Science.gov

Sample records for myeloma cell expression

  1. Stem cell marker nestin is expressed in plasma cells of multiple myeloma patients.

    PubMed

    Svachova, H; Pour, L; Sana, J; Kovarova, L; Raja, K R Muthu; Hajek, R

    2011-08-01

    Nestin is considered to be a characteristic marker of multipotent proliferative precursors found in some embryonic and fetal tissues. Its expression might be a suitable diagnostic and prognostic indicator of malignancy and a potential marker of cancer stem cells in solid tumors. Unexpectedly, nestin protein was detected in mature CD138(+)CD38(+) plasma cells of multiple myeloma patients and statistical analysis confirmed significant differences between myeloma patients and control group without hematological malignancy. Our results represent the first evidence of nestin expression in multiple myeloma. Further studies are required to elucidate the role of this protein in multiple myeloma. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Antigen Expression Patterns of Plasma Cell Myeloma: An Association of Cytogenetic Abnormality and International Staging System (ISS) for Myeloma.

    PubMed

    Shin, Sang-Yong; Lee, Seung-Tae; Kim, Hee-Jin; Kim, Suk Jin; Kim, Kihyun; Kang, Eun Suk; Kim, Sun-Hee

    2015-11-01

    Immunophenotyping of plasma cell has become an important diagnostic tool for plasma cell myeloma. There have been a few studies for association of antigen expression and cytogenetic abnormality of plasma cell myeloma. A total of 68 symptomatic/smoldering plasma cell myeloma case were analyzed by multicolor flow cytometry using CD38 and CD138 for primary gating of plasma cells. A conventional cytogenetics and fluorescence in situ hybridization (FISH) studies for detection of del(13q) or aneuploidy, del(17p), and IGH/FGFR translocation were done. We statistically analyzed the association of antigen expression and cytogenetic abnormality/myeloma stage (international staging system for multiple myeloma). Positive expression of CD19, CD28, CD45, CD56, CD117, and CD274 was detected in 8.8%, 50.0%, 50.0%, 75.0%, 39.7%, and 2.9% of cases, respectively. CD117-negative cases were associated with hypodiploidy (P = 0.017). CD45-negative cases were associated with deletion 13 or aneuploidy (P < 0.001) and del(17p)(P = 0.011) by FISH. CD45-negativity or CD117-negativity was associated with advanced stage (P = 0.012 and P = 0.016, respectively). The antigen expression patterns of myeloma plasma cell were associated with cytogenetic abnormality and stage. © 2014 Wiley Periodicals, Inc.

  3. Human myeloma cells express the CD38 ligand CD31.

    PubMed

    Vallario, A; Chilosi, M; Adami, F; Montagna, L; Deaglio, S; Malavasi, F; Caligaris-Cappio, F

    1999-05-01

    Multiple myeloma (MM) plasma cells (PC) are CD38+. A ligand for CD38 is the adhesion molecule CD31. By flow cytometry and immunocytochemistry we have investigated whether malignant PC co-express CD38 and CD31. All 68 patients studied were CD38+. 14/14 monoclonal gammopathies of undetermined significance (MGUS) and 39/39 plasmacytic MM patients co-expressed CD38 and CD31 at high density. Only 1/11 plasmablastic MM and 1/4 plasma cell leukaemias (PCL) expressed CD31. These data indicated that PC malignancies co-expressed high levels of both CD38 and its ligand CD31, with the exception of plasmablastic MM and PCL.

  4. Heterogeneous expression of CD32 and CD32-mediated growth suppression in human myeloma cells.

    PubMed

    Zheng, Xu; Abroun, Saeid; Otsuyama, Ken-ichiro; Asaoku, Hideki; Kawano, Michio M

    2006-07-01

    An increased level of serum M-protein IgG may affect the growth or survival of myeloma cells through the Fcgamma inverted exclamation mark receptor (FcgammaR) in human myelomas. We examined the expression of FcgammaR (CD32, CD16 and CD64) and compared the effect of anti-CD32 antibody on the viability of myeloma cells to that on the viability of normal plasma cells. Surface antigen and gene expressions were examined by flow cytometry and reverse transcription polymerase chain reaction, respectively. We examined the effect of anti-CD32 antibody on the viability of CD19- myeloma cells (including immature and mature myeloma cells) and CD19+ normal plasma cells. In order to confirm the involvement of CD19 in the anti-CD32-mediated growth suppression, we used CD19 transfectants of myeloma, B-cell and erythroleukemia cell lines that we have already established. CD32 was significantly expressed on primary myeloma cells, but immature, MPC-1- myeloma cells expressed CD32 more weakly than mature, MPC-1+ cells. Treatment with anti-CD32 antibody decreased the viability of normal plasma cells (CD38++ CD19+) more than that of myeloma cells (CD38++ CD19-); CD32-mediated growth suppression was greater in mature MPC-1+ cells than in immature MPC-1- cells. The introduction of CD19 into CD19- cell lines significantly increased the sensitivity of the cells to treatment with anti-CD32 antibody as well as addition of IgG complex; furthermore, increased phosphorylation of CD32 and SHIP was detected in CD19-transfected cell lines. Myeloma cells lacking CD19 expression are less sensitive to CD32-mediated growth suppression than are CD19+ normal plasma cells.

  5. Expression of interleukin-11 receptor in CD38-positive cells from patients with multiple myeloma.

    PubMed

    Tsimanis, Alexander; Shtalrid, Mordehai; Shvidel, Lev; Kalinkovich, Alexander; Berrebi, Alain; Klepfish, Abraham

    2004-11-01

    Interleukin-11, a cytokine with multiple biological activities, has been shown to stimulate the proliferation and to support the long-term growth of human myeloma cell lines. Despite this, no expression of the interleukin-11alpha receptor has so far been demonstrated in myeloma cells. We have investigated the expression of interleukin-11alpha receptor and interleukin-11 at the level of mRNA and protein product in bone marrow mononuclear cells isolated from patients with multiple myeloma using reverse-transcriptase polymerase chain reaction and flow cytometry. The mRNA for interleukin-11alpha receptor and/or the corresponding protein were identified in 9 of 15 patients with multiple myeloma. In contrast, the interleukin-11 was not detected in any of the patients examined.

  6. Constitutively lower expressions of CD54 on primary myeloma cells and their different localizations in bone marrow.

    PubMed

    Iqbal, Mohd S; Otsuyama, Ken-Ichiro; Shamsasenjan, Karim; Asaoku, Hideki; Mahmoud, Maged S; Gondo, Toshikazu; Kawano, Michio M

    2009-10-01

    To evaluate nuclear factor-kappaB (NF-kappaB) activity in primary myeloma cells from myeloma patients, we confirmed that the expression levels of CD54 showed a good correlation with the levels of DNA binding activity for NF-kappaB in human myeloma cell lines, and thus analyzed the expression levels of CD54 on CD38(++) plasma cell fractions as one of NF-kappaB activity. Primary myeloma cells unexpectedly showed constitutively lower expressions of CD54 than normal bone marrow (BM) plasma cells. Furthermore, the expression levels of CD54 on these plasma cells showed a significant correlation with the plasma levels of CXCL12 stromal cell-derived factor-1alpha (SDF-1alpha) in their BM aspirates, and the expressions of CXCR4, the receptor for CXCL12, decreased on primary myeloma cells compared with normal BM plasma cells. It was also confirmed that the addition of CXCL12 to the in vitro culture significantly induced the up-regulation of CD54 expression in primary myeloma cells. In addition, myeloma cells with lower expressions of CD54 were more unstable in the in vitro culture, resulting in a marked reduction of the viable cell number. In the immunohistochemical analysis of BM aspirates, myeloma cells with lower CD54 expression resided in the perivascular regions. Therefore, these data suggest that primary myeloma cells exhibit constitutively lower CD54 that might be partially regulated by CXCL12, and their localizations in the BM may be associated with the expression levels of CD54.

  7. [MYETS1 recombinant expression in prokaryotic cells and deletion analysis in multiple myeloma cell lines].

    PubMed

    Wang, Jianjun; Hong, Liping; Pan, Yi; Liu, Shuiping; Wu, Kunlu; Tang, Lijun

    2012-01-01

    To explore the down-expression mechanism of MYETS1 gene in multiple myeloma cell lines ARH-77 or KM3, and express MYETS1 gene in prokaryotic express system. The region of chromosome 13q14.3 in ARH-77 and KM3 was detected by FISH. MYETS1 gene was amplified by RT-PCR and cloned into prokaryotic expression vector pGEX-4T. Positive consequence was acquired in 13q14.3 where MYETS1 located by FISH in ARH- 77 and KM3 cell lines. Bioinformatics indicated highly sequence homology between MYETS1 and LECT1, but excluded the homology of open reading frame between MYETS1 and that of LECT1 by RT-PCR. Myets1 protein was expressed and harvested successfully. The region of chromosome 13q14.3 ,where MYETS1 gene located, was not defected in ARH-77 and KM3 cell lines. Down-expression of MYETS1 might be regulated by other mechanisms in multiple myeloma cell lines.

  8. MYC protein expression is detected in plasma cell myeloma but not in monoclonal gammopathy of undetermined significance (MGUS).

    PubMed

    Xiao, Ruobing; Cerny, Jan; Devitt, Katherine; Dresser, Karen; Nath, Rajneesh; Ramanathan, Muthalagu; Rodig, Scott J; Chen, Benjamin J; Woda, Bruce A; Yu, Hongbo

    2014-06-01

    It has been recognized that monoclonal gammopathy of undetermined significance (MGUS) precedes a diagnosis of plasma cell myeloma in most patients. Recent gene expression array analysis has revealed that an MYC activation signature is detected in plasma cell myeloma but not in MGUS. In this study, we performed immunohistochemical studies using membrane CD138 and nuclear MYC double staining on bone marrow biopsies from patients who met the diagnostic criteria of plasma cell myeloma or MGUS. Our study demonstrated nuclear MYC expression in CD138-positive plasma cells in 22 of 26 (84%) plasma cell myeloma samples and in none of the 29 bone marrow samples from patients with MGUS. In addition, our data on the follow-up biopsies from plasma cell myeloma patients with high MYC expression demonstrated that evaluation of MYC expression in plasma cells can be useful in detecting residual disease. We also demonstrated that plasma cells gained MYC expression in 5 of 8 patients (62.5%) when progressing from MGUS to plasma cell myeloma. Analysis of additional lymphomas with plasmacytic differentiation, including lymphoplasmacytic lymphoma, marginal zone lymphoma, and plasmablastic lymphoma, reveals that MYC detection can be a useful tool in the diagnosis of plasma cell myeloma.

  9. HDAC inhibitor AR-42 decreases CD44 expression and sensitizes myeloma cells to lenalidomide

    PubMed Central

    Sborov, Douglas W.; Cascione, Luciano; Radomska, Hanna S.; Smith, Emily; Stiff, Andrew; Consiglio, Jessica; Caserta, Enrico; Rizzotto, Lara; Zanesi, Nicola; Stefano, Volinia; Kaur, Balveen; Mo, Xiaokui; Byrd, John C.; Efebera, Yvonne A.

    2015-01-01

    Multiple myeloma (MM) is a hematological malignancy of plasma cells in the bone marrow. Despite multiple treatment options, MM is inevitably associated with drug resistance and poor outcomes. Histone deacetylase inhibitors (HDACi's) are promising novel chemotherapeutics undergoing evaluation in clinical trials for the potential treatment of patients with MM. Although in preclinical studies HDACi's have proven anti-myeloma activity, but in the clinic single-agent HDACi treatments have been limited due to low tolerability. Improved clinical outcomes were reported only when HDACi's were combined with other drugs. Here, we show that a novel pan-HDACi AR-42 downregulates CD44, a glycoprotein that has been associated with lenalidomide and dexamethasone resistance in myeloma both in vitro and in vivo. We also show that this CD44 downregulation is in part mediated by miR-9–5p, targeting insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3), which directly binds to CD44 mRNA and increases its stability. Importantly, we also demonstrate that AR-42 enhances anti-myeloma activity of lenalidomide in primary MM cells isolated from lenalidomide resistant patients and in in vivo MM mouse model. Thus, our findings shed light on potential novel combinatorial therapeutic approaches modulating CD44 expression, which may help overcome lenalidomide resistance in myeloma patients. PMID:26429859

  10. HDAC inhibitor AR-42 decreases CD44 expression and sensitizes myeloma cells to lenalidomide.

    PubMed

    Canella, Alessandro; Cordero Nieves, Hector; Sborov, Douglas W; Cascione, Luciano; Radomska, Hanna S; Smith, Emily; Stiff, Andrew; Consiglio, Jessica; Caserta, Enrico; Rizzotto, Lara; Zanesi, Nicola; Stefano, Volinia; Kaur, Balveen; Mo, Xiaokui; Byrd, John C; Efebera, Yvonne A; Hofmeister, Craig C; Pichiorri, Flavia

    2015-10-13

    Multiple myeloma (MM) is a hematological malignancy of plasma cells in the bone marrow. Despite multiple treatment options, MM is inevitably associated with drug resistance and poor outcomes. Histone deacetylase inhibitors (HDACi's) are promising novel chemotherapeutics undergoing evaluation in clinical trials for the potential treatment of patients with MM. Although in preclinical studies HDACi's have proven anti-myeloma activity, but in the clinic single-agent HDACi treatments have been limited due to low tolerability. Improved clinical outcomes were reported only when HDACi's were combined with other drugs. Here, we show that a novel pan-HDACi AR-42 downregulates CD44, a glycoprotein that has been associated with lenalidomide and dexamethasone resistance in myeloma both in vitro and in vivo. We also show that this CD44 downregulation is in part mediated by miR-9-5p, targeting insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3), which directly binds to CD44 mRNA and increases its stability. Importantly, we also demonstrate that AR-42 enhances anti-myeloma activity of lenalidomide in primary MM cells isolated from lenalidomide resistant patients and in in vivo MM mouse model. Thus, our findings shed light on potential novel combinatorial therapeutic approaches modulating CD44 expression, which may help overcome lenalidomide resistance in myeloma patients.

  11. Lenalidomide affect expression level of cereblon protein in multiple myeloma cell line RPMI8226.

    PubMed

    Yang, D Y; Ren, J H; Guo, X N; Guo, X L; Cai, X Y; Guo, X F; Zhang, J N

    2015-10-29

    We investigated the mechanisms of action of immuno-modulatory drug (lenalidomide) on the protein expression of cereblon (CRBN) and their therapeutic targets in the multiple myeloma cell line RPMI8226. The multiple myeloma cell line RPMI8226 was cultured and treated with different concentrations of lenalidomide and bortezomib to determine the proliferation inhibition rate, apoptosis rate, and protein expression of CRBN. The results revealed that both lenalidomide and bortezomib inhibited the proliferation of RPMI8226 and promoted cell apoptosis. However, the protein expression of CRBN decreased signifi-cantly after treatment with lenalidomide, while bortezomib had no effect on the expression of CRBN. We confirmed that CRBN may be a target of lenalidomide.

  12. Increased Expression of Extracellular Matrix Metalloproteinase Inducer (CD147) in Multiple Myeloma: Role in Regulation of Myeloma Cell Proliferation

    PubMed Central

    Arendt, Bonnie K.; Walters, Denise K.; Wu, Xiaosheng; Tschumper, Renee C.; Huddleston, Paul M.; Henderson, Kimberly J.; Dispenzieri, Angela; Jelinek, Diane F.

    2014-01-01

    Multiple myeloma (MM) is preceded by the asymptomatic premalignant state, monoclonal gammopathy of undetermined significance (MGUS). Although MGUS patients may remain stable for years, they are at increased risk of progressing to MM. A better understanding of the relevant molecular changes underlying the transition from an asymptomatic to symptomatic disease state is urgently needed. Our studies show for the first time that the CD147 molecule (extracellular matrix metalloproteinase inducer) may be playing an important biological role in MM. We first demonstrate that CD147 is over-expressed in MM plasma cells (PCs) vs. normal and premalignant PCs. Next, functional studies revealed that the natural CD147 ligand, cyclophilin B, stimulates MM cell growth. Moreover, when MM patient PCs displaying bimodal CD147 expression were separated into CD147bright and CD147dim populations and analyzed for proliferation potential, we discovered that CD147bright PCs displayed significantly higher levels of cell proliferation than did CD147dim PCs. Lastly, CD147 silencing significantly attenuated MM cell proliferation. Taken together, these data suggest that the CD147 molecule plays a key role in MM cell proliferation and may serve as an attractive target for reducing the proliferative compartment of this disease. PMID:22460757

  13. Genetic polymorphisms of EPHX1, Gsk3beta, TNFSF8 and myeloma cell DKK-1 expression linked to bone disease in myeloma.

    PubMed

    Durie, B G M; Van Ness, B; Ramos, C; Stephens, O; Haznadar, M; Hoering, A; Haessler, J; Katz, M S; Mundy, G R; Kyle, R A; Morgan, G J; Crowley, J; Barlogie, B; Shaughnessy, J

    2009-10-01

    Bone disease in myeloma occurs as a result of complex interactions between myeloma cells and the bone marrow microenvironment. A custom-built DNA single nucleotide polymorphism (SNP) chip containing 3404 SNPs was used to test genomic DNA from myeloma patients classified by the extent of bone disease. Correlations identified with a Total Therapy 2 (TT2) (Arkansas) data set were validated with Eastern Cooperative Oncology Group (ECOG) and Southwest Oncology Group (SWOG) data sets. Univariate correlates with bone disease included: EPHX1, IGF1R, IL-4 and Gsk3beta. SNP signatures were linked to the number of bone lesions, log(2) DKK-1 myeloma cell expression levels and patient survival. Using stepwise multivariate regression analysis, the following SNPs: EPHX1 (P=0.0026); log(2) DKK-1 expression (P=0.0046); serum lactic dehydrogenase (LDH) (P=0.0074); Gsk3beta (P=0.02) and TNFSF8 (P=0.04) were linked to bone disease. This assessment of genetic polymorphisms identifies SNPs with both potential biological relevance and utility in prognostic models of myeloma bone disease.

  14. Clinicopathological correlates of plasma cell CD56 (NCAM) expression in multiple myeloma.

    PubMed

    Kraj, Maria; Sokołowska, Urszula; Kopeć-Szlezak, Joanna; Pogłód, Ryszard; Kruk, Barbara; Woźniak, Jolanta; Szpila, Tomasz

    2008-02-01

    The aim of this prospective, long-term study was to define the flow cytometric characteristics of plasma cell CD56 expression as well as determine the clinical characteristics of 204 multiple myeloma (MM) patients and 26 plasma cell leukemia (PCL) patients with regard to CD56 expression. CD56 expression intensity was determined by measurement of antigen molecules on the cell defined as Antibodies Bound per Cell (ABC) and calculation of Relative Fluorescence Intensity (RFI). CD56 expression was found in 66% of MM and 54% of PCL cases. The RFI values for individual MM patients ranged from 7.6 to 27.4 while ABC values on MM plasma cells from 2255 to 58469. There was a correlation between the proportion of all bone marrow CD38(++)/CD138(+) cells with CD56 expression and ABC and RFI indices. With regard to CD56 expression positive patients, the CD56(-) MM patients presented lower frequency of osteolysis (p = 0.01). The median survival was 48 months in CD56(+) patients and 43 months (p = 0.84) in CD56(-) cases. In conclusion, CD56 expression carries no distinct adverse prognosis and the lack of CD56 expression does not define a unique clinicopathological or prognostic entity in MM. A remarkable heterogeneity of CD56 expression intensity in CD56(+) patients imposes the necessity of determining CD56 expression intensity in candidates to antibody-based therapy.

  15. Osteoclast-gene expression profiling reveals osteoclast-derived CCR2 chemokines promoting myeloma cell migration

    PubMed Central

    Moreaux, Jérôme; Hose, Dirk; Kassambara, Alboukadel; Rème, Thierry; Moine, Philippe; Requirand, Guilhem; Goldschmidt, Hartmut; Klein, Bernard

    2011-01-01

    Multiple myeloma (MM) is characterized by the clonal expansion of malignant plasma cells (multiple myeloma cells, MMC), primarily in the bone marrow (BM). Osteolytic bone lesions are detected in 80% of patients, due to increased osteoclastic bone resorption and reduced osteoblastic bone formation. MMC are found closely associated to sites of increased bone resorption. Osteoclasts strongly support MMC survival and vice versa in vitro. To further elucidate the mechanisms involved in osteoclast/MMC interaction, we have identified 552 genes overexpressed in osteoclasts compared to other BM cell subpopulations. Osteoclasts express specifically genes coding for four CCR2-targeting chemokines, and genes coding for MMC growth factors (IGF-1, APRIL). An anti-CCR2 MoAb blocked osteoclast chemoattractant activity for MMC and CCR2-chemokines are also MMC growth factors, promoting MAPK activation in MMC. An anti-IGF-1 receptor MoAb completely blocked the osteoclast-induced survival of MMC suppressing both osteoclast and MMC survival. Specific APRIL or IL-6 inhibitors partially blocked osteoclast-induced MMC survival. These in-vitro data may explain why newly-diagnosed patients whose MMC express high levels of CCR2 present numerous bone lesions. Taken together, this study displays additional mechanisms involved in osteoclast/MMC interaction and suggests using CCR2 and/or IGF-1 targeting strategies to block this interaction and prevent drug resistance. PMID:21097672

  16. [Construction of eukaryotic expressing vector of multiple myeloma mucin-1 and its expression in COS-7 cells in vitro].

    PubMed

    Liu, Kun; Luo, Yun-Jiao; Liu, Yue-Bo; Yao, Jin; Yang, Hong; Mou, Hong; Huang, Gui-Yun; Zhang, You

    2009-08-01

    In order to construct an eukaryotic expression vector for gene of multiple myeloma mucin1 (muc1-2vntr) gene and to express it in COS-7 cells in vitro, so to provide the basic material for further research of multiple myeloma DNA vaccine. muc1-2vntr coding gene was used as a research gene and a KOZAK sequence was inserted before the gene Hind III and XbaI restriction sites were inserted before and after the coding gene. Then the whole sequence was synthesized and inserted into pcDNA3.1/myc-his B vector, and the resulted recombinant vector was transformed into E.coil competent cells to get an engineering strain, the recombinant plasmid pcDNA3.1-2vntr/myc-his B identified by restriction analysis and DNA sequencing were transfected into COS-7 cells by liposome-mediated gene transfer method. Finally, fluorescent microscopy was used to assess GFP expression and Western blot analysis using muc1 monoclonal antibody was used to recognize vntr, confirming the expression of vntr. The results showed that the full length of synthesized muc1-2vntr gene, as expected, was 140 bp. Both restriction analysis and DNA sequencing demonstrated that pcDNA3.1-2vntr/myc-his B included the whole translation frame region and muc1-2vntr gene. Furthermore, the fluorescence microscopy proved that the recombinant plasmid had been successfully transfected into COS-7 cells. The expression of mucin-1 protein was observed both in the transfected cell and the cell supernatant by Western blot. It is concluded that the pcDNA3.1-2vntr/myc-his B has been successfully constructed and expressed in COS-7 cells in vitro, which provides the basic material for further researches of mucin-1 function and possible multiple myloma DNA vaccine.

  17. Restoration of microRNA-214 expression reduces growth of myeloma cells through positive regulation of P53 and inhibition of DNA replication

    PubMed Central

    Misiewicz-Krzeminska, Irena; Sarasquete, María E.; Quwaider, Dalia; Krzeminski, Patryk; Ticona, Fany V.; Paíno, Teresa; Delgado, Manuel; Aires, Andreia; Ocio, Enrique M.; García-Sanz, Ramón; San Miguel, Jesús F.; Gutiérrez, Norma C.

    2013-01-01

    MicroRNA have been demonstrated to be deregulated in multiple myeloma. We have previously reported that miR-214 is down-regulated in multiple myeloma compared to in normal plasma cells. The functional role of miR-214 in myeloma pathogenesis was explored by transfecting myeloma cell lines with synthetic microRNA followed by gene expression profiling. Putative miR-214 targets were validated by luciferase reporter assay. Ectopic expression of miR-214 reduced cell growth and induced apoptosis of myeloma cells. In order to identify the potential direct target genes of miR-214 which could be involved in the biological pathways regulated by this microRNA, gene expression profiling of the H929 myeloma cell line transfected with precursor miR-214 was carried out. Functional analysis revealed significant enrichment for DNA replication, cell cycle phase and DNA binding. miR-214 directly down-regulated the expression of PSMD10, which encodes the oncoprotein gankyrin, and ASF1B, a histone chaperone required for DNA replication, by binding to their 3'-untranslated regions. In addition, gankyrin inhibition induced an increase of P53 mRNA levels and subsequent up-regulation of CDKN1A (p21Waf1/Cip1) and BAX transcripts, which are direct transcriptional targets of p53. In conclusion, MiR-214 functions as a tumor suppressor in myeloma by positive regulation of p53 and inhibition of DNA replication. PMID:23100276

  18. Plasma cell myeloma with lymphoplasmacytic morphology and cyclin D1 expression, an uncommon variant

    PubMed Central

    Krause, John R.

    2017-01-01

    The genetic complexity of multiple myeloma is due in part to the accumulation of mutations, with primary and secondary events. One such secondary event is the development of a gene mutation that may result in overexpression of cyclin D1. The pathway involving cyclin D1 is intricately involved in cell cycle regulation from the G1 to S phase, and alterations may contribute to tumorigenesis. We present a case of cyclin D1–positive multiple myeloma with lymphoplasmacytic morphology and discuss potential diagnostic pitfalls and effects on prognosis. PMID:28405079

  19. A transgenic mouse model of plasma cell malignancy shows phenotypic, cytogenetic, and gene expression heterogeneity similar to human multiple myeloma.

    PubMed

    Boylan, Kristin L M; Gosse, Mary A; Staggs, Sarah E; Janz, Siegfried; Grindle, Suzanne; Kansas, Geoffrey S; Van Ness, Brian G

    2007-05-01

    Multiple myeloma is an incurable plasma cell malignancy for which existing animal models are limited. We have previously shown that the targeted expression of the transgenes c-Myc and Bcl-X(L) in murine plasma cells produces malignancy that displays features of human myeloma, such as localization of tumor cells to the bone marrow and lytic bone lesions. We have isolated and characterized in vitro cultures and adoptive transfers of tumors from Bcl-xl/Myc transgenic mice. Tumors have a plasmablastic morphology and variable expression of CD138, CD45, CD38, and CD19. Spectral karyotyping analysis of metaphase chromosomes from primary tumor cell cultures shows that the Bcl-xl/Myc tumors contain a variety of chromosomal abnormalities, including trisomies, translocations, and deletions. The most frequently aberrant chromosomes are 12 and 16. Three sites for recurring translocations were also identified on chromosomes 4D, 12F, and 16C. Gene expression profiling was used to identify differences in gene expression between tumor cells and normal plasma cells (NPC) and to cluster the tumors into two groups (tumor groups C and D), with distinct gene expression profiles. Four hundred and ninety-five genes were significantly different between both tumor groups and NPCs, whereas 124 genes were uniquely different from NPCs in tumor group C and 204 genes were uniquely different from NPCs in tumor group D. Similar to human myeloma, the cyclin D genes are differentially dysregulated in the mouse tumor groups. These data suggest the Bcl-xl/Myc tumors are similar to a subset of plasmablastic human myelomas and provide insight into the specific genes and pathways underlying the human disease.

  20. Expression of receptor activator of nuclear factor kappaB ligand on bone marrow plasma cells correlates with osteolytic bone disease in patients with multiple myeloma.

    PubMed

    Heider, Ulrike; Langelotz, Corinna; Jakob, Christian; Zavrski, Ivana; Fleissner, Claudia; Eucker, Jan; Possinger, Kurt; Hofbauer, Lorenz C; Sezer, Orhan

    2003-04-01

    Increased bone resorption is a hallmark of multiple myeloma and is attributable to osteoclast activation. Recent studies showed that the receptor activator of nuclear factor kappaB ligand (RANKL) is the key mediator of osteoclastogenesis and plays a crucial role in bone destruction in malignant bone disease. We found that human myeloma cells express RANKL and analyzed the association of the RANKL expression with the presence of osteolytic bone disease in patients with multiple myeloma. Flow cytometry was performed on bone marrow samples derived from controls and multiple myeloma patients with or without osteolytic bone lesions on conventional radiography. Plasma cells were identified as CD38++/CD138+ cells. The level of RANKL expression on the surface of bone marrow plasma cells was correlated with the bone status of the patients. The bone marrow plasma cells from controls showed no or only a weak surface expression of RANKL, and the median mean fluorescence index (MFI) was 6. In contrast, expression of RANKL could be detected on bone marrow plasma cells from all of the patients with multiple myeloma, and median MFI was 47. The difference in MFI for RANKL expression of bone marrow plasma cells from controls and myeloma patients was highly significant (P < 0.0005). Myeloma patients with osteolytic bone lesions showed a significantly higher expression of RANKL (median MFI = 60; range, 16-2494) compared with patients without osteolysis (median MFI = 16; range, 6-229; P < 0.0005). These results show for the first time that the level of RANKL expression by myeloma cells correlates significantly with osteolytic bone disease.

  1. The hypoxia-mimetic agent cobalt chloride induces cell cycle arrest and alters gene expression in U266 multiple myeloma cells.

    PubMed

    Bae, Seunghee; Jeong, Hye-Jung; Cha, Hwa Jun; Kim, Karam; Choi, Yeong Min; An, In-Sook; Koh, Hyea Jung; Lim, Dae Jin; Lee, Su-Jae; An, Sungkwan

    2012-11-01

    Hypoxia is a common feature of tumors that occurs across a wide variety of malignancies. Multiple myeloma is an incurable malignant disorder of plasma cells in the bone marrow. Although bone marrow hypoxia is crucial for normal hematopoiesis, the effect of hypoxia on multiple myeloma is poorly understood. In this study, we demonstrated that cobalt chloride (CoCl2)-mediated hypoxia decreased cell viability and altered gene expression in U266 human multiple myeloma cells. CoCl2 induced the loss of cell viability in a concentration-dependent manner. In addition, FACS analysis revealed that the loss of cell viability was related to apoptosis. Using microarray analysis, we identified mRNA expression profile changes in response to CoCl2 treatment in U266 cells. Four hundred and fifty-two mRNAs exhibited >2-fold changes in expression in CoCl2-treated U266 cells compared to their expression in control cells. A follow-up bioinformatics study revealed that a great number of genes with altered expression were involved in apoptosis, cell cycle, transcription and development. In conclusion, these results provide novel evidence that CoCl2-mediated hypoxia affects the expression profiles of genes that are functionally related to apoptosis and angiogenesis in U266 multiple myeloma cells.

  2. The normal counterpart of IgD myeloma cells in germinal center displays extensively mutated IgVH gene, Cmu-Cdelta switch, and lambda light chain expression.

    PubMed

    Arpin, C; de Bouteiller, O; Razanajaona, D; Fugier-Vivier, I; Brière, F; Banchereau, J; Lebecque, S; Liu, Y J

    1998-04-20

    Human myeloma are incurable hematologic cancers of immunoglobulin-secreting plasma cells in bone marrow. Although malignant plasma cells can be almost eradicated from the patient's bone marrow by chemotherapy, drug-resistant myeloma precursor cells persist in an apparently cryptic compartment. Controversy exists as to whether myeloma precursor cells are hematopoietic stem cells, pre-B cells, germinal center (GC) B cells, circulating memory cells, or plasma blasts. This situation reflects what has been a general problem in cancer research for years: how to compare a tumor with its normal counterpart. Although several studies have demonstrated somatically mutated immunoglobulin variable region genes in multiple myeloma, it is unclear if myeloma cells are derived from GCs or post-GC memory B cells. Immunoglobulin (Ig)D-secreting myeloma have two unique immunoglobulin features, including a biased lambda light chain expression and a Cmu-Cdelta isotype switch. Using surface markers, we have previously isolated a population of surface IgM-IgD+CD38+ GC B cells that carry the most impressive somatic mutation in their IgV genes. Here we show that this population of GC B cells displays the two molecular features of IgD-secreting myeloma cells: a biased lambda light chain expression and a C&mu-Cdelta isotype switch. The demonstration of these peculiar GC B cells to differentiate into IgD-secreting plasma cells but not memory B cells both in vivo and in vitro suggests that IgD-secreting plasma and myeloma cells are derived from GCs.

  3. [Close correlations between CD20 expression, a small mature plasma cell morphology and t(11 ; 14) in multiple myeloma].

    PubMed

    Matsuda, Isao; Mori, Yuki; Nakagawa, Yasunori; Sawanobori, Masakazu; Uemura, Naoki; Suzuki, Kenshi

    2005-12-01

    Stratification of patients with multiple myeloma (MM) may be important. We investigated 138 MM patients, focusing on correlations between CD20 expression, 11 ; 14 translocation, morphology of MM cells, cyclin D1 immunostaining, and the prognosis. About 15% of patients (7/47cases) were CD20-positive, small mature MM cells, with positive cyclin D1 in the nucleus and 11; 14 translocation. Two color analysis of CD38 x CD20 antigens may be necessary to investigate CD20 expression on MM cells. Rituximab may be effective for the treatment of CD20-positive MM.

  4. [Immunophenotype characteristics in multiple myeloma cells and their significance].

    PubMed

    Sun, Ying; Fang, Mei-Yun; Liu, Yue-Jian

    2010-04-01

    This study was purposed to investigate the immunophenotype characteristics in multiple myeloma (MM) cells and their significance. The expressions of CD138, CD38, CD56, CD117, HLA-DR, CD3, CD7, CD13, CD33, CD19, CD20, CD22, CD34 in myeloma cells from 31 MM patients were detected by using CD45/SSC immunofluorescent flow cytometry and were confirmed with morphologic observation of myeloma cells. The results indicated that the proportion of myeloma cells detected by morphologic examination was 10%-68%, the proportion of myeloma cells detected by CD45/SSC gating was 9.72%-67.77%. The antigen positive expression rate in myeloma cells was as follows: CD138 61.29%, CD38 100%, CD56 46.15%, CD13 70.00%, CD33 29.03%, HLA-DR 74.19%, CD117 33.33%; the other antigen expressions were negative. It is concluded that the use of CD45/SSC gating technique can identify multiple myeloma cells. The proportion of myeloma cells gated was close to the result of morphological examination. The myeloma cells mainly express the antigens CD138, CD88, CD56, while the expressions of CD117, CD13, CD33 were seen in some MM patients. Myeloma cells don't express antigens of B- and T-lymphocytes, which suggest the heterogenicity of multiple antigens expressed by myeloma cells. However, the biological significance of antigen expression in myeloma cells is worthy to be further investigated.

  5. Identification of the key genes connected with plasma cells of multiple myeloma using expression profiles

    PubMed Central

    Zhang, Kefeng; Xu, Zhongyang; Sun, Zhaoyun

    2015-01-01

    Objective To uncover the potential regulatory mechanisms of the relevant genes that contribute to the prognosis and prevention of multiple myeloma (MM). Methods Microarray data (GSE13591) were downloaded, including five plasma cell samples from normal donors and 133 plasma cell samples from MM patients. Differentially expressed genes (DEGs) were identified by Student’s t-test. Functional enrichment analysis was performed for DEGs using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Transcription factors and tumor-associated genes were also explored by mapping genes in the TRANSFAC, the tumor suppressor gene (TSGene), and tumor-associated gene (TAG) databases. A protein–protein interaction (PPI) network and PPI subnetworks were constructed by Cytoscape software using the Search Tool for the Retrieval of Interacting Genes (STRING) database. Results A total of 63 DEGs (42 downregulated, 21 upregulated) were identified. Functional enrichment analysis showed that HLA-DRB1 and VCAM1 might be involved in the positive regulation of immune system processes, and HLA-DRB1 might be related to the intestinal immune network for IgA production pathway. The genes CEBPD, JUND, and ATF3 were identified as transcription factors. The top ten nodal genes in the PPI network were revealed including HLA-DRB1, VCAM1, and TFRC. In addition, genes in the PPI subnetwork, such as HLA-DRB1 and VCAM1, were enriched in the cell adhesion molecules pathway, whereas CD4 and TFRC were both enriched in the hematopoietic cell pathway. Conclusion Several crucial genes correlated to MM were identified, including CD4, HLA-DRB1, TFRC, and VCAM1, which might exert their roles in MM progression via immune-mediated pathways. There might be certain regulatory correlations between HLA-DRB1, CD4, and TFRC. PMID:26229487

  6. [Interaction between myeloma cells and bone tissue].

    PubMed

    Seckinger, A; Hose, D

    2014-06-01

    Multiple myeloma is the malignant disease which most frequently leads to bone lesions. Approximately 80% of myeloma patients develop osteoporosis, lytic bone lesions (osteolysis) or fractures during the course of the disease. Of these patients 43% suffer pathological fractures most often of the vertebrae followed by fractures of the long bones. The methods used in the described articles include, e.g. gene expression profiling, enzyme-linked immunosorbent assays and radiological techniques. Myeloma bone disease represents a threefold therapeutic problem: (i) per se because of the associated morbidity, mortality and the accompanying decrease of quality of life, (ii) as survival space for (residual) myeloma cells after primarily successful chemotherapy and subsequently necessary chemotherapeutic treatment, and (iii) the occurrence of bone lesions in asymptomatic patients is the most common cause for the initiation of treatment to avoid myeloma-induced fractures. Myeloma cells harbor a high median number of chromosomal aberrations and multiple changes in gene expression compared to normal bone marrow plasma cells leading to the aberrant production of survival, proliferation, pro-angiogenic and bone turnover influencing factors or the induction of those factors in the bone marrow microenvironment. This causes an imbalanced bone turnover in the sense of an increased number and activity of osteoclasts while bone formation by osteoblasts is almost completely suspended. Therapeutic approaches, systemically and locally therefore aim at stimulation of osteoblasts and inhibition of bone resorption.

  7. Decreased Ferroportin Promotes Myeloma Cell Growth and Osteoclast Differentiation

    PubMed Central

    Gu, Zhimin; Wang, He; Xia, Jiliang; Yang, Ye; Jin, Zhendong; Xu, Hongwei; Shi, Jumei; De Domenico, Ivana; Tricot, Guido; Zhan, Fenghuang

    2016-01-01

    Iron homeostasis is disrupted in multiple myeloma, a difficult-to-cure plasma cell malignancy with lytic bone lesions. Here, we systematically analyzed iron gene expression signature and demonstrated that mRNA expression of iron exporter ferroportin (FPN1) is significantly downregulated in myeloma cells and correlates negatively with clinic outcome. Restoring expression of FPN1 reduces intracellular liable iron pool, inhibits STAT3-MCL-1 signaling, and suppresses myeloma cells growth. Furthermore, we demonstrated that mRNA of FPN1 is also downregulated at the initial stages of osteoclast differentiation and suppresses myeloma cell–induced osteoclast differentiation through regulating iron regulator TFRC, NF-κB, and JNK pathways. Altogether, we demonstrated that downregulation of FPN1 plays critical roles in promoting myeloma cell growth and bone resorption in multiple myeloma. PMID:25855377

  8. CD229 is expressed on the surface of plasma cells carrying an aberrant phenotype and chemotherapy-resistant precursor cells in multiple myeloma

    PubMed Central

    Yousef, Sara; Kovacsovics-Bankowski, Magdalena; Salama, Mohamed E; Bhardwaj, Neelam; Steinbach, Mary; Langemo, Amanda; Kovacsovics, Tibor; Marvin, James; Binder, Mascha; Panse, Jens; Kröger, Nicolaus; Luetkens, Tim; Atanackovic, Djordje

    2015-01-01

    Multiple Myeloma (MM) is a plasma cell (PC) malignancy, which despite significant therapeutic advances, is still considered incurable. This is due to the persistence of chemotherapy-resistant minimal residual disease in the patients' bone marrow (BM) after an effective induction therapy. Immunotherapies targeting surface molecules expressed on the bulk of tumor cells and the chemotherapy-resistant, myeloma-propagating cells could play a central role in this clinical setting. We recently described surface molecule CD229 as a potential therapeutic target for MM. In our current study we assessed the expression of CD229 on different PC subtypes and on cells with a myeloma-propagating phenotype in a total of 77 patients with PC dyscrasias independently at 2 different cancer centers. We found that CD229 was strongly and homogeneously overexpressed on the PC of patients with monoclonal gammopathy of undetermined significance (MGUS), smoldering myeloma, MM, and PC leukemia. CD229 was particularly overexpressed on those PC showing an abnormal phenotype such as expression of CD56. Most importantly, CD229 was also highly expressed on those cells in the patients' BM displaying the phenotype of chemotherapy-resistant and myeloma-propagating cells. In conclusion, our combined findings suggest that immunotherapies targeting CD229 will not only be effective for the bulk of tumor cells but will also help to eradicate chemotherapy-resistant cells remaining in the patients' BM after induction treatment. Hopefully, the design of CD229-specific monoclonal antibodies or chimeric antigen receptor-transduced T cells will help to achieve prolonged remissions or even cures in MM patients. PMID:26001047

  9. CD229 is expressed on the surface of plasma cells carrying an aberrant phenotype and chemotherapy-resistant precursor cells in multiple myeloma.

    PubMed

    Yousef, Sara; Kovacsovics-Bankowski, Magdalena; Salama, Mohamed E; Bhardwaj, Neelam; Steinbach, Mary; Langemo, Amanda; Kovacsovics, Tibor; Marvin, James; Binder, Mascha; Panse, Jens; Kröger, Nicolaus; Luetkens, Tim; Atanackovic, Djordje

    2015-01-01

    Multiple Myeloma (MM) is a plasma cell (PC) malignancy, which despite significant therapeutic advances, is still considered incurable. This is due to the persistence of chemotherapy-resistant minimal residual disease in the patients' bone marrow (BM) after an effective induction therapy. Immunotherapies targeting surface molecules expressed on the bulk of tumor cells and the chemotherapy-resistant, myeloma-propagating cells could play a central role in this clinical setting. We recently described surface molecule CD229 as a potential therapeutic target for MM. In our current study we assessed the expression of CD229 on different PC subtypes and on cells with a myeloma-propagating phenotype in a total of 77 patients with PC dyscrasias independently at 2 different cancer centers. We found that CD229 was strongly and homogeneously overexpressed on the PC of patients with monoclonal gammopathy of undetermined significance (MGUS), smoldering myeloma, MM, and PC leukemia. CD229 was particularly overexpressed on those PC showing an abnormal phenotype such as expression of CD56. Most importantly, CD229 was also highly expressed on those cells in the patients' BM displaying the phenotype of chemotherapy-resistant and myeloma-propagating cells. In conclusion, our combined findings suggest that immunotherapies targeting CD229 will not only be effective for the bulk of tumor cells but will also help to eradicate chemotherapy-resistant cells remaining in the patients' BM after induction treatment. Hopefully, the design of CD229-specific monoclonal antibodies or chimeric antigen receptor-transduced T cells will help to achieve prolonged remissions or even cures in MM patients.

  10. T cells expressing an anti–B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma

    PubMed Central

    Ali, Syed Abbas; Shi, Victoria; Maric, Irina; Wang, Michael; Stroncek, David F.; Rose, Jeremy J.; Brudno, Jennifer N.; Stetler-Stevenson, Maryalice; Feldman, Steven A.; Hansen, Brenna G.; Fellowes, Vicki S.; Hakim, Frances T.; Gress, Ronald E.

    2016-01-01

    Therapies with novel mechanisms of action are needed for multiple myeloma (MM). B-cell maturation antigen (BCMA) is expressed in most cases of MM. We conducted the first-in-humans clinical trial of chimeric antigen receptor (CAR) T cells targeting BCMA. T cells expressing the CAR used in this work (CAR-BCMA) specifically recognized BCMA-expressing cells. Twelve patients received CAR-BCMA T cells in this dose-escalation trial. Among the 6 patients treated on the lowest 2 dose levels, limited antimyeloma activity and mild toxicity occurred. On the third dose level, 1 patient obtained a very good partial remission. Two patients were treated on the fourth dose level of 9 × 106 CAR+ T cells/kg body weight. Before treatment, the first patient on the fourth dose level had chemotherapy-resistant MM, making up 90% of bone marrow cells. After treatment, bone marrow plasma cells became undetectable by flow cytometry, and the patient’s MM entered a stringent complete remission that lasted for 17 weeks before relapse. The second patient on the fourth dose level had chemotherapy-resistant MM making up 80% of bone marrow cells before treatment. Twenty-eight weeks after this patient received CAR-BCMA T cells, bone marrow plasma cells were undetectable by flow cytometry, and the serum monoclonal protein had decreased by >95%. This patient is in an ongoing very good partial remission. Both patients treated on the fourth dose level had toxicity consistent with cytokine-release syndrome including fever, hypotension, and dyspnea. Both patients had prolonged cytopenias. Our findings demonstrate antimyeloma activity of CAR-BCMA T cells. This trial was registered to www.clinicaltrials.gov as #NCT02215967. PMID:27412889

  11. Cx43 expressed on bone marrow stromal cells plays an essential role in multiple myeloma cell survival and drug resistance

    PubMed Central

    2016-01-01

    Introduction Connexin-43 (Cx43), a connexin constituent of gap junctions (GJs) is mainly expressed in bone marrow stromal cells (BMSCs) and played a important role on hematopoiesis. In this study, we explored the role of gap junctions (GJs) formed by Cx43 between BMSCs and multiple myeloma (MM) cells. Material and methods qPCR and western blot assays were employed to assay Cx43 expression in three MM cell lines (RPMI 8266, U266, and XG7), freshly isolated MM cells, and bone marrow stromal cells (BMSCs). Cx43 mRNA and proteins were detected in all three MM cell lines and six out of seven freshly isolated MM cells. Resuths The BMSCs from MM patients expressed Cx43 at higher levels than of normal donor (ND-BMSCs). Dye transfer assays demonstrated that gap junction intercellular communication (GJIC) occurring via Cx43 situated between MM and BMSCs is functional. Cytometry beads array (CBA) assays showed that cytokines production changed when the ND-BMSCs were co-cultured with MM cells, especially the levels of IL-6, SDF-1α and IL-10 were higher than those the cells cultured alone and decreased significantly in the presence of GJ inhibitor heptanol. Our results demonstrated that the cytotoxicity of BTZ to MM cells decreased significantly in the presence of BMSCs, an effect that was partially recovered in the presence of GJ inhibitor. Conclusions Our data suggest that GJIC between MM and BMSCs is a critical factor in tumor cell proliferation and drug sensitivity, and is implicated in MM pathogenesis. PMID:28144277

  12. Targeting MAGE-C1/CT7 Expression Increases Cell Sensitivity to the Proteasome Inhibitor Bortezomib in Multiple Myeloma Cell Lines

    PubMed Central

    de Carvalho, Fabricio; Costa, Erico T.; Camargo, Anamaria A.; Gregorio, Juliana C.; Masotti, Cibele; Andrade, Valeria C.C.; Strauss, Bryan E.; Caballero, Otavia L.; Atanackovic, Djordje; Colleoni, Gisele W.B.

    2011-01-01

    The MAGE-C1/CT7 encodes a cancer/testis antigen (CTA), is located on the chromosomal region Xq26–27 and is highly polymorphic in humans. MAGE-C1/CT7 is frequently expressed in multiple myeloma (MM) that may be a potential target for immunotherapy in this still incurable disease. MAGEC1/CT7 expression is restricted to malignant plasma cells and it has been suggested that MAGE-C1/CT7 might play a pathogenic role in MM; however, the exact function this protein in the pathophysiology of MM is not yet understood. Our objectives were (1) to clarify the role of MAGE-C1/CT7 in the control of cellular proliferation and cell cycle in myeloma and (2) to evaluate the impact of silencing MAGE-C1/CT7 on myeloma cells treated with bortezomib. Myeloma cell line SKO-007 was transduced for stable expression of shRNA-MAGE-C1/CT7. Downregulation of MAGE-C1/CT7 was confirmed by real time quantitative PCR and western blot. Functional assays included cell proliferation, cell invasion, cell cycle analysis and apoptosis. Western blot showed a 70–80% decrease in MAGE-C1/CT7 protein expression in inhibited cells (shRNA-MAGE-C1/CT7) when compared with controls. Functional assays did not indicate a difference in cell proliferation and DNA synthesis when inhibited cells were compared with controls. However, we found a decreased percentage of cells in the G2/M phase of the cell cycle among inhibited cells, but not in the controls (p<0.05). When myeloma cells were treated with bortezomib, we observed a 48% reduction of cells in the G2/M phase among inhibited cells while controls showed 13% (empty vector) and 9% (ineffective shRNA) reduction, respectively (p<0.01). Furthermore, inhibited cells treated with bortezomib showed an increased percentage of apoptotic cells (Annexin V+/PI-) in comparison with bortezomib-treated controls (p<0.001). We found that MAGE-C1/CT7 protects SKO-007 cells against bortezomib-induced apoptosis. Therefore, we could speculate that MAGE-C1/CT7 gene therapy could be

  13. Clinical significance of CD81 expression by clonal plasma cells in high-risk smoldering and symptomatic multiple myeloma patients.

    PubMed

    Paiva, B; Gutiérrez, N-C; Chen, X; Vídriales, M-B; Montalbán, M-Á; Rosiñol, L; Oriol, A; Martínez-López, J; Mateos, M-V; López-Corral, L; Díaz-Rodríguez, E; Pérez, J-J; Fernández-Redondo, E; de Arriba, F; Palomera, L; Bengoechea, E; Terol, M-J; de Paz, R; Martin, A; Hernández, J; Orfao, A; Lahuerta, J-J; Bladé, J; Pandiella, A; Miguel, J-F San

    2012-08-01

    The presence of CD19 in myelomatous plasma cells (MM-PCs) correlates with adverse prognosis in multiple myeloma (MM). Although CD19 expression is upregulated by CD81, this marker has been poorly investigated and its prognostic value in MM remains unknown. We have analyzed CD81 expression by multiparameter flow cytometry in MM-PCs from 230 MM patients at diagnosis included in the Grupo Español de Mieloma (GEM)05>65 years trial as well as 56 high-risk smoldering MM (SMM). CD81 expression was detected in 45% (103/230) MM patients, and the detection of CD81(+) MM-PC was an independent prognostic factor for progression-free (hazard ratio=1.9; P=0.003) and overall survival (hazard ratio=2.0; P=0.02); this adverse impact was validated in an additional series of 325 transplant-candidate MM patients included in the GEM05 <65 years trial. Moreover, CD81(+) SMM (n=34/56, 57%) patients had a shorter time to progression to MM (P=0.02). Overall, our results show that CD81 may have a relevant role in MM pathogenesis and represent a novel adverse prognostic marker in myeloma.

  14. Valproic Acid Upregulates NKG2D Ligand Expression through an ERK-dependent Mechanism and Potentially Enhances NK Cell-mediated Lysis of Myeloma1

    PubMed Central

    Wu, Xiaosong; Tao, Yi; Hou, Jun; Meng, Xiuqin; Shi, Jumei

    2012-01-01

    Modulation of the antitumor immune response through the engagement of NKG2D receptors with their ligands (L) on targets represents a promising therapeutic approach against cancer. In this study, we tested the effect of valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, on the expression of NKG2D ligands in myeloma cells. We demonstrated that VPA was able to upregulate both protein and mRNA expression of major histocompatibility complex class I-related chain (MIC) A/B and UL16-binding protein (ULBP) 2 without any significant effect on the expression of ULBP1, ULBP3, and ULBP4 or induction of other natural killer (NK) cell ligands, such as NKp30-L, NKp44-L, and NKp46-L in myeloma cells. A 51Cr release assay and degranulation assay indicated that the induction of MICA/B and ULBP2 augmented NK cell-mediated lysis of myeloma cells, which was abolished by the addition of a blocking NKG2D antibody. Activation of constitutively phosphorylated extracellular signal-regulated kinase (ERK) by VPA is essential for the up-regulation of MICA/B and ULBP2 expressions. Inhibition of ERK using ERK inhibitor PD98059 decreased both MICA/B and ULBP2 expressions and NK cell cytotoxicity. Furthermore, overexpression of constitutively active ERK in ARK resulted in increased MICA/B and ULBP2 expressions and enhanced NK cell lysis. These data indicate that increased sensitivity of VPA-treated myeloma cells to NK cell lysis is caused by higher NKG2D ligand expression, resulting from more active ERK signaling pathway. Our results provide evidence that targeting ERK signaling pathway may be an additional mechanism supporting the antimyeloma activity of HDAC inhibitors and suggest its possible immunotherapeutic value for myeloma treatment. PMID:23308050

  15. Upregulation of CD38 expression on multiple myeloma cells by all-trans retinoic acid improves the efficacy of daratumumab.

    PubMed

    Nijhof, I S; Groen, R W J; Lokhorst, H M; van Kessel, B; Bloem, A C; van Velzen, J; de Jong-Korlaar, R; Yuan, H; Noort, W A; Klein, S K; Martens, A C M; Doshi, P; Sasser, K; Mutis, T; van de Donk, N W C J

    2015-10-01

    Daratumumab is an anti-CD38 monoclonal antibody with lytic activity against multiple myeloma (MM) cells, including ADCC (antibody-dependent cellular cytotoxicity) and CDC (complement-dependent cytotoxicity). Owing to a marked heterogeneity of response to daratumumab therapy in MM, we investigated determinants of the sensitivity of MM cells toward daratumumab-mediated ADCC and CDC. In bone marrow samples from 144 MM patients, we observed no difference in daratumumab-mediated lysis between newly diagnosed or relapsed/refractory patients. However, we discovered, next to an expected effect of effector (natural killer cells/monocytes) to target (MM cells) ratio on ADCC, a significant association between CD38 expression and daratumumab-mediated ADCC (127 patients), as well as CDC (56 patients). Similarly, experiments with isogenic MM cell lines expressing different levels of CD38 revealed that the level of CD38 expression is an important determinant of daratumumab-mediated ADCC and CDC. Importantly, all-trans retinoic acid (ATRA) increased CD38 expression levels but also reduced expression of the complement-inhibitory proteins CD55 and CD59 in both cell lines and primary MM samples. This resulted in a significant enhancement of the activity of daratumumab in vitro and in a humanized MM mouse model as well. Our results provide the preclinical rationale for further evaluation of daratumumab combined with ATRA in MM patients.

  16. Lenalidomide enhances antigen-specific activity and decreases CD45RA expression of T cells from patients with multiple myeloma.

    PubMed

    Neuber, Brigitte; Herth, Isabelle; Tolliver, Claudia; Schoenland, Stefan; Hegenbart, Ute; Hose, Dirk; Witzens-Harig, Mathias; Ho, Anthony D; Goldschmidt, Hartmut; Klein, Bernard; Hundemer, Michael

    2011-07-15

    The aim of this study was to investigate whether the specific T cell response against the multiple myeloma Ag HM1.24 is enhanced by the immunomodulatory drug lenalidomide (Revlimid). Ag-specific CD3(+)CD8(+) T cells against the HM1.24 Ag were expanded in vitro by dendritic cells in 29 healthy donors and 26 patients with plasma cell dyscrasias. Ag-specific activation was analyzed by IFN-γ, granzyme B, and perforin secretion using ELISA, ELISPOT assay, and intracellular staining, and generation of Ag-specific T cells was analyzed by tetramer staining. Expression of T cell maturation markers (CD45RA, CD45R0, CCR7, and CD28) was investigated by flow cytometry. We found that activation of HM1.24-specific T cells from healthy donors and patients with plasma cell dyscrasias was enhanced significantly by lenalidomide and furthermore that the impact of lenalidomide on T cells depends on the duration of the exposure. Notably, lenalidomide supports the downregulation of CD45RA on T cells upon activation, observed in healthy donors and in patients in vitro and also in patients during lenalidomide therapy in vivo. We showed for the first time, to our knowledge, that lenalidomide enhances the Ag-specific activation of T cells and the subsequent downregulation of CD45RA expression of T cells in vitro and in vivo.

  17. Cell Adhesion Molecule CD166 Drives Malignant Progression and Osteolytic Disease in Multiple Myeloma.

    PubMed

    Xu, Linlin; Mohammad, Khalid S; Wu, Hao; Crean, Colin; Poteat, Bradley; Cheng, Yinghua; Cardoso, Angelo A; Machal, Christophe; Hanenberg, Helmut; Abonour, Rafat; Kacena, Melissa A; Chirgwin, John; Suvannasankha, Attaya; Srour, Edward F

    2016-12-01

    Multiple myeloma is incurable once osteolytic lesions have seeded at skeletal sites, but factors mediating this deadly pathogenic advance remain poorly understood. Here, we report evidence of a major role for the cell adhesion molecule CD166, which we discovered to be highly expressed in multiple myeloma cell lines and primary bone marrow cells from patients. CD166(+) multiple myeloma cells homed more efficiently than CD166(-) cells to the bone marrow of engrafted immunodeficient NSG mice. CD166 silencing in multiple myeloma cells enabled longer survival, a smaller tumor burden, and less osteolytic lesions, as compared with mice bearing control cells. CD166 deficiency in multiple myeloma cell lines or CD138(+) bone marrow cells from multiple myeloma patients compromised their ability to induce bone resorption in an ex vivo organ culture system. Furthermore, CD166 deficiency in multiple myeloma cells also reduced the formation of osteolytic disease in vivo after intratibial engraftment. Mechanistic investigation revealed that CD166 expression in multiple myeloma cells inhibited osteoblastogenesis of bone marrow-derived osteoblast progenitors by suppressing Runx2 gene expression. Conversely, CD166 expression in multiple myeloma cells promoted osteoclastogenesis by activating TRAF6-dependent signaling pathways in osteoclast progenitors. Overall, our results define CD166 as a pivotal director in multiple myeloma cell homing to the bone marrow and multiple myeloma progression, rationalizing its further study as a candidate therapeutic target for multiple myeloma treatment. Cancer Res; 76(23); 6901-10. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. Expression of CD66a in multiple myeloma.

    PubMed

    Satoh, Yukihiko; Hayashi, Toshiaki; Takahashi, Tohru; Itoh, Fumio; Adachi, Masaaki; Fukui, Mikiko; Kuroki, Motomu; Kuroki, Masahide; Imai, Kohzoh; Hinoda, Yuji

    2002-01-01

    CD66a is a member of the carcinoembryonic antigen family and has been suggested to function as an intercellular adhesion molecule and cell growth regulator. Expression of CD66a in myeloma cells was examined with mAb TS135 against CD66a transfectants of murine-transformed fibroblasts. The reactivity of mAb TS135 with CD66a, CD66c, and CD66e was revealed. CD66a in myeloma cells was considered to be detectable with this mAb, since CD66c and CD66e are not expressed in them. CD66a was detected in three myeloma cell lines and an IgM-producing B-cell line. In clinical bone marrow specimens, including 18 multiple myeloma, two primary macroglobulinemia, and a case of CLL-like chronic lymphoproliferation with monoclonal IgG production, CD66a and three conventional myeloma cell markers (PCA-1, CD38, and CD56) were examined by indirect immunofluorescence assay. The results showed that 18 out of 21 cases (86%) were CD66a+, and PCA-1 showed the highest correlation with CD66a among conventional markers. Primary macroglobulinemia and chronic lymphoproliferation were also CD66a+. Two-dimensional flow cytometry with mAbs TS135 and CD38 confirmed the reactivity of TS135 with myeloma cells in those bone marrow specimens. The findings suggest that CD66a is expressed in multiple myeloma with high frequency. Copyright 2002 Wiley-Liss, Inc.

  19. Role of Bruton’s tyrosine kinase in myeloma cell migration and induction of bone disease

    PubMed Central

    Bam, Rakesh; Ling, Wen; Khan, Sharmin; Pennisi, Angela; Venkateshaiah, Sathisha Upparahalli; Li, Xin; van Rhee, Frits; Usmani, Saad; Barlogie, Bart; Shaughnessy, John; Epstein, Joshua; Yaccoby, Shmuel

    2014-01-01

    Myeloma cells typically grow in bone, recruit osteoclast precursors and induce their differentiation and activity in areas adjacent to tumor foci. Bruton’s tyrosine kinase (BTK), of the TEC family, is expressed in hematopoietic cells and is particularly involved in B-lymphocyte function and osteoclastogenesis. We demonstrated BTK expression in clinical myeloma plasma cells, interleukin (IL) –6– or stroma–dependent cell lines and osteoclasts. SDF-1 induced BTK activation in myeloma cells and BTK inhibition by small hairpin RNA or the small molecule inhibitor, LFM-A13, reduced their migration toward stromal cell-derived factor-1 (SDF-1). Pretreatment with LFM-A13 also reduced in vivo homing of myeloma cells to bone using bioluminescence imaging in the SCID-rab model. Enforced expression of BTK in myeloma cell line enhanced cell migration toward SDF-1 but had no effect on short-term growth. BTK expression was correlated with cell-surface CXCR4 expression in myeloma cells (n = 33, r = 0.81, P < 0.0001), and BTK gene and protein expression was more profound in cell-surface CXCR4-expressing myeloma cells. BTK was not upregulated by IL-6 while its inhibition had no effect on IL-6 signaling in myeloma cells. Human osteoclast precursors also expressed BTK and cell-surface CXCR4 and migrated toward SDF-1. LFM-A13 suppressed migration and differentiation of osteoclast precursors as well as bone-resorbing activity of mature osteoclasts. In primary myeloma-bearing SCID-rab mice, LFM-A13 inhibited osteoclast activity, prevented myeloma-induced bone resorption and moderately suppressed myeloma growth. These data demonstrate BTK and cell-surface CXCR4 association in myeloma cells and that BTK plays a role in myeloma cell homing to bone and myeloma-induced bone disease. PMID:23456977

  20. Vaccination with Dendritic Cell Myeloma Fusions in Conjunction With Stem Cell Transplantation and PD1 Blockade

    DTIC Science & Technology

    2010-05-01

    glycol. Mean expression of PDL- 1 was 97% on DCs (n=5, Figure 1), and 45% on patient derived myeloma cells (n=6, Figure 1). In addition, mean... expression of PDL-1 was 90% on DC/ myeloma fusions (n=2, Figure 2), suggesting this pathway may provide an inhibitory signal that blunts fusion mediated...immunologic response. Expression of PD-1 on T cells isolated from patients with multiple myeloma : In infectious disease models, upregulation of T

  1. Fucoidan inhibits angiogenesis induced by multiple myeloma cells.

    PubMed

    Liu, Fen; Luo, Guoping; Xiao, Qing; Chen, Liping; Luo, Xiaohua; Lv, Jinglong; Chen, Lixue

    2016-10-01

    Multiple myeloma (MM) remains an incurable hematological neoplasms. Our previous studies showed that Fucoidan possessed anti-myeloma effect by inducing apoptosis and inhibiting invasion of myeloma cells. In this study, we evaluated the effect of Fucoidan on angiogenesis induced by human myeloma cells and elucidated its possible mechanisms. Multiple myeloma cells were treated with Fucoidan at different concentrations, then the conditioned medium (CM) was collected. The levels of VEGF in the CM were tested by ELISA. The results showed that Fucoidan significantly decreased VEGF secretion by RPMI-8226 and U266 cells. The tube formation assay and migration test on human umbilical vein endothelial cells (HUVECs) were used to examine the effect of Fucoidan on angiogenesis induced by human myeloma cells. The results showed that Fucoidan decreased HUVECs formed tube structures and inhibited HUVECs migration, and suppressed the angiogenic ability of multiple myeloma RPMI-8226 and U266 cells in a dose-dependent manner. The study also showed that Fucoidan downregulated the expression of several kinds of proteins, which may be correlated with the reduction of angiogenesis induced by myeloma cells. Moreover, results were compared from normoxic and hypoxic conditions, they showed that Fucoidan had anti-angiogenic activity. Furthermore, in a multiple myeloma xenograft mouse model, it indicated that Fucoidan negatively affected tumor growth and angiogenesis in vivo. In conclusion, our results demonstrate that Fucoidan was able to interfere with angiogenesis of multiple myeloma cells both in vitro and in vivo and may have a substantial potential in the treatment of MM.

  2. Expression of myeloid antigen in neoplastic plasma cells is related to adverse prognosis in patients with multiple myeloma.

    PubMed

    Shim, Hyoeun; Ha, Joo Hee; Lee, Hyewon; Sohn, Ji Yeon; Kim, Hyun Ju; Eom, Hyeon-Seok; Kong, Sun-Young

    2014-01-01

    We evaluated the association between the expression of myeloid antigens on neoplastic plasma cells and patient prognosis. The expression status of CD13, CD19, CD20, CD33, CD38, CD56, and CD117 was analyzed on myeloma cells from 55 newly diagnosed patients, including 36 men (65%), of median age 61 years (range: 38-78). Analyzed clinical characteristics and laboratory parameters were as follows: serum β 2-microglobulin, lactate dehydrogenase, calcium, albumin, hemoglobin, serum creatinine concentrations, bone marrow histology, and cytogenetic findings. CD13+ and CD33+ were detected in 53% and 18%, respectively. Serum calcium (P = 0.049) and LDH (P = 0.018) concentrations were significantly higher and morphologic subtype of immature or plasmablastic was more frequent in CD33+ than in CD33- patients (P = 0.022). CD33 and CD13 expression demonstrate a potential prognostic impact and were associated with lower overall survival (OS; P = 0.001 and P = 0.025) in Kaplan-Meier analysis. Multivariate analysis showed that CD33 was independently prognostic of shorter progression free survival (PFS; P = 0.037) and OS (P = 0.001) with correction of clinical prognostic factors. This study showed that CD13 and CD33 expression associated with poor prognosis in patients with MM implicating the need of analysis of these markers in MM diagnosis.

  3. Enhancing cytokine-induced killer cell therapy of multiple myeloma.

    PubMed

    Liu, Chunsheng; Suksanpaisan, Lukkana; Chen, Yun-Wen; Russell, Stephen J; Peng, Kah-Whye

    2013-06-01

    Cytokine-induced killer (CIK) cells are in clinical testing against various tumor types, including multiple myeloma. In this study, we show that CIK cells have activity against subcutaneous and disseminated models of human myeloma (KAS-6/1), which can be enhanced by infecting the CIK cells with an oncolytic measles virus (MV) or by pretreating the myeloma cells with ionizing radiation (XRT). KAS-6/1 cells were killed by coculture with CIK or MV-infected CIK (CIK/MV) cells, and the addition of an anti-NKG2D antibody inhibited cytolysis by 50%. However, human bone marrow stromal cells can reduce CIK and CIK/MV mediated killing of myeloma cells (RPMI 8226, JJN-3 and MM1). In vivo, CIK and CIK/MV prolonged the survival of mice with systemic myeloma, although CIK/MV showed enhanced antitumor activity compared with CIK. Irradiation of the KAS-6/1 cells induced mRNA and protein expression of NKG2D ligands, MICA, and MICB in a dose-dependent manner and enhanced delivery of CIK/MV to the irradiated tumors. In both subcutaneous and disseminated myeloma models, XRT at 2 Gy resulted in superior prolongation of the survival of mice given CIK/MV therapy compared with CIK/MV with no XRT. This study demonstrates the potential of CIK against myeloma and that the combination of virotherapy with radiation could be used to further enhance therapeutic outcome using CIK cells.

  4. Characterization of Cyclin E Expression in Multiple Myeloma and Its Functional Role in Seliciclib-Induced Apoptotic Cell Death

    PubMed Central

    Shimoni, Avichai; Ostrovsky, Olga; Samookh, Michal; Peled, Amnon; Nagler, Arnon

    2012-01-01

    Multiple Myeloma (MM) is a lymphatic neoplasm characterized by clonal proliferation of malignant plasma cell that eventually develops resistance to chemotherapy. Drug resistance, differentiation block and increased survival of the MM tumor cells result from high genomic instability. Chromosomal translocations, the most common genomic alterations in MM, lead to dysregulation of cyclin D, a regulatory protein that governs the activation of key cell cycle regulator – cyclin dependent kinase (CDK). Genomic instability was reported to be affected by over expression of another CDK regulator - cyclin E (CCNE). This occurs early in tumorigenesis in various lymphatic malignancies including CLL, NHL and HL. We therefore sought to investigate the role of cyclin E in MM. CCNE1 expression was found to be heterogeneous in various MM cell lines (hMMCLs). Incubation of hMMCLs with seliciclib, a selective CDK-inhibitor, results in apoptosis which is accompanied by down regulation of MCL1 and p27. Ectopic over expression of CCNE1 resulted in reduced sensitivity of the MM tumor cells in comparison to the paternal cell line, whereas CCNE1 silencing with siRNA increased the cell sensitivity to seliciclib. Adhesion to FN of hMMCLs was prevented by seliciclib, eliminating adhesion–mediated drug resistance of MM cells. Combination of seliciclib with flavopiridol effectively reduced CCNE1 and CCND1 protein levels, increased subG1 apoptotic fraction and promoted MM cell death in BMSCs co-culture conditions, therefore over-coming stroma-mediated protection. We suggest that seliciclib may be considered as essential component of modern anti MM drug combination therapy. PMID:22558078

  5. Transcriptomic profile induced in bone marrow mesenchymal stromal cells after interaction with multiple myeloma cells: implications in myeloma progression and myeloma bone disease

    PubMed Central

    Garcia-Gomez, Antonio; Las Rivas, Javier De; Ocio, Enrique M.; Díaz-Rodríguez, Elena; Montero, Juan C.; Martín, Montserrat; Blanco, Juan F.; Sanchez-Guijo, Fermín M.; Pandiella, Atanasio; San Miguel, Jesús F.; Garayoa, Mercedes

    2014-01-01

    Despite evidence about the implication of the bone marrow (BM) stromal microenvironment in multiple myeloma (MM) cell growth and survival, little is known about the effects of myelomatous cells on BM stromal cells. Mesenchymal stromal cells (MSCs) from healthy donors (dMSCs) or myeloma patients (pMSCs) were co-cultured with the myeloma cell line MM.1S, and the transcriptomic profile of MSCs induced by this interaction was analyzed. Deregulated genes after co-culture common to both d/pMSCs revealed functional involvement in tumor microenvironment cross-talk, myeloma growth induction and drug resistance, angiogenesis and signals for osteoclast activation and osteoblast inhibition. Additional genes induced by co-culture were exclusively deregulated in pMSCs and predominantly associated to RNA processing, the ubiquitine-proteasome pathway, cell cycle regulation, cellular stress and non-canonical Wnt signaling. The upregulated expression of five genes after co-culture (CXCL1, CXCL5 and CXCL6 in d/pMSCs, and Neuregulin 3 and Norrie disease protein exclusively in pMSCs) was confirmed, and functional in vitro assays revealed putative roles in MM pathophysiology. The transcriptomic profile of pMSCs co-cultured with myeloma cells may better reflect that of MSCs in the BM of myeloma patients, and provides new molecular insights to the contribution of these cells to MM pathophysiology and to myeloma bone disease. PMID:25268740

  6. Transcriptomic profile induced in bone marrow mesenchymal stromal cells after interaction with multiple myeloma cells: implications in myeloma progression and myeloma bone disease.

    PubMed

    Garcia-Gomez, Antonio; De Las Rivas, Javier; Ocio, Enrique M; Díaz-Rodríguez, Elena; Montero, Juan C; Martín, Montserrat; Blanco, Juan F; Sanchez-Guijo, Fermín M; Pandiella, Atanasio; San Miguel, Jesús F; Garayoa, Mercedes

    2014-09-30

    Despite evidence about the implication of the bone marrow (BM) stromal microenvironment in multiple myeloma (MM) cell growth and survival, little is known about the effects of myelomatous cells on BM stromal cells. Mesenchymal stromal cells (MSCs) from healthy donors (dMSCs) or myeloma patients (pMSCs) were co-cultured with the myeloma cell line MM.1S, and the transcriptomic profile of MSCs induced by this interaction was analyzed. Deregulated genes after co-culture common to both d/pMSCs revealed functional involvement in tumor microenvironment cross-talk, myeloma growth induction and drug resistance, angiogenesis and signals for osteoclast activation and osteoblast inhibition. Additional genes induced by co-culture were exclusively deregulated in pMSCs and predominantly associated to RNA processing, the ubiquitine-proteasome pathway, cell cycle regulation, cellular stress and non-canonical Wnt signaling. The upregulated expression of five genes after co-culture (CXCL1, CXCL5 and CXCL6 in d/pMSCs, and Neuregulin 3 and Norrie disease protein exclusively in pMSCs) was confirmed, and functional in vitro assays revealed putative roles in MM pathophysiology. The transcriptomic profile of pMSCs co-cultured with myeloma cells may better reflect that of MSCs in the BM of myeloma patients, and provides new molecular insights to the contribution of these cells to MM pathophysiology and to myeloma bone disease.

  7. Ku86 variant expression and function in multiple myeloma cells is associated with increased sensitivity to DNA damage.

    PubMed

    Tai, Y T; Teoh, G; Lin, B; Davies, F E; Chauhan, D; Treon, S P; Raje, N; Hideshima, T; Shima, Y; Podar, K; Anderson, K C

    2000-12-01

    Ku is a heterodimer of Ku70 and Ku86 that binds to double-stranded DNA breaks (DSBs), activates the catalytic subunit (DNA-PKcs) when DNA is bound, and is essential in DSB repair and V(D)J recombination. Given that abnormalities in Ig gene rearrangement and DNA damage repair are hallmarks of multiple myeloma (MM) cells, we have characterized Ku expression and function in human MM cells. Tumor cells (CD38(+)CD45RA(-)) from 12 of 14 (86%) patients preferentially express a 69-kDa variant of Ku86 (Ku86v). Immunoblotting of whole cell extracts (WCE) from MM patients shows reactivity with Abs targeting Ku86 N terminus (S10B1) but no reactivity with Abs targeting Ku86 C terminus (111), suggesting that Ku86v has a truncated C terminus. EMSA confirmed a truncated C terminus in Ku86v and further demonstrated that Ku86v in MM cells had decreased Ku-DNA end binding activity. Ku86 forms complexes with DNA-PKcs and activates kinase activity, but Ku86v neither binds DNA-PKcs nor activates kinase activity. Furthermore, MM cells with Ku86v have increased sensitivity to irradiation, mitomycin C, and bleomycin compared with patient MM cells or normal bone marrow donor cells with Ku86. Therefore, this study suggests that Ku86v in MM cells may account for decreased DNA repair and increased sensitivity to radiation and chemotherapeutic agents, whereas Ku86 in MM cells confers resistance to DNA damaging agents. Coupled with a recent report that Ku86 activity correlates with resistance to radiation and chemotherapy, these results have implications for the potential role of Ku86 as a novel therapeutic target.

  8. Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation

    PubMed Central

    He, Jin; Liu, Huan; Lin, Pei; Wan, Xinhai; Navone, Nora M.; Tong, Qiang; Kwak, Larry W.; Orlowski, Robert Z.; Yang, Jing

    2015-01-01

    A major problem in patients with multiple myeloma is chemotherapy resistance, which develops in myeloma cells upon interaction with bone marrow stromal cells. However, few studies have determined the role of bone marrow adipocytes, a major component of stromal cells in the bone marrow, in myeloma chemotherapy resistance. We reveal that mature human adipocytes activate autophagy and upregulate the expression of autophagic proteins, thereby suppressing chemotherapy-induced caspase cleavage and apoptosis in myeloma cells. We found that adipocytes secreted known and novel adipokines, such as leptin and adipsin. The addition of these adipokines enhanced the expression of autophagic proteins and reduced apoptosis in myeloma cells. In vivo studies further demonstrated the importance of bone marrow-derived adipocytes in the reduced response of myeloma cells to chemotherapy. Our findings suggest that adipocytes, adipocyte-secreted adipokines, and adipocyte-activated autophagy are novel targets for combatting chemotherapy resistance and enhancing treatment efficacy in myeloma patients. PMID:26455377

  9. Identification of a novel gene product expressed by Trichinella spiralis that binds antiserum to Sp2/0 myeloma cells.

    PubMed

    Duan, Lingxin; Li, Jianhua; Cheng, Boqi; Lv, Qiang; Gong, Peng-tao; Su, Li-bo; Cai, Yanan; Zhang, Xichen

    2013-05-20

    To obtain novel antigen genes for use as an anti-tumor vaccine, a Trichinella spiralis cDNA expression library was constructed from muscle larvae RNA and screened with sera from Balb/C mice injected with Sp2/0 myeloma cells. One positive clone was obtained after three rounds of immunoscreening of the cDNA expression library and was subsequently excised in vivo using the ExAssist helper phage with SOLR strain. A full-length gene was amplified using 5'-RACE technology and analyzed by BLAST, Protein Analysis System of ELM, and DNAStar Software. The sequencing results showed that the fragment was 569 bp in length and contained an open reading frame. It was predicted that the full-length gene encoded 136 amino acids. This gene, TS2, contained four putative N-Arg dibasic convertase (nardilysine) cleavage sites, one peptide C-terminal amidation site, and one glycosaminoglycan attachment site. Six antibody epitopes were predicted by bioinformatic analysis.

