiquitously. The MLF2 gene locus was mapped by fluorescence in situ hybridization to human chromosome 12p13, a chromosomal region frequently involved in translocations and deletions in acute leukemias of lymphoid or myeloid lineage. In a physical map of chromosome 12, MLF2 was found to reside on the yeast artificial chromosome clone 765b9. Southern blotting analysis of malignant cell DNAs prepared from a series of acute lymphoblastic leukemia cases with translocations involving chromosome arm 12p, as well as a group of acute myeloid leukemias with various cytogenetic abnormalities, failed to reveal MLF2 gene rearrangements. 19 refs., 2 figs.

  14. Evolution of myeloid leukemia in children with Down syndrome.

    PubMed

    Saida, Satoshi

    2016-04-01

    Children with Down syndrome (DS) have a markedly increased risk of leukemia. They are at particular risk of acute megakaryoblastic leukemia, known as myeloid leukemia associated with DS (ML-DS), the development of which is closely linked to a preceding temporary form of neonatal leukemia called transient abnormal myelopoiesis (TAM). Findings from recent clinical and laboratory studies suggest that constitutional trisomy 21 and GATA1 mutation(s) cause TAM, and that additional genetic alteration(s) including those in epigenetic regulators and signaling molecules are involved in the progression from TAM to ML-DS. Thus, this disease progression represents an important model of multi-step leukemogenesis. The present review focuses on the evolutionary process of TAM to ML-DS, and advances in the understanding of perturbed hematopoiesis in DS with respect to GATA1 mutation and recent findings, including cooperating genetic events, are discussed.

  15. Clofarabine and Cytarabine in Treating Older Patients With Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndromes That Have Relapsed or Not Responded to Treatment

    ClinicalTrials.gov

    2013-08-06

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Myelodysplastic Syndrome With Isolated Del(5q); Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia

  16. Methylation status of the promoter region of the human frizzled 9 gene in acute myeloid leukemia.

    PubMed

    Zhang, Yingjie; Jiang, Qi; Kong, Xiaolin; Yang, Lili; Hu, Wanzhen; Lv, Chengfang; Li, Yinghua

    2016-08-01

    The FZD9 gene is located at chromosome 7q11.23, and has been indicated to be a tumor suppressor gene. The present study examined the involvement of FZD9 promoter methylation in the downregulation of FZD9 expression in leukemia cells. The expression of the FZD9 gene was absent in various leukemic cell lines, while it was restored following treatment with DNA demethylating agent 5‑aza‑2'‑deoxycytidine. Bisulfite sequencing analysis of the FZD9 promoter region showed that it was partially methylated in cell lines in which FZD9 gene was not expressed. Thus, DNA methylation in the promoter region may lead to inactivation of the FZD9 gene, which may represent and aberration associated with leukemia, since DNA was not methylated in normal peripheral blood mononuclear cells. Methylation‑specific polymerase chain reaction analysis revealed that the promoter region of the FZD9 gene was frequently methylated in primary or relapse acute myeloid leukemia (52.9%; excluding acute promyelocytic leukemia); however, methylation was infrequent in B‑cell acute lymphocytic leukemia (5.6%). In conclusion, the present study indicated that the methylation profile of the FZD9 gene corresponded to that of a candidate tumor‑suppressor gene in acute myeloid leukemia.

  17. Genomics in acute myeloid leukemia: from identification to personalization.

    PubMed

    Martin, James M; Winer, Eric S

    2015-11-02

    Acute Myeloid Leukemia (AML) is an aggressive bone marrow malignancy that is fatal if left untreated. Previous classification was strictly based on morphology, which gave little information in terms of prognosis or guide to treatment. Recent research has provided vital information into the chromosomal and molecular pathogenesis of leukemia development. The discovery of these abnormalities via proteomics and genomics have provided two key insights. First, these novel discoveries provide prognostic significance into the predictive result of chemotherapy. Second, these chromosomal and protein abnormalities have provided potential drug targets for new treatment modalities. This article will elaborate on many of these new molecular findings and discuss their implications on the treatment of AML.

  18. Acute myeloid leukemia: advancing clinical trials and promising therapeutics

    PubMed Central

    Daver, Naval; Cortes, Jorge; Kantarjian, Hagop; Ravandi, Farhad

    2016-01-01

    Recent progress in understanding the biology of acute myeloid leukemia (AML) and the identification of targetable driver mutations, leukemia specific antigens and signal transduction pathways has ushered in a new era of therapy. In many circumstances the response rates with such targeted or antibody-based therapies are superior to those achieved with standard therapy and with decreased toxicity. In this review we discuss novel therapies in AML with a focus on two major areas of unmet need: (1) single agent and combination strategies to improve frontline therapy in elderly patients with AML and (2) molecularly targeted therapies in the frontline and salvage setting in all patients with AML. PMID:26910051

  19. Combination Chemotherapy With or Without PSC 833, Peripheral Stem Cell Transplantation, and/or Interleukin-2 in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-06-03

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Erythroid Leukemia (M6); Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monoblastic Leukemia and Acute Monocytic Leukemia (M5); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monoblastic Leukemia and Acute Monocytic Leukemia (M5); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Childhood Myelodysplastic Syndromes; de Novo Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  20. Acute myeloid leukemia cells polarize macrophages towards a leukemia supporting state in a Growth factor independence 1 dependent manner

    PubMed Central

    Al-Matary, Yahya S.; Botezatu, Lacramioara; Opalka, Bertram; Hönes, Judith M.; Lams, Robert F.; Thivakaran, Aniththa; Schütte, Judith; Köster, Renata; Lennartz, Klaus; Schroeder, Thomas; Haas, Rainer; Dührsen, Ulrich; Khandanpour, Cyrus

    2016-01-01

    The growth of malignant cells is not only driven by cell-intrinsic factors, but also by the surrounding stroma. Monocytes/Macrophages play an important role in the onset and progression of solid cancers. However, little is known about their role in the development of acute myeloid leukemia, a malignant disease characterized by an aberrant development of the myeloid compartment of the hematopoietic system. It is also unclear which factors are responsible for changing the status of macrophage polarization, thus supporting the growth of malignant cells instead of inhibiting it. We report herein that acute myeloid leukemia leads to the invasion of acute myeloid leukemia-associated macrophages into the bone marrow and spleen of leukemic patients and mice. In different leukemic mouse models, these macrophages support the in vitro expansion of acute myeloid leukemia cell lines better than macrophages from non-leukemic mice. The grade of macrophage infiltration correlates in vivo with the survival of the mice. We found that the transcriptional repressor Growth factor independence 1 is crucial in the process of macrophage polarization, since its absence impedes macrophage polarization towards a leukemia supporting state and favors an anti-tumor state both in vitro and in vivo. These results not only suggest that acute myeloid leukemia-associated macrophages play an important role in the progression of acute myeloid leukemia, but also implicate Growth factor independence 1 as a pivotal factor in macrophage polarization. These data may provide new insights and opportunities for novel therapies for acute myeloid leukemia. PMID:27390361

  1. Monitoring imatinib plasma concentrations in chronic myeloid leukemia

    PubMed Central

    Martins, Darlize Hübner; Wagner, Sandrine Comparsi; dos Santos, Tamyris Vianna; Lizot, Lilian de Lima Feltraco; Antunes, Marina Venzon; Capra, Marcelo; Linden, Rafael

    2011-01-01

    Imatinib has proved to be effective in the treatment of chronic myeloid leukemia, but plasma levels above 1,000 ng/mL must be achieved to optimize activity. Therapeutic drug monitoring of imatinib is useful for patients that do not present clinical response. There are several analytical methods to measure imatinib in biosamples, which are mainly based on liquid chromatography with mass spectrometric or diode array spectrophotometric detection. The former is preferred due to its lower cost and wider availability. The present manuscript presents a review of the clinical and analytical aspects of the therapeutic drug monitoring of imatinib in the treatment of chronic myeloid leukemia. The review includes references published over the last 10 years. There is evidence that the monitoring of plasmatic levels of imatinib is an useful alternative, especially considering the wide pharmacokinetic variability of this drug. PMID:23049322

  2. Acute myeloid leukemia with diabetes insipidus and hypophyseal infiltration.

    PubMed

    Harrup, Rosemary; Pham, My; McInerney, Gerald

    2016-06-01

    It has been reported that acute myeloid leukemia (AML) patients with t(3;3)(q21;q26) translocation and monosomy 7 abnormalities may present with diabetes insipidus (DI) without neurohypophysis changes on imaging. We report a second Australian AML case with central diabetes insipidus (CDI) that presented with radiological abnormalities but without the genetic changes as previously reported. © 2014 Wiley Publishing Asia Pty Ltd.

  3. Acute pediatric leg compartment syndrome in chronic myeloid leukemia.

    PubMed

    Cohen, Eric; Truntzer, Jeremy; Trunzter, Jeremy; Klinge, Steve; Schwartz, Kevin; Schiller, Jonathan

    2014-11-01

    Acute compartment syndrome is an orthopedic surgical emergency and may result in devastating complications in the setting of delayed or missed diagnosis. Compartment syndrome has a variety of causes, including posttraumatic or postoperative swelling, external compression, burns, bleeding disorders, and ischemia-reperfusion injury. Rare cases of pediatric acute compartment syndrome in the setting of acute myeloid leukemia and, even less commonly, chronic myeloid leukemia have been reported. The authors report the first known case of pediatric acute compartment syndrome in a patient without a previously known diagnosis of chronic myeloid leukemia. On initial examination, an 11-year-old boy presented with a 2-week history of progressive left calf pain and swelling after playing soccer. Magnetic resonance imaging scan showed a hematoma in the left superficial posterior compartment. The patient had unrelenting pain, intermittent lateral foot parethesias, and inability to bear weight. Subsequently, he was diagnosed with acute compartment syndrome and underwent fasciotomy and evacuation of a hematoma. Laboratory results showed an abnormal white blood cell count of 440×10(9)/L (normal, 4.4-11×10(9)) and international normalized ratio of 1.3 (normal, 0.8-1.2). Further testing included the BCR-ABL1 fusion gene located on the Philadelphia chromosome, leading to a diagnosis of chronic myeloid leukemia. Monotherapy with imatinib mesylate (Gleevec) was initiated. This report adds another unique case to the growing literature on compartment syndrome in the pediatric population and reinforces the need to consider compartment syndrome, even in unlikely clinical scenarios. Copyright 2014, SLACK Incorporated.

  4. MiRNA182 regulates percentage of myeloid and erythroid cells in chronic myeloid leukemia.

    PubMed

    Arya, Deepak; Sachithanandan, Sasikala P; Ross, Cecil; Palakodeti, Dasaradhi; Li, Shang; Krishna, Sudhir

    2017-01-12

    The deregulation of lineage control programs is often associated with the progression of haematological malignancies. The molecular regulators of lineage choices in the context of tyrosine kinase inhibitor (TKI) resistance remain poorly understood in chronic myeloid leukemia (CML). To find a potential molecular regulator contributing to lineage distribution and TKI resistance, we undertook an RNA-sequencing approach for identifying microRNAs (miRNAs). Following an unbiased screen, elevated miRNA182-5p levels were detected in Bcr-Abl-inhibited K562 cells (CML blast crisis cell line) and in a panel of CML patients. Earlier, miRNA182-5p upregulation was reported in several solid tumours and haematological malignancies. We undertook a strategy involving transient modulation and CRISPR/Cas9 (clustered regularly interspersed short palindromic repeats)-mediated knockout of the MIR182 locus in CML cells. The lineage contribution was assessed by methylcellulose colony formation assay. The transient modulation of miRNA182-5p revealed a biased phenotype. Strikingly, Δ182 cells (homozygous deletion of MIR182 locus) produced a marked shift in lineage distribution. The phenotype was rescued by ectopic expression of miRNA182-5p in Δ182 cells. A bioinformatic analysis and Hes1 modulation data suggested that Hes1 could be a putative target of miRNA182-5p. A reciprocal relationship between miRNA182-5p and Hes1 was seen in the context of TK inhibition. In conclusion, we reveal a key role for miRNA182-5p in restricting the myeloid development of leukemic cells. We propose that the Δ182 cell line will be valuable in designing experiments for next-generation pharmacological interventions.

  5. MS-275 and GM-CSF in Treating Patients With Myelodysplastic Syndrome and/or Relapsed or Refractory Acute Myeloid Leukemia or Acute Lymphocytic Leukemia

    ClinicalTrials.gov

    2016-09-20

    Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Ringed Sideroblasts; Refractory Cytopenia With Multilineage Dysplasia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  6. Acute myeloid leukemia targets for bispecific antibodies

    PubMed Central

    Hoseini, S S; Cheung, N K

    2017-01-01

    Despite substantial gains in our understanding of the genomics of acute myelogenous leukemia (AML), patient survival remains unsatisfactory especially among the older age group. T cell-based therapy of lymphoblastic leukemia is rapidly advancing; however, its application in AML is still lagging behind. Bispecific antibodies can redirect polyclonal effector cells to engage chosen targets on leukemia blasts. When the effector cells are natural-killer cells, both antibody-dependent and antibody-independent mechanisms could be exploited. When the effectors are T cells, direct tumor cytotoxicity can be engaged followed by a potential vaccination effect. In this review, we summarize the AML-associated tumor targets and the bispecific antibodies that have been studied. The potentials and limitations of each of these systems will be discussed. PMID:28157217

  7. Lateral pharyngeal wall myeloid sarcoma as a relapse of acute biphenotypic leukemia: a case report and review of the literature

    PubMed Central

    2013-01-01

    Introduction Myeloid sarcoma is a rare extramedullary malignant tumor composed of immature myeloid cells. The tumor can affect any part of the body. Involvement of the oral cavity and nasopharynx has been reported in 50 cases. We report a case describing myeloid sarcoma affecting the lateral pharyngeal wall. Case presentation A 31-year-old Arabian man who had acute biphenotypic leukemia treated with chemoradiation and allogeneic stem cell transplant was referred to our department with sore throat and a mass lesion in his lateral pharyngeal wall after failed antibiotic therapy. Biopsy of his lesion revealed myeloid sarcoma. He was referred to the Department of Hematology-Oncology for further evaluation that showed no other lesions. The patient was diagnosed with isolated extramedullary myeloid sarcoma of his lateral pharyngeal wall as a relapse of acute biphenotypic leukemia and managed with chemoradiation. Conclusions Myeloid sarcoma of the pharynx is a rarely encountered malignancy in the practice of otolaryngology-head and neck surgery. It can develop de novo, but may also represent relapse of leukemia. Thus, it should be considered in the differential diagnosis of any pharyngeal lesions in patients with leukemia. PMID:24377982

  8. [Molecular genetics in chronic myeloid leukemia with variant Ph translocation].

    PubMed

    Wu, Wei; Li, Jian-yong; Zhu, Yu; Qiu, Hai-rong; Pan, Jin-lan; Xu, Wei; Chen, Li-juan; Shen, Yun-feng; Xue, Yong-quan

    2007-08-01

    To explore the value of fluorescence in situ hybridization (FISH) and multiplex fluorescence in situ hybridization (M-FISH) techniques in the detection of genetic changes in chronic myeloid leukemia (CML) with variant Philadelphia translocation (vPh). Cytogenetic preparations from 10 CML patients with vPh confirmed by R banding were assayed with dual color dual fusion FISH technique. If only one fusion signal was detected in interphase cells, metaphase cells were observed to determine if there were derivative chromosome 9[der (9)] deletions. Meanwhile, the same cytogenetic preparations were assayed with M-FISH technique. Of the 10 CML patients with vPh, 5 were detected with der (9) deletions by FISH technique. M-FISH technique revealed that besides the chromosome 22, chromosomes 1, 3, 5, 6, 8, 10, 11 and 17 were also involved in the vPh. M-FISH technique also detected the abnormalities which were not found with conventional cytogenetics (CC), including two never reported abnormalities. The combination of CC, FISH and M-FISH technique could refine the genetic diagnosis of CML with vPh.

  9. 47,XYY karyotype in acute myeloid leukemia.

    PubMed

    Palanduz, S; Aktan, M; Ozturk, S; Tutkan, G; Cefle, K; Pekcelen, Y

    1998-10-01

    A case of acute myelomonocytic leukemia (AMMoL; M4) with a 47,XYY karyotype is reported. This chromosome aneuploidy was found in both bone marrow cells and mitogen-stimulated lymphocytes. The contribution of XYY chromosomal constitution in the pathogenesis of AMMoL is controversial.

  10. Differential niche and Wnt requirements during acute myeloid leukemia progression.

    PubMed

    Lane, Steven W; Wang, Yingzi J; Lo Celso, Cristina; Ragu, Christine; Bullinger, Lars; Sykes, Stephen M; Ferraro, Francesca; Shterental, Sebastian; Lin, Charles P; Gilliland, D Gary; Scadden, David T; Armstrong, Scott A; Williams, David A

    2011-09-08

    Hematopoietic stem cells (HSCs) engage in complex bidirectional signals with the hematopoietic microenvironment (HM), and there is emerging evidence that leukemia stem cells (LSCs) may use similar interactions. Using a syngeneic retroviral model of MLL-AF9 induced acute myeloid leukemia (AML), we have identified 2 different stages of leukemia progression, propagated by "pre-LSCs" and established leukemia (LSCs) and compared the homing properties of these distinctive entities to that of normal HSCs. The homing and microlocalization of pre-LSCs was most similar to long-term HSCs and was dependent on cell-intrinsic Wnt signaling. In contrast, the homing of established LSCs was most similar to that of committed myeloid progenitors and distinct from HSCs. Although osteoblast-derived Dickkopf-1, a potent Wnt inhibitor known to impair HSC function, dramatically impaired normal HSC localization within the bone marrow, it did not affect pre-LSCs, LSC homing, or AML development. Mechanistically, cell-intrinsic Wnt activation was observed in human and murine AML samples, explaining the independence of MLL-AF9 LSCs from niche-derived Wnt signals. These data identify differential engagement of HM associated with leukemic progression and identify an LSC niche that is physically distinct and independent of the constraints of Wnt signaling that apply to normal HSCs.

  11. Differential niche and Wnt requirements during acute myeloid leukemia progression

    PubMed Central

    Lane, Steven W.; Wang, Yingzi J.; Lo Celso, Cristina; Ragu, Christine; Bullinger, Lars; Sykes, Stephen M.; Ferraro, Francesca; Shterental, Sebastian; Lin, Charles P.; Gilliland, D. Gary

    2011-01-01

    Hematopoietic stem cells (HSCs) engage in complex bidirectional signals with the hematopoietic microenvironment (HM), and there is emerging evidence that leukemia stem cells (LSCs) may use similar interactions. Using a syngeneic retroviral model of MLL-AF9 induced acute myeloid leukemia (AML), we have identified 2 different stages of leukemia progression, propagated by “pre-LSCs” and established leukemia (LSCs) and compared the homing properties of these distinctive entities to that of normal HSCs. The homing and microlocalization of pre-LSCs was most similar to long-term HSCs and was dependent on cell-intrinsic Wnt signaling. In contrast, the homing of established LSCs was most similar to that of committed myeloid progenitors and distinct from HSCs. Although osteoblast-derived Dickkopf-1, a potent Wnt inhibitor known to impair HSC function, dramatically impaired normal HSC localization within the bone marrow, it did not affect pre-LSCs, LSC homing, or AML development. Mechanistically, cell-intrinsic Wnt activation was observed in human and murine AML samples, explaining the independence of MLL-AF9 LSCs from niche-derived Wnt signals. These data identify differential engagement of HM associated with leukemic progression and identify an LSC niche that is physically distinct and independent of the constraints of Wnt signaling that apply to normal HSCs. PMID:21765021

  12. GATA2 Inhibition Sensitizes Acute Myeloid Leukemia Cells to Chemotherapy

    PubMed Central

    Cao, Yanan; Xuan, Binbin; Fan, Yingchao; Sheng, Huiming; Zhuang, Wenfang

    2017-01-01

    Drug resistance constitutes one of the main obstacles for clinical recovery of acute myeloid leukemia (AML) patients. Therefore, the treatment of AML requires new strategies, such as adding a third drug. To address whether GATA2 could act as a regulator of chemotherapy resistance in human leukemia cells, we observed KG1a cells and clinical patients’ AML cells with a classic drug (Cerubidine) and Gefitinib. After utilizing chemotherapy, the expression of GATA2 and its target genes (EVI, SCL and WT1) in surviving AML cells and KG1a cells were significantly enhanced to double and quadrupled compared to its original level respectively. Furthermore, with continuous chemotherapeutics, AML cells with GATA2 knockdown or treated with GATA2 inhibitor (K1747) almost eliminated with dramatically reduced expression of WT1, SCL, EVI, and significantly increased apoptotic population. Therefore, we propose that reducing GATA2 expression or inhibition of its transcription activity can relieve the drug resistance of acute myeloid leukemia cells and it would be helpful for eliminating the leukemia cells in patients. PMID:28114350

  13. Expression of BCR/ABL and BCL-2 in myeloid progenitors leads to myeloid leukemias

    PubMed Central

    Jaiswal, Siddhartha; Traver, David; Miyamoto, Toshihiro; Akashi, Koichi; Lagasse, Eric; Weissman, Irving L.

    2003-01-01

    Chronic myelogenous leukemia is a myeloproliferative disorder (MPD) that, over time, progresses to acute leukemia. Both processes are closely associated with the t(9;22) chromosomal translocation that creates the BCR/ABL fusion gene in hematopoietic stem cells (HSCs) and their progeny. Chronic myelogenous leukemia is therefore classified as an HSC disorder in which a clone of multipotent HSCs is likely to be malignantly transformed, although direct evidence for malignant t(9;22)+ HSCs is lacking. To test whether HSC malignancy is required, we generated hMRP8p210BCR/ABL transgenic mice in which expression of BCR/ABL is absent in HSCs and targeted exclusively to myeloid progenitors and their myelomonocytic progeny. Four of 13 BCR/ABL transgenic founders developed a chronic MPD, but only one progressed to blast crisis. To address whether additional oncogenic events are required for progression to acute disease, we crossed hMRP8p210BCR/ABL mice to apoptosis-resistant hMRP8BCL-2 mice. Of 18 double-transgenic animals, 9 developed acute myeloid leukemias that were transplantable to wild-type recipients. Taken together, these data indicate that a MPD can arise in mice without expression of BCR/ABL in HSCs and that additional mutations inhibiting programmed cell death may be critical in the transition of this disease to blast-crisis leukemia. PMID:12890867

  14. Transcription factor AP-2α regulates acute myeloid leukemia cell proliferation by influencing Hoxa gene expression.

    PubMed

    Ding, Xiaofeng; Yang, Zijian; Zhou, Fangliang; Wang, Fangmei; Li, Xinxin; Chen, Cheng; Li, Xiaofeng; Hu, Xiang; Xiang, Shuanglin; Zhang, Jian

    2013-08-01

    Transcription factor AP-2α mediates transcription of a number of genes implicated in mammalian development, cell proliferation and carcinogenesis. In the current study, we identified Hoxa7, Hoxa9 and Hox cofactor Meis1 as AP-2α target genes, which are involved in myeloid leukemogenesis. Luciferase reporter assays revealed that overexpression of AP-2α activated transcription activities of Hoxa7, Hoxa9 and Meis1, whereas siRNA of AP-2α inhibited their transcription activities. We found that AP-2 binding sites in regulatory regions of three genes activated their transcription by mutant analysis and AP-2α could interact with AP-2 binding sites in vivo by chromatin immunoprecipitation (ChIP). Further results showed that the AP-2α shRNA efficiently inhibited mRNA and protein levels of Hoxa7, Hoxa9 and Meis1 in AML cell lines U937 and HL60. Moreover, decreased expression of AP-2α resulted in a significant reduction in the growth and proliferation of AML cells in vitro. Remarkably, AP-2α knockdown leukemia cells exhibit decreased tumorigenicity in vivo compared with controls. Finally, AP-2α and target genes in clinical acute myeloid leukemia samples of M5b subtype revealed variable expression levels and broadly paralleled expression. These data support a role of AP-2α in mediating the expression of Hoxa genes in acute myeloid leukemia to influence the proliferation and cell survival.

  15. Severe Lower Limb Ischemia by Massive Arterial Thrombosis Revealing an Acute Myeloid Leukemia Needing for Leg Amputation: Clinical and Emotional Aspects Related to the Communication with the Patient and His Family

    PubMed Central

    Taormina, Calogero; Mosa, Clara; Di Marco, Floriana; Valentino, Fabrizio; Trizzino, Angela; Guadagna, Paola; Talarico, Francesco

    2016-01-01

    Large vessel thrombosis is a very rare clinical presentation of acute leukemia, generally associated with coagulopathy, usually characteristic of acute promyelocytic leukemia. A 13- year-old boy with a previously undiagnosed acute myeloid leukemia was referred to our hospital with acute ischemia of the right lower limb due to occlusion of the right external iliac artery, treated with emergency double surgical thromboembolectomy and chemotherapy. The thrombotic complication resulted in leg amputation. Now the boy is well in complete remission, with a good social integration and quality of life, 30 months after completing treatment. The report highlights the crucial role of early diagnosis and subsequent chemotherapy in avoiding amputation. We particularly focused critical and emotional aspects related to the communication about the leg amputation with the patient and his family. PMID:28058104

  16. Clofarabine, Cytarabine, and Filgrastim in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia, Advanced Myelodysplastic Syndrome, and/or Advanced Myeloproliferative Neoplasm

    ClinicalTrials.gov

    2016-12-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Refractory Anemia With Excess Blasts; Untreated Adult Acute Myeloid Leukemia; Myeloproliferative Neoplasm With 10% Blasts or Higher

  17. Patient-tailored analysis of minimal residual disease in acute myeloid leukemia using next-generation sequencing.

    PubMed

    Malmberg, Erik B R; Ståhlman, Sara; Rehammar, Anna; Samuelsson, Tore; Alm, Sofie J; Kristiansson, Erik; Abrahamsson, Jonas; Garelius, Hege; Pettersson, Louise; Ehinger, Mats; Palmqvist, Lars; Fogelstrand, Linda

    2017-01-01

    Next-generation sequencing techniques have revealed that leukemic cells in acute myeloid leukemia often are characterized by a limited number of somatic mutations. These mutations can be the basis for the detection of leukemic cells in follow-up samples. The aim of this study was to identify leukemia-specific mutations in cells from patients with acute myeloid leukemia and to use these mutations as markers for minimal residual disease. Leukemic cells and normal lymphocytes were simultaneously isolated at diagnosis from 17 patients with acute myeloid leukemia using fluorescence-activated cell sorting. Exome sequencing of these cells identified 240 leukemia-specific single nucleotide variations and 22 small insertions and deletions. Based on estimated allele frequencies and their accuracies, 191 of these mutations qualified as candidates for minimal residual disease analysis. Targeted deep sequencing with a significance threshold of 0.027% for single nucleotide variations and 0.006% for NPM1 type A mutation was developed for quantification of minimal residual disease. When tested on follow-up samples from a patient with acute myeloid leukemia, targeted deep sequencing of single nucleotide variations as well as NPM1 was more sensitive than minimal residual disease quantification with multiparameter flow cytometry. In conclusion, we here describe how exome sequencing can be used for identification of leukemia-specific mutations in samples already at diagnosis of acute myeloid leukemia. We also show that targeted deep sequencing of such mutations, including single nucleotide variations, can be used for high-sensitivity quantification of minimal residual disease in a patient-tailored manner.

  18. Donor Peripheral Blood Stem Cell Transplant and Pretargeted Radioimmunotherapy in Treating Patients With High-Risk Advanced Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2017-02-27

    Chronic Myelomonocytic Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Cytopenia With Multilineage Dysplasia; Refractory Cytopenia With Multilineage Dysplasia and Ringed Sideroblasts; Secondary Acute Myeloid Leukemia

  19. Umbilical cord blood transplantation in adult myeloid leukemia.

    PubMed

    Tse, W W; Zang, S L; Bunting, K D; Laughlin, M J

    2008-03-01

    Allogeneic hematopoietic stem cell (HSC) transplantation is a life-saving procedure for hematopoietic malignancies, marrow failure syndromes and hereditary immunodeficiency disorders. However, wide application of this procedure is limited by availability of suitable human leucocyte antigen (HLA)-matched adult donors. Umbilical cord blood (UCB) has been increasingly used as an alternative HSC source for patients lacking matched-HSC donors. The clinical experience of using UCB transplantation to treat pediatric acute leukemias has already shown that higher-level HLA-mismatched UCB can be equally as good as or even better than matched HSC. Recently, large registries and multiple single institutional studies conclusively demonstrated that UCB is an acceptable source of HSCs for adult acute leukemia patients who lack HLA-matched donors. These studies will impact the future clinical allogeneic stem cell transplantation for acute myeloid leukemia (AML), which is the most common acute leukemia in adults. UCB has unique advantages of easy procurement, absence of risk to donors, low risk of transmitting infections, immediate availability, greater tolerance of HLA disparity and lower-than-expected incidence of severe graft-versus-host disease. These features of UCB permit successful transplantation available to almost every patient who needs it. We anticipate that using UCB as a HSC source for allogeneic transplantation for adult AML will increase dramatically over the next 5 years, by expanding the available allogeneic donor pool. Clinical studies are needed with focus on disease-specific UCB transplantation outcomes, including AML, acute lymphoblastic leukemia, and lymphoma.

  20. Collaborative Efforts Driving Progress in Pediatric Acute Myeloid Leukemia

    PubMed Central

    Zwaan, C. Michel; Kolb, Edward A.; Reinhardt, Dirk; Abrahamsson, Jonas; Adachi, Souichi; Aplenc, Richard; De Bont, Eveline S.J.M.; De Moerloose, Barbara; Dworzak, Michael; Gibson, Brenda E.S.; Hasle, Henrik; Leverger, Guy; Locatelli, Franco; Ragu, Christine; Ribeiro, Raul C.; Rizzari, Carmelo; Rubnitz, Jeffrey E.; Smith, Owen P.; Sung, Lillian; Tomizawa, Daisuke; van den Heuvel-Eibrink, Marry M.; Creutzig, Ursula; Kaspers, Gertjan J.L.

    2015-01-01

    Diagnosis, treatment, response monitoring, and outcome of pediatric acute myeloid leukemia (AML) have made enormous progress during the past decades. Because AML is a rare type of childhood cancer, with an incidence of approximately seven occurrences per 1 million children annually, national and international collaborative efforts have evolved. This overview describes these efforts and includes a summary of the history and contributions of each of the main collaborative pediatric AML groups worldwide. The focus is on translational and clinical research, which includes past, current, and future clinical trials. Separate sections concern acute promyelocytic leukemia, myeloid leukemia of Down syndrome, and relapsed AML. A plethora of novel antileukemic agents that have emerged, including new classes of drugs, are summarized as well. Finally, an important aspect of the treatment of pediatric AML—supportive care—and late effects are discussed. The future is bright, with a wide range of emerging innovative therapies and with more and more international collaboration that ultimately aim to cure all children with AML, with fewer adverse effects and without late effects. PMID:26304895

  1. Functional Integration of Acute Myeloid Leukemia into the Vascular Niche

    PubMed Central

    Leon, Ronald P.; Masri, Azzah Al; Clark, Hilary A.; Asbaghi, Steven A.; Tyner, Jeffrey W.; Dunlap, Jennifer; Fan, Guang; Kovacsovics, Tibor; Liu, Qiuying; Meacham, Amy; Hamlin, Kimberly L.; Hromas, Robert A.; Scott, Edward W.; Fleming, William H.

    2014-01-01

    Vascular endothelial cells are a critical component of the hematopoietic microenvironment that regulates blood cell production. Recent studies suggest the existence of functional cross-talk between hematologic malignancies and vascular endothelium. Here, we show that human acute myeloid leukemia (AML) localizes to the vasculature in both patients and in a xenograft model. A significant number of vascular tissue-associated AML cells (V-AML) integrate into vasculature in vivo and can fuse with endothelial cells. V-AML cells acquire several endothelial cell-like characteristics, including the up-regulation of CD105, a receptor associated with activated endothelium. Remarkably, endothelial-integrated V-AML shows an almost 4-fold reduction in proliferative activity compared to non-vascular associated AML. Primary AML cells can be induced to down regulate the expression of their hematopoietic markers in vitro and differentiate into phenotypically and functionally-defined endothelial-like cells. After transplantation, these leukemia-derived endothelial cells are capable of giving rise to AML. Taken together, these novel functional interactions between AML cells and normal endothelium along with the reversible endothelial cell potential of AML suggest that vascular endothelium may serve as a previously unrecognized reservoir for acute myeloid leukemia. PMID:24637335

  2. [Chronic myeloid leukemia in an adult with common variable immunodeficiency].

    PubMed

    O'Farrill-Romanillos, Patricia María; Galindo-Pacheco, Lucy Vania; Amaya-Mejía, Adela Sisy; Campos-Romero, Freya Helena; Mendoza-Reyna, Laura Dafne; Pérez-Rocha, Fernando; Segura-Méndez, Nora Hilda

    2014-01-01

    Common variable immunodeficiency is a primary immunodeficiency, in which from 70 to 80 % of patients have tumors and 25 % of cases are associated with autoimmune diseases. Common variable immunodeficiency patients have a higher incidence of neoplasms, with a risk 12-18 times higher than the general population. There are few cases of common variable immunodeficiency patients with leukemia. Female of 36 years old, with left upper quadrant pain, early satiety, weight loss of 8 kg in three months and splenomegaly. The complete blood count showed: leukocytosis 206 000/mL, with 8 % blasts, platelets 530 000/mL and hemoglobin 8 mg/dL. Abdominal ultrasound: 19??12 cm splenomegaly. Karyotype BCR/ABL IS 64.20 %, 100 % Philadelphia chromosome. The diagnosis was of chronic myeloid leukemia. Given the presence of recurrent respiratory tract infection, frequent diarrheas and reduced concentrations of IgG, IgM and IgA, common variable immunodeficiency was diagnosed and human immunoglobulin was used successfully. The association between chronic myeloid leukemia and common variable immunodefficiency is unusual. Given the high frequency of hematological neoplasm in common variable immunodeficiency patients, we suggest that hematological patients with repeated infections and decreased concentrations of immunoglobulin be referred to an immunological evaluation.

  3. Migratory large vessel vasculitis preceding acute myeloid leukemia: a case report.

    PubMed

    Chandratilleke, Dinusha; Anantharajah, Anthea; Vicaretti, Mauro; Benson, Warwick; Berglund, Lucinda J

    2017-03-16

    Large vessel vasculitis is a rare disorder usually occurring in the context of the autoimmune conditions of giant cell arteritis and Takayasu's arteritis. Case reports have described large vessel vasculitis occurring in individuals with myelodysplastic syndrome, preceding transformation to acute myeloid leukemia. A 56-year-old Afghanistan-born woman presented with fever, a tender left carotid artery, and raised inflammatory markers. Computed tomography revealed thickening of the wall of her left carotid artery. Her symptoms resolved spontaneously; however, they recurred weeks later on the contralateral side, along with abdominal pain after eating. Further imaging with computed tomography and positron emission tomography demonstrated resolution of her left carotid artery abnormality, but new wall thickening and inflammation in her right carotid artery, abdominal aorta, and superior mesenteric artery. She was diagnosed as having large vessel vasculitis, which resolved with corticosteroids and methotrexate. Five months later, she developed acute myeloid leukemia. She had no known history of myelodysplastic syndrome at the time of diagnosis with vasculitis. Large vessel vasculitis in older individuals presenting with atypical clinical features, such as a migratory pattern of affected vessels, vessel wall tenderness, and marked systemic inflammation, should prompt a search for underlying myelodysplasia. Clinicians should be vigilant for progression to acute myeloid leukemia.

  4. Synchronous Occurrence of Chronic Myeloid Leukemia and Mantle Cell Lymphoma

    PubMed Central

    Li, Ying; Gray, Brian Allen; May, William Stratford

    2017-01-01

    Chronic myeloid leukemia (CML) and mantle cell lymphoma (MCL) are hematologic malignancies that originate from different oligopotent progenitor stem cells, namely, common myeloid and lymphoid progenitor cells, respectively. Although blastic transformation of CML can occur in the lymphoid lineage and CML has been related to non-Hodgkin lymphoma on transformation, to our knowledge, de novo and synchronous occurrence of CML and MCL has not been reported. Herein, we report the first case of synchronous CML and MCL in an otherwise healthy 38-year-old man. Potential etiologies and pathological relationships between the two malignancies are explored, including the possibility that the downstream effects of BCR-ABL may link it to an overexpression of cyclin D1, which is inherent to the etiology of MCL. PMID:28270940

  5. Targeting Aberrant Epigenetic Networks Mediated by PRMT1 and KDM4C in Acute Myeloid Leukemia

    PubMed Central

    Cheung, Ngai; Fung, Tsz Kan; Zeisig, Bernd B.; Holmes, Katie; Rane, Jayant K.; Mowen, Kerri A.; Finn, Michael G.; Lenhard, Boris; Chan, Li Chong; So, Chi Wai Eric

    2016-01-01

    Summary Transcriptional deregulation plays a major role in acute myeloid leukemia, and therefore identification of epigenetic modifying enzymes essential for the maintenance of oncogenic transcription programs holds the key to better understanding of the biology and designing effective therapeutic strategies for the disease. Here we provide experimental evidence for the functional involvement and therapeutic potential of targeting PRMT1, an H4R3 methyltransferase, in various MLL and non-MLL leukemias. PRMT1 is necessary but not sufficient for leukemic transformation, which requires co-recruitment of KDM4C, an H3K9 demethylase, by chimeric transcription factors to mediate epigenetic reprogramming. Pharmacological inhibition of KDM4C/PRMT1 suppresses transcription and transformation ability of MLL fusions and MOZ-TIF2, revealing a tractable aberrant epigenetic circuitry mediated by KDM4C and PRMT1 in acute leukemia. PMID:26766589

  6. Myelodysplastic Syndromes and Acute Myeloid Leukemia in the Elderly.

    PubMed

    Klepin, Heidi D

    2016-02-01

    Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are hematologic diseases that frequently affect older adults. Treatment is challenging. Management of older adults with MDS and AML needs to be individualized, accounting for both the heterogeneity of disease biology and patient characteristics, which can influence life expectancy and treatment tolerance. Clinical trials accounting for the heterogeneity of tumor biology and physiologic changes of aging are needed to define optimal standards of care. This article highlights key evidence related to the management of older adults with MDS and AML and highlights future directions for research.

  7. Current trends in molecular diagnostics of chronic myeloid leukemia.

    PubMed

    Vinhas, Raquel; Cordeiro, Milton; Pedrosa, Pedro; Fernandes, Alexandra R; Baptista, Pedro V

    2017-08-01

    Nearly 1.5 million people worldwide suffer from chronic myeloid leukemia (CML), characterized by the genetic translocation t(9;22)(q34;q11.2), involving the fusion of the Abelson oncogene (ABL1) with the breakpoint cluster region (BCR) gene. Early onset diagnosis coupled to current therapeutics allow for a treatment success rate of 90, which has focused research on the development of novel diagnostics approaches. In this review, we present a critical perspective on current strategies for CML diagnostics, comparing to gold standard methodologies and with an eye on the future trends on nanotheranostics.

  8. Preclinical approaches in chronic myeloid leukemia: from cells to systems.

    PubMed

    Clarke, Cassie J; Holyoake, Tessa L

    2017-03-01

    Advances in the design of targeted therapies for the treatment of chronic myeloid leukemia (CML) have transformed the prognosis for patients diagnosed with this disease. However, leukemic stem cell persistence, drug intolerance, drug resistance, and advanced-phase disease represent unmet clinical needs demanding the attention of CML investigators worldwide. The availability of appropriate preclinical models is essential to efficiently translate findings from the bench to the clinic. Here we review the current approaches taken to preclinical work in the CML field, including examples of commonly used in vivo models and recent successes from systems biology-based methodologies.

  9. How I monitor residual disease in chronic myeloid leukemia

    PubMed Central

    2009-01-01

    Molecular monitoring in chronic myeloid leukemia (CML) is a powerful tool to document treatment responses and predict relapse. Nonetheless, the proliferation of clinical trials and “guidelines” using the molecular endpoints of CML has outpaced practice norms, commercial laboratory application, and reimbursement practices, leaving some anxiety (if not confusion and despair) about molecular monitoring in the day-to-day treatment of CML. This article will try to address these issues by describing how I monitor CML, which, in summary, is with interest and without panic. PMID:19661271

  10. [Nursing diagnosis in adult patients with acute myeloid leukemia].

    PubMed

    de Souza, Luccas Melo; Gorini, Maria Isabel Pinto Coelho

    2006-09-01

    This case study aimed at identifying Nursing Diagnosis (ND) in adult patients with Acute Myeloid Leukemia, with the purpose of contributing to the Systematization of Nurse Care. Interviews and observation were used for data collection, in addition to Nursing Process application. During the three months of data collection, other NDs were obtained by searching the files of the 6 patients. The 32 ND found in this study were grouped according to Maslow's hierarchy of needs. Out of these 32 ND, 15 corresponded to changes in Physiological Needs, and 10 to changes in Protection and Safety Needs.

  11. Monoclonal Antibody Therapy in Treating Patients With Ovarian Epithelial Cancer, Melanoma, Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-01-09

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Melanoma; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer

  12. Sirolimus and Azacitidine in Treating Patients With High Risk Myelodysplastic Syndrome or Acute Myeloid Leukemia That is Recurrent or Not Eligible for Intensive Chemotherapy

    ClinicalTrials.gov

    2016-10-18

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); de Novo Myelodysplastic Syndromes; Myelodysplastic Syndrome With Isolated Del(5q); Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia

  13. Protein IsG15 Modification in the Development and the Treatment of Chronic Myeloid Leukemia

    DTIC Science & Technology

    2005-06-01

    of cancers , especially chronic myeloid leukemia (CML). Although a recently developed new drug - imatinib mesylate (ST1571) has shown tremendous...sensitive and -resistant chronic myelogenous leukemia patients. Cancer Res. 52:1087-1090. 21. Lozzio, C. B. and B. B. Lozzio. 1975. Human chronic...AD Award Number: DAMD17-03-1-0269 TITLE: Protein IsGl5 Modification in the Development and the Treatment of Chronic Myeloid Leukemia PRINCIPAL

  14. Azelaic Acid Exerts Antileukemic Activity in Acute Myeloid Leukemia.

    PubMed

    Pan, Yunbao; Liu, Dong; Wei, Yongchang; Su, Dan; Lu, Chenyang; Hu, Yanchao; Zhou, Fuling

    2017-01-01

    Acute myeloid leukemia (AML) is an acute leukemia common in most adults; its prevalence intensifies with age. The overall survival of AML is very poor because of therapeutic resistance. Azelaic acid (AZA) is non-toxic, non-teratogenic, and non-mutagenic and its antitumor effect on various tumor cells is well established; Nonetheless, its therapeutic effects in AML cells are largely unknown. In this study, it was shown that AZA significantly inhibits the cell viability and induces apoptosis in AML cells in a dose-dependent manner. Additionally, AZA suppressed the expression of phosphorylated Akt, Jab1 and Trx, and this suppression was enhanced by treatment with Jab1 siRNA. Furthermore, AZA sensitized AML cells to Ara-c chemotherapy. The suppressive effect of AZA on tumor growth was examined in vivo by subcutaneously inoculated AML cells in a tumor model using nude mice. These findings indicate that AZA is useful as an effective ingredient in antineoplastic activity.

  15. [Chronic myeloid leukemia: "archetype" of the impact of targeted therapies].

    PubMed

    Nasr, R; Bazarbachi, A

    2012-08-01

    Chronic myeloid leukemia (CML) is a chronic blood disorder characterized by a reciprocal translocation between chromosomes 9 and 22, leading to the creation of a chimeric gene encoding the BCR-ABL fusion protein with a constitutive tyrosine kinase activity. Although long known as a disease with an inexorable progression to acute leukemia, CML history has been significantly improved by the use of imatinib, a tyrosine kinase inhibitor. Imatinib has revolutionized the treatment of CML by transforming it from an invariably fatal disease to a chronic but manageable condition. In fact, the discovery of this class of targeted therapy had an impact not only on the survival of CML patients but also on other scientific and medical fields. This review illustrates the impact of imatinib, the first example of tyrosine kinase inhibitors on the treatment of CML, on the treatment of other cancers, the impact on health systems and on the scientific research in general.

  16. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia

    PubMed Central

    Klco, Jeffery M.; Spencer, David H.; Miller, Christopher A.; Griffith, Malachi; Lamprecht, Tamara L.; O’Laughlin, Michelle; Fronick, Catrina; Magrini, Vincent; Demeter, Ryan T.; Fulton, Robert S.; Eades, William C.; Link, Daniel C.; Graubert, Timothy A.; Walter, Matthew J.; Mardis, Elaine R.; Dipersio, John F.; Wilson, Richard K.; Ley, Timothy J.

    2014-01-01

    Summary The relationships between clonal architecture and functional heterogeneity in acute myeloid leukemia (AML) samples are not yet clear. We used targeted sequencing to track AML subclones identified by whole genome sequencing using a variety of experimental approaches. We found that virtually all AML subclones trafficked from the marrow to the peripheral blood, but some were enriched in specific cell populations. Subclones showed variable engraftment potential in immunodeficient mice. Xenografts were predominantly comprised of a single genetically-defined subclone, but there was no predictable relationship between the engrafting subclone and the evolutionary hierarchy of the leukemia. These data demonstrate the importance of integrating genetic and functional data in studies of primary cancer samples, both in xenograft models and in patients. PMID:24613412

  17. Examining the Origins of Myeloid Leukemia | Center for Cancer Research

    Cancer.gov

    Acute myeloid leukemia or AML, a cancer of the white blood cells, is the most common type of rapidly-growing leukemia in adults. The over-production of white blood cells in the bone marrow inhibits the development of other necessary blood components including red blood cells, which carry oxygen throughout the body, and platelets, which are required for clot formation. The cellular changes that lead to AML disease initiation and progression, however, are not clear. Because of the aging of the U.S. population and AML’s increasing incidence with age, cases of this disease are likely to rise significantly in the near future. Thus, understanding what causes AML should lead to the identification of novel targets and the enhanced treatment of patients.

  18. PU.1 and CEBPA expression in acute myeloid leukemia.

    PubMed

    D'Alò, Francesco; Di Ruscio, Annalisa; Guidi, Francesco; Fabiani, Emiliano; Greco, Mariangela; Rumi, Carlo; Hohaus, Stefan; Voso, Maria Teresa; Leone, Giuseppe

    2008-09-01

    Alterations of the transcription factors CCAAT/enhancer binding protein alpha (CEBPA) and PU.1 have been described in acute myeloid leukemia (AML). We studied CEBPA and PU.1 mRNA levels by real-time RT-PCR in 109 primary AML samples, compared with normal bone marrow and peripheral blood cells. Low PU.1 levels were observed in monoblastic leukemias, while low CEBPA levels were associated with leukopenia at diagnosis and lack of expression of differentiation antigens CD33 and CD11c. We conclude that down-regulation of CEBPA and PU.1 is not a general feature of primary AML, but appears to be restricted to distinct AML subtypes.

  19. Incidence of Acute Myeloid Leukemia after Breast Cancer

    PubMed Central

    Valentini, Caterina Giovanna; Fianchi, Luana; Voso, Maria Teresa; Caira, Morena; Leone, Giuseppe; Pagano, Livio

    2011-01-01

    Breast cancer is the most frequent cancer among women and the leading cause of death among middle-aged women. Early detection by mammography screening and improvement of therapeutic options have increased breast cancer survival rates, with the consequence that late side effects of cancer treatment become increasingly important. In particular, patients treated with adjuvant chemotherapy regimens, commonly including alkylating agents and anthracyclines, are at increased risk of developing leukemia, further enhanced by the use of radiotherapy. In the last few years also the use of growth factors seems to increase the risk of secondary leukemia. The purpose of this review is to update epidemiology of therapy-related myeloid neoplasms occurring in breast cancer patients. PMID:22220266

  20. Allogeneic hematopoietic cell transplantation for acute myeloid leukemia.

    PubMed

    Vyas, Paresh; Appelbaum, Frederick R; Craddock, Charles

    2015-01-01

    Allogeneic stem cell transplantation is an increasingly important treatment option in the management of adult acute myeloid leukemia (AML). The major causes of treatment failure remain disease relapse and treatment toxicity. In this review, Dr Vyas presents an overview of important recent data defining molecular factors associated with treatment failure in AML. He also identifies the emerging importance of leukemia stem cell biology in determining both response to therapy and relapse risk in AML. Dr Appelbaum discusses advances in the design and delivery of both myeloablative and reduced-intensity conditioning regimens, highlighting novel strategies with the potential to improve outcome. Dr Craddock discusses the development of both novel conditioning regimens and post-transplantation strategies aimed at reducing the risk of disease relapse.

