Science.gov

Sample records for myeloma mm cells

  1. Establishment of Cell Lines from Both Myeloma Bone Marrow and Plasmacytoma: SNU_MM1393_BM and SNU_MM1393_SC from a Single Patient

    PubMed Central

    Jung, Woo-June; Ahn, Kwang-Sung; Yoon, Sung-Soo

    2014-01-01

    Purpose. We tried to establish clinically relevant human myeloma cell lines that can contribute to the understanding of multiple myeloma (MM). Materials and Methods. Mononuclear cells obtained from MM patient's bone marrow were injected via tail vein in an NRG/SCID mouse. Fourteen weeks after the injection, tumor developed at subcutis of the mouse. The engraftment of MM cells into mouse bone marrow (BM) was also observed. We separated and cultured cells from subcutis and BM. Results. After the separation and culture of cells from subcutis and BM, we established two cell lines originating from a single patient (SNU_MM1393_BM and SNU_MM1393_SC). Karyotype of the two newly established MM cell lines showed tetraploidy which is different from the karyotype of the patient (diploidy) indicating clonal evolution. In contrast to SNU_MM1393_BM, cell proliferation of SNU_MM1393_SC was IL-6 independent. SNU_MM1393_BM and SNU_MM1393_SC showed high degree of resistance against bortezomib compared to U266 cell line. SNU_MM1393_BM had the greater lethality compared to SNU_MM1393_SC. Conclusion. Two cell lines harboring different site tropisms established from a single patient showed differences in cytokine response and lethality. Our newly established cell lines could be used as a tool to understand the biology of multiple myeloma. PMID:25343143

  2. Ectopic microRNA-150-5p transcription sensitizes glucocorticoid therapy response in MM1S multiple myeloma cells but fails to overcome hormone therapy resistance in MM1R cells.

    PubMed

    Palagani, Ajay; Op de Beeck, Ken; Naulaerts, Stefan; Diddens, Jolien; Sekhar Chirumamilla, Chandra; Van Camp, Guy; Laukens, Kris; Heyninck, Karen; Gerlo, Sarah; Mestdagh, Pieter; Vandesompele, Joke; Berghe, Wim Vanden

    2014-01-01

    Glucocorticoids (GCs) selectively trigger cell death in the multiple myeloma cell line MM1S which express NR3C1/Glucocorticoid Receptor (GR) protein, but fail to kill MM1R cells which lack GR protein. Given recent demonstrations of altered microRNA profiles in a diverse range of haematological malignancies and drug resistance, we characterized GC inducible mRNA and microRNA transcription profiles in GC sensitive MM1S as compared to GC resistant MM1R cells. Transcriptome analysis revealed that GCs regulate expression of multiple genes involved in cell cycle control, cell organization, cell death and immunological disease in MM1S cells, which remain unaffected in MM1R cells. With respect to microRNAs, mir-150-5p was identified as the most time persistent GC regulated microRNA, out of 5 QPCR validated microRNAs (mir-26b, mir-125a-5p, mir-146-5p, mir-150-5p, and mir-184), which are GC inducible in MM1S but not in MM1R cells. Functional studies further revealed that ectopic transfection of a synthetic mir-150-5p mimics GR dependent gene expression changes involved in cell death and cell proliferation pathways. Remarkably, despite the gene expression changes observed, overexpression of mir-150-5p in absence of GCs did not trigger significant cytotoxicity in MM1S or MM1R cells. This suggests the requirement of additional steps in GC induced cell death, which can not be mimicked by mir-150-5p overexpression alone. Interestingly, a combination of mir-150-5p transfection with low doses GC in MM1S cells was found to sensitize therapy response, whereas opposite effects could be observed with a mir-150-5p specific antagomir. Although mir-150-5p overexpression did not substantially change GR expression levels, it was found that mir-150-5p evokes GR specific effects through indirect mRNA regulation of GR interacting transcription factors and hormone receptors, GR chaperones, as well as various effectors of unfolded protein stress and chemokine signalling. Altogether GC

  3. Potent and Selective KDM5 Inhibitor Stops Cellular Demethylation of H3K4me3 at Transcription Start Sites and Proliferation of MM1S Myeloma Cells.

    PubMed

    Tumber, Anthony; Nuzzi, Andrea; Hookway, Edward S; Hatch, Stephanie B; Velupillai, Srikannathasan; Johansson, Catrine; Kawamura, Akane; Savitsky, Pavel; Yapp, Clarence; Szykowska, Aleksandra; Wu, Na; Bountra, Chas; Strain-Damerell, Claire; Burgess-Brown, Nicola A; Ruda, Gian Filippo; Fedorov, Oleg; Munro, Shonagh; England, Katherine S; Nowak, Radoslaw P; Schofield, Christopher J; La Thangue, Nicholas B; Pawlyn, Charlotte; Davies, Faith; Morgan, Gareth; Athanasou, Nick; Müller, Susanne; Oppermann, Udo; Brennan, Paul E

    2017-03-16

    Methylation of lysine residues on histone tail is a dynamic epigenetic modification that plays a key role in chromatin structure and gene regulation. Members of the KDM5 (also known as JARID1) sub-family are 2-oxoglutarate (2-OG) and Fe(2+)-dependent oxygenases acting as histone 3 lysine 4 trimethyl (H3K4me3) demethylases, regulating proliferation, stem cell self-renewal, and differentiation. Here we present the characterization of KDOAM-25, an inhibitor of KDM5 enzymes. KDOAM-25 shows biochemical half maximal inhibitory concentration values of <100 nM for KDM5A-D in vitro, high selectivity toward other 2-OG oxygenases sub-families, and no off-target activity on a panel of 55 receptors and enzymes. In human cell assay systems, KDOAM-25 has a half maximal effective concentration of ∼50 μM and good selectivity toward other demethylases. KDM5B is overexpressed in multiple myeloma and negatively correlated with the overall survival. Multiple myeloma MM1S cells treated with KDOAM-25 show increased global H3K4 methylation at transcriptional start sites and impaired proliferation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. [Immunophenotype characteristics in multiple myeloma cells and their significance].

    PubMed

    Sun, Ying; Fang, Mei-Yun; Liu, Yue-Jian

    2010-04-01

    This study was purposed to investigate the immunophenotype characteristics in multiple myeloma (MM) cells and their significance. The expressions of CD138, CD38, CD56, CD117, HLA-DR, CD3, CD7, CD13, CD33, CD19, CD20, CD22, CD34 in myeloma cells from 31 MM patients were detected by using CD45/SSC immunofluorescent flow cytometry and were confirmed with morphologic observation of myeloma cells. The results indicated that the proportion of myeloma cells detected by morphologic examination was 10%-68%, the proportion of myeloma cells detected by CD45/SSC gating was 9.72%-67.77%. The antigen positive expression rate in myeloma cells was as follows: CD138 61.29%, CD38 100%, CD56 46.15%, CD13 70.00%, CD33 29.03%, HLA-DR 74.19%, CD117 33.33%; the other antigen expressions were negative. It is concluded that the use of CD45/SSC gating technique can identify multiple myeloma cells. The proportion of myeloma cells gated was close to the result of morphological examination. The myeloma cells mainly express the antigens CD138, CD88, CD56, while the expressions of CD117, CD13, CD33 were seen in some MM patients. Myeloma cells don't express antigens of B- and T-lymphocytes, which suggest the heterogenicity of multiple antigens expressed by myeloma cells. However, the biological significance of antigen expression in myeloma cells is worthy to be further investigated.

  5. Transcriptomic profile induced in bone marrow mesenchymal stromal cells after interaction with multiple myeloma cells: implications in myeloma progression and myeloma bone disease

    PubMed Central

    Garcia-Gomez, Antonio; Las Rivas, Javier De; Ocio, Enrique M.; Díaz-Rodríguez, Elena; Montero, Juan C.; Martín, Montserrat; Blanco, Juan F.; Sanchez-Guijo, Fermín M.; Pandiella, Atanasio; San Miguel, Jesús F.; Garayoa, Mercedes

    2014-01-01

    Despite evidence about the implication of the bone marrow (BM) stromal microenvironment in multiple myeloma (MM) cell growth and survival, little is known about the effects of myelomatous cells on BM stromal cells. Mesenchymal stromal cells (MSCs) from healthy donors (dMSCs) or myeloma patients (pMSCs) were co-cultured with the myeloma cell line MM.1S, and the transcriptomic profile of MSCs induced by this interaction was analyzed. Deregulated genes after co-culture common to both d/pMSCs revealed functional involvement in tumor microenvironment cross-talk, myeloma growth induction and drug resistance, angiogenesis and signals for osteoclast activation and osteoblast inhibition. Additional genes induced by co-culture were exclusively deregulated in pMSCs and predominantly associated to RNA processing, the ubiquitine-proteasome pathway, cell cycle regulation, cellular stress and non-canonical Wnt signaling. The upregulated expression of five genes after co-culture (CXCL1, CXCL5 and CXCL6 in d/pMSCs, and Neuregulin 3 and Norrie disease protein exclusively in pMSCs) was confirmed, and functional in vitro assays revealed putative roles in MM pathophysiology. The transcriptomic profile of pMSCs co-cultured with myeloma cells may better reflect that of MSCs in the BM of myeloma patients, and provides new molecular insights to the contribution of these cells to MM pathophysiology and to myeloma bone disease. PMID:25268740

  6. Transcriptomic profile induced in bone marrow mesenchymal stromal cells after interaction with multiple myeloma cells: implications in myeloma progression and myeloma bone disease.

    PubMed

    Garcia-Gomez, Antonio; De Las Rivas, Javier; Ocio, Enrique M; Díaz-Rodríguez, Elena; Montero, Juan C; Martín, Montserrat; Blanco, Juan F; Sanchez-Guijo, Fermín M; Pandiella, Atanasio; San Miguel, Jesús F; Garayoa, Mercedes

    2014-09-30

    Despite evidence about the implication of the bone marrow (BM) stromal microenvironment in multiple myeloma (MM) cell growth and survival, little is known about the effects of myelomatous cells on BM stromal cells. Mesenchymal stromal cells (MSCs) from healthy donors (dMSCs) or myeloma patients (pMSCs) were co-cultured with the myeloma cell line MM.1S, and the transcriptomic profile of MSCs induced by this interaction was analyzed. Deregulated genes after co-culture common to both d/pMSCs revealed functional involvement in tumor microenvironment cross-talk, myeloma growth induction and drug resistance, angiogenesis and signals for osteoclast activation and osteoblast inhibition. Additional genes induced by co-culture were exclusively deregulated in pMSCs and predominantly associated to RNA processing, the ubiquitine-proteasome pathway, cell cycle regulation, cellular stress and non-canonical Wnt signaling. The upregulated expression of five genes after co-culture (CXCL1, CXCL5 and CXCL6 in d/pMSCs, and Neuregulin 3 and Norrie disease protein exclusively in pMSCs) was confirmed, and functional in vitro assays revealed putative roles in MM pathophysiology. The transcriptomic profile of pMSCs co-cultured with myeloma cells may better reflect that of MSCs in the BM of myeloma patients, and provides new molecular insights to the contribution of these cells to MM pathophysiology and to myeloma bone disease.

  7. Plasmablastic multiple myeloma following clear cell renal cell carcinoma

    PubMed Central

    Padhi, Somanath; Mokkappan, Sudhagar; Varghese, Renu G’ Boy; Veerappan, Ilangovan

    2014-01-01

    We aim to describe the clinicohaematological profile of an elderly male with plasmablastic multiple myeloma (MM) (IgG λ, International System Stage II) with an unfavourable outcome following chemotherapy. The serum interleukin-6 level was found to be markedly elevated (2464 pg/mL, reference; <50 pg/mL). Thirty-six months prior to MM diagnosis, he underwent left radical nephrectomy for a stage III (pT3N0M0) clear cell renal cell carcinoma (RCC, Fuhrman grade 2). The unique MM-RCC association, shared risk factors, myeloma pathobiology and clinical implications are discussed with a brief literature review. PMID:25103318

  8. Antiproliferative and Antiangiogenic Effects of Punica granatum Juice (PGJ) in Multiple Myeloma (MM).

    PubMed

    Tibullo, Daniele; Caporarello, Nunzia; Giallongo, Cesarina; Anfuso, Carmelina Daniela; Genovese, Claudia; Arlotta, Carmen; Puglisi, Fabrizio; Parrinello, Nunziatina L; Bramanti, Vincenzo; Romano, Alessandra; Lupo, Gabriella; Toscano, Valeria; Avola, Roberto; Brundo, Maria Violetta; Di Raimondo, Francesco; Raccuia, Salvatore Antonio

    2016-10-01

    Multiple myeloma (MM) is a clonal B-cell malignancy characterized by an accumulation of clonal plasma cells (PC) in the bone marrow (BM) leading to bone destruction and BM failure. Despite recent advances in pharmacological therapy, MM remains a largely incurable pathology. Therefore, novel effective and less toxic agents are urgently necessary. In the last few years, pomegranate has been studied for its potential therapeutic properties including treatment and prevention of cancer. Pomegranate juice (PGJ) contains a number of potential active compounds including organic acids, vitamins, sugars, and phenolic components that are all responsible of the pro-apoptotic effects observed in tumor cell line. The aim of present investigation is to assess the antiproliferative and antiangiogenic potential of the PGJ in human multiple myeloma cell lines. Our data demonstrate the anti-proliferative potential of PGJ in MM cells; its ability to induce G0/G1 cell cycle block and its anti-angiogenic effects. Interestingly, sequential combination of bortezomib/PGJ improved the cytotoxic effect of the proteosome inhibitor. We investigated the effect of PGJ on angiogenesis and cell migration/invasion. Interestingly, we observed an inhibitory effect on the tube formation, microvessel outgrowth aorting ring and decreased cell migration and invasion as showed by wound-healing and transwell assays, respectively. Analysis of angiogenic genes expression in endothelial cells confirmed the anti-angiogenic properties of pomegranate. Therefore, PGJ administration could represent a good tool in order to identify novel therapeutic strategies for MM treatment, exploiting its anti-proliferative and anti-angiogenic effects. Finally, the present research supports the evidence that PGJ could play a key role of a future therapeutic approach for treatment of MM in order to optimize the pharmacological effect of bortezomib, especially as adjuvant after treatment.

  9. Antiproliferative and Antiangiogenic Effects of Punica granatum Juice (PGJ) in Multiple Myeloma (MM)

    PubMed Central

    Tibullo, Daniele; Caporarello, Nunzia; Giallongo, Cesarina; Anfuso, Carmelina Daniela; Genovese, Claudia; Arlotta, Carmen; Puglisi, Fabrizio; Parrinello, Nunziatina L.; Bramanti, Vincenzo; Romano, Alessandra; Lupo, Gabriella; Toscano, Valeria; Avola, Roberto; Brundo, Maria Violetta; Di Raimondo, Francesco; Raccuia, Salvatore Antonio

    2016-01-01

    Multiple myeloma (MM) is a clonal B-cell malignancy characterized by an accumulation of clonal plasma cells (PC) in the bone marrow (BM) leading to bone destruction and BM failure. Despite recent advances in pharmacological therapy, MM remains a largely incurable pathology. Therefore, novel effective and less toxic agents are urgently necessary. In the last few years, pomegranate has been studied for its potential therapeutic properties including treatment and prevention of cancer. Pomegranate juice (PGJ) contains a number of potential active compounds including organic acids, vitamins, sugars, and phenolic components that are all responsible of the pro-apoptotic effects observed in tumor cell line. The aim of present investigation is to assess the antiproliferative and antiangiogenic potential of the PGJ in human multiple myeloma cell lines. Our data demonstrate the anti-proliferative potential of PGJ in MM cells; its ability to induce G0/G1 cell cycle block and its anti-angiogenic effects. Interestingly, sequential combination of bortezomib/PGJ improved the cytotoxic effect of the proteosome inhibitor. We investigated the effect of PGJ on angiogenesis and cell migration/invasion. Interestingly, we observed an inhibitory effect on the tube formation, microvessel outgrowth aorting ring and decreased cell migration and invasion as showed by wound-healing and transwell assays, respectively. Analysis of angiogenic genes expression in endothelial cells confirmed the anti-angiogenic properties of pomegranate. Therefore, PGJ administration could represent a good tool in order to identify novel therapeutic strategies for MM treatment, exploiting its anti-proliferative and anti-angiogenic effects. Finally, the present research supports the evidence that PGJ could play a key role of a future therapeutic approach for treatment of MM in order to optimize the pharmacological effect of bortezomib, especially as adjuvant after treatment. PMID:27706074

  10. Identify multiple myeloma stem cells: Utopia?

    PubMed

    Saltarella, Ilaria; Lamanuzzi, Aurelia; Reale, Antonia; Vacca, Angelo; Ria, Roberto

    2015-01-26

    Multiple myeloma (MM) is a hematologic malignancy of monoclonal plasma cells which remains incurable despite recent advances in therapies. The presence of cancer stem cells (CSCs) has been demonstrated in many solid and hematologic tumors, so the idea of CSCs has been proposed for MM, even if MM CSCs have not been define yet. The existence of myeloma CSCs with clonotypic B and clonotypic non B cells was postulated by many groups. This review aims to focus on these distinct clonotypic subpopulations and on their ability to develop and sustain MM. The bone marrow microenvironment provides to MM CSCs self-renewal, survival and drug resistance thanks to the presence of normal and cancer stem cell niches. The niches and CSCs interact each other through adhesion molecules and the interplay between ligands and receptors activates stemness signaling (Hedgehog, Wnt and Notch pathways). MM CSCs are also supposed to be responsible for drug resistance that happens in three steps from the initial cancer cell homing microenvironment-mediated to development of microenvironment-independent drug resistance. In this review, we will underline all these aspects of MM CSCs.

  11. Fucoidan inhibits angiogenesis induced by multiple myeloma cells.

    PubMed

    Liu, Fen; Luo, Guoping; Xiao, Qing; Chen, Liping; Luo, Xiaohua; Lv, Jinglong; Chen, Lixue

    2016-10-01

    Multiple myeloma (MM) remains an incurable hematological neoplasms. Our previous studies showed that Fucoidan possessed anti-myeloma effect by inducing apoptosis and inhibiting invasion of myeloma cells. In this study, we evaluated the effect of Fucoidan on angiogenesis induced by human myeloma cells and elucidated its possible mechanisms. Multiple myeloma cells were treated with Fucoidan at different concentrations, then the conditioned medium (CM) was collected. The levels of VEGF in the CM were tested by ELISA. The results showed that Fucoidan significantly decreased VEGF secretion by RPMI-8226 and U266 cells. The tube formation assay and migration test on human umbilical vein endothelial cells (HUVECs) were used to examine the effect of Fucoidan on angiogenesis induced by human myeloma cells. The results showed that Fucoidan decreased HUVECs formed tube structures and inhibited HUVECs migration, and suppressed the angiogenic ability of multiple myeloma RPMI-8226 and U266 cells in a dose-dependent manner. The study also showed that Fucoidan downregulated the expression of several kinds of proteins, which may be correlated with the reduction of angiogenesis induced by myeloma cells. Moreover, results were compared from normoxic and hypoxic conditions, they showed that Fucoidan had anti-angiogenic activity. Furthermore, in a multiple myeloma xenograft mouse model, it indicated that Fucoidan negatively affected tumor growth and angiogenesis in vivo. In conclusion, our results demonstrate that Fucoidan was able to interfere with angiogenesis of multiple myeloma cells both in vitro and in vivo and may have a substantial potential in the treatment of MM.

  12. Characterization of clonogenic multiple myeloma cells.

    PubMed

    Matsui, William; Huff, Carol Ann; Wang, Qiuju; Malehorn, Matthew T; Barber, James; Tanhehco, Yvette; Smith, B Douglas; Civin, Curt I; Jones, Richard J

    2004-03-15

    The identity of the cells responsible for the initiation and maintenance of multiple myeloma (MM) remains unclear largely because of the difficulty growing MM cells in vitro and in vivo. MM cell lines and clinical specimens are characterized by malignant plasma cells that express the cell surface antigen syndecan-1 (CD138); however, CD138 expression is limited to terminally differentiated plasma cells during B-cell development. Moreover, circulating B cells that are clonally related to MM plasma cells have been reported in some patients with MM. We found that human MM cell lines contained small (< 5%) subpopulations that lacked CD138 expression and had greater clonogenic potential in vitro than corresponding CD138+ plasma cells. CD138- cells from clinical MM samples were similarly clonogenic both in vitro and in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice, whereas CD138+ cells were not. Furthermore, CD138- cells from both cell lines and clinical samples phenotypically resembled postgerminal center B cells, and their clonogenic growth was inhibited by the anti-CD20 monoclonal antibody rituximab. These data suggest that MM "stem cells" are CD138- B cells with the ability to replicate and subsequently differentiate into malignant CD138+ plasma cells.

  13. Characterization of clonogenic multiple myeloma cells

    PubMed Central

    Matsui, William; Huff, Carol Ann; Wang, Qiuju; Malehorn, Matthew T.; Barber, James; Tanhehco, Yvette; Smith, B. Douglas; Civin, Curt I.; Jones, Richard J.

    2012-01-01

    The identity of the cells responsible for the initiation and maintenance of multiple myeloma (MM) remains unclear largely because of the difficulty growing MM cells in vitro and in vivo. MM cell lines and clinical specimens are characterized by malignant plasma cells that express the cell surface antigen syndecan-1 (CD138); however, CD138 expression is limited to terminally differentiated plasma cells during B-cell development. Moreover, circulating B cells that are clonally related to MM plasma cells have been reported in some patients with MM. We found that human MM cell lines contained small (< 5%) subpopulations that lacked CD138 expression and had greater clonogenic potential in vitro than corresponding CD138+ plasma cells. CD138− cells from clinical MM samples were similarly clonogenic both in vitro and in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice, whereas CD138+ cells were not. Furthermore, CD138− cells from both cell lines and clinical samples phenotypically resembled postgerminal center B cells, and their clonogenic growth was inhibited by the anti-CD20 monoclonal antibody rituximab. These data suggest that MM “stem cells” are CD138− B cells with the ability to replicate and subsequently differentiate into malignant CD138+ plasma cells. PMID:14630803

  14. Enhancing cytokine-induced killer cell therapy of multiple myeloma.

    PubMed

    Liu, Chunsheng; Suksanpaisan, Lukkana; Chen, Yun-Wen; Russell, Stephen J; Peng, Kah-Whye

    2013-06-01

    Cytokine-induced killer (CIK) cells are in clinical testing against various tumor types, including multiple myeloma. In this study, we show that CIK cells have activity against subcutaneous and disseminated models of human myeloma (KAS-6/1), which can be enhanced by infecting the CIK cells with an oncolytic measles virus (MV) or by pretreating the myeloma cells with ionizing radiation (XRT). KAS-6/1 cells were killed by coculture with CIK or MV-infected CIK (CIK/MV) cells, and the addition of an anti-NKG2D antibody inhibited cytolysis by 50%. However, human bone marrow stromal cells can reduce CIK and CIK/MV mediated killing of myeloma cells (RPMI 8226, JJN-3 and MM1). In vivo, CIK and CIK/MV prolonged the survival of mice with systemic myeloma, although CIK/MV showed enhanced antitumor activity compared with CIK. Irradiation of the KAS-6/1 cells induced mRNA and protein expression of NKG2D ligands, MICA, and MICB in a dose-dependent manner and enhanced delivery of CIK/MV to the irradiated tumors. In both subcutaneous and disseminated myeloma models, XRT at 2 Gy resulted in superior prolongation of the survival of mice given CIK/MV therapy compared with CIK/MV with no XRT. This study demonstrates the potential of CIK against myeloma and that the combination of virotherapy with radiation could be used to further enhance therapeutic outcome using CIK cells.

  15. Multiple myeloma cancer stem cells

    PubMed Central

    Gao, Minjie; Kong, Yuanyuan; Yang, Guang; Gao, Lu; Shi, Jumei

    2016-01-01

    Multiple myeloma (MM) remains incurable despite much progress that has been made in the treatment of the disease. MM cancer stem cell (MMSC), a rare subpopulation of MM cells with the capacity for self-renewal and drug resistance, is considered to lead to disease relapse. Several markers such as side population (SP) and ALDH1+ have been used to identify MMSCs. However, ideally and more precisely, the identification of the MMSCs should rely on MMSCs phenotype. Unfortunately the MMSC phenotype has not been properly defined yet. Drug resistance is the most important property of MMSCs and contributes to disease relapse, but the mechanisms of drug resistance have not been fully understood. The major signaling pathways involved in the regulation of self-renewal and differentiation of MMSCs include Hedgehog (Hh), Wingless (Wnt), Notch and PI3K/Akt/mTOR. However, the precise role of these signaling pathways needs to be clarified. It has been reported that the microRNA profile of MMSCs is remarkably different than that of non-MMSCs. Therefore, the search for targeting MMSCs has also been focused on microRNAs. Complex and mutual interactions between the MMSC and the surrounding bone marrow (BM) microenvironment sustain self-renewal and survival of MMSC. However, the required molecules for the interaction of the MMSC and the surrounding BM microenvironment need to be further identified. In this review, we summarize the current state of knowledge of MMSCs regarding their phenotype, mechanisms of drug resistance, signaling pathways that regulate MMSCs self-renewal and differentiation, abnormal microRNAs expression, and their interactions with the BM microenvironment. PMID:27007154

  16. Persistent use of false myeloma cell lines.

    PubMed

    Drexler, Hans G; Matsuo, Yoshinobu; MacLeod, Roderick A E

    2003-09-01

    Multiple myeloma (MM) is a neoplasm of a terminally differentiated B-cell. Human myeloma cell lines were shown to be suitable model systems for use in various fields of the biological sciences. Within the last 20 years more than 100 cell lines have been established. So-called 'myeloma cell lines' have been previously reported and are still widely used which are in reality Epstein-Barr virus (EBV)-positive B-lymphoblastoid cell lines. The presence of the EBV-genome in residual normal B-cells provides them with a selective growth advantage after explantation. Cell lines represent an extremely important resource for research in a variety of fields and disciplines. As the cell lines are used as in vitro model systems in lieu of primary material, it is crucial that the cells in the culture flasks faithfully correspond to the purported objects of study. On closer examination, the use of false cell lines may be seen to invalidate a significant percentage of scientific work, or at least cast doubts on the relevance of these in vitro results to the cell type or tumor in vivo. Ultimately, use of cross-contaminated cell lines is a waste of human and material resources. Henceforth, it should be mandatory to prove the proper derivation of each new cell line by comparing DNA fingerprints or karyotypes of the patient's primary cells and the cultured cells. The availability of well characterized and authenticated bona fide MM cell lines is of great importance for the study of the biology, etiology and treatment of the disease.

  17. Up-regulation of hexokinaseII in myeloma cells: targeting myeloma cells with 3-bromopyruvate.

    PubMed

    Nakano, Ayako; Miki, Hirokazu; Nakamura, Shingen; Harada, Takeshi; Oda, Asuka; Amou, Hiroe; Fujii, Shiro; Kagawa, Kumiko; Takeuchi, Kyoko; Ozaki, Shuji; Matsumoto, Toshio; Abe, Masahiro

    2012-02-01

    Hexokinase II (HKII), a key enzyme of glycolysis, is widely over-expressed in cancer cells. However, HKII levels and its roles in ATP production and ATP-dependent cellular process have not been well studied in hematopoietic malignant cells including multiple myeloma (MM) cells.We demonstrate herein that HKII is constitutively over-expressed in MM cells. 3-bromopyruvate (3BrPA), an inhibitor of HKII, promptly and substantially suppresses ATP production and induces cell death in MM cells. Interestingly, cocultures with osteoclasts (OCs) but not bone marrow stromal cells (BMSCs) enhanced the phosphorylation of Akt along with an increase in HKII levels and lactate production in MM cells. The enhancement of HKII levels and lactate production in MM cells by OCs were mostly abrogated by the PI3K inhibitor LY294002, suggesting activation of glycolysis in MM cells by OCs via the PI3K-Akt-HKII pathway. Although BMSCs and OCs stimulate MM cell growth and survival, 3BrPA induces cell death in MM cells even in cocultures with OCs as well as BMSCs. Furthermore, 3BrPA was able to diminish ATP-dependent ABC transporter activity to restore drug retention in MM cells in the presence of OCs. These results may underpin possible clinical application of 3BrPA in patients with MM.

  18. Chimeric Antigen Receptor T-cell Therapies for Multiple Myeloma.

    PubMed

    Mikkilineni, Lekha; Kochenderfer, James N

    2017-09-19

    Multiple myeloma (MM) is a nearly always incurable malignancy of plasma cells, so new approaches to treatment are needed. T-cell therapies are a promising approach for treating MM, with a mechanism of action different than those of standard MM treatments. Chimeric antigen receptors (CARs) are fusion proteins incorporating antigen-recognition domains and T-cell signaling domains. T-cells genetically engineered to express CARs can specifically recognize antigens. Success of CAR T-cells against leukemia and lymphoma has encouraged development of CAR T-cell therapies for MM. Target antigens for CARs must be expressed on malignant cells, but expression on normal cells must be absent or limited. B-cell maturation antigen (BCMA) is expressed by normal and malignant plasma cells. CAR T-cells targeting B-cell maturation antigen have demonstrated significant anti-myeloma activity in early clinical trials. Toxicities in these trials, including cytokine-release syndrome, have been similarto toxicities observed in CAR T-cell trials for leukemia. Targeting postulated CD19(+) myeloma stem cells with anti-CD19 CAR T-cells is a novel approach to MM therapy. MM antigens including CD138, CD38, signaling lymphocyte-activating molecule 7 (SLAMF7), and kappa light chain are under investigation as CAR targets. MM is genetically and phenotypically heterogeneous, so targeting of more than one antigen might often be required for effective treatment of MM with CAR T cells. Integration of CAR T cells with other myeloma therapies is an important area of future research. CAR T cell therapies for MM are at an early stage of development but have great promise to improve MM treatment. Copyright © 2017 American Society of Hematology.

  19. Hydroxychloroquine potentiates carfilzomib toxicity towards myeloma cells.

    PubMed

    Baranowska, Katarzyna; Misund, Kristine; Starheim, Kristian K; Holien, Toril; Johansson, Ida; Darvekar, Sagar; Buene, Glenn; Waage, Anders; Bjørkøy, Geir; Sundan, Anders

    2016-10-25

    Cells degrade proteins either by proteasomes that clinically are targeted by for example bortezomib or carfilzomib, or by formation of autophagosomes and lysosomal degradation that can be inhibited by hydroxychloroquine (HCQ). Multiple myeloma is unique among cancers because proteasomal inhibition has good clinical effects. However, some multiple myeloma patients display intrinsic resistance to the treatment and most patients acquire resistance over time. We hypothesized that simultaneous targeting both arms of protein degradation could be a way to improve treatment of multiple myeloma. Here we tested the combined effects of the lysosomal inhibitor HCQ and clinically relevant proteasome inhibitors on myeloma cell lines and primary cells. Carfilzomib and bortezomib both induced immunoglobulin-containing aggregates in myeloma cells. HCQ significantly potentiated the effect of carfilzomib in both cell lines and in primary myeloma cells. In contrast, HCQ had little or no effects on the toxicity of bortezomib. Furthermore, cells adapted to tolerate high levels of carfilzomib could be re-sensitized to the drug by co-treatment with HCQ. Thus, we show that inhibition of lysosomal degradation can overcome carfilzomib resistance, suggesting that the role of autophagy in myeloma cells is dependent on type of proteasome inhibitor. In conclusion, attempts should be made to combine HCQ with carfilzomib in the treatment of multiple myeloma.

  20. Hydroxychloroquine potentiates carfilzomib toxicity towards myeloma cells

    PubMed Central

    Starheim, Kristian K.; Holien, Toril; Johansson, Ida; Darvekar, Sagar; Buene, Glenn; Waage, Anders; Bjørkøy, Geir; Sundan, Anders

    2016-01-01

    Cells degrade proteins either by proteasomes that clinically are targeted by for example bortezomib or carfilzomib, or by formation of autophagosomes and lysosomal degradation that can be inhibited by hydroxychloroquine (HCQ). Multiple myeloma is unique among cancers because proteasomal inhibition has good clinical effects. However, some multiple myeloma patients display intrinsic resistance to the treatment and most patients acquire resistance over time. We hypothesized that simultaneous targeting both arms of protein degradation could be a way to improve treatment of multiple myeloma. Here we tested the combined effects of the lysosomal inhibitor HCQ and clinically relevant proteasome inhibitors on myeloma cell lines and primary cells. Carfilzomib and bortezomib both induced immunoglobulin-containing aggregates in myeloma cells. HCQ significantly potentiated the effect of carfilzomib in both cell lines and in primary myeloma cells. In contrast, HCQ had little or no effects on the toxicity of bortezomib. Furthermore, cells adapted to tolerate high levels of carfilzomib could be re-sensitized to the drug by co-treatment with HCQ. Thus, we show that inhibition of lysosomal degradation can overcome carfilzomib resistance, suggesting that the role of autophagy in myeloma cells is dependent on type of proteasome inhibitor. In conclusion, attempts should be made to combine HCQ with carfilzomib in the treatment of multiple myeloma. PMID:27683126

  1. Monitoring multiple myeloma by next-generation sequencing of V(D)J rearrangements from circulating myeloma cells and cell-free myeloma DNA

    PubMed Central

    Oberle, Anna; Brandt, Anna; Voigtlaender, Minna; Thiele, Benjamin; Radloff, Janina; Schulenkorf, Anita; Alawi, Malik; Akyüz, Nuray; März, Manuela; Ford, Christopher T.; Krohn-Grimberghe, Artus; Binder, Mascha

    2017-01-01

    Recent studies suggest that circulating tumor cells and cell-free DNA may represent powerful non-invasive tools for monitoring disease in patients with solid and hematologic malignancies. Here, we conducted a pilot study in 27 myeloma patients to explore the clonotypic V(D)J rearrangement for monitoring circulating myeloma cells and cell-free myeloma DNA. Next-generation sequencing was used to define the myeloma V(D)J rearrangement and for subsequent peripheral blood tracking after treatment initiation. Positivity for circulating myeloma cells/cell-free myeloma was associated with conventional remission status (P<0.001) and 91% of non-responders/progressors versus 41% of responders had evidence of persistent circulating myeloma cells/cell-free myeloma DNA (P<0.001). About half of the partial responders showed complete clearance of circulating myeloma cells/cell-free myeloma DNA despite persistent M-protein, suggesting that these markers are less inert than the M-protein, rely more on cell turnover and, therefore, decline more rapidly after initiation of effective treatment. Positivity for circulating myeloma cells and for cell-free myeloma DNA were associated with each other (P=0.042), but discordant in 30% of cases. This indicates that cell-free myeloma DNA may not be generated entirely by circulating myeloma cells and may reflect overall tumor burden. Prospective studies need to define the predictive potential of high-sensitivity determination of circulating myeloma cells and DNA in the monitoring of multiple myeloma. PMID:28183851

  2. Elotuzumab enhances natural killer cell activation and myeloma cell killing through interleukin-2 and TNF-α pathways.

    PubMed

    Balasa, Balaji; Yun, Rui; Belmar, Nicole A; Fox, Melvin; Chao, Debra T; Robbins, Michael D; Starling, Gary C; Rice, Audie G

    2015-01-01

    Elotuzumab is a humanized monoclonal antibody specific for signaling lymphocytic activation molecule-F7 (SLAMF7, also known as CS1, CD319, or CRACC) that enhances natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC) of SLAMF7-expressing myeloma cells. This study explored the mechanisms underlying enhanced myeloma cell killing with elotuzumab as a single agent and in combination with lenalidomide, to support ongoing phase III trials in patients with relapsed/refractory or newly-diagnosed multiple myeloma (MM). An in vitro peripheral blood lymphocyte (PBL)/myeloma cell co-culture model was developed to evaluate the combination of elotuzumab and lenalidomide. Expression of activation markers and adhesion receptors was evaluated by flow cytometry, cytokine expression by Luminex and ELISPOT assays, and cytotoxicity by myeloma cell counts. Elotuzumab activated NK cells and promoted myeloma cell death in PBL/myeloma cell co-cultures. The combination of elotuzumab plus lenalidomide demonstrated superior anti-myeloma activity on established MM xenografts in vivo and in PBL/myeloma cell co-cultures in vitro than either agent alone. The combination enhanced myeloma cell killing by modulating NK cell function that coincided with the upregulation of adhesion and activation markers, including interleukin (IL)-2Rα expression, IL-2 production by CD3(+)CD56(+) lymphocytes, and tumor necrosis factor (TNF)-α production. In co-culture assays, TNF-α directly increased NK cell activation and myeloma cell death with elotuzumab or elotuzumab plus lenalidomide, and neutralizing TNF-α decreased NK cell activation and myeloma cell death with elotuzumab. These results demonstrate that elotuzumab activates NK cells and induces myeloma cell death via NK cell-mediated ADCC, which is further enhanced when combined with lenalidomide.

  3. Myeloma cells resistance to NK cell lysis mainly involves an HLA class I-dependent mechanism.

    PubMed

    Gao, Minjie; Gao, Lu; Yang, Guang; Tao, Yi; Hou, Jun; Xu, Hongwei; Hu, Xiaojing; Han, Ying; Zhang, Qianqiao; Zhan, Fenghuang; Wu, Xiaosong; Shi, Jumei

    2014-07-01

    The anti-multiple myeloma (MM) potential of natural killer (NK) cells has been of rising interest in recent years. However, the molecular mechanism of NK cell cytotoxicity to myeloma cells remains unclear. In the present study, we investigated the expressions of human leukocyte antigen (HLA) class I and HLA-G in patient myeloma cells, and determined their relevance in patient tumor-cell susceptibility to NK cell cytotoxicity. Our results showed that patient myeloma cells (n = 12) were relatively resistant to NK-92 cell lysis, compared with myeloma cell lines (n = 7, P < 0.01). Gene expression profiling and flow cytometry analysis showed that both mRNA and protein of HLA class I were highly expressed in 12 patient myeloma cells. Interestingly, no or low HLA-G surface expression was detected, although multiple HLA-G transcripts were detected in these myeloma cells. NK cell function assay showed that down-regulating HLA class I expression on patient cells by acid treatment significantly increased the susceptibility of MM cells to NK-mediated lysis. Furthermore, we found that the blocking of membrane-bound HLA class I rather than HLA-G using antibodies on myeloma samples markedly increased their susceptibility to NK-mediated killing. These results demonstrated that the resistance of patient MM cells to NK lysis mainly involves an HLA class I-dependent mechanism, suggesting that HLA class I may be involved in protecting MM cells from NK-mediated attack and contribute to their immune escape in vivo.

  4. [Immunophenotype in multiple myeloma cells detected by multiparameter flow cytometry].

    PubMed

    Cao, Fang-Fang; Chen, Fang; Hu, Yan-Ping; Zhang, Ji-Hong

    2012-06-01

    This study was purposed to investigate the immunophenotypic characteristics in multiple myeloma (MM) cells and their significance. Thirty three cases of MM and 12 cases of reactive plasmacytosis (as control group) were enrolled in the study. The expressions of surface antigens in MM cells were detected with flow cytometry by using direct immunofluorescent technique and gating method of CD38/SSC and were confirmed with morphologic observation of myeloma cells. The results indicated that the proportion of myeloma cells detected by morphologic examination was 6.0% - 76.0%. With CD38/SSC gating method, a cluster of CD38 bright positive cells could be detected in their scatter plot, the proportion ranged from 0.99% to 57.54%. Most phenotype of MM was 38(st+)CD138(+)CD19(-)CD56(+) (78.8%). While the expressions of CD20, CD33, CD117, HLA-DR were seen in some MM patients, the positive rates were 12.1%, 15.2%, 30.3%, 9.1%, respectively; the expression of other antigens was negative. cκ or cλ monoclonal restriction was detected in 27 cases (81.8%) of MM, both cκ and cλ in the remaining cases of MM was negative. It is concluded that detecting the immunophenotype of MM patients by flow cytometry with CD38/SSC gating method and basing on the heterogeneity of cell antigens can discriminate myeloma cells from normal plasma cells, which provides evidence for targeted therapy and prognosis evaluation.

  5. Degrasyn-like Symmetrical Compounds: Possible Therapeutic Agents for Multiple Myeloma (MM-I)

    PubMed Central

    Peng, Zhenghong; Maxwell, David; Sun, Duoli; Bhanu Prasad, Basvoju A.; Schuber, Paul T.; Pal, Ashutosh; Ying, Yunming; Han, Dongmei; Gao, Liwei; Wang, Shimei; Levitzki, Alexander; Kapuria, Vaibhav; Talpaz, Moshe; Young, Matthew; Showalter, Hollis D.; Donato, Nicholas J.; Bornmann, William. G.

    2014-01-01

    A series of degrasyn-like symmetrical compounds have been designed, synthesized, and screened against B cell malignancy (multiple myeloma, mantle cell lymphoma) cell lines. The lead compounds T5165804 and CP2005 showed higher nanomolar potency against these tumor cells in comparison to degrasyn and inhibited Usp9x activity in vitro and in intact cells. These observations suggest that this new class of compounds holds promise as cancer therapeutic agents PMID:24457091

  6. Degrasyn-like symmetrical compounds: possible therapeutic agents for multiple myeloma (MM-I).

    PubMed

    Peng, Zhenghong; Maxwell, David S; Sun, Duoli; Bhanu Prasad, Basvoju A; Schuber, Paul T; Pal, Ashutosh; Ying, Yunming; Han, Dongmei; Gao, Liwei; Wang, Shimei; Levitzki, Alexander; Kapuria, Vaibhav; Talpaz, Moshe; Young, Matthew; Showalter, Hollis D; Donato, Nicholas J; Bornmann, William G

    2014-02-15

    A series of degrasyn-like symmetrical compounds have been designed, synthesized, and screened against B cell malignancy (multiple myeloma, mantle cell lymphoma) cell lines. The lead compounds T5165804 and CP2005 showed higher nanomolar potency against these tumor cells in comparison to degrasyn and inhibited Usp9x activity in vitro and in intact cells. These observations suggest that this new class of compounds holds promise as cancer therapeutic agents.

  7. BCL-B (BCL2L10) is overexpressed in patients suffering from multiple myeloma (MM) and drives an MM-like disease in transgenic mice

    PubMed Central

    Puissant, Alexandre; Richez, Valentine; Cassel, Romeo; Fenouille, Nina; Gilleron, Jerome; Bailly-Maitre, Beatrice; Mallavialle, Aude; Marchetti, Sandrine; Amiot, Martine; Gomez-Bougie, Patricia; Avet-Loiseau, Herve; Hofman, Paul; Karsenti, Jean-Michel; Jeandel, Pierre-Yves; Blin-Wakkach, Claudine; Fuzibet, Jean-Gabriel

    2016-01-01

    Multiple myeloma (MM) evolves from a premalignant condition known as monoclonal gammopathy of undetermined significance (MGUS). However, the factors underlying the malignant transformation of plasmocytes in MM are not fully characterized. We report here that Eµ-directed expression of the antiapoptotic Bcl-B protein in mice drives an MM phenotype that reproduces accurately the human disease. Indeed, with age, Eµ-bcl-b transgenic mice develop the characteristic features of human MM, including bone malignant plasma cell infiltration, a monoclonal immunoglobulin peak, immunoglobulin deposit in renal tubules, and highly characteristic bone lytic lesions. In addition, the tumors are serially transplantable in irradiated wild-type mice, underlying the tumoral origin of the disease. Eµ-bcl-b plasmocytes show increased expression of a panel of genes known to be dysregulated in human MM pathogenesis. Treatment of Eµ-bcl-b mice with drugs currently used to treat patients such as melphalan and VELCADE efficiently kills malignant plasmocytes in vivo. Finally, we find that Bcl-B is overexpressed in plasmocytes from MM patients but neither in MGUS patients nor in healthy individuals, suggesting that Bcl-B may drive MM. These findings suggest that Bcl-B could be an important factor in MM disease and pinpoint Eµ-bcl-b mice as a pertinent model to validate new therapies in MM. PMID:27455953

  8. BCL-B (BCL2L10) is overexpressed in patients suffering from multiple myeloma (MM) and drives an MM-like disease in transgenic mice.

    PubMed

    Hamouda, Mohamed-Amine; Jacquel, Arnaud; Robert, Guillaume; Puissant, Alexandre; Richez, Valentine; Cassel, Romeo; Fenouille, Nina; Roulland, Sandrine; Gilleron, Jerome; Griessinger, Emmanuel; Dubois, Alix; Bailly-Maitre, Beatrice; Goncalves, Diogo; Mallavialle, Aude; Colosetti, Pascal; Marchetti, Sandrine; Amiot, Martine; Gomez-Bougie, Patricia; Rochet, Nathalie; Deckert, Marcel; Avet-Loiseau, Herve; Hofman, Paul; Karsenti, Jean-Michel; Jeandel, Pierre-Yves; Blin-Wakkach, Claudine; Nadel, Bertrand; Cluzeau, Thomas; Anderson, Kenneth C; Fuzibet, Jean-Gabriel; Auberger, Patrick; Luciano, Frederic

    2016-08-22

    Multiple myeloma (MM) evolves from a premalignant condition known as monoclonal gammopathy of undetermined significance (MGUS). However, the factors underlying the malignant transformation of plasmocytes in MM are not fully characterized. We report here that Eµ-directed expression of the antiapoptotic Bcl-B protein in mice drives an MM phenotype that reproduces accurately the human disease. Indeed, with age, Eµ-bcl-b transgenic mice develop the characteristic features of human MM, including bone malignant plasma cell infiltration, a monoclonal immunoglobulin peak, immunoglobulin deposit in renal tubules, and highly characteristic bone lytic lesions. In addition, the tumors are serially transplantable in irradiated wild-type mice, underlying the tumoral origin of the disease. Eµ-bcl-b plasmocytes show increased expression of a panel of genes known to be dysregulated in human MM pathogenesis. Treatment of Eµ-bcl-b mice with drugs currently used to treat patients such as melphalan and VELCADE efficiently kills malignant plasmocytes in vivo. Finally, we find that Bcl-B is overexpressed in plasmocytes from MM patients but neither in MGUS patients nor in healthy individuals, suggesting that Bcl-B may drive MM. These findings suggest that Bcl-B could be an important factor in MM disease and pinpoint Eµ-bcl-b mice as a pertinent model to validate new therapies in MM.

  9. Clarithromycin Synergistically Enhances Thalidomide Cytotoxicity in Myeloma Cells.

    PubMed

    Qiu, Xu-Hua; Shao, Jing-Jing; Mei, Jian-Gang; Li, Han-Qing; Cao, Hong-Qin

    2016-01-01

    Clarithromycin (CAM) is a macrolide antibiotic that is widely used in the treatment of respiratory tract infections, sexually transmitted diseases and infections caused by the Helicobacter pylori and Mycobacterium avium complex. Recent studies showed that CAM was highly effective against multiple myeloma (MM) when used in combination with immunomodulatory drugs and dexamethasone. However, the related mechanism is still unknown. As 3 immunomodulatory agents are all effective in the respective regimen, we postulated that CAM might enhance the effect of immunomodulatory drugs. We evaluated the interaction effects of CAM and thalidomide on myeloma cells. Taking into consideration that thalidomide did not affect the proliferation of myeloma cells in vitro, we cocultured myeloma cells with peripheral blood monocytes and evaluated the effects of CAM and thalidomide on the cocultured cell model. Data showed that thalidomide and CAM synergistically inhibited the proliferation of the cells. On this same model, we also found that thalidomide and CAM synergistically decreased the secretion of tumor necrosis factor-α and interleukin-6. This might be caused by the effect of the 2 drugs on inhibiting the activation of ERK1/2 and AKT. These data suggest that the efficacy of CAM against MM was partly due to its synergistic action with the immunomodulatory agents.

  10. [Interaction between myeloma cells and bone tissue].

    PubMed

    Seckinger, A; Hose, D

    2014-06-01

    Multiple myeloma is the malignant disease which most frequently leads to bone lesions. Approximately 80% of myeloma patients develop osteoporosis, lytic bone lesions (osteolysis) or fractures during the course of the disease. Of these patients 43% suffer pathological fractures most often of the vertebrae followed by fractures of the long bones. The methods used in the described articles include, e.g. gene expression profiling, enzyme-linked immunosorbent assays and radiological techniques. Myeloma bone disease represents a threefold therapeutic problem: (i) per se because of the associated morbidity, mortality and the accompanying decrease of quality of life, (ii) as survival space for (residual) myeloma cells after primarily successful chemotherapy and subsequently necessary chemotherapeutic treatment, and (iii) the occurrence of bone lesions in asymptomatic patients is the most common cause for the initiation of treatment to avoid myeloma-induced fractures. Myeloma cells harbor a high median number of chromosomal aberrations and multiple changes in gene expression compared to normal bone marrow plasma cells leading to the aberrant production of survival, proliferation, pro-angiogenic and bone turnover influencing factors or the induction of those factors in the bone marrow microenvironment. This causes an imbalanced bone turnover in the sense of an increased number and activity of osteoclasts while bone formation by osteoblasts is almost completely suspended. Therapeutic approaches, systemically and locally therefore aim at stimulation of osteoblasts and inhibition of bone resorption.

  11. Role of Myeloma-Derived MIF in Myeloma Cell Adhesion to Bone Marrow and Chemotherapy Response.

    PubMed

    Zheng, Yuhuan; Wang, Qiang; Li, Tianshu; Qian, Jianfei; Lu, Yong; Li, Yi; Bi, Enguang; Reu, Frederic; Qin, Yu; Drazba, Judy; Hsi, Eric; Yang, Jing; Cai, Zhen; Yi, Qing

    2016-11-01

    Multiple myeloma (MM) remains an incurable cancer characterized by accumulation of malignant plasma cells in the bone marrow (BM). The mechanism underlying MM homing to BM is poorly elucidated. The clinical significance of migration inhibitory factor (MIF) expression was examined by analyzing six independent gene expression profile databases of primary MM cells using the Student's t test and Kaplan-Meier test. Enzyme-linked immunosorbent assay was used to examine MIF expression. In vivo bioluminescent imaging was used to determine MM cell localization and treatment efficacy in human MM xenograft mouse models, with three to four mice per group. MM cell attachment to BM stromal cells (BMSCs) was monitored by cell adhesion assay. MIF regulation of the expression of adhesion molecules was determined by chromatin immunoprecipitation (ChIP) assay. Statistical tests were two-sided. High levels of MIF were detected in MM BM (MIF level in BM plasma: healthy = 10.72 ± 5.788 ng/mL, n = 5; MM = 1811 ± 248.7 ng/mL, n = 10; P < .001) and associated with poor survival of patients (Kaplan-Meier test for MM OS: 87 MIF(high) patients, 86 MIF(low) patients, P = .02). Knocking down MIF impaired MM cell adhesion to BMSCs in vitro and led to formation of extramedullary tumors in SCID mice. MIF acted through surface receptor CXCR4 and adaptor COPS5 to regulate the expression of adhesion molecules ALCAM, ITGAV, and ITGB5 on MM cells. More importantly, MIF-deficient MM cells were sensitive to chemotherapy in vitro when cocultured with BMSCs and in vivo. MIF inhibitor 4-IPP sensitized MM cells to chemotherapy. MIF is an important player and a novel therapeutic target in MM. Inhibiting MIF activity will sensitize MM cells to chemotherapy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Cancer stem cells: controversies in multiple myeloma.

    PubMed

    Brennan, Sarah K; Matsui, William

    2009-11-01

    Increasing data suggest that the initiation, relapse, and progression of human cancers are driven by specific cell populations within an individual tumor. However, inconsistencies have emerged in precisely defining phenotypic markers that can reliably identify these "cancer stem cells" in nearly every human malignancy studied to date. Multiple myeloma, one of the first tumors postulated to be driven by a rare population of cancer stem cells, is no exception. Similar to other diseases, controversy surrounds the exact phenotype and biology of multiple myeloma cells with the capacity for clonogenic growth. Here, we review the studies that have led to these controversies and discuss potential reasons for these disparate findings. Moreover, we speculate how these inconsistencies may be resolved through studies by integrating advancements in both myeloma and stem cell biology.

  13. Abnormal cytokine production by bone marrow stromal cells of multiple myeloma patients in response to RPMI8226 myeloma cells.