  10. Multiple myeloma cancer stem cells

    PubMed Central

    Gao, Minjie; Kong, Yuanyuan; Yang, Guang; Gao, Lu; Shi, Jumei

    2016-01-01

    Multiple myeloma (MM) remains incurable despite much progress that has been made in the treatment of the disease. MM cancer stem cell (MMSC), a rare subpopulation of MM cells with the capacity for self-renewal and drug resistance, is considered to lead to disease relapse. Several markers such as side population (SP) and ALDH1+ have been used to identify MMSCs. However, ideally and more precisely, the identification of the MMSCs should rely on MMSCs phenotype. Unfortunately the MMSC phenotype has not been properly defined yet. Drug resistance is the most important property of MMSCs and contributes to disease relapse, but the mechanisms of drug resistance have not been fully understood. The major signaling pathways involved in the regulation of self-renewal and differentiation of MMSCs include Hedgehog (Hh), Wingless (Wnt), Notch and PI3K/Akt/mTOR. However, the precise role of these signaling pathways needs to be clarified. It has been reported that the microRNA profile of MMSCs is remarkably different than that of non-MMSCs. Therefore, the search for targeting MMSCs has also been focused on microRNAs. Complex and mutual interactions between the MMSC and the surrounding bone marrow (BM) microenvironment sustain self-renewal and survival of MMSC. However, the required molecules for the interaction of the MMSC and the surrounding BM microenvironment need to be further identified. In this review, we summarize the current state of knowledge of MMSCs regarding their phenotype, mechanisms of drug resistance, signaling pathways that regulate MMSCs self-renewal and differentiation, abnormal microRNAs expression, and their interactions with the BM microenvironment. PMID:27007154

  11. Hydroxychloroquine potentiates carfilzomib toxicity towards myeloma cells.

    PubMed

    Baranowska, Katarzyna; Misund, Kristine; Starheim, Kristian K; Holien, Toril; Johansson, Ida; Darvekar, Sagar; Buene, Glenn; Waage, Anders; Bjørkøy, Geir; Sundan, Anders

    2016-10-25

    Cells degrade proteins either by proteasomes that clinically are targeted by for example bortezomib or carfilzomib, or by formation of autophagosomes and lysosomal degradation that can be inhibited by hydroxychloroquine (HCQ). Multiple myeloma is unique among cancers because proteasomal inhibition has good clinical effects. However, some multiple myeloma patients display intrinsic resistance to the treatment and most patients acquire resistance over time. We hypothesized that simultaneous targeting both arms of protein degradation could be a way to improve treatment of multiple myeloma. Here we tested the combined effects of the lysosomal inhibitor HCQ and clinically relevant proteasome inhibitors on myeloma cell lines and primary cells. Carfilzomib and bortezomib both induced immunoglobulin-containing aggregates in myeloma cells. HCQ significantly potentiated the effect of carfilzomib in both cell lines and in primary myeloma cells. In contrast, HCQ had little or no effects on the toxicity of bortezomib. Furthermore, cells adapted to tolerate high levels of carfilzomib could be re-sensitized to the drug by co-treatment with HCQ. Thus, we show that inhibition of lysosomal degradation can overcome carfilzomib resistance, suggesting that the role of autophagy in myeloma cells is dependent on type of proteasome inhibitor. In conclusion, attempts should be made to combine HCQ with carfilzomib in the treatment of multiple myeloma.

  12. Hydroxychloroquine potentiates carfilzomib toxicity towards myeloma cells

    PubMed Central

    Starheim, Kristian K.; Holien, Toril; Johansson, Ida; Darvekar, Sagar; Buene, Glenn; Waage, Anders; Bjørkøy, Geir; Sundan, Anders

    2016-01-01

    Cells degrade proteins either by proteasomes that clinically are targeted by for example bortezomib or carfilzomib, or by formation of autophagosomes and lysosomal degradation that can be inhibited by hydroxychloroquine (HCQ). Multiple myeloma is unique among cancers because proteasomal inhibition has good clinical effects. However, some multiple myeloma patients display intrinsic resistance to the treatment and most patients acquire resistance over time. We hypothesized that simultaneous targeting both arms of protein degradation could be a way to improve treatment of multiple myeloma. Here we tested the combined effects of the lysosomal inhibitor HCQ and clinically relevant proteasome inhibitors on myeloma cell lines and primary cells. Carfilzomib and bortezomib both induced immunoglobulin-containing aggregates in myeloma cells. HCQ significantly potentiated the effect of carfilzomib in both cell lines and in primary myeloma cells. In contrast, HCQ had little or no effects on the toxicity of bortezomib. Furthermore, cells adapted to tolerate high levels of carfilzomib could be re-sensitized to the drug by co-treatment with HCQ. Thus, we show that inhibition of lysosomal degradation can overcome carfilzomib resistance, suggesting that the role of autophagy in myeloma cells is dependent on type of proteasome inhibitor. In conclusion, attempts should be made to combine HCQ with carfilzomib in the treatment of multiple myeloma. PMID:27683126

  13. Effect of cAMP signaling on expression of glucocorticoid receptor, Bim and Bad in glucocorticoid-sensitive and resistant leukemic and multiple myeloma cells.

    PubMed

    Dong, Hongli; Carlton, Michael E; Lerner, Adam; Epstein, Paul M

    2015-01-01

    Stimulation of cAMP signaling induces apoptosis in glucocorticoid-sensitive and resistant CEM leukemic and MM.1 multiple myeloma cell lines, and this effect is enhanced by dexamethasone in both glucocorticoid-sensitive cell types and in glucocorticoid-resistant CEM cells. Expression of the mRNA for the glucocorticoid receptor alpha (GR) promoters 1A3, 1B and 1C, expression of mRNA and protein for GR, and the BH3-only proapoptotic proteins, Bim and Bad, and the phosphorylation state of Bad were examined following stimulation of the cAMP and glucocorticoid signaling pathways. Expression levels of GR promoters were increased by cAMP and glucocorticoid signaling, but GR protein expression was little changed in CEM and decreased in MM.1 cells. Stimulation of these two signaling pathways induced Bim in CEM cells, induced Bad in MM.1 cells, and activated Bad, as indicated by its dephosphorylation on ser112, in both cell types. This study shows that leukemic and multiple myeloma cells, including those resistant to glucocorticoids, can be induced to undergo apoptosis by stimulating the cAMP signaling pathway, with enhancement by glucocorticoids, and the mechanism by which this occurs may be related to changes in Bim and Bad expression, and in all cases, to activation of Bad.

  14. Effect of cAMP signaling on expression of glucocorticoid receptor, Bim and Bad in glucocorticoid-sensitive and resistant leukemic and multiple myeloma cells

    PubMed Central

    Dong, Hongli; Carlton, Michael E.; Lerner, Adam; Epstein, Paul M.

    2015-01-01

    Stimulation of cAMP signaling induces apoptosis in glucocorticoid-sensitive and resistant CEM leukemic and MM.1 multiple myeloma cell lines, and this effect is enhanced by dexamethasone in both glucocorticoid-sensitive cell types and in glucocorticoid-resistant CEM cells. Expression of the mRNA for the glucocorticoid receptor alpha (GR) promoters 1A3, 1B and 1C, expression of mRNA and protein for GR, and the BH3-only proapoptotic proteins, Bim and Bad, and the phosphorylation state of Bad were examined following stimulation of the cAMP and glucocorticoid signaling pathways. Expression levels of GR promoters were increased by cAMP and glucocorticoid signaling, but GR protein expression was little changed in CEM and decreased in MM.1 cells. Stimulation of these two signaling pathways induced Bim in CEM cells, induced Bad in MM.1 cells, and activated Bad, as indicated by its dephosphorylation on ser112, in both cell types. This study shows that leukemic and multiple myeloma cells, including those resistant to glucocorticoids, can be induced to undergo apoptosis by stimulating the cAMP signaling pathway, with enhancement by glucocorticoids, and the mechanism by which this occurs may be related to changes in Bim and Bad expression, and in all cases, to activation of Bad. PMID:26528184

  15. Adhesion molecules--The lifelines of multiple myeloma cells.

    PubMed

    Katz, Ben-Zion

    2010-06-01

    Multiple myeloma is an incurable hematological malignancy of terminally differentiated immunoglobulin-producing plasma cells. As a common presentation of the disease, the malignant plasma cells accumulate and proliferate in the bone marrow, where they disrupt normal hematopoiesis and bone physiology. Multiple myeloma cells and the bone marrow microenvironment are linked by a composite network of interactions mediated by soluble factors and adhesion molecules. Integrins and syndecan-1/CD138 are the principal multiple myeloma receptor systems of extracellular matrix components, as well as of surface molecules of stromal cells. CD44 and RHAMM are the major hyaluronan receptors of multiple myeloma cells. The SDF-1/CXCR4 axis is a key factor in the homing of multiple myeloma cells to the bone marrow. The levels of expression and activity of these adhesion molecules are controlled by cytoplasmic operating mechanisms, as well as by extracellular factors including enzymes, growth factors and microenvironmental conditions. Several signaling responses are activated by adhesive interactions of multiple myeloma cells, and their outcomes affect the survival, proliferation and migration of these cells, and in many cases generate a drug-resistant phenotype. Hence, the adhesion systems of multiple myeloma cells are attractive potential therapeutic targets. Several approaches are being developed to disrupt the activities of adhesion molecules in multiple myeloma cells, including small antagonist molecules, direct targeting by immunoconjugates, stimulation of immune responses against these molecules, and signal transduction inhibitors. These potential novel therapeutics may be incorporated into current treatment schemes, or directed against minimal residual malignant cells during remission. Copyright © 2010. Published by Elsevier Ltd.

  16. Monitoring multiple myeloma by next-generation sequencing of V(D)J rearrangements from circulating myeloma cells and cell-free myeloma DNA

    PubMed Central

    Oberle, Anna; Brandt, Anna; Voigtlaender, Minna; Thiele, Benjamin; Radloff, Janina; Schulenkorf, Anita; Alawi, Malik; Akyüz, Nuray; März, Manuela; Ford, Christopher T.; Krohn-Grimberghe, Artus; Binder, Mascha

    2017-01-01

    Recent studies suggest that circulating tumor cells and cell-free DNA may represent powerful non-invasive tools for monitoring disease in patients with solid and hematologic malignancies. Here, we conducted a pilot study in 27 myeloma patients to explore the clonotypic V(D)J rearrangement for monitoring circulating myeloma cells and cell-free myeloma DNA. Next-generation sequencing was used to define the myeloma V(D)J rearrangement and for subsequent peripheral blood tracking after treatment initiation. Positivity for circulating myeloma cells/cell-free myeloma was associated with conventional remission status (P<0.001) and 91% of non-responders/progressors versus 41% of responders had evidence of persistent circulating myeloma cells/cell-free myeloma DNA (P<0.001). About half of the partial responders showed complete clearance of circulating myeloma cells/cell-free myeloma DNA despite persistent M-protein, suggesting that these markers are less inert than the M-protein, rely more on cell turnover and, therefore, decline more rapidly after initiation of effective treatment. Positivity for circulating myeloma cells and for cell-free myeloma DNA were associated with each other (P=0.042), but discordant in 30% of cases. This indicates that cell-free myeloma DNA may not be generated entirely by circulating myeloma cells and may reflect overall tumor burden. Prospective studies need to define the predictive potential of high-sensitivity determination of circulating myeloma cells and DNA in the monitoring of multiple myeloma. PMID:28183851

  17. Erythropoietin (EPO)-receptor signaling induces cell death of primary myeloma cells in vitro.

    PubMed

    Våtsveen, Thea Kristin; Sponaas, Anne-Marit; Tian, Erming; Zhang, Qing; Misund, Kristine; Sundan, Anders; Børset, Magne; Waage, Anders; Brede, Gaute

    2016-08-31

    Multiple myeloma is an incurable complex disease characterized by clonal proliferation of malignant plasma cells in a hypoxic bone marrow environment. Hypoxia-dependent erythropoietin (EPO)-receptor (EPOR) signaling is central in various cancers, but the relevance of EPOR signaling in multiple myeloma cells has not yet been thoroughly investigated. Myeloma cell lines and malignant plasma cells isolated from bone marrow of myeloma patients were used in this study. Transcript levels were analysed by quantitative PCR and cell surface levels of EPOR in primary cells by flow cytometry. Knockdown of EPOR by short interfering RNA was used to show specific EPOR signaling in the myeloma cell line INA-6. Flow cytometry was used to assess viability in primary cells treated with EPO in the presence and absence of neutralizing anti-EPOR antibodies. Gene expression data for total therapy 2 (TT2), total therapy 3A (TT3A) trials and APEX 039 and 040 were retrieved from NIH GEO omnibus and EBI ArrayExpress. We show that the EPOR is expressed in myeloma cell lines and in primary myeloma cells both at the mRNA and protein level. Exposure to recombinant human EPO (rhEPO) reduced viability of INA-6 myeloma cell line and of primary myeloma cells. This effect could be partially reversed by neutralizing antibodies against EPOR. In INA-6 cells and primary myeloma cells, janus kinase 2 (JAK-2) and extracellular signal regulated kinase 1 and 2 (ERK-1/2) were phosphorylated by rhEPO treatment. Knockdown of EPOR expression in INA-6 cells reduced rhEPO-induced phospo-JAK-2 and phospho-ERK-1/2. Co-cultures of primary myeloma cells with bone marrow-derived stroma cells did not protect the myeloma cells from rhEPO-induced cell death. In four different clinical trials, survival data linked to gene expression analysis indicated that high levels of EPOR mRNA were associated with better survival. Our results demonstrate for the first time active EPOR signaling in malignant plasma cells. EPO

  18. [Correlation between Expression of CD200 and Regulatory T Cells in Multiple Myeloma and Its Significance in Prognostic Stratification].

    PubMed

    Zhu, Ming-Xia; Wan, Wen-Li; Li, Hai-Shen; Wang, Yan-Fang; Wang, Jing; Ling, Hui-Sen; Yan, Xin-Xing; Ke, Xiao-Yan

    2016-10-01

    To study the correlation between expression of CD200 and regulatory T cells (Tregs) in multiple myeloma(MM) patients and to explore its significance in prognostic stratification. CD200 and other immunophenotypes, including CD38, CD138, CD56, CD19, CD20, CD117, cytoplasm light chain Kappa and Lambda in bone marrow samples, and Tregs in peripheral blood were detected by flow cytometry from 78 newly diagnosed MM patients. Serum concentrations of hemoglobin(Hb), β2 microglobulin (β2-MG) and lactate dehydrogenase (LDH) were detected, respectively. The new risk stratification of patients was carried out according to international stage system (ISS) and cytogenetic characteristics. The correlation between expression of CD200 and Tregs in MM patients was analyzed and their differences in prognosis were compared. The positive rate of CD200 expression was 71.79% in 78 patients (56/78). The expression of CD200 in sex and age of patients was no significant different. The expression of CD117 in CD200(+) group was significantly higher than that of in CD200(-) group (P=0.032). There was no significant difference in the expression of CD20, CD56 and CD19 between 2 groups. The level of Hb in CD200(+) group was significantly lower than that in CD200(-) group (P=0.035). The level of β2-MG in CD200(+) group was significantly higher than that in CD200(-) group (P=0.013). There was no significant difference in the level of LDH between 2 groups. In CD200(+) group, 17 patients were in stageⅠ, accounting for 58.62% (17/29), 30 patients were in stageⅡ, accounting for 75% (30/40), 9 patients were in stage Ⅲ, accounting for 100% (9/9). With the increase of CD200 expression intensity, the risk of prognostic stratification went up (P=0). The brighter CD200 expressed, the worse the prognosis was. The percentage of Trges in CD200(+) group was significantly higher than that of in CD200(-) group (P=0.043). The content of Tregs was positively correlated with the expression of CD200 (r=0

  19. Myeloma cell expression of 10 candidate genes for osteolytic bone disease. Only overexpression of DKK1 correlates with clinical bone involvement at diagnosis.

    PubMed

    Haaber, Jacob; Abildgaard, Niels; Knudsen, Lene Meldgaard; Dahl, Inger Marie; Lodahl, Marianne; Thomassen, Mads; Kerndrup, Gitte Birk; Rasmussen, Thomas

    2008-01-01

    Osteolytic bone disease (OBD) in multiple myeloma (MM) is caused by interactions between MM cells and the bone marrow microenvironment and is characterized by increased osteoclastic bone resorption and decreased osteoblastic bone formation. Recently, the role of osteoblast inhibition has come into focus, especially the possible role of overexpression of DKK1, an inhibitor of the Wnt signalling pathway. Further, CKS2, PSME2 and DHFR have also been reported as candidate genes for OBD. We studied the gene expression by quantitative reverse transcription polymerase chain reaction of TNFSF11 (RANKL), TNFSF11A (RANK), TNFRSF11B (OPG), CCL3 (MIP1A), CCL4 (MIP1B), PTHR1 (PTHrp), DKK1, CKS2, PSME2 and DHFR in purified, immunophenotypic FACS-sorted plasma cells from 171 newly diagnosed MM patients, 20 patients with monoclonal gammopathy of undetermined significance and 12 controls. The gene expressions of the analysed genes were correlated with radiographically assessed OBD. Only overexpression of DKK1 was correlated to the degree of OBD. Myeloma cells did not express TNFSF11A, TNFSF11, or TNFRSF11B, and very rarely expressed CCL3 and PTHR11. CCL4, CKS2, PSME2 and DHFR were variably expressed, but the expression of these genes showed no correlation with OBD. In contrast, loss of PSME2 expression in MM plasma cells was significantly correlated with OBD.

  20. In multiple myeloma, only a single stage of neoplastic plasma cell differentiation can be identified by VLA-5 and CD45 expression.

    PubMed

    Rawstron, A C; Barrans, S L; Blythe, D; English, A; Richards, S J; Fenton, J A; Davies, F E; Child, J A; Jack, A S; Morgan, G J

    2001-06-01

    The nature of the proliferating fraction in myeloma is still not known and understanding the characteristics of this fraction is central to the development of effective novel therapies. However, myeloma plasma cells typically show a very low rate of proliferation and this complicates accurate analysis. Although the level of CD45 and/or VLA-5 has been reported to identify proliferating 'precursor' plasma cells, there are discrepancies between these studies. We have therefore used a rigorous sequential gating strategy to simultaneously analyse cycle status and immunophenotype with respect to CD45, VLA-5 and a range of other integrin molecules. In 11 presentation myeloma patients, the proliferative fraction was distributed evenly between CD45+ and CD45- cells, however, cycling plasma cells were consistently VLA-5-. There was close correlation between the expression of VLA-5 and a range of other integrin molecules (CD11a, CD11c, CD103), as well as the immunoglobulin-associated molecules CD79a/b (Spearman, n = 10, P < 0.0001). In short-term culture, cells that were initially VLA-5-showed increasing VLA-5 expression with time. However, simultaneous analysis of the DNA-binding dye 7-amino-actinomycin D demonstrated that this was not as a result of differentiation, as VLA-5+ plasma cells were all non-viable. This was confirmed in freshly explanted plasma cells from nine patients. Discrete stages of plasma cell differentiation could not be distinguished by the level of CD45 or VLA-5 expression. The results indicate that there is a single stage of plasma cell differentiation, with the phenotype CD38+CD138+VLA-5-. These findings support the hypothesis that neoplastic bone marrow plasma cells represent an independent, self-replenishing population.

  1. Receptor activator of nuclear factor-kappaB ligand expression by human myeloma cells mediates osteoclast formation in vitro and correlates with bone destruction in vivo.

    PubMed

    Farrugia, Amanda N; Atkins, Gerald J; To, L Bik; Pan, Beiqing; Horvath, Noemi; Kostakis, Panagiota; Findlay, David M; Bardy, Peter; Zannettino, Andrew C W

    2003-09-01

    Multiple myeloma (MM) is an incurable B-cell malignancy able to mediate massive destruction of the axial skeleton. The aim of this study was to examine the involvement of the tumor necrosis factor-ligand family member, receptor activator of nuclear factor-kappaB ligand (RANKL), and its naturally occurring antagonist, osteoprotegerin (OPG), in MM biology. Using flow cytometry and two independent anti-RANKL antibodies, we demonstrate RANKL expression in CD38(+++)CD45(+) and CD38(+++)CD45(-) myeloma plasma cell (MPC) subpopulations derived from patients with osteolytic MM. In addition, highly purified subpopulations of MPC express mRNA for both transmembrane and soluble RANKL isoforms but lack expression of OPG mRNA and protein. We also show that RANKL expressed by MPC is functional as in vitro coculture of CD38(+++)CD45(+) and CD38(+++)CD45(-) MPC subpopulations with peripheral blood mononuclear cells resulted in the formation of multinucleate, tartrate-resistant acid phosphatase-positive osteoclasts-like cells capable of forming typical resorption pits. Furthermore, high expression of membrane-associated RANKL by CD38(+++) MPC correlated with the presence of multiple radiological bone lesions in individuals with MM. Together, our data strongly suggest that RANKL expression by MPC confers on them the ability to participate directly in the formation of osteoclast in vivo and extends our knowledge of the involvement of RANKL and OPG in the osteolysis characteristic of this disease.

  2. Characterization of clonogenic multiple myeloma cells.

    PubMed

    Matsui, William; Huff, Carol Ann; Wang, Qiuju; Malehorn, Matthew T; Barber, James; Tanhehco, Yvette; Smith, B Douglas; Civin, Curt I; Jones, Richard J

    2004-03-15

    The identity of the cells responsible for the initiation and maintenance of multiple myeloma (MM) remains unclear largely because of the difficulty growing MM cells in vitro and in vivo. MM cell lines and clinical specimens are characterized by malignant plasma cells that express the cell surface antigen syndecan-1 (CD138); however, CD138 expression is limited to terminally differentiated plasma cells during B-cell development. Moreover, circulating B cells that are clonally related to MM plasma cells have been reported in some patients with MM. We found that human MM cell lines contained small (< 5%) subpopulations that lacked CD138 expression and had greater clonogenic potential in vitro than corresponding CD138+ plasma cells. CD138- cells from clinical MM samples were similarly clonogenic both in vitro and in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice, whereas CD138+ cells were not. Furthermore, CD138- cells from both cell lines and clinical samples phenotypically resembled postgerminal center B cells, and their clonogenic growth was inhibited by the anti-CD20 monoclonal antibody rituximab. These data suggest that MM "stem cells" are CD138- B cells with the ability to replicate and subsequently differentiate into malignant CD138+ plasma cells.

  3. Characterization of clonogenic multiple myeloma cells

    PubMed Central

    Matsui, William; Huff, Carol Ann; Wang, Qiuju; Malehorn, Matthew T.; Barber, James; Tanhehco, Yvette; Smith, B. Douglas; Civin, Curt I.; Jones, Richard J.

    2012-01-01

    The identity of the cells responsible for the initiation and maintenance of multiple myeloma (MM) remains unclear largely because of the difficulty growing MM cells in vitro and in vivo. MM cell lines and clinical specimens are characterized by malignant plasma cells that express the cell surface antigen syndecan-1 (CD138); however, CD138 expression is limited to terminally differentiated plasma cells during B-cell development. Moreover, circulating B cells that are clonally related to MM plasma cells have been reported in some patients with MM. We found that human MM cell lines contained small (< 5%) subpopulations that lacked CD138 expression and had greater clonogenic potential in vitro than corresponding CD138+ plasma cells. CD138− cells from clinical MM samples were similarly clonogenic both in vitro and in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice, whereas CD138+ cells were not. Furthermore, CD138− cells from both cell lines and clinical samples phenotypically resembled postgerminal center B cells, and their clonogenic growth was inhibited by the anti-CD20 monoclonal antibody rituximab. These data suggest that MM “stem cells” are CD138− B cells with the ability to replicate and subsequently differentiate into malignant CD138+ plasma cells. PMID:14630803

  4. Multiple myeloma mesenchymal stromal cells: Contribution to myeloma bone disease and therapeutics

    PubMed Central

    Garcia-Gomez, Antonio; Sanchez-Guijo, Fermin; del Cañizo, M Consuelo; San Miguel, Jesus F; Garayoa, Mercedes

    2014-01-01

    Multiple myeloma is a hematological malignancy in which clonal plasma cells proliferate and accumulate within the bone marrow. The presence of osteolytic lesions due to increased osteoclast (OC) activity and suppressed osteoblast (OB) function is characteristic of the disease. The bone marrow mesenchymal stromal cells (MSCs) play a critical role in multiple myeloma pathophysiology, greatly promoting the growth, survival, drug resistance and migration of myeloma cells. Here, we specifically discuss on the relative contribution of MSCs to the pathophysiology of osteolytic lesions in light of the current knowledge of the biology of myeloma bone disease (MBD), together with the reported genomic, functional and gene expression differences between MSCs derived from myeloma patients (pMSCs) and their healthy counterparts (dMSCs). Being MSCs the progenitors of OBs, pMSCs primarily contribute to the pathogenesis of MBD because of their reduced osteogenic potential consequence of multiple OB inhibitory factors and direct interactions with myeloma cells in the bone marrow. Importantly, pMSCs also readily contribute to MBD by promoting OC formation and activity at various levels (i.e., increasing RANKL to OPG expression, augmenting secretion of activin A, uncoupling ephrinB2-EphB4 signaling, and through augmented production of Wnt5a), thus further contributing to OB/OC uncoupling in osteolytic lesions. In this review, we also look over main signaling pathways involved in the osteogenic differentiation of MSCs and/or OB activity, highlighting amenable therapeutic targets; in parallel, the reported activity of bone-anabolic agents (at preclinical or clinical stage) targeting those signaling pathways is commented. PMID:25126382

  5. Elotuzumab enhances natural killer cell activation and myeloma cell killing through interleukin-2 and TNF-α pathways.

    PubMed

    Balasa, Balaji; Yun, Rui; Belmar, Nicole A; Fox, Melvin; Chao, Debra T; Robbins, Michael D; Starling, Gary C; Rice, Audie G

    2015-01-01

    Elotuzumab is a humanized monoclonal antibody specific for signaling lymphocytic activation molecule-F7 (SLAMF7, also known as CS1, CD319, or CRACC) that enhances natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC) of SLAMF7-expressing myeloma cells. This study explored the mechanisms underlying enhanced myeloma cell killing with elotuzumab as a single agent and in combination with lenalidomide, to support ongoing phase III trials in patients with relapsed/refractory or newly-diagnosed multiple myeloma (MM). An in vitro peripheral blood lymphocyte (PBL)/myeloma cell co-culture model was developed to evaluate the combination of elotuzumab and lenalidomide. Expression of activation markers and adhesion receptors was evaluated by flow cytometry, cytokine expression by Luminex and ELISPOT assays, and cytotoxicity by myeloma cell counts. Elotuzumab activated NK cells and promoted myeloma cell death in PBL/myeloma cell co-cultures. The combination of elotuzumab plus lenalidomide demonstrated superior anti-myeloma activity on established MM xenografts in vivo and in PBL/myeloma cell co-cultures in vitro than either agent alone. The combination enhanced myeloma cell killing by modulating NK cell function that coincided with the upregulation of adhesion and activation markers, including interleukin (IL)-2Rα expression, IL-2 production by CD3(+)CD56(+) lymphocytes, and tumor necrosis factor (TNF)-α production. In co-culture assays, TNF-α directly increased NK cell activation and myeloma cell death with elotuzumab or elotuzumab plus lenalidomide, and neutralizing TNF-α decreased NK cell activation and myeloma cell death with elotuzumab. These results demonstrate that elotuzumab activates NK cells and induces myeloma cell death via NK cell-mediated ADCC, which is further enhanced when combined with lenalidomide.

  6. Neural cell adhesion molecule expression in plasma cells in bone marrow biopsies and aspirates allows discrimination between multiple myeloma, monoclonal gammopathy of uncertain significance and polyclonal plasmacytosis.

    PubMed

    Martín, P; Santón, A; Bellas, C

    2004-04-01

    Differential diagnosis between multiple myeloma (MM), monoclonal gammopathy of uncertain significance (MGUS), and polyclonal plasmacytosis may be difficult in cases with not much bone marrow infiltration. Normal plasma cells express the antigens CD138, CD38, CD19, CD10 and D-related human leucocyte antigen (HLA-DR). Myelomatous plasma cells lack B lymphoid-associated markers and may express cell surface antigens associated with other haematopoietic lineages such as NCAM/CD56 (neural cell adhesion molecule). Recently, a monoclonal antibody, anti-CD56, has become available that can be used in fixed tissues embedded in paraffin, and it has been reported that osteoblastic cells of trabecular bone strongly express NCAM/CD56. We analysed NCAM molecule expression in 35 samples from patients with plasma cell disorders: 14 cases of MM, 16 cases of MGUS, and five cases of polyclonal plasmacytosis using immunohistochemistry in parallel in bone marrow core biopsies processed routinely and in bone marrow smears from the same patients. Of the MM samples 78% were CD56+ in smears and 92% positive in biopsies. We did not find strong CD56 expression in MGUS samples. One of five samples of polyclonal plasmacytosis was CD56+. A case was considered to be positive for CD56 expression if >50% of the CD138+ plasma cells expressed NCAM with an intensity on a par with that of the osteoblasts. We conclude that CD56 antibody is a very useful marker in the study of plasma cell proliferation in bone marrow biopsies and in bone marrow aspirates and is a great help in discriminating between MM, MGUS, and polyclonal plasmacytosis, especially in those cases with low infiltration.

  7. PDL1 Expression on Plasma and Dendritic Cells in Myeloma Bone Marrow Suggests Benefit of Targeted anti PD1-PDL1 Therapy.

    PubMed

    Sponaas, Anne-Marit; Moharrami, Neda Nejati; Feyzi, Emadoldin; Standal, Therese; Holth Rustad, Even; Waage, Anders; Sundan, Anders

    2015-01-01

    In this study we set out to investigate whether anti PDL1 or PD-1 treatment targeting the immune system could be used against multiple myeloma. DCs are important in regulating T cell responses against tumors. We therefore determined PDL1 and PDL2 expression on DC populations in bone marrow of patients with plasma cell disorders using multicolour Flow Cytometry. We specifically looked at CD141+ and CD141- myeloid and CD303+ plasmacytoid DC. The majority of plasma cells (PC) and DC subpopulations expressed PDL1, but the proportion of positive PDL1+ cells varied among patients. A correlation between the proportion of PDL1+ PC and CD141+ mDC was found, suggesting both cell types could down-regulate the anti-tumor T cell response.

  8. Effects of short-hairpin RNA-inhibited {beta}-catenin expression on the growth of human multiple myeloma cells in vitro and in vivo

    SciTech Connect

    Liang, Wenqing; Yang, Chengwei; Qian, Yu; Fu, Qiang

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer {beta}-Catenin expression were markedly down-regulated by CTNNB1 shRNA. Black-Right-Pointing-Pointer CTNNB1 shRNA could inhibit the proliferation of RPMI8226 cells. Black-Right-Pointing-Pointer Significantly profound apoptotic cell death in CTNNB1 shRNA cells. Black-Right-Pointing-Pointer In vivo, CTNNB1 silence led to a growth inhibition of myeloma growth. Black-Right-Pointing-Pointer c-myc and {beta}-catenin in the expression cells of cleaved caspase-3 were increased. -- Abstract: Multiple myeloma (MM) is thrombogenic as a consequence of multiple hemostatic effects. Overexpression of {beta}-catenin has been observed in several types of malignant tumors, including MM. However, the relationship between {beta}-catenin expression and MM remains unclear. In the present study, RNA interference was used to inhibit {beta}-catenin expression in RPMI8226 cells. RT-PCR and Western blotting analyses showed that {beta}-catenin mRNA and protein expression were markedly down-regulated by CTNNB1 shRNA. Western blotting showed that the protein levels of cyclin D1 and glutamine synthetase were downregulated and supported the transcriptional regulatory function of {beta}-catenin. The MTT assay showed that CTNNB1 shRNA could have significant inhibitory effects on the proliferation of RPMI8226 cells. The TOPflash reporter assay demonstrated significant downregulation after CTNNB1 shRNA transfection in RPMI8226 cells. Flow cytometric analyses also showed significantly profound apoptosis in CTNNB1 shRNA cells. We found CTNNB1 silence led to growth inhibition of MM growth in vivo. Immunohistochemical analyses showed that c-myc and {beta}-catenin were reduced in CTNNB1 shRNA tumor tissues, but that expression of cleaved caspase-3 was increased. These results show that {beta}-catenin could be a new therapeutic agent that targets the biology of MM cells.

  9. ERG expression in multiple myeloma-A potential diagnostic pitfall.

    PubMed

    Knief, Juliana; Reddemann, Katharina; Gliemroth, Jan; Brede, Swantje; Bartscht, Tobias; Thorns, Christoph

    2017-02-01

    ERG expression has been described as a frequent event in prostate cancer indicating poor prognosis and promoting oncogenesis. It has also been demonstrated in Ewing's sarcoma, acute myeloid leukemia and acute T-lymphoblastic leukemia but could not be found in other epithelial tumors, Hodgkin's or Non-Hodgkin's lymphoma. We aimed to analyze ERG expression in multiple myeloma, following an index case of a patient with metastases of unknown origin in the spine strongly expressing ERG, which were thought to be of prostatic origin but turned out to be plasmacytic lesions. We subsequently selected 12 formalin-fixed, paraffin-embedded tissue samples of multiple myeloma from our archives and performed immunohistochemical staining for ERG. All 12 analyzed cases showed strong nuclear expression of ERG in >90% of tumor cells (myeloma cells). This report highlights a potential and critical diagnostic pitfall in biopsy specimens where morphology is only of limited assistance in reaching the correct diagnosis. It urges pathologists to exercise caution in cases where strong ERG-positivity implicates the presence of a prostatic neoplasia and illustrates the need for further immunohistochemical examination. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells.

    PubMed

    Carbone, Ennio; Neri, Paola; Mesuraca, Maria; Fulciniti, Mariateresa T; Otsuki, Takemi; Pende, Daniela; Groh, Veronika; Spies, Thomas; Pollio, Giuditta; Cosman, David; Catalano, Lucio; Tassone, Pierfrancesco; Rotoli, Bruno; Venuta, Salvatore

    2005-01-01

    The role of natural killer (NK) cells in multiple myeloma is not fully understood. Here, NK susceptibility of myeloma cells derived from distinct disease stages was evaluated in relation to major histocompatibility complex (MHC) class I, MHC class I chain-related protein A (MICA), MHC class I chain-related protein B (MICB), and UL16 binding protein (ULBP) expression. MHC class I molecules were hardly detectable on bone marrow cells of early-stage myeloma, while late-stage pleural effusion-derived cell lines showed a strong MHC class I expression. Conversely, a high MICA level was found on bone marrow myeloma cells, while it was low or not measurable on pleural effusion myeloma cells. The reciprocal surface expression of these molecules on bone marrow- and pleural effusion-derived cell was confirmed at mRNA levels. While bone marrow-derived myeloma cells were readily recognized by NK cells, pleural effusion-derived lines were resistant. NK protection of pleural effusion cells was MHC class I dependent. Receptor blocking experiments demonstrated that natural cytotoxicity receptor (NCR) and NK receptor member D of the lectin-like receptor family (NKG2D) were the key NK activating receptors for bone marrow-derived myeloma cell recognition. In ex vivo experiments patient's autologous fresh NK cells recognized bone marrow-derived myeloma cells. Our data support the hypothesis that NK cell cytotoxicity could sculpture myeloma and represents an important immune effector mechanism in controlling its intramedullary stages.

  11. Myeloma cells resistance to NK cell lysis mainly involves an HLA class I-dependent mechanism.

    PubMed

    Gao, Minjie; Gao, Lu; Yang, Guang; Tao, Yi; Hou, Jun; Xu, Hongwei; Hu, Xiaojing; Han, Ying; Zhang, Qianqiao; Zhan, Fenghuang; Wu, Xiaosong; Shi, Jumei

    2014-07-01

    The anti-multiple myeloma (MM) potential of natural killer (NK) cells has been of rising interest in recent years. However, the molecular mechanism of NK cell cytotoxicity to myeloma cells remains unclear. In the present study, we investigated the expressions of human leukocyte antigen (HLA) class I and HLA-G in patient myeloma cells, and determined their relevance in patient tumor-cell susceptibility to NK cell cytotoxicity. Our results showed that patient myeloma cells (n = 12) were relatively resistant to NK-92 cell lysis, compared with myeloma cell lines (n = 7, P < 0.01). Gene expression profiling and flow cytometry analysis showed that both mRNA and protein of HLA class I were highly expressed in 12 patient myeloma cells. Interestingly, no or low HLA-G surface expression was detected, although multiple HLA-G transcripts were detected in these myeloma cells. NK cell function assay showed that down-regulating HLA class I expression on patient cells by acid treatment significantly increased the susceptibility of MM cells to NK-mediated lysis. Furthermore, we found that the blocking of membrane-bound HLA class I rather than HLA-G using antibodies on myeloma samples markedly increased their susceptibility to NK-mediated killing. These results demonstrated that the resistance of patient MM cells to NK lysis mainly involves an HLA class I-dependent mechanism, suggesting that HLA class I may be involved in protecting MM cells from NK-mediated attack and contribute to their immune escape in vivo.

  12. Multiple Myeloma Impairs Bone Marrow Localization of Effector Natural Killer Cells by Altering the Chemokine Microenvironment.

    PubMed

    Ponzetta, Andrea; Benigni, Giorgia; Antonangeli, Fabrizio; Sciumè, Giuseppe; Sanseviero, Emilio; Zingoni, Alessandra; Ricciardi, Maria Rosaria; Petrucci, Maria Teresa; Santoni, Angela; Bernardini, Giovanni

    2015-11-15

    Natural killer (NK) cells are key innate immune effectors against multiple myeloma, their activity declining in multiple myeloma patients with disease progression. To identify the mechanisms underlying NK cell functional impairment, we characterized the distribution of functionally distinct NK cell subsets in the bone marrow of multiple myeloma-bearing mice. Herein we report that the number of KLRG1(-) NK cells endowed with potent effector function rapidly and selectively decreases in bone marrow during multiple myeloma growth, this correlating with decreased bone marrow NK cell degranulation in vivo. Altered NK cell subset distribution was dependent on skewed chemokine/chemokine receptor axes in the multiple myeloma microenvironment, with rapid downmodulation of the chemokine receptor CXCR3 on NK cells, increased CXCL9 and CXCL10, and decreased CXCL12 expression in bone marrow. Similar alterations in chemokine receptor/chemokine axes were observed in patients with multiple myeloma. Adoptive transfer experiments demonstrated that KLRG1(-) NK cell migration to the bone marrow was more efficient in healthy than multiple myeloma-bearing mice. Furthermore, bone marrow localization of transferred CXCR3-deficient NK cells with respect to wild type was enhanced in healthy and multiple myeloma-bearing mice, suggesting that CXCR3 restrains bone marrow NK cell trafficking. Our results indicate that multiple myeloma-promoted CXCR3 ligand upregulation together with CXCL12 downmodulation act as exit signals driving effector NK cells outside the bone marrow, thus weakening the antitumor immune response at the primary site of tumor growth.

  13. Phenotypic detection of clonotypic B cells in multiple myeloma by specific immunoglobulin ligands reveals their rarity in multiple myeloma.

    PubMed

    Trepel, Martin; Martens, Victoria; Doll, Christian; Rahlff, Janina; Gösch, Barbara; Loges, Sonja; Binder, Mascha

    2012-01-01

    In multiple myeloma, circulating "clonotypic" B cells, that express the immunoglobulin rearrangement of the malignant plasma cell clone, can be indirectly detected by PCR. Their role as potential "feeder" cells for the malignant plasma cell pool remains controversial. Here we established for the first time an approach that allows direct tracking of such clonotypic cells by labeling with patient-specific immunoglobulin ligands in 15 patients with myeloma. Fifty percent of patients showed evidence of clonotypic B cells in blood or bone marrow by PCR. Epitope-mimicking peptides from random libraries were selected on each patient's individual immunoglobulin and used as ligands to trace cells expressing the idiotypic immunoglobulin on their surface. We established a flow cytometry and immunofluorescence protocol to track clonotypic B cells and validated it in two independent monoclonal B cell systems. Using this method, we found clonotypic B cells in only one out of 15 myeloma patients. In view of the assay's validated sensitivity level of 10(-3), this surprising data suggests that the abundance of such cells has been vastly overestimated in the past and that they apparently represent a very rare population in myeloma. Our novel tracing approach may open perspectives to isolate and analyze clonotypic B cells and determine their role in myeloma pathobiology.

  14. miRNAs in multiple myeloma – a survival relevant complex regulator of gene expression

    PubMed Central

    Seckinger, Anja; MeiΔner, Tobias; Moreaux, Jérôme; Benes, Vladimir; Hillengass, Jens; Castoldi, Mirco; Zimmermann, Jürgen; Ho, Anthony D.; Jauch, Anna; Goldschmidt, Hartmut; Klein, Bernard; Hose, Dirk

    2015-01-01

    Purpose microRNAs regulate gene-expression in biological and pathophysiological processes, including multiple myeloma. Here we address i) What are the number and magnitude of changes in miRNA-expression between normal plasma cells and myeloma- or MGUS-samples, and the latter two? ii) What is the biological relevance and how does miRNA-expression impact on gene-expression? iii) Is there a prognostic significance, and what is its background? Experimental design Ninety-two purified myeloma-, MGUS-, normal plasma cell- and myeloma cell line-samples were investigated using miChip-arrays interrogating 559 human miRNAs. Impact on gene-expression was assessed by Affymetrix DNA-microarrays in two cohorts of myeloma patients (n = 677); chromosomal aberrations were assessed by iFISH, survival for 592 patients undergoing up-front high-dose chemotherapy. Results Compared to normal plasma cells, 67/559 miRNAs (12%) with fold changes of 4.6 to −3.1 are differentially expressed in myeloma-, 20 (3.6%) in MGUS-samples, and three (0.5%) between MGUS and myeloma. Expression of miRNAs is associated with proliferation, chromosomal aberrations, tumor mass, and gene expression-based risk-scores. This holds true for target-gene signatures of regulated mRNAs. miRNA-expression confers prognostic significance for event-free and overall survival, as do respective target-gene signatures. Conclusions The myeloma-miRNome confers a pattern of small changes of individual miRNAs impacting on gene-expression, biological functions, and survival. PMID:26472281

  15. By inhibiting Src, verapamil and dasatinib overcome multidrug resistance via increased expression of Bim and decreased expressions of MDR1 and survivin in human multidrug-resistant myeloma cells.

    PubMed

    Tsubaki, Masanobu; Komai, Makiko; Itoh, Tatsuki; Imano, Motohiro; Sakamoto, Kotaro; Shimaoka, Hirotaka; Takeda, Tomoya; Ogawa, Naoki; Mashimo, Kenji; Fujiwara, Daiichiro; Mukai, Junji; Sakaguchi, Katsuhiko; Satou, Takao; Nishida, Shozo

    2014-01-01

    The calcium channel blocker verapamil inhibits the transport function of multidrug resistance protein 1 (MDR1). Although verapamil acts to reverse MDR in cancer cells, the underlying mechanism remains unclear. In the present study, we investigated the mechanism of reversing MDR by verapamil in anti-cancer drug-resistant multiple myeloma (MM) cell lines. We found that verapamil suppresses MDR1 and survivin expressions and increases Bim expression via suppression of Src activation. Furthermore, dasatinib reversed the drug-resistance of the drug-resistant cell lines. These findings suggest that Src inhibitors are potentially useful as an anti-MDR agent for the treatment of malignant tumor cells.

  16. Towards Stratified Medicine in Plasma Cell Myeloma

    PubMed Central

    Egan, Philip; Drain, Stephen; Conway, Caroline; Bjourson, Anthony J.; Alexander, H. Denis

    2016-01-01

    Plasma cell myeloma is a clinically heterogeneous malignancy accounting for approximately one to 2% of newly diagnosed cases of cancer worldwide. Treatment options, in addition to long-established cytotoxic drugs, include autologous stem cell transplant, immune modulators, proteasome inhibitors and monoclonal antibodies, plus further targeted therapies currently in clinical trials. Whilst treatment decisions are mostly based on a patient’s age, fitness, including the presence of co-morbidities, and tumour burden, significant scope exists for better risk stratification, sub-classification of disease, and predictors of response to specific therapies. Clinical staging, recurring acquired cytogenetic aberrations, and serum biomarkers such as β-2 microglobulin, and free light chains are in widespread use but often fail to predict the disease progression or inform treatment decision making. Recent scientific advances have provided considerable insight into the biology of myeloma. For example, gene expression profiling is already making a contribution to enhanced understanding of the biology of the disease whilst Next Generation Sequencing has revealed great genomic complexity and heterogeneity. Pathways involved in the oncogenesis, proliferation of the tumour and its resistance to apoptosis are being unravelled. Furthermore, knowledge of the tumour cell surface and its interactions with bystander cells and the bone marrow stroma enhance this understanding and provide novel targets for cell and antibody-based therapies. This review will discuss the development in understanding of the biology of the tumour cell and its environment in the bone marrow, the implementation of new therapeutic options contributing to significantly improved outcomes, and the progression towards more personalised medicine in this disorder. PMID:27775669

  17. Towards Stratified Medicine in Plasma Cell Myeloma.

    PubMed

    Egan, Philip; Drain, Stephen; Conway, Caroline; Bjourson, Anthony J; Alexander, H Denis

    2016-10-21

    Plasma cell myeloma is a clinically heterogeneous malignancy accounting for approximately one to 2% of newly diagnosed cases of cancer worldwide. Treatment options, in addition to long-established cytotoxic drugs, include autologous stem cell transplant, immune modulators, proteasome inhibitors and monoclonal antibodies, plus further targeted therapies currently in clinical trials. Whilst treatment decisions are mostly based on a patient's age, fitness, including the presence of co-morbidities, and tumour burden, significant scope exists for better risk stratification, sub-classification of disease, and predictors of response to specific therapies. Clinical staging, recurring acquired cytogenetic aberrations, and serum biomarkers such as β-2 microglobulin, and free light chains are in widespread use but often fail to predict the disease progression or inform treatment decision making. Recent scientific advances have provided considerable insight into the biology of myeloma. For example, gene expression profiling is already making a contribution to enhanced understanding of the biology of the disease whilst Next Generation Sequencing has revealed great genomic complexity and heterogeneity. Pathways involved in the oncogenesis, proliferation of the tumour and its resistance to apoptosis are being unravelled. Furthermore, knowledge of the tumour cell surface and its interactions with bystander cells and the bone marrow stroma enhance this understanding and provide novel targets for cell and antibody-based therapies. This review will discuss the development in understanding of the biology of the tumour cell and its environment in the bone marrow, the implementation of new therapeutic options contributing to significantly improved outcomes, and the progression towards more personalised medicine in this disorder.

  18. Chimeric Antigen Receptor T-cell Therapies for Multiple Myeloma.

    PubMed

    Mikkilineni, Lekha; Kochenderfer, James N

    2017-09-19

    Multiple myeloma (MM) is a nearly always incurable malignancy of plasma cells, so new approaches to treatment are needed. T-cell therapies are a promising approach for treating MM, with a mechanism of action different than those of standard MM treatments. Chimeric antigen receptors (CARs) are fusion proteins incorporating antigen-recognition domains and T-cell signaling domains. T-cells genetically engineered to express CARs can specifically recognize antigens. Success of CAR T-cells against leukemia and lymphoma has encouraged development of CAR T-cell therapies for MM. Target antigens for CARs must be expressed on malignant cells, but expression on normal cells must be absent or limited. B-cell maturation antigen (BCMA) is expressed by normal and malignant plasma cells. CAR T-cells targeting B-cell maturation antigen have demonstrated significant anti-myeloma activity in early clinical trials. Toxicities in these trials, including cytokine-release syndrome, have been similarto toxicities observed in CAR T-cell trials for leukemia. Targeting postulated CD19(+) myeloma stem cells with anti-CD19 CAR T-cells is a novel approach to MM therapy. MM antigens including CD138, CD38, signaling lymphocyte-activating molecule 7 (SLAMF7), and kappa light chain are under investigation as CAR targets. MM is genetically and phenotypically heterogeneous, so targeting of more than one antigen might often be required for effective treatment of MM with CAR T cells. Integration of CAR T cells with other myeloma therapies is an important area of future research. CAR T cell therapies for MM are at an early stage of development but have great promise to improve MM treatment. Copyright © 2017 American Society of Hematology.

  19. The IMiDs targets IKZF-1/3 and IRF4 as novel negative regulators of NK cell-activating ligands expression in multiple myeloma.

    PubMed

    Fionda, Cinzia; Abruzzese, Maria Pia; Zingoni, Alessandra; Cecere, Francesca; Vulpis, Elisabetta; Peruzzi, Giovanna; Soriani, Alessandra; Molfetta, Rosa; Paolini, Rossella; Ricciardi, Maria Rosaria; Petrucci, Maria Teresa; Santoni, Angela; Cippitelli, Marco

    2015-09-15

    Immunomodulatory drugs (IMiDs) have potent anti-tumor activities in multiple myeloma (MM) and are able to enhance the cytotoxic function of natural killer (NK) cells, important effectors of the immune response against MM. Here, we show that these drugs can enhance the expression of the NKG2D and DNAM-1 activating receptor ligands MICA and PVR/CD155 in human MM cell lines and primary malignant plasma cells. Depletion of cereblon (CRBN) by shRNA interference strongly impaired upregulation of these ligands and, more interestingly, IMiDs/CRBN-mediated downregulation of the transcription factors Ikaros (IKZF1), Aiolos (IKZF3) and IRF4 was critical for these regulatory mechanisms. Indeed, shRNA knockdown of IKZF1 or IKZF3 expression was both necessary and sufficient for the upregulation of MICA and PVR/CD155 expression, suggesting that these transcription factors can repress these genes; accordingly, the direct interaction and the negative role of IKZF1 and IKZF3 proteins on MICA and PVR/CD155 promoters were demonstrated. Finally, MICA expression was enhanced in IRF4-silenced cells, indicating a specific suppressive role of this transcription factor on MICA gene expression in MM cells.Taken together, these findings describe novel molecular pathways involved in the regulation of MICA and PVR/CD155 gene expression and identify the transcription factors IKZF-1/IKZF-3 and IRF4 as repressors of these genes in MM cells.

  20. The IMiDs targets IKZF-1/3 and IRF4 as novel negative regulators of NK cell-activating ligands expression in multiple myeloma

    PubMed Central

    Fionda, Cinzia; Abruzzese, Maria Pia; Zingoni, Alessandra; Cecere, Francesca; Vulpis, Elisabetta; Peruzzi, Giovanna; Soriani, Alessandra; Molfetta, Rosa; Paolini, Rossella; Ricciardi, Maria Rosaria; Petrucci, Maria Teresa

    2015-01-01

    Immunomodulatory drugs (IMiDs) have potent anti-tumor activities in multiple myeloma (MM) and are able to enhance the cytotoxic function of natural killer (NK) cells, important effectors of the immune response against MM. Here, we show that these drugs can enhance the expression of the NKG2D and DNAM-1 activating receptor ligands MICA and PVR/CD155 in human MM cell lines and primary malignant plasma cells. Depletion of cereblon (CRBN) by shRNA interference strongly impaired upregulation of these ligands and, more interestingly, IMiDs/CRBN-mediated downregulation of the transcription factors Ikaros (IKZF1), Aiolos (IKZF3) and IRF4 was critical for these regulatory mechanisms. Indeed, shRNA knockdown of IKZF1 or IKZF3 expression was both necessary and sufficient for the upregulation of MICA and PVR/CD155 expression, suggesting that these transcription factors can repress these genes; accordingly, the direct interaction and the negative role of IKZF1 and IKZF3 proteins on MICA and PVR/CD155 promoters were demonstrated. Finally, MICA expression was enhanced in IRF4-silenced cells, indicating a specific suppressive role of this transcription factor on MICA gene expression in MM cells. Taken together, these findings describe novel molecular pathways involved in the regulation of MICA and PVR/CD155 gene expression and identify the transcription factors IKZF-1/IKZF-3 and IRF4 as repressors of these genes in MM cells. PMID:26269456

  1. Cancer stem cells: controversies in multiple myeloma.

    PubMed

    Brennan, Sarah K; Matsui, William

    2009-11-01

    Increasing data suggest that the initiation, relapse, and progression of human cancers are driven by specific cell populations within an individual tumor. However, inconsistencies have emerged in precisely defining phenotypic markers that can reliably identify these "cancer stem cells" in nearly every human malignancy studied to date. Multiple myeloma, one of the first tumors postulated to be driven by a rare population of cancer stem cells, is no exception. Similar to other diseases, controversy surrounds the exact phenotype and biology of multiple myeloma cells with the capacity for clonogenic growth. Here, we review the studies that have led to these controversies and discuss potential reasons for these disparate findings. Moreover, we speculate how these inconsistencies may be resolved through studies by integrating advancements in both myeloma and stem cell biology.

  2. Expression of cereblon protein assessed by immunohistochemicalstaining in myeloma cells is associated with superior response of thalidomide- and lenalidomide-based treatment, but not bortezomib-based treatment, in patients with multiple myeloma.

    PubMed

    Huang, Shang-Yi; Lin, Chung-Wu; Lin, Hsiu-Hsia; Yao, Ming; Tang, Jih-Luh; Wu, Shang-Ju; Chen, Yao-Chang; Lu, Hsiao-Yun; Hou, Hsin-An; Chen, Chien-Yuan; Chou, Wen-Chien; Tsay, Woei; Chou, Sheng-Je; Tien, Hwei-Fang

    2014-08-01

    Cereblon (CRBN) is essential for the anti-myeloma (MM) activity of immunomodulatory drugs (IMiDs), such as thalidomide and lenalidomide. However, the clinical implications of CRBN in MM patients are unclear. Using immunohistochemical (IHC) staining on paraffin-embedded bone marrow sections, the expression of CRBN protein in myeloma cells (MCs) was assessed in 40 relapsed/refractory MM (RRMM) patients who received lenalidomide/dexamethasone (LD) and 45 and 22 newly diagnosed MM (NDMM) patients who received thalidomide/dexamethasone (TD) and melphalan/bortezomib/prednisolone (MVP), respectively. IHC staining were scored on a scale representing the diffuseness and intensity of positive-staining MCs (range, 0-8) and a score ≥4.5 was used for CRBN positivity (CRBN(+)) on a cut-point analysis of all possible scores and response of TD and LD. Compared to CRBN(+) NDMM patients, CRBN(-) NDMM patients had more international staging system (ISS) III (26 vs. 61 %, respectively; P = 0.006). In the LD and TD cohorts, the response rate (RR) was higher in CRBN(+) patients than CRBN(-) patients (LD 79 vs. 33 %, respectively; P = 0.005) (TD 75 vs. 29 %, respectively; P = 0.005); however, this trend was not observed in the MVP cohort. In the LD and TD cohorts, the positive and negative prediction value of CRBN(+) for treatment response was 79 and 67 % and 75 and 71 %, respectively. Multivariate analysis showed that CRBN(+) was a significant factor associated with superior RR for LD and TD. The data suggest that expression of CRBN protein in MCs assessed using the IHC is a feasible approach to predict the response of IMiDs in MM patients.

  3. Impact of XIAP protein levels on the survival of myeloma cells

    PubMed Central

    Desplanques, Grégoire; Giuliani, Nicola; Delsignore, Roberto; Rizzoli, Vittorio; Bataille, Régis; Barillé-Nion, Sophie

    2009-01-01

    Background XIAP is the best characterized and the most potent direct endogenous caspase inhibitor and is considered a key actor in the control of apoptotic threshold in cancer cells. In this report, we specifically addressed XIAP regulation and function in myeloma cells. Design and Methods XIAP and its endogenous inhibitor XAF-1 protein levels and their regulation were assessed by immunoblot analysis in myeloma cell lines or primary myeloma cells. XIAP knockdown by RNA interference was used to evaluate XIAP impact on in vitro drug sensitivity and in vivo tumor growth. Results Our results indicate that myeloma cells expressed high levels of XIAP protein that were tightly regulated during growth factor stimulation or stress condition. Of note, an increased XIAPlevel was evidenced during the blockade of the canonical cap-dependent translation by the mTOR inhibitor rapamycin, supporting the hypothesis of a functional IRES sequence in XIAP mRNA. In addition, caspase-mediated XIAP cleavage correlated to an apoptotic process occurring upon cell treatment with the proteasome inhibitor bortezomib. Importantly, XIAP knockdown using RNA interference enhanced drug sensitivity and decreased tumor formation in NOD/SCID mice. Finally, myeloma cells also expressed the XIAP inhibitor XAF-1 that interacted with XIAP in viable myeloma cells. Conclusions Altogether, our data argue for a delicate control of XIAP function in myeloma cells and stimulate interest in targeting XIAP in myeloma treatment. PMID:19001278

  4. Multiple myeloma cells promote migration of bone marrow mesenchymal stem cells by altering their translation initiation.

    PubMed

    Dabbah, Mahmoud; Attar-Schneider, Oshrat; Zismanov, Victoria; Tartakover Matalon, Shelly; Lishner, Michael; Drucker, Liat

    2016-10-01

    The role of the bone marrow microenvironment in multiple myeloma pathogenesis and progression is well recognized. Indeed, we have shown that coculture of bone marrow mesenchymal stem cells from normal donors and multiple myeloma cells comodulated translation initiation. Here, we characterized the timeline of mesenchymal stem cells conditioning by multiple myeloma cells, the persistence of this effect, and the consequences on cell phenotype. Normal donor mesenchymal stem cells were cocultured with multiple myeloma cell lines (U266, ARP1) (multiple myeloma-conditioned mesenchymal stem cells) (1.5 h,12 h, 24 h, 48 h, and 3 d) and were assayed for translation initiation status (eukaryotic translation initiation factor 4E; eukaryotic translation initiation factor 4G; regulators: mechanistic target of rapamycin, MNK, 4EBP; targets: SMAD family 5, nuclear factor κB, cyclin D1, hypoxia inducible factor 1, c-Myc) (immunoblotting) and migration (scratch assay, inhibitors). Involvement of mitogen-activated protein kinases in mesenchymal stem cell conditioning and altered migration was also tested (immunoblotting, inhibitors). Multiple myeloma-conditioned mesenchymal stem cells were recultured alone (1-7 d) and were assayed for translation initiation (immunoblotting). Quantitative polymerase chain reaction of extracted ribonucleic acid was tested for microRNAs levels. Mitogen-activated protein kinases were activated within 1.5 h of coculture and were responsible for multiple myeloma-conditioned mesenchymal stem cell translation initiation status (an increase of >200%, P < 0.05) and elevated migration (16 h, an increase of >400%, P < 0.05). The bone marrow mesenchymal stem cells conditioned by multiple myeloma cells were reversible after only 1 d of multiple myeloma-conditioned mesenchymal stem cell culture alone. Decreased expression of microRNA-199b and microRNA-125a (an increase of <140%, P < 0.05) in multiple myeloma-conditioned mesenchymal stem cells supported elevated

  5. Tetraspanin 7 (TSPAN7) expression is upregulated in multiple myeloma patients and inhibits myeloma tumour development in vivo

    SciTech Connect

    Cheong, Chee Man; Chow, Annie W.S.; Fitter, Stephen; Hewett, Duncan R.; Martin, Sally K.; Williams, Sharon A.; To, L. Bik; and others

    2015-03-01

    Background: Increased expression of the tetraspanin TSPAN7 has been observed in a number of cancers; however, it is unclear how TSPAN7 plays a role in cancer progression. Methods: We investigated the expression of TSPAN7 in the haematological malignancy multiple myleoma (MM) and assessed the consequences of TSPAN7 expression in the adhesion, migration and growth of MM plasma cells (PC) in vitro and in bone marrow (BM) homing and tumour growth in vivo. Finally, we characterised the association of TSPAN7 with cell surface partner molecules in vitro. Results: TSPAN7 was found to be highly expressed at the RNA and protein level in CD138{sup +} MM PC from approximately 50% of MM patients. TSPAN7 overexpression in the murine myeloma cell line 5TGM1 significantly reduced tumour burden in 5TGM1/KaLwRij mice 4 weeks after intravenous adminstration of 5TGM1 cells. While TSPAN7 overexpression did not affect cell proliferation in vitro, TSPAN7 increased 5TGM1 cell adhesion to BM stromal cells and transendothelial migration. In addition, TSPAN7 was found to associate with the molecular chaperone calnexin on the cell surface. Conclusion: These results suggest that elevated TSPAN7 may be associated with better outcomes for up to 50% of MM patients. - Highlights: • TSPAN7 expression is upregulated in newly-diagnosed patients with active multiple myeloma. • Overexpression of TSPAN7 inhibits myeloma tumour development in vivo. • TSPAN7 interacts with calnexin at the plasma membrane in a myeloma cell line.

  6. Changes in gene expression profiles of multiple myeloma cells induced by arsenic trioxide (ATO): possible mechanisms to explain ATO resistance in vivo.

    PubMed

    Zhou, Ping; Kalakonda, Nagesh; Comenzo, Raymond L

    2005-03-01

    Multiple myeloma (MM) is an incurable plasma cell malignancy marked by eventual resistance to therapy. Although arsenic trioxide (ATO) can induce apoptosis in MM cell lines, the in vivo activity of ATO in MM has been disappointing. The existence of ATO resistance mechanisms in MM can be inferred. We sought to generate hypotheses for ATO resistance by studying the gene expression profiles of MM cells that survived in culture with 0.5 micromol/l ATO. Among the 31 genes whose quantitative levels of expression (QLE) significantly increased in ATO were haem oxygenase 1 (HO-1) and metallothionein-2A (MT-2A). Among the 56 genes whose QLE were significantly decreased were genes that modulate cell cycling [BTBD2 and IGFBP7 (mac25)] and sensitivity to reactive oxygen species (ROS) (BACH2). HO-1 exerts an anti-apoptotic effect in ischaemic cells, and MT-2A chelates ATO intracellularly. Inhibition of HO-1 with tin protoporphyrin enhances ROS in MM cells in ATO, and addition of N-acetylcysteine increases MT-2A. Protective antioxidant responses occur in MM cells exposed to ATO, and may occur in stromal cells as well, and act to quench ROS and provide diffusible anti-apoptotic factors. They may also involve cysteine-rich proteins that chelate ATO and modulate redox-sensitive residues on proteins, such as nuclear factor kappa B and p53. A better understanding of ATO resistance will enable ATO to be combined with other agents for MM.

  7. Evidence for cell adhesion-mediated drug resistance of multiple myeloma cells in vivo.

    PubMed

    Schmidmaier, R; Mörsdorf, K; Baumann, P; Emmerich, B; Meinhardt, G

    2006-01-01

    Multiple myeloma is an incurable disease and patients eventually die of disease progression due to drug resistance. VLA-4 (very late antigen 4), VCAM (vascular adhesion molecule), LFA-1 (leukocyte function-associated antigen 1), and ICAM-1 (intercellular adhesion molecule 1)-mediated adhesion of myeloma cells to bone marrow stromal cells induces primary multidrug resistance in vitro. Based on these preclinical data we hypothesized that myeloma cells with strong adhesion - due to strong expression of adhesion molecules on the cell surface - are selected by chemotherapy in patients. To prove this hypothesis we determined the expression levels of adhesion molecules in 31 multiple myeloma patients by flow cytometry. A 3-color stain with CD38, CD138 and antibodies against VLA-4, ICAM-1, LFA-1, and VCAM was performed. The patients were either at diagnosis (chemo-naive; n=17) or at relapse (pre-treated; n=15). Furthermore, the response to the next chemotherapy of chemo-naive patients was correlated with the expression levels of adhesion molecules. ICAM-1, VLA-4, and VCAM expression was higher in pre-treated patients than in chemo-naive patients and the expression levels increased with the number of chemotherapy regimens. Primarily multidrug-resistant patients had significantly higher expression levels of VLA-4 and ICAM-1 than responders. This study suggests that multiple myeloma cells expressing high levels of VLA-4 and ICAM-1 are drug resistant and that such a subpopulation of cells is selected by chemotherapy.

  8. IKAROS expression in distinct bone marrow cell populations as a candidate biomarker for outcome with lenalidomide-dexamethasone therapy in multiple myeloma.

    PubMed

    Bolomsky, Arnold; Hübl, Wolfgang; Spada, Stefano; Müldür, Ercan; Schlangen, Karin; Heintel, Daniel; Rocci, Alberto; Weißmann, Adalbert; Fritz, Veronique; Willheim, Martin; Zojer, Niklas; Palumbo, Antonio; Ludwig, Heinz

    2017-03-01

    Immunomodulatory drugs (IMiDs) are a cornerstone in the treatment of multiple myeloma (MM), but specific markers to predict outcome are still missing. Recent work pointed to a prognostic role for IMiD target genes (e.g. CRBN). Moreover, indirect activity of IMiDs on immune cells correlated with outcome, raising the possibility that cell populations in the bone marrow (BM) microenvironment could serve as biomarkers. We therefore analysed gene expression levels of six IMiD target genes in whole BM samples of 44 myeloma patients treated with lenalidomide-dexamethasone. Expression of CRBN (R = 0.30, P = .05), IKZF1 (R = 0.31, P = .04), IRF4 (R = 0.38, P = .01), MCT-1 (R = 0.30, P = .05), and CD147 (R = 0.38, P = .01), but not IKZF3 (R = -0.15, P = .34), was significantly associated with response. Interestingly, IKZF1 expression was elevated in BM environmental cells and thus selected for further investigation by multicolor flow cytometry. High IKAROS protein levels in total BM mononuclear cells (median OS 83.4 vs. 32.2 months, P = .02), CD19(+) B cells (median OS 71.1 vs. 32.2 months, P = .05), CD3(+) CD8(+) T cells (median OS 83.4 vs 19.0 months, P = .008) as well as monocytes (median OS 53.9 vs 18.0 months, P = .009) were associated with superior overall survival (OS). In contrast, IKAROS protein expression in MM cells was not predictive for OS. Our data therefore corroborate the central role of immune cells for the clinical activity of IMiDs and built the groundwork for prospective analysis of IKAROS protein levels in distinct cell populations as a potential biomarker for IMiD based therapies.

  9. Up-regulation of hexokinaseII in myeloma cells: targeting myeloma cells with 3-bromopyruvate.

    PubMed

    Nakano, Ayako; Miki, Hirokazu; Nakamura, Shingen; Harada, Takeshi; Oda, Asuka; Amou, Hiroe; Fujii, Shiro; Kagawa, Kumiko; Takeuchi, Kyoko; Ozaki, Shuji; Matsumoto, Toshio; Abe, Masahiro

    2012-02-01

    Hexokinase II (HKII), a key enzyme of glycolysis, is widely over-expressed in cancer cells. However, HKII levels and its roles in ATP production and ATP-dependent cellular process have not been well studied in hematopoietic malignant cells including multiple myeloma (MM) cells.We demonstrate herein that HKII is constitutively over-expressed in MM cells. 3-bromopyruvate (3BrPA), an inhibitor of HKII, promptly and substantially suppresses ATP production and induces cell death in MM cells. Interestingly, cocultures with osteoclasts (OCs) but not bone marrow stromal cells (BMSCs) enhanced the phosphorylation of Akt along with an increase in HKII levels and lactate production in MM cells. The enhancement of HKII levels and lactate production in MM cells by OCs were mostly abrogated by the PI3K inhibitor LY294002, suggesting activation of glycolysis in MM cells by OCs via the PI3K-Akt-HKII pathway. Although BMSCs and OCs stimulate MM cell growth and survival, 3BrPA induces cell death in MM cells even in cocultures with OCs as well as BMSCs. Furthermore, 3BrPA was able to diminish ATP-dependent ABC transporter activity to restore drug retention in MM cells in the presence of OCs. These results may underpin possible clinical application of 3BrPA in patients with MM.

  10. Extracellular matrix protein Reelin promotes myeloma progression by facilitating tumor cell proliferation and glycolysis

    PubMed Central

    Qin, Xiaodan; Lin, Liang; Cao, Li; Zhang, Xinwei; Song, Xiao; Hao, Jie; Zhang, Yan; Wei, Risheng; Huang, Xiaojun; Lu, Jin; Ge, Qing

    2017-01-01

    Reelin is an extracellular matrix protein that is crucial for neuron migration, adhesion, and positioning. We examined the expression of Reelin in a large cohort of multiple myeloma patients recorded in Gene Expression Omnibus (GEO) database and used over-expression and siRNA knockdown of Reelin to investigate the role of Reelin in myeloma cell growth. We find that Reelin expression is negatively associated with myeloma prognosis. Reelin promotes myeloma cell proliferation in vitro as well as in vivo. The Warburg effect, evidenced by increased glucose uptake and lactate production, is also enhanced in Reelin-expressing cells. The activation of FAK/Syk/Akt/mTOR and STAT3 pathways contributes to Reelin-induced cancer cell growth and metabolic reprogramming. Our findings further reveal that activated Akt and STAT3 pathways induce the upregulation of HIF1α and its downstream targets (LDHA and PDK1), leading to increased glycolysis in myeloma cells. Together, our results demonstrate the critical contributions of Reelin to myeloma growth and metabolism. It presents an opportunity for myeloma therapeutic intervention by inhibiting Reelin and its signaling pathways. PMID:28345605

  11. Unfolded protein response inducers tunicamycin and dithiothreitol promote myeloma cell differentiation mediated by XBP-1.

    PubMed

    Jiang, Hua; Zou, Jianfeng; Zhang, Hui; Fu, Weijun; Zeng, Tianmei; Huang, Hejing; Zhou, Fan; Hou, Jian

    2015-02-01

    The unfolded protein response (UPR) is an essential pathway for both normal and malignant plasma cells to maintain endoplasmic reticulum (ER) homeostasis in response to the large amount of immunoglobulin (Ig) output. The inositol-requiring enzyme 1-X-box binding protein-1 (IRE1-XBP-1) arm of the UPR pathway has been shown to play crucial roles not only in relieving the ER stress by up-regulating a series of genes favoring ER-associated protein degradation and protein folding, but in mediating terminal plasmacytic differentiation and maturation. Myeloma cells comprise various subsets arrested in diverse differentiated phases, and the immaturity of myeloma cells has been taken as a marker for poor prognosis, suggesting that differentiation induction would be a promising therapeutic strategy for myeloma. Herein, we used low-dose pharmacological UPR inducers such as tunicamycin (TM) and dithiothreitol (DTT) to efficiently activate the IRE1-XBP-1 pathway in myeloma cells characterized by transcriptional expression increase in spliced XBP-1 and molecular chaperons, accompanied by significant differentiation and maturation of these myeloma cells, without concomitant cytotoxicity. These differentiated myeloma cells exhibited a more mature appearance with well-developed cytoplasm and a reduced nucleocytoplasmic ratio, and a further differentiated phenotype with markedly increased expression of CD49e together with significantly elevated cellular secretion of Ig light chain as shown by flow cytometry and ELISA, in contrast to the control myeloma cells without exposed to TM or DTT. Moreover, siRNA knockdown of XBP-1 disrupted TM- or DTT-induced myeloma cell differentiation and maturation. Our study, for the first time, validated that the modest activation of the UPR pathway enables myeloma cells to further differentiate, and identified that XBP-1 plays an indispensable role in UPR-mediated myeloma cell differentiation and maturation. Thus, we provided the rationale and

  12. P38 MAPK inhibition enhancing ATO-induced cytotoxicity against multiple myeloma cells.

    PubMed

    Wen, Jianguo; Cheng, Haiyun Y; Feng, Yongdong; Rice, Lawrence; Liu, Shangfeng; Mo, Albert; Huang, James; Zu, Youli; Ballon, Douglas J; Chang, Chung-Che

    2008-01-01

    The resistance to arsenic trioxide (ATO) treatment is relatively common (55-80%) in multiple myeloma patients. This study found that ATO at clinically achievable concentrations (2-7 mumol/l) activated p38 mitogen-activated protein kinase (MAPK) in both myeloma cell lines and primary myeloma cells, a finding not previously well-documented in myeloma cells. Inhibition of p38 MAPK activation by pharmacological inhibitors (SB203580) or downregulation of p38 MAPK by siRNA significantly increased the apoptosis and/or growth inhibition induced by ATO treatment in myeloma cells. Combination of ATO and p38 MAPK inhibition abolished the interleukin-6 enhanced protection of myeloma cells against ATO treatment. The ATO-resistant cell line developed in our laboratory showed an increase in p38 MAPK activation. The increase of apoptosis by the combination of ATO and SB203580 was accompanied by the activation of caspase-9 and caspase-8 suggesting that both extrinsic and intrinsic apoptotic pathways are involved. Additionally, the p38 MAPK activation by ATO was associated with increased phosphorylation and upregulated expression of Heat shock protein 27. These results suggest that ATO-induced p38 MAPK activation plays an important role in the resistance to ATO in myeloma cells and that p38 MAPK inhibition may overcome resistance to ATO treatment in myeloma patients.

  13. Cytotoxic Properties of a DEPTOR-mTOR Inhibitor in Multiple Myeloma Cells.

    PubMed

    Shi, Yijiang; Daniels-Wells, Tracy R; Frost, Patrick; Lee, Jihye; Finn, Richard S; Bardeleben, Carolyne; Penichet, Manuel L; Jung, Michael E; Gera, Joseph; Lichtenstein, Alan

    2016-10-01

    DEPTOR is a 48 kDa protein that binds to mTOR and inhibits this kinase in TORC1 and TORC2 complexes. Overexpression of DEPTOR specifically occurs in a model of multiple myeloma. Its silencing in multiple myeloma cells is sufficient to induce cytotoxicity, suggesting that DEPTOR is a potential therapeutic target. mTORC1 paralysis protects multiple myeloma cells against DEPTOR silencing, implicating mTORC1 in the critical role of DEPTOR in multiple myeloma cell viability. Building on this foundation, we interrogated a small-molecule library for compounds that prevent DEPTOR binding to mTOR in a yeast-two-hybrid assay. One compound was identified that also prevented DEPTOR-mTOR binding in human myeloma cells, with subsequent activation of mTORC1 and mTORC2. In a surface plasmon resonance (SPR) assay, the compound bound to recombinant DEPTOR but not to mTOR. The drug also prevented binding of recombinant DEPTOR to mTOR in the SPR assay. Remarkably, although activating TORC1 and TORC2, the compound induced apoptosis and cell-cycle arrest in multiple myeloma cell lines and prevented outgrowth of human multiple myeloma cells in immunodeficient mice. In vitro cytotoxicity against multiple myeloma cell lines was directly correlated with DEPTOR protein expression and was mediated, in part, by the activation of TORC1 and induction of p21 expression. Additional cytotoxicity was seen against primary multiple myeloma cells, whereas normal hematopoietic colony formation was unaffected. These results further support DEPTOR as a viable therapeutic target in multiple myeloma and suggest an effective strategy of preventing binding of DEPTOR to mTOR. Cancer Res; 76(19); 5822-31. ©2016 AACR. ©2016 American Association for Cancer Research.

  14. Thymoquinone decreases F-actin polymerization and the proliferation of human multiple myeloma cells by suppressing STAT3 phosphorylation and Bcl2/Bcl-XL expression

    PubMed Central

    2011-01-01

    Background Thymoquinone (TQ), the major active component of the medicinal herb Nigella sativa Linn., has been described as a chemopreventive and chemotherapeutic compound. Methods In this study, we investigated the effect of TQ on survival, actin cytoskeletal reorganization, proliferation and signal transduction in multiple myeloma (MM) cells. Results We found that TQ induces growth arrest in both MDN and XG2 cells in a dose- and time-dependent manner. TQ also inhibited CXC ligand-12 (CXCL-12)-mediated actin polymerization and cellular proliferation, as shown by flow cytometry. The signal transducer and activator of transcription (STAT) and B-cell lymphoma-2 (Bcl-2) signaling pathways may play important roles in the malignant transformation of a number of human malignancies. The constitutive activation of the STAT3 and Bcl-2 pathways is frequently observed in several cancer cell lines, including MM cells. Using flow cytometry, we found that TQ markedly decreased STAT3 phosphorylation and Bcl-2 and Bcl-XL expression without modulating STAT5 phosphorylation in MM cells. Using western blotting, we confirmed the inhibitory effect of TQ on STAT3 phosphorylation and Bcl-2 and Bcl-XL expression. Conclusions Taken together, our data suggests that TQ could potentially be applied toward the treatment of MM and other malignancies. PMID:22177381

  15. PD-1/PD-L1 expression in extra-medullary lesions of multiple myeloma.

    PubMed

    Crescenzi, Anna; Annibali, Ombretta; Bianchi, Antonella; Pagano, Anastasia; Donati, Michele; Grifoni, Alba; Avvisati, Giuseppe

    2016-10-01

    Multiple myeloma patients may develop extraosseous involvement in the course of the disease making prognosis very poor and new drugs clearly needed. The PD-1/PD-L1 axis has emerged as a master immune checkpoint in antitumor responses and recent studies investigated the role of PD-L1 in multiple myeloma cells; no data however are still available about PD-L1 expression in extramedullary localizations. We demonstrate PD-L1 expression in 4/12 cases of extraosseous myeloma suggesting that these lesions represent a specialized microenvironment. We found presence of PD-1+ infiltrating lymphocytes in all observed cases supporting the relevance of PD-1/PD-L1 checkpoint in extramedullary myeloma. We also investigated the correlation in PD1/PD-L1 staining between marrow staining and EMP lesions.

  16. Multiple myeloma-derived Jagged ligands increases autocrine and paracrine interleukin-6 expression in bone marrow niche

    PubMed Central

    Bulfamante, Gaetano; Falleni, Monica; Tosi, Delfina; Todoerti, Katia; Lazzari, Elisa; Crews, Leslie A.; Jamieson, Catriona H.M.; Ravaioli, Sara; Baccianti, Francesco; Garavelli, Silvia; Platonova, Natalia; Neri, Antonino; Chiaramonte, Raffaella

    2016-01-01

    Multiple myeloma cell growth relies on intrinsic aggressiveness, due to a high karyotypic instability, or on the support from bone marrow (BM) niche. We and other groups have provided evidences that Notch signaling is related to tumor cell growth, pharmacological resistance, localization/recirculation in the BM and bone disease. This study indicates that high gene expression levels of Notch signaling members (JAG1, NOTCH2, HES5 and HES6) correlate with malignant progression or high-risk disease, and Notch signaling may participate in myeloma progression by increasing the BM levels of interleukin-6 (IL-6), a major player in myeloma cell growth and survival. Indeed, in vitro results, confirmed by correlation analysis on gene expression profiles of myeloma patients and immunohistochemical studies, demonstrated that Notch signaling controls IL-6 gene expression in those myeloma cells capable of IL-6 autonomous production as well as in surrounding BM stromal cells. In both cases Notch signaling activation may be triggered by myeloma cell-derived Jagged ligands. The evidence that Notch signaling positively controls IL-6 in the myeloma-associated BM makes this pathway a key mediator of tumor-directed reprogramming of the bone niche. This work strengthens the rationale for a novel Notch-directed therapy in multiple myeloma based on the inhibition of Jagged ligands. PMID:27463014

  17. [Immunophenotype in multiple myeloma cells detected by multiparameter flow cytometry].