  1. Reprint of: Allogeneic hematopoietic cell transplantation for acute myeloid leukemia.

    PubMed

    Vyas, Paresh; Appelbaum, Frederick R; Craddock, Charles

    2015-02-01

    Allogeneic stem cell transplantation is an increasingly important treatment option in the management of adult acute myeloid leukemia (AML). The major causes of treatment failure remain disease relapse and treatment toxicity. In this review, Dr Vyas presents an overview of important recent data defining molecular factors associated with treatment failure in AML. He also identifies the emerging importance of leukemia stem cell biology in determining both response to therapy and relapse risk in AML. Dr Appelbaum discusses advances in the design and delivery of both myeloablative and reduced-intensity conditioning regimens, highlighting novel strategies with the potential to improve outcome. Dr Craddock discusses the development of both novel conditioning regimens and post-transplantation strategies aimed at reducing the risk of disease relapse.

  2. Busulfan, Fludarabine Phosphate, and Anti-Thymocyte Globulin Followed By Donor Stem Cell Transplant and Azacitidine in Treating Patients With High-Risk Myelodysplastic Syndrome and Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-07-25

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21); (q22; q22.1); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22.3;q23.3); MLLT3-KMT2A; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; de Novo Myelodysplastic Syndrome; Myelodysplastic Syndrome With Excess Blasts; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  3. Isocitrate dehydrogenase 1 mutations prime the all-trans retinoic acid myeloid differentiation pathway in acute myeloid leukemia.

    PubMed

    Boutzen, Héléna; Saland, Estelle; Larrue, Clément; de Toni, Fabienne; Gales, Lara; Castelli, Florence A; Cathebas, Mathilde; Zaghdoudi, Sonia; Stuani, Lucille; Kaoma, Tony; Riscal, Romain; Yang, Guangli; Hirsch, Pierre; David, Marion; De Mas-Mansat, Véronique; Delabesse, Eric; Vallar, Laurent; Delhommeau, François; Jouanin, Isabelle; Ouerfelli, Ouathek; Le Cam, Laurent; Linares, Laetitia K; Junot, Christophe; Portais, Jean-Charles; Vergez, François; Récher, Christian; Sarry, Jean-Emmanuel

    2016-04-04

    Acute myeloid leukemia (AML) is characterized by the accumulation of malignant blasts with impaired differentiation programs caused by recurrent mutations, such as the isocitrate dehydrogenase (IDH) mutations found in 15% of AML patients. These mutations result in the production of the oncometabolite (R)-2-hydroxyglutarate (2-HG), leading to a hypermethylation phenotype that dysregulates hematopoietic differentiation. In this study, we identified mutant R132H IDH1-specific gene signatures regulated by key transcription factors, particularly CEBPα, involved in myeloid differentiation and retinoid responsiveness. We show that treatment with all-trans retinoic acid (ATRA) at clinically achievable doses markedly enhanced terminal granulocytic differentiation in AML cell lines, primary patient samples, and a xenograft mouse model carrying mutant IDH1. Moreover, treatment with a cell-permeable form of 2-HG sensitized wild-type IDH1 AML cells to ATRA-induced myeloid differentiation, whereas inhibition of 2-HG production significantly reduced ATRA effects in mutant IDH1 cells. ATRA treatment specifically decreased cell viability and induced apoptosis of mutant IDH1 blasts in vitro. ATRA also reduced tumor burden of mutant IDH1 AML cells xenografted in NOD-Scid-IL2rγ(null)mice and markedly increased overall survival, revealing a potent antileukemic effect of ATRA in the presence of IDH1 mutation. This therapeutic strategy holds promise for this AML patient subgroup in future clinical studies. © 2016 Boutzen et al.

  4. Isocitrate dehydrogenase 1 mutations prime the all-trans retinoic acid myeloid differentiation pathway in acute myeloid leukemia

    PubMed Central

    Boutzen, Héléna; Saland, Estelle; Larrue, Clément; de Toni, Fabienne; Gales, Lara; Castelli, Florence A.; Cathebas, Mathilde; Zaghdoudi, Sonia; Stuani, Lucille; Kaoma, Tony; Riscal, Romain; Yang, Guangli; Hirsch, Pierre; David, Marion; De Mas-Mansat, Véronique; Delabesse, Eric; Vallar, Laurent; Delhommeau, François; Jouanin, Isabelle; Ouerfelli, Ouathek; Le Cam, Laurent; Linares, Laetitia K.; Junot, Christophe; Portais, Jean-Charles; Vergez, François; Récher, Christian

    2016-01-01

    Acute myeloid leukemia (AML) is characterized by the accumulation of malignant blasts with impaired differentiation programs caused by recurrent mutations, such as the isocitrate dehydrogenase (IDH) mutations found in 15% of AML patients. These mutations result in the production of the oncometabolite (R)-2-hydroxyglutarate (2-HG), leading to a hypermethylation phenotype that dysregulates hematopoietic differentiation. In this study, we identified mutant R132H IDH1-specific gene signatures regulated by key transcription factors, particularly CEBPα, involved in myeloid differentiation and retinoid responsiveness. We show that treatment with all-trans retinoic acid (ATRA) at clinically achievable doses markedly enhanced terminal granulocytic differentiation in AML cell lines, primary patient samples, and a xenograft mouse model carrying mutant IDH1. Moreover, treatment with a cell-permeable form of 2-HG sensitized wild-type IDH1 AML cells to ATRA-induced myeloid differentiation, whereas inhibition of 2-HG production significantly reduced ATRA effects in mutant IDH1 cells. ATRA treatment specifically decreased cell viability and induced apoptosis of mutant IDH1 blasts in vitro. ATRA also reduced tumor burden of mutant IDH1 AML cells xenografted in NOD–Scid–IL2rγnull mice and markedly increased overall survival, revealing a potent antileukemic effect of ATRA in the presence of IDH1 mutation. This therapeutic strategy holds promise for this AML patient subgroup in future clinical studies. PMID:26951332

  5. Development of hairy cell leukemia in familial platelet disorder with predisposition to acute myeloid leukemia.

    PubMed

    Toya, Takashi; Yoshimi, Akihide; Morioka, Takehiko; Arai, Shunya; Ichikawa, Motoshi; Usuki, Kensuke; Kurokawa, Mineo

    2014-01-01

    Abstract Familial platelet disorder with predisposition to acute myeloid leukemia (FPD/AML) is an autosomal dominant disorder characterized by mild to moderate thrombocytopenia with or without its impaired function, inherited RUNX1 mutation and high incidence of myeloid malignancy, such as myelodysplastic syndrome or acute myeloid leukemia. A 72-year-old male visited our institute because of gradually progressive pancytopenia and splenomegaly, and was diagnosed as having hairy cell leukemia. He was administered one course of intravenous cladribine (0.12 mg/kg, day 1-5) and achieved hematological complete response. Mutation analyses of RUNX1 gene were underwent because familial history of hematological malignancies evoked a possibility of FPD/AML. As a result, RUNX1 L445P mutation was identified in the peripheral blood and the mutation was considered as germ-line mutation because the same mutation was detected in the buccal mucosa. BRAF V600E mutation was also identified in the peripheral blood but not in the buccal mucosa. To our knowledge, this is the first report of B cell malignancy arising from FPD/AML.

  6. Vorinostat and Decitabine in Treating Patients With Advanced Solid Tumors or Relapsed or Refractory Non-Hodgkin's Lymphoma, Acute Myeloid Leukemia, Acute Lymphocytic Leukemia, or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2014-08-26

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Secondary Acute Myeloid Leukemia; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma

  7. [Bone marrow transplantation in chronic myeloid leukemia].

    PubMed

    Milone, J H; Bordone, J; Etchegoyen, O; Napal, J; Prates, M V; Morales, V H

    1999-01-01

    Chronic Myelogenous Leukemia (CML) is an oncohematological disease characterized by a clonal proliferation concerning the primitive hematopoietic cell. A typical cytogenetic alteration known as Philadelphia Chromosome (Ph1), a 9:22 chromosomic translocation which produces a hybrid gene BCR/ABL, is present in 95% of the patients. Nineteen CML patients (9 female and 10 male) underwent Bone Marrow Transplantation (BMT). Median age was 32 years (range 9 to 47); 15 of them were in chronic phase (CP), and 4 in accelerated phase (AP). At diagnosis, all patients were Ph1+, BCR/ABL+. The conditioning regimen consisted of busulphan and cyclophosphamide while patients in AP received etoposide as well. Seventeen patients received cyclosporine A, methotrexate and methylprednisone as prophylaxis for Graft Versus Host Disease (GVHD) while 2 patients received only the first two drugs. The 9.22 translocation was determined by means of RT-PCT technique using the primers NB1+, Abl3, B2A, CA3 and A2. The sensitivity of the method was 1 x 10(-6). Among the 19 patients who entered the protocol, 14 are alive and in clinical, hematological and cytogenetic remission (Ph1-) and 3 patients died due to acute GVHD, 1 due to graft failure and 1 due to Hemolytic Uremic Syndrome. Of the 4 transplanted patients in AP, 3 are alive and in complete remission. The patients had a 74% survival, with a median follow-up of 655 days. Complete hematopoietic chimerism was demonstrated in 16 patients, with the study of 3 loci, D1S80, APO B and D17S30. No relationship was found between post BMT hybrid BCR/ABL (RT.PCR) persistence and disease relapse; the presence of acute and/or chronic GVHD did not influence the BCR/ABL positivity. In our experience, BMT has proved to be the only therapeutic alternative for CML with complete clinical, hematological and cytogenetic remission and a mean survival of 74%, comparable to the international experience.

  8. [Molecular characterization of atypical chronic myeloid leukemia and chronic neutrophilic leukemia].

    PubMed

    Senín, Alicia; Arenillas, Leonor; Martínez-Avilés, Luz; Fernández-Rodríguez, Concepción; Bellosillo, Beatriz; Florensa, Lourdes; Besses, Carles; Álvarez-Larrán, Alberto

    2015-06-08

    Atypical chronic myeloid leukemia (aCML) and chronic neutrophilic leukemia (CNL) display similar clinical and hematological characteristics. The objective of the present study was to determine the mutational status of SETBP1 and CSF3R in these diseases. The mutational status of SETBP1 and CSF3R was studied in 7 patients with aCML (n = 3), CNL (n = 1) and unclassifiable myeloproliferative neoplasms (MPN-u) (n = 3). Additionally, mutations in ASXL1, SRSF2, IDH1/2, DNMT3A, and RUNX1 were also analyzed. SETBP1 mutations (G870S and G872R) were detected in 2 patients with MPN-u, and one of them also presented mutations in SRSF2 (P95H) and ASXL1 (E635fs). The CNL case showed mutations in CSFR3 (T618I), SETBP1 (G870S) and SRSF2 (P95H). No patient classified as aCML had mutations in SETBP1 or CSF3R. One of the patients with mutations evolved to acute myeloid leukemia, while the other 2 had disease progression without transformation to overt leukemia. The knowledge of the molecular alterations involved in these rare diseases is useful in the diagnosis and may have an impact on both prognosis and therapy. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  9. [Problems in maintenance therapy in acute myeloid leukemias in adults].

    PubMed

    Gürtler, R; Raderecht, C

    1975-01-01

    Problems of maintaining therapy for acute myelocytic leukemias in adults are discussed. The analysis of the maintaining therapy in 22 patients affected with an acute myelocytic leukemia and living for more than 6 months revealed that the interval therapy with a high dosage of cytostatic combinations in the sense of the COAP scheme is preferable compared with the daily administration of 6-mercaptopurin, in addition methotrexate twice a week. Reasons for this are discussed.

  10. Ceramide as a Target of Marine Triterpene Glycosides for Treatment of Human Myeloid Leukemia

    PubMed Central

    Yun, Seong-Hoon; Shin, Sung-Won; Stonik, Valentin A.; Park, Joo-In

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogeneous myeloid clonal disorder exhibiting the accumulation of immature myeloid progenitors in the bone marrow and peripheral blood. Standard AML therapy requires intensive combination chemotherapy, which leads to significant treatment-related toxicity. The search for new, low toxic marine agents, inducing the generation of ceramide in leukemic cells is a new approach to improve the therapy of leukemia. This review focuses on the metabolism of sphingolipids, the role of ceramide in treating leukemia, and the antitumor activity, related to ceramide metabolism, of some marine metabolites, particularly stichoposides, triterpene glycosides extracted from sea cucumbers of the family Stichopodiidae. PMID:27827870

  11. High-throughput profiling of signaling networks identifies mechanism-based combination therapy to eliminate microenvironmental resistance in acute myeloid leukemia.

    PubMed

    Zeng, Zhihong; Liu, Wenbin; Tsao, Twee; Qiu, YiHua; Zhao, Yang; Samudio, Ismael; Sarbassov, Dos D; Kornblau, Steven M; Baggerly, Keith A; Kantarjian, Hagop M; Konopleva, Marina; Andreeff, Michael

    2017-09-01

    The bone marrow microenvironment is known to provide a survival advantage to residual acute myeloid leukemia cells, possibly contributing to disease recurrence. The mechanisms by which stroma in the microenvironment regulates leukemia survival remain largely unknown. Using reverse-phase protein array technology, we profiled 53 key protein molecules in 11 signaling pathways in 20 primary acute myeloid leukemia samples and two cell lines, aiming to understand stroma-mediated signaling modulation in response to the targeted agents temsirolimus (MTOR), ABT737 (BCL2/BCL-XL), and Nutlin-3a (MDM2), and to identify the effective combination therapy targeting acute myeloid leukemia in the context of the leukemia microenvironment. Stroma reprogrammed signaling networks and modified the sensitivity of acute myeloid leukemia samples to all three targeted inhibitors. Stroma activated AKT at Ser473 in the majority of samples treated with single-agent ABT737 or Nutlin-3a. This survival mechanism was partially abrogated by concomitant treatment with temsirolimus plus ABT737 or Nutlin-3a. Mapping the signaling networks revealed that combinations of two inhibitors increased the number of affected proteins in the targeted pathways and in multiple parallel signaling, translating into facilitated cell death. These results demonstrated that a mechanism-based selection of combined inhibitors can be used to guide clinical drug selection and tailor treatment regimens to eliminate microenvironment-mediated resistance in acute myeloid leukemia. Copyright© 2017 Ferrata Storti Foundation.

  12. Familial Aggregation of Acute Myeloid Leukemia and Myelodysplastic Syndromes

    PubMed Central

    Goldin, Lynn R.; Kristinsson, Sigurdur Y.; Liang, Xueying Sharon; Derolf, Åsa R.; Landgren, Ola; Björkholm, Magnus

    2012-01-01

    Purpose Apart from rare pedigrees with multiple cases of acute myeloid leukemia (AML), there is limited data on familial aggregation of AML and myelodysplastic syndromes (MDSs) in the population. Patients and Methods Swedish population-based registry data were used to evaluate risk of AML, MDS, and other malignancies among 24,573 first-degree relatives of 6,962 patients with AML and 1,388 patients with MDS compared with 106,224 first-degree relatives of matched controls. We used a marginal survival model to calculate familial aggregation. Results AML and/or MDS did not aggregate significantly in relatives of patients with AML. There was a modest risk ratio (RR, 1.3; 95% CI, 0.9 to 1.8) in myeloproliferative/myeloid malignancies combined. The risks for any hematologic or any solid tumor were modestly but significantly increased. Relatives of patients with MDS did not show an increased risk for any hematologic tumors. In contrast, we found a significantly increased risk (RR, 6.5; 95% CI, 1.1 to 38.0) of AML/MDS and of all myeloid malignancies combined (RR, 3.1; 95% CI, 1.0 to 9.8) among relatives of patients diagnosed at younger than age 21 years. Conclusion We did not find evidence for familial aggregation of the severe end of the spectrum of myeloid malignancies (AML and MDS). The risks of myeloproliferative neoplasms were modestly increased with trends toward significance, suggesting a possible role of inheritance. In contrast, although limited in sample size, relatives of young patients with AML were at increased risk of AML/MDS, suggesting that germline genes may play a stronger role in these patients. The increased risk of all hematologic malignancies and of solid tumors among relatives of patients with AML suggests that genes for malignancy in general and/or other environmental factors may be shared. PMID:22162584

  13. Molecular dissection of valproic acid effects in acute myeloid leukemia identifies predictive networks.

    PubMed

    Rücker, Frank G; Lang, Katharina M; Fütterer, Markus; Komarica, Vladimir; Schmid, Mathias; Döhner, Hartmut; Schlenk, Richard F; Döhner, Konstanze; Knudsen, Steen; Bullinger, Lars

    2016-07-02

    Histone deacetylase inhibitors (HDACIs) like valproic acid (VPA) display activity in leukemia models and induce tumor-selective cytotoxicity against acute myeloid leukemia (AML) blasts. As there are limited data on HDACIs effects, we aimed to dissect VPA effects in vitro using myeloid cell lines with the idea to integrate findings with in vivo data from AML patients treated with VPA additionally to intensive chemotherapy (n = 12). By gene expression profiling we identified an in vitro VPA response signature enriched for genes/pathways known to be implicated in cell cycle arrest, apoptosis, and DNA repair. Following VPA treatment in vivo, gene expression changes in AML patients showed concordant results with the in vitro VPA response despite concomitant intensive chemotherapy. Comparative miRNA profiling revealed VPA-associated miRNA expression changes likely contributing to a VPA-induced reversion of deregulated gene expression. In addition, we were able to define markers predicting VPA response in vivo such as CXCR4 and LBH. These could be validated in an independent cohort of VPA and intensive chemotherapy treated AML patients (n = 114) in which they were inversely correlated with relapse-free survival. In summary, our data provide new insights into the molecular mechanisms of VPA in myeloid blasts, which might be useful in further advancing HDAC inhibition based treatment approaches in AML.

  14. Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment

    PubMed Central

    Mussai, Francis; De Santo, Carmela; Abu-Dayyeh, Issa; Booth, Sarah; Quek, Lynn; McEwen-Smith, Rosanna M.; Qureshi, Amrana; Dazzi, Francesco; Vyas, Paresh

    2013-01-01

    Acute myeloid leukemia (AML) is the most common acute leukemia in adults and the second most common frequent leukemia of childhood. Patients may present with lymphopenia or pancytopenia at diagnosis. We investigated the mechanisms by which AML causes pancytopenia and suppresses patients’ immune response. This study identified for the first time that AML blasts alter the immune microenvironment through enhanced arginine metabolism. Arginase II is expressed and released from AML blasts and is present at high concentrations in the plasma of patients with AML, resulting in suppression of T-cell proliferation. We extended these results by demonstrating an arginase-dependent ability of AML blasts to polarize surrounding monocytes into a suppressive M2-like phenotype in vitro and in engrafted nonobese diabetic–severe combined immunodeficiency mice. In addition, AML blasts can suppress the proliferation and differentiation of murine granulocyte-monocyte progenitors and human CD34+ progenitors. Finally, the study showed that the immunosuppressive activity of AML blasts can be modulated through small-molecule inhibitors of arginase and inducible nitric oxide synthase, suggesting a novel therapeutic target in AML. The results strongly support the hypothesis that AML creates an immunosuppressive microenvironment that contributes to the pancytopenia observed at diagnosis. PMID:23733335

  15. Secondary acute myeloid leukemia - a single center experience.

    PubMed

    Szotkowski, T; Rohon, P; Zapletalova, L; Sicova, K; Hubacek, J; Indrak, K

    2010-01-01

    Secondary acute myeloid leukemia (sAML) may arise from the previous clonal disorder of hematopoiesis, usually from myelodysplastic syndrome (MDS) or from chronic myeloproliferative neoplasia (cMPN) or after exposure to a leukemogenic agent (previous chemotherapy or radiotherapy, some immunosuppressive drugs or environmental leukemogenic agents). Secondary origin of AML is associated with unfavorable prognosis and it is not considered to be conventionally curable (with the exception of secondary acute promyelocytic leukemia). The presented study is a retrospective analysis of patients diagnosed and treated at the Department of Hemato-Oncology, University Hospital Olomouc in 1996-2008. Over that period of time, a total 574 patients with AML were diagnosed. Of those, 430 patients were diagnosed as having primary AML; in 86 patients, sAML transformed from myelodysplastic syndrome and 58 patients were followed or treated for various malignancies or were treated with potentially leukemogenic agents because of non-malignant disorders. Patients with secondary AML are older and less commonly treated with curative intention than those with primary AML. According to cytogenetic findings, their prognosis is often worse. Complete hematologic remission is achieved with a low probability, relapse of the disease occurs frequently and overall survival is worse in almost all prognostic subgroups. With the exception of secondary acute promyelocytic leukemia, the prognosis of which does not differ from very good prognosis of the primary forms, secondary AML is not considered a conventionally curable disease.

  16. Novel drugs for older patients with acute myeloid leukemia.

    PubMed

    Montalban-Bravo, G; Garcia-Manero, G

    2015-04-01

    Acute myeloid leukemia (AML) is the second most common form of leukemia and the most frequent cause of leukemia-related deaths in the United States. The incidence of AML increases with advancing age and the prognosis for patients with AML worsens substantially with increasing age. Many older patients are ineligible for intensive treatment and require other therapeutic approaches to optimize clinical outcome. To address this treatment gap, novel agents with varying mechanisms of action targeting different cellular processes are currently in development. Hypomethylating agents (azacitidine, decitabine, SGI-110), histone deacetylase inhibitors (vorinostat, pracinostat, panobinostat), FMS-like tyrosine kinase receptor-3 inhibitors (quizartinib, sorafenib, midostaurin, crenolanib), cytotoxic agents (clofarabine, sapacitabine, vosaroxin), cell cycle inhibitors (barasertib, volasertib, rigosertib) and monoclonal antibodies (gentuzumab ozogamicin, lintuzumab-Ac225) represent some of these promising new treatments. This review provides an overview of novel agents that have either completed or are currently in ongoing phase III trials in patients with previously untreated AML for whom intensive treatment is not an option. Other potential drugs in earlier stages of development will also be addressed in this review.

  17. Lysosomal disruption preferentially targets acute myeloid leukemia cells and progenitors

    PubMed Central

    Sukhai, Mahadeo A.; Prabha, Swayam; Hurren, Rose; Rutledge, Angela C.; Lee, Anna Y.; Sriskanthadevan, Shrivani; Sun, Hong; Wang, Xiaoming; Skrtic, Marko; Seneviratne, Ayesh; Cusimano, Maria; Jhas, Bozhena; Gronda, Marcela; MacLean, Neil; Cho, Eunice E.; Spagnuolo, Paul A.; Sharmeen, Sumaiya; Gebbia, Marinella; Urbanus, Malene; Eppert, Kolja; Dissanayake, Dilan; Jonet, Alexia; Dassonville-Klimpt, Alexandra; Li, Xiaoming; Datti, Alessandro; Ohashi, Pamela S.; Wrana, Jeff; Rogers, Ian; Sonnet, Pascal; Ellis, William Y.; Corey, Seth J.; Eaves, Connie; Minden, Mark D.; Wang, Jean C.Y.; Dick, John E.; Nislow, Corey; Giaever, Guri; Schimmer, Aaron D.

    2012-01-01

    Despite efforts to understand and treat acute myeloid leukemia (AML), there remains a need for more comprehensive therapies to prevent AML-associated relapses. To identify new therapeutic strategies for AML, we screened a library of on- and off-patent drugs and identified the antimalarial agent mefloquine as a compound that selectively kills AML cells and AML stem cells in a panel of leukemia cell lines and in mice. Using a yeast genome-wide functional screen for mefloquine sensitizers, we identified genes associated with the yeast vacuole, the homolog of the mammalian lysosome. Consistent with this, we determined that mefloquine disrupts lysosomes, directly permeabilizes the lysosome membrane, and releases cathepsins into the cytosol. Knockdown of the lysosomal membrane proteins LAMP1 and LAMP2 resulted in decreased cell viability, as did treatment of AML cells with known lysosome disrupters. Highlighting a potential therapeutic rationale for this strategy, leukemic cells had significantly larger lysosomes compared with normal cells, and leukemia-initiating cells overexpressed lysosomal biogenesis genes. These results demonstrate that lysosomal disruption preferentially targets AML cells and AML progenitor cells, providing a rationale for testing lysosomal disruption as a novel therapeutic strategy for AML. PMID:23202731

  18. Knockdown of miR-128a induces Lin28a expression and reverts myeloid differentiation blockage in acute myeloid leukemia.

    PubMed

    De Luca, Luciana; Trino, Stefania; Laurenzana, Ilaria; Tagliaferri, Daniela; Falco, Geppino; Grieco, Vitina; Bianchino, Gabriella; Nozza, Filomena; Campia, Valentina; D'Alessio, Francesca; La Rocca, Francesco; Caivano, Antonella; Villani, Oreste; Cilloni, Daniela; Musto, Pellegrino; Del Vecchio, Luigi

    2017-06-01

    Lin28A is a highly conserved RNA-binding protein that concurs to control the balance between stemness and differentiation in several tissue lineages. Here, we report the role of miR-128a/Lin28A axis in blocking cell differentiation in acute myeloid leukemia (AML), a genetically heterogeneous disease characterized by abnormally controlled proliferation of myeloid progenitor cells accompanied by partial or total inability to undergo terminal differentiation. First, we found Lin28A underexpressed in blast cells from AML patients and AML cell lines as compared with CD34+ normal precursors. In vitro transfection of Lin28A in NPM1-mutated OCI-AML3 cell line significantly triggered cell-cycle arrest and myeloid differentiation, with increased expression of macrophage associate genes (EGR2, ZFP36 and ANXA1). Furthermore, miR-128a, a negative regulator of Lin28A, was found overexpressed in AML cells compared with normal precursors, especially in acute promyelocytic leukemia (APL) and in 'AML with maturation' (according to 2016 WHO classification of myeloid neoplasms and acute leukemia). Its forced overexpression by lentiviral infection in OCI-AML3 downregulated Lin28A with ensuing repression of macrophage-oriented differentiation. Finally, knockdown of miR-128a in OCI-AML3 and in APL/AML leukemic cells (by transfection and lentiviral infection, respectively) induced myeloid cell differentiation and increased expression of Lin28A, EGR2, ZFP36 and ANXA1, reverting myeloid differentiation blockage. In conclusion, our findings revealed a new mechanism for AML differentiation blockage, suggesting new strategies for AML therapy based upon miR-128a inhibition.

  19. Knockdown of miR-128a induces Lin28a expression and reverts myeloid differentiation blockage in acute myeloid leukemia

    PubMed Central

    De Luca, Luciana; Trino, Stefania; Laurenzana, Ilaria; Tagliaferri, Daniela; Falco, Geppino; Grieco, Vitina; Bianchino, Gabriella; Nozza, Filomena; Campia, Valentina; D'Alessio, Francesca; La Rocca, Francesco; Caivano, Antonella; Villani, Oreste; Cilloni, Daniela; Musto, Pellegrino; Del Vecchio, Luigi

    2017-01-01

    Lin28A is a highly conserved RNA-binding protein that concurs to control the balance between stemness and differentiation in several tissue lineages. Here, we report the role of miR-128a/Lin28A axis in blocking cell differentiation in acute myeloid leukemia (AML), a genetically heterogeneous disease characterized by abnormally controlled proliferation of myeloid progenitor cells accompanied by partial or total inability to undergo terminal differentiation. First, we found Lin28A underexpressed in blast cells from AML patients and AML cell lines as compared with CD34+ normal precursors. In vitro transfection of Lin28A in NPM1-mutated OCI-AML3 cell line significantly triggered cell-cycle arrest and myeloid differentiation, with increased expression of macrophage associate genes (EGR2, ZFP36 and ANXA1). Furthermore, miR-128a, a negative regulator of Lin28A, was found overexpressed in AML cells compared with normal precursors, especially in acute promyelocytic leukemia (APL) and in ‘AML with maturation’ (according to 2016 WHO classification of myeloid neoplasms and acute leukemia). Its forced overexpression by lentiviral infection in OCI-AML3 downregulated Lin28A with ensuing repression of macrophage-oriented differentiation. Finally, knockdown of miR-128a in OCI-AML3 and in APL/AML leukemic cells (by transfection and lentiviral infection, respectively) induced myeloid cell differentiation and increased expression of Lin28A, EGR2, ZFP36 and ANXA1, reverting myeloid differentiation blockage. In conclusion, our findings revealed a new mechanism for AML differentiation blockage, suggesting new strategies for AML therapy based upon miR-128a inhibition. PMID:28569789

  20. Incidence of Myelofibrosis in Chronic Myeloid Leukemia, Multiple Myeloma, and Chronic Lymphoid Leukemia during Various Phases of Diseases.

    PubMed

    Dolgikh, T Yu; Domnikova, N P; Tornuev, Yu V; Vinogradova, E V; Krinitsyna, Yu M

    2017-02-01

    Pathomorphological study of trephinobiopsy specimens from 129 patients with lymphoproliferative and myeloproliferative diseases was carried out over the course of chemotherapy. Combinations of initial and manifest myelofibrosis (loose network of reticulin fibers and extensive network of reticulin and collagen fibers, respectively) predominated at the debut of chronic myeloid leukemia, chronic lymphoid leukemia, and multiple myeloma. Manifest myelofibrosis was detected in patients with chronic myeloid leukemia without hematological response (failure of normalization of hematological values) and in patients with progressing and relapsing multiple myeloma. Combinations of foci of initial and manifest myelofibrosis were most incident in patients with progressing and relapsing chronic lymphoid leukemia. The incidence of myelofibrosis was higher in patients with multiple myeloma and chronic lymphoid leukemia progression and relapses and in patients with chronic myeloid leukemia without hematological response than at the disease debut and in case of response to chemotherapy. The response to chemotherapy in patients with chronic myeloid leukemia and chronic lymphoid leukemia was associated with a decrease in the incidence of myelofibrosis. In patients with multiple myeloma responding to chemotherapy, the incidence of myelofibrosis did not change in comparison with the disease debut.

  1. Myeloid Cell Nuclear Differentiation Antigen (MNDA) Expression Distinguishes Extramedullary Presentations of Myeloid Leukemia From Blastic Plasmacytoid Dendritic Cell Neoplasm.

    PubMed

    Johnson, Ryan C; Kim, Jinah; Natkunam, Yasodha; Sundram, Uma; Freud, Aharon G; Gammon, Bryan; Cascio, Michael J

    2016-04-01

    Myeloid neoplasms constitute one of the most common malignancies in adults. In most cases these proliferations initially manifest in the blood and marrow; however, extramedullary involvement may precede blood or marrow involvement in a subset of cases, making a definitive diagnosis challenging by morphologic and immunohistochemical assessment alone. Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare, aggressive entity that frequently presents in extramedullary sites and can show morphologic and immunophenotypic overlap with myeloid neoplasms. Given that BPDCN and myeloid neoplasms may both initially present in extramedullary sites and that novel targeted therapies may be developed that exploit the unique molecular signature of BPDCN, new immunophenotypic markers that can reliably separate myeloid neoplasms from BPDCN are desirable. We evaluated the utility of myeloid cell nuclear differentiation antigen (MNDA) expression in a series of extramedullary myeloid leukemias (EMLs) and BPDCN. Forty biopsies containing EML and 19 biopsies containing BPDCN were studied by MNDA immunohistochemistry. The majority of myeloid neoplasms showed nuclear expression of MNDA (65%). In contrast, all cases of BPDCN lacked MNDA expression. These findings show that MNDA is expressed in the majority of EMLs and support the inclusion of MNDA immunohistochemistry in the diagnostic evaluation of blastic hematopoietic infiltrates, particularly when the differential diagnosis is between myeloid leukemia and BPDCN.

  2. Chronic Myeloid Leukemia: A Case of Extreme Thrombocytosis Causing Syncope and Myocardial Infarction

    PubMed Central

    Ahmed, Brittany; Kadhem, Salam; Truong, Quoc

    2016-01-01

    Chronic myeloid leukemia (CML), a hematologic malignancy characterized by unregulated growth of myelogenous leukocytes, typically presents with symptoms of fatigue, anorexia, and splenomegaly. Laboratory studies often reveal a significant leukocytosis with neutrophilia. A moderate thrombocytosis may be present, but is not usually problematic. The following case discusses a patient who presented with syncope, a convulsive episode, and non ST-segment myocardial infarction secondary to symptomatic thrombocytosis of 2.5 million cells/microL. She was treated with plateletpheresis and subsequently experienced resolution of symptoms. Ultimately, a diagnosis of CML with an atypical presentation of the disease was identified in this patient. PMID:27004153

  3. Single Diastereomer of a Macrolactam Core Binds Specifically to Myeloid Cell Leukemia 1 (MCL1).

    PubMed

    Fang, Chao; D'Souza, Brendan; Thompson, Christopher F; Clifton, Matthew C; Fairman, James W; Fulroth, Ben; Leed, Alison; McCarren, Patrick; Wang, Lili; Wang, Yikai; Feau, Clementine; Kaushik, Virendar K; Palmer, Michelle; Wei, Guo; Golub, Todd R; Hubbard, Brian K; Serrano-Wu, Michael H

    2014-12-11

    A direct binding screen of 100 000 sp(3)-rich molecules identified a single diastereomer of a macrolactam core that binds specifically to myeloid cell leukemia 1 (MCL1). A comprehensive toolbox of biophysical methods was applied to validate the original hit and subsequent analogues and also established a binding mode competitive with NOXA BH3 peptide. X-ray crystallography of ligand bound to MCL1 reveals a remarkable ligand/protein shape complementarity that diverges from previously disclosed MCL1 inhibitor costructures.

  4. Single Diastereomer of a Macrolactam Core Binds Specifically to Myeloid Cell Leukemia 1 (MCL1)

    PubMed Central

    2014-01-01

    A direct binding screen of 100 000 sp3-rich molecules identified a single diastereomer of a macrolactam core that binds specifically to myeloid cell leukemia 1 (MCL1). A comprehensive toolbox of biophysical methods was applied to validate the original hit and subsequent analogues and also established a binding mode competitive with NOXA BH3 peptide. X-ray crystallography of ligand bound to MCL1 reveals a remarkable ligand/protein shape complementarity that diverges from previously disclosed MCL1 inhibitor costructures. PMID:25516789

  5. Effect of therapy-related acute myeloid leukemia on the outcome of patients with acute myeloid leukemia.

    PubMed

    ESPíRITO Santo, Ana Espírito; Chacim, Sérgio; Ferreira, Isabel; Leite, Luís; Moreira, Claudia; Pereira, Dulcineia; Dantas Brito, Margarida Dantas; Nunes, Marta; Domingues, Nelson; Oliveira, Isabel; Moreira, Ilídia; Martins, Angelo; Viterbo, Luísa; Mariz, José Mário; Medeiros, Rui

    2016-07-01

    Therapy-related acute myeloid leukemia (t-AML) is a rare and almost always fatal late side effect of antineoplastic treatment involving chemotherapy, radiotherapy or the two combined. The present retrospective study intended to characterize t-AML patients that were diagnosed and treated in a single referral to an oncological institution in North Portugal. Over the past 10 years, 231 cases of AML were diagnosed and treated at the Portuguese Institute of Oncology of Porto, of which 38 t-AML cases were identified. Data regarding the patient demographics, primary diagnosis and treatment, age at onset of therapy-related myeloid neoplasm, latency time of the neoplasm, cytogenetic characteristics, AML therapy and outcome were collected from medical records. A previous diagnosis with solid tumors was present in 28 patients, and 10 patients possessed a history of hematological conditions, all a lymphoproliferative disorder. Breast cancer was the most frequent solid tumor identified (39.5% of all solid tumors diagnosed). The mean latency time was 3 years. In the present study, t-AML patients were older (P<0.001) and more frequently carried cytogenetic abnormalities (P=0.009) compared with de novo AML patients. The overall survival time was observed to be significantly poorer among individuals with t-AML (P<0.001). However, in younger patients (age, <50 years) there was no difference between the overall survival time of patients with t-AML and those with de novo AML (P=0.983). Additionally, patients with promyelocytic leukemia possess a good prognosis, even when AML occurs as a secondary event (P=0.98). To the best of our knowledge, the present study is the first to evaluate t-AML in Portugal and the results are consistent with the data published previously in other populations. The present study concludes that although t-AML demonstrates a poor prognosis, this is not observed among younger patients or promyelocytic leukemia patients.

  6. Effect of therapy-related acute myeloid leukemia on the outcome of patients with acute myeloid leukemia

    PubMed Central

    ESPíRITO SANTO, ANA ESPÍRITO; CHACIM, SÉRGIO; FERREIRA, ISABEL; LEITE, LUÍS; MOREIRA, CLAUDIA; PEREIRA, DULCINEIA; DANTAS BRITO, MARGARIDA DANTAS; NUNES, MARTA; DOMINGUES, NELSON; OLIVEIRA, ISABEL; MOREIRA, ILÍDIA; MARTINS, ANGELO; VITERBO, LUÍSA; MARIZ, JOSÉ MÁRIO; MEDEIROS, RUI

    2016-01-01

    Therapy-related acute myeloid leukemia (t-AML) is a rare and almost always fatal late side effect of antineoplastic treatment involving chemotherapy, radiotherapy or the two combined. The present retrospective study intended to characterize t-AML patients that were diagnosed and treated in a single referral to an oncological institution in North Portugal. Over the past 10 years, 231 cases of AML were diagnosed and treated at the Portuguese Institute of Oncology of Porto, of which 38 t-AML cases were identified. Data regarding the patient demographics, primary diagnosis and treatment, age at onset of therapy-related myeloid neoplasm, latency time of the neoplasm, cytogenetic characteristics, AML therapy and outcome were collected from medical records. A previous diagnosis with solid tumors was present in 28 patients, and 10 patients possessed a history of hematological conditions, all a lymphoproliferative disorder. Breast cancer was the most frequent solid tumor identified (39.5% of all solid tumors diagnosed). The mean latency time was 3 years. In the present study, t-AML patients were older (P<0.001) and more frequently carried cytogenetic abnormalities (P=0.009) compared with de novo AML patients. The overall survival time was observed to be significantly poorer among individuals with t-AML (P<0.001). However, in younger patients (age, <50 years) there was no difference between the overall survival time of patients with t-AML and those with de novo AML (P=0.983). Additionally, patients with promyelocytic leukemia possess a good prognosis, even when AML occurs as a secondary event (P=0.98). To the best of our knowledge, the present study is the first to evaluate t-AML in Portugal and the results are consistent with the data published previously in other populations. The present study concludes that although t-AML demonstrates a poor prognosis, this is not observed among younger patients or promyelocytic leukemia patients. PMID:27347135

  7. ST-elevation myocardial infarction and myelodysplastic syndrome with acute myeloid leukemia transformation.

    PubMed

    Jao, Geoffrey T; Knovich, Mary Ann; Savage, Rodney W; Sane, David C

    2014-04-01

    Acute myocardial infarction and acute myeloid leukemia are rarely reported as concomitant conditions. The management of ST-elevation myocardial infarction (STEMI) in patients who have acute myeloid leukemia is challenging: the leukemia-related thrombocytopenia, platelet dysfunction, and systemic coagulopathy increase the risk of bleeding, and the administration of thrombolytic agents can be fatal. We report the case of a 76-year-old man who presented emergently with STEMI, myelodysplastic syndrome, and newly recognized acute myeloid leukemia transformation. Standard antiplatelet and anticoagulation therapy were contraindicated by the patient's thrombocytopenia and by his reported ecchymosis and gingival bleeding upon admission. He declined cardiac catheterization, was provided palliative care, and died 2 hours after hospital admission. We searched the English-language medical literature, found 8 relevant reports, and determined that the prognosis for patients with concomitant STEMI and acute myeloid leukemia is clearly worse than that for either individual condition. No guidelines exist to direct the management of STEMI and concomitant acute myeloid leukemia. In 2 reports, dual antiplatelet therapy, anticoagulation, and drug-eluting stent implantation were used without an increased risk of bleeding in the short term, even in the presence of thrombocytopenia. However, we think that a more conservative approach--balloon angioplasty with the provisional use of bare-metal stents--might be safer. Simultaneous chemotherapy for the acute myeloid leukemia is crucial. Older age seems to be a major risk factor: patients too frail for emergent treatment can die within hours or days.

  8. Advances in treatment of de-novo pediatric acute myeloid leukemia.

    PubMed

    Ribeiro, Raul C

    2014-11-01

    To describe the current management of de-novo pediatric acute myeloid leukemia (AML), excluding promyelocytic leukemia and myeloid neoplasms of patients with constitutional trisomy 21. The biology of pediatric AML, which differs from that of its adult counterpart, is briefly discussed. Although survival of childhood AML has improved substantially over the past 40 years, progress has reached a plateau. Pediatric AML comprises several subtypes with diverse prognosis. Currently, about 35% of patients die of the disease, and survivors have many debilitating late effects. Clinical trials reported over the past 5 years have revealed several therapeutic concepts. First, initial intensive myelosuppressive chemotherapy is necessary to sufficiently reduce minimal residual disease and is associated with improved disease-free survival. Second, postremission chemotherapy with or without hematopoietic stem cell transplantation is necessary to eradicate AML. Third, central nervous system leukemia can be adequately managed with intrathecal chemotherapy and rarely requires radiotherapy. Finally, small differences in survival among clinical trials are explained by patient selection and quality of supportive care. The most crucial steps for progress are greater understanding of the biology of pediatric AML and introduction of new agents targeting specific AML subtypes and age-specific factors.

  9. Normal karyotype is a poor prognostic factor in myeloid leukemia of Down syndrome: a retrospective, international study.

    PubMed

    Blink, Marjolein; Zimmermann, Martin; von Neuhoff, Christine; Reinhardt, Dirk; de Haas, Valerie; Hasle, Henrik; O'Brien, Maureen M; Stark, Batia; Tandonnet, Julie; Pession, Andrea; Tousovska, Katerina; Cheuk, Daniel K L; Kudo, Kazuko; Taga, Takashi; Rubnitz, Jeffrey E; Haltrich, Iren; Balwierz, Walentyna; Pieters, Rob; Forestier, Erik; Johansson, Bertil; van den Heuvel-Eibrink, Marry M; Zwaan, C Michel

    2014-02-01

    Myeloid leukemia of Down syndrome has a better prognosis than sporadic pediatric acute myeloid leukemia. Most cases of myeloid leukemia of Down syndrome are characterized by additional cytogenetic changes besides the constitutional trisomy 21, but their potential prognostic impact is not known. We, therefore, conducted an international retrospective study of clinical characteristics, cytogenetics, treatment, and outcome of 451 children with myeloid leukemia of Down syndrome. All karyotypes were centrally reviewed before assigning patients to subgroups. The overall 7-year event-free survival for the entire cohort was 78% (± 2%), with the overall survival rate being 79% (± 2%), the cumulative incidence of relapse 12% (± 2%), and the cumulative incidence of toxic death 7% (± 1%). Outcome estimates showed large differences across the different cytogenetic subgroups. Based on the cumulative incidence of relapse, we could risk-stratify patients into two groups: cases with a normal karyotype (n=103) with a higher cumulative incidence of relapse (21%± 4%) than cases with an aberrant karyotype (n=255) with a cumulative incidence of relapse of 9% (± 2%) (P=0.004). Multivariate analyses revealed that white blood cell count ≥ 20 × 10(9)/L and age >3 years were independent predictors for poor event-free survival, while normal karyotype independently predicted inferior overall survival, event-free survival, and relapse-free survival. In conclusion, this study showed large differences in outcome within patients with myeloid leukemia of Down syndrome and identified novel prognostic groups that predicted clinical outcome and hence may be used for stratification in future treatment protocols.

  10. Ciprofloxacin versus colistin prophylaxis during neutropenia in acute myeloid leukemia: two parallel patient cohorts treated in a single center

    PubMed Central

    Pohlen, Michele; Marx, Julia; Mellmann, Alexander; Becker, Karsten; Mesters, Rolf M.; Mikesch, Jan-Henrik; Schliemann, Christoph; Lenz, Georg; Müller-Tidow, Carsten; Büchner, Thomas; Krug, Utz; Stelljes, Matthias; Karch, Helge; Peters, Georg; Gerth, Hans U.; Görlich, Dennis; Berdel, Wolfgang E.

    2016-01-01

    Patients undergoing intensive chemotherapy for acute myeloid leukemia are at high risk for bacterial infections during therapy-related neutropenia. However, the use of specific antibiotic regimens for prophylaxis in afebrile neutropenic acute myeloid leukemia patients is controversial. We report a retrospective evaluation of 172 acute myeloid leukemia patients who received 322 courses of myelosuppressive chemotherapy and had an expected duration of neutropenia of more than seven days. The patients were allocated to antibiotic prophylaxis groups and treated with colistin or ciprofloxacin through 2 different hematologic services at our hospital, as available. The infection rate was reduced from 88.6% to 74.2% through antibiotic prophylaxis (vs. without prophylaxis; P=0.04). A comparison of both antibiotic drugs revealed a trend towards fewer infections associated with ciprofloxacin prophylaxis (69.2% vs. 79.5% in the colistin group; P=0.07), as determined by univariate analysis. This result was confirmed through multivariate analysis (OR: 0.475, 95%CI: 0.236–0.958; P=0.041). The prophylactic agents did not differ with regard to the microbiological findings (P=0.6, not significant). Of note, the use of ciprofloxacin was significantly associated with an increased rate of infections with pathogens that are resistant to the antibiotic used for prophylaxis (79.5% vs. 9.5% in the colistin group; P<0.0001). The risk factors for higher infection rates were the presence of a central venous catheter (P<0.0001), mucositis grade III/IV (P=0.0039), and induction/relapse courses (vs. consolidation; P<0.0001). In conclusion, ciprofloxacin prophylaxis appears to be of particular benefit during induction and relapse chemotherapy for acute myeloid leukemia. To prevent and control drug resistance, it may be safely replaced by colistin during consolidation cycles of acute myeloid leukemia therapy. PMID:27470601

  11. Management of older or unfit patients with acute myeloid leukemia.

    PubMed

    Walter, R B; Estey, E H

    2015-04-01

    Acute myeloid leukemia (AML) is primarily a disease of older adults, for whom optimal treatment strategies remain controversial. Because of the concern for therapeutic resistance and, in particular, excessive toxicity or even treatment-related mortality, many older or medically unfit patients do not receive AML-directed therapy. Yet, evidence suggests that outcomes are improved if essentially all of these patients are offered AML therapy, ideally at a specialized cancer center. Medical fitness for tolerating intensive chemotherapy can be estimated relatively accurately with multiparameter assessment tools; this information should serve as basis for the assignment to intensive or non-intensive therapy. Until our accuracy in predicting the success of individual therapies improves, all patients should be considered for participation in a randomized controlled trial. Comparisons between individual trials will be facilitated once standardized, improved response criteria are developed, and standard treatment approaches have been defined against which novel therapies can be tested.