    PubMed

    Zdzisińska, Barbara; Bojarska-Junak, Agnieszka; Dmoszyńska, Anna; Kandefer-Szerszeń, Martyna

    2008-01-01

    Recent studies indicate that bone marrow stromal cells (BMSCs) derived from patients with multiple myeloma (MM) differ from those of healthy donors in their expression of extracellular matrix compounds and in cytokine production. It is not known whether these abnormalities are primary or are acquired by BMSCs on contact with MM cells. Interleukin (IL)-6, IL-11, IL-10, and tumor necrosis factor (TNF)-alpha production by CD166+ mesenchymal BMSCs and the CD38+/CD138+ RPMI8226 myeloma cell line cultivated in vitro in monocultures or co-cultivated under cell-to-cell contact or non-contact conditions in the presence of a tissue culture insert were measured. Intracellular cytokines were measured by flow cytometry analysis as the percentage of cytokine-producing cells or by mean fluorescence intensity as the level of cytokine expression in cells. Additionally, ELISA was used to measure IL-6, soluble IL-6 receptor (sIL-6R), IL-11, IL-10, TNF-alpha, B-cell-activating factor of the TNF family (BAFF), hepatocyte growth factor (HGF), and osteopontin (OPN) production in the supernatants of the cultures and co-cultures. A higher ability of the BMSCs of MM patients than in controls was detected to produce IL-6, IL-10, TNF-alpha, OPN, and especially HGF and BAFF in response to the RPMI8226 cells. Moreover, the BMSCs of the MM patients significantly enhanced the production of sIL-6R by the RPMI8226 cells. Cytokines over-expressed by BMSCs of MM patients can function as growth factors for myeloma cells (IL-6, IL-10, HGF), migration stimulatory factors for tumor plasma cells (TNF-alpha, HGF), adhesion stimulatory factors (HGF, BAFF and OPN), stimulators of osteoclastogenesis (IL-6, TNF-alpha), and angiogenic factors (TNF-alpha). The results of this experiment strongly suggest that the BMSCs from MM patients differed in spontaneous and myeloma cell-induced production of cytokines, especially of HGF and BAFF, and these abnormalities were both primary and acquired by the BMSCs on contact

  14. Osteoblastic niche supports the growth of quiescent multiple myeloma cells

    PubMed Central

    Chen, Zheng; Orlowski, Robert Z.; Wang, Michael; Kwak, Larry

    2014-01-01

    The heterogeneity of multiple myeloma (MM) contributes to variable responses to therapy. In this study, we aim to correlate the heterogeneity of MM to the presence of quiescent cells using the PKH26 dye. We tracked the rare quiescent cells in different niches of the bone marrow by allowing the cells to cycle in vivo. Surprisingly, quiescent PKH+ MM cells prefer to reside within the osteoblastic niches of the bone marrow (PKH+/OS) rather than the vascular (VS) niches or the spleen. These cells (PKH+/OS) displayed enhanced stemlike properties by forming colonies in semisolid medium. PKH+ cells were highly tumorigenic compared with PKH– cells and were resistant to a variety of drugs. However, the levels of drug resistance were somewhat similar regardless of where the PKH+ cells were isolated. Our data indicate that osteoblastic niches support the growth of quiescent PKH+ cells and allow them to have stemlike functions. PMID:24425802

  15. Role of hematopoietic stem cell transplantation in multiple myeloma.

    PubMed

    Garcia, Ima N

    2015-02-01

    High-dose therapy followed by autologous stem cell transplantation (ASCT) has been the standard frontline consolidative therapy for patients with newly diagnosed multiple myeloma (MM) for > 2 decades. This approach has resulted in higher complete response (CR) rates and increased event-free survival and overall survival (OS) compared with conventional chemotherapy. The emergence of novel agent-based therapy combined with ASCT has revolutionized MM therapy by improving the CR rates and OS, raising questions concerning the role of hematopoietic stem cell transplantation in this setting.

  16. Targeting B-cell maturation antigen in multiple myeloma

    PubMed Central

    Tai, Yu-Tzu; Anderson, Kenneth C

    2015-01-01

    Novel effective immunotherapies are needed for patients with multiple myeloma (MM), since disease recurrence remains a major obstacle. B-cell maturation antigen (BCMA), a cell surface protein universally expressed on malignant plasma cells , has emerged as a very selective antigen to be targeted in novel treatments for MM. We here first review BCMA-related biology, and then highlight the recent clinical development of a novel afucosylated anti-BCMA monoclonal antibody conjugated with monomethyl auristatin F via noncleavable linker (GSK2857916). Chimeric antigen receptor-expressing T cells targeting BCMA may also induce specific and durable anti-MM responses by patients’ own effector cells. Clinical trials testing these two approaches (NCT02064387, NCT02215967) are currently ongoing in relapsed and refractory MM patients. PMID:26370838

  17. Concise review: Defining and targeting myeloma stem cell-like cells.

    PubMed

    Abe, Masahiro; Harada, Takeshi; Matsumoto, Toshio

    2014-05-01

    Multiple myeloma (MM) remains incurable despite recent advances in the treatment of MM. Although the idea of MM cancer stem cells (CSCs) has been proposed for the drug resistance in MM, MM CSCs have not been properly defined yet. Besides clonotypic B cells, phenotypically distinct MM plasma cell fractions have been demonstrated to possess a clonogenic capacity, leading to long-lasting controversies regarding the cells of origin in MM or MM-initiating cells. However, MM CSCs may not be a static population and survive as phenotypically and functionally different cell types via the transition between stem-like and non-stem-like states in local microenvironments, as observed in other types of cancers. Targeting MM CSCs is clinically relevant, and different approaches have been suggested to target molecular, metabolic and epigenetic signatures, and the self-renewal signaling characteristic of MM CSC-like cells.

  18. Combination of international scoring system 3, high lactate dehydrogenase, and t(4;14) and/or del(17p) identifies patients with multiple myeloma (MM) treated with front-line autologous stem-cell transplantation at high risk of early MM progression-related death.

    PubMed

    Moreau, Philippe; Cavo, Michele; Sonneveld, Pieter; Rosinol, Laura; Attal, Michel; Pezzi, Annalisa; Goldschmidt, Hartmut; Lahuerta, Juan Jose; Marit, Gerald; Palumbo, Antonio; van der Holt, Bronno; Bladé, Joan; Petrucci, Maria Teresa; Neben, Kai; san Miguel, Jesus; Patriarca, Francesca; Lokhorst, Henk; Zamagni, Elena; Hulin, Cyrille; Gutierrez, Norma; Facon, Thierry; Caillot, Denis; Benboubker, Lotfi; Harousseau, Jean-Luc; Leleu, Xavier; Avet-Loiseau, Hervé; Mary, Jean-Yves

    2014-07-10

    To construct and validate among patients with multiple myeloma (MM) who were treated with intensive therapy a prognostic index of early MM progression-related death. Patient-level data from the Intergroupe Francophone du Myélome (IFM) 2005-01 trial (N = 482) were used to construct the prognostic index. The event was MM progression-related death within 2 years from treatment initiation. The index was validated using data from three other trials: the Gruppo Italiano Malattie Ematologiche dell' Adulto (GIMEMA) 26866138-MMY-3006 trial (N = 480), the Programa para el Estudio de la Terapéutica en Hemopatía Maligna (PETHEMA)-GEMMENOS65 trial (N = 390), and the Hemato-Oncologie voor Volwassenen Nederland (HOVON) -65/German-Speaking Myeloma Multicenter Group (GMMG) -HD4 trial (N = 827). The risk of early MM progression-related death was related to three independent prognostic variables: lactate dehydrogenase (LDH) higher than than normal, International Staging System 3 (ISS3), and adverse cytogenetics [t(4;14) and/or del(17p)]. These three variables enabled the definition of an ordinal prognostic classification composed of four scores (0 to 3). Patients with a score of 3, defined by the presence of t(4;14) and/or del(17p) in addition to ISS3 and/or high LDH, comprised 5% (20 of 387 patients) to 8% (94 of 1,139 patients) of the patients in the learning and validation samples, respectively, and they had a very poor prognosis. When applied to the population of 855 patients who had received bortezomib-based induction therapy in the four trials, the prognostic classification was also able to segregate patients into four categories, with a very poor prognosis attributed to patients with a score of 3. Our model allows the simple definition of a subgroup of MM patients at high risk of early MM progression-related death despite the use of the most modern and effective strategies. © 2014 by American Society of Clinical Oncology.

  19. Combination of International Scoring System 3, High Lactate Dehydrogenase, and t(4;14) and/or del(17p) Identifies Patients With Multiple Myeloma (MM) Treated With Front-Line Autologous Stem-Cell Transplantation at High Risk of Early MM Progression–Related Death

    PubMed Central

    Moreau, Philippe; Cavo, Michele; Sonneveld, Pieter; Rosinol, Laura; Attal, Michel; Pezzi, Annalisa; Goldschmidt, Hartmut; Lahuerta, Juan Jose; Marit, Gerald; Palumbo, Antonio; van der Holt, Bronno; Bladé, Joan; Petrucci, Maria Teresa; Neben, Kai; san Miguel, Jesus; Patriarca, Francesca; Lokhorst, Henk; Zamagni, Elena; Hulin, Cyrille; Gutierrez, Norma; Facon, Thierry; Caillot, Denis; Benboubker, Lotfi; Harousseau, Jean-Luc; Leleu, Xavier; Avet-Loiseau, Hervé; Mary, Jean-Yves

    2014-01-01

    Purpose To construct and validate among patients with multiple myeloma (MM) who were treated with intensive therapy a prognostic index of early MM progression–related death. Patients and Methods Patient-level data from the Intergroupe Francophone du Myélome (IFM) 2005-01 trial (N = 482) were used to construct the prognostic index. The event was MM progression–related death within 2 years from treatment initiation. The index was validated using data from three other trials: the Gruppo Italiano Malattie Ematologiche dell' Adulto (GIMEMA) 26866138-MMY-3006 trial (N = 480), the Programa para el Estudio de la Terapéutica en Hemopatía Maligna (PETHEMA)–GEMMENOS65 trial (N = 390), and the Hemato-Oncologie voor Volwassenen Nederland (HOVON) –65/German-Speaking Myeloma Multicenter Group (GMMG) –HD4 trial (N = 827). Results The risk of early MM progression–related death was related to three independent prognostic variables: lactate dehydrogenase (LDH) higher than than normal, International Staging System 3 (ISS3), and adverse cytogenetics [t(4;14) and/or del(17p)]. These three variables enabled the definition of an ordinal prognostic classification composed of four scores (0 to 3). Patients with a score of 3, defined by the presence of t(4;14) and/or del(17p) in addition to ISS3 and/or high LDH, comprised 5% (20 of 387 patients) to 8% (94 of 1,139 patients) of the patients in the learning and validation samples, respectively, and they had a very poor prognosis. When applied to the population of 855 patients who had received bortezomib-based induction therapy in the four trials, the prognostic classification was also able to segregate patients into four categories, with a very poor prognosis attributed to patients with a score of 3. Conclusion Our model allows the simple definition of a subgroup of MM patients at high risk of early MM progression–related death despite the use of the most modern and effective strategies. PMID:24888806

  20. Salvage Second Hematopoietic Cell Transplantation in Myeloma

    PubMed Central

    Michaelis, Laura C.; Saad, Ayman; Zhong, Xiaobo; Le-Rademacher, Jennifer; Freytes, Cesar O.; Marks, David I.; Lazarus, Hillard M.; Bird, Jennifer M.; Holmberg, Leona; Kamble, Rammurti T.; Kumar, Shaji; Lill, Michael; Meehan, Kenneth R.; Saber, Wael; Schriber, Jeffrey; Tay, Jason; Vogl, Dan T.; Wirk, Baldeep; Savani, Bipin N.; Gale, Robert P.; Vesole, David H.; Schiller, Gary J.; Abidi, Muneer; Anderson, Kenneth C.; Nishihori, Taiga; Kalaycio, Matt E.; Vose, Julie M.; Moreb, Jan S.; Drobyski, William; Munker, Reinhold; Roy, Vivek; Ghobadi, Armin; Holland, H. Kent; Nath, Rajneesh; To, L. Bik; Maiolino, Angelo; Kassim, Adetola A.; Giralt, Sergio A.; Landau, Heather; Schouten, Harry C.; Maziarz, Richard T.; Mikhael, Joseph; Kindwall-Keller, Tamila; Stiff, Patrick J.; Gibson, John; Lonial, Sagar; Krishnan, Amrita; Dispenzieri, Angela; Hari, Parameswaran

    2013-01-01

    Autologous hematopoietic cell transplantation (AHCT) as initial therapy of patients with multiple myeloma (MM) improves survival. However, data to support this approach for relapsed/progressive disease after initial AHCT (AHCT1) are limited. Using Center for International Blood and Marrow Transplant Research data, we report the outcomes of 187 patients who underwent a second AHCT (AHCT2) for the treatment of relapsed/progressive MM. Planned tandem AHCT was excluded. Median age at AHCT2 was 59 years (range, 28 to 72), and median patient follow-up was 47 months (range, 3 to 97). Nonrelapse mortality after AHCT2 was 2% at 1 year and 4% at 3 years. Median interval from AHCT1 to relapse/progression was 18 months, and median interval between transplantations was 32 months. After AHCT2, the incidence of relapse/progression at 1 and 3 years was 51% and 82%, respectively. At 3 years after AHCT2, progression-free survival was 13%, and overall survival was 46%. In multivariate analyses, those relapsing ≥36 months after AHCT1 had superior progression-free (P = .045) and overall survival (P = .019). Patients who underwent AHCT2 after 2004 had superior survival (P = .026). AHCT2 is safe and feasible for disease progression after AHCT1. In this retrospective study, individuals relapsing ≥36 months from AHCT1 derived greater benefit from AHCT2 compared with those with a shorter disease-free interval. Storage of an adequate graft before AHCT1 will ensure that the option of a second autologous transplantation is retained for patients with relapsed/progressive MM. PMID:23298856

  1. Induction of potent NK cell-dependent anti-myeloma cytotoxic T cells in response to combined mapatumumab and bortezomib.

    PubMed

    Neeson, Paul J; Hsu, Andy K; Chen, Yin R; Halse, Heloise M; Loh, Joanna; Cordy, Reece; Fielding, Kate; Davis, Joanne; Noske, Josh; Davenport, Alex J; Lindqvist-Gigg, Camilla A; Humphreys, Robin; Tai, Tsin; Prince, H Miles; Trapani, Joseph A; Smyth, Mark J; Ritchie, David S

    2015-09-01

    There is increasing evidence that some cancer therapies can promote tumor immunogenicity to boost the endogenous antitumor immune response. In this study, we used the novel combination of agonistic anti-TRAIL-R1 antibody (mapatumumab, Mapa) with low dose bortezomib (LDB) for this purpose. The combination induced profound myeloma cell apoptosis, greatly enhanced the uptake of myeloma cell apoptotic bodies by dendritic cell (DC) and induced anti-myeloma cytotoxicity by both CD8(+) T cells and NK cells. Cytotoxic lymphocyte expansion was detected within 24 h of commencing therapy and was maximized when myeloma-pulsed DC were co-treated with low dose bortezomib and mapatumumab (LDB+Mapa) in the presence of NK cells. This study shows that Mapa has two distinct but connected modes of action against multiple myeloma (MM). First, when combined with LDB, Mapa produced powerful myeloma cell apoptosis; secondly, it promoted DC priming and an NK cell-mediated expansion of anti-myeloma cytotoxic lymphocyte (CTL). Overall, this study indicates that Mapa can be used to drive potent anti-MM immune responses.

  2. Induction of potent NK cell-dependent anti-myeloma cytotoxic T cells in response to combined mapatumumab and bortezomib

    PubMed Central

    Neeson, Paul J; Hsu, Andy K; Chen, Yin R; Halse, Heloise M; Loh, Joanna; Cordy, Reece; Fielding, Kate; Davis, Joanne; Noske, Josh; Davenport, Alex J; Lindqvist-Gigg, Camilla A; Humphreys, Robin; Tai, Tsin; Prince, H Miles; Trapani, Joseph A; Smyth, Mark J; Ritchie, David S

    2015-01-01

    There is increasing evidence that some cancer therapies can promote tumor immunogenicity to boost the endogenous antitumor immune response. In this study, we used the novel combination of agonistic anti-TRAIL-R1 antibody (mapatumumab, Mapa) with low dose bortezomib (LDB) for this purpose. The combination induced profound myeloma cell apoptosis, greatly enhanced the uptake of myeloma cell apoptotic bodies by dendritic cell (DC) and induced anti-myeloma cytotoxicity by both CD8+ T cells and NK cells. Cytotoxic lymphocyte expansion was detected within 24 h of commencing therapy and was maximized when myeloma-pulsed DC were co-treated with low dose bortezomib and mapatumumab (LDB+Mapa) in the presence of NK cells. This study shows that Mapa has two distinct but connected modes of action against multiple myeloma (MM). First, when combined with LDB, Mapa produced powerful myeloma cell apoptosis; secondly, it promoted DC priming and an NK cell-mediated expansion of anti-myeloma cytotoxic lymphocyte (CTL). Overall, this study indicates that Mapa can be used to drive potent anti-MM immune responses. PMID:26405606

  3. Multiple myeloma

    MedlinePlus

    Plasma cell dyscrasia; Plasma cell myeloma; Malignant plasmacytoma; Plasmacytoma of bone; Myeloma - multiple ... Multiple myeloma most commonly causes: Low red blood cell count ( anemia ), which can lead to fatigue and ...

  4. Curcumin induces cell death of the main molecular myeloma subtypes, particularly the poor prognosis subgroups

    PubMed Central

    Gomez-Bougie, Patricia; Halliez, Maxime; Maïga, Sophie; Godon, Catherine; Kervoëlen, Charlotte; Pellat-Deceunynck, Catherine; Moreau, Philippe; Amiot, Martine

    2015-01-01

    Multiple myeloma (MM), a plasma cell malignancy, remains incurable despite the development of new therapies. Curcumin anti-tumor effects were previously characterized in multiple myeloma, however only few MM cell lines were included in these studies. Since myeloma is a heterogeneous disease it is important to address the impact of myeloma molecular heterogeneity in curcumin cell death induction. In the present study, a large panel of human myeloma cell lines (HMCLs) (n = 29), representing the main molecular MM subgroups, was screened for curcumin sensitivity. We observed that curcumin cell death induction was heterogeneous, of note 16 HMCLs were highly sensitive to curcumin (LD50 < 20.5 μM), 6 HMCLs exhibited intermediate LD50 values (20.5 μM ≤ LD50 < 32.2 μM) and only 7 HMCLs were weakly sensitive (35 < LD50 < 56 μM). Cell lines harboring the t(11;14) translocation were less sensitive (median LD50 32.9 μM) than non-t(11;14) (median LD50 17.9 μM), which included poor prognosis t(4;14) and t(14;16) cells. Interestingly, curcumin sensitivity was not dependent on TP53 status. For the first time we showed that primary myeloma cells were also sensitive, even those displaying del(17p), another poor prognosis factor. We also unravel the contribution of anti-apoptotic Bcl-2 family molecules in curcumin response. We found that down-regulation of Mcl-1, an essential MM survival factor, was associated with curcumin-induced cell death and its knockdown sensitized myeloma cells to curcumin, highlighting Mcl-1 as an important target for curcumin-induced apoptosis. Altogether, these results support clinical trials including curcumin in association with standard therapy. PMID:25517601

  5. Human myeloma cells express the CD38 ligand CD31.

    PubMed

    Vallario, A; Chilosi, M; Adami, F; Montagna, L; Deaglio, S; Malavasi, F; Caligaris-Cappio, F

    1999-05-01

    Multiple myeloma (MM) plasma cells (PC) are CD38+. A ligand for CD38 is the adhesion molecule CD31. By flow cytometry and immunocytochemistry we have investigated whether malignant PC co-express CD38 and CD31. All 68 patients studied were CD38+. 14/14 monoclonal gammopathies of undetermined significance (MGUS) and 39/39 plasmacytic MM patients co-expressed CD38 and CD31 at high density. Only 1/11 plasmablastic MM and 1/4 plasma cell leukaemias (PCL) expressed CD31. These data indicated that PC malignancies co-expressed high levels of both CD38 and its ligand CD31, with the exception of plasmablastic MM and PCL.

  6. Decreased Ferroportin Promotes Myeloma Cell Growth and Osteoclast Differentiation

    PubMed Central

    Gu, Zhimin; Wang, He; Xia, Jiliang; Yang, Ye; Jin, Zhendong; Xu, Hongwei; Shi, Jumei; De Domenico, Ivana; Tricot, Guido; Zhan, Fenghuang

    2016-01-01

    Iron homeostasis is disrupted in multiple myeloma, a difficult-to-cure plasma cell malignancy with lytic bone lesions. Here, we systematically analyzed iron gene expression signature and demonstrated that mRNA expression of iron exporter ferroportin (FPN1) is significantly downregulated in myeloma cells and correlates negatively with clinic outcome. Restoring expression of FPN1 reduces intracellular liable iron pool, inhibits STAT3-MCL-1 signaling, and suppresses myeloma cells growth. Furthermore, we demonstrated that mRNA of FPN1 is also downregulated at the initial stages of osteoclast differentiation and suppresses myeloma cell–induced osteoclast differentiation through regulating iron regulator TFRC, NF-κB, and JNK pathways. Altogether, we demonstrated that downregulation of FPN1 plays critical roles in promoting myeloma cell growth and bone resorption in multiple myeloma. PMID:25855377

  7. EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion

    SciTech Connect

    Huang, Er-Wen; Xue, Sheng-Jiang; Li, Xiao-Yan; Xu, Suo-Wen; Cheng, Jian-Ding; Zheng, Jin-Xiang; Shi, He; Lv, Guo-Li; Li, Zhi-Gang; Li, Yue; Liu, Chang-Hui; Chen, Xiao-Hui; Liu, Hong; Li, Jie; Liu, Chao

    2014-05-02

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation, facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma.

  8. Bruceantin inhibits multiple myeloma cancer stem cell proliferation.

    PubMed

    Issa, Mark E; Berndt, Sarah; Carpentier, Gilles; Pezzuto, John M; Cuendet, Muriel

    2016-09-01

    Multiple myeloma (MM) continues to claim the lives of a majority of patients. MM cancer stem cells (CSCs) have been demonstrated to sustain tumor growth. Due to their ability to self-renew and to express detoxifying enzymes and efflux transporters, MM-CSCs are rendered highly resistant to conventional therapies. Therefore, managing MM-CSCs characteristics could have profound clinical implications. Bruceantin (BCT) is a natural product previously demonstrated to inhibit the growth of MM in RPMI 8226 cells-inoculated mouse xenograft models, and to cause regression in already established tumors. The objectives of the present study were to test the inhibitory effects of BCT on MM-CSCs growth derived from a human primary tumor, and to explore a mechanism of action underlying these effects. BCT exhibited potent antiproliferative activity in MM-CSCs starting at 25 nM. BCT induced cell cycle arrest, cell death and apoptosis in MM-CSCs as well as inhibited cell migration and angiogenesis in vitro. Using a qPCR screen, it was found that the gene expression of a number of Notch pathway members was altered. Pretreatment of MM-CSCs with the γ-secretase inhibitor RO4929097, a Notch pathway inhibitor, reversed BCT-induced effects on MM-CSCs proliferation. In this study, BCT was shown to be an effective agent in controlling the proliferation, viability and migration of MM-CSCs as well as angiogenesis in vitro. The effect on MM-CSCs proliferation may be mediated by the Notch pathway. These results warrant further investigation of BCT in a broader set of human-derived MM-CSCs and with in vivo models representative of MM.

  9. Leukemia Viruses Associated with Mouse Myeloma Cells*

    PubMed Central

    Watson, J.; Ralph, P.; Sarkar, S.; Cohn, Melvin

    1970-01-01

    Myeloma cells derived from BALB/c and C3H mice show evidence of infection by a murine leumemia virus. The immunoglobulin-producing myelomas secrete an RNA-containing virus with a density of 1.20 to 1.22 gm/cm3. RNA with a sedimentation coefficient of 74 S in 0.1 M sodium sodium chloride has been isolated from secreted virus particles and has a base composition similar to that found for other murine leukemia virus RNA. An intracellular virus particle has been partially purified and has a density of 1.29 to 1.32 gm/cm3. Both extracellular and intracellular virus particles contain the leukemia virus group-specific antigen. Images PMID:4317914

  10. Plasma cell maturity as a predictor of prognosis in multiple myeloma.

    PubMed

    Iriyama, Noriyoshi; Miura, Katsuhiro; Hatta, Yoshihiro; Uchino, Yoshihito; Kurita, Daisuke; Takahashi, Hiromichi; Sakagami, Hitomi; Sakagami, Masashi; Kobayashi, Yujin; Nakagawa, Masaru; Ohtake, Shimon; Iizuka, Yoshikazu; Takei, Masami

    2016-08-01

    In this study, the impact of plasma cell maturity on the prognoses of multiple myeloma (MM) patients in the era of novel agents was investigated. Myeloma cell maturity was classified via immunophenotyping: myeloma cells showing mature plasma cell 1 (MPC-1)-positive and CD49e-positive cells were considered mature type; MPC-1-positive and CD49e-negative cells were considered intermediate type; and MPC-1-negative cells were considered immature type. This study included 87 newly diagnosed MM patients who were initially treated with bortezomib and/or chemotherapy. Myeloma cell maturity was a critical factor affecting overall survival (OS) in the cohort, with median OS not reached in mature-type, 50 months in intermediate-type, and 20 months in immature-type cells. Multivariate analysis showed that immature type and stage III according to the International Staging System were both independent prognostic factors affecting OS. The findings of this study demonstrate the clinical importance of myeloma cell classification according to immunophenotyping using MPC-1 and CD49e antibodies to determine patient prognosis in this era of novel therapeutic agents.

  11. HDAC inhibitor AR-42 decreases CD44 expression and sensitizes myeloma cells to lenalidomide

    PubMed Central

    Sborov, Douglas W.; Cascione, Luciano; Radomska, Hanna S.; Smith, Emily; Stiff, Andrew; Consiglio, Jessica; Caserta, Enrico; Rizzotto, Lara; Zanesi, Nicola; Stefano, Volinia; Kaur, Balveen; Mo, Xiaokui; Byrd, John C.; Efebera, Yvonne A.

    2015-01-01

    Multiple myeloma (MM) is a hematological malignancy of plasma cells in the bone marrow. Despite multiple treatment options, MM is inevitably associated with drug resistance and poor outcomes. Histone deacetylase inhibitors (HDACi's) are promising novel chemotherapeutics undergoing evaluation in clinical trials for the potential treatment of patients with MM. Although in preclinical studies HDACi's have proven anti-myeloma activity, but in the clinic single-agent HDACi treatments have been limited due to low tolerability. Improved clinical outcomes were reported only when HDACi's were combined with other drugs. Here, we show that a novel pan-HDACi AR-42 downregulates CD44, a glycoprotein that has been associated with lenalidomide and dexamethasone resistance in myeloma both in vitro and in vivo. We also show that this CD44 downregulation is in part mediated by miR-9–5p, targeting insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3), which directly binds to CD44 mRNA and increases its stability. Importantly, we also demonstrate that AR-42 enhances anti-myeloma activity of lenalidomide in primary MM cells isolated from lenalidomide resistant patients and in in vivo MM mouse model. Thus, our findings shed light on potential novel combinatorial therapeutic approaches modulating CD44 expression, which may help overcome lenalidomide resistance in myeloma patients. PMID:26429859

  12. HDAC inhibitor AR-42 decreases CD44 expression and sensitizes myeloma cells to lenalidomide.

    PubMed

    Canella, Alessandro; Cordero Nieves, Hector; Sborov, Douglas W; Cascione, Luciano; Radomska, Hanna S; Smith, Emily; Stiff, Andrew; Consiglio, Jessica; Caserta, Enrico; Rizzotto, Lara; Zanesi, Nicola; Stefano, Volinia; Kaur, Balveen; Mo, Xiaokui; Byrd, John C; Efebera, Yvonne A; Hofmeister, Craig C; Pichiorri, Flavia

    2015-10-13

    Multiple myeloma (MM) is a hematological malignancy of plasma cells in the bone marrow. Despite multiple treatment options, MM is inevitably associated with drug resistance and poor outcomes. Histone deacetylase inhibitors (HDACi's) are promising novel chemotherapeutics undergoing evaluation in clinical trials for the potential treatment of patients with MM. Although in preclinical studies HDACi's have proven anti-myeloma activity, but in the clinic single-agent HDACi treatments have been limited due to low tolerability. Improved clinical outcomes were reported only when HDACi's were combined with other drugs. Here, we show that a novel pan-HDACi AR-42 downregulates CD44, a glycoprotein that has been associated with lenalidomide and dexamethasone resistance in myeloma both in vitro and in vivo. We also show that this CD44 downregulation is in part mediated by miR-9-5p, targeting insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3), which directly binds to CD44 mRNA and increases its stability. Importantly, we also demonstrate that AR-42 enhances anti-myeloma activity of lenalidomide in primary MM cells isolated from lenalidomide resistant patients and in in vivo MM mouse model. Thus, our findings shed light on potential novel combinatorial therapeutic approaches modulating CD44 expression, which may help overcome lenalidomide resistance in myeloma patients.

  13. PEGylated long-circulating liposomes deliver homoharringtonine to suppress multiple myeloma cancer stem cells.

    PubMed

    Li, Miao; Shi, Fangfang; Fei, Xiong; Wu, Songyan; Wu, Di; Pan, Meng; Luo, Shouhua; Gu, Ning; Dou, Jun

    2017-05-01

    The goal of this investigation was to evaluate the inhibiting effect of high proportion polyethyleneglycol of long-circulating homoharringtonine liposomes on RPMI8226 multiple myeloma cancer stem cells. The CD138(-)CD34(-) multiple myeloma cancer stem cells isolated from RPMI8226 cell line using magnetic activated cell sorting system were, respectively, incubated with the optimized formulation of polyethyleneglycol of long-circulating homoharringtonine liposomes and the homoharringtonine in vitro, and the multiple myeloma cancer stem cell proliferation, colony formation, and cell cycle were analyzed. The inhibition of the multiple myeloma CD138(-)CD34(-) cancer stem cell growth was investigated in non-obese-diabetic/severe-combined-immunodeficiency mice that were implanted with multiple myeloma RPMI 8226 cancer stem cells and treated with the LCL-HHT-H-PEG. The results showed that the polyethyleneglycol of long-circulating homoharringtonine liposomes significantly inhibited MM cancer stem cell proliferation, colony formation, and induced cancer stem cell apoptosis in vitro as well as MM cancer stem cell growth in non-obese-diabetic/severe-combined-immunodeficiency mice compared with the homoharringtonine. In addition, the mouse bone mineral density and the red blood cell count were significantly increased in polyethyleneglycol of long-circulating homoharringtonine liposomes group. In conclusion, the data demonstrated that the developed polyethyleneglycol of long-circulating homoharringtonine liposomes formulation may serve as an efficient therapeutic drug for suppressing CD138(-)CD34(-) multiple myeloma cancer stem cell growth by inducing cancer stem cell apoptosis in non-obese-diabetic/severe-combined-immunodeficiency mouse model. Impact statement Multiple myeloma (MM) remains largely incurable until now. One of the main reasons is that there are cancer stem cells (CSCs) in MM, which are responsible for MM's drug resistance and relapse. In this study, we wanted

  14. [Multiple myeloma and other plasma cell dyscrasias].

    PubMed

    Nagy, Zsolt

    2016-06-06

    Multiple myeloma is the most common primary malignant disease of bone marrow. It mainly occurs among elderly people and, according to international databases, it is twice as frequent in men, however in our country this fact cannot be observed because of the high male mortality rate. The presence of this disease increased by more than one and the half times during the last 60 years. The five year survival for multiple myeloma has increased from 25% to 40% since the seventies due to high-dose chemotherapy followed by autologous stem cell transplantation and the new anti-myeloma drugs which were introduced in the last decade, such as immunomodulators (IMiD) like thalidomide, lenalidomide, pomalidomide and proteasome inhibitors (PI) like bortezomib, carfilzomib, ixazomib. The number of treatment options are growing fast, and not only because of using new combinations of medications, but also due to the development of investigational products which are available for the patients by participating in a clinical trial.

  15. Dexamethasone-induced cell death is restricted to specific molecular subgroups of multiple myeloma

    PubMed Central

    Kervoëlen, Charlotte; Ménoret, Emmanuelle; Gomez-Bougie, Patricia; Bataille, Régis; Godon, Catherine; Marionneau-Lambot, Séverine; Moreau, Philippe; Pellat-Deceunynck, Catherine; Amiot, Martine

    2015-01-01

    Due to its cytotoxic effect in lymphoid cells, dexamethasone is widely used in the treatment of multiple myeloma (MM). However, only a subset of myeloma patients responds to high-dose dexamethasone. Despite the undeniable anti-myeloma benefits of dexamethasone, significant adverse effects have been reported. We re-evaluate the anti-tumor effect of dexamethasone according to the molecular heterogeneity of MM. We demonstrated that the pro-death effect of dexamethasone is related to the genetic heterogeneity of MM because sensitive cell lines were restricted to MAF and MMSET signature subgroups, whereas all CCND1 cell lines (n = 10) were resistant to dexamethasone. We demonstrated that the glucocorticoid receptor expression was an important limiting factor for dexamethasone-induced cell death and we found a correlation between glucocorticoid receptor levels and the induction of glucocorticoid-induced leucine zipper (GILZ) under dexamethasone treatment. By silencing GILZ, we next demonstrated that GILZ is necessary for Dex induced apoptosis while triggering an imbalance between anti- and pro-apoptotic Bcl-2 proteins. Finally, the heterogeneity of the dexamethasone response was further confirmed in vivo using myeloma xenograft models. Our findings suggested that the effect of dexamethasone should be re-evaluated within molecular subgroups of myeloma patients to improve its efficacy and reduce its adverse effects. PMID:26323097

  16. Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3.

    PubMed

    Nelson, Erik A; Walker, Sarah R; Kepich, Alicia; Gashin, Laurie B; Hideshima, Teru; Ikeda, Hiroshi; Chauhan, Dharminder; Anderson, Kenneth C; Frank, David A

    2008-12-15

    Constitutive activation of the transcription factor STAT3 contributes to the pathogenesis of many cancers, including multiple myeloma (MM). Since STAT3 is dispensable in most normal tissue, targeted inhibition of STAT3 is an attractive therapy for patients with these cancers. To identify STAT3 inhibitors, we developed a transcriptionally based assay and screened a library of compounds known to be safe in humans. We found the drug nifuroxazide to be an effective inhibitor of STAT3 function. Nifuroxazide inhibits the constitutive phosphorylation of STAT3 in MM cells by reducing Jak kinase autophosphorylation, and leads to down-regulation of the STAT3 target gene Mcl-1. Nifuroxazide causes a decrease in viability of primary myeloma cells and myeloma cell lines containing STAT3 activation, but not normal peripheral blood mononuclear cells. Although bone marrow stromal cells provide survival signals to myeloma cells, nifuroxazide can overcome this survival advantage. Reflecting the interaction of STAT3 with other cellular pathways, nifuroxazide shows enhanced cytotoxicity when combined with either the histone deacetylase inhibitor depsipeptide or the MEK inhibitor UO126. Therefore, using a mechanistic-based screen, we identified the clinically relevant drug nifuroxazide as a potent inhibitor of STAT signaling that shows cytotoxicity against myeloma cells that depend on STAT3 for survival.

  17. The role of SH3GL3 in myeloma cell migration/invasion, stemness and chemo-resistance

    PubMed Central

    Chen, Ruoying; Zhao, Hong; Wu, Dan; Zhao, Chen; Zhao, Weiling; Zhou, Xiaobo

    2016-01-01

    Multiple myeloma (MM) is an incurable cancer characterized by clonal expansion of malignant plasma cells in the bone marrow and their egress into peripheral blood. The mechanisms of myeloma cells migration/invasion have remained unclear. Herein, we found SH3GL3 was highly expressed in the CD138-negative (CD138−) myeloma cells. The migration/invasion capability of CD138− cells was significantly higher than that in the CD138-positive (CD138+) cells. Silencing SH3GL3 using shRNA reduced myeloma cells migration/invasion. Conversely, overexpression of SH3GL3 increased myeloma cells migration/invasion. Moreover, SH3GL3 is also associated with the stemness and chemo-resistance of CD138− myeloma cells. Elevated expression of stem cell and multi-drug resistant markers were seen in the myeloma cells with overexpressed SH3GL3; while knocking-down SH3GL3 reduced the expression of these markers. A marked increase in p-PI3K and p-FAK was observed in the cells with overexpressed SH3GL3. To test if FAK/PI3K signaling pathway was involved in the SH3GL3-mediated myeloma cells migration, the cells transfected w/wo SH3GL3 cDNA were treated with FAK inhibitor 14 and PI3K inhibitor LY294002. Inhibition of FAK and PI3K attenuated SH3GL3-mediated migration /invasion. Our findings indicate that SH3GL3 plays an important role in myeloma cell migration/invasion, stemness and chemo-resistance. The SH3GL3-mediated myeloma cell migration/invasion is mediated by FAK/PI3K signaling pathway. PMID:27683032

  18. The role of SH3GL3 in myeloma cell migration/invasion, stemness and chemo-resistance.

    PubMed

    Chen, Ruoying; Zhao, Hong; Wu, Dan; Zhao, Chen; Zhao, Weiling; Zhou, Xiaobo

    2016-11-08

    Multiple myeloma (MM) is an incurable cancer characterized by clonal expansion of malignant plasma cells in the bone marrow and their egress into peripheral blood. The mechanisms of myeloma cells migration/invasion have remained unclear. Herein, we found SH3GL3 was highly expressed in the CD138-negative (CD138-) myeloma cells. The migration/invasion capability of CD138- cells was significantly higher than that in the CD138-positive (CD138+) cells. Silencing SH3GL3 using shRNA reduced myeloma cells migration/invasion. Conversely, overexpression of SH3GL3 increased myeloma cells migration/invasion. Moreover, SH3GL3 is also associated with the stemness and chemo-resistance of CD138- myeloma cells. Elevated expression of stem cell and multi-drug resistant markers were seen in the myeloma cells with overexpressed SH3GL3; while knocking-down SH3GL3 reduced the expression of these markers. A marked increase in p-PI3K and p-FAK was observed in the cells with overexpressed SH3GL3. To test if FAK/PI3K signaling pathway was involved in the SH3GL3-mediated myeloma cells migration, the cells transfected w/wo SH3GL3 cDNA were treated with FAK inhibitor 14 and PI3K inhibitor LY294002. Inhibition of FAK and PI3K attenuated SH3GL3-mediated migration /invasion. Our findings indicate that SH3GL3 plays an important role in myeloma cell migration/invasion, stemness and chemo-resistance. The SH3GL3-mediated myeloma cell migration/invasion is mediated by FAK/PI3K signaling pathway.

  19. Bone marrow stromal cells from multiple myeloma patients uniquely induce bortezomib resistant NF-κB activity in myeloma cells

    PubMed Central

    2010-01-01

    Background Components of the microenvironment such as bone marrow stromal cells (BMSCs) are well known to support multiple myeloma (MM) disease progression and resistance to chemotherapy including the proteasome inhibitor bortezomib. However, functional distinctions between BMSCs in MM patients and those in disease-free marrow are not completely understood. We and other investigators have recently reported that NF-κB activity in primary MM cells is largely resistant to the proteasome inhibitor bortezomib, and that further enhancement of NF-κB by BMSCs is similarly resistant to bortezomib and may mediate resistance to this therapy. The mediating factor(s) of this bortezomib-resistant NF-κB activity is induced by BMSCs is not currently understood. Results Here we report that BMSCs specifically derived from MM patients are capable of further activating bortezomib-resistant NF-κB activity in MM cells. This induced activity is mediated by soluble proteinaceous factors secreted by MM BMSCs. Among the multiple factors evaluated, interleukin-8 was secreted by BMSCs from MM patients at significantly higher levels compared to those from non-MM sources, and we found that IL-8 contributes to BMSC-induced NF-κB activity. Conclusions BMSCs from MM patients uniquely enhance constitutive NF-κB activity in MM cells via a proteinaceous secreted factor in part in conjunction with IL-8. Since NF-κB is known to potentiate MM cell survival and confer resistance to drugs including bortezomib, further identification of the NF-κB activating factors produced specifically by MM-derived BMSCs may provide a novel biomarker and/or drug target for the treatment of this commonly fatal disease. PMID:20604947

  20. Inflammatory environment created by fibroblast aggregates induces growth arrest and phenotypic shift of human myeloma cells.

    PubMed

    Szabova, K; Bizikova, I; Mistrik, M; Bizik, J

    2015-01-01

    Multiple myeloma (MM) is characterized by accumulation of clonal plasma cells (PCs) predominantly in the bone marrow but tumor cells appear in the circulation in significant numbers as the disease progress. The occurrence of circulating multiple myeloma cells raises question concerning interactions between these cells and stroma of peripheral organs specifically under certain pathophysiological conditions, e.g., inflammation. Therefore, in the present study we exposed three human multiple myeloma cell lines to sterile inflammation produced in a culture dish by clusters of cell-cell contact-activated dermal fibroblasts. We now observed that myeloma cells responded differently to this particular type of stromal cell activation, nemosis. Two cell lines U-266 and LP-1 were minimally affected by the proinflammatory signalling, while the third cell line RPMI 8226 responded with growth arrest and altered expression of three phenotypic markers CD38, CD45, and CD138, indicating dedifferentiation shift of these cells to less mature PC-like phenotype. In a preliminary study we identified a subclone of cells having similar phenotype in 14 out of 23 analysed specimens of MM patients. This set of data indicates that the observed phenomenon might be clinically relevant. Our results emphasize the potential role of activated stromal fibroblasts and subsequent inflammation in altering phenotype of PCs and directing myeloma progression towards dormancy. Given the significant implication of dormant myeloma cells that might serve as a major cellular basis for the relapse, understanding their unique biology and precise elucidation of the underlying molecular mechanisms for the maintenance of quiescence is important. Therefore, we consider this study as a particular contribution to development of experimental model for in vitro studies of cancer dormancy.

  1. [Analysis of cell morphology and immunophenotypic characteristics in 47 cases of multiple myeloma].

    PubMed

    Su, Xian-Du; Lin, Rong; Xu, Xiao-Lan; Chen, Xu; Zhan, Wen-Li; Zheng, Jin-Pu; Fan, Chang-Ling

    2015-02-01

    This study was to investigate the cell morphology and cell immune phenotypic characteristics in patients with multiple myeloma (MM). The flow cytometry with multiparametric direct immunofluorescence technique, and CD45/SSC and CD38(+)(+)/CD138(+) gating were used to measure cell markers CD138, CD38, CD56, CD117, CD3, CD13, CD33, CD19, CD7, CD20, CD22, CD34, CD28 in 47 MM patients. At the same time the morphology examination of bone marrow cells was performed. The suspicious myeloma cell ratio in MM patients was 9.42%-74.25% detected by flow cytometry, moreover, the myeloma cell ratio detected by morphology examination was 11.0%-80.6%, there was a good correlation between the two detection methods (r(2) = 0.54, P < 0.001). The ratio of antigen positive expression was as follows: 74.46% for CD138, 100% for CD38, 57.44% for CD56, 40.42% for CD117, 6.38% for CD13, 19.15% for CD33, 8.51% for CD20, 27.66% for CD28, 2.12% for CD22, 4.25% for CD34, 0% for CD3, 0% for CD19, 0% for CD7. CD45/SSC and CD38(+)/CD138(+) gating technique can accurately gate multiple myeloma cell sets which need analysis, the majority of myeloma cells expreses CD138, CD38, CD56 antigens. The immunophenotypic analysis combined with the cell morphology examination more contribute to the diagnosis and differential diagnosis of multiple myeloma.

  2. Bone marrow myeloid cells in regulation of multiple myeloma progression.

    PubMed

    Herlihy, Sarah E; Lin, Cindy; Nefedova, Yulia

    2017-08-01

    Survival, growth, and response to chemotherapy of cancer cells depends strongly on the interaction of cancer cells with the tumor microenvironment. In multiple myeloma, a cancer of plasma cells that localizes preferentially in the bone marrow, the microenvironment is highly enriched with myeloid cells. The majority of myeloid cells are represented by mature and immature neutrophils. The contribution of the different myeloid cell populations to tumor progression and chemoresistance in multiple myeloma is discussed.

  3. Simplified flow cytometric immunophenotyping panel for multiple myeloma, CD56/CD19/CD138(CD38)/CD45, to differentiate neoplastic myeloma cells from reactive plasma cells.

    PubMed

    Jeong, Tae-Dong; Park, Chan-Jeoung; Shim, Hyoeun; Jang, Seongsoo; Chi, Hyun-Sook; Yoon, Dok Hyun; Kim, Dae-Young; Lee, Jung-Hee; Lee, Je-Hwan; Suh, Cheolwon; Lee, Kyoo Hyung

    2012-12-01

    Flow cytometric immunophenotyping has been used to identify neoplastic plasma cell populations in patients with multiple myeloma (MM). Previous reports have described the use of several antigens, including CD38, CD138, CD56, CD117, CD52, CD19 and CD45, to distinguish distinct populations of plasma cells. The aim of this study was to evaluate a simplified immunophenotyping panel for MM analysis. A total of 70 patients were enrolled in the study, 62 of which were newly diagnosed with MM (untreated), whereas the remaining 8 were undergoing bone marrow assessment as part of follow-up after treatment (treated). Treated cases included 3 patients with relapse and 5 patients with persistence of MM. Multiparametric flow cytometric immunophenotyping was performed using monoclonal antibodies against CD56, CD19, CD138 (CD38), and CD45. In differential counts, plasma cells in bone marrow (BM) accounted for 3.6-93.2% of the total nucleated cell count. The positive expression rates of CD56, CD19, CD138, and CD45 in neoplastic myeloma cells were 83.9%, 0%, 98.4%, and 37.1%, respectively, among the 62 untreated cases, and 75.0%, 0%, 87.5%, and 37.5%, respectively, among the 8 treated cases. CD19 expression of neoplastic plasma cells was negative in both untreated and treated cases. The simplified immunophenotyping panel, CD56/CD19/CD138(CD38)/CD45, is useful for distinguishing neoplastic myeloma cells from reactive plasma cells in clinical practice. In addition, CD19 represents the most valuable antigen for identifying neoplastic myeloma cells in patients with MM.

  4. Lenalidomide enhances myeloma-specific T-cell responses in vivo and in vitro

    PubMed Central

    Krämer, Isabelle; Engelhardt, Melanie; Fichtner, Sabrina; Neuber, Brigitte; Medenhoff, Sergej; Bertsch, Uta; Hillengass, Jens; Raab, Marc-Steffen; Hose, Dirk; Ho, Anthony D.; Goldschmidt, Hartmut; Hundemer, Michael

    2016-01-01

    ABSTRACT Immunomodulation is an important part of lenalidomide's mode of action. We analyzed the impact of lenalidomide on T cells from patients with multiple myeloma during lenalidomide therapy in vivo and in patients with lenalidomide-refractory disease in vitro Patients enrolled in the German Speaking Myeloma Multicenter Group (GMMG) MM5 trial received a consolidation therapy with two cycles of lenalidomide after autologous stem cell transplantation (ASCT). Half of the study population continued treatment with lenalidomide maintenance therapy for 2 y, while the other patients received lenalidomide maintenance therapy until complete remission. We analyzed 58 patients with (n = 30) or without (n = 28) lenalidomide therapy and 12 patients refractory to lenalidomide with regards to their anti-myeloma-specific T-cell responses displayed by IFNγ, Granzyme B, and Perforin secretion. The immunophenotype of T-cells was investigated by flow cytometry. Significantly, more myeloma-specific T-cell responses were observed in patients during lenalidomide therapy, compared to patients without treatment. Furthermore, we found on T-cells from patients treated with lenalidomide a decreased CD45RA expression, indicating a maturated immunophenotype and a decreased expression of CD57, indicating functional T cells. An improved myeloma-specific T-cell response was observed in 6 out of 12 heavily pretreated patients (refractory to lenalidomide) after in vitro incubation with lenalidomide. Complementary to the results in vivo, lenalidomide decreased CD45RA expression on T cells in vitro. PMID:27467960

  5. Lenalidomide enhances myeloma-specific T-cell responses in vivo and in vitro.

    PubMed

    Krämer, Isabelle; Engelhardt, Melanie; Fichtner, Sabrina; Neuber, Brigitte; Medenhoff, Sergej; Bertsch, Uta; Hillengass, Jens; Raab, Marc-Steffen; Hose, Dirk; Ho, Anthony D; Goldschmidt, Hartmut; Hundemer, Michael

    2016-05-01

    Immunomodulation is an important part of lenalidomide's mode of action. We analyzed the impact of lenalidomide on T cells from patients with multiple myeloma during lenalidomide therapy in vivo and in patients with lenalidomide-refractory disease in vitro Patients enrolled in the German Speaking Myeloma Multicenter Group (GMMG) MM5 trial received a consolidation therapy with two cycles of lenalidomide after autologous stem cell transplantation (ASCT). Half of the study population continued treatment with lenalidomide maintenance therapy for 2 y, while the other patients received lenalidomide maintenance therapy until complete remission. We analyzed 58 patients with (n = 30) or without (n = 28) lenalidomide therapy and 12 patients refractory to lenalidomide with regards to their anti-myeloma-specific T-cell responses displayed by IFNγ, Granzyme B, and Perforin secretion. The immunophenotype of T-cells was investigated by flow cytometry. Significantly, more myeloma-specific T-cell responses were observed in patients during lenalidomide therapy, compared to patients without treatment. Furthermore, we found on T-cells from patients treated with lenalidomide a decreased CD45RA expression, indicating a maturated immunophenotype and a decreased expression of CD57, indicating functional T cells. An improved myeloma-specific T-cell response was observed in 6 out of 12 heavily pretreated patients (refractory to lenalidomide) after in vitro incubation with lenalidomide. Complementary to the results in vivo, lenalidomide decreased CD45RA expression on T cells in vitro.

  6. Cancer stem cells are the cause of drug resistance in multiple myeloma: fact or fiction?

    PubMed Central

    Janz, Siegfried; Zhan, Fenghuang; Tricot, Guido

    2015-01-01

    Multiple myeloma (MM) remains a largely incurable, genetically heterogeneous plasma-cell malignancy that contains – just like many other cancers – a small fraction of clonogenic stem cell-like cells that exhibit pronounced self-renewal and differentiation capacities, but also pronounced drug resistance. These MM stem cells (MMSCs) are a controversial but highly significant issue in myeloma research because, in our opinion, they are at the root of the failure of anti-neoplastic chemotherapies to transform myeloma to a manageable chronic disease. Several markers including CD138−, ALDH1+ and SP have been used to identify MMSCs; however, no single marker is reliable for the isolation of MMSC. Nonetheless, it is now known that MMSCs depend on self-renewal and pro-survival pathways, such as AKT, Wnt/β-catenin, Notch and Hedgehog, which can be targeted with novel drugs that have shown promise in pre-clinical and clinical trials. Here, we review the pathways of myeloma “stemness”, the interactions with the bone marrow microenvironment that promote drug resistance, and the obstacles that must be overcome to eradicate MMSCs and make myeloma a curable disease. PMID:26415231

  7. Monitoring multiple myeloma by next-generation sequencing of V(D)J rearrangements from circulating myeloma cells and cell-free myeloma DNA.

    PubMed

    Oberle, Anna; Brandt, Anna; Voigtlaender, Minna; Thiele, Benjamin; Radloff, Janina; Schulenkorf, Anita; Alawi, Malik; Akyüz, Nuray; März, Manuela; Ford, Christopher T; Krohn-Grimberghe, Artus; Binder, Mascha

    2017-02-09

    Recent studies suggest that circulating tumor cells and cell-free DNA may represent powerful non-invasive tools for disease monitoring in patients with solid and hematological malignancies. Here, we conducted a pilot study in 27 myeloma patients to explore the clonotypic V(D)J rearrangement for monitoring of circulating myeloma cells (cmc-V(D)J) and cell-free myeloma DNA (cfm-V(D)J). Next-generation sequencing was used to define the myeloma V(D)J rearrangement and for subsequent peripheral blood tracking after treatment initiation. Positivity for cmc-/cfm-V(D)J was associated with conventional remission status (p<0.001) and 91% of non-responders/progressors versus 41% of responders had evidence of persistent cmc-/cfm-V(D)J (p<0.001). About half of the partial responders showed complete clearance of cmc-/cfm-V(D)J despite persistent M-protein, suggesting that these markers are less inert than the M-protein, rely more on cell turnover and therefore decline more rapidly after initiation of effective treatment. Positivity for cmc- and cfm-V(D)J was associated with each other (p=0.042), but in 30% discordant. This indicated that cfm-V(D)J may not be generated entirely by circulating myeloma cells and may reflect overall tumor burden. Prospective studies need to define the predictive potential of high-sensitivity determination of circulating myeloma cells and DNA in the monitoring of multiple myeloma.