    PubMed

    Cao, Fang-Fang; Chen, Fang; Hu, Yan-Ping; Zhang, Ji-Hong

    2012-06-01

    This study was purposed to investigate the immunophenotypic characteristics in multiple myeloma (MM) cells and their significance. Thirty three cases of MM and 12 cases of reactive plasmacytosis (as control group) were enrolled in the study. The expressions of surface antigens in MM cells were detected with flow cytometry by using direct immunofluorescent technique and gating method of CD38/SSC and were confirmed with morphologic observation of myeloma cells. The results indicated that the proportion of myeloma cells detected by morphologic examination was 6.0% - 76.0%. With CD38/SSC gating method, a cluster of CD38 bright positive cells could be detected in their scatter plot, the proportion ranged from 0.99% to 57.54%. Most phenotype of MM was 38(st+)CD138(+)CD19(-)CD56(+) (78.8%). While the expressions of CD20, CD33, CD117, HLA-DR were seen in some MM patients, the positive rates were 12.1%, 15.2%, 30.3%, 9.1%, respectively; the expression of other antigens was negative. cκ or cλ monoclonal restriction was detected in 27 cases (81.8%) of MM, both cκ and cλ in the remaining cases of MM was negative. It is concluded that detecting the immunophenotype of MM patients by flow cytometry with CD38/SSC gating method and basing on the heterogeneity of cell antigens can discriminate myeloma cells from normal plasma cells, which provides evidence for targeted therapy and prognosis evaluation.

  18. Integrated molecular profiling of SOD2 expression in multiple myeloma.

    PubMed

    Hurt, Elaine M; Thomas, Suneetha B; Peng, Benjamin; Farrar, William L

    2007-05-01

    Reactive oxygen species are known to be involved in several cellular processes, including cell signaling. SOD2 is a key enzyme in the conversion of reactive oxygen species and has been implicated in a host of disease states, including cancer. Using an integrated, whole-cell approach encompassing epigenetics, genomics, and proteomics, we have defined the role of SOD2 in multiple myeloma. We show that the SOD2 promoter is methylated in several cell lines and there is a correlative decrease in expression. Furthermore, myeloma patient samples have decreased SOD2 expression compared with healthy donors. Overexpression of SOD2 results in decreased proliferation and altered sensitivity to 2-methoxyestradiol-induced DNA damage and apoptosis. Genomic profiling revealed regulation of 65 genes, including genes involved in tumorigenesis, and proteomic analysis identified activation of the JAK/STAT pathway. Analysis of nearly 400 activated transcription factors identified 31 transcription factors with altered DNA binding activity, including XBP1, NFAT, forkhead, and GAS binding sites. Integration of data from our gestalt molecular analysis has defined a role for SOD2 in cellular proliferation, JAK/STAT signaling, and regulation of several transcription factors.

  19. Establishment of a bortezomib-resistant Chinese human multiple myeloma cell line: MMLAL.

    PubMed

    Wong, Kwan Yeung; Wan, Thomas Sk; So, Chi Chiu; Chim, Chor Sang

    2013-12-12

    A new human myeloma cell line, MMLAL, was established from the myelomatous pleural effusion of a 73-year-old Chinese patient suffering from symptomatic International stage III IgG/lambda myeloma. After a brief period of complete remission, he developed aggressive systemic relapse complicated by malignant pleural effusion with exclusive plasma cell infiltration. His disease remained chemo-refractory, and died six months after relapse. Purified mononuclear cells from the pleural effusion of the patient were cultured in the presence of IL-6. Continually growing cells were characterized by morphological, immunophenotypic, cytogenetic, fluorescence in situ hybridization (FISH) and TP53 mutation analyses. Cell proliferation was measured and compared with other myeloma cell lines by cell counting at day 3, 6, 9, and 12. Drug resistance against bortezomib, a proteasome inhibitor approved as a frontline chemotherapy for eligible myeloma patients, was evaluated and compared with other myeloma cell lines by MTT assay. Immunophenotypic analysis of the myeloma cells confirmed strong expression of plasma cell markers CD38 and CD138 but not T-cell or natural killer-cell marker CD56. Cytogenetic analysis of the myeloma cells showed a hypodiploid composite karyotype including loss of chromosome 13 and 17 or deletion of the short arm of chromosome 17, i.e. del(17p), in the form of isochromosome 17q10. FISH confirmed a hypodiploid karyotype with TP53 deletion but absence of t(4;14). Sequencing analysis of the TP53 gene indicated absence of mutation. Cell counting revealed that the maximum viable cell density was about 2.5 X 106 cells/ml. Upon bortezomib treatment, MTT assay reported an IC50 of 72.17nM, suggesting a strong bortezomib resistance. A hypodiploid with loss of chromosome 13 and loss or del(17p) human myeloma cell line, MMLAL, was established from the pleural effusion of a Chinese myeloma patient.

  20. Accessory cells of the microenvironment protect multiple myeloma from T-cell cytotoxicity through cell adhesion-mediated immune resistance.

    PubMed

    de Haart, Sanne J; van de Donk, Niels W C J; Minnema, Monique C; Huang, Julie H; Aarts-Riemens, Tineke; Bovenschen, Niels; Yuan, Huipin; Groen, Richard W J; McMillin, Douglas W; Jakubikova, Jana; Lokhorst, Henk M; Martens, Anton C; Mitsiades, Constantine S; Mutis, Tuna

    2013-10-15

    Cellular immunotherapy frequently fails to induce sustained remissions in patients with multiple myeloma, indicating the ability of multiple myeloma cells to evade cellular immunity. Toward a better understanding and effective therapeutic modulation of multiple myeloma immune evasion mechanisms, we here investigated the role of the tumor microenvironment in rendering multiple myeloma cells resistant to the cytotoxic machinery of T cells. Using a compartment-specific, bioluminescence imaging-based assay system, we measured the lysis of luciferase-transduced multiple myeloma cells by CD4(+) or CD8(+) CTLs in the presence versus absence of adherent accessory cells of the bone marrow microenvironment. We simultaneously determined the level of CTL activation by measuring the granzyme B release in culture supernatants. Bone marrow stromal cells from patients with multiple myeloma and healthy individuals, as well as vascular endothelial cells, significantly inhibited the lysis of multiple myeloma cells in a cell-cell contact-dependent manner and without substantial T-cell suppression, thus showing the induction of a cell adhesion-mediated immune resistance (CAM-IR) against CTL lysis. Further analyses revealed that adhesion to accessory cells downregulated Fas and upregulated the caspase-3 inhibitor survivin in multiple myeloma cells. Reconstitution of Fas expression with bortezomib enhanced the CTL-mediated lysis of multiple myeloma cells. Repressing survivin with the small-molecule YM155 synergized with CTLs and abrogated CAM-IR in vitro and in vivo. These results reveal the cell adhesion-mediated induction of apoptosis resistance as a novel immune escape mechanism and provide a rationale to improve the efficacy of cellular therapies by pharmacologic modulation of CAM-IR. ©2013 AACR.

  1. Responsiveness of cytogenetically discrete human myeloma cell lines to lenalidomide: lack of correlation with cereblon and interferon regulatory factor 4 expression levels.

    PubMed

    Greenberg, Alexandra J; Walters, Denise K; Kumar, Shaji K; Vincent Rajkumar, S; Jelinek, Diane F

    2013-12-01

    The introduction of novel immunomodulatory drugs (IMiDs) has dramatically improved the survival of patients with multiple myeloma (MM). While it has been shown that patients with specific cytogenetic subtypes, namely t(4;14), have the best outcomes when treated with bortezomib-based regimens, the relationship between cytogenetic subtypes and response to IMiDs remains unclear. Using DNA synthesis assays, we investigated the relationship between cytogenetic subtype and lenalidomide response in a representative panel of human myeloma cell lines (HMCLs). We examined HMCL protein expression levels of the lenalidomide target cereblon (CRBN) and its downstream target interferon regulatory factor-4 (IRF4), which have previously been shown to be predictive of lenalidomide response in HMCLs. Our results reveal that lenalidomide response did not correlate with specific cytogenetic translocations. There were distinct groups of lenalidomide-responsive and non-responsive HMCLs, as defined by inhibition of cellular proliferation; notably, all of the hyperdiploid HMCLs fell into the latter category. Repeated dosing of lenalidomide significantly lowered the IC50 of the responsive HMCL ALMC-1 (IC50 = 2.6 μm vs. 0.005 μm, P < 0.0001), but did not have an effect on the IC50 of the non-responsive DP-6 HMCL (P > 0.05). Moreover, no association was found between lenalidomide responsiveness and CRBN and IRF4 expression. Our data indicate that lenalidomide sensitivity is independent of cytogenetic subtype in HMCLs. While CRBN and IRF4 have been shown to be associated with response to lenalidomide in patients, these findings do not translate back to HMCLs, which could be attributable to factors present in the bone marrow microenvironment.

  2. miR-29b induces SOCS-1 expression by promoter demethylation and negatively regulates migration of multiple myeloma and endothelial cells

    PubMed Central

    Amodio, Nicola; Bellizzi, Dina; Leotta, Marzia; Raimondi, Lavinia; Biamonte, Lavinia; D’Aquila, Patrizia; Di Martino, Maria Teresa; Calimeri, Teresa; Rossi, Marco; Lionetti, Marta; Leone, Emanuela; Passarino, Giuseppe; Neri, Antonino; Giordano, Antonio; Tagliaferri, Pierosandro; Tassone, Pierfrancesco

    2013-01-01

    Epigenetic silencing of tumor suppressor genes frequently occurs and may account for their inactivation in cancer cells. We previously demonstrated that miR-29b is a tumor suppressor microRNA (miRNA) that targets de novo DNA methyltransferases and reduces the global DNA methylation of multiple myeloma (MM) cells. Here, we provide evidence that epigenetic activity of miR-29b leads to promoter demethylation of suppressor of cytokine signaling-1 (SOCS-1), a hypermethylated tumor suppressor gene. Enforced expression of synthetic miR-29b mimics in MM cell lines resulted in SOCS-1 gene promoter demethylation, as assessed by Sequenom MassARRAY EpiTYPER analysis, and SOCS-1 protein upregulation. miR-29b-induced SOCS-1 demethylation was associated with reduced STAT3 phosphorylation and impaired NFκB activity. Downregulation of VEGF-A and IL-8 mRNAs could be detected in MM cells transfected with miR-29b mimics as well as in endothelial (HUVEC) or stromal (HS-5) cells treated with conditioned medium from miR-29b-transfected MM cells. Notably, enforced expression of miR-29b mimics increased adhesion of MM cells to HS-5 and reduced migration of both MM and HUVEC cells. These findings suggest that miR-29b is a negative regulator of either MM or endothelial cell migration. Finally, the proteasome inhibitor bortezomib, which induces the expression of miR-29b, decreased global DNA methylation by a miR-29b-dependent mechanism and induced SOCS-1 promoter demethylation and protein upregulation. In conclusion, our data indicate that miR-29b is endowed with epigenetic activity and mediates previously unknown functions of bortezomib in MM cells. PMID:24091729

  3. miR-29b induces SOCS-1 expression by promoter demethylation and negatively regulates migration of multiple myeloma and endothelial cells.

    PubMed

    Amodio, Nicola; Bellizzi, Dina; Leotta, Marzia; Raimondi, Lavinia; Biamonte, Lavinia; D'Aquila, Patrizia; Di Martino, Maria Teresa; Calimeri, Teresa; Rossi, Marco; Lionetti, Marta; Leone, Emanuela; Passarino, Giuseppe; Neri, Antonino; Giordano, Antonio; Tagliaferri, Pierosandro; Tassone, Pierfrancesco

    2013-12-01

    Epigenetic silencing of tumor suppressor genes frequently occurs and may account for their inactivation in cancer cells. We previously demonstrated that miR-29b is a tumor suppressor microRNA (miRNA) that targets de novo DNA methyltransferases and reduces the global DNA methylation of multiple myeloma (MM) cells. Here, we provide evidence that epigenetic activity of miR-29b leads to promoter demethylation of suppressor of cytokine signaling-1 (SOCS-1), a hypermethylated tumor suppressor gene. Enforced expression of synthetic miR-29b mimics in MM cell lines resulted in SOCS-1 gene promoter demethylation, as assessed by Sequenom MassARRAY EpiTYPER analysis, and SOCS-1 protein upregulation. miR-29b-induced SOCS-1 demethylation was associated with reduced STAT3 phosphorylation and impaired NFκB activity. Downregulation of VEGF-A and IL-8 mRNAs could be detected in MM cells transfected with miR-29b mimics as well as in endothelial (HUVEC) or stromal (HS-5) cells treated with conditioned medium from miR-29b-transfected MM cells. Notably, enforced expression of miR-29b mimics increased adhesion of MM cells to HS-5 and reduced migration of both MM and HUVEC cells. These findings suggest that miR-29b is a negative regulator of either MM or endothelial cell migration. Finally, the proteasome inhibitor bortezomib, which induces the expression of miR-29b, decreased global DNA methylation by a miR-29b-dependent mechanism and induced SOCS-1 promoter demethylation and protein upregulation. In conclusion, our data indicate that miR-29b is endowed with epigenetic activity and mediates previously unknown functions of bortezomib in MM cells.

  4. Fibronectin on the Surface of Myeloma Cell-derived Exosomes Mediates Exosome-Cell Interactions.

    PubMed

    Purushothaman, Anurag; Bandari, Shyam Kumar; Liu, Jian; Mobley, James A; Brown, Elizabeth E; Sanderson, Ralph D

    2016-01-22

    Exosomes regulate cell behavior by binding to and delivering their cargo to target cells; however, the mechanisms mediating exosome-cell interactions are poorly understood. Heparan sulfates on target cell surfaces can act as receptors for exosome uptake, but the ligand for heparan sulfate on exosomes has not been identified. Using exosomes isolated from myeloma cell lines and from myeloma patients, we identify exosomal fibronectin as a key heparan sulfate-binding ligand and mediator of exosome-cell interactions. We discovered that heparan sulfate plays a dual role in exosome-cell interaction; heparan sulfate on exosomes captures fibronectin, and on target cells it acts as a receptor for fibronectin. Removal of heparan sulfate from the exosome surface releases fibronectin and dramatically inhibits exosome-target cell interaction. Antibody specific for the Hep-II heparin-binding domain of fibronectin blocks exosome interaction with tumor cells or with marrow stromal cells. Regarding exosome function, fibronectin-mediated binding of exosomes to myeloma cells activated p38 and pERK signaling and expression of downstream target genes DKK1 and MMP-9, two molecules that promote myeloma progression. Antibody against fibronectin inhibited the ability of myeloma-derived exosomes to stimulate endothelial cell invasion. Heparin or heparin mimetics including Roneparstat, a modified heparin in phase I trials in myeloma patients, significantly inhibited exosome-cell interactions. These studies provide the first evidence that fibronectin binding to heparan sulfate mediates exosome-cell interactions, revealing a fundamental mechanism important for exosome-mediated cross-talk within tumor microenvironments. Moreover, these results imply that therapeutic disruption of fibronectin-heparan sulfate interactions will negatively impact myeloma tumor growth and progression.

  5. Fibronectin on the Surface of Myeloma Cell-derived Exosomes Mediates Exosome-Cell Interactions*

    PubMed Central

    Purushothaman, Anurag; Bandari, Shyam Kumar; Liu, Jian; Mobley, James A.; Brown, Elizabeth E.; Sanderson, Ralph D.

    2016-01-01

    Exosomes regulate cell behavior by binding to and delivering their cargo to target cells; however, the mechanisms mediating exosome-cell interactions are poorly understood. Heparan sulfates on target cell surfaces can act as receptors for exosome uptake, but the ligand for heparan sulfate on exosomes has not been identified. Using exosomes isolated from myeloma cell lines and from myeloma patients, we identify exosomal fibronectin as a key heparan sulfate-binding ligand and mediator of exosome-cell interactions. We discovered that heparan sulfate plays a dual role in exosome-cell interaction; heparan sulfate on exosomes captures fibronectin, and on target cells it acts as a receptor for fibronectin. Removal of heparan sulfate from the exosome surface releases fibronectin and dramatically inhibits exosome-target cell interaction. Antibody specific for the Hep-II heparin-binding domain of fibronectin blocks exosome interaction with tumor cells or with marrow stromal cells. Regarding exosome function, fibronectin-mediated binding of exosomes to myeloma cells activated p38 and pERK signaling and expression of downstream target genes DKK1 and MMP-9, two molecules that promote myeloma progression. Antibody against fibronectin inhibited the ability of myeloma-derived exosomes to stimulate endothelial cell invasion. Heparin or heparin mimetics including Roneparstat, a modified heparin in phase I trials in myeloma patients, significantly inhibited exosome-cell interactions. These studies provide the first evidence that fibronectin binding to heparan sulfate mediates exosome-cell interactions, revealing a fundamental mechanism important for exosome-mediated cross-talk within tumor microenvironments. Moreover, these results imply that therapeutic disruption of fibronectin-heparan sulfate interactions will negatively impact myeloma tumor growth and progression. PMID:26601950

  6. ABCG2 expression, function, and promoter methylation in human multiple myeloma

    PubMed Central

    Turner, Joel G.; Gump, Jana L.; Zhang, Chunchun; Cook, James M.; Marchion, Douglas; Hazlehurst, Lori; Munster, Pamela; Schell, Michael J.; Dalton, William S.; Sullivan, Daniel M.

    2006-01-01

    We investigated the role of the breast cancer resistance protein (BCRP/ABCG2) in drug resistance in multiple myeloma (MM). Human MM cell lines, and MM patient plasma cells isolated from bone marrow, were evaluated for ABCG2 mRNA expression by quantitative polymerase chain reaction (PCR) and ABCG2 protein, by Western blot analysis, immunofluorescence microscopy, and flow cytometry. ABCG2 function was determined by measuring topotecan and doxorubicin efflux using flow cytometry, in the presence and absence of the specific ABCG2 inhibitor, tryprostatin A. The methylation of the ABCG2 promoter was determined using bisulfite sequencing. We found that ABCG2 expression in myeloma cell lines increased after exposure to topotecan and doxorubicin, and was greater in logphase cells when compared with quiescent cells. Myeloma patients treated with topotecan had an increase in ABCG2 mRNA and protein expression after treatment with topotecan, and at relapse. Expression of ABCG2 is regulated, at least in part, by promoter methylation both in cell lines and in patient plasma cells. Demethylation of the promoter increased ABCG2 mRNA and protein expression. These findings suggest that ABCG2 is expressed and functional in human myeloma cells, regulated by promoter methylation, affected by cell density, up-regulated in response to chemotherapy, and may contribute to intrinsic drug resistance. PMID:16917002

  7. IL21R expressing CD14(+)CD16(+) monocytes expand in multiple myeloma patients leading to increased osteoclasts.

    PubMed

    Bolzoni, Marina; Ronchetti, Domenica; Storti, Paola; Donofrio, Gaetano; Marchica, Valentina; Costa, Federica; Agnelli, Luca; Toscani, Denise; Vescovini, Rosanna; Todoerti, Katia; Bonomini, Sabrina; Sammarelli, Gabriella; Vecchi, Andrea; Guasco, Daniela; Accardi, Fabrizio; Palma, Benedetta Dalla; Gamberi, Barbara; Ferrari, Carlo; Neri, Antonino; Aversa, Franco; Giuliani, Nicola

    2017-04-01

    Bone marrow monocytes are primarily committed to osteoclast formation. It is, however, unknown whether potential primary alterations are specifically present in bone marrow monocytes from patients with multiple myeloma, smoldering myeloma or monoclonal gammopathy of undetermined significance. We analyzed the immunophenotypic and transcriptional profiles of bone marrow CD14(+) monocytes in a cohort of patients with different types of monoclonal gammopathies to identify alterations involved in myeloma-enhanced osteoclastogenesis. The number of bone marrow CD14(+)CD16(+) cells was higher in patients with active myeloma than in those with smoldering myeloma or monoclonal gammopathy of undetermined significance. Interestingly, sorted bone marrow CD14(+)CD16(+) cells from myeloma patients were more pro-osteoclastogenic than CD14(+)CD16-cells in cultures ex vivo Moreover, transcriptional analysis demonstrated that bone marrow CD14(+) cells from patients with multiple myeloma (but neither monoclonal gammopathy of undetermined significance nor smoldering myeloma) significantly upregulated genes involved in osteoclast formation, including IL21RIL21R mRNA over-expression by bone marrow CD14(+) cells was independent of the presence of interleukin-21. Consistently, interleukin-21 production by T cells as well as levels of interleukin-21 in the bone marrow were not significantly different among monoclonal gammopathies. Thereafter, we showed that IL21R over-expression in CD14(+) cells increased osteoclast formation. Consistently, interleukin-21 receptor signaling inhibition by Janex 1 suppressed osteoclast differentiation from bone marrow CD14(+) cells of myeloma patients. Our results indicate that bone marrow monocytes from multiple myeloma patients show distinct features compared to those from patients with indolent monoclonal gammopathies, supporting the role of IL21R over-expression by bone marrow CD14(+) cells in enhanced osteoclast formation. Copyright© Ferrata Storti

  8. IL21R expressing CD14+CD16+ monocytes expand in multiple myeloma patients leading to increased osteoclasts

    PubMed Central

    Bolzoni, Marina; Ronchetti, Domenica; Storti, Paola; Donofrio, Gaetano; Marchica, Valentina; Costa, Federica; Agnelli, Luca; Toscani, Denise; Vescovini, Rosanna; Todoerti, Katia; Bonomini, Sabrina; Sammarelli, Gabriella; Vecchi, Andrea; Guasco, Daniela; Accardi, Fabrizio; Palma, Benedetta Dalla; Gamberi, Barbara; Ferrari, Carlo; Neri, Antonino; Aversa, Franco; Giuliani, Nicola

    2017-01-01

    Bone marrow monocytes are primarily committed to osteoclast formation. It is, however, unknown whether potential primary alterations are specifically present in bone marrow monocytes from patients with multiple myeloma, smoldering myeloma or monoclonal gammopathy of undetermined significance. We analyzed the immunophenotypic and transcriptional profiles of bone marrow CD14+ monocytes in a cohort of patients with different types of monoclonal gammopathies to identify alterations involved in myeloma-enhanced osteoclastogenesis. The number of bone marrow CD14+CD16+ cells was higher in patients with active myeloma than in those with smoldering myeloma or monoclonal gammopathy of undetermined significance. Interestingly, sorted bone marrow CD14+CD16+ cells from myeloma patients were more pro-osteoclastogenic than CD14+CD16-cells in cultures ex vivo. Moreover, transcriptional analysis demonstrated that bone marrow CD14+ cells from patients with multiple myeloma (but neither monoclonal gammopathy of undetermined significance nor smoldering myeloma) significantly upregulated genes involved in osteoclast formation, including IL21R. IL21R mRNA over-expression by bone marrow CD14+ cells was independent of the presence of interleukin-21. Consistently, interleukin-21 production by T cells as well as levels of interleukin-21 in the bone marrow were not significantly different among monoclonal gammopathies. Thereafter, we showed that IL21R over-expression in CD14+ cells increased osteoclast formation. Consistently, interleukin-21 receptor signaling inhibition by Janex 1 suppressed osteoclast differentiation from bone marrow CD14+ cells of myeloma patients. Our results indicate that bone marrow monocytes from multiple myeloma patients show distinct features compared to those from patients with indolent monoclonal gammopathies, supporting the role of IL21R over-expression by bone marrow CD14+ cells in enhanced osteoclast formation. PMID:28057743

  9. Multiple myeloma

    MedlinePlus

    Plasma cell dyscrasia; Plasma cell myeloma; Malignant plasmacytoma; Plasmacytoma of bone; Myeloma - multiple ... Multiple myeloma most commonly causes: Low red blood cell count ( anemia ), which can lead to fatigue and ...

  10. Inhibitor of DASH proteases affects expression of adhesion molecules in osteoclasts and reduces myeloma growth and bone disease.

    PubMed

    Pennisi, Angela; Li, Xin; Ling, Wen; Khan, Sharmin; Gaddy, Dana; Suva, Larry J; Barlogie, Bart; Shaughnessy, John D; Aziz, Nazneen; Yaccoby, Shmuel

    2009-06-01

    Dipeptidyl peptidase (DPP) IV activity and/or structure homologues (DASH) are serine proteases implicated in tumourigenesis. We previously found that a DASH protease, fibroblast activation protein (FAP), was involved in osteoclast-induced myeloma growth. Here we further demonstrated expression of various adhesion molecules in osteoclasts cultured alone or cocultured with myeloma cells, and tested the effects of DASH inhibitor, PT-100, on myeloma cell growth, bone disease, osteoclast differentiation and activity, and expression of adhesion molecules in osteoclasts. PT-100 had no direct effects on viability of myeloma cells or mature osteoclasts, but significantly reduced survival of myeloma cells cocultured with osteoclasts. Real-time PCR array for 85 adhesion molecules revealed upregulation of 17 genes in osteoclasts after coculture with myeloma cells. Treatment of myeloma/osteoclast cocultures with PT-100 significantly downregulated 18 of 85 tested genes in osteoclasts, some of which are known to play roles in tumourigenesis and osteoclastogenesis. PT-100 also inhibited osteoclast differentiation and subsequent pit formation. Resorption activity of mature osteoclasts and differentiation of osteoblasts were not affected by PT-100. In primary myelomatous severe combined immunodeficient (SCID)-hu mice PT-100 reduced osteoclast activity, bone resorption and tumour burden. These data demonstrated that DASH proteases are involved in myeloma bone disease and tumour growth.

  11. Chaetocin enhances dendritic cell function via the induction of heat shock protein and cancer testis antigens in myeloma cells

    PubMed Central

    Lee, Hyun-Ju; Jung, Sung-Hoon; Choi, Nu-Ri; Hoang, My-Dung; Kim, Hyeoung-Joon; Lee, Je-Jung

    2017-01-01

    Dendritic cells (DC)-based vaccines are considered useful in cancer immuno-therapy, and the interactions of DC and dying tumor cells are important and promising for cancer immunotherapy. We investigated whether chaetocin could be used to induce death of myeloma cells, for loading onto DCs can affect DCs function. In this study, we show that the dying myeloma cells treated with chaetocin resulted in the induction of heat shock protein (HSP) 90, which was inhibited by antioxidant N-acetyl cysteine, and showed an increase in the expression of MAGE-A3 and MAGE-C1/CT7. DCs loaded with chaetocin-treated dying myeloma cells produced low levels of IL-10 and enhanced the cross presentation of DCs. Additionally, these DCs most potently inhibited regulatory T cells, induced Th1 polarization and activated myeloma-specific cytotoxic T lymphocytes compared with DCs loaded with UVB-irradiated dying myeloma cells. These results suggest that the pretreatment of myeloma cells with chaetocin can enhance DC function through the up-regulation of HSP90 and cancer testis antigens in dying myeloma cells and can potently induce the Th1 polarization of DCs and myeloma-specific cytotoxic T lymphocytes. PMID:28512265

  12. Bortezomib resistance can be reversed by induced expression of plasma cell maturation markers in a mouse in vitro model of multiple myeloma.

    PubMed

    Stessman, Holly A F; Mansoor, Aatif; Zhan, Fenghuang; Linden, Michael A; Van Ness, Brian; Baughn, Linda B

    2013-01-01

    Multiple myeloma (MM), the second most common hematopoietic malignancy, remains an incurable plasma cell (PC) neoplasm. While the proteasome inhibitor, bortezomib (Bz) has increased patient survival, resistance represents a major treatment obstacle as most patients ultimately relapse becoming refractory to additional Bz therapy. Current tests fail to detect emerging resistance; by the time patients acquire resistance, their prognosis is often poor. To establish immunophenotypic signatures that predict Bz sensitivity, we utilized Bz-sensitive and -resistant cell lines derived from tumors of the Bcl-X(L)/Myc mouse model of PC malignancy. We identified significantly reduced expression of two markers (CD93, CD69) in "acquired" (Bz-selected) resistant cells. Using this phenotypic signature, we isolated a subpopulation of cells from a drug-naïve, Bz-sensitive culture that displayed "innate" resistance to Bz. Although these genes were identified as biomarkers, they may indicate a mechanism for Bz-resistance through the loss of PC maturation which may be induced and/or selected by Bz. Significantly, induction of PC maturation in both "acquired" and "innate" resistant cells restored Bz sensitivity suggesting a novel therapeutic approach for reversing Bz resistance in refractory MM.

  13. Persistent use of false myeloma cell lines.

    PubMed

    Drexler, Hans G; Matsuo, Yoshinobu; MacLeod, Roderick A E

    2003-09-01

    Multiple myeloma (MM) is a neoplasm of a terminally differentiated B-cell. Human myeloma cell lines were shown to be suitable model systems for use in various fields of the biological sciences. Within the last 20 years more than 100 cell lines have been established. So-called 'myeloma cell lines' have been previously reported and are still widely used which are in reality Epstein-Barr virus (EBV)-positive B-lymphoblastoid cell lines. The presence of the EBV-genome in residual normal B-cells provides them with a selective growth advantage after explantation. Cell lines represent an extremely important resource for research in a variety of fields and disciplines. As the cell lines are used as in vitro model systems in lieu of primary material, it is crucial that the cells in the culture flasks faithfully correspond to the purported objects of study. On closer examination, the use of false cell lines may be seen to invalidate a significant percentage of scientific work, or at least cast doubts on the relevance of these in vitro results to the cell type or tumor in vivo. Ultimately, use of cross-contaminated cell lines is a waste of human and material resources. Henceforth, it should be mandatory to prove the proper derivation of each new cell line by comparing DNA fingerprints or karyotypes of the patient's primary cells and the cultured cells. The availability of well characterized and authenticated bona fide MM cell lines is of great importance for the study of the biology, etiology and treatment of the disease.

  14. Antibody-drug conjugate targeting CD46 eliminates multiple myeloma cells

    PubMed Central

    Sherbenou, Daniel W.; Aftab, Blake T.; Su, Yang; Behrens, Christopher R.; Wiita, Arun; Logan, Aaron C.; Acosta-Alvear, Diego; Hann, Byron C.; Walter, Peter; Shuman, Marc A.; Wu, Xiaobo; Atkinson, John P.; Wolf, Jeffrey L.; Martin, Thomas G.

    2016-01-01

    Multiple myeloma is incurable by standard approaches because of inevitable relapse and development of treatment resistance in all patients. In our prior work, we identified a panel of macropinocytosing human monoclonal antibodies against CD46, a negative regulator of the innate immune system, and constructed antibody-drug conjugates (ADCs). In this report, we show that an anti-CD46 ADC (CD46-ADC) potently inhibited proliferation in myeloma cell lines with little effect on normal cells. CD46-ADC also potently eliminated myeloma growth in orthometastatic xenograft models. In primary myeloma cells derived from bone marrow aspirates, CD46-ADC induced apoptosis and cell death, but did not affect the viability of nontumor mononuclear cells. It is of clinical interest that the CD46 gene resides on chromosome 1q, which undergoes genomic amplification in the majority of relapsed myeloma patients. We found that the cell surface expression level of CD46 was markedly higher in patient myeloma cells with 1q gain than in those with normal 1q copy number. Thus, genomic amplification of CD46 may serve as a surrogate for target amplification that could allow patient stratification for tailored CD46-targeted therapy. Overall, these findings indicate that CD46 is a promising target for antibody-based treatment of multiple myeloma, especially in patients with gain of chromosome 1q. PMID:27841764

  15. Role of metalloproteinases MMP-9 and MT1-MMP in CXCL12-promoted myeloma cell invasion across basement membranes.

    PubMed

    Parmo-Cabañas, Marisa; Molina-Ortiz, Isabel; Matías-Román, Salomón; García-Bernal, David; Carvajal-Vergara, Xonia; Valle, Inmaculada; Pandiella, Atanasio; Arroyo, Alicia G; Teixidó, Joaquin

    2006-01-01

    Malignant plasma cells in multiple myeloma home to the bone marrow (BM), accumulate in different niches and, in late disease, migrate from the BM into blood. These migratory events involve cell trafficking across extracellular matrix (ECM)-rich basement membranes and interstitial tissues. Metalloproteinases (MMP) degrade ECM and facilitate tumour cell invasion. The chemokine CXCL12 is expressed in the BM, and it was previously shown that it triggers myeloma cell migration and activation. In the present work we show that CXCL12 promotes myeloma cell invasion across Matrigel-reconstituted basement membranes and type I collagen gels. MMP-9 activity was required for invasion through Matrigel towards CXCL12, whereas TIMP-1, a MMP-9 inhibitor that we found to be expressed by myeloma and BM stromal cells, impaired the invasion. In addition, we show that the membrane-bound MT1-MMP metalloproteinase is expressed by myeloma cells and contributes to CXCL12-promoted myeloma cell invasion across Matrigel. Increase in MT1-MMP expression, as well as induction of its membrane polarization by CXCL12 in myeloma cells, might represent potential mechanisms contributing to this invasion. CXCL12-promoted invasion across type I collagen involved metalloproteinases different from MT1-MMP. These data indicate that CXCL12 could contribute to myeloma cell trafficking in the BM involving MMP-9 and MT1-MMP activities.

  16. [Expression and clinical significance of Notch1 on the membrane of bone marrow CD38(+)CD138(+) plasma cells in the patients with multiple myeloma].

    PubMed

    Zhao, Yi-ran; Fu, Rong; Guan, Jing; Gao, Shan; Liu, Hui; Ruan, Er-bao; Qu, Wen; Liang, Yong; Wang, Guo-jin; Wang, Xiao-ming; Liu, Hong; Wu, Yu-hong; Song, Jia; Wang, Hua-quan; Xing, Li-min; Wang, Jun; Li, Li-juan; Shao, Zong-hong

    2012-04-01

    To investigate the expression of Notch1 on the membrane of bone marrow CD38(+)CD138(+) plasma cells in the patients with multiple myeloma (MM), and explore the importance of Notch signaling pathway in the formation and progression of MM. Thirty three MM patients and 15 healthy controls were enrolled in this study. The expression of Notch1 on the membrane of bone marrow CD38(+)CD138(+) and CD38(+)CD138(-) plasma cells were analyzed by flow cytometry. The clinical data of MM patients were also analyzed. The ratio of Notch1 on the membrane of CD38(+)CD138(+) plasma cells of MM patients was (60.21 ± 25.06)% which was significantly higher than those of CD38(+)CD138(-) plasma cells of MM patients (39.84 ± 18.94)% (P = 0.000) and controls (38.34 ± 19.39)% (P = 0.004). There was no statistical difference between the two latter groups (P > 0.05). The expression of Notch1 on CD38(+)CD138(+)plasma cells from 24 newly diagnosed MM patients was correlated to the level of malignant plasma cells in there bone marrow (r = 0.914, P = 0.000), serum level of lactate dehydrogenase (LDH) (r = 0.754, P = 0.007), and β(2)-MG(r = 0.716, P = 0.013). The ratio of Notch1 on the membrane of CD38(+)CD138(+) plasma cells of MM patients who had renal dysfunction was correlated to their abnormal serum creatinine levels. The expression of Notch1 on CD38(+)CD138(+) plasma cells from 17 MM patients who received VD (bortezamib and dexamethasone) chemotherapy was correlated to the ratio of plasma cell reduction after the first VD chemotherapy (r = 0.842, P = 0.000). The expression of Notch1 on the membrane of CD38(+)CD138(+) plasma cells of MM patients was significantly higher than those of CD38(+)CD138(-) plasma cells of MM patients and controls. Notch1 overexpressed plasma cells were sensitive to the early VD therapy, and correlated to the progression and long term outcome of MM.

  17. Leukemia Viruses Associated with Mouse Myeloma Cells*

    PubMed Central

    Watson, J.; Ralph, P.; Sarkar, S.; Cohn, Melvin

    1970-01-01

    Myeloma cells derived from BALB/c and C3H mice show evidence of infection by a murine leumemia virus. The immunoglobulin-producing myelomas secrete an RNA-containing virus with a density of 1.20 to 1.22 gm/cm3. RNA with a sedimentation coefficient of 74 S in 0.1 M sodium sodium chloride has been isolated from secreted virus particles and has a base composition similar to that found for other murine leukemia virus RNA. An intracellular virus particle has been partially purified and has a density of 1.29 to 1.32 gm/cm3. Both extracellular and intracellular virus particles contain the leukemia virus group-specific antigen. Images PMID:4317914

  18. Targeting CD38 Suppresses Induction and Function of T Regulatory Cells to Mitigate Immunosuppression in Multiple Myeloma.

    PubMed

    Feng, Xiaoyan; Zhang, Li; Acharya, Chirag; An, Gang; Wen, Kenneth; Qiu, Lugui; Munshi, Nikhil C; Tai, Yu-Tzu; Anderson, Kenneth C

    2017-08-01

    Purpose: We study CD38 levels in immunosuppressive CD4(+)CD25(high)Foxp3(+) regulatory T cells (Treg) and further define immunomodulating effects of a therapeutic CD38 mAb isatuximab/SAR650984 in multiple myeloma.Experimental Design: We evaluated percentages of CD38-expressing subsets in Tregs from normal donors and multiple myeloma patients. Peripheral blood mononuclear cells (PBMC) were then treated with isatuximab with or without lenalidomide or pomalidomide to identify their impact on the percentage and immunosuppressive activity of Tregs on CD4(+)CD25(-) T cells (Tcons). We investigated the mechanism of increased Tregs in multiple myeloma patients in ex vivo cocultures of multiple myeloma cells with PBMCs or Tcons.Results: CD38 expression is higher on Tregs than Tcons from multiple myeloma patients versus normal donors. CD38 levels and the percentages of CD38(high) Tregs are increased by lenalidomide and pomalidomide. Isatuximab preferentially decreases Treg and increases Tcon frequencies, which is enhanced by pomalidomide/lenalidomide. Isatuximab reduces Foxp3 and IL10 in Tregs and restores proliferation and function of Tcons. It augments multiple myeloma cell lysis by CD8(+) T and natural killer cells. Coculture of multiple myeloma cells with Tcons significantly induces Tregs (iTregs), which express even higher CD38, CD25, and FoxP3 than natural Tregs. This is associated with elevated circulating CD38(+) Tregs in multiple myeloma patients versus normal donors. Conversely, isatuximab decreases multiple myeloma cell- and bone marrow stromal cell-induced iTreg by inhibiting both cell-cell contact and TGFβ/IL10. Finally, CD38 levels correlate with differential inhibition by isatuximab of Tregs from multiple myeloma versus normal donors.Conclusions: Targeting CD38 by isatuximab can preferentially block immunosuppressive Tregs and thereby restore immune effector function against multiple myeloma. Clin Cancer Res; 23(15); 4290-300. ©2017 AACR. ©2017 American

  19. [Sorting of side population cells from multiple myeloma cell lines and analysis of their biological characteristics].

    PubMed

    Zhang, Xiao-Li; Zhang, Li-Na; Huang, Hong-Ming; Ding, Run-Sheng; Shi, Wei; Xu, Rui-Rong; Yu, Xiao-Tang; Jiang, Sheng-Hua

    2014-06-01

    This study was aimed to sort the side population (SP) cells from human multiple myeloma cell lines, then detect the biological characteristics of those SP cells. After Hoechst33342 staining, intracellular Hoechst33342 fluorescence staining differences of myeloma cell lines observed by the fluorescence microscopy. The fluorescence-activated cell sorting (FACS) technology was used to isolate SP cells and main population (MP) cells; proliferative capacity in vitro was determined by cell growth curve; the cell colony forming ability was compared by colony forming test. The CD138 expression was detected by flow cytometry. The expression of ABCG2 mRNA was detected by reverse transcription PCR; CCK-8 assay and colony forming test were used to evaluate the effect of bortezomib on the cell proliferation, vitality and colony forming ability of the two populations. The results showed that the myeloma cell lines had a small proportion of SP cells, especially, RPMI 8226 cells accounted for the highest proportion of SP cells (7.10 ± 2.69)%, which have also been confirmed under the fluorescence microscope; the proliferative activity and cell colony forming ability of SP cells were significantly higher than those of MP cells (P < 0.05). The expression levels of CD138 in SP and MP cells were not significantly different (P > 0.05). RT-PCR results showed that SP cells expressed the drug-resistance gene ABCG2, but MP cells hardly express these genes. The inhibition rate of bortezomib on SP cells was significantly lower than that on MP cells (P < 0.05), however, the difference was not significant (P > 0.05) at bortezomib 40 nmol/L. Bortezomib could reduce colony formation in the both two cell populations, but more severe reduction appeared in the MP cells. It is concluded that the myeloma cell line contain a small amount of SP cells with the cancer stem cell characteristics.

  20. Mesenchymal stromal cells revert multiple myeloma cells to less differentiated phenotype by the combined activities of adhesive interactions and interleukin-6.

    PubMed

    Dezorella, Nili; Pevsner-Fischer, Meirav; Deutsch, Varda; Kay, Sigi; Baron, Shoshana; Stern, Ruth; Tavor, Sigal; Nagler, Arnon; Naparstek, Elizabeth; Zipori, Dov; Katz, Ben-Zion

    2009-07-01

    Multiple myeloma is characterized by the malignant growth of immunoglobulin producing plasma cells, predominantly in the bone marrow. The effects of primary human mesenchymal stromal cells on the differentiation phenotype of multiple myeloma cells were studied by co-culture experiments. The incubation of multiple myeloma cells with bone marrow-derived mesenchymal stromal cells resulted in significant reduction of the expression of the predominant plasma cell differentiation markers CD38 and CD138, and cell surface immunoglobulin light chain. While the down-regulation of CD138 by stromal cells was completely dependent on their adhesive interactions with the multiple myeloma cells, interleukin-6 induced specific down-regulation of CD38. Mesenchymal stromal cells or their conditioned media inhibited the growth of multiple myeloma cell line, thereby reducing the overall amounts of secreted light chains. Analysis of primary multiple myeloma bone marrow samples reveled that the expression of CD38 on multiple myeloma cells was not affected by adhesive interactions. The ex vivo propagation of primary multiple myeloma cells resulted in significant increase in their differentiation markers. Overall, the data indicate that the bone marrow-derived mesenchymal stromal cells revert multiple myeloma cells to less differentiated phenotype by the combined activities of adhesive interactions and interleukin-6.

  1. Plasma cell growth fraction using Ki-67 antigen expression identifies a subgroup of multiple myeloma patients displaying short survival within the ISS stage I.

    PubMed

    Gastinne, Thomas; Leleu, Xavier; Duhamel, Alain; Moreau, Anne-Sophie; Franck, Genevieve; Andrieux, Joris; Lai, Jean-Luc; Coiteux, Valerie; Yakoub-Agha, Ibrahim; Bauters, Francis; Harousseau, Jean-Luc; Zandecki, Marc; Facon, Thierry

    2007-10-01

    The current most powerful prognostic model in Multiple Myeloma (MM) combines beta-2 microglobulin (b2m) with albumin, corresponding to the International Staging System (ISS). However, the prognosis of patients within the ISS stage I (high albumin and low b2m) may vary. Ki-67 is a nuclear protein associated with cell proliferation. We retrospectively evaluated the percentage of bone marrow plasma cells expressing Ki-67 antigen (Ki-67 index) in a series of 174 untreated MM patients at diagnosis. Median survival was 51, 41 and 20 months respectively, and median Ki-67 index was 3.0%, 6.1% and 6.5% in ISS stages I, II, and III respectively. Independently of ISS, Ki-67 index > or =4% was highly predictive of adverse prognosis. Ki-67 index correlated with markers of intrinsic malignancy and with markers of tumour burden. Within ISS stage I, median survival was of 31 months (RR of death 2.65) in patients with Ki-67 index > or =4%. Eventually, the combination of Ki-67 with b2m produced an efficient prognostic model, which appeared most effective in our series when compared with b2m and KI-67 with chromosome 13 deletion models. In this series, we demonstrated that a proliferation marker provides clear-cut additional survival prognostic information to b2m into the ISS model.

  2. [Multiple myeloma and other plasma cell dyscrasias].

    PubMed

    Nagy, Zsolt

    2016-06-06

    Multiple myeloma is the most common primary malignant disease of bone marrow. It mainly occurs among elderly people and, according to international databases, it is twice as frequent in men, however in our country this fact cannot be observed because of the high male mortality rate. The presence of this disease increased by more than one and the half times during the last 60 years. The five year survival for multiple myeloma has increased from 25% to 40% since the seventies due to high-dose chemotherapy followed by autologous stem cell transplantation and the new anti-myeloma drugs which were introduced in the last decade, such as immunomodulators (IMiD) like thalidomide, lenalidomide, pomalidomide and proteasome inhibitors (PI) like bortezomib, carfilzomib, ixazomib. The number of treatment options are growing fast, and not only because of using new combinations of medications, but also due to the development of investigational products which are available for the patients by participating in a clinical trial.

  3. The role of SH3GL3 in myeloma cell migration/invasion, stemness and chemo-resistance

    PubMed Central

    Chen, Ruoying; Zhao, Hong; Wu, Dan; Zhao, Chen; Zhao, Weiling; Zhou, Xiaobo

    2016-01-01

    Multiple myeloma (MM) is an incurable cancer characterized by clonal expansion of malignant plasma cells in the bone marrow and their egress into peripheral blood. The mechanisms of myeloma cells migration/invasion have remained unclear. Herein, we found SH3GL3 was highly expressed in the CD138-negative (CD138−) myeloma cells. The migration/invasion capability of CD138− cells was significantly higher than that in the CD138-positive (CD138+) cells. Silencing SH3GL3 using shRNA reduced myeloma cells migration/invasion. Conversely, overexpression of SH3GL3 increased myeloma cells migration/invasion. Moreover, SH3GL3 is also associated with the stemness and chemo-resistance of CD138− myeloma cells. Elevated expression of stem cell and multi-drug resistant markers were seen in the myeloma cells with overexpressed SH3GL3; while knocking-down SH3GL3 reduced the expression of these markers. A marked increase in p-PI3K and p-FAK was observed in the cells with overexpressed SH3GL3. To test if FAK/PI3K signaling pathway was involved in the SH3GL3-mediated myeloma cells migration, the cells transfected w/wo SH3GL3 cDNA were treated with FAK inhibitor 14 and PI3K inhibitor LY294002. Inhibition of FAK and PI3K attenuated SH3GL3-mediated migration /invasion. Our findings indicate that SH3GL3 plays an important role in myeloma cell migration/invasion, stemness and chemo-resistance. The SH3GL3-mediated myeloma cell migration/invasion is mediated by FAK/PI3K signaling pathway. PMID:27683032

  4. The role of SH3GL3 in myeloma cell migration/invasion, stemness and chemo-resistance.

    PubMed

    Chen, Ruoying; Zhao, Hong; Wu, Dan; Zhao, Chen; Zhao, Weiling; Zhou, Xiaobo

    2016-11-08

    Multiple myeloma (MM) is an incurable cancer characterized by clonal expansion of malignant plasma cells in the bone marrow and their egress into peripheral blood. The mechanisms of myeloma cells migration/invasion have remained unclear. Herein, we found SH3GL3 was highly expressed in the CD138-negative (CD138-) myeloma cells. The migration/invasion capability of CD138- cells was significantly higher than that in the CD138-positive (CD138+) cells. Silencing SH3GL3 using shRNA reduced myeloma cells migration/invasion. Conversely, overexpression of SH3GL3 increased myeloma cells migration/invasion. Moreover, SH3GL3 is also associated with the stemness and chemo-resistance of CD138- myeloma cells. Elevated expression of stem cell and multi-drug resistant markers were seen in the myeloma cells with overexpressed SH3GL3; while knocking-down SH3GL3 reduced the expression of these markers. A marked increase in p-PI3K and p-FAK was observed in the cells with overexpressed SH3GL3. To test if FAK/PI3K signaling pathway was involved in the SH3GL3-mediated myeloma cells migration, the cells transfected w/wo SH3GL3 cDNA were treated with FAK inhibitor 14 and PI3K inhibitor LY294002. Inhibition of FAK and PI3K attenuated SH3GL3-mediated migration /invasion. Our findings indicate that SH3GL3 plays an important role in myeloma cell migration/invasion, stemness and chemo-resistance. The SH3GL3-mediated myeloma cell migration/invasion is mediated by FAK/PI3K signaling pathway.

  5. Abnormal cytokine production by bone marrow stromal cells of multiple myeloma patients in response to RPMI8226 myeloma cells.

    PubMed

    Zdzisińska, Barbara; Bojarska-Junak, Agnieszka; Dmoszyńska, Anna; Kandefer-Szerszeń, Martyna

    2008-01-01

    Recent studies indicate that bone marrow stromal cells (BMSCs) derived from patients with multiple myeloma (MM) differ from those of healthy donors in their expression of extracellular matrix compounds and in cytokine production. It is not known whether these abnormalities are primary or are acquired by BMSCs on contact with MM cells. Interleukin (IL)-6, IL-11, IL-10, and tumor necrosis factor (TNF)-alpha production by CD166+ mesenchymal BMSCs and the CD38+/CD138+ RPMI8226 myeloma cell line cultivated in vitro in monocultures or co-cultivated under cell-to-cell contact or non-contact conditions in the presence of a tissue culture insert were measured. Intracellular cytokines were measured by flow cytometry analysis as the percentage of cytokine-producing cells or by mean fluorescence intensity as the level of cytokine expression in cells. Additionally, ELISA was used to measure IL-6, soluble IL-6 receptor (sIL-6R), IL-11, IL-10, TNF-alpha, B-cell-activating factor of the TNF family (BAFF), hepatocyte growth factor (HGF), and osteopontin (OPN) production in the supernatants of the cultures and co-cultures. A higher ability of the BMSCs of MM patients than in controls was detected to produce IL-6, IL-10, TNF-alpha, OPN, and especially HGF and BAFF in response to the RPMI8226 cells. Moreover, the BMSCs of the MM patients significantly enhanced the production of sIL-6R by the RPMI8226 cells. Cytokines over-expressed by BMSCs of MM patients can function as growth factors for myeloma cells (IL-6, IL-10, HGF), migration stimulatory factors for tumor plasma cells (TNF-alpha, HGF), adhesion stimulatory factors (HGF, BAFF and OPN), stimulators of osteoclastogenesis (IL-6, TNF-alpha), and angiogenic factors (TNF-alpha). The results of this experiment strongly suggest that the BMSCs from MM patients differed in spontaneous and myeloma cell-induced production of cytokines, especially of HGF and BAFF, and these abnormalities were both primary and acquired by the BMSCs on contact

  6. EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion

    SciTech Connect

    Huang, Er-Wen; Xue, Sheng-Jiang; Li, Xiao-Yan; Xu, Suo-Wen; Cheng, Jian-Ding; Zheng, Jin-Xiang; Shi, He; Lv, Guo-Li; Li, Zhi-Gang; Li, Yue; Liu, Chang-Hui; Chen, Xiao-Hui; Liu, Hong; Li, Jie; Liu, Chao

    2014-05-02

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation, facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma.

  7. Immunohistochemical analysis of NOTCH1 and JAGGED1 expression in multiple myeloma and monoclonal gammopathy of undetermined significance.

    PubMed

    Skrtić, Anita; Korać, Petra; Krišto, Delfa Radić; Ajduković Stojisavljević, Radmila; Ivanković, Davor; Dominis, Mara

    2010-12-01

    Notch signaling is implicated in the pathogenesis of multiple myeloma expressing high level of active Notch proteins NOTCH1 and JAGGED1 in tumor plasma cells. We investigated expression of NOTCH1 and JAGGED1 in bone marrow trephine biopsies of 80 newly diagnosed multiple myeloma and 20 monoclonal gammopathy of undetermined significance patients using immunohistochemical methods. The number of positive tumor cells was counted per 1000 tumor cells and the intensity of staining was assessed semi quantitatively. Multiple myelomas expressed NOTCH1 in 92.31% (72/78) and JAGGED1 in 92.21% (71/77) cases. NOTCH1 staining was strong in the majority of cases (59.7%), whereas JAGGED1 was predominately weak (67.6% of cases). In contrast, both markers were negative in all monoclonal gammopathy of undetermined significance cases. However, upon progression of disease from monoclonal gammopathy of undetermined significance to multiple myeloma (seen in 4 patients), analysis of the subsequent bone marrow biopsy showed weak expression of both markers in tumorous plasma cells. Immunohistochemistry results were compared with the pattern of bone marrow infiltration, plasma cell differentiation, and the presence of t(11;14)(q13,q32), t(14;16)(q32;q23),and t(4;14)(p16.3;q23) and overall survival in multiple myeloma patients. A significant correlation was found between strong NOTCH1 staining in multiple myeloma plasma cells and the diffuse type of bone marrow infiltration (P = .002) and an immature morphologic type of plasma cells (P = .043). After a median follow-up of 20.3 months, in multiple myeloma patients no difference in overall survival between NOTCH1 (P = .484) and JAGGED1 (P = .822) positive and negative cases were found. In conclusion, our results indicate importance of NOTCH1 and JAGGED1 expression in plasma cell neoplasia and a possible diagnostic value of their immunohistochemical evaluation of bone marrow infiltrates for multiple myeloma.

  8. [Expression of N-Cadherin in Patients with Multiple Myeloma and Its Clinical Significance].

    PubMed

    Ma, Jie; Yu, Qing-Feng; Liu, Xiao-Yan; Wang, Chong; Zhang, Qiu-Tang; Gan, Si-Lin; Chen, Sheng-Mei; Xie, Xin-Sheng; Liu, Yan-Fang; Liu, Lin-Xiang; Wan, Ding-Ming; Sun, Hui

    2015-08-01

    To investigate the expression of N-Cadherin in the patients with multiple myeloma (MM) and to explore its clinical significance. A total of 64 patients with multiple myeloma were enrolled in this study. The expression of N-Cadherin in bone marrow CD38⁺/CD138⁺ cells from multiple myeloma patients was detected by flow cytometry. The relationship between N-Cadherin expression and clinical prognostic factors was analyzed. Among 64 cases of MM, the expression of N-Cadherin in 17 patients (26.56%) was high (> 20%), while that in 47 cases (73.44%) was low (< 20%); The differences of N-Cadherin expression in disease staging and classification, known prognostic factors, myeloma cell antigen expression and bone damage between patients with high and low N-Cadherin expression were not statistically different; the difference N-Cadherin expression in genetic abnormalities such as D13S319 deletion, RB1 deletion and IGH gene rearrangement between above-methioned two groups was not significant. The 1q21 amplification rate in the group with high expression of N-Cadherin was enhanced significently; the overall survival (OS) times of patients with abnormally high and low expression levels of N-Cadherin were 26.7 months and 55.5 months respectively, and the difference was statistically significant (P < 0.05). The high expression of N-Cadherin in multiple myeloma may be one of the indicator for poor prognosis of MM, which may be related with 1q21 amplification.

  9. Effects of DTX3L on the cell proliferation, adhesion, and drug resistance of multiple myeloma cells.

    PubMed

    Shen, Yaodong; Sun, Yuxiang; Zhang, Linlin; Liu, Hong

    2017-06-01

    Cell adhesion-mediated drug resistance is an important factor that influences the effects of chemotherapy in multiple myeloma. DTX3L, a ubiquitin ligase, plays a key role in cell-cycle-related process. Here, we found that the expression of DTX3L gradually increased during the proliferation of myeloma cells, which resulted in arrest of the cell cycle in the G1 phase and promoted the adherence of myeloma cells to fibronectin or bone marrow stromal cells. In addition, silencing of DTX3L improved sensitivity to chemotherapy drugs in multiple myeloma cell lines adherent to bone marrow stromal cells and increased the expression of caspase-3 and poly-adenosine diphosphate-ribose polymerase, two markers of apoptosis. Finally, we also found that DTX3L expression was regulated by focal adhesion kinase. Taken together, the results of this study show that DTX3L plays an important role in the proliferation and cell adhesion-mediated drug resistance of multiple myeloma cells and as such may play a key role in the development of multiple myeloma.

  10. [Cyclins D in regulation and dysregulation of the cell cycle in multiple myeloma].

    PubMed

    Kubiczková, L; Dúcka, M; Sedlaříková, L; Kryukov, F; Hájek, R; Ševčíková, S

    2013-01-01

    Multiple myeloma is the second most common hematooncological disease characterized by clonal proliferation of plasma cells and monoclonal immunoglobulin production. It is a heterogenous disease; however, dysregulation of cyclins D seems to be an early unifying pathogenic event in multiple myeloma. In almost all patients, there is increased expression level of at least one of the cyclins D. Nevertheless, the mechanism of this increase is unknown in many cases. Next to wellknown roles of cyclins D in the cell cycle, they have many other functions contributing to tumor cell progression. Cyclins D are prognostic markers and are also used for subclassification of multiple myeloma. In this review, we focus on significance of cyclins D in multiple myeloma.

  11. Identify multiple myeloma stem cells: Utopia?

    PubMed

    Saltarella, Ilaria; Lamanuzzi, Aurelia; Reale, Antonia; Vacca, Angelo; Ria, Roberto

    2015-01-26

    Multiple myeloma (MM) is a hematologic malignancy of monoclonal plasma cells which remains incurable despite recent advances in therapies. The presence of cancer stem cells (CSCs) has been demonstrated in many solid and hematologic tumors, so the idea of CSCs has been proposed for MM, even if MM CSCs have not been define yet. The existence of myeloma CSCs with clonotypic B and clonotypic non B cells was postulated by many groups. This review aims to focus on these distinct clonotypic subpopulations and on their ability to develop and sustain MM. The bone marrow microenvironment provides to MM CSCs self-renewal, survival and drug resistance thanks to the presence of normal and cancer stem cell niches. The niches and CSCs interact each other through adhesion molecules and the interplay between ligands and receptors activates stemness signaling (Hedgehog, Wnt and Notch pathways). MM CSCs are also supposed to be responsible for drug resistance that happens in three steps from the initial cancer cell homing microenvironment-mediated to development of microenvironment-independent drug resistance. In this review, we will underline all these aspects of MM CSCs.

  12. Lenalidomide enhances myeloma-specific T-cell responses in vivo and in vitro

    PubMed Central

    Krämer, Isabelle; Engelhardt, Melanie; Fichtner, Sabrina; Neuber, Brigitte; Medenhoff, Sergej; Bertsch, Uta; Hillengass, Jens; Raab, Marc-Steffen; Hose, Dirk; Ho, Anthony D.; Goldschmidt, Hartmut; Hundemer, Michael

    2016-01-01

    ABSTRACT Immunomodulation is an important part of lenalidomide's mode of action. We analyzed the impact of lenalidomide on T cells from patients with multiple myeloma during lenalidomide therapy in vivo and in patients with lenalidomide-refractory disease in vitro Patients enrolled in the German Speaking Myeloma Multicenter Group (GMMG) MM5 trial received a consolidation therapy with two cycles of lenalidomide after autologous stem cell transplantation (ASCT). Half of the study population continued treatment with lenalidomide maintenance therapy for 2 y, while the other patients received lenalidomide maintenance therapy until complete remission. We analyzed 58 patients with (n = 30) or without (n = 28) lenalidomide therapy and 12 patients refractory to lenalidomide with regards to their anti-myeloma-specific T-cell responses displayed by IFNγ, Granzyme B, and Perforin secretion. The immunophenotype of T-cells was investigated by flow cytometry. Significantly, more myeloma-specific T-cell responses were observed in patients during lenalidomide therapy, compared to patients without treatment. Furthermore, we found on T-cells from patients treated with lenalidomide a decreased CD45RA expression, indicating a maturated immunophenotype and a decreased expression of CD57, indicating functional T cells. An improved myeloma-specific T-cell response was observed in 6 out of 12 heavily pretreated patients (refractory to lenalidomide) after in vitro incubation with lenalidomide. Complementary to the results in vivo, lenalidomide decreased CD45RA expression on T cells in vitro. PMID:27467960

  13. Lenalidomide enhances myeloma-specific T-cell responses in vivo and in vitro.

    PubMed

    Krämer, Isabelle; Engelhardt, Melanie; Fichtner, Sabrina; Neuber, Brigitte; Medenhoff, Sergej; Bertsch, Uta; Hillengass, Jens; Raab, Marc-Steffen; Hose, Dirk; Ho, Anthony D; Goldschmidt, Hartmut; Hundemer, Michael

    2016-05-01

    Immunomodulation is an important part of lenalidomide's mode of action. We analyzed the impact of lenalidomide on T cells from patients with multiple myeloma during lenalidomide therapy in vivo and in patients with lenalidomide-refractory disease in vitro Patients enrolled in the German Speaking Myeloma Multicenter Group (GMMG) MM5 trial received a consolidation therapy with two cycles of lenalidomide after autologous stem cell transplantation (ASCT). Half of the study population continued treatment with lenalidomide maintenance therapy for 2 y, while the other patients received lenalidomide maintenance therapy until complete remission. We analyzed 58 patients with (n = 30) or without (n = 28) lenalidomide therapy and 12 patients refractory to lenalidomide with regards to their anti-myeloma-specific T-cell responses displayed by IFNγ, Granzyme B, and Perforin secretion. The immunophenotype of T-cells was investigated by flow cytometry. Significantly, more myeloma-specific T-cell responses were observed in patients during lenalidomide therapy, compared to patients without treatment. Furthermore, we found on T-cells from patients treated with lenalidomide a decreased CD45RA expression, indicating a maturated immunophenotype and a decreased expression of CD57, indicating functional T cells. An improved myeloma-specific T-cell response was observed in 6 out of 12 heavily pretreated patients (refractory to lenalidomide) after in vitro incubation with lenalidomide. Complementary to the results in vivo, lenalidomide decreased CD45RA expression on T cells in vitro.

  14. Bone marrow myeloid cells in regulation of multiple myeloma progression.

    PubMed

    Herlihy, Sarah E; Lin, Cindy; Nefedova, Yulia

    2017-08-01

    Survival, growth, and response to chemotherapy of cancer cells depends strongly on the interaction of cancer cells with the tumor microenvironment. In multiple myeloma, a cancer of plasma cells that localizes preferentially in the bone marrow, the microenvironment is highly enriched with myeloid cells. The majority of myeloid cells are represented by mature and immature neutrophils. The contribution of the different myeloid cell populations to tumor progression and chemoresistance in multiple myeloma is discussed.

  15. An imbalance between Beclin-1 and p62 expression promotes the proliferation of myeloma cells through autophagy regulation.

    PubMed

    Tucci, Marco; Stucci, Stefania; Savonarola, Annalisa; Resta, Leonardo; Cives, Mauro; Rossi, Roberta; Silvestris, Franco

    2014-10-01

    Autophagy occurs in tumor cells acquiring cytotoxic drug resistance and its activation may impair their susceptibility to apoptosis in response to apoptogen agents. We investigated the pro-apoptotic effect of dexamethasone (Dex) on MM cell lines (U266, INA-6, LR5-8226, LIG, and MCC2) and primary malignant plasma cells from naïve and refractory/relapsed patients. We evaluated the transcriptional and ultrastructural events leading to autophagy by measuring Beclin-1 and p62 levels and transmission electronic microscopy. Autophagy was inhibited by hydroxychloroquine (HCQ), whereas the ability of Dex-resistant MM cells to recover the susceptibility to apoptosis was measured. A direct relationship between autophagy and Beclin-1 or LC3/Atg8 levels was observed, whereas their mRNAs were inversely correlated to p62 expression. Starvation strongly activated autophagy by inducing cellular, transcriptional, and ultrastructural modifications that were reversed by HCQ. Taken together, these data suggest that autophagy is a potential mechanism leading to drug resistance in MM, and suggest Beclin-1 and p62 as early markers of cell susceptibility to apoptosis. The combination of HCQ with novel agents may thus be considered to improve the therapeutic response in relapsed/resistant MM patients. Copyright © 2014 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  16. Targeting MET kinase with the small-molecule inhibitor amuvatinib induces cytotoxicity in primary myeloma cells and cell lines

    PubMed Central

    2013-01-01

    Background MET is a receptor tyrosine kinase that is activated by the ligand HGF and this pathway promotes cell survival, migration, and motility. In accordance with its oncogenic role, MET is constitutively active, mutated, or over-expressed in many cancers. Corollary to its impact, inhibition of MET kinase activity causes reduction of the downstream signaling and demise of cells. In myeloma, a B-cell plasma malignancy, MET is neither mutated nor over-expressed, however, HGF is increased in plasma or serum obtained from myeloma patients and this was associated with poor prognosis. The small-molecule, amuvatinib, inhibits MET receptor tyrosine kinase. Based on this background, we hypothesized that targeting the HGF/MET signaling pathway is a rational approach to myeloma therapy and that myeloma cells would be sensitive to amuvatinib. Methods Expression of MET and HGF mRNAs in normal versus malignant plasma cells was compared during disease progression. Cell death and growth as well as MET signaling pathway were assessed in amuvatinib treated primary myeloma cells and cell lines. Results There was a progressive increase in the transcript levels of HGF (but not MET) from normal plasma cells to refractory malignant plasma cells. Amuvatinib readily inhibited MET phosphorylation in primary CD138+ cells from myeloma patients and in concordance, increased cell death. A 48-hr amuvatinib treatment in high HGF-expressing myeloma cell line, U266, resulted in growth inhibition. Levels of cytotoxicity were time-dependent; at 24, 48, and 72 h, amuvatinib (25 μM) resulted in 28%, 40%, and 55% cell death. Consistent with these data, there was an amuvatinib-mediated decrease in MET phosphorylation in the cell line. Amuvatinib at concentrations of 5, 10, or 25 μM readily inhibited HGF-dependent MET, AKT, ERK and GSK-3-beta phosphorylation. MET-mediated effects were not observed in myeloma cell line that has low MET and/or HGF expression. Conclusions These data suggest that at

  17. MMSA-1 expression pattern in multiple myeloma and its clinical significance.

    PubMed

    Meng, Shan; Lu, Chenyang; Zhang, Wanggang; Shen, Wenjun; Wei, Yongchang; Su, Dan; Zhou, Fuling

    2016-11-01

    Multiple myeloma-associated antigen-1 (MMSA-1) is a novel multiple myeloma (MM)-associated antigen which has been recently identified. Herein, we have tried to examine its clinical significance by studying the relationship between its expression and selected clinicopathological features. We extracted mononuclear cells from the bone marrow of MM patients and healthy donors and compared the MMSA-1 expression by RT-PCR and Western blot analysis. In addition, we also analyzed MMSA-1 expression in patients that were grouped based on selected clinical parameters. Moreover, the impact of MMSA-1 on patients' survival was also explored. MMSA-1 mRNA and protein were significantly upregulated in MM patients in comparison with healthy donors. Moreover, among the newly diagnosed and relapsed/refractory patients, the MMSA-1 expression was higher in relapsed/refractory patients. In addition, MMSA-1 mRNA expression not only showed significantly higher correlation with clinical parameters such as age, Durie and Salmon stage, bone lesion condition, albumin, creatinine and lactate dehydrogenase but also has a close relationship with myeloma bone disease-related cytokines, genetic abnormalities and treatment response. Multivariate COX analysis predicted MMSA-1 and LDH levels to be independently associated with a poor progression-free survival and overall survival in myeloma patients. Our findings provide initial proof of concept that MMSA-1 is a potent gene that is specifically expressed in MM patients and could be a feasible biomarker and independent prognostic factor.

  18. Targeting B-cell maturation antigen in multiple myeloma

    PubMed Central

    Tai, Yu-Tzu; Anderson, Kenneth C

    2015-01-01

    Novel effective immunotherapies are needed for patients with multiple myeloma (MM), since disease recurrence remains a major obstacle. B-cell maturation antigen (BCMA), a cell surface protein universally expressed on malignant plasma cells , has emerged as a very selective antigen to be targeted in novel treatments for MM. We here first review BCMA-related biology, and then highlight the recent clinical development of a novel afucosylated anti-BCMA monoclonal antibody conjugated with monomethyl auristatin F via noncleavable linker (GSK2857916). Chimeric antigen receptor-expressing T cells targeting BCMA may also induce specific and durable anti-MM responses by patients’ own effector cells. Clinical trials testing these two approaches (NCT02064387, NCT02215967) are currently ongoing in relapsed and refractory MM patients. PMID:26370838

  19. Role of Myeloma-Derived MIF in Myeloma Cell Adhesion to Bone Marrow and Chemotherapy Response.

    PubMed

    Zheng, Yuhuan; Wang, Qiang; Li, Tianshu; Qian, Jianfei; Lu, Yong; Li, Yi; Bi, Enguang; Reu, Frederic; Qin, Yu; Drazba, Judy; Hsi, Eric; Yang, Jing; Cai, Zhen; Yi, Qing

    2016-11-01

    Multiple myeloma (MM) remains an incurable cancer characterized by accumulation of malignant plasma cells in the bone marrow (BM). The mechanism underlying MM homing to BM is poorly elucidated. The clinical significance of migration inhibitory factor (MIF) expression was examined by analyzing six independent gene expression profile databases of primary MM cells using the Student's t test and Kaplan-Meier test. Enzyme-linked immunosorbent assay was used to examine MIF expression. In vivo bioluminescent imaging was used to determine MM cell localization and treatment efficacy in human MM xenograft mouse models, with three to four mice per group. MM cell attachment to BM stromal cells (BMSCs) was monitored by cell adhesion assay. MIF regulation of the expression of adhesion molecules was determined by chromatin immunoprecipitation (ChIP) assay. Statistical tests were two-sided. High levels of MIF were detected in MM BM (MIF level in BM plasma: healthy = 10.72 ± 5.788 ng/mL, n = 5; MM = 1811 ± 248.7 ng/mL, n = 10; P < .001) and associated with poor survival of patients (Kaplan-Meier test for MM OS: 87 MIF(high) patients, 86 MIF(low) patients, P = .02). Knocking down MIF impaired MM cell adhesion to BMSCs in vitro and led to formation of extramedullary tumors in SCID mice. MIF acted through surface receptor CXCR4 and adaptor COPS5 to regulate the expression of adhesion molecules ALCAM, ITGAV, and ITGB5 on MM cells. More importantly, MIF-deficient MM cells were sensitive to chemotherapy in vitro when cocultured with BMSCs and in vivo. MIF inhibitor 4-IPP sensitized MM cells to chemotherapy. MIF is an important player and a novel therapeutic target in MM. Inhibiting MIF activity will sensitize MM cells to chemotherapy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Monitoring multiple myeloma by next-generation sequencing of V(D)J rearrangements from circulating myeloma cells and cell-free myeloma DNA.

    PubMed

    Oberle, Anna; Brandt, Anna; Voigtlaender, Minna; Thiele, Benjamin; Radloff, Janina; Schulenkorf, Anita; Alawi, Malik; Akyüz, Nuray; März, Manuela; Ford, Christopher T; Krohn-Grimberghe, Artus; Binder, Mascha

    2017-02-09

    Recent studies suggest that circulating tumor cells and cell-free DNA may represent powerful non-invasive tools for disease monitoring in patients with solid and hematological malignancies. Here, we conducted a pilot study in 27 myeloma patients to explore the clonotypic V(D)J rearrangement for monitoring of circulating myeloma cells (cmc-V(D)J) and cell-free myeloma DNA (cfm-V(D)J). Next-generation sequencing was used to define the myeloma V(D)J rearrangement and for subsequent peripheral blood tracking after treatment initiation. Positivity for cmc-/cfm-V(D)J was associated with conventional remission status (p<0.001) and 91% of non-responders/progressors versus 41% of responders had evidence of persistent cmc-/cfm-V(D)J (p<0.001). About half of the partial responders showed complete clearance of cmc-/cfm-V(D)J despite persistent M-protein, suggesting that these markers are less inert than the M-protein, rely more on cell turnover and therefore decline more rapidly after initiation of effective treatment. Positivity for cmc- and cfm-V(D)J was associated with each other (p=0.042), but in 30% discordant. This indicated that cfm-V(D)J may not be generated entirely by circulating myeloma cells and may reflect overall tumor burden. Prospective studies need to define the predictive potential of high-sensitivity determination of circulating myeloma cells and DNA in the monitoring of multiple myeloma.

  1. Circulating plasma cells in multiple myeloma: characterization and correlation with disease stage.

    PubMed

    Rawstron, A C; Owen, R G; Davies, F E; Johnson, R J; Jones, R A; Richards, S J; Evans, P A; Child, J A; Smith, G M; Jack, A S; Morgan, G J

    1997-04-01

    The aim of this study was to develop a flow cytometric test to quantitate low levels of circulating myeloma plasma cells, and to determine the relationship of these cells with disease stage. Cells were characterized using five-parameter flow cytometric analysis with a panel of antibodies, and results were evaluated by comparison with fluorescent consensus-primer IgH-PCR. Bone marrow myeloma plasma cells, defined by high CD38 and Syndecan-1 expression, did not express CD10, 23, 30, 34 or 45RO, and demonstrated weak expression of CD37 and CD45. 65% of patients had CD19- 56+ plasma cells, 30% CD19- 56(low), and 5% CD19+ 56+, and these two antigens discriminated myeloma from normal plasma cells, which were all CD19+ 56(low). Peripheral blood myeloma plasma cells had the same composite phenotype, but expressed significantly lower levels of CD56 and Syndecan-1, and were detected in 75% (38/51) of patients at presentation, 92% (11/12) of patients in relapse, and 40% (4/10) of stem cell harvests. Circulating plasma cells were not detectable in patients in CR (n = 9) or normals (n = 10), at a sensitivity of up to 1 in 10,000 cells. There was good correlation between the flow cytometric test and IgH-PCR results: myeloma plasma cells were detectable by flow cytometry in all PCR positive samples, and samples with no detectable myeloma plasma cells were PCR negative. Absolute numbers decreased in patients responding to treatment, remained elevated in patients with refractory disease, and increased in patients undergoing relapse. We conclude that flow cytometry can provide an effective aternative to IgH-PCR that will allow quantitative assessment of low levels of residual disease.

  2. Plasmablastic multiple myeloma following clear cell renal cell carcinoma

    PubMed Central

    Padhi, Somanath; Mokkappan, Sudhagar; Varghese, Renu G’ Boy; Veerappan, Ilangovan

    2014-01-01

    We aim to describe the clinicohaematological profile of an elderly male with plasmablastic multiple myeloma (MM) (IgG λ, International System Stage II) with an unfavourable outcome following chemotherapy. The serum interleukin-6 level was found to be markedly elevated (2464 pg/mL, reference; <50 pg/mL). Thirty-six months prior to MM diagnosis, he underwent left radical nephrectomy for a stage III (pT3N0M0) clear cell renal cell carcinoma (RCC, Fuhrman grade 2). The unique MM-RCC association, shared risk factors, myeloma pathobiology and clinical implications are discussed with a brief literature review. PMID:25103318

  3. Mechanisms of G1 cell cycle arrest and apoptosis in myeloma cells induced by hybrid-compound histone deacetylase inhibitor

    SciTech Connect

    Fujii, Seiko; Okinaga, Toshinori; Ariyoshi, Wataru; Takahashi, Osamu; Iwanaga, Kenjiro; Nishino, Norikazu; Tominaga, Kazuhiro; Nishihara, Tatsuji

    2013-05-10

    Highlights: •Novel histone deacetylase inhibitor Ky-2, remarkably inhibits myeloma cell growth. •Ky-2 demonstrates no cytotoxicity against normal lymphocytic cells. •Ky-2 induces cell cycle arrest through the cell cycle-associated proteins. •Ky-2 induces Bcl-2-inhibitable apoptosis through a caspase-dependent cascade. -- Abstract: Objectives: Histone deacetylase (HDAC) inhibitors are new therapeutic agents, used to treat various types of malignant cancers. In the present study, we investigated the effects of Ky-2, a hybrid-compound HDAC inhibitor, on the growth of mouse myeloma cells. Materials and methods: Myeloma cells, HS-72, P3U1, and mouse normal cells were used in this study. Effect of HDAC inhibitors on cell viability was determined by WST-assay and trypan blue assay. Cell cycle was analyzed using flow cytometer. The expression of cell cycle regulatory and the apoptosis associated proteins were examined by Western blot analysis. Hoechst’s staining was used to detect apoptotic cells. Results: Our findings showed that Ky-2 decreased the levels of HDACs, while it enhanced acetylation of histone H3. Myeloma cell proliferation was inhibited by Ky-2 treatment. Interestingly, Ky-2 had no cytotoxic effects on mouse normal cells. Ky-2 treatment induced G1-phase cell cycle arrest and accumulation of a sub-G1 phase population, while Western blotting analysis revealed that expressions of the cell cycle-associated proteins were up-regulated. Also, Ky-2 enhanced the cleavage of caspase-9 and -3 in myeloma cells, followed by DNA fragmentation. In addition, Ky-2 was not found to induce apoptosis in bcl-2 overexpressing myeloma cells. Conclusion: These findings suggest that Ky-2 induces apoptosis via a caspase-dependent cascade and Bcl-2-inhibitable mechanism in myeloma cells.