  12. Phytosphingosine promotes megakaryocytic differentiation of myeloid leukemia cells

    PubMed Central

    Han, Sang Hee; Kim, Jusong; Her, Yerim; Seong, Ikjoo; Park, Sera; Bhattarai, Deepak; Jin, Guanghai; Lee, Kyeong; Chung, Gukhoon; Hwang, Sungkee; Bae, Yun Soo; Kim, Jaesang

    2015-01-01

    We report that phytosphingosine, a sphingolipid found in many organisms and implicated in cellular signaling, promotes megakaryocytic differentiation of myeloid leukemia cells. Specifically, phytosphingosine induced several hallmark changes associated with megakaryopoiesis from K562 and HEL cells including cell cycle arrest, cell size increase and polyploidization. We also confirmed that cell type specific markers of megakaryocytes, CD41a and CD42b are induced by phytosphingosine. Phospholipids with highly similar structures were unable to induce similar changes, indicating that the activity of phytosphingosine is highly specific. Although phytosphingosine is known to activate p38 mitogen-activated protein kinase (MAPK)-mediated apoptosis, the signaling mechanisms involved in megakaryopoiesis appear to be distinct. In sum, we present another model for dissecting molecular details of megakaryocytic differentiation which in large part remains obscure. [BMB Reports 2015; 48(12): 691-695] PMID:26077028

  13. Targeting prohibitins induces apoptosis in acute myeloid leukemia cells

    PubMed Central

    Pomares, Helena; Palmeri, Claudia M; Iglesias-Serret, Daniel; Moncunill-Massaguer, Cristina; Saura-Esteller, José; Núñez-Vázquez, Sonia; Gamundi, Enric; Arnan, Montserrat; Preciado, Sara; Albericio, Fernando; Lavilla, Rodolfo; Pons, Gabriel; González-Barca, Eva M

    2016-01-01

    Fluorizoline is a new synthetic molecule that induces apoptosis by selectively targeting prohibitins (PHBs). In this study, the pro-apoptotic effect of fluorizoline was assessed in two cell lines and 21 primary samples from patients with debut of acute myeloid leukemia (AML). Fluorizoline induced apoptosis in AML cells at concentrations in the low micromolar range. All primary samples were sensitive to fluorizoline irrespectively of patients' clinical or genetic features. In addition, fluorizoline inhibited the clonogenic capacity and induced differentiation of AML cells. Fluorizoline increased the mRNA and protein levels of the pro-apoptotic BCL-2 family member NOXA both in cell lines and primary samples analyzed. These results suggest that targeting PHBs could be a new therapeutic strategy for AML. PMID:27542247

  14. Phytosphingosine promotes megakaryocytic differentiation of myeloid leukemia cells.

    PubMed

    Han, Sang Hee; Kim, Jusong; Her, Yerim; Seong, Ikjoo; Park, Sera; Bhattarai, Deepak; Jin, Guanghai; Lee, Kyeong; Chung, Gukhoon; Hwang, Sungkee; Bae, Yun Soo; Kim, Jaesang

    2015-12-01

    We report that phytosphingosine, a sphingolipid found in many organisms and implicated in cellular signaling, promotes megakaryocytic differentiation of myeloid leukemia cells. Specifically, phytosphingosine induced several hallmark changes associated with megakaryopoiesis from K562 and HEL cells including cell cycle arrest, cell size increase and polyploidization. We also confirmed that cell type specific markers of megakaryocytes, CD41a and CD42b are induced by phytosphingosine. Phospholipids with highly similar structures were unable to induce similar changes, indicating that the activity of phytosphingosine is highly specific. Although phytosphingosine is known to activate p38 MAPK-mediated apoptosis, the signaling mechanisms involved in megakaryopoiesis appear to be distinct. In sum, we present another model for dissecting molecular details of megakaryocytic differentiation which in large part remains obscure.

  15. Future prospects of therapeutic clinical trials in acute myeloid leukemia.

    PubMed

    Khan, Maliha; Mansoor, Armaghan-E-Rehman; Kadia, Tapan M

    2017-03-01

    Acute myeloid leukemia (AML) is a markedly heterogeneous hematological malignancy that is most commonly seen in elderly adults. The response to current therapies to AML is quite variable, and very few new drugs have been recently approved for use in AML. This review aims to discuss the issues with current trial design for AML therapies, including trial end points, patient enrollment, cost of drug discovery and patient heterogeneity. We also discuss the future directions in AML therapeutics, including intensification of conventional therapy and new drug delivery mechanisms; targeted agents, including epigenetic therapies, cell cycle regulators, hypomethylating agents and chimeric antigen receptor T-cell therapy; and detail of the possible agents that may be incorporated into the treatment of AML in the future.

  16. Targeting acute myeloid leukemia with TP53-independent vosaroxin.

    PubMed

    Benton, Christopher B; Ravandi, Farhad

    2017-01-01

    Vosaroxin is a quinolone compound that intercalates DNA and induces TP53-independent apoptosis, demonstrating activity against acute myeloid leukemia (AML) in Phase I-III trials. Here, we examine vosaroxin's mechanism of action and pharmacology, and we review its use in AML to date, focusing on details of individual clinical trials. Most recently, when combined with cytarabine in a randomized Phase III trial (VALOR), vosaroxin improved outcomes versus cytarabine alone for relapsed/refractory AML in patients older than 60 years and for patients in early relapse. We consider its continued role in the context of a multifaceted strategy against AML, including its current use in clinical trials. Prospective use will define its role in the evolving landscape of AML therapy.

  17. The origin and evolution of mutations in Acute Myeloid Leukemia

    PubMed Central

    Welch, John S.; Ley, Timothy J.; Link, Daniel C.; Miller, Christopher A.; Larson, David E.; Koboldt, Daniel C.; Wartman, Lukas D.; Lamprecht, Tamara L.; Liu, Fulu; Xia, Jun; Kandoth, Cyriac; Fulton, Robert S.; McLellan, Michael D.; Dooling, David J.; Wallis, John W.; Chen, Ken; Harris, Christopher C.; Schmidt, Heather K.; Kalicki-Veizer, Joelle M.; Lu, Charles; Zhang, Qunyuan; Lin, Ling; O’Laughlin, Michelle D.; McMichael, Joshua F.; Delehaunty, Kim D.; Fulton, Lucinda A.; Magrini, Vincent J.; McGrath, Sean D.; Demeter, Ryan T.; Vickery, Tammi L.; Hundal, Jasreet; Cook, Lisa L.; Swift, Gary W.; Reed, Jerry P.; Alldredge, Patricia A.; Wylie, Todd N.; Walker, Jason R.; Watson, Mark A.; Heath, Sharon E.; Shannon, William D.; Varghese, Nobish; Nagarajan, Rakesh; Payton, Jacqueline E.; Baty, Jack D.; Kulkarni, Shashikant; Klco, Jeffery M.; Tomasson, Michael H.; Westervelt, Peter; Walter, Matthew J.; Graubert, Timothy A.; DiPersio, John F.; Ding, Li; Mardis, Elaine R.; Wilson, Richard K.

    2012-01-01

    Summary Most mutations in cancer genomes are thought to be acquired after the initiating event, which may cause genomic instability, driving clonal evolution. However, for acute myeloid leukemia (AML), normal karyotypes are common, and genomic instability is unusual. To better understand clonal evolution in AML, we sequenced the genomes of AML samples with a known initiating event (PML-RARA) vs. normal karyotype AML samples, and the exomes of hematopoietic stem/progenitor cells (HSPCs) from healthy people. Collectively, the data suggest that most of the mutations found in AML genomes are actually random events that occurred in HSPCs before they acquired the initiating mutation; the mutational history of that cell is “captured” as the clone expands. In many cases, only one or two additional, cooperating mutations are needed to generate the malignant founding clone. Cells from the founding clone can acquire additional cooperating mutations, yielding subclones that can contribute to disease progression and/or relapse. PMID:22817890

  18. Toward Individualized Therapy in Acute Myeloid Leukemia: A Contemporary Review.

    PubMed

    Kadia, Tapan M; Ravandi, Farhad; Cortes, Jorge; Kantarjian, Hagop

    2015-09-01

    Acute myeloid leukemia (AML) is a heterogeneous disease in its clinical presentation, response to therapy, and overall prognosis. For decades, pretreatment karyotype evaluation has served to identify subgroups for risk-adapted postremission therapy, but the initial treatment approach has been largely unchanged. With continued advances in the genetic and epigenetic characterization of AML, we have discovered even more diversity and are starting to understand the biological underpinnings of these multiple disease entities. Newer therapies are being developed to address the pathophysiology within these individual AML subsets. This review categorizes AML into biologically defined groups based on currently available data and describes the evolving treatment approaches within these groups. Identifying the genetic abnormalities and biological drivers prior to AML treatment will be important as we work to individualize therapy and improve outcomes.

  19. Acute myeloid leukemia and diabetes insipidus with monosomy 7.

    PubMed

    Harb, Antoine; Tan, Wei; Wilding, Gregory E; Battiwalla, Minoo; Sait, Sheila N J; Wang, Eunice S; Wetzler, Meir

    2009-04-15

    The predisposition of monosomy 7 to diabetes insipidus (DI) in acute myeloid leukemia (AML) led us to ask whether AML associated with monosomy 7 and DI will differ from AML associated with other karyotype aberrations and DI and whether the outcome of patients with AML and DI will differ from those without DI. We describe 2 patients from Roswell Park Cancer Institute and discuss 29 additional cases from the literature. AML with monosomy 7 and DI (n = 25) had a trend towards a lower complete remission (p = 0.0936) and worse survival (p = 0.0480) than AML with other karyotype changes and DI (n = 6). Further, AML with monosomy 7 and DI had worse complete remission rate and overall survival than AML with monosomy 7 but without DI. In conclusion, it appears that AML with monosomy 7 and DI is a disease entity with specifically poor outcome.

  20. How we will treat chronic myeloid leukemia in 2016.

    PubMed

    Talati, Chetasi; Ontiveros, Evelena P; Griffiths, Elizabeth A; Wang, Eunice S; Wetzler, Meir

    2015-03-01

    Imatinib will become generic in 2016; assuming that its price will decrease precipitously, we expect that the economic forces will change our current practice habits. We reviewed the literature on the current recommendations to treat chronic myeloid leukemia and highlight how we plan to deal with these changes. Specifically, we propose to better characterize patients according to prognostic scores, to allow more attention to those at high risk for disease progression, e.g., 3-month guidelines and BCR/ABL1 message half-time, emphasize compliance by using contemporary technologies, and increase the importance of early monitoring. We hope that our message will open communication between providers, insurance companies and healthcare authorities to offer the best care for our patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The increasing genomic complexity of acute myeloid leukemia.

    PubMed

    Rowe, Jacob M

    2014-01-01

    Therapy of acute myeloid leukemia (AML) is impacted by the increasing genomic complexity of the disease. Multiple targets as expressed by genetics and mutations and the relationships between them add another layer of intricacy to the prognosis and treatment of the disease. It is becoming increasingly apparent that the interactions between mutations are of utmost importance, particularly from a prognostic standpoint. For example, inv(16) or 6(16; 16) AML frequently involves a second genetic lesion that significantly impacts prognosis. In addition, epigenetic changes, including DNA methylation, are becoming increasingly integrated into the genetic landscape and may also have prognostic impact. Despite increased understanding of the genetic and epigenetic aspects of AML, the outcome for AML patients has not changed significantly. Until it does, further inquiry into the genomic complexity of the disease and advances in drug development are needed.

  2. Sapacitabine in the treatment of acute myeloid leukemia.

    PubMed

    Norkin, Maxim; Richards, Ashley I

    2015-01-01

    Prognosis of elderly patients with acute myeloid leukemia (AML) remains poor and new treatment approaches are urgently needed. A novel nucleoside analog sapacitabine has recently emerged as a feasible agent because of its oral administration and acceptable toxicity profile. Clinical efficacy of sapacitabine, both as a single agent and in combination, has been evaluated in elderly AML patients or AML patients unfit for standard intensive chemotherapy. Response rates varied from 15 to 45% in phase II studies. Sapacitabine was overall well-tolerated with gastrointestinal and myelosuppression-related complications were the most common side effects. Unfortunately, in a phase III study sapacitabine showed no clinical superiority as compared to low-dose cytarabine (LDAC) in patients with AML. Another large phase III study comparing the combination of sapacitabine with decitabine to decitabine alone is currently ongoing and is expected to be completed by the end of 2015 or by the first half of 2016.

  3. Acquired pericentric inversion of chromosome 9 in acute myeloid leukemia.

    PubMed

    Udayakumar, A M; Pathare, A V; Dennison, D; Raeburn, J A

    2009-01-01

    Pericentric inversion of chromosome 9 involving the qh region is relatively common as a constitutional genetic aberration without any apparent phenotypic consequences. However, it has not been established as an acquired abnormality in cancer. Among the three patients reported so far in the literature with acquired inv(9), only one had acute myeloid leukemia (AML). Here we describe an unique case where both chromosomes 9 presented with an acquired pericentric inversion with breakpoints at 9p13 and 9q12 respectively, in a AML patient with aberrant CD7 and CD9 positivity. Additionally, one der(9) also showed short arm deletion at 9p21 to the centromeric region and including the p16 gene. The constitutional karyotype was normal. This is probably the first report describing an acquired inv(9) involving both chromosomes 9 in AML. The possible significance of this inversion is discussed.

  4. Molecular study of the interferon genes in chronic myeloid leukemia.

    PubMed

    Larripa, I; Giere, I; Slavutsky, I; Diaz, M

    1995-08-01

    The interferons alpha, beta, and w (IFNA, IFNB, IFNW), are a family of genes that have been mapped on the short arm of chromosome 9 (9p21-22). Deletions of genetic material on 9p are frequently observed in hematological diseases, particularly in lymphoid neoplasias. In this paper we have performed the molecular studies of IFNA and IFNB genes in chronic myeloid leukemia (CML) in order to determine if the deletions of these genes are prevalent in this pathology. Forty CML patients, Philadelphia positive or with BCR/ABL rearrangement, were studied at diagnosis. The analysis of IFNA and IFNB genes was performed by Southern and dot blot techniques. Homozygous or hemizygous deletions of IFNA and IFNB genes could not be detected, indicating that deletions of these genes would not be present or would be a very infrequent event in the chronic phase of the CML patients.

  5. Analogue peptides for the immunotherapy of human acute myeloid leukemia.

    PubMed

    Hofmann, Susanne; Mead, Andrew; Malinovskis, Aleksandrs; Hardwick, Nicola R; Guinn, Barbara-Ann

    2015-11-01

    The use of peptide vaccines, enhanced by adjuvants, has shown some efficacy in clinical trials. However, responses are often short-lived and rarely induce notable memory responses. The reason is that self-antigens have already been presented to the immune system as the tumor develops, leading to tolerance or some degree of host tumor cell destruction. To try to break tolerance against self-antigens, one of the methods employed has been to modify peptides at the anchor residues to enhance their ability to bind major histocompatibility complex molecules, extending their exposure to the T-cell receptor. These modified or analogue peptides have been investigated as stimulators of the immune system in patients with different cancers with variable but sometimes notable success. In this review we describe the background and recent developments in the use of analogue peptides for the immunotherapy of acute myeloid leukemia describing knowledge useful for the application of analogue peptide treatments for other malignancies.

  6. Biology and relevance of human acute myeloid leukemia stem cells.

    PubMed

    Thomas, Daniel; Majeti, Ravindra

    2017-03-23

    Evidence of human acute myeloid leukemia stem cells (AML LSCs) was first reported nearly 2 decades ago through the identification of rare subpopulations of engrafting cells in xenotransplantation assays. These AML LSCs were shown to reside at the apex of a cellular hierarchy that initiates and maintains the disease, exhibiting properties of self-renewal, cell cycle quiescence, and chemoresistance. This cancer stem cell model offers an explanation for chemotherapy resistance and disease relapse and implies that approaches to treatment must eradicate LSCs for cure. More recently, a number of studies have both refined and expanded our understanding of LSCs and intrapatient heterogeneity in AML using improved xenotransplant models, genome-scale analyses, and experimental manipulation of primary patient cells. Here, we review these studies with a focus on the immunophenotype, biological properties, epigenetics, genetics, and clinical associations of human AML LSCs and discuss critical questions that need to be addressed in future research. © 2017 by The American Society of Hematology.

  7. Novel Prognostic and Therapeutic Mutations in Acute Myeloid Leukemia

    PubMed Central

    MEDINGER, MICHAEL; LENGERKE, CLAUDIA; PASSWEG, JAKOB

    2016-01-01

    Acute myeloid leukemia (AML) is a biologically complex and molecularly and clinically heterogeneous disease, and its incidence increases with age. Cytogenetics and mutation testing remain important prognostic tools for treatment after induction therapy. The post-induction treatment is dependent on risk stratification. Despite rapid advances in determination of gene mutations involved in the pathophysiology and biology of AML, and the rapid development of new drugs, treatment improvements changed slowly over the past 30 years, with the majority of patients eventually experiencing relapse and dying of their disease. Allogenic hematopoietic stem cell transplantation remains the best chance of cure for patients with intermediate- or high-risk disease. This review gives an overview about advances in prognostic markers and novel treatment options for AML, focusing on new prognostic and probably therapeutic mutations, and novel drug therapies such as tyrosine kinase inhibitors. PMID:27566651

  8. Pharmacogenomics and the treatment of acute myeloid leukemia.

    PubMed

    Megías-Vericat, Juan Eduardo; Montesinos, Pau; Herrero, María José; Bosó, Virginia; Martínez-Cuadrón, David; Poveda, José Luis; Sanz, Miguel Ángel; Aliño, Salvador F

    2016-07-01

    Acute myeloid leukemia (AML) is a clinically and biologically heterogeneous malignancy that is primarily treated with combinations of cytarabine and anthracyclines. Although this scheme remains effective in most of the patients, variability of outcomes in patients has been partly related with their genetic variability. Several pharmacogenetic studies have analyzed the impact of polymorphisms in genes encoding transporters, metabolizers or molecular targets of chemotherapy agents. A systematic review on all eligible studies was carried out in order to estimate the effect of polymorphisms of anthracyclines and cytarabine pathways on efficacy and toxicity of AML treatment. Other emerging genes recently studied in AML, such as DNA repair genes, genes potentially related to chemotherapy response or AML prognosis, have also been included.

  9. Outcome of Pediatric Acute Myeloid Leukemia Patients Receiving Intensive Care in the United States

    PubMed Central

    Maude, Shannon L.; Fitzgerald, Julie C.; Fisher, Brian T.; Li, Yimei; Huang, Yuan-Shung; Torp, Kari; Seif, Alix E.; Kavcic, Marko; Walker, Dana M.; Leckerman, Kateri H.; Kilbaugh, Todd J.; Rheingold, Susan R.; Sung, Lillian; Zaoutis, Theoklis E.; Berg, Robert A.; Nadkarni, Vinay M.; Thomas, Neal J.; Aplenc, Richard

    2015-01-01

    Objective Children with acute myeloid leukemia are at risk for sepsis and organ failure. Outcomes associated with intensive care support have not been studied in a large pediatric acute myeloid leukemia population. Our objective was to determine hospital mortality of pediatric acute myeloid leukemia patients requiring intensive care. Design Retrospective cohort study of children hospitalized between 1999 and 2010. Use of intensive care was defined by utilization of specific procedures and resources. The primary endpoint was hospital mortality. Setting Forty-three children’s hospitals contributing data to the Pediatric Health Information System database. Patients Patients who are newly diagnosed with acute myeloid leukemia and who are 28 days through 18 years old (n = 1, 673) hospitalized any time from initial diagnosis through 9 months following diagnosis or until stem cell transplant. A reference cohort of all nononcology pediatric admissions using the same intensive care resources in the same time period (n = 242,192 admissions) was also studied. Interventions None. Measurements and Main Results One-third of pediatric patients with acute myeloid leukemia (553 of 1,673) required intensive care during a hospitalization within 9 months of diagnosis. Among intensive care admissions, mortality was higher in the acute myeloid leukemia cohort compared with the nononcology cohort (18.6% vs 6.5%; odds ratio, 3.23; 95% CI, 2.64–3.94). However, when sepsis was present, mortality was not significantly different between cohorts (21.9% vs 19.5%; odds ratio, 1.17; 95% CI, 0.89–1.53). Mortality was consistently higher for each type of organ failure in the acute myeloid leukemia cohort versus the nononcology cohort; however, mortality did not exceed 40% unless there were four or more organ failures in the admission. Mortality for admissions requiring intensive care decreased over time for both cohorts (23.7% in 1999–2003 vs 16.4% in 2004–2010 in the acute myeloid

  10. Outcome of pediatric acute myeloid leukemia patients receiving intensive care in the United States.

    PubMed

    Maude, Shannon L; Fitzgerald, Julie C; Fisher, Brian T; Li, Yimei; Huang, Yuan-Shung; Torp, Kari; Seif, Alix E; Kavcic, Marko; Walker, Dana M; Leckerman, Kateri H; Kilbaugh, Todd J; Rheingold, Susan R; Sung, Lillian; Zaoutis, Theoklis E; Berg, Robert A; Nadkarni, Vinay M; Thomas, Neal J; Aplenc, Richard

    2014-02-01

    Children with acute myeloid leukemia are at risk for sepsis and organ failure. Outcomes associated with intensive care support have not been studied in a large pediatric acute myeloid leukemia population. Our objective was to determine hospital mortality of pediatric acute myeloid leukemia patients requiring intensive care. Retrospective cohort study of children hospitalized between 1999 and 2010. Use of intensive care was defined by utilization of specific procedures and resources. The primary endpoint was hospital mortality. Forty-three children's hospitals contributing data to the Pediatric Health Information System database. Patients who are newly diagnosed with acute myeloid leukemia and who are 28 days through 18 years old (n = 1,673) hospitalized any time from initial diagnosis through 9 months following diagnosis or until stem cell transplant. A reference cohort of all nononcology pediatric admissions using the same intensive care resources in the same time period (n = 242,192 admissions) was also studied. None. One-third of pediatric patients with acute myeloid leukemia (553 of 1,673) required intensive care during a hospitalization within 9 months of diagnosis. Among intensive care admissions, mortality was higher in the acute myeloid leukemia cohort compared with the nononcology cohort (18.6% vs 6.5%; odds ratio, 3.23; 95% CI, 2.64-3.94). However, when sepsis was present, mortality was not significantly different between cohorts (21.9% vs 19.5%; odds ratio, 1.17; 95% CI, 0.89-1.53). Mortality was consistently higher for each type of organ failure in the acute myeloid leukemia cohort versus the nononcology cohort; however, mortality did not exceed 40% unless there were four or more organ failures in the admission. Mortality for admissions requiring intensive care decreased over time for both cohorts (23.7% in 1999-2003 vs 16.4% in 2004-2010 in the acute myeloid leukemia cohort, p = 0.0367; and 7.5% in 1999-2003 vs 6.5% in 2004-2010 in the nononcology

  11. Myelogenous Leukemia in Adult Inbred MHC Defined Miniature Swine: a model for human myeloid leukemias

    PubMed Central

    Cho, Patricia S.; Teague, Alexander G.S.; Fishman, Brian; Fishman, Aaron S.; Hanekamp, John S.; Moran, Shannon G.; Wikiel, Krzysztof J.; Ferguson, Kelly K.; Lo, Diana P.; Duggan, Michael; Arn, J. Scott; Billiter, Bob; Horner, Ben; Houser, Stuart; Yeap, Beow Yong; Westmoreland, Susan V.; Spitzer, Thomas R.; McMorrow, Isabel M.; Sachs, David H.; Bronson, Roderick T; Huang, Christene A.

    2010-01-01

    This manuscript reports on five cases of spontaneous myelogenous leukemia, similar to human disease, occurring within highly inbred, histocompatible sublines of Massachusetts General Hospital (MGH) MHC-defined miniature swine. In cases where a neoplasm was suspected based on clinical observations, samples were obtained for complete blood count, peripheral blood smear, and flow cytometric analysis. Animals confirmed to have neoplasms were euthanized and underwent necropsy. Histological samples were obtained from abnormal tissues and suspect lesions. The phenotype of the malignancies was assessed by flow cytometric analysis of processed peripheral blood mononuclear cells and affected tissues. Five cases of spontaneous myeloid leukemia were identified in adult animals older than 30 months of age. All animals presented with symptoms of weight loss, lethargy, and marked leukocytosis. At autopsy, all animals had systemic disease involvement and presented with severe hepatosplenomegaly. Three of the five myelogenous leukemias have successfully been expanded in vitro. The clustered incidence of disease in this closed herd suggests that genetic factors may be contributing to disease development. Myelogenous leukemia cell lines established from inbred sublines of MGH MHC-defined miniature swine have the potential to be utilized as a model to evaluate therapies of human leukemia. PMID:20079939

  12. Myelogenous leukemia in adult inbred MHC-defined miniature swine: a model for human myeloid leukemias.

    PubMed

    Duran-Struuck, Raimon; Cho, Patricia S; Teague, Alexander G S; Fishman, Brian; Fishman, Aaron S; Hanekamp, John S; Moran, Shannon G; Wikiel, Krzysztof J; Ferguson, Kelly K; Lo, Diana P; Duggan, Michael; Arn, J Scott; Billiter, Bob; Horner, Ben; Houser, Stuart; Yeap, Beow Yong; Westmoreland, Susan V; Spitzer, Thomas R; McMorrow, Isabel M; Sachs, David H; Bronson, Roderick T; Huang, Christene A

    2010-06-15

    This manuscript reports on five cases of spontaneous myelogenous leukemia, similar to human disease, occurring within highly inbred, histocompatible sublines of Massachusetts General Hospital (MGH) MHC-defined miniature swine. In cases where a neoplasm was suspected based on clinical observations, samples were obtained for complete blood count, peripheral blood smear, and flow cytometric analysis. Animals confirmed to have neoplasms were euthanized and underwent necropsy. Histological samples were obtained from abnormal tissues and suspect lesions. The phenotype of the malignancies was assessed by flow cytometric analysis of processed peripheral blood mononuclear cells and affected tissues. Five cases of spontaneous myeloid leukemia were identified in adult animals older than 30 months of age. All animals presented with symptoms of weight loss, lethargy, and marked leukocytosis. At autopsy, all animals had systemic disease involvement and presented with severe hepatosplenomegaly. Three of the five myelogenous leukemias have successfully been expanded in vitro. The clustered incidence of disease in this closed herd suggests that genetic factors may be contributing to disease development. Myelogenous leukemia cell lines established from inbred sublines of MGH MHC-defined miniature swine have the potential to be utilized as a model to evaluate therapies of human leukemia. Copyright 2009 Elsevier B.V. All rights reserved.

  13. Digitalization of a non-irradiated acute myeloid leukemia model.

    PubMed

    Li, Rudong; Cheng, Hui; Cheng, Tao; Liu, Lei

    2016-08-26

    Computer-aided, interdisciplinary researches for biomedicine have valuable prospects, as digitalization of experimental subjects provide opportunities for saving the economic costs of researches, as well as promoting the acquisition of knowledge. Acute myeloid leukemia (AML) is intensively studied over long periods of time. Till nowaday, most of the studies primarily focus on the leukemic cells rather than how normal hematopoietic cells are affected by the leukemic environment. Accordingly, the conventional animal models for AML are mostly myeloablated as leukemia can be induced with short latency and complete penetrance. Meanwhile, most previous computational models focus on modeling the leukemic cells but not the multi-tissue leukemic body resided by both leukemic and normal blood cells. Recently, a non-irradiated AML mouse model has been established; therefore, normal hematopoietic cells can be investigated during leukemia development. Experiments based on the non-irradiated animal model have monitored the kinetics of leukemic and (intact) hematopoietic cells in multiple tissues simultaneously; and thus a systematic computational model for the multi-tissue hematopoiesis under leukemia has become possible. In the present work, we adopted the modeling methods in previous works, but aimed to model the tri-tissue (peripheral blood, spleen and bone marrow) dynamics of hematopoiesis under leukemia. The cell kinetics generated from the non-irradiated experimental model were used as the reference data for modeling. All mathematical formulas were systematically enumerated, and model parameters were estimated via numerical optimization. Multiple validations by additional experimental data were then conducted for the established computational model. In the results, we illustrated that the important fact of functional depression of hematopoietic stem/progenitor cells (HSC/HPC) in leukemic bone marrow (BM), which must require additional experiments to be established, could

  14. Myeloid-Biased Stem Cells as Potential Targets for Chronic Myelogeneous Leukemia

    DTIC Science & Technology

    2005-09-01

    AD Award Number: W81XWH-04-1-0798 TITLE: Myeloid-Biased Stem Cells as Potential Targets for Chronic Myelogeneous Leukemia PRINCIPAL INVESTIGATOR...Christa Muller-Sieburg, Ph.D. CONTRACTING ORGANIZATION: Sidney Kimmel Cancer Center San Diego, Ca 92121-1131 REPORT DATE: September 2005 TYPE OF REPORT...2005 4, TITLE AND SUBTITLE 5a. CONTRACT NUMBER Myeloid-Biased Stem Cells as Potential Targets for Chronic Myelogeneous Leukemia 5b. GRANT NUMBER W81

  15. Sense and nonsense of high-dose cytarabine for acute myeloid leukemia.

    PubMed

    Löwenberg, Bob

    2013-01-03

    High-dose cytarabine applied during remission induction or as consolidation after attainment of a complete remission has become an established element in the treatment of adults with acute myeloid leukemia. Recent evidence has challenged the need for these exceptionally high-dose levels of cytarabine. In this review, we present a reappraisal of the usefulness of high-dose cytarabine for acute myeloid leukemia treatment.

  16. RhoA: A therapeutic target for chronic myeloid leukemia

    PubMed Central

    2012-01-01

    Background Chronic Myeloid Leukemia (CML) is a malignant pluripotent stem cells disorder of myeloid cells. In CML patients, polymorphonuclear leukocytes (PMNL) the terminally differentiated cells of myeloid series exhibit defects in several actin dependent functions such as adhesion, motility, chemotaxis, agglutination, phagocytosis and microbicidal activities. A definite and global abnormality was observed in stimulation of actin polymerization in CML PMNL. Signalling molecules ras and rhoGTPases regulate spatial and temporal polymerization of actin and thus, a broad range of physiological processes. Therefore, status of these GTPases as well as actin was studied in resting and fMLP stimulated normal and CML PMNL. Methods To study expression of GTPases and actin, Western blotting and flow cytometry analysis were done, while spatial expression and colocalization of these proteins were studied by using laser confocal microscopy. To study effect of inhibitors on cell proliferation CCK-8 assay was done. Significance of differences in expression of proteins within the samples and between normal and CML was tested by using Wilcoxon signed rank test and Mann-Whitney test, respectively. Bivariate and partial correlation analyses were done to study relationship between all the parameters. Results In CML PMNL, actin expression and its architecture were altered and stimulation of actin polymerization was absent. Differences were also observed in expression, organization or stimulation of all the three GTPases in normal and CML PMNL. In normal PMNL, ras was the critical GTPase regulating expression of rhoGTPases and actin and actin polymerization. But in CML PMNL, rhoA took a central place. In accordance with these, treatment with rho/ROCK pathway inhibitors resulted in specific growth inhibition of CML cell lines. Conclusions RhoA has emerged as the key molecule responsible for functional defects in CML PMNL and therefore can be used as a therapeutic target in CML. PMID

  17. Acute myeloid leukemia risk by industry and occupation.

    PubMed

    Tsai, Rebecca J; Luckhaupt, Sara E; Schumacher, Pam; Cress, Rosemary D; Deapen, Dennis M; Calvert, Geoffrey M

    2014-11-01

    Acute myeloid leukemia (AML) is the most common type of leukemia found in adults. Identifying jobs that pose a risk for AML may be useful for identifying new risk factors. A matched case-control analysis was conducted using California Cancer Registry data from 1988 to 2007. This study included 8999 cases of AML and 24 822 controls. Industries with a statistically significant increased AML risk were construction (matched odds ratio [mOR] = 1.13); crop production (mOR = 1.41); support activities for agriculture and forestry (mOR = 2.05); and animal slaughtering and processing (mOR = 2.09). Among occupations with a statistically significant increased AML risk were miscellaneous agricultural workers (mOR = 1.76); fishers and related fishing workers (mOR = 2.02); nursing, psychiatric and home health aides (mOR = 1.65); and janitors and building cleaners (mOR = 1.54). Further investigation is needed to confirm study findings and to identify specific exposures responsible for the increased risks.

  18. FLT3 inhibitors: clinical potential in acute myeloid leukemia

    PubMed Central

    Hospital, Marie-Anne; Green, Alexa S; Maciel, Thiago T; Moura, Ivan C; Leung, Anskar Y; Bouscary, Didier; Tamburini, Jerome

    2017-01-01

    Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy that is cured in as few as 15%–40% of cases. Tremendous improvements in AML prognostication arose from a comprehensive analysis of leukemia cell genomes. Among normal karyotype AML cases, mutations in the FLT3 gene are the ones most commonly detected as having a deleterious prognostic impact. FLT3 is a transmembrane tyrosine kinase receptor, and alterations of the FLT3 gene such as internal tandem duplications (FLT3-ITD) deregulate FLT3 downstream signaling pathways in favor of increased cell proliferation and survival. FLT3 tyrosine kinase inhibitors (TKI) emerged as a new therapeutic option in FLT3-ITD AML, and clinical trials are ongoing with a variety of TKI either alone, combined with chemotherapy, or even as maintenance after allogenic stem cell transplantation. However, a wide range of molecular resistance mechanisms are activated upon TKI therapy, thus limiting their clinical impact. Massive research efforts are now ongoing to develop more efficient FLT3 TKI and/or new therapies targeting these resistance mechanisms to improve the prognosis of FLT3-ITD AML patients in the future. PMID:28223820

  19. Radiation-induced myeloid leukemia in murine models

    PubMed Central

    2014-01-01

    The use of radiation therapy is a cornerstone of modern cancer treatment. The number of patients that undergo radiation as a part of their therapy regimen is only increasing every year, but this does not come without cost. As this number increases, so too does the incidence of secondary, radiation-induced neoplasias, creating a need for therapeutic agents targeted specifically towards incidence reduction and treatment of these cancers. Development and efficacy testing of these agents requires not only extensive in vitro testing but also a set of reliable animal models to accurately recreate the complex situations of radiation-induced carcinogenesis. As radiation-induced leukemic progression often involves genomic changes such as rearrangements, deletions, and changes in methylation, the laboratory mouse Mus musculus, with its fully sequenced genome, is a powerful tool in cancer research. This fact, combined with the molecular and physiological similarities it shares with man and its small size and high rate of breeding in captivity, makes it the most relevant model to use in radiation-induced leukemia research. In this work, we review relevant M. musculus inbred and F1 hybrid animal models, as well as methods of induction of radiation-induced myeloid leukemia. Associated molecular pathologies are also included. PMID:25062865

  20. Karyotype complexity and prognosis in acute myeloid leukemia.

    PubMed

    Stölzel, F; Mohr, B; Kramer, M; Oelschlägel, U; Bochtler, T; Berdel, W E; Kaufmann, M; Baldus, C D; Schäfer-Eckart, K; Stuhlmann, R; Einsele, H; Krause, S W; Serve, H; Hänel, M; Herbst, R; Neubauer, A; Sohlbach, K; Mayer, J; Middeke, J M; Platzbecker, U; Schaich, M; Krämer, A; Röllig, C; Schetelig, J; Bornhäuser, M; Ehninger, G

    2016-01-15

    A complex aberrant karyotype consisting of multiple unrelated cytogenetic abnormalities is associated with poor prognosis in patients with acute myeloid leukemia (AML). The European Leukemia Net classification and the UK Medical Research Council recommendation provide prognostic categories that differ in the definition of unbalanced aberrations as well as the number of single aberrations. The aim of this study on 3526 AML patients was to redefine and validate a cutoff for karyotype complexity in AML with regard to adverse prognosis. Our study demonstrated that (1) patients with a pure hyperdiploid karyotype have an adverse risk irrespective of the number of chromosomal gains, (2) patients with translocation t(9;11)(p21∼22;q23) have an intermediate risk independent of the number of additional aberrations, (3) patients with ⩾4 abnormalities have an adverse risk per se and (4) patients with three aberrations in the absence of abnormalities of strong influence (hyperdiploid karyotype, t(9;11)(p21∼22;q23), CBF-AML, unique adverse-risk aberrations) have borderline intermediate/adverse risk with a reduced overall survival compared with patients with a normal karyotype.

  1. [Acute myeloid leukemia. Genetic diagnostics and molecular therapy].

    PubMed

    Schlenk, R F; Döhner, K; Döhner, H

    2013-02-01

    Acute myeloid leukemia (AML) is a genetically heterogeneous disease. The genetic diagnostics have become an essential component in the initial work-up for disease classification, prognostication and prediction. More and more promising molecular targeted therapeutics are becoming available. A prerequisite for individualized treatment strategies is a fast pretherapeutic molecular screening including the fusion genes PML-RARA, RUNX1-RUNX1T1 and CBFB-MYH11 as well as mutations in the genes NPM1, FLT3 and CEBPA. Promising new therapeutic approaches include the combination of all- trans retinoic acid and arsentrioxid in acute promyelocytic leukemia, the combination of intensive chemotherapy with KIT inhibitors in core-binding factor AML and FLT3 inhibitors in AML with FLT3 mutation, as well as gemtuzumab ozogamicin therapy in patients with low and intermediate cytogenetic risk profiles. With the advent of the next generation sequencing technologies it is expected that new therapeutic targets will be identified. These insights will lead to a further individualization of AML therapy.

  2. Acute myeloid leukemia risk by industry and occupation

    PubMed Central

    Tsai, Rebecca J.; Luckhaupt, Sara E.; Schumacher, Pam; Cress, Rosemary D.; Deapen, Dennis M.; Calvert, Geoffrey M.

    2015-01-01

    Acute myeloid leukemia (AML) is the most common type of leukemia found in adults. Identifying jobs that pose a risk for AML may be useful for identifying new risk factors. A matched case–control analysis was conducted using California Cancer Registry data from 1988 to 2007. This study included 8999 cases of AML and 24 822 controls. Industries with a statistically significant increased AML risk were construction (matched odds ratio [mOR] = 1.13); crop production (mOR = 1.41); support activities for agriculture and forestry (mOR = 2.05); and animal slaughtering and processing (mOR = 2.09). Among occupations with a statistically significant increased AML risk were miscellaneous agricultural workers (mOR = 1.76); fishers and related fishing workers (mOR = 2.02); nursing, psychiatric and home health aides (mOR = 1.65); and janitors and building cleaners (mOR = 1.54). Further investigation is needed to confirm study findings and to identify specific exposures responsible for the increased risks. PMID:24547710

  3. Functional integration of acute myeloid leukemia into the vascular niche.

    PubMed

    Cogle, Christopher R; Goldman, Devorah C; Madlambayan, Gerard J; Leon, Ronald P; Masri, Azzah Al; Clark, Hilary A; Asbaghi, Steven A; Tyner, Jeffrey W; Dunlap, Jennifer; Fan, Guang; Kovacsovics, Tibor; Liu, Qiuying; Meacham, Amy; Hamlin, Kimberly L; Hromas, Robert A; Scott, Edward W; Fleming, William H

    2014-10-01

    Vascular endothelial cells are a critical component of the hematopoietic microenvironment that regulates blood cell production. Recent studies suggest the existence of functional cross-talk between hematologic malignancies and vascular endothelium. Here we show that human acute myeloid leukemia (AML) localizes to the vasculature in both patients and in a xenograft model. A significant number of vascular tissue-associated AML cells (V-AML) integrate into vasculature in vivo and can fuse with endothelial cells. V-AML cells acquire several endothelial cell-like characteristics, including the upregulation of CD105, a receptor associated with activated endothelium. Remarkably, endothelial-integrated V-AML shows an almost fourfold reduction in proliferative activity compared with non-vascular-associated AML. Primary AML cells can be induced to downregulate the expression of their hematopoietic markers in vitro and differentiate into phenotypically and functionally defined endothelial-like cells. After transplantation, these leukemia-derived endothelial cells are capable of giving rise to AML. These novel functional interactions between AML cells and normal endothelium along with the reversible endothelial cell potential of AML suggest that vascular endothelium may serve as a previously unrecognized reservoir for AML.

  4. Systematic review of dasatinib in chronic myeloid leukemia.

    PubMed

    Breccia, Massimo; Salaroli, Adriano; Molica, Matteo; Alimena, Giuliana

    2013-01-01

    Dasatinib is a dual tyrosine kinase inhibitor active against ABL and Src family kinases, and is approved for the treatment of chronic myeloid leukemia (CML) patients in chronic, accelerated, or blast phase with resistance or intolerance to imatinib therapy, for newly diagnosed chronic phase patients, and for adults with Philadelphia chromosome-positive acute lymphoblastic leukemia who have become resistant to or intolerant of other treatments. This review presents clinical data regarding different trials involving CML patients in different phases of the disease. Six-year follow-up of the Phase III dose-optimization study are described, showing overall survival of 71% with the current approved dose of 100 mg once daily. Three-year results of the randomized Phase III DASISION (DASatinib vs Imatinib Study In Treatment-Naïve CML patients) trial confirmed that dasatinib 100 mg once daily was superior to standard-dose imatinib in terms of achieving a faster and deeper molecular response, with similar activity regardless of baseline prognostic score.

  5. Beginning treatment for pediatric acute myeloid leukemia: the family connection.

    PubMed

    McGrath, Pam; Paton, Mary Anne; Huff, Nicole

    2005-01-01

    There is a loud silence on psycho-oncology research in relation to pediatric Acute Myeloid Leukemia (AML). This article is part of a series that begins to address the psycho-social hiatus. The present article documents the less obvious, often hidden, aspect of beginning treatment for pediatric AML--the "behind the scenes" experience of the home and family connection. The findings are from the first stage of a five year longitudinal study that examines through qualitative research the experience of childhood leukemia from the perspective of the child, siblings and parents. Open-ended interviews, audio-recorded and transcribed verbatim, were thematically analyzed with the assistance of the Non-numerical Unstructured Data by processes of Indexing Searching and Theory-building (NUD*IST) computer program. The findings emphasize the disruption to normalcy in relation to home life, school, and work, which is exacerbated for families who relocate for specialist treatment. The findings emphasise the need for support for families coping with childhood AML.

  6. Azelaic Acid Exerts Antileukemic Activity in Acute Myeloid Leukemia

    PubMed Central

    Pan, Yunbao; Liu, Dong; Wei, Yongchang; Su, Dan; Lu, Chenyang; Hu, Yanchao; Zhou, Fuling

    2017-01-01

    Acute myeloid leukemia (AML) is an acute leukemia common in most adults; its prevalence intensifies with age. The overall survival of AML is very poor because of therapeutic resistance. Azelaic acid (AZA) is non-toxic, non-teratogenic, and non-mutagenic and its antitumor effect on various tumor cells is well established; Nonetheless, its therapeutic effects in AML cells are largely unknown. In this study, it was shown that AZA significantly inhibits the cell viability and induces apoptosis in AML cells in a dose-dependent manner. Additionally, AZA suppressed the expression of phosphorylated Akt, Jab1 and Trx, and this suppression was enhanced by treatment with Jab1 siRNA. Furthermore, AZA sensitized AML cells to Ara-c chemotherapy. The suppressive effect of AZA on tumor growth was examined in vivo by subcutaneously inoculated AML cells in a tumor model using nude mice. These findings indicate that AZA is useful as an effective ingredient in antineoplastic activity. PMID:28659796

  7. Molecular Therapeutic Approaches for Pediatric Acute Myeloid Leukemia

    PubMed Central

    Tasian, Sarah K.; Pollard, Jessica A.; Aplenc, Richard

    2014-01-01

    Approximately two-thirds of children with acute myeloid leukemia (AML) are cured with intensive multi-agent chemotherapy. However, refractory and relapsed AML remains a significant source of childhood cancer mortality, highlighting the need for new therapies. Further therapy intensification with traditional cytotoxic chemotherapy in pediatric AML is not feasible given the risks of both short-term and long-term organ dysfunction. Substantial emphasis has been placed upon the development of molecularly targeted therapeutic approaches for adults and children with high-risk subtypes of AML with the goal of improving remission induction and minimizing relapse. Several promising agents are currently in clinical testing or late preclinical development for AML, including monoclonal antibodies against leukemia cell surface proteins, kinase inhibitors, proteasome inhibitors, epigenetic agents, and chimeric antigen receptor engineered T cell immunotherapies. Many of these therapies have been specifically tested in children with relapsed/refractory AML in Phase 1 and 2 trials with a smaller number of new agents under Phase 3 evaluation for children with de novo AML. Although successful identification and implementation of new drugs for children with AML remain a formidable challenge, enthusiasm for novel molecular therapeutic approaches is great given the potential for significant clinical benefit for children who do not have other curative options. PMID:24672775

  8. Novel combination treatments targeting chronic myeloid leukemia stem cells.

    PubMed

    Al Baghdadi, Tareq; Abonour, Rafat; Boswell, H Scott

    2012-04-01

    Chronic myeloid leukemia (CML) is currently considered incurable in most patients. Stem cell transplantation, an accepted curative option for which extensive experience has been gained, is limited by high morbidity and mortality rates, particularly in older patients. Tyrosine kinase inhibitors targeting BCR-ABL are widely used and induce remission in a high proportion of patients, but resistance and incomplete response to these agents portends eventual relapse and disease progression. Although BCR-ABL inhibitors eradicate most CML cells, they are largely ineffective against the reservoir of quiescent leukemic stem cells (LSCs). Thus a strong medical need exists for therapies that effectively eradicate LSCs and is currently a focus of extensive research. To date, evidence obtained from in vitro studies, animal models, and clinical CML specimens suggests that an effective approach may be to partner existing BCR-ABL inhibitors with compounds targeting key stem cell molecular effectors, including Wnt/β-catenin, hedgehog pathway components, histone deacetylase (HDAC), transforming growth factor-β (TGF-β), Janus kinase 2, promyelocytic leukemia protein, and arachidonate 5-lipoxygenase (ALOX5). Novel combinations may sensitize LSCs to BCR-ABL inhibitors, thereby overcoming resistance and creating the possibility of improving disease outcome beyond the current standard of care. Copyright © 2012. Published by Elsevier Inc.

  9. Update on antigen-specific immunotherapy of acute myeloid leukemia.

    PubMed

    Buckley, Sarah A; Walter, Roland B

    2015-06-01

    Among the few drugs that have shown a benefit for patients with acute myeloid leukemia (AML) in randomized clinical trials over the last several decades is the CD33 antibody-drug conjugate, gemtuzumab ozogamicin (GO). Undoubtedly, this experience has highlighted the value of antigen-specific immunotherapy in AML. A wide variety of therapeutics directed against several different antigens on AML cells are currently explored in preclinical and early clinical studies. On the one hand, these include passive strategies such as unconjugated antibodies targeting one or more antigens, antibodies armed with drugs, toxic proteins, or radionuclides, or adoptive immunotherapies, in particular utilizing T cells engineered to express chimeric antigen receptors (CARs) or modified T cell receptor (TCR) genes; on the other hand, these include active strategies such as vaccinations. With the documented benefit for GO and the emerging data with several classes of therapeutics in other leukemias, in particular small bispecific antibodies and CAR T cells, the future is bright. Nevertheless, a number of important questions related to the choice of target antigen(s), patient population, exact treatment modality, and supportive care needs remain open. Addressing such questions in upcoming studies will ultimately be required to optimize the clinical use of antigen-specific immunotherapies in AML and ensure that such treatments become an effective, versatile tool for this disease for which the outcomes have remained unsatisfactory in many patients.

  10. Incorporating FLT3 inhibitors into acute myeloid leukemia treatment regimens

    PubMed Central

    Pratz, Keith; Levis, Mark

    2011-01-01

    FMS-Like-Tyrosine kinase-3 (FLT3) mutations are found in about 30% of cases of acute myeloid leukemia and confer an increased relapse rate and reduced overall survival. Targeting of this tyrosine kinase by direction inhibition is the focus of both preclinical and clinical research in AML. Several molecules in clinical development inhibit FLT3 with varying degrees of specificity. Preclinical models suggest that these compounds enhance the cytotoxicity of conventional chemotherapeutics against FLT3 mutant leukemia cells. The pharmacodynamic interactions between FLT3 inhibitors and chemotherapy appear to be sequence dependent. When the FLT3 inhibitor is used prior to chemotherapy, antagonism is displayed, while if FLT3 inhibition is instituted after to exposure to chemotherapy, synergistic cytotoxicity is seen. The combination of FLT3 inhibitors with chemotherapy is also complicated by potential pharmacokinetic obstacles, such as plasma protein binding and p-glycoprotein interactions. Ongoing and future studies are aimed at incorporating FLT3 inhibitors into conventional induction and consolidation therapy specifically for patients with FLT3 mutant AML. PMID:18452067

  11. Educational session: managing chronic myeloid leukemia as a chronic disease.

    PubMed

    Hochhaus, Andreas

    2011-01-01

    Elucidation of the pathogenesis of chronic myeloid leukemia (CML) and the introduction of tyrosine kinase inhibitors (TKIs) has transformed this disease from being invariably fatal to being the type of leukemia with the best prognosis. Median survival associated with CML is estimated at > 20 years. Nevertheless, blast crisis occurs at an incidence of 1%-2% per year, and once this has occurred, treatment options are limited and survival is short. Due to the overall therapeutic success, the prevalence of CML is gradually increasing. The optimal management of this disease includes access to modern therapies and standardized surveillance methods for all patients, which will certainly create challenges. Furthermore, all available TKIs show mild but frequent side effects that may require symptomatic therapy. Adherence to therapy is the key prerequisite for efficacy of the drugs and for long-term success. Comprehensive information on the nature of the disease and the need for the continuous treatment using the appropriate dosages and timely information on efficacy data are key factors for optimal compliance. Standardized laboratory methods are required to provide optimal surveillance according to current recommendations. CML occurs in all age groups. Despite a median age of 55-60 years, particular challenges are the management of the disease in children, young women with the wish to get pregnant, and older patients. The main challenges in the long-term management of CML patients are discussed in this review.