  8. A patient with Multiple myeloma and Renal cell carcinoma.

    PubMed

    Shahi, Farhad; Ghalamkari, Marziye; Mirzania, Mehrzad; Khatuni, Mahdi

    2016-01-01

    The coexistence of two malignancies is rarely seen. A little association between hematologic malignancies especially multiple myeloma and renal cell carcinoma has been reported in the recent past. Several case series revealed a bidirectional association between these two malignancies which may be due to the common risk factors, similar cytokine growth requirements and clinical presentation. Here, we aim to describe a patient who had multiple myeloma and in his work up renal cell carcinoma was found out incidentally. We would like to create awareness among clinicians for the coincidence of Renal cell carcinoma and Multiple myeloma.

  9. A patient with Multiple myeloma and Renal cell carcinoma

    PubMed Central

    Shahi, Farhad; Ghalamkari, Marziye; Mirzania, Mehrzad; Khatuni, Mahdi

    2016-01-01

    The coexistence of two malignancies is rarely seen. A little association between hematologic malignancies especially multiple myeloma and renal cell carcinoma has been reported in the recent past. Several case series revealed a bidirectional association between these two malignancies which may be due to the common risk factors, similar cytokine growth requirements and clinical presentation. Here, we aim to describe a patient who had multiple myeloma and in his work up renal cell carcinoma was found out incidentally. We would like to create awareness among clinicians for the coincidence of Renal cell carcinoma and Multiple myeloma. PMID:27047652

  10. Towards Stratified Medicine in Plasma Cell Myeloma

    PubMed Central

    Egan, Philip; Drain, Stephen; Conway, Caroline; Bjourson, Anthony J.; Alexander, H. Denis

    2016-01-01

    Plasma cell myeloma is a clinically heterogeneous malignancy accounting for approximately one to 2% of newly diagnosed cases of cancer worldwide. Treatment options, in addition to long-established cytotoxic drugs, include autologous stem cell transplant, immune modulators, proteasome inhibitors and monoclonal antibodies, plus further targeted therapies currently in clinical trials. Whilst treatment decisions are mostly based on a patient’s age, fitness, including the presence of co-morbidities, and tumour burden, significant scope exists for better risk stratification, sub-classification of disease, and predictors of response to specific therapies. Clinical staging, recurring acquired cytogenetic aberrations, and serum biomarkers such as β-2 microglobulin, and free light chains are in widespread use but often fail to predict the disease progression or inform treatment decision making. Recent scientific advances have provided considerable insight into the biology of myeloma. For example, gene expression profiling is already making a contribution to enhanced understanding of the biology of the disease whilst Next Generation Sequencing has revealed great genomic complexity and heterogeneity. Pathways involved in the oncogenesis, proliferation of the tumour and its resistance to apoptosis are being unravelled. Furthermore, knowledge of the tumour cell surface and its interactions with bystander cells and the bone marrow stroma enhance this understanding and provide novel targets for cell and antibody-based therapies. This review will discuss the development in understanding of the biology of the tumour cell and its environment in the bone marrow, the implementation of new therapeutic options contributing to significantly improved outcomes, and the progression towards more personalised medicine in this disorder. PMID:27775669

  11. Towards Stratified Medicine in Plasma Cell Myeloma.

    PubMed

    Egan, Philip; Drain, Stephen; Conway, Caroline; Bjourson, Anthony J; Alexander, H Denis

    2016-10-21

    Plasma cell myeloma is a clinically heterogeneous malignancy accounting for approximately one to 2% of newly diagnosed cases of cancer worldwide. Treatment options, in addition to long-established cytotoxic drugs, include autologous stem cell transplant, immune modulators, proteasome inhibitors and monoclonal antibodies, plus further targeted therapies currently in clinical trials. Whilst treatment decisions are mostly based on a patient's age, fitness, including the presence of co-morbidities, and tumour burden, significant scope exists for better risk stratification, sub-classification of disease, and predictors of response to specific therapies. Clinical staging, recurring acquired cytogenetic aberrations, and serum biomarkers such as β-2 microglobulin, and free light chains are in widespread use but often fail to predict the disease progression or inform treatment decision making. Recent scientific advances have provided considerable insight into the biology of myeloma. For example, gene expression profiling is already making a contribution to enhanced understanding of the biology of the disease whilst Next Generation Sequencing has revealed great genomic complexity and heterogeneity. Pathways involved in the oncogenesis, proliferation of the tumour and its resistance to apoptosis are being unravelled. Furthermore, knowledge of the tumour cell surface and its interactions with bystander cells and the bone marrow stroma enhance this understanding and provide novel targets for cell and antibody-based therapies. This review will discuss the development in understanding of the biology of the tumour cell and its environment in the bone marrow, the implementation of new therapeutic options contributing to significantly improved outcomes, and the progression towards more personalised medicine in this disorder.

  12. Targeting executioner procaspase-3 with the procaspase-activating compound B-PAC-1 induces apoptosis in multiple myeloma cells.

    PubMed

    Zaman, Shadia; Wang, Rui; Gandhi, Varsha

    2015-11-01

    Multiple myeloma (MM) is a plasma cell neoplasm that has a low apoptotic index. We investigated a new class of small molecules that target the terminal apoptosis pathway, called procaspase activating compounds (PACs), in myeloma cells. PAC agents (PAC-1 and B-PAC-1) convert executioner procaspases (procaspase 3, 6, and 7) to active caspases 3, 6, and 7, which cleave target substrates to induce cellular apoptosis cascade. We hypothesized that targeting this terminal step could overcome survival and drug-resistance signals in myeloma cells and induce programmed cell death. Myeloma cells expressed executioner caspases. Additionally, our studies demonstrated that B-PAC-1 is cytotoxic to chemotherapy-resistant or sensitive myeloma cell lines (n = 7) and primary patient cells (n = 11). Exogenous zinc abrogated B-PAC-1-induced cell demise. Apoptosis induced by B-PAC-1 treatment was similar in the presence or absence of growth-promoting cytokines such as interleukin 6 and hepatocyte growth factor. Presence or absence of antiapoptotic proteins such as BCL-2, BCL-XL, or MCL-1 did not impact B-PAC-1-mediated programmed cell death. Collectively, our data demonstrate the proapoptotic effect of B-PAC-1 in MM and suggest that activating terminal executioner procaspases 3, 6, and 7 bypasses survival and drug-resistance signals in myeloma cells. This novel strategy has the potential to become an effective antimyeloma therapy.

  13. CD138-negative clonogenic cells are plasma cells but not B cells in some multiple myeloma patients.

    PubMed

    Hosen, N; Matsuoka, Y; Kishida, S; Nakata, J; Mizutani, Y; Hasegawa, K; Mugitani, A; Ichihara, H; Aoyama, Y; Nishida, S; Tsuboi, A; Fujiki, F; Tatsumi, N; Nakajima, H; Hino, M; Kimura, T; Yata, K; Abe, M; Oka, Y; Oji, Y; Kumanogoh, A; Sugiyama, H

    2012-09-01

    Clonogenic multiple myeloma (MM) cells reportedly lacked expression of plasma cell marker CD138. It was also shown that CD19(+) clonotypic B cells can serve as MM progenitor cells in some patients. However, it is unclear whether CD138-negative clonogenic MM plasma cells are identical to clonotypic CD19(+) B cells. We found that in vitro MM colony-forming cells were enriched in CD138(-)CD19(-)CD38(++) plasma cells, while CD19(+) B cells never formed MM colonies in 16 samples examined in this study. We next used the SCID-rab model, which enables engraftment of human MM in vivo. CD138(-)CD19(-)CD38(++) plasma cells engrafted in this model rapidly propagated MM in 3 out of 9 cases, while no engraftment of CD19(+) B cells was detected. In 4 out of 9 cases, CD138(+) plasma cells propagated MM, although more slowly than CD138(-) cells. Finally, we transplanted CD19(+) B cells from 13 MM patients into NOD/SCID IL2Rγc(-/-) mice, but MM did not develop. These results suggest that at least in some MM patients CD138-negative clonogenic cells are plasma cells rather than B cells, and that MM plasma cells including CD138(-) and CD138(+) cells have the potential to propagate MM clones in vivo in the absence of CD19(+) B cells.

  14. Increased Expression of Extracellular Matrix Metalloproteinase Inducer (CD147) in Multiple Myeloma: Role in Regulation of Myeloma Cell Proliferation

    PubMed Central

    Arendt, Bonnie K.; Walters, Denise K.; Wu, Xiaosheng; Tschumper, Renee C.; Huddleston, Paul M.; Henderson, Kimberly J.; Dispenzieri, Angela; Jelinek, Diane F.

    2014-01-01

    Multiple myeloma (MM) is preceded by the asymptomatic premalignant state, monoclonal gammopathy of undetermined significance (MGUS). Although MGUS patients may remain stable for years, they are at increased risk of progressing to MM. A better understanding of the relevant molecular changes underlying the transition from an asymptomatic to symptomatic disease state is urgently needed. Our studies show for the first time that the CD147 molecule (extracellular matrix metalloproteinase inducer) may be playing an important biological role in MM. We first demonstrate that CD147 is over-expressed in MM plasma cells (PCs) vs. normal and premalignant PCs. Next, functional studies revealed that the natural CD147 ligand, cyclophilin B, stimulates MM cell growth. Moreover, when MM patient PCs displaying bimodal CD147 expression were separated into CD147bright and CD147dim populations and analyzed for proliferation potential, we discovered that CD147bright PCs displayed significantly higher levels of cell proliferation than did CD147dim PCs. Lastly, CD147 silencing significantly attenuated MM cell proliferation. Taken together, these data suggest that the CD147 molecule plays a key role in MM cell proliferation and may serve as an attractive target for reducing the proliferative compartment of this disease. PMID:22460757

  15. Adhesion molecules--The lifelines of multiple myeloma cells.

    PubMed

    Katz, Ben-Zion

    2010-06-01

    Multiple myeloma is an incurable hematological malignancy of terminally differentiated immunoglobulin-producing plasma cells. As a common presentation of the disease, the malignant plasma cells accumulate and proliferate in the bone marrow, where they disrupt normal hematopoiesis and bone physiology. Multiple myeloma cells and the bone marrow microenvironment are linked by a composite network of interactions mediated by soluble factors and adhesion molecules. Integrins and syndecan-1/CD138 are the principal multiple myeloma receptor systems of extracellular matrix components, as well as of surface molecules of stromal cells. CD44 and RHAMM are the major hyaluronan receptors of multiple myeloma cells. The SDF-1/CXCR4 axis is a key factor in the homing of multiple myeloma cells to the bone marrow. The levels of expression and activity of these adhesion molecules are controlled by cytoplasmic operating mechanisms, as well as by extracellular factors including enzymes, growth factors and microenvironmental conditions. Several signaling responses are activated by adhesive interactions of multiple myeloma cells, and their outcomes affect the survival, proliferation and migration of these cells, and in many cases generate a drug-resistant phenotype. Hence, the adhesion systems of multiple myeloma cells are attractive potential therapeutic targets. Several approaches are being developed to disrupt the activities of adhesion molecules in multiple myeloma cells, including small antagonist molecules, direct targeting by immunoconjugates, stimulation of immune responses against these molecules, and signal transduction inhibitors. These potential novel therapeutics may be incorporated into current treatment schemes, or directed against minimal residual malignant cells during remission. Copyright © 2010. Published by Elsevier Ltd.

  16. Multiple myeloma mesenchymal stromal cells: Contribution to myeloma bone disease and therapeutics

    PubMed Central

    Garcia-Gomez, Antonio; Sanchez-Guijo, Fermin; del Cañizo, M Consuelo; San Miguel, Jesus F; Garayoa, Mercedes

    2014-01-01

    Multiple myeloma is a hematological malignancy in which clonal plasma cells proliferate and accumulate within the bone marrow. The presence of osteolytic lesions due to increased osteoclast (OC) activity and suppressed osteoblast (OB) function is characteristic of the disease. The bone marrow mesenchymal stromal cells (MSCs) play a critical role in multiple myeloma pathophysiology, greatly promoting the growth, survival, drug resistance and migration of myeloma cells. Here, we specifically discuss on the relative contribution of MSCs to the pathophysiology of osteolytic lesions in light of the current knowledge of the biology of myeloma bone disease (MBD), together with the reported genomic, functional and gene expression differences between MSCs derived from myeloma patients (pMSCs) and their healthy counterparts (dMSCs). Being MSCs the progenitors of OBs, pMSCs primarily contribute to the pathogenesis of MBD because of their reduced osteogenic potential consequence of multiple OB inhibitory factors and direct interactions with myeloma cells in the bone marrow. Importantly, pMSCs also readily contribute to MBD by promoting OC formation and activity at various levels (i.e., increasing RANKL to OPG expression, augmenting secretion of activin A, uncoupling ephrinB2-EphB4 signaling, and through augmented production of Wnt5a), thus further contributing to OB/OC uncoupling in osteolytic lesions. In this review, we also look over main signaling pathways involved in the osteogenic differentiation of MSCs and/or OB activity, highlighting amenable therapeutic targets; in parallel, the reported activity of bone-anabolic agents (at preclinical or clinical stage) targeting those signaling pathways is commented. PMID:25126382

  17. Myeloma cell-induced disruption of bone remodelling compartments leads to osteolytic lesions and generation of osteoclast-myeloma hybrid cells.

    PubMed

    Andersen, Thomas L; Søe, Kent; Sondergaard, Teis E; Plesner, Torben; Delaisse, Jean-Marie

    2010-02-01

    Osteolytic lesions are a hallmark of multiple myeloma. They are due to the hyperactivity of bone resorbing osteoclasts and hypoactivity of bone forming osteoblasts, in response to neighbouring myeloma cells. This study identified a structure that deeply affects this response, because of its impact on the physical organisation of the myeloma cell microenvironment. The proximity between myeloma cells and osteoclasts or osteoblasts was shown to be conditioned by the recently discovered layer of flat cells that separates the osteoclasts and osteoblasts from the bone marrow, by forming a canopy over bone remodelling compartment (BRC). These canopies are frequently disrupted in myeloma, and this disruption correlates with increased proximity and density of myeloma cells. In vitro evidence indicates that this disruption may be due to direct contact between myeloma and BRC canopy cells. Importantly, this disruption and increased proximity and density of myeloma cells coincides with key myeloma-induced bone events, such as osteolytic lesions, impaired bone formation despite increased bone resorption, and fusion of myeloma cells with osteoclasts thereby forming myeloma-osteoclast hybrid cells. These findings strongly support a critical role of BRC canopies in myeloma-induced bone disease. BRC canopies could therefore be considered as a new therapeutic target.

  18. S-phase cells of the lymphoplasmocytic compartment in hyperdiploid multiple myeloma are diploid cells

    SciTech Connect

    Haraldsdottir, V.; Haanen, C.; Kalsbeek-Batenburg, E.; Olthuis, F.

    1995-10-01

    In vivo S-phase cell labeling with iododeoxyuridine (IdUrd) was performed in six multiple myeloma (MM) patients. Myeloma cells from four patients were hyperploid. In three out of four patients, DNA/IdUrd flow cytometry revealed that most of the labeled cells, which had divided during the period, elapsed between flash labeling and sampling, had returned to the diploid G0/G1 compartment and not to the hyperdiploid peak. To eliminate contaminating cells belonging to the normal hematopoiesis, plasmocytic and lymphocytic cells were fractionated and analyzed separately. Cell enrichment was performed with use of murine monoclonal antibodies (MoAbs) against plasmocytic and lymphocytic cell markers and subsequent magnetic activated cell sorting with immunobeads, i.e., polystyrene magnetic particles coated with sheep anti-mouse IgG. The IdUrd-labeled cells were predominantly lymphocytic cells, returning after mitosis to the diploid G0/G1 peak. Although this pattern of S-phase cells in hyperdiploid MM, belonging to the diploid cell compartment, was observed in three out of four hyperploid cases and although the number of observations is small, S-phase cells may demonstrate an aspect of tumor cell kinetics in hyperploid MM, which has been debated for many years and which indicates the existence of a non-plasmocytic stem cell compartment that feeds the plasmocytoma. The behavior of the labeled cells as observed in a few cases of MM provides another, hitherto undescribed, argument that, at least in some MM patients, a part of the proliferating tumor cells may be diploid lymphocytic (precursor) cells. These findings should be considered when targeting and monitoring treatment of MM and also in purging procedures of bone marrow in patients to be treated by ablative cytotoxic therapy and autologous bone marrow transplantation. 57 refs., 3 figs., 1 tab.

  19. Hsp70 inhibition induces myeloma cell death via the intracellular accumulation of immunoglobulin and the generation of proteotoxic stress☆

    PubMed Central

    Zhang, Lei; Fok, Jacqueline J.L.; Mirabella, Fabio; Aronson, Lauren I.; Fryer, Rosemary A.; Workman, Paul; Morgan, Gareth J.; Davies, Faith E.

    2013-01-01

    Multiple myeloma (MM) cells rely on protein homeostatic mechanisms for survival. These mechanisms could be therapeutically targeted via modulation of the heat shock response. We studied the roles of Hsp72 and Hsc70, and show that the two major cytoplasmic Hsp70s play a key role in regulating protein homeostasis and controlling multiple oncogenic pathways in MM, and their inhibition can lead to myeloma cell death. Our study provides further evidence that targeting Hsp70 represents a novel therapeutic approach which may be effective in the treatment of MM. PMID:23887058

  20. Targeting the Pro-Survival Protein MET with Tivantinib (ARQ 197) Inhibits Growth of Multiple Myeloma Cells12

    PubMed Central

    Zaman, Shadia; Shentu, Shujun; Yang, Jing; He, Jin; Orlowski, Robert Z.; Stellrecht, Christine M.; Gandhi, Varsha

    2015-01-01

    The hepatocyte growth factor (HGF)/MNNG HOS transforming gene (MET) pathway regulates cell growth, survival, and migration. MET is mutated or amplified in several malignancies. In myeloma, MET is not mutated, but patients have high plasma concentrations of HGF, high levels of MET expression, and gene copy number, which are associated with poor prognosis and advanced disease. Our previous studies demonstrated that MET is critical for myeloma cell survival and its knockdown induces apoptosis. In our current study, we tested tivantinib (ARQ 197), a small-molecule pharmacological MET inhibitor. At clinically achievable concentrations, tivantinib induced apoptosis by > 50% in all 12 human myeloma cell lines tested. This biologic response was associated with down-regulation of MET signaling and inhibition of the mitogen-activated protein kinase and phosphoinositide 3-kinase pathways, which are downstream of the HGF/MET axis. Tivantinib was equally effective in inducing apoptosis in myeloma cell lines resistant to standard chemotherapy (melphalan, dexamethasone, bortezomib, and lenalidomide) as well as in cells that were co-cultured with a protective bone marrow microenvironment or with exogenous cytokines. Tivantinib induced apoptosis in CD138 + plasma cells from patients and demonstrated efficacy in a myeloma xenograft mouse model. On the basis of these data, we initiated a clinical trial for relapsed/refractory multiple myeloma (MM). In conclusion, MET inhibitors may be an attractive target-based strategy for the treatment of MM. PMID:25810013

  1. Targeting the pro-survival protein MET with tivantinib (ARQ 197) inhibits growth of multiple myeloma cells.

    PubMed

    Zaman, Shadia; Shentu, Shujun; Yang, Jing; He, Jin; Orlowski, Robert Z; Stellrecht, Christine M; Gandhi, Varsha

    2015-03-01

    The hepatocyte growth factor (HGF)/MNNG HOS transforming gene (MET) pathway regulates cell growth, survival, and migration. MET is mutated or amplified in several malignancies. In myeloma, MET is not mutated, but patients have high plasma concentrations of HGF, high levels of MET expression, and gene copy number, which are associated with poor prognosis and advanced disease. Our previous studies demonstrated that MET is critical for myeloma cell survival and its knockdown induces apoptosis. In our current study, we tested tivantinib (ARQ 197), a small-molecule pharmacological MET inhibitor. At clinically achievable concentrations, tivantinib induced apoptosis by >50% in all 12 human myeloma cell lines tested. This biologic response was associated with down-regulation of MET signaling and inhibition of the mitogen-activated protein kinase and phosphoinositide 3-kinase pathways, which are downstream of the HGF/MET axis. Tivantinib was equally effective in inducing apoptosis in myeloma cell lines resistant to standard chemotherapy (melphalan, dexamethasone, bortezomib, and lenalidomide) as well as in cells that were co-cultured with a protective bone marrow microenvironment or with exogenous cytokines. Tivantinib induced apoptosis in CD138+ plasma cells from patients and demonstrated efficacy in a myeloma xenograft mouse model. On the basis of these data, we initiated a clinical trial for relapsed/refractory multiple myeloma (MM). In conclusion, MET inhibitors may be an attractive target-based strategy for the treatment of MM. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Novel treatment strategy with autologous activated and expanded natural killer cells plus anti-myeloma drugs for multiple myeloma

    PubMed Central

    Leivas, Alejandra; Perez-Martinez, Antonio; Blanchard, María Jesús; Martín-Clavero, Estela; Fernández, Lucía; Lahuerta, Juan José; Martinez-Lopez, Joaquín

    2016-01-01

    ABSTRACT This proof-of-concept single-arm open-label phase I clinical trial (NCT02481934) studied the safety and efficacy of multiple infusions of activated and expanded natural killer (NKAE) cells in combination with anti-myeloma drugs in multiple myeloma patients. It included five patients with relapsed or refractory MM who had received two to seven prior lines of therapy; NK cells were expanded for 3 weeks with K562-mb15-41BBL cells. Patients received four cycles of pharmacological treatment with two infusions of 7.5 × 106 NKAEs/kg per cycle. NKAE generation, expansion, and NK monitoring was assessed using flow cytometry. Eighteen clinical-grade NKAE cell GMP-grade products were generated to obtain 627 × 106 NKAEs (range: 315–919 × 106) for the first infusion and 943 × 106 (range: 471–1481 × 106) for the second infusion with 90% (±7%) purity. Neutropenia grade II occurred in two patients and was related to chemotherapy. Of the five patients, four showed disease stabilization before the end of NKAE treatment, and two showed a 50% reduction in bone marrow infiltration and a long-term (>1 y) response. The NKAE cells had a highly cytotoxic phenotype and high cytotoxicity in vitro. Infused NKAE cells were detected in bone marrow and peripheral blood after infusions. Ex vivo expansion of autologous NK cells is feasible, NKAE cells are clinically active and the multiple infusions are well tolerated in patients with relapsed or refractory myeloma. PMID:28123890

  3. Establishment of an HS23 stromal cell-dependent myeloma cell line: fibronectin and IL-6 are critical.

    PubMed

    Sakai, Akira; Oda, Miyo; Itagaki, Mitsuhiro; Yoshida, Noriaki; Arihiro, Koji; Kimura, Akiro

    2010-11-01

    A multiple myeloma (MM) cell line, MSG1, which depends on HS23 stromal cells for its survival, was established from the pleural effusion of a patient with MM who expressed the M-protein of IgA-λ in his serum. During the first 2 months of culture, the myeloma cells survived on adhesive cells from the pleural effusion and, subsequently, they continued to proliferate on HS23 stromal cells. The phenotype of the established MSG1 cell line was: CD138(+), CD38(++), CD19⁻, CD56⁻, VLA-4(+), VEGFR1(+) and VEGFR2(+). Immunohistochemical staining also demonstrated expression of the IgA and λ chain in MSG1 cytoplasm. Karyotype analysis indicated complex chromosomal abnormalities; hypertriploidy, including the deletion of chromosomes 13 and 17, and c-myc translocation. MSG1 cells continued to proliferate, not only when co-cultured with HS23 cells, but also when cultured only on fibronectin-coated plates with the supernatant of HS23 cells or with control medium containing IL-6. Tocilizumab, an anti-IL-6 receptor antibody, inhibited MSG1 survival under these conditions. Therefore, MSG1 may be a unique myeloma cell line that is useful for the study of cell adhesion-mediated drug resistance induced by adhesion molecules and IL-6 stimulation of myeloma cells.

  4. Electro-acoustic fusion of erythrocytes and of myeloma cells.

    PubMed

    Vienken, J; Zimmermann, U; Zenner, H P; Coakley, W T; Gould, R K

    1985-11-07

    Mammalian cells can be concentrated in a sound field. A method is introduced, which combines the reversible aggregation of cells in a sound field with the electrical breakdown of cell membranes to fuse cells, which are in contact. Human red blood cells and mouse myeloma cells are fused by means of that procedure.

  5. Autologous bone marrow Th cells can support multiple myeloma cell proliferation in vitro and in xenografted mice.

    PubMed

    Wang, D; Fløisand, Y; Myklebust, C V; Bürgler, S; Parente-Ribes, A; Hofgaard, P O; Bogen, B; Tasken, K; Tjønnfjord, G E; Schjesvold, F; Dalgaard, J; Tveita, A; Munthe, L A

    2017-02-24

    Multiple myeloma (MM) is a plasma cell malignancy where MM cell growth is supported by the bone marrow (BM) microenvironment with poorly defined cellular and molecular mechanisms. MM cells express CD40, a receptor known to activate autocrine secretion of cytokines and elicit proliferation. Activated T helper (Th) cells express CD40 ligand (CD40L) and BM Th cells are significantly increased in MM patients. We hypothesized that activated BM Th cells could support MM cell growth. We here found that activated autologous BM Th cells supported MM cell growth in a contact- and CD40L-dependent manner in vitro. MM cells had retained the ability to activate Th cells that reciprocated and stimulated MM cell proliferation. Autologous BM Th cells supported MM cell growth in xenografted mice and were found in close contact with MM cells. MM cells secreted chemokines that attracted Th cells, secretion was augmented by CD40-stimulation. Within 14 days of culture of whole bone marrow aspirates in autologous serum, MM cells and Th cells mutually stimulated each other, and MM cells required Th cells for further expansion in vitro and in mice. The results suggest that Th cells may support the expansion of MM cells in patients.Leukemia accepted article preview online, 24 February 2017. doi:10.1038/leu.2017.69.

  6. Outcome of autologous hematopoietic stem cell transplantation in refractory multiple myeloma.

    PubMed

    Veltri, Lauren W; Milton, Denái R; Delgado, Ruby; Shah, Nina; Patel, Krina; Nieto, Yago; Kebriaei, Partow; Popat, Uday R; Parmar, Simrit; Oran, Betul; Ciurea, Stefan; Hosing, Chitra; Lee, Hans C; Manasanch, Elisabet; Orlowski, Robert Z; Shpall, Elizabeth J; Champlin, Richard E; Qazilbash, Muzaffar H; Bashir, Qaiser

    2017-09-15

    Despite the introduction of effective, novel agents, the outcome of patients with refractory multiple myeloma remains poor, particularly those who are refractory to both proteasome inhibitors (PIs) and immunomodulatory agents (IMiDs). Limited data are available on the role of autologous hematopoietic stem cell transplantation in this population. Patients with refractory myeloma who underwent first autologous hematopoietic stem cell transplantation (auto-HCT) between March 2000 and October 2015 were retrospectively analyzed. Those who had primary refractory disease and those with relapsed and refractory disease were included. Disease that was refractory to at least 1 PI and at least 1 IMiD was classified as double-refractory multiple myeloma (DR-MM). In total, 233 patients were identified, including 105 (45%) classified with DR-MM and 128 (55%) classified with nondouble-refractory myeloma (NDR-MM). At a median follow-up of 42 months for surviving patients, at least a partial response was observed in 188 patients (81%; 83 patients in the DR-MM group [79%] and 105 patients in the NDR-MM [82%]; P = .77). A near complete response or better was observed in 52 patients (22%; 25 patients in the DR-MM group [24%] and 27 patients in the NDR-MM group [21%]; P = .77). The median progression-free survival was 17.6 months (14.4 months in the DR-MM group and 18.2 months in the NDR-MM group), and the 2-year progression-free survival rate was 38% (35% in the DR-MM group and 40% in the NDR-MM group; P = .40). The median overall survival was 48 months (38.9 months in the DR-MM group and 56.6 months in the NDR-MM group), and the 2-year overall survival rate was 74% (71% in the DR-MM group and 76% in the NDR-MM group; P = .27). The current findings indicate that auto-HCT is an effective and safe therapy in patients with refractory multiple myeloma, including those who are refractory to IMiDs and PIs. Cancer 2017;123:3568-75. © 2017 American Cancer Society. © 2017

  7. Piperlongumine induces apoptosis and reduces bortezomib resistance by inhibiting STAT3 in multiple myeloma cells

    PubMed Central

    Xia, Dandan; Zhao, Kai; Zeng, Lingyu; Yao, Ruosi; Zhang, Ying; Li, Zhenyu; Niu, Mingshan; Xu, Kailin

    2016-01-01

    Effective new therapies are urgently needed for the treatment of multiple myeloma (MM), an incurable hematological malignancy. In this study, we evaluated the effects of piperlongumine on MM cell proliferation both in vivo and in vitro. Piperlongumine inhibited the proliferation of MM cells by inducing cell apoptosis and blocking osteoclastogenesis. Notably, piperlongumine also reduced bortezomib resistance in MM cells. In a disseminated MM mouse model, piperlongumine prolonged the survival of tumor-bearing mice without causing any obvious toxicity. Mechanistically, piperlongumine inhibited the STAT3 signal pathway in MM cells by binding directly to the STAT3 Cys712 residue. These findings suggest that the clinical use of piperlongumine to overcome bortezomib resistance in MM should be evaluated. PMID:27634873

  8. Intracellular glutathione determines bortezomib cytotoxicity in multiple myeloma cells

    PubMed Central

    Starheim, K K; Holien, T; Misund, K; Johansson, I; Baranowska, K A; Sponaas, A-M; Hella, H; Buene, G; Waage, A; Sundan, A; Bjørkøy, G

    2016-01-01

    Multiple myeloma (myeloma in short) is an incurable cancer of antibody-producing plasma cells that comprise 13% of all hematological malignancies. The proteasome inhibitor bortezomib has improved treatment significantly, but inherent and acquired resistance to the drug remains a problem. We here show that bortezomib-induced cytotoxicity was completely dampened when cells were supplemented with cysteine or its derivative, glutathione (GSH) in ANBL-6 and INA-6 myeloma cell lines. GSH is a major component of the antioxidative defense in eukaryotic cells. Increasing intracellular GSH levels fully abolished bortezomib-induced cytotoxicity and transcriptional changes. Elevated intracellular GSH levels blocked bortezomib-induced nuclear factor erythroid 2-related factor 2 (NFE2L2, NRF2)-associated stress responses, including upregulation of the xCT subunit of the Xc- cystine-glutamate antiporter. INA-6 cells conditioned to increasing bortezomib doses displayed reduced bortezomib sensitivity and elevated xCT levels. Inhibiting Xc- activity potentiated bortezomib-induced cytotoxicity in myeloma cell lines and primary cells, and re-established sensitivity to bortezomib in bortezomib-conditioned cells. We propose that intracellular GSH level is the main determinant of bortezomib-induced cytotoxicity in a subset of myeloma cells, and that combined targeting of the proteasome and the Xc- cystine-glutamate antiporter can circumvent bortezomib resistance. PMID:27421095

  9. Insulin-like growth factor I induces migration and invasion of human multiple myeloma cells.

    PubMed

    Qiang, Ya-Wei; Yao, Lei; Tosato, Giovanna; Rudikoff, Stuart

    2004-01-01

    Multiple myeloma (MM) is an incurable form of cancer characterized by accumulation of malignant plasma cells in the bone marrow. During the course of this disease, tumor cells cross endothelial barriers and home to the bone marrow. In latter stages, myeloma cells extravasate through blood vessels and may seed a variety of organs. Insulin-like growth factor I (IGF-I) is one of several growth factors shown to promote the growth of MM cells. In the current study, we have assessed the ability of IGF-I to serve additionally as a chemotactic factor affecting the mobility and invasive properties of these cells. Results indicate that IGF-I promotes transmigration through vascular endothelial cells and bone marrow stromal cell lines. Analysis of endogenous signaling pathways revealed that protein kinase D/protein kinase Cmicro (PKD/PKCmicro) and RhoA were both activated in a phosphatidylinositol 3-kinase (PI-3K)-dependent manner. Inhibition of PI-3K, PKCs, or Rho-associated kinase by pharmacologic inhibitors abrogated migration, whereas mitogen-activated protein kinase (MAPK), Akt, and p70S6 kinase inhibitors had no effect. These results suggest that IGF-I promotes myeloma cell migration by activation of PI-3K/PKCmicro and PI-3K/RhoA pathways independent of Akt. The identification of IGF-I as both a proliferative and migratory factor provides a rational basis for the development of targeted therapeutic strategies directed at IGF-I in the treatment of MM.

  10. Donor-Derived Smoldering Multiple Myeloma following a Hematopoietic Cell Transplantation for AML

    PubMed Central

    Fiala, Mark; Slade, Michael; Westervelt, Peter

    2017-01-01

    Posttransplant Lymphoproliferative Disorder (PTLD) is one of the most common malignancies complicating solid organ transplantation. In contrast, PTLD accounts for a minority of secondary cancers following allogeneic hematopoietic cell transplantation (HCT). Here we report on a 61-year-old woman who received an ABO-mismatched, HLA-matched unrelated donor hematopoietic cell transplantation from a presumably healthy donor for a diagnosis of acute myeloid leukemia (AML). Eighteen months following her transplant, she developed a monoclonal gammopathy. Bone marrow studies revealed 10% plasma cells, but the patient lacked clinical defining features of multiple myeloma (MM); thus a diagnosis of smoldering multiple myeloma (SMM) was established. Cytogenetic and molecular studies of the bone marrow confirmed the plasma cells were donor-derived. The donor lacks a diagnosis of monoclonal gammopathy of undetermined significance, SMM, or MM. PMID:28316846

  11. Donor-Derived Smoldering Multiple Myeloma following a Hematopoietic Cell Transplantation for AML.

    PubMed

    Fakhri, Bita; Fiala, Mark; Slade, Michael; Westervelt, Peter; Ghobadi, Armin

    2017-01-01

    Posttransplant Lymphoproliferative Disorder (PTLD) is one of the most common malignancies complicating solid organ transplantation. In contrast, PTLD accounts for a minority of secondary cancers following allogeneic hematopoietic cell transplantation (HCT). Here we report on a 61-year-old woman who received an ABO-mismatched, HLA-matched unrelated donor hematopoietic cell transplantation from a presumably healthy donor for a diagnosis of acute myeloid leukemia (AML). Eighteen months following her transplant, she developed a monoclonal gammopathy. Bone marrow studies revealed 10% plasma cells, but the patient lacked clinical defining features of multiple myeloma (MM); thus a diagnosis of smoldering multiple myeloma (SMM) was established. Cytogenetic and molecular studies of the bone marrow confirmed the plasma cells were donor-derived. The donor lacks a diagnosis of monoclonal gammopathy of undetermined significance, SMM, or MM.

  12. Immunophenotype of normal vs. myeloma plasma cells: Toward antibody panel specifications for MRD detection in multiple myeloma.

    PubMed

    Flores-Montero, Juan; de Tute, Ruth; Paiva, Bruno; Perez, José Juan; Böttcher, Sebastian; Wind, Henk; Sanoja, Luzalba; Puig, Noemí; Lecrevisse, Quentin; Vidriales, María Belén; van Dongen, Jacques J M; Orfao, Alberto

    2016-01-01

    In recent years, several studies on large series of multiple myeloma (MM) patients have demonstrated the clinical utility of flow cytometry monitoring of minimal residual disease (flow-MRD) in bone marrow (BM), for improved assessment of response to therapy and prognostication. However, disturbing levels of variability exist regarding the specific protocols and antibody panels used in individual laboratories. Overall, consensus exists about the utility of combined assessment of CD38 and CD138 for the identification of BM plasma cells (PC); in contrast, more heterogeneous lists of markers are used to further distinguish between normal/reactive PCs and myeloma PCs in the MRD settings. Among the later markers, CD19, CD45, CD27, and CD81, together with CD56, CD117, CD200, and CD307, have emerged as particularly informative; however, no single marker provides enough specificity for clear discrimination between clonal PCs and normal PCs. Accordingly, multivariate analyses of single PCs from large series of normal/reactive vs. myeloma BM samples have shown that combined assessment of CD138 and CD38, together with CD45, CD19, CD56, CD27, CD81, and CD117 would be ideally suited for MRD monitoring in virtually every MM patient. However, the specific antibody clones, fluorochrome conjugates and sources of the individual markers determines its optimal (vs. suboptimal or poor) performance in an eight-color staining. Assessment of clonality, via additional cytoplasmic immunoglobulin (CyIg) κ vs. CyIgλ evaluation, may contribute to further establish the normal/reactive vs. clonal nature of small suspicious PC populations at high sensitivity levels, provided that enough cells are evaluated. © 2015 International Clinical Cytometry Society.

  13. Multiple Myeloma

    MedlinePlus

    Multiple myeloma Overview Multiple myeloma is a cancer that forms in a type of white blood cell called a plasma cell. Plasma cells help ... by making antibodies that recognize and attack germs. Multiple myeloma causes cancer cells to accumulate in the bone ...

  14. Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers.

    PubMed

    Agirre, Xabier; Castellano, Giancarlo; Pascual, Marien; Heath, Simon; Kulis, Marta; Segura, Victor; Bergmann, Anke; Esteve, Anna; Merkel, Angelika; Raineri, Emanuele; Agueda, Lidia; Blanc, Julie; Richardson, David; Clarke, Laura; Datta, Avik; Russiñol, Nuria; Queirós, Ana C; Beekman, Renée; Rodríguez-Madoz, Juan R; San José-Enériz, Edurne; Fang, Fang; Gutiérrez, Norma C; García-Verdugo, José M; Robson, Michael I; Schirmer, Eric C; Guruceaga, Elisabeth; Martens, Joost H A; Gut, Marta; Calasanz, Maria J; Flicek, Paul; Siebert, Reiner; Campo, Elías; Miguel, Jesús F San; Melnick, Ari; Stunnenberg, Hendrik G; Gut, Ivo G; Prosper, Felipe; Martín-Subero, José I

    2015-04-01

    While analyzing the DNA methylome of multiple myeloma (MM), a plasma cell neoplasm, by whole-genome bisulfite sequencing and high-density arrays, we observed a highly heterogeneous pattern globally characterized by regional DNA hypermethylation embedded in extensive hypomethylation. In contrast to the widely reported DNA hypermethylation of promoter-associated CpG islands (CGIs) in cancer, hypermethylated sites in MM, as opposed to normal plasma cells, were located outside CpG islands and were unexpectedly associated with intronic enhancer regions defined in normal B cells and plasma cells. Both RNA-seq and in vitro reporter assays indicated that enhancer hypermethylation is globally associated with down-regulation of its host genes. ChIP-seq and DNase-seq further revealed that DNA hypermethylation in these regions is related to enhancer decommissioning. Hypermethylated enhancer regions overlapped with binding sites of B cell-specific transcription factors (TFs) and the degree of enhancer methylation inversely correlated with expression levels of these TFs in MM. Furthermore, hypermethylated regions in MM were methylated in stem cells and gradually became demethylated during normal B-cell differentiation, suggesting that MM cells either reacquire epigenetic features of undifferentiated cells or maintain an epigenetic signature of a putative myeloma stem cell progenitor. Overall, we have identified DNA hypermethylation of developmentally regulated enhancers as a new type of epigenetic modification associated with the pathogenesis of MM.

  15. Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers

    PubMed Central

    Castellano, Giancarlo; Pascual, Marien; Heath, Simon; Kulis, Marta; Segura, Victor; Bergmann, Anke; Esteve, Anna; Merkel, Angelika; Raineri, Emanuele; Agueda, Lidia; Blanc, Julie; Richardson, David; Clarke, Laura; Datta, Avik; Russiñol, Nuria; Queirós, Ana C.; Beekman, Renée; Rodríguez-Madoz, Juan R.; José-Enériz, Edurne San; Fang, Fang; Gutiérrez, Norma C.; García-Verdugo, José M.; Robson, Michael I.; Schirmer, Eric C.; Guruceaga, Elisabeth; Martens, Joost H.A.; Gut, Marta; Calasanz, Maria J.; Flicek, Paul; Siebert, Reiner; Campo, Elías; Miguel, Jesús F. San; Melnick, Ari; Stunnenberg, Hendrik G.; Gut, Ivo G.

    2015-01-01

    While analyzing the DNA methylome of multiple myeloma (MM), a plasma cell neoplasm, by whole-genome bisulfite sequencing and high-density arrays, we observed a highly heterogeneous pattern globally characterized by regional DNA hypermethylation embedded in extensive hypomethylation. In contrast to the widely reported DNA hypermethylation of promoter-associated CpG islands (CGIs) in cancer, hypermethylated sites in MM, as opposed to normal plasma cells, were located outside CpG islands and were unexpectedly associated with intronic enhancer regions defined in normal B cells and plasma cells. Both RNA-seq and in vitro reporter assays indicated that enhancer hypermethylation is globally associated with down-regulation of its host genes. ChIP-seq and DNase-seq further revealed that DNA hypermethylation in these regions is related to enhancer decommissioning. Hypermethylated enhancer regions overlapped with binding sites of B cell-specific transcription factors (TFs) and the degree of enhancer methylation inversely correlated with expression levels of these TFs in MM. Furthermore, hypermethylated regions in MM were methylated in stem cells and gradually became demethylated during normal B-cell differentiation, suggesting that MM cells either reacquire epigenetic features of undifferentiated cells or maintain an epigenetic signature of a putative myeloma stem cell progenitor. Overall, we have identified DNA hypermethylation of developmentally regulated enhancers as a new type of epigenetic modification associated with the pathogenesis of MM. PMID:25644835

  16. Cell Adhesion Molecule CD166 Drives Malignant Progression and Osteolytic Disease in Multiple Myeloma.

    PubMed

    Xu, Linlin; Mohammad, Khalid S; Wu, Hao; Crean, Colin; Poteat, Bradley; Cheng, Yinghua; Cardoso, Angelo A; Machal, Christophe; Hanenberg, Helmut; Abonour, Rafat; Kacena, Melissa A; Chirgwin, John; Suvannasankha, Attaya; Srour, Edward F

    2016-12-01

    Multiple myeloma is incurable once osteolytic lesions have seeded at skeletal sites, but factors mediating this deadly pathogenic advance remain poorly understood. Here, we report evidence of a major role for the cell adhesion molecule CD166, which we discovered to be highly expressed in multiple myeloma cell lines and primary bone marrow cells from patients. CD166(+) multiple myeloma cells homed more efficiently than CD166(-) cells to the bone marrow of engrafted immunodeficient NSG mice. CD166 silencing in multiple myeloma cells enabled longer survival, a smaller tumor burden, and less osteolytic lesions, as compared with mice bearing control cells. CD166 deficiency in multiple myeloma cell lines or CD138(+) bone marrow cells from multiple myeloma patients compromised their ability to induce bone resorption in an ex vivo organ culture system. Furthermore, CD166 deficiency in multiple myeloma cells also reduced the formation of osteolytic disease in vivo after intratibial engraftment. Mechanistic investigation revealed that CD166 expression in multiple myeloma cells inhibited osteoblastogenesis of bone marrow-derived osteoblast progenitors by suppressing Runx2 gene expression. Conversely, CD166 expression in multiple myeloma cells promoted osteoclastogenesis by activating TRAF6-dependent signaling pathways in osteoclast progenitors. Overall, our results define CD166 as a pivotal director in multiple myeloma cell homing to the bone marrow and multiple myeloma progression, rationalizing its further study as a candidate therapeutic target for multiple myeloma treatment. Cancer Res; 76(23); 6901-10. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. HIF-1α inhibition blocks the cross talk between multiple myeloma plasma cells and tumor microenvironment

    SciTech Connect

    Borsi, Enrica; Perrone, Giulia; Terragna, Carolina; Martello, Marina; Zamagni, Elena; Tacchetti, Paola; Pantani, Lucia; Brioli, Annamaria; Dico, Angela Flores; Zannetti, Beatrice Anna; Rocchi, Serena; Cavo, Michele

    2014-11-01

    Multiple myeloma (MM) is a malignant disorder of post-germinal center B cells, characterized by the clonal proliferation of malignant plasma cells (PCs) within the bone marrow (BM). The reciprocal and complex interactions that take place between the different compartments of BM and the MM cells result in tumor growth, angiogenesis, bone disease, and drug resistance. Given the importance of the BM microenvironment in MM pathogenesis, we investigated the possible involvement of Hypoxia-Inducible transcription Factor-1 alpha (HIF-1α) in the PCs-bone marrow stromal cells interplay. To test this hypothesis, we used EZN-2968, a 3rd generation antisense oligonucleotide against HIF-1α, to inhibit HIF-1α functions. Herein, we provide evidence that the interaction between MM cells and BM stromal cells is drastically reduced upon HIF-1α down-modulation. Notably, we showed that upon exposure to HIF-1α inhibitor, neither the incubation with IL-6 nor the co-culture with BM stromal cells were able to revert the anti-proliferative effect induced by EZN-2968. Moreover, we observed a down-modulation of cytokine-induced signaling cascades and a reduction of MM cells adhesion capability to the extracellular matrix proteins in EZN-2968-treated samples. Taken together, these results strongly support the concept that HIF-1α plays a critical role in the interactions between bone BM cells and PCs in Multiple Myeloma. - Highlights: • HIF-1α inhibition induces a mild apoptotic cell death. • Down-modulation of cytokine-induced signaling cascades upon HIF-1α inhibition. • Reduced interaction between MM cells and BMSCs upon HIF-1α down-modulation. • Reduced PCs adhesion to the extracellular matrix protein induced by EZN-2968. • HIF-1α inhibition may be an attractive therapeutic strategy for Multiple Myeloma.

  18. Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation

    USDA-ARS?s Scientific Manuscript database

    A major problem in patients with multiple myeloma is chemotherapy resistance, which develops in myeloma cells upon interaction with bone marrow stromal cells. However, few studies have determined the role of bone marrow adipocytes, a major component of stromal cells in the bone marrow, in myeloma ch...

  19. CAR T-Cell Therapy for Multiple Myeloma

    Cancer.gov

    A Cancer Currents blog on results presented at the American Society of Clinical Oncology annual meeting from two early-phase trials testing immune cells that were engineered to target a protein on myeloma cells called B-cell maturation antigen.

  20. [Close correlations between CD20 expression, a small mature plasma cell morphology and t(11 ; 14) in multiple myeloma].

    PubMed

    Matsuda, Isao; Mori, Yuki; Nakagawa, Yasunori; Sawanobori, Masakazu; Uemura, Naoki; Suzuki, Kenshi

    2005-12-01

    Stratification of patients with multiple myeloma (MM) may be important. We investigated 138 MM patients, focusing on correlations between CD20 expression, 11 ; 14 translocation, morphology of MM cells, cyclin D1 immunostaining, and the prognosis. About 15% of patients (7/47cases) were CD20-positive, small mature MM cells, with positive cyclin D1 in the nucleus and 11; 14 translocation. Two color analysis of CD38 x CD20 antigens may be necessary to investigate CD20 expression on MM cells. Rituximab may be effective for the treatment of CD20-positive MM.

  1. Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche.

    PubMed

    Lawson, Michelle A; McDonald, Michelle M; Kovacic, Natasa; Hua Khoo, Weng; Terry, Rachael L; Down, Jenny; Kaplan, Warren; Paton-Hough, Julia; Fellows, Clair; Pettitt, Jessica A; Neil Dear, T; Van Valckenborgh, Els; Baldock, Paul A; Rogers, Michael J; Eaton, Colby L; Vanderkerken, Karin; Pettit, Allison R; Quinn, Julian M W; Zannettino, Andrew C W; Phan, Tri Giang; Croucher, Peter I

    2015-12-03

    Multiple myeloma is largely incurable, despite development of therapies that target myeloma cell-intrinsic pathways. Disease relapse is thought to originate from dormant myeloma cells, localized in specialized niches, which resist therapy and repopulate the tumour. However, little is known about the niche, and how it exerts cell-extrinsic control over myeloma cell dormancy and reactivation. In this study, we track individual myeloma cells by intravital imaging as they colonize the endosteal niche, enter a dormant state and subsequently become activated to form colonies. We demonstrate that dormancy is a reversible state that is switched 'on' by engagement with bone-lining cells or osteoblasts, and switched 'off' by osteoclasts remodelling the endosteal niche. Dormant myeloma cells are resistant to chemotherapy that targets dividing cells. The demonstration that the endosteal niche is pivotal in controlling myeloma cell dormancy highlights the potential for targeting cell-extrinsic mechanisms to overcome cell-intrinsic drug resistance and prevent disease relapse.

  2. Killing multiple myeloma cells with the small molecule 3-bromopyruvate: implications for therapy.

    PubMed

    Majkowska-Skrobek, Grażyna; Augustyniak, Daria; Lis, Paweł; Bartkowiak, Anna; Gonchar, Mykhailo; Ko, Young H; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław

    2014-07-01

    The small molecule 3-bromopyruvate (3-BP), which has emerged recently as the first member of a new class of potent anticancer agents, was tested for its capacity to kill multiple myeloma (MM) cancer cells. Human MM cells (RPMI 8226) begin to lose viability significantly within 8 h of incubation in the presence of 3-BP. The Km (0.3 mmol/l) for intracellular accumulation of 3-BP in MM cells is 24 times lower than that in control cells (7.2 mmol/l). Therefore, the uptake of 3-BP by MM cells is significantly higher than that by peripheral blood mononuclear cells. Further, the IC50 values for human MM cells and control peripheral blood mononuclear cells are 24 and 58 µmol/l, respectively. Therefore, specificity and selectivity of 3-BP toward MM cancer cells are evident on the basis of the above. In MM cells the transcription levels of the gene encoding the monocarboxylate transporter MCT1 is significantly amplified compared with control cells. The level of intracellular ATP in MM cells decreases by over 90% within 1 h after addition of 100 µmol/l 3-BP. The cytotoxicity of 3-BP, exemplified by a marked decrease in viability of MM cells, is potentiated by the inhibitor of glutathione synthesis buthionine sulfoximine. In addition, the lack of mutagenicity and its superior capacity relative to Glivec to kill MM cancer cells are presented in this study.

  3. Bidirectional Notch Signaling and Osteocyte-Derived Factors in the Bone Marrow Microenvironment Promote Tumor Cell Proliferation and Bone Destruction in Multiple Myeloma.

    PubMed

    Delgado-Calle, Jesus; Anderson, Judith; Cregor, Meloney D; Hiasa, Masahiro; Chirgwin, John M; Carlesso, Nadia; Yoneda, Toshiyuki; Mohammad, Khalid S; Plotkin, Lilian I; Roodman, G David; Bellido, Teresita

    2016-03-01

    In multiple myeloma, an overabundance of monoclonal plasma cells in the bone marrow induces localized osteolytic lesions that rarely heal due to increased bone resorption and suppressed bone formation. Matrix-embedded osteocytes comprise more than 95% of bone cells and are major regulators of osteoclast and osteoblast activity, but their contribution to multiple myeloma growth and bone disease is unknown. Here, we report that osteocytes in a mouse model of human MM physically interact with multiple myeloma cells in vivo, undergo caspase-3-dependent apoptosis, and express higher RANKL (TNFSF11) and sclerostin levels than osteocytes in control mice. Mechanistic studies revealed that osteocyte apoptosis was initiated by multiple myeloma cell-mediated activation of Notch signaling and was further amplified by multiple myeloma cell-secreted TNF. The induction of apoptosis increased osteocytic Rankl expression, the osteocytic Rankl/Opg (TNFRSF11B) ratio, and the ability of osteocytes to attract osteoclast precursors to induce local bone resorption. Furthermore, osteocytes in contact with multiple myeloma cells expressed high levels of Sost/sclerostin, leading to a reduction in Wnt signaling and subsequent inhibition of osteoblast differentiation. Importantly, direct contact between osteocytes and multiple myeloma cells reciprocally activated Notch signaling and increased Notch receptor expression, particularly Notch3 and 4, stimulating multiple myeloma cell growth. These studies reveal a previously unknown role for bidirectional Notch signaling that enhances MM growth and bone disease, suggesting that targeting osteocyte-multiple myeloma cell interactions through specific Notch receptor blockade may represent a promising treatment strategy in multiple myeloma.