  4. A patient with Multiple myeloma and Renal cell carcinoma.

    PubMed

    Shahi, Farhad; Ghalamkari, Marziye; Mirzania, Mehrzad; Khatuni, Mahdi

    2016-01-01

    The coexistence of two malignancies is rarely seen. A little association between hematologic malignancies especially multiple myeloma and renal cell carcinoma has been reported in the recent past. Several case series revealed a bidirectional association between these two malignancies which may be due to the common risk factors, similar cytokine growth requirements and clinical presentation. Here, we aim to describe a patient who had multiple myeloma and in his work up renal cell carcinoma was found out incidentally. We would like to create awareness among clinicians for the coincidence of Renal cell carcinoma and Multiple myeloma.

  5. A patient with Multiple myeloma and Renal cell carcinoma

    PubMed Central

    Shahi, Farhad; Ghalamkari, Marziye; Mirzania, Mehrzad; Khatuni, Mahdi

    2016-01-01

    The coexistence of two malignancies is rarely seen. A little association between hematologic malignancies especially multiple myeloma and renal cell carcinoma has been reported in the recent past. Several case series revealed a bidirectional association between these two malignancies which may be due to the common risk factors, similar cytokine growth requirements and clinical presentation. Here, we aim to describe a patient who had multiple myeloma and in his work up renal cell carcinoma was found out incidentally. We would like to create awareness among clinicians for the coincidence of Renal cell carcinoma and Multiple myeloma. PMID:27047652

  6. EphA4 promotes cell proliferation and cell adhesion-mediated drug resistance via the AKT pathway in multiple myeloma.

    PubMed

    Ding, Linlin; Shen, Yaodong; Ni, Jing; Ou, Yiqing; Ou, Yangyu; Liu, Hong

    2017-03-01

    Eph receptor A4 (EphA4), a member of the erythropoietin-producing hepatocellular (Eph) family, has been reported to upregulate in several tumors. However, the role of EphA4 in multiple myeloma has not been clarified yet. In this study, we found that EphA4 promoted proliferation of multiple myeloma cells via the regulation of cell cycle. Besides, EphA4 was closely related to cell adhesion of multiple myeloma cells and promoted cell adhesion-mediated drug resistance by enhancing the phosphorylation levels of Akt (p-AKT) expression in multiple myeloma. More interestingly, we discovered that EphA4 can interact with cyclin-dependent kinase 5 (CDK5) and regulate its expression in multiple myeloma. CDK5 has been reported to be overexpressed in multiple myeloma which mediated bortezomib resistance and also participated in AKT pathway. And we have also proved the fact. So, we supposed that EphA4 interacted with CDK5 and promoted its expression which in turn enhanced p-AKT expression and promoted cell adhesion-mediated drug resistance in multiple myeloma. Therefore, this study clarifies the molecular mechanism of cell adhesion-mediated drug resistance and may be useful in identifying potential target for treatment of multiple myeloma.

  7. SGK Kinase Activity in Multiple Myeloma Cells Protects against ER Stress Apoptosis via a SEK-Dependent Mechanism.

    PubMed

    Hoang, Bao; Shi, Yijiang; Frost, Patrick J; Mysore, Veena; Bardeleben, Carolyne; Lichtenstein, Alan

    2016-04-01

    To assess the role of the serum and glucocorticoid-regulated kinase (SGK) kinase in multiple myeloma, we ectopically expressed wild type or a phosphomimetic version of SGK into multiple myeloma cell lines. These cells were specifically resistant to the ER stress inducers tunicamycin, thapsigargin, and bortezomib. In contrast, there was no alteration of sensitivity to dexamethasone, serum starvation, or mTORC inhibitors. Mining of genomic data from a public database indicated that low baseline SGK expression in multiple myeloma patients correlated with enhanced ability to undergo a complete response to subsequent bortezomib treatment and a longer time to progression and overall survival following treatment. SGK overexpressing multiple myeloma cells were also relatively resistant to bortezomib in a murine xenograft model. Parental/control multiple myeloma cells demonstrated a rapid upregulation of SGK expression and activity (phosphorylation of NDRG-1) during exposure to bortezomib and an SGK inhibitor significantly enhanced bortezomib-induced apoptosis in cell lines and primary multiple myeloma cells. In addition, a multiple myeloma cell line selected for bortezomib resistance demonstrated enhanced SGK expression and SGK activity. Mechanistically, SGK overexpression constrained an ER stress-induced JNK proapoptotic pathway and experiments with a SEK mutant supported the notion that SGK's protection against bortezomib was mediated via its phosphorylation of SEK (MAP2K4) which abated SEK/JNK signaling. These data support a role for SGK inhibitors in the clinical setting for myeloma patients receiving treatment with ER stress inducers like bortezomib. Enhanced SGK expression and activity in multiple myeloma cells contributes to resistance to ER stress, including bortezomib challenge. ©2016 American Association for Cancer Research.

  8. Identification of translocation products but not K-RAS mutations in memory B cells from patients with multiple myeloma.

    PubMed

    Rasmussen, Thomas; Haaber, Jacob; Dahl, Inger Marie; Knudsen, Lene M; Kerndrup, Gitte B; Lodahl, Marianne; Johnsen, Hans E; Kuehl, Michael

    2010-10-01

    Several laboratories have shown that cells with a memory B-cell phenotype can have the same clonotype as multiple myeloma tumor cells. The aim of this study was to determine whether some memory B cells have the same genetic alterations as their corresponding multiple myeloma malignant plasma cells. The methodology included sorting multiple myeloma or memory B cells into RNA stabilizing medium for generation of subset-specific polymerase chain reaction complementary DNA libraries from one or 100 cells. Cells with the phenotype of tumor plasma cells (CD38(++)CD19(-)CD45(-/+)CD56(-/+/++)) or memory B cells (CD38(-)/CD19(+)/CD27(+)) were isolated by flow activated cell sorting. In samples from all four patients with multiple myeloma and from two of the three with monoclonal gammopathy of undetermined significance, we identified memory B cells expressing multiple myeloma-specific oncogenes (FGFR3; IGH-MMSET; CCND1 high) dysregulated by an IGH translocation in the respective tumor plasma cells. By contrast, in seven patients with multiple myeloma, each of whom had tumor plasma cells with a K-RAS61 mutation, a total of 32,400 memory B cells were analyzed using a sensitive allele-specific, competitive blocker polymerase chain reaction assay, but no K-RAS mutations were identified. The increased expression of a specific "early" oncogene of multiple myeloma (monoclonal gammopathy of undetermined significance) in some memory B cells suggests that dysregulation of the oncogene occurs in a precursor B-cell that can generate memory B cells and transformed plasma cells. However, if memory B cells lack "late" oncogene (K-RAS) mutations but express the "early" oncogene, they cannot be involved in maintaining the multiple myeloma tumor, but presumably represent a clonotypic remnant that is only partially transformed.

  9. Low-dose bortezomib increases the expression of NKG2D and DNAM-1 ligands and enhances induced NK and γδ T cell-mediated lysis in multiple myeloma

    PubMed Central

    Zhu, Shan; Zhou, Lei; Jin, Feng; Zhou, Yulai; Xu, Dongsheng; Xu, Jianting; Zhao, Lianjing; Hao, Shanshan; Li, Wei; Cui, Jiuwei

    2017-01-01

    Multiple myeloma (MM) is an incurable hematological malignancy, although bortezomib has markedly improved its outcomes. Growing clinical evidence indicates that enhancing induced natural killer (NK) or γδ T cells for infusion is useful in the treatment of MM. However, whether combination treatment with bortezomib and induced NK and γδ T cells further improves outcomes in MM, and how the treatments should be combined, remain unclear. Herein, we found that low-dose bortezomib did not suppress the viability of induced NK and γδ T cells, but did induce MM cell apoptosis. Importantly, low-dose bortezomib increased the expression of NKG2D and DNAM-1 ligands on MM cells, which sensitized the multiple myeloma cells to lysis by induced NK and γδ T cells. Our results suggested that combination treatment with low-dose bortezomib and induced NK or γδ T cells had a synergistic cytotoxic effect on MM cells. This study provided a proof of principle for the design of future trials and investigation of this combination therapeutic strategy for MM treatment. PMID:27992381

  10. Cytogenetic Study and Analysis of Protein Expression in Plasma Cell Myeloma with t(11;14)(q13;q32): Absence of BCL6 and SOX11, and Infrequent Expression of CD20 and PAX5.

    PubMed

    Yokoi, Satoshi; Sakai, Hirotaka; Uchida, Akiko; Uemura, Yu; Sato, Kazuyuki; Tsuruoka, Yuka; Nishio, Yuji; Matsunawa, Manabu; Suzuki, Yoshinori; Isobe, Yasushi; Kato, Masayuki; Inoue, Yasuyuki; Hoshikawa, Masahiro; Miura, Ikuo

    2015-01-01

    The t(11;14)(q13;q32) translocation is the most common chromosomal translocation in plasma cell myeloma (PCM), but the cytogenetic and immunophenotypic features of PCM with t(11;14)(q13;q32) remain to be fully elucidated. To address the issue, we retrospectively analyzed 21 newly diagnosed PCM patients with the t(11;14)(q13;q32) translocation in our institute. CD20 is a B-cell-specific transmembrane protein that is the topic of much focus as a potential target in immunotherapy. We observed a low incidence of CD20 expression (2 of 21 patients, 11%), although the expression of CD20 was previously reported to be associated with t(11;14)(q13;q32). PAX5 is an essential transcriptional factor involved in B-cell development and commitment, and is down-regulated upon plasma cell differentiation. We observed one patient (6%) with expression of PAX5. The expression of CD19, CD56, and CD138 was detected in one (0.7%), nine (60%), and 13 patients (87%), respectively. Cyclin D1, CD38, and BCL2 were detected in all patients; on the other hand, neither BCL6 nor SOX11 was detected in any of the evaluated patients. Abnormalities of chromosome 13 were detected in six patients (38%), but deletion of TP53 was not observed in any of the evaluated patients. Our results suggest the absence of BCL6 and SOX11 expression, and infrequent expression of CD20, PAX5, and CD56 in PCM with t(11;14)(q13;q32), in contrast to the findings of earlier reports.

  11. Myeloma cell-induced disruption of bone remodelling compartments leads to osteolytic lesions and generation of osteoclast-myeloma hybrid cells.

    PubMed

    Andersen, Thomas L; Søe, Kent; Sondergaard, Teis E; Plesner, Torben; Delaisse, Jean-Marie

    2010-02-01

    Osteolytic lesions are a hallmark of multiple myeloma. They are due to the hyperactivity of bone resorbing osteoclasts and hypoactivity of bone forming osteoblasts, in response to neighbouring myeloma cells. This study identified a structure that deeply affects this response, because of its impact on the physical organisation of the myeloma cell microenvironment. The proximity between myeloma cells and osteoclasts or osteoblasts was shown to be conditioned by the recently discovered layer of flat cells that separates the osteoclasts and osteoblasts from the bone marrow, by forming a canopy over bone remodelling compartment (BRC). These canopies are frequently disrupted in myeloma, and this disruption correlates with increased proximity and density of myeloma cells. In vitro evidence indicates that this disruption may be due to direct contact between myeloma and BRC canopy cells. Importantly, this disruption and increased proximity and density of myeloma cells coincides with key myeloma-induced bone events, such as osteolytic lesions, impaired bone formation despite increased bone resorption, and fusion of myeloma cells with osteoclasts thereby forming myeloma-osteoclast hybrid cells. These findings strongly support a critical role of BRC canopies in myeloma-induced bone disease. BRC canopies could therefore be considered as a new therapeutic target.

  12. Inflammatory environment created by fibroblast aggregates induces growth arrest and phenotypic shift of human myeloma cells.

    PubMed

    Szabova, K; Bizikova, I; Mistrik, M; Bizik, J

    2015-01-01

    Multiple myeloma (MM) is characterized by accumulation of clonal plasma cells (PCs) predominantly in the bone marrow but tumor cells appear in the circulation in significant numbers as the disease progress. The occurrence of circulating multiple myeloma cells raises question concerning interactions between these cells and stroma of peripheral organs specifically under certain pathophysiological conditions, e.g., inflammation. Therefore, in the present study we exposed three human multiple myeloma cell lines to sterile inflammation produced in a culture dish by clusters of cell-cell contact-activated dermal fibroblasts. We now observed that myeloma cells responded differently to this particular type of stromal cell activation, nemosis. Two cell lines U-266 and LP-1 were minimally affected by the proinflammatory signalling, while the third cell line RPMI 8226 responded with growth arrest and altered expression of three phenotypic markers CD38, CD45, and CD138, indicating dedifferentiation shift of these cells to less mature PC-like phenotype. In a preliminary study we identified a subclone of cells having similar phenotype in 14 out of 23 analysed specimens of MM patients. This set of data indicates that the observed phenomenon might be clinically relevant. Our results emphasize the potential role of activated stromal fibroblasts and subsequent inflammation in altering phenotype of PCs and directing myeloma progression towards dormancy. Given the significant implication of dormant myeloma cells that might serve as a major cellular basis for the relapse, understanding their unique biology and precise elucidation of the underlying molecular mechanisms for the maintenance of quiescence is important. Therefore, we consider this study as a particular contribution to development of experimental model for in vitro studies of cancer dormancy.

  13. Establishment of stable multiple myeloma cell line with overexpressed PDCD5 and its proapoptosis mechanism.

    PubMed

    Feng, Wenchang; Fu, Yunfeng; Zhang, Yanan; Lv, Ben; Li, Xin; Zhang, Fan; Gui, Rong; Liu, Jing

    2015-01-01

    The transfected multiple myeloma cell line showing a stable doxycycline (DOX)-induced expression of PDCD5 was established. PDCD5 overexpression in the transfected cell line was analyzed for its effect on the dexamethasone (DXM)-induced apoptosis along with a discussion on the mechanism. (1) Lentiviral plasmid was used for the transfection of PDCD5 gene into the multiple myeloma cells. The screening was done by applying puromycin, and PDCD5 expression was induced by DOX. Real-time fluorescence quantitative PCR and Western Blot were performed to detect the expression levels of the target gene in the stable transfection group and the empty vector group; (2) The cell apoptosis rates of stable transfection group, blank group and empty vector group were measured by Annexin-APC/PI double staining flow cytometry; (3) Real-time fluorescence quantitative PCR and Western Blot were carried out to detect the expression levels of survivin, casepase-3 and Bcl-2 genes and proteins. PDCD5 expression was significantly increased in the stably tranfected multiple myeloma cells compared with blank group and empty vector group. The cells in the transfection group were more sensitive to DXM, and the proportion of apoptotic cells was obviously higher than that of the blank group and the empty vector group (P<0.05). Survivin and Bcl-2 were considerably downregulated in U266/PDCD5 cells and combined DXM group than in the single agent group. However, caspase-3 was significantly upregulated. Multiple myeloma cell line transfected with endogenous PDCD5 gene was established. The endogenous PDCD5 overexpression accelerated the cell apoptosis under DXM induction. The proapoptotic action of PDCD5 gene had the effect of activating casepase-3 and downregulating survivin and Bcl-2, which further promoted the apoptosis of multiple myeloma cells.

  14. Electro-acoustic fusion of erythrocytes and of myeloma cells.

    PubMed

    Vienken, J; Zimmermann, U; Zenner, H P; Coakley, W T; Gould, R K

    1985-11-07

    Mammalian cells can be concentrated in a sound field. A method is introduced, which combines the reversible aggregation of cells in a sound field with the electrical breakdown of cell membranes to fuse cells, which are in contact. Human red blood cells and mouse myeloma cells are fused by means of that procedure.

  15. Dexamethasone-induced cell death is restricted to specific molecular subgroups of multiple myeloma

    PubMed Central

    Kervoëlen, Charlotte; Ménoret, Emmanuelle; Gomez-Bougie, Patricia; Bataille, Régis; Godon, Catherine; Marionneau-Lambot, Séverine; Moreau, Philippe; Pellat-Deceunynck, Catherine; Amiot, Martine

    2015-01-01

    Due to its cytotoxic effect in lymphoid cells, dexamethasone is widely used in the treatment of multiple myeloma (MM). However, only a subset of myeloma patients responds to high-dose dexamethasone. Despite the undeniable anti-myeloma benefits of dexamethasone, significant adverse effects have been reported. We re-evaluate the anti-tumor effect of dexamethasone according to the molecular heterogeneity of MM. We demonstrated that the pro-death effect of dexamethasone is related to the genetic heterogeneity of MM because sensitive cell lines were restricted to MAF and MMSET signature subgroups, whereas all CCND1 cell lines (n = 10) were resistant to dexamethasone. We demonstrated that the glucocorticoid receptor expression was an important limiting factor for dexamethasone-induced cell death and we found a correlation between glucocorticoid receptor levels and the induction of glucocorticoid-induced leucine zipper (GILZ) under dexamethasone treatment. By silencing GILZ, we next demonstrated that GILZ is necessary for Dex induced apoptosis while triggering an imbalance between anti- and pro-apoptotic Bcl-2 proteins. Finally, the heterogeneity of the dexamethasone response was further confirmed in vivo using myeloma xenograft models. Our findings suggested that the effect of dexamethasone should be re-evaluated within molecular subgroups of myeloma patients to improve its efficacy and reduce its adverse effects. PMID:26323097

  16. Intracellular glutathione determines bortezomib cytotoxicity in multiple myeloma cells

    PubMed Central

    Starheim, K K; Holien, T; Misund, K; Johansson, I; Baranowska, K A; Sponaas, A-M; Hella, H; Buene, G; Waage, A; Sundan, A; Bjørkøy, G

    2016-01-01

    Multiple myeloma (myeloma in short) is an incurable cancer of antibody-producing plasma cells that comprise 13% of all hematological malignancies. The proteasome inhibitor bortezomib has improved treatment significantly, but inherent and acquired resistance to the drug remains a problem. We here show that bortezomib-induced cytotoxicity was completely dampened when cells were supplemented with cysteine or its derivative, glutathione (GSH) in ANBL-6 and INA-6 myeloma cell lines. GSH is a major component of the antioxidative defense in eukaryotic cells. Increasing intracellular GSH levels fully abolished bortezomib-induced cytotoxicity and transcriptional changes. Elevated intracellular GSH levels blocked bortezomib-induced nuclear factor erythroid 2-related factor 2 (NFE2L2, NRF2)-associated stress responses, including upregulation of the xCT subunit of the Xc- cystine-glutamate antiporter. INA-6 cells conditioned to increasing bortezomib doses displayed reduced bortezomib sensitivity and elevated xCT levels. Inhibiting Xc- activity potentiated bortezomib-induced cytotoxicity in myeloma cell lines and primary cells, and re-established sensitivity to bortezomib in bortezomib-conditioned cells. We propose that intracellular GSH level is the main determinant of bortezomib-induced cytotoxicity in a subset of myeloma cells, and that combined targeting of the proteasome and the Xc- cystine-glutamate antiporter can circumvent bortezomib resistance. PMID:27421095

  17. Clonal plasma cells from monoclonal gammopathy of undetermined significance, multiple myeloma and plasma cell leukemia show different expression profiles of molecules involved in the interaction with the immunological bone marrow microenvironment.

    PubMed

    Pérez-Andrés, M; Almeida, J; Martín-Ayuso, M; Moro, M J; Martín-Nuñez, G; Galende, J; Borrego, D; Rodríguez, M J; Ortega, F; Hernandez, J; Moreno, I; Domínguez, M; Mateo, G; San Miguel, J F; Orfao, A

    2005-03-01

    The immunological bone marrow (BM) microenvironment plays a major role in controlling growth and survival of clonal plasma cells (PC); this might translate into different patterns of expression of molecules involved in immune responses on PC from different types of monoclonal gammopathies (MG). We have studied the expression of a group of nine such molecules on both BMPC and the plasma of 61 newly diagnosed MG patients (30 MG of undetermined significance (MGUS), 27 multiple myeloma (MM) and four plasma cell leukemia (PCL)) and five normal individuals. Clonal PC from all MG displayed significantly increased levels of CD56, CD86 and CD126, and decreased amounts of CD38 (P<0.001). Additionally, HLA-I and beta2-microglobulin were abnormally highly expressed in MGUS, while CD40 expression was decreased in MM and PCL (P<0.05). Interestingly, a progressive increase in the soluble levels of beta2-microglobulin was found from MGUS to MM and PCL patients (P=0.03). In contrast, all groups showed similar surface and soluble amounts of CD126, CD130 and CD95, except for increased soluble levels of CD95 observed in PCL. Overall, those phenotypic differences are consistent with increased antigen presentation and costimulatory capacities in MGUS, which progressively deteriorate in malignant MG (MM and PCL).

  18. [Analysis of cell morphology and immunophenotypic characteristics in 47 cases of multiple myeloma].

    PubMed

    Su, Xian-Du; Lin, Rong; Xu, Xiao-Lan; Chen, Xu; Zhan, Wen-Li; Zheng, Jin-Pu; Fan, Chang-Ling

    2015-02-01

    This study was to investigate the cell morphology and cell immune phenotypic characteristics in patients with multiple myeloma (MM). The flow cytometry with multiparametric direct immunofluorescence technique, and CD45/SSC and CD38(+)(+)/CD138(+) gating were used to measure cell markers CD138, CD38, CD56, CD117, CD3, CD13, CD33, CD19, CD7, CD20, CD22, CD34, CD28 in 47 MM patients. At the same time the morphology examination of bone marrow cells was performed. The suspicious myeloma cell ratio in MM patients was 9.42%-74.25% detected by flow cytometry, moreover, the myeloma cell ratio detected by morphology examination was 11.0%-80.6%, there was a good correlation between the two detection methods (r(2) = 0.54, P < 0.001). The ratio of antigen positive expression was as follows: 74.46% for CD138, 100% for CD38, 57.44% for CD56, 40.42% for CD117, 6.38% for CD13, 19.15% for CD33, 8.51% for CD20, 27.66% for CD28, 2.12% for CD22, 4.25% for CD34, 0% for CD3, 0% for CD19, 0% for CD7. CD45/SSC and CD38(+)/CD138(+) gating technique can accurately gate multiple myeloma cell sets which need analysis, the majority of myeloma cells expreses CD138, CD38, CD56 antigens. The immunophenotypic analysis combined with the cell morphology examination more contribute to the diagnosis and differential diagnosis of multiple myeloma.

  19. Multiple Myeloma

    MedlinePlus

    Multiple myeloma Overview Multiple myeloma is a cancer that forms in a type of white blood cell called a plasma cell. Plasma cells help ... by making antibodies that recognize and attack germs. Multiple myeloma causes cancer cells to accumulate in the bone ...

  20. Lenalidomide increases human dendritic cell maturation in multiple myeloma patients targeting monocyte differentiation and modulating mesenchymal stromal cell inhibitory properties.

    PubMed

    Costa, Federica; Vescovini, Rosanna; Bolzoni, Marina; Marchica, Valentina; Storti, Paola; Toscani, Denise; Accardi, Fabrizio; Notarfranchi, Laura; Dalla Palma, Benedetta; Manferdini, Cristina; Manni, Sabrina; Todaro, Giannalisa; Lisignoli, Gina; Piazza, Francesco; Aversa, Franco; Giuliani, Nicola

    2017-08-08

    The use of Lenalidomide (LEN), to reverse tumor-mediated immune suppression and amplify multiple myeloma-specific immunity is currently being explored. Particularly, LEN effects on dendritic cells (DCs) are still unclear. In this study, we investigated the potential effect of LEN on DC differentiation and activity. DCs were differentiated either from CD14(+) cells obtained from patients with multiple myeloma or from a human monocytic cell line. LEN, at the concentration range reached in vivo, significantly increased the median intensity expression of HLA-DR, CD86 and CD209 by DCs derived from both bone marrow and peripheral myeloma monocytes and enhanced the production of Interleukin-8, C-C motif chemokine ligand (CCL) 2, CCL5 and tumor necrosis factor-α. Consistently, LEN pre-treated DCs showed an increased ability to stimulate autologous CD3(+) cell proliferation. LEN effect on dendritic differentiation was associated with the degradation of the Cereblon-related factors Ikaros and Aiolos. Moreover, we showed that LEN also blunted mesenchymal stromal cell inhibitory effect on dendritic differentiation, inhibiting Casein Kinase-1α levels. Finally, in vitro data were confirmed in ex vivo cultures obtained from relapsed myeloma patients treated with LEN, showing a significant increase of DC differentiation from peripheral blood monocytes. In conclusion, LEN increased the expression of mature dendritic markers both directly and indirectly and enhanced DC ability to stimulate T cell proliferation and to release chemokines. This suggests a new possible mechanism by which LEN could exert its anti-myeloma activity.

  1. The importance of the number of transplanted cells with dipeptidyl peptidase-4 expression on the haematopoietic recovery and lymphocyte reconstitution in patients with multiple myeloma after autologous haematopoietic stem-cell transplantation.

    PubMed

    Kopinska, Anna; Krawczyk-Kulis, Małgorzata; Dziaczkowska-Suszek, Joanna; Bieszczad, Katarzyna; Jagoda, Krystyna; Kyrcz-Krzemien, Slawomira

    2017-06-01

    Autologous haematopoietic stem cell transplantation (AHSCT) remains recommended treatment in the first remission in multiple myeloma (MM). In earlier research it has been suggested that there is an influence of the expression of dipeptidyl peptidase-4 (CD26) on both the homing and lymphocyte reconstitution after AHSCT. The aim of the study is to investigate the influence of transplanted cells CD26+ on the haematopoietic recovery and lymphocyte reconstitution after AHSCT in MM. Forty eight patients with MM underwent AHSCT in our centre. Number of all CD26+ cells, CD26+ lymphocytes, CD26+ monocytes and CD26+ and CD34+ cells were measured in the harvested material. Number of lymphocyte's subpopulations (all lymphocytes CD3+, helpers, suppressors, natural killer (NK), cytotoxic NK and lymphocytes B) were measured in peripheral blood during regeneration after AHSCT. In both flow cytometry was used. On the basis of the analysis there was, as regards regeneration of haematopoietic cells after AHSCT, it was shown that a higher number of monocytes CD26+ improves the reconstitution of helper, suppressor and NK lymphocytes. A higher number of transplanted CD26+ lymphocytes accelerates the reconstitution of NK lymphocytes, whereas a higher number of all the cells CD26+ has a positive impact on the regeneration of cytotoxic NK lymphocytes. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Increased expression of the tight junction protein TJP1/ZO-1 is associated with upregulation of TAZ-TEAD activity and an adult tissue stem cell signature in carfilzomib-resistant multiple myeloma cells and high-risk multiple myeloma patients.

    PubMed

    Riz, Irene; Hawley, Robert G

    2017-07-01

    Tight junction protein 1 (TJP1) has recently been proposed as a biomarker to identify multiple myeloma (MM) patients most likely to respond to bortezomib- and carfilzomib-based proteasome inhibitor regimens. Herein we report increased expression of TJP1 during the adaptive response mediating carfilzomib resistance in the LP-1/Cfz MM cell line. Moreover, increased TJP1 expression delineated a subset of relapsed/refractory MM patients on bortezomib-based therapy sharing an LP-1/Cfz-like phenotype characterized by activation of interacting transcriptional effectors of the Hippo signaling cascade (TAZ and TEAD1) and an adult tissue stem cell signature. siRNA-mediated knockdown of TJP1 or TAZ/TEAD1 partially sensitized LP-1/Cfz cells to carfilzomib. Connectivity Map analysis identified translation inhibitors as candidate therapeutic agents targeting this molecular phenotype. We confirmed this prediction by showing that homoharringtonine (omacetaxine mepesuccinate) - the first translation inhibitor to be approved by the U.S. Food and Drug Administration - displayed potent cytotoxic activity on LP-1/Cfz cells. Homoharringtonine treatment reduced the levels of TAZ and TEAD1 as well as the MM-protective proteins Nrf2 and MCL1. Thus, our data suggest the importance of further studies evaluating translation inhibitors in relapsed/refractory MM. On the other hand, use of TJP1 as a MM biomarker for proteasome inhibitor sensitivity requires careful consideration.

  3. Targeting executioner procaspase-3 with the procaspase-activating compound B-PAC-1 induces apoptosis in multiple myeloma cells.

    PubMed

    Zaman, Shadia; Wang, Rui; Gandhi, Varsha

    2015-11-01

    Multiple myeloma (MM) is a plasma cell neoplasm that has a low apoptotic index. We investigated a new class of small molecules that target the terminal apoptosis pathway, called procaspase activating compounds (PACs), in myeloma cells. PAC agents (PAC-1 and B-PAC-1) convert executioner procaspases (procaspase 3, 6, and 7) to active caspases 3, 6, and 7, which cleave target substrates to induce cellular apoptosis cascade. We hypothesized that targeting this terminal step could overcome survival and drug-resistance signals in myeloma cells and induce programmed cell death. Myeloma cells expressed executioner caspases. Additionally, our studies demonstrated that B-PAC-1 is cytotoxic to chemotherapy-resistant or sensitive myeloma cell lines (n = 7) and primary patient cells (n = 11). Exogenous zinc abrogated B-PAC-1-induced cell demise. Apoptosis induced by B-PAC-1 treatment was similar in the presence or absence of growth-promoting cytokines such as interleukin 6 and hepatocyte growth factor. Presence or absence of antiapoptotic proteins such as BCL-2, BCL-XL, or MCL-1 did not impact B-PAC-1-mediated programmed cell death. Collectively, our data demonstrate the proapoptotic effect of B-PAC-1 in MM and suggest that activating terminal executioner procaspases 3, 6, and 7 bypasses survival and drug-resistance signals in myeloma cells. This novel strategy has the potential to become an effective antimyeloma therapy.

  4. Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation

    USDA-ARS?s Scientific Manuscript database

    A major problem in patients with multiple myeloma is chemotherapy resistance, which develops in myeloma cells upon interaction with bone marrow stromal cells. However, few studies have determined the role of bone marrow adipocytes, a major component of stromal cells in the bone marrow, in myeloma ch...

  5. Simplified flow cytometric immunophenotyping panel for multiple myeloma, CD56/CD19/CD138(CD38)/CD45, to differentiate neoplastic myeloma cells from reactive plasma cells.

    PubMed

    Jeong, Tae-Dong; Park, Chan-Jeoung; Shim, Hyoeun; Jang, Seongsoo; Chi, Hyun-Sook; Yoon, Dok Hyun; Kim, Dae-Young; Lee, Jung-Hee; Lee, Je-Hwan; Suh, Cheolwon; Lee, Kyoo Hyung

    2012-12-01

    Flow cytometric immunophenotyping has been used to identify neoplastic plasma cell populations in patients with multiple myeloma (MM). Previous reports have described the use of several antigens, including CD38, CD138, CD56, CD117, CD52, CD19 and CD45, to distinguish distinct populations of plasma cells. The aim of this study was to evaluate a simplified immunophenotyping panel for MM analysis. A total of 70 patients were enrolled in the study, 62 of which were newly diagnosed with MM (untreated), whereas the remaining 8 were undergoing bone marrow assessment as part of follow-up after treatment (treated). Treated cases included 3 patients with relapse and 5 patients with persistence of MM. Multiparametric flow cytometric immunophenotyping was performed using monoclonal antibodies against CD56, CD19, CD138 (CD38), and CD45. In differential counts, plasma cells in bone marrow (BM) accounted for 3.6-93.2% of the total nucleated cell count. The positive expression rates of CD56, CD19, CD138, and CD45 in neoplastic myeloma cells were 83.9%, 0%, 98.4%, and 37.1%, respectively, among the 62 untreated cases, and 75.0%, 0%, 87.5%, and 37.5%, respectively, among the 8 treated cases. CD19 expression of neoplastic plasma cells was negative in both untreated and treated cases. The simplified immunophenotyping panel, CD56/CD19/CD138(CD38)/CD45, is useful for distinguishing neoplastic myeloma cells from reactive plasma cells in clinical practice. In addition, CD19 represents the most valuable antigen for identifying neoplastic myeloma cells in patients with MM.

  6. The role of Capon in multiple myeloma.

    PubMed

    Shen, Yaodong; Liu, Haiyan; Gu, Siyu; Wei, Ziwei; Liu, Hong

    2017-07-01

    Capon is a ligand protein of nitric oxide synthase 1. Recently, studies have shown that Capon is involved in the development of tumors. It is independent of the regulation of nitric oxide synthase 1 in this process. At the same time, studies have found that nitric oxide synthase 1 is expressed in multiple myeloma, but its role in the development and progression of myeloma remains unclear. In this study, we found that there was a different expression of Capon between the normal multiple myeloma cells and the adherent multiple myeloma cells. In the process of myeloma cell proliferation, the reduced expression of Capon reduces the arrest of the cell cycle in the G1 phase and promotes the proliferation of myeloma cells. Cell adhesion-mediated drug resistance is one of the most important factors, which affect the chemotherapy effect of multiple myeloma. If the expression of Capon is decreased, myeloma cells are adhered to fibronectin or bone marrow stromal cells (bone marrow mesenchymal stem cells). In addition, the sensitivity of the cell line to chemotherapeutic agents was reduced after silencing Capon in the myeloma cell line which was adhered to bone marrow mesenchymal stem cells. We also found that reduced expression of Capon resulted in the activation of the AKT signaling pathway. In conclusion, these results may be helpful in studying the role of Capon in multiple myeloma.

  7. Immunomodulatory drugs act as inhibitors of DNA methyltransferases and induce PU.1 up-regulation in myeloma cells.

    PubMed

    Endo, Shinya; Amano, Masayuki; Nishimura, Nao; Ueno, Niina; Ueno, Shikiko; Yuki, Hiromichi; Fujiwara, Shiho; Wada, Naoko; Hirata, Shinya; Hata, Hiroyuki; Mitsuya, Hiroaki; Okuno, Yutaka

    2016-01-08

    Immunomodulatory drugs (IMiDs) such as thalidomide, lenalidomide, and pomalidomide are efficacious in the treatment of multiple myeloma and significantly prolong their survival. However, the mechanisms of such effects of IMiDs have not been fully elucidated. Recently, cereblon has been identified as a target binding protein of thalidomide. Lenalidomide-resistant myeloma cell lines often lose the expression of cereblon, suggesting that IMiDs act as an anti-myeloma agent through interacting with cereblon. Cereblon binds to damaged DNA-binding protein and functions as a ubiquitin ligase, inducing degradation of IKZF1 and IKZF3 that are essential transcription factors for B and T cell development. Degradation of both IKZF1 and IKZF3 reportedly suppresses myeloma cell growth. Here, we found that IMiDs act as inhibitors of DNA methyltransferases (DMNTs). We previously reported that PU.1, which is an ETS family transcription factor and essential for myeloid and lymphoid development, functions as a tumor suppressor in myeloma cells. PU.1 induces growth arrest and apoptosis of myeloma cell lines. In this study, we found that low-dose lenalidomide and pomalidomide up-regulate PU.1 expression through inducing demethylation of the PU.1 promoter. In addition, IMiDs inhibited DNMT1, DNMT3a, and DNMT3b activities in vitro. Furthermore, lenalidomide and pomalidomide decreased the methylation status of the whole genome in myeloma cells. Collectively, IMiDs exert demethylation activity through inhibiting DNMT1, 3a, and 3b, and up-regulating PU.1 expression, which may be one of the mechanisms of the anti-myeloma activity of IMiDs.

  8. CAR T-Cell Therapy for Multiple Myeloma

    Cancer.gov

    A Cancer Currents blog on results presented at the American Society of Clinical Oncology annual meeting from two early-phase trials testing immune cells that were engineered to target a protein on myeloma cells called B-cell maturation antigen.

  9. Establishment of an HS23 stromal cell-dependent myeloma cell line: fibronectin and IL-6 are critical.

    PubMed

    Sakai, Akira; Oda, Miyo; Itagaki, Mitsuhiro; Yoshida, Noriaki; Arihiro, Koji; Kimura, Akiro

    2010-11-01

    A multiple myeloma (MM) cell line, MSG1, which depends on HS23 stromal cells for its survival, was established from the pleural effusion of a patient with MM who expressed the M-protein of IgA-λ in his serum. During the first 2 months of culture, the myeloma cells survived on adhesive cells from the pleural effusion and, subsequently, they continued to proliferate on HS23 stromal cells. The phenotype of the established MSG1 cell line was: CD138(+), CD38(++), CD19⁻, CD56⁻, VLA-4(+), VEGFR1(+) and VEGFR2(+). Immunohistochemical staining also demonstrated expression of the IgA and λ chain in MSG1 cytoplasm. Karyotype analysis indicated complex chromosomal abnormalities; hypertriploidy, including the deletion of chromosomes 13 and 17, and c-myc translocation. MSG1 cells continued to proliferate, not only when co-cultured with HS23 cells, but also when cultured only on fibronectin-coated plates with the supernatant of HS23 cells or with control medium containing IL-6. Tocilizumab, an anti-IL-6 receptor antibody, inhibited MSG1 survival under these conditions. Therefore, MSG1 may be a unique myeloma cell line that is useful for the study of cell adhesion-mediated drug resistance induced by adhesion molecules and IL-6 stimulation of myeloma cells.

  10. Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche.

    PubMed

    Lawson, Michelle A; McDonald, Michelle M; Kovacic, Natasa; Hua Khoo, Weng; Terry, Rachael L; Down, Jenny; Kaplan, Warren; Paton-Hough, Julia; Fellows, Clair; Pettitt, Jessica A; Neil Dear, T; Van Valckenborgh, Els; Baldock, Paul A; Rogers, Michael J; Eaton, Colby L; Vanderkerken, Karin; Pettit, Allison R; Quinn, Julian M W; Zannettino, Andrew C W; Phan, Tri Giang; Croucher, Peter I

    2015-12-03

    Multiple myeloma is largely incurable, despite development of therapies that target myeloma cell-intrinsic pathways. Disease relapse is thought to originate from dormant myeloma cells, localized in specialized niches, which resist therapy and repopulate the tumour. However, little is known about the niche, and how it exerts cell-extrinsic control over myeloma cell dormancy and reactivation. In this study, we track individual myeloma cells by intravital imaging as they colonize the endosteal niche, enter a dormant state and subsequently become activated to form colonies. We demonstrate that dormancy is a reversible state that is switched 'on' by engagement with bone-lining cells or osteoblasts, and switched 'off' by osteoclasts remodelling the endosteal niche. Dormant myeloma cells are resistant to chemotherapy that targets dividing cells. The demonstration that the endosteal niche is pivotal in controlling myeloma cell dormancy highlights the potential for targeting cell-extrinsic mechanisms to overcome cell-intrinsic drug resistance and prevent disease relapse.

  11. A 13 mer LNA-i-miR-221 Inhibitor Restores Drug Sensitivity in Melphalan-Refractory Multiple Myeloma Cells.

    PubMed

    Gullà, Annamaria; Di Martino, Maria Teresa; Gallo Cantafio, Maria Eugenia; Morelli, Eugenio; Amodio, Nicola; Botta, Cirino; Pitari, Maria Rita; Lio, Santo Giovanni; Britti, Domenico; Stamato, Maria Angelica; Hideshima, Teru; Munshi, Nikhil C; Anderson, Kenneth C; Tagliaferri, Pierosandro; Tassone, Pierfrancesco

    2016-03-01

    The onset of drug resistance is a major cause of treatment failure in multiple myeloma. Although increasing evidence is defining the role of miRNAs in mediating drug resistance, their potential activity as drug-sensitizing agents has not yet been investigated in multiple myeloma. Here we studied the potential utility of miR-221/222 inhibition in sensitizing refractory multiple myeloma cells to melphalan. miR-221/222 expression inversely correlated with melphalan sensitivity of multiple myeloma cells. Inhibition of miR-221/222 overcame melphalan resistance and triggered apoptosis of multiple myeloma cells in vitro, in the presence or absence of human bone marrow (BM) stromal cells. Decreased multiple myeloma cell growth induced by inhibition of miR-221/222 plus melphalan was associated with a marked upregulation of pro-apoptotic BBC3/PUMA protein, a miR-221/222 target, as well as with modulation of drug influx-efflux transporters SLC7A5/LAT1 and the ABC transporter ABCC1/MRP1. Finally, in vivo treatment of SCID/NOD mice bearing human melphalan-refractory multiple myeloma xenografts with systemic locked nucleic acid (LNA) inhibitors of miR-221 (LNA-i-miR-221) plus melphalan overcame drug resistance, evidenced by growth inhibition with significant antitumor effects together with modulation of PUMA and ABCC1 in tumors retrieved from treated mice. Taken together, our findings provide the proof of concept that LNA-i-miR-221 can reverse melphalan resistance in preclinical models of multiple myeloma, providing the framework for clinical trials to overcome drug resistance, and improve patient outcome in multiple myeloma. ©2015 American Association for Cancer Research.

  12. Kaposi's sarcoma-associated herpesvirus infection of bone marrow dendritic cells from multiple myeloma patients.

    PubMed

    Rettig, M B; Ma, H J; Vescio, R A; Põld, M; Schiller, G; Belson, D; Savage, A; Nishikubo, C; Wu, C; Fraser, J; Said, J W; Berenson, J R

    1997-06-20

    Kaposi's sarcoma-associated herpesvirus (KSHV) was found in the bone marrow dendritic cells of multiple myeloma patients but not in malignant plasma cells or bone marrow dendritic cells from normal individuals or patients with other malignancies. In addition the virus was detected in the bone marrow dendritic cells from two out of eight patients with monoclonal gammopathy of undetermined significance (MGUS), a precursor to myeloma. Viral interleukin-6, the human homolog of which is a growth factor for myeloma, was found to be transcribed in the myeloma bone marrow dendritic cells. KSHV may be required for transformation from MGUS to myeloma and perpetuate the growth of malignant plasma cells.

  13. Serum B-cell maturation antigen: a novel biomarker to predict outcomes for multiple myeloma patients.

    PubMed

    Ghermezi, Michael; Li, Mingjie; Vardanyan, Suzie; Harutyunyan, Nika Manik; Gottlieb, Jillian; Berenson, Ariana; Spektor, Tanya M; Andreu-Vieyra, Claudia; Petraki, Sophia; Sanchez, Eric; Udd, Kyle; Wang, Cathy S; Swift, Regina A; Chen, Haiming; Berenson, James R

    2017-04-01

    B-cell maturation antigen is expressed on plasma cells. In this study, we have identified serum B-cell maturation antigen as a novel biomarker that can monitor and predict outcomes for multiple myeloma patients. Compared to healthy donors, patients with multiple myeloma showed elevated serum B-cell maturation antigen levels (P<0.0001). Serum B-cell maturation antigen levels correlated with the proportion of plasma cells in bone marrow biopsies (Spearman's rho = 0.710; P<0.001), clinical status (complete response vs partial response, P=0.0374; complete response vs progressive disease, P<0.0001), and tracked with changes in M-protein levels. Among patients with non-secretory disease, serum B-cell maturation antigen levels correlated with bone marrow plasma cell levels and findings from positron emission tomography scans. Kaplan-Meier analysis demonstrated that serum B-cell maturation antigen levels above the median levels were predictive of a shorter progression-free survival (P=0.0006) and overall survival (P=0.0108) among multiple myeloma patients (n=243). Specifically, patients with serum B-cell maturation antigen levels above the median level at the time of starting front-line (P=0.0043) or a new salvage therapy (P=0.0044) were found to have shorter progression-free survival. Importantly, serum B-cell maturation antigen levels did not show any dependence on renal function and maintained independent significance when tested against other known prognostic markers for multiple myeloma such as age, serum β2 microglobulin, hemoglobin, and bone disease. These data identify serum B-cell maturation antigen as a new biomarker to manage multiple myeloma patients. Copyright© Ferrata Storti Foundation.

  14. Multiple myeloma.

    PubMed

    Peller, Patrick J

    2015-04-01

    This article presents a review of multiple myeloma, precursor states, and related plasma cell disorders. The clinical roles of fluorodeoxyglucose PET/computed tomography (CT) and the potential to improve the management of patients with multiple myeloma are discussed. The clinical and research data supporting the utility of PET/CT use in evaluating myeloma and other plasma cell dyscrasias continues to grow.

  15. Bidirectional Notch Signaling and Osteocyte-Derived Factors in the Bone Marrow Microenvironment Promote Tumor Cell Proliferation and Bone Destruction in Multiple Myeloma.

    PubMed

    Delgado-Calle, Jesus; Anderson, Judith; Cregor, Meloney D; Hiasa, Masahiro; Chirgwin, John M; Carlesso, Nadia; Yoneda, Toshiyuki; Mohammad, Khalid S; Plotkin, Lilian I; Roodman, G David; Bellido, Teresita

    2016-03-01

    In multiple myeloma, an overabundance of monoclonal plasma cells in the bone marrow induces localized osteolytic lesions that rarely heal due to increased bone resorption and suppressed bone formation. Matrix-embedded osteocytes comprise more than 95% of bone cells and are major regulators of osteoclast and osteoblast activity, but their contribution to multiple myeloma growth and bone disease is unknown. Here, we report that osteocytes in a mouse model of human MM physically interact with multiple myeloma cells in vivo, undergo caspase-3-dependent apoptosis, and express higher RANKL (TNFSF11) and sclerostin levels than osteocytes in control mice. Mechanistic studies revealed that osteocyte apoptosis was initiated by multiple myeloma cell-mediated activation of Notch signaling and was further amplified by multiple myeloma cell-secreted TNF. The induction of apoptosis increased osteocytic Rankl expression, the osteocytic Rankl/Opg (TNFRSF11B) ratio, and the ability of osteocytes to attract osteoclast precursors to induce local bone resorption. Furthermore, osteocytes in contact with multiple myeloma cells expressed high levels of Sost/sclerostin, leading to a reduction in Wnt signaling and subsequent inhibition of osteoblast differentiation. Importantly, direct contact between osteocytes and multiple myeloma cells reciprocally activated Notch signaling and increased Notch receptor expression, particularly Notch3 and 4, stimulating multiple myeloma cell growth. These studies reveal a previously unknown role for bidirectional Notch signaling that enhances MM growth and bone disease, suggesting that targeting osteocyte-multiple myeloma cell interactions through specific Notch receptor blockade may represent a promising treatment strategy in multiple myeloma.

  16. Unrelated stem cell transplantation for patients with multiple myeloma.

    PubMed

    Kröger, Nicolaus

    2010-11-01

    The role of allogeneic stem cell transplantation (SCT) in treatment of myeloma patients is still controversial. Meanwhile, the numbers of unrelated SCT for hematological diseases in Europe are higher than for human leukocyte antigen (HLA)-identical sibling transplantations, but in multiple myeloma only 39% of the allogeneic transplantations are performed from unrelated donors and only a minority were done within prospective clinical trials. The few published data of unrelated SCT in multiple myeloma reported a higher treatment-related mortality for standard myeloablative conditioning in comparison to reduced-intensity conditioning. Despite the heterogeneous patient selection in the trial, lower nonrelapse mortality and improved survival can be achieved by careful donor selection (10/10 HLA-alleles, male donor). Natural killer-alloreactivity might play a role, but conclusive data are lacking. Transplantation in more advanced or refractory patients is associated with an inferior outcome. The results of an unrelated SCT seem to be comparable to those of HLA-identical siblings, but a direct comparison is lacking so far. Unrelated SCT in multiple myeloma is feasible, but prospective clinical trials using unrelated stem cell donors are urgently needed to define the role of an unrelated SCT in multiple myeloma in the era of novel agents.

  17. Salvage Second Hematopoietic Cell Transplantation in Myeloma

    PubMed Central

    Michaelis, Laura C.; Saad, Ayman; Zhong, Xiaobo; Le-Rademacher, Jennifer; Freytes, Cesar O.; Marks, David I.; Lazarus, Hillard M.; Bird, Jennifer M.; Holmberg, Leona; Kamble, Rammurti T.; Kumar, Shaji; Lill, Michael; Meehan, Kenneth R.; Saber, Wael; Schriber, Jeffrey; Tay, Jason; Vogl, Dan T.; Wirk, Baldeep; Savani, Bipin N.; Gale, Robert P.; Vesole, David H.; Schiller, Gary J.; Abidi, Muneer; Anderson, Kenneth C.; Nishihori, Taiga; Kalaycio, Matt E.; Vose, Julie M.; Moreb, Jan S.; Drobyski, William; Munker, Reinhold; Roy, Vivek; Ghobadi, Armin; Holland, H. Kent; Nath, Rajneesh; To, L. Bik; Maiolino, Angelo; Kassim, Adetola A.; Giralt, Sergio A.; Landau, Heather; Schouten, Harry C.; Maziarz, Richard T.; Mikhael, Joseph; Kindwall-Keller, Tamila; Stiff, Patrick J.; Gibson, John; Lonial, Sagar; Krishnan, Amrita; Dispenzieri, Angela; Hari, Parameswaran

    2013-01-01

    Autologous hematopoietic cell transplantation (AHCT) as initial therapy of patients with multiple myeloma (MM) improves survival. However, data to support this approach for relapsed/progressive disease after initial AHCT (AHCT1) are limited. Using Center for International Blood and Marrow Transplant Research data, we report the outcomes of 187 patients who underwent a second AHCT (AHCT2) for the treatment of relapsed/progressive MM. Planned tandem AHCT was excluded. Median age at AHCT2 was 59 years (range, 28 to 72), and median patient follow-up was 47 months (range, 3 to 97). Nonrelapse mortality after AHCT2 was 2% at 1 year and 4% at 3 years. Median interval from AHCT1 to relapse/progression was 18 months, and median interval between transplantations was 32 months. After AHCT2, the incidence of relapse/progression at 1 and 3 years was 51% and 82%, respectively. At 3 years after AHCT2, progression-free survival was 13%, and overall survival was 46%. In multivariate analyses, those relapsing ≥36 months after AHCT1 had superior progression-free (P = .045) and overall survival (P = .019). Patients who underwent AHCT2 after 2004 had superior survival (P = .026). AHCT2 is safe and feasible for disease progression after AHCT1. In this retrospective study, individuals relapsing ≥36 months from AHCT1 derived greater benefit from AHCT2 compared with those with a shorter disease-free interval. Storage of an adequate graft before AHCT1 will ensure that the option of a second autologous transplantation is retained for patients with relapsed/progressive MM. PMID:23298856

  18. Targeting the Pro-Survival Protein MET with Tivantinib (ARQ 197) Inhibits Growth of Multiple Myeloma Cells12

    PubMed Central

    Zaman, Shadia; Shentu, Shujun; Yang, Jing; He, Jin; Orlowski, Robert Z.; Stellrecht, Christine M.; Gandhi, Varsha

    2015-01-01

    The hepatocyte growth factor (HGF)/MNNG HOS transforming gene (MET) pathway regulates cell growth, survival, and migration. MET is mutated or amplified in several malignancies. In myeloma, MET is not mutated, but patients have high plasma concentrations of HGF, high levels of MET expression, and gene copy number, which are associated with poor prognosis and advanced disease. Our previous studies demonstrated that MET is critical for myeloma cell survival and its knockdown induces apoptosis. In our current study, we tested tivantinib (ARQ 197), a small-molecule pharmacological MET inhibitor. At clinically achievable concentrations, tivantinib induced apoptosis by > 50% in all 12 human myeloma cell lines tested. This biologic response was associated with down-regulation of MET signaling and inhibition of the mitogen-activated protein kinase and phosphoinositide 3-kinase pathways, which are downstream of the HGF/MET axis. Tivantinib was equally effective in inducing apoptosis in myeloma cell lines resistant to standard chemotherapy (melphalan, dexamethasone, bortezomib, and lenalidomide) as well as in cells that were co-cultured with a protective bone marrow microenvironment or with exogenous cytokines. Tivantinib induced apoptosis in CD138 + plasma cells from patients and demonstrated efficacy in a myeloma xenograft mouse model. On the basis of these data, we initiated a clinical trial for relapsed/refractory multiple myeloma (MM). In conclusion, MET inhibitors may be an attractive target-based strategy for the treatment of MM. PMID:25810013

  19. Targeting the pro-survival protein MET with tivantinib (ARQ 197) inhibits growth of multiple myeloma cells.

    PubMed

    Zaman, Shadia; Shentu, Shujun; Yang, Jing; He, Jin; Orlowski, Robert Z; Stellrecht, Christine M; Gandhi, Varsha

    2015-03-01

    The hepatocyte growth factor (HGF)/MNNG HOS transforming gene (MET) pathway regulates cell growth, survival, and migration. MET is mutated or amplified in several malignancies. In myeloma, MET is not mutated, but patients have high plasma concentrations of HGF, high levels of MET expression, and gene copy number, which are associated with poor prognosis and advanced disease. Our previous studies demonstrated that MET is critical for myeloma cell survival and its knockdown induces apoptosis. In our current study, we tested tivantinib (ARQ 197), a small-molecule pharmacological MET inhibitor. At clinically achievable concentrations, tivantinib induced apoptosis by >50% in all 12 human myeloma cell lines tested. This biologic response was associated with down-regulation of MET signaling and inhibition of the mitogen-activated protein kinase and phosphoinositide 3-kinase pathways, which are downstream of the HGF/MET axis. Tivantinib was equally effective in inducing apoptosis in myeloma cell lines resistant to standard chemotherapy (melphalan, dexamethasone, bortezomib, and lenalidomide) as well as in cells that were co-cultured with a protective bone marrow microenvironment or with exogenous cytokines. Tivantinib induced apoptosis in CD138+ plasma cells from patients and demonstrated efficacy in a myeloma xenograft mouse model. On the basis of these data, we initiated a clinical trial for relapsed/refractory multiple myeloma (MM). In conclusion, MET inhibitors may be an attractive target-based strategy for the treatment of MM. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. A Cyclin-Dependent Kinase Inhibitor, Dinaciclib, Impairs Homologous Recombination and Sensitizes Multiple Myeloma Cells to PARP Inhibition.

    PubMed

    Alagpulinsa, David A; Ayyadevara, Srinivas; Yaccoby, Shmuel; Shmookler Reis, Robert J

    2016-02-01

    PARP1/2 are required for single-strand break repair, and their inhibition causes DNA replication fork collapse and double-strand break (DSB) formation. These DSBs are primarily repaired via homologous recombination (HR), a high-fidelity repair pathway. Should HR be deficient, DSBs may be repaired via error-prone nonhomologous end-joining mechanisms, or may persist, ultimately resulting in cell death. The combined disruption of PARP and HR activities thus produces synthetic lethality. Multiple myeloma cells are characterized by chromosomal instability and pervasive DNA damage, implicating aberrant DNA repair. Cyclin-dependent kinases (CDK), upstream modulators of HR, are dysregulated in multiple myeloma. Here, we show that a CDK inhibitor, dinaciclib, impairs HR repair and sensitizes multiple myeloma cells to the PARP1/2 inhibitor ABT-888. Dinaciclib abolishes ABT-888-induced BRCA1 and RAD51 foci and potentiates DNA damage, indicated by increased γH2AX foci. Dinaciclib treatment reduces expression of HR repair genes, including Rad51, and blocks BRCA1 phosphorylation, a modification required for HR repair, thus inhibiting HR repair of chromosome DSBs. Cotreatment with dinaciclib and ABT-888 in vitro resulted in synthetic lethality of multiple myeloma cells, but not normal CD19(+) B cells, and slowed growth of multiple myeloma xenografts in SCID mice almost two-fold. These findings support combining dinaciclib with PARP inhibitors for multiple myeloma therapy. Mol Cancer Ther; 15(2); 241-50. ©2015 AACR. ©2015 American Association for Cancer Research.

  1. Mass cytometry analysis shows that a novel memory phenotype B cell is expanded in multiple myeloma

    PubMed Central

    Hansmann, Leo; Blum, Lisa; Ju, Chia-Hsin; Liedtke, Michaela; Robinson, William H.; Davis, Mark M.

    2015-01-01

    It would be very beneficial if the status of cancers could be determined from a blood specimen. However, peripheral blood leukocytes are very heterogeneous between individuals and thus high resolution technologies are likely required. We used cytometry by time-of-flight (CyTOF) and next generation sequencing to ask whether a plasma cell cancer (multiple myeloma) and related pre-cancerous states had any consistent effect on the peripheral blood mononuclear cell phenotypes of patients. Analysis of peripheral blood samples from 13 cancer patients, 9 pre-cancer patients, and 9 healthy individuals revealed significant differences in the frequencies of the T, B, and natural killer cell compartments. Most strikingly, we identified a novel B-cell population that normally accounts for 4.0±0.7% (mean±SD) of total B cells and is up to 13-fold expanded in multiple myeloma patients with active disease. This population expressed markers previously associated with both memory (CD27+) and naïve (CD24loCD38+) phenotypes. Single-cell immunoglobulin gene sequencing showed polyclonality, indicating that these cells are not precursors to the myeloma, and somatic mutations, a characteristic of memory cells. SYK, ERK, and p38 phosphorylation responses, and the fact that most of these cells expressed isotypes other than IgM or IgD, confirmed the memory character of this population, defining it as a novel type of memory B cells. PMID:25711758

  2. Clarithromycin Synergistically Enhances Thalidomide Cytotoxicity in Myeloma Cells.

    PubMed

    Qiu, Xu-Hua; Shao, Jing-Jing; Mei, Jian-Gang; Li, Han-Qing; Cao, Hong-Qin

    2016-01-01

    Clarithromycin (CAM) is a macrolide antibiotic that is widely used in the treatment of respiratory tract infections, sexually transmitted diseases and infections caused by the Helicobacter pylori and Mycobacterium avium complex. Recent studies showed that CAM was highly effective against multiple myeloma (MM) when used in combination with immunomodulatory drugs and dexamethasone. However, the related mechanism is still unknown. As 3 immunomodulatory agents are all effective in the respective regimen, we postulated that CAM might enhance the effect of immunomodulatory drugs. We evaluated the interaction effects of CAM and thalidomide on myeloma cells. Taking into consideration that thalidomide did not affect the proliferation of myeloma cells in vitro, we cocultured myeloma cells with peripheral blood monocytes and evaluated the effects of CAM and thalidomide on the cocultured cell model. Data showed that thalidomide and CAM synergistically inhibited the proliferation of the cells. On this same model, we also found that thalidomide and CAM synergistically decreased the secretion of tumor necrosis factor-α and interleukin-6. This might be caused by the effect of the 2 drugs on inhibiting the activation of ERK1/2 and AKT. These data suggest that the efficacy of CAM against MM was partly due to its synergistic action with the immunomodulatory agents.

  3. The clinical significance of cereblon expression in multiple myeloma.

    PubMed

    Schuster, Steven R; Kortuem, K Martin; Zhu, Yuan Xiao; Braggio, Esteban; Shi, Chang-Xin; Bruins, Laura A; Schmidt, Jessica E; Ahmann, Greg; Kumar, Shaji; Rajkumar, S Vincent; Mikhael, Joseph; Laplant, Betsy; Champion, Mia D; Laumann, Kristina; Barlogie, Bart; Fonseca, Rafael; Bergsagel, P Leif; Lacy, Martha; Stewart, A Keith

    2014-01-01

    Cereblon (CRBN) mediates immunomodulatory drug (IMiD) action in multiple myeloma (MM). We demonstrate here that no patient with very low CRBN expression responded to IMiD plus dexamethasone therapy. In 53 refractory MM patients treated with pomalidomide and dexamethasone, CRBN levels predict for decreased response rates and significant differences in PFS (3.0 vs. 8.9 months, p<0.001) and OS (9.1 vs. 27.2 months, p=0.01) (lowest quartile vs. highest three quartiles). While higher CRBN levels can serve as a surrogate for low risk disease, our study demonstrates that low CRBN expression can predict resistance to IMiD monotherapy and is a predictive biomarker for survival outcomes.

  4. An inhibitor of the EGF receptor family blocks myeloma cell growth factor activity of HB-EGF and potentiates dexamethasone or anti-IL-6 antibody-induced apoptosis.

    PubMed

    Mahtouk, Karène; Jourdan, Michel; De Vos, John; Hertogh, Catherine; Fiol, Geneviève; Jourdan, Eric; Rossi, Jean-François; Klein, Bernard

    2004-03-01

    We previously found that some myeloma cell lines express the heparin-binding epidermal growth factor-like growth factor (HB-EGF) gene. As the proteoglycan syndecan-1 is an HB-EGF coreceptor as well as a hallmark of plasma cell differentiation and a marker of myeloma cells, we studied the role of HB-EGF on myeloma cell growth. The HB-EGF gene was expressed by bone marrow mononuclear cells in 8 of 8 patients with myeloma, particularly by monocytes and stromal cells, but not by purified primary myeloma cells. Six of 9 myeloma cell lines and 9 of 9 purified primary myeloma cells expressed ErbB1 or ErbB4 genes coding for HB-EGF receptor. In the presence of a low interleukin-6 (IL-6) concentration, HB-EGF stimulated the proliferation of the 6 ErbB1+ or ErbB4+ cell lines, through the phosphatidylinositol 3-kinase/AKT (PI-3K/AKT) pathway. A pan-ErbB inhibitor blocked the myeloma cell growth factor activity and the signaling induced by HB-EGF. This inhibitor induced apoptosis of patients'myeloma cells cultured with their tumor environment. It also increased patients' myeloma cell apoptosis induced by an anti-IL-6 antibody or dexamethasone. The ErbB inhibitor had no effect on the interaction between multiple myeloma cells and stromal cells. It was not toxic for nonmyeloma cells present in patients' bone marrow cultures or for the growth of hematopoietic progenitors. Altogether, these data identify ErbB receptors as putative therapeutic targets in multiple myeloma.

  5. Iron increases the susceptibility of multiple myeloma cells to bortezomib

    PubMed Central

    Campanella, Alessandro; Santambrogio, Paolo; Fontana, Francesca; Frenquelli, Michela; Cenci, Simone; Marcatti, Magda; Sitia, Roberto; Tonon, Giovanni; Camaschella, Clara

    2013-01-01

    Multiple myeloma is a malignant still incurable plasma cell disorder. Pharmacological treatment based on proteasome inhibition has improved patient outcome; however, bortezomib-resistance remains a major clinical problem. Inhibition of proteasome functionality affects cellular iron homeostasis and iron is a potent inducer of reactive oxygen species and cell death, unless safely stored in ferritin. We explored the potential role of iron in bortezomib-resistance. We analyzed iron proteins, oxidative status and cell viability in 7 multiple myeloma cell lines and in plasma cells from 5 patients. Cells were treated with increasing bortezomib concentrations with or without iron supplementation. We reduced ferritin levels by both shRNA technology and by drug-induced iron starvation. Multiple myeloma cell lines are characterized by distinct ferritin levels, which directly correlate with bortezomib resistance. We observed that iron supplementation upon bortezomib promotes protein oxidation and cell death, and that iron toxicity inversely correlates with basal ferritin levels. Bortezomib prevents ferritin upregulation in response to iron, thus limiting the ability to buffer reactive oxygen species. Consequently, reduction of basal ferritin levels increases both bortezomib sensitivity and iron toxicity. In patients’ cells, we confirmed that bortezomib prevents ferritin increase, that iron supplementation upon bortezomib increases cell death and that ferritin reduction overcomes bortezomib resistance. Bortezomib affects iron homeostasis, sensitizing cells to oxidative damage. Modulation of iron status is a strategy worth exploring to improve the efficacy of proteasome inhibition therapies. PMID:23242599

  6. Heparanase influences expression and shedding of syndecan-1, and its expression by the bone marrow environment is a bad prognostic factor in multiple myeloma

    PubMed Central

    Mahtouk, Karène; Hose, Dirk; Raynaud, Pierre; Hundemer, Michael; Jourdan, Michel; Jourdan, Eric; Pantesco, Véronique; Baudard, Marion; De Vos, John; Larroque, Marion; Moehler, Thomas; Rossi, Jean-François; Reme, Thierry; Goldschmidt, Hartmut; Klein, Bernard

    2007-01-01

    Summary The heparan sulfate (HS) proteoglycan, syndecan-1, plays a major role in multiple myeloma (MM) by concentrating heparin-binding growth factors on the surface of MM cells (MMC). Using Affymetrix microarrays and real-time RT-PCR, we show that the gene encoding heparanase (HPSE), an enzyme that cleaves HS-chains, is expressed by 11/19 myeloma cell lines (HMCLs). In HSPE-positive HMCLs, syndecan-1 gene expression and production of soluble syndecan-1, unlike expression of membrane syndecan-1, were significantly increased. Knockdown of HPSE by siRNA resulted in a decrease of syndecan-1 expression and soluble syndecan-1 production without affecting membrane syndecan-1 expression. Thus, HPSE influences expression and shedding of syndecan-1. Contrary to HMCLs, HPSE is expressed in only 4/39 primary MMC samples, whereas it is expressed in 36/39 bone marrow (BM) microenvironment samples. In the latter, HPSE is expressed at a median level in polymorphonuclear cells and T cells; it is highly expressed in monocytes and osteoclasts. Affymetrix data were validated at the protein level, both on HMCLs and patient samples. We report for the first time that a gene’s expression mainly in the BM environment, i.e. HSPE, is associated with a shorter event-free survival of newly diagnosed myeloma patients treated with high-dose chemotherapy and stem cell transplantation. Our study suggests that clinical inhibitors of HPSE could be beneficial for patients with MM. PMID:17339423

  7. Clonogenic Multiple Myeloma Cells have Shared stemness Signature Associated with Patient Survival

    PubMed Central

    Reghunathan, Renji; Bi, Chonglei; Liu, Shaw Cheng; Loong, Koh Tze; Chung, Tae-Hoon; Huang, Gaofeng; Chng, Wee Joo

    2013-01-01

    Multiple myeloma is the abnormal clonal expansion of post germinal B cells in the bone marrow. It was previously reported that clonogenic myeloma cells are CD138−. Human MM cell lines RPMI8226 and NCI H929 contained 2-5% of CD138− population. In this study, we showed that CD138− cells have increased ALDH1 activity, a hallmark of normal and neoplastic stem cells. CD138−ALDH+ cells were more clonogenic than CD138+ALDH− cells and only CD138− cells differentiated into CD138+ population. In vivo tumor initiation and clonogenic potentials of the CD138− population was confirmed using NOG mice. We derived a gene expression signature from functionally validated and enriched CD138− clonogenic population from MM cell lines and validated these in patient samples. This data showed that CD138− cells had an enriched expression of genes that are expressed in normal and malignant stem cells. Differentially expressed genes included components of the polycomb repressor complex (PRC) and their targets. Inhibition of PRC by DZNep showed differential effect on CD138− and CD138+ populations. The ‘stemness’ signature derived from clonogenic CD138− cells overlap significantly with signatures of common progenitor cells, hematopoietic stem cells, and Leukemic stem cells and is associated with poorer survival in different clinical datasets. PMID:23985559

  8. Requirement of soluble factors produced by bone marrow stromal cells on the growth of novel established human myeloma cell line.

    PubMed

    Aikawa, Shingo; Hatta, Yoshihiro; Tanaka, Megumi; Kaneita, Yoshitaka; Yasukawa, Kiyotaka; Sawada, Umihiko; Horie, Takashi; Tsuboi, Isao; Aizawa, Shin

    2003-03-01

    The growth of myeloma cells is believed to be mediated by functional interactions between tumor cells and the marrow environment involving the action of several cytokines. We report on the establishment and characterization of a new human myeloma cell line (TAB1) that can be long-term maintained in the presence of conditioned medium of bone marrow stromal cells (BMCM) and a BMCM independent variant, C2-2. Both cell lines have plasma cell morphology and express plasma cell antigens (CD38, PCA-1 and immunoglobulin kappa light chain). In the absence of BMCM, TAB1 cells undergoing apoptosis were observed. Among the adherent molecules tested, these cells expressed VLA-4, ICAM-1 and H-CAM, but not VLA-5, suggesting that these were mostly immature plasmacytes. Introduction with exogenous IL-6 and/or GM-CSF, which were detected in BMCM, partially supported the proliferation of TAB1 cells. Treatment with anti-IL-6 antibody partially inhibited the proliferation of TAB1 cells cultured with BMCM. These findings strongly suggest that TAB1 required at least two or more factors on their growth in vitro; IL-6 was one of the factors necessary for cell growth. Further studies are required to clarify the precise molecules which support TAB1 cell growth in combination with IL-6, however, TAB1 and its variant C2-2 cells may offer an attractive model to unravel novel molecular mechanisms involved in bone marrow stroma-dependent growth of myeloma cells.

  9. The role of fluorescence in situ hybridization and gene expression profiling in myeloma risk stratification.

    PubMed

    Hose, Dirk; Seckinger, Anja; Jauch, Anna; Rème, Thierry; Moreaux, Jérôme; Bertsch, Uta; Neben, Kai; Klein, Bernard; Goldschmidt, Hartmut

    2011-12-01

    Multiple myeloma patients' survival under treatment varies from a few months to more than 15 years. Clinical prognostic factors, especially beta2-microglobulin (B2M) and the international staging system (ISS), allow risk assessment to a certain extent, but do not identify patients at very high risk. As malignant plasma cells are characterized by a variety of chromosomal aberrations and changes in gene expression, a molecular characterization ofCD138-purified myeloma cells by interphase fluorescence in situ hybridization (iFISH) and gene expression profiling (GEP) can be used for improved risk assessment, iFISH allows a risk stratification with presence of a translocation t(4;14) and/or deletion of 17p13 being the best documented adverse prognostic factors. A deletion of 13q14 is no longer considered to define adverse risk. Patients harbouring a t(4;14) seems to benefit from a bortezomib- or lenalidomide containing regimen, whereas patients with deletion 17p13 seem only to benefit from a high dose therapy approach using long term bortezomib (in induction and maintenance) and autologous tandem-transplantation as used in the GMMG-HD4 trial, or the total therapy 3 concept. Gene expression profiling allows the assessment of high risk scores (IFM, UAMS), remaining prognostic despite treatment with novel agents, and prognostic surrogates of biological factors (e.g. proliferation) and (prognostic) target gene expression (e.g. Aurora-kinase A). Thus, assessment of B2M and ISS-stage, iFISH, and GEP is considered extended routine diagnostics in therapy requiring multiple myeloma patients for risk assessment and, even now, to a certain extent selection of treatment.

  10. Constitutive activation of p38 MAPK in tumor cells contributes to osteolytic bone lesions in multiple myeloma

    PubMed Central

    Yang, Jing; He, Jin; Wang, Ji; Cao, Yabing; Ling, Jianhua; Qian, Jianfei; Lu, Yong; Li, Haiyan; Zheng, Yuhuan; Lan, Yongsheng; Hong, Sungyoul; Matthews, Jairo; Starbuck, Michael W; Navone, Nora M; Orlowski, Robert Z.; Lin, Pei; Kwak, Larry W.; Yi, Qing

    2012-01-01

    Bone destruction is a hallmark of multiple myeloma and affects more than 80% of patients. However, current therapy is unable to completely cure and/or prevent bone lesions. Although it is accepted that myeloma cells mediate bone destruction by inhibition of osteoblasts and activation of osteoclasts, the underlying mechanism is still poorly understood. This study demonstrates that constitutive activation of p38 mitogen-activated protein kinase in myeloma cells is responsible for myeloma-induced osteolysis. Our results show that p38 is constitutively activated in most myeloma cell lines and primary myeloma cells from patients. Myeloma cells with high/detectable p38 activity, but not those with low/undetectable p38 activity, injected into SCID or SCID-hu mice caused bone destruction. Inhibition or knockdown of p38 in human myeloma reduced or prevented myeloma-induced osteolytic bone lesions without affecting tumor growth, survival, or homing to bone. Mechanistic studies showed that myeloma cell p38 activity inhibited osteoblastogenesis and bone formation and activated osteoclastogenesis and bone resorption in myeloma-bearing SCID mice. This study elucidates a novel molecular mechanism—sactivation of p38 signaling in myeloma cells—by which myeloma cells induce osteolytic bone lesions and indicates that targeting myeloma cell p38 may be a viable approach to treating or preventing myeloma bone disease. PMID:22425892

  11. CD20 positive cells are undetectable in the majority of multiple myeloma cell lines and are not associated with a cancer stem cell phenotype.

    PubMed

    Paíno, Teresa; Ocio, Enrique M; Paiva, Bruno; San-Segundo, Laura; Garayoa, Mercedes; Gutiérrez, Norma C; Sarasquete, M Eugenia; Pandiella, Atanasio; Orfao, Alberto; San Miguel, Jesús F

    2012-07-01

    Although new therapies have doubled the survival of multiple myeloma patients, this remains an incurable disease. It has been postulated that the so-called myeloma cancer stem cells would be responsible for tumor initiation and relapse but their unequivocal identification remains unclear. Here, we investigated in a panel of myeloma cell lines the presence of CD20(+) cells harboring a stem-cell phenotype. Thus, only a small population of CD20(dim+) cells (0.3%) in the RPMI-8226 cell line was found. CD20(dim+) RPMI-8226 cells expressed the plasma cell markers CD38 and CD138 and were CD19(-)CD27(-). Additionally, CD20(dim+) RPMI-8226 cells did not exhibit stem-cell markers as shown by gene expression profiling and the aldehyde dehydrogenase assay. Furthermore, we demonstrated that CD20(dim+) RPMI-8226 cells are not essential for CB17-SCID mice engraftment and show lower self-renewal potential than the CD20(-) RPMI-8226 cells. These results do not support CD20 expression for the identification of myeloma cancer stem cells.

  12. Bruceantin inhibits multiple myeloma cancer stem cell proliferation.

    PubMed

    Issa, Mark E; Berndt, Sarah; Carpentier, Gilles; Pezzuto, John M; Cuendet, Muriel

    2016-09-01

    Multiple myeloma (MM) continues to claim the lives of a majority of patients. MM cancer stem cells (CSCs) have been demonstrated to sustain tumor growth. Due to their ability to self-renew and to express detoxifying enzymes and efflux transporters, MM-CSCs are rendered highly resistant to conventional therapies. Therefore, managing MM-CSCs characteristics could have profound clinical implications. Bruceantin (BCT) is a natural product previously demonstrated to inhibit the growth of MM in RPMI 8226 cells-inoculated mouse xenograft models, and to cause regression in already established tumors. The objectives of the present study were to test the inhibitory effects of BCT on MM-CSCs growth derived from a human primary tumor, and to explore a mechanism of action underlying these effects. BCT exhibited potent antiproliferative activity in MM-CSCs starting at 25 nM. BCT induced cell cycle arrest, cell death and apoptosis in MM-CSCs as well as inhibited cell migration and angiogenesis in vitro. Using a qPCR screen, it was found that the gene expression of a number of Notch pathway members was altered. Pretreatment of MM-CSCs with the γ-secretase inhibitor RO4929097, a Notch pathway inhibitor, reversed BCT-induced effects on MM-CSCs proliferation. In this study, BCT was shown to be an effective agent in controlling the proliferation, viability and migration of MM-CSCs as well as angiogenesis in vitro. The effect on MM-CSCs proliferation may be mediated by the Notch pathway. These results warrant further investigation of BCT in a broader set of human-derived MM-CSCs and with in vivo models representative of MM.

  13. Tumor-host cell interactions in the bone disease of myeloma

    PubMed Central

    Fowler, Jessica A.; Edwards, Claire M.; Croucher, Peter I.

    2010-01-01

    Multiple myeloma is a hematological malignancy that is associated with the development of a destructive osteolytic bone disease, which is a major cause of morbidity for patients with myeloma. Interactions between myeloma cells and cells of the bone marrow microenvironment promote both tumor growth and survival and bone destruction, and the osteolytic bone disease is now recognized as a contributing component to tumor progression. Since myeloma bone disease is associated with both an increase in osteoclastic bone resorption and a suppression of osteoblastic bone formation, research to date has largely focused upon the role of the osteoclast and osteoblast. However, it is now clear that other cell types within the bone marrow, including cells of the immune system, mesenchymal stem cells and bone marrow stromal cells, can contribute to the development of myeloma bone disease. This review discusses the cellular mechanisms and potential therapeutic targets that have been implicated in myeloma bone disease. PMID:20615487

  14. Incidence and clinical features of extramedullary multiple myeloma in patients who underwent stem cell transplantation.

    PubMed

    Weinstock, Mathew; Aljawai, Yosra; Morgan, Elizabeth A; Laubach, Jacob; Gannon, Muriel; Roccaro, Aldo M; Varga, Cindy; Mitsiades, Constantine S; Paba-Prada, Claudia; Schlossman, Robert; Munshi, Nikhil; Anderson, Kenneth C; Richardson, Paul P; Weller, Edie; Ghobrial, Irene M

    2015-06-01

    Extramedullary disease (EMD), defined as an infiltrate of clonal plasma cells at an anatomic site distant from the bone marrow, is an uncommon manifestation of multiple myeloma. Six hundred and sixty-three consecutive patients with multiple myeloma who underwent stem cell transplantation between January 2005 and December 2011 were assessed for the presence of EMD. A cohort of 55 patients with biopsy-proven EMD was identified, comprising 8·3% of the total study population. EMD was present at the time of diagnosis in 14·5% of cases and at the time of relapse in 76% of patients. The most common EMD presentations at relapse were liver involvement and pleural effusions. EMD specimens had high expression of CD44 (92%) and moderate expression of CXCR4. The median overall survival from time of myeloma diagnosis was 4·1 years (95% CI: 3·1, 5·1) and the median overall survival from time of EMD diagnosis was 1·3 years (95% CI: 0·8, 2·3). This report demonstrates that the incidence of EMD has not increased with the introduction of novel agents and stem cell transplantation. The most common EMD presentations in the relapsed setting were liver and pleural fluid. The presence of CD44 and CXCR4 expression may represent new markers of EMD that warrant further investigation. © 2015 John Wiley & Sons Ltd.