  12. Novel postremission strategies in adults with acute myeloid leukemia

    PubMed Central

    Lancet, Jeffrey E.; Karp, Judith E.

    2010-01-01

    Purpose of review Given the high rates of relapse in acute myeloid leukemia (AML), there is tremendous opportunity for the development of new therapeutic strategies in the postremission state. Unfortunately, the currently available modalities for postremission therapy, namely chemotherapy, have proven largely ineffective in changing the natural history of AML. The challenges to overcome therapeutic failure in the minimal residual disease status may relate to an incomplete understanding of the mechanisms and cell populations that are directly related to disease relapse as well as suboptimal ability to identify patients at highest risk for relapse. Recent findings Being a heterogeneous disease, relapsed AML is unlikely to emanate from one predominant mechanism; instead, there are likely multiple biologic factors at play that allow for clinical relapse to occur. These factors likely include multidrug resistance proteins, aberrant signal transduction pathways, survival of leukemia stem cells, microenvironmental interactions, and immune tolerance. Many novel strategies are in development that target these mechanisms, ranging from chemotherapeutic modalities, to signal transduction inhibitors, to upregulation of antileukemic immune responses. Summary Understanding the underlying mechanisms of leukemic cell survival and resistance has spurred the development of novel therapeutic approaches to overcome these mechanisms in the hope of eradicating minimal residual disease and improving survival in AML. PMID:19468272

  13. Radiation-induced myeloid leukemia in murine models.

    PubMed

    Rivina, Leena; Davoren, Michael; Schiestl, Robert H

    2014-07-25

    The use of radiation therapy is a cornerstone of modern cancer treatment. The number of patients that undergo radiation as a part of their therapy regimen is only increasing every year, but this does not come without cost. As this number increases, so too does the incidence of secondary, radiation-induced neoplasias, creating a need for therapeutic agents targeted specifically towards incidence reduction and treatment of these cancers. Development and efficacy testing of these agents requires not only extensive in vitro testing but also a set of reliable animal models to accurately recreate the complex situations of radiation-induced carcinogenesis. As radiation-induced leukemic progression often involves genomic changes such as rearrangements, deletions, and changes in methylation, the laboratory mouse Mus musculus, with its fully sequenced genome, is a powerful tool in cancer research. This fact, combined with the molecular and physiological similarities it shares with man and its small size and high rate of breeding in captivity, makes it the most relevant model to use in radiation-induced leukemia research. In this work, we review relevant M. musculus inbred and F1 hybrid animal models, as well as methods of induction of radiation-induced myeloid leukemia. Associated molecular pathologies are also included.

  14. An update of current treatments for adult acute myeloid leukemia

    PubMed Central

    Gardin, Claude

    2016-01-01

    Recent advances in acute myeloid leukemia (AML) biology and its genetic landscape should ultimately lead to more subset-specific AML therapies, ideally tailored to each patient's disease. Although a growing number of distinct AML subsets have been increasingly characterized, patient management has remained disappointingly uniform. If one excludes acute promyelocytic leukemia, current AML management still relies largely on intensive chemotherapy and allogeneic hematopoietic stem cell transplantation (HSCT), at least in younger patients who can tolerate such intensive treatments. Nevertheless, progress has been made, notably in terms of standard drug dose intensification and safer allogeneic HSCT procedures, allowing a larger proportion of patients to achieve durable remission. In addition, improved identification of patients at relatively low risk of relapse should limit their undue exposure to the risks of HSCT in first remission. The role of new effective agents, such as purine analogs or gemtuzumab ozogamicin, is still under investigation, whereas promising new targeted agents are under clinical development. In contrast, minimal advances have been made for patients unable to tolerate intensive treatment, mostly representing older patients. The availability of hypomethylating agents likely represents an encouraging first step for this latter population, and it is hoped will allow for more efficient combinations with novel agents. PMID:26660429

  15. Genome-wide mapping of histone H3K9me2 in acute myeloid leukemia reveals large chromosomal domains associated with massive gene silencing and sites of genome instability

    PubMed Central

    Popova, Evgenya Y.; Keasey, Nikki; Loughran, Thomas P.; Claxton, David F.

    2017-01-01

    A facultative heterochromatin mark, histone H3 lysine 9 dimethylation (H3K9me2), which is mediated by histone methyltransferases G9a/GLP (EHMT2/1), undergoes dramatic rearrangements during myeloid cell differentiation as observed by chromatin imaging. To determine whether these structural transitions also involve genomic repositioning of H3K9me2, we used ChIP-sequencing to map genome-wide topography of H3K9me2 in normal human granulocytes, normal CD34+ hematopoietic progenitors, primary myeloblasts from acute myeloid leukemia (AML) patients, and a model leukemia cell line K562. We observe that H3K9me2 naturally repositions from the previously designated “repressed” chromatin state in hematopoietic progenitors to predominant association with heterochromatin regions in granulocytes. In contrast, AML cells accumulate H3K9me2 on previously undefined large (> 100 Kb) genomic blocks that are enriched with AML-specific single nucleotide variants, sites of chromosomal translocations, and genes downregulated in AML. Specifically, the AML-specific H3K9me2 blocks are enriched with genes regulated by the proto-oncogene ERG that promotes stem cell characteristics. The AML-enriched H3K9me2 blocks (in contrast to the heterochromatin-associated H3K9me2 blocks enriched in granulocytes) are reduced by pharmacological inhibition of the histone methyltransferase G9a/GLP in K562 cells concomitantly with transcriptional activation of ERG and ETS1 oncogenes. Our data suggest that G9a/GLP mediate formation of transient H3K9me2 blocks that are preserved in AML myeloblasts and may lead to an increased rate of AML-specific mutagenesis and chromosomal translocations. PMID:28301528

  16. Leukemia-induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia.

    PubMed

    Stringaris, Kate; Sekine, Takuya; Khoder, Ahmad; Alsuliman, Abdullah; Razzaghi, Bonnie; Sargeant, Ruhena; Pavlu, Jiri; Brisley, Gill; de Lavallade, Hugues; Sarvaria, Anushruthi; Marin, David; Mielke, Stephan; Apperley, Jane F; Shpall, Elizabeth J; Barrett, A John; Rezvani, Katayoun

    2014-05-01

    The majority of patients with acute myeloid leukemia will relapse, and older patients often fail to achieve remission with induction chemotherapy. We explored the possibility that leukemic suppression of innate immunity might contribute to treatment failure. Natural killer cell phenotype and function was measured in 32 consecutive acute myeloid leukemia patients at presentation, including 12 achieving complete remission. Compared to 15 healthy age-matched controls, natural killer cells from acute myeloid leukemia patients were abnormal at presentation, with downregulation of the activating receptor NKp46 (P=0.007) and upregulation of the inhibitory receptor NKG2A (P=0.04). Natural killer cells from acute myeloid leukemia patients had impaired effector function against autologous blasts and K562 targets, with significantly reduced CD107a degranulation, TNF-α and IFN-γ production. Failure to achieve remission was associated with NKG2A overexpression and reduced TNF-α production. These phenotypic and functional abnormalities were partially restored in the 12 patients achieving remission. In vitro co-incubation of acute myeloid leukemia blasts with natural killer cells from healthy donors induced significant impairment in natural killer cell TNF-α and IFN-γ production (P=0.02 and P=0.01, respectively) against K562 targets and a trend to reduced CD107a degranulation (P=0.07). Under transwell conditions, the inhibitory effect of AML blasts on NK cytotoxicity and effector function was still present, and this inhibitory effect was primarily mediated by IL-10. These results suggest that acute myeloid leukemia blasts induce long-lasting changes in natural killer cells, impairing their effector function and reducing the competence of the innate immune system, favoring leukemia survival.

  17. THERAPY-RELATED T/MYELOID MIXED PHENOTYPE ACUTE LEUKEMIA IN A PATIENT TREATED WITH CHEMOTHERAPY FOR CUTANEOUS DIFFUSE LARGE B CELL LYMPHOMA.

    PubMed

    Roberts, Evans; Oncale, Melody; Safah, Hana; Schmieg, John

    2016-01-01

    dyspnea, night sweats, weakness, and diffuse lymphadenopathy. Her presentation was initially concerning for recurrent lymphoma; however, a bone marrow biopsy and aspirate and a lymph node biopsy revealed a distinct blast population consistent with T/myeloid mixed phenotype acute leukemia T/M-MPAL. Given the patient's history of previous chemotherapy exposure, our patient represents a case of therapy-related T/myeloid mixed phenotype acute leukemia t-MPAL.

  18. Modulatory Effects and Action Mechanisms of Tryptanthrin on Murine Myeloid Leukemia Cells

    PubMed Central

    Chan, Hoi-Ling; Yip, Hon-Yan; Mak, Nai-Ki; Leung, Kwok-Nam

    2009-01-01

    Leukemia is the disorder of hematopoietic cell development and is characterized by an uncoupling of cell proliferation and differentiation. There is a pressing need for the development of novel tactics for leukemia therapy as conventional treatments often have severe adverse side effects. Tryptanthrin (6,12-dihydro-6,12-dioxoindolo-(2,1-b)-quinazoline) is a naturally-occurring, weakly basic alkaloid isolated from the dried roots of medicinal indigo plants (Ban-Lan-Gen). It has been reported to have various biological and pharmacological activities, including anti-microbial, anti-inflammatory, immunomodulatory and anti-tumor effects. However, its modulatory effects and action mechanisms on myeloid cells remain poorly understood. In this study, tryptanthrin was shown to suppress the proliferation of the murine myeloid leukemia WEHI-3B JCS cells in a dose- and time-dependent manner. It also significantly reduced the growth of WEHI-3B JCS cells in vivo in syngeneic BALB/c mice. However, it exhibited no significant direct cytotoxicity on normal murine peritoneal macrophages. Flow cytometric analysis showed an obvious cell cycle arrest of the tryptanthrin-treated WEHI-3B JCS cells at the G0/G1 phase. The expression of cyclin D2, D3, Cdk 2, 4 and 6 genes in WEHI-3B JCS cells was found to be down-regulated at 24 h as measured by RT-PCR. Morphological and functional studies revealed that tryptanthrin could induce differentiation in WEHI-3B JCS cells, as shown by the increases in vacuolation, cellular granularity and NBT-reducing activity in tryptanthrin-treated cells. Collectively, our findings suggest that tryptanthrin might exert its anti-tumor effect on the murine myelomonocytic leukemia WEHI-3B JCS cells by causing cell cycle arrest and by triggering cell differentiation. PMID:19887046

  19. Late effect of atomic bomb radiation on myeloid disorders: leukemia and myelodysplastic syndromes.

    PubMed

    Tsushima, Hideki; Iwanaga, Masako; Miyazaki, Yasushi

    2012-03-01

    Leukemia was the first malignancy linked to radiation exposure in atomic bomb survivors. Clear evidence of the dose-dependent excess risk of three major types of leukemia (acute lymphocytic leukemia, acute myeloid leukemia [AML], and chronic myeloid leukemia) was found, especially in people exposed at young ages. Such leukemia risks were at their highest in the late 1950s, and declined gradually thereafter over the past 50 years. Findings from recent risk analyses, however, suggest the persistence of AML risk even after 1990, and evidence of increased risk of myelodysplastic syndromes (MDS) due to atomic bomb radiation has recently been shown. High-risk MDS and forms involving complex chromosomal aberrations were found to be much more frequent in people exposed to higher radiation doses. These lines of epidemiological evidence suggest that the risk of radiation-induced hematological malignancies has persisted for six decades since the initial exposure.

  20. Identification of ILK as a novel therapeutic target for acute and chronic myeloid leukemia.

    PubMed

    de la Puente, Pilar; Weisberg, Ellen; Muz, Barbara; Nonami, Atsushi; Luderer, Micah; Stone, Richard M; Melo, Junia V; Griffin, James D; Azab, Abdel Kareem

    2015-09-09

    Current treatment options as well as clinical efficacy are limited for chronic myelogenous leukemia (CML), Ph+ acute lymphoblastic leukemia (ALL), and acute myeloid leukemia (AML). In response to the pressing need for more efficacious treatment approaches and strategies to override drug resistance in advanced stage CML, Ph+ ALL, and AML, we investigated the effects of inhibition of ILK as a potentially novel and effective approach to treatment of these challenging malignancies. Using the small molecule ILK inhibitor, Cpd22, and ILK knockdown, we investigated the importance of ILK in the growth and viability of leukemia. Our results suggest that the ILK inhibition may be an effective treatment for CML, Ph+ ALL, and AML as a single therapy, with ILK expression levels positively correlating with the efficacy of ILK inhibition. The identification of ILK as a novel target for leukemia therapy warrants further investigation as a therapeutic approach that could be of potential clinical benefit in both acute and chronic myeloid leukemias.

  1. Occurrence of Donor Cell-derived Lymphoid Blast Crisis 24 Years Following Related Bone Marrow Transplantation for Chronic Myeloid Leukemia.

    PubMed

    Kurosawa, Shuhei; Doki, Noriko; Hino, Yutaro; Sakaguchi, Masahiro; Fukushima, Kazuaki; Shingai, Naoki; Hattori, Keiichiro; Watanabe, Ken; Hagino, Takeshi; Igarashi, Aiko; Najima, Yuho; Kobayashi, Takeshi; Kakihana, Kazuhiko; Sakamaki, Hisashi; Ohashi, Kazuteru

    2016-01-01

    We herein report a unique case of donor cell leukemia (DCL), as donor cell-derived lymphoid blast crisis of chronic myeloid leukemia (CML) was observed 24 years after related bone marrow transplantation for CML in the chronic phase. Short tandem repeat testing of the leukemic blast sample revealed full donor chimerism, strongly indicative of DCL. The original donor is healthy with a normal complete blood cell count for the past 24 years. This rare case may provide a precious opportunity to consider not only the underlying mechanism of DCL, but also the pathogenesis of CML.

  2. Gain-of-function mutation of GATA-2 in acute myeloid transformation of chronic myeloid leukemia

    PubMed Central

    Zhang, Su-Jiang; Ma, Li-Yuan; Huang, Qiu-Hua; Li, Guo; Gu, Bai-Wei; Gao, Xiao-Dong; Shi, Jing-Yi; Wang, Yue-Ying; Gao, Li; Cai, Xun; Ren, Rui-Bao; Zhu, Jiang; Chen, Zhu; Chen, Sai-Juan

    2008-01-01

    Acquisition of additional genetic and/or epigenetic abnormalities other than the BCR/ABL fusion gene is believed to cause disease progression in chronic myeloid leukemia (CML) from chronic phase to blast crisis (BC). To gain insights into the underlying mechanisms of progression to BC, we screened DNA samples from CML patients during blast transformation for mutations in a number of transcription factor genes that are critical for myeloid–lymphoid development. In 85 cases of CML blast transformation, we identified two new mutations in the coding region of GATA-2, a negative regulator of hematopoietic stem/progenitor cell differentiation. A L359V substitution within zinc finger domain (ZF) 2 of GATA-2 was found in eight cases with myelomonoblastic features, whereas an in-frame deletion of 6 aa (Δ341–346) spanning the C-terminal border of ZF1 was detected in one patient at myeloid BC with eosinophilia. Further studies indicated that L359V not only increased transactivation activity of GATA-2 but also enhanced its inhibitory effects on the activity of PU.1, a major regulator of myelopoiesis. Consistent with the myelomonoblastic features of CML transformation with the GATA-2 L359V mutant, transduction of the GATA-2 L359V mutant into HL-60 cells or BCR/ABL-harboring murine cells disturbed myelomonocytic differentiation/proliferation in vitro and in vivo, respectively. These data strongly suggest that GATA-2 mutations may play a role in acute myeloid transformation in a subset of CML patients. PMID:18250304

  3. Acute myeloid leukemia following radioactive iodine therapy for papillary carcinoma of the thyroid.

    PubMed

    Ankit, Jain; S, Premalata C; S, Saini K; P, Bapsy P; V, Sajeevan K; Singh, Tejinder; Batra, Ullas; Govind, Babu; Dasappa, Lokanatha; Atilli, Suresh; R, Permeshwar

    2009-06-05

    Radioactive iodine (RAI) therapy plays an important role in the management of thyroid malignancies. Leukemia is a very rare complication of radioactive therapy. There are very few case reports with doses below 100 mCi causing leukemia. We report a case of papillary carcinoma of the thyroid treated with 80 mCi RAI who later developed acute myeloid leukemia. Thus, all patients with thyroid carcinoma treated with RAI should undergo periodic hematological examinations irrespective of RAI dose.

  4. Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells

    PubMed Central

    Goyama, Susumu; Schibler, Janet; Cunningham, Lea; Zhang, Yue; Rao, Yalan; Nishimoto, Nahoko; Nakagawa, Masahiro; Olsson, Andre; Wunderlich, Mark; Link, Kevin A.; Mizukawa, Benjamin; Grimes, H. Leighton; Kurokawa, Mineo; Liu, P. Paul; Huang, Gang; Mulloy, James C.

    2013-01-01

    RUNX1 is generally considered a tumor suppressor in myeloid neoplasms. Inactivating RUNX1 mutations have frequently been found in patients with myelodysplastic syndrome (MDS) and cytogenetically normal acute myeloid leukemia (AML). However, no somatic RUNX1 alteration was found in AMLs with leukemogenic fusion proteins, such as core-binding factor (CBF) leukemia and MLL fusion leukemia, raising the possibility that RUNX1 could actually promote the growth of these leukemia cells. Using normal human cord blood cells and those expressing leukemogenic fusion proteins, we discovered a dual role of RUNX1 in myeloid leukemogenesis. RUNX1 overexpression inhibited the growth of normal cord blood cells by inducing myeloid differentiation, whereas a certain level of RUNX1 activity was required for the growth of AML1-ETO and MLL-AF9 cells. Using a mouse genetic model, we also showed that the combined loss of Runx1/Cbfb inhibited leukemia development induced by MLL-AF9. RUNX2 could compensate for the loss of RUNX1. The survival effect of RUNX1 was mediated by BCL2 in MLL fusion leukemia. Our study unveiled an unexpected prosurvival role for RUNX1 in myeloid leukemogenesis. Inhibiting RUNX1 activity rather than enhancing it could be a promising therapeutic strategy for AMLs with leukemogenic fusion proteins. PMID:23979164

  5. Treosulfan, Fludarabine Phosphate, and Total Body Irradiation Before Donor Stem Cell Transplant in Treating Patients With Myelodysplastic Syndrome or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-08-30

    Acute Myeloid Leukemia in Remission; Chronic Myelomonocytic Leukemia; Minimal Residual Disease; Myelodysplastic Syndrome; Myelodysplastic/Myeloproliferative Neoplasm; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable

  6. Flavopiridol, Cytarabine, and Mitoxantrone in Treating Patients With Acute Leukemia

    ClinicalTrials.gov

    2013-10-07

    Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  7. Cryptic collagen IV promotes cell migration and adhesion in myeloid leukemia.

    PubMed

    Favreau, Amanda J; Vary, Calvin P H; Brooks, Peter C; Sathyanarayana, Pradeep

    2014-04-01

    Previously, we showed that discoidin domain receptor 1 (DDR1), a class of collagen-activated receptor tyrosine kinase (RTK) was highly upregulated on bone marrow (BM)-derived CD33+ leukemic blasts of acute myeloid leukemia (AML) patients. Herein as DDR1 is a class of collagen-activated RTK, we attempt to understand the role of native and remodeled collagen IV in BM microenvironment and its functional significance in leukemic cells. Exposure to denatured collagen IV significantly increased the migration and adhesion of K562 cells, which also resulted in increased activation of DDR1 and AKT. Further, levels of MMP9 were increased in conditioned media (CM) of denatured collagen IV exposed cells. Mass spectrometric liquid chromatography/tandem mass spectrometry QSTAR proteomic analysis revealed exclusive presence of Secretogranin 3 and InaD-like protein in the denatured collagen IV CM. Importantly, BM samples of AML patients exhibited increased levels of remodeled collagen IV compared to native as analyzed via anti-HUIV26 antibody. Taken together, for the first time, we demonstrate that remodeled collagen IV is a potent activator of DDR1 and AKT that also modulates both migration and adhesion of myeloid leukemia cells. Additionally, high levels of the HUIV26 cryptic collagen IV epitope are expressed in BM of AML patients. Further understanding of this phenomenon may lead to the development of therapeutic agents that directly modulate the BM microenvironment and attenuate leukemogenesis.

  8. DEK oncogene expression during normal hematopoiesis and in Acute Myeloid Leukemia (AML).

    PubMed

    Logan, Gemma E; Mor-Vaknin, Nirit; Braunschweig, Till; Jost, Edgar; Schmidt, Pia Verena; Markovitz, David M; Mills, Ken I; Kappes, Ferdinand; Percy, Melanie J

    2015-01-01

    DEK is important in regulating cellular processes including proliferation, differentiation and maintenance of stem cell phenotype. The translocation t(6;9) in Acute Myeloid Leukemia (AML), which fuses DEK with NUP214, confers a poor prognosis and a higher risk of relapse. The over-expression of DEK in AML has been reported, but different studies have shown diminished levels in pediatric and promyelocytic leukemias. This study has characterized DEK expression, in silico, using a large multi-center cohort of leukemic and normal control cases. Overall, DEK was under-expressed in AML compared to normal bone marrow (NBM). Studying specific subtypes of AML confirmed either no significant change or a significant reduction in DEK expression compared to NBM. Importantly, the similarity of DEK expression between AML and NBM was confirmed using immunohistochemistry analysis of tissue mircorarrays. In addition, stratification of AML patients based on median DEK expression levels indicated that DEK showed no effect on the overall survival of patients. DEK expression during normal hematopoiesis did reveal a relationship with specific cell types implicating a distinct function during myeloid differentiation. Whilst DEK may play a potential role in hematopoiesis, it remains to be established whether it is important for leukemagenesis, except when involved in the t(6;9) translocation. Copyright © 2014. Published by Elsevier Inc.

  9. Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells.

    PubMed

    Remsing Rix, L L; Rix, U; Colinge, J; Hantschel, O; Bennett, K L; Stranzl, T; Müller, A; Baumgartner, C; Valent, P; Augustin, M; Till, J H; Superti-Furga, G

    2009-03-01

    The detailed molecular mechanism of action of second-generation BCR-ABL tyrosine kinase inhibitors, including perturbed targets and pathways, should contribute to rationalized therapy in chronic myeloid leukemia (CML) or in other affected diseases. Here, we characterized the target profile of the dual SRC/ABL inhibitor bosutinib employing a two-tiered approach using chemical proteomics to identify natural binders in whole cell lysates of primary CML and K562 cells in parallel to in vitro kinase assays against a large recombinant kinase panel. The combined strategy resulted in a global survey of bosutinib targets comprised of over 45 novel tyrosine and serine/threonine kinases. We have found clear differences in the target patterns of bosutinib in primary CML cells versus the K562 cell line. A comparison of bosutinib with dasatinib across the whole kinase panel revealed overlapping, but distinct, inhibition profiles. Common among those were the SRC, ABL and TEC family kinases. Bosutinib did not inhibit KIT or platelet-derived growth factor receptor, but prominently targeted the apoptosis-linked STE20 kinases. Although in vivo bosutinib is inactive against ABL T315I, we found this clinically important mutant to be enzymatically inhibited in the mid-nanomolar range. Finally, bosutinib is the first kinase inhibitor shown to target CAMK2G, recently implicated in myeloid leukemia cell proliferation.

  10. The N(6)-methyladenosine (m(6)A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells.

    PubMed

    Vu, Ly P; Pickering, Brian F; Cheng, Yuanming; Zaccara, Sara; Nguyen, Diu; Minuesa, Gerard; Chou, Timothy; Chow, Arthur; Saletore, Yogesh; MacKay, Matthew; Schulman, Jessica; Famulare, Christopher; Patel, Minal; Klimek, Virginia M; Garrett-Bakelman, Francine E; Melnick, Ari; Carroll, Martin; Mason, Christopher E; Jaffrey, Samie R; Kharas, Michael G

    2017-09-18

    N(6)-methyladenosine (m(6)A) is an abundant nucleotide modification in mRNA that is required for the differentiation of mouse embryonic stem cells. However, it remains unknown whether the m(6)A modification controls the differentiation of normal and/or malignant myeloid hematopoietic cells. Here we show that shRNA-mediated depletion of the m(6)A-forming enzyme METTL3 in human hematopoietic stem/progenitor cells (HSPCs) promotes cell differentiation, coupled with reduced cell proliferation. Conversely, overexpression of wild-type METTL3, but not of a catalytically inactive form of METTL3, inhibits cell differentiation and increases cell growth. METTL3 mRNA and protein are expressed more abundantly in acute myeloid leukemia (AML) cells than in healthy HSPCs or other types of tumor cells. Furthermore, METTL3 depletion in human myeloid leukemia cell lines induces cell differentiation and apoptosis and delays leukemia progression in recipient mice in vivo. Single-nucleotide-resolution mapping of m(6)A coupled with ribosome profiling reveals that m(6)A promotes the translation of c-MYC, BCL2 and PTEN mRNAs in the human acute myeloid leukemia MOLM-13 cell line. Moreover, loss of METTL3 leads to increased levels of phosphorylated AKT, which contributes to the differentiation-promoting effects of METTL3 depletion. Overall, these results provide a rationale for the therapeutic targeting of METTL3 in myeloid leukemia.

  11. Immunological classification of chronic myeloid leukemia distinguishes chronic phase, imminent blastic transformation, and acute lymphoblastic leukemia.

    PubMed

    Schmetzer, H M; Gerhartz, H H

    1997-06-01

    The clinical course of chronic myeloid leukemia (CML) is highly variable and therefore it is difficult to predict the duration of the chronic phase. We studied the immunological expression of maturation patterns in 62 cases of CML (30 cases in clinical/cytological blast crisis (BC), 32 cases in clinical/cytological chronic phase (CP) by means of a double marker enzyme immuno assay (DM-EIA). Immunological findings were supplemented by Southern blots using Ig-JH-, TCRbeta- and bcr-probes. Patients in BC (n = 30) expressed high proportions of CD10, CD20, CD33, CD34 and low degrees of a mature myeloid marker (CD15). Myeloid BC bone marrow (BM) cells showed a high degree of coexpression of unusual, lineage restricted markers: 25% of CD15-positive cells also expressed markers like CD10, CD20 or CD34. In contrast, BM cells in lymphoid BC did not show this coexpression. In CP two groups were distinguished immunologically: concordant cases which were immunologically normal (n = 14) and discordant cases (n = 18) which showed increased proportions of unusual, lineage restricted markers and double labelled cells (e.g. CD15/CD34). The latter group developed clinical BC earlier during further follow up (p = 0.009). Cases of lymphoid BC (n = 11)--in contrast to acute lymphoblastic leukemia (ALL) patients (n = 21)--did not show coexpression of CD15/CD10, CD20, CD34. These data show that blast clones can be detected in CML-CP by characteristic immunological maturation defects several months before the clinical onset of BC. Moreover, the lymphoid "blasts" of CML-BC represent a relatively differentiated lymphoid population of cells which can be distinguished from ALL by their lack of coexpression of unusual, lineage restricted markers.

  12. Targeted alpha-particle immunotherapy for acute myeloid leukemia.

    PubMed

    Jurcic, Joseph G; Rosenblat, Todd L

    2014-01-01

    Because alpha-particles have a shorter range and a higher linear energy transfer (LET) compared with beta-particles, targeted alpha-particle immunotherapy offers the potential for more efficient tumor cell killing while sparing surrounding normal cells. To date, clinical studies of alpha-particle immunotherapy for acute myeloid leukemia (AML) have focused on the myeloid cell surface antigen CD33 as a target using the humanized monoclonal antibody lintuzumab. An initial phase I study demonstrated the safety, feasibility, and antileukemic effects of bismuth-213 ((213)Bi)-labeled lintuzumab. In a subsequent study, (213)Bi-lintuzumab produced remissions in some patients with AML after partial cytoreduction with cytarabine, suggesting the utility of targeted alpha-particle therapy for small-volume disease. The widespread use of (213)Bi, however, is limited by its short half-life. Therefore, a second-generation construct containing actinium-225 ((225)Ac), a radiometal that generates four alpha-particle emissions, was developed. A phase I trial demonstrated that (225)Ac-lintuzumab is safe at doses of 3 μCi/kg or less and has antileukemic activity across all dose levels studied. Fractionated-dose (225)Ac-lintuzumab in combination with low-dose cytarabine (LDAC) is now under investigation for the management of older patients with untreated AML in a multicenter trial. Preclinical studies using (213)Bi- and astatine-211 ((211)At)-labeled anti-CD45 antibodies have shown that alpha-particle immunotherapy may be useful as part conditioning before hematopoietic cell transplantation. The use of novel pretargeting strategies may further improve target-to-normal organ dose ratios.

  13. Oncogenic NRAS Primes Primary Acute Myeloid Leukemia Cells for Differentiation

    PubMed Central

    Millahn, Axel; Stiewe, Thorsten; Krause, Michael; Stabla, Kathleen; Ross, Petra; Huynh, Minh; Illmer, Thomas; Mernberger, Marco; Barckhausen, Christina; Neubauer, Andreas

    2015-01-01

    RAS mutations are frequently found among acute myeloid leukemia patients (AML), generating a constitutively active signaling protein changing cellular proliferation, differentiation and apoptosis. We have previously shown that treatment of AML patients with high-dose cytarabine is preferentially beneficial for those harboring oncogenic RAS. On the basis of a murine AML cell culture model, we ascribed this effect to a RAS-driven, p53-dependent induction of differentiation. Hence, in this study we sought to confirm the correlation between RAS status and differentiation of primary blasts obtained from AML patients. The gene expression signature of AML blasts with oncogenic NRAS indeed corresponded to a more mature profile compared to blasts with wildtype RAS, as demonstrated by gene set enrichment analysis (GSEA) and real-time PCR analysis of myeloid ecotropic viral integration site 1 homolog (MEIS1) in a unique cohort of AML patients. In addition, in vitro cell culture experiments with established cell lines and a second set of primary AML cells showed that oncogenic NRAS mutations predisposed cells to cytarabine (AraC) driven differentiation. Taken together, our findings show that AML with inv(16) and NRAS mutation have a differentiation gene signature, supporting the notion that NRAS mutation may predispose leukemic cells to AraC induced differentiation. We therefore suggest that promotion of differentiation pathways by specific genetic alterations could explain the superior treatment outcome after therapy in some AML patient subgroups. Whether a differentiation gene expression status may generally predict for a superior treatment outcome in AML needs to be addressed in future studies. PMID:25901794

  14. Exogenous IL-33 overcomes T cell tolerance in murine acute myeloid leukemia

    PubMed Central

    Qin, Lei; Dominguez, Donye; Chen, Siqi; Fan, Jie; Long, Alan; Zhang, Minghui; Fang, Deyu; Zhang, Yi; Kuzel, Timothy M.; Zhang, Bin

    2016-01-01

    Emerging studies suggest that dominant peripheral tolerance is a major mechanism of immune escape in disseminated leukemia. Using an established murine acute myeloid leukemia (AML) model, we here show that systemic administration of recombinant IL-33 dramatically inhibits the leukemia growth and prolongs the survival of leukemia-bearing mice in a CD8+ T cell dependent manner. Exogenous IL-33 treatment enhanced anti-leukemia activity by increasing the expansion and IFN-γ production of leukemia-reactive CD8+ T cells. Moreover, IL-33 promoted dendritic cell (DC) maturation and activation in favor of its cross presentation ability to evoke a vigorous anti-leukemia immune response. Finally, we found that the combination of PD-1 blockade with IL-33 further prolonged the survival, with half of the mice achieving complete regression. Our data establish a role of exogenous IL-33 in reversing T cell tolerance, and suggest its potential clinical implication into leukemia immunotherapy. PMID:27517629

  15. Acute Myeloid Leukemia: Advancements in Diagnosis and Treatment

    PubMed Central

    Yu, Meng-Ge; Zheng, Hu-Yong

    2017-01-01

    Objective: Leukemia is the most common pediatric malignancy and a major cause of morbidity and mortality in children. Among all subtypes, a lack of consensus exists regarding the diagnosis and treatment of acute myeloid leukemia (AML). Patient survival rates have remained modest for the past three decades in AML. Recently, targeted therapy has emerged as a promising treatment. Data Sources: We searched the PubMed database for recently published research papers on diagnostic development, target therapy, and other novel therapies of AML. Clinical trial information was obtained from ClinicalTrials.gov. For the major purpose of this review that is to outline the latest therapeutic development of AML, we only listed the ongoing clinical trials for reference. However, the published results of complete clinical trials were also mentioned. Study Selection: This article reviewed the latest developments related to the diagnosis and treatment of AML. In the first portion, we provided some novel insights on the molecular basis of AML, as well as provided an update on the classification of AML. In the second portion, we summarized the results of research on potential molecular therapeutic agents including monoclonal antibodies, tyrosine kinase/Fms-like tyrosine kinase 3 (FLT3) inhibitors, epigenetic/demethylating agents, and cellular therapeutic agents. We will also highlight ongoing research and clinical trials in pediatric AML. Results: We described clonal evolution and how it changes our view on leukemogenesis, treatment responses, and disease relapse. Pediatric-specific genomic mapping was discussed with a novel diagnostic method highlighted. In the later portion of this review, we summarized the researches on potential molecular therapeutic agents including monoclonal antibodies, tyrosine kinase/FLT3 inhibitors, epigenetic/demethylating agents, and cellular therapeutic agents. Conclusion: Gene sequencing techniques should set the basis for next-generation diagnostic

  16. PU.1 affects proliferation of the human acute myeloid leukemia U937 cell line by directly regulating MEIS1

    PubMed Central

    ZHOU, JING; ZHANG, XIAOFENG; WANG, YUHUA; GUAN, YINGHUI

    2015-01-01

    The transcription factor PU.1 is a member of the ETS family, which is expressed in a wide variety of hematopoietic lineages. Accumulating evidence has indicated that PU.1 plays a key role in hematopoiesis, and reduced expression of PU.1 leads to the pathogenesis of human myeloid leukemia. As a multi-functional factor, PU.1 is also required for mixed lineage leukemia (MLL) stem cell potential and the development of MLL. However, the function of PU.1 in human non-MLL leukemia and its molecular mechanism remains poorly understood. In the present study, PU.1 siRNA was demonstrated to efficiently inhibit the transcription level of oncogene MEIS1 in the human acute myeloid non-MLL leukemia U937 cell line. In addition, PU.1, as a positive regulator of MEIS1, performed a crucial role in maintaining cell proliferation. Using electrophoretic mobility shift assay, chromatin immunoprecipitation analysis and luciferase reporter assay, previously unexplored evidence that PU.1 activated the MEIS1 promoter through a conserved binding motif in vitro and in vivo was further defined. Overall, the present study provides insight into the molecular mechanism of the contribution of PU.1 to the pathogenesis of non-MLL U937 cells, which is mediated by direct regulation of MEIS1 transcription. The present data reveal the possibility of developing an alternative therapy for non-MLL leukemia by targeting PU.1-mediated MEIS1 gene activation. PMID:26622774

  17. Phase 1 dose-finding study of rebastinib (DCC-2036) in patients with relapsed chronic myeloid leukemia and acute myeloid leukemia

    PubMed Central

    Cortes, Jorge; Talpaz, Moshe; Smith, Hedy P.; Snyder, David S.; Khoury, Jean; Bhalla, Kapil N.; Pinilla-Ibarz, Javier; Larson, Richard; Mitchell, David; Wise, Scott C.; Rutkoski, Thomas J.; Smith, Bryan D.; Flynn, Daniel L.; Kantarjian, Hagop M.; Rosen, Oliver; Van Etten, Richard A.

    2017-01-01

    A vailable tyrosine kinase inhibitors for chronic myeloid leukemia bind in an adenosine 5′-triphosphate-binding pocket and are affected by evolving mutations that confer resistance. Rebastinib was identified as a switch control inhibitor of BCR-ABL1 and FLT3 and may be active against resistant mutations. A Phase 1, first-in-human, single-agent study investigated rebastinib in relapsed or refractory chronic or acute myeloid leukemia. The primary objectives were to investigate the safety of rebastinib and establish the maximum tolerated dose and recommended Phase 2 dose. Fifty-seven patients received treatment with rebastinib. Sixteen patients were treated using powder-in-capsule preparations at doses from 57 mg to 1200 mg daily, and 41 received tablet preparations at doses of 100 mg to 400 mg daily. Dose-limiting toxicities were dysarthria, muscle weakness, and peripheral neuropathy. The maximum tolerated dose was 150 mg tablets administered twice daily. Rebastinib was rapidly absorbed. Bioavailability was 3- to 4-fold greater with formulated tablets compared to unformulated capsules. Eight complete hematologic responses were achieved in 40 evaluable chronic myeloid leukemia patients, 4 of which had a T315I mutation. None of the 5 patients with acute myeloid leukemia responded. Pharmacodynamic analysis showed inhibition of phosphorylation of substrates of BCR-ABL1 or FLT3 by rebastinib. Although clinical activity was observed, clinical benefit was insufficient to justify continued development in chronic or acute myeloid leukemia. Pharmacodynamic analyses suggest that other kinases inhibited by rebastinib, such as TIE2, may be more relevant targets for the clinical development of rebastinib (clinicaltrials.gov Identifier:00827138). PMID:27927766

  18. Managing chronic myeloid leukemia: a coordinated team care perspective.

    PubMed

    Holloway, Stacie; Lord, Katharine; Bethelmie-Bryan, Beverly; Shepard, Marian W; Neely, Jessica; McLemore, Morgan; Reddy, Satyanarayan K; Montero, Aldemar; Jonas, William S; Gladney, Sara Pierson; Khanwani, Shyam L; Reddy, Silpa C; Lahiry, Anup K; Heffner, Leonard T; Winton, Elliott; Arellano, Martha; Khoury, Hanna Jean

    2012-04-01

    Treatment of chronic myeloid leukemia (CML) has seen dramatic progress in recent years with the development of tyrosine kinase inhibitors (TKIs). To take maximum advantage of therapy with TKIs, compliance and good understanding of monitoring response to therapy are essential. We established a team that included a hematologist, a physician assistant (PA), and a nurse who work closely with a social worker, a pharmacist, and a research coordinator to assist patients throughout their journey with CML. The patient and the referring community oncologist were incorporated into this team. This coordinated team care approach takes advantage of each member's specific skills to provide patients with education about CML, encourage patients' strong involvement in tracking/monitoring results/response to therapy, and support patients with issues that arise throughout the long course of the disease. A low rate of noncompliance with clinic visits (3%) was an indirect measure of the impact of this approach. The inclusion of the referring oncologist in the team extended the tracking of monitoring results to the community practice. We conclude that a coordinated team care approach is feasible in the management of patients with CML. This approach provided patients with education and a good understanding of response to therapy and improved relations with the health care team. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Recurrent SETBP1 mutations in atypical chronic myeloid leukemia

    PubMed Central

    Piazza, Rocco; Valletta, Simona; Winkelmann, Nils; Redaelli, Sara; Spinelli, Roberta; Pirola, Alessandra; Antolini, Laura; Mologni, Luca; Donadoni, Carla; Papaemmanuil, Elli; Schnittger, Susanne; Kim, Dong-Wook; Boultwood, Jacqueline; Rossi, Fabio; Gaipa, Giuseppe; De Martini, Greta P; di Celle, Paola Francia; Jang, Hyun Gyung; Fantin, Valeria; Bignell, Graham R; Magistroni, Vera; Haferlach, Torsten; Pogliani, Enrico Maria; Campbell, Peter J; Chase, Andrew J; Tapper, William J; Cross, Nicholas C P; Gambacorti-Passerini, Carlo

    2013-01-01

    Atypical chronic myeloid leukemia (aCML) shares clinical and laboratory features with CML, but it lacks the BCR-ABL1 fusion. We performed exome sequencing of eight aCMLs and identified somatic alterations of SETBP1 (encoding a p.Gly870Ser alteration) in two cases. Targeted resequencing of 70 aCMLs, 574 diverse hematological malignancies and 344 cancer cell lines identified SETBP1 mutations in 24 cases, including 17 of 70 aCMLs (24.3%; 95% confidence interval (CI) = 16–35%). Most mutations (92%) were located between codons 858 and 871 and were identical to changes seen in individuals with Schinzel-Giedion syndrome. Individuals with mutations had higher white blood cell counts (P = 0.008) and worse prognosis (P = 0.01). The p.Gly870Ser alteration abrogated a site for ubiquitination, and cells exogenously expressing this mutant exhibited higher amounts of SETBP1 and SET protein, lower PP2A activity and higher proliferation rates relative to those expressing the wild-type protein. In summary, mutated SETBP1 represents a newly discovered oncogene present in aCML and closely related diseases. PMID:23222956

  20. Recent discoveries in molecular characterization of acute myeloid leukemia.

    PubMed

    Khasawneh, Mohamad K; Abdel-Wahab, Omar

    2014-06-01

    Acute myeloid leukemia (AML) is a clinically heterogeneous disease, yet it is one of the most molecularly well-characterized cancers. Risk stratification of patients currently involves determination of the presence of cytogenetic abnormalities in combination with molecular genetic testing in a few genes. Several new recurrent genetic molecular abnormalities have recently been identified, including TET2, ASXL1, IDH1, IDH2, DNMT3A, and PHF6. Mutational analyses have identified that patients with DNMT3A or NPM1 mutations or MLL translocation have improved overall survival with high-dose chemotherapy. Mutational profiling can refine prognostication, particularly for patients in the intermediate-risk group or with a normal karyotype. CD25 expression status improves prognostic risk classification in AML independent of established biomarkers. Biomarkers such as 2- hydroxyglutarate in IDH1/2-mutant AML patients predict patient responses and minimal residual disease. These recent discoveries are being incorporated into our existing molecular risk stratification as well as the exploration of new therapeutics directed to these molecular targets.

  1. Pharmacokinetics of posaconazole prophylaxis of patients with acute myeloid leukemia.

    PubMed

    Mattiuzzi, Gloria; Yilmaz, Musa; Kantarjian, Hagop; Borthakur, Gautam; Konopleva, Marina; Jabbour, Elias; Brown, Yolanda; Pierce, Sherry; Cortes, Jorge

    2015-09-01

    Antifungal prophylaxis is routinely given to patients with hematologic malignancies at high risk for invasive fungal infections (IFI), yet breakthrough IFI may still occur. Posaconazole emerged as an excellent alternative for fungal prophylaxis in high-risk patients. There is limited data about pharmacokinetics and plasma concentrations of posaconazole when given as prophylaxis in patients with hematologic malignancies. We recruited 20 adult patients for prospective, open label trial of posaconazole given as a prophylaxis in patients with newly diagnosed acute myeloid leukemia (AML) undergoing induction chemotherapy or first salvage therapy. The median age of all patients was 65 years and received prophylaxis for a median of 38 days (range: 5-42 days).Ten patients (50%) completed 42 days on posaconazole prophylaxis. Median plasma posaconazole levels showed no statistical difference across gender, body surface area, patients developing IFI, and patients acquiring grade 3 or 4 elevation of liver enzymes. However, there was an overall trend for higher trough concentrations among patients with no IFI than those with IFI. Pharmacokinetics of posaconazole varies from patient to patient, and AML patients receiving induction chemotherapy who never develop IFI tend to have higher plasma concentrations after oral administration of posaconazole.

  2. Functional inhibition of mesenchymal stromal cells in acute myeloid leukemia.

    PubMed

    Geyh, S; Rodríguez-Paredes, M; Jäger, P; Khandanpour, C; Cadeddu, R-P; Gutekunst, J; Wilk, C M; Fenk, R; Zilkens, C; Hermsen, D; Germing, U; Kobbe, G; Lyko, F; Haas, R; Schroeder, T

    2016-03-01

    Hematopoietic insufficiency is the hallmark of acute myeloid leukemia (AML) and predisposes patients to life-threatening complications such as bleeding and infections. Addressing the contribution of mesenchymal stromal cells (MSC) to AML-induced hematopoietic failure we show that MSC from AML patients (n=64) exhibit significant growth deficiency and impaired osteogenic differentiation capacity. This was molecularly reflected by a specific methylation signature affecting pathways involved in cell differentiation, proliferation and skeletal development. In addition, we found distinct alterations of hematopoiesis-regulating factors such as Kit-ligand and Jagged1 accompanied by a significantly diminished ability to support CD34+ hematopoietic stem and progenitor cells in long-term culture-initiating cells (LTC-ICs) assays. This deficient osteogenic differentiation and insufficient stromal support was reversible and correlated with disease status as indicated by Osteocalcin serum levels and LTC-IC frequencies returning to normal values at remission. In line with this, cultivation of healthy MSC in conditioned medium from four AML cell lines resulted in decreased proliferation and osteogenic differentiation. Taken together, AML-derived MSC are molecularly and functionally altered and contribute to hematopoietic insufficiency. Inverse correlation with disease status and adoption of an AML-like phenotype after exposure to leukemic conditions suggests an instructive role of leukemic cells on bone marrow microenvironment.

  3. Clinical significance of Treg cell frequency in acute myeloid leukemia.

    PubMed

    Yang, Wenjuan; Xu, Yunxiao

    2013-11-01

    This study was designed to investigate the clinical significance of peripheral blood CD4(+) CD25(+) CD127 low-regulatory T (T(reg)) cells in acute myeloid leukemia (AML) patients. T(reg) cells in the peripheral blood of 80 AML patients and 35 age-matched healthy controls were counted by flow cytometry. Correlations between the frequency of circulating T(reg) cells and disease status, treatment outcome, or prognosis were evaluated. The percentages of T(reg) cells in patients at diagnosis and during refractory/relapse were significantly higher than that in healthy controls. There was no significant difference in the percentages of T(reg) cells between patients in remission and healthy controls. After six cycles of chemotherapy, the percentage of T(reg) cells in patients who achieved complete remission was significantly lower than that in patients at diagnosis, but there was no difference in T(reg) frequency between refractory/relapse patients and patients at diagnosis. T(reg) cells in the peripheral blood of AML patients may play a suppressive role in host antitumor immune response. The frequency of T(reg) cells in peripheral blood may thus be used as a biomarker for predicting sensitivity to chemotherapy and prognosis of AML patients. Additionally, T(reg) number in peripheral blood could be used to monitor disease status and evaluate disease progression.

  4. Patient empowerment in the management of chronic myeloid leukemia.

    PubMed

    Coleman, Melanie

    2014-04-01

    Patient empowerment is a patient-centered approach to care in which healthcare providers nurture patients' innate abilities to self-manage and incorporate patient goals for therapy into the overall management plan. Standard care of chronic myeloid leukemia (CML) requires lifelong medication with oral therapy and regular follow-up. The success of CML treatment, therefore, depends on a high degree of patient involvement and motivation, as well as strong collaboration between patients and healthcare providers. Oncology nurses can support patients with CML from the time of diagnosis to the end of treatment to ensure they maintain high levels of involvement in their care. At the author's center, patients who most actively collaborate with their physicians in treatment decisions take personal responsibility for the quality of their care and show good adherence to treatment. In the current article, the author discusses the potential effect of patient response to cancer diagnosis on clinical outlook and describes strategies in place at the cancer center to ensure that patients diagnosed with CML have the best chance at keeping their cancer under control.