  4. Kaposi's sarcoma-associated herpesvirus infection of bone marrow dendritic cells from multiple myeloma patients.

    PubMed

    Rettig, M B; Ma, H J; Vescio, R A; Põld, M; Schiller, G; Belson, D; Savage, A; Nishikubo, C; Wu, C; Fraser, J; Said, J W; Berenson, J R

    1997-06-20

    Kaposi's sarcoma-associated herpesvirus (KSHV) was found in the bone marrow dendritic cells of multiple myeloma patients but not in malignant plasma cells or bone marrow dendritic cells from normal individuals or patients with other malignancies. In addition the virus was detected in the bone marrow dendritic cells from two out of eight patients with monoclonal gammopathy of undetermined significance (MGUS), a precursor to myeloma. Viral interleukin-6, the human homolog of which is a growth factor for myeloma, was found to be transcribed in the myeloma bone marrow dendritic cells. KSHV may be required for transformation from MGUS to myeloma and perpetuate the growth of malignant plasma cells.

  5. Multiple myeloma.

    PubMed

    Peller, Patrick J

    2015-04-01

    This article presents a review of multiple myeloma, precursor states, and related plasma cell disorders. The clinical roles of fluorodeoxyglucose PET/computed tomography (CT) and the potential to improve the management of patients with multiple myeloma are discussed. The clinical and research data supporting the utility of PET/CT use in evaluating myeloma and other plasma cell dyscrasias continues to grow.

  6. MDX-1097 induces antibody-dependent cellular cytotoxicity against kappa multiple myeloma cells and its activity is augmented by lenalidomide.

    PubMed

    Asvadi, Parisa; Cuddihy, Andrew; Dunn, Rosanne D; Jiang, Vivien; Wong, Mae X; Jones, Darren R; Khong, Tiffany; Spencer, Andrew

    2015-05-01

    MDX-1097 is an antibody specific for a unique B cell antigen called kappa myeloma antigen (KMA) that consists of cell membrane-associated free kappa light chain (κFLC). KMA was detected on kappa human multiple myeloma cell lines (κHMCLs), on plasma cells (PCs) from kappa multiple myelomaMM) patients and on κPC dyscrasia tissue cryosections. In primary κMM samples, KMA was present on CD38+ cells that were CD138 and CD45 positive and/or negative. MDX-1097 exhibited a higher affinity for KMA compared to κFLC and the latter did not abrogate binding to KMA. MDX-1097-mediated antibody-dependent cellular cytotoxicity (ADCC) and in vitro exposure of target cells to the immunomodulatory drug lenalidomide resulted in increased KMA expression and ADCC. Also, in vitro exposure of peripheral blood mononuclear cells (PBMCs) to lenalidomide enhanced MDX-1097-mediated ADCC. PBMCs obtained from myeloma patients after lenalidomide therapy elicited significantly higher levels of MDX-1097-mediated ADCC than cells obtained prior to lenalidomide treatment. These data establish KMA as a relevant cell surface antigen on MM cells that can be targeted by MDX-1097. The ADCC-inducing capacity of MDX-1097 and its potentiation by lenalidomide provide a powerful rationale for clinical evaluation of MDX-1097 alone and in combination with lenalidomide. © 2015 John Wiley & Sons Ltd.

  7. Vaccination with Dendritic Cell Myeloma Fusions in Conjunction With Stem Cell Transplantation and PD1 Blockade

    DTIC Science & Technology

    2010-05-01

    glycol. Mean expression of PDL- 1 was 97% on DCs (n=5, Figure 1), and 45% on patient derived myeloma cells (n=6, Figure 1). In addition, mean... expression of PDL-1 was 90% on DC/ myeloma fusions (n=2, Figure 2), suggesting this pathway may provide an inhibitory signal that blunts fusion mediated...immunologic response. Expression of PD-1 on T cells isolated from patients with multiple myeloma : In infectious disease models, upregulation of T

  8. CXCL12 and CXCR7 are relevant targets to reverse cell adhesion-mediated drug resistance in multiple myeloma.

    PubMed

    Waldschmidt, Johannes M; Simon, Anna; Wider, Dagmar; Müller, Stefan J; Follo, Marie; Ihorst, Gabriele; Decker, Sarah; Lorenz, Joschka; Chatterjee, Manik; Azab, Abdel K; Duyster, Justus; Wäsch, Ralph; Engelhardt, Monika

    2017-10-01

    Cell adhesion-mediated drug resistance (CAM-DR) by the bone marrow (BM) is fundamental to multiple myeloma (MM) propagation and survival. Targeting BM protection to increase the efficacy of current anti-myeloma treatment has not been extensively pursued. To extend the understanding of CAM-DR, we hypothesized that the cytotoxic effects of novel anti-myeloma agents may be abrogated by the presence of BM stroma cells (BMSCs) and restored by addition of the CXCL12 antagonist NOX-A12 or the CXCR4 inhibitor plerixafor. Following this hypothesis, we evaluated different anti-myeloma agents alone, with BMSCs and when combined with plerixafor or NOX-A12. We verified CXCR4, CD49d (also termed ITGA4) and CD44 as essential mediators of BM adhesion on MM cells. Additionally, we show that CXCR7, the second receptor of stromal-derived-factor-1 (CXCL12), is highly expressed in active MM. Co-culture proved that co-treatment with plerixafor or NOX-A12, the latter inhibiting CXCR4 and CXCR7, functionally interfered with MM chemotaxis to the BM. This led to the resensitization of MM cells to the anti-myeloma agents vorinostat and pomalidomide and both proteasome inhibitors bortezomib and carfilzomib. Within a multicentre phase I/II study, NOX-A12 was tested in combination with bortezomib-dexamethasone, underlining the feasibility of NOX-A12 as an active add-on agent to antagonize myeloma CAM-DR. © 2017 John Wiley & Sons Ltd.

  9. Unrelated stem cell transplantation for patients with multiple myeloma.

    PubMed

    Kröger, Nicolaus

    2010-11-01

    The role of allogeneic stem cell transplantation (SCT) in treatment of myeloma patients is still controversial. Meanwhile, the numbers of unrelated SCT for hematological diseases in Europe are higher than for human leukocyte antigen (HLA)-identical sibling transplantations, but in multiple myeloma only 39% of the allogeneic transplantations are performed from unrelated donors and only a minority were done within prospective clinical trials. The few published data of unrelated SCT in multiple myeloma reported a higher treatment-related mortality for standard myeloablative conditioning in comparison to reduced-intensity conditioning. Despite the heterogeneous patient selection in the trial, lower nonrelapse mortality and improved survival can be achieved by careful donor selection (10/10 HLA-alleles, male donor). Natural killer-alloreactivity might play a role, but conclusive data are lacking. Transplantation in more advanced or refractory patients is associated with an inferior outcome. The results of an unrelated SCT seem to be comparable to those of HLA-identical siblings, but a direct comparison is lacking so far. Unrelated SCT in multiple myeloma is feasible, but prospective clinical trials using unrelated stem cell donors are urgently needed to define the role of an unrelated SCT in multiple myeloma in the era of novel agents.

  10. Role of Bruton’s tyrosine kinase in myeloma cell migration and induction of bone disease

    PubMed Central

    Bam, Rakesh; Ling, Wen; Khan, Sharmin; Pennisi, Angela; Venkateshaiah, Sathisha Upparahalli; Li, Xin; van Rhee, Frits; Usmani, Saad; Barlogie, Bart; Shaughnessy, John; Epstein, Joshua; Yaccoby, Shmuel

    2014-01-01

    Myeloma cells typically grow in bone, recruit osteoclast precursors and induce their differentiation and activity in areas adjacent to tumor foci. Bruton’s tyrosine kinase (BTK), of the TEC family, is expressed in hematopoietic cells and is particularly involved in B-lymphocyte function and osteoclastogenesis. We demonstrated BTK expression in clinical myeloma plasma cells, interleukin (IL) –6– or stroma–dependent cell lines and osteoclasts. SDF-1 induced BTK activation in myeloma cells and BTK inhibition by small hairpin RNA or the small molecule inhibitor, LFM-A13, reduced their migration toward stromal cell-derived factor-1 (SDF-1). Pretreatment with LFM-A13 also reduced in vivo homing of myeloma cells to bone using bioluminescence imaging in the SCID-rab model. Enforced expression of BTK in myeloma cell line enhanced cell migration toward SDF-1 but had no effect on short-term growth. BTK expression was correlated with cell-surface CXCR4 expression in myeloma cells (n = 33, r = 0.81, P < 0.0001), and BTK gene and protein expression was more profound in cell-surface CXCR4-expressing myeloma cells. BTK was not upregulated by IL-6 while its inhibition had no effect on IL-6 signaling in myeloma cells. Human osteoclast precursors also expressed BTK and cell-surface CXCR4 and migrated toward SDF-1. LFM-A13 suppressed migration and differentiation of osteoclast precursors as well as bone-resorbing activity of mature osteoclasts. In primary myeloma-bearing SCID-rab mice, LFM-A13 inhibited osteoclast activity, prevented myeloma-induced bone resorption and moderately suppressed myeloma growth. These data demonstrate BTK and cell-surface CXCR4 association in myeloma cells and that BTK plays a role in myeloma cell homing to bone and myeloma-induced bone disease. PMID:23456977

  11. Erythropoietin (EPO)-receptor signaling induces cell death of primary myeloma cells in vitro.

    PubMed

    Våtsveen, Thea Kristin; Sponaas, Anne-Marit; Tian, Erming; Zhang, Qing; Misund, Kristine; Sundan, Anders; Børset, Magne; Waage, Anders; Brede, Gaute

    2016-08-31

    Multiple myeloma is an incurable complex disease characterized by clonal proliferation of malignant plasma cells in a hypoxic bone marrow environment. Hypoxia-dependent erythropoietin (EPO)-receptor (EPOR) signaling is central in various cancers, but the relevance of EPOR signaling in multiple myeloma cells has not yet been thoroughly investigated. Myeloma cell lines and malignant plasma cells isolated from bone marrow of myeloma patients were used in this study. Transcript levels were analysed by quantitative PCR and cell surface levels of EPOR in primary cells by flow cytometry. Knockdown of EPOR by short interfering RNA was used to show specific EPOR signaling in the myeloma cell line INA-6. Flow cytometry was used to assess viability in primary cells treated with EPO in the presence and absence of neutralizing anti-EPOR antibodies. Gene expression data for total therapy 2 (TT2), total therapy 3A (TT3A) trials and APEX 039 and 040 were retrieved from NIH GEO omnibus and EBI ArrayExpress. We show that the EPOR is expressed in myeloma cell lines and in primary myeloma cells both at the mRNA and protein level. Exposure to recombinant human EPO (rhEPO) reduced viability of INA-6 myeloma cell line and of primary myeloma cells. This effect could be partially reversed by neutralizing antibodies against EPOR. In INA-6 cells and primary myeloma cells, janus kinase 2 (JAK-2) and extracellular signal regulated kinase 1 and 2 (ERK-1/2) were phosphorylated by rhEPO treatment. Knockdown of EPOR expression in INA-6 cells reduced rhEPO-induced phospo-JAK-2 and phospho-ERK-1/2. Co-cultures of primary myeloma cells with bone marrow-derived stroma cells did not protect the myeloma cells from rhEPO-induced cell death. In four different clinical trials, survival data linked to gene expression analysis indicated that high levels of EPOR mRNA were associated with better survival. Our results demonstrate for the first time active EPOR signaling in malignant plasma cells. EPO

  12. Lentiviral transduction of primary myeloma cells with CD80 and CD154 generates antimyeloma effector T cells.

    PubMed

    Cignetti, Alessandro; Vallario, Antonella; Follenzi, Antonia; Circosta, Paola; Capaldi, Antonio; Gottardi, Daniela; Naldini, Luigi; Caligaris-Cappio, Federico

    2005-04-01

    The development of immunotherapy approaches designed to obtain tumor-specific T cells might help eradicate residual malignant cells in multiple myeloma (MM) patients. To this end, we used autologous primary MM cells as antigen-presenting cells (APC). Gene transfer of both CD80 and CD154 by lentiviral vectors was necessary to significantly improve the APC function of human MM cells. Simultaneous CD80/CD154 expression on MM cells allowed the generation of CD8+ T cells that recognized unmodified MM cells in 11 of 16 cases, specifically in six of six patients with low-stage disease, but only in five of ten patients with advanced disease. The activity of CD8+ T cells was MHC restricted and MM specific. In seven of seven cases, CD8+ T cell activity was inhibited by monoclonal antibodies against HLA class I, and in four of four cases, CD8+ T cells recognized autologous MM cells but not autologous normal B and T lymphocytes nor bone marrow stromal cells. In addition, the activity of CD8+ T cells was directed against allogeneic MM cells that shared at least one MHC allele with the autologous counterpart, but not against MHC mismatched MM cells. These data lay the ground for the isolation of new MM antigens and for the design of vaccination protocols with primary MM cells genetically engineered to express immunostimulatory molecules.

  13. Deazaneplanocin A Is a Promising Drug to Kill Multiple Myeloma Cells in Their Niche

    PubMed Central

    Gaudichon, Jérémie; Milano, Francesco; Cahu, Julie; DaCosta, Lætitia; Martens, Anton C.; Renoir, Jack-Michel; Sola, Brigitte

    2014-01-01

    Tumoral plasma cells has retained stemness features and in particular, a polycomb-silenced gene expression signature. Therefore, epigenetic therapy could be a mean to fight for multiple myeloma (MM), still an incurable pathology. Deazaneplanocin A (DZNep), a S-adenosyl-L-homocysteine hydrolase inhibitor, targets enhancer of zest homolog 2 (EZH2), a component of polycomb repressive complex 2 (PRC2) and is capable to induce the death of cancer cells. We show here that, in some MM cell lines, DZNep induced both caspase-dependent and -independent apoptosis. However, the induction of cell death was not mediated through its effect on EZH2 and the trimethylation on lysine 27 of histone H3 (H3K27me3). DZNep likely acted through non-epigenetic mechanisms in myeloma cells. In vivo, in xenograft models, and in vitro DZNep showed potent antimyeloma activity alone or in combination with bortezomib. These preclinical data let us to envisage new therapeutic strategies for myeloma. PMID:25255316

  14. RNA-directed agent, cordycepin, induces cell death in multiple myeloma cells.

    PubMed

    Chen, Lisa S; Stellrecht, Christine M; Gandhi, Varsha

    2008-03-01

    Multiple myeloma (MM) is an incurable plasma cell malignancy that is slow-growing, and thus traditional DNA-replication directed chemotherapeutics are ineffective. We hypothesized that those agents that target RNA-directed processes would be successful in MM. To test this postulate, cordycepin, a polyadenylation inhibitor was used as a proof-of-principle towards MM cell lines. Cordycepin accumulated in MM.1S cells as its triphosphate metabolite, 3'dATP and subsequently inhibits RNA synthesis and cell growth. Cell death was via apoptosis induction and over 50% of treated cells were annexin-V positive after 48 h. As a consequence of RNA synthesis inhibition, we hypothesized that specific genes with short half-lives may be downregulated, leading to a reduction in protein. Indeed, a reduction in the transcript levels for MET, a survival gene for MM, was detected as early as 4 h and transcripts were reduced to c. 10% of control after 48 h. Interestingly, no significant change in protein levels was observed for Bcl-2, XIAP, Mcl-1 or survivin. Stabilization of p53 was not observed, and caspases-8, -9 and -3 showed activation following cordycepin treatment but were not required for cell death. Our results suggest that RNA-directed agents may be a new group of agents for the treatment of MM.

  15. A peptide nucleic acid targeting nuclear RAD51 sensitizes multiple myeloma cells to melphalan treatment

    PubMed Central

    Alagpulinsa, David Abasiwani; Yaccoby, Shmuel; Ayyadevara, Srinivas; Shmookler Reis, Robert Joseph

    2015-01-01

    RAD51-mediated recombinational repair is elevated in multiple myeloma (MM) and predicts poor prognosis. RAD51 has been targeted to selectively sensitize and/or kill tumor cells. Here, we employed a peptide nucleic acid (PNA) to inhibit RAD51 expression in MM cells. We constructed a PNA complementary to a unique segment of the RAD51 gene promoter, spanning the transcription start site, and conjugated it to a nuclear localization signal (PKKKRKV) to enhance cellular uptake and nuclear delivery without transfection reagents. This synthetic construct, (PNArad51_nls), significantly reduced RAD51 transcripts in MM cells, and markedly reduced the number and intensity of de novo and melphalan-induced nuclear RAD51 foci, while increasing the level of melphalan-induced γH2AX foci. Melphalan alone markedly induced the expression of 5 other genes involved in homologous-recombination repair, yet suppression of RAD51 by PNArad51_nls was sufficient to synergize with melphalan, producing significant synthetic lethality of MM cells in vitro. In a SCID-rab mouse model mimicking the MM bone marrow microenvironment, treatment with PNArad51_nls ± melphalan significantly suppressed tumor growth after 2 weeks, whereas melphalan plus control PNArad4µ_nls was ineffectual. This study highlights the importance of RAD51 in myeloma growth and is the first to demonstrate that anti-RAD51 PNA can potentiate conventional MM chemotherapy. PMID:25996477

  16. Stem cell marker nestin is expressed in plasma cells of multiple myeloma patients.

    PubMed

    Svachova, H; Pour, L; Sana, J; Kovarova, L; Raja, K R Muthu; Hajek, R

    2011-08-01

    Nestin is considered to be a characteristic marker of multipotent proliferative precursors found in some embryonic and fetal tissues. Its expression might be a suitable diagnostic and prognostic indicator of malignancy and a potential marker of cancer stem cells in solid tumors. Unexpectedly, nestin protein was detected in mature CD138(+)CD38(+) plasma cells of multiple myeloma patients and statistical analysis confirmed significant differences between myeloma patients and control group without hematological malignancy. Our results represent the first evidence of nestin expression in multiple myeloma. Further studies are required to elucidate the role of this protein in multiple myeloma. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Reelin promotes the adhesion and drug resistance of multiple myeloma cells via integrin β1 signaling and STAT3.

    PubMed

    Lin, Liang; Yan, Fan; Zhao, Dandan; Lv, Meng; Liang, Xiaodong; Dai, Hui; Qin, Xiaodan; Zhang, Yan; Hao, Jie; Sun, Xiuyuan; Yin, Yanhui; Huang, Xiaojun; Zhang, Jun; Lu, Jin; Ge, Qing

    2016-03-01

    Reelin is an extracellular matrix (ECM) protein that is essential for neuron migration and positioning. The expression of reelin in multiple myeloma (MM) cells and its association with cell adhesion and survival were investigated. Overexpression, siRNA knockdown, and the addition of recombinant protein of reelin were used to examine the function of reelin in MM cells. Clinically, high expression of reelin was negatively associated with progression-free survival and overall survival. Functionally, reelin promoted the adhesion of MM cells to fibronectin via activation of α5β1 integrin. The resulting phosphorylation of Focal Adhesion Kinase (FAK) led to the activation of Src/Syk/STAT3 and Akt, crucial signaling molecules involved in enhancing cell adhesion and protecting cells from drug-induced cell apoptosis. These findings indicate reelin's important role in the activation of integrin-β1 and STAT3/Akt pathways in multiple myeloma and highlight the therapeutic potential of targeting reelin/integrin/FAK axis.

  18. Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation

    PubMed Central

    He, Jin; Liu, Huan; Lin, Pei; Wan, Xinhai; Navone, Nora M.; Tong, Qiang; Kwak, Larry W.; Orlowski, Robert Z.; Yang, Jing

    2015-01-01

    A major problem in patients with multiple myeloma is chemotherapy resistance, which develops in myeloma cells upon interaction with bone marrow stromal cells. However, few studies have determined the role of bone marrow adipocytes, a major component of stromal cells in the bone marrow, in myeloma chemotherapy resistance. We reveal that mature human adipocytes activate autophagy and upregulate the expression of autophagic proteins, thereby suppressing chemotherapy-induced caspase cleavage and apoptosis in myeloma cells. We found that adipocytes secreted known and novel adipokines, such as leptin and adipsin. The addition of these adipokines enhanced the expression of autophagic proteins and reduced apoptosis in myeloma cells. In vivo studies further demonstrated the importance of bone marrow-derived adipocytes in the reduced response of myeloma cells to chemotherapy. Our findings suggest that adipocytes, adipocyte-secreted adipokines, and adipocyte-activated autophagy are novel targets for combatting chemotherapy resistance and enhancing treatment efficacy in myeloma patients. PMID:26455377

  19. Differentiation stage of myeloma plasma cells: biological and clinical significance.

    PubMed

    Paiva, B; Puig, N; Cedena, M T; de Jong, B G; Ruiz, Y; Rapado, I; Martinez-Lopez, J; Cordon, L; Alignani, D; Delgado, J A; van Zelm, M C; Van Dongen, J J M; Pascual, M; Agirre, X; Prosper, F; Martín-Subero, J I; Vidriales, M-B; Gutierrez, N C; Hernandez, M T; Oriol, A; Echeveste, M A; Gonzalez, Y; Johnson, S K; Epstein, J; Barlogie, B; Morgan, G J; Orfao, A; Blade, J; Mateos, M V; Lahuerta, J J; San-Miguel, J F

    2017-02-01

    The notion that plasma cells (PCs) are terminally differentiated has prevented intensive research in multiple myeloma (MM) about their phenotypic plasticity and differentiation. Here, we demonstrated in healthy individuals (n=20) that the CD19-CD81 expression axis identifies three bone marrow (BM)PC subsets with distinct age-prevalence, proliferation, replication-history, immunoglobulin-production, and phenotype, consistent with progressively increased differentiation from CD19+CD81+ into CD19-CD81+ and CD19-CD81- BMPCs. Afterwards, we demonstrated in 225 newly diagnosed MM patients that, comparing to normal BMPC counterparts, 59% had fully differentiated (CD19-CD81-) clones, 38% intermediate-differentiated (CD19-CD81+) and 3% less-differentiated (CD19+CD81+) clones. The latter patients had dismal outcome, and PC differentiation emerged as an independent prognostic marker for progression-free (HR: 1.7; P=0.005) and overall survival (HR: 2.1; P=0.006). Longitudinal comparison of diagnostic vs minimal-residual-disease samples (n=40) unraveled that in 20% of patients, less-differentiated PCs subclones become enriched after therapy-induced pressure. We also revealed that CD81 expression is epigenetically regulated, that less-differentiated clonal PCs retain high expression of genes related to preceding B-cell stages (for example: PAX5), and show distinct mutation profile vs fully differentiated PC clones within individual patients. Together, we shed new light into PC plasticity and demonstrated that MM patients harbouring less-differentiated PCs have dismal survival, which might be related to higher chemoresistant potential plus different molecular and genomic profiles.

  20. Differentiation stage of myeloma plasma cells: biological and clinical significance

    PubMed Central

    Paiva, B; Puig, N; Cedena, MT; de Jong, BG; Ruiz, Y; Rapado, I; Martinez-Lopez, J; Cordon, L; Alignani, D; Delgado, JA; van Zelm, MC; Van Dongen, JJM; Pascual, M; Agirre, X; Prosper, F; Martín-Subero, JI; Vidriales, M-B; Gutierrez, NC; Hernandez, MT; Oriol, A; Echeveste, MA; Gonzalez, Y; Johnson, SK; Epstein, J; Barlogie, B; Morgan, GJ; Orfao, A; Blade, J; Mateos, MV; Lahuerta, JJ; San-Miguel, JF

    2017-01-01

    The notion that plasma cells (PCs) are terminally differentiated has prevented intensive research in multiple myeloma (MM) about their phenotypic plasticity and differentiation. Here, we demonstrated in healthy individuals (n = 20) that the CD19 − CD81 expression axis identifies three bone marrow (BM)PC subsets with distinct age-prevalence, proliferation, replication-history, immunoglobulin-production, and phenotype, consistent with progressively increased differentiation from CD19+CD81+ into CD19 − CD81+ and CD19 − CD81 − BMPCs. Afterwards, we demonstrated in 225 newly diagnosed MM patients that, comparing to normal BMPC counterparts, 59% had fully differentiated (CD19 − CD81 −) clones, 38% intermediate-differentiated (CD19 − CD81+) and 3% less-differentiated (CD19+CD81+) clones. The latter patients had dismal outcome, and PC differentiation emerged as an independent prognostic marker for progression-free (HR: 1.7; P = 0.005) and overall survival (HR: 2.1; P = 0.006). Longitudinal comparison of diagnostic vs minimal-residual-disease samples (n = 40) unraveled that in 20% of patients, less-differentiated PCs subclones become enriched after therapy-induced pressure. We also revealed that CD81 expression is epigenetically regulated, that less-differentiated clonal PCs retain high expression of genes related to preceding B-cell stages (for example: PAX5), and show distinct mutation profile vs fully differentiated PC clones within individual patients. Together, we shed new light into PC plasticity and demonstrated that MM patients harbouring less-differentiated PCs have dismal survival, which might be related to higher chemoresistant potential plus different molecular and genomic profiles. PMID:27479184

  1. Antigen Expression Patterns of Plasma Cell Myeloma: An Association of Cytogenetic Abnormality and International Staging System (ISS) for Myeloma.

    PubMed

    Shin, Sang-Yong; Lee, Seung-Tae; Kim, Hee-Jin; Kim, Suk Jin; Kim, Kihyun; Kang, Eun Suk; Kim, Sun-Hee

    2015-11-01

    Immunophenotyping of plasma cell has become an important diagnostic tool for plasma cell myeloma. There have been a few studies for association of antigen expression and cytogenetic abnormality of plasma cell myeloma. A total of 68 symptomatic/smoldering plasma cell myeloma case were analyzed by multicolor flow cytometry using CD38 and CD138 for primary gating of plasma cells. A conventional cytogenetics and fluorescence in situ hybridization (FISH) studies for detection of del(13q) or aneuploidy, del(17p), and IGH/FGFR translocation were done. We statistically analyzed the association of antigen expression and cytogenetic abnormality/myeloma stage (international staging system for multiple myeloma). Positive expression of CD19, CD28, CD45, CD56, CD117, and CD274 was detected in 8.8%, 50.0%, 50.0%, 75.0%, 39.7%, and 2.9% of cases, respectively. CD117-negative cases were associated with hypodiploidy (P = 0.017). CD45-negative cases were associated with deletion 13 or aneuploidy (P < 0.001) and del(17p)(P = 0.011) by FISH. CD45-negativity or CD117-negativity was associated with advanced stage (P = 0.012 and P = 0.016, respectively). The antigen expression patterns of myeloma plasma cell were associated with cytogenetic abnormality and stage. © 2014 Wiley Periodicals, Inc.

  2. SENP1 inhibition induces apoptosis and growth arrest of multiple myeloma cells through modulation of NF-κB signaling

    SciTech Connect

    Xu, Jun; Sun, Hui-Yan; Xiao, Feng-Jun; Wang, Hua; Yang, Yang; Wang, Lu; Gao, Chun-Ji; Guo, Zi-Kuan; Wu, Chu-Tse; Wang, Li-Sheng

    2015-05-01

    SUMO/sentrin specific protease 1 (Senp1) is an important regulation protease in the protein sumoylation, which affects the cell cycle, proliferation and differentiation. The role of Senp1 mediated protein desumoylation in pathophysiological progression of multiple myeloma is unknown. In this study, we demonstrated that Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. Lentivirus-mediated Senp1 knockdown triggers apoptosis and reduces viability, proliferation and colony forming ability of MM cells. The NF-κB family members including P65 and inhibitor protein IkBα play important roles in regulation of MM cell survival and proliferation. We further demonstrated that Senp1 inhibition decreased IL-6-induced P65 and IkBα phosphorylation, leading to inactivation of NF-kB signaling in MM cells. These results delineate a key role for Senp1in IL-6 induced proliferation and survival of MM cells, suggesting it may be a potential new therapeutic target in MM. - Highlights: • Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. • Senp1 knockdown triggers apoptosis and reduces proliferation of MM cells. • Senp1 inhibition decreased IL-6-induced P65 and IkBα phosphorylation.

  3. Clonogenic Multiple Myeloma Cells have Shared stemness Signature Associated with Patient Survival

    PubMed Central

    Reghunathan, Renji; Bi, Chonglei; Liu, Shaw Cheng; Loong, Koh Tze; Chung, Tae-Hoon; Huang, Gaofeng; Chng, Wee Joo

    2013-01-01

    Multiple myeloma is the abnormal clonal expansion of post germinal B cells in the bone marrow. It was previously reported that clonogenic myeloma cells are CD138−. Human MM cell lines RPMI8226 and NCI H929 contained 2-5% of CD138− population. In this study, we showed that CD138− cells have increased ALDH1 activity, a hallmark of normal and neoplastic stem cells. CD138−ALDH+ cells were more clonogenic than CD138+ALDH− cells and only CD138− cells differentiated into CD138+ population. In vivo tumor initiation and clonogenic potentials of the CD138− population was confirmed using NOG mice. We derived a gene expression signature from functionally validated and enriched CD138− clonogenic population from MM cell lines and validated these in patient samples. This data showed that CD138− cells had an enriched expression of genes that are expressed in normal and malignant stem cells. Differentially expressed genes included components of the polycomb repressor complex (PRC) and their targets. Inhibition of PRC by DZNep showed differential effect on CD138− and CD138+ populations. The ‘stemness’ signature derived from clonogenic CD138− cells overlap significantly with signatures of common progenitor cells, hematopoietic stem cells, and Leukemic stem cells and is associated with poorer survival in different clinical datasets. PMID:23985559

  4. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation

    PubMed Central

    Raimondi, Lavinia; De Luca, Angela; Amodio, Nicola; Manno, Mauro; Raccosta, Samuele; Taverna, Simona; Bellavia, Daniele; Naselli, Flores; Fontana, Simona; Schillaci, Odessa; Giardino, Roberto; Fini, Milena; Tassone, Pierfrancesco; Santoro, Alessandra; De Leo, Giacomo; Giavaresi, Gianluca; Alessandro, Riccardo

    2015-01-01

    Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs differentiation. We show that MM cells produce exosomes which are actively internalized by Raw264.7 cell line, a cellular model of osteoclast formation. MM cell-derived exosomes positively modulate pre-osteoclast migration, through the increasing of CXCR4 expression and trigger a survival pathway. MM cell-derived exosomes play a significant pro-differentiative role in murine Raw264.7 cells and human primary osteoclasts, inducing the expression of osteoclast markers such as Cathepsin K (CTSK), Matrix Metalloproteinases 9 (MMP9) and Tartrate-resistant Acid Phosphatase (TRAP). Pre-osteoclast treated with MM cell-derived exosomes differentiate in multinuclear OCs able to excavate authentic resorption lacunae. Similar results were obtained with exosomes derived from MM patient's sera. Our data indicate that MM-exosomes modulate OCs function and differentiation. Further studies are needed to identify the OCs activating factors transported by MM cell-derived exosomes. PMID:25944696

  5. PD1 blockade enhances cytotoxicity of in vitro expanded natural killer cells towards myeloma cells

    PubMed Central

    Guo, Yanan; Feng, Xiaoli; Jiang, Yang; Shi, Xiaoyun; Xing, Xiangling; Liu, Xiaoli; Li, Nailin; Fadeel, Bengt; Zheng, Chengyun

    2016-01-01

    Aiming for an adoptive natural killer (NK) cell therapy, we have developed a novel protocol to expand NK cells from peripheral blood. With this protocol using anti-human CD16 antibody and interleukin (IL)-2, NK (CD3−CD56+) cells could be expanded about 4000-fold with over 70% purity during a 21-day culture. The expanded NK (exNK) cells were shown to be highly cytotoxic to multiple myeloma (MM) cells (RPMI8226) at low NK-target cell ratios. Furthermore, NK cells expanded in the presence of a blocking antibody (exNK+PD1-blockage) against programmed cell death protein-1 (PD1), a key counteracting molecule for NK and T cell activity, demonstrated more potent cytolytic activity against the RPMI8226 than the exNK cells without PD1 blocking. In parallel, the exNK cells showed significantly higher expression of NK activation receptors NKG2D, NKp44 and NKp30. In a murine model of MM, transfusion of exNK cells, exNK+PD1-blockage, and exNK plus intratumor injection of anti-PD-L2 antibody (exNK+PD-L2 blockage) all significantly suppressed tumor growth and prolonged survival of the myeloma mice. Importantly, exNK+PD1-blockage presented more efficient therapeutic effects. Our results suggest that the NK cell expansion protocol with PD1 blockade presented in this study has considerable potential for the clinical application of allo- and auto-NK cell-based therapies against malignancies. PMID:27356741

  6. Phenotypic detection of clonotypic B cells in multiple myeloma by specific immunoglobulin ligands reveals their rarity in multiple myeloma.

    PubMed

    Trepel, Martin; Martens, Victoria; Doll, Christian; Rahlff, Janina; Gösch, Barbara; Loges, Sonja; Binder, Mascha

    2012-01-01

    In multiple myeloma, circulating "clonotypic" B cells, that express the immunoglobulin rearrangement of the malignant plasma cell clone, can be indirectly detected by PCR. Their role as potential "feeder" cells for the malignant plasma cell pool remains controversial. Here we established for the first time an approach that allows direct tracking of such clonotypic cells by labeling with patient-specific immunoglobulin ligands in 15 patients with myeloma. Fifty percent of patients showed evidence of clonotypic B cells in blood or bone marrow by PCR. Epitope-mimicking peptides from random libraries were selected on each patient's individual immunoglobulin and used as ligands to trace cells expressing the idiotypic immunoglobulin on their surface. We established a flow cytometry and immunofluorescence protocol to track clonotypic B cells and validated it in two independent monoclonal B cell systems. Using this method, we found clonotypic B cells in only one out of 15 myeloma patients. In view of the assay's validated sensitivity level of 10(-3), this surprising data suggests that the abundance of such cells has been vastly overestimated in the past and that they apparently represent a very rare population in myeloma. Our novel tracing approach may open perspectives to isolate and analyze clonotypic B cells and determine their role in myeloma pathobiology.

  7. The phosphatase of regenerating liver-3 (PRL-3) is important for IL-6-mediated survival of myeloma cells.

    PubMed

    Slørdahl, Tobias S; Abdollahi, Pegah; Vandsemb, Esten N; Rampa, Christoph; Misund, Kristine; Baranowska, Katarzyna A; Westhrin, Marita; Waage, Anders; Rø, Torstein B; Børset, Magne

    2016-05-10

    Multiple myeloma (MM) is a neoplastic proliferation of bone marrow plasma cells. PRL-3 is a phosphatase induced by interleukin (IL)-6 and other growth factors in MM cells and promotes MM-cell migration. PRL-3 has also been identified as a marker gene for a subgroup of patients with MM. In this study we found that forced expression of PRL-3 in the MM cell line INA-6 led to increased survival of cells that were depleted of IL-6. It also caused redistribution of cells in cell cycle, with an increased number of cells in G2M-phase. Furthermore, forced PRL-3 expression significantly increased phosphorylation of Signal transducer and activator of transcription (STAT) 3 both in the presence and the absence of IL-6. Knockdown of PRL-3 with shRNA reduced survival in MM cell line INA-6. A pharmacological inhibitor of PRL-3 reduced survival in the MM cell lines INA-6, ANBL-6, IH-1, OH-2 and RPMI8226. The inhibitor also reduced survival in 9 of 9 consecutive samples of purified primary myeloma cells. Treatment with the inhibitor down-regulated the anti-apoptotic protein Mcl-1 and led to activation of the intrinsic apoptotic pathway. Inhibition of PRL-3 also reduced IL-6-induced phosphorylation of STAT3. In conclusion, our study shows that PRL-3 is an important mediator of growth factor signaling in MM cells and hence possibly a good target for treatment of MM.

  8. The phosphatase of regenerating liver-3 (PRL-3) is important for IL-6-mediated survival of myeloma cells

    PubMed Central

    Slørdahl, Tobias S.; Abdollahi, Pegah; Vandsemb, Esten N.; Rampa, Christoph; Misund, Kristine; Baranowska, Katarzyna A.; Westhrin, Marita; Waage, Anders; Rø, Torstein B.; Børset, Magne

    2016-01-01

    Multiple myeloma (MM) is a neoplastic proliferation of bone marrow plasma cells. PRL-3 is a phosphatase induced by interleukin (IL)-6 and other growth factors in MM cells and promotes MM-cell migration. PRL-3 has also been identified as a marker gene for a subgroup of patients with MM. In this study we found that forced expression of PRL-3 in the MM cell line INA-6 led to increased survival of cells that were depleted of IL-6. It also caused redistribution of cells in cell cycle, with an increased number of cells in G2M-phase. Furthermore, forced PRL-3 expression significantly increased phosphorylation of Signal transducer and activator of transcription (STAT) 3 both in the presence and the absence of IL-6. Knockdown of PRL-3 with shRNA reduced survival in MM cell line INA-6. A pharmacological inhibitor of PRL-3 reduced survival in the MM cell lines INA-6, ANBL-6, IH-1, OH-2 and RPMI8226. The inhibitor also reduced survival in 9 of 9 consecutive samples of purified primary myeloma cells. Treatment with the inhibitor down-regulated the anti-apoptotic protein Mcl-1 and led to activation of the intrinsic apoptotic pathway. Inhibition of PRL-3 also reduced IL-6-induced phosphorylation of STAT3. In conclusion, our study shows that PRL-3 is an important mediator of growth factor signaling in MM cells and hence possibly a good target for treatment of MM. PMID:27036022

  9. The natural compound forskolin synergizes with dexamethasone to induce cell death in myeloma cells via BIM.

    PubMed

    Follin-Arbelet, Virginie; Misund, Kristine; Naderi, Elin Hallan; Ugland, Hege; Sundan, Anders; Blomhoff, Heidi Kiil

    2015-08-26

    We have previously demonstrated that activation of the cyclic adenosine monophosphate (cAMP) pathway kills multiple myeloma (MM) cells both in vitro and in vivo. In the present study we have investigated the potential of enhancing the killing of MM cell lines and primary MM cells by combining the cAMP-elevating compound forskolin with the commonly used MM therapeutic drugs melphalan, cyclophosphamide, doxorubicin, bortezomib and dexamethasone. We observed that forskolin potentiated the killing induced by all the tested agents as compared to treatment with the single agents alone. In particular, forskolin had a synergistic effect on the dexamethasone-responsive cell lines H929 and OM-2. By knocking down the proapoptotic BCL-2 family member BIM, we proved this protein to be involved in the synergistic induction of apoptosis by dexamethasone and forskolin. The ability of forskolin to maintain the killing of MM cells even at lower concentrations of the conventional agents suggests that forskolin may be used to diminish treatment-associated side effects. Our findings support a potential role of forskolin in combination with current conventional agents in the treatment of MM.

  10. Frequent occurrence of highly expanded but unrelated B-cell clones in patients with multiple myeloma.

    PubMed

    Kriangkum, Jitra; Motz, Sarah N; Debes Marun, Carina S; Lafarge, Sandrine T; Gibson, Spencer B; Venner, Christopher P; Johnston, James B; Belch, Andrew R; Pilarski, Linda M

    2013-01-01

    Clonal diversity in multiple myeloma (MM) includes both MM-related and MM-unrelated clonal expansions which are subject to dominance exerted by the MM clone. Here we show evidence for the existence of minor but highly expanded unrelated B-cell clones in patients with MM defined by their complementary determining region 3 (CDR3) peak. We further characterize these clones over the disease and subsequent treatment. Second clones were identified by their specific IgH-VDJ sequences that are distinct from those of dominant MM clones. Clonal frequencies were determined through semi-quantitative PCR, quantitative PCR and single-cell polymerase chain reaction of the clone-specific sequence. In 13/74 MM patients, more than one dominant CDR3 peak was identified with 12 patients (16%) being truly biclonal. Second clones had different frequencies, were found in different locations and were found in different cell types from the dominant MM clone. Where analysis was possible, they were shown to have chromosomal characteristic distinct from those of the MM clone. The frequency of the second clone also changed over the course of the disease and often persisted despite treatment. Molecularly-defined second clones are infrequent in monoclonal gammopathy of undetermined significance (MGUS, 1/43 individuals or 2%), suggesting that they may arise at relatively late stages of myelomagenesis. In further support of our findings, biclonal gammopathy and concomitant MM and CLL (chronic lymphocytic leukemia) were confirmed to originate from two unrelated clones. Our data supports the idea that the clone giving rise to symptomatic myeloma exerts clonal dominance to prevent expansion of other clones. MM and second clones may arise from an underlying niche permissive of clonal expansion. The clinical significance of these highly expanded but unrelated clones remains to be confirmed. Overall, our findings add new dimensions to evaluating related and unrelated clonal expansions in MM and the

  11. Frequent Occurrence of Highly Expanded but Unrelated B-Cell Clones in Patients with Multiple Myeloma

    PubMed Central

    Kriangkum, Jitra; Motz, Sarah N.; Debes Marun, Carina S.; Lafarge, Sandrine T.; Gibson, Spencer B.; Venner, Christopher P.; Johnston, James B.; Belch, Andrew R.; Pilarski, Linda M.

    2013-01-01

    Clonal diversity in multiple myeloma (MM) includes both MM-related and MM-unrelated clonal expansions which are subject to dominance exerted by the MM clone. Here we show evidence for the existence of minor but highly expanded unrelated B-cell clones in patients with MM defined by their complementary determining region 3 (CDR3) peak. We further characterize these clones over the disease and subsequent treatment. Second clones were identified by their specific IgH-VDJ sequences that are distinct from those of dominant MM clones. Clonal frequencies were determined through semi-quantitative PCR, quantitative PCR and single-cell polymerase chain reaction of the clone-specific sequence. In 13/74 MM patients, more than one dominant CDR3 peak was identified with 12 patients (16%) being truly biclonal. Second clones had different frequencies, were found in different locations and were found in different cell types from the dominant MM clone. Where analysis was possible, they were shown to have chromosomal characteristic distinct from those of the MM clone. The frequency of the second clone also changed over the course of the disease and often persisted despite treatment. Molecularly-defined second clones are infrequent in monoclonal gammopathy of undetermined significance (MGUS, 1/43 individuals or 2%), suggesting that they may arise at relatively late stages of myelomagenesis. In further support of our findings, biclonal gammopathy and concomitant MM and CLL (chronic lymphocytic leukemia) were confirmed to originate from two unrelated clones. Our data supports the idea that the clone giving rise to symptomatic myeloma exerts clonal dominance to prevent expansion of other clones. MM and second clones may arise from an underlying niche permissive of clonal expansion. The clinical significance of these highly expanded but unrelated clones remains to be confirmed. Overall, our findings add new dimensions to evaluating related and unrelated clonal expansions in MM and the

  12. Novel epitope evoking CD138 antigen-specific cytotoxic T lymphocytes targeting multiple myeloma and other plasma cell disorders

    PubMed Central

    Bae, Jooeun; Tai, Yu-Tzu; Anderson, Kenneth C.; Munshi, Nikhil C.

    2012-01-01

    The development of an immunotherapeutic strategy targeting CD138 antigen could potentially represent a new treatment option for multiple myeloma (MM). This study evaluated the immune function of CD138 peptide-specific cytotoxic T lymphocytes (CTL), generated ex vivo using an HLA-A2-specific CD138 epitope against MM cells. A novel immunogenic HLA-A2-specific CD138260-268 (GLVGLIFAV) peptide was identified from the full-length protein sequence of the CD138 antigen, which induced CTL specific to primary CD138+ MM cells. The peptide-induced CD138-CTL contained a high percentage of CD8+ activated/memory T cells with a low percentage of CD4+ T cell and naive CD8+ T cell subsets. The CTL displayed HLA-A2-restricted and CD138 antigen-specific cytotoxicity against MM cell lines. In addition, CD138-CTL demonstrated increased degranulation, proliferation and γ–interferon secretion to HLA-A2+/CD138+ myeloma cells, but not HLA-A2−/CD138+ or HLA-A2+/CD138− cells. The immune functional properties of the CD138-CTL were also demonstrated using primary HLA-A2+/CD138+ cells isolated from myeloma patients. In conclusion, a novel immunogenic CD138260-268 (GLVGLIFAV) peptide can induce antigen-specific CTL, which might be useful for the treatment of MM patients with peptide-based vaccine or cellular immunotherapy strategies. PMID:21902685

  13. Iron increases the susceptibility of multiple myeloma cells to bortezomib

    PubMed Central

    Campanella, Alessandro; Santambrogio, Paolo; Fontana, Francesca; Frenquelli, Michela; Cenci, Simone; Marcatti, Magda; Sitia, Roberto; Tonon, Giovanni; Camaschella, Clara

    2013-01-01

    Multiple myeloma is a malignant still incurable plasma cell disorder. Pharmacological treatment based on proteasome inhibition has improved patient outcome; however, bortezomib-resistance remains a major clinical problem. Inhibition of proteasome functionality affects cellular iron homeostasis and iron is a potent inducer of reactive oxygen species and cell death, unless safely stored in ferritin. We explored the potential role of iron in bortezomib-resistance. We analyzed iron proteins, oxidative status and cell viability in 7 multiple myeloma cell lines and in plasma cells from 5 patients. Cells were treated with increasing bortezomib concentrations with or without iron supplementation. We reduced ferritin levels by both shRNA technology and by drug-induced iron starvation. Multiple myeloma cell lines are characterized by distinct ferritin levels, which directly correlate with bortezomib resistance. We observed that iron supplementation upon bortezomib promotes protein oxidation and cell death, and that iron toxicity inversely correlates with basal ferritin levels. Bortezomib prevents ferritin upregulation in response to iron, thus limiting the ability to buffer reactive oxygen species. Consequently, reduction of basal ferritin levels increases both bortezomib sensitivity and iron toxicity. In patients’ cells, we confirmed that bortezomib prevents ferritin increase, that iron supplementation upon bortezomib increases cell death and that ferritin reduction overcomes bortezomib resistance. Bortezomib affects iron homeostasis, sensitizing cells to oxidative damage. Modulation of iron status is a strategy worth exploring to improve the efficacy of proteasome inhibition therapies. PMID:23242599

  14. Granulocytic myeloid-derived suppressor cells promote angiogenesis in the context of multiple myeloma.

    PubMed

    Binsfeld, Marilène; Muller, Joséphine; Lamour, Virginie; De Veirman, Kim; De Raeve, Hendrik; Bellahcène, Akeila; Van Valckenborgh, Els; Baron, Frédéric; Beguin, Yves; Caers, Jo; Heusschen, Roy

    2016-06-21

    Multiple myeloma (MM) is a plasma cell malignancy characterized by the accumulation of tumor cells in the bone marrow (BM) and is associated with immunosuppression, angiogenesis and osteolysis. Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of immature, immunosuppressive myeloid cells that promote tumor progression through different mechanisms.In this work, we studied the contribution of MDSC subsets to different disease-promoting aspects in MM. We observed an expansion of polymorphonuclear/granulocytic (PMN-)MDSCs in two immunocompetent murine MM models, while this was not observed for monocytic (MO-)MDSCs. Both MDSC subpopulations from MM-bearing mice were immunosuppressive, but PMN-MDSCs displayed a higher suppressive potential. Soluble factors secreted by MM cells increased the viability of MDSCs, whereas the presence of MDSCs did not affect the proliferation of MM cells in vitro or in vivo. Interestingly, we observed a pro-angiogenic effect of PMN-MDSCs in the context of MM using the chick chorioallantoic membrane assay. Consistently, MM-derived PMN-MDSCs showed an up-regulation of angiogenesis-related factors and reduced PMN-MDSC levels were associated with less angiogenesis in vivo. Finally, we identified MO-MDSCs as osteoclast precursors.These results suggest that MDSC subpopulations play diverging roles in MM. We show for the first time that PMN-MDSCs exert a pro-angiogenic role in MM.

  15. Targeting PYK2 mediates microenvironment-specific cell death in multiple myeloma

    PubMed Central

    Meads, MB; Fang, B; Mathews, L; Gemmer, J; Nong, L; Rosado-Lopez, I; Nguyen, T; Ring, JE; Matsui, W; MacLeod, AR; Pachter, JA; Hazlehurst, LA; Koomen, JM; Shain, KH

    2015-01-01

    Multiple myeloma (MM) remains an incurable malignancy due, in part, to the influence of the bone marrow microenvironment on survival and drug response. Identification of microenvironment-specific survival signaling determinants is critical for the rational design of therapy and elimination of MM. Previously, we have shown that collaborative signaling between β1 integrin-mediated adhesion to fibronectin and interleukin-6 confers a more malignant phenotype via amplification of signal transducer and activator of transcription 3 (STAT3) activation. Further characterization of the events modulated under these conditions with quantitative phosphotyrosine profiling identified 193 differentially phosphorylated peptides. Seventy-seven phosphorylations were upregulated upon adhesion, including PYK2/FAK2, Paxillin, CASL and p130CAS consistent with focal adhesion (FA) formation. We hypothesized that the collaborative signaling between β1 integrin and gp130 (IL-6 beta receptor, IL-6 signal transducer) was mediated by FA formation and proline-rich tyrosine kinase 2 (PYK2) activity. Both pharmacological and molecular targeting of PYK2 attenuated the amplification of STAT3 phosphorylation under co-stimulatory conditions. Co-culture of MM cells with patient bone marrow stromal cells (BMSC) showed similar β1 integrin-specific enhancement of PYK2 and STAT3 signaling. Molecular and pharmacological targeting of PYK2 specifically induced cell death and reduced clonogenic growth in BMSC-adherent myeloma cell lines, aldehyde dehydrogenase-positive MM cancer stem cells and patient specimens. Finally, PYK2 inhibition similarly attenuated MM progression in vivo. These data identify a novel PYK2-mediated survival pathway in MM cells and MM cancer stem cells within the context of microenvironmental cues, providing preclinical support for the use of the clinical stage FAK/PYK2 inhibitors for treatment of MM, especially in a minimal residual disease setting. PMID:26387544

  16. Th22 cells increase in poor prognosis multiple myeloma and promote tumor cell growth and survival

    PubMed Central

    Di Lullo, Giulia; Marcatti, Magda; Heltai, Silvia; Brunetto, Emanuela; Tresoldi, Cristina; Bondanza, Attilio; Bonini, Chiara; Ponzoni, Maurilio; Tonon, Giovanni; Ciceri, Fabio; Bordignon, Claudio; Protti, Maria Pia

    2015-01-01

    There is increased production of plasmacytoid dendritic cells (pDCs) in the bone marrow (BM) of multiple myeloma (MM) patients and these favor Th22 cell differentiation. Here, we found that the frequency of interleukin (IL)-22+IL-17−IL-13+ T cells is significantly increased in peripheral blood (PB) and BM of stage III and relapsed/refractory MM patients compared with healthy donors and patients with asymptomatic or stage I/II disease. Th22 cells cloned from the BM of MM patients were CCR6+CXCR4+CCR4+CCR10− and produced IL-22 and IL-13 but not IL-17. Furthermore, polyfunctional Th22-Th2 and Th22-Th1 clones were identified based on the co-expression of additional chemokine receptors and cytokines (CRTh2 or CXCR3 and IL-5 or interferon gamma [IFNγ], respectively). A fraction of MM cell lines and primary tumors aberrantly expressed the IL-22RA1 and IL-22 induced STAT-3 phosphorylation, cell growth, and resistance to drug-induced cell death in MM cells. IL-13 treatment of normal BM mesenchymal stromal cells (MSCs) induced STAT-6 phosphorylation, adhesion molecule upregulation, and increased IL-6 production and significantly favored MM cell growth compared with untreated BM MSCs. Collectively, our data show that increased frequency of IL-22+IL-17−IL-13+ T cells correlates with poor prognosis in MM through IL-22 and IL-13 protumor activity and suggest that interference with IL-22 and IL-13 signaling pathways could be exploited for therapeutic intervention. PMID:26155400

  17. Th22 cells increase in poor prognosis multiple myeloma and promote tumor cell growth and survival.

    PubMed

    Di Lullo, Giulia; Marcatti, Magda; Heltai, Silvia; Brunetto, Emanuela; Tresoldi, Cristina; Bondanza, Attilio; Bonini, Chiara; Ponzoni, Maurilio; Tonon, Giovanni; Ciceri, Fabio; Bordignon, Claudio; Protti, Maria Pia

    2015-05-01

    There is increased production of plasmacytoid dendritic cells (pDCs) in the bone marrow (BM) of multiple myeloma (MM) patients and these favor Th22 cell differentiation. Here, we found that the frequency of interleukin (IL)-22(+)IL-17(-)IL-13(+) T cells is significantly increased in peripheral blood (PB) and BM of stage III and relapsed/refractory MM patients compared with healthy donors and patients with asymptomatic or stage I/II disease. Th22 cells cloned from the BM of MM patients were CCR6(+)CXCR4(+)CCR4(+)CCR10(-) and produced IL-22 and IL-13 but not IL-17. Furthermore, polyfunctional Th22-Th2 and Th22-Th1 clones were identified based on the co-expression of additional chemokine receptors and cytokines (CRTh2 or CXCR3 and IL-5 or interferon gamma [IFNγ], respectively). A fraction of MM cell lines and primary tumors aberrantly expressed the IL-22RA1 and IL-22 induced STAT-3 phosphorylation, cell growth, and resistance to drug-induced cell death in MM cells. IL-13 treatment of normal BM mesenchymal stromal cells (MSCs) induced STAT-6 phosphorylation, adhesion molecule upregulation, and increased IL-6 production and significantly favored MM cell growth compared with untreated BM MSCs. Collectively, our data show that increased frequency of IL-22(+)IL-17(-)IL-13(+) T cells correlates with poor prognosis in MM through IL-22 and IL-13 protumor activity and suggest that interference with IL-22 and IL-13 signaling pathways could be exploited for therapeutic intervention.