  15. Lenalidomide increases human dendritic cell maturation in multiple myeloma patients targeting monocyte differentiation and modulating mesenchymal stromal cell inhibitory properties

    PubMed Central

    Costa, Federica; Vescovini, Rosanna; Bolzoni, Marina; Marchica, Valentina; Storti, Paola; Toscani, Denise; Accardi, Fabrizio; Notarfranchi, Laura; Dalla Palma, Benedetta; Manferdini, Cristina; Manni, Sabrina; Todaro, Giannalisa; Lisignoli, Gina; Piazza, Francesco; Aversa, Franco; Giuliani, Nicola

    2017-01-01

    The use of Lenalidomide (LEN), to reverse tumor-mediated immune suppression and amplify multiple myeloma-specific immunity is currently being explored. Particularly, LEN effects on dendritic cells (DCs) are still unclear. In this study, we investigated the potential effect of LEN on DC differentiation and activity. DCs were differentiated either from CD14+ cells obtained from patients with multiple myeloma or from a human monocytic cell line. LEN, at the concentration range reached in vivo, significantly increased the median intensity expression of HLA-DR, CD86 and CD209 by DCs derived from both bone marrow and peripheral myeloma monocytes and enhanced the production of Interleukin-8, C-C motif chemokine ligand (CCL) 2, CCL5 and tumor necrosis factor-α. Consistently, LEN pre-treated DCs showed an increased ability to stimulate autologous CD3+ cell proliferation. LEN effect on dendritic differentiation was associated with the degradation of the Cereblon-related factors Ikaros and Aiolos. Moreover, we showed that LEN also blunted mesenchymal stromal cell inhibitory effect on dendritic differentiation, inhibiting Casein Kinase-1α levels. Finally, in vitro data were confirmed in ex vivo cultures obtained from relapsed myeloma patients treated with LEN, showing a significant increase of DC differentiation from peripheral blood monocytes. In conclusion, LEN increased the expression of mature dendritic markers both directly and indirectly and enhanced DC ability to stimulate T cell proliferation and to release chemokines. This suggests a new possible mechanism by which LEN could exert its anti-myeloma activity. PMID:28881793

  16. Expression Profiles of the Individual Genes Corresponding to the Genes Generated by Cytotoxicity Experiments with Bortezomib in Multiple Myeloma

    PubMed Central

    Ghasemi, Mehdi; Alpsoy, Semih; Türk, Seyhan; Malkan, Ümit Y.; Atakan, Şükrü; Haznedaroğlu, İbrahim C.; Güneş, Gürsel; Gündüz, Mehmet; Yılmaz, Burak; Etgül, Sezgin; Aydın, Seda; Aslan, Tuncay; Sayınalp, Nilgün; Aksu, Salih; Demiroğlu, Haluk; Özcebe, Osman İ.; Büyükaşık, Yahya; Göker, Hakan

    2016-01-01

    Objective: Multiple myeloma (MM) is currently incurable due to refractory disease relapse even under novel anti-myeloma treatment. In silico studies are effective for key decision making during clinicopathological battles against the chronic course of MM. The aim of this present in silico study was to identify individual genes whose expression profiles match that of the one generated by cytotoxicity experiments for bortezomib. Materials and Methods: We used an in silico literature mining approach to identify potential biomarkers by creating a summarized set of metadata derived from relevant information. The E-MTAB-783 dataset containing expression data from 789 cancer cell lines including 8 myeloma cell lines with drug screening data from the Wellcome Trust Sanger Institute database obtained from ArrayExpress was “Robust Multi-array analysis” normalized using GeneSpring v.12.5. Drug toxicity data were obtained from the Genomics of Drug Sensitivity in Cancer project. In order to identify individual genes whose expression profiles matched that of the one generated by cytotoxicity experiments for bortezomib, we used a linear regression-based approach, where we searched for statistically significant correlations between gene expression values and IC50 data. The intersections of the genes were identified in 8 cell lines and used for further analysis. Results: Our linear regression model identified 73 genes and some genes expression levels were found to very closely correlated with bortezomib IC50 values. When all 73 genes were used in a hierarchical cluster analysis, two major clusters of cells representing relatively sensitive and resistant cells could be identified. Pathway and molecular function analysis of all the significant genes was also investigated, as well as the genes involved in pathways. Conclusion: The findings of our present in silico study could be important not only for the understanding of the genomics of MM but also for the better arrangement of

  17. Differentiation stage of myeloma plasma cells: biological and clinical significance.

    PubMed

    Paiva, B; Puig, N; Cedena, M T; de Jong, B G; Ruiz, Y; Rapado, I; Martinez-Lopez, J; Cordon, L; Alignani, D; Delgado, J A; van Zelm, M C; Van Dongen, J J M; Pascual, M; Agirre, X; Prosper, F; Martín-Subero, J I; Vidriales, M-B; Gutierrez, N C; Hernandez, M T; Oriol, A; Echeveste, M A; Gonzalez, Y; Johnson, S K; Epstein, J; Barlogie, B; Morgan, G J; Orfao, A; Blade, J; Mateos, M V; Lahuerta, J J; San-Miguel, J F

    2017-02-01

    The notion that plasma cells (PCs) are terminally differentiated has prevented intensive research in multiple myeloma (MM) about their phenotypic plasticity and differentiation. Here, we demonstrated in healthy individuals (n=20) that the CD19-CD81 expression axis identifies three bone marrow (BM)PC subsets with distinct age-prevalence, proliferation, replication-history, immunoglobulin-production, and phenotype, consistent with progressively increased differentiation from CD19+CD81+ into CD19-CD81+ and CD19-CD81- BMPCs. Afterwards, we demonstrated in 225 newly diagnosed MM patients that, comparing to normal BMPC counterparts, 59% had fully differentiated (CD19-CD81-) clones, 38% intermediate-differentiated (CD19-CD81+) and 3% less-differentiated (CD19+CD81+) clones. The latter patients had dismal outcome, and PC differentiation emerged as an independent prognostic marker for progression-free (HR: 1.7; P=0.005) and overall survival (HR: 2.1; P=0.006). Longitudinal comparison of diagnostic vs minimal-residual-disease samples (n=40) unraveled that in 20% of patients, less-differentiated PCs subclones become enriched after therapy-induced pressure. We also revealed that CD81 expression is epigenetically regulated, that less-differentiated clonal PCs retain high expression of genes related to preceding B-cell stages (for example: PAX5), and show distinct mutation profile vs fully differentiated PC clones within individual patients. Together, we shed new light into PC plasticity and demonstrated that MM patients harbouring less-differentiated PCs have dismal survival, which might be related to higher chemoresistant potential plus different molecular and genomic profiles.

  18. Differentiation stage of myeloma plasma cells: biological and clinical significance

    PubMed Central

    Paiva, B; Puig, N; Cedena, MT; de Jong, BG; Ruiz, Y; Rapado, I; Martinez-Lopez, J; Cordon, L; Alignani, D; Delgado, JA; van Zelm, MC; Van Dongen, JJM; Pascual, M; Agirre, X; Prosper, F; Martín-Subero, JI; Vidriales, M-B; Gutierrez, NC; Hernandez, MT; Oriol, A; Echeveste, MA; Gonzalez, Y; Johnson, SK; Epstein, J; Barlogie, B; Morgan, GJ; Orfao, A; Blade, J; Mateos, MV; Lahuerta, JJ; San-Miguel, JF

    2017-01-01

    The notion that plasma cells (PCs) are terminally differentiated has prevented intensive research in multiple myeloma (MM) about their phenotypic plasticity and differentiation. Here, we demonstrated in healthy individuals (n = 20) that the CD19 − CD81 expression axis identifies three bone marrow (BM)PC subsets with distinct age-prevalence, proliferation, replication-history, immunoglobulin-production, and phenotype, consistent with progressively increased differentiation from CD19+CD81+ into CD19 − CD81+ and CD19 − CD81 − BMPCs. Afterwards, we demonstrated in 225 newly diagnosed MM patients that, comparing to normal BMPC counterparts, 59% had fully differentiated (CD19 − CD81 −) clones, 38% intermediate-differentiated (CD19 − CD81+) and 3% less-differentiated (CD19+CD81+) clones. The latter patients had dismal outcome, and PC differentiation emerged as an independent prognostic marker for progression-free (HR: 1.7; P = 0.005) and overall survival (HR: 2.1; P = 0.006). Longitudinal comparison of diagnostic vs minimal-residual-disease samples (n = 40) unraveled that in 20% of patients, less-differentiated PCs subclones become enriched after therapy-induced pressure. We also revealed that CD81 expression is epigenetically regulated, that less-differentiated clonal PCs retain high expression of genes related to preceding B-cell stages (for example: PAX5), and show distinct mutation profile vs fully differentiated PC clones within individual patients. Together, we shed new light into PC plasticity and demonstrated that MM patients harbouring less-differentiated PCs have dismal survival, which might be related to higher chemoresistant potential plus different molecular and genomic profiles. PMID:27479184

  19. Differential Activities of Thalidomide and Isoprenoid Biosynthetic Pathway Inhibitors in Multiple Myeloma Cells

    PubMed Central

    Holstein, Sarah A.; Tong, Huaxiang; Hohl, Raymond J.

    2013-01-01

    Thalidomide has emerged as an effective agent for treating multiple myeloma, however the precise mechanism of action remains unknown. Agents known to target the isoprenoid biosynthetic pathway (IBP) can have cytotoxic effects in myeloma cells. The interactions between thalidomide and IBP inhibitors in human multiple myeloma cells were evaluated. Enhanced cytotoxicity and induction of apoptosis was observed in RPMI-8226 cells. Examination of intracellular levels of farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) revealed a wide variance in basal levels and response to IBP inhibitors. These findings provide a mechanism for the differential sensitivity of myeloma cells to pharmacologic manipulation of the IBP. PMID:19646757

  20. [Establishment of multiple myeloma mouse models expressing brain derived neurotrophic factor].

    PubMed

    Wang, Ya-Dan; Hu, Yu; Zhang, Lu; Huang, Jing; Sun, Chun-Yan

    2007-10-01

    Previous studies have demonstrated the effects of brain-derived neurotrophic factor (BDNF) on promoting proliferation of multiple myeloma (MM) cells and inducing angiogenesis in MM in vitro. This study was aimed to further explore whether BDNF/TrkB pathway is a potential therapeutic target in MM, and to elucidate the advantages and disadvantages of two ways developed for human myeloma xenograft in animal models. The models of xenograft tumors were established in the non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice by subcutaneous or intravenous injection of human myeloma cell line RPMI8226. Mice were monitored daily for life state, and the volume of subcutaneous tumors were measured after inoculation. 3 weeks after inoculation, red blood cell counts, BDNF level in plasma, human lambda light chain and calcium level in serum of NOD/SCID were detected every two weeks. The histological and cytological examinations were performed to observe pathological features of tumors. Using flow cytometry to observe the expression of human CD38+ cell in murine blood and bone marrow. The changes of bone density and skeletal lesions were detected by computer radiography. The results showed that the subcutaneously injected animal model showed a high growth efficiency of RPMI8226 subcutaneous tumors (5/5) and several pathological features of plasmacytomas. There were neither obvious increase in lambda light chain and calcium levels, nor spread of human MM cells to murine bone marrow and no radiological evidence of skeletal lesions. The intravenously injected animal model had relative low efficiency for growth of tumors (4/7) but MM cells could engraft and proliferate in murine bone marrow. The human lambda light chain could be detected in serum as early as 3 weeks after inoculation. Myeloma-bearing mice had high level of lambda light chain and high calcium in serum and resorption of the murine bone. Furthermore, the concentrations of BDNF were increased with the

  1. Blockade of Deubiquitylating Enzyme USP1 Inhibits DNA Repair and Triggers Apoptosis in Multiple Myeloma Cells.

    PubMed

    Das, Deepika Sharma; Das, Abhishek; Ray, Arghya; Song, Yan; Samur, Mehmet Kemal; Munshi, Nikhil C; Chauhan, Dharminder; Anderson, Kenneth C

    2017-08-01

    Purpose: The ubiquitin proteasome pathway is a validated therapeutic target in multiple myeloma. Deubiquitylating enzyme USP1 participates in DNA damage response and cellular differentiation pathways. To date, the role of USP1 in multiple myeloma biology is not defined. In the present study, we investigated the functional significance of USP1 in multiple myeloma using genetic and biochemical approaches.Experimental Design: To investigate the role of USP1 in myeloma, we utilized USP1 inhibitor SJB3-019A (SJB) for studies in myeloma cell lines and patient multiple myeloma cells.Results: USP1-siRNA knockdown decreases multiple myeloma cell viability. USP1 inhibitor SJB selectively blocks USP1 enzymatic activity without blocking other DUBs. SJB also decreases the viability of multiple myeloma cell lines and patient tumor cells, inhibits bone marrow plasmacytoid dendritic cell-induced multiple myeloma cell growth, and overcomes bortezomib resistance. SJB triggers apoptosis in multiple myeloma cells via activation of caspase-3, caspase-8, and caspase-9. Moreover, SJB degrades USP1 and downstream inhibitor of DNA-binding proteins as well as inhibits DNA repair via blockade of Fanconi anemia pathway and homologous recombination. SJB also downregulates multiple myeloma stem cell renewal/survival-associated proteins Notch-1, Notch-2, SOX-4, and SOX-2. Moreover, SJB induced generation of more mature and differentiated plasma cells. Combination of SJB and HDACi ACY-1215, bortezomib, lenalidomide, or pomalidomide triggers synergistic cytotoxicity.Conclusions: Our preclinical studies provide the framework for clinical evaluation of USP1 inhibitors, alone or in combination, as a potential novel multiple myeloma therapy. Clin Cancer Res; 23(15); 4280-9. ©2017 AACR. ©2017 American Association for Cancer Research.

  2. Multiple Myeloma

    MedlinePlus

    ... myeloma is a cancer that begins in plasma cells, a type of white blood cell. These cells are part of your immune system, which helps ... germs and other harmful substances. In time, myeloma cells collect in the bone marrow and in the ...

  3. Deazaneplanocin A Is a Promising Drug to Kill Multiple Myeloma Cells in Their Niche

    PubMed Central

    Gaudichon, Jérémie; Milano, Francesco; Cahu, Julie; DaCosta, Lætitia; Martens, Anton C.; Renoir, Jack-Michel; Sola, Brigitte

    2014-01-01

    Tumoral plasma cells has retained stemness features and in particular, a polycomb-silenced gene expression signature. Therefore, epigenetic therapy could be a mean to fight for multiple myeloma (MM), still an incurable pathology. Deazaneplanocin A (DZNep), a S-adenosyl-L-homocysteine hydrolase inhibitor, targets enhancer of zest homolog 2 (EZH2), a component of polycomb repressive complex 2 (PRC2) and is capable to induce the death of cancer cells. We show here that, in some MM cell lines, DZNep induced both caspase-dependent and -independent apoptosis. However, the induction of cell death was not mediated through its effect on EZH2 and the trimethylation on lysine 27 of histone H3 (H3K27me3). DZNep likely acted through non-epigenetic mechanisms in myeloma cells. In vivo, in xenograft models, and in vitro DZNep showed potent antimyeloma activity alone or in combination with bortezomib. These preclinical data let us to envisage new therapeutic strategies for myeloma. PMID:25255316

  4. Automatic recognition of myeloma cells in microscopic images using bottleneck algorithm, modified watershed and SVM classifier.

    PubMed

    Saeedizadeh, Z; Mehri Dehnavi, A; Talebi, A; Rabbani, H; Sarrafzadeh, O; Vard, A

    2016-01-01

    Plasma cells are developed from B lymphocytes, a type of white blood cells that is generated in the bone marrow. The plasma cells produce antibodies to fight with bacteria and viruses and stop infection and disease. Multiple myeloma is a cancer of plasma cells that collections of abnormal plasma cells (myeloma cells) accumulate in the bone marrow. The definitive diagnosis of multiple myeloma is done by searching for myeloma cells in the bone marrow slides through a microscope. Diagnosis of myeloma cells from bone marrow smears is a subjective and time-consuming task for pathologists. Also, because of depending on final decision on human eye and opinion, error risk in decision may occur. Sometimes, existence of infection in body causes plasma cell's increment which could be diagnosed wrongly as multiple myeloma. The computer diagnostic process will reduce the diagnostic time and also can be worked as a second opinion for pathologists. This study presents a computer-aided diagnostic method for myeloma cells diagnosis from bone marrow smears. At first, white blood cells consist of plasma cells and other marrow cells are separated from the red blood cells and background. Then, plasma cells are detected from other marrow cells by feature extraction and series of decision rules. Finally, normal plasma cells and myeloma cells could be classified easily by a classifier. This algorithm is applied on 50 digital images that are provided from bone marrow aspiration smears. These images contain 678 cells: 132 normal plasma cells, 256 myeloma cells and 290 other types of marrow cells. Applying the computer-aided diagnostic method for identifying myeloma cells on provided database showed a sensitivity of 96.52%; specificity of 93.04% and precision of 95.28%. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  5. THE FORMATION OF MYELOMA PROTEIN BY A MOUSE PLASMA CELL TUMOR

    PubMed Central

    Nathans, Daniel; Fahey, John L.; Potter, Michael

    1958-01-01

    The origin of the myeloma protein found in mice bearing the plasma cell tumor X5563 has been investigated. Specific activity-time curves of the myeloma proteins isolated from the tumor and from the plasma of these animals were compared following intravenous injection of L-lysine-C14. The results indicate that myeloma protein is synthesized in the plasma cell tumor. PMID:13549645

  6. Expression Profile of BCL-2, BCL-XL, and MCL-1 Predicts Pharmacological Response to the BCL-2 Selective Antagonist Venetoclax in Multiple Myeloma Models.

    PubMed

    Punnoose, Elizabeth A; Leverson, Joel D; Peale, Franklin; Boghaert, Erwin R; Belmont, Lisa D; Tan, Nguyen; Young, Amy; Mitten, Michael; Ingalla, Ellen; Darbonne, Walter C; Oleksijew, Anatol; Tapang, Paul; Yue, Peng; Oeh, Jason; Lee, Leslie; Maiga, Sophie; Fairbrother, Wayne J; Amiot, Martine; Souers, Andrew J; Sampath, Deepak

    2016-05-01

    BCL-2 family proteins dictate survival of human multiple myeloma cells, making them attractive drug targets. Indeed, multiple myeloma cells are sensitive to antagonists that selectively target prosurvival proteins such as BCL-2/BCL-XL (ABT-737 and ABT-263/navitoclax) or BCL-2 only (ABT-199/GDC-0199/venetoclax). Resistance to these three drugs is mediated by expression of MCL-1. However, given the selectivity profile of venetoclax it is unclear whether coexpression of BCL-XL also affects antitumor responses to venetoclax in multiple myeloma. In multiple myeloma cell lines (n = 21), BCL-2 is expressed but sensitivity to venetoclax correlated with high BCL-2 and low BCL-XL or MCL-1 expression. Multiple myeloma cells that coexpress BCL-2 and BCL-XL were resistant to venetoclax but sensitive to a BCL-XL-selective inhibitor (A-1155463). Multiple myeloma xenograft models that coexpressed BCL-XL or MCL-1 with BCL-2 were also resistant to venetoclax. Resistance to venetoclax was mitigated by cotreatment with bortezomib in xenografts that coexpressed BCL-2 and MCL-1 due to upregulation of NOXA, a proapoptotic factor that neutralizes MCL-1. In contrast, xenografts that expressed BCL-XL, MCL-1, and BCL-2 were more sensitive to the combination of bortezomib with a BCL-XL selective inhibitor (A-1331852) but not with venetoclax cotreatment when compared with monotherapies. IHC of multiple myeloma patient bone marrow biopsies and aspirates (n = 95) revealed high levels of BCL-2 and BCL-XL in 62% and 43% of evaluable samples, respectively, while 34% were characterized as BCL-2(High)/BCL-XL (Low) In addition to MCL-1, our data suggest that BCL-XL may also be a potential resistance factor to venetoclax monotherapy and in combination with bortezomib. Mol Cancer Ther; 15(5); 1132-44. ©2016 AACR.

  7. IKZF1 expression is a prognostic marker in newly diagnosed standard-risk multiple myeloma treated with lenalidomide and intensive chemotherapy: a study of the German Myeloma Study Group (DSMM).

    PubMed

    Krönke, J; Kuchenbauer, F; Kull, M; Teleanu, V; Bullinger, L; Bunjes, D; Greiner, A; Kolmus, S; Köpff, S; Schreder, M; Mügge, L-O; Straka, C; Engelhardt, M; Döhner, H; Einsele, H; Bassermann, F; Bargou, R; Knop, S; Langer, C

    2017-01-20

    Lenalidomide is an immunomodulatory compound with high clinical activity in multiple myeloma. Lenalidomide binding to the Cereblon (CRBN) E3 ubiquitin ligase results in targeted ubiquitination and degradation of the lymphoid transcription factors Ikaros (IKZF1) and Aiolos (IKZF3) leading to growth inhibition of multiple myeloma cells. Recently, Basigin (BSG) was identified as another protein regulated by CRBN that is involved in the activity of lenalidomide. Here, we analyzed the prognostic value of IKZF1, IKZF3, CRBN and BSG mRNA expression levels in pretreatment plasma cells from 60 patients with newly diagnosed multiple myeloma uniformly treated with lenalidomide in combination with intensive chemotherapy within a clinical trial. We found that IKZF1 mRNA expression levels are significantly associated with progression-free survival (PFS). Patients in the lowest quartile (Q1) of IKZF1 expression had a superior PFS compared with patients in the remaining quartiles (Q2-Q4; 3-year PFS of 86 vs 51%, P=0.01). This translated into a significant better overall survival (100 vs 74%, P=0.03). Subgroup analysis revealed a significant impact of IKZF1, IKZF3 and BSG expression levels on PFS in cytogenetically defined standard-risk but not high-risk patients. Our data suggest a prognostic role of IKZF1, IKZF3 and BSG expression levels in lenalidomide-treated multiple myeloma.Leukemia advance online publication, 20 January 2017; doi:10.1038/leu.2016.384.

  8. PD1 blockade enhances cytotoxicity of in vitro expanded natural killer cells towards myeloma cells

    PubMed Central

    Guo, Yanan; Feng, Xiaoli; Jiang, Yang; Shi, Xiaoyun; Xing, Xiangling; Liu, Xiaoli; Li, Nailin; Fadeel, Bengt; Zheng, Chengyun

    2016-01-01

    Aiming for an adoptive natural killer (NK) cell therapy, we have developed a novel protocol to expand NK cells from peripheral blood. With this protocol using anti-human CD16 antibody and interleukin (IL)-2, NK (CD3−CD56+) cells could be expanded about 4000-fold with over 70% purity during a 21-day culture. The expanded NK (exNK) cells were shown to be highly cytotoxic to multiple myeloma (MM) cells (RPMI8226) at low NK-target cell ratios. Furthermore, NK cells expanded in the presence of a blocking antibody (exNK+PD1-blockage) against programmed cell death protein-1 (PD1), a key counteracting molecule for NK and T cell activity, demonstrated more potent cytolytic activity against the RPMI8226 than the exNK cells without PD1 blocking. In parallel, the exNK cells showed significantly higher expression of NK activation receptors NKG2D, NKp44 and NKp30. In a murine model of MM, transfusion of exNK cells, exNK+PD1-blockage, and exNK plus intratumor injection of anti-PD-L2 antibody (exNK+PD-L2 blockage) all significantly suppressed tumor growth and prolonged survival of the myeloma mice. Importantly, exNK+PD1-blockage presented more efficient therapeutic effects. Our results suggest that the NK cell expansion protocol with PD1 blockade presented in this study has considerable potential for the clinical application of allo- and auto-NK cell-based therapies against malignancies. PMID:27356741

  9. Outpatient Autologous Stem Cell Transplantation for Patients With Myeloma.

    PubMed

    Paul, Thomas M; Liu, Stephen V; Chong, Elise A; Luger, Selina M; Porter, David L; Schuster, Stephen J; Tsai, Donald E; Nasta, Sunita D; Loren, Alison; Frey, Noelle; Perl, Alexander; Cohen, Adam D; Weiss, Brendan M; Stadtmauer, Edward A; Vogl, Dan T

    2015-09-01

    High-dose melphalan with autologous stem cell support improves survival for patients with myeloma. For selected patients, we have been using a protocol of short hospitalization, discharging patients to home with careful outpatient monitoring in the office, which we hypothesized would reduce complications and utilization of inpatient beds. We reviewed 301 initial autologous transplants for myeloma, categorized as brief stay (≤ 4 days, 82 patients) or prolonged stay (≥ 5 days, 219 patients). Selection for a brief stay was determined by clinical characteristics, availability of caregivers at home, distance from our medical center, and patient preference. Within the brief stay population, 67% required readmission before day + 100, but this group still had fewer cumulative hospital days (9 vs. 18, P < .0001). There were fewer documented infections among brief stay patients (22% vs. 46% P < .001) and fewer admissions to intensive care units (0% vs. 5.9%, P = .02). The groups had similar rates of bleeding (1.2% vs. 1.4% P = 1.0) and thrombosis (3.7% vs. 4.6% P = 1.0). No patients in the brief stay group died within 100 days, compared with mortality of 1.8% (P = .6) in the prolonged stay group. Carefully selected patients receiving an autologous stem cell transplant for treatment of myeloma can be managed with a brief initial hospitalization and outpatient follow-up, with low morbidity and mortality. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Non-redundant roles for Th17 and Th22 cells in multiple myeloma clinical correlates

    PubMed Central

    Di Lullo, Giulia; Marcatti, Magda; Protti, Maria Pia

    2016-01-01

    ABSTRACT We recently reported that in multiple myeloma increased Th22 cell frequencies correlate with poor prognosis. Here we show that within the same patients' cohort Th17 cells associate with bone disease and not with prognosis. Thus, we propose that Th22 and Th17 cells play non-redundant roles in multiple myeloma and constitute independent therapeutic targets. PMID:27141378

  11. Non-redundant roles for Th17 and Th22 cells in multiple myeloma clinical correlates.

    PubMed

    Di Lullo, Giulia; Marcatti, Magda; Protti, Maria Pia

    2016-04-01

    We recently reported that in multiple myeloma increased Th22 cell frequencies correlate with poor prognosis. Here we show that within the same patients' cohort Th17 cells associate with bone disease and not with prognosis. Thus, we propose that Th22 and Th17 cells play non-redundant roles in multiple myeloma and constitute independent therapeutic targets.

  12. Human Multiple Myeloma Cells Are Sensitized to Topoisomerase II Inhibitors by CRM1 Inhibition

    PubMed Central

    Turner, Joel G.; Marchion, Douglas C.; Dawson, Jana L.; Emmons, Michael F.; Hazlehurst, Lori A.; Washausen, Peter; Sullivan, Daniel M.

    2009-01-01

    Topoisomerase IIα (topo IIα) is exported from the nucleus of human myeloma cells by a CRM1-dependent mechanism at cellular densities similar to those found in patient bone marrow. When topo IIα is trafficked to the cytoplasm, it is not in contact with the DNA; thus topo IIα inhibitors are unable to induce DNA-cleavable complexes and cell death. Using a CRM1 inhibitor or a CRM1-specific small interfering RNA (siRNA), we were able to block nuclear export of topo IIα as shown by immunofluorescence microscopy. Human myeloma cell lines and patient myeloma cells isolated from bone marrow were treated with a CRM1 inhibitor or CRM1-specific siRNA and exposed to doxorubicin or etoposide (VP-16) at high cell densities. CRM1-treated cell lines or myeloma patient cells were fourfold more sensitive to topo II poisons, as determined by activated caspase assay. Normal cells were not significantly affected by CRM1-topo II combination treatment. Cell death was correlated with increased DNA double-strand breaks as shown by the comet assay. Band depletion assays of CRM1 inhibitor-exposed myeloma cells demonstrated increased topo IIα covalently bound to DNA. Topo IIα knockdown by a topo IIα-specific siRNA abrogated the CRM1-topo II therapy synergistic effect. These results suggest that blocking topo IIα nuclear export sensitizes myeloma cells to topo II inhibitors. This method of sensitizing myeloma cells suggests a new therapeutic approach to multiple myeloma. PMID:19690141

  13. High cereblon expression is associated with better survival in patients with newly diagnosed multiple myeloma treated with thalidomide maintenance.

    PubMed

    Broyl, Annemiek; Kuiper, Rowan; van Duin, Mark; van der Holt, Bronno; el Jarari, Laila; Bertsch, Uta; Zweegman, Sonja; Buijs, Arjan; Hose, Dirk; Lokhorst, Henk M; Goldschmidt, Hartmut; Sonneveld, Pieter

    2013-01-24

    Recently, cereblon (CRBN) expression was found to be essential for the activity of thalidomide and lenalidomide. In the present study, we investigated whether the clinical efficacy of thalidomide in multiple myeloma is associated with CRBN expression in myeloma cells. Patients with newly diagnosed multiple myeloma were included in the HOVON-65/GMMG-HD4 trial, in which postintensification treatment in 1 arm consisted of daily thalidomide (50 mg) for 2 years. Gene-expression profiling, determined at the start of the trial, was available for 96 patients who started thalidomide maintenance. In this patient set, increase of CRBN gene expression was significantly associated with longerprogression-free survival (P = .005). In contrast, no association between CRBN expression and survival was observed in the arm with bortezomib maintenance. We conclude that CRBN expression may be associated with the clinical efficacy of thalidomide. This trial has been registered at the Nederlands Trial Register (www.trialregister.nl) as NTR213; at the European Union Drug Regulating Authorities Clinical Trials (EudraCT) as 2004-000944-26; and at the International Standard Randomized Controlled Trial Number (ISRCTN) as 64455289.

  14. MTI-101 (cyclized HYD1) binds a CD44 containing complex and induces necrotic cell death in multiple myeloma.

    PubMed

    Gebhard, Anthony W; Jain, Priyesh; Nair, Rajesh R; Emmons, Michael F; Argilagos, Raul F; Koomen, John M; McLaughlin, Mark L; Hazlehurst, Lori A

    2013-11-01

    Our laboratory recently reported that treatment with the d-amino acid containing peptide HYD1 induces necrotic cell death in multiple myeloma cell lines. Because of the intriguing biological activity and promising in vivo activity of HYD1, we pursued strategies for increasing the therapeutic efficacy of the linear peptide. These efforts led to a cyclized peptidomimetic, MTI-101, with increased in vitro activity and robust in vivo activity as a single agent using two myeloma models that consider the bone marrow microenvironment. MTI-101 treatment similar to HYD1 induced reactive oxygen species, depleted ATP levels, and failed to activate caspase-3. Moreover, MTI-101 is cross-resistant in H929 cells selected for acquired resistance to HYD1. Here, we pursued an unbiased chemical biology approach using biotinylated peptide affinity purification and liquid chromatography/tandem mass spectrometry analysis to identify binding partners of MTI-101. Using this approach, CD44 was identified as a predominant binding partner. Reducing the expression of CD44 was sufficient to induce cell death in multiple myeloma cell lines, indicating that multiple myeloma cells require CD44 expression for survival. Ectopic expression of CD44s correlated with increased binding of the FAM-conjugated peptide. However, ectopic expression of CD44s was not sufficient to increase the sensitivity to MTI-101-induced cell death. Mechanistically, we show that MTI-101-induced cell death occurs via a Rip1-, Rip3-, or Drp1-dependent and -independent pathway. Finally, we show that MTI-101 has robust activity as a single agent in the SCID-Hu bone implant and 5TGM1 in vivo model of multiple myeloma.

  15. MDX-1097 induces antibody-dependent cellular cytotoxicity against kappa multiple myeloma cells and its activity is augmented by lenalidomide.

    PubMed

    Asvadi, Parisa; Cuddihy, Andrew; Dunn, Rosanne D; Jiang, Vivien; Wong, Mae X; Jones, Darren R; Khong, Tiffany; Spencer, Andrew

    2015-05-01

    MDX-1097 is an antibody specific for a unique B cell antigen called kappa myeloma antigen (KMA) that consists of cell membrane-associated free kappa light chain (κFLC). KMA was detected on kappa human multiple myeloma cell lines (κHMCLs), on plasma cells (PCs) from kappa multiple myeloma (κMM) patients and on κPC dyscrasia tissue cryosections. In primary κMM samples, KMA was present on CD38+ cells that were CD138 and CD45 positive and/or negative. MDX-1097 exhibited a higher affinity for KMA compared to κFLC and the latter did not abrogate binding to KMA. MDX-1097-mediated antibody-dependent cellular cytotoxicity (ADCC) and in vitro exposure of target cells to the immunomodulatory drug lenalidomide resulted in increased KMA expression and ADCC. Also, in vitro exposure of peripheral blood mononuclear cells (PBMCs) to lenalidomide enhanced MDX-1097-mediated ADCC. PBMCs obtained from myeloma patients after lenalidomide therapy elicited significantly higher levels of MDX-1097-mediated ADCC than cells obtained prior to lenalidomide treatment. These data establish KMA as a relevant cell surface antigen on MM cells that can be targeted by MDX-1097. The ADCC-inducing capacity of MDX-1097 and its potentiation by lenalidomide provide a powerful rationale for clinical evaluation of MDX-1097 alone and in combination with lenalidomide. © 2015 John Wiley & Sons Ltd.

  16. Optimization of Gene Transfection in Murine Myeloma Cell Lines using Different Transfection Reagents

    PubMed Central

    Shabani, Mahdi; Hemmati, Sheyda; Hadavi, Reza; Amirghofran, Zahra; Jeddi-Tehrani, Mahmood; Rabbani, Hodjatallah; Shokri, Fazel

    2010-01-01

    Purification and isolation of cellular target proteins for monoclonal antibody (MAb) production is a difficult and time-consuming process. Immunization of mice with murine cell lines stably transfected with genes coding for xenogenic target molecules is an alternative method for mouse immunization and MAb production. Here we present data on transfection efficiency of some commercial reagents used for transfection of murine myeloma cell lines. Little is known about transfectability of murine myeloma cell lines by different transfection reagents. Mouse myeloma cell lines (SP2/0, NS0, NS1, Ag8, and P3U1) were transfected with pEGFP-N1 vector using Lipofectamine 2000, jetPEI and LyoVec commercial transfection reagents in different combinations. The transfection permissible HEK293-FT cell line was used as a control in transfection procedure. Transfected cells, expressing the Enhanced Green Fluorescent Protein (EGFP), were analyzed by flow cytometry 48 hrs post transfection. Our results showed transfection efficiency of 71%, 57% and 22% for HEK293-FT, 5.5%, 3.4% and 1% for SP2/0, 55.7%, 21.1% and 9.3% for NS0, 8.2%, 6% and 5.5% for NS1, 22%, 49.2% and 5.5% for Ag8 and 6.3%, 21.5% and 4.6% for P3U1 cell lines after transfection with Lipofectamine 2000, jetPEI and LyoVec reagents, respectively. Our data indicate that NS0 and Ag8 are efficiently transfected by Lipofectamine 2000 and jetPEI reagents. Finally, we propose Ag8 and NS0 cell lines as suitable host cells for efficient expression of target genes which can be used for mouse immunization and MAb production. PMID:23408356

  17. Reelin promotes the adhesion and drug resistance of multiple myeloma cells via integrin β1 signaling and STAT3.

    PubMed

    Lin, Liang; Yan, Fan; Zhao, Dandan; Lv, Meng; Liang, Xiaodong; Dai, Hui; Qin, Xiaodan; Zhang, Yan; Hao, Jie; Sun, Xiuyuan; Yin, Yanhui; Huang, Xiaojun; Zhang, Jun; Lu, Jin; Ge, Qing

    2016-03-01

    Reelin is an extracellular matrix (ECM) protein that is essential for neuron migration and positioning. The expression of reelin in multiple myeloma (MM) cells and its association with cell adhesion and survival were investigated. Overexpression, siRNA knockdown, and the addition of recombinant protein of reelin were used to examine the function of reelin in MM cells. Clinically, high expression of reelin was negatively associated with progression-free survival and overall survival. Functionally, reelin promoted the adhesion of MM cells to fibronectin via activation of α5β1 integrin. The resulting phosphorylation of Focal Adhesion Kinase (FAK) led to the activation of Src/Syk/STAT3 and Akt, crucial signaling molecules involved in enhancing cell adhesion and protecting cells from drug-induced cell apoptosis. These findings indicate reelin's important role in the activation of integrin-β1 and STAT3/Akt pathways in multiple myeloma and highlight the therapeutic potential of targeting reelin/integrin/FAK axis.

  18. Clinical regressions and broad immune activation following combination therapy targeting human NKT cells in myeloma

    PubMed Central

    Richter, Joshua; Neparidze, Natalia; Zhang, Lin; Nair, Shiny; Monesmith, Tamara; Sundaram, Ranjini; Miesowicz, Fred; Dhodapkar, Kavita M.

    2013-01-01

    Natural killer T (iNKT) cells can help mediate immune surveillance against tumors in mice. Prior studies targeting human iNKT cells were limited to therapy of advanced cancer and led to only modest activation of innate immunity. Clinical myeloma is preceded by an asymptomatic precursor phase. Lenalidomide was shown to mediate antigen-specific costimulation of human iNKT cells. We treated 6 patients with asymptomatic myeloma with 3 cycles of combination of α-galactosylceramide–loaded monocyte-derived dendritic cells and low-dose lenalidomide. Therapy was well tolerated and led to reduction in tumor-associated monoclonal immunoglobulin in 3 of 4 patients with measurable disease. Combination therapy led to activation-induced decline in measurable iNKT cells and activation of NK cells with an increase in NKG2D and CD56 expression. Treatment also led to activation of monocytes with an increase in CD16 expression. Each cycle of therapy was associated with induction of eosinophilia as well as an increase in serum soluble IL2 receptor. Clinical responses correlated with pre-existing or treatment-induced antitumor T-cell immunity. These data demonstrate synergistic activation of several innate immune cells by this combination and the capacity to mediate tumor regression. Combination therapies targeting iNKT cells may be of benefit toward prevention of cancer in humans (trial registered at clinicaltrials.gov: NCT00698776). PMID:23100308

  19. Clinical regressions and broad immune activation following combination therapy targeting human NKT cells in myeloma.

    PubMed

    Richter, Joshua; Neparidze, Natalia; Zhang, Lin; Nair, Shiny; Monesmith, Tamara; Sundaram, Ranjini; Miesowicz, Fred; Dhodapkar, Kavita M; Dhodapkar, Madhav V

    2013-01-17

    Natural killer T (iNKT) cells can help mediate immune surveillance against tumors in mice. Prior studies targeting human iNKT cells were limited to therapy of advanced cancer and led to only modest activation of innate immunity. Clinical myeloma is preceded by an asymptomatic precursor phase. Lenalidomide was shown to mediate antigen-specific costimulation of human iNKT cells. We treated 6 patients with asymptomatic myeloma with 3 cycles of combination of α-galactosylceramide-loaded monocyte-derived dendritic cells and low-dose lenalidomide. Therapy was well tolerated and led to reduction in tumor-associated monoclonal immunoglobulin in 3 of 4 patients with measurable disease. Combination therapy led to activation-induced decline in measurable iNKT cells and activation of NK cells with an increase in NKG2D and CD56 expression. Treatment also led to activation of monocytes with an increase in CD16 expression. Each cycle of therapy was associated with induction of eosinophilia as well as an increase in serum soluble IL2 receptor. Clinical responses correlated with pre-existing or treatment-induced antitumor T-cell immunity. These data demonstrate synergistic activation of several innate immune cells by this combination and the capacity to mediate tumor regression. Combination therapies targeting iNKT cells may be of benefit toward prevention of cancer in humans.

  20. Osteoblastic niche supports the growth of quiescent multiple myeloma cells

    PubMed Central

    Chen, Zheng; Orlowski, Robert Z.; Wang, Michael; Kwak, Larry

    2014-01-01

    The heterogeneity of multiple myeloma (MM) contributes to variable responses to therapy. In this study, we aim to correlate the heterogeneity of MM to the presence of quiescent cells using the PKH26 dye. We tracked the rare quiescent cells in different niches of the bone marrow by allowing the cells to cycle in vivo. Surprisingly, quiescent PKH+ MM cells prefer to reside within the osteoblastic niches of the bone marrow (PKH+/OS) rather than the vascular (VS) niches or the spleen. These cells (PKH+/OS) displayed enhanced stemlike properties by forming colonies in semisolid medium. PKH+ cells were highly tumorigenic compared with PKH– cells and were resistant to a variety of drugs. However, the levels of drug resistance were somewhat similar regardless of where the PKH+ cells were isolated. Our data indicate that osteoblastic niches support the growth of quiescent PKH+ cells and allow them to have stemlike functions. PMID:24425802

  1. Role of hematopoietic stem cell transplantation in multiple myeloma.

    PubMed

    Garcia, Ima N

    2015-02-01

    High-dose therapy followed by autologous stem cell transplantation (ASCT) has been the standard frontline consolidative therapy for patients with newly diagnosed multiple myeloma (MM) for > 2 decades. This approach has resulted in higher complete response (CR) rates and increased event-free survival and overall survival (OS) compared with conventional chemotherapy. The emergence of novel agent-based therapy combined with ASCT has revolutionized MM therapy by improving the CR rates and OS, raising questions concerning the role of hematopoietic stem cell transplantation in this setting.

  2. Tumor-specific CD4+ T cells eradicate myeloma cells genetically deficient in MHC class II display

    PubMed Central

    Tveita, Anders; Fauskanger, Marte; Bogen, Bjarne; Haabeth, Ole Audun Werner

    2016-01-01

    CD4+ T cells have been shown to reject tumor cells with no detectable expression of major histocompatibility complex class II (MHC II). However, under certain circumstances, induction of ectopic MHC II expression on tumor cells has been reported. To confirm that CD4+ T cell-mediated anti-tumor immunity can be successful in the complete absence of antigen display on the tumor cells themselves, we eliminated MHC II on tumor cells using CRISPR/Cas9. Our results demonstrate that ablation of the relevant MHC II (I-Ed) in multiple myeloma cells (MOPC315) does not hinder rejection by tumor-specific CD4+ T cells. These findings provide conclusive evidence that CD4+ T cells specific for tumor antigens can eliminate malignant cells in the absence of endogenous MHC class II expression on the tumor cells. This occurs through antigen uptake and indirect presentation on tumor-infiltrating macrophages. PMID:27626487

  3. Downregulation of MicroRNA-152 contributes to high expression of DKK1 in multiple myeloma.

    PubMed

    Xu, Yinyin; Chen, Bingda; George, Suraj K; Liu, Beizhong

    2015-01-01

    Multiple myeloma (MM) induced bone lesion is one of the most crippling characteristics, and the MM secreted Dickkopf-1 (DKK1) has been reported to play important role in this pathologic process. However, the underlying regulation mechanisms involved in DKK1 expression are still unclear. In this study, we validated the expression patterns of microRNA (miR) 15a, 34a, 152, and 223 in MM cells and identified that miR-152 was significantly downregulated in the MM group compared with the non-MM group, and that miR-152 level was negatively correlated with the expression of DKK1 in the MM cells. Mechanistic studies showed that manipulating miR-152 artificially in MM cells led to changes in DKK-1 expression, and miR-152 blocked DKK1 transcriptional activity by binding to the 3'UTR of DKK1 mRNA. Importantly, we revealed that MM cells stably expressing miR-152 improved the chemotherapy sensitivity, and counteracted the bone disruption in an intrabone-MM mouse model. Our study contributes better understanding of the regulation mechanism of DKK-1 in MM, and opens up the potential for developing newer therapeutic strategies in the MM treatment.

  4. CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma.

    PubMed

    Nijhof, Inger S; Casneuf, Tineke; van Velzen, Jeroen; van Kessel, Berris; Axel, Amy E; Syed, Khaja; Groen, Richard W J; van Duin, Mark; Sonneveld, Pieter; Minnema, Monique C; Zweegman, Sonja; Chiu, Christopher; Bloem, Andries C; Mutis, Tuna; Lokhorst, Henk M; Sasser, A Kate; van de Donk, Niels W C J

    2016-08-18

    The anti-CD38 monoclonal antibody daratumumab is well tolerated and has high single agent activity in heavily pretreated relapsed and refractory multiple myeloma (MM). However, not all patients respond, and many patients eventually develop progressive disease to daratumumab monotherapy. We therefore examined whether pretreatment expression levels of CD38 and complement-inhibitory proteins (CIPs) are associated with response and whether changes in expression of these proteins contribute to development of resistance. In a cohort of 102 patients treated with daratumumab monotherapy (16 mg/kg), we found that pretreatment levels of CD38 expression on MM cells were significantly higher in patients who achieved at least partial response (PR) compared with patients who achieved less than PR. However, cell surface expression of the CIPs, CD46, CD55, and CD59, was not associated with clinical response. In addition, CD38 expression was reduced in both bone marrow-localized and circulating MM cells, following the first daratumumab infusion. CD38 expression levels on MM cells increased again following daratumumab discontinuation. In contrast, CD55 and CD59 levels were significantly increased on MM cells only at the time of progression. All-trans retinoic acid increased CD38 levels and decreased CD55 and CD59 expression on MM cells from patients who developed daratumumab resistance, to approximately pretreatment values. This resulted in significant enhancement of daratumumab-mediated complement-dependent cytotoxicity. Together, these data demonstrate an important role for CD38 and CIP expression levels in daratumumab sensitivity and suggest that therapeutic combinations that alter CD38 and CIP expression levels should be investigated in the treatment of MM. These trials were registered at www.clinicaltrials.gov as #NCT00574288 (GEN501) and #NCT01985126 (SIRIUS). © 2016 by The American Society of Hematology.

  5. Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers.

    PubMed

    Agirre, Xabier; Castellano, Giancarlo; Pascual, Marien; Heath, Simon; Kulis, Marta; Segura, Victor; Bergmann, Anke; Esteve, Anna; Merkel, Angelika; Raineri, Emanuele; Agueda, Lidia; Blanc, Julie; Richardson, David; Clarke, Laura; Datta, Avik; Russiñol, Nuria; Queirós, Ana C; Beekman, Renée; Rodríguez-Madoz, Juan R; San José-Enériz, Edurne; Fang, Fang; Gutiérrez, Norma C; García-Verdugo, José M; Robson, Michael I; Schirmer, Eric C; Guruceaga, Elisabeth; Martens, Joost H A; Gut, Marta; Calasanz, Maria J; Flicek, Paul; Siebert, Reiner; Campo, Elías; Miguel, Jesús F San; Melnick, Ari; Stunnenberg, Hendrik G; Gut, Ivo G; Prosper, Felipe; Martín-Subero, José I

    2015-04-01

    While analyzing the DNA methylome of multiple myeloma (MM), a plasma cell neoplasm, by whole-genome bisulfite sequencing and high-density arrays, we observed a highly heterogeneous pattern globally characterized by regional DNA hypermethylation embedded in extensive hypomethylation. In contrast to the widely reported DNA hypermethylation of promoter-associated CpG islands (CGIs) in cancer, hypermethylated sites in MM, as opposed to normal plasma cells, were located outside CpG islands and were unexpectedly associated with intronic enhancer regions defined in normal B cells and plasma cells. Both RNA-seq and in vitro reporter assays indicated that enhancer hypermethylation is globally associated with down-regulation of its host genes. ChIP-seq and DNase-seq further revealed that DNA hypermethylation in these regions is related to enhancer decommissioning. Hypermethylated enhancer regions overlapped with binding sites of B cell-specific transcription factors (TFs) and the degree of enhancer methylation inversely correlated with expression levels of these TFs in MM. Furthermore, hypermethylated regions in MM were methylated in stem cells and gradually became demethylated during normal B-cell differentiation, suggesting that MM cells either reacquire epigenetic features of undifferentiated cells or maintain an epigenetic signature of a putative myeloma stem cell progenitor. Overall, we have identified DNA hypermethylation of developmentally regulated enhancers as a new type of epigenetic modification associated with the pathogenesis of MM.

  6. Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers

    PubMed Central

    Castellano, Giancarlo; Pascual, Marien; Heath, Simon; Kulis, Marta; Segura, Victor; Bergmann, Anke; Esteve, Anna; Merkel, Angelika; Raineri, Emanuele; Agueda, Lidia; Blanc, Julie; Richardson, David; Clarke, Laura; Datta, Avik; Russiñol, Nuria; Queirós, Ana C.; Beekman, Renée; Rodríguez-Madoz, Juan R.; José-Enériz, Edurne San; Fang, Fang; Gutiérrez, Norma C.; García-Verdugo, José M.; Robson, Michael I.; Schirmer, Eric C.; Guruceaga, Elisabeth; Martens, Joost H.A.; Gut, Marta; Calasanz, Maria J.; Flicek, Paul; Siebert, Reiner; Campo, Elías; Miguel, Jesús F. San; Melnick, Ari; Stunnenberg, Hendrik G.; Gut, Ivo G.

    2015-01-01

    While analyzing the DNA methylome of multiple myeloma (MM), a plasma cell neoplasm, by whole-genome bisulfite sequencing and high-density arrays, we observed a highly heterogeneous pattern globally characterized by regional DNA hypermethylation embedded in extensive hypomethylation. In contrast to the widely reported DNA hypermethylation of promoter-associated CpG islands (CGIs) in cancer, hypermethylated sites in MM, as opposed to normal plasma cells, were located outside CpG islands and were unexpectedly associated with intronic enhancer regions defined in normal B cells and plasma cells. Both RNA-seq and in vitro reporter assays indicated that enhancer hypermethylation is globally associated with down-regulation of its host genes. ChIP-seq and DNase-seq further revealed that DNA hypermethylation in these regions is related to enhancer decommissioning. Hypermethylated enhancer regions overlapped with binding sites of B cell-specific transcription factors (TFs) and the degree of enhancer methylation inversely correlated with expression levels of these TFs in MM. Furthermore, hypermethylated regions in MM were methylated in stem cells and gradually became demethylated during normal B-cell differentiation, suggesting that MM cells either reacquire epigenetic features of undifferentiated cells or maintain an epigenetic signature of a putative myeloma stem cell progenitor. Overall, we have identified DNA hypermethylation of developmentally regulated enhancers as a new type of epigenetic modification associated with the pathogenesis of MM. PMID:25644835

  7. CXCL12 and CXCR7 are relevant targets to reverse cell adhesion-mediated drug resistance in multiple myeloma.

    PubMed

    Waldschmidt, Johannes M; Simon, Anna; Wider, Dagmar; Müller, Stefan J; Follo, Marie; Ihorst, Gabriele; Decker, Sarah; Lorenz, Joschka; Chatterjee, Manik; Azab, Abdel K; Duyster, Justus; Wäsch, Ralph; Engelhardt, Monika

    2017-10-01

    Cell adhesion-mediated drug resistance (CAM-DR) by the bone marrow (BM) is fundamental to multiple myeloma (MM) propagation and survival. Targeting BM protection to increase the efficacy of current anti-myeloma treatment has not been extensively pursued. To extend the understanding of CAM-DR, we hypothesized that the cytotoxic effects of novel anti-myeloma agents may be abrogated by the presence of BM stroma cells (BMSCs) and restored by addition of the CXCL12 antagonist NOX-A12 or the CXCR4 inhibitor plerixafor. Following this hypothesis, we evaluated different anti-myeloma agents alone, with BMSCs and when combined with plerixafor or NOX-A12. We verified CXCR4, CD49d (also termed ITGA4) and CD44 as essential mediators of BM adhesion on MM cells. Additionally, we show that CXCR7, the second receptor of stromal-derived-factor-1 (CXCL12), is highly expressed in active MM. Co-culture proved that co-treatment with plerixafor or NOX-A12, the latter inhibiting CXCR4 and CXCR7, functionally interfered with MM chemotaxis to the BM. This led to the resensitization of MM cells to the anti-myeloma agents vorinostat and pomalidomide and both proteasome inhibitors bortezomib and carfilzomib. Within a multicentre phase I/II study, NOX-A12 was tested in combination with bortezomib-dexamethasone, underlining the feasibility of NOX-A12 as an active add-on agent to antagonize myeloma CAM-DR. © 2017 John Wiley & Sons Ltd.

  8. TCR-based therapy for multiple myeloma and other B-cell malignancies targeting intracellular transcription factor BOB1.

    PubMed

    Jahn, Lorenz; Hombrink, Pleun; Hagedoorn, Renate S; Kester, Michel G D; van der Steen, Dirk M; Rodriguez, Tania; Pentcheva-Hoang, Tsvetelina; de Ru, Arnoud H; Schoonakker, Marjolein P; Meeuwsen, Miranda H; Griffioen, Marieke; van Veelen, Peter A; Falkenburg, J H Frederik; Heemskerk, Mirjam H M

    2017-03-09

    Immunotherapy for hematological malignancies or solid tumors by administration of monoclonal antibodies or T cells engineered to express chimeric antigen receptors or T-cell receptors (TCRs) has demonstrated clinical efficacy. However, antigen-loss tumor escape variants and the absence of currently targeted antigens on several malignancies hamper the widespread application of immunotherapy. We have isolated a TCR targeting a peptide of the intracellular B cell-specific transcription factor BOB1 presented in the context of HLA-B*07:02. TCR gene transfer installed BOB1 specificity and reactivity onto recipient T cells. TCR-transduced T cells efficiently lysed primary B-cell leukemia, mantle cell lymphoma, and multiple myeloma in vitro. We also observed recognition and lysis of healthy BOB1-expressing B cells. In addition, strong BOB1-specific proliferation could be demonstrated for TCR-modified T cells upon antigen encounter. Furthermore, clear in vivo antitumor reactivity was observed of BOB1-specific TCR-engineered T cells in a xenograft mouse model of established multiple myeloma. Absence of reactivity toward a broad panel of BOB1(-) but HLA-B*07:02(+) nonhematopoietic and hematopoietic cells indicated no off-target toxicity. Therefore, administration of BOB1-specific TCR-engineered T cells may provide novel cellular treatment options to patients with B-cell malignancies, including multiple myeloma.

  9. EZH2 Inhibition Blocks Multiple Myeloma Cell Growth through Upregulation of Epithelial Tumor Suppressor Genes.

    PubMed

    Hernando, Henar; Gelato, Kathy A; Lesche, Ralf; Beckmann, Georg; Koehr, Silke; Otto, Saskia; Steigemann, Patrick; Stresemann, Carlo

    2016-02-01

    Multiple myeloma is a plasma cell malignancy characterized by marked heterogeneous genomic instability including frequent genetic alterations in epigenetic enzymes. In particular, the histone methyltransferase Enhancer of Zeste Homolog 2 (EZH2) is overexpressed in multiple myeloma. EZH2 is the catalytic component of the polycomb repressive complex 2 (PRC2), a master transcriptional regulator of differentiation. EZH2 catalyzes methylation of lysine 27 on histone H3 and its deregulation in cancer has been reported to contribute to silencing of tumor suppressor genes, resulting in a more undifferentiated state, and thereby contributing to the multiple myeloma phenotype. In this study, we propose the use of EZH2 inhibitors as a new therapeutic approach for the treatment of multiple myeloma. We demonstrate that EZH2 inhibition causes a global reduction of H3K27me3 in multiple myeloma cells, promoting reexpression of EZH2-repressed tumor suppressor genes in a subset of cell lines. As a result of this transcriptional activation, multiple myeloma cells treated with EZH2 inhibitors become more adherent and less proliferative compared with untreated cells. The antitumor efficacy of EZH2 inhibitors is also confirmed in vivo in a multiple myeloma xenograft model in mice. Together, our data suggest that EZH2 inhibition may provide a new therapy for multiple myeloma treatment and a promising addition to current treatment options. Mol Cancer Ther; 15(2); 287-98. ©2015 AACR.

  10. Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche

    PubMed Central

    Lawson, Michelle A.; McDonald, Michelle M.; Kovacic, Natasa; Hua Khoo, Weng; Terry, Rachael L.; Down, Jenny; Kaplan, Warren; Paton-Hough, Julia; Fellows, Clair; Pettitt, Jessica A.; Neil Dear, T.; Van Valckenborgh, Els; Baldock, Paul A.; Rogers, Michael J.; Eaton, Colby L.; Vanderkerken, Karin; Pettit, Allison R.; Quinn, Julian M. W.; Zannettino, Andrew C. W.; Phan, Tri Giang; Croucher, Peter I.

    2015-01-01

    Multiple myeloma is largely incurable, despite development of therapies that target myeloma cell-intrinsic pathways. Disease relapse is thought to originate from dormant myeloma cells, localized in specialized niches, which resist therapy and repopulate the tumour. However, little is known about the niche, and how it exerts cell-extrinsic control over myeloma cell dormancy and reactivation. In this study, we track individual myeloma cells by intravital imaging as they colonize the endosteal niche, enter a dormant state and subsequently become activated to form colonies. We demonstrate that dormancy is a reversible state that is switched ‘on' by engagement with bone-lining cells or osteoblasts, and switched ‘off' by osteoclasts remodelling the endosteal niche. Dormant myeloma cells are resistant to chemotherapy that targets dividing cells. The demonstration that the endosteal niche is pivotal in controlling myeloma cell dormancy highlights the potential for targeting cell-extrinsic mechanisms to overcome cell-intrinsic drug resistance and prevent disease relapse. PMID:26632274

  11. A novel signaling pathway associated with Lyn, PI 3-kinase and Akt supports the proliferation of myeloma cells

    SciTech Connect

    Iqbal, Mohd S.; Tsuyama, Naohiro; Obata, Masanori; Ishikawa, Hideaki

    2010-02-12

    Interleukin-6 (IL-6) is a growth factor for human myeloma cells. We have recently found that in myeloma cells the activation of both signal transducer and activator of transcription (STAT) 3 and extracellular signal-regulated kinase (ERK) 1/2 is not sufficient for the IL-6-induced proliferation, which further requires the activation of the src family kinases, such as Lyn. Here we showed that the Lyn-overexpressed myeloma cell lines had the higher proliferative rate with IL-6 and the enhanced activation of the phosphatidylinositol (PI) 3-kinase and Akt. The IL-6-induced phosphorylation of STAT3 and ERK1/2 was not up-regulated in the Lyn-overexpressed cells, indicating that the Lyn-PI 3-kinase-Akt pathway is independent of these pathways. The PI 3-kinase was co-precipitated with Lyn in the Lyn-overexpressed cells of which proliferation with IL-6 was abrogated by the specific inhibitors for PI 3-kinase or Akt, suggesting that the activation of the PI 3-kinase-Akt pathway associated with Lyn is indeed related to the concomitant augmentation of myeloma cell growth. Furthermore, the decreased expression of p53 and p21{sup Cip1} proteins was observed in the Lyn-overexpressed cells, implicating a possible downstream target of Akt. This study identifies a novel IL-6-mediated signaling pathway that certainly plays a role in the proliferation of myeloma cells and this novel mechanism of MM tumor cell growth associated with Lyn would eventually contribute to the development of MM treatment.

  12. Do baseline Cereblon gene expression and IL-6 receptor expression determine the response to thalidomide-dexamethasone treatment in multiple myeloma patients?

    PubMed

    Bedewy, Ahmed M L; El-Maghraby, Shereen M

    2014-01-01

    Immunomodulatory drugs (IMiDs) are key components of treatment for hematologic malignancies, especially multiple myeloma (MM). Cereblon (CRBN) expression was described to be essential for the activity of thalidomide. Furthermore, IMiD binding to CRBN is cytotoxic to multiple myeloma cells and absence of CRBN confers IMiDs resistance. Interleukin-6 (IL-6) is a potent pleiotropic cytokine that regulates plasma cell (PC) growth via the IL-6 receptor (IL-6R). IL-6/IL-6R autocrine activity is implicated in the development and progression of cancers including cervical cancer, prostate cancer, and multiple myeloma. The aim of the study was to evaluate CRBN and IL-6R expressions and their impact on clinical efficacy of dexamethasone-thalidomide therapy in multiple myeloma (MM) patients, in addition to their association with other clinical and prognostic parameters. Forty-six newly diagnosed MM patients were enrolled in the study. We measured CRBN expression prior to therapy initiation by real-time polymerase chain reaction in 46 bone marrow (BM) aspiration samples of patients and controls. In addition, IL-6R expression was evaluated on BM biopsies of patients and controls by immunohistochemistry (IHC). Twenty-eight males (60.9%) and 18 females (39.1%) were enrolled. The mean age was 65.11 ± 7.3 yr (range 39-77 yr). Median CRBN expression in 46 BM samples of MM patients was significantly higher than in controls (P < 0.001). Among established prognostic parameters, international staging system (ISS), serum beta-2-microglobulin (B2M), and serum albumin correlated reversely with CRBN expression. IL-6R expression was significantly higher in patients than in controls. IL-6R expression was significantly associated with response to treatment (P < 0.001), B2M (P = 0.032), and ISS (P = 0.028). Strong intensity expression was associated with low CRBN expression (P = 0.001).In conclusion, CRBN expression may provide a biomarker to predict response to IMiD in patients

  13. Pigment epithelium-derived factor (PEDF) inhibits survival and proliferation of VEGF-exposed multiple myeloma cells through its anti-oxidative properties.

    PubMed

    Seki, Ritsuko; Yamagishi, Sho-ichi; Matsui, Takanori; Yoshida, Takafumi; Torimura, Takuji; Ueno, Takato; Sata, Michio; Okamura, Takashi

    2013-02-22

    Vascular endothelial growth factor (VEGF) has been reported not only to induce angiogenesis within the bone marrow, but also directly stimulate the proliferation and survival of multiple myeloma cells, thus being involved in the development and progression of this second most common hematological malignancy. We, along with others, have found that pigment epithelium-derived factor (PEDF) has anti-angiogenic and anti-vasopermeability properties both in cell culture and animal models by counteracting the biological actions of VEGF. However, effects of PEDF on VEGF-exposed myeloma cells remain unknown. In this study, we examined whether and how PEDF could inhibit the VEGF-induced proliferation and survival of myeloma cells. PEDF, a glutathione peroxidase mimetic, ebselen, or an inhibitor of NADPH oxidase, diphenylene iodonium significantly inhibited the VEGF-induced reactive oxygen species (ROS) generation, increase in anti-apoptotic and growth-promoting factor, myeloid cell leukemia 1 (Mcl-1) expression, and proliferation in U266 myeloma cells. VEGF blocked apoptosis of multiple myeloma cells isolated from patients, which was prevented by PEDF. PEDF also reduced p22phox levels in VEGF-exposed U266 cells. Furthermore, overexpression of dominant-negative human Rac-1 mutant mimicked the effects of PEDF on ROS generation and Mcl-1 expression in U266 cells. Our present study suggests that PEDF could block the VEGF-induced proliferation and survival of multiple myeloma U266 cells through its anti-oxidative properties via suppression of p22phox, one of the membrane components of NADPH oxidase. Suppression of VEGF signaling by PEDF may be a novel therapeutic target for multiple myeloma.

  14. Translating a gene expression signature for multiple myeloma prognosis into a robust high-throughput assay for clinical use

    PubMed Central

    2014-01-01

    Background Widespread adoption of genomic technologies in the management of heterogeneous indications, including Multiple Myeloma, has been hindered by concern over variation between published gene expression signatures, difficulty in physician interpretation and the challenge of obtaining sufficient genetic material from limited patient specimens. Methods Since 2006, the 70-gene prognostic signature, developed by the University of Arkansas for Medical Sciences (UAMS) has been applied to over 4,700 patients in studies performed in 4 countries and described in 17 peer-reviewed publications. Analysis of control sample and quality control data compiled over a 12-month period was performed. Results Over a 12 month period, the 70-gene prognosis score (range 0–100) of our multiple myeloma cell-line control sample had a standard deviation of 2.72 and a coefficient of variance of 0.03. The whole-genome microarray profile used to calculate a patient’s GEP70 score can be generated with as little as 15 ng of total RNA; approximately 30,000 CD-138+ plasma cells. Results from each GEP70 analysis are presented as either low (70-gene score <45.2) or high (≥45.2) risk for relapse (newly diagnosed setting) or shorter overall survival (relapse setting). A personalized and outcome-annotated gene expression heat map is provided to assist in the clinical interpretation of the result. Conclusions The 70-gene assay, commercialized under the name ‘MyPRS®’ (Myeloma Prognostic Risk Score) and performed in Signal Genetics’ CLIA-certified high throughput flow-cytometry and molecular profiling laboratory is a reproducible and standardized method of multiple myeloma prognostication. PMID:24885236

  15. Effector memory and central memory NY-ESO-1-specific re-directed T cells for treatment of multiple myeloma.

    PubMed

    Schuberth, P C; Jakka, G; Jensen, S M; Wadle, A; Gautschi, F; Haley, D; Haile, S; Mischo, A; Held, G; Thiel, M; Tinguely, M; Bifulco, C B; Fox, B A; Renner, C; Petrausch, U

    2013-04-01

    The cancer-testis antigen NY-ESO-1 is a potential target antigen for immune therapy expressed in a subset of patients with multiple myeloma. We generated chimeric antigen receptors (CARs) recognizing the immunodominant NY-ESO-1 peptide 157-165 in the context of HLA-A*02:01 to re-direct autologous CD8(+) T cells towards NY-ESO-1(+) myeloma cells. These re-directed T cells specifically lysed NY-ESO-1(157-165)/HLA-A*02:01-positive cells and secreted IFNγ. A total of 40% of CCR7(-) re-directed T cells had an effector memory phenotype and 5% a central memory phenotype. Based on CCR7 cell sorting, effector and memory CAR-positive T cells were separated and CCR7(+) memory cells demonstrated after antigen-specific re-stimulation downregulation of CCR7 as sign of differentiation towards effector cells accompanied by an increased secretion of memory signature cytokines such as IL-2. To evaluate NY-ESO-1 as potential target antigen, we screened 78 bone marrow biopsies of multiple myeloma patients where NY-ESO-1 protein was found to be expressed by immunohistochemistry in 9.7% of samples. Adoptively transferred NY-ESO-1-specific re-directed T cells protected mice against challenge with endogenously NY-ESO-1-positive myeloma cells in a xenograft model. In conclusion, re-directed effector- and central memory T cells specifically recognized NY-ESO-1(157-165)/ HLA-A*02:01-positive cells resulting in antigen-specific functionality in vitro and in vivo.

  16. Complications of multiple myeloma.

    PubMed

    Bladé, Joan; Rosiñol, Laura

    2007-12-01

    Multiple myeloma, also known as myeloma or plasma cell myeloma, is a progressive hematologic disease. Complications of multiple myeloma include renal insufficiency, hematologic complications (anemia, bone marrow failure, bleeding disorders), infections, bone complications (pathologic fractures, spinal cord compression, hyercalcemia), and neurologic complications (spinal cord and nerve root compression, intracranial plasmacytomas, leptomeningeal involvement, among others). This article reviews these various complications connected to multiple myeloma, examining their various causes and possible treatment.

  17. A peptide nucleic acid targeting nuclear RAD51 sensitizes multiple myeloma cells to melphalan treatment

    PubMed Central

    Alagpulinsa, David Abasiwani; Yaccoby, Shmuel; Ayyadevara, Srinivas; Shmookler Reis, Robert Joseph

    2015-01-01

    RAD51-mediated recombinational repair is elevated in multiple myeloma (MM) and predicts poor prognosis. RAD51 has been targeted to selectively sensitize and/or kill tumor cells. Here, we employed a peptide nucleic acid (PNA) to inhibit RAD51 expression in MM cells. We constructed a PNA complementary to a unique segment of the RAD51 gene promoter, spanning the transcription start site, and conjugated it to a nuclear localization signal (PKKKRKV) to enhance cellular uptake and nuclear delivery without transfection reagents. This synthetic construct, (PNArad51_nls), significantly reduced RAD51 transcripts in MM cells, and markedly reduced the number and intensity of de novo and melphalan-induced nuclear RAD51 foci, while increasing the level of melphalan-induced γH2AX foci. Melphalan alone markedly induced the expression of 5 other genes involved in homologous-recombination repair, yet suppression of RAD51 by PNArad51_nls was sufficient to synergize with melphalan, producing significant synthetic lethality of MM cells in vitro. In a SCID-rab mouse model mimicking the MM bone marrow microenvironment, treatment with PNArad51_nls ± melphalan significantly suppressed tumor growth after 2 weeks, whereas melphalan plus control PNArad4µ_nls was ineffectual. This study highlights the importance of RAD51 in myeloma growth and is the first to demonstrate that anti-RAD51 PNA can potentiate conventional MM chemotherapy. PMID:25996477

  18. The novel JAK inhibitor AZD1480 blocks STAT3 and FGFR3 signaling, resulting in suppression of human myeloma cell growth and survival

    PubMed Central

    Scuto, Anna; Krejci, Pavel; Popplewell, Leslie; Wu, Jun; Wang, Yan; Kujawski, Maciej; Kowolik, Claudia; Xin, Hong; Chen, Linling; Wang, Yafan; Kretzner, Leo; Yu, Hua; Wilcox, William R.; Yen, Yun; Forman, Stephen; Jove, Richard

    2011-01-01

    IL-6 and downstream JAK-dependent signaling pathways have critical roles in the pathophysiology of multiple myeloma. We investigated the effects of a novel small-molecule JAK inhibitor (AZD1480) on IL-6/JAK signal transduction and its biological consequences on the human myeloma-derived cell lines U266 and Kms.11. At low micromolar concentrations, AZD1480 blocks cell proliferation and induces apoptosis of myeloma cell lines. These biological responses to AZD1480 are associated with concomitant inhibition of phosphorylation of JAK2, STAT3 and MAPK signaling proteins. In addition, there is inhibition of expression of STAT3 target genes, particularly Cyclin D2. Examination of a wider variety of myeloma cells (RPMI 8226, OPM-2, NCI-H929, Kms.18, MM1.S, IM-9) as well as primary myeloma cells showed that AZD1480 has broad efficacy. By contrast, viability of normal PBMCs and CD138+ cells derived from healthy controls was not significantly inhibited. Importantly, AZD1480 induces cell death of Kms.11 cells grown in the presence of HS-5 bone marrow-derived stromal cells and inhibits tumor growth in a Kms.11 xenograft mouse model, accompanied with inhibition of phospho-FGFR3, phospho-JAK2, phospho-STAT3 and Cyclin D2 levels. In sum, AZD1480 blocks proliferation, survival, FGFR3 and JAK/STAT3 signaling in myeloma cells cultured alone or co-cultured with bone marrow stromal cells and in vivo. Thus, AZD1480 represents a potential new therapeutic agent for patients with multiple myeloma. PMID:21164517

  19. Heparanase inhibits osteoblastogenesis and shifts bone marrow progenitor cell fate in myeloma bone disease

    PubMed Central

    Ruan, Jian; Trotter, Timothy N.; Nan, Li; Luo, Rongcheng; Javed, Amjad; Sanderson, Ralph D.; Suva, Larry J.; Yang, Yang

    2013-01-01

    A major cause of morbidity in patients with multiple myeloma is the development and progression of bone disease. Myeloma bone disease is characterized by rampant osteolysis in the presence of absent or diminished bone formation. Heparanase, an enzyme that acts both at the cell-surface and within the extracellular matrix to degrade polymeric heparan sulfate chains, is upregulated in a variety of human cancers including multiple myeloma. We and others have shown that heparanase enhances osteoclastogenesis and bone loss. However, increased osteolysis is only one element of the spectrum of myeloma bone disease. In the present study, we hypothesized that heparanase would also affect mesenchymal cells in the bone microenvironment and investigated the effect of heparanase on the differentiation of osteoblast/stromal lineage cells. Using a combination of molecular, biochemical, cellular and in vivo approaches, we demonstrated that heparanase significantly inhibited osteoblast differentiation and mineralization, and reduced bone formation in vivo. In addition, heparanase also shifts the differentiation potential of osteoblast progenitors from osteoblastogenesis to adipogenesis. Mechanistically, this shift in cell fate is due, at least in part, to heparanase-enhanced production and secretion of the Wnt signaling pathway inhibitor DKK1 by both osteoblast progenitors and myeloma cells. Collectively, these data provide important new insights into the role of heparanase in all aspects of myeloma bone disease and strongly support the use of heparanase inhibitors in the treatment of multiple myeloma. PMID:23895995

  20. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma.

    PubMed

    Drent, Esther; Groen, Richard W J; Noort, Willy A; Themeli, Maria; Lammerts van Bueren, Jeroen J; Parren, Paul W H I; Kuball, Jürgen; Sebestyen, Zsolt; Yuan, Huipin; de Bruijn, Joost; van de Donk, Niels W C J; Martens, Anton C M; Lokhorst, Henk M; Mutis, Tuna

    2016-05-01

    Adoptive transfer of chimeric antigen receptor-transduced T cells is a promising strategy for cancer immunotherapy. The CD38 molecule, with its high expression on multiple myeloma cells, appears a suitable target for antibody therapy. Prompted by this, we used three different CD38 antibody sequences to generate second-generation retroviral CD38-chimeric antigen receptor constructs with which we transduced T cells from healthy donors and multiple myeloma patients. We then evaluated the preclinical efficacy and safety of the transduced T cells. Irrespective of the donor and antibody sequence, CD38-chimeric antigen receptor-transduced T cells proliferated, produced inflammatory cytokines and effectively lysed malignant cell lines and primary malignant cells from patients with acute myeloid leukemia and multi-drug resistant multiple myeloma in a cell-dose, and CD38-dependent manner, despite becoming CD38-negative during culture. CD38-chimeric antigen receptor-transduced T cells also displayed significant anti-tumor effects in a xenotransplant model, in which multiple myeloma tumors were grown in a human bone marrow-like microenvironment. CD38-chimeric antigen receptor-transduced T cells also appeared to lyse the CD38(+) fractions of CD34(+) hematopoietic progenitor cells, monocytes, natural killer cells, and to a lesser extent T and B cells but did not inhibit the outgrowth of progenitor cells into various myeloid lineages and, furthermore, were effectively controllable with a caspase-9-based suicide gene. These results signify the potential importance of CD38-chimeric antigen receptor-transduced T cells as therapeutic tools for CD38(+) malignancies and warrant further efforts to diminish the undesired effects of this immunotherapy using appropriate strategies. Copyright© Ferrata Storti Foundation.

  1. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma

    PubMed Central

    Drent, Esther; Groen, Richard W.J.; Noort, Willy A.; Themeli, Maria; Lammerts van Bueren, Jeroen J.; Parren, Paul W.H.I.; Kuball, Jürgen; Sebestyen, Zsolt; Yuan, Huipin; de Bruijn, Joost; van de Donk, Niels W.C.J.; Martens, Anton C.M.; Lokhorst, Henk M.; Mutis, Tuna

    2016-01-01

    Adoptive transfer of chimeric antigen receptor-transduced T cells is a promising strategy for cancer immunotherapy. The CD38 molecule, with its high expression on multiple myeloma cells, appears a suitable target for antibody therapy. Prompted by this, we used three different CD38 antibody sequences to generate second-generation retroviral CD38-chimeric antigen receptor constructs with which we transduced T cells from healthy donors and multiple myeloma patients. We then evaluated the preclinical efficacy and safety of the transduced T cells. Irrespective of the donor and antibody sequence, CD38-chimeric antigen receptor-transduced T cells proliferated, produced inflammatory cytokines and effectively lysed malignant cell lines and primary malignant cells from patients with acute myeloid leukemia and multi-drug resistant multiple myeloma in a cell-dose, and CD38-dependent manner, despite becoming CD38-negative during culture. CD38-chimeric antigen receptor-transduced T cells also displayed significant anti-tumor effects in a xenotransplant model, in which multiple myeloma tumors were grown in a human bone marrow-like microenvironment. CD38-chimeric antigen receptor-transduced T cells also appeared to lyse the CD38+ fractions of CD34+ hematopoietic progenitor cells, monocytes, natural killer cells, and to a lesser extent T and B cells but did not inhibit the outgrowth of progenitor cells into various myeloid lineages and, furthermore, were effectively controllable with a caspase-9-based suicide gene. These results signify the potential importance of CD38-chimeric antigen receptor-transduced T cells as therapeutic tools for CD38+ malignancies and warrant further efforts to diminish the undesired effects of this immunotherapy using appropriate strategies. PMID:26858358

  2. Targeted therapeutic effect of anti-ABCG2 antibody combined with nano silver and vincristine on mouse myeloma cancer stem cells

    NASA Astrophysics Data System (ADS)

    Dou, Jun; He, Xiangfeng; Liu, Yunjing; Huang, Zhihai; Yang, Cuiping; Shi, Fangfang; Chen, Dengyu; Gu, Ning

    2013-12-01

    Studies from hematopoietic origin malignancies have demonstrated that multiple myeloma contain a rare population of cancer stem cells (CSCs) that are responsible for tumor multiresistance and recurrence. The goal of this study was to investigate targeted therapeutic effect of anti-ABCG2 monoclonal antibody (McAb) combined with silver nanoparticles (AgNPs) and vincristine (VCR) on myeloma CSCs. The characteristics of CD44+ CD24- cells that were isolated from the SP2/0 cells using magnetic activated cell sorting system were first identified. The results showed that the CD44+ CD24- cells exhibited higher proliferation, more colony formation, more side population fraction, and stronger tumorigenicity in BALB/c mice than the control cells. Moreover, CD44+ CD24- cells markedly up-regulated the ABCG2 expression, however, anti-ABCG2 McAb combined with AgNPs and VCR effectively inhibited the CD44+ CD24- cell growth and prolonged the survival of myeloma-bearing mice. We concluded that the CD44+ CD24- cells in mouse myeloma SP2/0 cell line posses CSC properties. Anti-ABCG2 McAb combined with AgNPs and VCR provide an efficient targeted therapeutic method for inhibiting myeloma CD44+ CD24- CSC growth in mice.