  5. Quantitative modeling of chronic myeloid leukemia: insights from radiobiology

    PubMed Central

    Radivoyevitch, Tomas; Hlatky, Lynn; Landaw, Julian

    2012-01-01

    Mathematical models of chronic myeloid leukemia (CML) cell population dynamics are being developed to improve CML understanding and treatment. We review such models in light of relevant findings from radiobiology, emphasizing 3 points. First, the CML models almost all assert that the latency time, from CML initiation to diagnosis, is at most ∼ 10 years. Meanwhile, current radiobiologic estimates, based on Japanese atomic bomb survivor data, indicate a substantially higher maximum, suggesting longer-term relapses and extra resistance mutations. Second, different CML models assume different numbers, between 400 and 106, of normal HSCs. Radiobiologic estimates favor values > 106 for the number of normal cells (often assumed to be the HSCs) that are at risk for a CML-initiating BCR-ABL translocation. Moreover, there is some evidence for an HSC dead-band hypothesis, consistent with HSC numbers being very different across different healthy adults. Third, radiobiologists have found that sporadic (background, age-driven) chromosome translocation incidence increases with age during adulthood. BCR-ABL translocation incidence increasing with age would provide a hitherto underanalyzed contribution to observed background adult-onset CML incidence acceleration with age, and would cast some doubt on stage-number inferences from multistage carcinogenesis models in general. PMID:22353999

  6. Hypocellular acute myeloid leukemia treated with bone marrow transplantation.

    PubMed

    Keino, Dai; Kondoh, Kensuke; Ohyama, Ryo; Morimoto, Mizuho; Mori, Tetsuya; Ito, Masafumi; Kinoshita, Akitoshi

    2017-04-01

    Hypocellular acute myeloid leukemia (AML) mainly occurs in elderly patients, and is extremely rare in childhood. There is still no established treatment for hypocellular AML. We report the case of an 11-year-old boy with hypocellular AML who was treated successfully with allogenic bone marrow transplantation (allo-BMT). He presented with fever, pallor and pancytopenia. Bone marrow aspiration and biopsy confirmed a diagnosis of hypocellular AML. Although low-dose cytarabine induced reduction of blasts, it did not lead to complete remission. He subsequently received myeloablative conditioning and allo-BMT. Graft-versus-host disease (GVHD) prophylaxis included short-course methotrexate and cyclosporine. Neutrophil engraftment (>5 × 10(8) /L) and platelet recovery (>10 × 10(10) /L) were achieved on days 13 and 27, respectively. He developed acute GVHD of the skin (grade 2), which responded well to treatment with prednisolone. He has remained in complete remission for 5 years since allo-BMT. We consider allo-BMT to be feasible for children with hypocellular AML. © 2017 Japan Pediatric Society.

  7. Immunotherapy of chronic myeloid leukemia: present state and future prospects.

    PubMed

    Vonka, Vladimír

    2010-03-01

    In spite of the considerable successes that have been achieved in the treatment of chronic myeloid leukemia (CML), cure for the disease can only be obtained by the present means in a rather small minority of patients. During the past decade, considerable progress has been made in the understanding of the immunology of CML, which has raised hopes that this disease may be curable by supplementing the current targeted chemotherapy with immunotherapeutic approaches. More than ten small-scale clinical trials have been carried out with experimental vaccines predominantly based on the p210bcr-abl fusion protein. Their results suggested beneficial effects in some patients. Recent data obtained in human patients as well as in animal models indicate that the p210bcr-abl protein does not carry the immunodominant epitope(s). These observations, combined with the recognition of an ever increasing number of other immunogenic proteins in CML cells, strongly support the concept that gene-modified, cell-based vaccines containing the full spectrum of tumor antigens might be the most effective immunotherapeutic approach. Recently created mathematical models have provided important leads for the timing of the combination of targeted drug therapy with vaccine administration. A strategy of how targeted drug therapy might be combined with vaccination is outlined.

  8. Advances in the treatment of chronic myeloid leukemia.

    PubMed

    Eiring, Anna M; Khorashad, Jamshid S; Morley, Kimberly; Deininger, Michael W

    2011-08-26

    Although imatinib is firmly established as an effective therapy for newly diagnosed patients with chronic myeloid leukemia (CML), the field continues to advance on several fronts. In this minireview we cover recent results of second generation tyrosine kinase inhibitors in newly diagnosed patients, investigate the state of strategies to discontinue therapy and report on new small molecule inhibitors to tackle resistant disease, focusing on agents that target the T315I mutant of BCR-ABL. As a result of these advances, standard of care in frontline therapy has started to gravitate toward dasatinib and nilotinib, although more observation is needed to fully support this. Stopping therapy altogether remains a matter of clinical trials, and more must be learned about the mechanisms underlying the persistence of leukemic cells with treatment. However, there is good news for patients with the T315I mutation, as effective drugs such as ponatinib are on their way to regulatory approval. Despite these promising data, accelerated or blastic phase disease remains a challenge, possibly due to BCR-ABL-independent resistance.

  9. Quantitative modeling of chronic myeloid leukemia: insights from radiobiology.

    PubMed

    Radivoyevitch, Tomas; Hlatky, Lynn; Landaw, Julian; Sachs, Rainer K

    2012-05-10

    Mathematical models of chronic myeloid leukemia (CML) cell population dynamics are being developed to improve CML understanding and treatment. We review such models in light of relevant findings from radiobiology, emphasizing 3 points. First, the CML models almost all assert that the latency time, from CML initiation to diagnosis, is at most ∼10 years. Meanwhile, current radiobiologic estimates, based on Japanese atomic bomb survivor data, indicate a substantially higher maximum, suggesting longer-term relapses and extra resistance mutations. Second, different CML models assume different numbers, between 400 and 10(6), of normal HSCs. Radiobiologic estimates favor values>10(6) for the number of normal cells (often assumed to be the HSCs) that are at risk for a CML-initiating BCR-ABL translocation. Moreover, there is some evidence for an HSC dead-band hypothesis, consistent with HSC numbers being very different across different healthy adults. Third, radiobiologists have found that sporadic (background, age-driven) chromosome translocation incidence increases with age during adulthood. BCR-ABL translocation incidence increasing with age would provide a hitherto underanalyzed contribution to observed background adult-onset CML incidence acceleration with age, and would cast some doubt on stage-number inferences from multistage carcinogenesis models in general.

  10. ADVANCING THE MRD CONCEPT IN ACUTE MYELOID LEUKEMIA

    PubMed Central

    Hokland, Peter; Ommen, Hans B.; Mulé, Matthew P.; Hourigan, Christopher S.

    2015-01-01

    The criteria to evaluate response to treatment in acute myeloid leukemia (AML) have changed little in the past sixty years. It is now possible to use higher sensitivity tools to measure residual disease burden in AML. Such minimal or measurable residual disease (MRD) measurements provide a deeper understanding of current patient status and allow stratification for risk of subsequent clinical relapse. Despite these obvious advantages, and after over a decade of laboratory investigation and pre-clinical validation, MRD measurements are not currently routinely used for clinical decision-making or drug development in non-APL AML. We review here some potential constraints that may have delayed adoption including a natural hesitancy of end users, economic impact concerns, misperceptions regarding the meaning of and need for assay sensitivity, the lack of one single MRD solution for all AML patients and finally the need to involve patients in decision making based on such correlates. It is our opinion that none of these issues represent insurmountable barriers and our hope is that by providing potential solutions we can help map a path forward to a future where our patients will be offered personalized treatment plans based on the amount of AML they have left remaining to treat. PMID:26111465

  11. Biology and Clinical Relevance of Acute Myeloid Leukemia Stem Cells

    PubMed Central

    Reinisch, Andreas; Chan, Steven M.; Thomas, Daniel; Majeti, Ravindra

    2017-01-01

    Evidence for the cancer stem cell model was first demonstrated in xenotransplanted blood and bone marrow samples from patients with acute myeloid leukemia (AML) almost two decades ago, supporting the concept that a rare clonal and mutated leukemic stem cell (LSC) population is sufficient to drive leukemic growth. The inability to eliminate LSCs with conventional therapies is thought to be the primary cause of disease relapse in AML patients, and as such, novel therapies with the ability to target this population are required to improve patient outcomes. An important step towards this goal is the identification of common immunophenotypic surface markers and biological properties that distinguish LSCs from normal hematopoietic stem and progenitor cells (HSPCs) across AML patients. This work has resulted in the development of a large number of potential LSC-selective therapies that target cell-surface molecules, intracellular signaling pathways, and the bone marrow microenvironment. Here, we will review the basic biology, immunophenotypic detection, and clinical relevance of LSCs, as well as emerging biological and small-molecule strategies that either directly target LSCs or indirectly target these cells through modulation of their microenvironment. PMID:26111462

  12. Lipidomic approach for stratification of acute myeloid leukemia patients

    PubMed Central

    Stefanko, Adam; Thiede, Christian; Ehninger, Gerhard; Simons, Kai; Grzybek, Michal

    2017-01-01

    The pathogenesis and progression of many tumors, including hematologic malignancies is highly dependent on enhanced lipogenesis. De novo fatty-acid synthesis permits accelerated proliferation of tumor cells by providing membrane components but these may also alter physicochemical properties of lipid bilayers, which can impact signaling or even increase drug resistance in cancer cells. Cancer type-specific lipid profiles would permit us to monitor and interpret actual effects of lipid changes, potential fingerprints of individual tumors to be explored as diagnostic markers. We have used the shotgun MS approach to identify lipid patterns in different types of acute myeloid leukemia (AML) patients that either show no karyotype change or belong to t(8;21) or inv16 types. Differences in lipidomes of t(8;21) and inv(16) patients, as compared to AML patients without karyotype change, presented mostly as substantial modulation of ceramide/sphingolipid synthesis. Furthermore, between the t(8;21) and all other patients we observed significant changes in physicochemical membrane properties. These were related to a marked alteration in lipid saturation levels. The discovered differences in lipid profiles of various AML types improve our understanding of the pathobiochemical pathways involved and may serve in the development of diagnostic tools. PMID:28207743

  13. Molecular cytogenetic analysis of dicentric chromosomes in acute myeloid leukemia.

    PubMed

    Sarova, Iveta; Brezinova, Jana; Zemanova, Zuzana; Ransdorfova, Sarka; Izakova, Silvia; Svobodova, Karla; Pavlistova, Lenka; Berkova, Adela; Cermak, Jaroslav; Jonasova, Anna; Siskova, Magda; Michalova, Kyra

    2016-04-01

    Dicentric chromosomes (DCs) have been described in many hematological diseases, including acute myeloid leukemia (AML). They are markers of cancer and induce chromosomal instability, leading to the formation of other chromosomal aberrations and the clonal evolution of pathological cells. Our knowledge of the roles and behavior of human DCs is often derived from studies of induced DCs and cell lines. It is difficult to identify all the DCs in the karyotypes of patients because of the limitations of metaphase cytogenetic methods. The aim of this study was to revise the karyotypes of 20 AML patients in whom DCs were found with conventional G-banding or multicolor fluorescence in situ hybridization (mFISH) with (multi)centromeric probes and to characterize the DCs at the molecular cytogenetic level. FISH analyses confirmed 23 of the 29 expected DCs in 18 of 20 patients and identified 13 others that had not been detected cytogenetically. Fourteen DCs were altered by other chromosomal changes. In conclusion, karyotypes with DCs are usually very complex, and we have shown that they often contain more than one DC, which can be missed with conventional or mFISH methods. Our study indicates an association between number of DCs in karyotype and very short survival of patients.

  14. [Cytarabine and skin reactions in acute myeloid leukemia].

    PubMed

    Grille, Sofía; Guadagna, Regina; Boada, Matilde; Irigoin, Victoria; Stevenazzi, Mariana; Guillermo, Cecilia; Díaz, Lilián

    2013-01-01

    Cytarabine is an antimetabolite used in the treatment of acute myeloid leukemia (AML). It has many adverse effects as: myelosuppression, toxic reactions involving central nervous system, liver, gastrointestinal tract, eyes or skin. Dermatologic toxicity is often described as rare; nevertheless there are differences in the reported frequency. We performed a retrospective study including all AML treated with chemotherapy that involved cytarabine between 1st July of 2006 and 1st July of 2012; 46 patients were included with a median age of 55 years. The overall incidence of skin reactions was 39% (n = 18). Sex, age, history of atopy, history of drug reactions, or dose of cytarabine used, were not associated with them. Skin reactions were observed from 2 to 8 days after treatment started. Considering injury degree: 27.8% had grade 1, 38.9% grade 2 and 33.3% grade 3. We did not find any injury grade 4 or death associated with skin toxicity. As for the type of injury: 55.6% presented macules, 22.2% papules and 22.2% erythema. Lesions distribution was diffuse in 52% of patients, acral in 39.3%, and at flexural level in 8.7%. Adverse cutaneous reactions secondary to the administration of cytarabine are frequent in our service and include some cases with severe involvement. Although these reactions usually resolve spontaneously, they determine an increased risk of infection and a compromise of the patient quality of life.

  15. Management of pregnant chronic myeloid leukemia patients.

    PubMed

    Abruzzese, Elisabetta; Trawinska, Malgorzata Monika; de Fabritiis, Paolo; Baccarani, Michele

    2016-08-01

    Since the introduction of tyrosine kinase inhibitors (TKIs) therapy, chronic myeloid leukemia (CML), has moved from a fatal illness to a manageable disease with a possible normal lifespan. For this reason is more and more frequent that younger patients address the possibility to conceive, if men, or get pregnant, if women. Knowledge of safety and risks concerning both patient and progeny, as well as important cultural, ethical and psychosocial issues must be taken into consideration. Data published and informations acquired in terms of fertility, conception, pregnancy, pregnancy outcome and illness control for all the approved TKIs will be reviewed, as well as suggest how to manage a planned and/or unplanned pregnancy/conception. Literature search methodology included examination of PubMed index, meeting presentations, and updated Investigator's brochures and data files of TKIs companies. Expert commentary: Male patients trying to conceive apparently have no limitation in the use of TKIs, while effective contraception should be encouraged in all female patients due to the risk of fetal complications after drug exposure. In a female patient pregnancy should be planned and TKI therapy discontinued, while individual risks need to be considered when an unplanned pregnancy occurs.

  16. TP53 mutations in older adults with acute myeloid leukemia.

    PubMed

    Yanada, Masamitsu; Yamamoto, Yukiya; Iba, Sachiko; Okamoto, Akinao; Inaguma, Yoko; Tokuda, Masutaka; Morishima, Satoko; Kanie, Tadaharu; Mizuta, Shuichi; Akatsuka, Yoshiki; Okamoto, Masataka; Emi, Nobuhiko

    2016-04-01

    The net benefits of induction therapy for older adults with acute myeloid leukemia (AML) remain controversial. Because AML in older adults is a heterogeneous disease, it is important to identify those who are unlikely to benefit from induction therapy based on information available at the initial assessment. We used next-generation sequencing to analyze TP53 mutation status in AML patients aged 60 years or older, and evaluated its effects on outcomes. TP53 mutations were detected in 12 of 77 patients (16 %), and there was a significant association between TP53 mutations and monosomal karyotype. Patients with TP53 mutations had significantly worse survival than those without (P = 0.009), and multivariate analysis identified TP53 mutation status as the most significant prognostic factor for survival. Neverthelsess, TP53-mutated patients had a 42 % chance of complete remission and a median survival of 8.0 months, which compares favorably with those who did not undergo induction therapy, even in the short term. These results suggest that screening for TP53 mutations at diagnosis is useful for identifying older adults with AML who are least likely to respond to chemotherapy, although the presence of this mutation alone does not seem to justify rejecting induction therapy.

  17. Acute myeloid leukemia and myelodysplastic syndromes in older adults.

    PubMed

    Klepin, Heidi D; Rao, Arati V; Pardee, Timothy S

    2014-08-20

    Treatment of older adults with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS) is challenging because of disease morbidity and associated treatments. Both diseases represent a genetically heterogeneous group of disorders primarily affecting older adults, with treatment strategies ranging from supportive care to hematopoietic stem-cell transplantation. Although selected older adults can benefit from intensive therapies, as a group they experience increased treatment-related morbidity, are more likely to relapse, and have decreased survival. Age-related outcome disparities are attributed to both tumor and patient characteristics, requiring an individualized approach to treatment decision making beyond consideration of chronologic age alone. Selection of therapy for any individual requires consideration of both disease-specific risk factors and estimates of treatment tolerance and life expectancy derived from evaluation of functional status and comorbidity. Although treatment options for older adults are expanding, clinical trials accounting for the heterogeneity of tumor biology and aging are needed to define standard-of-care treatments for both disease groups. In addition, trials should include outcomes addressing quality of life, maintenance of independence, and use of health care services to assist in patient-centered decision making. This review will highlight available evidence in treatment of older adults with AML or MDS and unanswered clinical questions for older adults with these diseases.

  18. Acute Myeloid Leukemia and Myelodysplastic Syndromes in Older Adults

    PubMed Central

    Klepin, Heidi D.; Rao, Arati V.; Pardee, Timothy S.

    2014-01-01

    Treatment of older adults with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS) is challenging because of disease morbidity and associated treatments. Both diseases represent a genetically heterogeneous group of disorders primarily affecting older adults, with treatment strategies ranging from supportive care to hematopoietic stem-cell transplantation. Although selected older adults can benefit from intensive therapies, as a group they experience increased treatment-related morbidity, are more likely to relapse, and have decreased survival. Age-related outcome disparities are attributed to both tumor and patient characteristics, requiring an individualized approach to treatment decision making beyond consideration of chronologic age alone. Selection of therapy for any individual requires consideration of both disease-specific risk factors and estimates of treatment tolerance and life expectancy derived from evaluation of functional status and comorbidity. Although treatment options for older adults are expanding, clinical trials accounting for the heterogeneity of tumor biology and aging are needed to define standard-of-care treatments for both disease groups. In addition, trials should include outcomes addressing quality of life, maintenance of independence, and use of health care services to assist in patient-centered decision making. This review will highlight available evidence in treatment of older adults with AML or MDS and unanswered clinical questions for older adults with these diseases. PMID:25071138

  19. Evaluation of artemisinins for the treatment of acute myeloid leukemia

    PubMed Central

    Drenberg, Christina D.; Buaboonnam, Jassada; Orwick, Shelley J.; Hu, Shuiying; Li, Lie; Fan, Yiping; Shelat, Anang A.; Guy, R. Kiplin; Rubnitz, Jeffrey

    2016-01-01

    Purpose Investigate antileukemic activity of artemisinins, artesunate (ART), and dihydroartemisinin (DHA), in combination with cytarabine, a key component of acute myeloid leukemia (AML) chemotherapy using in vitro and in vivo models. Methods Using ten human AML cell lines, we conducted a high-throughput screen to identify antimalarial agents with antileukemic activity. We evaluated effects of ART and DHA on cell viability, cytotoxicity, apoptosis, lysosomal integrity, and combination effects with cytarabine in cell lines and primary patient blasts. In vivo pharmacokinetic studies and efficacy of single-agent ART or combination with cytarabine were evaluated in three xenograft models. Results ART and DHA had the most potent activity in a panel of AML cell lines, with selectivity toward samples harboring MLL rearrangements and FLT3-ITD mutations. Combination of ART or DHA was synergistic with cytarabine. Single-dose ART (120 mg/kg) produced human equivalent exposures, but multiple dose daily administration required for in vivo efficacy was not tolerated. Combination treatment produced initial regression, but did not prolong survival in vivo. Conclusions The pharmacology of artemisinins is problematic and should be considered in designing AML treatment strategies with currently available agents. Artemisinins with improved pharmacokinetic properties may offer therapeutic benefit in combination with conventional therapeutic strategies in AML. PMID:27125973

  20. Association of acute myeloid leukemia's most immature phenotype with risk groups and outcomes.

    PubMed

    Gerber, Jonathan M; Zeidner, Joshua F; Morse, Sarah; Blackford, Amanda L; Perkins, Brandy; Yanagisawa, Breann; Zhang, Hao; Morsberger, Laura; Karp, Judith; Ning, Yi; Gocke, Christopher D; Rosner, Gary L; Smith, B Douglas; Jones, Richard J

    2016-05-01

    The precise phenotype and biology of acute myeloid leukemia stem cells remain controversial, in part because the "gold standard" immunodeficient mouse engraftment assay fails in a significant fraction of patients and identifies multiple cell-types in others. We sought to analyze the clinical utility of a novel assay for putative leukemia stem cells in a large prospective cohort. The leukemic clone's most primitive hematopoietic cellular phenotype was prospectively identified in 109 newly-diagnosed acute myeloid leukemia patients, and analyzed against clinical risk groups and outcomes. Most (80/109) patients harbored CD34(+)CD38(-) leukemia cells. The CD34(+)CD38(-) leukemia cells in 47 of the 80 patients displayed intermediate aldehyde dehydrogenase expression, while normal CD34(+)CD38(-) hematopoietic stem cells expressed high levels of aldehyde dehydrogenase. In the other 33/80 patients, the CD34(+)CD38(-) leukemia cells exhibited high aldehyde dehydrogenase activity, and most (28/33, 85%) harbored poor-risk cytogenetics or FMS-like tyrosine kinase 3 internal tandem translocations. No CD34(+) leukemia cells could be detected in 28/109 patients, including 14/21 patients with nucleophosmin-1 mutations and 6/7 acute promyelocytic leukemia patients. The patients with CD34(+)CD38(-) leukemia cells with high aldehyde dehydrogenase activity manifested a significantly lower complete remission rate, as well as poorer event-free and overall survivals. The leukemic clone's most immature phenotype was heterogeneous with respect to CD34, CD38, and ALDH expression, but correlated with acute myeloid leukemia risk groups and outcomes. The strong clinical correlations suggest that the most immature phenotype detectable in the leukemia might serve as a biomarker for "clinically-relevant" leukemia stem cells. ClinicalTrials.gov: NCT01349972. Copyright© Ferrata Storti Foundation.

  1. Fatal cardiac tamponade as the first manifestation of acute myeloid leukemia.

    PubMed

    Leptidis, John; Aloizos, Stavros; Chlorokostas, Panagiotis; Gourgiotis, Stavros

    2014-10-01

    Acute myeloid leukemia is a hemopoietic myeloid stem cell neoplasm. It is the most common acute leukemia affecting adults,and its incidence increases with age. Acute myeloid leukemia is characterized by the rapid growth of abnormal white blood cells that accumulate in the bone marrow and interfere with the production of normal blood cells. As the leukemic cells keep filling the bone marrow, symptoms of the disease started to appear: fatigue, bleeding, increased frequency of infections, and shortness of breath. Cardiac tamponade or pericardial tamponade is an acute medical condition in which the accumulation of pericardial fluid prevents the function of the heart. Signs and symptoms include Beck triad (hypotension, distended neck veins, and muffled heart sounds), paradoxus pulses, tachycardia, tachypnea, and breathlessness. Pericardial effusion and cardiac tamponade are rare and severe complications of leukemia; they often develop during the radiation therapy, chemotherapy, or infections in the course of leukemia. This study sought to assess the fatal cardiac tamponade as the first manifestation of acute myeloid leukemia (AML). We found no reports in the literature linking these 2 clinical entities. Although the patient had no signs or diagnosis of AML previously, this case was remarkable for the rapidly progressive symptoms and the fatal outcome. The pericardial effusion reaccumulated rapidly after its initial drainage; it is a possible explanation that the leukemic cells interfered with cardiac activity or that they decreased their contractility myocytes secreting a toxic essence.

  2. Targeting the CXCL12/CXCR4 axis in acute myeloid leukemia: from bench to bedside.

    PubMed

    Cho, Byung-Sik; Kim, Hee-Je; Konopleva, Marina

    2017-03-01

    The interactions between the cancerous cells of acute myeloid leukemia (AML) and the bone marrow (BM) microenvironment have been postulated to be important for resistance to chemotherapy and disease relapse in AML. The chemokine receptor CXC chemokine receptor 4 (CXCR4) and its ligand, CXC motif ligand 12 (CXCL12), also known as stromal cell-derived factor 1α, are key mediators of this interaction. CXCL12 is produced by the BM microenvironment, binds and activates its cognate receptor CXCR4 on leukemic cells, facilitates leukemia cell trafficking and homing in the BM microenvironment, and keeps leukemic cells in close contact with the stromal cells and extracellular matrix that constitutively generate growth-promoting and anti-apoptotic signals. Indeed, a high level of CXCR4 expression on AML blasts is known to be associated with poor prognosis. Recent preclinical and clinical studies have revealed the safety and potential clinical utility of targeting the CXCL12/CXCR4 axis in AML with different classes of drugs, including small molecules, peptides, and monoclonal antibodies. In this review, we describe recent evidence of targeting these leukemia-stroma interactions, focusing on the CXCL12/CXCR4 axis. Related early phase clinical studies will be also introduced.

  3. Targeting the CXCL12/CXCR4 axis in acute myeloid leukemia: from bench to bedside

    PubMed Central

    Cho, Byung-Sik; Kim, Hee-Je; Konopleva, Marina

    2017-01-01

    The interactions between the cancerous cells of acute myeloid leukemia (AML) and the bone marrow (BM) microenvironment have been postulated to be important for resistance to chemotherapy and disease relapse in AML. The chemokine receptor CXC chemokine receptor 4 (CXCR4) and its ligand, CXC motif ligand 12 (CXCL12), also known as stromal cell-derived factor 1α, are key mediators of this interaction. CXCL12 is produced by the BM microenvironment, binds and activates its cognate receptor CXCR4 on leukemic cells, facilitates leukemia cell trafficking and homing in the BM microenvironment, and keeps leukemic cells in close contact with the stromal cells and extracellular matrix that constitutively generate growth-promoting and anti-apoptotic signals. Indeed, a high level of CXCR4 expression on AML blasts is known to be associated with poor prognosis. Recent preclinical and clinical studies have revealed the safety and potential clinical utility of targeting the CXCL12/CXCR4 axis in AML with different classes of drugs, including small molecules, peptides, and monoclonal antibodies. In this review, we describe recent evidence of targeting these leukemia-stroma interactions, focusing on the CXCL12/CXCR4 axis. Related early phase clinical studies will be also introduced. PMID:28219003

  4. Rare case of intussusception in an adult with acute myeloid leukemia

    PubMed Central

    Law, Man Fai; Wong, Cheuk Kei; Pang, Chun Yin; Chan, Hay Nun; Lai, Ho Kei; Ha, Chung Yin; Ng, Celia; Yeung, Yiu Ming; Yip, Sze Fai

    2015-01-01

    Intussusception is rarely reported in adult patients with acute leukemia. We report a case of intussusception in a 29-year-old woman with acute myeloid leukemia (AML). She developed right lower quadrant pain, fever, and vomiting on day 16 of induction chemotherapy. Physical examination showed tenderness and guarding at the right lower quadrant of the abdomen. Abdominal computed tomography (CT) showed distension of the cecum and ascending colon, which were filled with loops of small bowel, and herniation of the ileocecal valve into the cecum. We proceeded to laparotomy and revealed ileocecal intussusception with the ileocecal valve as the leading point. The terminal ileum was thickened and invaginated into the cecum, which showed gangrenous changes. Right hemicolectomy was performed and microscopic examination of the colonic tissue showed infiltration of leukemic cells. The patient recovered after the operation and was subsequently able to continue treatment for AML. This case demonstrates that the diagnosis of intussusception is difficult because the presenting symptoms can be non-specific, but abdominal CT can be informative for preoperative diagnosis. Resection of the involved bowel is recommended when malignancy is suspected or confirmed. Intussusception should be considered in any leukemia patients presenting with acute abdomen. A high index of clinical suspicion is important for early diagnosis. PMID:25593499

  5. Rare case of intussusception in an adult with acute myeloid leukemia.

    PubMed

    Law, Man Fai; Wong, Cheuk Kei; Pang, Chun Yin; Chan, Hay Nun; Lai, Ho Kei; Ha, Chung Yin; Ng, Celia; Yeung, Yiu Ming; Yip, Sze Fai

    2015-01-14

    Intussusception is rarely reported in adult patients with acute leukemia. We report a case of intussusception in a 29-year-old woman with acute myeloid leukemia (AML). She developed right lower quadrant pain, fever, and vomiting on day 16 of induction chemotherapy. Physical examination showed tenderness and guarding at the right lower quadrant of the abdomen. Abdominal computed tomography (CT) showed distension of the cecum and ascending colon, which were filled with loops of small bowel, and herniation of the ileocecal valve into the cecum. We proceeded to laparotomy and revealed ileocecal intussusception with the ileocecal valve as the leading point. The terminal ileum was thickened and invaginated into the cecum, which showed gangrenous changes. Right hemicolectomy was performed and microscopic examination of the colonic tissue showed infiltration of leukemic cells. The patient recovered after the operation and was subsequently able to continue treatment for AML. This case demonstrates that the diagnosis of intussusception is difficult because the presenting symptoms can be non-specific, but abdominal CT can be informative for preoperative diagnosis. Resection of the involved bowel is recommended when malignancy is suspected or confirmed. Intussusception should be considered in any leukemia patients presenting with acute abdomen. A high index of clinical suspicion is important for early diagnosis.

  6. Measurement of adherence to BCR-ABL inhibitor therapy in chronic myeloid leukemia: current situation and future challenges

    PubMed Central

    Noens, Lucien; Hensen, Marja; Kucmin-Bemelmans, Izabela; Lofgren, Christina; Gilloteau, Isabelle; Vrijens, Bernard

    2014-01-01

    BCR-ABL inhibitors for treating chronic myeloid leukemia in chronic phase have transformed a previously incurable malignancy into a manageable condition. However, suboptimal medication adherence has been observed with these agents affecting clinical outcomes and healthcare costs. In order to raise awareness of the problem of adherence, and before developing pragmatic strategies to enhance medication adherence, a deep understanding of the best approaches for measuring adherence in chronic myeloid leukemia patients and identifying non-adherence is required. A systematic literature review on the prevalence, measurement methods, consequences and risk factors for non-adherence to BCR-ABL inhibitors and adherence-enhancing interventions was performed and critically appraised. Of the 19 included articles, 9 were retrospective. Average adherence varied from 19% to almost 100% of the proportion of prescribed drug taken, but it was measured through various different methods and within different study groups. Suboptimal adherence was associated with a negative impact on both clinical and economic outcomes. There is a lack of supportive evidence demonstrating a difference in adherence across BCR-ABL inhibitors and even contradictory results between the 2nd generation inhibitors. Drug-related adverse events and forgetfulness were common reasons for intentional and unintentional non-adherence, respectively, but further research is required to identify additional reasons behind non-adherence or patients at risk of non-adherence. Non-adherence in chronic myeloid leukemia patients treated with BCR-ABL inhibitors is common and associated with critical outcomes. However, this review highlights important existing gaps, reveals inconsistent definitions, and a lack of standardized methods for measuring adherence in chronic myeloid leukemia. All require further investigation. PMID:24598855

  7. The human nucleophosmin 1 mutation A inhibits myeloid differentiation of leukemia cells by modulating miR-10b

    PubMed Central

    Zou, Qin; Tan, Shi; Yang, Zailin; Wang, Juan; Xian, Jingrong; Zhang, Shuaishuai; Jin, Hongjun; Yang, Liyuan; Wang, Lu; Zhang, Ling

    2016-01-01

    Mutations in the nucleophosmin 1 (NPM1) gene are the most frequent genetic alteration in acute myeloid leukemia (AML). Here, we showed that enforced expression of NPM1 mutation type A (NPM1-mA) inhibits myeloid differentiation of leukemia cells, whereas knockdown of NPM1-mA has the opposite effect. Our analyses of normal karyotype AML samples from The Cancer Genome Atlas (TCGA) dataset revealed that miR-10b is commonly overexpressed in NPM1-mutated AMLs. We also found high expression of miR-10b in primary NPM1-mutated AML blasts and NPM1-mA positive OCI-AML3 cells. In addition, NPM1-mA knockdown enhanced myeloid differentiation, while induced expression of miR-10b reversed this effect. Finally, we showed that KLF4 is downregulated in NPM1-mutated AMLs. These results demonstrated that miR-10b exerts its effects by repressing the translation of KLF4 and that NPM1-mA inhibits myeloid differentiation through the miR-10b/KLF4 axis. This sheds new light on the effect of NPM1 mutations' on leukemogenesis. PMID:27669739

  8. Upregulation of miR-99a is associated with poor prognosis of acute myeloid leukemia and promotes myeloid leukemia cell expansion

    PubMed Central

    Si, Xiaohui; Zhang, Xiaoyun; Hao, Xing; Li, Yunan; Chen, Zizhen; Ding, Yahui; Shi, Hui; Bai, Jie; Gao, Yingdai; Cheng, Tao; Yang, Feng-Chun; Zhou, Yuan

    2016-01-01

    Leukemia stem cells (LSCs) can resist available treatments that results in disease progression and/or relapse. To dissect the microRNA (miRNA) expression signature of relapse in acute myeloid leukemia (AML), miRNA array analysis was performed using enriched LSCs from paired bone marrow samples of an AML patient at different disease stages. We identified that miR-99a was significantly upregulated in the LSCs obtained at relapse compared to the LSCs collected at the time of initial diagnosis. We also found that miR-99a was upregulated in LSCs compared to non-LSCs in a larger cohort of AML patients, and higher expression levels of miR-99a were significantly correlated with worse overall survival and event-free survival in these AML patients. Ectopic expression of miR-99a led to increased colony forming ability and expansion in myeloid leukemia cells after exposure to chemotherapeutic drugs in vitro and in vivo, partially due to overcoming of chemotherapeutic agent-mediated cell cycle arrest. Gene profiling and bioinformatic analyses indicated that ectopic expression of miR-99a significantly upregulated genes that are critical for LSC maintenance, cell cycle, and downstream targets of E2F and MYC. This study suggests that miR-99a has a novel role and potential use as a biomarker in myeloid leukemia progression. PMID:27801668

  9. [Acute myeloid leukemia originating from the same leukemia clone after the complete remission of acute lymphoid leukemia].

    PubMed

    Matsuda, Isao; Nakamaki, Tsuyoshi; Amaya, Hiroshi; Kiyosaki, Masanobu; Kawakami, Keiichiro; Yamada, Kazunari; Yokoyama, Akihiro; Hino, Ken-ichiro; Tomoyasu, Shigeru

    2003-09-01

    A 22-year-old female was diagnosed as having acute lymphoid leukemia (ALL) in February 1995, from the findings of peroxidase negative, CD10+, CD19+, TdT+ and rearrangement of IgH and TCR beta. AdVP (doxorubicin, vincristine and prednisolone) therapy achieved a complete remission (CR). Bone marrow transplantation had to be abandoned because of the lack of an HLA-identical donor. Intensification therapy was thus carried out repeatedly. In June 1998, myeloblast with Auer rods, peroxidase positive, CD13+, CD33+ and HLA-DR+, appeared. The patient was diagnosed as having lineage switch acute myeloid leukemia (AML) from ALL. Though A-DMP (cytosine arabinoside, daunorubicin, 6-mercaptopurine) therapy was resistant, AdVP therapy led to a CR. The patient died of cardiotoxicity from anthracyclines in February 1999. From the results of the Ramasamy method using the clonal rearrangements of the Ig heavy chain gene locus, the origin of the pathological cells of ALL and AML was indicated to be the same leukemia clone.

  10. A novel crosstalk between calcium/calmodulin kinases II and IV regulates cell proliferation in myeloid leukemia cells.

    PubMed

    Monaco, Sara; Rusciano, Maria Rosaria; Maione, Angela S; Soprano, Maria; Gomathinayagam, Rohini; Todd, Lance R; Campiglia, Pietro; Salzano, Salvatore; Pastore, Lucio; Leggiero, Eleonora; Wilkerson, Donald C; Rocco, Monia; Selleri, Carmine; Iaccarino, Guido; Sankar, Uma; Illario, Maddalena

    2015-02-01

    CaMKs link transient increases in intracellular Ca(2+) with biological processes. In myeloid leukemia cells, CaMKII, activated by the bcr-abl oncogene, promotes cell proliferation. Inhibition of CaMKII activity restricts cell proliferation, and correlates with growth arrest and differentiation. The mechanism by which the inhibition of CaMKII results in growth arrest and differentiation in myeloid leukemia cells is still unknown. We report that inhibition of CaMKII activity results in an upregulation of CaMKIV mRNA and protein in leukemia cell lines. Conversely, expression of CaMKIV inhibits autophosphorylation and activation of CaMKII, and elicits G0/G1cell cycle arrest,impairing cell proliferation. Furthermore, U937 cells expressing CaMKIV show elevated levels of Cdk inhibitors p27(kip1) and p16(ink4a) and reduced levels of cyclins A, B1 and D1. These findings were also confirmed in the K562 leukemic cell line. The relationship between CaMKII and CaMKIV is also observed in primary acute myeloid leukemia (AML) cells, and it correlates with their immunophenotypic profile. Indeed, immature MO/M1 AML showed increased CaMKIV expression and decreased pCaMKII, whereas highly differentiated M4/M5 AML showed decreased CaMKIV expression and increased pCaMKII levels. Our data reveal a novel cross-talk between CaMKII and CaMKIV and suggest that CaMKII suppresses the expression of CaMKIV to promote leukemia cell proliferation. Copyright © 2014. Published by Elsevier Inc.

  11. Pulmonary mucormycosis with embolism: two autopsied cases of acute myeloid leukemia.

    PubMed

    Kogure, Yasunori; Nakamura, Fumihiko; Shinozaki-Ushiku, Aya; Watanabe, Akira; Kamei, Katsuhiko; Yoshizato, Tetsuichi; Nannya, Yasuhito; Fukayama, Masashi; Kurokawa, Mineo

    2014-01-01

    Mucormycosis is an increasingly important cause of morbidity and mortality for patients with hematological malignancies. The diagnosis of mucormycosis usually requires mycological evidence through tissue biopsy or autopsy because the signs and symptoms are nonspecific and there are currently no biomarkers to identify the disease. We herein present two autopsied cases of acute myeloid leukemia with prolonged neutropenia who developed invasive mucormycosis accompanied by pulmonary artery embolism. Our cases were featured by unexplained fever and rapidly progressive dyspnea. Computed tomography scan detected nodular lesions or nonspecific consolidations in the lungs. Cultures, cytological study, and serum fungal markers consistently gave negative results. Autopsy revealed embolism of the pulmonary artery which consisted of fibrin clots by filamentous fungi. Genomic DNA was extracted from the paraffin-embedded clots and was applied to polymerase chain reaction amplification, leading to the diagnosis of infection by Rhizopus microsporus. We should carefully search for life-threatening pulmonary embolism when patients with hematological malignancies develop pulmonary mucormycosis.

  12. Bilateral Central Retinal Vein Occlusion as Presenting Feature of Chronic Myeloid Leukemia.

    PubMed

    Narang, Subina; Gupta, Panchmi; Sharma, Anuj; Sood, Sunandan; Palta, Anshu; Goyal, Shilpa

    2016-01-01

    Central retinal vein occlusion (CRVO) is a common pathology of the retinal vasculature. Patients with CRVO usually present with a drop in visual acuity. The condition bears no specific therapy; treatment is aimed at the management of potentially blinding complications, of which there are many. With majority of cases being unilateral, bilateral CRVO is usually associated with an underlying systemic illness such as a hyperviscosity syndrome. Here, we present a case of a patient, who presented with a bilateral drop in vision diagnosed as bilateral CRVO on ophthalmic evaluation. Systemic workup revealed the presence of an underlying undiagnosed chronic myeloid leukemia. An initial presentation to the ophthalmologist is a rare occurrence in leukemic patients. This case report highlights the role of the ophthalmologist in diagnosing a potentially life-threatening hematological illness.

  13. Firstline treatment for chronic phase chronic myeloid leukemia patients should be based on a holistic approach.

    PubMed

    Breccia, Massimo; Alimena, Giuliana

    2015-02-01

    New selective and more potent drugs for the cure of chronic phase chronic myeloid leukemia patients are now available: physicians in some countries must decide the best option, selecting one of the drugs available. What the main prognostic factors are in order to make this selection remains a matter of discussion. Introducing a 'holistic approach' for the first time in chronic myeloid leukemia, as practiced in other diseases, and looking at the patient in a complete picture, considering several variables, such as comorbidities, age, concomitant drugs, lifestyle and patient expectations, may be of help to understand, patient by patient, the best therapeutic strategy.

  14. [Results of splenectomy with polychemotherapy in the treatment of 15 chronic myeloid leukemia patients].

    PubMed

    Mendeleev, I M; Berliner, G B; Miasnikov, A A; Polezheav, Iu N

    1986-01-01

    The results of splenectomy followed by chemotherapy are analysed. Fifteen patients with chronic myeloid leukemia (CML) were entered into the study. The maximal survival of one of the patients subjected to splenectomy was 102 months. The authors come to the conclusion that it is desirable that CML patients should be subjected to splenectomy after preliminary preparation (chemotherapy and chemoprotectors) at the early stages of the illness, which is to be followed by monochemotherapy. Provided the latter is unsuccessful, the change over to polychemotherapy similar to the treatment protocols for myeloid leukemia is suggested.

  15. Bosutinib: a SRC-ABL tyrosine kinase inhibitor for treatment of chronic myeloid leukemia.

    PubMed

    Rassi, Fuad El; Khoury, Hanna Jean

    2013-08-05

    Bosutinib is one of five tyrosine kinase inhibitors commercially available in the United States for the treatment of chronic myeloid leukemia. This review of bosutinib summarizes the mode of action, pharmacokinetics, efficacy and safety data, as well as the patient-focused perspective through quality-of-life data. Bosutinib has shown considerable and sustained efficacy in chronic myeloid leukemia, especially in the chronic phase, with resistance or intolerance to prior tyrosine kinase inhibitors. Bosutinib has distinct but manageable adverse events. In the absence of T315I and V299L mutations, there are no absolute contraindications for the use of bosutinib in this patient population.

  16. Endocrine sequelae and metabolic syndrome in adult long-term survivors of childhood acute myeloid leukemia.

    PubMed

    Blijdorp, Karin; van Waas, Marjolein; van der Lely, Aart-Jan; Pieters, Rob; van den Heuvel-Eibrink, Marry; Neggers, Sebastian

    2013-04-01

    This study focuses on the effect of chemotherapy on endocrinopathies and the metabolic syndrome in adult survivors of childhood acute myeloid leukemia (AML). Endocrine function and metabolic syndrome were evaluated in 12 AML survivors, treated with chemotherapy, and in 9 survivors of myeloid leukemias treated with stem cell transplantation (SCT), after a median follow-up time of 20 years (range 9-31). In survivors treated with chemotherapy, no endocrinopathies or metabolic syndrome were present, although AMH and Inhibin B levels tended to be lower than in controls. In SCT survivors, pituitary deficiencies and metabolic syndrome were more frequent. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia.

    PubMed

    Saglio, Giuseppe; Kim, Dong-Wook; Issaragrisil, Surapol; le Coutre, Philipp; Etienne, Gabriel; Lobo, Clarisse; Pasquini, Ricardo; Clark, Richard E; Hochhaus, Andreas; Hughes, Timothy P; Gallagher, Neil; Hoenekopp, Albert; Dong, Mei; Haque, Ariful; Larson, Richard A; Kantarjian, Hagop M

    2010-06-17

    Nilotinib has been shown to be a more potent inhibitor of BCR-ABL than imatinib. We evaluated the efficacy and safety of nilotinib, as compared with imatinib, in patients with newly diagnosed Philadelphia chromosome-positive chronic myeloid leukemia (CML) in the chronic phase. In this phase 3, randomized, open-label, multicenter study, we assigned 846 patients with chronic-phase Philadelphia chromosome-positive CML in a 1:1:1 ratio to receive nilotinib (at a dose of either 300 mg or 400 mg twice daily) or imatinib (at a dose of 400 mg once daily). The primary end point was the rate of major molecular response at 12 months. At 12 months, the rates of major molecular response for nilotinib (44% for the 300-mg dose and 43% for the 400-mg dose) were nearly twice that for imatinib (22%) (P<0.001 for both comparisons). The rates of complete cytogenetic response by 12 months were significantly higher for nilotinib (80% for the 300-mg dose and 78% for the 400-mg dose) than for imatinib (65%) (P<0.001 for both comparisons). Patients receiving either the 300-mg dose or the 400-mg dose of nilotinib twice daily had a significant improvement in the time to progression to the accelerated phase or blast crisis, as compared with those receiving imatinib (P=0.01 and P=0.004, respectively). No patient with progression to the accelerated phase or blast crisis had a major molecular response. Gastrointestinal and fluid-retention events were more frequent among patients receiving imatinib, whereas dermatologic events and headache were more frequent in those receiving nilotinib. Discontinuations due to aminotransferase and bilirubin elevations were low in all three study groups. Nilotinib at a dose of either 300 mg or 400 mg twice daily was superior to imatinib in patients with newly diagnosed chronic-phase Philadelphia chromosome-positive CML. (ClinicalTrials.gov number, NCT00471497.) 2010 Massachusetts Medical Society

  18. Treatment and molecular monitoring update in chronic myeloid leukemia management.

    PubMed

    Sorel, Nathalie; Cayssials, Émilie; Brizard, Françoise; Chomel, Jean-Claude

    2017-04-01

    Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm resulting from the t(9;22)(q34;q11) translocation. It is characterized by the presence of the BCR-ABL1 fusion gene encoding the BCR-ABL oncoprotein characterized by a deregulated tyrosine kinase activity. Targeted therapies using tyrosine kinase inhibitors (TKI) such as imatinib, dasatinib, nilotinib, bosutinib, or ponatinib have profoundly changed the natural history of the disease with a major impact on survival. Indeed, most patients diagnosed today can enjoy a near normal life expectancy. The efficacy of TKI treatment can be accurately evaluated by a molecular monitoring based on the quantification of BCR-ABL1 mRNA transcripts and the detection of resistance mutations in the BCR-ABL kinase domain. International recommendations for an optimal management of CML using biological parameters are regularly published. They were designed to evaluate the response to the treatment and to consider, if necessary, a switch to another TKI. A sustained and deep molecular response is obtained in a significant percentage of patients. Clinical trials of TKI discontinuation were performed in such a population, and half of patients do not relapse. In the remaining patients, a rapid appearance of the malignant clone was observed, undoubtedly the consequence of the persistence of residual leukemic stem cells (LSCs). How to discriminate patients who may safely stop TKI? How to target residual LSCs, and do we have to eradicate all these cells? Additional research investigation and clinical trials are needed to answer these questions in order to consider a potential cure of CML.

  19. [Genetic prognostic factors in childhood acute myeloid leukemia].

    PubMed

    Reinhardt, D; Von Neuhoff, C; Sander, A; Creutzig, U

    2012-10-01

    The survival rate of children and adolescents suffering acute myeloid leukemia (AML) has been significantly improved within the last decades. This has been achieved by a continuously intensified therapy and progress in supportive care to prevent and treat complications. In Germany, the AML-BFM trials 98 (n=413) and 2004 (n=499) enrolled 912 children and adolescents as protocol patients (1998-2010). The 5-year-overall survival was 71±2%. In the previous studies prognosis and subsequent treatment stratification based on morphology, cytochemistry and white blood cell count. Today, the identification of new genetic aberrations in AML enables a genetically determined estimation of prognosis, although treatment response must be considered for treatment stratification. The group with a favorable prognosis summarized AML with t(8;21), inv(16), t(15;17), t(1;11), and AML with normal karyotype and NPM1-mutation (n=253; EFS 74±3%, OS 88±2%). A poor prognosis (HR-group) must be expected in AML with t(4;11), t(5;11), t(6;11), t(6;9), t(7;12), t(9;22), Monosomy 7, combined FLT3/WT1-mutation, and AML with der(12p)-aberration (n=101; EFS 30±5%; OS 56±5%). The intermediate group summarizes all other subgroups especially AML with normal karyotyp, AML with FLT3-ITD or t(9;11) (n=558; EFS 43±2%; OS 64±2%). The validation of the internationally identified, genetically determined prognostic factors within the AML-BFM (Germany) study population will support treatment recommendations.