  18. Constitutive activation of p38 MAPK in tumor cells contributes to osteolytic bone lesions in multiple myeloma

    PubMed Central

    Yang, Jing; He, Jin; Wang, Ji; Cao, Yabing; Ling, Jianhua; Qian, Jianfei; Lu, Yong; Li, Haiyan; Zheng, Yuhuan; Lan, Yongsheng; Hong, Sungyoul; Matthews, Jairo; Starbuck, Michael W; Navone, Nora M; Orlowski, Robert Z.; Lin, Pei; Kwak, Larry W.; Yi, Qing

    2012-01-01

    Bone destruction is a hallmark of multiple myeloma and affects more than 80% of patients. However, current therapy is unable to completely cure and/or prevent bone lesions. Although it is accepted that myeloma cells mediate bone destruction by inhibition of osteoblasts and activation of osteoclasts, the underlying mechanism is still poorly understood. This study demonstrates that constitutive activation of p38 mitogen-activated protein kinase in myeloma cells is responsible for myeloma-induced osteolysis. Our results show that p38 is constitutively activated in most myeloma cell lines and primary myeloma cells from patients. Myeloma cells with high/detectable p38 activity, but not those with low/undetectable p38 activity, injected into SCID or SCID-hu mice caused bone destruction. Inhibition or knockdown of p38 in human myeloma reduced or prevented myeloma-induced osteolytic bone lesions without affecting tumor growth, survival, or homing to bone. Mechanistic studies showed that myeloma cell p38 activity inhibited osteoblastogenesis and bone formation and activated osteoclastogenesis and bone resorption in myeloma-bearing SCID mice. This study elucidates a novel molecular mechanism—sactivation of p38 signaling in myeloma cells—by which myeloma cells induce osteolytic bone lesions and indicates that targeting myeloma cell p38 may be a viable approach to treating or preventing myeloma bone disease. PMID:22425892

  19. Multiple myeloma: current perspectives.

    PubMed

    Slovak, Marilyn L

    2011-12-01

    Multiple myeloma (MM) is a malignancy of terminally differentiated plasma cells characterized by complex genetic aberrations and heterogeneous outcomes. Over the past 25 years, cytogenetic analysis has played a key role in the diagnosis and management of MM. This article reviews the conventional cytogenetics, molecular cytogenetics, and genomic diagnostics of MM and highlights a few recent clinical trials that demonstrate the impact of genetic risk stratification on the treatment of this plasma cell malignancy.

  20. Multiple myeloma cells promote migration of bone marrow mesenchymal stem cells by altering their translation initiation.

    PubMed

    Dabbah, Mahmoud; Attar-Schneider, Oshrat; Zismanov, Victoria; Tartakover Matalon, Shelly; Lishner, Michael; Drucker, Liat

    2016-10-01

    The role of the bone marrow microenvironment in multiple myeloma pathogenesis and progression is well recognized. Indeed, we have shown that coculture of bone marrow mesenchymal stem cells from normal donors and multiple myeloma cells comodulated translation initiation. Here, we characterized the timeline of mesenchymal stem cells conditioning by multiple myeloma cells, the persistence of this effect, and the consequences on cell phenotype. Normal donor mesenchymal stem cells were cocultured with multiple myeloma cell lines (U266, ARP1) (multiple myeloma-conditioned mesenchymal stem cells) (1.5 h,12 h, 24 h, 48 h, and 3 d) and were assayed for translation initiation status (eukaryotic translation initiation factor 4E; eukaryotic translation initiation factor 4G; regulators: mechanistic target of rapamycin, MNK, 4EBP; targets: SMAD family 5, nuclear factor κB, cyclin D1, hypoxia inducible factor 1, c-Myc) (immunoblotting) and migration (scratch assay, inhibitors). Involvement of mitogen-activated protein kinases in mesenchymal stem cell conditioning and altered migration was also tested (immunoblotting, inhibitors). Multiple myeloma-conditioned mesenchymal stem cells were recultured alone (1-7 d) and were assayed for translation initiation (immunoblotting). Quantitative polymerase chain reaction of extracted ribonucleic acid was tested for microRNAs levels. Mitogen-activated protein kinases were activated within 1.5 h of coculture and were responsible for multiple myeloma-conditioned mesenchymal stem cell translation initiation status (an increase of >200%, P < 0.05) and elevated migration (16 h, an increase of >400%, P < 0.05). The bone marrow mesenchymal stem cells conditioned by multiple myeloma cells were reversible after only 1 d of multiple myeloma-conditioned mesenchymal stem cell culture alone. Decreased expression of microRNA-199b and microRNA-125a (an increase of <140%, P < 0.05) in multiple myeloma-conditioned mesenchymal stem cells supported elevated

  1. Tumor-host cell interactions in the bone disease of myeloma

    PubMed Central

    Fowler, Jessica A.; Edwards, Claire M.; Croucher, Peter I.

    2010-01-01

    Multiple myeloma is a hematological malignancy that is associated with the development of a destructive osteolytic bone disease, which is a major cause of morbidity for patients with myeloma. Interactions between myeloma cells and cells of the bone marrow microenvironment promote both tumor growth and survival and bone destruction, and the osteolytic bone disease is now recognized as a contributing component to tumor progression. Since myeloma bone disease is associated with both an increase in osteoclastic bone resorption and a suppression of osteoblastic bone formation, research to date has largely focused upon the role of the osteoclast and osteoblast. However, it is now clear that other cell types within the bone marrow, including cells of the immune system, mesenchymal stem cells and bone marrow stromal cells, can contribute to the development of myeloma bone disease. This review discusses the cellular mechanisms and potential therapeutic targets that have been implicated in myeloma bone disease. PMID:20615487

  2. Natural killer T cell defects in multiple myeloma and the impact of lenalidomide therapy

    PubMed Central

    Chan, A C; Neeson, P; Leeansyah, E; Tainton, K; Quach, H; Prince, H M; Harrison, S J; Godfrey, D I; Ritchie, D; Berzins, S P

    2014-01-01

    The causes of multiple myeloma (MM) remain obscure and there are few known risk factors; however, natural killer T (NKT) cell abnormalities have been reported in patients with MM, and therapeutic targeting of NKT cells is promoted as a potential treatment. We characterized NKT cell defects in treated and untreated patients with MM and determined the impact of lenalidomide therapy on the NKT cell pool. Lenalidomide is an immunomodulatory drug with co-stimulatory effects on NKT cells in vitro and is an approved treatment for MM, although its mode of action in that context is not well defined. We find that patients with relapsed/progressive MM had a marked deficiency in NKT cell numbers. In contrast, newly diagnosed patients had relatively normal NKT cell frequency and function prior to treatment, although a specific NKT cell deficiency emerged after high-dose melphalan and autologous stem cell transplantation (ASCT) regimen. This also impacted NK cells and conventional T cells, but the recovery of NKT cells was considerably delayed, resulting in a prolonged, treatment-induced NKT cell deficit. Longitudinal analysis of individual patients revealed that lenalidomide therapy had no in-vivo impact on NKT cell numbers or cytokine production, either as induction therapy, or as maintenance therapy following ASCT, indicating that its clinical benefits in this setting are independent of NKT cell modulation. PMID:24032527

  3. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma.

    PubMed

    Peacock, Craig D; Wang, Qiuju; Gesell, Gregory S; Corcoran-Schwartz, Ian M; Jones, Evan; Kim, Jynho; Devereux, Wendy L; Rhodes, Jonathan T; Huff, Carol A; Beachy, Philip A; Watkins, D Neil; Matsui, William

    2007-03-06

    The cancer stem cell hypothesis suggests that malignant growth depends on a subset of tumor cells with stem cell-like properties of self-renewal. Because hedgehog (Hh) signaling regulates progenitor cell fate in normal development and homeostasis, aberrant pathway activation might be involved in the maintenance of such a population in cancer. Indeed, mutational activation of the Hh pathway is associated with medulloblastoma and basal cell carcinoma; pathway activity is also critical for growth of other tumors lacking such mutations, although the mechanism of pathway activation is poorly understood. Here we study the role and mechanism of Hh pathway activation in multiple myeloma (MM), a malignancy with a well defined stem cell compartment. In this model, rare malignant progenitors capable of clonal expansion resemble B cells, whereas the much larger tumor cell population manifests a differentiated plasma cell phenotype that pathologically defines the disease. We show that the subset of MM cells that manifests Hh pathway activity is markedly concentrated within the tumor stem cell compartment. The Hh ligand promotes expansion of MM stem cells without differentiation, whereas the Hh pathway blockade, while having little or no effect on malignant plasma cell growth, markedly inhibits clonal expansion accompanied by terminal differentiation of purified MM stem cells. These data reveal that Hh pathway activation is heterogeneous across the spectrum of MM tumor stem cells and their more differentiated progeny. The potential existence of similar relationships in other adult cancers may have important biologic and clinical implications for the study of aberrant Hh signaling.

  4. Liposomal carfilzomib nanoparticles effectively target multiple myeloma cells and demonstrate enhanced efficacy in vivo.

    PubMed

    Ashley, Jonathan D; Stefanick, Jared F; Schroeder, Valerie A; Suckow, Mark A; Alves, Nathan J; Suzuki, Rikio; Kikuchi, Shohei; Hideshima, Teru; Anderson, Kenneth C; Kiziltepe, Tanyel; Bilgicer, Basar

    2014-12-28

    Carfilzomib, a recently FDA-approved proteasome inhibitor, has remarkable anti-myeloma (MM) activity. However, its effectiveness is limited by associated severe side-effects, short circulation half-life, and limited solubility. Here, we report the engineering of liposomal carfilzomib nanoparticles to overcome these problems and enhance the therapeutic efficacy of carfilzomib by increasing tumoral drug accumulation while decreasing systemic toxicity. In our design, carfilzomib was loaded into the bilayer of liposomes to yield stable and reproducible liposomal nanoparticles. Liposomal carfilzomib nanoparticles were efficiently taken up by MM cells, demonstrated proteasome inhibition, induced apoptosis, and exhibited enhanced cytotoxicity against MM cells. In vivo, liposomal carfilzomib demonstrated significant tumor growth inhibition and dramatically reduced overall systemic toxicity compared to free carfilzomib. Finally, liposomal carfilzomib demonstrated enhanced synergy in combination with doxorubicin. Taken together, this study establishes the successful synthesis of liposomal carfilzomib nanoparticles that demonstrates improved therapeutic index and the potential to improve patient outcome in MM.

  5. Multiple Myeloma Impairs Bone Marrow Localization of Effector Natural Killer Cells by Altering the Chemokine Microenvironment.

    PubMed

    Ponzetta, Andrea; Benigni, Giorgia; Antonangeli, Fabrizio; Sciumè, Giuseppe; Sanseviero, Emilio; Zingoni, Alessandra; Ricciardi, Maria Rosaria; Petrucci, Maria Teresa; Santoni, Angela; Bernardini, Giovanni

    2015-11-15

    Natural killer (NK) cells are key innate immune effectors against multiple myeloma, their activity declining in multiple myeloma patients with disease progression. To identify the mechanisms underlying NK cell functional impairment, we characterized the distribution of functionally distinct NK cell subsets in the bone marrow of multiple myeloma-bearing mice. Herein we report that the number of KLRG1(-) NK cells endowed with potent effector function rapidly and selectively decreases in bone marrow during multiple myeloma growth, this correlating with decreased bone marrow NK cell degranulation in vivo. Altered NK cell subset distribution was dependent on skewed chemokine/chemokine receptor axes in the multiple myeloma microenvironment, with rapid downmodulation of the chemokine receptor CXCR3 on NK cells, increased CXCL9 and CXCL10, and decreased CXCL12 expression in bone marrow. Similar alterations in chemokine receptor/chemokine axes were observed in patients with multiple myeloma. Adoptive transfer experiments demonstrated that KLRG1(-) NK cell migration to the bone marrow was more efficient in healthy than multiple myeloma-bearing mice. Furthermore, bone marrow localization of transferred CXCR3-deficient NK cells with respect to wild type was enhanced in healthy and multiple myeloma-bearing mice, suggesting that CXCR3 restrains bone marrow NK cell trafficking. Our results indicate that multiple myeloma-promoted CXCR3 ligand upregulation together with CXCL12 downmodulation act as exit signals driving effector NK cells outside the bone marrow, thus weakening the antitumor immune response at the primary site of tumor growth.

  6. Cutaneous localization in multiple myeloma in the context of bortezomib-based treatment: how do myeloma cells escape from the bone marrow to the skin?

    PubMed

    Marchica, Valentina; Accardi, Fabrizio; Storti, Paola; Mancini, Cristina; Martella, Eugenia; Dalla Palma, Benedetta; Bolzoni, Marina; Todoerti, Katia; Marcatti, Magda; Schifano, Chiara; Bonomini, Sabrina; Sammarelli, Gabriella; Neri, Antonino; Ponzoni, Maurilio; Aversa, Franco; Giuliani, Nicola

    2017-01-01

    The skin is a possible site of extramedullary localization in multiple myeloma (MM) patients; however, the mechanisms involved in this process are poorly understood. We describe the case of a refractory MM patient who developed a cutaneous localization under bortezomib treatment and we further expanded observations in other eight MM patients. We focused on the expression of genes involved in plasma cell skin homing, including CCR10, which was highly expressed. Moreover, we observed a lack of CXCR4 surface expression and the down-regulation of ICAM1/CD54 throughout the progression of the disease, suggesting a possible mechanism driving the escape of MM cells from the bone marrow into the skin.

  7. Multiple Myeloma, Version 3.2017, NCCN Clinical Practice Guidelines in Oncology.

    PubMed

    Kumar, Shaji K; Callander, Natalie S; Alsina, Melissa; Atanackovic, Djordje; Biermann, J Sybil; Chandler, Jason C; Costello, Caitlin; Faiman, Matthew; Fung, Henry C; Gasparetto, Cristina; Godby, Kelly; Hofmeister, Craig; Holmberg, Leona; Holstein, Sarah; Huff, Carol Ann; Kassim, Adetola; Liedtke, Michaela; Martin, Thomas; Omel, James; Raje, Noopur; Reu, Frederic J; Singhal, Seema; Somlo, George; Stockerl-Goldstein, Keith; Treon, Steven P; Weber, Donna; Yahalom, Joachim; Shead, Dorothy A; Kumar, Rashmi

    2017-02-01

    Multiple myeloma (MM) is caused by the neoplastic proliferation of plasma cells. These neoplastic plasma cells proliferate and produce monoclonal immunoglobulin in the bone marrow causing skeletal damage, a hallmark of multiple myeloma. Other MM-related complications include hypercalcemia, renal insufficiency, anemia, and infections. The NCCN Multiple Myeloma Panel members have developed guidelines for the management of patients with various plasma cell dyscrasias, including solitary plasmacytoma, smoldering myeloma, multiple myeloma, systemic light chain amyloidosis, and Waldenström's macroglobulinemia. The recommendations specific to the diagnosis and treatment of patients with newly diagnosed MM are discussed in this article.

  8. In vitro migratory aberrancies of mesenchymal stem cells derived from multiple myeloma patients only partially modulated by bortezomib

    PubMed Central

    Xu, Xinxin; Yang, Jiao; Tang, Yu; Li, Junxia; Zhu, Yan; Lu, Hua; Fei, Xiaoming

    2014-01-01

    Recent studies indicated that bone marrow mesenchymal stem cells (BM-MSCs) derived from multiple myeloma (MM) patients were different from those of normal subjects in a variety of aspects. However, it is largely unknown whether BM-MSCs derived from MM patients display any aberrant chemotactic migration. To this aim, we compared the chemotactic migration of BM-MSCs derived from MM patients with those from normal subjects. Our results showed that BM-MSCs derived from MM patients migrated more vigorously to myeloma cell line. Furthermore, proteasome inhibitor bortezomib was showed to suppress chemotactic migration of BM-MSCs whatever their origins. However, although the chemotactic migration of BM-MSCs derived from MM patients to myeloma cell line was more significantly suppressed by bortezomib treatment, migration to SDF-1 or FBS of BM-MSCs was less compromised. Both SDF-1 and TNF-α enhanced phosphorylation of iκ-Bα in BM-MSCs. Although bortezomib significantly inhibited the iκ-Bα phosphorylation by SDF-1, it had little effect on iκ-Bα phosphorylation by TNF-α. Collectively, our results suggested that aberrant chemotactic migration of BM-MSCs derived from MM patients and the possible migration-regulatory role of bortezomib treatment. PMID:25400750

  9. Subcutaneous versus intravenous bortezomib in two different induction therapies for newly diagnosed multiple myeloma: an interim analysis from the prospective GMMG-MM5 trial.

    PubMed

    Merz, Maximilian; Salwender, Hans; Haenel, Mathias; Mai, Elias K; Bertsch, Uta; Kunz, Christina; Hielscher, Thomas; Blau, Igor W; Scheid, Christof; Hose, Dirk; Seckinger, Anja; Jauch, Anna; Hillengass, Jens; Raab, Marc S; Schurich, Baerbel; Munder, Markus; Schmidt-Wolf, Ingo G H; Gerecke, Christian; Lindemann, Hans-Walter; Zeis, Matthias; Weisel, Katja; Duerig, Jan; Goldschmidt, Hartmut

    2015-07-01

    We investigated the impact of subcutaneous versus intravenous bortezomib in the MM5 trial of the German-Speaking Myeloma Multicenter Group which compared bortezomib, doxorubicin, and dexamethasone with bortezomib, cyclophosphamide, and dexamethasone induction therapy in newly diagnosed multiple myeloma. Based on data from relapsed myeloma, the route of administration for bortezomib was changed from intravenous to subcutaneous after 314 of 604 patients had been enrolled. We analyzed 598 patients who received at least one dose of trial medication. Adverse events were reported more frequently in patients treated with intravenous bortezomib (intravenous=65%; subcutaneous=56%, P=0.02). Rates of grade 2 or more peripheral neuropathy were higher in patients treated with intravenous bortezomib during the third cycle (intravenous=8%; subcutaneous=2%, P=0.001). Overall response rates were similar in patients treated intravenously or subcutaneously. The presence of International Staging System stage III disease, renal impairment or adverse cytogenetic abnormalities did not have a negative impact on overall response rates in either group. To our knowledge this is the largest study to present data comparing subcutaneous with intravenous bortezomib in newly diagnosed myeloma. We show better tolerance and similar overall response rates for subcutaneous compared to intravenous bortezomib. The clinical trial is registered at eudract.ema.europa.eu as n. 2010-019173-16.

  10. Differential Activities of Thalidomide and Isoprenoid Biosynthetic Pathway Inhibitors in Multiple Myeloma Cells

    PubMed Central

    Holstein, Sarah A.; Tong, Huaxiang; Hohl, Raymond J.

    2013-01-01

    Thalidomide has emerged as an effective agent for treating multiple myeloma, however the precise mechanism of action remains unknown. Agents known to target the isoprenoid biosynthetic pathway (IBP) can have cytotoxic effects in myeloma cells. The interactions between thalidomide and IBP inhibitors in human multiple myeloma cells were evaluated. Enhanced cytotoxicity and induction of apoptosis was observed in RPMI-8226 cells. Examination of intracellular levels of farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) revealed a wide variance in basal levels and response to IBP inhibitors. These findings provide a mechanism for the differential sensitivity of myeloma cells to pharmacologic manipulation of the IBP. PMID:19646757

  11. Thymoquinone Inhibits the CXCL12-Induced Chemotaxis of Multiple Myeloma Cells and Increases Their Susceptibility to Fas-Mediated Apoptosis

    PubMed Central

    Badr, Gamal; Lefevre, Eric A.; Mohany, Mohamed

    2011-01-01

    In multiple myeloma (MM), malignant plasma cells reside in the bone marrow, where they accumulate in close contact with stromal cells. The mechanisms responsible for the chemotaxis of malignant plasma cells are still poorly understood. Thus, we investigated the mechanisms involved in the chemotaxis of MDN and XG2 MM cell lines. Both cell lines strongly expressed CCR9, CXCR3 and CXCR4 chemokine receptors but only migrated toward CXCL12. Activation of CXCR4 by CXCL12 resulted in the association of CXCR4 with CD45 and activation of PLCβ3, AKT, RhoA, IκBα and ERK1/2. Using siRNA-silencing techniques, we showed CD45/CXCR4 association is essential for CXCL12-induced migration of MM cells. Thymoquinone (TQ), the major active component of the medicinal herb Nigella sativa Linn, has been described as a chemopreventive and chemotherapeutic compound. TQ treatment strongly inhibited CXCL12-mediated chemotaxis in MM cell lines as well as primary cells isolated from MM patients, but not normal PBMCs. Moreover, TQ significantly down-regulated CXCR4 expression and CXCL12-mediated CXCR4/CD45 association in MM cells. Finally, TQ also induced the relocalization of cytoplasmic Fas/CD95 to the membrane of MM cells and increased CD95-mediated apoptosis by 80%. In conclusion, we demonstrate the potent anti-myeloma activity of TQ, providing a rationale for further clinical evaluation. PMID:21912642

  12. Blockade of Deubiquitylating Enzyme USP1 Inhibits DNA Repair and Triggers Apoptosis in Multiple Myeloma Cells.

    PubMed

    Das, Deepika Sharma; Das, Abhishek; Ray, Arghya; Song, Yan; Samur, Mehmet Kemal; Munshi, Nikhil C; Chauhan, Dharminder; Anderson, Kenneth C

    2017-08-01

    Purpose: The ubiquitin proteasome pathway is a validated therapeutic target in multiple myeloma. Deubiquitylating enzyme USP1 participates in DNA damage response and cellular differentiation pathways. To date, the role of USP1 in multiple myeloma biology is not defined. In the present study, we investigated the functional significance of USP1 in multiple myeloma using genetic and biochemical approaches.Experimental Design: To investigate the role of USP1 in myeloma, we utilized USP1 inhibitor SJB3-019A (SJB) for studies in myeloma cell lines and patient multiple myeloma cells.Results: USP1-siRNA knockdown decreases multiple myeloma cell viability. USP1 inhibitor SJB selectively blocks USP1 enzymatic activity without blocking other DUBs. SJB also decreases the viability of multiple myeloma cell lines and patient tumor cells, inhibits bone marrow plasmacytoid dendritic cell-induced multiple myeloma cell growth, and overcomes bortezomib resistance. SJB triggers apoptosis in multiple myeloma cells via activation of caspase-3, caspase-8, and caspase-9. Moreover, SJB degrades USP1 and downstream inhibitor of DNA-binding proteins as well as inhibits DNA repair via blockade of Fanconi anemia pathway and homologous recombination. SJB also downregulates multiple myeloma stem cell renewal/survival-associated proteins Notch-1, Notch-2, SOX-4, and SOX-2. Moreover, SJB induced generation of more mature and differentiated plasma cells. Combination of SJB and HDACi ACY-1215, bortezomib, lenalidomide, or pomalidomide triggers synergistic cytotoxicity.Conclusions: Our preclinical studies provide the framework for clinical evaluation of USP1 inhibitors, alone or in combination, as a potential novel multiple myeloma therapy. Clin Cancer Res; 23(15); 4280-9. ©2017 AACR. ©2017 American Association for Cancer Research.

  13. A novel signaling pathway associated with Lyn, PI 3-kinase and Akt supports the proliferation of myeloma cells

    SciTech Connect

    Iqbal, Mohd S.; Tsuyama, Naohiro; Obata, Masanori; Ishikawa, Hideaki

    2010-02-12

    Interleukin-6 (IL-6) is a growth factor for human myeloma cells. We have recently found that in myeloma cells the activation of both signal transducer and activator of transcription (STAT) 3 and extracellular signal-regulated kinase (ERK) 1/2 is not sufficient for the IL-6-induced proliferation, which further requires the activation of the src family kinases, such as Lyn. Here we showed that the Lyn-overexpressed myeloma cell lines had the higher proliferative rate with IL-6 and the enhanced activation of the phosphatidylinositol (PI) 3-kinase and Akt. The IL-6-induced phosphorylation of STAT3 and ERK1/2 was not up-regulated in the Lyn-overexpressed cells, indicating that the Lyn-PI 3-kinase-Akt pathway is independent of these pathways. The PI 3-kinase was co-precipitated with Lyn in the Lyn-overexpressed cells of which proliferation with IL-6 was abrogated by the specific inhibitors for PI 3-kinase or Akt, suggesting that the activation of the PI 3-kinase-Akt pathway associated with Lyn is indeed related to the concomitant augmentation of myeloma cell growth. Furthermore, the decreased expression of p53 and p21{sup Cip1} proteins was observed in the Lyn-overexpressed cells, implicating a possible downstream target of Akt. This study identifies a novel IL-6-mediated signaling pathway that certainly plays a role in the proliferation of myeloma cells and this novel mechanism of MM tumor cell growth associated with Lyn would eventually contribute to the development of MM treatment.

  14. Multiple Myeloma

    MedlinePlus

    ... myeloma is a cancer that begins in plasma cells, a type of white blood cell. These cells are part of your immune system, which helps ... germs and other harmful substances. In time, myeloma cells collect in the bone marrow and in the ...

  15. Loss of p53 exacerbates multiple myeloma phenotype by facilitating the reprogramming of hematopoietic stem/progenitor cells to malignant plasma cells by MafB

    PubMed Central

    Vicente-Dueñas, Carolina; González-Herrero, Inés; Cenador, María Begoña García; Criado, Francisco Javier García; Sánchez-García, Isidro

    2012-01-01

    Multiple myeloma (MM) is a serious, mostly incurable human cancer of malignant plasma cells. Chromosomal translocations affecting MAFB are present in a significant percentage of multiple myeloma patients. Genetically engineered Sca1-MafB mice, in which MafB expression is limited to hematopoietic stem/progenitor cells (HS/P-Cs), display the phenotypic features of MM. Contrary to many other types of cancer, it is not yet known if the p53 gene plays any essential role in the pathogenesis of this disease. Here, we show, taking advantage of the Sca1-MafB MM mouse model, that loss of p53 does not rescue the multiple myeloma disease, but instead accelerates its development and exacerbates the MM phenotype. Therefore, the efficiency of the MafB-induced MM reprogramming of normal HS/P-Cs to terminally differentiated malignant plasma cells is enhanced by p53 deficiency, in analogy to what happens in reprogramming to pluripotency. These results raise caution about interfering with p53 function when treating multiple myeloma. PMID:22983007

  16. The Effects of Forodesine in Murine and Human Multiple Myeloma Cells

    PubMed Central

    Bieghs, Liesbeth; Caers, Jo; De Bruyne, Elke; Van Valckenborgh, Els; Higginbotham, Fiona; Vanderkerken, Karin; Menu, Eline

    2010-01-01

    Multiple myeloma (MM) is the second most commonly diagnosed hematological malignancy, characterized by a monoclonal proliferation of malignant cells in the bone marrow. Despite recent advances in treatment strategies, MM remains incurable and new therapeutical targets are needed. Recently forodesine, a purine nucleoside phosphorylase inhibitor, was found to induce apoptosis in leukemic cells of chronic lymphocytic leukemia patients by increasing the dGTP levels. We therefore tested whether forodesine was able to inhibit proliferation and/or induce apoptosis in both murine and human MM cells through a similar pathway. We found that after 48 hours of treatment with forodesine there was a slight dGTP increase in 5T33MM and RPMI-8226 MM cells associated with partial inhibition of proliferation and a limited induction of apoptosis. When investigating the pathways leading to cell cycle arrest and apoptosis, we observed an upregulation of p27, caspase 3, and BIM. We can conclude that forodesine has some effects on MM cells but not as impressive as the known effects in leukemic cells. Forodesine might be however potentiating towards other established cytotoxic drugs in MM. PMID:20981156

  17. Automatic recognition of myeloma cells in microscopic images using bottleneck algorithm, modified watershed and SVM classifier.

    PubMed

    Saeedizadeh, Z; Mehri Dehnavi, A; Talebi, A; Rabbani, H; Sarrafzadeh, O; Vard, A

    2016-01-01

    Plasma cells are developed from B lymphocytes, a type of white blood cells that is generated in the bone marrow. The plasma cells produce antibodies to fight with bacteria and viruses and stop infection and disease. Multiple myeloma is a cancer of plasma cells that collections of abnormal plasma cells (myeloma cells) accumulate in the bone marrow. The definitive diagnosis of multiple myeloma is done by searching for myeloma cells in the bone marrow slides through a microscope. Diagnosis of myeloma cells from bone marrow smears is a subjective and time-consuming task for pathologists. Also, because of depending on final decision on human eye and opinion, error risk in decision may occur. Sometimes, existence of infection in body causes plasma cell's increment which could be diagnosed wrongly as multiple myeloma. The computer diagnostic process will reduce the diagnostic time and also can be worked as a second opinion for pathologists. This study presents a computer-aided diagnostic method for myeloma cells diagnosis from bone marrow smears. At first, white blood cells consist of plasma cells and other marrow cells are separated from the red blood cells and background. Then, plasma cells are detected from other marrow cells by feature extraction and series of decision rules. Finally, normal plasma cells and myeloma cells could be classified easily by a classifier. This algorithm is applied on 50 digital images that are provided from bone marrow aspiration smears. These images contain 678 cells: 132 normal plasma cells, 256 myeloma cells and 290 other types of marrow cells. Applying the computer-aided diagnostic method for identifying myeloma cells on provided database showed a sensitivity of 96.52%; specificity of 93.04% and precision of 95.28%. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  18. THE FORMATION OF MYELOMA PROTEIN BY A MOUSE PLASMA CELL TUMOR

    PubMed Central

    Nathans, Daniel; Fahey, John L.; Potter, Michael

    1958-01-01

    The origin of the myeloma protein found in mice bearing the plasma cell tumor X5563 has been investigated. Specific activity-time curves of the myeloma proteins isolated from the tumor and from the plasma of these animals were compared following intravenous injection of L-lysine-C14. The results indicate that myeloma protein is synthesized in the plasma cell tumor. PMID:13549645

  19. Cannabinoids synergize with carfilzomib, reducing multiple myeloma cells viability and migration

    PubMed Central

    Offidani, Massimo; Amantini, Consuelo; Gentili, Silvia; Soriani, Alessandra; Cardinali, Claudio; Leoni, Pietro; Santoni, Giorgio

    2016-01-01

    Several studies showed a potential anti-tumor role for cannabinoids, by modulating cell signaling pathways involved in cancer cell proliferation, chemo-resistance and migration. Cannabidiol (CBD) was previously noted in multiple myeloma (MM), both alone and in synergy with the proteasome inhibitor bortezomib, to induce cell death. In other type of human cancers, the combination of CBD with Δ9-tetrahydrocannabinol (THC) was found to act synergistically with other chemotherapeutic drugs suggesting their use in combination therapy. In the current study, we evaluated the effects of THC alone and in combination with CBD in MM cell lines. We found that CBD and THC, mainly in combination, were able to reduce cell viability by inducing autophagic-dependent necrosis. Moreover, we showed that the CBD-THC combination was able to reduce MM cells migration by down-regulating expression of the chemokine receptor CXCR4 and of the CD147 plasma membrane glycoprotein. Furthermore, since the immuno-proteasome is considered a new target in MM and also since carfilzomib (CFZ) is a new promising immuno-proteasome inhibitor that creates irreversible adducts with the β5i subunit of immuno-proteasome, we evaluated the effect of CBD and THC in regulating the expression of the β5i subunit and their effect in combination with CFZ. Herein, we also found that the CBD and THC combination is able to reduce expression of the β5i subunit as well as to act in synergy with CFZ to increase MM cell death and inhibits cell migration. In summary, these results proved that this combination exerts strong anti-myeloma activities. PMID:27769052

  20. Cannabinoids synergize with carfilzomib, reducing multiple myeloma cells viability and migration.

    PubMed

    Nabissi, Massimo; Morelli, Maria Beatrice; Offidani, Massimo; Amantini, Consuelo; Gentili, Silvia; Soriani, Alessandra; Cardinali, Claudio; Leoni, Pietro; Santoni, Giorgio

    2016-11-22

    Several studies showed a potential anti-tumor role for cannabinoids, by modulating cell signaling pathways involved in cancer cell proliferation, chemo-resistance and migration. Cannabidiol (CBD) was previously noted in multiple myeloma (MM), both alone and in synergy with the proteasome inhibitor bortezomib, to induce cell death. In other type of human cancers, the combination of CBD with Δ9-tetrahydrocannabinol (THC) was found to act synergistically with other chemotherapeutic drugs suggesting their use in combination therapy. In the current study, we evaluated the effects of THC alone and in combination with CBD in MM cell lines. We found that CBD and THC, mainly in combination, were able to reduce cell viability by inducing autophagic-dependent necrosis. Moreover, we showed that the CBD-THC combination was able to reduce MM cells migration by down-regulating expression of the chemokine receptor CXCR4 and of the CD147 plasma membrane glycoprotein. Furthermore, since the immuno-proteasome is considered a new target in MM and also since carfilzomib (CFZ) is a new promising immuno-proteasome inhibitor that creates irreversible adducts with the β5i subunit of immuno-proteasome, we evaluated the effect of CBD and THC in regulating the expression of the β5i subunit and their effect in combination with CFZ. Herein, we also found that the CBD and THC combination is able to reduce expression of the β5i subunit as well as to act in synergy with CFZ to increase MM cell death and inhibits cell migration. In summary, these results proved that this combination exerts strong anti-myeloma activities.

  1. CRM1 Inhibition Sensitizes Drug Resistant Human Myeloma Cells to Topoisomerase II and Proteasome Inhibitors both In Vitro and Ex Vivo

    PubMed Central

    Turner, Joel G.; Dawson, Jana; Emmons, Michael F.; Cubitt, Christopher L.; Kauffman, Michael; Shacham, Sharon; Hazlehurst, Lori A.; Sullivan, Daniel M.

    2013-01-01

    Multiple myeloma (MM) remains an incurable disease despite improved treatments, including lenalidomide/pomalidomide and bortezomib/carfilzomib based therapies and high-dose chemotherapy with autologous stem cell rescue. New drug targets are needed to further improve treatment outcomes. Nuclear export of macromolecules is misregulated in many cancers, including in hematological malignancies such as MM. CRM1 (chromosome maintenance protein-1) is a ubiquitous protein that exports large proteins (>40 kDa) from the nucleus to the cytoplasm. We found that small-molecule Selective Inhibitors of Nuclear Export (SINE) prevent CRM1-mediated export of p53 and topoisomerase IIα (topo IIα). SINE's CRM1-inhibiting activity was verified by nuclear-cytoplasmic fractionation and immunocytochemical staining of the CRM1 cargoes p53 and topo IIα in MM cells. We found that SINE molecules reduced cell viability and induced apoptosis when used as both single agents in the sub-micromolar range and when combined with doxorubicin, bortezomib, or carfilzomib but not lenalidomide, melphalan, or dexamethasone. In addition, CRM1 inhibition sensitized MM cell lines and patient myeloma cells to doxorubicin, bortezomib, and carfilzomib but did not affect peripheral blood mononuclear or non-myeloma bone marrow mononuclear cells as shown by cell viability and apoptosis assay. Drug resistance induced by co-culture of myeloma cells with bone marrow stroma cells was circumvented by the addition of SINE molecules. These results support the continued development of SINE for patients with MM. PMID:24155773

  2. Antitumoral Effect of Hibiscus sabdariffa on Human Squamous Cell Carcinoma and Multiple Myeloma Cells.

    PubMed

    Malacrida, Alessio; Maggioni, Daniele; Cassetti, Arianna; Nicolini, Gabriella; Cavaletti, Guido; Miloso, Mariarosaria

    2016-10-01

    Cancer is a leading cause of death worldwide. Despite therapeutic improvements, some cancers are still untreatable. Recently there has been an increasing interest in the use of natural substances for cancer prevention and treatment. Hibiscus sabdariffa (HS) is a plant, belonging to Malvaceae family, widespread in South Asia and Central Africa. HS extract (HSE) used in folk medicine, gained researchers' interest thanks to its antioxidant, anti-inflammatory, and chemopreventive properties. In the present study, we initially assessed HSE effect on a panel of human tumor cell lines. Then we focused our study on the following that are most sensitive to HSE action cell lines: Multiple Myeloma (MM) cells (RPMI 8226) and Oral Squamous Cell Carcinoma (OSCC) cells (SCC-25). In both RPMI 8226 and SCC-25 cells, HSE impaired cell growth, exerted a reversible cytostatic effect, and reduced cell motility and invasiveness. We evaluated the involvement of MAPKs ERK1/2 and p38 in HSE effects by using specific inhibitors, U0126 and SB203580, respectively. For both SCC-25 and RPMI 8226, HSE cytostatic effect depends on p38 activation, whereas ERK1/2 modulation is crucial for cell motility and invasiveness. Our results suggest that HSE may be a potential therapeutic agent against MM and OSCC.

  3. Heterogeneous expression of CD32 and CD32-mediated growth suppression in human myeloma cells.

    PubMed

    Zheng, Xu; Abroun, Saeid; Otsuyama, Ken-ichiro; Asaoku, Hideki; Kawano, Michio M

    2006-07-01

    An increased level of serum M-protein IgG may affect the growth or survival of myeloma cells through the Fcgamma inverted exclamation mark receptor (FcgammaR) in human myelomas. We examined the expression of FcgammaR (CD32, CD16 and CD64) and compared the effect of anti-CD32 antibody on the viability of myeloma cells to that on the viability of normal plasma cells. Surface antigen and gene expressions were examined by flow cytometry and reverse transcription polymerase chain reaction, respectively. We examined the effect of anti-CD32 antibody on the viability of CD19- myeloma cells (including immature and mature myeloma cells) and CD19+ normal plasma cells. In order to confirm the involvement of CD19 in the anti-CD32-mediated growth suppression, we used CD19 transfectants of myeloma, B-cell and erythroleukemia cell lines that we have already established. CD32 was significantly expressed on primary myeloma cells, but immature, MPC-1- myeloma cells expressed CD32 more weakly than mature, MPC-1+ cells. Treatment with anti-CD32 antibody decreased the viability of normal plasma cells (CD38++ CD19+) more than that of myeloma cells (CD38++ CD19-); CD32-mediated growth suppression was greater in mature MPC-1+ cells than in immature MPC-1- cells. The introduction of CD19 into CD19- cell lines significantly increased the sensitivity of the cells to treatment with anti-CD32 antibody as well as addition of IgG complex; furthermore, increased phosphorylation of CD32 and SHIP was detected in CD19-transfected cell lines. Myeloma cells lacking CD19 expression are less sensitive to CD32-mediated growth suppression than are CD19+ normal plasma cells.

  4. Outpatient Autologous Stem Cell Transplantation for Patients With Myeloma.

    PubMed

    Paul, Thomas M; Liu, Stephen V; Chong, Elise A; Luger, Selina M; Porter, David L; Schuster, Stephen J; Tsai, Donald E; Nasta, Sunita D; Loren, Alison; Frey, Noelle; Perl, Alexander; Cohen, Adam D; Weiss, Brendan M; Stadtmauer, Edward A; Vogl, Dan T

    2015-09-01

    High-dose melphalan with autologous stem cell support improves survival for patients with myeloma. For selected patients, we have been using a protocol of short hospitalization, discharging patients to home with careful outpatient monitoring in the office, which we hypothesized would reduce complications and utilization of inpatient beds. We reviewed 301 initial autologous transplants for myeloma, categorized as brief stay (≤ 4 days, 82 patients) or prolonged stay (≥ 5 days, 219 patients). Selection for a brief stay was determined by clinical characteristics, availability of caregivers at home, distance from our medical center, and patient preference. Within the brief stay population, 67% required readmission before day + 100, but this group still had fewer cumulative hospital days (9 vs. 18, P < .0001). There were fewer documented infections among brief stay patients (22% vs. 46% P < .001) and fewer admissions to intensive care units (0% vs. 5.9%, P = .02). The groups had similar rates of bleeding (1.2% vs. 1.4% P = 1.0) and thrombosis (3.7% vs. 4.6% P = 1.0). No patients in the brief stay group died within 100 days, compared with mortality of 1.8% (P = .6) in the prolonged stay group. Carefully selected patients receiving an autologous stem cell transplant for treatment of myeloma can be managed with a brief initial hospitalization and outpatient follow-up, with low morbidity and mortality. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Non-redundant roles for Th17 and Th22 cells in multiple myeloma clinical correlates

    PubMed Central

    Di Lullo, Giulia; Marcatti, Magda; Protti, Maria Pia

    2016-01-01

    ABSTRACT We recently reported that in multiple myeloma increased Th22 cell frequencies correlate with poor prognosis. Here we show that within the same patients' cohort Th17 cells associate with bone disease and not with prognosis. Thus, we propose that Th22 and Th17 cells play non-redundant roles in multiple myeloma and constitute independent therapeutic targets. PMID:27141378

  6. Non-redundant roles for Th17 and Th22 cells in multiple myeloma clinical correlates.

    PubMed

    Di Lullo, Giulia; Marcatti, Magda; Protti, Maria Pia

    2016-04-01

    We recently reported that in multiple myeloma increased Th22 cell frequencies correlate with poor prognosis. Here we show that within the same patients' cohort Th17 cells associate with bone disease and not with prognosis. Thus, we propose that Th22 and Th17 cells play non-redundant roles in multiple myeloma and constitute independent therapeutic targets.

  7. Human Multiple Myeloma Cells Are Sensitized to Topoisomerase II Inhibitors by CRM1 Inhibition

    PubMed Central

    Turner, Joel G.; Marchion, Douglas C.; Dawson, Jana L.; Emmons, Michael F.; Hazlehurst, Lori A.; Washausen, Peter; Sullivan, Daniel M.

    2009-01-01

    Topoisomerase IIα (topo IIα) is exported from the nucleus of human myeloma cells by a CRM1-dependent mechanism at cellular densities similar to those found in patient bone marrow. When topo IIα is trafficked to the cytoplasm, it is not in contact with the DNA; thus topo IIα inhibitors are unable to induce DNA-cleavable complexes and cell death. Using a CRM1 inhibitor or a CRM1-specific small interfering RNA (siRNA), we were able to block nuclear export of topo IIα as shown by immunofluorescence microscopy. Human myeloma cell lines and patient myeloma cells isolated from bone marrow were treated with a CRM1 inhibitor or CRM1-specific siRNA and exposed to doxorubicin or etoposide (VP-16) at high cell densities. CRM1-treated cell lines or myeloma patient cells were fourfold more sensitive to topo II poisons, as determined by activated caspase assay. Normal cells were not significantly affected by CRM1-topo II combination treatment. Cell death was correlated with increased DNA double-strand breaks as shown by the comet assay. Band depletion assays of CRM1 inhibitor-exposed myeloma cells demonstrated increased topo IIα covalently bound to DNA. Topo IIα knockdown by a topo IIα-specific siRNA abrogated the CRM1-topo II therapy synergistic effect. These results suggest that blocking topo IIα nuclear export sensitizes myeloma cells to topo II inhibitors. This method of sensitizing myeloma cells suggests a new therapeutic approach to multiple myeloma. PMID:19690141

  8. Adipocyte-Lineage Cells Support Growth and Dissemination of Multiple Myeloma in Bone.

    PubMed

    Trotter, Timothy N; Gibson, Justin T; Sherpa, Tshering Lama; Gowda, Pramod S; Peker, Deniz; Yang, Yang

    2016-11-01

    Multiple myeloma (MM) cells reside in the bone marrow microenvironment and form complicated interactions with nonneoplastic, resident stromal cells. We previously found that aggressive MM cells shift osteoblast progenitors toward adipogenesis. In addition, adipocytes are among the most common cell types in the adult skeleton; both mature adipocytes and preadipocytes serve as endocrine cells that secrete a number of soluble molecules into the microenvironment. Therefore, we used a combination of in vivo and in vitro methods to test the hypothesis that an increase in adipocyte lineage cells feeds back to promote MM progression. The results of this study revealed that bone marrow from patients with MM indeed contains increased preadipocytes and significantly larger mature adipocytes than normal bone marrow. We also found that preadipocytes and mature adipocytes secrete many molecules important for supporting MM cells in the bone marrow and directly recruit MM cells through both monocyte chemotactic protein-1 and stromal cell-derived factor-1α. Co-culture experiments found that preadipocytes activate Wnt signaling and decrease cleaved caspase-3, whereas mature adipocytes activate ERK signaling in MM cells. Furthermore, mature adipocyte conditioned medium promotes MM growth, whereas co-culture with preadipocytes results in enhanced MM cell chemotaxis in vitro and increased tumor growth in bone in vivo. Combined, these data reveal the importance of preadipocytes and mature adipocytes on MM progression and represent a unique target in the bone marrow microenvironment. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. CD229 is expressed on the surface of plasma cells carrying an aberrant phenotype and chemotherapy-resistant precursor cells in multiple myeloma

    PubMed Central

    Yousef, Sara; Kovacsovics-Bankowski, Magdalena; Salama, Mohamed E; Bhardwaj, Neelam; Steinbach, Mary; Langemo, Amanda; Kovacsovics, Tibor; Marvin, James; Binder, Mascha; Panse, Jens; Kröger, Nicolaus; Luetkens, Tim; Atanackovic, Djordje

    2015-01-01

    Multiple Myeloma (MM) is a plasma cell (PC) malignancy, which despite significant therapeutic advances, is still considered incurable. This is due to the persistence of chemotherapy-resistant minimal residual disease in the patients' bone marrow (BM) after an effective induction therapy. Immunotherapies targeting surface molecules expressed on the bulk of tumor cells and the chemotherapy-resistant, myeloma-propagating cells could play a central role in this clinical setting. We recently described surface molecule CD229 as a potential therapeutic target for MM. In our current study we assessed the expression of CD229 on different PC subtypes and on cells with a myeloma-propagating phenotype in a total of 77 patients with PC dyscrasias independently at 2 different cancer centers. We found that CD229 was strongly and homogeneously overexpressed on the PC of patients with monoclonal gammopathy of undetermined significance (MGUS), smoldering myeloma, MM, and PC leukemia. CD229 was particularly overexpressed on those PC showing an abnormal phenotype such as expression of CD56. Most importantly, CD229 was also highly expressed on those cells in the patients' BM displaying the phenotype of chemotherapy-resistant and myeloma-propagating cells. In conclusion, our combined findings suggest that immunotherapies targeting CD229 will not only be effective for the bulk of tumor cells but will also help to eradicate chemotherapy-resistant cells remaining in the patients' BM after induction treatment. Hopefully, the design of CD229-specific monoclonal antibodies or chimeric antigen receptor-transduced T cells will help to achieve prolonged remissions or even cures in MM patients. PMID:26001047

  10. CD229 is expressed on the surface of plasma cells carrying an aberrant phenotype and chemotherapy-resistant precursor cells in multiple myeloma.

    PubMed

    Yousef, Sara; Kovacsovics-Bankowski, Magdalena; Salama, Mohamed E; Bhardwaj, Neelam; Steinbach, Mary; Langemo, Amanda; Kovacsovics, Tibor; Marvin, James; Binder, Mascha; Panse, Jens; Kröger, Nicolaus; Luetkens, Tim; Atanackovic, Djordje

    2015-01-01

    Multiple Myeloma (MM) is a plasma cell (PC) malignancy, which despite significant therapeutic advances, is still considered incurable. This is due to the persistence of chemotherapy-resistant minimal residual disease in the patients' bone marrow (BM) after an effective induction therapy. Immunotherapies targeting surface molecules expressed on the bulk of tumor cells and the chemotherapy-resistant, myeloma-propagating cells could play a central role in this clinical setting. We recently described surface molecule CD229 as a potential therapeutic target for MM. In our current study we assessed the expression of CD229 on different PC subtypes and on cells with a myeloma-propagating phenotype in a total of 77 patients with PC dyscrasias independently at 2 different cancer centers. We found that CD229 was strongly and homogeneously overexpressed on the PC of patients with monoclonal gammopathy of undetermined significance (MGUS), smoldering myeloma, MM, and PC leukemia. CD229 was particularly overexpressed on those PC showing an abnormal phenotype such as expression of CD56. Most importantly, CD229 was also highly expressed on those cells in the patients' BM displaying the phenotype of chemotherapy-resistant and myeloma-propagating cells. In conclusion, our combined findings suggest that immunotherapies targeting CD229 will not only be effective for the bulk of tumor cells but will also help to eradicate chemotherapy-resistant cells remaining in the patients' BM after induction treatment. Hopefully, the design of CD229-specific monoclonal antibodies or chimeric antigen receptor-transduced T cells will help to achieve prolonged remissions or even cures in MM patients.

  11. Impact of the NK Cell Receptor LIR-1 (ILT-2/CD85j/LILRB1) on Cytotoxicity against Multiple Myeloma

    PubMed Central

    Heidenreich, Silke; zu Eulenburg, Christine; Hildebrandt, York; Stübig, Thomas; Sierich, Heidi; Badbaran, Anita; Eiermann, Thomas H.; Binder, Thomas M. C.; Kröger, Nicolaus

    2012-01-01

    The role of different receptors in natural-killer- (NK-) cell-mediated cytotoxicity against multiple myeloma (MM) cells is unknown. We investigated if an enhancement of NK-cell-mediated cytotoxicity against MM could be reached by blocking of the inhibitory leukocyte immunoglobulin-like receptor 1 (LIR-1). Our investigations revealed high levels of LIR-1 expression not only on the NK cell line NK-92, but also on myeloma cells (MOLP-8, RPMI8226) as well as on a lymphoblastoid cell line (LBCL; IM-9). Subsequent cytotoxicity assays were designed to show the isolated effects of LIR-1 blocking on either the effector or the tumor side to rule out receptor-receptor interactions. Although NK-92 was shown to be capable of myeloma cell lysis, inhibition of LIR-1 on NK-92 did not enhance cytotoxicity. Targeting the receptor on MM and LBCL did not also alter NK-92-mediated lysis. We come to the conclusion that LIR-1 alone does not directly influence NK-cell-mediated cytotoxicity against myeloma. To our knowledge, this work provides the first investigation of the inhibitory capability of LIR-1 in NK-92-mediated cytotoxicity against MM and the first functional evaluation of LIR-1 on MM and LBCL. PMID:22844324

  12. Peroxidase-positive Auer bodies in plasma cells in multiple myeloma: a case report

    PubMed Central

    Zhu, Lin; An, Li; Zhang, Xiao-Yan; Ren, Xue-Rui; Song, Jing-Wen

    2015-01-01

    Reports of clinical cases with Auer bodies in the plasma cells in multiple myeloma (MM) are rare; however, most of those reported contain peroxidase (POX)-negative Auer bodies rather than the POX-positive Auer bodies observed in myeloid progenitors, indicating differences in their chemical properties. Furthermore, the cases with POX-positive Auer bodies similar to those observed in myeloid cells are extremely rare in non-myeloid cells. Here, we report the clinical features, laboratory investigations, diagnosis and treatment of a case of MM with POX-positive Auer bodies in plasma cells and review related the literature to advance the prognostic evaluation, diagnosis and treatment of similar cases. PMID:26823884

  13. Phenotypic, Genomic and Functional Characterization Reveals No Differences between CD138++ and CD138low Subpopulations in Multiple Myeloma Cell Lines

    PubMed Central

    Paíno, Teresa; Sarasquete, María E.; Paiva, Bruno; Krzeminski, Patryk; San-Segundo, Laura; Corchete, Luis A.; Redondo, Alba; Garayoa, Mercedes; García-Sanz, Ramón; Gutiérrez, Norma C.; Ocio, Enrique M.; San-Miguel, Jesús F.