  3. Myxoma virus attenuates expression of activating transcription factor 4 (ATF4) which has implications for the treatment of proteasome inhibitor–resistant multiple myeloma

    PubMed Central

    Dunlap, Katherine M; Bartee, Mee Y; Bartee, Eric

    2015-01-01

    The recent development of chemotherapeutic proteasome inhibitors, such as bortezomib, has improved the outcomes of patients suffering from the plasma cell malignancy multiple myeloma. Unfortunately, many patients treated with these drugs still suffer relapsing disease due to treatment-induced upregulation of the antiapoptotic protein Mcl1. We have recently demonstrated that an oncolytic poxvirus, known as myxoma, can rapidly eliminate primary myeloma cells by inducing cellular apoptosis. The efficacy of myxoma treatment on proteasome inhibitor–relapsed or –refractory myeloma, however, remains unknown. We now demonstrate that myxoma-based elimination of myeloma is not affected by cellular resistance to proteasome inhibitors. Additionally, myxoma virus infection specifically prevents expression of Mcl1 following induction of the unfolded protein response, by blocking translation of the unfolded protein response activating transcription factor (ATF)4. These results suggest that myxoma-based oncolytic therapy represents an attractive option for myeloma patients whose disease is refractory to chemotherapeutic proteasome inhibitors due to upregulation of Mcl1. PMID:27512665

  4. The myeloma stem cell concept, revisited: from phenomenology to operational terms.

    PubMed

    Johnsen, Hans Erik; Bøgsted, Martin; Schmitz, Alexander; Bødker, Julie Støve; El-Galaly, Tarec Christoffer; Johansen, Preben; Valent, Peter; Zojer, Niklas; Van Valckenborgh, Els; Vanderkerken, Karin; van Duin, Mark; Sonneveld, Pieter; Perez-Andres, Martin; Orfao, Alberto; Dybkær, Karen

    2016-12-01

    The concept of the myeloma stem cell may have important therapeutic implications, yet its demonstration has been hampered by a lack of consistency in terms and definitions. Here, we summarize the current documentation and propose single-cell in vitro studies for future translational studies. By the classical approach, a CD19(-)/CD45(low/-)/CD38(high)/CD138(+) malignant plasma cell, but not the CD19(+)/CD38(low/-) memory B cell compartment, is enriched for tumorigenic cells that initiate myeloma in xenografted immunodeficient mice, supporting that myeloma stem cells are present in the malignant PC compartment. Using a new approach, analysis of c-DNA libraries from CD19(+)/CD27(+)/CD38(-) single cells has identified clonotypic memory B cell, suggested to be the cell of origin. This is consistent with multiple myeloma being a multistep hierarchical process before or during clinical presentation. We anticipate that further characterization will require single cell geno- and phenotyping combined with clonogenic assays. To implement such technologies, we propose a revision of the concept of a myeloma stem cell by including operational in vitro assays to describe the cellular components of origin, initiation, maintenance, and evolution of multiple myeloma. These terms are in accordance with recent (2012) consensus statements on the definitions, assays, and nomenclature of cancer stem cells, which is technically precise without completely abolishing established terminology. We expect that this operational model will be useful for future reporting of parameters used to identify and characterize the multiple myeloma stem cells. We strongly recommend that these parameters include validated standard technologies, reproducible assays, and, most importantly, supervised prospective sampling of selected biomaterial which reflects clinical stages, disease spectrum, and therapeutic outcome. This framework is key to the characterization of the cellular architecture of multiple

  5. The myeloma stem cell concept, revisited: from phenomenology to operational terms

    PubMed Central

    Johnsen, Hans Erik; Bøgsted, Martin; Schmitz, Alexander; Bødker, Julie Støve; El-Galaly, Tarec Christoffer; Johansen, Preben; Valent, Peter; Zojer, Niklas; Van Valckenborgh, Els; Vanderkerken, Karin; van Duin, Mark; Sonneveld, Pieter; Perez-Andres, Martin; Orfao, Alberto; Dybkær, Karen

    2016-01-01

    The concept of the myeloma stem cell may have important therapeutic implications, yet its demonstration has been hampered by a lack of consistency in terms and definitions. Here, we summarize the current documentation and propose single-cell in vitro studies for future translational studies. By the classical approach, a CD19−/CD45low/−/CD38high/CD138+ malignant plasma cell, but not the CD19+/CD38low/− memory B cell compartment, is enriched for tumorigenic cells that initiate myeloma in xenografted immunodeficient mice, supporting that myeloma stem cells are present in the malignant PC compartment. Using a new approach, analysis of c-DNA libraries from CD19+/CD27+/CD38− single cells has identified clonotypic memory B cell, suggested to be the cell of origin. This is consistent with multiple myeloma being a multistep hierarchical process before or during clinical presentation. We anticipate that further characterization will require single cell geno- and phenotyping combined with clonogenic assays. To implement such technologies, we propose a revision of the concept of a myeloma stem cell by including operational in vitro assays to describe the cellular components of origin, initiation, maintenance, and evolution of multiple myeloma. These terms are in accordance with recent (2012) consensus statements on the definitions, assays, and nomenclature of cancer stem cells, which is technically precise without completely abolishing established terminology. We expect that this operational model will be useful for future reporting of parameters used to identify and characterize the multiple myeloma stem cells. We strongly recommend that these parameters include validated standard technologies, reproducible assays, and, most importantly, supervised prospective sampling of selected biomaterial which reflects clinical stages, disease spectrum, and therapeutic outcome. This framework is key to the characterization of the cellular architecture of multiple myeloma and its

  6. Early-Onset Severe Diffuse Alveolar Hemorrhage after Bortezomib Administration Suggestive of Pulmonary Involvement of Myeloma Cells.

    PubMed

    Sugita, Yasumasa; Ohwada, Chikako; Nagao, Yuhei; Kawajiri, Chika; Shimizu, Ryoh; Togasaki, Emi; Yamazaki, Atsuko; Muto, Tomoya; Sakai, Shio; Takeda, Yusuke; Mimura, Naoya; Takeuchi, Masahiro; Sakaida, Emiko; Iseki, Tohru; Yokote, Koutaro; Nakaseko, Chiaki

    2015-01-01

    Severe acute lung injury is a rare but life-threatening complication associated with bortezomib. We report a patient with multiple myeloma who developed a severe diffuse alveolar hemorrhage (DAH) immediately after the first bortezomib administration. The patient was suspected to have pulmonary involvement of myeloma, which caused DAH after rapidly eradicating myeloma cells in the lungs with bortezomib. Rechallenge with bortezomib was performed without recurrent DAH. In patients with multiple myeloma who manifest abnormal pulmonary shadow, we should be aware of early-onset severe DAH after bortezomib administration, which might be due to pulmonary involvement of myeloma cells.

  7. The proteasome deubiquitinase inhibitor VLX1570 shows selectivity for ubiquitin-specific protease-14 and induces apoptosis of multiple myeloma cells

    PubMed Central

    Wang, Xin; Mazurkiewicz, Magdalena; Hillert, Ellin-Kristina; Olofsson, Maria Hägg; Pierrou, Stefan; Hillertz, Per; Gullbo, Joachim; Selvaraju, Karthik; Paulus, Aneel; Akhtar, Sharoon; Bossler, Felicitas; Khan, Asher Chanan; Linder, Stig; D’Arcy, Padraig

    2016-01-01

    Inhibition of deubiquitinase (DUB) activity is a promising strategy for cancer therapy. VLX1570 is an inhibitor of proteasome DUB activity currently in clinical trials for relapsed multiple myeloma. Here we show that VLX1570 binds to and inhibits the activity of ubiquitin-specific protease-14 (USP14) in vitro, with comparatively weaker inhibitory activity towards UCHL5 (ubiquitin-C-terminal hydrolase-5). Exposure of multiple myeloma cells to VLX1570 resulted in thermostabilization of USP14 at therapeutically relevant concentrations. Transient knockdown of USP14 or UCHL5 expression by electroporation of siRNA reduced the viability of multiple myeloma cells. Treatment of multiple myeloma cells with VLX1570 induced the accumulation of proteasome-bound high molecular weight polyubiquitin conjugates and an apoptotic response. Sensitivity to VLX1570 was moderately affected by altered drug uptake, but was unaffected by overexpression of BCL2-family proteins or inhibitors of caspase activity. Finally, treatment with VLX1570 was found to lead to extended survival in xenograft models of multiple myeloma. Our findings demonstrate promising antiproliferative activity of VLX1570 in multiple myeloma, primarily associated with inhibition of USP14 activity. PMID:27264969

  8. Cutaneous localization in multiple myeloma in the context of bortezomib-based treatment: how do myeloma cells escape from the bone marrow to the skin?

    PubMed

    Marchica, Valentina; Accardi, Fabrizio; Storti, Paola; Mancini, Cristina; Martella, Eugenia; Dalla Palma, Benedetta; Bolzoni, Marina; Todoerti, Katia; Marcatti, Magda; Schifano, Chiara; Bonomini, Sabrina; Sammarelli, Gabriella; Neri, Antonino; Ponzoni, Maurilio; Aversa, Franco; Giuliani, Nicola

    2017-01-01

    The skin is a possible site of extramedullary localization in multiple myeloma (MM) patients; however, the mechanisms involved in this process are poorly understood. We describe the case of a refractory MM patient who developed a cutaneous localization under bortezomib treatment and we further expanded observations in other eight MM patients. We focused on the expression of genes involved in plasma cell skin homing, including CCR10, which was highly expressed. Moreover, we observed a lack of CXCR4 surface expression and the down-regulation of ICAM1/CD54 throughout the progression of the disease, suggesting a possible mechanism driving the escape of MM cells from the bone marrow into the skin.

  9. Genes with a spike expression are clustered in chromosome (sub)bands and spike (sub)bands have a powerful prognostic value in patients with multiple myeloma

    PubMed Central

    Kassambara, Alboukadel; Hose, Dirk; Moreaux, Jérôme; Walker, Brian A.; Protopopov, Alexei; Reme, Thierry; Pellestor, Franck; Pantesco, Véronique; Jauch, Anna; Morgan, Gareth; Goldschmidt, Hartmut; Klein, Bernard

    2012-01-01

    Background Genetic abnormalities are common in patients with multiple myeloma, and may deregulate gene products involved in tumor survival, proliferation, metabolism and drug resistance. In particular, translocations may result in a high expression of targeted genes (termed spike expression) in tumor cells. We identified spike genes in multiple myeloma cells of patients with newly-diagnosed myeloma and investigated their prognostic value. Design and Methods Genes with a spike expression in multiple myeloma cells were picked up using box plot probe set signal distribution and two selection filters. Results In a cohort of 206 newly diagnosed patients with multiple myeloma, 2587 genes/expressed sequence tags with a spike expression were identified. Some spike genes were associated with some transcription factors such as MAF or MMSET and with known recurrent translocations as expected. Spike genes were not associated with increased DNA copy number and for a majority of them, involved unknown mechanisms. Of spiked genes, 36.7% clustered significantly in 149 out of 862 documented chromosome (sub)bands, of which 53 had prognostic value (35 bad, 18 good). Their prognostic value was summarized with a spike band score that delineated 23.8% of patients with a poor median overall survival (27.4 months versus not reached, P<0.001) using the training cohort of 206 patients. The spike band score was independent of other gene expression profiling-based risk scores, t(4;14), or del17p in an independent validation cohort of 345 patients. Conclusions We present a new approach to identify spike genes and their relationship to patients’ survival. PMID:22102711

  10. Chimeric Antigen Receptor T Cells against CD19 for Multiple Myeloma

    PubMed Central

    Garfall, Alfred L.; Maus, Marcela V.; Hwang, Wei-Ting; Lacey, Simon F.; Mahnke, Yolanda D.; Melenhorst, J. Joseph; Zheng, Zhaohui; Vogl, Dan T.; Cohen, Adam D.; Weiss, Brendan M.; Dengel, Karen; Kerr, Naseem D.S.; Bagg, Adam; Levine, Bruce L.; June, Carl H.; Stadtmauer, Edward A.

    2015-01-01

    SUMMARY A patient with refractory multiple myeloma received an infusion of CTL019 cells, a cellular therapy consisting of autologous T cells transduced with an anti-CD19 chimeric antigen receptor, after myeloablative chemotherapy (melphalan, 140 mg per square meter of body-surface area) and autologous stem-cell transplantation. Four years earlier, autologous transplantation with a higher melphalan dose (200 mg per square meter) had induced only a partial, transient response. Autologous transplantation followed by treatment with CTL019 cells led to a complete response with no evidence of progression and no measurable serum or urine monoclonal protein at the most recent evaluation, 12 months after treatment. This response was achieved despite the absence of CD19 expression in 99.95% of the patient’s neoplastic plasma cells. (Funded by Novartis and others; ClinicalTrials.gov number, NCT02135406.) PMID:26352815

  11. Expression of CD38 in myeloma bone niche: A rational basis for the use of anti-CD38 immunotherapy to inhibit osteoclast formation.

    PubMed

    Costa, Federica; Toscani, Denise; Chillemi, Antonella; Quarona, Valeria; Bolzoni, Marina; Marchica, Valentina; Vescovini, Rosanna; Mancini, Cristina; Martella, Eugenia; Campanini, Nicoletta; Schifano, Chiara; Bonomini, Sabrina; Accardi, Fabrizio; Horenstein, Alberto L; Aversa, Franco; Malavasi, Fabio; Giuliani, Nicola

    2017-08-22

    It is known that multiple myeloma (MM) cells express CD38 and that a recently developed human anti-CD38 monoclonal antibody Daratumumab mediates myeloma killing. However, the expression of CD38 and other functionally related ectoenzymes within the MM bone niche and the potential effects of Daratumumab on bone cells are still unknown. This study firstly defines by flow cytometry and immunohistochemistry the expression of CD38 by bone marrow cells in a cohort of patients with MM and indolent monoclonal gammopathies. Results indicate that only plasma cells expressed CD38 at high level within the bone niche. In addition, the flow cytometry analysis shows that CD38 was also expressed by monocytes and early osteoclast progenitors but not by osteoblasts and mature osteoclasts. Indeed, CD38 was lost during in vitro osteoclastogenesis. Consistently, we found that Daratumumab reacted with CD38 expressed on monocytes and its binding inhibited in vitro osteoclastogenesis and bone resorption activity from bone marrow total mononuclear cells of MM patients, targeting early osteoclast progenitors. The inhibitory effect was not observed from purified CD14(+) cells, suggesting an indirect inhibitory effect of Daratumumab. Interestingly, all-trans retinoic acid treatment increased the inhibitory effect of Daratumumab on osteoclast formation. These observations provide a rationale for the use of an anti-CD38 antibody-based approach as treatment for multiple myeloma-induced osteoclastogenesis.

  12. Expression of CD38 in myeloma bone niche: A rational basis for the use of anti-CD38 immunotherapy to inhibit osteoclast formation

    PubMed Central

    Chillemi, Antonella; Quarona, Valeria; Bolzoni, Marina; Marchica, Valentina; Vescovini, Rosanna; Mancini, Cristina; Martella, Eugenia; Campanini, Nicoletta; Schifano, Chiara; Bonomini, Sabrina; Accardi, Fabrizio; Horenstein, Alberto L.; Aversa, Franco; Malavasi, Fabio; Giuliani, Nicola

    2017-01-01

    It is known that multiple myeloma (MM) cells express CD38 and that a recently developed human anti-CD38 monoclonal antibody Daratumumab mediates myeloma killing. However, the expression of CD38 and other functionally related ectoenzymes within the MM bone niche and the potential effects of Daratumumab on bone cells are still unknown. This study firstly defines by flow cytometry and immunohistochemistry the expression of CD38 by bone marrow cells in a cohort of patients with MM and indolent monoclonal gammopathies. Results indicate that only plasma cells expressed CD38 at high level within the bone niche. In addition, the flow cytometry analysis shows that CD38 was also expressed by monocytes and early osteoclast progenitors but not by osteoblasts and mature osteoclasts. Indeed, CD38 was lost during in vitro osteoclastogenesis. Consistently, we found that Daratumumab reacted with CD38 expressed on monocytes and its binding inhibited in vitro osteoclastogenesis and bone resorption activity from bone marrow total mononuclear cells of MM patients, targeting early osteoclast progenitors. The inhibitory effect was not observed from purified CD14+ cells, suggesting an indirect inhibitory effect of Daratumumab. Interestingly, all-trans retinoic acid treatment increased the inhibitory effect of Daratumumab on osteoclast formation. These observations provide a rationale for the use of an anti-CD38 antibody-based approach as treatment for multiple myeloma-induced osteoclastogenesis. PMID:28915615

  13. Cannabinoids synergize with carfilzomib, reducing multiple myeloma cells viability and migration

    PubMed Central

    Offidani, Massimo; Amantini, Consuelo; Gentili, Silvia; Soriani, Alessandra; Cardinali, Claudio; Leoni, Pietro; Santoni, Giorgio

    2016-01-01

    Several studies showed a potential anti-tumor role for cannabinoids, by modulating cell signaling pathways involved in cancer cell proliferation, chemo-resistance and migration. Cannabidiol (CBD) was previously noted in multiple myeloma (MM), both alone and in synergy with the proteasome inhibitor bortezomib, to induce cell death. In other type of human cancers, the combination of CBD with Δ9-tetrahydrocannabinol (THC) was found to act synergistically with other chemotherapeutic drugs suggesting their use in combination therapy. In the current study, we evaluated the effects of THC alone and in combination with CBD in MM cell lines. We found that CBD and THC, mainly in combination, were able to reduce cell viability by inducing autophagic-dependent necrosis. Moreover, we showed that the CBD-THC combination was able to reduce MM cells migration by down-regulating expression of the chemokine receptor CXCR4 and of the CD147 plasma membrane glycoprotein. Furthermore, since the immuno-proteasome is considered a new target in MM and also since carfilzomib (CFZ) is a new promising immuno-proteasome inhibitor that creates irreversible adducts with the β5i subunit of immuno-proteasome, we evaluated the effect of CBD and THC in regulating the expression of the β5i subunit and their effect in combination with CFZ. Herein, we also found that the CBD and THC combination is able to reduce expression of the β5i subunit as well as to act in synergy with CFZ to increase MM cell death and inhibits cell migration. In summary, these results proved that this combination exerts strong anti-myeloma activities. PMID:27769052

  14. Cannabinoids synergize with carfilzomib, reducing multiple myeloma cells viability and migration.

    PubMed

    Nabissi, Massimo; Morelli, Maria Beatrice; Offidani, Massimo; Amantini, Consuelo; Gentili, Silvia; Soriani, Alessandra; Cardinali, Claudio; Leoni, Pietro; Santoni, Giorgio

    2016-11-22

    Several studies showed a potential anti-tumor role for cannabinoids, by modulating cell signaling pathways involved in cancer cell proliferation, chemo-resistance and migration. Cannabidiol (CBD) was previously noted in multiple myeloma (MM), both alone and in synergy with the proteasome inhibitor bortezomib, to induce cell death. In other type of human cancers, the combination of CBD with Δ9-tetrahydrocannabinol (THC) was found to act synergistically with other chemotherapeutic drugs suggesting their use in combination therapy. In the current study, we evaluated the effects of THC alone and in combination with CBD in MM cell lines. We found that CBD and THC, mainly in combination, were able to reduce cell viability by inducing autophagic-dependent necrosis. Moreover, we showed that the CBD-THC combination was able to reduce MM cells migration by down-regulating expression of the chemokine receptor CXCR4 and of the CD147 plasma membrane glycoprotein. Furthermore, since the immuno-proteasome is considered a new target in MM and also since carfilzomib (CFZ) is a new promising immuno-proteasome inhibitor that creates irreversible adducts with the β5i subunit of immuno-proteasome, we evaluated the effect of CBD and THC in regulating the expression of the β5i subunit and their effect in combination with CFZ. Herein, we also found that the CBD and THC combination is able to reduce expression of the β5i subunit as well as to act in synergy with CFZ to increase MM cell death and inhibits cell migration. In summary, these results proved that this combination exerts strong anti-myeloma activities.

  15. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma

    PubMed Central

    Krejcik, Jakub; Casneuf, Tineke; Nijhof, Inger S.; Verbist, Bie; Bald, Jaime; Plesner, Torben; Syed, Khaja; Liu, Kevin; van de Donk, Niels W. C. J.; Weiss, Brendan M.; Ahmadi, Tahamtan; Lokhorst, Henk M.; Mutis, Tuna

    2016-01-01

    Daratumumab targets CD38-expressing myeloma cells through a variety of immune-mediated mechanisms (complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, and antibody-dependent cellular phagocytosis) and direct apoptosis with crosslinking. These mechanisms may also target nonplasma cells that express CD38, which prompted evaluation of daratumumab’s effects on CD38-positive immune subpopulations. Peripheral blood (PB) and bone marrow (BM) from patients with relapsed/refractory myeloma from 2 daratumumab monotherapy studies were analyzed before and during therapy and at relapse. Regulatory B cells and myeloid-derived suppressor cells, previously shown to express CD38, were evaluated for immunosuppressive activity and daratumumab sensitivity in the myeloma setting. A novel subpopulation of regulatory T cells (Tregs) expressing CD38 was identified. These Tregs were more immunosuppressive in vitro than CD38-negative Tregs and were reduced in daratumumab-treated patients. In parallel, daratumumab induced robust increases in helper and cytotoxic T-cell absolute counts. In PB and BM, daratumumab induced significant increases in CD8+:CD4+ and CD8+:Treg ratios, and increased memory T cells while decreasing naïve T cells. The majority of patients demonstrated these broad T-cell changes, although patients with a partial response or better showed greater maximum effector and helper T-cell increases, elevated antiviral and alloreactive functional responses, and significantly greater increases in T-cell clonality as measured by T-cell receptor (TCR) sequencing. Increased TCR clonality positively correlated with increased CD8+ PB T-cell counts. Depletion of CD38+ immunosuppressive cells, which is associated with an increase in T-helper cells, cytotoxic T cells, T-cell functional response, and TCR clonality, represents possible additional mechanisms of action for daratumumab and deserves further exploration. PMID:27222480

  16. CD138-negative clonogenic cells are plasma cells but not B cells in some multiple myeloma patients.

    PubMed

    Hosen, N; Matsuoka, Y; Kishida, S; Nakata, J; Mizutani, Y; Hasegawa, K; Mugitani, A; Ichihara, H; Aoyama, Y; Nishida, S; Tsuboi, A; Fujiki, F; Tatsumi, N; Nakajima, H; Hino, M; Kimura, T; Yata, K; Abe, M; Oka, Y; Oji, Y; Kumanogoh, A; Sugiyama, H

    2012-09-01

    Clonogenic multiple myeloma (MM) cells reportedly lacked expression of plasma cell marker CD138. It was also shown that CD19(+) clonotypic B cells can serve as MM progenitor cells in some patients. However, it is unclear whether CD138-negative clonogenic MM plasma cells are identical to clonotypic CD19(+) B cells. We found that in vitro MM colony-forming cells were enriched in CD138(-)CD19(-)CD38(++) plasma cells, while CD19(+) B cells never formed MM colonies in 16 samples examined in this study. We next used the SCID-rab model, which enables engraftment of human MM in vivo. CD138(-)CD19(-)CD38(++) plasma cells engrafted in this model rapidly propagated MM in 3 out of 9 cases, while no engraftment of CD19(+) B cells was detected. In 4 out of 9 cases, CD138(+) plasma cells propagated MM, although more slowly than CD138(-) cells. Finally, we transplanted CD19(+) B cells from 13 MM patients into NOD/SCID IL2Rγc(-/-) mice, but MM did not develop. These results suggest that at least in some MM patients CD138-negative clonogenic cells are plasma cells rather than B cells, and that MM plasma cells including CD138(-) and CD138(+) cells have the potential to propagate MM clones in vivo in the absence of CD19(+) B cells.

  17. Nelfinavir augments proteasome inhibition by bortezomib in myeloma cells and overcomes bortezomib and carfilzomib resistance.

    PubMed

    Kraus, M; Bader, J; Overkleeft, H; Driessen, C

    2013-03-01

    HIV protease inhibitors (HIV-PI) are oral drugs for HIV treatment. HIV-PI have antitumor activity via induction of ER-stress, inhibition of phospho-AKT (p-AKT) and the proteasome, suggesting antimyeloma activity. We characterize the effects of all approved HIV-PI on myeloma cells. HIV-PI were compared regarding cytotoxicity, proteasome activity, ER-stress induction and AKT phosphorylation using myeloma cells in vitro. Nelfinavir is the HIV-PI with highest cytotoxic activity against primary myeloma cells and with an IC50 near therapeutic drug blood levels (8-14 μM), irrespective of bortezomib sensitivity. Only nelfinavir inhibited intracellular proteasome activity in situ at drug concentrations <40 μM. Ritonavir, saquinavir and lopinavir inhibited p-AKT comparable to nelfinavir, and showed similar synergistic cytotoxicity with bortezomib against bortezomib-sensitive cells. Nelfinavir had superior synergistic activity with bortezomib/carfilzomib in particular against bortezomib/carfilzomib-resistant myeloma cells. It inhibited not only the proteasomal β1/β5 active sites, similar to bortezomib/carfilzomib, but in addition the β2 proteasome activity not targeted by bortezomib/carfilzomib. Additional inhibition of β2 proteasome activity is known to sensitize cells for bortezomib and carfilzomib. Nelfinavir has unique proteasome inhibiting activity in particular on the bortezomib/carfilzomib-insensitive tryptic (β2) proteasome activity in intact myeloma cells, and is active against bortezomib/carfilzomib-resistant myeloma cells in vitro.

  18. Multiple myeloma: Development of plasma cell sarcoma during apparently successful chemotherapy

    PubMed Central

    Holt, J. M.; Robb-Smith, A. H. T.

    1973-01-01

    Three patients with multiple myeloma who developed a plasma cell sarcoma during apparently successful chemothapy are described. It is postulated that the chemotherapy induced the sarcomatous change. Images PMID:4584727

  19. Dendritic cell immunotherapy for cancer: application to low-grade lymphoma and multiple myeloma.

    PubMed

    Hart, D N; Hill, G R

    1999-10-01

    The confirmation that most cancers express one or more molecular changes, which may act as tumour-associated antigens (TAA), combined with the knowledge that T lymphocytes recognize even single amino acid differences in MHC presented peptides has stimulated renewed clinical interest in immunotherapeutic strategies. Dendritic cells (DC) are now recognized as specialist antigen-presenting cells, which initiate, direct and regulate immune responses. Recent data suggest that DC are not recruited into, or activated by, cancers and that other abnormalities in DC function are associated with malignancy, including multiple myeloma. This provides a rationale for designing immunotherapeutic strategies, which exploit DC as nature's adjuvant either in vivo or in vitro. Low-grade lymphoma and multiple myeloma are slowly progressive malignancies, which generally express a unique immunoglobulin idiotype as a potential TAA. Data from animal models and clinical studies suggest that DC-based immunotherapy strategies, applied when the patient has minimal residual disease, may improve the long-term prognosis in these diseases.

  20. How we manage autologous stem cell transplantation for patients with multiple myeloma

    PubMed Central

    Dingli, David

    2014-01-01

    An estimated 22 350 patients had multiple myeloma diagnosed in 2013, representing 1.3% of all new cancers; 10 710 deaths are projected, representing 1.8% of cancer deaths. Approximately 0.7% of US men and women will have a myeloma diagnosis in their lifetime, and with advances in therapy, 77 600 US patients are living with myeloma. The 5-year survival rate was 25.6% in 1989 and was 44.9% in 2005. The median age at diagnosis is 69 years, with 62.4% of patients aged 65 or older at diagnosis. Median age at death is 75 years. The rate of new myeloma cases has been rising 0.7% per year during the past decade. The most common indication for autologous stem cell transplantation in the United States is multiple myeloma, and this article is designed to provide the specifics of organizing a transplant program for multiple myeloma. We review the data justifying use of stem cell transplantation as initial management in myeloma patients. We provide selection criteria that minimize the risks of transplantation. Specific guidelines on mobilization and supportive care through the transplant course, as done at Mayo Clinic, are given. A review of the data on tandem vs sequential autologous transplants is provided. PMID:24973360

  1. Th22 cells increase in poor prognosis multiple myeloma and promote tumor cell growth and survival

    PubMed Central

    Di Lullo, Giulia; Marcatti, Magda; Heltai, Silvia; Brunetto, Emanuela; Tresoldi, Cristina; Bondanza, Attilio; Bonini, Chiara; Ponzoni, Maurilio; Tonon, Giovanni; Ciceri, Fabio; Bordignon, Claudio; Protti, Maria Pia

    2015-01-01

    There is increased production of plasmacytoid dendritic cells (pDCs) in the bone marrow (BM) of multiple myeloma (MM) patients and these favor Th22 cell differentiation. Here, we found that the frequency of interleukin (IL)-22+IL-17−IL-13+ T cells is significantly increased in peripheral blood (PB) and BM of stage III and relapsed/refractory MM patients compared with healthy donors and patients with asymptomatic or stage I/II disease. Th22 cells cloned from the BM of MM patients were CCR6+CXCR4+CCR4+CCR10− and produced IL-22 and IL-13 but not IL-17. Furthermore, polyfunctional Th22-Th2 and Th22-Th1 clones were identified based on the co-expression of additional chemokine receptors and cytokines (CRTh2 or CXCR3 and IL-5 or interferon gamma [IFNγ], respectively). A fraction of MM cell lines and primary tumors aberrantly expressed the IL-22RA1 and IL-22 induced STAT-3 phosphorylation, cell growth, and resistance to drug-induced cell death in MM cells. IL-13 treatment of normal BM mesenchymal stromal cells (MSCs) induced STAT-6 phosphorylation, adhesion molecule upregulation, and increased IL-6 production and significantly favored MM cell growth compared with untreated BM MSCs. Collectively, our data show that increased frequency of IL-22+IL-17−IL-13+ T cells correlates with poor prognosis in MM through IL-22 and IL-13 protumor activity and suggest that interference with IL-22 and IL-13 signaling pathways could be exploited for therapeutic intervention. PMID:26155400

  2. Th22 cells increase in poor prognosis multiple myeloma and promote tumor cell growth and survival.

    PubMed

    Di Lullo, Giulia; Marcatti, Magda; Heltai, Silvia; Brunetto, Emanuela; Tresoldi, Cristina; Bondanza, Attilio; Bonini, Chiara; Ponzoni, Maurilio; Tonon, Giovanni; Ciceri, Fabio; Bordignon, Claudio; Protti, Maria Pia

    2015-05-01

    There is increased production of plasmacytoid dendritic cells (pDCs) in the bone marrow (BM) of multiple myeloma (MM) patients and these favor Th22 cell differentiation. Here, we found that the frequency of interleukin (IL)-22(+)IL-17(-)IL-13(+) T cells is significantly increased in peripheral blood (PB) and BM of stage III and relapsed/refractory MM patients compared with healthy donors and patients with asymptomatic or stage I/II disease. Th22 cells cloned from the BM of MM patients were CCR6(+)CXCR4(+)CCR4(+)CCR10(-) and produced IL-22 and IL-13 but not IL-17. Furthermore, polyfunctional Th22-Th2 and Th22-Th1 clones were identified based on the co-expression of additional chemokine receptors and cytokines (CRTh2 or CXCR3 and IL-5 or interferon gamma [IFNγ], respectively). A fraction of MM cell lines and primary tumors aberrantly expressed the IL-22RA1 and IL-22 induced STAT-3 phosphorylation, cell growth, and resistance to drug-induced cell death in MM cells. IL-13 treatment of normal BM mesenchymal stromal cells (MSCs) induced STAT-6 phosphorylation, adhesion molecule upregulation, and increased IL-6 production and significantly favored MM cell growth compared with untreated BM MSCs. Collectively, our data show that increased frequency of IL-22(+)IL-17(-)IL-13(+) T cells correlates with poor prognosis in MM through IL-22 and IL-13 protumor activity and suggest that interference with IL-22 and IL-13 signaling pathways could be exploited for therapeutic intervention.

  3. Circulating clonotypic B cells in multiple myeloma and monoclonal gammopathy of undetermined significance

    PubMed Central

    Thiago, Leandro S.; Perez-Andres, Martin; Balanzategui, Ana; Sarasquete, Maria E.; Paiva, Bruno; Jara-Acevedo, Maria; Barcena, Paloma; Sanchez, Maria Luz; Almeida, Julia; González, Marcos; San Miguel, Jesus F.; Garcia-Sanz, Ramón; Orfao, Alberto

    2014-01-01

    The B-cell compartment in which multiple myeloma stem cells reside remains unclear. We investigated the potential presence of mature, surface-membrane immunoglobulin-positive B lymphocytes clonally related to the tumor bone marrow plasma cells among different subsets of peripheral blood B cells from ten patients (7 with multiple myeloma and 3 with monoclonal gammopathies of undetermined significance). The presence of clonotypic immunoglobulin heavy chain gene rearrangements was determined in multiple highly-purified fractions of peripheral blood B-lymphocytes including surface-membrane IgM+ CD27− naïve B-lymphocytes, plus surface-membrane IgG+, IgA+ and IgM+ memory CD27+ B cells, and normal circulating plasma cells, in addition to (mono)clonal plasma cells, by a highly-specific and sensitive allele-specific oligonucleotide polymerase chain reaction directed to the CDR3 sequence of the rearranged IGH gene of tumor plasma cells from individual patients. Our results showed systematic absence of clonotypic rearrangements in all the different B-cell subsets analyzed, including M-component isotype-matched memory B-lymphocytes, at frequencies <0.03 cells/μL (range: 0.0003–0.08 cells/μL); the only exception were the myeloma plasma cells detected and purified from the peripheral blood of four of the seven myeloma patients. These results indicate that circulating B cells from patients with multiple myeloma and monoclonal gammopathies of undetermined significance are usually devoid of clonotypic B cells while the presence of immunophenotypically aberrant myeloma plasma cells in peripheral blood of myeloma patients is a relatively frequent finding. PMID:23872308

  4. Selective purging of human multiple myeloma cells from autologous stem cell transplant grafts using oncolytic myxoma virus

    PubMed Central

    Bartee, Eric; Chan, Winnie S.; Moreb, Jan S.; Cogle, Christopher R.; McFadden, Grant

    2012-01-01

    Autologous stem cell transplantation (ASCT) and novel therapies have improved overall survival of patients with multiple myeloma; however, most patients relapse and eventually succumb to their disease. Evidence indicates that residual cancer cells contaminate autologous grafts and may contribute to early relapses after ASCT. Here, we demonstrate that ex vivo treatment with an oncolytic poxvirus called myxoma virus results in specific elimination of human myeloma cells by inducing rapid cellular apoptosis while fully sparing normal hematopoietic stem and progenitor cells (HSPCs). The specificity of this elimination is based on strong binding of the virus to myeloma cells coupled with an inability of the virus to bind or infect CD34+ HSPCs. These two features allow myxoma to readily identify and distinguish even low levels of myeloma cells in complex mixtures. This ex vivo MYXV treatment also effectively inhibits systemic in vivo engraftment of human myeloma cells into immunodeficient mice and results in efficient elimination of primary CD138+ myeloma cells contaminating patient hematopoietic cell products. We conclude that ex vivo myxoma treatment represents a safe and effective method to selectively eliminate myeloma cells from hematopoietic autografts prior to reinfusion. PMID:22516053

  5. Novel treatment strategy with autologous activated and expanded natural killer cells plus anti-myeloma drugs for multiple myeloma

    PubMed Central

    Leivas, Alejandra; Perez-Martinez, Antonio; Blanchard, María Jesús; Martín-Clavero, Estela; Fernández, Lucía; Lahuerta, Juan José; Martinez-Lopez, Joaquín

    2016-01-01

    ABSTRACT This proof-of-concept single-arm open-label phase I clinical trial (NCT02481934) studied the safety and efficacy of multiple infusions of activated and expanded natural killer (NKAE) cells in combination with anti-myeloma drugs in multiple myeloma patients. It included five patients with relapsed or refractory MM who had received two to seven prior lines of therapy; NK cells were expanded for 3 weeks with K562-mb15-41BBL cells. Patients received four cycles of pharmacological treatment with two infusions of 7.5 × 106 NKAEs/kg per cycle. NKAE generation, expansion, and NK monitoring was assessed using flow cytometry. Eighteen clinical-grade NKAE cell GMP-grade products were generated to obtain 627 × 106 NKAEs (range: 315–919 × 106) for the first infusion and 943 × 106 (range: 471–1481 × 106) for the second infusion with 90% (±7%) purity. Neutropenia grade II occurred in two patients and was related to chemotherapy. Of the five patients, four showed disease stabilization before the end of NKAE treatment, and two showed a 50% reduction in bone marrow infiltration and a long-term (>1 y) response. The NKAE cells had a highly cytotoxic phenotype and high cytotoxicity in vitro. Infused NKAE cells were detected in bone marrow and peripheral blood after infusions. Ex vivo expansion of autologous NK cells is feasible, NKAE cells are clinically active and the multiple infusions are well tolerated in patients with relapsed or refractory myeloma. PMID:28123890

  6. Surface molecule CD229 as a novel target for the diagnosis and treatment of multiple myeloma.

    PubMed

    Atanackovic, Djordje; Panse, Jens; Hildebrandt, York; Jadczak, Adam; Kobold, Sebastian; Cao, Yanran; Templin, Julia; Meyer, Sabrina; Reinhard, Henrike; Bartels, Katrin; Lajmi, Nesrine; Zander, Axel R; Marx, Andreas H; Bokemeyer, Carsten; Kröger, Nicolaus

    2011-10-01

    To date, multiple myeloma remains an incurable malignancy due to the persistence of minimal residual disease in the bone marrow. In this setting, monoclonal antibodies against myeloma-specific cell surface antigens represent a promising therapeutic approach, which is however hampered by a lack of appropriate target structures expressed across all pathogenic myeloma cell populations. We, therefore, investigated functionally relevant immunoreceptors specifically associated with myeloma cells as well as their clonogenic precursors. Potential target proteins were identified using antibody arrays against phosphorylated immunoreceptors with lysates from myeloma cell lines. CD229 expression was confirmed in primary myeloma cells by reverse transcriptase polymerase chain reaction, western blot, fluorescence-activated cell sorting, and immunohistochemistry. Apoptosis, clonogenic growth, and sensitivity to chemotherapy were determined following short-interfering RNA-mediated downregulation of CD229. Antibody-dependent cellular and complement-dependent cytotoxicity were analyzed using a monoclonal antibody against CD229 to demonstrate the antigen's immunotherapeutic potential. Our screening assay identified CD229 as the most strongly over-expressed/phosphorylated immunoreceptor in myeloma cell lines. Over-expression was further demonstrated in the CD138-negative population, which has been suggested to represent myeloma precursors, as well as on primary tumor cells from myeloma patients. Accordingly, CD229 staining of patients' bone marrow samples enabled the identification of myeloma cells by flow cytometry and immunohistochemistry. Down-regulation of CD229 led to a decreased number of viable myeloma cells and clonal myeloma colonies, and enhanced the anti-tumor activity of conventional chemotherapeutics. Targeting CD229 with a monoclonal antibody resulted in complement- and cell-mediated lysis of myeloma cells. Our results demonstrate that the immunoreceptor CD229 is

  7. Surface molecule CD229 as a novel target for the diagnosis and treatment of multiple myeloma

    PubMed Central

    Atanackovic, Djordje; Panse, Jens; Hildebrandt, York; Jadczak, Adam; Kobold, Sebastian; Cao, Yanran; Templin, Julia; Meyer, Sabrina; Reinhard, Henrike; Bartels, Katrin; Lajmi, Nesrine; Zander, Axel R.; Marx, Andreas H.; Bokemeyer, Carsten; Kröger, Nicolaus

    2011-01-01

    Background To date, multiple myeloma remains an incurable malignancy due to the persistence of minimal residual disease in the bone marrow. In this setting, monoclonal antibodies against myeloma-specific cell surface antigens represent a promising therapeutic approach, which is however hampered by a lack of appropriate target structures expressed across all pathogenic myeloma cell populations. We, therefore, investigated functionally relevant immunoreceptors specifically associated with myeloma cells as well as their clonogenic precursors. Design and Methods Potential target proteins were identified using antibody arrays against phosphorylated immunoreceptors with lysates from myeloma cell lines. CD229 expression was confirmed in primary myeloma cells by reverse transcriptase polymerase chain reaction, western blot, fluorescence-activated cell sorting, and immunohistochemistry. Apoptosis, clonogenic growth, and sensitivity to chemotherapy were determined following short-interfering RNA-mediated downregulation of CD229. Antibody-dependent cellular and complement-dependent cytotoxicity were analyzed using a monoclonal antibody against CD229 to demonstrate the antigen’s immunotherapeutic potential. Results Our screening assay identified CD229 as the most strongly over-expressed/phosphorylated immunoreceptor in myeloma cell lines. Over-expression was further demonstrated in the CD138-negative population, which has been suggested to represent myeloma precursors, as well as on primary tumor cells from myeloma patients. Accordingly, CD229 staining of patients’ bone marrow samples enabled the identification of myeloma cells by flow cytometry and immunohistochemistry. Down-regulation of CD229 led to a decreased number of viable myeloma cells and clonal myeloma colonies, and enhanced the anti-tumor activity of conventional chemotherapeutics. Targeting CD229 with a monoclonal antibody resulted in complement- and cell-mediated lysis of myeloma cells. Conclusions Our

  8. Deregulated expression of long non-coding RNA UCA1 in multiple myeloma.

    PubMed

    Sedlarikova, Lenka; Gromesova, Barbora; Kubaczkova, Veronika; Radova, Lenka; Filipova, Jana; Jarkovsky, Jiri; Brozova, Lucie; Velichova, Roberta; Almasi, Martina; Penka, Miroslav; Bezdekova, Renata; Stork, Martin; Adam, Zdenek; Pour, Ludek; Krejci, Marta; Kuglík, Petr; Hajek, Roman; Sevcikova, Sabina

    2017-09-01

    Long non-coding RNAs (lncRNAs) are RNA transcripts longer than 200 nucleotides that are not translated into proteins. They are involved in pathogenesis of many diseases including cancer and have a potential to serve as diagnostic and prognostic markers. We aimed to investigate lncRNA expression profiles in bone marrow plasma cells (BMPCs) of newly diagnosed multiple myeloma (MM) patients in comparison to normal BMPCs of healthy donors (HD) in a three-phase biomarker study. Expression profile of 83 lncRNA was performed by RT2 lncRNA PCR Array (Qiagen), followed by quantitative real-time PCR using specific TaqMan non-coding RNA assays analyzing 84 newly diagnosed MM patients and 25 HD. Our analysis revealed dysregulation of two lncRNAs; NEAT1 (sensitivity of 55.0% and specificity of 79.0%) and UCA1 (sensitivity of 85.0% and specificity of 94.7%). UCA1 levels correlated with albumin and monoclonal immunoglobulin serum levels, cytogenetic aberrations, and survival of MM patients. Our study suggests a possible prognostic impact of UCA1 expression levels on MM patients. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Targeting heparanase overcomes chemoresistance and diminishes relapse in myeloma

    PubMed Central

    Ramani, Vishnu C.; Zhan, Fenghuang; He, Jianbo; Barbieri, Paola; Noseda, Alessandro; Tricot, Guido; Sanderson, Ralph D.

    2016-01-01

    In most myeloma patients, even after several rounds of intensive therapy, drug resistant tumor cells survive and proliferate aggressively leading to relapse. In the present study, gene expression profiling of tumor cells isolated from myeloma patients after sequential rounds of chemotherapy, revealed for the first time that heparanase, a potent promoter of myeloma growth and progression, was elevated in myeloma cells that survived therapy. Based on this clinical data, we hypothesized that heparanase was involved in myeloma resistance to drug therapy. In several survival and viability assays, elevated heparanase expression promoted resistance of myeloma tumor cells to chemotherapy. Mechanistically, this enhanced survival was due to heparanase-mediated ERK signaling. Importantly, use of the heparanase inhibitor Roneparstat in combination with chemotherapy clearly diminished the growth of disseminated myeloma tumors in vivo. Moreover, use of Roneparstat either during or after chemotherapy diminished regrowth of myeloma tumors in vivo following therapy. These results provide compelling evidence that heparanase is a promising, novel target for overcoming myeloma resistance to therapy and that targeting heparanase has the potential to prevent relapse in myeloma and possibly other cancers. PMID:26624982

  10. Induction of potent NK cell-dependent anti-myeloma cytotoxic T cells in response to combined mapatumumab and bortezomib.

    PubMed

    Neeson, Paul J; Hsu, Andy K; Chen, Yin R; Halse, Heloise M; Loh, Joanna; Cordy, Reece; Fielding, Kate; Davis, Joanne; Noske, Josh; Davenport, Alex J; Lindqvist-Gigg, Camilla A; Humphreys, Robin; Tai, Tsin; Prince, H Miles; Trapani, Joseph A; Smyth, Mark J; Ritchie, David S

    2015-09-01

    There is increasing evidence that some cancer therapies can promote tumor immunogenicity to boost the endogenous antitumor immune response. In this study, we used the novel combination of agonistic anti-TRAIL-R1 antibody (mapatumumab, Mapa) with low dose bortezomib (LDB) for this purpose. The combination induced profound myeloma cell apoptosis, greatly enhanced the uptake of myeloma cell apoptotic bodies by dendritic cell (DC) and induced anti-myeloma cytotoxicity by both CD8(+) T cells and NK cells. Cytotoxic lymphocyte expansion was detected within 24 h of commencing therapy and was maximized when myeloma-pulsed DC were co-treated with low dose bortezomib and mapatumumab (LDB+Mapa) in the presence of NK cells. This study shows that Mapa has two distinct but connected modes of action against multiple myeloma (MM). First, when combined with LDB, Mapa produced powerful myeloma cell apoptosis; secondly, it promoted DC priming and an NK cell-mediated expansion of anti-myeloma cytotoxic lymphocyte (CTL). Overall, this study indicates that Mapa can be used to drive potent anti-MM immune responses.

  11. Induction of potent NK cell-dependent anti-myeloma cytotoxic T cells in response to combined mapatumumab and bortezomib

    PubMed Central

    Neeson, Paul J; Hsu, Andy K; Chen, Yin R; Halse, Heloise M; Loh, Joanna; Cordy, Reece; Fielding, Kate; Davis, Joanne; Noske, Josh; Davenport, Alex J; Lindqvist-Gigg, Camilla A; Humphreys, Robin; Tai, Tsin; Prince, H Miles; Trapani, Joseph A; Smyth, Mark J; Ritchie, David S

    2015-01-01

    There is increasing evidence that some cancer therapies can promote tumor immunogenicity to boost the endogenous antitumor immune response. In this study, we used the novel combination of agonistic anti-TRAIL-R1 antibody (mapatumumab, Mapa) with low dose bortezomib (LDB) for this purpose. The combination induced profound myeloma cell apoptosis, greatly enhanced the uptake of myeloma cell apoptotic bodies by dendritic cell (DC) and induced anti-myeloma cytotoxicity by both CD8+ T cells and NK cells. Cytotoxic lymphocyte expansion was detected within 24 h of commencing therapy and was maximized when myeloma-pulsed DC were co-treated with low dose bortezomib and mapatumumab (LDB+Mapa) in the presence of NK cells. This study shows that Mapa has two distinct but connected modes of action against multiple myeloma (MM). First, when combined with LDB, Mapa produced powerful myeloma cell apoptosis; secondly, it promoted DC priming and an NK cell-mediated expansion of anti-myeloma cytotoxic lymphocyte (CTL). Overall, this study indicates that Mapa can be used to drive potent anti-MM immune responses. PMID:26405606

  12. [Multiple myeloma].

    PubMed

    Abe, Masahiro; Miki, Hirokazu; Nakamura, Shingen

    2016-03-01

    Owing to the positive clinical benefits obtained with new agents, complete remission (CR) can be used as a surrogate for overall survival, and should be achieved. Although multiple myeloma is a heterogeneous disease in terms of myeloma cell- and patient-related risk factors, patients should receive the most effective combination therapy based on proteasome inhibitors and/or immunomodulatory drugs (IMiDs) as backbone medication irrespective of the risks encountered in the setting of induction therapy ("one-size-fits-all" therapy), followed by consolidation/maintenance therapy to achieve CR with the ultimate goal of extended survival. Myeloma-defining biomarkers have been established to identify high-risk smoldering myeloma requiring treatment. The development of salvage treatments yielding better outcomes for relapsed/refractory myeloma is urgently needed. Upcoming novel molecular targeting agents with different modes of action and immunotherapeutic agents will be integrated into myeloma treatment regimens with a great therapeutic impact, and further evolution of the treatment paradigm for multiple myeloma is eagerly anticipated.

  13. Autologous bone marrow Th cells can support multiple myeloma cell proliferation in vitro and in xenografted mice.

    PubMed

    Wang, D; Fløisand, Y; Myklebust, C V; Bürgler, S; Parente-Ribes, A; Hofgaard, P O; Bogen, B; Tasken, K; Tjønnfjord, G E; Schjesvold, F; Dalgaard, J; Tveita, A; Munthe, L A

    2017-02-24

    Multiple myeloma (MM) is a plasma cell malignancy where MM cell growth is supported by the bone marrow (BM) microenvironment with poorly defined cellular and molecular mechanisms. MM cells express CD40, a receptor known to activate autocrine secretion of cytokines and elicit proliferation. Activated T helper (Th) cells express CD40 ligand (CD40L) and BM Th cells are significantly increased in MM patients. We hypothesized that activated BM Th cells could support MM cell growth. We here found that activated autologous BM Th cells supported MM cell growth in a contact- and CD40L-dependent manner in vitro. MM cells had retained the ability to activate Th cells that reciprocated and stimulated MM cell proliferation. Autologous BM Th cells supported MM cell growth in xenografted mice and were found in close contact with MM cells. MM cells secreted chemokines that attracted Th cells, secretion was augmented by CD40-stimulation. Within 14 days of culture of whole bone marrow aspirates in autologous serum, MM cells and Th cells mutually stimulated each other, and MM cells required Th cells for further expansion in vitro and in mice. The results suggest that Th cells may support the expansion of MM cells in patients.Leukemia accepted article preview online, 24 February 2017. doi:10.1038/leu.2017.69.

  14. A method for measurement of drug sensitivity of myeloma cells co-cultured with bone marrow stromal cells.

    PubMed

    Misund, Kristine; Baranowska, Katarzyna A; Holien, Toril; Rampa, Christoph; Klein, Dionne C G; Børset, Magne; Waage, Anders; Sundan, Anders

    2013-07-01

    The tumor microenvironment can profoundly affect tumor cell survival as well as alter antitumor drug activity. However, conventional anticancer drug screening typically is performed in the absence of stromal cells. Here, we analyzed survival of myeloma cells co-cultured with bone marrow stromal cells (BMSC) using an automated fluorescence microscope platform, ScanR. By staining the cell nuclei with DRAQ5, we could distinguish between BMSC and myeloma cells, based on their staining intensity and nuclear shape. Using the apoptotic marker YO-PRO-1, the effects of drug treatment on the viability of the myeloma cells in the presence of stromal cells could be measured. The method does not require cell staining before incubation with drugs, and less than 5000 cells are required per condition. The method can be used for large-scale screening of anticancer drugs on primary myeloma cells. This study shows the importance of stromal cell support for primary myeloma cell survival in vitro, as half of the cell samples had a marked increase in their viability when cultured in the presence of BMSC. Stromal cell-induced protection against common myeloma drugs is also observed with this method.

  15. [Construction and identification of a multiple myeloma-specific APE1 siRNA expression vector].

    PubMed

    Yang, Zhen-zhou; Chen, Xing-hua; Wang, Dong; Wang, Ge; Xiang, De-bing

    2006-04-01

    To construct a multiple myeloma (MM)-specific APE1siRNA expression vector, and detect the specific knock-down effect of the siRNA on expression of APE1 protein. APE1siRNA cDNA sequence was designed, synthesized and inserted into pSilencer 2.0-U6 linear expression vector. pSilencer APE1siRNA was digested by enzyme EcoRI and BamHI, then linear vector and IgP fragments were conjugated by T4 DNA ligase. pSilencer IgP-APE1siRNA and pSilencer IE-IgP-APE1siRNA were digested by enzyme EcoRI or XhoI. Linear vector and IE or Kappa fragments were conjugated by T4 DNA ligase. Then a MM specific pSilencer K-IE-IgP-APE1siRNA was cloned. The recombinant products were identified by DNA sequencing and enzyme digestions at each step. pSilencer K-IE-IgP-APE1siRNA plasmid was transfected to KM3, HOS, MDA-231 cells by liposome. APE1 gene silence induced by RNAi was analysed by Western blot. APE1 protein in KM3 cells could be knocked down effectively and specifically by pSilencer K-IE-IgP-APE1siRNA vector. After 2 days, the level of APE1 protein in KM3 cells transfected with siRNA was 0.118 +/- 0.047, while that transfected with plasmid only was 0.988 +/- 0.029. The efficiency of gene silence was 90%. A MM specific APE1siRNA expression vector was successfully constructed.

  16. Eosinophils and Megakaryocytes Support the Early Growth of Murine MOPC315 Myeloma Cells in Their Bone Marrow Niches

    PubMed Central

    Wong, David; Winter, Oliver; Hartig, Christina; Siebels, Svenja; Szyska, Martin; Tiburzy, Benjamin; Meng, Lingzhang; Kulkarni, Upasana; Fähnrich, Anke; Bommert, Kurt; Bargou, Ralf; Berek, Claudia; Chu, Van Trung; Bogen, Bjarne; Jundt, Franziska; Manz, Rudolf Armin

    2014-01-01

    Multiple myeloma is a bone marrow plasma cell tumor which is supported by the external growth factors APRIL and IL-6, among others. Recently, we identified eosinophils and megakaryocytes to be functional components of the micro-environmental niches of benign bone marrow plasma cells and to be important local sources of these cytokines. Here, we investigated whether eosinophils and megakaryocytes also support the growth of tumor plasma cells in the MOPC315.BM model for multiple myeloma. As it was shown for benign plasma cells and multiple myeloma cells, IL-6 and APRIL also supported MOPC315.BM cell growth in vitro, IL-5 had no effect. Depletion of eosinophils in vivo by IL-5 blockade led to a reduction of the early myeloma load. Consistent with this, myeloma growth in early stages was retarded in eosinophil-deficient ΔdblGATA-1 mice. Late myeloma stages were unaffected, possibly due to megakaryocytes compensating for the loss of eosinophils, since megakaryocytes were found to be in contact with myeloma cells in vivo and supported myeloma growth in vitro. We conclude that eosinophils and megakaryocytes in the niches for benign bone marrow plasma cells support the growth of malignant plasma cells. Further investigations are required to test whether perturbation of these niches represents a potential strategy for the treatment of multiple myeloma. PMID:25272036

  17. Eosinophils and megakaryocytes support the early growth of murine MOPC315 myeloma cells in their bone marrow niches.

    PubMed

    Wong, David; Winter, Oliver; Hartig, Christina; Siebels, Svenja; Szyska, Martin; Tiburzy, Benjamin; Meng, Lingzhang; Kulkarni, Upasana; Fähnrich, Anke; Bommert, Kurt; Bargou, Ralf; Berek, Claudia; Chu, Van Trung; Bogen, Bjarne; Jundt, Franziska; Manz, Rudolf Armin

    2014-01-01

    Multiple myeloma is a bone marrow plasma cell tumor which is supported by the external growth factors APRIL and IL-6, among others. Recently, we identified eosinophils and megakaryocytes to be functional components of the micro-environmental niches of benign bone marrow plasma cells and to be important local sources of these cytokines. Here, we investigated whether eosinophils and megakaryocytes also support the growth of tumor plasma cells in the MOPC315.BM model for multiple myeloma. As it was shown for benign plasma cells and multiple myeloma cells, IL-6 and APRIL also supported MOPC315.BM cell growth in vitro, IL-5 had no effect. Depletion of eosinophils in vivo by IL-5 blockade led to a reduction of the early myeloma load. Consistent with this, myeloma growth in early stages was retarded in eosinophil-deficient ΔdblGATA-1 mice. Late myeloma stages were unaffected, possibly due to megakaryocytes compensating for the loss of eosinophils, since megakaryocytes were found to be in contact with myeloma cells in vivo and supported myeloma growth in vitro. We conclude that eosinophils and megakaryocytes in the niches for benign bone marrow plasma cells support the growth of malignant plasma cells. Further investigations are required to test whether perturbation of these niches represents a potential strategy for the treatment of multiple myeloma.

  18. The Cyclophilin A-CD147 complex promotes the proliferation and homing of multiple myeloma cells.

    PubMed

    Zhu, Di; Wang, Zhongqiu; Zhao, Jian-Jun; Calimeri, Teresa; Meng, Jiang; Hideshima, Teru; Fulciniti, Mariateresa; Kang, Yue; Ficarro, Scott B; Tai, Yu-Tzu; Hunter, Zachary; McMilin, Douglas; Tong, Haoxuan; Mitsiades, Constantine S; Wu, Catherine J; Treon, Steven P; Dorfman, David M; Pinkus, Geraldine; Munshi, Nikhil C; Tassone, Pierfrancesco; Marto, Jarrod A; Anderson, Kenneth C; Carrasco, Ruben D

    2015-06-01

    B cell malignancies frequently colonize the bone marrow. The mechanisms responsible for this preferential homing are incompletely understood. Here we studied multiple myeloma (MM) as a model of a terminally differentiated B cell malignancy that selectively colonizes the bone marrow. We found that extracellular CyPA (eCyPA), secreted by bone marrow endothelial cells (BMECs), promoted the colonization and proliferation of MM cells in an in vivo scaffold system via binding to its receptor, CD147, on MM cells. The expression and secretion of eCyPA by BMECs was enhanced by BCL9, a Wnt-β-catenin transcriptional coactivator that is selectively expressed by these cells. eCyPA levels were higher in bone marrow serum than in peripheral blood in individuals with MM, and eCyPA-CD147 blockade suppressed MM colonization and tumor growth in the in vivo scaffold system. eCyPA also promoted the migration of chronic lymphocytic leukemia and lymphoplasmacytic lymphoma cells, two other B cell malignancies that colonize the bone marrow and express CD147. These findings suggest that eCyPA-CD147 signaling promotes the bone marrow homing of B cell malignancies and offer a compelling rationale for exploring this axis as a therapeutic target for these malignancies.

  19. Curcumin induces cell death of the main molecular myeloma subtypes, particularly the poor prognosis subgroups

    PubMed Central

    Gomez-Bougie, Patricia; Halliez, Maxime; Maïga, Sophie; Godon, Catherine; Kervoëlen, Charlotte; Pellat-Deceunynck, Catherine; Moreau, Philippe; Amiot, Martine

    2015-01-01

    Multiple myeloma (MM), a plasma cell malignancy, remains incurable despite the development of new therapies. Curcumin anti-tumor effects were previously characterized in multiple myeloma, however only few MM cell lines were included in these studies. Since myeloma is a heterogeneous disease it is important to address the impact of myeloma molecular heterogeneity in curcumin cell death induction. In the present study, a large panel of human myeloma cell lines (HMCLs) (n = 29), representing the main molecular MM subgroups, was screened for curcumin sensitivity. We observed that curcumin cell death induction was heterogeneous, of note 16 HMCLs were highly sensitive to curcumin (LD50 < 20.5 μM), 6 HMCLs exhibited intermediate LD50 values (20.5 μM ≤ LD50 < 32.2 μM) and only 7 HMCLs were weakly sensitive (35 < LD50 < 56 μM). Cell lines harboring the t(11;14) translocation were less sensitive (median LD50 32.9 μM) than non-t(11;14) (median LD50 17.9 μM), which included poor prognosis t(4;14) and t(14;16) cells. Interestingly, curcumin sensitivity was not dependent on TP53 status. For the first time we showed that primary myeloma cells were also sensitive, even those displaying del(17p), another poor prognosis factor. We also unravel the contribution of anti-apoptotic Bcl-2 family molecules in curcumin response. We found that down-regulation of Mcl-1, an essential MM survival factor, was associated with curcumin-induced cell death and its knockdown sensitized myeloma cells to curcumin, highlighting Mcl-1 as an important target for curcumin-induced apoptosis. Altogether, these results support clinical trials including curcumin in association with standard therapy. PMID:25517601

  20. IgG4 plasma cell myeloma: new insights into the pathogenesis of IgG4-related disease.

    PubMed

    Geyer, Julia T; Niesvizky, Ruben; Jayabalan, David S; Mathew, Susan; Subramaniyam, Shivakumar; Geyer, Alexander I; Orazi, Attilio; Ely, Scott A

    2014-03-01

    IgG4-related disease is a newly described systemic fibroinflammatory process, characterized by increase in IgG4-positive plasma cells. Its pathogenesis, including the role of IgG4, remains poorly understood. Plasma cell myeloma is typically associated with a large monoclonal serum spike, which is frequently of IgG isotype. We sought to identify and characterize a subset of IgG4-secreting myeloma, as it may provide a biological model of disease with high serum levels of IgG4. Six out of 158 bone marrow biopsies (4%) from patients with IgG myeloma expressed IgG4. Four patients were men and two were women, with a mean age of 64 (range 53-87) years. Imaging showed fullness of pancreatic head (1), small non-metabolic lymphadenopathy (1), and bone lytic lesions (6). Two patients developed necrotizing fasciitis. All had elevated serum M-protein (mean 2.4, range 0.5-4.2 g/dl), and none had definite signs or symptoms of IgG4-related disease. Four myelomas had plasmablastic morphology. Four had kappa and two had lambda light chain expression. Three cases expressed CD56. Two patients had a complex karyotype. In conclusion, the frequency of IgG4 myeloma correlates with the normal distribution of IgG4 isoform. The patients with IgG4 myeloma appear to have a high rate of plasmablastic morphology and could be predisposed to necrotizing fasciitis. Despite high serum levels of IgG4, none had evidence of IgG4-related disease. These findings suggest that the increased number of IgG4-positive plasma cells is not the primary etiologic agent in IgG4-related disease. Elevated serum levels of IgG4 is not sufficient to produce the typical disease presentation and should not be considered diagnostic of IgG4-related disease.

  1. CD52 is not a promising immunotherapy target for most patients with multiple myeloma.

    PubMed

    Westermann, Jörg; Maschmeyer, Georg; van Lessen, Antje; Dörken, Bernd; Pezzutto, Antonio

    2005-10-01

    The aim of our study was to evaluate CD52 as a target molecule for antibody therapy for multiple myeloma. Twenty consecutive bone marrow samples from myeloma patients were studied by flow cytometry using antibodies against CD45, CD38, CD138, CD3, CD19, and CD52. Most myeloma cells did not express CD52; CD52 expression was found only in a small subpopulation of plasma cells with a CD45+CD38++ phenotype. In contrast, the major fraction of myeloma cells (CD45-CD38++) was CD52-. Treatment of myeloma patients with anti-CD52 antibodies with the aim to reduce the number of myeloma cells in the CD45+CD38++ subfraction, which possibly contains a proliferative progenitor cell pool, would be at best a highly experimental approach. We conclude that CD52 is not a promising target for antibody-based therapies for most patients with multiple myeloma.

  2. Cyclin D1 unbalances the redox status controlling cell adhesion, migration, and drug resistance in myeloma cells

    PubMed Central

    Bustany, Sophie; Bourgeais, Jérôme; Tchakarska, Guergana; Body, Simon; Hérault, Olivier; Gouilleux, Fabrice; Sola, Brigitte

    2016-01-01

    The interactions of multiple myeloma (MM) cells with their microenvironment are crucial for pathogenesis. MM cells could interact differentially with their microenvironment depending on the type of cyclin D they express. We established several clones that constitutively express cyclin D1 from the parental RPMI8226 MM cell line and analyzed the impact of cyclin D1 expression on cell behavior. We performed a gene expression profiling study on cyclin D1-expressing vs. control cells and validated the results by semi-quantitative RT-PCR. The expression of cyclin D1 altered the transcription of genes that control adhesion and migration. We confirmed that cyclin D1 increases cell adhesion to stromal cells and fibronectin, stabilizes F-actin fibers, and enhances chemotaxis and inflammatory chemokine secretion. Both control and cyclin D1-expressing cells were more resistant to acute carfilzomib treatment when cultured on stromal cells than in suspension. However, this resistance was specifically reduced in cyclin D1-expressing cells after pomalidomide pre-treatment that modifies tumor cell/microenvironment interactions. Transcriptomic analysis revealed that cyclin D1 expression was also associated with changes in the expression of genes controlling metabolism. We also found that cyclin D1 expression disrupted the redox balance by producing reactive oxygen species. The resulting oxidative stress activated the p44/42 mitogen-activated protein kinase (or ERK1/2) signaling pathway, increased cell adhesion to fibronectin or stromal cells, and controlled drug sensitivity. Our results have uncovered a new function for cyclin D1 in the control of redox metabolism and interactions of cyclin D1-expressing MM cells with their bone marrow microenvironment. PMID:27286258

  3. Plasma cell maturity as a predictor of prognosis in multiple myeloma.

    PubMed

    Iriyama, Noriyoshi; Miura, Katsuhiro; Hatta, Yoshihiro; Uchino, Yoshihito; Kurita, Daisuke; Takahashi, Hiromichi; Sakagami, Hitomi; Sakagami, Masashi; Kobayashi, Yujin; Nakagawa, Masaru; Ohtake, Shimon; Iizuka, Yoshikazu; Takei, Masami

    2016-08-01

    In this study, the impact of plasma cell maturity on the prognoses of multiple myeloma (MM) patients in the era of novel agents was investigated. Myeloma cell maturity was classified via immunophenotyping: myeloma cells showing mature plasma cell 1 (MPC-1)-positive and CD49e-positive cells were considered mature type; MPC-1-positive and CD49e-negative cells were considered intermediate type; and MPC-1-negative cells were considered immature type. This study included 87 newly diagnosed MM patients who were initially treated with bortezomib and/or chemotherapy. Myeloma cell maturity was a critical factor affecting overall survival (OS) in the cohort, with median OS not reached in mature-type, 50 months in intermediate-type, and 20 months in immature-type cells. Multivariate analysis showed that immature type and stage III according to the International Staging System were both independent prognostic factors affecting OS. The findings of this study demonstrate the clinical importance of myeloma cell classification according to immunophenotyping using MPC-1 and CD49e antibodies to determine patient prognosis in this era of novel therapeutic agents.

  4. Induction of P3NS1 Myeloma Cell Death and Cell Cycle Arrest by Simvastatin and/or γ-Radiation.

    PubMed

    Abdelrahman, Ibrahim Y; Helwa, Reham; Elkashef, Hausein; Hassan, Nagwa H A

    2015-01-01

    The present study was conducted to investigate the effect of γ-radiation alone or combined with a cytotoxic drug, simvastatin, on viability and cell cycling of a myeloma cell line. P3NS1 myeloma cells were treated with the selected dose of simvastatin (0.1 μM/l) 24 hours prior to γ-irradiation (0.25, 0.5 and 1 Gy). The cell viability, induction of apoptosis, cell death, cell cycling, generation of ROS, and expression of P53, Bax, Bcl2, caspase3, PARP1 and Fas genes were estimated. The results indicated that simvastatin (0.1 μM/l) treatment for 24 hours prior to γ- irradiation increased cell death to 37.5% as compared to 4.81% by radiation (0.5 Gy) alone. It was found that simvastatin treatment before irradiation caused arrest of cells in G0/G1 and G2/M phases as assessed using flow cytometry. Interestingly, simvastatin treatment of P3NS1 cells increased the intracellular ROS production and decreased antioxidant enzyme activity with increased P53, Bax and Caspase3 gene expression while that of Bcl2 was decreased. Consequently, our results indicated that pre-treatment with simvastatin increased radio sensitivity of myeloma tumor cells in addition to apoptotic effects through an intrinsic mitochondrial pathway.

  5. miR-186 inhibits cell proliferation in multiple myeloma by repressing Jagged1

    SciTech Connect

    Liu, Zengyan; Zhang, Guoqiang; Yu, Wenzheng; Gao, Na; Peng, Jun

    2016-01-15

    MicroRNAs (miRNAs) are small, noncoding ribonucleic acids that regulate gene expression by targeting mRNAs for translational repression and degradation. Accumulating experimental evidence supports a causal role of miRNAs in hematology tumorigenesis. However, the specific functions of miRNAs in the pathogenesis of multiple myeloma (MM) remain to be established. In this study, we demonstrated that miR-186 is commonly downregulated in MM cell lines and patient MM cells. Ectopic expression of miR-186 significantly inhibited cell growth, both in vitro and in vivo, and induced cell cycle G{sub 0}/G{sub 1} arrest. Furthermore, miR-186 induced downregulation of Jagged1 protein expression by directly targeting its 3′-untranslated region (3′-UTR). Conversely, overexpression of Jagged1 rescued cells from miR-186-induced growth inhibition. Our collective results clearly indicate that miR-186 functions as a tumor suppressor in MM, supporting its potential as a therapeutic target for the disease. - Highlights: • miR-186 expression is decreased in MM. • miR-186 inhibits MM cell proliferation in vitro and in vivo. • Jagged1 is regulated by miR-186. • Overexpression of Jagged1 reverses the effects of miR-186.

  6. Effects of the glucolipid synthase inhibitor, P4, on functional and phenotypic parameters of murine myeloma cells

    PubMed Central

    Manning, L S; Radin, N S

    1999-01-01

    This study describes the effects of the glucolipid synthase inhibitor P4, (DL-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol), on various functional and phenotypic parameters of 5T33 murine myeloma cells. Cell recovery was reduced by >85% following incubation of the cells for 3 days in the presence of 4 μM P4 (the IC50 concentration). Both cytostatic and cytotoxic inhibition was observed with tumour cell metabolic activity and clonogenic potential reduced to 42% and 14% of controls, respectively, and viability reduced to 52%. A dose-dependent increase in cells undergoing apoptosis (from 7% to 26%) was also found. P4 induced a decrease in the number of cells expressing H-2 Class I and CD44, and a large increase in cells expressing H-2 Class II and the IgG2b paraprotein. It did not affect surface expression of CD45 or CD54 (ICAM-1). Based on these alterations in tumour cell growth, adhesion molecule expression and potential immunogenicity, it is anticipated that P4 will provide a novel therapeutic approach for the treatment of multiple myeloma. In addition, given that essentially all tumours rely heavily on overexpressed or abnormal glucosphingolipids for growth, development and metastasis, glucolipid synthase inhibitors may prove to be universally effective anti-cancer agents. © 1999 Cancer Research Campaign PMID:10576650

  7. MTI-101 (cyclized HYD1) binds a CD44 containing complex and induces necrotic cell death in multiple myeloma

    PubMed Central

    Gebhard, Anthony W.; Jain, Priyesh; Nair, Rajesh R.; Emmons, Michael F.; Argilagos, Raul F.; Koomen, John M.; McLaughlin, Mark L.; Hazlehurst, Lori A.

    2013-01-01

    Our laboratory recently reported that treatment with the d-amino acid containing peptide HYD1 induces necrotic cell death in multiple myeloma (MM) cell lines. Due to the intriguing biological activity and promising in vivo activity of HYD1, we pursued strategies for increasing the therapeutic efficacy of the linear peptide. These efforts led to a cyclized peptidomimetic, MTI-101, with increased in vitro activity and robust in vivo activity as single agent using two myeloma models that consider the bone marrow microenvironment. MTI-101 treatment similar to HYD1 induced reactive oxygen species, depleted ATP levels and failed to activate caspase 3. Moreover, MTI-101 is cross-resistant in H929 cells selected for acquired resistance to HYD1. Here, we pursued an unbiased chemical biology approach using biotinylated peptide affinity purification and LC-MS/MS analysis to identify binding partners of MTI-101. Using this approach CD44 was identified as a predominant binding partner. Reducing the expression of CD44 was sufficient to induce cell death in MM cell lines, indicating that MM cells require CD44 expression for survival. Ectopic expression of CD44s correlated with increased binding of the FAM-conjugated peptide. However ectopic expression of CD44s was not sufficient to increase the sensitivity to MTI-101 induced cell death. Mechanistically, we show that MTI-101 induced cell death occurs via a Rip1, Rip3 or Drp1 dependent and independent pathway. Finally, we show that MTI-101 has robust activity as a single agent in the SCID-Hu bone implant and 5TGM1 in vivo model of multiple myeloma. PMID:24048737

  8. Mesenchymal stem cell contact promotes CCN1 splicing and transcription in myeloma cells.

    PubMed

    Dotterweich, Julia; Ebert, Regina; Kraus, Sabrina; Tower, Robert J; Jakob, Franz; Schütze, Norbert

    2014-06-25

    CCN family member 1 (CCN1), also known as cysteine-rich angiogenic inducer 61 (CYR61), belongs to the extracellular matrix-associated CCN protein family. The diverse functions of these proteins include regulation of cell migration, adhesion, proliferation, differentiation and survival/apoptosis, induction of angiogenesis and cellular senescence. Their functions are partly overlapping, largely non-redundant, cell-type specific, and depend on the local microenvironment. To elucidate the role of CCN1 in the crosstalk between stromal cells and myeloma cells, we performed co-culture experiments with primary mesenchymal stem cells (MSC) and the interleukin-6 (IL-6)-dependent myeloma cell line INA-6. Here we show that INA-6 cells display increased transcription and induction of splicing of intron-retaining CCN1 pre-mRNA when cultured in contact with MSC. Protein analyses confirmed that INA-6 cells co-cultured with MSC show increased levels of CCN1 protein consistent with the existence of a pre-mature stop codon in intron 1 that abolishes translation of unspliced mRNA. Addition of recombinant CCN1-Fc protein to INA-6 cells was also found to induce splicing of CCN1 pre-mRNA in a concentration-dependent manner. Only full length CCN1-Fc was able to induce mRNA splicing of all introns, whereas truncated recombinant isoforms lacking domain 4 failed to induce intron splicing. Blocking RGD-dependent integrins on INA-6 cells resulted in an inhibition of these splicing events. These findings expand knowledge on splicing of the proangiogenic, matricellular factor CCN1 in the tumor microenvironment. We propose that contact with MSC-derived CCN1 leads to splicing and enhanced transcription of CCN1 which further contributes to the translation of angiogenic factor CCN1 in myeloma cells, supporting tumor viability and myeloma bone disease.

  9. t(11;14) Plasma cell disorder presents as a true nonsecretory, nonproducer multiple myeloma.

    PubMed

    Chen, Wei; Namara, Mark Mc; Kim, Young; Huang, Qin

    2009-06-01

    We describe an extremely rare case of so-called nonsecretory, nonproducer myeloma in an 80-year-old man who presented with weight loss and anemia. The patient's serum protein electrophoresis was negative for M protein spike, and quantitation of his immunoglobulin level was far below the normal range. The bone marrow biopsy showed a sheet-like diffuse plasmacytic infiltrate with essential absence of trilineage hematopoiesis. Flow cytometry analysis and immunohistochemical study demonstrated a strong CD38/CD138/immunoglobulin G heavy chain-positive plasma cell population but failed to detect either cytoplasmic kappa or lambda light chain expression. Chromosomal analysis and dual fluorescence in situ hybridization studies clearly demonstrated the presence of t(11;14)(q13;q32) translocation in the neoplastic plasma cells.

  10. CD4⁺ T cells play a crucial role for lenalidomide in vivo anti-tumor activity in murine multiple myeloma.

    PubMed

    Zhang, Liang; Bi, Enguang; Hong, Sungyoul; Qian, Jianfei; Zheng, Chengyun; Wang, Michael; Yi, Qing

    2015-11-03

    Lenalidomide modulates the host immune response against myeloma via multiple actions. Although these effects have been elucidated in vitro, the central action of lenalidomide-mediated anti-myeloma immune response in vivo is not clear. To investigate its immune action in vivo, we selected the murine myeloma cell line 5TGM1, which is resistant to direct tumoricidal effects of lenalidomide in vitro and in immunodeficient mice, but sensitive to lenalidomide treatment in 5TGM1-bearing immunocompetent mice. Depletion of CD4+ T cells, but not NK cells, B cells, or CD8+ T cells, deprived lenalidomide of its therapeutic effects on 5TGM1-bearing immunocompetent mice. Lenalidomide significantly increased the numbers of IFN-γ-secreting CD4+ and CD8+ T cells but had no effects on NK cells and B cells in this mouse model. Lenalidomide slightly decreased the number of CD25+Foxp3+ T cells but increased perforin expression in CD8+ T cells in vivo. Using this mouse model for investigation of anti-tumor immune action of lenalidomide, we demonstrated that lenalidomide facilitated a type-1 anti-tumor immune response in vivo. The CD4+ T cell subset may play a critical role in the lenalidomide-mediated anti-myeloma immune response in vivo.

  11. The phosphatase of regenerating liver-3 (PRL-3) is important for IL-6-mediated survival of myeloma cells.

    PubMed

    Slørdahl, Tobias S; Abdollahi, Pegah; Vandsemb, Esten N; Rampa, Christoph; Misund, Kristine; Baranowska, Katarzyna A; Westhrin, Marita; Waage, Anders; Rø, Torstein B; Børset, Magne

    2016-05-10

    Multiple myeloma (MM) is a neoplastic proliferation of bone marrow plasma cells. PRL-3 is a phosphatase induced by interleukin (IL)-6 and other growth factors in MM cells and promotes MM-cell migration. PRL-3 has also been identified as a marker gene for a subgroup of patients with MM. In this study we found that forced expression of PRL-3 in the MM cell line INA-6 led to increased survival of cells that were depleted of IL-6. It also caused redistribution of cells in cell cycle, with an increased number of cells in G2M-phase. Furthermore, forced PRL-3 expression significantly increased phosphorylation of Signal transducer and activator of transcription (STAT) 3 both in the presence and the absence of IL-6. Knockdown of PRL-3 with shRNA reduced survival in MM cell line INA-6. A pharmacological inhibitor of PRL-3 reduced survival in the MM cell lines INA-6, ANBL-6, IH-1, OH-2 and RPMI8226. The inhibitor also reduced survival in 9 of 9 consecutive samples of purified primary myeloma cells. Treatment with the inhibitor down-regulated the anti-apoptotic protein Mcl-1 and led to activation of the intrinsic apoptotic pathway. Inhibition of PRL-3 also reduced IL-6-induced phosphorylation of STAT3. In conclusion, our study shows that PRL-3 is an important mediator of growth factor signaling in MM cells and hence possibly a good target for treatment of MM.