  20. DNMT3A Mutations in Acute Myeloid Leukemia

    PubMed Central

    Ley, Timothy J.; Ding, Li; Walter, Matthew J.; McLellan, Michael D.; Lamprecht, Tamara; Larson, David E.; Kandoth, Cyriac; Payton, Jacqueline E.; Baty, Jack; Welch, John; Harris, Christopher C.; Lichti, Cheryl F.; Townsend, R. Reid; Fulton, Robert S.; Dooling, David J.; Koboldt, Daniel C.; Schmidt, Heather; Zhang, Qunyuan; Osborne, John R.; Lin, Ling; O’Laughlin, Michelle; McMichael, Joshua F.; Delehaunty, Kim D.; McGrath, Sean D.; Fulton, Lucinda A.; Magrini, Vincent J.; Vickery, Tammi L.; Hundal, Jasreet; Cook, Lisa L.; Conyers, Joshua J.; Swift, Gary W.; Reed, Jerry P.; Alldredge, Patricia A.; Wylie, Todd; Walker, Jason; Kalicki, Joelle; Watson, Mark A.; Heath, Sharon; Shannon, William D.; Varghese, Nobish; Nagarajan, Rakesh; Westervelt, Peter; Tomasson, Michael H.; Link, Daniel C.; Graubert, Timothy A.; DiPersio, John F.; Mardis, Elaine R.; Wilson, Richard K.

    2011-01-01

    BACKGROUND The genetic alterations responsible for an adverse outcome in most patients with acute myeloid leukemia (AML) are unknown. METHODS Using massively parallel DNA sequencing, we identified a somatic mutation in DNMT3A, encoding a DNA methyltransferase, in the genome of cells from a patient with AML with a normal karyotype. We sequenced the exons of DNMT3A in 280 additional patients with de novo AML to define recurring mutations. RESULTS A total of 62 of 281 patients (22.1%) had mutations in DNMT3A that were predicted to affect translation. We identified 18 different missense mutations, the most common of which was predicted to affect amino acid R882 (in 37 patients). We also identified six frameshift, six nonsense, and three splice-site mutations and a 1.5-Mbp deletion encompassing DNMT3A. These mutations were highly enriched in the group of patients with an intermediate-risk cytogenetic profile (56 of 166 patients, or 33.7%) but were absent in all 79 patients with a favorable-risk cytogenetic profile (P<0.001 for both comparisons). The median overall survival among patients with DNMT3A mutations was significantly shorter than that among patients without such mutations (12.3 months vs. 41.1 months, P<0.001). DNMT3A mutations were associated with adverse outcomes among patients with an intermediate-risk cytogenetic profile or FLT3 mutations, regardless of age, and were independently associated with a poor outcome in Cox proportional-hazards analysis. CONCLUSIONS DNMT3A mutations are highly recurrent in patients with de novo AML with an intermediate-risk cytogenetic profile and are independently associated with a poor outcome. (Funded by the National Institutes of Health and others.) PMID:21067377

  1. Recurring Mutations Found by Sequencing an Acute Myeloid Leukemia Genome

    PubMed Central

    Mardis, Elaine R.; Ding, Li; Dooling, David J.; Larson, David E.; McLellan, Michael D.; Chen, Ken; Koboldt, Daniel C.; Fulton, Robert S.; Delehaunty, Kim D.; McGrath, Sean D.; Fulton, Lucinda A.; Locke, Devin P.; Magrini, Vincent J.; Abbott, Rachel M.; Vickery, Tammi L.; Reed, Jerry S.; Robinson, Jody S.; Wylie, Todd; Smith, Scott M.; Carmichael, Lynn; Eldred, James M.; Harris, Christopher C.; Walker, Jason; Peck, Joshua B.; Du, Feiyu; Dukes, Adam F.; Sanderson, Gabriel E.; Brummett, Anthony M.; Clark, Eric; McMichael, Joshua F.; Meyer, Rick J.; Schindler, Jonathan K.; Pohl, Craig S.; Wallis, John W.; Shi, Xiaoqi; Lin, Ling; Schmidt, Heather; Tang, Yuzhu; Haipek, Carrie; Wiechert, Madeline E.; Ivy, Jolynda V.; Kalicki, Joelle; Elliott, Glendoria; Ries, Rhonda E.; Payton, Jacqueline E.; Westervelt, Peter; Tomasson, Michael H.; Watson, Mark A.; Baty, Jack; Heath, Sharon; Shannon, William D.; Nagarajan, Rakesh; Link, Daniel C.; Walter, Matthew J.; Graubert, Timothy A.; DiPersio, John F.; Wilson, Richard K.; Ley, Timothy J.

    2011-01-01

    BACKGROUND The full complement of DNA mutations that are responsible for the pathogenesis of acute myeloid leukemia (AML) is not yet known. METHODS We used massively parallel DNA sequencing to obtain a very high level of coverage (approximately 98%) of a primary, cytogenetically normal, de novo genome for AML with minimal maturation (AML-M1) and a matched normal skin genome. RESULTS We identified 12 acquired (somatic) mutations within the coding sequences of genes and 52 somatic point mutations in conserved or regulatory portions of the genome. All mutations appeared to be heterozygous and present in nearly all cells in the tumor sample. Four of the 64 mutations occurred in at least 1 additional AML sample in 188 samples that were tested. Mutations in NRAS and NPM1 had been identified previously in patients with AML, but two other mutations had not been identified. One of these mutations, in the IDH1 gene, was present in 15 of 187 additional AML genomes tested and was strongly associated with normal cytogenetic status; it was present in 13 of 80 cytogenetically normal samples (16%). The other was a nongenic mutation in a genomic region with regulatory potential and conservation in higher mammals; we detected it in one additional AML tumor. The AML genome that we sequenced contains approximately 750 point mutations, of which only a small fraction are likely to be relevant to pathogenesis. CONCLUSIONS By comparing the sequences of tumor and skin genomes of a patient with AML-M1, we have identified recurring mutations that may be relevant for pathogenesis. PMID:19657110

  2. Bosutinib for the treatment of chronic myeloid leukemia.

    PubMed

    Doan, Vi; Wang, Alice; Prescott, Hillary

    2015-03-15

    The pharmacology, pharmacokinetics, efficacy, and safety of the tyrosine kinase inhibitor (TKI) bosutinib in the management of chronic myeloid leukemia (CML) are reviewed. Although clinical outcomes are favorable in patients wth Philadelphia chromosome (Ph)-positive CML who receive first-line TKI therapy with imatinib, dasatinib, and nilotinib, disease progression or relapse may occur. Thus, effective second-line agents are crucial. Bosutinib (Bosulif, Pfizer Inc.) is a second-generation TKI approved for the treatment of patients with Ph-positive chronic-, accelerated-, or blast-phase CML who are intolerant or resistant to other TKIs. Bosutinib inhibits a tyrosine kinase oncogene and Src kinases responsible for CML pathogenesis. Bosutinib is primarily metabolized by cytochrome P-450 (CYP) isoenzyme 3A4; therefore, concomitant use of strong or moderate CYP3A4 inhibitors and inducers should be avoided. Bosutinib is effective in cases involving most imatinib-resistant mutations (not including the T315I and V299L mutations). Clinical trials demonstrated bosutinib's efficacy in inducing durable hematologic and cytogenetic responses, as well as high rates of progression-free and overall survival, in patients with CML who had developed resistance or intolerance to other TKIs. However, bosutinib was not found to be superior to imatinib for inducing cytogenetic responses in cases of newly diagnosed CML and is thus not indicated for use in TKI-naive patients. The most common adverse events among bosutinib-treated patients in clinical trials were diarrhea, nausea, and vomiting, which were generally transient and self-limited. Bosutinib is a safe and effective second-line treatment option for select patients with Ph-positive CML who were intolerant or resistant to prior TKI therapy. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  3. The Patient Perspective on Living with Acute Myeloid Leukemia.

    PubMed

    Tomaszewski, Erin L; Fickley, Catherine E; Maddux, LeAnne; Krupnick, Robert; Bahceci, Erkut; Paty, Jean; van Nooten, Floortje

    2016-01-01

    Acute myeloid leukemia (AML) imposes significant burden on patients, their families, and the healthcare system. Published literature has reported many AML signs and symptoms, as well as their impact on patients. However, there are no publications on the experience of living with AML from the patient's perspective. In this study, we performed qualitative interviews with patients with AML to understand their experience. Participants were recruited from the US and Japan. All patients were screened to assess eligibility, and were divided into four subgroups (i.e., newly-diagnosed, high-intensity chemotherapy; newly-diagnosed, low-intensity chemotherapy; relapse/refractory; and post-transplant). Patients were interviewed over the phone by a trained researcher and asked about their day-to-day experience with AML. Signs/symptoms and impacts were coded, analyzed using Atlas.ti software, and reported as frequencies, with the medians of patient-reported disturbance levels (0-10) computed for each symptom and impact. The most commonly reported sign/symptom in the US was fatigue (95.7%), followed by bruising and weakness (both 78.3%), and in Japan, nausea (94.4%), followed by fatigue and headache (both 88.9%). The most commonly reported impact in the US was a decreased ability to maintain social/familial roles (91.3%), followed by anxiety and a decreased ability to function (both 87.0%), and most commonly reported in Japan was anxiety, a decreased ability to function, and remission uncertainty (94.4%). Although the frequency of signs/symptoms and their level of disturbance varied between the US and Japan, there was remarkable consistency in the types of signs/symptoms and impacts reported across all patients. The consistency in the experience of the disease across patients suggests that measurement of AML experience can be achieved by using the same tool for most, if not all, of these patients. Astellas Pharma Inc., Northbrook, IL, USA.

  4. Acute Myeloid Leukemia: analysis of epidemiological profile and survival rate.

    PubMed

    de Lima, Mariana Cardoso; da Silva, Denise Bousfield; Freund, Ana Paula Ferreira; Dacoregio, Juliana Shmitz; Costa, Tatiana El Jaick Bonifácio; Costa, Imaruí; Faraco, Daniel; Silva, Maurício Laerte

    2016-01-01

    To describe the epidemiological profile and the survival rate of patients with acute myeloid leukemia (AML) in a state reference pediatric hospital. Clinical-epidemiological, observational, retrospective, descriptive study. The study included new cases of patients with AML, diagnosed between 2004 and 2012, younger than 15 years. Of the 51 patients studied, 84% were white; 45% were females and 55%, males. Regarding age, 8% were younger than 1 year, 47% were aged between 1 and 10 years, and 45% were older than 10 years. The main signs/symptoms were fever (41.1%), asthenia/lack of appetite (35.2%), and hemorrhagic manifestations (27.4%). The most affected extra-medullary site was the central nervous system (14%). In 47% of patients, the white blood cell (WBC) count was below 10,000/mm(3) at diagnosis. The minimal residual disease (MRD) was less than 0.1%, on the 15th day of treatment in 16% of the sample. Medullary relapse occurred in 14% of cases. When comparing the bone marrow MRD with the vital status, it was observed that 71.42% of the patients with type M3 AML were alive, as were 54.05% of those with non-M3 AML. The death rate was 43% and the main proximate cause was septic shock (63.6%). In this study, the majority of patients were male, white, and older than 1 year. Most patients with WBC count <10,000/mm(3) at diagnosis lived. Overall survival was higher in patients with MRD <0.1%. The prognosis was better in patients with AML-M3. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  5. Targeting mitochondrial RNA polymerase in acute myeloid leukemia

    PubMed Central

    Bralha, Fernando N.; Liyanage, Sanduni U.; Hurren, Rose; Wang, Xiaoming; Son, Meong Hi; Fung, Thomas A.; Chingcuanco, Francine B.; Tung, Aveline Y. W.; Andreazza, Ana C.; Psarianos, Pamela; Schimmer, Aaron D.; Salmena, Leonardo; Laposa, Rebecca R.

    2015-01-01

    Acute myeloid leukemia (AML) cells have high oxidative phosphorylation and mitochondrial mass and low respiratory chain spare reserve capacity. We reasoned that targeting the mitochondrial RNA polymerase (POLRMT), which indirectly controls oxidative phosphorylation, represents a therapeutic strategy for AML. POLRMT-knockdown OCI-AML2 cells exhibited decreased mitochondrial gene expression, decreased levels of assembled complex I, decreased levels of mitochondrially-encoded Cox-II and decreased oxidative phosphorylation. POLRMT-knockdown cells exhibited an increase in complex II of the electron transport chain, a complex comprised entirely of subunits encoded by nuclear genes, and POLRMT-knockdown cells were resistant to a complex II inhibitor theonyltrifluoroacetone. POLRMT-knockdown cells showed a prominent increase in cell death. Treatment of OCI-AML2 cells with 10-50 μM 2-C-methyladenosine (2-CM), a chain terminator of mitochondrial transcription, reduced mitochondrial gene expression and oxidative phosphorylation, and increased cell death in a concentration-dependent manner. Treatment of normal human hematopoietic cells with 2-CM at concentrations of up to 100 μMdid not alter clonogenic growth, suggesting a therapeutic window. In an OCI-AML2 xenograft model, treatment with 2-CM (70 mg/kg, i.p., daily) decreased the volume and mass of tumours to half that of vehicle controls. 2-CM did not cause toxicity to major organs. Overall, our results in a preclinical model contribute to the functional validation of the utility of targeting the mitochondrial RNA polymerase as a therapeutic strategy for AML. PMID:26484416

  6. Midostaurin: an emerging treatment for acute myeloid leukemia patients

    PubMed Central

    Gallogly, Molly Megan; Lazarus, Hillard M

    2016-01-01

    Acute myeloid leukemia (AML) is a hematologic malignancy that carries a poor prognosis and has garnered few treatment advances in the last few decades. Mutation of the internal tandem duplication (ITD) region of fms-like tyrosine kinase (FLT3) is considered high risk for decreased response and overall survival. Midostaurin is a Type III receptor tyrosine kinase inhibitor found to inhibit FLT3 and other receptor tyrosine kinases, including platelet-derived growth factor receptors, cyclin-dependent kinase 1, src, c-kit, and vascular endothelial growth factor receptor. In preclinical studies, midostaurin exhibited broad-spectrum antitumor activity toward a wide range of tumor xenografts, as well as an FLT3-ITD-driven mouse model of myelodysplastic syndrome (MDS). Midostaurin is orally administered and generally well tolerated as a single agent; hematologic toxicity increases substantially when administered in combination with standard induction chemotherapy. Clinical trials primarily have focused on relapsed/refractory AML and MDS and included single- and combination-agent studies. Administration of midostaurin to relapsed/refractory MDS and AML patients confers a robust anti-blast response sufficient to bridge a minority of patients to transplant. In combination with histone deacetylase inhibitors, responses appear comparable to historic controls, while the addition of midostaurin to standard induction chemotherapy may prolong survival in FLT3-ITD mutant patients. The response of some wild-type (WT)-FLT3 patients to midostaurin therapy is consistent with midostaurin’s ability to inhibit WT-FLT3 in vitro, and also may reflect overexpression of WT-FLT3 in those patients and/or off-target effects such as inhibition of kinases other than FLT3. Midostaurin represents a well-tolerated, easily administered oral agent with the potential to bridge mutant and WT-FLT3 AML patients to transplant and possibly deepen response to induction chemotherapy. Ongoing studies are

  7. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013

    PubMed Central

    Deininger, Michael W.; Rosti, Gianantonio; Hochhaus, Andreas; Soverini, Simona; Apperley, Jane F.; Cervantes, Francisco; Clark, Richard E.; Cortes, Jorge E.; Guilhot, François; Hjorth-Hansen, Henrik; Hughes, Timothy P.; Kantarjian, Hagop M.; Kim, Dong-Wook; Larson, Richard A.; Lipton, Jeffrey H.; Mahon, François-Xavier; Martinelli, Giovanni; Mayer, Jiri; Müller, Martin C.; Niederwieser, Dietger; Pane, Fabrizio; Radich, Jerald P.; Rousselot, Philippe; Saglio, Giuseppe; Saußele, Susanne; Schiffer, Charles; Silver, Richard; Simonsson, Bengt; Steegmann, Juan-Luis; Goldman, John M.; Hehlmann, Rüdiger

    2013-01-01

    Advances in chronic myeloid leukemia treatment, particularly regarding tyrosine kinase inhibitors, mandate regular updating of concepts and management. A European LeukemiaNet expert panel reviewed prior and new studies to update recommendations made in 2009. We recommend as initial treatment imatinib, nilotinib, or dasatinib. Response is assessed with standardized real quantitative polymerase chain reaction and/or cytogenetics at 3, 6, and 12 months. BCR-ABL1 transcript levels ≤10% at 3 months, <1% at 6 months, and ≤0.1% from 12 months onward define optimal response, whereas >10% at 6 months and >1% from 12 months onward define failure, mandating a change in treatment. Similarly, partial cytogenetic response (PCyR) at 3 months and complete cytogenetic response (CCyR) from 6 months onward define optimal response, whereas no CyR (Philadelphia chromosome–positive [Ph+] >95%) at 3 months, less than PCyR at 6 months, and less than CCyR from 12 months onward define failure. Between optimal and failure, there is an intermediate warning zone requiring more frequent monitoring. Similar definitions are provided for response to second-line therapy. Specific recommendations are made for patients in the accelerated and blastic phases, and for allogeneic stem cell transplantation. Optimal responders should continue therapy indefinitely, with careful surveillance, or they can be enrolled in controlled studies of treatment discontinuation once a deeper molecular response is achieved. PMID:23803709

  8. Targeting Leukemia Stem Cells in vivo with AntagomiR-126 Nanoparticles in Acute Myeloid Leukemia

    PubMed Central

    Dorrance, Adrienne M.; Neviani, Paolo; Ferenchak, Greg J.; Huang, Xiaomeng; Nicolet, Deedra; Maharry, Kati S.; Ozer, Hatice G; Hoellarbauer, Pia; Khalife, Jihane; Hill, Emily B.; Yadav, Marshleen; Bolon, Brad N.; Lee, Robert J.; Lee, L.James; Croce, Carlo M.; Garzon, Ramiro; Caligiuri, Michael A.; Bloomfield, Clara D.; Marcucci., Guido

    2015-01-01

    Current treatments for acute myeloid leukemia (AML) are designed to target rapidly dividing blast populations with limited success in eradicating the functionally distinct leukemia stem cell (LSC) population, which is postulated to be responsible for disease resistance and relapse. We have previously reported high miR-126 expression levels to be associated with a LSC-gene expression profile. Therefore, we hypothesized that miR-126 contributes to “stemness” and is a viable target for eliminating the LSC in AML. Here we first validate the clinical relevance of miR-126 expression in AML by showing that higher expression of this microRNA (miR) is associated with worse outcome in a large cohort of older (≥60 years) cytogenetically normal AML patients treated with conventional chemotherapy. We then show that miR-126 overexpression characterizes AML LSC-enriched cell subpopulations and contributes to LSC long-term maintenance and self-renewal. Finally, we demonstrate the feasibility of therapeutic targeting of miR-126 in LSCs with novel targeting nanoparticles (NP) containing antagomiR-126 resulting in in vivo reduction of LSCs likely by depletion of the quiescent cell subpopulation. Our findings suggest that by targeting a single miR, i.e., miR-126, it is possible to interfere with LSC activity, thereby opening potentially novel therapeutic approaches to treat AML patients. PMID:26055302

  9. Molecular pathway activation features of pediatric acute myeloid leukemia (AML) and acute lymphoblast leukemia (ALL) cells

    PubMed Central

    Petrov, Ivan; Suntsova, Maria; Mutorova, Olga; Sorokin, Maxim; Garazha, Andrew; Ilnitskaya, Elena; Spirin, Pavel; Larin, Sergey; Zhavoronkov, Alex; Kovalchuk, Olga; Prassolov, Vladimir; Roumiantsev, Alexander; Buzdin, Anton

    2016-01-01

    Acute lymphoblast leukemia (ALL) is characterized by overproduction of immature white blood cells in the bone marrow. ALL is most common in the childhood and has high (>80%) cure rate. In contrast, acute myeloid leukemia (AML) has far greater mortality rate than the ALL and is most commonly affecting older adults. However, AML is a leading cause of childhood cancer mortality. In this study, we compare gene expression and molecular pathway activation patterns in three normal blood, seven pediatric ALL and seven pediatric AML bone marrow samples. We identified 172/94 and 148/31 characteristic gene expression/pathway activation signatures, clearly distinguishing pediatric ALL and AML cells, respectively, from the normal blood. The pediatric AML and ALL cells differed by 139/34 gene expression/pathway activation biomarkers. For the adult 30 AML and 17 normal blood samples, we found 132/33 gene expression/pathway AML-specific features, of which only 7/2 were common for the adult and pediatric AML and, therefore, age-independent. At the pathway level, we found more differences than similarities between the adult and pediatric forms. These findings suggest that the adult and pediatric AMLs may require different treatment strategies. PMID:27870639

  10. AMPK Protects Leukemia-Initiating Cells in Myeloid Leukemias from Metabolic Stress in the Bone Marrow.

    PubMed

    Saito, Yusuke; Chapple, Richard H; Lin, Angelique; Kitano, Ayumi; Nakada, Daisuke

    2015-11-05

    How cancer cells adapt to metabolically adverse conditions in patients and strive to proliferate is a fundamental question in cancer biology. Here we show that AMP-activated protein kinase (AMPK), a metabolic checkpoint kinase, confers metabolic stress resistance to leukemia-initiating cells (LICs) and promotes leukemogenesis. Upon dietary restriction, MLL-AF9-induced murine acute myeloid leukemia (AML) activated AMPK and maintained leukemogenic potential. AMPK deletion significantly delayed leukemogenesis and depleted LICs by reducing the expression of glucose transporter 1 (Glut1), compromising glucose flux, and increasing oxidative stress and DNA damage. LICs were particularly dependent on AMPK to suppress oxidative stress in the hypoglycemic bone marrow environment. Strikingly, AMPK inhibition synergized with physiological metabolic stress caused by dietary restriction and profoundly suppressed leukemogenesis. Our results indicate that AMPK protects LICs from metabolic stress and that combining AMPK inhibition with physiological metabolic stress potently suppresses AML by inducing oxidative stress and DNA damage. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Leukemia Associated Antigens: Their Dual Role as Biomarkers and Immunotherapeutic Targets for Acute Myeloid Leukemia

    PubMed Central

    Guinn, Barbara-ann; Mohamedali, Azim; Mills, Ken I.; Czepulkowski, Barbara; Schmitt, Michael; Greiner, Jochen

    2007-01-01

    Leukemia associated antigens (LAAs) are being increasingly identified by methods such as cytotoxic T-lymphocyte (CTL) cloning, serological analysis of recombinant cDNA expression libraries (SEREX) and mass spectrometry (MS). In additional, large scale screening techniques such as microarray, single nucleotide polymorphisms (SNPs), serial analysis of gene expression (SAGE) and 2-dimensional gel electrophoresis (2-DE) have expanded our understanding of the role that tumor antigens play in the biological processes which are perturbed in acute myeloid leukemia (AML). It has become increasingly apparent that these antigens play a dual role, not only as targets for immunotherapy, but also as biomarkers of disease state, stage, response to treatment and survival. We need biomarkers to enable the identification of the patients who are most likely to benefit from specific treatments (conventional and/or novel) and to help clinicians and scientists improve clinical end points and treatment design. Here we describe the LAAs identified in AML, to date, which have already been shown to play a dual role as biomarkers of AML disease. PMID:19662193

  12. Leukemia associated antigens: their dual role as biomarkers and immunotherapeutic targets for acute myeloid leukemia.

    PubMed

    Guinn, Barbara-Ann; Mohamedali, Azim; Mills, Ken I; Czepulkowski, Barbara; Schmitt, Michael; Greiner, Jochen

    2007-02-14

    Leukemia associated antigens (LAAs) are being increasingly identified by methods such as cytotoxic T-lymphocyte (CTL) cloning, serological analysis of recombinant cDNA expression libraries (SEREX) and mass spectrometry (MS). In additional, large scale screening techniques such as microarray, single nucleotide polymorphisms (SNPs), serial analysis of gene expression (SAGE) and 2-dimensional gel electrophoresis (2-DE) have expanded our understanding of the role that tumor antigens play in the biological processes which are perturbed in acute myeloid leukemia (AML). It has become increasingly apparent that these antigens play a dual role, not only as targets for immunotherapy, but also as biomarkers of disease state, stage, response to treatment and survival. We need biomarkers to enable the identification of the patients who are most likely to benefit from specific treatments (conventional and/or novel) and to help clinicians and scientists improve clinical end points and treatment design. Here we describe the LAAs identified in AML, to date, which have already been shown to play a dual role as biomarkers of AML disease.

  13. Parental Tobacco Smoking and Acute Myeloid Leukemia: The Childhood Leukemia International Consortium.

    PubMed

    Metayer, Catherine; Petridou, Eleni; Aranguré, Juan Manuel Mejía; Roman, Eve; Schüz, Joachim; Magnani, Corrado; Mora, Ana Maria; Mueller, Beth A; de Oliveira, Maria S Pombo; Dockerty, John D; McCauley, Kathryn; Lightfoot, Tracy; Hatzipantelis, Emmanouel; Rudant, Jérémie; Flores-Lujano, Janet; Kaatsch, Peter; Miligi, Lucia; Wesseling, Catharina; Doody, David R; Moschovi, Maria; Orsi, Laurent; Mattioli, Stefano; Selvin, Steve; Kang, Alice Y; Clavel, Jacqueline

    2016-08-15

    The association between tobacco smoke and acute myeloid leukemia (AML) is well established in adults but not in children. Individual-level data on parental cigarette smoking were obtained from 12 case-control studies from the Childhood Leukemia International Consortium (CLIC, 1974-2012), including 1,330 AML cases diagnosed at age <15 years and 13,169 controls. We conducted pooled analyses of CLIC studies, as well as meta-analyses of CLIC and non-CLIC studies. Overall, maternal smoking before, during, or after pregnancy was not associated with childhood AML; there was a suggestion, however, that smoking during pregnancy was associated with an increased risk in Hispanics (odds ratio = 2.08, 95% confidence interval (CI): 1.20, 3.61) but not in other ethnic groups. By contrast, the odds ratios for paternal lifetime smoking were 1.34 (95% CI: 1.11, 1.62) and 1.18 (95% CI: 0.92, 1.51) in pooled and meta-analyses, respectively. Overall, increased risks from 1.2- to 1.3-fold were observed for pre- and postnatal smoking (P < 0.05), with higher risks reported for heavy smokers. Associations with paternal smoking varied by histological type. Our analyses suggest an association between paternal smoking and childhood AML. The association with maternal smoking appears limited to Hispanic children, raising questions about ethnic differences in tobacco-related exposures and biological mechanisms, as well as study-specific biases.

  14. Molecular pathway activation features of pediatric acute myeloid leukemia (AML) and acute lymphoblast leukemia (ALL) cells.

    PubMed

    Petrov, Ivan; Suntsova, Maria; Mutorova, Olga; Sorokin, Maxim; Garazha, Andrew; Ilnitskaya, Elena; Spirin, Pavel; Larin, Sergey; Kovalchuk, Olga; Prassolov, Vladimir; Zhavoronkov, Alex; Roumiantsev, Alexander; Buzdin, Anton

    2016-11-19

    Acute lymphoblast leukemia (ALL) is characterized by overproduction of immature white blood cells in the bone marrow. ALL is most common in the childhood and has high (>80%) cure rate. In contrast, acute myeloid leukemia (AML) has far greater mortality rate than the ALL and is most commonly affecting older adults. However, AML is a leading cause of childhood cancer mortality. In this study, we compare gene expression and molecular pathway activation patterns in three normal blood, seven pediatric ALL and seven pediatric AML bone marrow samples. We identified 172/94 and 148/31 characteristic gene expression/pathway activation signatures, clearly distinguishing pediatric ALL and AML cells, respectively, from the normal blood. The pediatric AML and ALL cells differed by 139/34 gene expression/pathway activation biomarkers. For the adult 30 AML and 17 normal blood samples, we found 132/33 gene expression/pathway AML-specific features, of which only 7/2 were common for the adult and pediatric AML and, therefore, age-independent. At the pathway level, we found more differences than similarities between the adult and pediatric forms. These findings suggest that the adult and pediatric AMLs may require different treatment strategies.

  15. Leukostasis in Children and Adolescents with Chronic Myeloid Leukemia: Japanese Pediatric Leukemia/Lymphoma Study Group.

    PubMed

    Kurosawa, Hidemitsu; Tanizawa, Akihiko; Tono, Chikako; Watanabe, Akihiro; Shima, Haruko; Ito, Masaki; Yuza, Yuki; Hotta, Noriko; Muramatsu, Hideki; Okada, Masahiko; Kajiwara, Ryosuke; Moriya Saito, Akiko; Mizutani, Shuki; Adachi, Souichi; Horibe, Keizo; Ishii, Eiichi; Shimada, Hiroyuki

    2016-03-01

    The details of leukostasis in children and adolescents with chronic myeloid leukemia (CML) are unknown. This study determined the characteristics of leukostasis in children and adolescents with CML. A total of 256 cases from a retrospective study of patients with CML conducted by the Japanese Pediatric Leukemia/Lymphoma Study Group from 1996 to 2011 were analyzed, and of these, 238 cases were evaluated in this study. Leukostasis was diagnosed in 23 patients (9.7%). The median leukocyte count and spleen size below the left costal margin in cases with leukostasis were significantly higher and larger when compared to those in cases without leukostasis (458.5 × 10(9) /l vs. 151.8 × 10(9) /l (P < 0.01), and 13 vs. 5 cm (P < 0.01), respectively). Leukostasis occurred with ocular symptoms in 14 cases, priapism in four cases, and dyspnea, syncope, headache, knee pain, difficulty hearing, and aseptic necrosis of the femoral head in one case each. One case had two leukostasis symptoms simultaneously. Three cases were diagnosed before imatinib became available. Five cases received special treatment, and in the remaining 15 cases, all of these symptoms resolved after treatment with imatinib. This retrospective study represents the largest series of children and adolescents in which leukostasis of CML has been reported. Our data provide useful insight into the characteristics of leukostasis in recent cases of children and adolescents with CML. © 2015 Wiley Periodicals, Inc.

  16. Activated Ca2+/calmodulin-dependent protein kinase IIgamma is a critical regulator of myeloid leukemia cell proliferation.

    PubMed

    Si, Jutong; Collins, Steven J

    2008-05-15

    Ca(2+) signaling is an important component of signal transduction pathways regulating B and T lymphocyte proliferation, but the functional role of Ca(2+) signaling in regulating myeloid leukemia cell proliferation has been largely unexplored. We observe that the activated (autophosphorylated) Ca(2+)/calmodulin-dependent protein kinase IIgamma (CaMKIIgamma) is invariably present in myeloid leukemia cell lines as well as in the majority of primary acute myelogenous leukemia patient samples. In contrast, myeloid leukemia cells induced to terminally differentiate or undergo growth arrest display a marked reduction in this CaMKIIgamma autophosphorylation. In cells harboring the bcr-abl oncogene, the activation (autophosphorylation) of CaMKIIgamma is regulated by this oncogene. Moreover, inhibition of CaMKIIgamma activity with pharmacologic agents, dominant-negative constructs, or short hairpin RNAs inhibits the proliferation of myeloid leukemia cells, and this is associated with the inactivation/down-regulation of multiple critical signal transduction networks involving the mitogen-activated protein kinase, Janus-activated kinase/signal transducers and activators of transcription (Jak/Stat), and glycogen synthase kinase (GSK3beta)/beta-catenin pathways. In myeloid leukemia cells, CaMKIIgamma directly phosphorylates Stat3 and enhances its transcriptional activity. Thus, CaMKIIgamma is a critical regulator of multiple signaling networks regulating the proliferation of myeloid leukemia cells. Inhibiting CaMKIIgamma may represent a novel approach in the targeted therapy of myeloid leukemia.

  17. Rhabdomyolysis Following Initiation of Posaconazole Use for Antifungal Prophylaxis in a Patient With Relapsed Acute Myeloid Leukemia: A Case Report.

    PubMed

    Mody, Mayur D; Ravindranathan, Deepak; Gill, Harpaul S; Kota, Vamsi K

    2017-01-01

    Posaconazole is a commonly used medication for antifungal prophylaxis in patients with high-risk acute leukemia, such as acute myeloid leukemia. Despite clinical data that show that posaconazole is superior to other antifungal prophylaxis medications, posaconazole is known to have many side effects and drug-drug interactions. We present a patient who developed rhabdomyolysis after being started on posaconazole for prophylaxis in the setting of relapsed acute myeloid leukemia.

  18. Rhabdomyolysis Following Initiation of Posaconazole Use for Antifungal Prophylaxis in a Patient With Relapsed Acute Myeloid Leukemia

    PubMed Central

    Mody, Mayur D.; Ravindranathan, Deepak; Gill, Harpaul S.; Kota, Vamsi K.

    2017-01-01

    Posaconazole is a commonly used medication for antifungal prophylaxis in patients with high-risk acute leukemia, such as acute myeloid leukemia. Despite clinical data that show that posaconazole is superior to other antifungal prophylaxis medications, posaconazole is known to have many side effects and drug-drug interactions. We present a patient who developed rhabdomyolysis after being started on posaconazole for prophylaxis in the setting of relapsed acute myeloid leukemia. PMID:28203579

  19. Rare cytogenetic abnormalities in acute myeloid leukemia transformed from Fanconi anemia – a case report

    PubMed Central

    2013-01-01

    Background Fanconi’s anemia (FA) is an inherited bone marrow failure syndrome that carries a higher risk of transformation to acute myeloid leukemia (AML) when compared with general population. AML is the initial presentation in approximately one third of patients. Case presentation A 17 year old male presented to the emergency room with history of high grade fever since two weeks. Examination revealed pallor, short stature and thumb polydactyly. There was no visceromegaly or lymphadenopathy. Complete blood count showed haemoglobin 3.4 gm/dl, MCV 100 fl and MCH 36 pg, white blood cell count 55.9 × 10 E9/L and platelet count 8 × 10E9/L. Peripheral blood smear revealed 26% blast cells. Bone marrow was hypercellular exhibiting infiltration with 21% blast cells. Auer rods were seen in few blast cells. These findings were consistent with acute myelomonocytic leukemia. These blasts cells expressed CD33, CD13, HLA-DR, CD117, CD34 antigens and cytoplasmic myeloperoxidase on immunophenotyping. Bone marrow cytogenetics revealed 46, XY, t (8:21) (q22; q22) [11] / 46, XY, add (2) (q37), t (8; 21) [4] / 46, XY [5]. Molecular studies showed positivity of FLT 3 D835 variant and negativity of NPM 1 and FLT3 ITD (internal tandem domain) mutation. Peripheral blood analysis for chromosomal breakage exhibited tri-radial and complex figures. He received induction chemotherapy with cytarabine and daunorubicin (3 + 7). Day 14 marrow revealed clearance of blast cells. Conclusion The recognition of specific cytogenetic abnormalities present in FA known to predispose to AML is crucial for early haematopoietic stem cell transplant (HSCT) before transformation to leukemia. PMID:23937881

  20. Myeloid Antigen Expression in Childhood Acute Lymphoblastic Leukemia and Its Relevance for Clinical Outcome in Indonesian ALL-2006 Protocol

    PubMed Central

    Supriyadi, Eddy; Veerman, Anjo J. P.; Sutaryo; Purwanto, Ignatius; vd Ven, Peter M.; Cloos, Jacqueline

    2012-01-01

    The frequency of acute lymphoblastic leukemia (ALL) patients expressing myeloid antigens on their ALL cells varies between 5 and 36% in several different studies. The clinical relevance of myeloid antigen expression in childhood ALL is controversial. In Indonesian patients, no data were present. Therefore, in Yogyakarta, Indonesia, we analyzed 239 ALL patients who were immunophenotyped including myeloid markers (CD13, CD33, CD117, and/or cMPO). Myeloid antigen expression was found in 25% of patients. Expression of myeloid antigen in B-lineage leukemia was 27%, and in T-lineage leukemia, it was 18% (P = 0.15). No association was found between myeloid antigen expression and clinical or biological features. In the whole cohort of patients we did not find a significant association between myeloid antigen expression and survival, although leukemia-free survival at 3 years was higher in the myeloid-negative patients (73% ± 6%) compared to myeloid-positive patients (67% ± 8%). Interestingly, in T-ALL patients, expression of myeloid antigens was an independent adverse prognostic factor (hazard ratio: 3.26, 95% CI: 1.06–9.98, P = 0.04). Kaplan-Meier analysis for event-free survival was also significant (log rank P = 0.03) in this subgroup. In conclusion, in the Indonesian ALL population, in particular, myeloid antigen-expressing T-ALL patients had a higher chance of having induction failure. PMID:23227046

  1. Iodine I 131 Monoclonal Antibody BC8, Fludarabine Phosphate, Cyclophosphamide, Total-Body Irradiation and Donor Bone Marrow Transplant in Treating Patients With Advanced Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or High-Risk Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-12-06

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; CD45-Positive Neoplastic Cells Present; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndrome; Refractory Anemia With Excess Blasts; Refractory Anemia With Ring Sideroblasts; Refractory Cytopenia With Multilineage Dysplasia; Refractory Cytopenia With Multilineage Dysplasia and Ring Sideroblasts

  2. Identification of Merkel Cell Polyomavirus from a Patient with Acute Myeloid Leukemia

    PubMed Central

    Song, Y.

    2017-01-01

    ABSTRACT Merkel cell polyomavirus (MCPyV) is an oncogenic virus associated with Merkel cell carcinoma, an aggressive form of skin cancer with a high (>30%) mortality rate. The virus has a high incidence in patients with immunosuppressed conditions, such as AIDS or leukemia, or following organ transplantation. Here, we report the complete genomic sequence of MCPyV identified from a blood sample from a patient with acute myeloid leukemia. PMID:28104648

  3. Successful hematopoietic cell transplantation in a patient with X-linked agammaglobulinemia and acute myeloid leukemia.

    PubMed

    Abu-Arja, Rolla F; Chernin, Leah R; Abusin, Ghada; Auletta, Jeffery; Cabral, Linda; Egler, Rachel; Ochs, Hans D; Torgerson, Troy R; Lopez-Guisa, Jesus; Hostoffer, Robert W; Tcheurekdjian, Haig; Cooke, Kenneth R

    2015-09-01

    X-linked agammaglobulinemia (XLA) is a primary immunodeficiency characterized by marked reduction in all classes of serum immunoglobulins and the near absence of mature CD19(+) B-cells. Although malignancy has been observed in patients with XLA, we present the first reported case of acute myeloid leukemia (AML) in a patient with XLA. We also demonstrate the complete correction of the XLA phenotype following allogeneic hematopoietic cell transplantation for treatment of the patient's leukemia. © 2015 Wiley Periodicals, Inc.

  4. Successful Hematopoietic Cell Transplantation in a Patient With X-linked Agammaglobulinemia and Acute Myeloid Leukemia

    PubMed Central

    Abu-Arja, Rolla F.; Chernin, Leah R.; Abusin, Ghada; Auletta, Jeffery; Cabral, Linda; Egler, Rachel; Ochs, Hans D.; Torgerson, Troy R.; Lopez-Guisa, Jesus; Hostoffer, Robert W.; Tcheurekdjian, Haig; Cooke, Kenneth R.

    2016-01-01

    X-linked agammaglobulinemia (XLA) is a primary immunodeficiency characterized by marked reduction in all classes of serum immunoglobulins and the near absence of mature CD19+ B-cells. Although malignancy has been observed in patients with XLA, we present the first reported case of acute myeloid leukemia (AML) in a patient with XLA. We also demonstrate the complete correction of the XLA phenotype following allogeneic hematopoietic cell transplantation for treatment of the patient’s leukemia. PMID:25900577

  5. Acute myeloid leukemia in adults: a case-control study in Yorkshire.

    PubMed

    Cartwright, R A; Darwin, C; McKinney, P A; Roberts, B; Richards, I D; Bird, C C

    1988-10-01

    This paper reports the results of a case-control analysis of 161 cases of acute myeloid leukemia and 310 matched hospital controls. The patients were interviewed between 1982 and 1986. The study shows a weak association for cases with previous malignant disease. Furnace workers show excess risks. Urticaria and vertigo are in excess, as well as some aspects of family medical histories, including multiple sclerosis and cases of leukemia/lymphoma in blood relations.

  6. Bilineal T lymphoblastic and myeloid blast transformation in chronic myeloid leukemia with TP53 mutation—an uncommon presentation in adults

    PubMed Central

    Krishnan, S.; Sabai, K.; Chuah, C.; Tan, S.Y.

    2014-01-01

    Bilineal blast transformation of myeloid and T lymphoid type is a rare event in chronic myeloid leukemia. Here, we report a case in which an adult presented with high white cell counts and lymphadenopathy. Bone marrow studies confirmed the presence of 9 and 22 chromosomal translocation, and a diagnosis of chronic myeloid leukemia in chronic phase was made. Examination of a lymph node showed both myeloid and T lymphoblastoid blast crisis. Molecular studies demonstrated the presence of BCR-ABL fusion transcripts in both the myeloid and the T lymphoblastic component, indicating that the myeloid and T lymphoid blast crisis components shared common progenitors. TP53 deletion was demonstrated by fluorescence in situ hybridization. PMID:24523612

  7. Expression of CD71 by flow cytometry in acute leukemias: More often seen in acute myeloid leukemia.

    PubMed

    Pande, Amit; Dorwal, Pranav; Jain, Dharmendra; Tyagi, Neetu; Mehra, Simmi; Sachdev, Ritesh; Raina, Vimarsh

    2016-01-01

    CD71 is a marker that has been usually used for identifying dysplasia in the erythroid series. We have tried to evaluate the expression of CD71 in various types of acute leukemias. We studied 48 patients of acute leukemia, of which 25 were acute myeloid leukemia (AML), 13 were precursor B-acute lymphoblastic leukemia (B-ALL), 8 were T-ALL, and 2 were mixed phenotype acute leukemia (T/myeloid) as per the WHO classification. We found that the expression of CD71 was most prevalent in AMLs (84%), followed by T-ALL (50%) and least in B-ALL (30%). This finding clearly shows the higher expression of CD71 in AMLs compared to other common type of leukemias, such as B- and T-ALL. We suggest that the high expression of CD71 in AMLs could be used as a diagnostic marker and may also be used for minimal residual disease analysis after further studies in posttreatment scenario. This study is the first of its kind in the South Asian population.

  8. Double minute chromosomes in acute myeloid leukemia, myelodysplastic syndromes, and chronic myelomonocytic leukemia are associated with micronuclei, MYC or MLL amplification, and complex karyotype.

    PubMed

    Huh, Yang O; Tang, Guilin; Talwalkar, Sameer S; Khoury, Joseph D; Ohanian, Maro; Bueso-Ramos, Carlos E; Abruzzo, Lynne V

    2016-01-01

    Double minute chromosomes (dmin) are small, paired chromatin bodies that lack a centromere and represent a form of extrachromosomal gene amplification. Dmin are rare in myeloid neoplasms and are generally associated with a poor prognosis. Most studies of dmin in myeloid neoplasms are case reports or small series. In the current study, we present the clinicopathologic and cytogenetic features of 22 patients with myeloid neoplasms harboring dmin. These neoplasms included acute myeloid leukemia (AML) (n = 18), myelodysplastic syndrome (MDS) (n = 3), and chronic myelomonocytic leukemia (CMML) (n = 1). The AML cases consisted of AML with myelodysplasia-related changes (n = 13) and therapy-related AML (n = 5). Dmin were detected in initial pre-therapy samples in 14 patients with AML or CMML; they were acquired during the disease course in 8 patients who had AML or MDS. The presence of dmin was associated with micronuclei (18/18; 100%), complex karyotype (17/22; 77.3%), and amplification of MYC (12/16; 75%) or MLL (4/16; 25%). Immunohistochemical staining for MYC performed on bone marrow core biopsy or clot sections revealed increased MYC protein in all 19 cases tested. Except for one patient, most patients failed to respond to risk-adapted chemotherapies. At last follow up, all patients had died of disease after a median of 5 months following dmin detection. In conclusion, dmin in myeloid neoplasms commonly harbor MYC or MLL gene amplification and manifest as micronuclei within leukemic blasts. Dmin are often associated with myelodysplasia or therapy-related disease, and complex karyotypes.

  9. Dasatinib in high-risk core binding factor acute myeloid leukemia in first complete remission: a French Acute Myeloid Leukemia Intergroup trial

    PubMed Central

    Boissel, Nicolas; Renneville, Aline; Leguay, Thibaut; Lefebvre, Pascale Cornillet; Recher, Christian; Lecerf, Thibaud; Delabesse, Eric; Berthon, Céline; Blanchet, Odile; Prebet, Thomas; Pautas, Cécile; Chevallier, Patrice; Leprêtre, Stéphane; Girault, Stéphane; Bonmati, Caroline; Guièze, Romain; Himberlin, Chantal; Randriamalala, Edouard; Preudhomme, Claude; Jourdan, Eric; Dombret, Hervé; Ifrah, Norbert

    2015-01-01

    Core-binding factor acute myeloid leukemia is a favorable acute myeloid leukemia subset cytogenetically defined by t(8;21) or inv(16)/t(16;16) rearrangements, disrupting RUNX1 (previously CBFA/AML1) or CBFB transcription factor functions. The receptor tyrosine kinase KIT is expressed in the vast majority of these acute myeloid leukemias and frequent activating KIT gene mutations have been associated with a higher risk of relapse. This phase II study aimed to evaluate dasatinib as maintenance therapy in patients with core-binding factor acute myeloid leukemia in first hematologic complete remission, but at higher risk of relapse due to molecular disease persistence or recurrence. A total of 26 patients aged 18–60 years old previously included in the CBF-2006 trial were eligible to receive dasatinib 140 mg daily if they had a poor initial molecular response (n=18) or a molecular recurrence (n=8). The tolerance of dasatinib as maintenance therapy was satisfactory. The 2-year disease-free survival in this high-risk population of patients was 25.7%. All but one patient with molecular recurrence presented subsequent hematologic relapse. Patients with slow initial molecular response had a similar disease-free survival when treated with dasatinib (40.2% at 2 years) or without any maintenance (50.0% at 2 years). The disappearance of KIT gene mutations at relapse suggests that clonal devolution may in part explain the absence of efficacy observed with single-agent dasatinib in these patients (n. EudraCT: 2006-006555-12). PMID:25715404

  10. Dasatinib in high-risk core binding factor acute myeloid leukemia in first complete remission: a French Acute Myeloid Leukemia Intergroup trial.

    PubMed

    Boissel, Nicolas; Renneville, Aline; Leguay, Thibaut; Lefebvre, Pascale Cornillet; Recher, Christian; Lecerf, Thibaud; Delabesse, Eric; Berthon, Céline; Blanchet, Odile; Prebet, Thomas; Pautas, Cécile; Chevallier, Patrice; Leprêtre, Stéphane; Girault, Stéphane; Bonmati, Caroline; Guièze, Romain; Himberlin, Chantal; Randriamalala, Edouard; Preudhomme, Claude; Jourdan, Eric; Dombret, Hervé; Ifrah, Norbert

    2015-06-01

    Core-binding factor acute myeloid leukemia is a favorable acute myeloid leukemia subset cytogenetically defined by t(8;21) or inv(16)/t(16;16) rearrangements, disrupting RUNX1 (previously CBFA/AML1) or CBFB transcription factor functions. The receptor tyrosine kinase KIT is expressed in the vast majority of these acute myeloid leukemias and frequent activating KIT gene mutations have been associated with a higher risk of relapse. This phase II study aimed to evaluate dasatinib as maintenance therapy in patients with core-binding factor acute myeloid leukemia in first hematologic complete remission, but at higher risk of relapse due to molecular disease persistence or recurrence. A total of 26 patients aged 18-60 years old previously included in the CBF-2006 trial were eligible to receive dasatinib 140 mg daily if they had a poor initial molecular response (n=18) or a molecular recurrence (n=8). The tolerance of dasatinib as maintenance therapy was satisfactory. The 2-year disease-free survival in this high-risk population of patients was 25.7%. All but one patient with molecular recurrence presented subsequent hematologic relapse. Patients with slow initial molecular response had a similar disease-free survival when treated with dasatinib (40.2% at 2 years) or without any maintenance (50.0% at 2 years). The disappearance of KIT gene mutations at relapse suggests that clonal devolution may in part explain the absence of efficacy observed with single-agent dasatinib in these patients (n. EudraCT: 2006-006555-12).