    2014-01-01

    Despite recent advances in the treatment of multiple myeloma (MM), it remains an incurable disease potentially due to the presence of resistant myeloma cancer stem cells (MM-CSC). Although the presence of clonogenic cells in MM was described three decades ago, the phenotype of MM-CSC is still controversial, especially with respect to the expression of syndecan-1 (CD138). Here, we demonstrate the presence of two subpopulations - CD138++ (95–99%) and CD138low (1–5%) - in eight MM cell lines. To find out possible stem-cell-like features, we have phenotypically, genomic and functionally characterized the two subpopulations. Our results show that the minor CD138low subpopulation is morphologically identical to the CD138++ fraction and does not represent a more immature B-cell compartment (with lack of CD19, CD20 and CD27 expression). Moreover, both subpopulations have similar gene expression and genomic profiles. Importantly, both CD138++ and CD138low subpopulations have similar sensitivity to bortezomib, melphalan and doxorubicin. Finally, serial engraftment in CB17-SCID mice shows that CD138++ as well as CD138low cells have self-renewal potential and they are phenotypically interconvertible. Overall, our results differ from previously published data in MM cell lines which attribute a B-cell phenotype to MM-CSC. Future characterization of clonal plasma cell subpopulations in MM patients' samples will guarantee the discovery of more reliable markers able to discriminate true clonogenic myeloma cells. PMID:24658332

  14. Fibronectin on the Surface of Myeloma Cell-derived Exosomes Mediates Exosome-Cell Interactions.

    PubMed

    Purushothaman, Anurag; Bandari, Shyam Kumar; Liu, Jian; Mobley, James A; Brown, Elizabeth E; Sanderson, Ralph D

    2016-01-22

    Exosomes regulate cell behavior by binding to and delivering their cargo to target cells; however, the mechanisms mediating exosome-cell interactions are poorly understood. Heparan sulfates on target cell surfaces can act as receptors for exosome uptake, but the ligand for heparan sulfate on exosomes has not been identified. Using exosomes isolated from myeloma cell lines and from myeloma patients, we identify exosomal fibronectin as a key heparan sulfate-binding ligand and mediator of exosome-cell interactions. We discovered that heparan sulfate plays a dual role in exosome-cell interaction; heparan sulfate on exosomes captures fibronectin, and on target cells it acts as a receptor for fibronectin. Removal of heparan sulfate from the exosome surface releases fibronectin and dramatically inhibits exosome-target cell interaction. Antibody specific for the Hep-II heparin-binding domain of fibronectin blocks exosome interaction with tumor cells or with marrow stromal cells. Regarding exosome function, fibronectin-mediated binding of exosomes to myeloma cells activated p38 and pERK signaling and expression of downstream target genes DKK1 and MMP-9, two molecules that promote myeloma progression. Antibody against fibronectin inhibited the ability of myeloma-derived exosomes to stimulate endothelial cell invasion. Heparin or heparin mimetics including Roneparstat, a modified heparin in phase I trials in myeloma patients, significantly inhibited exosome-cell interactions. These studies provide the first evidence that fibronectin binding to heparan sulfate mediates exosome-cell interactions, revealing a fundamental mechanism important for exosome-mediated cross-talk within tumor microenvironments. Moreover, these results imply that therapeutic disruption of fibronectin-heparan sulfate interactions will negatively impact myeloma tumor growth and progression.

  15. Fibronectin on the Surface of Myeloma Cell-derived Exosomes Mediates Exosome-Cell Interactions*

    PubMed Central

    Purushothaman, Anurag; Bandari, Shyam Kumar; Liu, Jian; Mobley, James A.; Brown, Elizabeth E.; Sanderson, Ralph D.

    2016-01-01

    Exosomes regulate cell behavior by binding to and delivering their cargo to target cells; however, the mechanisms mediating exosome-cell interactions are poorly understood. Heparan sulfates on target cell surfaces can act as receptors for exosome uptake, but the ligand for heparan sulfate on exosomes has not been identified. Using exosomes isolated from myeloma cell lines and from myeloma patients, we identify exosomal fibronectin as a key heparan sulfate-binding ligand and mediator of exosome-cell interactions. We discovered that heparan sulfate plays a dual role in exosome-cell interaction; heparan sulfate on exosomes captures fibronectin, and on target cells it acts as a receptor for fibronectin. Removal of heparan sulfate from the exosome surface releases fibronectin and dramatically inhibits exosome-target cell interaction. Antibody specific for the Hep-II heparin-binding domain of fibronectin blocks exosome interaction with tumor cells or with marrow stromal cells. Regarding exosome function, fibronectin-mediated binding of exosomes to myeloma cells activated p38 and pERK signaling and expression of downstream target genes DKK1 and MMP-9, two molecules that promote myeloma progression. Antibody against fibronectin inhibited the ability of myeloma-derived exosomes to stimulate endothelial cell invasion. Heparin or heparin mimetics including Roneparstat, a modified heparin in phase I trials in myeloma patients, significantly inhibited exosome-cell interactions. These studies provide the first evidence that fibronectin binding to heparan sulfate mediates exosome-cell interactions, revealing a fundamental mechanism important for exosome-mediated cross-talk within tumor microenvironments. Moreover, these results imply that therapeutic disruption of fibronectin-heparan sulfate interactions will negatively impact myeloma tumor growth and progression. PMID:26601950

  16. Multiple myeloma treatment at relapse after autologous stem cell transplantation: A practical analysis.

    PubMed

    Malard, F; Harousseau, J L; Mohty, M

    2017-01-01

    Over the past decade, significant advances have been made in the field of multiple myeloma. Introduction of the so-called novel agents, proteasome inhibitors (PI) and immunomodulatory drugs (IMiD), and improved supportive care have resulted in significantly better outcome. Standard first line treatment in fit patients include PI and IMiD based induction, high dose melphalan with autologous hematopoietic stem cell transplantation (ASCT) and consolidation/maintenance. However, despite these progresses MM remains incurable for the majority of patients and most patients will relapse. Next generation PI (carfilzomib, ixazomib) and IMiD (pomalidomide) and new therapeutic classes: monoclonal antibody (elotuzumab, daratumumab) and pan-deacetylase inhibitors (panobinostat) have been successfully evaluated in relapse multiple myeloma. Some of these new agents are now approved for multiple myeloma treatment at relapse. However choosing the most appropriate treatment at relapse may be difficult. This review sum up the most important studies and provide evidence to choose the most relevant therapeutic strategy for relapse after ASCT, based on disease, patient and previous treatment related parameters.

  17. The Cyclophilin A-CD147 complex promotes the proliferation and homing of multiple myeloma cells.

    PubMed

    Zhu, Di; Wang, Zhongqiu; Zhao, Jian-Jun; Calimeri, Teresa; Meng, Jiang; Hideshima, Teru; Fulciniti, Mariateresa; Kang, Yue; Ficarro, Scott B; Tai, Yu-Tzu; Hunter, Zachary; McMilin, Douglas; Tong, Haoxuan; Mitsiades, Constantine S; Wu, Catherine J; Treon, Steven P; Dorfman, David M; Pinkus, Geraldine; Munshi, Nikhil C; Tassone, Pierfrancesco; Marto, Jarrod A; Anderson, Kenneth C; Carrasco, Ruben D

    2015-06-01

    B cell malignancies frequently colonize the bone marrow. The mechanisms responsible for this preferential homing are incompletely understood. Here we studied multiple myeloma (MM) as a model of a terminally differentiated B cell malignancy that selectively colonizes the bone marrow. We found that extracellular CyPA (eCyPA), secreted by bone marrow endothelial cells (BMECs), promoted the colonization and proliferation of MM cells in an in vivo scaffold system via binding to its receptor, CD147, on MM cells. The expression and secretion of eCyPA by BMECs was enhanced by BCL9, a Wnt-β-catenin transcriptional coactivator that is selectively expressed by these cells. eCyPA levels were higher in bone marrow serum than in peripheral blood in individuals with MM, and eCyPA-CD147 blockade suppressed MM colonization and tumor growth in the in vivo scaffold system. eCyPA also promoted the migration of chronic lymphocytic leukemia and lymphoplasmacytic lymphoma cells, two other B cell malignancies that colonize the bone marrow and express CD147. These findings suggest that eCyPA-CD147 signaling promotes the bone marrow homing of B cell malignancies and offer a compelling rationale for exploring this axis as a therapeutic target for these malignancies.

  18. Lenalidomide restores the osteogenic differentiation of bone marrow mesenchymal stem cells from multiple myeloma patients via deactivating Notch signaling pathway

    PubMed Central

    Guo, Juan; Fei, Chengming; Zhao, Youshan; Zhao, Sida; Zheng, Qingqing; Su, Jiying; Wu, Dong; Li, Xiao; Chang, Chunkang

    2017-01-01

    Multiple myeloma (MM) always presents osteolytic bone lesions, resulting from the abnormal osteoblastic and osteoclastic function in patients. MM patients exhibit the impairment of osteogenic differentiation of BMMSCs (bone marrow mesenchymal stem cells) and osteoblast deficiency. Effects of the drug, lenalidomide on the osteoblastic functions and the involved mechanisms remain unexplored. In the present study, it is observed that the osteogenic differentiation of BMMSCs from MM patients (MM-MSCs) is impaired and activation of Notch signaling pathway in MM-MSCs is abnormal. Notch signaling activation inhibits BMMSCs osteogenesis. Knockdown of Notch1 expression and DAPT application reverse the osteogenic differentiation from MM-MSCs. Furthermore, it is shown that the gene expression of Notch signaling molecules, including receptors, ligands and downstream factors are significantly decreased in MM-MSCs following lenalidomide treatment, compared with non-treated MM-MSCs. Taken together, treatment with lenalidomide restores the osteogenic differentiation of MM-MSCs via deactivating Notch signaling pathway.

  19. Mechanisms for autophagy modulation by isoprenoid biosynthetic pathway inhibitors in multiple myeloma cells.

    PubMed

    Dykstra, Kaitlyn M; Allen, Cheryl; Born, Ella J; Tong, Huaxiang; Holstein, Sarah A

    2015-12-08

    Multiple myeloma (MM) is characterized by the production of monoclonal protein (MP). We have shown previously that disruption of the isoprenoid biosynthetic pathway (IBP) causes a block in MP secretion through a disruption of Rab GTPase activity, leading to an enhanced unfolded protein response and subsequent apoptosis in MM cells. Autophagy is induced by cellular stressors including nutrient deprivation and ER stress. IBP inhibitors have been shown to have disparate effects on autophagy. Here we define the mechanisms underlying the differential effects of IBP inhibitors on autophagic flux in MM cells utilizing specific pharmacological inhibitors. We demonstrate that IBP inhibition induces a net increase in autophagy as a consequence of disruption of isoprenoid biosynthesis which is not recapitulated by direct geranylgeranyl transferase inhibition. IBP inhibitor-induced autophagy is a cellular defense mechanism as treatment with the autophagy inhibitor bafilomycin A1 enhances the cytotoxic effects of GGPP depletion, but not geranylgeranyl transferase inhibition. Immunofluorescence microscopy studies revealed that IBP inhibitors disrupt ER to Golgi trafficking of monoclonal light chain protein and that this protein is not a substrate for alternative degradative pathways such as aggresomes and autophagosomes. These studies support further development of specific GGTase II inhibitors as anti-myeloma agents.

  20. Comparison of SPE, IFE, and FLC in Monitoring Patients with Multiple Myeloma After Autologous Stem Cell Transplantation.

    PubMed

    Li, Wei; Zhou, Jia-Zi; Chang, Hui-Rong; Dai, Li-Jun; Zhu, Zi-Ling; Feng, Yu-Feng; Gong, Fei-Ran; Wu, De-Pei

    2015-12-01

    Conventionally, serum protein electrophoresis (SPE) and serum immunofixation electrophoresis (IFE) are used as primary methods to diagnose and monitor multiple myeloma (MM). Recently, serum-free light chain (FLC) assay has been incorporated into hematological screening programs for myeloma. The purpose of this study is to compare the performance of the three methods in monitoring MM patients after autologous stem cell transplantation (ASCT). SPE, serum IFE and serum FLC assay were performed on 38 MM patients who underwent ASCT. In total, four patients had unexpected protein bands (UPBs) and 13 patients had relapsed after ASCT. Our results indicate that IFE is more sensitive than SPE and FLC assay in detection of UPBs and relapse. The results of IFE may provide useful information in advance of patient relapse.

  1. Impact of XIAP protein levels on the survival of myeloma cells

    PubMed Central

    Desplanques, Grégoire; Giuliani, Nicola; Delsignore, Roberto; Rizzoli, Vittorio; Bataille, Régis; Barillé-Nion, Sophie

    2009-01-01

    Background XIAP is the best characterized and the most potent direct endogenous caspase inhibitor and is considered a key actor in the control of apoptotic threshold in cancer cells. In this report, we specifically addressed XIAP regulation and function in myeloma cells. Design and Methods XIAP and its endogenous inhibitor XAF-1 protein levels and their regulation were assessed by immunoblot analysis in myeloma cell lines or primary myeloma cells. XIAP knockdown by RNA interference was used to evaluate XIAP impact on in vitro drug sensitivity and in vivo tumor growth. Results Our results indicate that myeloma cells expressed high levels of XIAP protein that were tightly regulated during growth factor stimulation or stress condition. Of note, an increased XIAPlevel was evidenced during the blockade of the canonical cap-dependent translation by the mTOR inhibitor rapamycin, supporting the hypothesis of a functional IRES sequence in XIAP mRNA. In addition, caspase-mediated XIAP cleavage correlated to an apoptotic process occurring upon cell treatment with the proteasome inhibitor bortezomib. Importantly, XIAP knockdown using RNA interference enhanced drug sensitivity and decreased tumor formation in NOD/SCID mice. Finally, myeloma cells also expressed the XIAP inhibitor XAF-1 that interacted with XIAP in viable myeloma cells. Conclusions Altogether, our data argue for a delicate control of XIAP function in myeloma cells and stimulate interest in targeting XIAP in myeloma treatment. PMID:19001278

  2. miR-186 inhibits cell proliferation in multiple myeloma by repressing Jagged1

    SciTech Connect

    Liu, Zengyan; Zhang, Guoqiang; Yu, Wenzheng; Gao, Na; Peng, Jun

    2016-01-15

    MicroRNAs (miRNAs) are small, noncoding ribonucleic acids that regulate gene expression by targeting mRNAs for translational repression and degradation. Accumulating experimental evidence supports a causal role of miRNAs in hematology tumorigenesis. However, the specific functions of miRNAs in the pathogenesis of multiple myeloma (MM) remain to be established. In this study, we demonstrated that miR-186 is commonly downregulated in MM cell lines and patient MM cells. Ectopic expression of miR-186 significantly inhibited cell growth, both in vitro and in vivo, and induced cell cycle G{sub 0}/G{sub 1} arrest. Furthermore, miR-186 induced downregulation of Jagged1 protein expression by directly targeting its 3′-untranslated region (3′-UTR). Conversely, overexpression of Jagged1 rescued cells from miR-186-induced growth inhibition. Our collective results clearly indicate that miR-186 functions as a tumor suppressor in MM, supporting its potential as a therapeutic target for the disease. - Highlights: • miR-186 expression is decreased in MM. • miR-186 inhibits MM cell proliferation in vitro and in vivo. • Jagged1 is regulated by miR-186. • Overexpression of Jagged1 reverses the effects of miR-186.

  3. Clinicopathological correlates of plasma cell CD56 (NCAM) expression in multiple myeloma.

    PubMed

    Kraj, Maria; Sokołowska, Urszula; Kopeć-Szlezak, Joanna; Pogłód, Ryszard; Kruk, Barbara; Woźniak, Jolanta; Szpila, Tomasz

    2008-02-01

    The aim of this prospective, long-term study was to define the flow cytometric characteristics of plasma cell CD56 expression as well as determine the clinical characteristics of 204 multiple myeloma (MM) patients and 26 plasma cell leukemia (PCL) patients with regard to CD56 expression. CD56 expression intensity was determined by measurement of antigen molecules on the cell defined as Antibodies Bound per Cell (ABC) and calculation of Relative Fluorescence Intensity (RFI). CD56 expression was found in 66% of MM and 54% of PCL cases. The RFI values for individual MM patients ranged from 7.6 to 27.4 while ABC values on MM plasma cells from 2255 to 58469. There was a correlation between the proportion of all bone marrow CD38(++)/CD138(+) cells with CD56 expression and ABC and RFI indices. With regard to CD56 expression positive patients, the CD56(-) MM patients presented lower frequency of osteolysis (p = 0.01). The median survival was 48 months in CD56(+) patients and 43 months (p = 0.84) in CD56(-) cases. In conclusion, CD56 expression carries no distinct adverse prognosis and the lack of CD56 expression does not define a unique clinicopathological or prognostic entity in MM. A remarkable heterogeneity of CD56 expression intensity in CD56(+) patients imposes the necessity of determining CD56 expression intensity in candidates to antibody-based therapy.

  4. HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells.

    PubMed

    Carbone, Ennio; Neri, Paola; Mesuraca, Maria; Fulciniti, Mariateresa T; Otsuki, Takemi; Pende, Daniela; Groh, Veronika; Spies, Thomas; Pollio, Giuditta; Cosman, David; Catalano, Lucio; Tassone, Pierfrancesco; Rotoli, Bruno; Venuta, Salvatore

    2005-01-01

    The role of natural killer (NK) cells in multiple myeloma is not fully understood. Here, NK susceptibility of myeloma cells derived from distinct disease stages was evaluated in relation to major histocompatibility complex (MHC) class I, MHC class I chain-related protein A (MICA), MHC class I chain-related protein B (MICB), and UL16 binding protein (ULBP) expression. MHC class I molecules were hardly detectable on bone marrow cells of early-stage myeloma, while late-stage pleural effusion-derived cell lines showed a strong MHC class I expression. Conversely, a high MICA level was found on bone marrow myeloma cells, while it was low or not measurable on pleural effusion myeloma cells. The reciprocal surface expression of these molecules on bone marrow- and pleural effusion-derived cell was confirmed at mRNA levels. While bone marrow-derived myeloma cells were readily recognized by NK cells, pleural effusion-derived lines were resistant. NK protection of pleural effusion cells was MHC class I dependent. Receptor blocking experiments demonstrated that natural cytotoxicity receptor (NCR) and NK receptor member D of the lectin-like receptor family (NKG2D) were the key NK activating receptors for bone marrow-derived myeloma cell recognition. In ex vivo experiments patient's autologous fresh NK cells recognized bone marrow-derived myeloma cells. Our data support the hypothesis that NK cell cytotoxicity could sculpture myeloma and represents an important immune effector mechanism in controlling its intramedullary stages.

  5. Aspirin enhances the cytotoxic activity of bortezomib against myeloma cells via suppression of Bcl-2, survivin and phosphorylation of AKT

    PubMed Central

    Ding, Jiang-Hua; Yuan, Li-Ya; Chen, Guo-An

    2017-01-01

    In our previous study, it was found that aspirin (ASA) exerted antimyeloma actions in vivo and in vitro. The resistance to bortezomib (BTZ) in multiple myeloma (MM) is partly due to AKT activation and the upregulation of survivin induced by BTZ, which are the targets of ASA in gastric and ovarian cancer, respectively. Thus, the present study investigated the interaction between ASA and BTZ in MM and further clarified the underlying mechanisms. MM1.S and RPMI-8226 cell lines harboring the N- and K-Ras mutations, respectively, were treated with 2.5 mM ASA, 10 nM BTZ and ASA+BTZ for different durations. The proliferation and apoptosis of the cells were determined, and the underlying mechanisms governing the interaction of ASA and BTZ were examined in the MM cells. Treatment with ASA+BTZ caused higher rates of proliferative inhibition and apoptosis in the MM1.S and RPMI-8226 cells in time-dependent manner, compared with either agent alone. A drug interaction assay revealed the additive effect of ASA and BTZ on the myeloma cells. ASA alone inhibited the levels of phosphorylated AKT (p-AKT) and survivin, whereas BTZ alone augmented the levels of p-AKT and survivin. Of note, ASA markedly decreased the upregulation of p-AKT and survivin induced by BTZ. Treatment with ASA+BTZ significantly suppressed the level of Bcl-2, compared with either agent alone. ASA may potentiate the antimyeloma activity of BTZ against myeloma cells via suppression of AKT phosphorylation, survivin and Bcl-2, indicating the potential of ASA+BTZ in treating MM, particularly for cases of BTZ-refractory/relapsed MM. PMID:28356941

  6. Therapeutic effects of intrabone and systemic mesenchymal stem cell cytotherapy on myeloma bone disease and tumor growth

    PubMed Central

    Li, Xin; Ling, Wen; Khan, Sharmin; Yaccoby, Shmuel

    2012-01-01

    The cytotherapeutic potential of mesenchymal stem cells (MSCs) has been evaluated in various disorders including those involving inflammation, autoimmunity, bone regeneration, and cancer. Multiple myeloma (MM) is a systemic malignancy associated with induction of osteolytic lesions that often are not repaired even after prolonged remission. The aims of the study were to evaluate the effects of intrabone and systemic injections of mesenchymal stem cells (MSCs) on MM bone disease, tumor growth, and tumor regrowth in the SCID-rab model and to shed light on the exact localization of systemically injected MSCs. Intrabone injection of MSCs, but not hematopoietic stem cells, into myelomatous bones prevented MM-induced bone disease, promoted bone formation, and inhibited MM growth. After remission was induced with melphalan treatment, intrabone-injected MSCs promoted bone formation and delayed myeloma cell regrowth in bone. Most intrabone or systemically injected MSCs were undetected 2–4 weeks after injection. The bone-building effects of MSCs were mediated through activation of endogenous osteoblasts and suppression of osteoclast activity. While a single intravenous injection of MSCs had no effect on MM, sequential weekly intravenous injections of MSCs prevented MM-induced bone disease but had no effect on tumor burden. MSCs expressed high levels of anti-inflammatory (e.g. HMOX1), and bone remodeling (e.g. Decorin, CYR61) mediators. In vitro, MSCs promoted osteoblast maturation and suppressed osteoclast formation, and these effects were partially prevented by blocking decorin. A subset of intravenously or intracardially injected MSCs trafficked to myelomatous bone in SCID-rab mice. While the majority of intravenously injected MSCs were trapped in lungs, intracardially injected MSCs were mainly localized in draining mesenteric lymph nodes. This study shows that exogenous MSCs act as bystander cells to inhibit MM-induced bone disease and tumor growth and that systemically

  7. Elevated Red Blood Cell Distribution Width as a Simple Prognostic Factor in Patients with Symptomatic Multiple Myeloma

    PubMed Central

    Lee, Hyewon; Kong, Sun-Young; Sohn, Ji Yeon; Shim, Hyoeun; Youn, Hye Sun; Lee, Sangeun; Kim, Hyun Ju; Eom, Hyeon-Seok

    2014-01-01

    Red blood cell distribution width (RDW) is a parameter reported in complete blood cell count tests, and has been reported as an inflammatory biomarker. Multiple myeloma (MM) is known to be associated with inflammatory microenvironments. However, the importance of RDW has been seldom studied in MM. For this study, 146 symptomatic myeloma patients with available RDW at diagnosis were retrospectively reviewed, and their characteristics were compared between two groups, those with high (>14.5%) and normal (≤14.5%) RDW. RDW was correlated to hemoglobin, MM stage, β2-microglobulin, M-protein, bone marrow plasma cells, and cellularity (P < 0.001). During induction, overall response rates of the two groups were similar (P = 0.195); however, complete response rate was higher in the normal-RDW group than it was in the high-RDW group (P = 0.005). With a median follow-up of 47 months, the normal-RDW group showed better progression-free survival (PFS) (24.2 versus 17.0 months, P = 0.029) compared to the high-RDW group. Overall survival was not different according to the RDW level (P = 0.236). In multivariate analysis, elevated RDW at diagnosis was a poor prognostic factor for PFS (HR 3.21, 95% CI 1.24–8.32) after adjustment with other myeloma-related prognostic factors. RDW would be a simple and immediately available biomarker of symptomatic MM, reflecting the systemic inflammation. PMID:24963470

  8. Clinical significance of CD81 expression by clonal plasma cells in high-risk smoldering and symptomatic multiple myeloma patients.

    PubMed

    Paiva, B; Gutiérrez, N-C; Chen, X; Vídriales, M-B; Montalbán, M-Á; Rosiñol, L; Oriol, A; Martínez-López, J; Mateos, M-V; López-Corral, L; Díaz-Rodríguez, E; Pérez, J-J; Fernández-Redondo, E; de Arriba, F; Palomera, L; Bengoechea, E; Terol, M-J; de Paz, R; Martin, A; Hernández, J; Orfao, A; Lahuerta, J-J; Bladé, J; Pandiella, A; Miguel, J-F San

    2012-08-01

    The presence of CD19 in myelomatous plasma cells (MM-PCs) correlates with adverse prognosis in multiple myeloma (MM). Although CD19 expression is upregulated by CD81, this marker has been poorly investigated and its prognostic value in MM remains unknown. We have analyzed CD81 expression by multiparameter flow cytometry in MM-PCs from 230 MM patients at diagnosis included in the Grupo Español de Mieloma (GEM)05>65 years trial as well as 56 high-risk smoldering MM (SMM). CD81 expression was detected in 45% (103/230) MM patients, and the detection of CD81(+) MM-PC was an independent prognostic factor for progression-free (hazard ratio=1.9; P=0.003) and overall survival (hazard ratio=2.0; P=0.02); this adverse impact was validated in an additional series of 325 transplant-candidate MM patients included in the GEM05 <65 years trial. Moreover, CD81(+) SMM (n=34/56, 57%) patients had a shorter time to progression to MM (P=0.02). Overall, our results show that CD81 may have a relevant role in MM pathogenesis and represent a novel adverse prognostic marker in myeloma.

  9. Content Development for the Functional Assessment of Cancer Therapy-Multiple Myeloma (FACT-MM): Use of Qualitative and Quantitative Methods for Scale Construction

    PubMed Central

    Wagner, Lynne; Robinson, Don; Weiss, Matthias; Katz, Michael; Greipp, Phillip; Fonseca, Rafael; Cella, David

    2012-01-01

    Context Multiple myeloma (MM) is a common hematologic malignancy and is associated with symptom burden and impairments in health-related quality of life (HRQL). Objectives To develop a disease-specific, patient-reported outcomes (PRO) measure for the assessment of HRQL among patients with MM as part of the Functional Assessment of Cancer Therapy (FACT) measurement system. Methods HRQL concerns and symptoms associated with MM were tabulated based on a literature review, and 52 candidate PRO items were identified. Expert clinicians (n=13) rated 52 items on relevance to HRQL for MM patients (0-3 scale). Experts added 11 items for comprehensive PRO assessment in MM. A list of 63 candidate items was rated (0-3 scale) by 13 MM patients enrolled through the International Myeloma Foundation website. Qualitative data and quantitative item ratings were reviewed to select FACT-MM scale items. Results Expert clinicians provided the highest HRQL relevance ratings for bone pain, bodily pain, difficulty walking (2.9), tiring easily (2.6), feeling discouraged (2.5), interference with activities and difficulty with self-care as a result of bone pain (2.5), and fatigue (2.5). Mean age of patients was 57 years; Eastern Cooperative Oncology Group performance status was 0 (38%), 1 (31%) or 2 (31%). Quantitative ratings by patients identified sexual function (1.3), uncertainty about health (1.2), fatigue (1.0), weight gain (1.0), and emotional concerns such as worry about new symptoms and difficulty planning for the future (1.0) as most relevant to HRQL. Conclusion The 14-item FACT-MM PRO measure was developed based on expert clinician and patient data, ensuring relevance to HRQL for MM patients. PMID:22575718

  10. Shear flow-induced formation of tubular cell protrusions in multiple myeloma cells

    PubMed Central

    Porat, Ziv; Yaron, Itamar; Katz, Ben-Zion; Kam, Zvi; Geiger, Benjamin

    2011-01-01

    Exposure of live cells to shear flow induces major changes in cell shape, adhesion to the extracellular matrix, and migration. In the present study, we show that exposure of cultured multiple myeloma (MM) cells to shear flow of 4–36 dynes/cm2 triggers the extension of long tubular protrusions (denoted FLow-Induced Protrusions, or FLIPs) in the direction of the flow. These FLIPs were found to be rich in actin, contain few or no microtubules and, apart from endoplasmic reticulum (ER)-like membranal structures, are devoid of organelles. Studying the dynamics of this process revealed that FLIPs elongate at their tips in a shear force-dependent manner, and retract at their bases. Examination of this force dependence revealed considerable heterogeneity in the mechanosensitivity of individual cells, most likely reflecting the diversity of the malignant B-cell population. The mechanisms underlying FLIP formation following mechanical perturbation, and their relevance to the cellular trafficking of MM cells, are discussed. PMID:21344380

  11. MicroRNA-497 suppresses cell proliferation and induces apoptosis through targeting PBX3 in human multiple myeloma

    PubMed Central

    Yu, Tianhua; Zhang, Xuanhe; Zhang, Lirong; Wang, Yali; Pan, Hongjuan; Xu, Zhihua; Pang, Xiaochuan

    2016-01-01

    Aberrant expression of microRNA-497 (miRN-497) is implicated in development and progression of multiple types of cancers. However, the biological function and underlying mechanism of miR-497 in multiple myeloma (MM) remains unclear. Thus, we studied the potential biological roles of miR-497 in MM. The expression of miR-497 was examined in multiple myeloma and normal plasma cells by qRT-PCR. Biological functions of miR-497 were analyzed using cell proliferation, colony formation, cell cycle, apoptosis and luciferase assays in vitro, as well as via tumorigenicity in vivo analysis. Here, we observed reduced expression of miR-497 in MM plasma samples and cell lines. Ectopic expression of miR-497 dramatically suppressed cell proliferation and clonogenicity, as well as induced cell arrest at G0/G1 stage and apoptosis in vitro. Mechanistic investigation assays showed that Pre-B-cellleukemia transcription factor 3 (PBX3) was a novel and direct downstream target of miR-497. Interestingly, overexpression of PBX3 partially reverted the effect of miR-497 in MM cells. In xenograft model, overexpression of miR-497 inhibited tumorigenicity by repressing PBX3. These findings collectively suggested that miR-497 functioned as tumor suppressor in MM by directly targeting PBX3, supporting its utility as a novel and potential therapeutic agent for MM therapy. PMID:28042507

  12. P38 MAPK inhibition enhancing ATO-induced cytotoxicity against multiple myeloma cells.

    PubMed

    Wen, Jianguo; Cheng, Haiyun Y; Feng, Yongdong; Rice, Lawrence; Liu, Shangfeng; Mo, Albert; Huang, James; Zu, Youli; Ballon, Douglas J; Chang, Chung-Che

    2008-01-01

    The resistance to arsenic trioxide (ATO) treatment is relatively common (55-80%) in multiple myeloma patients. This study found that ATO at clinically achievable concentrations (2-7 mumol/l) activated p38 mitogen-activated protein kinase (MAPK) in both myeloma cell lines and primary myeloma cells, a finding not previously well-documented in myeloma cells. Inhibition of p38 MAPK activation by pharmacological inhibitors (SB203580) or downregulation of p38 MAPK by siRNA significantly increased the apoptosis and/or growth inhibition induced by ATO treatment in myeloma cells. Combination of ATO and p38 MAPK inhibition abolished the interleukin-6 enhanced protection of myeloma cells against ATO treatment. The ATO-resistant cell line developed in our laboratory showed an increase in p38 MAPK activation. The increase of apoptosis by the combination of ATO and SB203580 was accompanied by the activation of caspase-9 and caspase-8 suggesting that both extrinsic and intrinsic apoptotic pathways are involved. Additionally, the p38 MAPK activation by ATO was associated with increased phosphorylation and upregulated expression of Heat shock protein 27. These results suggest that ATO-induced p38 MAPK activation plays an important role in the resistance to ATO in myeloma cells and that p38 MAPK inhibition may overcome resistance to ATO treatment in myeloma patients.

  13. Shikonin, dually functions as a proteasome inhibitor and a necroptosis inducer in multiple myeloma cells

    PubMed Central

    WADA, NAOKO; KAWANO, YAWARA; FUJIWARA, SHIHO; KIKUKAWA, YOSHITAKA; OKUNO, YUTAKA; TASAKI, MASAYOSHI; UEDA, MITSUHARU; ANDO, YUKIO; YOSHINAGA, KAZUYA; RI, MASAKI; IIDA, SHINSUKE; NAKASHIMA, TAKAYUKI; SHIOTSU, YUKIMASA; MITSUYA, HIROAKI; HATA, HIROYUKI

    2015-01-01

    Shikonin (SHK), a natural small agent (MW 288.3), reportedly induces cell death in various tumor cells. We have found that SHK also exerts potent cytocidal effects on human multiple myeloma (MM) cells, but its anticancer mechanism in MM cells remains to be elucidated. SHK at 2.5–5 μM induced apoptosis in seven MM cell lines, including the bortezomib-resistant cell line KMS11/BTZ. The IC50 value of SHK against KMS11/BTZ was comparable to that of a parental cell line KMS11 (1.1 and 1.56 μM, respectively). SHK induces accumulation of ubiquitinated proteins and activates XBP-1 in MM cells, suggesting that SHK functions as a proteasome inhibitor, eventually inducing ER stress-associated apoptosis. SHK increases levels of HSP70/72, which protects cells from apoptosis, and exerts greater cytocidal effects in combination with the HSP70/72 inhibitor VER-155008. At higher concentrations (10–20 μM), SHK induced cell death, which was completely inhibited by a necroptosis inhibitor, necrostatin-1 (Nec-1), while the cytocidal activity was unaffected by Z-VAD-FMK, strongly suggesting that cell death is induced by SHK at high concentrations through necroptosis. The present data show for the first time that SHK induces cell death in MM cells. SHK efficiently induces apoptosis and combination of heat shock protein inhibitor with low dose SHK enhances apoptosis, while high dose SHK induces necroptosis in MM cells. These findings together support the use of SHK as a potential therapeutic agent for MM. PMID:25530098

  14. Exogenous hydrogen sulfide exerts proliferation, anti-apoptosis, migration effects and accelerates cell cycle progression in multiple myeloma cells via activating the Akt pathway.

    PubMed

    Zheng, Dong; Chen, Ziang; Chen, Jingfu; Zhuang, Xiaomin; Feng, Jianqiang; Li, Juan

    2016-10-01

    Hydrogen sulfide (H2S), regarded as the third gaseous transmitter, mediates and induces various biological effects. The present study investigated the effects of H2S on multiple myeloma cell progression via amplifying the activation of Akt pathway in multiple myeloma cells. The level of H2S produced in multiple myeloma (MM) patients and healthy subjects was measured using enzyme-linked immunosorbent assay (ELISA). MM cells were treated with 500 µmol/l NaHS (a donor of H2S) for 24 h. The expression levels of phosphorylated-Akt (p-Akt), Bcl-2 and caspase-3 were measured by western blot assay. Cell viability was detected by Cell Counting Kit 8 (CCK-8). The cell cycle was analyzed by flow cytometry. Our results show that the concentration of H2S was higher in MM patients and that it increased in parallel with disease progression. Treating MM cells with 500 µmol/l NaHS for 24 h markedly increased the expression level of Bcl-2 and the activation of p-Akt, however, the expression level of caspase-3 was decreased, cell viability was increased, and cell cycle progression was accelerated in MM cells. NaHS also induced migration in MM cells in transwell migration assay. Furthermore, co-treatment of MM cells with 500 µmol/l NaHS and 50 µmol/l LY294002 for 24 h significantly overset these effects. In conclusion, our findings demonstrate that the Akt pathway contributes to NaHS-induced cell proliferation, migration and acceleration of cell cycle progression in MM cells.

  15. Osseous plasma cell neoplasm of the mandible for initial diagnosis of multiple myeloma: case report and literature review.

    PubMed

    Goetze, E; Walter, C; Kämmerer, P W

    2015-03-01

    Plasmocytoma of the bone represents a variance of plasma cell neoplasms, which often gives hint for systemic affection. A case of a mandibular tumor as first manifestation of multiple myeloma (MM) is presented and discussed with the literature. A 76-year old female with pain and swelling of the right lower jaw was assigned to the hospital. Radiograph showed a lytic tumor at the mandibular condyle and histological analysis gave evidence of a plasma cell tumor with positivity to CD138. In further examinations, elevated immunoglobulin levels in serum and osseous plasma cell infiltration unveiled MM. PubMed-database was searched by "multiple myeloma primary lesion jaw", "multiple myeloma primary manifestation mandible" and "multiple myeloma mandibular lesion" within the last 30 years. Together with the current case, 11 reports including 13 patients were found describing mandibular plasmocytoma as first sign for MM. Mean age was 59 years with slight female preference. Initial symptoms were mostly swelling episodes with or without pain. The main radiological presentation was a uni- or multilocular radiolucency. After a mean follow up time of 29 months (stated in 8 cases; standard deviation 50, min: 1, max: 151), 3/8 patients died and in 5/8 cases, signs of progress were seen. In rare cases, occurrence of plasmocytoma of the mandible is first sign for MM and should always lead to further investigations regarding systemic disease. Simple examinations such as panoramic X-rays can lead to early detection of MM and thereby better prognosis by earlier treatment.

  16. Unfolded protein response inducers tunicamycin and dithiothreitol promote myeloma cell differentiation mediated by XBP-1.

    PubMed

    Jiang, Hua; Zou, Jianfeng; Zhang, Hui; Fu, Weijun; Zeng, Tianmei; Huang, Hejing; Zhou, Fan; Hou, Jian

    2015-02-01

    The unfolded protein response (UPR) is an essential pathway for both normal and malignant plasma cells to maintain endoplasmic reticulum (ER) homeostasis in response to the large amount of immunoglobulin (Ig) output. The inositol-requiring enzyme 1-X-box binding protein-1 (IRE1-XBP-1) arm of the UPR pathway has been shown to play crucial roles not only in relieving the ER stress by up-regulating a series of genes favoring ER-associated protein degradation and protein folding, but in mediating terminal plasmacytic differentiation and maturation. Myeloma cells comprise various subsets arrested in diverse differentiated phases, and the immaturity of myeloma cells has been taken as a marker for poor prognosis, suggesting that differentiation induction would be a promising therapeutic strategy for myeloma. Herein, we used low-dose pharmacological UPR inducers such as tunicamycin (TM) and dithiothreitol (DTT) to efficiently activate the IRE1-XBP-1 pathway in myeloma cells characterized by transcriptional expression increase in spliced XBP-1 and molecular chaperons, accompanied by significant differentiation and maturation of these myeloma cells, without concomitant cytotoxicity. These differentiated myeloma cells exhibited a more mature appearance with well-developed cytoplasm and a reduced nucleocytoplasmic ratio, and a further differentiated phenotype with markedly increased expression of CD49e together with significantly elevated cellular secretion of Ig light chain as shown by flow cytometry and ELISA, in contrast to the control myeloma cells without exposed to TM or DTT. Moreover, siRNA knockdown of XBP-1 disrupted TM- or DTT-induced myeloma cell differentiation and maturation. Our study, for the first time, validated that the modest activation of the UPR pathway enables myeloma cells to further differentiate, and identified that XBP-1 plays an indispensable role in UPR-mediated myeloma cell differentiation and maturation. Thus, we provided the rationale and

  17. Accessory cells of the microenvironment protect multiple myeloma from T-cell cytotoxicity through cell adhesion-mediated immune resistance.

    PubMed

    de Haart, Sanne J; van de Donk, Niels W C J; Minnema, Monique C; Huang, Julie H; Aarts-Riemens, Tineke; Bovenschen, Niels; Yuan, Huipin; Groen, Richard W J; McMillin, Douglas W; Jakubikova, Jana; Lokhorst, Henk M; Martens, Anton C; Mitsiades, Constantine S; Mutis, Tuna

    2013-10-15

    Cellular immunotherapy frequently fails to induce sustained remissions in patients with multiple myeloma, indicating the ability of multiple myeloma cells to evade cellular immunity. Toward a better understanding and effective therapeutic modulation of multiple myeloma immune evasion mechanisms, we here investigated the role of the tumor microenvironment in rendering multiple myeloma cells resistant to the cytotoxic machinery of T cells. Using a compartment-specific, bioluminescence imaging-based assay system, we measured the lysis of luciferase-transduced multiple myeloma cells by CD4(+) or CD8(+) CTLs in the presence versus absence of adherent accessory cells of the bone marrow microenvironment. We simultaneously determined the level of CTL activation by measuring the granzyme B release in culture supernatants. Bone marrow stromal cells from patients with multiple myeloma and healthy individuals, as well as vascular endothelial cells, significantly inhibited the lysis of multiple myeloma cells in a cell-cell contact-dependent manner and without substantial T-cell suppression, thus showing the induction of a cell adhesion-mediated immune resistance (CAM-IR) against CTL lysis. Further analyses revealed that adhesion to accessory cells downregulated Fas and upregulated the caspase-3 inhibitor survivin in multiple myeloma cells. Reconstitution of Fas expression with bortezomib enhanced the CTL-mediated lysis of multiple myeloma cells. Repressing survivin with the small-molecule YM155 synergized with CTLs and abrogated CAM-IR in vitro and in vivo. These results reveal the cell adhesion-mediated induction of apoptosis resistance as a novel immune escape mechanism and provide a rationale to improve the efficacy of cellular therapies by pharmacologic modulation of CAM-IR. ©2013 AACR.

  18. Establishment of a bortezomib-resistant Chinese human multiple myeloma cell line: MMLAL.

    PubMed

    Wong, Kwan Yeung; Wan, Thomas Sk; So, Chi Chiu; Chim, Chor Sang

    2013-12-12

    A new human myeloma cell line, MMLAL, was established from the myelomatous pleural effusion of a 73-year-old Chinese patient suffering from symptomatic International stage III IgG/lambda myeloma. After a brief period of complete remission, he developed aggressive systemic relapse complicated by malignant pleural effusion with exclusive plasma cell infiltration. His disease remained chemo-refractory, and died six months after relapse. Purified mononuclear cells from the pleural effusion of the patient were cultured in the presence of IL-6. Continually growing cells were characterized by morphological, immunophenotypic, cytogenetic, fluorescence in situ hybridization (FISH) and TP53 mutation analyses. Cell proliferation was measured and compared with other myeloma cell lines by cell counting at day 3, 6, 9, and 12. Drug resistance against bortezomib, a proteasome inhibitor approved as a frontline chemotherapy for eligible myeloma patients, was evaluated and compared with other myeloma cell lines by MTT assay. Immunophenotypic analysis of the myeloma cells confirmed strong expression of plasma cell markers CD38 and CD138 but not T-cell or natural killer-cell marker CD56. Cytogenetic analysis of the myeloma cells showed a hypodiploid composite karyotype including loss of chromosome 13 and 17 or deletion of the short arm of chromosome 17, i.e. del(17p), in the form of isochromosome 17q10. FISH confirmed a hypodiploid karyotype with TP53 deletion but absence of t(4;14). Sequencing analysis of the TP53 gene indicated absence of mutation. Cell counting revealed that the maximum viable cell density was about 2.5 X 106 cells/ml. Upon bortezomib treatment, MTT assay reported an IC50 of 72.17nM, suggesting a strong bortezomib resistance. A hypodiploid with loss of chromosome 13 and loss or del(17p) human myeloma cell line, MMLAL, was established from the pleural effusion of a Chinese myeloma patient.

  19. Cytotoxic Properties of a DEPTOR-mTOR Inhibitor in Multiple Myeloma Cells.

    PubMed

    Shi, Yijiang; Daniels-Wells, Tracy R; Frost, Patrick; Lee, Jihye; Finn, Richard S; Bardeleben, Carolyne; Penichet, Manuel L; Jung, Michael E; Gera, Joseph; Lichtenstein, Alan

    2016-10-01

    DEPTOR is a 48 kDa protein that binds to mTOR and inhibits this kinase in TORC1 and TORC2 complexes. Overexpression of DEPTOR specifically occurs in a model of multiple myeloma. Its silencing in multiple myeloma cells is sufficient to induce cytotoxicity, suggesting that DEPTOR is a potential therapeutic target. mTORC1 paralysis protects multiple myeloma cells against DEPTOR silencing, implicating mTORC1 in the critical role of DEPTOR in multiple myeloma cell viability. Building on this foundation, we interrogated a small-molecule library for compounds that prevent DEPTOR binding to mTOR in a yeast-two-hybrid assay. One compound was identified that also prevented DEPTOR-mTOR binding in human myeloma cells, with subsequent activation of mTORC1 and mTORC2. In a surface plasmon resonance (SPR) assay, the compound bound to recombinant DEPTOR but not to mTOR. The drug also prevented binding of recombinant DEPTOR to mTOR in the SPR assay. Remarkably, although activating TORC1 and TORC2, the compound induced apoptosis and cell-cycle arrest in multiple myeloma cell lines and prevented outgrowth of human multiple myeloma cells in immunodeficient mice. In vitro cytotoxicity against multiple myeloma cell lines was directly correlated with DEPTOR protein expression and was mediated, in part, by the activation of TORC1 and induction of p21 expression. Additional cytotoxicity was seen against primary multiple myeloma cells, whereas normal hematopoietic colony formation was unaffected. These results further support DEPTOR as a viable therapeutic target in multiple myeloma and suggest an effective strategy of preventing binding of DEPTOR to mTOR. Cancer Res; 76(19); 5822-31. ©2016 AACR. ©2016 American Association for Cancer Research.

  20. EZH2 Inhibition Blocks Multiple Myeloma Cell Growth through Upregulation of Epithelial Tumor Suppressor Genes.

    PubMed

    Hernando, Henar; Gelato, Kathy A; Lesche, Ralf; Beckmann, Georg; Koehr, Silke; Otto, Saskia; Steigemann, Patrick; Stresemann, Carlo

    2016-02-01

    Multiple myeloma is a plasma cell malignancy characterized by marked heterogeneous genomic instability including frequent genetic alterations in epigenetic enzymes. In particular, the histone methyltransferase Enhancer of Zeste Homolog 2 (EZH2) is overexpressed in multiple myeloma. EZH2 is the catalytic component of the polycomb repressive complex 2 (PRC2), a master transcriptional regulator of differentiation. EZH2 catalyzes methylation of lysine 27 on histone H3 and its deregulation in cancer has been reported to contribute to silencing of tumor suppressor genes, resulting in a more undifferentiated state, and thereby contributing to the multiple myeloma phenotype. In this study, we propose the use of EZH2 inhibitors as a new therapeutic approach for the treatment of multiple myeloma. We demonstrate that EZH2 inhibition causes a global reduction of H3K27me3 in multiple myeloma cells, promoting reexpression of EZH2-repressed tumor suppressor genes in a subset of cell lines. As a result of this transcriptional activation, multiple myeloma cells treated with EZH2 inhibitors become more adherent and less proliferative compared with untreated cells. The antitumor efficacy of EZH2 inhibitors is also confirmed in vivo in a multiple myeloma xenograft model in mice. Together, our data suggest that EZH2 inhibition may provide a new therapy for multiple myeloma treatment and a promising addition to current treatment options. Mol Cancer Ther; 15(2); 287-98. ©2015 AACR.

  1. Fenretinide targets the side population in myeloma cell line NCI-H929 and potentiates the efficacy of antimyeloma with bortezomib and dexamethasone regimen.

    PubMed

    Yan, Wenqing; Du, Juan; Du, Yanzhi; Pu, Honglei; Liu, Shuyan; He, Jie; Zhang, Ji; Hou, Jian

    2016-12-01

    Side population (SP) cells, a subset of enriched tumor initiating cells, have been demonstrated to have stem cell-like properties in multiple myeloma (MM) by us as well as other previous studies. A lack of agents targeting tumor initiating cells, however, represents a challenge in the treatment of MM. Previously, fenretinide, a well-tolerated vitamin A derivative, has been shown to exert effect on leukemic stem cells, but its actions against myeloma stem-like cells are still unknown. In this study, the effects of fenretinide on myeloma stem-like cells characteristic was comprehensively examined in SP and non-SP (MP) cells of NCI-H929 cell sorted by flow cytometry-based on Hoechst 33342 stain. We find that fenretinide is capable of eradicating MM SP and MP cells, but not normal bone marrow mononuclear cells (BMMCs) at physiologically achievable concentrations. Fenretinide alone exerted a selective cytotoxic effect on MM SP cells, as well as in combination with bortezomib and dexamethasone. In particular, SP cells were highly sensitive to fenretinide, and in combination with bortezomib and dexamethasone in colony formation and apoptosis assays. Accordingly, the apparent fenretinide-induced-apoptosis was linked to the rapid generation of reactive oxygen species (ROS). Therefore, we propose that fenretinide is a potent agent that targets tumor initiating cells and may be a promising therapeutic agent in MM treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche

    PubMed Central

    Lawson, Michelle A.; McDonald, Michelle M.; Kovacic, Natasa; Hua Khoo, Weng; Terry, Rachael L.; Down, Jenny; Kaplan, Warren; Paton-Hough, Julia; Fellows, Clair; Pettitt, Jessica A.; Neil Dear, T.; Van Valckenborgh, Els; Baldock, Paul A.; Rogers, Michael J.; Eaton, Colby L.; Vanderkerken, Karin; Pettit, Allison R.; Quinn, Julian M. W.; Zannettino, Andrew C. W.; Phan, Tri Giang; Croucher, Peter I.

    2015-01-01

    Multiple myeloma is largely incurable, despite development of therapies that target myeloma cell-intrinsic pathways. Disease relapse is thought to originate from dormant myeloma cells, localized in specialized niches, which resist therapy and repopulate the tumour. However, little is known about the niche, and how it exerts cell-extrinsic control over myeloma cell dormancy and reactivation. In this study, we track individual myeloma cells by intravital imaging as they colonize the endosteal niche, enter a dormant state and subsequently become activated to form colonies. We demonstrate that dormancy is a reversible state that is switched ‘on' by engagement with bone-lining cells or osteoblasts, and switched ‘off' by osteoclasts remodelling the endosteal niche. Dormant myeloma cells are resistant to chemotherapy that targets dividing cells. The demonstration that the endosteal niche is pivotal in controlling myeloma cell dormancy highlights the potential for targeting cell-extrinsic mechanisms to overcome cell-intrinsic drug resistance and prevent disease relapse. PMID:26632274

  3. The novel JAK inhibitor AZD1480 blocks STAT3 and FGFR3 signaling, resulting in suppression of human myeloma cell growth and survival

    PubMed Central

    Scuto, Anna; Krejci, Pavel; Popplewell, Leslie; Wu, Jun; Wang, Yan; Kujawski, Maciej; Kowolik, Claudia; Xin, Hong; Chen, Linling; Wang, Yafan; Kretzner, Leo; Yu, Hua; Wilcox, William R.; Yen, Yun; Forman, Stephen; Jove, Richard

    2011-01-01

    IL-6 and downstream JAK-dependent signaling pathways have critical roles in the pathophysiology of multiple myeloma. We investigated the effects of a novel small-molecule JAK inhibitor (AZD1480) on IL-6/JAK signal transduction and its biological consequences on the human myeloma-derived cell lines U266 and Kms.11. At low micromolar concentrations, AZD1480 blocks cell proliferation and induces apoptosis of myeloma cell lines. These biological responses to AZD1480 are associated with concomitant inhibition of phosphorylation of JAK2, STAT3 and MAPK signaling proteins. In addition, there is inhibition of expression of STAT3 target genes, particularly Cyclin D2. Examination of a wider variety of myeloma cells (RPMI 8226, OPM-2, NCI-H929, Kms.18, MM1.S, IM-9) as well as primary myeloma cells showed that AZD1480 has broad efficacy. By contrast, viability of normal PBMCs and CD138+ cells derived from healthy controls was not significantly inhibited. Importantly, AZD1480 induces cell death of Kms.11 cells grown in the presence of HS-5 bone marrow-derived stromal cells and inhibits tumor growth in a Kms.11 xenograft mouse model, accompanied with inhibition of phospho-FGFR3, phospho-JAK2, phospho-STAT3 and Cyclin D2 levels. In sum, AZD1480 blocks proliferation, survival, FGFR3 and JAK/STAT3 signaling in myeloma cells cultured alone or co-cultured with bone marrow stromal cells and in vivo. Thus, AZD1480 represents a potential new therapeutic agent for patients with multiple myeloma. PMID:21164517

  4. [Significance of CD138/syndecan-1 for multiple myeloma immunophenotypes].