  12. The phosphatase of regenerating liver-3 (PRL-3) is important for IL-6-mediated survival of myeloma cells

    PubMed Central

    Slørdahl, Tobias S.; Abdollahi, Pegah; Vandsemb, Esten N.; Rampa, Christoph; Misund, Kristine; Baranowska, Katarzyna A.; Westhrin, Marita; Waage, Anders; Rø, Torstein B.; Børset, Magne

    2016-01-01

    Multiple myeloma (MM) is a neoplastic proliferation of bone marrow plasma cells. PRL-3 is a phosphatase induced by interleukin (IL)-6 and other growth factors in MM cells and promotes MM-cell migration. PRL-3 has also been identified as a marker gene for a subgroup of patients with MM. In this study we found that forced expression of PRL-3 in the MM cell line INA-6 led to increased survival of cells that were depleted of IL-6. It also caused redistribution of cells in cell cycle, with an increased number of cells in G2M-phase. Furthermore, forced PRL-3 expression significantly increased phosphorylation of Signal transducer and activator of transcription (STAT) 3 both in the presence and the absence of IL-6. Knockdown of PRL-3 with shRNA reduced survival in MM cell line INA-6. A pharmacological inhibitor of PRL-3 reduced survival in the MM cell lines INA-6, ANBL-6, IH-1, OH-2 and RPMI8226. The inhibitor also reduced survival in 9 of 9 consecutive samples of purified primary myeloma cells. Treatment with the inhibitor down-regulated the anti-apoptotic protein Mcl-1 and led to activation of the intrinsic apoptotic pathway. Inhibition of PRL-3 also reduced IL-6-induced phosphorylation of STAT3. In conclusion, our study shows that PRL-3 is an important mediator of growth factor signaling in MM cells and hence possibly a good target for treatment of MM. PMID:27036022

  13. Expression and phosphorylation of the AS160_v2 splice variant supports GLUT4 activation and the Warburg effect in multiple myeloma

    PubMed Central

    2013-01-01

    Background Multiple myeloma (MM) is a fatal plasma cell malignancy exhibiting enhanced glucose consumption associated with an aerobic glycolytic phenotype (i.e., the Warburg effect). We have previously demonstrated that myeloma cells exhibit constitutive plasma membrane (PM) localization of GLUT4, consistent with the dependence of MM cells on this transporter for maintenance of glucose consumption rates, proliferative capacity, and viability. The purpose of this study was to investigate the molecular basis of constitutive GLUT4 plasma membrane localization in MM cells. Findings We have elucidated a novel mechanism through which myeloma cells achieve constitutive GLUT4 activation involving elevated expression of the Rab-GTPase activating protein AS160_v2 splice variant to promote the Warburg effect. AS160_v2-positive MM cell lines display constitutive Thr642 phosphorylation, known to be required for inactivation of AS160 Rab-GAP activity. Importantly, we show that enforced expression of AS160_v2 is required for GLUT4 PM translocation and activation in these select MM lines. Furthermore, we demonstrate that ectopic expression of a full-length, phospho-deficient AS160 mutant is sufficient to impair constitutive GLUT4 cell surface residence, which is characteristic of MM cells. Conclusions This is the first study to tie AS160 de-regulation to increased glucose consumption rates and the Warburg effect in cancer. Future studies investigating connections between the insulin/IGF-1/AS160_v2/GLUT4 axis and FDG-PET positivity in myeloma patients are warranted and could provide rationale for therapeutically targeting this pathway in MM patients with advanced disease. PMID:24280290

  14. MicroRNA-497 suppresses cell proliferation and induces apoptosis through targeting PBX3 in human multiple myeloma

    PubMed Central

    Yu, Tianhua; Zhang, Xuanhe; Zhang, Lirong; Wang, Yali; Pan, Hongjuan; Xu, Zhihua; Pang, Xiaochuan

    2016-01-01

    Aberrant expression of microRNA-497 (miRN-497) is implicated in development and progression of multiple types of cancers. However, the biological function and underlying mechanism of miR-497 in multiple myeloma (MM) remains unclear. Thus, we studied the potential biological roles of miR-497 in MM. The expression of miR-497 was examined in multiple myeloma and normal plasma cells by qRT-PCR. Biological functions of miR-497 were analyzed using cell proliferation, colony formation, cell cycle, apoptosis and luciferase assays in vitro, as well as via tumorigenicity in vivo analysis. Here, we observed reduced expression of miR-497 in MM plasma samples and cell lines. Ectopic expression of miR-497 dramatically suppressed cell proliferation and clonogenicity, as well as induced cell arrest at G0/G1 stage and apoptosis in vitro. Mechanistic investigation assays showed that Pre-B-cellleukemia transcription factor 3 (PBX3) was a novel and direct downstream target of miR-497. Interestingly, overexpression of PBX3 partially reverted the effect of miR-497 in MM cells. In xenograft model, overexpression of miR-497 inhibited tumorigenicity by repressing PBX3. These findings collectively suggested that miR-497 functioned as tumor suppressor in MM by directly targeting PBX3, supporting its utility as a novel and potential therapeutic agent for MM therapy. PMID:28042507

  15. Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3.

    PubMed

    Nelson, Erik A; Walker, Sarah R; Kepich, Alicia; Gashin, Laurie B; Hideshima, Teru; Ikeda, Hiroshi; Chauhan, Dharminder; Anderson, Kenneth C; Frank, David A

    2008-12-15

    Constitutive activation of the transcription factor STAT3 contributes to the pathogenesis of many cancers, including multiple myeloma (MM). Since STAT3 is dispensable in most normal tissue, targeted inhibition of STAT3 is an attractive therapy for patients with these cancers. To identify STAT3 inhibitors, we developed a transcriptionally based assay and screened a library of compounds known to be safe in humans. We found the drug nifuroxazide to be an effective inhibitor of STAT3 function. Nifuroxazide inhibits the constitutive phosphorylation of STAT3 in MM cells by reducing Jak kinase autophosphorylation, and leads to down-regulation of the STAT3 target gene Mcl-1. Nifuroxazide causes a decrease in viability of primary myeloma cells and myeloma cell lines containing STAT3 activation, but not normal peripheral blood mononuclear cells. Although bone marrow stromal cells provide survival signals to myeloma cells, nifuroxazide can overcome this survival advantage. Reflecting the interaction of STAT3 with other cellular pathways, nifuroxazide shows enhanced cytotoxicity when combined with either the histone deacetylase inhibitor depsipeptide or the MEK inhibitor UO126. Therefore, using a mechanistic-based screen, we identified the clinically relevant drug nifuroxazide as a potent inhibitor of STAT signaling that shows cytotoxicity against myeloma cells that depend on STAT3 for survival.

  16. Loss of p53 exacerbates multiple myeloma phenotype by facilitating the reprogramming of hematopoietic stem/progenitor cells to malignant plasma cells by MafB

    PubMed Central

    Vicente-Dueñas, Carolina; González-Herrero, Inés; Cenador, María Begoña García; Criado, Francisco Javier García; Sánchez-García, Isidro

    2012-01-01

    Multiple myeloma (MM) is a serious, mostly incurable human cancer of malignant plasma cells. Chromosomal translocations affecting MAFB are present in a significant percentage of multiple myeloma patients. Genetically engineered Sca1-MafB mice, in which MafB expression is limited to hematopoietic stem/progenitor cells (HS/P-Cs), display the phenotypic features of MM. Contrary to many other types of cancer, it is not yet known if the p53 gene plays any essential role in the pathogenesis of this disease. Here, we show, taking advantage of the Sca1-MafB MM mouse model, that loss of p53 does not rescue the multiple myeloma disease, but instead accelerates its development and exacerbates the MM phenotype. Therefore, the efficiency of the MafB-induced MM reprogramming of normal HS/P-Cs to terminally differentiated malignant plasma cells is enhanced by p53 deficiency, in analogy to what happens in reprogramming to pluripotency. These results raise caution about interfering with p53 function when treating multiple myeloma. PMID:22983007

  17. Immunophenotype of normal vs. myeloma plasma cells: Toward antibody panel specifications for MRD detection in multiple myeloma.

    PubMed

    Flores-Montero, Juan; de Tute, Ruth; Paiva, Bruno; Perez, José Juan; Böttcher, Sebastian; Wind, Henk; Sanoja, Luzalba; Puig, Noemí; Lecrevisse, Quentin; Vidriales, María Belén; van Dongen, Jacques J M; Orfao, Alberto

    2016-01-01

    In recent years, several studies on large series of multiple myeloma (MM) patients have demonstrated the clinical utility of flow cytometry monitoring of minimal residual disease (flow-MRD) in bone marrow (BM), for improved assessment of response to therapy and prognostication. However, disturbing levels of variability exist regarding the specific protocols and antibody panels used in individual laboratories. Overall, consensus exists about the utility of combined assessment of CD38 and CD138 for the identification of BM plasma cells (PC); in contrast, more heterogeneous lists of markers are used to further distinguish between normal/reactive PCs and myeloma PCs in the MRD settings. Among the later markers, CD19, CD45, CD27, and CD81, together with CD56, CD117, CD200, and CD307, have emerged as particularly informative; however, no single marker provides enough specificity for clear discrimination between clonal PCs and normal PCs. Accordingly, multivariate analyses of single PCs from large series of normal/reactive vs. myeloma BM samples have shown that combined assessment of CD138 and CD38, together with CD45, CD19, CD56, CD27, CD81, and CD117 would be ideally suited for MRD monitoring in virtually every MM patient. However, the specific antibody clones, fluorochrome conjugates and sources of the individual markers determines its optimal (vs. suboptimal or poor) performance in an eight-color staining. Assessment of clonality, via additional cytoplasmic immunoglobulin (CyIg) κ vs. CyIgλ evaluation, may contribute to further establish the normal/reactive vs. clonal nature of small suspicious PC populations at high sensitivity levels, provided that enough cells are evaluated. © 2015 International Clinical Cytometry Society.

  18. Lentiviral transduction of primary myeloma cells with CD80 and CD154 generates antimyeloma effector T cells.

    PubMed

    Cignetti, Alessandro; Vallario, Antonella; Follenzi, Antonia; Circosta, Paola; Capaldi, Antonio; Gottardi, Daniela; Naldini, Luigi; Caligaris-Cappio, Federico

    2005-04-01

    The development of immunotherapy approaches designed to obtain tumor-specific T cells might help eradicate residual malignant cells in multiple myeloma (MM) patients. To this end, we used autologous primary MM cells as antigen-presenting cells (APC). Gene transfer of both CD80 and CD154 by lentiviral vectors was necessary to significantly improve the APC function of human MM cells. Simultaneous CD80/CD154 expression on MM cells allowed the generation of CD8+ T cells that recognized unmodified MM cells in 11 of 16 cases, specifically in six of six patients with low-stage disease, but only in five of ten patients with advanced disease. The activity of CD8+ T cells was MHC restricted and MM specific. In seven of seven cases, CD8+ T cell activity was inhibited by monoclonal antibodies against HLA class I, and in four of four cases, CD8+ T cells recognized autologous MM cells but not autologous normal B and T lymphocytes nor bone marrow stromal cells. In addition, the activity of CD8+ T cells was directed against allogeneic MM cells that shared at least one MHC allele with the autologous counterpart, but not against MHC mismatched MM cells. These data lay the ground for the isolation of new MM antigens and for the design of vaccination protocols with primary MM cells genetically engineered to express immunostimulatory molecules.

  19. [Significance of CD138/syndecan-1 for multiple myeloma immunophenotypes].

    PubMed

    Zhuang, Jun-Ling; Wang, Xuan; Wu, Yong-Ji

    2005-12-01

    To establish the method of immunophenotyping testing for patients with multiple myeloma (MM), to analyze the characteristics of antigen expression on myeloma cells, and to purify primary myeloma cells, CD45/side scatter (SSC) gating tri-color immunofluorescence (IF) flow cytometry (FCM) was used to test immunophenotype of 18 patients with MM, 20 patients with acute leukemia (AL) and 7 normal controls. Purified primary myeloma cells were obtained by means of anti-CD138 monoclonal antibody and immunomagnetic microbeads. The results showed that myeloma cells displayed a CD45 negative/low positive expression, and SSC was located between nucleated red blood cells and neutrophils. Both CD138 and CD38 were positive while most antigens of T cell, B cell and myeloid cell were negative. Positive rate of CD56 was 83.3% and HLA-DR was 44.4% positive. Compared with MM patients, CD138 was negative and CD38 was 100% positive in AL patients. CD56 was 25% positive. In normal controls, neither CD138 nor CD56 was positive. The positive rate of primary myeloma cells after purification was 73%-95% with a mean of 86%. It is concluded that CD45/SSC gating procedure is a stable and reliable method to detect immunophenotype of MM. CD138 is a correspondingly special antigen for myeloma cells. Highly enriched primary myeloma cells can be obtained by anti-CD138 antibody and immunomagnetic microbeads.

  20. CUL4A as a marker and potential therapeutic target in multiple myeloma.

    PubMed

    Yang, Yougang; Wang, Shanan; Li, Jinghong; Qi, Shipeng; Zhang, Debing

    2017-07-01

    Multiple myeloma is the most common cause of death of hematological malignancy worldwide. Cullin 4A has been proposed as oncogene in several types of human cancer, but the expression and function of cullin 4A in multiple myeloma remain unclear. Here, we demonstrate that cullin 4A plays an oncogenic role in multiple myeloma development. The expression of cullin 4A was detected by quantitative real-time polymerase chain reaction in multiple myeloma patients and multiple myeloma cell lines. In addition, silencing of cullin 4A with small interfering RNA was performed in human multiple myeloma cells, and the impact on proliferation, cell cycle, apoptosis, migration, and invasion of the multiple myeloma cells was analyzed. We found that the level of cullin 4A in serum samples was significantly upregulated in patients with multiple myeloma compared with healthy control subjects. Knockdown of cullin 4A via small interfering RNA inhibited the proliferation of the multiple myeloma cell lines by delaying cell-cycle progression and increasing apoptosis. cullin 4A downregulation inhibited multiple myeloma cell migration and invasion in vitro. Our results suggested that cullin 4A could be a promising therapy target in multiple myeloma patients.

  1. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation

    PubMed Central

    Raimondi, Lavinia; De Luca, Angela; Amodio, Nicola; Manno, Mauro; Raccosta, Samuele; Taverna, Simona; Bellavia, Daniele; Naselli, Flores; Fontana, Simona; Schillaci, Odessa; Giardino, Roberto; Fini, Milena; Tassone, Pierfrancesco; Santoro, Alessandra; De Leo, Giacomo; Giavaresi, Gianluca; Alessandro, Riccardo

    2015-01-01

    Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs differentiation. We show that MM cells produce exosomes which are actively internalized by Raw264.7 cell line, a cellular model of osteoclast formation. MM cell-derived exosomes positively modulate pre-osteoclast migration, through the increasing of CXCR4 expression and trigger a survival pathway. MM cell-derived exosomes play a significant pro-differentiative role in murine Raw264.7 cells and human primary osteoclasts, inducing the expression of osteoclast markers such as Cathepsin K (CTSK), Matrix Metalloproteinases 9 (MMP9) and Tartrate-resistant Acid Phosphatase (TRAP). Pre-osteoclast treated with MM cell-derived exosomes differentiate in multinuclear OCs able to excavate authentic resorption lacunae. Similar results were obtained with exosomes derived from MM patient's sera. Our data indicate that MM-exosomes modulate OCs function and differentiation. Further studies are needed to identify the OCs activating factors transported by MM cell-derived exosomes. PMID:25944696

  2. A gene expression inflammatory signature specifically predicts multiple myeloma evolution and patients survival

    PubMed Central

    Botta, C; Di Martino, M T; Ciliberto, D; Cucè, M; Correale, P; Rossi, M; Tagliaferri, P; Tassone, P

    2016-01-01

    Multiple myeloma (MM) is closely dependent on cross-talk between malignant plasma cells and cellular components of the inflammatory/immunosuppressive bone marrow milieu, which promotes disease progression, drug resistance, neo-angiogenesis, bone destruction and immune-impairment. We investigated the relevance of inflammatory genes in predicting disease evolution and patient survival. A bioinformatics study by Ingenuity Pathway Analysis on gene expression profiling dataset of monoclonal gammopathy of undetermined significance, smoldering and symptomatic-MM, identified inflammatory and cytokine/chemokine pathways as the most progressively affected during disease evolution. We then selected 20 candidate genes involved in B-cell inflammation and we investigated their role in predicting clinical outcome, through univariate and multivariate analyses (log-rank test, logistic regression and Cox-regression model). We defined an 8-genes signature (IL8, IL10, IL17A, CCL3, CCL5, VEGFA, EBI3 and NOS2) identifying each condition (MGUS/smoldering/symptomatic-MM) with 84% accuracy. Moreover, six genes (IFNG, IL2, LTA, CCL2, VEGFA, CCL3) were found independently correlated with patients' survival. Patients whose MM cells expressed high levels of Th1 cytokines (IFNG/LTA/IL2/CCL2) and low levels of CCL3 and VEGFA, experienced the longest survival. On these six genes, we built a prognostic risk score that was validated in three additional independent datasets. In this study, we provide proof-of-concept that inflammation has a critical role in MM patient progression and survival. The inflammatory-gene prognostic signature validated in different datasets clearly indicates novel opportunities for personalized anti-MM treatment. PMID:27983725

  3. Thymoquinone Inhibits the CXCL12-Induced Chemotaxis of Multiple Myeloma Cells and Increases Their Susceptibility to Fas-Mediated Apoptosis

    PubMed Central

    Badr, Gamal; Lefevre, Eric A.; Mohany, Mohamed

    2011-01-01

    In multiple myeloma (MM), malignant plasma cells reside in the bone marrow, where they accumulate in close contact with stromal cells. The mechanisms responsible for the chemotaxis of malignant plasma cells are still poorly understood. Thus, we investigated the mechanisms involved in the chemotaxis of MDN and XG2 MM cell lines. Both cell lines strongly expressed CCR9, CXCR3 and CXCR4 chemokine receptors but only migrated toward CXCL12. Activation of CXCR4 by CXCL12 resulted in the association of CXCR4 with CD45 and activation of PLCβ3, AKT, RhoA, IκBα and ERK1/2. Using siRNA-silencing techniques, we showed CD45/CXCR4 association is essential for CXCL12-induced migration of MM cells. Thymoquinone (TQ), the major active component of the medicinal herb Nigella sativa Linn, has been described as a chemopreventive and chemotherapeutic compound. TQ treatment strongly inhibited CXCL12-mediated chemotaxis in MM cell lines as well as primary cells isolated from MM patients, but not normal PBMCs. Moreover, TQ significantly down-regulated CXCR4 expression and CXCL12-mediated CXCR4/CD45 association in MM cells. Finally, TQ also induced the relocalization of cytoplasmic Fas/CD95 to the membrane of MM cells and increased CD95-mediated apoptosis by 80%. In conclusion, we demonstrate the potent anti-myeloma activity of TQ, providing a rationale for further clinical evaluation. PMID:21912642

  4. Autologous Stem Cell Transplant Followed By Maintenance Therapy in Treating Elderly Patients With Multiple Myeloma

    ClinicalTrials.gov

    2017-02-20

    Extramedullary Plasmacytoma; Isolated Plasmacytoma of Bone; Light Chain Deposition Disease; Primary Systemic Amyloidosis; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage III Multiple Myeloma

  5. [Relativity in multiple myeloma and KL-6].

    PubMed

    Matsuda, Chikashi; Miyake, Takaaki; Araki, Tuyoshi; Ishikawa, Noriyoshi; Taketani, Takeshi; Mishima, Seiji; Shibata, Hiroshi; Nagai, Atsushi

    2012-01-01

    KL-6 is a high-molecular-weight mucinous glycoprotein discovered as a pulmonary adenocaricinoma related antigen. Its levels are used as a biomarker of lung injury in interstitial pneumonia. We here report a case of multiple myeloma with Bence-Jones lambda type whose serum KL-6 level was revealed high at a concentration of 19,400 U/ml. Next, we analyzed the blood test profiles and the concentrations of KL-6 in 20 patients with multiple myeloma. CD19/CD56 double negative fraction on myeloma cells with high expression of CD38 was found in all 5 patients with multiple myeloma having elevated KL-6 level. Patients with interstitial pneumonia show high level of KL-6. We, therefore, need to differentiate the interstitial pneumonia and the above-mentioned multiple myeloma when serum KL-6 level is high.

  6. Suppression of tumor growth by a heterologous antibody directed against multiple myeloma dominant CD38 antigen in SCID mice injected with multiple myeloma cells.

    PubMed

    Barabas, Arpad Z; Cole, Chad D; Graeff, Richard M; Kovacs, Zoltan B; Lafreniere, Rene

    2016-01-01

    Employing passive immunization - using a heterologous anti-CD38 IgG antibody containing serum - in SCID mice injected subcutaneously with human multiple myeloma cells, we have shown that treatments with the antiserum - especially in the presence of complement - significantly decreased cancer growth. However, administered antibody and complement was not sufficient in amount to prevent cancer cell multiplication and cancer growth expansion to a satisfactory degree. Larger volumes of the same components more than likely would have further reduced cancer growth and prolonged the life of mice. In control mice, cancer growth progressed faster proving that lytic immune response against multiple myeloma cells is necessary for cancer cell kill.

  7. Ex vivo-expanded natural killer cells demonstrate robust proliferation in vivo in high-risk relapsed multiple myeloma patients.

    PubMed

    Szmania, Susann; Lapteva, Natalia; Garg, Tarun; Greenway, Amy; Lingo, Joshuah; Nair, Bijay; Stone, Katie; Woods, Emily; Khan, Junaid; Stivers, Justin; Panozzo, Susan; Campana, Dario; Bellamy, William T; Robbins, Molly; Epstein, Joshua; Yaccoby, Shmuel; Waheed, Sarah; Gee, Adrian; Cottler-Fox, Michele; Rooney, Cliona; Barlogie, Bart; van Rhee, Frits

    2015-01-01

    Highly activated/expanded natural killer (NK) cells can be generated by stimulation with the human leukocyte antigen-deficient cell line K562, genetically modified to express 41BB-ligand and membrane-bound interleukin (IL)15. We tested the safety, persistence, and activity of expanded NK cells generated from myeloma patients (auto-NK) or haploidentical family donors (allo-NK) in heavily pretreated patients with high-risk relapsing myeloma. The preparative regimen comprised bortezomib only or bortezomib and immunosuppression with cyclophosphamide, dexamethasone, and fludarabine. NK cells were shipped overnight either cryopreserved or fresh. In 8 patients, up to 1×10⁸ NK cells/kg were infused on day 0 and followed by daily administrations of IL2. Significant in vivo expansion was observed only in the 5 patients receiving fresh products, peaking at or near day 7, with the highest NK-cell counts in 2 subjects who received cells produced in a high concentration of IL2 (500 U/mL). Seven days after infusion, donor NK cells comprised >90% of circulating leukocytes in fresh allo-NK cell recipients, and cytolytic activity against allogeneic myeloma targets was retained in vitro. Among the 7 evaluable patients, there were no serious adverse events that could be related to NK-cell infusion. One patient had a partial response and in another the tempo of disease progression decreased; neither patient required further therapy for 6 months. In the 5 remaining patients, disease progression was not affected by NK-cell infusion. In conclusion, infusion of large numbers of expanded NK cells was feasible and safe; infusing fresh cells was critical to their expansion in vivo.

  8. Impact of the NK Cell Receptor LIR-1 (ILT-2/CD85j/LILRB1) on Cytotoxicity against Multiple Myeloma

    PubMed Central

    Heidenreich, Silke; zu Eulenburg, Christine; Hildebrandt, York; Stübig, Thomas; Sierich, Heidi; Badbaran, Anita; Eiermann, Thomas H.; Binder, Thomas M. C.; Kröger, Nicolaus

    2012-01-01

    The role of different receptors in natural-killer- (NK-) cell-mediated cytotoxicity against multiple myeloma (MM) cells is unknown. We investigated if an enhancement of NK-cell-mediated cytotoxicity against MM could be reached by blocking of the inhibitory leukocyte immunoglobulin-like receptor 1 (LIR-1). Our investigations revealed high levels of LIR-1 expression not only on the NK cell line NK-92, but also on myeloma cells (MOLP-8, RPMI8226) as well as on a lymphoblastoid cell line (LBCL; IM-9). Subsequent cytotoxicity assays were designed to show the isolated effects of LIR-1 blocking on either the effector or the tumor side to rule out receptor-receptor interactions. Although NK-92 was shown to be capable of myeloma cell lysis, inhibition of LIR-1 on NK-92 did not enhance cytotoxicity. Targeting the receptor on MM and LBCL did not also alter NK-92-mediated lysis. We come to the conclusion that LIR-1 alone does not directly influence NK-cell-mediated cytotoxicity against myeloma. To our knowledge, this work provides the first investigation of the inhibitory capability of LIR-1 in NK-92-mediated cytotoxicity against MM and the first functional evaluation of LIR-1 on MM and LBCL. PMID:22844324

  9. Assessment of bone marrow plasma cell infiltrates in multiple myeloma: the added value of CD138 immunohistochemistry.

    PubMed

    Al-Quran, Samer Z; Yang, Lijun; Magill, James M; Braylan, Raul C; Douglas-Nikitin, Vonda K

    2007-12-01

    Assessment of bone marrow involvement by malignant plasma cells is an important element in the diagnosis and follow-up of patients with multiple myeloma and other plasma cell dyscrasias. Microscope-based differential counts of bone marrow aspirates are used as the primary method to evaluate bone marrow plasma cell percentages. However, multiple myeloma is often a focal process, a fact that impacts the accuracy and reliability of the results of bone marrow plasma cell percentages obtained by differential counts of bone marrow aspirate smears. Moreover, the interobserver and intraobserver reproducibility of counting bone marrow plasma cells microscopically has not been adequately tested. CD138 allows excellent assessment of plasma cell numbers and distribution in bone marrow biopsies. We compared estimates of plasma cell percentages in bone marrow aspirates and in hematoxylin-eosin- and CD138-stained bone marrow biopsy sections (CD138 sections) in 79 bone marrows from patients with multiple myeloma. There was a notable discrepancy in bone marrow plasma cell percentages using the different methods of observation. In particular, there was a relatively poor concordance of plasma cell percentage estimation between aspirate smears and CD138 sections. Estimates of plasma cell percentage using CD138 sections demonstrated the highest interobserver concordance. This observation was supported by computer-assisted image analysis. In addition, CD138 expression highlighted patterns of plasma cell infiltration indicative of neoplasia even in the absence of plasmacytosis. We conclude that examination of CD138 sections should be considered for routine use in the estimation of plasma cell load in the bone marrow.

  10. Cancer stem cells are the cause of drug resistance in multiple myeloma: fact or fiction?

    PubMed Central

    Janz, Siegfried; Zhan, Fenghuang; Tricot, Guido

    2015-01-01

    Multiple myeloma (MM) remains a largely incurable, genetically heterogeneous plasma-cell malignancy that contains – just like many other cancers – a small fraction of clonogenic stem cell-like cells that exhibit pronounced self-renewal and differentiation capacities, but also pronounced drug resistance. These MM stem cells (MMSCs) are a controversial but highly significant issue in myeloma research because, in our opinion, they are at the root of the failure of anti-neoplastic chemotherapies to transform myeloma to a manageable chronic disease. Several markers including CD138−, ALDH1+ and SP have been used to identify MMSCs; however, no single marker is reliable for the isolation of MMSC. Nonetheless, it is now known that MMSCs depend on self-renewal and pro-survival pathways, such as AKT, Wnt/β-catenin, Notch and Hedgehog, which can be targeted with novel drugs that have shown promise in pre-clinical and clinical trials. Here, we review the pathways of myeloma “stemness”, the interactions with the bone marrow microenvironment that promote drug resistance, and the obstacles that must be overcome to eradicate MMSCs and make myeloma a curable disease. PMID:26415231

  11. Multiple myeloma.

    PubMed

    Kumar, Shaji K; Rajkumar, Vincent; Kyle, Robert A; van Duin, Mark; Sonneveld, Pieter; Mateos, María-Victoria; Gay, Francesca; Anderson, Kenneth C

    2017-07-20

    Multiple myeloma is a malignancy of terminally differentiated plasma cells, and patients typically present with bone marrow infiltration of clonal plasma cells and monoclonal protein in the serum and/or urine. The diagnosis of multiple myeloma is made when clear end-organ damage attributable to the plasma cell proliferative disorder or when findings that suggest a high likelihood of their development are present. Distinguishing symptomatic multiple myeloma that requires treatment from the precursor stages of monoclonal gammopathy of undetermined significance and smouldering multiple myeloma is important, as observation is the standard for those conditions. Much progress has been made over the past decade in the understanding of disease biology and individualized treatment approaches. Several new classes of drugs, such as proteasome inhibitors and immunomodulatory drugs, have joined the traditional armamentarium (corticosteroids, alkylating agents and anthracyclines) and, along with high-dose therapy and autologous haemopoietic stem cell transplantation, have led to deeper and durable clinical responses. Indeed, an increasing proportion of patients are achieving lasting remissions, raising the possibility of cure for this disease. Success will probably depend on using combinations of effective agents and treating patients in the early stages of disease, such as patients with smouldering multiple myeloma.

  12. Bone marrow stromal cells from multiple myeloma patients uniquely induce bortezomib resistant NF-κB activity in myeloma cells

    PubMed Central

    2010-01-01

    Background Components of the microenvironment such as bone marrow stromal cells (BMSCs) are well known to support multiple myeloma (MM) disease progression and resistance to chemotherapy including the proteasome inhibitor bortezomib. However, functional distinctions between BMSCs in MM patients and those in disease-free marrow are not completely understood. We and other investigators have recently reported that NF-κB activity in primary MM cells is largely resistant to the proteasome inhibitor bortezomib, and that further enhancement of NF-κB by BMSCs is similarly resistant to bortezomib and may mediate resistance to this therapy. The mediating factor(s) of this bortezomib-resistant NF-κB activity is induced by BMSCs is not currently understood. Results Here we report that BMSCs specifically derived from MM patients are capable of further activating bortezomib-resistant NF-κB activity in MM cells. This induced activity is mediated by soluble proteinaceous factors secreted by MM BMSCs. Among the multiple factors evaluated, interleukin-8 was secreted by BMSCs from MM patients at significantly higher levels compared to those from non-MM sources, and we found that IL-8 contributes to BMSC-induced NF-κB activity. Conclusions BMSCs from MM patients uniquely enhance constitutive NF-κB activity in MM cells via a proteinaceous secreted factor in part in conjunction with IL-8. Since NF-κB is known to potentiate MM cell survival and confer resistance to drugs including bortezomib, further identification of the NF-κB activating factors produced specifically by MM-derived BMSCs may provide a novel biomarker and/or drug target for the treatment of this commonly fatal disease. PMID:20604947

  13. Zoom Zoom: racing CARs for multiple myeloma.

    PubMed

    Maus, Marcela V; June, Carl H

    2013-04-15

    Chimeric antigen receptors redirect T cells to surface antigens. Discovery and validation of appropriate target antigens expand the possible indications for chimeric-antigen receptor (CAR)-T cells. B-cell maturation antigen (BCMA) is expressed only on mature B cells and plasma cells and promotes their survival. BCMA is a promising target for CAR-T cells in multiple myeloma.

  14. Identification and expression of MMSA-8, and its clinical significance in multiple myeloma.

    PubMed

    He, Rui; Yang, Nan; Zhang, Pengyu; Liu, Jie; Li, Junhui; Zhou, Fulin; Zhang, Wanggang

    2017-06-01

    In our previous studies, we identified 12 multiple myeloma (MM)-associated antigens by serological analysis of tumor-associated antigens with a recombinant cDNA expression library (SEREX) on MM. MM-associated antigen-8 (MMSA-8) was one of the new antigens identified. We determined the 3'- and 5'-ends of MMSA-8 using SMART-rapid amplification of cDNA ends (RACE) and then cloned its full-length cDNA in the U266 cell line. The full cDNA sequence revealed that MMSA-8 is RPS27A-related transcript variant 1 that is specifically associated with MM. We examined its prognostic significance for the first time, by investigating the correlations between MMSA-8 expression and definite clinicopathological features. We quantitatively assessed MMSA-8 expression using qRT-PCR and western blot analysis in healthy donors and MM patients. The expression levels of MMSA-8 were upregulated with statistical significance in MM patients in contrast to those in healthy donors. The expression of MMSA-8 was also upregulated in relapsed patients compared with that in the complete remission (CR) group. Contrasting MMSA-8 expression levels in different patients with definite clinicopathological features suggested an association between MMSA-8 with unfavorable clinicopathological characteristics, such as international staging system (ISS) stage III, higher lactate dehydrogenase (LDH) levels and higher C-reactive protein (CRP) levels. The expression of MMSA-8 was also increased in patients with unfavorable cytogenetic and genetic abnormalities, including the presence of t(11;14), t(4;14), t(14;16), del(17p), del(13q) and p53 deletion, which was statistically significant. The expression of MMSA-8 exhibited significant variance in the treatment responses of the CR, PR, progression and relapse groups. Univariate and multivariate analyses revealed that high MMSA-8 values were associated with poorer progression-free survival (PFS) and overall survival (OS) in MM patients independently. In conclusion

  15. Metabolic and proteomic study of NS0 myeloma cell line following the adaptation to protein-free medium.

    PubMed

    de la Luz-Hernández, K R; Rojas-del Calvo, L; Rabasa-Legón, Y; Lage-Castellanos, A; Castillo-Vitlloch, A; Díaz, J; Gaskell, S

    2008-07-21

    Proteomics and metabolomics technologies are potentially useful tool for the study of the very complex process of cell adaptation to protein-free medium. In this work, we used the iTRAQ technology to analyze different protein levels in adapted and non-adapted NS0 myeloma cell line. Several proteins with differential expression profile were characterized and quantified. Carbohydrate metabolism, protein synthesis and membrane transport were the principal pathways that change after the adaptation. Changes in lactate production rate with respect to glucose consumption rate were observed according to the changes observed by proteomic.

  16. Is there still a role for allogeneic stem-cell transplantation in multiple myeloma?

    PubMed Central

    Bensinger, William I.

    2007-01-01

    Despite significant improvements in survival for multiple myeloma patients through autologous stem-cell transplantation (SCT) and the introduction of novel drugs, the disease remains incurable for all but a small fraction of patients. Only allogeneic SCT is potentially curative, due in part to a graft-versus-myeloma effect. High transplant-related mortality with allogeneic SCT is currently the major limitation to wider use of this potentially curative modality. Mortality can be reduced through the use of lower-intensity conditioning regimens which allow engraftment of allogeneic stem cells, but this comes at a cost of higher rates of disease progression and relapse. Promising studies to improve outcomes of allogeneic transplants include the use of more intensive non-myeloablative conditioning regimens, tandem transplants, peripheral blood cells, graft engineering to improve the graft-versus-myeloma activity while reducing graft-versus-host disease (GVHD), post-transplant maintenance, and targeted conditioning therapies such as bone-seeking radioisotopes. PMID:18070719

  17. Exogenous hydrogen sulfide exerts proliferation, anti-apoptosis, migration effects and accelerates cell cycle progression in multiple myeloma cells via activating the Akt pathway.

    PubMed

    Zheng, Dong; Chen, Ziang; Chen, Jingfu; Zhuang, Xiaomin; Feng, Jianqiang; Li, Juan

    2016-10-01

    Hydrogen sulfide (H2S), regarded as the third gaseous transmitter, mediates and induces various biological effects. The present study investigated the effects of H2S on multiple myeloma cell progression via amplifying the activation of Akt pathway in multiple myeloma cells. The level of H2S produced in multiple myeloma (MM) patients and healthy subjects was measured using enzyme-linked immunosorbent assay (ELISA). MM cells were treated with 500 µmol/l NaHS (a donor of H2S) for 24 h. The expression levels of phosphorylated-Akt (p-Akt), Bcl-2 and caspase-3 were measured by western blot assay. Cell viability was detected by Cell Counting Kit 8 (CCK-8). The cell cycle was analyzed by flow cytometry. Our results show that the concentration of H2S was higher in MM patients and that it increased in parallel with disease progression. Treating MM cells with 500 µmol/l NaHS for 24 h markedly increased the expression level of Bcl-2 and the activation of p-Akt, however, the expression level of caspase-3 was decreased, cell viability was increased, and cell cycle progression was accelerated in MM cells. NaHS also induced migration in MM cells in transwell migration assay. Furthermore, co-treatment of MM cells with 500 µmol/l NaHS and 50 µmol/l LY294002 for 24 h significantly overset these effects. In conclusion, our findings demonstrate that the Akt pathway contributes to NaHS-induced cell proliferation, migration and acceleration of cell cycle progression in MM cells.

  18. The enigma of ectopic expression of FGFR3 in multiple myeloma: a critical initiating event or just a target for mutational activation during tumor progression.

    PubMed

    Chesi, Marta; Bergsagel, P Leif; Kuehl, W Michael

    2002-07-01

    The t(4;14)(p16.3;q32) translocation that occurs uniquely in a subset of multiple myeloma tumors results in ectopic expression of wild-type FGFR3 and enhanced expression of MMSET, a gene that is homologous to the MLL gene that is involved in acute myeloid leukemias. Wild-type FGFR3 appears to be weakly transforming in a hematopoietic murine model, whereas FGFR3 that contains kinase-activating mutations is strongly transforming in NIH3T3 cells and the hematopoietic model. The subsequent acquisition of FGFR3 kinase-activating mutations in some tumors with t(4;14) translocations confirms a role for FGFR3 in tumor progression. However, it remains to be proven if and how dysregulation of FGFR3 or MMSET mediates an early oncogenic process in multiple myeloma.

  19. Human heat shock protein-specific cytotoxic T lymphocytes display potent antitumour immunity in multiple myeloma

    PubMed Central

    Li, Rong; Qian, Jianfei; Zhang, Wenhao; Fu, Weijun; Du, Juan; Jiang, Hua; Zhang, Hui; Zhang, Chunyang; Xi, Hao; Yi, Qing; Hou, Jian

    2014-01-01

    Tumour cell–derived heat shock proteins (HSPs) are used as vaccines for immunotherapy of cancer patients. However, it is proposed that the peptide chaperoned on HSPs, not HSPs themselves, elicited a potent immune response. Given that HSPs are highly expressed by most myeloma cells and vital to myeloma cell survival, we reasoned that HSPs themselves might be an ideal myeloma antigen. In the present study, we explored the feasibility of targeting HSPs themselves for treating multiple myeloma. We identified and chose HLA-A*0201-binding peptides from human HSPB1 (HSP27) and HSP90AA1 (HSP90), and confirmed their immunogenicity in HLA-A*0201 transgenic mice. Dendritic cells pulsed with HSPB1 and HSP90AA1 peptides were used to stimulate peripheral blood mononuclear cells from healthy volunteers and myeloma patients to generate HSP peptide-specific cytotoxic T lymphocytes (CTLs). HSP peptide-specific CTLs efficiently lysed HLA-A*0201+ myeloma cells (established cell lines and primary plasma cells) but not HLA-A*0201− myeloma cells in vitro, indicating that myeloma cells naturally express HSP peptides in the context of major histocompatibility complex class I molecules. More importantly, HSP peptide-specific CTLs effectively reduced tumour burden in the xenograft mouse model of myeloma. Our study clearly demonstrated that HSPs might be novel tumour antigens for immunotherapy of myeloma. PMID:24824351

  20. shRNA-mediated silencing of sorcin increases drug chemosensitivity in myeloma KM3/DDP and U266/ADM cell lines.

    PubMed

    Xu, Ping; Jiang, Yong-Fang; Wang, Jing-Hua

    2015-01-01

    Sorcin is a penta-EF hand calcium binding protein, which is involved in the resistance to chemotherapeutics in cancer cells, and is overexpressed in various cancer cells. However, tumor relapse combined with the development of drug resistance remains a significant problem. Here, we demonstrated that silencing of Sorcin in chemotherapy resistance myeloma U266/ADM and KM3/DDP cell lines resulted in reduced cell proliferation, cell cycle arrest and cell apoptosis. Sorcin siRNA successfully silenced Sorcin mRNA and protein expression. Silencing of Sorcin also significantly reduced the mRNA and protein expression levels of MDR1, MRP1, GST-π, Survinvin, Livin, Bcl-2, Cyclin-D1, phospho-Src, C-myc, p21, NF-κB and phospho-AKT, while p53 expression and caspase-3 and caspase-8 activity significantly increased when compared with control group. Silencing of Sorcin significantly increased the sensitivity of KM3/DDP cells to cisplatin and the sensitivity of U266/ADM to adriamycin, compared to cells untransfected and transfected with negative control shRNA. In addition, intracellular accumulation of Rhodamine 123 significantly increased in KM3/DDP and U266/ADM cells. In summary, our studies indicate that drug resistance can be effectively reversed in cisplatin-resistance and adriamycin-resistant myeloma cells through delivery of siRNAs targeting Sorcin. Assessment of potential as a target for human myeloma treatment is clearly warranted.

  1. Phenotypic, Genomic and Functional Characterization Reveals No Differences between CD138++ and CD138low Subpopulations in Multiple Myeloma Cell Lines

    PubMed Central

    Paíno, Teresa; Sarasquete, María E.; Paiva, Bruno; Krzeminski, Patryk; San-Segundo, Laura; Corchete, Luis A.; Redondo, Alba; Garayoa, Mercedes; García-Sanz, Ramón; Gutiérrez, Norma C.; Ocio, Enrique M.; San-Miguel, Jesús F.

    2014-01-01

    Despite recent advances in the treatment of multiple myeloma (MM), it remains an incurable disease potentially due to the presence of resistant myeloma cancer stem cells (MM-CSC). Although the presence of clonogenic cells in MM was described three decades ago, the phenotype of MM-CSC is still controversial, especially with respect to the expression of syndecan-1 (CD138). Here, we demonstrate the presence of two subpopulations - CD138++ (95–99%) and CD138low (1–5%) - in eight MM cell lines. To find out possible stem-cell-like features, we have phenotypically, genomic and functionally characterized the two subpopulations. Our results show that the minor CD138low subpopulation is morphologically identical to the CD138++ fraction and does not represent a more immature B-cell compartment (with lack of CD19, CD20 and CD27 expression). Moreover, both subpopulations have similar gene expression and genomic profiles. Importantly, both CD138++ and CD138low subpopulations have similar sensitivity to bortezomib, melphalan and doxorubicin. Finally, serial engraftment in CB17-SCID mice shows that CD138++ as well as CD138low cells have self-renewal potential and they are phenotypically interconvertible. Overall, our results differ from previously published data in MM cell lines which attribute a B-cell phenotype to MM-CSC. Future characterization of clonal plasma cell subpopulations in MM patients' samples will guarantee the discovery of more reliable markers able to discriminate true clonogenic myeloma cells. PMID:24658332

  2. [Monoclonal Gammopathy in the General Practioners’s Office. Diagnosis and Treatment of Plasma Cell Myeloma].

    PubMed

    Fuchs, Ivo; Gerber, Bernhard; Samaras, Panagiotis

    2015-10-14

    A monoclonal gammopathy is a common finding in the general practitioner’s office. An active search for a paraproteinemia is indicated in case of suspected malignancy, evidence of end organ damage (e.g. anemia, renal insufficiency) or in case of recurrent infections or prolonged fatigue. Plasma cell myeloma is an important differential diagnosis of a monoclonal gammopathy and implies a broad spectrum of diagnostic as well as therapeutic consequences for the patient. Plasma cell myeloma is still being considered an incurable disease, but its prognosis could be significantly improved with the introduction of new drugs.

  3. Multiple myeloma

    PubMed Central

    Rajkumar, S. Vincent

    2008-01-01

    Multiple myeloma is a clonal plasma cell malignancy that accounts for slightly more than 10% of all hematologic cancers. In this paper, we present a historically focused review of the disease, from the description of the first case in 1844 to the present. The evolution of drug therapy and stem-cell transplantation for the treatment of myeloma, as well as the development of new agents, is discussed. We also provide an update on current concepts of diagnosis and therapy, with an emphasis on how treatments have emerged from a historical perspective after certain important discoveries and the results of experimental studies. PMID:18332230

  4. PEGylated long-circulating liposomes deliver homoharringtonine to suppress multiple myeloma cancer stem cells.

    PubMed

    Li, Miao; Shi, Fangfang; Fei, Xiong; Wu, Songyan; Wu, Di; Pan, Meng; Luo, Shouhua; Gu, Ning; Dou, Jun

    2017-05-01

    The goal of this investigation was to evaluate the inhibiting effect of high proportion polyethyleneglycol of long-circulating homoharringtonine liposomes on RPMI8226 multiple myeloma cancer stem cells. The CD138(-)CD34(-) multiple myeloma cancer stem cells isolated from RPMI8226 cell line using magnetic activated cell sorting system were, respectively, incubated with the optimized formulation of polyethyleneglycol of long-circulating homoharringtonine liposomes and the homoharringtonine in vitro, and the multiple myeloma cancer stem cell proliferation, colony formation, and cell cycle were analyzed. The inhibition of the multiple myeloma CD138(-)CD34(-) cancer stem cell growth was investigated in non-obese-diabetic/severe-combined-immunodeficiency mice that were implanted with multiple myeloma RPMI 8226 cancer stem cells and treated with the LCL-HHT-H-PEG. The results showed that the polyethyleneglycol of long-circulating homoharringtonine liposomes significantly inhibited MM cancer stem cell proliferation, colony formation, and induced cancer stem cell apoptosis in vitro as well as MM cancer stem cell growth in non-obese-diabetic/severe-combined-immunodeficiency mice compared with the homoharringtonine. In addition, the mouse bone mineral density and the red blood cell count were significantly increased in polyethyleneglycol of long-circulating homoharringtonine liposomes group. In conclusion, the data demonstrated that the developed polyethyleneglycol of long-circulating homoharringtonine liposomes formulation may serve as an efficient therapeutic drug for suppressing CD138(-)CD34(-) multiple myeloma cancer stem cell growth by inducing cancer stem cell apoptosis in non-obese-diabetic/severe-combined-immunodeficiency mouse model. Impact statement Multiple myeloma (MM) remains largely incurable until now. One of the main reasons is that there are cancer stem cells (CSCs) in MM, which are responsible for MM's drug resistance and relapse. In this study, we wanted

  5. NY-ESO-1 specific TCR engineered T-cells mediate sustained antigen-specific antitumor effects in myeloma

    PubMed Central

    Goloubeva, Olga; Vogl, Dan T.; Lacey, Simon F.; Badros, Ashraf Z.; Garfall, Alfred; Weiss, Brendan; Finklestein, Jeffrey; Kulikovskaya, Irina; Sinha, Sanjoy K.; Kronsberg, Shari; Gupta, Minnal; Bond, Sarah; Melchiori, Luca; Brewer, Joanna E.; Bennett, Alan D.; Gerry, Andrew B.; Pumphrey, Nicholas J.; Williams, Daniel; Tayton-Martin, Helen K.; Ribeiro, Lilliam; Holdich, Tom; Yanovich, Saul; Hardy, Nancy; Yared, Jean; Kerr, Naseem; Philip, Sunita; Westphal, Sandra; Siegel, Don L.; Levine, Bruce L.; Jakobsen, Bent K.; Kalos, Michael; June, Carl H.

    2015-01-01

    Despite recent therapeutic advances, multiple myeloma (MM) remains largely incurable. Herein we report results of a phase I/II trial to evaluate the safety and activity of autologous T-cells engineered to express an affinity-enhanced T-cell receptor (TCR) recognizing a naturally processed peptide shared by the cancer-testis antigens NY-ESO-1 and LAGE-1. Twenty patients with antigen-positive MM received an average 2.4×109 engineered T cells two days after autologous stem cell transplant (ASCT). Infusions were well-tolerated without clinically apparent cytokine release syndrome, despite high IL-6 levels. Engineered T-cells expanded, persisted, trafficked to marrow and exhibited a cytotoxic phenotype. Persistence of engineered T cells in blood was inversely associated with NY-ESO-1 levels in the marrow. Disease progression was associated with loss of T cell persistence or antigen escape, consistent with the expected mechanism of action of the transferred T cells. Encouraging clinical responses were observed in 16 of 20 patients (80%) with advanced disease, with a median progression free survival of 19.1 months. NY-ESO-1/LAGE-1 TCR-engineered T-cells were safe, trafficked to marrow and showed extended persistence that correlated with clinical activity against antigen-positive myeloma. PMID:26193344

  6. Biclonal IgD and IgM Plasma Cell Myeloma: A Report of Two Cases and a Literature Review.

    PubMed

    Chen, Zhongchuan W; Kotsikogianni, Ioanna; Raval, Jay S; Roth, Christine G; Rollins-Raval, Marian A

    2013-01-01

    Biclonal plasma cell myelomas producing two different isotypes of immunoglobulins are extremely rare entities; to date, the combination of IgD and IgM secretion by a biclonal plasma cell myeloma has not been reported. Bone marrow biopsy immunohistochemical studies in two cases revealed neoplastic plasma cells coexpressing IgD and IgM, but serum protein electrophoresis identified only the IgM monoclonal paraprotein in both cases. Biclonal plasma cell myelomas, while currently not well characterized in terms of their clinical behavior, should be distinguished from B-cell lymphoma with plasmacytic differentiation, given the different therapeutic implications. Both cases reported herein demonstrated chemotherapy-resistant clinical courses.

  7. Oscillating expression of interleukin-16 in multiple myeloma is associated with proliferation, clonogenic growth, and PI3K/NFKB/MAPK activation.

    PubMed

    Templin, Julia; Atanackovic, Djordje; Hasche, Daniel; Radhakrishnan, Sabarinath Venniyil; Luetkens, Tim

    2017-07-25

    Multiple myeloma (MM) is an incurable hematologic malignancy emerging from a plasma cell clone located in the bone marrow and is characterized by a high rate of fatal relapses after initially effective treatment. We have previously identified Interleukin-16 (IL-16) as an important factor promoting the proliferation of MM cells. We demonstrate here an upregulated, periodic expression, and secretion of IL-16 by MM cells leading to high extracellular IL-16 levels. The level of IL-16 released from a given MM cell line correlated with its proliferative activity. Establishing an inducible knockdown system and performing gene expression arrays we observed an association between IL-16 expression and activation of PI3, NFκB and MAP kinase pathways and, specifically, genes involved in tumor cell proliferation. Functional assays showed that IL-16 knockdown reduced the proliferative activity with a significant delay in cell cycle progression to G2 phase of conventional MM cells and completely suppressed the growth of clonogenic MM cells, which are suspected to be responsible for the high relapse rates in MM. Overall, our results demonstrate that tumor-regenerating MM cells may be particularly susceptible to IL-16 neutralization, suggesting an important role of anti-IL-16 therapies in the treatment of MM, particularly in combination with existing strategies targeting the bulk of myeloma cells.

  8. Interleukin-6 antisense oligonucleotides inhibit the growth of human myeloma cell lines.

    PubMed Central

    Levy, Y; Tsapis, A; Brouet, J C

    1991-01-01

    IL-6 has been shown to be a plasmacytoma growth factor in mice and is believed to play a key role in the development of human multiple myeloma. We investigated the IL-6 requirements for the growth of two human myeloma cell lines, U 266 and RPMI 8226. These cell lines secreted minute amounts of IL-6 (20 U/ml) and featured IL-6 mRNA. IL-6 receptors were detectable at the surface of malignant cells by immunofluorescence. Antibodies to IL-6 did not alter the proliferation of these myeloma cells. There was a dose-dependent decrease, however, in [3H]-thymidine uptake in the presence of IL-6 antisense (and not sense) oligodeoxynucleotides; in the presence of 20 microM IL-6 antisense, an 80 and 95% inhibition of the proliferation of U 266 and RPMI 8226 cells was observed, respectively. These results provide strong evidence for an IL-6 autocrine proliferation of myeloma cells which may occur via internal interaction between IL-6 and the IL-6 receptor. Images PMID:1864979

  9. Aberrantly expressed LGR4 empowers Wnt signaling in multiple myeloma by hijacking osteoblast-derived R-spondins

    PubMed Central

    van Andel, Harmen; Ren, Zemin; Koopmans, Iris; Joosten, Sander P. J.; Kocemba, Kinga A.; de Lau, Wim; Kersten, Marie José; de Bruin, Alexander M.; Guikema, Jeroen E. J.; Clevers, Hans; Spaargaren, Marcel; Pals, Steven T.

    2017-01-01

    The unrestrained growth of tumor cells is generally attributed to mutations in essential growth control genes, but tumor cells are also affected by, or even addicted to, signals from the microenvironment. As therapeutic targets, these extrinsic signals may be equally significant as mutated oncogenes. In multiple myeloma (MM), a plasma cell malignancy, most tumors display hallmarks of active Wnt signaling but lack activating Wnt-pathway mutations, suggesting activation by autocrine Wnt ligands and/or paracrine Wnts emanating from the bone marrow (BM) niche. Here, we report a pivotal role for the R-spondin/leucine-rich repeat-containing G protein-coupled receptor 4 (LGR4) axis in driving aberrant Wnt/β-catenin signaling in MM. We show that LGR4 is expressed by MM plasma cells, but not by normal plasma cells or B cells. This aberrant LGR4 expression is driven by IL-6/STAT3 signaling and allows MM cells to hijack R-spondins produced by (pre)osteoblasts in the BM niche, resulting in Wnt (co)receptor stabilization and a dramatically increased sensitivity to auto- and paracrine Wnts. Our study identifies aberrant R-spondin/LGR4 signaling with consequent deregulation of Wnt (co)receptor turnover as a driver of oncogenic Wnt/β-catenin signaling in MM cells. These results advocate targeting of the LGR4/R-spondin interaction as a therapeutic strategy in MM. PMID:28028233

  10. Aberrantly expressed LGR4 empowers Wnt signaling in multiple myeloma by hijacking osteoblast-derived R-spondins.

    PubMed

    van Andel, Harmen; Ren, Zemin; Koopmans, Iris; Joosten, Sander P J; Kocemba, Kinga A; de Lau, Wim; Kersten, Marie José; de Bruin, Alexander M; Guikema, Jeroen E J; Clevers, Hans; Spaargaren, Marcel; Pals, Steven T

    2017-01-10

    The unrestrained growth of tumor cells is generally attributed to mutations in essential growth control genes, but tumor cells are also affected by, or even addicted to, signals from the microenvironment. As therapeutic targets, these extrinsic signals may be equally significant as mutated oncogenes. In multiple myeloma (MM), a plasma cell malignancy, most tumors display hallmarks of active Wnt signaling but lack activating Wnt-pathway mutations, suggesting activation by autocrine Wnt ligands and/or paracrine Wnts emanating from the bone marrow (BM) niche. Here, we report a pivotal role for the R-spondin/leucine-rich repeat-containing G protein-coupled receptor 4 (LGR4) axis in driving aberrant Wnt/β-catenin signaling in MM. We show that LGR4 is expressed by MM plasma cells, but not by normal plasma cells or B cells. This aberrant LGR4 expression is driven by IL-6/STAT3 signaling and allows MM cells to hijack R-spondins produced by (pre)osteoblasts in the BM niche, resulting in Wnt (co)receptor stabilization and a dramatically increased sensitivity to auto- and paracrine Wnts. Our study identifies aberrant R-spondin/LGR4 signaling with consequent deregulation of Wnt (co)receptor turnover as a driver of oncogenic Wnt/β-catenin signaling in MM cells. These results advocate targeting of the LGR4/R-spondin interaction as a therapeutic strategy in MM.

  11. Tumor-associated macrophages infiltrate plasmacytomas and can serve as cell carriers for oncolytic measles virotherapy of disseminated myeloma

    PubMed Central

    Peng, Kah-Whye; Dogan, Ahmet; Vrana, Julie; Liu, Chunsheng; Ong, Hooi T.; Kumar, Shaji; Dispenzieri, Angela; Dietz, Allan B.; Russell, Stephen J.

    2009-01-01

    In multiple myeloma, some of the neoplastic plasma cells are diffusely dispersed among the normal bone marrow cells (bone marrow resident), whereas others are located in discrete, well-vascularized solid tumors (plasmacytomas) that may originate in bone or soft tissue. Interactions between bone marrow-resident myeloma cells and bone marrow stromal cells (BMSCs) are important determinants of myeloma pathogenesis. However, little is known of the factors sustaining myeloma growth and cell viability at the centers of expanding plasmacytomas, where there are no BMSCs. Histologic sections of 22 plasmacytomas from myeloma patients were examined after immunostaining. Abundant CD68+, CD163+, S100-negative macrophage infiltrates were identified in all tumors, accompanied by scattered collections of CD3+ T lymphocytes. The CD68+ tumor-associated macrophages (TAM) accounted for 2– 12% of nucleated cells and were evenly distributed through the parenchyma. The TAM generally had dendritic morphology, and each dendrite was in close contact with multiple plasma cells. In some cases, the TAM were strikingly clustered around CD34+ blood vessels. To determine whether cells of the monocytic lineage might be exploitable as carriers for delivery of therapeutic agents to plasmacytomas, primary human CD14+ cells were infected with oncolytic measles virus and administered intravenously to mice bearing KAS6/1 human myeloma xenografts. The cell carriers localized to KAS6/1 tumors, where they transferred MV infection to myeloma cells and prolonged the survival of mice bearing disseminated human myeloma disease. Thus, TAM are a universal stromal component of the plasmacytomas of myeloma patients and may offer a promising new target for therapeutic exploitation. PMID:19507209

  12. WT1-specific T-cell responses in high-risk multiple myeloma patients undergoing allogeneic T cell–depleted hematopoietic stem cell transplantation and donor lymphocyte infusions

    PubMed Central

    Tyler, Eleanor M.; Jungbluth, Achim A.; O'Reilly, Richard J.

    2013-01-01

    While the emergence of WT1-specific cytotoxic T lymphocytes (WT1-CTL) has been correlated with better relapse-free survival after allogeneic stem cell transplantation in patients with myeloid leukemias, little is known about the role of these cells in multiple myeloma (MM). We examined the significance of WT1-CTL responses in patients with relapsed MM and high-risk cytogenetics who were undergoing allogeneic T cell–depleted hematopoietic stem cell transplantation (alloTCD-HSCT) followed by donor lymphocyte infusions. Of 24 patients evaluated, all exhibited WT1-CTL responses before allogeneic transplantation. These T-cell frequencies were universally correlated with pretransplantation disease load. Ten patients received low-dose donor lymphocyte infusions beginning 5 months after transplantation. All patients subsequently developed increments of WT1-CTL frequencies that were associated with reduction in specific myeloma markers, in the absence of graft-versus-host disease. Immunohistochemical analyses of WT1 and CD138 in bone marrow specimens demonstrated consistent coexpression within malignant plasma cells. WT1 expression in the bone marrow correlated with disease outcome. Our results suggest an association between the emergence of WT1-CTL and graft-versus-myeloma effect in patients treated for relapsed MM after alloTCD-HSCT and donor lymphocyte infusions, supporting the development of adoptive immunotherapeutic approaches using WT1-CTL in the treatment of MM (registered at http://clinicaltrials.gov, ID: NCT01131169). PMID:23160468

  13. Allogeneic Hematopoietic Cell Transplantation for Myeloma: When and in Whom Does It Work.

    PubMed

    Bashir, Qaiser; Qazilbash, Muzaffar H

    2017-03-11

    The growing list of available therapies for patients with multiple myeloma has resulted in tremendously high response rates and prolonged survival. However, the cure remains elusive. A continued effort at developing strategies to utilize all available treatment modalities in the most effective manner is needed. Allogeneic hematopoietic cell transplantation (allo-HCT) is a robust platform, associated with high response rates, and provides a unique foundation on which immune therapies and novel agents can be employed to improve clinical outcomes. Patients with high-risk myeloma and those relapsing after novel agent-based therapies or early after an autologous HCT should be considered for allo-HCT, ideally in a clinical trial setting. Results from several ongoing studies are expected to provide important information that will help determine the place of allo-HCT in the myeloma treatment algorithm.

  14. Therapeutic effects of intrabone and systemic mesenchymal stem cell cytotherapy on myeloma bone disease and tumor growth

    PubMed Central

    Li, Xin; Ling, Wen; Khan, Sharmin; Yaccoby, Shmuel

    2012-01-01

    The cytotherapeutic potential of mesenchymal stem cells (MSCs) has been evaluated in various disorders including those involving inflammation, autoimmunity, bone regeneration, and cancer. Multiple myeloma (MM) is a systemic malignancy associated with induction of osteolytic lesions that often are not repaired even after prolonged remission. The aims of the study were to evaluate the effects of intrabone and systemic injections of mesenchymal stem cells (MSCs) on MM bone disease, tumor growth, and tumor regrowth in the SCID-rab model and to shed light on the exact localization of systemically injected MSCs. Intrabone injection of MSCs, but not hematopoietic stem cells, into myelomatous bones prevented MM-induced bone disease, promoted bone formation, and inhibited MM growth. After remission was induced with melphalan treatment, intrabone-injected MSCs promoted bone formation and delayed myeloma cell regrowth in bone. Most intrabone or systemically injected MSCs were undetected 2–4 weeks after injection. The bone-building effects of MSCs were mediated through activation of endogenous osteoblasts and suppression of osteoclast activity. While a single intravenous injection of MSCs had no effect on MM, sequential weekly intravenous injections of MSCs prevented MM-induced bone disease but had no effect on tumor burden. MSCs expressed high levels of anti-inflammatory (e.g. HMOX1), and bone remodeling (e.g. Decorin, CYR61) mediators. In vitro, MSCs promoted osteoblast maturation and suppressed osteoclast formation, and these effects were partially prevented by blocking decorin. A subset of intravenously or intracardially injected MSCs trafficked to myelomatous bone in SCID-rab mice. While the majority of intravenously injected MSCs were trapped in lungs, intracardially injected MSCs were mainly localized in draining mesenteric lymph nodes. This study shows that exogenous MSCs act as bystander cells to inhibit MM-induced bone disease and tumor growth and that systemically

  15. Input of DNA microarrays to identify novel mechanisms in multiple myeloma biology and therapeutic applications

    PubMed Central

    Mahtouk, Karène; Hose, Dirk; De Vos, John; Moreaux, Jérôme; Jourdan, Michel; Rossi, Jean François; Rème, Thierry; Goldschmidt, Harmut; Klein, Bernard

    2007-01-01

    Multiple myeloma (MM) is a B cell neoplasia characterized by the proliferation of a clone of malignant plasma cells in the bone marrow. We review here the input of gene expression profiling (GEP) of myeloma cells and of their tumor microenvironment to develop new tumor classifiers, to better understand the biology of myeloma cells, to identify some mechanisms of drug sensitivity and resistance, to identify new myeloma growth factors, and to depict the complex interactions between tumor cells and their microenvironment. We discuss how these findings may improve the clinical outcome of this still incurable disease. PMID:18094409

  16. C3 glomerulopathy associated to multiple myeloma successfully treated by autologous stem cell transplant

    PubMed Central

    Hamzi, M. A.; Zniber, A.; Badaoui, G. E.; Mahtat, E.; Alhamany, Z.; Bayahia, R.; Ouzeddoun, N.

    2017-01-01

    A 32-year-old male presented with advanced renal failure and nephrotic proteinuria due to lambda light chain multiple myeloma. Renal biopsy showed a proliferative glomerulonephritis with isolated C3 deposits. Renal recovery was obtained after chemotherapy and autologous stem cell transplant. We review previously described cases of C3 glomerulopathy associated with monoclonal gammopathy. PMID:28356669

  17. Novel anti–B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma

    PubMed Central

    Mayes, Patrick A.; Acharya, Chirag; Zhong, Mike Y.; Cea, Michele; Cagnetta, Antonia; Craigen, Jenny; Yates, John; Gliddon, Louise; Fieles, William; Hoang, Bao; Tunstead, James; Christie, Amanda L.; Kung, Andrew L.; Richardson, Paul; Munshi, Nikhil C.; Anderson, Kenneth C.

    2014-01-01

    B-cell maturation antigen (BCMA), highly expressed on malignant plasma cells in human multiple myeloma (MM), has not been effectively targeted with therapeutic monoclonal antibodies. We here show that BCMA is universally expressed on the MM cell surface and determine specific anti-MM activity of J6M0-mcMMAF (GSK2857916), a novel humanized and afucosylated antagonistic anti-BCMA antibody-drug conjugate via a noncleavable linker. J6M0-mcMMAF specifically blocks cell growth via G2/M arrest and induces caspase 3–dependent apoptosis in MM cells, alone and in coculture with bone marrow stromal cells or various effector cells. It strongly inhibits colony formation by MM cells while sparing surrounding BCMA-negative normal cells. J6M0-mcMMAF significantly induces effector cell-mediated lysis against allogeneic or autologous patient MM cells, with increased potency and efficacy compared with the wild-type J6M0 without Fc enhancement. The antibody-dependent cell-mediated cytotoxicity and apoptotic activity of J6M0-mcMMAF is further enhanced by lenalidomide. Importantly, J6M0-mcMMAF rapidly eliminates myeloma cells in subcutaneous and disseminated mouse models, and mice remain tumor-free up to 3.5 months. Furthermore, J6M0-mcMMAF recruits macrophages and mediates antibody-dependent cellular phagocytosis of MM cells. Together, these results demonstrate that GSK2857916 has potent and selective anti-MM activities via multiple cytotoxic mechanisms, providing a promising next-generation immunotherapeutic in this cancer. PMID:24569262

  18. Detailed characterization of multiple myeloma circulating tumor cells shows unique phenotypic, cytogenetic, functional, and circadian distribution profile.

    PubMed

    Paiva, Bruno; Paino, Teresa; Sayagues, Jose-Maria; Garayoa, Mercedes; San-Segundo, Laura; Martín, Montserrat; Mota, Ines; Sanchez, María-Luz; Bárcena, Paloma; Aires-Mejia, Irene; Corchete, Luis; Jimenez, Cristina; Garcia-Sanz, Ramon; Gutierrez, Norma C; Ocio, Enrique M; Mateos, Maria-Victoria; Vidriales, Maria-Belen; Orfao, Alberto; San Miguel, Jesús F

    2013-11-21

    Circulating myeloma tumor cells (CTCs) as defined by the presence of peripheral blood (PB) clonal plasma cells (PCs) are a powerful prognostic marker in multiple myeloma (MM). However, the biological features of CTCs and their pathophysiological role in MM remains unexplored. Here, we investigate the phenotypic, cytogenetic, and functional characteristics as well as the circadian distribution of CTCs vs paired bone marrow (BM) clonal PCs from MM patients. Our results show that CTCs typically represent a unique subpopulation of all BM clonal PCs, characterized by downregulation (P < .05) of integrins (CD11a/CD11c/CD29/CD49d/CD49e), adhesion (CD33/CD56/CD117/CD138), and activation molecules (CD28/CD38/CD81). Fluorescence in situ hybridization analysis of fluorescence-activated cell sorter-sorted CTCs also unraveled different cytogenetic profiles vs paired BM clonal PCs. Moreover, CTCs were mostly quiescent and associated with higher clonogenic potential when cocultured with BM stromal cells. Most interestingly, CTCs showed a circadian distribution which fluctuates in a similar pattern to that of CD34(+) cells, and opposite to stromal cell-derived factor 1 plasma levels and corresponding surface expression of CXC chemokine receptor 4 on clonal PCs, suggesting that in MM, CTCs may egress to PB to colonize/metastasize other sites in the BM during the patients' resting period.

  19. S-phase cells of the lymphoplasmocytic compartment in hyperdiploid multiple myeloma are diploid cells

    SciTech Connect

    Haraldsdottir, V.; Haanen, C.; Kalsbeek-Batenburg, E.; Olthuis, F.

    1995-10-01

    In vivo S-phase cell labeling with iododeoxyuridine (IdUrd) was performed in six multiple myeloma (MM) patients. Myeloma cells from four patients were hyperploid. In three out of four patients, DNA/IdUrd flow cytometry revealed that most of the labeled cells, which had divided during the period, elapsed between flash labeling and sampling, had returned to the diploid G0/G1 compartment and not to the hyperdiploid peak. To eliminate contaminating cells belonging to the normal hematopoiesis, plasmocytic and lymphocytic cells were fractionated and analyzed separately. Cell enrichment was performed with use of murine monoclonal antibodies (MoAbs) against plasmocytic and lymphocytic cell markers and subsequent magnetic activated cell sorting with immunobeads, i.e., polystyrene magnetic particles coated with sheep anti-mouse IgG. The IdUrd-labeled cells were predominantly lymphocytic cells, returning after mitosis to the diploid G0/G1 peak. Although this pattern of S-phase cells in hyperdiploid MM, belonging to the diploid cell compartment, was observed in three out of four hyperploid cases and although the number of observations is small, S-phase cells may demonstrate an aspect of tumor cell kinetics in hyperploid MM, which has been debated for many years and which indicates the existence of a non-plasmocytic stem cell compartment that feeds the plasmocytoma. The behavior of the labeled cells as observed in a few cases of MM provides another, hitherto undescribed, argument that, at least in some MM patients, a part of the proliferating tumor cells may be diploid lymphocytic (precursor) cells. These findings should be considered when targeting and monitoring treatment of MM and also in purging procedures of bone marrow in patients to be treated by ablative cytotoxic therapy and autologous bone marrow transplantation. 57 refs., 3 figs., 1 tab.

  20. Cyclooxygenase-2 (COX-2) is frequently expressed in multiple myeloma and is an independent predictor of poor outcome.

    PubMed

    Ladetto, Marco; Vallet, Sonia; Trojan, Andreas; Dell'Aquila, Maria; Monitillo, Luigia; Rosato, Rosalba; Santo, Loredana; Drandi, Daniela; Bertola, Alessandra; Falco, Patrizia; Cavallo, Federica; Ricca, Irene; De Marco, Federica; Mantoan, Barbara; Bode-Lesniewska, Beata; Pagliano, Gloria; Francese, Roberto; Rocci, Alberto; Astolfi, Monica; Compagno, Mara; Mariani, Sara; Godio, Laura; Marino, Lydia; Ruggeri, Marina; Omedè, Paola; Palumbo, Antonio; Boccadoro, Mario

    2005-06-15

    Cyclooxygenase 2 (COX-2) is an inflammation-associated enzyme involved in the pathogenesis of many solid tumors, but little is known about its presence and role in hematologic neoplasms. Multiple myeloma (MM) is known to involve a deregulated cytokine network with secretion of inflammatory mediators. We thus decided to investigate the involvement of COX-2 in this neoplasm. Western blotting (WB) was used to evaluate 142 bone marrow (BM) specimens, including MM and monoclonal gammopathy of undetermined significance (MGUS). Selected cases under-went further evaluation by WB on purified CD138(+) cells, immunohistochemistry (IC), and real-time polymerase chain reaction (PCR) for mRNA expression. COX-2 was expressed in 11% (2 of 18) of MGUS specimens, 31% (29 of 94) of MM at diagnosis, and 47% (14 of 30) of MM with relapsed/refractory disease. COX-2 positivity was associated with a poor outcome in terms of progression-free (18 vs 36 months; P < .001) and overall survival (28 vs 52 months; P < .05). Real-time PCR showed COX-2 mRNA overexpression. IC and cell separation studies demonstrated COX-2 expression to be restricted to malignant plasma cells. This is the first report of the presence and prognostic role of COX-2 expression in MM. Future studies will assess COX-2 involvement in other hematologic tumors and its potential use as a therapeutic or chemo-preventive target in onco-hematology.

  1. Positive correlation between bone marrow mast cell density and ISS prognostic index in patients with multiple myeloma.

    PubMed

    Pappa, Constantina A; Tsirakis, George; Roussou, Parascevi; Xekalou, Athina; Goulidaki, Nectaria; Konsolas, Ioannis; Alexandrakis, Michael G; Stathopoulos, Efstathios N

    2013-12-01

    We evaluated mast cell density (MCD) in myeloma bone marrow biopsies and correlated it with stage of disease and markers of angiogenesis. Fifty-three untreated myeloma patients and 28 of them responded to therapy were studied. Mast cells were highlighted using immunohistochemical stain for tryptase. Angiogenesis was evaluated measuring microvascular density and serum levels of basic-fibroblast growth factor and tumor necrosis factor-alpha. MCD was higher in untreated patients, compared to healthy population and responders. Significant association was found between MCD with angiogenesis and clinical stage of disease, suggesting that mast cells could be used as target for myeloma treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Multiple myeloma cells' capacity to decompose H2O2 determines lenalidomide sensitivity.

    PubMed

    Sebastian, Sinto; Zhu, Yuan X; Braggio, Esteban; Shi, Chang-Xin; Panchabhai, Sonali C; Van Wier, Scott A; Ahmann, Greg J; Chesi, Marta; Bergsagel, P Leif; Stewart, A Keith; Fonseca, Rafael

    2017-02-23

    Lenalidomide is an immunomodulatory drug (IMiDs) with clinical efficacy in multiple myeloma (MM) and other late B-cell neoplasms. Although cereblon (CRBN) is an essential requirement for IMiD action, the complete molecular and biochemical mechanisms responsible for lenalidomide-mediated sensitivity or resistance remain unknown. Here, we report that IMiDs work primarily via inhibition of peroxidase-mediated intracellular H2O2 decomposition in MM cells. MM cells with lower H2O2-decomposition capacity were more vulnerable to lenalidomide-induced H2O2 accumulation and associated cytotoxicity. CRBN-dependent degradation of IKZF1 and IKZF3 was a consequence of H2O2-mediated oxidative stress. Lenalidomide increased intracellular H2O2 levels by inhibiting thioredoxin reductase (TrxR) in cells expressing CRBN, causing accumulation of immunoglobulin light-chain dimers, significantly increasing endoplasmic reticulum stress and inducing cytotoxicity by activation of BH3-only protein Bim in MM. Other direct inhibitors of TrxR and thioredoxin (Trx) caused similar cytotoxicity, but in a CRBN-independent fashion. Our findings could help identify patients most likely to benefit from IMiDs and suggest direct TrxR or Trx inhibitors for MM therapy.

  3. Tariquidar sensitizes multiple myeloma cells to proteasome inhibitors via reduction of hypoxia-induced P-gp-mediated drug resistance.

    PubMed

    Muz, Barbara; Kusdono, Hubert D; Azab, Feda; de la Puente, Pilar; Federico, Cinzia; Fiala, Mark; Vij, Ravi; Salama, Noha N; Azab, Abdel Kareem

    2017-12-01

    Multiple myeloma (MM) presents a poor prognosis and high lethality of patients due to development of drug resistance. P-glycoprotein (P-gp), a drug-efflux transporter, is upregulated in MM patients post-chemotherapy and is involved in the development of drug resistance since many anti-myeloma drugs (including proteasome inhibitors) are P-gp substrates. Hypoxia develops in the bone marrow niche during MM progression and has long been linked to chemoresistance. Additionally, hypoxia-inducible transcription factor (HIF-1α) was demonstrated to directly regulate P-gp expression. We found that in MM patients P-gp expression positively correlated with the hypoxic marker, HIF-1α. Hypoxia increased P-gp protein expression and its efflux capabilities in MM cells in vitro using flow cytometry. We reported herein that hypoxia-mediated resistance to carfilzomib and bortezomib in MM cells is due to P-gp activity and was reversed by tariquidar, a P-gp inhibitor. These results suggest combining proteasome inhibitors with P-gp inhibition for future clinical studies.