  11. A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells

    PubMed Central

    Ly, Tony; Ahmad, Yasmeen; Shlien, Adam; Soroka, Dominique; Mills, Allie; Emanuele, Michael J; Stratton, Michael R; Lamond, Angus I

    2014-01-01

    Technological advances have enabled the analysis of cellular protein and RNA levels with unprecedented depth and sensitivity, allowing for an unbiased re-evaluation of gene regulation during fundamental biological processes. Here, we have chronicled the dynamics of protein and mRNA expression levels across a minimally perturbed cell cycle in human myeloid leukemia cells using centrifugal elutriation combined with mass spectrometry-based proteomics and RNA-Seq, avoiding artificial synchronization procedures. We identify myeloid-specific gene expression and variations in protein abundance, isoform expression and phosphorylation at different cell cycle stages. We dissect the relationship between protein and mRNA levels for both bulk gene expression and for over ∼6000 genes individually across the cell cycle, revealing complex, gene-specific patterns. This data set, one of the deepest surveys to date of gene expression in human cells, is presented in an online, searchable database, the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/). DOI: http://dx.doi.org/10.7554/eLife.01630.001 PMID:24596151

  12. A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells.

    PubMed

    Ly, Tony; Ahmad, Yasmeen; Shlien, Adam; Soroka, Dominique; Mills, Allie; Emanuele, Michael J; Stratton, Michael R; Lamond, Angus I

    2014-01-01

    Technological advances have enabled the analysis of cellular protein and RNA levels with unprecedented depth and sensitivity, allowing for an unbiased re-evaluation of gene regulation during fundamental biological processes. Here, we have chronicled the dynamics of protein and mRNA expression levels across a minimally perturbed cell cycle in human myeloid leukemia cells using centrifugal elutriation combined with mass spectrometry-based proteomics and RNA-Seq, avoiding artificial synchronization procedures. We identify myeloid-specific gene expression and variations in protein abundance, isoform expression and phosphorylation at different cell cycle stages. We dissect the relationship between protein and mRNA levels for both bulk gene expression and for over ∼6000 genes individually across the cell cycle, revealing complex, gene-specific patterns. This data set, one of the deepest surveys to date of gene expression in human cells, is presented in an online, searchable database, the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/). DOI: http://dx.doi.org/10.7554/eLife.01630.001.

  13. XRCC3 Thr241Met polymorphism and risk of acute myeloid leukemia in a Romanian population.

    PubMed

    Bănescu, Claudia; Tilinca, Mariana; Benedek, Erzsebeth Lazar; Demian, Smaranda; Macarie, Ioan; Duicu, Carmen; Dobreanu, Minodora

    2013-09-10

    DNA repair systems have a critical role in maintaining the genome integrity and stability. DNA repair gene polymorphisms may influence the capacity to repair DNA damage, and thus lead to an increased cancer susceptibility. X-ray repair cross-complementing groups 3 (XRCC3), a DNA repair gene, may be involved in acute myeloid leukemia susceptibility. The objective of the current study was to investigate the association of Thr241Met polymorphism of XRCC3 gene with the risk of acute myeloid leukemia (AML). This study included 78 AML patients and 121 healthy individuals without cancer. We used polymerase chain reaction-restriction fragment length polymorphism assay to determine XRCC3 genotypes. The XRCC3 variant genotype (Thr/Met+Met/Met) was more frequent in AML patients than in healthy controls (OR=2.76, 95% CI: 1.52-4.98, P=0.001). Our study revealed a statistically significant association between variant genotype (Thr/Met+Met/Met) and AML de novo compared to secondary AML (P=0.007). No significant associations were found between any genotype and age at diagnosis, number of white blood cells and subtype of AML. Overall survival of patients with Thr/Thr genotype was better than those of variant Thr/Met and Met/Met genotypes. Our findings indicate that the XRCC3 Thr241Met polymorphism may be a genetic risk factor for AML, particularly in male patients with de novo AML from the central part of Romania. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Role of Setbp1 in Myeloid Leukemia Development

    DTIC Science & Technology

    2014-09-05

    Translocated to 3 MPN Myeloproliferative Neoplasm MSCV Murine Stem Cell Virus NOD/SCID Non Obese Diabetic...and immortalized myeloid progenitors in culture and significantly extended the survival of mice with Setbp1-induced myeloid neoplasm , suggesting that...clinical course in which the initial chronic phase resembles a benign myeloproliferative disorder with high level of granulocytes and progresses into

  15. Increased myeloid precursors in regenerating bone marrow; implications for detection of minimal residual disease in acute myeloid leukemia.

    PubMed

    Zeleznikova, T; Stevulova, L; Kovarikova, A; Babusikova, O

    2007-01-01

    Presented study is focused on exact immunophenotypic definition of myeloid precursors and their following stages in regenerating bone marrow during treatment of ALL/AML for correct interpretation of the immunophenotype results and proper distinction from minimal residual disease (MRD) by multiparameter flow cytometry. This study includes bone marrow samples from 36 controls, 27 patients with AML, 39 patients with B-ALL undergoing therapy who remained in complete remission after treatment and also 30 B-ALL patients one year after the end of therapy. We observed substantial expansion of immature bone marrow populations in the regenerating bone marrows, which were identified by expression of CD34 and/or CD117 markers by 4-color flow cytometry. Myeloid precursors were significantly increased after cessation of induction therapy cycle of B-ALL (1.27+/-2.04%, p=0.0064) and also AML patients (0.87+/-0.77%, p=0.001), but also during follow-up of B-ALL patients (1.42+/-2.36%, p=0.0001) when compared with non-treated controls (0.38+/-0.29%). Some cases where their frequencies achieved up to 12% reflect the massive regeneration of myeloid lineage in bone marrow after chemotherapy cycles. Especially in these cases accurate interpretation of such a high frequency of immature myeloid cells as myeloid precursors was very important to exclude incoming relapse or secondary leukemia. The myeloid precursors represented by CD34+ in regenerating bone marrow expressed CD45 (94.8+/-5.5%), CD117 (38.3+/-26.2%), CD38 (91.4+/-5.7%), HLA-DR (90.6+/-7.6%), CD13 (73.0+/-20.8%) and CD33 (85.2+/-15.6%), while CD90 (2.7+/-2.5%), CD133 (10.0+/-8.2%) and T or B lymphocyte markers were negative. Comparing immunophenotypes with control bone marrows, only difference in expression of CD33 marker was found (85.2+/-15.6% versus 63.0+/-17.4% p=0.024). In addition, according to expression of these markers three different subsets of myeloid precursor cells were identified in regenerating bone marrow samples

  16. Cutaneous infection caused by Macrophomina phaseolina in a child with acute myeloid leukemia.

    PubMed

    Srinivasan, Ashok; Wickes, Brian L; Romanelli, Anna M; Debelenko, Larisa; Rubnitz, Jeffrey E; Sutton, Deanna A; Thompson, Elizabeth H; Fothergill, Annette W; Rinaldi, Michael G; Hayden, Randall T; Shenep, Jerry L

    2009-06-01

    We report a case of Macrophomina phaseolina skin infection in an immunocompromised child with acute myeloid leukemia, which was treated successfully with posaconazole without recurrence after a hematopoietic stem cell transplant. The fungus was identified by DNA sequencing using both the internal transcribed spacer and D1/D2 region of the 28S ribosomal DNA gene.

  17. Epigenetic regulators and their impact on therapy in acute myeloid leukemia

    PubMed Central

    Pastore, Friederike; Levine, Ross L.

    2016-01-01

    Genomic studies of hematologic malignancies have identified a spectrum of recurrent somatic alterations that contribute to acute myeloid leukemia initiation and maintenance, and which confer sensitivities to molecularly targeted therapies. The majority of these genetic events are small, site-specific alterations in DNA sequence. In more than two thirds of patients with de novo acute myeloid leukemia mutations epigenetic modifiers are detected. Epigenetic modifiers encompass a large group of proteins that modify DNA at cytosine residues or cause post-translational histone modifications such as methylations or acetylations. Altered functions of these epigenetic modifiers disturb the physiological balance between gene activation and gene repression and contribute to aberrant gene expression regulation found in acute myeloid leukemia. This review provides an overview of the epigenetic modifiers mutated in acute myeloid leukemia, their clinical relevance and how a deeper understanding of their biological function has led to the discovery of new specific targets, some of which are currently tested in mechanism-based clinical trials. PMID:26928248

  18. Imatinib-induced thyroiditis in Philadelphia chromosome-positive chronic myeloid leukemia

    PubMed Central

    Singh, Surjit; Sharma, Pramod Kumar

    2016-01-01

    Here, we present a case of chronic myeloid leukemia for which imatinib therapy was initated. Triiodothyronine (T3), thyroxine (T4), and thyroid-stimulating hormone was normal, and thyroid microsomal autoantibodies (TMA) were positive and patient was diagnosed as thyroiditis treated with corticosteroids for 1½ months which lead to resolution. PMID:27756963

  19. Minimal Residual Disease in Acute Myeloid Leukemia: Still a Work in Progress?

    PubMed Central

    Mosna, Federico; Capelli, Debora; Gottardi, Michele

    2017-01-01

    Minimal residual disease evaluation refers to a series of molecular and immunophenotypical techniques aimed at detecting submicroscopic disease after therapy. As such, its application in acute myeloid leukemia has greatly increased our ability to quantify treatment response, and to determine the chemosensitivity of the disease, as the final product of the drug schedule, dose intensity, biodistribution, and the pharmakogenetic profile of the patient. There is now consistent evidence for the prognostic power of minimal residual disease evaluation in acute myeloid leukemia, which is complementary to the baseline prognostic assessment of the disease. The focus for its use is therefore shifting to individualize treatment based on a deeper evaluation of chemosensitivity and residual tumor burden. In this review, we will summarize the results of the major clinical studies evaluating minimal residual disease in acute myeloid leukemia in adults in recent years and address the technical and practical issues still hampering the spread of these techniques outside controlled clinical trials. We will also briefly speculate on future developments and offer our point of view, and a word of caution, on the present use of minimal residual disease measurements in “real-life” practice. Still, as final standardization and diffusion of the methods are sorted out, we believe that minimal residual disease will soon become the new standard for evaluating response in the treatment of acute myeloid leukemia. PMID:28587190

  20. The interplay of autophagy and β-Catenin signaling regulates differentiation in acute myeloid leukemia

    PubMed Central

    Kühn, K; Cott, C; Bohler, S; Aigal, S; Zheng, S; Villringer, S; Imberty, A; Claudinon, J; Römer, W

    2015-01-01

    The major feature of leukemic cells is an arrest of differentiation accompanied by highly active proliferation. In many subtypes of acute myeloid leukemia, these features are mediated by the aberrant Wnt/β-Catenin pathway. In our study, we established the lectin LecB as inducer of the differentiation of the acute myeloid leukemia cell line THP-1 and used it for the investigation of the involved processes. During differentiation, functional autophagy and low β-Catenin levels were essential. Corresponding to this, a high β-Catenin level stabilized proliferation and inhibited autophagy, resulting in low differentiation ability. Initiated by LecB, β-Catenin was degraded, autophagy became active and differentiation took place within hours. Remarkably, the reduction of β-Catenin sensitized THP-1 cells to the autophagy-stimulating mTOR inhibitors. As downmodulation of E-Cadherin was sufficient to significantly reduce LecB-mediated differentiation, we propose E-Cadherin as a crucial interaction partner in this signaling pathway. Upon LecB treatment, E-Cadherin colocalized with β-Catenin and thereby prevented the induction of β-Catenin target protein expression and proliferation. That way, our study provides for the first time a link between E-Cadherin, the aberrant Wnt/β-Catenin signaling, autophagy and differentiation in acute myeloid leukemia. Importantly, LecB was a valuable tool to elucidate the underlying molecular mechanisms of acute myeloid leukemia pathogenesis and may help to identify novel therapy approaches. PMID:27551462

  1. Decitabine and Midostaurin in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-25

    Acute Myeloid Leukemia (AML) With Multilineage Dysplasia Following Myelodysplastic Syndrome, in Adults; AML (Adult) With 11q23 (MLL) Abnormalities; AML (Adult) With Del(5q); AML (Adult) With Inv(16)(p13;q22); AML (Adult) With t(16;16)(p13;q22); AML (Adult) With t(8;21)(q22;q22); Secondary AML (Adult); Untreated AML (Adult)

  2. Eccrine poromatosis in a patient with acute myeloid leukemia following chemotherapy.

    PubMed

    Garshick, Marisa; DeFilippis, Ersilia M; Harp, Joanna; Gaan, Jalong

    2014-11-15

    Eccrine poromas are rare, benign adnexal tumors that often occur as solitary papules. Rarely, eccrine poromas can present as multiple lesions, which is referred to as eccrine poromatosis. We report a case of eccrine poromatosis occuring on the palms and soles occuring after chemotherapy in a patient with a history of acute myeloid leukemia.

  3. Anexelekto /MER Tyrosine Kinase inhibitor ONO-7475 growth arrests and kills FMS-Like Tyrosine Kinase 3-Internal Tandem Duplication Mutant Acute Myeloid Leukemia cells by diverse mechanisms.

    PubMed

    Ruvolo, Peter P; Ma, Huaxian; Ruvolo, Vivian R; Zhang, Xiaorui; Mu, Hong; Schober, Wendy; Hernandez, Ivonne; Gallardo, Miguel; Khoury, Joseph; Cortes, Jorge; Andreeff, Michael; Post, Sean M

    2017-09-14

    Nearly one-third of patients with acute myeloid leukemia have FMS-Like Tyrosine Kinase 3 mutations and thus have poor survival prospects. Receptor tyrosine kinase Anexelekto is critical for FMS-Like Tyrosine Kinase 3 signaling and participates in FMS-Like Tyrosine Kinase 3 inhibitor resistance mechanisms. Thus, strategies targeting Anexelekto could prove useful for acute myeloid leukemia therapy. ONO-7475 is an inhibitor with high specificity for Anexelekto and MER Tyrosine Kinase. Here we report that ONO-7475 potently arrested growth and induced apoptosis in acute myeloid leukemia with internal tandem duplication mutation of FMS-Like Tyrosine Kinase 3. MER Tyrosine Kinase-lacking MOLM13 cells were sensitive to ONO-7475 while MER Tyrosine Kinase -expressing OCI-AML3 cells were resistant, suggesting that the drug acts via Anexelekto in acute myeloid leukemia cells. Reverse phase protein analysis of ONO-7475 treated cells revealed that cell cycle regulators like Cyclin Dependent Kinase 1, Cyclin B1, Polo-like Kinase 1, and Retinoblastoma were suppressed. ONO-7475 suppressed Cyclin Dependent Kinase 1, Cyclin B1, Polo-like Kinase 1gene expression suggesting that Anexelekto may regulate the cell cycle at least in part via transcriptional mechanisms. Importantly, ONO-7475 was effective in a human FMS-Like Tyrosine Kinase 3 with Internal Tandem Duplication mutant murine xenograft model. Mice fed a diet containing ONO-7475 exhibited significantly longer survival and, interestingly, blocked leukemia cell infiltration in the liver. In summary, ONO-7475 effectively kills acute myeloid leukemia cells in vitro and in vivo by mechanisms that involve disruption of diverse survival and proliferation pathways. Copyright © 2017, Ferrata Storti Foundation.

  4. [Descriptive epidemiology of children with acute myeloid leukemia residing in Mexico City: a report from the Mexican Inter-Institutional Group for Identifying Childhood Leukemia Causes].

    PubMed

    Mejía-Aranguré, Juan Manuel; Núñez-Enríquez, Juan Carlos; Fajardo-Gutiérrez, Arturo; Rodríguez-Zepeda, María Del Carmen; Martín-Trejo, Jorge Alfonso; Duarte-Rodríguez, David Aldebarán; Medina-Sansón, Aurora; Flores-Lujano, Janet; Jiménez-Hernández, Elva; Núñez-Villegas, Nora Nancy; Pérez-Saldívar, María Luisa; Paredes-Aguilera, Rogelio; Cárdenas-Cardós, Rocío; Flores-Chapa, José de Diego; Reyes-Zepeda, Nancy Carolina; Flores-Villegas, Luz Victoria; Amador-Sánchez, Raquel; Torres-Nava, José Refugio; Bolea-Murga, Victoria; Espinosa-Elizondo, Rosa Martha; Peñaloza-González, José Gabriel; Velázquez-Aviña, Martha Margarita; González-Bonilla, César; Békker-Méndez, Vilma Carolina; Jiménez-Morales, Silvia; Martínez-Morales, Gabriela Bibiana; Vargas, Haydeé Rosas; Rangel-López, Angélica

    2016-10-01

    Acute myeloid leukemias represent the second most common childhood leukemia subtype. In Mexico, there are few studies on descriptive epidemiology for this disease. To report acute myeloid leukemia incidence for children less than 15 years of age in the Metropolitan Area of the Valley of Mexico for a period of five years (2010-2014) and to analyze whether there are differences in the incidence of acute myeloid leukemia by regions. A descriptive study was conducted in nine public hospitals in Mexico City. The crude annual average incidence rate and adjusted average annual incidence rate were calculated. A total of 190 patients with diagnosis of de novo acute myeloid leukemia were analyzed. Male sex (57.2%) and acute myeloid leukemia-M3 subtype (25.3%) were more frequent. The adjusted average annual incidence rates for Mexico City and for the Metropolitan Area of the Valley of Mexico were 8.18 and 7.74 per million children under 15 years old, respectively. It seems that childhood acute myeloid leukemia incidence is increasing in Mexico City, which makes the identification of associated risk factors imperative.

  5. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia.

    PubMed

    Patel, Jay P; Gönen, Mithat; Figueroa, Maria E; Fernandez, Hugo; Sun, Zhuoxin; Racevskis, Janis; Van Vlierberghe, Pieter; Dolgalev, Igor; Thomas, Sabrena; Aminova, Olga; Huberman, Kety; Cheng, Janice; Viale, Agnes; Socci, Nicholas D; Heguy, Adriana; Cherry, Athena; Vance, Gail; Higgins, Rodney R; Ketterling, Rhett P; Gallagher, Robert E; Litzow, Mark; van den Brink, Marcel R M; Lazarus, Hillard M; Rowe, Jacob M; Luger, Selina; Ferrando, Adolfo; Paietta, Elisabeth; Tallman, Martin S; Melnick, Ari; Abdel-Wahab, Omar; Levine, Ross L

    2012-03-22

    Acute myeloid leukemia (AML) is a heterogeneous disease with respect to presentation and clinical outcome. The prognostic value of recently identified somatic mutations has not been systematically evaluated in a phase 3 trial of treatment for AML. We performed a mutational analysis of 18 genes in 398 patients younger than 60 years of age who had AML and who were randomly assigned to receive induction therapy with high-dose or standard-dose daunorubicin. We validated our prognostic findings in an independent set of 104 patients. We identified at least one somatic alteration in 97.3% of the patients. We found that internal tandem duplication in FLT3 (FLT3-ITD), partial tandem duplication in MLL (MLL-PTD), and mutations in ASXL1 and PHF6 were associated with reduced overall survival (P=0.001 for FLT3-ITD, P=0.009 for MLL-PTD, P=0.05 for ASXL1, and P=0.006 for PHF6); CEBPA and IDH2 mutations were associated with improved overall survival (P=0.05 for CEBPA and P=0.01 for IDH2). The favorable effect of NPM1 mutations was restricted to patients with co-occurring NPM1 and IDH1 or IDH2 mutations. We identified genetic predictors of outcome that improved risk stratification among patients with AML, independently of age, white-cell count, induction dose, and post-remission therapy, and validated the significance of these predictors in an independent cohort. High-dose daunorubicin, as compared with standard-dose daunorubicin, improved the rate of survival among patients with DNMT3A or NPM1 mutations or MLL translocations (P=0.001) but not among patients with wild-type DNMT3A, NPM1, and MLL (P=0.67). We found that DNMT3A and NPM1 mutations and MLL translocations predicted an improved outcome with high-dose induction chemotherapy in patients with AML. These findings suggest that mutational profiling could potentially be used for risk stratification and to inform prognostic and therapeutic decisions regarding patients with AML. (Funded by the National Cancer Institute and others.).

  6. Prognostic Relevance of Integrated Genetic Profiling in Acute Myeloid Leukemia

    PubMed Central

    Patel, Jay P.; Gönen, Mithat; Figueroa, Maria E.; Fernandez, Hugo; Sun, Zhuoxin; Racevskis, Janis; Van Vlierberghe, Pieter; Dolgalev, Igor; Thomas, Sabrena; Aminova, Olga; Huberman, Kety; Cheng, Janice; Viale, Agnes; Socci, Nicholas D.; Heguy, Adriana; Cherry, Athena; Vance, Gail; Higgins, Rodney R.; Ketterling, Rhett P.; Gallagher, Robert E.; Litzow, Mark; van den Brink, Marcel R.M.; Lazarus, Hillard M.; Rowe, Jacob M.; Luger, Selina; Ferrando, Adolfo; Paietta, Elisabeth; Tallman, Martin S.; Melnick, Ari; Abdel-Wahab, Omar; Levine, Ross L.

    2013-01-01

    BACKGROUND Acute myeloid leukemia (AML) is a heterogeneous disease with respect to presentation and clinical outcome. The prognostic value of recently identified somatic mutations has not been systematically evaluated in a phase 3 trial of treatment for AML. METHODS We performed a mutational analysis of 18 genes in 398 patients younger than 60 years of age who had AML and who were randomly assigned to receive induction therapy with high-dose or standard-dose daunorubicin. We validated our prognostic findings in an independent set of 104 patients. RESULTS We identified at least one somatic alteration in 97.3% of the patients. We found that internal tandem duplication in FLT3 (FLT3-ITD), partial tandem duplication in MLL (MLL-PTD), and mutations in ASXL1 and PHF6 were associated with reduced overall survival (P = 0.001 for FLT3-ITD, P = 0.009 for MLL-PTD, P = 0.05 for ASXL1, and P = 0.006 for PHF6); CEBPA and IDH2 mutations were associated with improved overall survival (P = 0.05 for CEBPA and P = 0.01 for IDH2). The favorable effect of NPM1 mutations was restricted to patients with co-occurring NPM1 and IDH1 or IDH2 mutations. We identified genetic predictors of outcome that improved risk stratification among patients with AML, independently of age, white-cell count, induction dose, and post-remission therapy, and validated the significance of these predictors in an independent cohort. High-dose daunorubicin, as compared with standard-dose daunorubicin, improved the rate of survival among patients with DNMT3A or NPM1 mutations or MLL translocations (P = 0.001) but not among patients with wild-type DNMT3A, NPM1, and MLL (P = 0.67). CONCLUSIONS We found that DNMT3A and NPM1 mutations and MLL translocations predicted an improved outcome with high-dose induction chemotherapy in patients with AML. These findings suggest that mutational profiling could potentially be used for risk stratification and to inform prognostic and therapeutic decisions regarding patients with

  7. [The cytogenetic characteristics of 178 acute myeloid leukemia patients].

    PubMed

    Liu, Hui; Chang, Nai-bai; Pei, Lei; Ning, Shang-yong; Li, Jiang-tao; Xing, Bao-li; Xu, Xiao-dong

    2011-08-01

    To explore the cytogenetic characteristics of acute myeloid leukemia (AML) patients. The karyotype analysis was performed in 178 AML using the short-term culture of bone marrow cell and G-banding technique. Among the 178 patients, 171 had enough metaphases for analysis and 128 (74.9%) had clonal karyotypic abnormalities. Twenty-seven patients were secondary to myelodysplastic syndrome (MDS-AML), with 25 (92.6%) patients carrying clonal karyotypic abnormalities. Among the remaining 144 patients of de novo AML, 103 (71.5%) had clonal karyotypic abnormalities. The rate of abnormal clonal karyotype was higher in MDS-AML than that of de novo AML (P = 0.021). Among the 171 patients, 41 (24.0%) were in favorable risk group, 80(46.8%) in intermediate risk group and 50 (29.2%) in adverse risk group. t(15;17) was the most common chromosomal aberration. The majority intermediate risk chromosomal aberration was normal karyotype. The most common cytogenetic abnormality among adverse group was a complex karyotype. Adverse cytogenetic aberrations, such as -5/5q-, -7/7q-, frequently occurred in conjunction with one another as part of a complex karyotype. Totally 75 patients were 60 years or older, among them, 16.0% were in favorable risk group, 48.0% in intermediate risk group and 36.0% in adverse risk group. Among 96 younger patients, 30.2% were in favorable risk group, 45.8% in intermediate risk group and 24.0% in adverse risk group. The rate of favorable risk chromosomal aberration was lower in elder patients than in younger (P = 0.031). The rate of adverse risk chromosomal aberration and the rate of monosomal karyotype were higher in MDS-AML than in de novo AML patients (P < 0.001). The most common favorable, intermediate and adverse chromosomal aberrations were t(15;17), normal karyotype and complex karyotype respectively. The karyotype was poor in MDS-AML and elder AML patients.

  8. Radiolabeled Monoclonal Antibody Therapy, Fludarabine Phosphate, and Low-Dose Total-Body Irradiation Followed by Donor Stem Cell Transplant and Immunosuppression Therapy in Treating Older Patients With Advanced Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndromes

    ClinicalTrials.gov

    2016-11-14

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Anemia With Ringed Sideroblasts; Refractory Cytopenia With Multilineage Dysplasia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  9. Iodine I 131 Monoclonal Antibody BC8, Fludarabine Phosphate, Total Body Irradiation, and Donor Stem Cell Transplant Followed by Cyclosporine and Mycophenolate Mofetil in Treating Patients With Advanced Acute Myeloid Leukemia or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2017-04-13

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Anemia With Ringed Sideroblasts; Refractory Cytopenia With Multilineage Dysplasia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  10. Discovery of a novel Nrf2 inhibitor that induces apoptosis of human acute myeloid leukemia cells.

    PubMed

    Zhang, JinFeng; Su, Le; Ye, Qing; Zhang, ShangLi; Kung, HsiangFu; Jiang, Fan; Jiang, GuoSheng; Miao, JunYing; Zhao, BaoXiang

    2017-01-31

    Nuclear factor-erythroid 2-related factor 2 (Nrf2) is persistently activated in many human tumors including acute myeloid leukemia (AML). Therefore, inhibition of Nrf2 activity may be a promising target in leukemia therapy. Here, we used an antioxidant response element-luciferase reporter system to identify a novel pyrazolyl hydroxamic acid derivative, 1-(4-(tert-Butyl)benzyl)-3-(4-chlorophenyl)-N-hydroxy-1H pyrazole-5-carboxamide (4f), that inhibited Nrf2 activity. 4f had a profound growth-inhibitory effect on three AML cell lines, THP-1, HL-60 and U937, and a similar anti-growth effect in a chick embryo model. Moreover, flow cytometry of AML cells revealed increased apoptosis with 4f (10 μM) treatment for 48 h. The protein levels of cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase were enhanced in all three AML cell types. Furthermore, Nrf2 protein level was downregulated by 4f. Upregulation of Nrf2 by tert-butylhydroquinone (tBHQ) or Nrf2 overexpression could ameliorate 4f-induced growth inhibition and apoptosis. Treatment with 4f reduced both B-cell lymphoma-2 (Bcl-2) expression and Bcl-2/Bcl-2-associated X protein (Bax) ratio, which indicated that 4f induced apoptosis, at least in part, via mitochondrial-dependent signaling. Therefore, as an Nrf2 inhibitor, the pyrazolyl hydroxamic acid derivative 4f may be a promising agent in AML therapy.

  11. TTC5 is required to prevent apoptosis of acute myeloid leukemia stem cells.

    PubMed

    Lynch, J T; Somerville, T D D; Spencer, G J; Huang, X; Somervaille, T C P

    2013-04-04

    Using a screening strategy, we identified the tetratricopeptide repeat (TPR) motif protein, Tetratricopeptide repeat domain 5 (TTC5, also known as stress responsive activator of p300 or Strap) as required for the survival of human acute myeloid leukemia (AML) cells. TTC5 is a stress-inducible transcription cofactor known to interact directly with the histone acetyltransferase EP300 to augment the TP53 response. Knockdown (KD) of TTC5 induced apoptosis of both murine and human AML cells, with concomitant loss of clonogenic and leukemia-initiating potential; KD of EP300 elicited a similar phenotype. Consistent with the physical interaction of TTC5 and EP300, the onset of apoptosis following KD of either gene was preceded by reduced expression of BCL2 and increased expression of pro-apoptotic genes. Forced expression of BCL2 blocked apoptosis and partially rescued the clonogenic potential of AML cells following TTC5 KD. KD of both genes also led to the accumulation of MYC, an acetylation target of EP300, and the form of MYC that accumulated exhibited relative hypoacetylation at K148 and K157, residues targeted by EP300. In view of the ability of excess cellular MYC to sensitize cells to apoptosis, our data suggest a model whereby TTC5 and EP300 cooperate to prevent excessive accumulation of MYC in AML cells and their sensitization to cell death. They further reveal a hitherto unappreciated role for TTC5 in leukemic hematopoiesis.

  12. TTC5 is required to prevent apoptosis of acute myeloid leukemia stem cells

    PubMed Central

    Lynch, J T; Somerville, T D D; Spencer, G J; Huang, X; Somervaille, T C P

    2013-01-01

    Using a screening strategy, we identified the tetratricopeptide repeat (TPR) motif protein, Tetratricopeptide repeat domain 5 (TTC5, also known as stress responsive activator of p300 or Strap) as required for the survival of human acute myeloid leukemia (AML) cells. TTC5 is a stress-inducible transcription cofactor known to interact directly with the histone acetyltransferase EP300 to augment the TP53 response. Knockdown (KD) of TTC5 induced apoptosis of both murine and human AML cells, with concomitant loss of clonogenic and leukemia-initiating potential; KD of EP300 elicited a similar phenotype. Consistent with the physical interaction of TTC5 and EP300, the onset of apoptosis following KD of either gene was preceded by reduced expression of BCL2 and increased expression of pro-apoptotic genes. Forced expression of BCL2 blocked apoptosis and partially rescued the clonogenic potential of AML cells following TTC5 KD. KD of both genes also led to the accumulation of MYC, an acetylation target of EP300, and the form of MYC that accumulated exhibited relative hypoacetylation at K148 and K157, residues targeted by EP300. In view of the ability of excess cellular MYC to sensitize cells to apoptosis, our data suggest a model whereby TTC5 and EP300 cooperate to prevent excessive accumulation of MYC in AML cells and their sensitization to cell death. They further reveal a hitherto unappreciated role for TTC5 in leukemic hematopoiesis. PMID:23559008

  13. Quantitative Analysis of Mutant Subclones in Chronic Myeloid Leukemia: Comparison of Different Methodological Approaches.

    PubMed

    Preuner, Sandra; Barna, Agnes; Frommlet, Florian; Czurda, Stefan; Konstantin, Byrgazov; Alikian, Mary; Machova Polakova, Katerina; Sacha, Tomasz; Richter, Johan; Lion, Thomas; Gabriel, Christian

    2016-04-29

    Identification and quantitative monitoring of mutant BCR-ABL1 subclones displaying resistance to tyrosine kinase inhibitors (TKIs) have become important tasks in patients with Ph-positive leukemias. Different technologies have been established for patient screening. Various next-generation sequencing (NGS) platforms facilitating sensitive detection and quantitative monitoring of mutations in the ABL1-kinase domain (KD) have been introduced recently, and are expected to become the preferred technology in the future. However, broad clinical implementation of NGS methods has been hampered by the limited accessibility at different centers and the current costs of analysis which may not be regarded as readily affordable for routine diagnostic monitoring. It is therefore of interest to determine whether NGS platforms can be adequately substituted by other methodological approaches. We have tested three different techniques including pyrosequencing, LD (ligation-dependent)-PCR and NGS in a series of peripheral blood specimens from chronic myeloid leukemia (CML) patients carrying single or multiple mutations in the BCR-ABL1 KD. The proliferation kinetics of mutant subclones in serial specimens obtained during the course of TKI-treatment revealed similar profiles via all technical approaches, but individual specimens showed statistically significant differences between NGS and the other methods tested. The observations indicate that different approaches to detection and quantification of mutant subclones may be applicable for the monitoring of clonal kinetics, but careful calibration of each method is required for accurate size assessment of mutant subclones at individual time points.

  14. Acute Myeloid Leukemia Relapse Presenting as Complete Monocular Vision Loss due to Optic Nerve Involvement

    PubMed Central

    2016-01-01

    Acute myeloid leukemia (AML) involvement of the central nervous system is relatively rare, and detection of leptomeningeal disease typically occurs only after a patient presents with neurological symptoms. The case herein describes a 48-year-old man with relapsed/refractory AML of the mixed lineage leukemia rearrangement subtype, who presents with monocular vision loss due to leukemic eye infiltration. MRI revealed right optic nerve sheath enhancement and restricted diffusion concerning for nerve ischemia and infarct from hypercellularity. Cerebrospinal fluid (CSF) analysis showed a total WBC count of 81/mcl with 96% AML blasts. The onset and progression of visual loss were in concordance with rise in peripheral blood blast count. A low threshold for diagnosis of CSF involvement should be maintained in patients with hyperleukocytosis and high-risk cytogenetics so that prompt treatment with whole brain radiation and intrathecal chemotherapy can be delivered. This case suggests that the eye, as an immunoprivileged site, may serve as a sanctuary from which leukemic cells can resurge and contribute to relapsed disease in patients with high-risk cytogenetics. PMID:27668104

  15. Translocation 2;19 in a patient with probable relapsed acute myeloid leukemia.

    PubMed

    Mark, H F; Gray, Y; Rintels, P

    1997-01-01

    We report the cytogenetic and hematopathologic results from a patient diagnosed with acute myeloid leukemia. Although the initial specimen revealed an apparently normal male karyotype, a translocation, t(2;19)(q21;p13), was detected in the second specimen. It is not clear whether this was a primary or secondary and possibly chemotherapy-induced abnormality. In an extensive search of the recent medical literature database (Medline, 1966 to the present; CancerLit, 1983 to the present, MDX Health Digest, 1988 to the present; HealthSTAR, 1975 to the present, and CINAHL, 1982 to the present), we found no previous report of this specific translocation. This case is of interest not only because of its cytogenetic rarity and its unique clinical features, but also because of the fact that this patient worked in construction management, performing offshore drilling in oil fields for several years, and also worked with plastics and polymer film for about 4 years, although this past history of possible genotoxic exposure may or may not be of relevance. In addition, it is also of interest that one of the translocation breakpoints, 19p13, is apparently identical to that found in the 1;19 translocation associated with pre-B cell acute lymphocytic leukemia.

  16. Hispidulin induces mitochondrial apoptosis in acute myeloid leukemia cells by targeting extracellular matrix metalloproteinase inducer

    PubMed Central

    Gao, Hui; Liu, Yongji; Li, Kan; Wu, Tianhui; Peng, Jianjun; Jing, Fanbo

    2016-01-01

    Acute myeloid leukemia (AML) represents a heterogeneous group of hematological neoplasms with marked heterogeneity in response to both standard therapy and survival. Hispidulin, a flavonoid compound that is anactive ingredient in the traditional Chinese medicinal herb Salvia plebeia R. Br, has recently been reported to have anantitumor effect against solid tumors in vitro and in vivo. The aim of the present study was to investigate the effects of hispidulin on the human leukemia cell line in vitro and the underlying mechanisms of its actions on these cells. Our results showed that hispidulin inhibits AML cell proliferation in a dose- and time-dependent manner, and induces cell apoptosis throughan intrinsic mitochondrial pathway. Our results also revealed that hispidulin treatment significantly inhibits extracellular matrix metalloproteinase inducer (EMMPRIN) expression in both tested AML cell lines in a dose-dependent manner, and that the overexpression of EMMPRIN protein markedly attenuates hispidulin-induced cell apoptosis. Furthermore, our results strongly indicated that the modulating effect of hispidulin on EMMPRIN is correlated with its inhibitory effect on both the Akt and STAT3 signaling pathways. PMID:27158398

  17. Quantitative Analysis of Mutant Subclones in Chronic Myeloid Leukemia: Comparison of Different Methodological Approaches

    PubMed Central

    Preuner, Sandra; Barna, Agnes; Frommlet, Florian; Czurda, Stefan; Konstantin, Byrgazov; Alikian, Mary; Machova Polakova, Katerina; Sacha, Tomasz; Richter, Johan; Lion, Thomas; Gabriel, Christian

    2016-01-01

    Identification and quantitative monitoring of mutant BCR-ABL1 subclones displaying resistance to tyrosine kinase inhibitors (TKIs) have become important tasks in patients with Ph-positive leukemias. Different technologies have been established for patient screening. Various next-generation sequencing (NGS) platforms facilitating sensitive detection and quantitative monitoring of mutations in the ABL1-kinase domain (KD) have been introduced recently, and are expected to become the preferred technology in the future. However, broad clinical implementation of NGS methods has been hampered by the limited accessibility at different centers and the current costs of analysis which may not be regarded as readily affordable for routine diagnostic monitoring. It is therefore of interest to determine whether NGS platforms can be adequately substituted by other methodological approaches. We have tested three different techniques including pyrosequencing, LD (ligation-dependent)-PCR and NGS in a series of peripheral blood specimens from chronic myeloid leukemia (CML) patients carrying single or multiple mutations in the BCR-ABL1 KD. The proliferation kinetics of mutant subclones in serial specimens obtained during the course of TKI-treatment revealed similar profiles via all technical approaches, but individual specimens showed statistically significant differences between NGS and the other methods tested. The observations indicate that different approaches to detection and quantification of mutant subclones may be applicable for the monitoring of clonal kinetics, but careful calibration of each method is required for accurate size assessment of mutant subclones at individual time points. PMID:27136541

  18. Increased SYK activity is associated with unfavorable outcome among patients with acute myeloid leukemia

    PubMed Central

    Back, Morgan; Alexe, Gabriela; Bassil, Christopher F.; Sinha, Papiya; Tholouli, Eleni; Stegmaier, Kimberly; Byers, Richard J.; Rodig, Scott J.

    2015-01-01

    Recent discoveries have led to the testing of novel targeted therapies for the treatment of acute myeloid leukemia (AML). To better inform the results of clinical trials, there is a need to identify and systematically assess biomarkers of response and pharmacodynamic markers of successful target engagement. Spleen tyrosine kinase (SYK) is a candidate therapeutic target in AML. Small-molecule inhibitors of SYK induce AML differentiation and impair leukemia progression in preclinical studies. However, tools to predict response to SYK inhibition and to routinely evaluate SYK activation in primary patient samples have been lacking. In this study we quantified phosphorylated SYK (P-SYK) in AML cell lines and establish that increasing levels of baseline P-SYK are correlated with an increasing sensitivity to small-molecule inhibitors targeting SYK. In addition, we found that pharmacological inhibition of SYK activity extinguishes P-SYK expression as detected by an immunohistochemical (IHC) test. Quantitative analysis of P-SYK expression by the IHC test in a series of 70 primary bone marrow biopsy specimens revealed a spectrum of P-SYK expression across AML cases and that high P-SYK expression is associated with unfavourable outcome independent of age, cytogenetics, and white blood cell count. This study thus establishes P-SYK as a critical biomarker in AML that identifies tumors sensitive to SYK inhibition, identifies an at-risk patient population, and allows for the monitoring of target inhibition during treatment. PMID:26315286

  19. NANOG Expression as a Responsive Biomarker during Treatment with Hedgehog Signal Inhibitor in Acute Myeloid Leukemia

    PubMed Central

    Kakiuchi, Seiji; Minami, Yosuke; Miyata, Yoshiharu; Mizutani, Yu; Goto, Hideaki; Kawamoto, Shinichiro; Yakushijin, Kimikazu; Kurata, Keiji; Matsuoka, Hiroshi; Minami, Hironobu

    2017-01-01

    Aberrant activation of the Hedgehog (Hh) signaling pathway is involved in the maintenance of leukemic stem cell (LSCs) populations. PF-0444913 (PF-913) is a novel inhibitor that selectively targets Smoothened (SMO), which regulates the Hh pathway. Treatment with PF-913 has shown promising results in an early phase study of acute myeloid leukemia (AML). However, a detailed mode of action for PF-913 and relevant biomarkers remain to be elucidated. In this study, we examined bone marrow samples derived from AML patients under PF-913 monotherapy. Gene set enrichment analysis (GSEA) revealed that PF-913 treatment affected the self-renewal signature and cell-cycle regulation associated with LSC-like properties. We then focused on the expression of a pluripotency factor, NANOG, because previous reports showed that a downstream effector in the Hh pathway, GLI, directly binds to the NANOG promoter and that the GLI-NANOG axis promotes stemness and growth in several cancers. In this study, we found that a change in NANOG transcripts was closely associated with GLI-target genes and NANOG transcripts can be a responsive biomarker during PF-913 therapy. Additionally, the treatment of AML with PF-913 holds promise, possibly through inducing quiescent leukemia stem cells toward cell cycling. PMID:28245563

  20. Philadelphia-positive T-cell acute lymphoblastic leukemia with polymyositis, migratory polyarthritis and hypercalcemia following a chronic myeloid leukemia.

    PubMed

    Lima, M; Coutinho, J; Bernardo, L; dos Anjos Teixeira, M; Casais, C; Canelhas, A; Queirós, L; Orfão, A; Justiça, B

    2002-03-01

    Transformation of chronic myeloid leukemia (CML) often results in acute myeloblastic or, less frequently, in precursor B-cell acute lymphoblastic leukemia (ALL). T-cell blast crisis is rare. Hypercalcemia has also been described as a rare complication of CML, but this usually occurs as a terminal event. Here we report a case of a 35-year-old woman who developed a CD4(+)/CD8(+) T-cell ALL 2 years after the diagnosis of a typical Ph(+) CML. Polymyositis and polyarthritis preceded by 4 months, and symptomatic hypercalcemia occurred just before blastic transformation, probably representing paraneoplastic manifestations of the disease.

  1. lncRNA requirements for mouse acute myeloid leukemia and normal differentiation.

    PubMed

    Delás, M Joaquina; Sabin, Leah R; Dolzhenko, Egor; Knott, Simon Rv; Munera Maravilla, Ester; Jackson, Benjamin T; Wild, Sophia A; Kovacevic, Tatjana; Stork, Eva Maria; Zhou, Meng; Erard, Nicolas; Lee, Emily; Kelley, David R; Roth, Mareike; Barbosa, Ine S Am; Zuber, Johannes; Rinn, John L; Smith, Andrew D; Hannon, Gregory J

    2017-09-06

    A substantial fraction of the genome is transcribed in a cell type-specific manner, producing long non-coding RNAs (lncRNAs), rather than protein-coding transcripts. Here we systematically characterize transcriptional dynamics during hematopoiesis and in hematological malignancies. Our analysis of annotated and de novo assembled lncRNAs showed many are regulated during differentiation and mis-regulated in disease. We assessed lncRNA function via an in vivo RNAi screen in a model of acute myeloid leukemia. This identified several lncRNAs essential for leukemia maintenance, and found that a number act by promoting leukemia stem cell signatures. Leukemia blasts show a myeloid differentiation phenotype when these lncRNAs were depleted, and our data indicates that this effect is mediated via effects on the c-MYC oncogene. Bone marrow reconstitutions showed that a lncRNA expressed across all progenitors was required for the myeloid lineage, whereas the other leukemia-induced lncRNAs were dispensable in the normal setting.

  2. lncRNA requirements for mouse acute myeloid leukemia and normal differentiation

    PubMed Central

    Knott, Simon RV; Munera Maravilla, Ester; Jackson, Benjamin T; Wild, Sophia A; Kovacevic, Tatjana; Stork, Eva Maria; Zhou, Meng; Erard, Nicolas; Lee, Emily; Kelley, David R; Roth, Mareike; Barbosa, Inês AM; Zuber, Johannes; Rinn, John L

    2017-01-01

    A substantial fraction of the genome is transcribed in a cell-type-specific manner, producing long non-coding RNAs (lncRNAs), rather than protein-coding transcripts. Here, we systematically characterize transcriptional dynamics during hematopoiesis and in hematological malignancies. Our analysis of annotated and de novo assembled lncRNAs showed many are regulated during differentiation and mis-regulated in disease. We assessed lncRNA function via an in vivo RNAi screen in a model of acute myeloid leukemia. This identified several lncRNAs essential for leukemia maintenance, and found that a number act by promoting leukemia stem cell signatures. Leukemia blasts show a myeloid differentiation phenotype when these lncRNAs were depleted, and our data indicates that this effect is mediated via effects on the MYC oncogene. Bone marrow reconstitutions showed that a lncRNA expressed across all progenitors was required for the myeloid lineage, whereas the other leukemia-induced lncRNAs were dispensable in the normal setting. PMID:28875933

  3. Diversity of breakpoints of variant Philadelphia chromosomes in chronic myeloid leukemia in Brazilian patients

    PubMed Central

    Chauffaille, Maria de Lourdes Lopes Ferrari; Bandeira, Ana Carolina de Almeida; da Silva, Aline Schiavoni Guarnieri

    2014-01-01

    Background Chronic myeloid leukemia is a myeloproliferative disorder characterized by the Philadelphia chromosome or t(9;22)(q34.1;q11.2), resulting in the break-point cluster region-Abelson tyrosine kinase fusion gene, which encodes a constitutively active tyrosine kinase protein. The Philadelphia chromosome is detected by karyotyping in around 90% of chronic myeloid leukemia patients, but 5–10% may have variant types. Variant Philadelphia chromosomes are characterized by the involvement of another chromosome in addition to chromosome 9 or 22. It can be a simple type of variant when one other chromosome is involved, or complex, in which two or more chromosomes take part in the translocation. Few studies have reported the incidence of variant Philadelphia chromosomes or the breakpoints involved among Brazilian chronic myeloid leukemia patients. Objective The aim of this report is to describe the diversity of the variant Philadelphia chromosomes found and highlight some interesting breakpoint candidates for further studies. Methods the Cytogenetics Section Database was searched for all cases with diagnoses of chronic myeloid leukemia during a 12-year period and all the variant Philadelphia chromosomes were listed. Results Fifty (5.17%) cases out of 1071 Philadelphia-positive chronic myeloid leukemia were variants. The most frequently involved chromosome was 17, followed by chromosomes: 1, 20, 6, 11, 2, 10, 12 and 15. Conclusion Among all the breakpoints seen in this survey, six had previously been described: 11p15, 14q32, 15q11.2, 16p13.1, 17p13 and 17q21. The fact that some regions get more frequently involved in such rare rearrangements calls attention to possible predisposition that should be further studied. Nevertheless, the pathological implication of these variants remains unclear. PMID:25638762

  4. Clinical characteristics and prognosis of acute myeloid leukemia associated with DNA-methylation regulatory gene mutations

    PubMed Central

    Ryotokuji, Takeshi; Yamaguchi, Hiroki; Ueki, Toshimitsu; Usuki, Kensuke; Kurosawa, Saiko; Kobayashi, Yutaka; Kawata, Eri; Tajika, Kenji; Gomi, Seiji; Kanda, Junya; Kobayashi, Anna; Omori, Ikuko; Marumo, Atsushi; Fujiwara, Yusuke; Yui, Shunsuke; Terada, Kazuki; Fukunaga, Keiko; Hirakawa, Tsuneaki; Arai, Kunihito; Kitano, Tomoaki; Kosaka, Fumiko; Tamai, Hayato; Nakayama, Kazutaka; Wakita, Satoshi; Fukuda, Takahiro; Inokuchi, Koiti

    2016-01-01

    In recent years, it has been reported that the frequency of DNA-methylation regulatory gene mutations – mutations of the genes that regulate gene expression through DNA methylation – is high in acute myeloid leukemia. The objective of the present study was to elucidate the clinical characteristics and prognosis of acute myeloid leukemia with associated DNA-methylation regulatory gene mutation. We studied 308 patients with acute myeloid leukemia. DNA-methylation regulatory gene mutations were observed in 135 of the 308 cases (43.8%). Acute myeloid leukemia associated with a DNA-methylation regulatory gene mutation was more frequent in older patients (P<0.0001) and in patients with intermediate cytogenetic risk (P<0.0001) accompanied by a high white blood cell count (P=0.0032). DNA-methylation regulatory gene mutation was an unfavorable prognostic factor for overall survival in the whole cohort (P=0.0018), in patients aged ≤70 years, in patients with intermediate cytogenetic risk, and in FLT3-ITD-negative patients (P=0.0409). Among the patients with DNA-methylation regulatory gene mutations, 26.7% were found to have two or more such mutations and prognosis worsened with increasing number of mutations. In multivariate analysis DNA-methylation regulatory gene mutation was an independent unfavorable prognostic factor for overall survival (P=0.0424). However, patients with a DNA-methylation regulatory gene mutation who underwent allogeneic stem cell transplantation in first remission had a significantly better prognosis than those who did not undergo such transplantation (P=0.0254). Our study establishes that DNA-methylation regulatory gene mutation is an important unfavorable prognostic factor in acute myeloid leukemia. PMID:27247325

  5. Semisynthetic homoharringtonine induces apoptosis via inhibition of protein synthesis and triggers rapid myeloid cell leukemia-1 down-regulation in myeloid leukemia cells.