    PubMed

    Zhuang, Jun-Ling; Wang, Xuan; Wu, Yong-Ji

    2005-12-01

    To establish the method of immunophenotyping testing for patients with multiple myeloma (MM), to analyze the characteristics of antigen expression on myeloma cells, and to purify primary myeloma cells, CD45/side scatter (SSC) gating tri-color immunofluorescence (IF) flow cytometry (FCM) was used to test immunophenotype of 18 patients with MM, 20 patients with acute leukemia (AL) and 7 normal controls. Purified primary myeloma cells were obtained by means of anti-CD138 monoclonal antibody and immunomagnetic microbeads. The results showed that myeloma cells displayed a CD45 negative/low positive expression, and SSC was located between nucleated red blood cells and neutrophils. Both CD138 and CD38 were positive while most antigens of T cell, B cell and myeloid cell were negative. Positive rate of CD56 was 83.3% and HLA-DR was 44.4% positive. Compared with MM patients, CD138 was negative and CD38 was 100% positive in AL patients. CD56 was 25% positive. In normal controls, neither CD138 nor CD56 was positive. The positive rate of primary myeloma cells after purification was 73%-95% with a mean of 86%. It is concluded that CD45/SSC gating procedure is a stable and reliable method to detect immunophenotype of MM. CD138 is a correspondingly special antigen for myeloma cells. Highly enriched primary myeloma cells can be obtained by anti-CD138 antibody and immunomagnetic microbeads.

  5. Total Marrow Irradiation as Part of Autologous Stem Cell Transplantation for Asian Patients with Multiple Myeloma

    PubMed Central

    Lin, Shih-Chiang; Hsieh, Pei-Ying; Shueng, Pei-Wei; Tien, Hui-Ju; Wang, Li-Ying

    2013-01-01

    To compare the outcomes of melphalan 200 mg/m2 (HDM200) and 8 Gy total marrow irradiation (TMI) delivered by helical tomotherapy plus melphalan 140 mg/m2 (HDM140 + TMI 8 Gy) in newly diagnosed symptomatic multiple myeloma (MM) Asian patients. Between 2007 and 2010, nine consecutive myeloma patients who were scheduled to undergo autologous stem cell transplantation (ASCT) were studied. The patients received three cycles of vincristine-adriamycin-dexamethasone (VAD) regimen as induction chemotherapy, and if they had a partial response, peripheral blood stem cells were collected by dexamethasone-etoposide-cyclophosphamide-cisplatin (DECP). In arm A, six patients received the HDM200. In arm B, three patients received HDM140 + TMI 8 Gy. In arm B, the neutropenic duration was slightly longer than in arm A (P = 0.048). However, hematologic recovery (except for neutrophils), transfusion requirement, median duration of hospitalization, and the dose of G-CSF were similar in both arms. The median duration of overall survival and event-free survival was similar in the two arms (P = 0.387). As a conditioning regiment, HDM140 + TMI 8 Gy provide another chance for MM Asian patients who were not feasible for HDM200. PMID:24089671

  6. Novel anti–B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma

    PubMed Central

    Mayes, Patrick A.; Acharya, Chirag; Zhong, Mike Y.; Cea, Michele; Cagnetta, Antonia; Craigen, Jenny; Yates, John; Gliddon, Louise; Fieles, William; Hoang, Bao; Tunstead, James; Christie, Amanda L.; Kung, Andrew L.; Richardson, Paul; Munshi, Nikhil C.; Anderson, Kenneth C.

    2014-01-01

    B-cell maturation antigen (BCMA), highly expressed on malignant plasma cells in human multiple myeloma (MM), has not been effectively targeted with therapeutic monoclonal antibodies. We here show that BCMA is universally expressed on the MM cell surface and determine specific anti-MM activity of J6M0-mcMMAF (GSK2857916), a novel humanized and afucosylated antagonistic anti-BCMA antibody-drug conjugate via a noncleavable linker. J6M0-mcMMAF specifically blocks cell growth via G2/M arrest and induces caspase 3–dependent apoptosis in MM cells, alone and in coculture with bone marrow stromal cells or various effector cells. It strongly inhibits colony formation by MM cells while sparing surrounding BCMA-negative normal cells. J6M0-mcMMAF significantly induces effector cell-mediated lysis against allogeneic or autologous patient MM cells, with increased potency and efficacy compared with the wild-type J6M0 without Fc enhancement. The antibody-dependent cell-mediated cytotoxicity and apoptotic activity of J6M0-mcMMAF is further enhanced by lenalidomide. Importantly, J6M0-mcMMAF rapidly eliminates myeloma cells in subcutaneous and disseminated mouse models, and mice remain tumor-free up to 3.5 months. Furthermore, J6M0-mcMMAF recruits macrophages and mediates antibody-dependent cellular phagocytosis of MM cells. Together, these results demonstrate that GSK2857916 has potent and selective anti-MM activities via multiple cytotoxic mechanisms, providing a promising next-generation immunotherapeutic in this cancer. PMID:24569262

  7. Cx43 expressed on bone marrow stromal cells plays an essential role in multiple myeloma cell survival and drug resistance

    PubMed Central

    2016-01-01

    Introduction Connexin-43 (Cx43), a connexin constituent of gap junctions (GJs) is mainly expressed in bone marrow stromal cells (BMSCs) and played a important role on hematopoiesis. In this study, we explored the role of gap junctions (GJs) formed by Cx43 between BMSCs and multiple myeloma (MM) cells. Material and methods qPCR and western blot assays were employed to assay Cx43 expression in three MM cell lines (RPMI 8266, U266, and XG7), freshly isolated MM cells, and bone marrow stromal cells (BMSCs). Cx43 mRNA and proteins were detected in all three MM cell lines and six out of seven freshly isolated MM cells. Resuths The BMSCs from MM patients expressed Cx43 at higher levels than of normal donor (ND-BMSCs). Dye transfer assays demonstrated that gap junction intercellular communication (GJIC) occurring via Cx43 situated between MM and BMSCs is functional. Cytometry beads array (CBA) assays showed that cytokines production changed when the ND-BMSCs were co-cultured with MM cells, especially the levels of IL-6, SDF-1α and IL-10 were higher than those the cells cultured alone and decreased significantly in the presence of GJ inhibitor heptanol. Our results demonstrated that the cytotoxicity of BTZ to MM cells decreased significantly in the presence of BMSCs, an effect that was partially recovered in the presence of GJ inhibitor. Conclusions Our data suggest that GJIC between MM and BMSCs is a critical factor in tumor cell proliferation and drug sensitivity, and is implicated in MM pathogenesis. PMID:28144277

  8. Farnesyltransferase inhibitor R115777 (Zarnestra, Tipifarnib) synergizes with paclitaxel to induce apoptosis and mitotic arrest and to inhibit tumor growth of multiple myeloma cells.

    PubMed

    Zhu, Kuichun; Gerbino, Elvira; Beaupre, Darrin M; Mackley, Paul A; Muro-Cacho, Carlos; Beam, Craig; Hamilton, Andrew D; Lichtenheld, Mathias G; Kerr, William G; Dalton, William; Alsina, Melissa; Sebti, Saïd M

    2005-06-15

    Despite major advances, multiple myeloma (MM) remains an incurable malignancy. Recently we have found that disease stabilization was achieved in 64% of patients with advanced MM treated with the farnesyltransferase inhibitor R115777 (Zarnestra) in a phase 2 clinical trial. In order to enhance R115777 antitumor activity in MM, we examined the combination of this novel agent with other anticancer drugs in MM cell lines. In this study, R115777 was found to synergize with paclitaxel and docetaxel, but not with other chemotherapy agents, including doxorubicin, 5-fluorouracil, cisplastin, melphalan, mitoxantrone, and dexamethasone. R115777 synergized with paclitaxel to inhibit MM cell proliferation and to induce apoptosis. Synergism in the induction of apoptosis was accompanied by increase in cytochrome c release and caspase-3 activation. Furthermore, flow cytometry analysis also showed that paclitaxel and R115777 synergized to induce G(2)/M cell-cycle arrest. Importantly, synergism was observed in taxane- and R115777-resistant MM cells. In the human severe combined immunodeficient (SCID-hu) bone model of myeloma growth, the ability of paclitaxel to inhibit tumor growth in vivo was enhanced by R115777. Combination of paclitaxel or docetaxel with R115777 in the treatment of MM cells from patients with multiple myeloma was more beneficial than treatment with single agents. Our results provide the basis for combination therapy clinical trials with paclitaxel or docetaxel with R115777 in MM patients.

  9. Evidence for cell adhesion-mediated drug resistance of multiple myeloma cells in vivo.

    PubMed

    Schmidmaier, R; Mörsdorf, K; Baumann, P; Emmerich, B; Meinhardt, G

    2006-01-01

    Multiple myeloma is an incurable disease and patients eventually die of disease progression due to drug resistance. VLA-4 (very late antigen 4), VCAM (vascular adhesion molecule), LFA-1 (leukocyte function-associated antigen 1), and ICAM-1 (intercellular adhesion molecule 1)-mediated adhesion of myeloma cells to bone marrow stromal cells induces primary multidrug resistance in vitro. Based on these preclinical data we hypothesized that myeloma cells with strong adhesion - due to strong expression of adhesion molecules on the cell surface - are selected by chemotherapy in patients. To prove this hypothesis we determined the expression levels of adhesion molecules in 31 multiple myeloma patients by flow cytometry. A 3-color stain with CD38, CD138 and antibodies against VLA-4, ICAM-1, LFA-1, and VCAM was performed. The patients were either at diagnosis (chemo-naive; n=17) or at relapse (pre-treated; n=15). Furthermore, the response to the next chemotherapy of chemo-naive patients was correlated with the expression levels of adhesion molecules. ICAM-1, VLA-4, and VCAM expression was higher in pre-treated patients than in chemo-naive patients and the expression levels increased with the number of chemotherapy regimens. Primarily multidrug-resistant patients had significantly higher expression levels of VLA-4 and ICAM-1 than responders. This study suggests that multiple myeloma cells expressing high levels of VLA-4 and ICAM-1 are drug resistant and that such a subpopulation of cells is selected by chemotherapy.

  10. A phase I clinical study of autologous dendritic cell therapy in patients with relapsed or refractory multiple myeloma

    PubMed Central

    Jung, Sung-Hoon; Lee, Hyun-Ju; Lee, Youn-Kyung; Yang, Deok-Hwan; Kim, Hyeoung-Joon; Rhee, Joon Haeng; Emmrich, Frank; Lee, Je-Jung

    2017-01-01

    Cellular immunotherapy is emerging as a potential immunotherapeutic modality in multiple myeloma (MM). We have developed potent immunotherapeutic agent (VAX-DC/MM) generated by dendritic cells (DCs) loaded with autologous myeloma cells irradiated with ultraviolet B. In this study, we evaluated the safety and efficacy of VAX-DC/MM in patients with relapsed or refractory MM. This trial enrolled relapsed or refractory MM patients who had received both thalidomide- and bortezomib-based therapies. Patients received the intradermal VAX-DC/MM injection every week for 4 weeks. Patients were treated with 5 × 106 or 10 × 106 cells, with nine patients treated at a higher dose. The median time from diagnosis to VAX-DC/MM therapy was 56.6 months (range, 28.5–130.5). Patients had received a median of five prior treatments, and 75% had received autologous stem cell transplantation. VAX-DC therapy was well-tolerated, and the most frequent adverse events were local reactions at the injection site and infusion-related reactions. In seven of nine patients who received 10×106 cells, an immunological response (77.8%) was observed by interferon-gamma ELISPOT assay or a mixed lymphocyte reaction assay for T-cell proliferation. The clinical benefit rate was 66.7% including one (11.1%) with minor response and five (55.6%) with stable disease; three (33.3%) patients showed disease progression. In conclusion, VAX-DC/MM therapy was well-tolerated, and had disease-stabilizing activity in heavily pretreated MM cases. Further studies are needed to increase the efficacy of VAX-DC/MM in patients with MM. PMID:28088784

  11. HYD1-induced increase in ROS leads to autophagy and necrotic cell death in multiple myeloma cells

    PubMed Central

    Nair, Rajesh R.; Emmons, Michael F.; Cress, Anne E; Argilagos, Raul F.; Lam, Kit; Kerr, William T.; Wang, Hong-Gong; Dalton, William S.; Hazlehurst, Lori A.

    2009-01-01

    HYD1 is a D-amino acid peptide that was previously shown to inhibit adhesion of prostate cancer cells to the extracellular matrix. In this study, we show that in addition to inhibiting adhesion of multiple myeloma (MM) cells to fibronectin, HYD1 induces cell death in MM cells as a single agent. HYD1-induced cell death was necrotic in nature as shown by: (a) decrease in mitochondrial membrane potential (Δψm); (b) loss of total cellular ATP, and; (c) increase in reactive oxygen species (ROS) production. Moreover, HYD1 treatment does not result in apoptotic cell death as it did not trigger the activation of caspases or the release of apoptosis-inducing factor (AIF) and Endonuclease G (Endo G) from the mitochondria, nor did it induce double stranded DNA breaks. HYD1 did initiate autophagy in cells; however, autophagy was found to be an adaptive response contributing to cell survival rather than the cause of cell death. We were further able to show that N-acetyl-L-cysteine (NAC), a thiol containing free radical scavenger, partially protects MM cells from HYD1-induced death. Additionally NAC blocked HYD1- induced as well as basal levels of autophagy, suggesting that ROS can potentially trigger both cell death and cell survival pathways. Taken together, our data describe an important role of ROS in HYD1-induced necrotic cell death in MM cells. PMID:19671765

  12. Multiple myeloma cells' capacity to decompose H2O2 determines lenalidomide sensitivity.

    PubMed

    Sebastian, Sinto; Zhu, Yuan X; Braggio, Esteban; Shi, Chang-Xin; Panchabhai, Sonali C; Van Wier, Scott A; Ahmann, Greg J; Chesi, Marta; Bergsagel, P Leif; Stewart, A Keith; Fonseca, Rafael

    2017-02-23

    Lenalidomide is an immunomodulatory drug (IMiDs) with clinical efficacy in multiple myeloma (MM) and other late B-cell neoplasms. Although cereblon (CRBN) is an essential requirement for IMiD action, the complete molecular and biochemical mechanisms responsible for lenalidomide-mediated sensitivity or resistance remain unknown. Here, we report that IMiDs work primarily via inhibition of peroxidase-mediated intracellular H2O2 decomposition in MM cells. MM cells with lower H2O2-decomposition capacity were more vulnerable to lenalidomide-induced H2O2 accumulation and associated cytotoxicity. CRBN-dependent degradation of IKZF1 and IKZF3 was a consequence of H2O2-mediated oxidative stress. Lenalidomide increased intracellular H2O2 levels by inhibiting thioredoxin reductase (TrxR) in cells expressing CRBN, causing accumulation of immunoglobulin light-chain dimers, significantly increasing endoplasmic reticulum stress and inducing cytotoxicity by activation of BH3-only protein Bim in MM. Other direct inhibitors of TrxR and thioredoxin (Trx) caused similar cytotoxicity, but in a CRBN-independent fashion. Our findings could help identify patients most likely to benefit from IMiDs and suggest direct TrxR or Trx inhibitors for MM therapy.

  13. Antibody-drug conjugate targeting CD46 eliminates multiple myeloma cells

    PubMed Central

    Sherbenou, Daniel W.; Aftab, Blake T.; Su, Yang; Behrens, Christopher R.; Wiita, Arun; Logan, Aaron C.; Acosta-Alvear, Diego; Hann, Byron C.; Walter, Peter; Shuman, Marc A.; Wu, Xiaobo; Atkinson, John P.; Wolf, Jeffrey L.; Martin, Thomas G.

    2016-01-01

    Multiple myeloma is incurable by standard approaches because of inevitable relapse and development of treatment resistance in all patients. In our prior work, we identified a panel of macropinocytosing human monoclonal antibodies against CD46, a negative regulator of the innate immune system, and constructed antibody-drug conjugates (ADCs). In this report, we show that an anti-CD46 ADC (CD46-ADC) potently inhibited proliferation in myeloma cell lines with little effect on normal cells. CD46-ADC also potently eliminated myeloma growth in orthometastatic xenograft models. In primary myeloma cells derived from bone marrow aspirates, CD46-ADC induced apoptosis and cell death, but did not affect the viability of nontumor mononuclear cells. It is of clinical interest that the CD46 gene resides on chromosome 1q, which undergoes genomic amplification in the majority of relapsed myeloma patients. We found that the cell surface expression level of CD46 was markedly higher in patient myeloma cells with 1q gain than in those with normal 1q copy number. Thus, genomic amplification of CD46 may serve as a surrogate for target amplification that could allow patient stratification for tailored CD46-targeted therapy. Overall, these findings indicate that CD46 is a promising target for antibody-based treatment of multiple myeloma, especially in patients with gain of chromosome 1q. PMID:27841764

  14. Synergistic Activity of Carfilzomib and Panobinostat in Multiple Myeloma Cells via Modulation of ROS Generation and ERK1/2.

    PubMed

    Gao, Lu; Gao, Minjie; Yang, Guang; Tao, Yi; Kong, Yuanyuan; Yang, Ruixue; Meng, Xiuqin; Ai, Gongwen; Wei, Rong; Wu, Huiqun; Wu, Xiaosong; Shi, Jumei

    2015-01-01

    Relapse of disease and subsequent resistance to established therapies remain as major challenges in the treatment of multiple myeloma (MM). New therapeutic options are needed for these extensively pretreated patients. To explore an optimized combinational therapy, interactions between the irreversible proteasome inhibitor carfilzomib exhibiting a well-tolerated side-effect profile and histone deacetylase inhibitor (HDACi) panobinostat (LBH589) were examined in MM cells. Coadministration of carfilzomib and LBH589 led to a synergistic inhibition of proliferation in MM cells. Further studies showed that the combined treatment synergistically increased mitochondrial injury, caspase activation, and apoptosis in MM cells. Lethality of the carfilzomib/LBH589 combination was associated with the reactive oxygen species (ROS) generation and ERK1/2 inactivation. In addition, the free radical scavenger N-acetylcysteine (NAC) could block carfilzomib and LBH589-induced oxidative stress and the subsequent apoptosis. Together, these findings argue that the strategy of combining carfilzomib and LBH589 warrants attention in MM.

  15. WT1-specific T-cell responses in high-risk multiple myeloma patients undergoing allogeneic T cell–depleted hematopoietic stem cell transplantation and donor lymphocyte infusions

    PubMed Central

    Tyler, Eleanor M.; Jungbluth, Achim A.; O'Reilly, Richard J.

    2013-01-01

    While the emergence of WT1-specific cytotoxic T lymphocytes (WT1-CTL) has been correlated with better relapse-free survival after allogeneic stem cell transplantation in patients with myeloid leukemias, little is known about the role of these cells in multiple myeloma (MM). We examined the significance of WT1-CTL responses in patients with relapsed MM and high-risk cytogenetics who were undergoing allogeneic T cell–depleted hematopoietic stem cell transplantation (alloTCD-HSCT) followed by donor lymphocyte infusions. Of 24 patients evaluated, all exhibited WT1-CTL responses before allogeneic transplantation. These T-cell frequencies were universally correlated with pretransplantation disease load. Ten patients received low-dose donor lymphocyte infusions beginning 5 months after transplantation. All patients subsequently developed increments of WT1-CTL frequencies that were associated with reduction in specific myeloma markers, in the absence of graft-versus-host disease. Immunohistochemical analyses of WT1 and CD138 in bone marrow specimens demonstrated consistent coexpression within malignant plasma cells. WT1 expression in the bone marrow correlated with disease outcome. Our results suggest an association between the emergence of WT1-CTL and graft-versus-myeloma effect in patients treated for relapsed MM after alloTCD-HSCT and donor lymphocyte infusions, supporting the development of adoptive immunotherapeutic approaches using WT1-CTL in the treatment of MM (registered at http://clinicaltrials.gov, ID: NCT01131169). PMID:23160468

  16. Content of endothelial progenitor cells in autologous stem cell grafts predict survival after transplantation for multiple myeloma.

    PubMed

    Blix, Egil S; Kildal, Anders B; Bertelsen, Eirin; Waage, Anders; Myklebust, June H; Kolstad, Arne; Husebekk, Anne

    2015-05-01

    Multiple myeloma (MM) is considered an incurable B cell malignancy, although many patients can benefit from high-dose therapy with autologous stem cell transplantation (ASCT) as a first-line treatment. In non-Hodgkin lymphoma (NHL), ASCT is usually performed after relapse with curative intent. Disease progression is often associated with increased angiogenesis, in which endothelial progenitor cells (EPC) may have a central role. Here, we investigated the clinical impact of EPC levels in peripheral blood stem cell (PBSC) autografts for MM and NHL patients who received ASCT. EPC were identified by flow cytometry as aldehyde dehydrogenase(hi) CD34(+) vascular endothelial growth factor receptor 2(+) CD133(+) cells in both MM and NHL autografts. In MM, there was a positive correlation between EPC percentage and serum (s)-β2-microglobulin levels (r(2) = .371, P = .002). Unlike for NHL patients, MM patients with high numbers of infused EPC (EPC cells per kilogram) during ASCT had significant shorter progression-free survival (PFS) (P = .035), overall survival (P = .044) and time to next treatment (P = .009). In multivariate analysis, EPC cells per kilogram was a significant independent negative prognostic indicator of PFS (P = .03). In conclusion, the presence of high number of EPC in PBSC grafts is associated with adverse prognosis after ASCT in MM. Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  17. Complications of multiple myeloma.

    PubMed

    Bladé, Joan; Rosiñol, Laura

    2007-12-01

    Multiple myeloma, also known as myeloma or plasma cell myeloma, is a progressive hematologic disease. Complications of multiple myeloma include renal insufficiency, hematologic complications (anemia, bone marrow failure, bleeding disorders), infections, bone complications (pathologic fractures, spinal cord compression, hyercalcemia), and neurologic complications (spinal cord and nerve root compression, intracranial plasmacytomas, leptomeningeal involvement, among others). This article reviews these various complications connected to multiple myeloma, examining their various causes and possible treatment.

  18. A Novel Hypoxia-Selective Epigenetic Agent RRx-001 Triggers Apoptosis and Overcomes Drug Resistance in Multiple Myeloma Cells

    PubMed Central

    Das, Deepika Sharma; Ray, Arghya; Das, Abhishek; Song, Yan; Oronsky, Bryan; Richardson, Paul; Scicinski, Jan; Chauhan, Dharminder; Anderson, Kenneth C.

    2016-01-01

    The hypoxic bone-marrow (BM) microenvironment confers growth/survival and drug-resistance in multiple myeloma (MM) cells. Novel therapies targeting the MM cell in its hypoxic-BM milieu may overcome drug resistance. Recent studies led to the development of a novel molecule RRx-001 with hypoxia-selective epigenetic and Nitric Oxide-donating properties. Here we demonstrate that RRx-001 decreases the viability of MM cell lines and primary patient cells, as well as overcomes drug-resistance. RRx-001 inhibits MM cell growth in the presence of BM stromal cells. RRx-001 induced apoptosis is associated with: 1) activation of caspases; 2) release of ROS and nitrogen-species; 3) induction of DNA damage via ATM/γ-H2AX; and 4) decrease in DNA methytransferase (DNMT) and global methylation. RNA interference study shows a predominant role of DNMT1 in MM cell survival versus DNMT3a or DNMT3b. Deubiquitylating enzyme USP7 stimulates DNMT1 activity; and conversely, USP7-siRNA reduced DNMT1 activity and decreased MM cell viability. RRx-001 plus USP7 inhibitor P5091 triggered synergistic anti-MM activity. MM xenograft studies show that RRx-001 is well tolerated, inhibits tumor growth, and enhances survival. Combining RRx-001 with pomalidomide, bortezomib or SAHA induces synergistic anti-MM activity. Our results provide the rationale for translation of RRx-001, either alone or in combination, to clinical evaluation in MM. PMID:27118403

  19. A novel hypoxia-selective epigenetic agent RRx-001 triggers apoptosis and overcomes drug resistance in multiple myeloma cells.

    PubMed

    Das, D Sharma; Ray, A; Das, A; Song, Y; Tian, Z; Oronsky, B; Richardson, P; Scicinski, J; Chauhan, D; Anderson, K C

    2016-11-01

    The hypoxic bone marrow (BM) microenvironment confers growth/survival and drug resistance in multiple myeloma (MM) cells. Novel therapies targeting the MM cell in its hypoxic BM milieu may overcome drug resistance. Recent studies led to the development of a novel molecule RRx-001 with hypoxia-selective epigenetic and nitric oxide-donating properties. Here, we demonstrate that RRx-001 decreases the viability of MM cell lines and primary patient cells, as well as overcomes drug resistance. RRx-001 inhibits MM cell growth in the presence of BM stromal cells. RRx-001-induced apoptosis is associated with: (i) activation of caspases; (ii) release of ROS and nitrogen species; (iii) induction of DNA damage via ATM/γ-H2AX; and (iv) decrease in DNA methyltransferase (DNMT) and global methylation. RNA interference study shows a predominant role of DNMT1 in MM cell survival versus DNMT3a or DNMT3b. The deubiquitylating enzyme USP7 stimulates DNMT1 activity, and conversely, USP7-siRNA reduced DNMT1 activity and decreased MM cell viability. RRx-001 plus USP7 inhibitor P5091 triggered synergistic anti-MM activity. MM xenograft studies show that RRx-001 is well tolerated, inhibits tumor growth and enhances survival. Combining RRx-001 with pomalidomide, bortezomib or SAHA induces synergistic anti-MM activity. Our results provide the rationale for translation of RRx-001, either alone or in combination, to clinical evaluation in MM.

  20. CRM1 inhibition induces tumor cell cytotoxicity and impairs osteoclastogenesis in multiple myeloma: molecular mechanisms and therapeutic implications

    PubMed Central

    Tai, Y-T; Landesman, Y; Acharya, C; Calle, Y; Zhong, MY; Cea, M; Tannenbaum, D; Cagnetta, A; Reagan, M; Munshi, AA; Senapedis, W; Saint-Martin, J-R; Kashyap, T; Shacham, S; Kauffman, M; Gu, Y; Wu, L; Ghobrial, I; Zhan, F; Kung, AL; Schey, SA; Richardson, P; Munshi, NC; Anderson, KC

    2013-01-01

    The key nuclear export protein CRM1/XPO1 may represent a promising novel therapeutic target in human multiple myeloma (MM). Here we showed that chromosome region maintenance 1 (CRM1) is highly expressed in patients with MM, plasma cell leukemia cells and increased in patient cells resistant to bortezomib treatment. CRM1 expression also correlates with increased lytic bone and shorter survival. Importantly, CRM1 knockdown inhibits MM cell viability. Novel, oral, irreversible selective inhibitors of nuclear export (SINEs) targeting CRM1 (KPT-185, KPT-330) induce cytotoxicity against MM cells (ED50<200 nM), alone and cocultured with bone marrow stromal cells (BMSCs) or osteoclasts (OC). SINEs trigger nuclear accumulation of multiple CRM1 cargo tumor suppressor proteins followed by growth arrest and apoptosis in MM cells. They further block c-myc, Mcl-1, and nuclear factor κB (NF-κB) activity. SINEs induce proteasome-dependent CRM1 protein degradation; concurrently, they upregulate CRM1, p53-targeted, apoptosis-related, anti-inflammatory and stress-related gene transcripts in MM cells. In SCID mice with diffuse human MM bone lesions, SINEs show strong anti-MM activity, inhibit MM-induced bone lysis and prolong survival. Moreover, SINEs directly impair osteoclastogenesis and bone resorption via blockade of RANKL-induced NF-κB and NFATc1, with minimal impact on osteoblasts and BMSCs. These results support clinical development of SINE CRM1 antagonists to improve patient outcome in MM. PMID:23588715

  1. Osteoclast-gene expression profiling reveals osteoclast-derived CCR2 chemokines promoting myeloma cell migration

    PubMed Central

    Moreaux, Jérôme; Hose, Dirk; Kassambara, Alboukadel; Rème, Thierry; Moine, Philippe; Requirand, Guilhem; Goldschmidt, Hartmut; Klein, Bernard

    2011-01-01

    Multiple myeloma (MM) is characterized by the clonal expansion of malignant plasma cells (multiple myeloma cells, MMC), primarily in the bone marrow (BM). Osteolytic bone lesions are detected in 80% of patients, due to increased osteoclastic bone resorption and reduced osteoblastic bone formation. MMC are found closely associated to sites of increased bone resorption. Osteoclasts strongly support MMC survival and vice versa in vitro. To further elucidate the mechanisms involved in osteoclast/MMC interaction, we have identified 552 genes overexpressed in osteoclasts compared to other BM cell subpopulations. Osteoclasts express specifically genes coding for four CCR2-targeting chemokines, and genes coding for MMC growth factors (IGF-1, APRIL). An anti-CCR2 MoAb blocked osteoclast chemoattractant activity for MMC and CCR2-chemokines are also MMC growth factors, promoting MAPK activation in MMC. An anti-IGF-1 receptor MoAb completely blocked the osteoclast-induced survival of MMC suppressing both osteoclast and MMC survival. Specific APRIL or IL-6 inhibitors partially blocked osteoclast-induced MMC survival. These in-vitro data may explain why newly-diagnosed patients whose MMC express high levels of CCR2 present numerous bone lesions. Taken together, this study displays additional mechanisms involved in osteoclast/MMC interaction and suggests using CCR2 and/or IGF-1 targeting strategies to block this interaction and prevent drug resistance. PMID:21097672

  2. Glutaminase inhibitor CB-839 synergizes with carfilzomib in resistant multiple myeloma cells

    PubMed Central

    Thompson, Ravyn M.; Dytfeld, Dominik; Reyes, Leticia; Robinson, Reeder M.; Smith, Brittany; Manevich, Yefim; Jakubowiak, Andrzej; Komarnicki, Mieczyslaw; Przybylowicz-Chalecka, Anna; Szczepaniak, Tomasz; Mitra, Amit K.; Van Ness, Brian G.; Luczak, Magdalena

    2017-01-01

    Curative responses in the treatment of multiple myeloma (MM) are limited by the emergence of therapeutic resistance. To address this problem, we set out to identify druggable mechanisms that convey resistance to proteasome inhibitors (PIs; e.g., bortezomib), which are cornerstone agents in the treatment of MM. In isogenic pairs of PI sensitive and resistant cells, we observed stark differences in cellular bioenergetics between the divergent phenotypes. PI resistant cells exhibited increased mitochondrial respiration driven by glutamine as the principle fuel source. To target glutamine-induced respiration in PI resistant cells, we utilized the glutaminase-1 inhibitor, CB-839. CB-839 inhibited mitochondrial respiration and was more cytotoxic in PI resistant cells as a single agent. Furthermore, we found that CB-839 synergistically enhanced the activity of multiple PIs with the most dramatic synergy being observed with carfilzomib (Crflz), which was confirmed in a panel of genetically diverse PI sensitive and resistant MM cells. Mechanistically, CB-839 enhanced Crflz-induced ER stress and apoptosis, characterized by a robust induction of ATF4 and CHOP and the activation of caspases. Our findings suggest that the acquisition of PI resistance involves adaptations in cellular bioenergetics, supporting the combination of CB-839 with Crflz for the treatment of refractory MM. PMID:28415782

  3. Glutaminase inhibitor CB-839 synergizes with carfilzomib in resistant multiple myeloma cells.

    PubMed

    Thompson, Ravyn M; Dytfeld, Dominik; Reyes, Leticia; Robinson, Reeder M; Smith, Brittany; Manevich, Yefim; Jakubowiak, Andrzej; Komarnicki, Mieczyslaw; Przybylowicz-Chalecka, Anna; Szczepaniak, Tomasz; Mitra, Amit K; Van Ness, Brian G; Luczak, Magdalena; Dolloff, Nathan G

    2017-05-30

    Curative responses in the treatment of multiple myeloma (MM) are limited by the emergence of therapeutic resistance. To address this problem, we set out to identify druggable mechanisms that convey resistance to proteasome inhibitors (PIs; e.g., bortezomib), which are cornerstone agents in the treatment of MM. In isogenic pairs of PI sensitive and resistant cells, we observed stark differences in cellular bioenergetics between the divergent phenotypes. PI resistant cells exhibited increased mitochondrial respiration driven by glutamine as the principle fuel source. To target glutamine-induced respiration in PI resistant cells, we utilized the glutaminase-1 inhibitor, CB-839. CB-839 inhibited mitochondrial respiration and was more cytotoxic in PI resistant cells as a single agent. Furthermore, we found that CB-839 synergistically enhanced the activity of multiple PIs with the most dramatic synergy being observed with carfilzomib (Crflz), which was confirmed in a panel of genetically diverse PI sensitive and resistant MM cells. Mechanistically, CB-839 enhanced Crflz-induced ER stress and apoptosis, characterized by a robust induction of ATF4 and CHOP and the activation of caspases. Our findings suggest that the acquisition of PI resistance involves adaptations in cellular bioenergetics, supporting the combination of CB-839 with Crflz for the treatment of refractory MM.

  4. Chaetocin enhances dendritic cell function via the induction of heat shock protein and cancer testis antigens in myeloma cells

    PubMed Central

    Lee, Hyun-Ju; Jung, Sung-Hoon; Choi, Nu-Ri; Hoang, My-Dung; Kim, Hyeoung-Joon; Lee, Je-Jung

    2017-01-01

    Dendritic cells (DC)-based vaccines are considered useful in cancer immuno-therapy, and the interactions of DC and dying tumor cells are important and promising for cancer immunotherapy. We investigated whether chaetocin could be used to induce death of myeloma cells, for loading onto DCs can affect DCs function. In this study, we show that the dying myeloma cells treated with chaetocin resulted in the induction of heat shock protein (HSP) 90, which was inhibited by antioxidant N-acetyl cysteine, and showed an increase in the expression of MAGE-A3 and MAGE-C1/CT7. DCs loaded with chaetocin-treated dying myeloma cells produced low levels of IL-10 and enhanced the cross presentation of DCs. Additionally, these DCs most potently inhibited regulatory T cells, induced Th1 polarization and activated myeloma-specific cytotoxic T lymphocytes compared with DCs loaded with UVB-irradiated dying myeloma cells. These results suggest that the pretreatment of myeloma cells with chaetocin can enhance DC function through the up-regulation of HSP90 and cancer testis antigens in dying myeloma cells and can potently induce the Th1 polarization of DCs and myeloma-specific cytotoxic T lymphocytes. PMID:28512265

  5. Extracellular matrix protein Reelin promotes myeloma progression by facilitating tumor cell proliferation and glycolysis

    PubMed Central

    Qin, Xiaodan; Lin, Liang; Cao, Li; Zhang, Xinwei; Song, Xiao; Hao, Jie; Zhang, Yan; Wei, Risheng; Huang, Xiaojun; Lu, Jin; Ge, Qing

    2017-01-01

    Reelin is an extracellular matrix protein that is crucial for neuron migration, adhesion, and positioning. We examined the expression of Reelin in a large cohort of multiple myeloma patients recorded in Gene Expression Omnibus (GEO) database and used over-expression and siRNA knockdown of Reelin to investigate the role of Reelin in myeloma cell growth. We find that Reelin expression is negatively associated with myeloma prognosis. Reelin promotes myeloma cell proliferation in vitro as well as in vivo. The Warburg effect, evidenced by increased glucose uptake and lactate production, is also enhanced in Reelin-expressing cells. The activation of FAK/Syk/Akt/mTOR and STAT3 pathways contributes to Reelin-induced cancer cell growth and metabolic reprogramming. Our findings further reveal that activated Akt and STAT3 pathways induce the upregulation of HIF1α and its downstream targets (LDHA and PDK1), leading to increased glycolysis in myeloma cells. Together, our results demonstrate the critical contributions of Reelin to myeloma growth and metabolism. It presents an opportunity for myeloma therapeutic intervention by inhibiting Reelin and its signaling pathways. PMID:28345605

  6. Heparanase inhibits osteoblastogenesis and shifts bone marrow progenitor cell fate in myeloma bone disease

    PubMed Central

    Ruan, Jian; Trotter, Timothy N.; Nan, Li; Luo, Rongcheng; Javed, Amjad; Sanderson, Ralph D.; Suva, Larry J.; Yang, Yang

    2013-01-01

    A major cause of morbidity in patients with multiple myeloma is the development and progression of bone disease. Myeloma bone disease is characterized by rampant osteolysis in the presence of absent or diminished bone formation. Heparanase, an enzyme that acts both at the cell-surface and within the extracellular matrix to degrade polymeric heparan sulfate chains, is upregulated in a variety of human cancers including multiple myeloma. We and others have shown that heparanase enhances osteoclastogenesis and bone loss. However, increased osteolysis is only one element of the spectrum of myeloma bone disease. In the present study, we hypothesized that heparanase would also affect mesenchymal cells in the bone microenvironment and investigated the effect of heparanase on the differentiation of osteoblast/stromal lineage cells. Using a combination of molecular, biochemical, cellular and in vivo approaches, we demonstrated that heparanase significantly inhibited osteoblast differentiation and mineralization, and reduced bone formation in vivo. In addition, heparanase also shifts the differentiation potential of osteoblast progenitors from osteoblastogenesis to adipogenesis. Mechanistically, this shift in cell fate is due, at least in part, to heparanase-enhanced production and secretion of the Wnt signaling pathway inhibitor DKK1 by both osteoblast progenitors and myeloma cells. Collectively, these data provide important new insights into the role of heparanase in all aspects of myeloma bone disease and strongly support the use of heparanase inhibitors in the treatment of multiple myeloma. PMID:23895995

  7. Carfilzomib alters the HLA-presented peptidome of myeloma cells and impairs presentation of peptides with aromatic C-termini.

    PubMed

    Kowalewski, D J; Walz, S; Backert, L; Schuster, H; Kohlbacher, O; Weisel, K; Rittig, S M; Kanz, L; Salih, H R; Rammensee, H-G; Stevanović, S; Stickel, J S

    2016-04-08

    Recent studies suggest that multiple myeloma is an immunogenic disease, which might be effectively targeted by antigen-specific T-cell immunotherapy. As standard of care in myeloma includes proteasome inhibitor therapy, it is of great importance to characterize the effects of this treatment on HLA-restricted antigen presentation and implement only robustly presented targets for immunotherapeutic intervention. Here, we present a study that longitudinally and semi-quantitatively maps the effects of the proteasome inhibitor carfilzomib on HLA-restricted antigen presentation. The relative presentation levels of 4780 different HLA ligands were quantified in an in vitro model employing carfilzomib treatment of MM.1S and U266 myeloma cells, which revealed significant modulation of a substantial fraction of the HLA-presented peptidome. Strikingly, we detected selective down-modulation of HLA ligands with aromatic C-terminal anchor amino acids. This particularly manifested as a marked reduction in the presentation of HLA ligands through the HLA allotypes A*23:01 and A*24:02 on MM.1S cells. These findings implicate that carfilzomib mediates a direct, peptide motif-specific inhibitory effect on HLA ligand processing and presentation. As a substantial proportion of HLA allotypes present peptides with aromatic C-termini, our results may have broad implications for the implementation of antigen-specific treatment approaches in patients undergoing carfilzomib treatment.

  8. Detailed characterization of multiple myeloma circulating tumor cells shows unique phenotypic, cytogenetic, functional, and circadian distribution profile.

    PubMed

    Paiva, Bruno; Paino, Teresa; Sayagues, Jose-Maria; Garayoa, Mercedes; San-Segundo, Laura; Martín, Montserrat; Mota, Ines; Sanchez, María-Luz; Bárcena, Paloma; Aires-Mejia, Irene; Corchete, Luis; Jimenez, Cristina; Garcia-Sanz, Ramon; Gutierrez, Norma C; Ocio, Enrique M; Mateos, Maria-Victoria; Vidriales, Maria-Belen; Orfao, Alberto; San Miguel, Jesús F

    2013-11-21

    Circulating myeloma tumor cells (CTCs) as defined by the presence of peripheral blood (PB) clonal plasma cells (PCs) are a powerful prognostic marker in multiple myeloma (MM). However, the biological features of CTCs and their pathophysiological role in MM remains unexplored. Here, we investigate the phenotypic, cytogenetic, and functional characteristics as well as the circadian distribution of CTCs vs paired bone marrow (BM) clonal PCs from MM patients. Our results show that CTCs typically represent a unique subpopulation of all BM clonal PCs, characterized by downregulation (P < .05) of integrins (CD11a/CD11c/CD29/CD49d/CD49e), adhesion (CD33/CD56/CD117/CD138), and activation molecules (CD28/CD38/CD81). Fluorescence in situ hybridization analysis of fluorescence-activated cell sorter-sorted CTCs also unraveled different cytogenetic profiles vs paired BM clonal PCs. Moreover, CTCs were mostly quiescent and associated with higher clonogenic potential when cocultured with BM stromal cells. Most interestingly, CTCs showed a circadian distribution which fluctuates in a similar pattern to that of CD34(+) cells, and opposite to stromal cell-derived factor 1 plasma levels and corresponding surface expression of CXC chemokine receptor 4 on clonal PCs, suggesting that in MM, CTCs may egress to PB to colonize/metastasize other sites in the BM during the patients' resting period.

  9. Targeting Poly (ADP-Ribose) Polymerase Partially Contributes to Bufalin-Induced Cell Death in Multiple Myeloma Cells

    PubMed Central

    Wei, Wei; Liu, Wei; Lu, Shao-Yong; Chen, Yu-Bao; Wang, Yan; Yan, Hua; Wu, Ying-Li

    2013-01-01

    Despite recent pharmaceutical advancements in therapeutic drugs, multiple myeloma (MM) remains an incurable disease. Recently, ploy(ADP-ribose) polymerase 1 (PARP1) has been shown as a potentially promising target for MM therapy. A previous report suggested bufalin, a component of traditional Chinese medicine (“Chan Su”), might target PARP1. However, this hypothesis has not been verified. We here showed that bufalin could inhibit PARP1 activity in vitro and reduce DNA–damage-induced poly(ADP-ribosyl)ation in MM cells. Molecular docking analysis revealed that the active site of bufalin interaction is within the catalytic domain of PAPR1. Thus, PARP1 is a putative target of bufalin. Furthermore, we showed, for the first time that the proliferation of MM cell lines (NCI-H929, U266, RPMI8226 and MM.1S) and primary CD138+ MM cells could be inhibited by bufalin, mainly via apoptosis and G2-M phase cell cycle arrest. MM cell apoptosis was confirmed by apoptotic cell morphology, Annexin-V positive cells, and the caspase3 activation. We further evaluated the role of PARP1 in bufalin-induced apoptosis, discovering that PARP1 overexpression partially suppressed bufalin-induced cell death. Moreover, bufalin can act as chemosensitizer to enhance the cell growth-inhibitory effects of topotecan, camptothecin, etoposide and vorinostat in MM cells. Collectively, our data suggest that bufalin is a novel PARP1 inhibitor and a potentially promising therapeutic agent against MM alone or in combination with other drugs. PMID:23762475

  10. An Lysophosphatidic Acid Receptors 1 and 3 Axis Governs Cellular Senescence of Mesenchymal Stromal Cells and Promotes Growth and Vascularization of Multiple Myeloma.

    PubMed

    Kanehira, Masahiko; Fujiwara, Tohru; Nakajima, Shinji; Okitsu, Yoko; Onishi, Yasushi; Fukuhara, Noriko; Ichinohasama, Ryo; Okada, Yoshinori; Harigae, Hideo

    2017-03-01

    Mesenchymal stromal cells (MSCs) are multipotent progenitor cells and there is much interest in how MSCs contribute to the regulation of the tumor microenvironment. Whether MSCs exert a supportive or suppressive effect on tumor progression is still controversial, but is likely dependent on a variety of factors that are tumor-type dependent. Multiple myeloma (MM) is characterized by growth of malignant plasma cells in the bone marrow. It has been shown that the progression of MM is governed by MSCs, which act as a stroma of the myeloma cells. Although stroma is created via mutual communication between myeloma cells and MSCs, the mechanism is poorly understood. Here we explored the role of lysophosphatidic acid (LPA) signaling in cellular events where MSCs were converted into either MM-supportive or MM-suppressive stroma. We found that myeloma cells stimulate MSCs to produce autotaxin, an indispensable enzyme for the biosynthesis of LPA, and LPA receptor 1 (LPA1) and 3 (LPA3) transduce opposite signals to MSCs to determine the fate of MSCs. LPA3-silenced MSCs (siLPA3-MSCs) exhibited cellular senescence-related phenotypes in vitro, and significantly promoted progression of MM and tumor-related angiogenesis in vivo. In contrast, siLPA1-MSCs showed resistance to cellular senescence in vitro, and efficiently delayed progression of MM and tumor-related angiogenesis in vivo. Consistently, anti-MM effects obtained by LPA1-silencing in MSCs were completely reproduced by systemic administration of Ki6425, an LPA1 antagonist. Collectively, our results indicate that LPA signaling determines the fate of MSCs and has potential as a therapeutic target in MM. Stem Cells 2017;35:739-753.

  11. The myeloma stem cell concept, revisited: from phenomenology to operational terms.

    PubMed

    Johnsen, Hans Erik; Bøgsted, Martin; Schmitz, Alexander; Bødker, Julie Støve; El-Galaly, Tarec Christoffer; Johansen, Preben; Valent, Peter; Zojer, Niklas; Van Valckenborgh, Els; Vanderkerken, Karin; van Duin, Mark; Sonneveld, Pieter; Perez-Andres, Martin; Orfao, Alberto; Dybkær, Karen

    2016-12-01

    The concept of the myeloma stem cell may have important therapeutic implications, yet its demonstration has been hampered by a lack of consistency in terms and definitions. Here, we summarize the current documentation and propose single-cell in vitro studies for future translational studies. By the classical approach, a CD19(-)/CD45(low/-)/CD38(high)/CD138(+) malignant plasma cell, but not the CD19(+)/CD38(low/-) memory B cell compartment, is enriched for tumorigenic cells that initiate myeloma in xenografted immunodeficient mice, supporting that myeloma stem cells are present in the malignant PC compartment. Using a new approach, analysis of c-DNA libraries from CD19(+)/CD27(+)/CD38(-) single cells has identified clonotypic memory B cell, suggested to be the cell of origin. This is consistent with multiple myeloma being a multistep hierarchical process before or during clinical presentation. We anticipate that further characterization will require single cell geno- and phenotyping combined with clonogenic assays. To implement such technologies, we propose a revision of the concept of a myeloma stem cell by including operational in vitro assays to describe the cellular components of origin, initiation, maintenance, and evolution of multiple myeloma. These terms are in accordance with recent (2012) consensus statements on the definitions, assays, and nomenclature of cancer stem cells, which is technically precise without completely abolishing established terminology. We expect that this operational model will be useful for future reporting of parameters used to identify and characterize the multiple myeloma stem cells. We strongly recommend that these parameters include validated standard technologies, reproducible assays, and, most importantly, supervised prospective sampling of selected biomaterial which reflects clinical stages, disease spectrum, and therapeutic outcome. This framework is key to the characterization of the cellular architecture of multiple

  12. The myeloma stem cell concept, revisited: from phenomenology to operational terms

    PubMed Central

    Johnsen, Hans Erik; Bøgsted, Martin; Schmitz, Alexander; Bødker, Julie Støve; El-Galaly, Tarec Christoffer; Johansen, Preben; Valent, Peter; Zojer, Niklas; Van Valckenborgh, Els; Vanderkerken, Karin; van Duin, Mark; Sonneveld, Pieter; Perez-Andres, Martin; Orfao, Alberto; Dybkær, Karen

    2016-01-01

    The concept of the myeloma stem cell may have important therapeutic implications, yet its demonstration has been hampered by a lack of consistency in terms and definitions. Here, we summarize the current documentation and propose single-cell in vitro studies for future translational studies. By the classical approach, a CD19−/CD45low/−/CD38high/CD138+ malignant plasma cell, but not the CD19+/CD38low/− memory B cell compartment, is enriched for tumorigenic cells that initiate myeloma in xenografted immunodeficient mice, supporting that myeloma stem cells are present in the malignant PC compartment. Using a new approach, analysis of c-DNA libraries from CD19+/CD27+/CD38− single cells has identified clonotypic memory B cell, suggested to be the cell of origin. This is consistent with multiple myeloma being a multistep hierarchical process before or during clinical presentation. We anticipate that further characterization will require single cell geno- and phenotyping combined with clonogenic assays. To implement such technologies, we propose a revision of the concept of a myeloma stem cell by including operational in vitro assays to describe the cellular components of origin, initiation, maintenance, and evolution of multiple myeloma. These terms are in accordance with recent (2012) consensus statements on the definitions, assays, and nomenclature of cancer stem cells, which is technically precise without completely abolishing established terminology. We expect that this operational model will be useful for future reporting of parameters used to identify and characterize the multiple myeloma stem cells. We strongly recommend that these parameters include validated standard technologies, reproducible assays, and, most importantly, supervised prospective sampling of selected biomaterial which reflects clinical stages, disease spectrum, and therapeutic outcome. This framework is key to the characterization of the cellular architecture of multiple myeloma and its

  13. Early-Onset Severe Diffuse Alveolar Hemorrhage after Bortezomib Administration Suggestive of Pulmonary Involvement of Myeloma Cells.

    PubMed

    Sugita, Yasumasa; Ohwada, Chikako; Nagao, Yuhei; Kawajiri, Chika; Shimizu, Ryoh; Togasaki, Emi; Yamazaki, Atsuko; Muto, Tomoya; Sakai, Shio; Takeda, Yusuke; Mimura, Naoya; Takeuchi, Masahiro; Sakaida, Emiko; Iseki, Tohru; Yokote, Koutaro; Nakaseko, Chiaki

    2015-01-01

    Severe acute lung injury is a rare but life-threatening complication associated with bortezomib. We report a patient with multiple myeloma who developed a severe diffuse alveolar hemorrhage (DAH) immediately after the first bortezomib administration. The patient was suspected to have pulmonary involvement of myeloma, which caused DAH after rapidly eradicating myeloma cells in the lungs with bortezomib. Rechallenge with bortezomib was performed without recurrent DAH. In patients with multiple myeloma who manifest abnormal pulmonary shadow, we should be aware of early-onset severe DAH after bortezomib administration, which might be due to pulmonary involvement of myeloma cells.

  14. Targeting MAGE-C1/CT7 Expression Increases Cell Sensitivity to the Proteasome Inhibitor Bortezomib in Multiple Myeloma Cell Lines

    PubMed Central

    de Carvalho, Fabricio; Costa, Erico T.; Camargo, Anamaria A.; Gregorio, Juliana C.; Masotti, Cibele; Andrade, Valeria C.C.; Strauss, Bryan E.; Caballero, Otavia L.; Atanackovic, Djordje; Colleoni, Gisele W.B.

    2011-01-01

    The MAGE-C1/CT7 encodes a cancer/testis antigen (CTA), is located on the chromosomal region Xq26–27 and is highly polymorphic in humans. MAGE-C1/CT7 is frequently expressed in multiple myeloma (MM) that may be a potential target for immunotherapy in this still incurable disease. MAGEC1/CT7 expression is restricted to malignant plasma cells and it has been suggested that MAGE-C1/CT7 might play a pathogenic role in MM; however, the exact function this protein in the pathophysiology of MM is not yet understood. Our objectives were (1) to clarify the role of MAGE-C1/CT7 in the control of cellular proliferation and cell cycle in myeloma and (2) to evaluate the impact of silencing MAGE-C1/CT7 on myeloma cells treated with bortezomib. Myeloma cell line SKO-007 was transduced for stable expression of shRNA-MAGE-C1/CT7. Downregulation of MAGE-C1/CT7 was confirmed by real time quantitative PCR and western blot. Functional assays included cell proliferation, cell invasion, cell cycle analysis and apoptosis. Western blot showed a 70–80% decrease in MAGE-C1/CT7 protein expression in inhibited cells (shRNA-MAGE-C1/CT7) when compared with controls. Functional assays did not indicate a difference in cell proliferation and DNA synthesis when inhibited cells were compared with controls. However, we found a decreased percentage of cells in the G2/M phase of the cell cycle among inhibited cells, but not in the controls (p<0.05). When myeloma cells were treated with bortezomib, we observed a 48% reduction of cells in the G2/M phase among inhibited cells while controls showed 13% (empty vector) and 9% (ineffective shRNA) reduction, respectively (p<0.01). Furthermore, inhibited cells treated with bortezomib showed an increased percentage of apoptotic cells (Annexin V+/PI-) in comparison with bortezomib-treated controls (p<0.001). We found that MAGE-C1/CT7 protects SKO-007 cells against bortezomib-induced apoptosis. Therefore, we could speculate that MAGE-C1/CT7 gene therapy could be

  15. HDAC Inhibition Synergistically Enhances Alkylator-induced DNA Damage Responses and Apoptosis in Multiple Myeloma Cells

    PubMed Central

    Lee, Choon-Kee; Wang, Shuiliang; Huang, Xiaoping; Ryder, John; Liu, Bolin

    2010-01-01

    Histone deacetylase (HDAC) inhibitors induce chromatin destabilization. We sought to determine whether HDAC inhibition may amplify alkylator-induced mitotic cell death in multiple myeloma (MM) cells. The combination of SNDX-275, a class I HDAC inhibitor, with melphalan, showed a powerful synergism on growth inhibition with the combination index ranged from 0.27 to 0.75 in MM1.S and RPMI8226 cells. Their combinations as compared with either agent alone promoted much more caspase-dependent apoptosis. Flow cytometry analysis showed that SNDX-275 had minimal effects on cell cycle progression of MM1.S cells, but clearly increased the percentage of S phase in RPMI8226 cells associated with an upregulation in p21waf1 and a reduction in cyclin D1 and E2F1. Melphalan alone significantly arrested both MM1.S and RPMI8226 cells at S phase and enhanced expression of p53 and p21waf1. Furthermore, studies on DNA damage response revealed that phospho-histone H2A.X (γH2A.X), a hall marker of DNA double strand break, along with phosphorylated CHK1 (P-CHK1) and CHK2 (P-CHK2) was dramatically induced by SNDX-275 or melphalan. The increase in γH2A.X and P-CHK1 was considerably higher on combination than either agent alone. These molecular changes correlated well with the significant increase in mitotic catastrophe. Our data indicate that SNDX-275 synergistically enhances melphalan-induced apoptosis in MM cells via intensification of DNA damage, suggesting that SNDX-275 in combination with melphalan may be a novel therapeutic strategy for MM. PMID:20447761

  16. Anergic bone marrow Vγ9Vδ2 T cells as early and long-lasting markers of PD-1-targetable microenvironment-induced immune suppression in human myeloma.