  4. Integrative analysis of differential miRNA and functional study of miR-21 by seed-targeting inhibition in multiple myeloma cells in response to berberine

    PubMed Central

    2014-01-01

    Background Berberine is a natural alkaloid derived from a traditional Chinese herbal medicine. It is known to modulate microRNA (miRNA) levels, although the mechanism for this action is unknown. Here, we previously demonstrate that the expression of 87 miRNAs is differentially affected by berberine in multiple myeloma cells. Among 49 miRNAs that are down-regulated, nine act as oncomirs, including miR-21. Integrative analysis showed that 28 of the down-regulated miRNAs participate in tumor protein p53 (TP53) signaling and other cancer pathways. miR-21 is involved in all these pathways, and is one of the most important oncomirs to be affected by berberine in multiple myeloma cells. Results We confirmed that berberine down-regulated miRNA-21 expression and significantly up-regulated the expression of programmed cell death 4 (PDCD4), a predicted miR-21 target. Luciferase reporter assays confirmed that PDCD4 was directly regulated by miR-21. Bioinformatic analysis revealed that the miR-21 promoter can be targeted by signal transducer and activator of transcription 3 (STAT3). Down-regulation of interleukin 6 (IL6) by berberine might lead to inhibition of miR-21 transcription through STAT3 down-regulation in multiple myeloma. Furthermore, both berberine and seed-targeting anti-miR-21 oligonucleotide induced apoptosis, G2-phase cell cycle arrest and colony inhibition in multiple myeloma cell lines. Depletion of PDCD4 by short interfering RNA could rescue berberine-induced cytotoxicity in multiple myeloma cells. Conclusions Our results suggest that berberine suppresses multiple myeloma cell growth, at least in part, by down-regulating miR-21 levels possibly through IL6/STAT3. This led to increased PDCD4 expression, which is likely to result in suppression of the p53 signaling pathway. These findings may also provide new mechanistic insight into the anti-cancer effects of certain compounds in traditional Chinese herbal medicines. PMID:25000828

  5. Increased effect of IMiDs by addition of cytokine-induced killer cells in multiple myeloma.

    PubMed

    Bullok, Katharina F; Sippel, Christoph; Schmidt-Wolf, Ingo G H

    2016-12-01

    Immunomodulatory drugs (IMiDs), such as thalidomide, lenalidomide and pomalidomide, represent the basic principle of multiple myeloma treatment. However, the development of resistance is a limiting factor. Over the last years, the efficient application of cytokine-induced killer (CIK) cells has been reported as an alternative strategy to treat hematological neoplasms. In this study, we tested for a potential synergistic effect by combining the IMiDs thalidomide, lenalidomide and pomalidomide with CIK cells in different myeloma cell lines in vitro. Myeloma cells tested with CIK cells were significantly reduced. In the combination, myeloma cells were significantly reduced compared with cells only tested with IMiDs but not to the cells tested with CIK cells. Otherwise, the number of CIK cells was significantly reduced when treated with IMiDs. Because IMiDs are active in patients with myeloma, these results lead to the expectation that combination of IMiDs and CIK cells achieve better results in the treatment of multiple myeloma compared with the single use of IMiDs. Therefore, further examinations in an in vivo setting are necessary to have a closer look on the cellular interactions. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Fractionated stem cell infusions for patients with plasma cell myeloma undergoing autologous hematopoietic cell transplantation.

    PubMed

    Landau, Heather; Wood, Kevin; Chung, David J; Koehne, Guenther; Lendvai, Nikoletta; Hassoun, Hani; Lesokhin, Alexander; Hoover, Elizabeth; Zheng, Junting; Devlin, Sean M; Giralt, Sergio

    2016-08-01

    We conducted a phase II trial investigating the impact of fractionated hematopoietic cell infusions on engraftment kinetics and symptom burden in patients with plasma cell myeloma (PCM) undergoing autologous hematopoietic cell transplant (AHCT). We hypothesized that multiple hematopoietic cell infusions would reduce duration of neutropenia and enhance immune recovery resulting in a better tolerated procedure. Twenty-six patients received high-dose melphalan followed by multiple cell infusions (Days 0, +2, +4, +6) and were compared to PCM patients (N = 77) who received high-dose melphalan and a single infusion (Day 0) (concurrent control group). The primary endpoint was number of days with ANC <500K/mcL. Symptom burden was assessed using the MSK-modified MD Anderson Symptom Inventory. Median duration of neutropenia was similar in study (4 days, range 3-5) and control patients (4 days, range 3-9) (p = 0.654). There was no significant difference in the number of red cell or platelet transfusions, days of fever, diarrhea, antibiotics, number of documented infections, or length of admission. Symptom burden surveys showed that AHCT was well-tolerated in both study and control patients. We conclude that fractionated stem cell infusions following high-dose melphalan do not enhance engraftment kinetics or significantly alter patients' clinical course following AHCT in PCM.

  7. Novel inhibitors are cytotoxic for myeloma cells with NFkB inducing kinase-dependent activation of NFkB.

    PubMed

    Demchenko, Yulia N; Brents, Leslie A; Li, Zhihong; Bergsagel, Leif P; McGee, Lawrence R; Kuehl, Michael W

    2014-06-30

    NFkB activity is critical for survival and proliferation of normal lymphoid cells and many kinds of B-cell tumors, including multiple myeloma (MM). NFkB activating mutations, which are apparent progression events, enable MM tumors to become less dependent on bone marrow signals that activate NFkB. Mutations that activate NFkB-inducing kinase (NIK) protein are the most prevalent among the many kinds of NFkB mutations in MM tumors. NIK is the main activating kinase of the alternative NFkB pathway, although over-expression of NIK also can activate the classical pathway. Two NIK inhibitors and an isomeric control were tested with human myeloma cell lines. These specific NIK inhibitors are selectively cytotoxic for cells with NIK-dependent activation of NFkB. Combination therapy targeting NIK and IKKbeta (as a main kinase of the classical NFkB pathway) represents a promising treatment strategy in MM. NIK inhibitors can also be useful tool for assessing the role of NIK and alternative NFkB pathway in different cells.

  8. Novel inhibitors are cytotoxic for myeloma cells with NFkB inducing kinase-dependent activation of NFkB

    PubMed Central

    Demchenko, Yulia N.; Brents, Leslie A.; Li, Zhihong; Bergsagel, Leif P.; McGee, Lawrence R.; Kuehl, Michael W.

    2014-01-01

    NFkB activity is critical for survival and proliferation of normal lymphoid cells and many kinds of B-cell tumors, including multiple myeloma (MM). NFkB activating mutations, which are apparent progression events, enable MM tumors to become less dependent on bone marrow signals that activate NFkB. Mutations that activate NFkB-inducing kinase (NIK) protein are the most prevalent among the many kinds of NFkB mutations in MM tumors. NIK is the main activating kinase of the alternative NFkB pathway, although over-expression of NIK also can activate the classical pathway. Two NIK inhibitors and an isomeric control were tested with human myeloma cell lines. These specific NIK inhibitors are selectively cytotoxic for cells with NIK-dependent activation of NFkB. Combination therapy targeting NIK and IKKbeta (as a main kinase of the classical NFkB pathway) represents a promising treatment strategy in MM. NIK inhibitors can also be useful tool for assessing the role of NIK and alternative NFkB pathway in different cells. PMID:24980832

  9. Concise review: Defining and targeting myeloma stem cell-like cells.

    PubMed

    Abe, Masahiro; Harada, Takeshi; Matsumoto, Toshio

    2014-05-01

    Multiple myeloma (MM) remains incurable despite recent advances in the treatment of MM. Although the idea of MM cancer stem cells (CSCs) has been proposed for the drug resistance in MM, MM CSCs have not been properly defined yet. Besides clonotypic B cells, phenotypically distinct MM plasma cell fractions have been demonstrated to possess a clonogenic capacity, leading to long-lasting controversies regarding the cells of origin in MM or MM-initiating cells. However, MM CSCs may not be a static population and survive as phenotypically and functionally different cell types via the transition between stem-like and non-stem-like states in local microenvironments, as observed in other types of cancers. Targeting MM CSCs is clinically relevant, and different approaches have been suggested to target molecular, metabolic and epigenetic signatures, and the self-renewal signaling characteristic of MM CSC-like cells.

  10. [Influence of CD117 Expression on Response of Multiple Myeloma Patients to Chemotherapy].

    PubMed

    Tang, Hai-Long; Shu, Mi-Mi; Dong, Bao-Xia; Gu, Hong-Tao; Liang, Rong; Bai, Qing-Xian; Yang, Lan; Zhang, Tao; Gao, Guang-Xun; Chen, Xie-Qun

    2015-10-01

    To investigate the influence of CD117 expression on response of multiple myeloma patients to chemo-therapy. A total of 65 cases of newly diagnosed multiple myeloma in our hospital from 2011 to 2013 were enrolled in this study. Cytogenetic abnormalities and immunophenotype were detected by using fluorescence in situ hybridization and flow cytometry before chemotherapy. The therapeutic efficacy of patients was evaluated after 4 cycles of PAD or TAD regimen. The positive rates of 1q21 amplification, RB1: 13q14 deletion, D13S319: 13q14.3 deletion, IgH: 14q32 rearrangement and p53: 17p13 deletion were 32.2%, 40%, 40%, 20% and 3.1% respectively; the positive rates of CD38, CD138, CD56, CD117, CD20 were respectively 100%, 100%, 60%, 20%, 10.8%; the positive rates of CD19 and CD10 were 4.6% and 4.6% respectively; the positive CD22, CD7, CD5, CD103 did not found in any patients. The therapeutic efficacy of CD117⁻ patients was better than that of CD117⁺ patients (P < 0.05), there was no correlation of the remaining indicators with efficacy; the proportion of CD117⁺ patients with β2-microglobulin ≥ 5.5 mg/L was significantly higher than that of CD117⁻ patients (P < 0.05); the rest of baseline data had no significant difference (P > 0.05). CD117 can be used as an indicator for evaluating efficacy of patients with newly diagnosed multiple myeloma.

  11. Prognostic impact of circulating plasma cells in patients with multiple myeloma: implications for plasma cell leukaemia definition.

    PubMed

    Granell, Miquel; Calvo, Xavier; Garcia-Guiñón, Antoni; Escoda, Lourdes; Abella, Eugènia; Martínez, Clara M; Teixidó, Montserrat; Gimenez, Maria Teresa; Senín, Alicia; Sanz, Patricia; Campoy, Desirée; Vicent, Ana; Arenillas, Leonor; Rosiñol, Laura; Sierra, Jorge; Blade, Joan; Fernández de Larrea, Carlos

    2017-03-02

    The presence of circulating plasma cells in patients with multiple myeloma is considered a marker for highly proliferative disease. In the present study, the impact of circulating plasma cells assessed by cytology on survival of patients with multiple myeloma was analysed. Wright-Giemsa stained peripheral blood smears of 482 patients with newly diagnosed myeloma or plasma cell leukaemia were reviewed and patients were classified in four categories according to the percentage of circulating plasma cells: 0%, 1-4%, 5-20% and plasma cell leukemia with the following frequencies: 382 (79.2%), 83 (17.2%), 12 (2.5%) and 5 (1.0%) respectively. Median overall survival according to the circulating plasma cells group was 47, 50, 6 and 14 months, respectively. At multivariate analysis, presence of 5 to 20% circulating plasma cells was associated with a worse overall survival (relative risk 4.9, 95%CI 2.6-9.3) independently of age, creatinine, Durie-Salmon and international stage. Patients with ≥5% circulating plasma cells had lower platelet counts (median 86x109/L vs. 214x109/L, p<0.0001) and higher bone marrow plasma cells (median 53% vs. 36%, p=0.004). The presence of ≥5% circulating plasma cells in patients with multiple myeloma has similar adverse prognostic impact as plasma cell leukemia.

  12. Inhibition of DEPDC1A, a bad prognostic marker in multiple myeloma, delays growth and induces mature plasma cell markers in malignant plasma cells.

    PubMed

    Kassambara, Alboukadel; Schoenhals, Matthieu; Moreaux, Jérôme; Veyrune, Jean-Luc; Rème, Thierry; Goldschmidt, Hartmut; Hose, Dirk; Klein, Bernard

    2013-01-01

    High throughput DNA microarray has made it possible to outline genes whose expression in malignant plasma cells is associated with short overall survival of patients with Multiple Myeloma (MM). A further step is to elucidate the mechanisms encoded by these genes yielding to drug resistance and/or patients' short survival. We focus here on the biological role of the DEP (for Disheveled, EGL-10, Pleckstrin) domain contained protein 1A (DEPDC1A), a poorly known protein encoded by DEPDC1A gene, whose high expression in malignant plasma cells is associated with short survival of patients. Using conditional lentiviral vector delivery of DEPDC1A shRNA, we report that DEPDC1A knockdown delayed the growth of human myeloma cell lines (HMCLs), with a block in G2 phase of the cell cycle, p53 phosphorylation and stabilization, and p21(Cip1) accumulation. DEPDC1A knockdown also resulted in increased expression of mature plasma cell markers, including CXCR4, IL6-R and CD38. Thus DEPDC1A could contribute to the plasmablast features of MMCs found in some patients with adverse prognosis, blocking the differentiation of malignant plasma cells and promoting cell cycle.

  13. Consensus guidelines on plasma cell myeloma minimal residual disease analysis and reporting.

    PubMed

    Arroz, Maria; Came, Neil; Lin, Pei; Chen, Weina; Yuan, Constance; Lagoo, Anand; Monreal, Mariela; de Tute, Ruth; Vergilio, Jo-Anne; Rawstron, Andy C; Paiva, Bruno

    2016-01-01

    Major heterogeneity between laboratories in flow cytometry (FC) minimal residual disease (MRD) testing in multiple myeloma (MM) must be overcome. Cytometry societies such as the International Clinical Cytometry Society and the European Society for Clinical Cell Analysis recognize a strong need to establish minimally acceptable requirements and recommendations to perform such complex testing. A group of 11 flow cytometrists currently performing FC testing in MM using different instrumentation, panel designs (≥ 6-color) and analysis software compared the procedures between their respective laboratories and reviewed the literature to propose a consensus guideline on flow-MRD analysis and reporting in MM. Consensus guidelines support i) the use of minimum of five initial gating parameters (CD38, CD138, CD45, forward, and sideward light scatter) within the same aliquot for accurate identification of the total plasma cell compartment; ii) the analysis of potentially aberrant phenotypic markers and to report the antigen expression pattern on neoplastic plasma cells as being reduced, normal or increased, when compared to a normal reference plasma cell immunophenotype (obtained using the same instrument and parameters); and iii) the percentage of total bone marrow plasma cells plus the percentages of both normal and neoplastic plasma cells within the total bone marrow plasma cell compartment, and over total bone marrow cells. Consensus guidelines on minimal current and future MRD analyses should target a lower limit of detection of 0.001%, and ideally a limit of quantification of 0.001%, which requires at least 3 × 10(6) and 5 × 10(6) bone marrow cells to be measured, respectively. © 2015 International Clinical Cytometry Society.

  14. Myeloid-Derived Suppressor Cells in Multiple Myeloma: Pre-Clinical Research and Translational Opportunities

    PubMed Central

    Botta, Cirino; Gullà, Annamaria; Correale, Pierpaolo; Tagliaferri, Pierosandro; Tassone, Pierfrancesco

    2014-01-01

    Immunosuppressive cells have been reported to play an important role in tumor-progression mainly because of their capability to promote immune-escape, angiogenesis, and metastasis. Among them, myeloid-derived suppressor cells (MDSCs) have been recently identified as immature myeloid cells, induced by tumor-associated inflammation, able to impair both innate and adaptive immunity. While murine MDSCs are usually identified by the expression of CD11b and Gr1, human MDSCs represent a more heterogeneous population characterized by the expression of CD33 and CD11b, low or no HLA-DR, and variable CD14 and CD15. In particular, the last two may alternatively identify monocyte-like or granulocyte-like MDSC subsets with different immunosuppressive properties. Recently, a substantial increase of MDSCs has been found in peripheral blood and bone marrow (BM) of multiple myeloma (MM) patients with a role in disease progression and/or drug resistance. Pre-clinical models recapitulating the complexity of the MM-related BM microenvironment (BMM) are major tools for the study of the interactions between MM cells and cells of the BMM (including MDSCs) and for the development of new agents targeting MM-associated immune-suppressive cells. This review will focus on current strategies for human MDSCs generation and investigation of their immunosuppressive function in vitro and in vivo, taking into account the relevant relationship occurring within the MM–BMM. We will then provide trends in MDSC-associated research and suggest potential application for the treatment of MM. PMID:25538892

  15. PGC-1α integrates glucose metabolism and angiogenesis in multiple myeloma cells by regulating VEGF and GLUT-4.

    PubMed

    Cao, Dedong; Zhou, Hao; Zhao, Jikai; Jin, Lu; Yu, Wen; Yan, Han; Hu, Yu; Guo, Tao

    2014-03-01

    Human peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) is a key coactivator in the regulation of gene transcriptional activity in normal tissues. However, it is not clear whether it is involved in the angiogenesis and metabolism of multiple myeloma (MM). The aim of the present study was to investigate the role of PGC-1α in MM. Small interfering RNA (siRNA) was used to inhibit PGC-1α expression in RPMI-8226 cells. An endothelial cell migration assay was performed using transwell chambers and the expression of PGC-1α, estrogen-related receptor-α (ERR-α), vascular endothelial growth factor (VEGF) and glucose transporter-4 (GLUT-4) was tested by reverse transcription-polymerase chain reaction (RT-PCR). The protein expression of PGC-1α, ERR-α and GLUT-4 was assayed by western blot analysis. Lastly, RPMI-8226 cell proliferation was evaluated using CCK-8 assay. VEGF and GLUT-4 mRNA levels were decreased in cells treated with siRNA targeting PGC-1α, as was the level of GLUT-4 protein. Endothelial cell migration was significantly reduced when these cells were cultured with culture medium from RPMI-8226 cells treated with siPGC-1α. The proliferation rates at 24 and 48 h were suppressed by PGC-1α inhibition. Our results showed that inhibition of PGC-1α suppresses cell proliferation probably by downregulation of VEGF and GLUT-4. The present study suggests that PGC-1α integrates angiogenesis and glucose metabolism in myeloma through regulation of VEGF and GLUT-4.

  16. Overexpression of KIR inhibitory ligands (HLA-I) determines that immunosurveillance of myeloma depends on diverse and strong NK cell licensing

    PubMed Central

    Martínez-Sánchez, María V.; Periago, Adela; Legaz, Isabel; Gimeno, Lourdes; Mrowiec, Anna; Montes-Barqueros, Natividad R.; Campillo, José A.; Bolarin, José M.; Bernardo, María V.; López-Álvarez, María R.; González, Consuelo; García-Garay, María C.; Muro, Manuel; Cabañas-Perianes, Valentin; Fuster, Jose L.; García-Alonso, Ana M.; Moraleda, José M.; Álvarez-Lopez, María R.; Minguela, Alfredo

    2016-01-01

    ABSTRACT Missing self recognition makes cancer sensitive to natural killer cell (NKc) reactivity. However, this model disregards the NKc licensing effect, which highly increases NKc reactivity through interactions of inhibitory killer cell immunoglobulin-like receptors (iKIR) with their cognate HLA-I ligands. The influence of iKIR/HLA-ligand (HLA-C1/C2) licensing interactions on the susceptibility to and progression of plasma cell (PC) dyscrasias was evaluated in 164 Caucasian patients and 286 controls. Compared to controls, myeloma accumulates KIR2DL1−L2+L3− genotypes (2.8% vs. 13.2%, p < 0.01, OR = 5.29) and less diverse peripheral repertoires of NKc clones. Less diverse and weaker-affinity repertoires of iKIR2D/HLA-C licensing interactions increased myeloma susceptibility. Thus, the complete absence of conventional iKIR2D/HLA-C licensing interactions (KIR2DL1−L2+L3−/C2C2, 2.56% vs. 0.35%; p < 0.05; OR = 15.014), single-KIR2DL3+/C1+ (20.51% vs. 10.84%; p < 0.05; OR = 2.795) and single-KIR2DL2+/C1+ (12.82% vs. 4.9%; p < 0.01; OR = 5.18) interactions were over-represented in myeloma, compared to controls. Additionally, KIR2DL1−L2+L3− (20% vs. 83%, p < 0.00001) as well as KIR3DL1− (23% vs. 82%, p < 0.00001) genotypes had a dramatic negative impact on the 3-y progression-free survival (PFS), particularly in patients with low-tumor burden. Remarkably, myeloma-PCs, compared to K562 and other hematological cancers, showed substantial over-expression of HLA-I (“increasing-self” instead of missing-self), including HLA-C, and mild expression of ligands for NKc activating receptors (aRec) CD112, CD155, ULBP-1 and MICA/B, which apparently renders myeloma-PCs susceptible to lysis mainly by licensed NKc. KIR2DL1−L2+L3−/C2C2 patients (with no conventional iKIR2D/HLA-C licensing interactions) lyse K562 but barely lyse myeloma-PCs (4% vs. 15%; p < 0.05, compared to controls). These results support a model where immunosurveillance of no

  17. Overexpression of KIR inhibitory ligands (HLA-I) determines that immunosurveillance of myeloma depends on diverse and strong NK cell licensing.

    PubMed

    Martínez-Sánchez, María V; Periago, Adela; Legaz, Isabel; Gimeno, Lourdes; Mrowiec, Anna; Montes-Barqueros, Natividad R; Campillo, José A; Bolarin, José M; Bernardo, María V; López-Álvarez, María R; González, Consuelo; García-Garay, María C; Muro, Manuel; Cabañas-Perianes, Valentin; Fuster, Jose L; García-Alonso, Ana M; Moraleda, José M; Álvarez-Lopez, María R; Minguela, Alfredo

    2016-04-01

    Missing self recognition makes cancer sensitive to natural killer cell (NKc) reactivity. However, this model disregards the NKc licensing effect, which highly increases NKc reactivity through interactions of inhibitory killer cell immunoglobulin-like receptors (iKIR) with their cognate HLA-I ligands. The influence of iKIR/HLA-ligand (HLA-C1/C2) licensing interactions on the susceptibility to and progression of plasma cell (PC) dyscrasias was evaluated in 164 Caucasian patients and 286 controls. Compared to controls, myeloma accumulates KIR2DL1(-)L2(+)L3(-) genotypes (2.8% vs. 13.2%, p < 0.01, OR = 5.29) and less diverse peripheral repertoires of NKc clones. Less diverse and weaker-affinity repertoires of iKIR2D/HLA-C licensing interactions increased myeloma susceptibility. Thus, the complete absence of conventional iKIR2D/HLA-C licensing interactions (KIR2DL1(-)L2(+)L3(-)/C2C2, 2.56% vs. 0.35%; p < 0.05; OR = 15.014), single-KIR2DL3(+)/C1(+) (20.51% vs. 10.84%; p < 0.05; OR = 2.795) and single-KIR2DL2(+)/C1(+) (12.82% vs. 4.9%; p < 0.01; OR = 5.18) interactions were over-represented in myeloma, compared to controls. Additionally, KIR2DL1(-)L2(+)L3(-) (20% vs. 83%, p < 0.00001) as well as KIR3DL1(-) (23% vs. 82%, p < 0.00001) genotypes had a dramatic negative impact on the 3-y progression-free survival (PFS), particularly in patients with low-tumor burden. Remarkably, myeloma-PCs, compared to K562 and other hematological cancers, showed substantial over-expression of HLA-I ("increasing-self" instead of missing-self), including HLA-C, and mild expression of ligands for NKc activating receptors (aRec) CD112, CD155, ULBP-1 and MICA/B, which apparently renders myeloma-PCs susceptible to lysis mainly by licensed NKc. KIR2DL1(-)L2(+)L3(-)/C2C2 patients (with no conventional iKIR2D/HLA-C licensing interactions) lyse K562 but barely lyse myeloma-PCs (4% vs. 15%; p < 0.05, compared to controls). These results support a model where immunosurveillance of no

  18. Bone morphogenic protein 6: a member of a novel class of prognostic factors expressed by normal and malignant plasma cells inhibiting proliferation and angiogenesis

    PubMed Central

    Seckinger, Anja; Meissner, Tobias; Moreaux, Jérôme; Goldschmidt, Hartmut; Fuhler, Gwenny M.; Benner, Axel; Hundemer, Michael; Rème, Thierry; Shaughnessy, John D.; Barlogie, Bart; Bertsch, Uta; Hillengass, Jens; Ho, Anthony D.; Pantesco, Véronique; Jauch, Anna; De Vos, John; Rossi, Jean-François; Möhler, Thomas; Klein, Bernard; Hose, Dirk

    2009-01-01

    Pathogenesis of multiple myeloma is associated with an aberrant expression of pro-proliferative, pro-angiogenic and bone-metabolism modifying factors by malignant plasma cells. Given the frequently long time-span from diagnosis of early-stage plasma cell dyscrasias to overt myeloma and the mostly low proliferation rate of malignant plasma cells, we hypothesize these likewise to express a novel class of inhibitory factors of potential prognostic relevance. Bone morphogenic proteins (BMPs) represent possible candidates as they inhibit proliferation, stimulate bone formation, and have impact on the survival of cancer patients. We assessed expression of BMPs and their receptors by Affymetrix DNA-microarrays (n=779) including CD138-purified primary myeloma cell samples (n=635) of previously untreated patients. BMP6 is the only BMP expressed by malignant and normal plasma cells. Its expression is significantly lower in proliferating myeloma cells, myeloma cell lines, or plasmablasts. BMP6 significantly inhibits proliferation of myeloma cell lines, survival of primary myeloma cells, and in vitro angiogenesis. High BMP6-expression in primary myeloma cell samples delineates significantly superior overall survival for patients undergoing high-dose chemotherapy independent of conventional prognostic factors (ISS-stage, beta-2-microglobulin). PMID:19718049

  19. Gene-expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis

    PubMed Central

    Zhan, Fenghuang; Barlogie, Bart; Arzoumanian, Varant; Huang, Yongsheng; Williams, David R.; Hollmig, Klaus; Pineda-Roman, Mauricio; Tricot, Guido; van Rhee, Frits; Zangari, Maurizio; Dhodapkar, Madhav; Shaughnessy, John D.

    2007-01-01

    Monoclonal gammopathy of undetermined significance (MGUS) can progress to multiple myeloma (MM). Although these diseases share many of the same genetic features, it is still unclear whether global gene-expression profiling might identify prior genomic signatures that distinguish them. Through significance analysis of microarrays, 52 genes involved in important pathways related to cancer were differentially expressed in the plasma cells of healthy subjects (normal plasma-cell [NPC]; n = 22) and patients with stringently defined MGUS/smoldering MM (n = 24) and symptomatic MM (n = 351) (P < .001). Unsupervised hierarchical clustering of 351 patients with MM, 44 with MGUS (24 + 20), and 16 with MM from MGUS created 2 major cluster branches, one containing 82% of the MGUS patients and the other containing 28% of the MM patients, termed MGUS-like MM (MGUS-L MM). Using the same clustering approach on an independent cohort of 214 patients with MM, 27% were found to be MGUS-L. This molecular signature, despite its association with a lower incidence of complete remission (P = .006), was associated with low-risk clinical and molecular features and superior survival (P < .01). The MGUS-L signature was also seen in plasma cells from 15 of 20 patients surviving more than 10 years after autotransplantation. These data provide insight into the molecular mechanisms of plasma-cell dyscrasias. PMID:17023574

  20. Insulin-like growth factor I induces migration and invasion of human multiple myeloma cells.

    PubMed

    Qiang, Ya-Wei; Yao, Lei; Tosato, Giovanna; Rudikoff, Stuart

    2004-01-01

    Multiple myeloma (MM) is an incurable form of cancer characterized by accumulation of malignant plasma cells in the bone marrow. During the course of this disease, tumor cells cross endothelial barriers and home to the bone marrow. In latter stages, myeloma cells extravasate through blood vessels and may seed a variety of organs. Insulin-like growth factor I (IGF-I) is one of several growth factors shown to promote the growth of MM cells. In the current study, we have assessed the ability of IGF-I to serve additionally as a chemotactic factor affecting the mobility and invasive properties of these cells. Results indicate that IGF-I promotes transmigration through vascular endothelial cells and bone marrow stromal cell lines. Analysis of endogenous signaling pathways revealed that protein kinase D/protein kinase Cmicro (PKD/PKCmicro) and RhoA were both activated in a phosphatidylinositol 3-kinase (PI-3K)-dependent manner. Inhibition of PI-3K, PKCs, or Rho-associated kinase by pharmacologic inhibitors abrogated migration, whereas mitogen-activated protein kinase (MAPK), Akt, and p70S6 kinase inhibitors had no effect. These results suggest that IGF-I promotes myeloma cell migration by activation of PI-3K/PKCmicro and PI-3K/RhoA pathways independent of Akt. The identification of IGF-I as both a proliferative and migratory factor provides a rational basis for the development of targeted therapeutic strategies directed at IGF-I in the treatment of MM.

  1. Consequences of Daily Administered Parathyroid Hormone on Myeloma Growth, Bone Disease, and Molecular Profiling of Whole Myelomatous Bone

    PubMed Central

    Pennisi, Angela; Ling, Wen; Li, Xin; Khan, Sharmin; Wang, Yuping; Barlogie, Bart; Shaughnessy, John D.; Yaccoby, Shmuel

    2010-01-01

    Background Induction of osteolytic bone lesions in multiple myeloma is caused by an uncoupling of osteoclastic bone resorption and osteoblastic bone formation. Current management of myeloma bone disease is limited to the use of antiresorptive agents such as bisphosphonates. Methodology/Principal Findings We tested the effects of daily administered parathyroid hormone (PTH) on bone disease and myeloma growth, and we investigated molecular mechanisms by analyzing gene expression profiles of unique myeloma cell lines and primary myeloma cells engrafted in SCID-rab and SCID-hu mouse models. PTH resulted in increased bone mineral density of myelomatous bones and reduced tumor burden, which reflected the dependence of primary myeloma cells on the bone marrow microenvironment. Treatment with PTH also increased bone mineral density of uninvolved murine bones in myelomatous hosts and bone mineral density of implanted human bones in nonmyelomatous hosts. In myelomatous bone, PTH markedly increased the number of osteoblasts and bone-formation parameters, and the number of osteoclasts was unaffected or moderately reduced. Pretreatment with PTH before injecting myeloma cells increased bone mineral density of the implanted bone and delayed tumor progression. Human global gene expression profiling of myelomatous bones from SCID-hu mice treated with PTH or saline revealed activation of multiple distinct pathways involved in bone formation and coupling; involvement of Wnt signaling was prominent. Treatment with PTH also downregulated markers typically expressed by osteoclasts and myeloma cells, and altered expression of genes that control oxidative stress and inflammation. PTH receptors were not expressed by myeloma cells, and PTH had no effect on myeloma cell growth in vitro. Conclusions/Significance We conclude that PTH-induced bone formation in myelomatous bones is mediated by activation of multiple signaling pathways involved in osteoblastogenesis and attenuated bone resorption

  2. The NF-kappaB inhibitor LC-1 has single agent activity in multiple myeloma cells and synergizes with bortezomib.

    PubMed

    Walsby, Elisabeth J; Pratt, Guy; Hewamana, Saman; Crooks, Peter A; Burnett, Alan K; Fegan, Chris; Pepper, Chris

    2010-06-01

    Multiple myeloma remains incurable with conventional therapeutics. Thus, new treatments for this condition are clearly required. In this study we evaluated the novel NF-kappaB inhibitor LC-1 in multiple myeloma cell lines and plasma cells derived from multiple myeloma patients. LC-1 was cytotoxic to multiple myeloma cell lines H929, U266, and JJN3, and induced apoptosis in a dose-dependent manner with an overall LD(50) of 3.6 micromol/L (+/-1.8) after 48 hours in culture. Primary multiple myeloma cells, identified by CD38 and CD138 positivity, had a mean LD(50) for LC-1 of 4.9 micromol/L (+/-1.6); normal bone marrow cells were significantly less sensitive to the cytotoxic effects of LC-1 (P = 0.0002). Treatment of multiple myeloma cell lines with LC-1 resulted in decreased nuclear localization of the NF-kappaB subunit Rel A and the inhibition of NF-kappaB target genes. In addition, LC-1 showed synergy with melphalan, bortezomib, and doxorubicin (combination indices of 0.72, 0.61, and 0.78, respectively), and was more effective when cells were cultured on fibronectin. These data show that LC-1 has activity in multiple myeloma cell lines and primary multiple myeloma cells, and its ability to inhibit NF-kappaB seems important for its cytotoxic effects. Furthermore, LC-1-induced transcriptional suppression of survivin and MCL1 provides a potential explanation for its synergy with conventional agents.

  3. HDAC Inhibition Synergistically Enhances Alkylator-induced DNA Damage Responses and Apoptosis in Multiple Myeloma Cells

    PubMed Central

    Lee, Choon-Kee; Wang, Shuiliang; Huang, Xiaoping; Ryder, John; Liu, Bolin

    2010-01-01

    Histone deacetylase (HDAC) inhibitors induce chromatin destabilization. We sought to determine whether HDAC inhibition may amplify alkylator-induced mitotic cell death in multiple myeloma (MM) cells. The combination of SNDX-275, a class I HDAC inhibitor, with melphalan, showed a powerful synergism on growth inhibition with the combination index ranged from 0.27 to 0.75 in MM1.S and RPMI8226 cells. Their combinations as compared with either agent alone promoted much more caspase-dependent apoptosis. Flow cytometry analysis showed that SNDX-275 had minimal effects on cell cycle progression of MM1.S cells, but clearly increased the percentage of S phase in RPMI8226 cells associated with an upregulation in p21waf1 and a reduction in cyclin D1 and E2F1. Melphalan alone significantly arrested both MM1.S and RPMI8226 cells at S phase and enhanced expression of p53 and p21waf1. Furthermore, studies on DNA damage response revealed that phospho-histone H2A.X (γH2A.X), a hall marker of DNA double strand break, along with phosphorylated CHK1 (P-CHK1) and CHK2 (P-CHK2) was dramatically induced by SNDX-275 or melphalan. The increase in γH2A.X and P-CHK1 was considerably higher on combination than either agent alone. These molecular changes correlated well with the significant increase in mitotic catastrophe. Our data indicate that SNDX-275 synergistically enhances melphalan-induced apoptosis in MM cells via intensification of DNA damage, suggesting that SNDX-275 in combination with melphalan may be a novel therapeutic strategy for MM. PMID:20447761

  4. Towards the molecular characterization of the stable producer phenotype of recombinant antibody-producing NS0 myeloma cells.

    PubMed

    Prieto, Y; Rojas, L; Hinojosa, L; González, I; Aguiar, D; de la Luz, K; Castillo, A; Pérez, R

    2011-08-01

    The loss of heterologous protein expression is one of the major problems faced by industrial cell line developers and has been reported by several authors. Therefore, the understanding of the mechanisms involved in the generation of stable and high producer cell lines is a critical issue, especially for those processes based on long term continuous cultures. We characterized two recombinant NS0 myeloma cell lines expressing Nimotuzumab, a humanized anti-human epidermal growth factor receptor (EGFR) antibody. The hR3/H7 clone is a stable producer obtained from the unstable hR3/t16 clone. The unstable clone was characterized by a bimodal distribution of intracellular immunoglobulin staining using flow cytometry. Loss of antibody production was due to the emergence of a non-producer cell subpopulation that increased with cell generation number. Immunoglobulin heavy chain (HC) and light chain (LC) ratio (HC/LC) was lower for the unstable phenotype. Proteomic maps using two dimensional gel electrophoresis (2DE) were obtained for both clones, at initial cell culture time and after 40 generations. Fifteen proteins potentially associated with the phenomenon of production stability were identified. The hR3/H7 stable clone showed an up-regulated expression pattern for most of these proteins. The regulation of recombinant antibody production by the host NS0 myeloma cell line most likely involves simultaneously cellular processes such as DNA transcription, mRNA processing, protein synthesis and folding, vesicular transport, glycolysis and energy production, according to the proteins identified in the present proteomic study.

  5. Donor-Derived Smoldering Multiple Myeloma following a Hematopoietic Cell Transplantation for AML

    PubMed Central

    Fiala, Mark; Slade, Michael; Westervelt, Peter

    2017-01-01

    Posttransplant Lymphoproliferative Disorder (PTLD) is one of the most common malignancies complicating solid organ transplantation. In contrast, PTLD accounts for a minority of secondary cancers following allogeneic hematopoietic cell transplantation (HCT). Here we report on a 61-year-old woman who received an ABO-mismatched, HLA-matched unrelated donor hematopoietic cell transplantation from a presumably healthy donor for a diagnosis of acute myeloid leukemia (AML). Eighteen months following her transplant, she developed a monoclonal gammopathy. Bone marrow studies revealed 10% plasma cells, but the patient lacked clinical defining features of multiple myeloma (MM); thus a diagnosis of smoldering multiple myeloma (SMM) was established. Cytogenetic and molecular studies of the bone marrow confirmed the plasma cells were donor-derived. The donor lacks a diagnosis of monoclonal gammopathy of undetermined significance, SMM, or MM. PMID:28316846

  6. Donor-Derived Smoldering Multiple Myeloma following a Hematopoietic Cell Transplantation for AML.

    PubMed

    Fakhri, Bita; Fiala, Mark; Slade, Michael; Westervelt, Peter; Ghobadi, Armin

    2017-01-01

    Posttransplant Lymphoproliferative Disorder (PTLD) is one of the most common malignancies complicating solid organ transplantation. In contrast, PTLD accounts for a minority of secondary cancers following allogeneic hematopoietic cell transplantation (HCT). Here we report on a 61-year-old woman who received an ABO-mismatched, HLA-matched unrelated donor hematopoietic cell transplantation from a presumably healthy donor for a diagnosis of acute myeloid leukemia (AML). Eighteen months following her transplant, she developed a monoclonal gammopathy. Bone marrow studies revealed 10% plasma cells, but the patient lacked clinical defining features of multiple myeloma (MM); thus a diagnosis of smoldering multiple myeloma (SMM) was established. Cytogenetic and molecular studies of the bone marrow confirmed the plasma cells were donor-derived. The donor lacks a diagnosis of monoclonal gammopathy of undetermined significance, SMM, or MM.

  7. Advances in delivery of ambulatory autologous stem cell transplantation for multiple myeloma.

    PubMed

    Khouri, Jack; Majhail, Navneet S

    2017-09-15

    Autologous stem cell transplantation (ASCT) is generally performed in the inpatient setting in its entirety. Several centers have demonstrated the feasibility of performing ASCT for myeloma in the ambulatory setting. We review the safety, cost-effectiveness, complications and outcomes of outpatient ASCT for myeloma. Published studies are heterogeneous but suggest that outpatient ASCT for myeloma is cost-effective and associated with a shorter or no initial hospitalization, albeit there is a high rate of readmission for complications. The transplant-related mortality rate is less than 1%. Stringent patient selection criteria that include emphasis on functional status, caregiving support and psychosocial aspects for each patient are critical for identifying patients most appropriate for ASCT in the ambulatory setting. There exists considerable variability in outpatient transplant models and supportive care guidelines and data do not support preference for one delivery model over another. Survival and other transplant-related outcomes have not been reported widely and whether patients fare better with outpatient transplantation remains to be explored. Outpatient ASCT for multiple myeloma is feasible and well tolerated in selected patients. Several care models for outpatient ASCT exist and can be implemented based on transplant resources and preference.

  8. Protein kinase CK2 inhibition down modulates the NF-κB and STAT3 survival pathways, enhances the cellular proteotoxic stress and synergistically boosts the cytotoxic effect of bortezomib on multiple myeloma and mantle cell lymphoma cells.

    PubMed

    Manni, Sabrina; Brancalion, Alessandra; Mandato, Elisa; Tubi, Laura Quotti; Colpo, Anna; Pizzi, Marco; Cappellesso, Rocco; Zaffino, Fortunato; Di Maggio, Speranza Antonia; Cabrelle, Anna; Marino, Filippo; Zambello, Renato; Trentin, Livio; Adami, Fausto; Gurrieri, Carmela; Semenzato, Gianpietro; Piazza, Francesco

    2013-01-01

    CK2 is a pivotal pro-survival protein kinase in multiple myeloma that may likely impinge on bortezomib-regulated cellular pathways. In the present study, we investigated CK2 expression in multiple myeloma and mantle cell lymphoma, two bortezomib-responsive B cell tumors, as well as its involvement in bortezomib-induced cytotoxicity and signaling cascades potentially mediating bortezomib resistance. In both tumors, CK2 expression correlated with that of its activated targets NF-κB and STAT3 transcription factors. Bortezomib-induced proliferation arrest and apoptosis were significantly amplified by the simultaneous inhibition of CK2 with two inhibitors (CX-4945 and K27) in multiple myeloma and mantle cell lymphoma cell lines, in a model of multiple myeloma bone marrow microenvironment and in cells isolated from patients. CK2 inhibition empowered bortezomib-triggered mitochondrial-dependent cell death. Phosphorylation of NF-κB p65 on Ser529 (a CK2 target site) and rise of the levels of the endoplasmic reticulum stress kinase/endoribonuclease Ire1α were markedly reduced upon CK2 inhibition, as were STAT3 phospho Ser727 levels. On the contrary, CK2 inhibition increased phospho Ser51 eIF2α levels and enhanced the bortezomib-dependent accumulation of poly-ubiquitylated proteins and of the proteotoxic stress-associated chaperone Hsp70. Our data suggest that CK2 over expression in multiple myeloma and mantle cell lymphoma cells might sustain survival signaling cascades and can antagonize bortezomib-induced apoptosis at different levels. CK2 inhibitors could be useful in bortezomib-based combination therapies.

  9. Protein Kinase CK2 Inhibition Down Modulates the NF-κB and STAT3 Survival Pathways, Enhances the Cellular Proteotoxic Stress and Synergistically Boosts the Cytotoxic Effect of Bortezomib on Multiple Myeloma and Mantle Cell Lymphoma Cells

    PubMed Central

    Manni, Sabrina; Brancalion, Alessandra; Mandato, Elisa; Tubi, Laura Quotti; Colpo, Anna; Pizzi, Marco; Cappellesso, Rocco; Zaffino, Fortunato; Di Maggio, Speranza Antonia; Cabrelle, Anna; Marino, Filippo; Zambello, Renato; Trentin, Livio; Adami, Fausto; Gurrieri, Carmela; Semenzato, Gianpietro; Piazza, Francesco

    2013-01-01

    CK2 is a pivotal pro-survival protein kinase in multiple myeloma that may likely impinge on bortezomib-regulated cellular pathways. In the present study, we investigated CK2 expression in multiple myeloma and mantle cell lymphoma, two bortezomib-responsive B cell tumors, as well as its involvement in bortezomib-induced cytotoxicity and signaling cascades potentially mediating bortezomib resistance. In both tumors, CK2 expression correlated with that of its activated targets NF-κB and STAT3 transcription factors. Bortezomib-induced proliferation arrest and apoptosis were significantly amplified by the simultaneous inhibition of CK2 with two inhibitors (CX-4945 and K27) in multiple myeloma and mantle cell lymphoma cell lines, in a model of multiple myeloma bone marrow microenvironment and in cells isolated from patients. CK2 inhibition empowered bortezomib-triggered mitochondrial-dependent cell death. Phosphorylation of NF-κB p65 on Ser529 (a CK2 target site) and rise of the levels of the endoplasmic reticulum stress kinase/endoribonuclease Ire1α were markedly reduced upon CK2 inhibition, as were STAT3 phospho Ser727 levels. On the contrary, CK2 inhibition increased phospho Ser51 eIF2α levels and enhanced the bortezomib-dependent accumulation of poly-ubiquitylated proteins and of the proteotoxic stress-associated chaperone Hsp70. Our data suggest that CK2 over expression in multiple myeloma and mantle cell lymphoma cells might sustain survival signaling cascades and can antagonize bortezomib-induced apoptosis at different levels. CK2 inhibitors could be useful in bortezomib-based combination therapies. PMID:24086494

  10. High-dose chemotherapy and autologous peripheral blood stem cell transplantation in patients with multiple myeloma and renal insufficiency.

    PubMed

    Ballester, O F; Tummala, R; Janssen, W E; Fields, K K; Hiemenz, J W; Goldstein, S C; Perkins, J B; Sullivan, D M; Rosen, R; Sackstein, R; Zorsky, P; Saez, R; Elfenbein, G J

    1997-10-01

    Six patients with multiple myeloma and chronic renal insufficiency (serum creatinine >3.0 mg/dl), including four on dialysis, received high-dose busulfan and cyclophosphamide (BUCY) followed by autologous peripheral stem cell transplantation. Peripheral blood stem cells were collected after priming with cyclophosphamide, etoposide and G-CSF. Patterns of engraftment and toxicities were not apparently different from those seen in myeloma patients with normal renal function. There was one toxicity-related death, resulting from a massive spontaneous subdural hematoma. One patient died of disease progression 6 months after transplant, while the remaining four patients are alive and free of myeloma progression 6 to 39 months after high-dose therapy. Two of these patients have remained in complete remission for 28 and 39 months. Our experience suggests that high-dose therapy with BUCY and autologous peripheral blood stem cell rescue is feasible in patients with multiple myeloma and renal failure.

  11. Inability of a monoclonal anti-light chain antibody to detect clonal plasma cells in a patient with multiple myeloma by multicolor flow cytometry.

    PubMed

    van Velzen, Jeroen F; van den Blink, Dorine; Bloem, Andries C

    2013-01-01

    Multicolor flow cytometry (MFC) is increasingly important for the diagnosis and minimal residual disease (MRD) assessment of patients with plasma cells (PC) dyscrasias, like multiple myeloma. Recently published information shows that immunophenotype of myeloma PC can change over time and normal PC are heterogeneous in the expression of CD19 and CD56. This implies that for a sensitive, reliable detection of MRD clonality assessment by the detection of cytoplasmic kappa and lambda light chains is advisable. Eight-color MFC was used to detect normal and myeloma PC by the expression of CD38 and CD138. Analysis of additional surface antigens like CD45, CD19, CD56, CD27, and the intracellular immunoglobulin light chain distribution were used to differentiate polyclonal from clonal PC. Absence of cytoplasmic light chains expression in a PC subpopulation with an abnormal phenotype suggested the presence of non-secretory plasma cells in the bone marrow (BM) of this patient. This observation however, was contradicted by the presence of free lambda light chains in the patient's serum. After repeating the analysis with polyclonal antibodies against intracellular immunoglobulin light chains instead of monoclonal antibodies, the abnormal PC subpopulation appeared to express lambda light chains. These data illustrate that if clonality assessment of PC is included in disease monitoring, the use of polyclonal over monoclonal antibodies is preferred for the detection of intracellular immunoglobulin light chains. Copyright © 2012 International Clinical Cytometry Society.

  12. Human Placenta-Derived Adherent Cells Prevent Bone loss, Stimulate Bone formation, and Suppress Growth of Multiple Myeloma in Bone

    PubMed Central

    Li, Xin; Ling, Wen; Pennisi, Angela; Wang, Yuping; Khan, Sharmin; Heidaran, Mohammad; Pal, Ajai; Zhang, Xiaokui; He, Shuyang; Zeitlin, Andy; Abbot, Stewart; Faleck, Herbert; Hariri, Robert; Shaughnessy, John D.; van Rhee, Frits; Nair, Bijay; Barlogie, Bart; Epstein, Joshua; Yaccoby, Shmuel

    2011-01-01

    Human placenta has emerged as a valuable source of transplantable cells of mesenchymal and hematopoietic origin for multiple cytotherapeutic purposes, including enhanced engraftment of hematopoietic stem cells, modulation of inflammation, bone repair, and cancer. Placenta-derived adherent cells (PDACs) are mesenchymal-like stem cells isolated from postpartum human placenta. Multiple myeloma is closely associated with induction of bone disease and large lytic lesions, which are often not repaired and are usually the sites of relapses. We evaluated the antimyeloma therapeutic potential, in vivo survival, and trafficking of PDACs in the severe combined immunodeficiency (SCID)–rab model of medullary myeloma-associated bone loss. Intrabone injection of PDACs into non-myelomatous and myelomatous implanted bone in SCID-rab mice promoted bone formation by stimulating endogenous osteoblastogenesis, and most PDACs disappeared from bone within 4 weeks. PDACs inhibitory effects on myeloma bone disease and tumor growth were dose-dependent and comparable with those of fetal human mesenchymal stem cells (MSCs). Intrabone, but not subcutaneous, engraftment of PDACs inhibited bone disease and tumor growth in SCID-rab mice. Intratumor injection of PDACs had no effect on subcutaneous growth of myeloma cells. A small number of intravenously injected PDACs trafficked into myelomatous bone. Myeloma cell growth rate in vitro was lower in coculture with PDACs than with MSCs from human fetal bone or myeloma patients. PDACs also promoted apoptosis in osteoclast precursors and inhibited their differentiation. This study suggests that altering the bone marrow microenvironment with PDAC cytotherapy attenuates growth of myeloma and that PDAC cytotherapy is a promising therapeutic approach for myeloma osteolysis. PMID:21732484

  13. GCS-100, a novel galectin-3 antagonist, modulates MCL-1, NOXA, and cell cycle to induce myeloma cell death

    PubMed Central

    Streetly, Matthew J.; Maharaj, Lenushka; Joel, Simon; Schey, Steve A.; Gribben, John G.

    2010-01-01

    GCS-100 is a galectin-3 antagonist with an acceptable human safety profile that has been demonstrated to have an antimyeloma effect in the context of bortezomib resistance. In the present study, the mechanisms of action of GCS-100 are elucidated in myeloma cell lines and primary tumor cells. GCS-100 induced inhibition of proliferation, accumulation of cells in sub-G1 and G1 phases, and apoptosis with activation of both caspase-8 and -9 pathways. Dose- and time-dependent decreases in MCL-1 and BCL-XL levels also occurred, accompanied by a rapid induction of NOXA protein, whereas BCL-2, BAX, BAK, BIM, BAD, BID, and PUMA remained unchanged. The cell-cycle inhibitor p21Cip1 was up-regulated by GCS-100, whereas the procycling proteins CYCLIN E2, CYCLIN D2, and CDK6 were all reduced. Reduction in signal transduction was associated with lower levels of activated IκBα, IκB kinase, and AKT as well as lack of IκBα and AKT activation after appropriate cytokine stimulation (insulin-like growth factor-1, tumor necrosis factor-α). Primary myeloma cells showed a direct reduction in proliferation and viability. These data demonstrate that the novel therapeutic molecule, GCS-100, is a potent modifier of myeloma cell biology targeting apoptosis, cell cycle, and intracellular signaling and has potential for myeloma therapy. PMID:20190189

  14. Potential therapeutic biomarkers in plasma cell myeloma: a flow cytometry study.

    PubMed

    Zheng, Wenli; Liu, Dingshen; Fan, Xiangshan; Powers, Linda; Goswami, Maitrayee; Hu, Ying; Lin, Pei; Medeiros, L Jeffrey; Wang, Sa A

    2013-01-01

    To investigate the expression profile of potential therapeutic biomarkers in plasma cell myeloma (PCM) by multicolor flow cytometry analysis. Bone marrow (BM) specimens were collected consecutively and analyzed using a routine PCM panel (CD38/CD138/CD45/CD19/CD20/CD28/CD56/CD117, cyto-kappa/lambda). The specimens were further assessed for CD30, CD44, CD49d, CD70, CD105, and CD184 expression in cases containing a substantial number of neoplastic plasma cells. Totally, 101 patient BM samples were assessed, including 58 men and 43 women, with a median age of 64 years (34-89). Twenty-nine patients had newly diagnosed/untreated PCM, 40 had persistent/residual disease undergoing various therapies and 32 had relapsed disease. CD49d was expressed brightly and uniformly in all 45 patients tested. Expression of CD44 and CD184 was more variable with a median percentage of 77% (1-100) and 65% (5-100) respectively. Using an arbitrary 20% cutoff, CD44 was positive in 74 (73%) and CD184 in 92 (91%) cases with a mean fluorescence intensity ratio of 42.8 and 21.4. A higher CD44 expression was observed in patients with recurrent/persistent disease (P = 0.028). Additionally, both CD44 (P = 0.002) and CD184 (P = 0.026) showed higher expressions in CD117-positive cases, but there was no correlation with cytogenetic groups. The CD30, CD70, and CD105 were expressed very infrequently in PCM, with a median expression of 0.2%, 0.2%, and 0.4% respectively. CD49d, CD44, and CD184, are highly expressed in PCM. CD49d expression is bright and uniform, whereas CD44 and CD184 are more heterogeneous. In contrast, surface CD30, CD70, and CD105 are infrequent. These data provide useful preclinical information for the design of potential novel targeted therapies in PCM patients. Copyright © 2013 International Clinical Cytometry Society.

  15. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells.

    PubMed

    Krönke, Jan; Udeshi, Namrata D; Narla, Anupama; Grauman, Peter; Hurst, Slater N; McConkey, Marie; Svinkina, Tanya; Heckl, Dirk; Comer, Eamon; Li, Xiaoyu; Ciarlo, Christie; Hartman, Emily; Munshi, Nikhil; Schenone, Monica; Schreiber, Stuart L; Carr, Steven A; Ebert, Benjamin L

    2014-01-17

    Lenalidomide is a drug with clinical efficacy in multiple myeloma and other B cell neoplasms, but its mechanism of action is unknown. Using quantitative proteomics, we found that lenalidomide causes selective ubiquitination and degradation of two lymphoid transcription factors, IKZF1 and IKZF3, by the CRBN-CRL4 ubiquitin ligase. IKZF1 and IKZF3 are essential transcription factors in multiple myeloma. A single amino acid substitution of IKZF3 conferred resistance to lenalidomide-induced degradation and rescued lenalidomide-induced inhibition of cell growth. Similarly, we found that lenalidomide-induced interleukin-2 production in T cells is due to depletion of IKZF1 and IKZF3. These findings reveal a previously unknown mechanism of action for a therapeutic agent: alteration of the activity of an E3 ubiquitin ligase, leading to selective degradation of specific targets.

  16. Altered mRNA Expression of Telomere-Associated Genes in Monoclonal Gammopathy of Undetermined Significance and Multiple Myeloma

    PubMed Central

    Panero, Julieta; Arbelbide, Jorge; Fantl, Dorotea Beatriz; Rivello, Hernán García; Kohan, Dana; Slavutsky, Irma

    2010-01-01

    In this study, we explored changes in the expression of the telomere maintenance genes, TRF1, TRF2 and TANK1 in patients with monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM). Results were correlated with human telomerase reverse transcriptase (hTERT ) expression, telomere length (TL) and clinicopathological characteristics. Bone marrow (BM) samples from 132 patients, 64 with MGUS and 68 with MM, were studied. Real-time quantitative reverse transcription–polymerase chain reaction was used to quantify gene expression. TL was evaluated by terminal restriction fragment length analysis. MGUS patients showed increased TRF1 levels (P = 0.006) and lower expression of TRF2 (P = 0.005) and TANK1 (P = 0.003) compared with MM patients. For hTERT analysis, patients were divided into three groups by use of receiver operating characteristics: low (group I [GI]), intermediate (group II [GII]) and high (group III [GIII]) expression. We observed increasing expression of TRF2 and TANK1 from GI to GIII in MGUS and MM, with differences for both genes in MM (P < 0.01) and for TRF2 in MGUS (P < 0.01). GIII patients with the highest telomerase expression had the shortest TL. In both entities, a positive association between TRF2-TANK1, TRF2-hTERT and TANK1-hTERT (P ≤ 0.01) was observed. In MM, the percentage of BM infiltration and Ki-67 index were positively associated with TRF2, TANK1 and hTERT expression (P ≤ 0.03) and negatively with TL (P = 0.02), whereas lactate dehydrogenase was significantly correlated with TRF2 mRNA (P = 0.008). Our findings provide the first evidence of a modification in the expression of telomeric proteins in plasma cell disorders, and suggest that mechanisms other than telomerase activation are involved in TL maintenance in these pathologies. PMID:20644899

  17. Multiparametric flow cytometry profiling of neoplastic plasma cells in multiple myeloma.

    PubMed

    Johnsen, Hans E; Bøgsted, Martin; Klausen, Tobias W; Gimsing, Peter; Schmitz, Alexander; Kjaersgaard, Erik; Damgaard, Tina; Voss, Pia; Knudsen, Lene M; Mylin, Anne K; Nielsen, Johan Lanng; Björkstrand, Bo; Gruber, Astrid; Lenhoff, Stig; Remes, Kari; Dahl, Inger Marie; Fogd, Kirsten; Dybkaer, Karen

    2010-09-01

    The clinical impact of multiparametric flow cytometry (MFC) in multiple myeloma (MM) is still unclear and under evaluation. Further progress relies on multiparametric profiling of the neoplastic plasma cell (PC) compartment to provide an accurate image of the stage of differentiation. The primary aim of this study was to perform global analysis of CD expression on the PC compartment and subsequently to evaluate the prognostic impact. Secondary aims were to study the diagnostic and predictive impact. The design included a retrospective analysis of MFC data generated from diagnostic bone marrow (BM) samples of 109 Nordic patients included in clinical trials within NMSG. Whole marrow were analyzed by MFC for identification of end-stage CD45(-) /CD38(++) neoplastic PC and registered the relative numbers of events and mean fluorescence intensity (MFI) staining for CD19, CD20, CD27, CD28, CD38, CD44, CD45, CD56, and isotypes for cluster analysis. The median MFC-PC number was 15%, and the median light microscopy (LM)-PC number was 35%. However, the numbers were significant correlated and the prognostic value with an increased relative risk (95% CI) of 3.1 (1.7-5.5) and 2.9 (1.4-6.2), P < 0.0003 and P < 0.004 of MFC-PC and LM-PC counts, respectively. Unsupervised clustering based on global MFI assessment on PC revealed two clusters based on CD expression profiling. Cluster I with high intensity for CD56, CD38, CD45, right-angle light-scatter signal (SSC), forward-angle light-scatter signal (FSC), and low for CD28, CD19, and a Cluster II, with low intensity of CD56, CD38, CD45, SSC, FSC, and high for CD28, CD19 with a median survival of 39 months and 19 months, respectively (P = 0.02). The MFC analysis of MM BM samples produces diagnostic, prognostic, and predictive information useful in clinical practice, which will be prospectively validated within the European Myeloma Network (EMN). © 2010 International Clinical Cytometry Society. Copyright © 2010 International

  18. Smenospongidine suppresses the proliferation of multiple myeloma cells by promoting CCAAT/enhancer-binding protein homologous protein-mediated β-catenin degradation.

    PubMed

    Park, Seoyoung; Hwang, In Hyun; Kim, Jiseon; Chung, Young-Hwa; Song, Gyu-Young; Na, MinKyun; Oh, Sangtaek

    2017-03-08

    Abnormal up-regulation of β-catenin expression is associated with the development and progression of multiple myeloma and is thus a potential therapeutic target. Here, we screened cell-based natural compounds and identified smenospongidine, a metabolite isolated from a marine sponge, as an antagonist of the Wnt/β-catenin signaling pathway. Smenospongidine promoted the degradation of intracellular β-catenin that accumulated via Wnt3a or 6-bromoindirubin-3'-oxime, an inhibitor of glycogen synthase kinase-3β. Consistently, smenospongidine down-regulated β-catenin expression and repressed the levels of β-catenin/T cell factor-dependent genes such as axin2, c-myc, and cyclin D1 in RPMI-8226 multiple myeloma cells. Smenospongidine suppressed proliferation and significantly induced apoptosis in RPMI-8266 cells. In addition, smenospongidine-induced β-catenin degradation was mediated by up-regulating CCAAT/enhancer-binding protein homologous protein (CHOP). These findings indicate that smenospongidine exerts its anti-proliferative activity by blocking the Wnt/β-catenin signaling pathway and may be a potential chemotherapeutic agent against multiple myeloma.

  19. Importin β1 mediates nuclear factor-κB signal transduction into the nuclei of myeloma cells and affects their proliferation and apoptosis.

    PubMed

    Yan, Wenqing; Li, Rong; He, Jie; Du, Juan; Hou, Jian

    2015-04-01

    Multiple myeloma (MM) is a plasma cell neoplasm that is currently incurable. The activation of nuclear factor-κB (NF-κB) signalling plays a crucial role in the immortalisation of MM cells. As the most important transcription factor of the canonical NF-κB pathway, the p50/p65 heterodimer requires transportation into the nucleus for its successful signal transduction. Importin β1 is the key transport receptor that mediates p50/p65 nuclear import. Currently, it remains unclear whether the regulation of importin β1 function affects the biological behaviour of MM cells. In the present study, we investigated the changes in p65 translocation and the proliferation and apoptosis of MM cells after treatment with small interfering RNA (siRNA) or an importin β1 inhibitor. The underlying mechanisms were also investigated. We found importin β1 over-expression and the excessive nuclear transport of p65 in myeloma cells. Confocal laser scanning microscopy and Western blot analysis results indicated that p65 nuclear transport was blocked after inhibiting importin β1 expression with siRNA and the importin β1-specific inhibitor importazole (IPZ). Importantly, electronic mobility shift assay results also verified that p65 nuclear transport was dramatically reduced. Moreover, the expression of the NF-κB signalling target genes involved in MM cell apoptosis, such as BCL-2, c-IAP1 and XIAP, were markedly reduced, as demonstrated by the RT-PCR results. Furthermore, the proliferation of MM cells was inhibited, as demonstrated by MTT assay results, and the MM cell apoptosis rate was higher, as demonstrated by the annexin V/propidium iodide (PI) double-staining assay results. Additionally, the percentage of S phase cells in the myeloma cell lines treated with IPZ was dramatically reduced. In conclusion, our results clearly show that importin β1 mediates the translocation of NF-κB into the nuclei of myeloma cells, thereby regulating proliferation and blocking apoptosis, which

  20. Apoptotic effects of non-edible parts of Punica granatum on human multiple myeloma cells.

    PubMed

    Kiraz, Yağmur; Neergheen-Bhujun, Vidushi S; Rummun, Nawraj; Baran, Yusuf

    2016-02-01

    Multiple myeloma is of great concern since existing therapies are unable to cure this clinical condition. Alternative therapeutic approaches are mandatory, and the use of plant extracts is considered interesting. Punica granatum and its derived products were suggested as potential anticancer agents due to the presence of bioactive compounds. Thus, polypenolic-rich extracts of the non-edible parts of P. granatum were investigated for their antiproliferative and apoptotic effects on U266 multiple myeloma cells. We demonstrated that there were dose-dependent decreases in the proliferation of U266 cells in response to P. granatum extracts. Also, exposure to the extracts triggered apoptosis with significant increases in loss of mitochondrial membrane potential in U266 cells exposed to the leaves and stem extracts, while the flower extract resulted in slight increases in loss of MMP. These results were confirmed by Annexin-V analysis. These results documented the cytotoxic and apoptotic effects of P. granatum extracts on human U266 multiple myeloma cells via disruption of mitochondrial membrane potential and increasing cell cycle arrest. The data suggest that the extracts can be envisaged in cancer chemoprevention and call for further exploration into the potential application of these plant parts.

  1. Arsenic trioxide and melarsoprol induce apoptosis in plasma cell lines and in plasma cells from myeloma patients.

    PubMed

    Rousselot, P; Labaume, S; Marolleau, J P; Larghero, J; Noguera, M H; Brouet, J C; Fermand, J P

    1999-03-01

    Recent data have renewed the interest for arsenic-containing compounds as anticancer agents. In particular, arsenic trioxide (As2O3) has been demonstrated to be an effective drug in the treatment of acute promyelocytic leukemia by inducing programmed cell death in leukemic cells both in vitro and in vivo. This prompted us to study the in vitro effects of As2O3 and of another arsenical derivative, the organic compound melarsoprol, on human myeloma cells and on the plasma cell differentiation of normal B cells. At pharmacological concentrations (10(-8) to 10(-6) mol/L), As2O3 and melarsoprol caused a dose- and time-dependent inhibition of survival and growth in myeloma cell lines that was, in some, similar to that of acute promyelocytic leukemia cells. Both arsenical compounds induced plasma cell apoptosis, as assessed by 4',6-diamidino-2-phenylindole staining, detection of phosphatidylserine at the cell surface using annexin V, and by the terminal deoxynucleotidyl transferase-mediated nick end labeling assay. As2O3 and melarsoprol also inhibited viability and growth and induced apoptosis in plasma-cell enriched preparations from the bone marrow or blood of myeloma patients. In nonseparated bone marrow samples, both arsenical compounds triggered death in myeloma cells while sparing most myeloid cells, as demonstrated by double staining with annexin V and CD38 or CD15 antibodies. In primary myeloma cells as in cell lines, interleukin 6 did not prevent arsenic-induced cell death or growth inhibition, and no synergistic effect was observed with IFN-alpha. In contrast to As2O3, melarsoprol only slightly reduced the plasma cell differentiation of normal B cells induced by pokeweed mitogen. Both pokeweed mitogen-induced normal plasma cells and malignant plasma cells showed a normal nuclear distribution of PML protein, which was disrupted by As2O3 but not by melarsoprol, suggesting that the two arsenical derivatives acted by different mechanisms. These results point to the

  2. The distinct gene expression profiles of chronic lymphocytic leukemia and multiple myeloma suggest different anti-apoptotic mechanisms but predict only some differences in phenotype.

    PubMed

    Zent, Clive S; Zhan, Fenghuang; Schichman, Steven A; Bumm, Klaus H W; Lin, Pei; Chen, James B; Shaughnessy, John D

    2003-09-01

    We compared gene expression in purified tumor cells from untreated patients with chronic lymphocytic (CLL) (n=24) and newly diagnosed multiple myeloma (MM) (n=29) using the Affymetrix HuGeneFL microarray with probes for approximately 6800 genes. Hierarchical clustering analysis showed that CLL and MM have distinct expression profiles (class prediction). Gene and protein expression (measured by flow cytometry) correlated well for CD19, CD20, CD23, and CD138 in CLL and MM, but not for immunoglobulin light chain, CD38 and CD79b in CLL, or CD45 and CD52 in MM. CLL and MM differentially expressed 18% of 130 apoptosis related genes, suggesting differences in mechanisms of cell survival.

  3. Overcoming inherent resistance to histone deacetylase inhibitors in multiple myeloma cells by targeting pathways integral to the actin cytoskeleton.

    PubMed

    Mithraprabhu, S; Khong, T; Spencer, A

    2014-03-20

    Histone deacetylase inhibitors (HDACi) are novel chemotherapeutics undergoing evaluation in clinical trials for the potential treatment of patients with multiple myeloma (MM). Although HDACi have demonstrable synergy when combined with proteasome inhibitors (PIs), recent evidence indicates that combination of HDACi and PI is beneficial only in a subset of patients with advanced MM, clearly indicating that other rational combinations should be explored. In this context we hypothesized that understanding the molecular signature associated with inherent resistance to HDACi would provide a basis for the identification of therapeutic combinations with improved clinical efficacy. Using human myeloma cell lines (HMCL) categorized as sensitive, intermediate or resistant to HDACi, gene expression profiling (GEP) and gene ontology enrichment analyses were performed to determine if a genetic signature associated with inherent resistance to HDACi-resistance could be identified. Correlation of GEP to increasing or decreasing sensitivity to HDACi indicated a unique 35-gene signature that was significantly enriched for two pathways - regulation of actin cytoskeleton and protein processing in endoplasmic reticulum. When HMCL and primary MM samples were treated with a combination of HDACi and agents targeting the signaling pathways integral to the actin cytoskeleton, synergistic cell death was observed in all instances, thus providing a rationale for combining these agents with HDACi for the treatment of MM to overcome resistance. This report validates a molecular approach for the identification of HDACi partner drugs and provides an experimental framework for the identification of novel therapeutic combinations for anti-MM treatment.

  4. Highly Expressed Integrin-α8 Induces Epithelial to Mesenchymal Transition-Like Features in Multiple Myeloma with Early Relapse

    PubMed Central

    Ryu, Jiyeon; Koh, Youngil; Park, Hyejoo; Kim, Dae Yoon; Kim, Dong Chan; Byun, Ja Min; Lee, Hyun Jung; Yoon, Sung-Soo

    2016-01-01

    Despite recent groundbreaking advances in multiple myeloma (MM) treatment, most MM patients ultimately experience relapse, and the relapse biology is not entirely understood. To define altered gene expression in MM relapse, gene expression profiles were examined and compared among 16 MM patients grouped by 12 months progression-free survival (PFS) after autologous stem cell transplantation. To maximize the difference between prognostic groups, patients at each end of the PFS spectrum (the four with the shortest PFS and four with the longest PFS) were chosen for additional analyses. We discovered that integrin-α8 (ITGA8) is highly expressed in MM patients with early relapse. The integrin family is well known to be involved in MM progression; however, the role of integrin-α8 is largely unknown. We functionally overexpressed integrin-α8 in MM cell lines, and surprisingly, stemness features including HIF1α, VEGF, OCT4, and Nanog, as well as epithelial mesenchymal transition (EMT)-related phenotypes, including N-cadherin, Slug, Snail and CXCR4, were induced. These, consequently, enhanced migration and invasion abilities, which are crucial to MM pathogenesis. Moreover, the gain of integrin-α8 expression mediated drug resistance against melphalan and bortezomib, which are the main therapeutic agents in MM. The cBioPortal genomic database revealed that ITGA8 have significant tendency to co-occur with PDGFRA and PDGFRB and their mRNA expression were up-regulated in ITGA8 overexpressed MM cells. In summary, integrin-α8, which was up-regulated in MM of early relapse, mediates EMT-like phenotype, enhancing migration and invasion; therefore, it could serve as a potential marker of MM relapse and be a new therapeutic target. PMID:28008160

  5. Multiple Myeloma Relapse Following Autologous Stem Cell Transplant Presenting With Diffuse Pulmonary Nodules

    PubMed Central

    Sumrall, Bradley; Diethelm, Lisa; Brown, Archie

    2013-01-01

    Background Multiple myeloma is a common disease, accounting for about 10% of hematologic malignancies in the United States. For eligible patients, the treatment of choice includes induction therapy (usually involving newer biologic agents) followed by autologous stem cell transplant; however, this treatment is generally not considered curative, and relapses usually occur. However, extramedullary relapse is an uncommon presentation, and relapses that involve the lungs have only rarely been described. Case Report We report the case of a patient who underwent an autologous stem cell transplant for multiple myeloma and subsequently relapsed with diffuse pulmonary nodules. She then had a rapid clinical and serologic response following initiation of salvage therapy. Conclusion This case is remarkable for both the radiographic appearance of the pulmonary involvement, as well as the rapid resolution of these findings after 2 cycles of treatment with bortezomib, dexamethasone, and lenalidomide. PMID:24358007

  6. The effect of S1P receptor signaling pathway on the survival and drug resistance in multiple myeloma cells.

    PubMed

    Fu, Di; Li, Yingchun; Li, Jia; Shi, Xiaoyan; Yang, Ronghui; Zhong, Yuan; Wang, Huihan; Liao, Aijun

    2017-01-01

    Multiple myeloma (MM) remains incurable by conventional chemotherapy. Sphingosine-1-phosphate (S1P) receptor-mediated signaling has been recently demonstrated to have critical roles in cell survival and drug resistance in a number of hematological malignancies. To dissect the roles of S1P receptor pathway in MM, we systematically examined cell viability and protein expression associated with cell survival and drug resistance in MM cell lines upon treatment with either pathway activator (S1P) or inhibitor (FTY720). Our results reveal that FTY720 inhibits cell proliferation by downregulating expression of target genes, while S1P has an opposite effect. Knocking down of S1P receptor S1P5R results in a reduction of cell survival-related gene expression; however, it does not have impacts on expression of drug resistance genes. These results suggest that S1P signaling plays a role in cell proliferation and drug resistance in MM, and targeting this pathway will provide a new therapeutic direction for MM management.

  7. Stem cell transplantation for multiple myeloma: current status and future directions.

    PubMed

    Caldera, Humberto; Giralt, Sergio

    2004-07-01

    High-dose chemotherapy or chemoradiation therapy supported with autologous stem cell transplantation is now recognized as a valid therapeutic option for patients with multiple myeloma. Results of randomized trials have established autografting as the treatment of choice for patients younger than 65 years, as part of their initial therapy. In this review, the issues of who benefits from transplant, what is the optimal procedure, and whether there is a potential role for allografting are addressed.

  8. Omega-3 fatty acids, EPA and DHA induce apoptosis and enhance drug sensitivity in multiple myeloma cells but not in normal peripheral mononuclear cells.

    PubMed

    Abdi, J; Garssen, J; Faber, J; Redegeld, F A

    2014-12-01

    The n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to enhance the effect of chemotherapeutic drugs in clinical studies in cancer patients and to induce apoptotic tumor cell death in vitro. Until now, EPA and DHA have never been investigated in multiple myeloma (MM). Human myeloma cells (L363, OPM-1, OPM-2 and U266) and normal peripheral blood mononuclear cells were exposed to EPA and DHA, and effects on mitochondrial function and apoptosis, caspase-3 activation, gene expression and drug toxicity were measured. Exposure to EPA and DHA induced apoptosis and increased sensitivity to bortezomib in MM cells. Importantly, they did not affect viability of normal human peripheral mononuclear cells. Messenger RNA expression arrays showed that EPA and DHA modulated genes involved in multiple signaling pathways including nuclear factor (NF) κB, Notch, Hedgehog, oxidative stress and Wnt. EPA and DHA inhibited NFκB activity and induced apoptosis through mitochondrial perturbation and caspase-3 activation. Our study suggests that EPA and DHA induce selective cytotoxic effects in MM and increase sensitivity to bortezomib and calls for further exploration into a potential application of these n-3 polyunsaturated fatty acids in the therapy of MM.

  9. Lenalidomide restores the osteogenic differentiation of bone marrow mesenchymal stem cells from multiple myeloma patients via deactivating Notch signaling pathway

    PubMed Central

    Guo, Juan; Fei, Chengming; Zhao, Youshan; Zhao, Sida; Zheng, Qingqing; Su, Jiying; Wu, Dong; Li, Xiao; Chang, Chunkang

    2017-01-01

    Multiple myeloma (MM) always presents osteolytic bone lesions, resulting from the abnormal osteoblastic and osteoclastic function in patients. MM patients exhibit the impairment of osteogenic differentiation of BMMSCs (bone marrow mesenchymal stem cells) and osteoblast deficiency. Effects of the drug, lenalidomide on the osteoblastic functions and the involved mechanisms remain unexplored. In the present study, it is observed that the osteogenic differentiation of BMMSCs from MM patients (MM-MSCs) is impaired and activation of Notch signaling pathway in MM-MSCs is abnormal. Notch signaling activation inhibits BMMSCs osteogenesis. Knockdown of Notch1 expression and DAPT application reverse the osteogenic differentiation from MM-MSCs. Furthermore, it is shown that the gene expression of Notch signaling molecules, including receptors, ligands and downstream factors are significantly decreased in MM-MSCs following lenalidomide treatment, compared with non-treated MM-MSCs. Taken together, treatment with lenalidomide restores the osteogenic differentiation of MM-MSCs via deactivating Notch signaling pathway.

  10. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma

    PubMed Central

    Linette, Gerald P.; Stadtmauer, Edward A.; Maus, Marcela V.; Rapoport, Aaron P.; Levine, Bruce L.; Emery, Lyndsey; Litzky, Leslie; Bagg, Adam; Carreno, Beatriz M.; Cimino, Patrick J.; Binder-Scholl, Gwendolyn K.; Smethurst, Dominic P.; Gerry, Andrew B.; Pumphrey, Nick J.; Bennett, Alan D.; Brewer, Joanna E.; Dukes, Joseph; Harper, Jane; Tayton-Martin, Helen K.; Jakobsen, Bent K.; Hassan, Namir J.; Kalos, Michael

    2013-01-01

    An obstacle to cancer immunotherapy has been that the affinity of T-cell receptors (TCRs) for antigens expressed in tumors is generally low. We initiated clinical testing of engineered T cells expressing an affinity-enhanced TCR against HLA-A*01–restricted MAGE-A3. Open-label protocols to test the TCRs for patients with myeloma and melanoma were initiated. The first two treated patients developed cardiogenic shock and died within a few days of T-cell infusion, events not predicted by preclinical studies of the high-affinity TCRs. Gross findings at autopsy revealed severe myocardial damage, and histopathological analysis revealed T-cell infiltration. No MAGE-A3 expression was detected in heart autopsy tissues. Robust proliferation of the engineered T cells in vivo was documented in both patients. A beating cardiomyocyte culture generated from induced pluripotent stem cells triggered T-cell killing, which was due to recognition of an unrelated peptide derived from the striated muscle-specific protein titin. These patients demonstrate that TCR-engineered T cells can have serious and not readily predictable off-target and organ-specific toxicities and highlight the need for improved methods to define the specificity of engineered TCRs. PMID:23770775

  11. Immunohistochemical Analysis of Cyclin D1 Shows Deregulated Expression in Multiple Myeloma with the t(11;14)

    PubMed Central

    Pruneri, Giancarlo; Fabris, Sonia; Baldini, Luca; Carboni, Nadia; Zagano, Savina; Colombi, Maria Angela; Ciceri, Gabriella; Lombardi, Luigia; Rocchi, Mariano; Buffa, Roberto; Maiolo, Anna Teresa; Neri, Antonino

    2000-01-01

    The t(11;14)(q13;q32) chromosomal translocation, the hallmark of mantle cell lymphoma (MCL), is recurrently found in multiple myelomas (MM) by means of conventional cytogenetics. Unlike MCL, recent molecular studies of MM-derived cell lines with t(11;14) have indicated that the breakpoints are highly dispersed over the 11q13 region; however, the fact that cyclin D1 is generally overexpressed in these cell lines suggests that this gene is the target of the translocation. To evaluate further the involvement of cyclin D1 in MM, we used immunohistochemistry and fluorescence in situ hybridization to investigate cyclin D1 expression and the presence of chromosome 11 abnormalities in a representative panel of 48 MM patients (40 at diagnosis and 8 at relapse). Cyclin D1 overexpression occurred in 12/48 (25%) of cases; combined immunohistochemistry and fluorescence in situ hybridization analyses in 39 patients showed cyclin D1 positivity in all of the cases (7/7) bearing the t(11;14), in two of the 13 cases with trisomy 11, and in one of the 19 cases with no apparent abnormalities of chromosome 11. Our data indicate that the t(11;14) translocation in MM leads to cyclin D1 overexpression and that immunohistochemical analysis may represent a reliable means of identifying this lesion in MM. PMID:10793062

  12. HIF-1α inhibition blocks the cross talk between multiple myeloma plasma cells and tumor microenvironment

    SciTech Connect

    Borsi, Enrica; Perrone, Giulia; Terragna, Carolina; Martello, Marina; Zamagni, Elena; Tacchetti, Paola; Pantani, Lucia; Brioli, Annamaria; Dico, Angela Flores; Zannetti, Beatrice Anna; Rocchi, Serena; Cavo, Michele

    2014-11-01

    Multiple myeloma (MM) is a malignant disorder of post-germinal center B cells, characterized by the clonal proliferation of malignant plasma cells (PCs) within the bone