    PubMed

    Tang, Ruoping; Faussat, Anne-Marie; Majdak, Patricia; Marzac, Christophe; Dubrulle, Sabine; Marjanovic, Zora; Legrand, Ollivier; Marie, Jean-Pierre

    2006-03-01

    Semisynthetic homoharringtonine (ssHHT) is now being evaluated in phase II clinical trials for the treatment of chronic myelogenous leukemia and acute myelogenous leukemia patients. Here, we examined the mechanism of the apoptosis induced by ssHHT in myeloid leukemia cells. First, we have shown that ssHHT induces apoptosis in HL60 and HL60/MRP cell lines in a time- and dose-dependent manner, and independently of the expression of Bax. The decrease of mitochondrial membrane potential and the release of cytochrome c were observed in the apoptotic cells induced by ssHHT. To unveil the relationship between ssHHT and the mitochondrial disruption, we have shown that ssHHT decreased myeloid cell leukemia-1 (Mcl-1) expression and induced Bcl-2 cleavage in HL60 and HL60/MRP cell lines. The Bcl-2 cleavage could be inhibited by the Z-VAD.fmk caspase inhibitor. However, Mcl-1 turnover was very rapid and occurred before caspase activation. The Mcl-1 turnover was only induced by ssHHT and cycloheximide, but not by daunorubicin and cytosine arabinoside, and could be restored by proteasome inhibitors. Second, we confirmed that ssHHT rapidly induced massive apoptosis in acute myelogenous leukemia patient cells. We have also confirmed the release of cytochrome c and a rapid turnover of Mcl-1 in these patient cells, taking place only in apoptotic cells induced by ssHHT but not in cells undergoing spontaneous apoptosis. Finally, we have shown that ssHHT inhibits protein synthesis in both cell line and patient cells. We suggest that the inhibition of protein synthesis and resulting Mcl-1 turnover play a key role in the apoptosis induced by ssHHT. Our results encourage further clinical trials for the use of ssHHT in acute myelogenous leukemia.

  6. [The specific features of diagnosis of mixed-phenotype acute leukemia: A combination of B-cell antigen expressions according to the results of flow cytometry and morphological markers of myeloid differentiation in blast cells: A clinical case].

    PubMed

    Gritsaev, S V; Kostroma, I I; Ryadnova, G M; Tiranova, S A; Chubukina, Zh V; Balashova, V A; Zenina, M N; Martynkevich, I S; Potikhonova, N A; Abdulkadyrov, K M

    2015-01-01

    This rare type of acute leukemia, blast cells of which express myeloid and/or lymphoid markers, is mainly diagnosed using flow cytometric findings. The paper describes a clinical case of mixed-phenotype acute leukemia, in which B-cell lymphoid antigen expressions were revealed by a flow cytometric technique, while bone marrow morphological specimens showed the signs of myeloid differentiation specific to blast cells. It is concluded that there is a need for a comprehensive examination of patients with new-onset acute leukemia and for an aggregate analysis of flow cytometric results with morphological and cytochemical findings.

  7. SIRT1 inhibition impairs non-homologous end joining DNA damage repair by increasing Ku70 acetylation in chronic myeloid leukemia cells.

    PubMed

    Zhang, Wenjun; Wu, Haixia; Yang, Meng; Ye, Shiguang; Li, Liang; Zhang, Hong; Hu, Jiong; Wang, Xuguang; Xu, Jun; Liang, Aibin

    2016-03-22

    Most chemotherapeutic agents for leukemia are DNA damaging agents. However, DNA lesions can be repaired by activities of DNA repair systems. Increasing evidence have shown that enhanced DNA damage repair capacity contributes to chemotherapy resistance in leukemia cells. Thus, targeting DNA repair mechanisms is a promising strategy for novel leukemia treatment. SIRT1 expressions were downregulated by lentivirus-delivered SIRT1 shRNA in myeloid leukemia cells. SIRT1 mRNA and protein levels were analyzed by real-time PCR and Western blot, respectively. Flow cytometry was carried out to analyze cell cycle progression, apoptosis and DNA damage repair efficiency. DNA damage levels were assessed by alkaline comet assay, and H2AX phosphorylation was analyzed by immunoblotting and immunofluorescence. A mouse leukemia model was established by transplanting lentivirus-infected K562 cells containing SIRT1 shRNA into sublethally irradiated NOD/SCID mice, and tumorigenesis was evaluated by detecting tumor weights and mice survival. SIRT1 expressions were upregulated in myeloid leukemic patients. Downregulation of SIRT1 by RNAi promoted etoposide-induced DNA damage in myeloid leukemia cells accompanied by reduced NHEJ activity, and increased Ku70 acetylation. Furthermore, SIRT1 knockdown resulted in cell cycle arrest, induction of apoptosis and reduction of K562 cell proliferation accompanied by enhanced p53 and FOXO1 acetylation in K562 cells after etoposide treatment. Importantly, SIRT1 downregulation reduced the tumorigenesis ability of K562 cells in mouse xenografts following chemotherapy treatment. These results revealed that SIRT1 promotes the NHEJ repair pathway by deacetylating Ku70 in K562 cells, suggesting that SIRT1 is a novel therapeutic target for treating myeloid leukemia.

  8. SIRT1 inhibition impairs non-homologous end joining DNA damage repair by increasing Ku70 acetylation in chronic myeloid leukemia cells

    PubMed Central

    Ye, Shiguang; Li, Liang; Zhang, Hong; Hu, Jiong; Wang, Xuguang; Xu, Jun; Liang, Aibin

    2016-01-01

    Most chemotherapeutic agents for leukemia are DNA damaging agents. However, DNA lesions can be repaired by activities of DNA repair systems. Increasing evidence have shown that enhanced DNA damage repair capacity contributes to chemotherapy resistance in leukemia cells. Thus, targeting DNA repair mechanisms is a promising strategy for novel leukemia treatment. SIRT1 expressions were downregulated by lentivirus-delivered SIRT1 shRNA in myeloid leukemia cells. SIRT1 mRNA and protein levels were analyzed by real-time PCR and Western blot, respectively. Flow cytometry was carried out to analyze cell cycle progression, apoptosis and DNA damage repair efficiency. DNA damage levels were assessed by alkaline comet assay, and H2AX phosphorylation was analyzed by immunoblotting and immunofluorescence. A mouse leukemia model was established by transplanting lentivirus-infected K562 cells containing SIRT1 shRNA into sublethally irradiated NOD/SCID mice, and tumorigenesis was evaluated by detecting tumor weights and mice survival. SIRT1 expressions were upregulated in myeloid leukemic patients. Downregulation of SIRT1 by RNAi promoted etoposide-induced DNA damage in myeloid leukemia cells accompanied by reduced NHEJ activity, and increased Ku70 acetylation. Furthermore, SIRT1 knockdown resulted in cell cycle arrest, induction of apoptosis and reduction of K562 cell proliferation accompanied by enhanced p53 and FOXO1 acetylation in K562 cells after etoposide treatment. Importantly, SIRT1 downregulation reduced the tumorigenesis ability of K562 cells in mouse xenografts following chemotherapy treatment. These results revealed that SIRT1 promotes the NHEJ repair pathway by deacetylating Ku70 in K562 cells, suggesting that SIRT1 is a novel therapeutic target for treating myeloid leukemia. PMID:26646449

  9. Addition of sargramostim (GM-CSF) to imatinib results in major cytogenetic response in a patient with chronic myeloid leukemia.

    PubMed

    Connor, Rebecca F; Hurd, David; Pettenati, Mark J; Koty, Patrick; Molnár, István

    2006-10-01

    Imatinib mesylate, an inhibitor of BCR/ABL tyrosine kinase, has remarkable activity in chronic myeloid leukemia resulting in an 87% major cytogenetic response. We describe a woman who failed to achieve any cytogenetic response after 2.5 years of imatinib, 400mg daily. When daily sargramostim (GM-CSF) 100 microg/m2 was added, cytogenetic studies revealed a gradual increase in percentage of normal cells from start, 4, 9, and 15 months at 0%, 10%, 55%, and 85%, respectively. She became transfusion independent after starting GM-CSF. The addition of GM-CSF to imatinib resulted in a clinical benefit and a major cytogenetic response in this patient.

  10. MicroRNA-193b regulates c-Kit proto-oncogene and represses cell proliferation in acute myeloid leukemia.

    PubMed

    Gao, Xiao-ning; Lin, Ji; Gao, Li; Li, Yong-hui; Wang, Li-li; Yu, Li

    2011-09-01

    Mutations and/or overexpression of c-Kit proto-oncogene frequently occur in subsets of acute myeloid leukemia (AML) and contribute to abnormal cell proliferation and poor outcomes. We showed that c-Kit expression was subject to post-transcriptional regulation by microRNA (miRNA)-193b. Notably, miR-193b was significantly down-regulated in the examined AML cells and its levels were inversely correlated with c-Kit levels. Restoration of miR-193b expression in AML cells resulted in distinctly reduced c-Kit expression and inhibited cell growth. These data reveal a role for miR-193b dysregulation in myeloid leukemogenesis and the therapeutic promise of regulating miR-193b expression for c-Kit-positive AML.

  11. Acute myelomonocytic leukemia with inv(16)(p13q22) complicating Philadelphia chromosome positive chronic myeloid leukemia.

    PubMed

    Heim, S; Christensen, B E; Fioretos, T; Sørensen, A G; Pedersen, N T

    1992-03-01

    The reciprocal translocation (9;22)(q34;q11) is highly characteristic of chronic myeloid leukemia (CML) and the pericentric inversion inv(16)(p13q22) is almost only found in acute nonlymphocytic leukemia of the myelomonocytic subtype (ANLL M4). Only twice before have an inv(16) and a t(9;22) been found in the same cells, and both times the patients seemed to have de novo ANLL M4. We describe the case of a 21-year-old man who in July 1986 presented with a clinically and hematologically classic chronic phase CML. Treatment with busulfan led to no improvement; instead in September 1986 he developed blast crisis with ANLL M4Eo morphology. He was now cytogenetically examined and the karyotype 45,X,-Y,t(9;22)(q34;q11),inv(16)(p13q22) was found. Southern blot analysis of the bone marrow DNA sampled at this time revealed a standard rearrangement in the 3' end of the M-bcr. Intensive cytostatic treatment caused cytopenia followed by complete hematologic, clinical, and cytogenetic reversal to chronic phase CML, so that in January 1987 the bone marrow karyotype was 46,XY,t(9;22)(q34;q11). Persistent splenomegaly was treated with splenectomy, and a chloroma of the skin was removed by irradiation. In March 1987 he received an allogeneic bone marrow transplant. Since then his only medical problem has been mild graft-versus-host disease; he is well and is working full time as a blacksmith.

  12. The vent-like homeobox gene VENTX promotes human myeloid differentiation and is highly expressed in acute myeloid leukemia

    PubMed Central

    Rawat, Vijay P. S.; Arseni, Natalia; Ahmed, Farid; Mulaw, Medhanie A.; Thoene, Silvia; Heilmeier, Bernhard; Sadlon, Tim; D'Andrea, Richard J.; Hiddemann, Wolfgang; Bohlander, Stefan K.; Buske, Christian; Feuring-Buske, Michaela

    2010-01-01

    Recent data indicate that a variety of regulatory molecules active in embryonic development may also play a role in the regulation of early hematopoiesis. Here we report that the human Vent-like homeobox gene VENTX, a putative homolog of the Xenopus xvent2 gene, is a unique regulatory hematopoietic gene that is aberrantly expressed in CD34+ leukemic stem-cell candidates in human acute myeloid leukemia (AML). Quantitative RT–PCR documented expression of the gene in lineage positive hematopoietic subpopulations, with the highest expression in CD33+ myeloid cells. Notably, expression levels of VENTX were negligible in normal CD34+/CD38− or CD34+ human progenitor cells. In contrast to this, leukemic CD34+/CD38− cells from AML patients with translocation t(8,21) and normal karyotype displayed aberrantly high expression of VENTX. Gene expression and pathway analysis demonstrated that in normal CD34+ cells enforced expression of VENTX initiates genes associated with myeloid development and down-regulates genes involved in early lymphoid development. Functional analyses confirmed that aberrant expression of VENTX in normal CD34+ human progenitor cells perturbs normal hematopoietic development, promoting generation of myeloid cells and impairing generation of lymphoid cells in vitro and in vivo. Stable knockdown of VENTX expression inhibited the proliferation of human AML cell lines. Taken together, these data extend our insights into the function of embryonic mesodermal factors in human postnatal hematopoiesis and indicate a role for VENTX in normal and malignant myelopoiesis. PMID:20833819

  13. Bilineal Extramedullary Blast Crisis as an Initial Presentation of Chronic Myeloid Leukemia: A Case Report and Literature Review.

    PubMed

    Gao, Xiaoning; Li, Jie; Wang, Lili; Lin, Ji; Jin, Hongshi; Xu, Yihan; Wang, Nan; Zhao, Yu; Liu, Daihong; Yu, Li; Wang, Quanshun

    2016-10-27

    BACKGROUND Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by the Philadelphia chromosome generated by the reciprocal translocation t(9: 22)(q34;q11). CML is usually diagnosed in the chronic phase. Blast crisis represents an advanced phase of CML. Extramedullary blast crisis as the initial presentation of CML with bone marrow remaining in chronic phase is an unusual event. Further, extramedullary blast crisis with T lymphoid/myeloid bilineal phenotype as an initial presentation for CML is extremely unusual. CASE REPORT Here, we report the case of a 49-year-old male with rapidly enlarged submandibular lymph nodes. Biopsy specimen from the nodes revealed a characteristic appearance with morphologically and immunohistochemically distinct myeloblasts and T lymphoblasts co-localized in 2 adjacent regions, accompanied by chronic phase of the disease in bone marrow. The presence of the BCR/ABL1 fusion gene within both cellular populations in this case confirmed the extramedullary disease represented a localized T lymphoid/myeloid bilineal blastic transformation of CML. After 3 courses of combined chemotherapy plus tyrosine kinase inhibitor treatment, the mass was completely regressed with a 3-log decrease in BCR/ABL1 transcript from baseline. Five months after the diagnosis, the patient showed diminished vision, hand tremors, and weakness of lower extremities. Flow cytometric immunophenotyping of cerebrospinal fluid revealed the presence of myeloid blasts. An isolated central nervous system relapse of leukemia was identified. Following high-dose systemic and intrathecal chemotherapy, the patient continued to do well. CONCLUSIONS The possibility of extramedullary blast crisis as an initial presentation in patients with CML should be considered. Further, an isolated central nervous system blast crisis should be considered if neurological symptoms evolve in patients who have shown a good response to therapy.

  14. Disruption of the estrogen receptor β gene in mice causes myeloproliferative disease resembling chronic myeloid leukemia with lymphoid blast crisis

    PubMed Central

    Shim, Gil-Jin; Wang, Ling; Andersson, Sandra; Nagy, Noémi; Kis, Loránd Levente; Zhang, Qinghong; Mäkelä, Sari; Warner, Margaret; Gustafsson, Jan-Åke

    2003-01-01

    Proliferation of pluripotent, bone marrow stem cells, which develop to lymphoid and myeloid progenitors, is negatively regulated by estrogen. Although in estrogen deficiency and in estrogen receptor knockout mice there is significant alteration in bone marrow hematopoiesis, the effects of aging on estrogen receptor deficiencies in mice have not been investigated yet. In this study we show that by 1.5 years of age, estrogen receptor β knockout (ERβ–/–) mice develop pronounced splenomegaly that is much more severe in females than in males. Further characterization of these mice revealed myelogenous hyperplasia in bone marrow, an increase in the number of granulocytes and B lymphocytes in blood, lymphadenopathy, and infiltration of leukocytes in the liver and lung. Analysis by flow cytometry of the bone marrow cells revealed that the percentage and total number of Gr-1hi/Mac-1hi-positive granulocytes were increased by 15–30% and 100%, respectively. The numbers of B cells in the bone marrow and spleen were significantly higher in ERβ–/– mice than in WT littermates. Some of the ERβ–/– mice also had a severe lymphoproliferative phenotype. Thus the absence of ERβ results in a myeloproliferative disease resembling human chronic myeloid leukemia with lymphoid blast crisis. Our results indicate a previously unknown role for ERβ in regulating the differentiation of pluripotent hematopoietic progenitor cells and suggest that the ERβ–/– mouse is a potential model for myeloid and lymphoid leukemia. Furthermore, we suggest that ERβ agonists might have clinical value in the treatment of leukemia. PMID:12740446

  15. Development of a transplantable mouse myeloid leukemia model system: a preliminary report

    SciTech Connect

    Au, W.W.; Luippold, H.E.; Otten, J.A.

    1982-01-01

    Research progess has been hindered in some areas of carcinogenesis because of a lack of consistant biological markers that distinguish cancer from normal cells. Cell lines derived from x-ray induced RFM mouse myeloid leukemia were studied for the purpose of first identifying the genetic differences (by chromosome analysis) between leukemic and normal cells and second, developing a transplantable leukemia model system. Among the cell lines analyzed, one of them (MLI) appeared to be useful in development of such a model. In addition to two chromosome abnormalities, cell line MLI also has a large abnormal chromosome which may be useful as a biological marker for these leukemic cells. This marker was identified by banding study to be an isochromosome 8 derived from centromeric translocation of two chromosome 8s. Upon injection of 4 x 10/sup 6/ leukemic cells into RFM mice symptoms of leukemia appeared from 18 days onwards and mice would begin to die of leukemia from 21 days onwards. The presence or absence of the metacentric marker chromosome was the criteria for inequivocal identification of leukemic from co-existing normal cells in these two tissues. The ratio of these cell populations was quantitated and the time-dependent increase of the ratios was indicative of progression of leukemia. Thus, this transplantable myeloid leukemia model system may be useful in studying the proliferation of leukemic cells and the response of the co-existing cells to therapeutic agents. (ERB)

  16. Differentiation of human myeloid leukemia cells by plant redifferentiation-inducing hormones.

    PubMed

    Honma, Yoshio; Ishii, Yuki

    2002-09-01

    Although differentiation therapy for patients with acute promyelocytic leukemia (APL) using all-trans retinoic acid (ATRA) has now been established, acute myeloid leukemia (AML) patients with other than APL only show a limited clinical response to ATRA. We must consider novel therapeutic drugs against other AML to develop a differentiation therapy for leukemia. Regulators that play an important role in the differentiation and development of plants may also affect the differentiation of human leukemia cells through a common signal transduction system, and might be clinically useful for treating AML. Cytokinins are important purine derivatives that serve as hormones that control many processes in plants. Cytokinins such as kinetin, isopentenyladenine (IPA) and benzyladenine were very effective at inducing nitroblue tetrazolium (NBT) reduction and morphological changes in human myeloid leukemia cells into mature granulocytes. On the other hand, cytokinin ribosides such as kinetin riboside, isopentenyladenosine (IPAR) and benzyladenine riboside were the most potent for inhibiting growth and inducing apoptosis. When the cells were incubated with cytokinin ribosides in the presence of an O2- scavenger, antioxidant or caspase inhibitor, apoptosis was significantly reduced and differentiation was greatly enhanced. These results suggest that both cytokinins and cytokinin ribosides can induce the granulocytic differentiation of HL-60 cells, but cytokinin ribosides also induce apoptosis prior to differentiation. Cotylenin A has been isolated as a plant growth regulator exhibits cytokinin-like activity. Although it has a different structure than cytokinins, it also induces the differentiation of human myeloid leukemia cells. These results suggest that there is an association between the action of plant redifferentiation-inducing hormones and the mechanism of the differentiation of human leukemia cells.

  17. Chemopreventive effects of dietary eicosapentaenoic acid supplementation in experimental myeloid leukemia

    PubMed Central

    Finch, Emily R.; Kudva, Avinash K.; Quickel, Michael D.; Goodfield, Laura L.; Kennett, Mary J.; Whelan, Jay; Paulson, Robert F.; Prabhu, K. Sandeep

    2015-01-01

    Current therapies for treatment of myeloid leukemia do not eliminate leukemia stem cells (LSC), leading to disease relapse. In this study, we supplemented mice with eicosapentaenoic acid (EPA, C20:5), a polyunsaturated omega-3 fatty acid, at pharmacological levels, to examine if the endogenous metabolite, cyclopentenone prostaglandin delta-12 PGJ3 (Δ12-PGJ3), was effective in targeting LSCs in experimental leukemia. EPA supplementation for eight weeks resulted in enhanced endogenous production of Δ12-PGJ3 that was blocked by indomethacin, a cyclooxygenase inhibitor. Using a murine model of chronic myelogenous leukemia (CML) induced by bone marrow transplantation of BCR-ABL-expressing hematopoietic stem cells, mice supplemented with EPA showed a decrease in the LSC population, reduced splenomegaly and leukocytosis, when compared to mice on an oleic acid diet. Supplementation of CML mice carrying the T315I mutation (in BCR-ABL) with EPA resulted in a similar effect. Indomethacin blocked the EPA effect and increased the severity of BCR-ABL-induced CML and decreased apoptosis. Δ12-PGJ3 rescued indomethacin-treated BCR-ABL mice and decreased LSCs. Inhibition of hematopoietic-prostaglandin D synthase (H-PGDS) by HQL-79 in EPA-supplemented CML mice also blocked the effect of EPA. In addition, EPA supplementation was effective in a murine model of acute myeloid leukemia. Supplemented mice exhibited a decrease in leukemia burden and a decrease in the LSC colony-forming unit (LSC-CFU). The decrease in LSCs was confirmed through serial transplantation assays in all disease models. The results support a chemopreventive role for EPA in myeloid leukemia, which is dependent on the ability to efficiently convert EPA to endogenous cyclooxygenase-derived prostanoids, including Δ12-PGJ3. PMID:26290393

  18. Prophylaxis of central nervous system leukemia: a case of chronic myeloid leukemia with lymphoid blast crisis treated with imatinib mesylate.

    PubMed

    Thavaraj, Vasantha; Seth, Rachna

    2008-05-01

    Chronic myeloid leukemia (CML) in blast crisis has a dismal prognosis. Imatinib mesylate (IM) is a new drug which has been shown to induce complete hematological remission in 55% and complete cytogenetic response in 22% of the patients with CML in blast crisis. A child with CML in lymphoid blast crisis was diagnosed by complete hematological and bone marrow examination. There was no central nervous system (CNS) leukemia at presentation. The child was treated with IM at a daily dose of 400 mg. The child showed remission after IM administration for 28 days and remained in remission till 59 days. On day 59 she experienced headache and vomiting. Results of cerebrospinal fluid taken for cytopathology showed CNS leukemia. MCP 841 protocol for ALL and weekly intrathecal triple therapy (ITT) was given. Along with IM treatment in patients with CML in blast crisis, weekly ITT with hydrocortisone, cytosine arabinoside and methotrexate should be recommended to prevent CNS involvement.

  19. Precision and prognostic value of clone-specific minimal residual disease in acute myeloid leukemia.

    PubMed

    Hirsch, Pierre; Tang, Ruoping; Abermil, Nassera; Flandrin, Pascale; Moatti, Hannah; Favale, Fabrizia; Suner, Ludovic; Lorre, Florence; Marzac, Christophe; Fava, Fanny; Mamez, Anne-Claire; Lapusan, Simona; Isnard, Françoise; Mohty, Mohamad; Legrand, Ollivier; Douay, Luc; Bilhou-Nabera, Chrystele; Delhommeau, François

    2017-03-16

    The genetic landscape of adult acute myeloid leukemias has been recently unraveled. However, due to their genetic heterogeneity, only a handful of markers are currently used for the evaluation of minimal residual disease. Recent studies using multi-target strategies indicate that detection of residual mutations in less than 5% of cells in complete remission is associated with a better survival. Here, in a series of 69 acute myeloid leukemias with known clonal architecture, we design a clone-specific strategy based on fluorescent in situ hybridization and high-sensitivity next generation sequencing to detect chromosomal aberrations and mutations, respectively, in follow-up samples. The combination of these techniques allows tracking chromosomal and genomic lesions down to 0.5-0.4% of the cell population in remission samples. By testing all lesions in follow-up samples from 65/69 evaluable patients, we find that initiating events often persist, and appear to be, alone, inappropriate markers to predict short term relapse. In contrast, the persistence of two or more lesions in more than 0.4% of the cells from remission samples is strongly associated with lower leukemia-free and overall survivals in univariate and multivariate analyses. Although larger prospective studies are needed to extend these results, our data show that a personalized, clone-specific, minimal residual disease follow-up strategy is feasible in the vast majority of acute myeloid leukemia cases.

  20. ADAMTS2 gene dysregulation in T/myeloid mixed phenotype acute leukemia.

    PubMed

    Tota, Giuseppina; Coccaro, Nicoletta; Zagaria, Antonella; Anelli, Luisa; Casieri, Paola; Cellamare, Angelo; Minervini, Angela; Minervini, Crescenzio Francesco; Brunetti, Claudia; Impera, Luciana; Carluccio, Paola; Cumbo, Cosimo; Specchia, Giorgina; Albano, Francesco

    2014-12-16

    Mixed phenotype acute leukemias (MPAL) include acute leukemias with blasts that express antigens of more than one lineage, with no clear evidence of myeloid or lymphoid lineage differentiation. T/myeloid (T/My) MPAL not otherwise specified (NOS) is a rare leukemia that expresses both T and myeloid antigens, accounting for less than 1% of all leukemias but 89% of T/My MPAL. From a molecular point of view, very limited data are available on T/My MPAL NOS. In this report we describe a T/My MPAL NOS case with a complex rearrangement involving chromosomes 5 and 14, resulting in overexpression of the ADAM metallopeptidase with thrombospondin type 1 motif, 2 (ADAMTS2) gene due to its juxtaposition to the T cell receptor delta (TRD) gene segment. Detailed molecular cytogenetic characterization of the complex rearrangement in the reported T/My MPAL case allowed us to observe ADAMTS2 gene overexpression, identifying a molecular marker that may be useful for monitoring minimal residual disease. To our knowledge, this is the first evidence of gene dysregulation due to a chromosomal rearrangement in T/My MPAL NOS.

  1. Knockdown of homeobox A5 by small hairpin RNA inhibits proliferation and enhances cytarabine chemosensitivity of acute myeloid leukemia cells.

    PubMed

    Li, Na; Jia, Xiuhong; Wang, Jianyong; Li, Youjie; Xie, Shuyang

    2015-11-01

    Homeobox genes encode transcription factors that are essential for embryonic morphogenesis and differentiation. Transcription factors containing the highly conserved homeobox motif show considerable promise as potential regulators of hematopoietic maturation events. Previous studies have suggested that the increased expression levels of homeobox (HOX)A genes was correlated with the cytogenetic findings associated with poor prognosis in acute myeloid leukemia and mixed lineage leukemia. The aim of the present study was to investigate the role of HOXA5 in leukemia. The U937 human leukemia cell line was transfected with a HOXA5‑targeted short hairpin RNA (shRNA) to determine the effects of downregulation of the HOXA5 on proliferation, apoptosis, cell cycle distribution and chemoresistance in leukemia cells. Reverse transcription‑quantitative polymerase chain reaction and western blot analyses demonstrated that the mRNA and protein expression levels of HOXA5 were markedly suppressed following transfection with an shRNA‑containing vector. Knockdown of HOXA5 significantly inhibited cell proliferation, as determined by Cell Counting kit‑8 assay. Flow cytometry revealed that reduced HOXA5 expression levels resulted in cell cycle arrest at the G1 phase, and induced apoptosis. In addition, western blot analysis demonstrated that HOXA5 knockdown increased the expression levels of caspase‑3, and reduced the expression levels of survivin in the U937 cells. Furthermore, knockdown of HOXA5 in the U937 cells enhanced their chemosensitivity to cytarabine. The results of the present study suggested that downregulation of HOXA5 by shRNA may trigger apoptosis and overcome drug resistance in leukemia cells. Therefore, HOXA5 may serve as a potential target for developing novel therapeutic strategies for leukemia.

  2. The evolution of arsenic in the treatment of acute promyelocytic leukemia and other myeloid neoplasms

    PubMed Central

    Falchi, Lorenzo; Verstovsek, Srdan; Ravandi-Kashani, Farhad; Kantarjian, Hagop

    2016-01-01

    The therapeutic potential of arsenic derivatives has long been recognized and was recently rediscovered in modern literature. Early studies demonstrated impressive activity of this compound in patients with relapsed acute promyelocytic leukemia (APL). Over the last 2 decades intravenous arsenic trioxide has been used successfully, both alone and in combination with other agents for the treatment of APL and, with some success, other myeloid neoplasms. Arsenic trioxide is currently part the standard of care for patients with APL. More recently, oral formulations of this compound have been developed and are entering clinical practice. This review will discuss the evolution of arsenic in the treatment of APL and other myeloid neoplasms. PMID:26716387

  3. Dietary intakes and risk of lymphoid and myeloid leukemia in the European Prospective Investigation into Cancer and Nutrition (EPIC).

    PubMed

    Saberi Hosnijeh, Fatemeh; Peeters, Petra; Romieu, Isabelle; Kelly, Rachel; Riboli, Elio; Olsen, Anja; Tjønneland, Anne; Fagherazzi, Guy; Clavel-Chapelon, Françoise; Dossus, Laure; Nieters, Alexandra; Teucher, Birgit; Trichopoulou, Antonia; Naska, Androniki; Valanou, Elisavet; Mattiello, Amalia; Sieri, Sabina; Parr, Christine L; Engeset, Dagrun; Skeie, Guri; Dorronsoro, Miren; Barricarte, Aurelio; Sánchez, Maria-José; Ericson, Ulrika; Sonestedt, Emily; Bueno-de-Mesquita, H Bas; Ros, Martine M; Travis, Ruth C; Key, Timothy J; Vineis, Paolo; Vermeulen, Roel

    2014-01-01

    The etiology of leukemias cannot entirely be explained by known risk factors, including ionizing radiation, benzene exposure, and infection with human T cell leukemia virus. A number of studies suggested that diet influences the risk of adult leukemias. However, results have been largely inconsistent. We examined the potential association between dietary factors and risk of leukemias among participants of the European Prospective Investigation into Cancer and Nutrition study. Among the 477,325 participants with mean follow-up of 11.34 yr (SD = 2.47), 773 leukemias (373 and 342 cases of lymphoid and myeloid leukemia, respectively) were identified. Diet over the previous 12 mo was assessed at baseline using a validated country-specific dietary questionnaire. Cox proportional hazards regression was used to explore the association between dietary factors that have previously been associated with leukemia risk, including red and processed meat, poultry, offal, fish, dairy products, vegetables, fruits, and seeds/nuts, and risk of both lymphoid and myeloid leukemias. No significant associations were observed between dietary measures and total, lymphoid, and myeloid leukemias. Additional subtype analyses showed no dietary association with risk of major subtypes of leukemias. In summary, this study did not support a possible link between selected dietary factors and risk of leukemias.

  4. Mixed phenotype acute leukemia with t(9;22): success with nonacute myeloid leukemia-type intensive induction therapy and stem cell transplantation.

    PubMed

    Chan, Onyee; Jamil, Abdur Rehman; Millius, Rebecca; Kaur, Ramandeep; Anwer, Faiz

    2017-04-01

    Mixed phenotype acute leukemia with t(9;22) is a rare disease with poor prognosis, and information on optimal treatment is limited. We describe a case where our patient experienced positive outcome after nonacute myeloid leukemia-type intensive induction therapy followed by postremission therapy with stem cell transplant.

  5. Molecular Targeting of the Oncoprotein PLK1 in Pediatric Acute Myeloid Leukemia: RO3280, a Novel PLK1 Inhibitor, Induces Apoptosis in Leukemia Cells

    PubMed Central

    Wang, Na-Na; Li, Zhi-Heng; Zhao, He; Tao, Yan-Fang; Xu, Li-Xiao; Lu, Jun; Cao, Lan; Du, Xiao-Juan; Sun, Li-Chao; Zhao, Wen-Li; Xiao, Pei-Fang; Fang, Fang; Su, Guang-Hao; Li, Yan-Hong; Li, Gang; Li, Yi-Ping; Xu, Yun-Yun; Zhou, Hui-Ting; Wu, Yi; Jin, Mei-Fang; Liu, Lin; Ni, Jian; Wang, Jian; Hu, Shao-Yan; Zhu, Xue-Ming; Feng, Xing; Pan, Jian

    2015-01-01

    Polo-like kinase 1 (PLK1) is highly expressed in many cancers and therefore a biomarker of transformation and potential target for the development of cancer-specific small molecule drugs. RO3280 was recently identified as a novel PLK1 inhibitor; however its therapeutic effects in leukemia treatment are still unknown. We found that the PLK1 protein was highly expressed in leukemia cell lines as well as 73.3% (11/15) of pediatric acute myeloid leukemia (AML) samples. PLK1 mRNA expression was significantly higher in AML samples compared with control samples (82.95 ± 110.28 vs. 6.36 ± 6.35; p < 0.001). Kaplan-Meier survival analysis revealed that shorter survival time correlated with high tumor PLK1 expression (p = 0.002). The 50% inhibitory concentration (IC50) of RO3280 for acute leukemia cells was between 74 and 797 nM. The IC50 of RO3280 in primary acute lymphocytic leukemia (ALL) and AML cells was between 35.49 and 110.76 nM and 52.80 and 147.50 nM, respectively. RO3280 induced apoptosis and cell cycle disorder in leukemia cells. RO3280 treatment regulated several apoptosis-associated genes. The regulation of DCC, CDKN1A, BTK, and SOCS2 was verified by western blot. These results provide insights into the potential use of RO3280 for AML therapy; however, the underlying mechanisms remain to be determined. PMID:25574601

  6. Polymorphisms in microRNA target sites modulate risk of lymphoblastic and myeloid leukemias and affect microRNA binding

    PubMed Central

    2014-01-01

    Background MicroRNA dysregulation is a common event in leukemia. Polymorphisms in microRNA-binding sites (miRSNPs) in target genes may alter the strength of microRNA interaction with target transcripts thereby affecting protein levels. In this study we aimed at identifying miRSNPs associated with leukemia risk and assessing impact of these miRSNPs on miRNA binding to target transcripts. Methods We analyzed with specialized algorithms the 3′ untranslated regions of 137 leukemia-associated genes and identified 111 putative miRSNPs, of which 10 were chosen for further investigation. We genotyped patients with acute myeloid leukemia (AML, n = 87), chronic myeloid leukemia (CML, n = 140), childhood acute lymphoblastic leukemia (ALL, n = 101) and healthy controls (n = 471). Association between SNPs and leukemia risk was calculated by estimating odds ratios in the multivariate logistic regression analysis. For miRSNPs that were associated with leukemia risk we performed luciferase reporter assays to examine whether they influence miRNA binding. Results Here we show that variant alleles of TLX1_rs2742038 and ETV6_rs1573613 were associated with increased risk of childhood ALL (OR (95% CI) = 3.97 (1.43-11.02) and 1.9 (1.16-3.11), respectively), while PML_rs9479 was associated with decreased ALL risk (OR = 0.55 (0.36-0.86). In adult myeloid leukemias we found significant associations between the variant allele of PML_rs9479 and decreased AML risk (OR = 0.61 (0.38-0.97), and between variant alleles of IRF8_ rs10514611 and ARHGAP26_rs187729 and increased CML risk (OR = 2.4 (1.12-5.15) and 1.63 (1.07-2.47), respectively). Moreover, we observed a significant trend for an increasing ALL and CML risk with the growing number of risk genotypes with OR = 13.91 (4.38-44.11) for carriers of ≥3 risk genotypes in ALL and OR = 4.9 (1.27-18.85) for carriers of 2 risk genotypes in CML. Luciferase reporter assays revealed that the C allele of ARHGAP

  7. Targeting of the BLT2 in chronic myeloid leukemia inhibits leukemia stem/progenitor cell function

    SciTech Connect

    Xiao, Meifang; Ai, Hongmei; Li, Tao; Rajoria, Pasupati; Shahu, Prakash; Li, Xiansong

    2016-04-15

    Imatinib, a tyrosine kinase inhibitor (TKI) has significantly improved clinical outcome for chronic myeloid leukemia (CML) patients. However, patients develop resistance when the disease progresses to the blast phase (BP) and the mechanisms are not well understood. Here we show that BCR-ABL activates BLT2 in hematopoietic stem/progenitor cells to promote leukemogenesis and this involves the p53 signaling pathway. Compared to normal bone marrow (NBM), the mRNA and protein levels of BLT2 are significantly increased in BP-CML CD34{sup +} stem/progenitor cells. This is correlated with increasing BCR-ABL expression. In contrast, knockdown of BCR-ABL or inhibition of its tyrosine kinase activity decreases Blt2 protein level. BLT2 inhibition induces apoptosis, inhibits proliferation, colony formation and self-renewal capacity of CD34{sup +} cells from TKI-resistant BP-CML patients. Importantly, the inhibitory effects of BCR-ABL TKI on CML stem/progenitor cells are further enhanced upon combination with BLT2 inhibition. We further show that BLT2 activation selectively suppresses p53 but not Wnt or BMP-mediated luciferase activity and transcription. Our results demonstrate that BLT2 is a novel pathway activated by BCR-ABL and critically involved in the resistance of BP-CML CD34{sup +} stem/progenitors to TKIs treatment. Our findings suggest that BLT2 and p53 can serve as therapeutic targets for CML treatment. - Highlights: • BCR-ABL regulates BLT2 expression to promote leukemogenesis. • BLT2 is essential to maintain CML cell function. • Activation of BLT2 suppresses p53 signaling pathway in CML cells. • Inhibition of BLT2 and BCR-ABL synergize in eliminating CML CD34{sup +} stem/progenitors.

  8. Occupational exposure to formaldehyde, hematotoxicity and leukemia-specific chromosome changes in cultured myeloid progenitor cells

    PubMed Central

    Zhang, Luoping; Tang, Xiaojiang; Rothman, Nathaniel; Vermeulen, Roel; Ji, Zhiying; Shen, Min; Qiu, Chuangyi; Guo, Weihong; Liu, Songwang; Reiss, Boris; Laura Beane, Freeman; Ge, Yichen; Hubbard, Alan E.; Hua, Ming; Blair, Aaron; Galvan, Noe; Ruan, Xiaolin; Alter, Blanche P.; Xin, Kerry X.; Li, Senhua; Moore, Lee E.; Kim, Sungkyoon; Xie, Yuxuan; Hayes, Richard B.; Azuma, Mariko; Hauptmann, Michael; Xiong, Jun; Stewart, Patricia; Li, Laiyu; Rappaport, Stephen M.; Huang, Hanlin; Fraumeni, Joseph F.; Smith, Martyn T.; Lan, Qing

    2010-01-01

    There are concerns about the health effects of formaldehyde exposure, including carcinogenicity, in light of elevated indoor air levels in new homes and occupational exposures experienced by workers in health care, embalming, manufacturing and other industries. Epidemiological studies suggest that formaldehyde exposure is associated with an increased risk of leukemia. However, the biological plausibility of these findings has been questioned because limited information is available on formaldehyde’s ability to disrupt hematopoietic function. Our objective was to determine if formaldehyde exposure disrupts hematopoietic function and produces leukemia-related chromosome changes in exposed humans. We examined the ability of formaldehyde to disrupt hematopoiesis in a study of 94 workers in China (43 exposed to formaldehyde and 51 frequency-matched controls) by measuring complete blood counts and peripheral stem/progenitor cell colony formation. Further, myeloid progenitor cells, the target for leukemogenesis, were cultured from the workers to quantify the level of leukemia-specific chromosome changes, including monosomy 7 and trisomy 8, in metaphase spreads of these cells. Among exposed workers, peripheral blood cell counts were significantly lowered in a manner consistent with toxic effects on the bone marrow and leukemia-specific chromosome changes were significantly elevated in myeloid blood progenitor cells. These findings suggest that formaldehyde exposure can have an adverse impact on the hematopoietic system and that leukemia induction by formaldehyde is biologically plausible, which heightens concerns about its leukemogenic potential from occupational and environmental exposures. PMID:20056626

  9. ZFX controls propagation and prevents differentiation of acute T-lymphoblastic and myeloid leukemia.

    PubMed

    Weisberg, Stuart P; Smith-Raska, Matthew R; Esquilin, Jose M; Zhang, Ji; Arenzana, Teresita L; Lau, Colleen M; Churchill, Michael; Pan, Haiyan; Klinakis, Apostolos; Dixon, Jack E; Mirny, Leonid A; Mukherjee, Siddhartha; Reizis, Boris

    2014-02-13

    Tumor-propagating cells in acute leukemia maintain a stem/progenitor-like immature phenotype and proliferative capacity. Acute myeloid leukemia (AML) and acute T-lymphoblastic leukemia (T-ALL) originate from different lineages through distinct oncogenic events such as MLL fusions and Notch signaling, respectively. We found that Zfx, a transcription factor that controls hematopoietic stem cell self-renewal, controls the initiation and maintenance of AML caused by MLL-AF9 fusion and of T-ALL caused by Notch1 activation. In both leukemia types, Zfx prevents differentiation and activates gene sets characteristic of immature cells of the respective lineages. In addition, endogenous Zfx contributes to gene induction and transformation by Myc overexpression in myeloid progenitors. Key Zfx target genes include the mitochondrial enzymes Ptpmt1 and Idh2, whose overexpression partially rescues the propagation of Zfx-deficient AML. These results show that distinct leukemia types maintain their undifferentiated phenotype and self-renewal by exploiting a common stem-cell-related genetic regulator. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Small Molecule Inhibitors in Acute Myeloid Leukemia: From the Bench to the Clinic

    PubMed Central

    Al-Hussaini, Muneera; DiPersio, John F.

    2014-01-01

    Many patients with acute myeloid leukemia (AML) will eventually develop refractory or relapsed disease. In the absence of standard therapy for this population, there is currently an urgent unmet need for novel therapeutic agents. Targeted therapy with small molecule inhibitors (SMIs) represents a new therapeutic intervention that has been successful for the treatment of multiple tumors (e.g., gastrointestinal stromal tumors, chronic myelogenous leukemia). Hence, there has been great interest in generating selective small molecule inhibitors targeting critical pathways of proliferation and survival in AML. This review highlights a selective group of intriguing therapeutic agents and their presumed targets in both preclinical models and in early human clinical trials. PMID:25025370

  11. Chronic meningitis by histoplasmosis: report of a child with acute myeloid leukemia.

    PubMed

    Pereira, G H; Pádua, S S; Park, M V F; Muller, R P; Passos, R M A; Menezes, Y

    2008-12-01

    Meningitis is a common evolution in progressive disseminated histoplasmosis in children, and is asymptomatic in many cases. In leukemia, the impaired of the T cells function can predispose to the disseminated form. The attributed mortality rate in this case is 20%-40% and the relapse rate is as high as 50%; therefore, prolonged treatment may be emphasized. We have described a child with acute myeloid leukemia (AML), that developed skin lesions and asymptomatic chronic meningitis, with a good evolution after prolonged treatment with amphotericin B deoxycholate followed by fluconazole.

  12. ChIP-seq Analysis of Human Chronic Myeloid Leukemia Cells.

    PubMed

    Anders, Lars; Li, Zhaodong

    2016-01-01

    Many transcription factors, chromatin-associated proteins and regulatory DNA elements are genetically and/or epigenetically altered in cancer, including Chronic Myeloid Leukemia (CML). This leads to deregulation of transcription that is often causally linked to the tumorigenic state. Chromatin-immunoprecipitation coupled with massively parallel DNA sequencing (ChIP-seq) is the key technology to study transcription as it allows in vivo whole-genome mapping of epigenetic modifications and interactions of proteins with DNA or chromatin. However, numerous DNA/chromatin-binding proteins, including EZH2, remain difficult to "ChIP," thus yielding genome-wide binding maps of only suboptimal quality. Here, we describe a ChIP-seq protocol optimized for high-quality protein-genome binding maps that have proven especially useful for studying difficult to 'ChIP' transcription regulatory factors in Chronic Myeloid Leukemia (CML) and related malignancies.

  13. [History, current status, and future prospects in clinical study of myeloid leukemia].

    PubMed

    Ozawa, Keiya

    2009-10-01

    The fundamental principle of the treatment of AML (acute myeloid leukemia) is "total cell kill. " For remission induction, "response-oriented individualized therapy" was developed in Japan. However, the similar response rate was obtained by "set therapy," which became the present standard regimen. Regarding the post-remission therapy, consolidation therapy is conducted without further long-term maintenance/intensification therapy. For poor-risk patients, hematopoietic stem cell transplantation should be considered. To improve the therapeutic efficacy, the development of molecular targeted therapy will be indispensable. As for CML (chronic myeloid leukemia), the development of imatinib has completely changed the treatment strategy. The eradication of CML stem cells is the next challenging issue.

  14. Therapeutic plateletpheresis in a case of symptomatic thrombocytosis in chronic myeloid leukemia.

    PubMed

    Thakral, Beenu; Saluja, Karan; Malhotra, Pankaj; Sharma, Ratti Ram; Marwaha, Neelam; Varma, Subhash

    2004-12-01

    Extreme thrombocytosis is a frequent feature in myeloproliferative disorders which can predispose a person to thrombotic complications. As opposed to other myeloproliferative disorders, symptomatic thrombocytosis is rare in chronic myeloid leukemia. We describe a second case report of chronic myeloid leukemia (Ph chromosome positive) in a patient in chronic phase on hydroxyurea who presented with sudden onset digital cyanosis of the left hand, giddiness, headache and malaise due to extreme thrombocytosis. A 67% global reduction in the platelet count from 1553 x 10(9)/L to 513 x 10(9)/L after two therapeutic plateletpheresis procedures was seen. There was simultaneous improvement in all symptoms except cyanosis on the tip of the middle finger that progressed to dry gangrene. Dramatic reduction in the platelet count and ablation of symptoms by therapeutic plateletpheresis is an effective therapy and should begin as soon as possible.

  15. Applicability of a "Pick a Winner" trial design to acute myeloid leukemia.

    PubMed

    Hills, Robert K; Burnett, Alan K

    2011-09-01

    Randomized clinical trials remain the gold standard to establish efficacy and safety of new treatments. In acute myeloid leukemia, large trials have been associated with gradual improvement in outcome over 2 decades in younger patients without major differences emerging between treatments. By contrast, in older patients, improvement has been minimal, which justifies a new approach to identifying effective treatments. Given the urgent unmet need, and with the emergence of several novel agents or combinations that are likely to be expensive, large benefits are probably required to change clinical practice. To address this issue, we have evolved a "Pick a Winner" randomized progressive design with a rolling incorporation of novel treatments (drug X), which has been tested in older patients with acute myeloid leukemia. The rationale, operational characteristics, and initial experience of such an approach in the context of the United Kingdom National Cancer Research Institute AML16 trial are presented.

  16. Microsphere-Based Multiplex Analysis of DNA Methylation in Acute Myeloid Leukemia

    PubMed Central

    Wertheim, Gerald B.W.; Smith, Catherine; Figueroa, Maria E.; Kalos, Michael; Bagg, Adam; Carroll, Martin; Master, Stephen R.

    2015-01-01

    Aberrant regulation of DNA methylation is characteristic of cancer cells and clearly influences phenotypes of various malignancies. Despite clear correlations between DNA methylation and patient outcome, tests that directly measure multiple-locus DNA methylation are typically expensive and technically challenging. Previous studies have demonstrated that the prognosis of patients with acute myeloid leukemia can be predicted by the DNA methylation pattern of 18 loci. We have developed a novel strategy, termed microsphere HpaII tiny fragment enrichment by ligation-mediated PCR (MELP), to simultaneously analyze the DNA methylation pattern at these loci using methylation-specific DNA digestion, fluorescently labeled microspheres, and branched DNA hybridization. The method uses techniques that are inexpensive and easily performed in a molecular laboratory. MELP accurately reflects the methylation levels at each locus analyzed and segregates patients with acute myeloid leukemia into prognostic subgroups. Our results demonstrate the usefulness of MELP as a platform f