    PubMed

    Castella, Barbara; Foglietta, Myriam; Sciancalepore, Patrizia; Rigoni, Micol; Coscia, Marta; Griggio, Valentina; Vitale, Candida; Ferracini, Riccardo; Saraci, Elona; Omedé, Paola; Riganti, Chiara; Palumbo, Antonio; Boccadoro, Mario; Massaia, Massimo

    2015-11-01

    Vγ9Vδ2 T cells have a natural inclination to recognize malignant B cells in vitro via receptors for stress-induced self-ligands and TCR-dependent recognition of phosphoantigens (pAgs) generated in the mevalonate (Mev) pathway. This inclination is continuously challenged in vivo by the immune suppression operated by tumor cells. Multiple myeloma (MM) is a prototypic B-cell malignancy in which myeloma cells subvert the local microenvironment to reshape antitumor immune responses. In this study, we have investigated the immune competence of bone marrow (BM) Vγ9Vδ2 T cells in a large series of MM patients. We have found that the BM microenvironment significantly hampers the pAg-reactivity of BM Vγ9Vδ2 T cells, which become largely PD-1(+) and are surrounded by PD-L1(+) myeloma cells and increased numbers of PD-L1(+) myeloid-derived suppressor cells (MDSC). Vγ9Vδ2 T-cell dysfunction is an early event that can be already detected in individuals with monoclonal gammopathy of undetermined significance (MGUS) and not fully reverted even when MM patients achieve clinical remission. Anti-PD-1 treatment increases the cytotoxic potential of Vγ9Vδ2 T cells by almost 5-fold after pAg stimulation, and appears to be a promising strategy for effective immune interventions in MM.

  17. Tariquidar sensitizes multiple myeloma cells to proteasome inhibitors via reduction of hypoxia-induced P-gp-mediated drug resistance.

    PubMed

    Muz, Barbara; Kusdono, Hubert D; Azab, Feda; de la Puente, Pilar; Federico, Cinzia; Fiala, Mark; Vij, Ravi; Salama, Noha N; Azab, Abdel Kareem

    2017-12-01

    Multiple myeloma (MM) presents a poor prognosis and high lethality of patients due to development of drug resistance. P-glycoprotein (P-gp), a drug-efflux transporter, is upregulated in MM patients post-chemotherapy and is involved in the development of drug resistance since many anti-myeloma drugs (including proteasome inhibitors) are P-gp substrates. Hypoxia develops in the bone marrow niche during MM progression and has long been linked to chemoresistance. Additionally, hypoxia-inducible transcription factor (HIF-1α) was demonstrated to directly regulate P-gp expression. We found that in MM patients P-gp expression positively correlated with the hypoxic marker, HIF-1α. Hypoxia increased P-gp protein expression and its efflux capabilities in MM cells in vitro using flow cytometry. We reported herein that hypoxia-mediated resistance to carfilzomib and bortezomib in MM cells is due to P-gp activity and was reversed by tariquidar, a P-gp inhibitor. These results suggest combining proteasome inhibitors with P-gp inhibition for future clinical studies.

  18. [Sorting of side population cells from multiple myeloma cell lines and analysis of their biological characteristics].

    PubMed

    Zhang, Xiao-Li; Zhang, Li-Na; Huang, Hong-Ming; Ding, Run-Sheng; Shi, Wei; Xu, Rui-Rong; Yu, Xiao-Tang; Jiang, Sheng-Hua

    2014-06-01

    This study was aimed to sort the side population (SP) cells from human multiple myeloma cell lines, then detect the biological characteristics of those SP cells. After Hoechst33342 staining, intracellular Hoechst33342 fluorescence staining differences of myeloma cell lines observed by the fluorescence microscopy. The fluorescence-activated cell sorting (FACS) technology was used to isolate SP cells and main population (MP) cells; proliferative capacity in vitro was determined by cell growth curve; the cell colony forming ability was compared by colony forming test. The CD138 expression was detected by flow cytometry. The expression of ABCG2 mRNA was detected by reverse transcription PCR; CCK-8 assay and colony forming test were used to evaluate the effect of bortezomib on the cell proliferation, vitality and colony forming ability of the two populations. The results showed that the myeloma cell lines had a small proportion of SP cells, especially, RPMI 8226 cells accounted for the highest proportion of SP cells (7.10 ± 2.69)%, which have also been confirmed under the fluorescence microscope; the proliferative activity and cell colony forming ability of SP cells were significantly higher than those of MP cells (P < 0.05). The expression levels of CD138 in SP and MP cells were not significantly different (P > 0.05). RT-PCR results showed that SP cells expressed the drug-resistance gene ABCG2, but MP cells hardly express these genes. The inhibition rate of bortezomib on SP cells was significantly lower than that on MP cells (P < 0.05), however, the difference was not significant (P > 0.05) at bortezomib 40 nmol/L. Bortezomib could reduce colony formation in the both two cell populations, but more severe reduction appeared in the MP cells. It is concluded that the myeloma cell line contain a small amount of SP cells with the cancer stem cell characteristics.

  19. Novel inhibitors are cytotoxic for myeloma cells with NFkB inducing kinase-dependent activation of NFkB.

    PubMed

    Demchenko, Yulia N; Brents, Leslie A; Li, Zhihong; Bergsagel, Leif P; McGee, Lawrence R; Kuehl, Michael W

    2014-06-30

    NFkB activity is critical for survival and proliferation of normal lymphoid cells and many kinds of B-cell tumors, including multiple myeloma (MM). NFkB activating mutations, which are apparent progression events, enable MM tumors to become less dependent on bone marrow signals that activate NFkB. Mutations that activate NFkB-inducing kinase (NIK) protein are the most prevalent among the many kinds of NFkB mutations in MM tumors. NIK is the main activating kinase of the alternative NFkB pathway, although over-expression of NIK also can activate the classical pathway. Two NIK inhibitors and an isomeric control were tested with human myeloma cell lines. These specific NIK inhibitors are selectively cytotoxic for cells with NIK-dependent activation of NFkB. Combination therapy targeting NIK and IKKbeta (as a main kinase of the classical NFkB pathway) represents a promising treatment strategy in MM. NIK inhibitors can also be useful tool for assessing the role of NIK and alternative NFkB pathway in different cells.

  20. Novel inhibitors are cytotoxic for myeloma cells with NFkB inducing kinase-dependent activation of NFkB

    PubMed Central

    Demchenko, Yulia N.; Brents, Leslie A.; Li, Zhihong; Bergsagel, Leif P.; McGee, Lawrence R.; Kuehl, Michael W.

    2014-01-01

    NFkB activity is critical for survival and proliferation of normal lymphoid cells and many kinds of B-cell tumors, including multiple myeloma (MM). NFkB activating mutations, which are apparent progression events, enable MM tumors to become less dependent on bone marrow signals that activate NFkB. Mutations that activate NFkB-inducing kinase (NIK) protein are the most prevalent among the many kinds of NFkB mutations in MM tumors. NIK is the main activating kinase of the alternative NFkB pathway, although over-expression of NIK also can activate the classical pathway. Two NIK inhibitors and an isomeric control were tested with human myeloma cell lines. These specific NIK inhibitors are selectively cytotoxic for cells with NIK-dependent activation of NFkB. Combination therapy targeting NIK and IKKbeta (as a main kinase of the classical NFkB pathway) represents a promising treatment strategy in MM. NIK inhibitors can also be useful tool for assessing the role of NIK and alternative NFkB pathway in different cells. PMID:24980832

  1. Identification of Long Non-Coding RNAs Deregulated in Multiple Myeloma Cells Resistant to Proteasome Inhibitors

    PubMed Central

    Malek, Ehsan; Kim, Byung-Gyu; Driscoll, James J.

    2016-01-01

    While the clinical benefit of proteasome inhibitors (PIs) for multiple myeloma (MM) treatment remains unchallenged, dose-limiting toxicities and the inevitable emergence of drug resistance limit their long-term utility. Disease eradication is compromised by drug resistance that is either present de novo or therapy-induced, which accounts for the majority of tumor relapses and MM-related deaths. Non-coding RNAs (ncRNAs) are a broad class of RNA molecules, including long non-coding RNAs (lncRNAs), that do not encode proteins but play a major role in regulating the fundamental cellular processes that control cancer initiation, metastasis, and therapeutic resistance. While lncRNAs have recently attracted significant attention as therapeutic targets to potentially improve cancer treatment, identification of lncRNAs that are deregulated in cells resistant to PIs has not been previously addressed. We have modeled drug resistance by generating three MM cell lines with acquired resistance to either bortezomib, carfilzomib, or ixazomib. Genome-wide profiling identified lncRNAs that were significantly deregulated in all three PI-resistant cell lines relative to the drug-sensitive parental cell line. Strikingly, certain lncRNAs deregulated in the three PI-resistant cell lines were also deregulated in MM plasma cells isolated from newly diagnosed patients compared to healthy plasma cells. Taken together, these preliminary studies strongly suggest that lncRNAs represent potential therapeutic targets to prevent or overcome drug resistance. More investigations are ongoing to expand these initial studies in a greater number of MM patients to better define lncRNAs signatures that contribute to PI resistance in MM. PMID:27782060

  2. Multiple Myeloma, Version 2.2016

    PubMed Central

    Anderson, Kenneth C.; Alsina, Melissa; Atanackovic, Djordje; Biermann, J. Sybil; Chandler, Jason C.; Costello, Caitlin; Djulbegovic, Benjamin; Fung, Henry C.; Gasparetto, Cristina; Godby, Kelly; Hofmeister, Craig; Holmberg, Leona; Holstein, Sarah; Huff, Carol Ann; Kassim, Adetola; Krishnan, Amrita Y.; Kumar, Shaji K.; Liedtke, Michaela; Lunning, Matthew; Raje, Noopur; Singhal, Seema; Smith, Clayton; Somlo, George; Stockerl-Goldstein, Keith; Treon, Steven P.; Weber, Donna; Yahalom, Joachim; Shead, Dorothy A.; Kumar, Rashmi

    2016-01-01

    Multiple myeloma (MM) is a malignant neoplasm of plasma cells that accumulate in bone marrow, leading to bone destruction and marrow failure. Recent statistics from the American Cancer Society indicate that the incidence of MM is increasing. The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) included in this issue address management of patients with solitary plasmacytoma and newly diagnosed MM. PMID:26553768

  3. MTI-101 (cyclized HYD1) binds a CD44 containing complex and induces necrotic cell death in multiple myeloma

    PubMed Central

    Gebhard, Anthony W.; Jain, Priyesh; Nair, Rajesh R.; Emmons, Michael F.; Argilagos, Raul F.; Koomen, John M.; McLaughlin, Mark L.; Hazlehurst, Lori A.

    2013-01-01

    Our laboratory recently reported that treatment with the d-amino acid containing peptide HYD1 induces necrotic cell death in multiple myeloma (MM) cell lines. Due to the intriguing biological activity and promising in vivo activity of HYD1, we pursued strategies for increasing the therapeutic efficacy of the linear peptide. These efforts led to a cyclized peptidomimetic, MTI-101, with increased in vitro activity and robust in vivo activity as single agent using two myeloma models that consider the bone marrow microenvironment. MTI-101 treatment similar to HYD1 induced reactive oxygen species, depleted ATP levels and failed to activate caspase 3. Moreover, MTI-101 is cross-resistant in H929 cells selected for acquired resistance to HYD1. Here, we pursued an unbiased chemical biology approach using biotinylated peptide affinity purification and LC-MS/MS analysis to identify binding partners of MTI-101. Using this approach CD44 was identified as a predominant binding partner. Reducing the expression of CD44 was sufficient to induce cell death in MM cell lines, indicating that MM cells require CD44 expression for survival. Ectopic expression of CD44s correlated with increased binding of the FAM-conjugated peptide. However ectopic expression of CD44s was not sufficient to increase the sensitivity to MTI-101 induced cell death. Mechanistically, we show that MTI-101 induced cell death occurs via a Rip1, Rip3 or Drp1 dependent and independent pathway. Finally, we show that MTI-101 has robust activity as a single agent in the SCID-Hu bone implant and 5TGM1 in vivo model of multiple myeloma. PMID:24048737

  4. Nelfinavir augments proteasome inhibition by bortezomib in myeloma cells and overcomes bortezomib and carfilzomib resistance.

    PubMed

    Kraus, M; Bader, J; Overkleeft, H; Driessen, C

    2013-03-01

    HIV protease inhibitors (HIV-PI) are oral drugs for HIV treatment. HIV-PI have antitumor activity via induction of ER-stress, inhibition of phospho-AKT (p-AKT) and the proteasome, suggesting antimyeloma activity. We characterize the effects of all approved HIV-PI on myeloma cells. HIV-PI were compared regarding cytotoxicity, proteasome activity, ER-stress induction and AKT phosphorylation using myeloma cells in vitro. Nelfinavir is the HIV-PI with highest cytotoxic activity against primary myeloma cells and with an IC50 near therapeutic drug blood levels (8-14 μM), irrespective of bortezomib sensitivity. Only nelfinavir inhibited intracellular proteasome activity in situ at drug concentrations <40 μM. Ritonavir, saquinavir and lopinavir inhibited p-AKT comparable to nelfinavir, and showed similar synergistic cytotoxicity with bortezomib against bortezomib-sensitive cells. Nelfinavir had superior synergistic activity with bortezomib/carfilzomib in particular against bortezomib/carfilzomib-resistant myeloma cells. It inhibited not only the proteasomal β1/β5 active sites, similar to bortezomib/carfilzomib, but in addition the β2 proteasome activity not targeted by bortezomib/carfilzomib. Additional inhibition of β2 proteasome activity is known to sensitize cells for bortezomib and carfilzomib. Nelfinavir has unique proteasome inhibiting activity in particular on the bortezomib/carfilzomib-insensitive tryptic (β2) proteasome activity in intact myeloma cells, and is active against bortezomib/carfilzomib-resistant myeloma cells in vitro.

  5. Signaling Interplay between Bone Marrow Adipose Tissue and Multiple Myeloma cells

    PubMed Central

    Falank, Carolyne; Fairfield, Heather; Reagan, Michaela R.

    2016-01-01

    In the year 2000, Hanahan and Weinberg (1) defined the six Hallmarks of Cancer as: self-sufficiency in growth signals, evasion of apoptosis, insensitivity to antigrowth mechanisms, tissue invasion and metastasis, limitless replicative potential, and sustained angiogenesis. Eleven years later, two new Hallmarks were added to the list (avoiding immune destruction and reprograming energy metabolism) and two new tumor characteristics (tumor-promoting inflammation and genome instability and mutation) (2). In multiple myeloma (MM), a destructive cancer of the plasma cell that grows predominantly in the bone marrow (BM), it is clear that all these hallmarks and characteristics are in play, contributing to tumor initiation, drug resistance, disease progression, and relapse. Bone marrow adipose tissue (BMAT) is a newly recognized contributor to MM oncogenesis and disease progression, potentially affecting MM cell metabolism, immune action, inflammation, and influences on angiogenesis. In this review, we discuss the confirmed and hypothetical contributions of BMAT to MM development and disease progression. BMAT has been understudied due to technical challenges and a previous lack of appreciation for the endocrine function of this tissue. In this review, we define the dynamic, responsive, metabolically active BM adipocyte. We then describe how BMAT influences MM in terms of: lipids/metabolism, hypoxia/angiogenesis, paracrine or endocrine signaling, and bone disease. We then discuss the connection between BMAT and systemic inflammation and potential treatments to inhibit the feedback loops between BM adipocytes and MM cells that support MM progression. We aim for researchers to use this review to guide and help prioritize their experiments to develop better treatments or a cure for cancers, such as MM, that associate with and may depend on BMAT. PMID:27379019

  6. Multiple myeloma: Development of plasma cell sarcoma during apparently successful chemotherapy

    PubMed Central

    Holt, J. M.; Robb-Smith, A. H. T.

    1973-01-01

    Three patients with multiple myeloma who developed a plasma cell sarcoma during apparently successful chemothapy are described. It is postulated that the chemotherapy induced the sarcomatous change. Images PMID:4584727

  7. Plerixafor (Mozobil) for stem cell mobilization in patients with multiple myeloma previously treated with lenalidomide.

    PubMed

    Micallef, I N M; Ho, A D; Klein, L M; Marulkar, S; Gandhi, P J; Calandra, G; McSweeney, P A

    2011-03-01

    Lenalidomide and other new agents have considerable activity in multiple myeloma (MM) and have changed the landscape of treatment. Data suggest that lenalidomide therapy before autologous hematopoietic stem cell transplantation has a detrimental effect on stem cell mobilization. This retrospective study examined the efficacy of plerixafor in combination with G-CSF among patients with MM previously treated with lenalidomide (median, 4 cycles; range, 1-20 cycles). Data were analyzed for 60 patients who received plerixafor plus G-CSF for frontline mobilization in a phase 3 clinical trial or an expanded access program (n=20) or for remobilization in a compassionate use program (n=40). The overall median number of CD34+ cells collected was 5.6 × 10(6) per kg (range, 0.45 × 10(6)-37.2 × 10(6)). The minimum number of CD34+ cells (2 × 10(6) per kg) was collected from 86.7% of patients in a median of 1 day. This minimum was collected from 100% of patients who underwent frontline mobilization and 80% of patients who underwent remobilization. These data suggest that CD34+ hematopoietic stem cells can be successfully and predictably collected with combination plerixafor plus G-CSF for primary or secondary mobilization in the majority of patients with MM who have been previously treated with lenalidomide.

  8. How we manage autologous stem cell transplantation for patients with multiple myeloma

    PubMed Central

    Dingli, David

    2014-01-01

    An estimated 22 350 patients had multiple myeloma diagnosed in 2013, representing 1.3% of all new cancers; 10 710 deaths are projected, representing 1.8% of cancer deaths. Approximately 0.7% of US men and women will have a myeloma diagnosis in their lifetime, and with advances in therapy, 77 600 US patients are living with myeloma. The 5-year survival rate was 25.6% in 1989 and was 44.9% in 2005. The median age at diagnosis is 69 years, with 62.4% of patients aged 65 or older at diagnosis. Median age at death is 75 years. The rate of new myeloma cases has been rising 0.7% per year during the past decade. The most common indication for autologous stem cell transplantation in the United States is multiple myeloma, and this article is designed to provide the specifics of organizing a transplant program for multiple myeloma. We review the data justifying use of stem cell transplantation as initial management in myeloma patients. We provide selection criteria that minimize the risks of transplantation. Specific guidelines on mobilization and supportive care through the transplant course, as done at Mayo Clinic, are given. A review of the data on tandem vs sequential autologous transplants is provided. PMID:24973360

  9. Synergistic targeting of Sp1, a critical transcription factor for myeloma cell growth and survival, by panobinostat and proteasome inhibitors

    PubMed Central

    Bat-Erdene, Ariunzaya; Miki, Hirokazu; Oda, Asuko; Nakamura, Shingen; Teramachi, Jumpei; Amachi, Ryota; Tenshin, Hirofumi; Hiasa, Masahiro; Iwasa, Masami; Harada, Takeshi; Fujii, Shiro; Sogabe, Kimiko; Kagawa, Kumiko; Yoshida, Sumiko; Endo, Itsuro; Aihara, Kenichi; Abe, Masahiro

    2016-01-01

    Panobinostat, a pan-deacetylase inhibitor, synergistically elicits cytotoxic activity against myeloma (MM) cells in combination with the proteasome inhibitor bortezomib. Because precise mechanisms for panobinostat's anti-MM action still remain elusive, we aimed to clarify the mechanisms of anti-MM effects of panobinostat and its synergism with proteasome inhibitors. Although the transcription factor Sp1 was overexpressed in MM cells, the Sp1 inhibitor terameprocol induced MM cell death in parallel with reduction of IRF4 and cMyc. Panobinostat induced activation of caspase-8, which was inversely correlated with reduction of Sp1 protein levels in MM cells. The panobinostat-mediated effects were further potentiated to effectively induce MM cell death in combination with bortezomib or carfilzomib even at suboptimal concentrations as a single agent. Addition of the caspase-8 inhibitor z-IETD-FMK abolished the Sp1 reduction not only by panobinostat alone but also by its combination with bortezomib, suggesting caspase-8-mediated Sp1 degradation. The synergistic Sp1 reduction markedly suppressed Sp1-driven prosurvival factors, IRF4 and cMyc. Besides, the combinatory treatment reduced HDAC1, another Sp1 target, in MM cells, which may potentiate HDAC inhibition. Collectively, caspase-8-mediated post-translational Sp1 degradation appears to be among major mechanisms for synergistic anti-MM effects of panobinostat and proteasome inhibitors in combination. PMID:27738323

  10. Upregulation of CD38 expression on multiple myeloma cells by all-trans retinoic acid improves the efficacy of daratumumab.

    PubMed

    Nijhof, I S; Groen, R W J; Lokhorst, H M; van Kessel, B; Bloem, A C; van Velzen, J; de Jong-Korlaar, R; Yuan, H; Noort, W A; Klein, S K; Martens, A C M; Doshi, P; Sasser, K; Mutis, T; van de Donk, N W C J

    2015-10-01

    Daratumumab is an anti-CD38 monoclonal antibody with lytic activity against multiple myeloma (MM) cells, including ADCC (antibody-dependent cellular cytotoxicity) and CDC (complement-dependent cytotoxicity). Owing to a marked heterogeneity of response to daratumumab therapy in MM, we investigated determinants of the sensitivity of MM cells toward daratumumab-mediated ADCC and CDC. In bone marrow samples from 144 MM patients, we observed no difference in daratumumab-mediated lysis between newly diagnosed or relapsed/refractory patients. However, we discovered, next to an expected effect of effector (natural killer cells/monocytes) to target (MM cells) ratio on ADCC, a significant association between CD38 expression and daratumumab-mediated ADCC (127 patients), as well as CDC (56 patients). Similarly, experiments with isogenic MM cell lines expressing different levels of CD38 revealed that the level of CD38 expression is an important determinant of daratumumab-mediated ADCC and CDC. Importantly, all-trans retinoic acid (ATRA) increased CD38 expression levels but also reduced expression of the complement-inhibitory proteins CD55 and CD59 in both cell lines and primary MM samples. This resulted in a significant enhancement of the activity of daratumumab in vitro and in a humanized MM mouse model as well. Our results provide the preclinical rationale for further evaluation of daratumumab combined with ATRA in MM patients.

  11. Circulating clonotypic B cells in multiple myeloma and monoclonal gammopathy of undetermined significance

    PubMed Central

    Thiago, Leandro S.; Perez-Andres, Martin; Balanzategui, Ana; Sarasquete, Maria E.; Paiva, Bruno; Jara-Acevedo, Maria; Barcena, Paloma; Sanchez, Maria Luz; Almeida, Julia; González, Marcos; San Miguel, Jesus F.; Garcia-Sanz, Ramón; Orfao, Alberto

    2014-01-01

    The B-cell compartment in which multiple myeloma stem cells reside remains unclear. We investigated the potential presence of mature, surface-membrane immunoglobulin-positive B lymphocytes clonally related to the tumor bone marrow plasma cells among different subsets of peripheral blood B cells from ten patients (7 with multiple myeloma and 3 with monoclonal gammopathies of undetermined significance). The presence of clonotypic immunoglobulin heavy chain gene rearrangements was determined in multiple highly-purified fractions of peripheral blood B-lymphocytes including surface-membrane IgM+ CD27− naïve B-lymphocytes, plus surface-membrane IgG+, IgA+ and IgM+ memory CD27+ B cells, and normal circulating plasma cells, in addition to (mono)clonal plasma cells, by a highly-specific and sensitive allele-specific oligonucleotide polymerase chain reaction directed to the CDR3 sequence of the rearranged IGH gene of tumor plasma cells from individual patients. Our results showed systematic absence of clonotypic rearrangements in all the different B-cell subsets analyzed, including M-component isotype-matched memory B-lymphocytes, at frequencies <0.03 cells/μL (range: 0.0003–0.08 cells/μL); the only exception were the myeloma plasma cells detected and purified from the peripheral blood of four of the seven myeloma patients. These results indicate that circulating B cells from patients with multiple myeloma and monoclonal gammopathies of undetermined significance are usually devoid of clonotypic B cells while the presence of immunophenotypically aberrant myeloma plasma cells in peripheral blood of myeloma patients is a relatively frequent finding. PMID:23872308

  12. Overcoming inherent resistance to histone deacetylase inhibitors in multiple myeloma cells by targeting pathways integral to the actin cytoskeleton.

    PubMed

    Mithraprabhu, S; Khong, T; Spencer, A

    2014-03-20

    Histone deacetylase inhibitors (HDACi) are novel chemotherapeutics undergoing evaluation in clinical trials for the potential treatment of patients with multiple myeloma (MM). Although HDACi have demonstrable synergy when combined with proteasome inhibitors (PIs), recent evidence indicates that combination of HDACi and PI is beneficial only in a subset of patients with advanced MM, clearly indicating that other rational combinations should be explored. In this context we hypothesized that understanding the molecular signature associated with inherent resistance to HDACi would provide a basis for the identification of therapeutic combinations with improved clinical efficacy. Using human myeloma cell lines (HMCL) categorized as sensitive, intermediate or resistant to HDACi, gene expression profiling (GEP) and gene ontology enrichment analyses were performed to determine if a genetic signature associated with inherent resistance to HDACi-resistance could be identified. Correlation of GEP to increasing or decreasing sensitivity to HDACi indicated a unique 35-gene signature that was significantly enriched for two pathways - regulation of actin cytoskeleton and protein processing in endoplasmic reticulum. When HMCL and primary MM samples were treated with a combination of HDACi and agents targeting the signaling pathways integral to the actin cytoskeleton, synergistic cell death was observed in all instances, thus providing a rationale for combining these agents with HDACi for the treatment of MM to overcome resistance. This report validates a molecular approach for the identification of HDACi partner drugs and provides an experimental framework for the identification of novel therapeutic combinations for anti-MM treatment.

  13. Selective purging of human multiple myeloma cells from autologous stem cell transplant grafts using oncolytic myxoma virus

    PubMed Central

    Bartee, Eric; Chan, Winnie S.; Moreb, Jan S.; Cogle, Christopher R.; McFadden, Grant

    2012-01-01

    Autologous stem cell transplantation (ASCT) and novel therapies have improved overall survival of patients with multiple myeloma; however, most patients relapse and eventually succumb to their disease. Evidence indicates that residual cancer cells contaminate autologous grafts and may contribute to early relapses after ASCT. Here, we demonstrate that ex vivo treatment with an oncolytic poxvirus called myxoma virus results in specific elimination of human myeloma cells by inducing rapid cellular apoptosis while fully sparing normal hematopoietic stem and progenitor cells (HSPCs). The specificity of this elimination is based on strong binding of the virus to myeloma cells coupled with an inability of the virus to bind or infect CD34+ HSPCs. These two features allow myxoma to readily identify and distinguish even low levels of myeloma cells in complex mixtures. This ex vivo MYXV treatment also effectively inhibits systemic in vivo engraftment of human myeloma cells into immunodeficient mice and results in efficient elimination of primary CD138+ myeloma cells contaminating patient hematopoietic cell products. We conclude that ex vivo myxoma treatment represents a safe and effective method to selectively eliminate myeloma cells from hematopoietic autografts prior to reinfusion. PMID:22516053

  14. Expression of interleukin-11 receptor in CD38-positive cells from patients with multiple myeloma.

    PubMed

    Tsimanis, Alexander; Shtalrid, Mordehai; Shvidel, Lev; Kalinkovich, Alexander; Berrebi, Alain; Klepfish, Abraham

    2004-11-01

    Interleukin-11, a cytokine with multiple biological activities, has been shown to stimulate the proliferation and to support the long-term growth of human myeloma cell lines. Despite this, no expression of the interleukin-11alpha receptor has so far been demonstrated in myeloma cells. We have investigated the expression of interleukin-11alpha receptor and interleukin-11 at the level of mRNA and protein product in bone marrow mononuclear cells isolated from patients with multiple myeloma using reverse-transcriptase polymerase chain reaction and flow cytometry. The mRNA for interleukin-11alpha receptor and/or the corresponding protein were identified in 9 of 15 patients with multiple myeloma. In contrast, the interleukin-11 was not detected in any of the patients examined.

  15. [Cyclins D in regulation and dysregulation of the cell cycle in multiple myeloma].

    PubMed

    Kubiczková, L; Dúcka, M; Sedlaříková, L; Kryukov, F; Hájek, R; Ševčíková, S

    2013-01-01

    Multiple myeloma is the second most common hematooncological disease characterized by clonal proliferation of plasma cells and monoclonal immunoglobulin production. It is a heterogenous disease; however, dysregulation of cyclins D seems to be an early unifying pathogenic event in multiple myeloma. In almost all patients, there is increased expression level of at least one of the cyclins D. Nevertheless, the mechanism of this increase is unknown in many cases. Next to wellknown roles of cyclins D in the cell cycle, they have many other functions contributing to tumor cell progression. Cyclins D are prognostic markers and are also used for subclassification of multiple myeloma. In this review, we focus on significance of cyclins D in multiple myeloma.

  16. Signaling mechanisms of bortezomib in TRAF3-deficient mouse B lymphoma and human multiple myeloma cells

    PubMed Central

    Edwards, Shanique K.E.; Han, Yeming; Liu, Yingying; Kreider, Benjamin Z.; Liu, Yan; Grewal, Sukhdeep; Desai, Anand; Baron, Jacqueline; Moore, Carissa R.; Luo, Chang; Xie, Ping

    2015-01-01

    Bortezomib, a clinical drug for multiple myeloma (MM) and mantle cell lymphoma, exhibits complex mechanisms of action, which vary depending on the cancer type and the critical genetic alterations of each cancer. Here we investigated the signaling mechanisms of bortezomib in mouse B lymphoma and human MM cells deficient in a new tumor suppressor gene, TRAF3. We found that bortezomib consistently induced up-regulation of the cell cycle inhibitor p21(WAF1) and the pro-apoptotic protein Noxa as well as cleavage of the anti-apoptotic protein Mcl-1. Interestingly, bortezomib induced the activation of NF-κB1 and the accumulation of the oncoprotein c-Myc, but inhibited the activation of NF-κB2. Furthermore, we demonstrated that oridonin (an inhibitor of NF-κB1 and NF-κB2) or AD 198 (a drug targeting c-Myc) drastically potentiated the anti-cancer effects of bortezomib in TRAF3-deficient malignant B cells. Taken together, our findings increase the understanding of the mechanisms of action of bortezomib, which would aid the design of novel bortezomib-based combination therapies. Our results also provide a rationale for clinical evaluation of the combinations of bortezomib and oridonin (or other inhibitors of NF-κB1/2) or AD 198 (or other drugs targeting c-Myc) in the treatment of lymphoma and MM, especially in patients containing TRAF3 deletions or relevant mutations. PMID:26740054

  17. NY-ESO-1 specific TCR engineered T-cells mediate sustained antigen-specific antitumor effects in myeloma

    PubMed Central

    Goloubeva, Olga; Vogl, Dan T.; Lacey, Simon F.; Badros, Ashraf Z.; Garfall, Alfred; Weiss, Brendan; Finklestein, Jeffrey; Kulikovskaya, Irina; Sinha, Sanjoy K.; Kronsberg, Shari; Gupta, Minnal; Bond, Sarah; Melchiori, Luca; Brewer, Joanna E.; Bennett, Alan D.; Gerry, Andrew B.; Pumphrey, Nicholas J.; Williams, Daniel; Tayton-Martin, Helen K.; Ribeiro, Lilliam; Holdich, Tom; Yanovich, Saul; Hardy, Nancy; Yared, Jean; Kerr, Naseem; Philip, Sunita; Westphal, Sandra; Siegel, Don L.; Levine, Bruce L.; Jakobsen, Bent K.; Kalos, Michael; June, Carl H.

    2015-01-01

    Despite recent therapeutic advances, multiple myeloma (MM) remains largely incurable. Herein we report results of a phase I/II trial to evaluate the safety and activity of autologous T-cells engineered to express an affinity-enhanced T-cell receptor (TCR) recognizing a naturally processed peptide shared by the cancer-testis antigens NY-ESO-1 and LAGE-1. Twenty patients with antigen-positive MM received an average 2.4×109 engineered T cells two days after autologous stem cell transplant (ASCT). Infusions were well-tolerated without clinically apparent cytokine release syndrome, despite high IL-6 levels. Engineered T-cells expanded, persisted, trafficked to marrow and exhibited a cytotoxic phenotype. Persistence of engineered T cells in blood was inversely associated with NY-ESO-1 levels in the marrow. Disease progression was associated with loss of T cell persistence or antigen escape, consistent with the expected mechanism of action of the transferred T cells. Encouraging clinical responses were observed in 16 of 20 patients (80%) with advanced disease, with a median progression free survival of 19.1 months. NY-ESO-1/LAGE-1 TCR-engineered T-cells were safe, trafficked to marrow and showed extended persistence that correlated with clinical activity against antigen-positive myeloma. PMID:26193344

  18. SAHA-induced TRAIL-sensitisation of Multiple Myeloma cells is enhanced in 3D cell culture.

    PubMed

    Arhoma, A; Chantry, A D; Haywood-Small, S L; Cross, N A

    2017-09-08

    Multiple Myeloma (MM) is currently incurable despite many novel therapies. Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) is a potential anti-tumour agent although effects as a single agent are limited. In this study, we investigated whether the Histone Deacetylase (HDAC) inhibitor SAHA can enhance TRAIL-induced apoptosis and target TRAIL resistance in both suspension culture, and 3D cell culture as a model of disseminated MM lesions that form in bone. The effects of SAHA and/or TRAIL in 6 Multiple Myeloma cell lines were assessed in both suspension cultures and in an Alginate-based 3D cell culture model. The effect of SAHA and/or TRAIL was assessed on apoptosis by assessment of nuclear morphology using Hoechst 33342/Propidium Iodide staining. Viable cell number was assessed by CellTiter-Glo luminescence assay, Caspase-8 and -9 activities were measured by Caspase-Glo™ assay kit. TRAIL-resistant cells were generated by culture of RPMI 8226 and NCI-H929 by acute exposure to TRAIL followed by selection of TRAIL-resistant cells. TRAIL significantly induced apoptosis in a dose-dependent manner in OPM-2, RPMI 8226, NCI-H929, U266, JJN-3 MM cell lines and ADC-1 plasma cell leukaemia cells. SAHA amplified TRAIL responses in all lines except OPM-2, and enhanced TRAIL responses were both via Caspase-8 and -9. SAHA treatment induced growth inhibition that further increased in the combination treatment with TRAIL in MM cells. The co-treatment of TRAIL and SAHA reduced viable cell numbers all cell lines. TRAIL responses were further potentiated by SAHA in 3D cell culture in NCI-H929, RPMI 8226 and U266 at lower TRAIL + SAHA doses than in suspension culture. However TRAIL responses in cells that had been selected for TRAIL resistance were not further enhanced by SAHA treatment. SAHA is a potent sensitizer of TRAIL responses in both TRAIL sensitive and resistant cell lines, in both suspension and 3D culture, however SAHA did not sensitise TRAIL-sensitive cell

  19. CARs in the Lead Against Multiple Myeloma.

    PubMed

    Ormhøj, Maria; Bedoya, Felipe; Frigault, Matthew J; Maus, Marcela V

    2017-04-01

    The recent clinical success of CD19-directed chimeric antigen receptor (CAR) T cell therapy in chronic and acute leukemia has led to increased interest in broadening this technology to other hematological malignancies and solid tumors. Now, advances are being made using CAR T cell technology to target myeloma antigens such as B cell maturation antigen (BCMA), CD138, and kappa-light chain as well as CD19 on putative myeloma stem cells. To date, only a limited number of multiple myeloma patients have received CAR T cell therapy but preliminary results have been encouraging. In this review, we summarize the recently reported results of clinical trials conducted utilizing CAR T cell therapy in multiple myeloma (MM).

  20. The progression from MGUS to smoldering myeloma and eventually to multiple myeloma involves a clonal expansion of genetically abnormal plasma cells.

    PubMed

    López-Corral, Lucía; Gutiérrez, Norma C; Vidriales, Maria Belén; Mateos, Maria Victoria; Rasillo, Ana; García-Sanz, Ramón; Paiva, Bruno; San Miguel, Jesús F

    2011-04-01

    Genetic aberrations detected in multiple myeloma (MM) have also been reported in the premalignant conditions monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM (SMM). Our aim was to investigate in depth the level of clonal heterogeneity of recurrent genetic abnormalities in these conditions. Immunoglobulin heavy chain (IGH) translocations, 13q14 and 17p13 deletions, and 1q21 gains using FISH were evaluated in 90 MGUS, 102 high-risk SMM, and 373 MM. To this end, we not only purified plasma cells (PC) for the FISH analysis (purity > 90%), but subsequently, we examined the correlation between the proportion of PC with cytogenetic changes and the number of clonal PC present in the same sample, as measured by multiparametric flow cytometry. We observed a significant difference between the proportion of clonal PC with specific genetic abnormalities in MGUS compared with SMM and in SMM compared with MM. Thus, the median proportion of PC with IGH translocations globally considered, t(11;14) and 13q deletions was significantly lower in MGUS than in SMM, and in SMM than in MM [IGH translocations: 34% vs. 57% vs. 76%; t(11;14): 38% vs. 61% vs. 81%; and 13q deletion: 37% vs. 61% vs. 74% in MGUS, SMM, and MM, respectively]. For t(4;14), the difference was significant in the comparison between MGUS/SMM and MM and for 1q between MGUS and SMM/MM. This study demonstrates that the progression from MGUS to SMM, and eventually to MM, involves a clonal expansion of genetically abnormal PC.

  1. Targeting MEK/MAPK signal transduction module potentiates ATO-induced apoptosis in multiple myeloma cells through multiple signaling pathways.

    PubMed

    Lunghi, Paolo; Giuliani, Nicola; Mazzera, Laura; Lombardi, Guerino; Ricca, Micaela; Corradi, Attilio; Cantoni, Anna Maria; Salvatore, Luigi; Riccioni, Roberta; Costanzo, Antonio; Testa, Ugo; Levrero, Massimo; Rizzoli, Vittorio; Bonati, Antonio

    2008-09-15

    We demonstrate that blockade of the MEK/ERK signaling module, using the small-molecule inhibitors PD184352 or PD325901 (PD), strikingly enhances arsenic trioxide (ATO)-induced cytotoxicity in human myeloma cell lines (HMCLs) and in tumor cells from patients with multiple myeloma (MM) through a caspase-dependent mechanism. In HMCLs retaining a functional p53, PD treatment greatly enhances the ATO-induced p53 accumulation and p73, a p53 paralog, cooperates with p53 in caspase activation and apoptosis induction. In HMCLs carrying a nonfunctional p53, cotreatment with PD strikingly elevates the (DR4 + DR5)/(DcR1 + DcR2) tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors ratio and caspase-8 activation of ATO-treated cells. In MM cells, irrespective of p53 status, the combined PD/ATO treatment increases the level of the proapoptotic protein Bim (PD-mediated) and decreases antiapoptotic protein Mcl-1 (ATO-mediated). Moreover, Bim physically interacts with both DR4 and DR5 TRAIL receptors in PD/ATO-treated cells, and loss of Bim interferes with the activation of both extrinsic and intrinsic apoptotic pathways in response to PD/ATO. Finally, PD/ATO treatment induces tumor regression, prolongs survival, and is well tolerated in vivo in a human plasmacytoma xenograft model. These preclinical studies provide the framework for testing PD325901 and ATO combination therapy in clinical trials aimed to improve patient outcome in MM.

  2. [Multiple myeloma].

    PubMed

    Abe, Masahiro; Miki, Hirokazu; Nakamura, Shingen

    2016-03-01

    Owing to the positive clinical benefits obtained with new agents, complete remission (CR) can be used as a surrogate for overall survival, and should be achieved. Although multiple myeloma is a heterogeneous disease in terms of myeloma cell- and patient-related risk factors, patients should receive the most effective combination therapy based on proteasome inhibitors and/or immunomodulatory drugs (IMiDs) as backbone medication irrespective of the risks encountered in the setting of induction therapy ("one-size-fits-all" therapy), followed by consolidation/maintenance therapy to achieve CR with the ultimate goal of extended survival. Myeloma-defining biomarkers have been established to identify high-risk smoldering myeloma requiring treatment. The development of salvage treatments yielding better outcomes for relapsed/refractory myeloma is urgently needed. Upcoming novel molecular targeting agents with different modes of action and immunotherapeutic agents will be integrated into myeloma treatment regimens with a great therapeutic impact, and further evolution of the treatment paradigm for multiple myeloma is eagerly anticipated.

  3. Myeloid-Derived Suppressor Cells in Multiple Myeloma: Pre-Clinical Research and Translational Opportunities

    PubMed Central

    Botta, Cirino; Gullà, Annamaria; Correale, Pierpaolo; Tagliaferri, Pierosandro; Tassone, Pierfrancesco

    2014-01-01

    Immunosuppressive cells have been reported to play an important role in tumor-progression mainly because of their capability to promote immune-escape, angiogenesis, and metastasis. Among them, myeloid-derived suppressor cells (MDSCs) have been recently identified as immature myeloid cells, induced by tumor-associated inflammation, able to impair both innate and adaptive immunity. While murine MDSCs are usually identified by the expression of CD11b and Gr1, human MDSCs represent a more heterogeneous population characterized by the expression of CD33 and CD11b, low or no HLA-DR, and variable CD14 and CD15. In particular, the last two may alternatively identify monocyte-like or granulocyte-like MDSC subsets with different immunosuppressive properties. Recently, a substantial increase of MDSCs has been found in peripheral blood and bone marrow (BM) of multiple myeloma (MM) patients with a role in disease progression and/or drug resistance. Pre-clinical models recapitulating the complexity of the MM-related BM microenvironment (BMM) are major tools for the study of the interactions between MM cells and cells of the BMM (including MDSCs) and for the development of new agents targeting MM-associated immune-suppressive cells. This review will focus on current strategies for human MDSCs generation and investigation of their immunosuppressive function in vitro and in vivo, taking into account the relevant relationship occurring within the MM–BMM. We will then provide trends in MDSC-associated research and suggest potential application for the treatment of MM. PMID:25538892

  4. Optimal treatment strategies in myeloma: An argument against maintenance therapy after autologous stem cell transplantation.

    PubMed

    Richter, Joshua; Biran, Noa; Vesole, David; Siegel, David

    2016-12-01

    Despite continuing advancements in novel therapeutics for multiple myeloma (MM), high-dose therapy with autologous stem cell rescue continues to represent the standard approach to treat transplant-eligible, newly diagnosed patients. As the disease remains essentially incurable, and median progression-free survival (PFS) times after autologous transplant are measured in years and not decades, attempts to improve outcomes in the post-transplant setting have been extensive and commonly focused on a "maintenance" approach. Although multiple trials have demonstrated PFS advantages for a variety of maintenance strategies, it is our position that the potential risks outweigh the benefits of this approach and this should not be the standard of care outside of clinical trials. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. A method for measurement of drug sensitivity of myeloma cells co-cultured with bone marrow stromal cells.

    PubMed

    Misund, Kristine; Baranowska, Katarzyna A; Holien, Toril; Rampa, Christoph; Klein, Dionne C G; Børset, Magne; Waage, Anders; Sundan, Anders

    2013-07-01

    The tumor microenvironment can profoundly affect tumor cell survival as well as alter antitumor drug activity. However, conventional anticancer drug screening typically is performed in the absence of stromal cells. Here, we analyzed survival of myeloma cells co-cultured with bone marrow stromal cells (BMSC) using an automated fluorescence microscope platform, ScanR. By staining the cell nuclei with DRAQ5, we could distinguish between BMSC and myeloma cells, based on their staining intensity and nuclear shape. Using the apoptotic marker YO-PRO-1, the effects of drug treatment on the viability of the myeloma cells in the presence of stromal cells could be measured. The method does not require cell staining before incubation with drugs, and less than 5000 cells are required per condition. The method can be used for large-scale screening of anticancer drugs on primary myeloma cells. This study shows the importance of stromal cell support for primary myeloma cell survival in vitro, as half of the cell samples had a marked increase in their viability when cultured in the presence of BMSC. Stromal cell-induced protection against common myeloma drugs is also observed with this method.

  6. Eosinophils and Megakaryocytes Support the Early Growth of Murine MOPC315 Myeloma Cells in Their Bone Marrow Niches

    PubMed Central

    Wong, David; Winter, Oliver; Hartig, Christina; Siebels, Svenja; Szyska, Martin; Tiburzy, Benjamin; Meng, Lingzhang; Kulkarni, Upasana; Fähnrich, Anke; Bommert, Kurt; Bargou, Ralf; Berek, Claudia; Chu, Van Trung; Bogen, Bjarne; Jundt, Franziska; Manz, Rudolf Armin

    2014-01-01

    Multiple myeloma is a bone marrow plasma cell tumor which is supported by the external growth factors APRIL and IL-6, among others. Recently, we identified eosinophils and megakaryocytes to be functional components of the micro-environmental niches of benign bone marrow plasma cells and to be important local sources of these cytokines. Here, we investigated whether eosinophils and megakaryocytes also support the growth of tumor plasma cells in the MOPC315.BM model for multiple myeloma. As it was shown for benign plasma cells and multiple myeloma cells, IL-6 and APRIL also supported MOPC315.BM cell growth in vitro, IL-5 had no effect. Depletion of eosinophils in vivo by IL-5 blockade led to a reduction of the early myeloma load. Consistent with this, myeloma growth in early stages was retarded in eosinophil-deficient ΔdblGATA-1 mice. Late myeloma stages were unaffected, possibly due to megakaryocytes compensating for the loss of eosinophils, since megakaryocytes were found to be in contact with myeloma cells in vivo and supported myeloma growth in vitro. We conclude that eosinophils and megakaryocytes in the niches for benign bone marrow plasma cells support the growth of malignant plasma cells. Further investigations are required to test whether perturbation of these niches represents a potential strategy for the treatment of multiple myeloma. PMID:25272036

  7. Eosinophils and megakaryocytes support the early growth of murine MOPC315 myeloma cells in their bone marrow niches.

    PubMed

    Wong, David; Winter, Oliver; Hartig, Christina; Siebels, Svenja; Szyska, Martin; Tiburzy, Benjamin; Meng, Lingzhang; Kulkarni, Upasana; Fähnrich, Anke; Bommert, Kurt; Bargou, Ralf; Berek, Claudia; Chu, Van Trung; Bogen, Bjarne; Jundt, Franziska; Manz, Rudolf Armin

    2014-01-01

    Multiple myeloma is a bone marrow plasma cell tumor which is supported by the external growth factors APRIL and IL-6, among others. Recently, we identified eosinophils and megakaryocytes to be functional components of the micro-environmental niches of benign bone marrow plasma cells and to be important local sources of these cytokines. Here, we investigated whether eosinophils and megakaryocytes also support the growth of tumor plasma cells in the MOPC315.BM model for multiple myeloma. As it was shown for benign plasma cells and multiple myeloma cells, IL-6 and APRIL also supported MOPC315.BM cell growth in vitro, IL-5 had no effect. Depletion of eosinophils in vivo by IL-5 blockade led to a reduction of the early myeloma load. Consistent with this, myeloma growth in early stages was retarded in eosinophil-deficient ΔdblGATA-1 mice. Late myeloma stages were unaffected, possibly due to megakaryocytes compensating for the loss of eosinophils, since megakaryocytes were found to be in contact with myeloma cells in vivo and supported myeloma growth in vitro. We conclude that eosinophils and megakaryocytes in the niches for benign bone marrow plasma cells support the growth of malignant plasma cells. Further investigations are required to test whether perturbation of these niches represents a potential strategy for the treatment of multiple myeloma.

  8. The Role of High-Dose Chemotherapy Supported by Hematopoietic Stem Cell Transplantation in Patients With Multiple Myeloma

    PubMed Central

    Rodriguez, Anna Liza; Tariman, Joseph D.; Enecio, Toreend; Estrella, Stella Marie

    2014-01-01

    Multiple myeloma (MM), a neoplastic proliferation of plasma cells originating from the B-cell line, is associated with deleterious complications and poor outcomes. The failure of conventional combination chemotherapies to improve the overall survival of patients with MM has led to the use of high-dose chemotherapy supported by stem cell transplantation (SCT). Although several novel therapies have emerged since the late 1990s, their survival benefits are undetermined. High-dose chemotherapy with SCT provides better response rates compared to conventional chemotherapy and yields a trend toward greater survival benefits, especially with the use of a tandem (two successive) transplantation strategy. This article discusses standard SCT in patients with MM and some of the new transplantation strategies, including tandem autologous SCTs and reduced-intensity nonmyeloablative allogeneic SCT, and their implications for nursing. PMID:17723970

  9. Multiple myeloma cell lines and primary tumors proteoma: protein biosynthesis and immune system as potential therapeutic targets

    PubMed Central

    Mazzotti, Diego Robles; Evangelista, Adriane Feijó; Braga, Walter Moisés Tobias; de Lourdes Chauffaille, Maria; Leme, Adriana Franco Paes; Colleoni, Gisele Wally Braga

    2015-01-01

    Despite great advance in multiple myeloma (MM) treatment since 2000s, it is still an incurable disease and novel therapies are welcome. Therefore, the purpose of this study was to explore MM plasma cells' (MM-PC) proteome, in comparison with their normal counterparts (derived from palatine tonsils of normal donors, ND-PC), in order to find potential therapeutic targets expressed on the surface of these cells. We also aimed to evaluate the proteome of MM cell lines with different genetic alterations, to confirm findings obtained with primary tumor cells. Bone marrow (BM) samples from eight new cases of MM and palatine tonsils from seven unmatched controls were submitted to PC separation and, in addition to two MM cell lines (U266, RPMI-8226), were submitted to protein extraction for mass spectrometry analyses. A total of 81 proteins were differentially expressed between MM-PC and ND-PC - 72 upregulated and nine downregulated; U266 vs. RPMI 8226 cell lines presented 61 differentially expressed proteins - 51 upregulated and 10 downregulated. On primary tumors, bioinformatics analyses highlighted upregulation of protein biosynthesis machinery, as well as downregulation of immune response components, such as MHC class I and II, and complement receptors. We also provided comprehensive information about U266 and RPMI-8226 cell lines' proteome and could confirm some patients' findings. PMID:26807199

  10. T cells expressing an anti–B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma

    PubMed Central

    Ali, Syed Abbas; Shi, Victoria; Maric, Irina; Wang, Michael; Stroncek, David F.; Rose, Jeremy J.; Brudno, Jennifer N.; Stetler-Stevenson, Maryalice; Feldman, Steven A.; Hansen, Brenna G.; Fellowes, Vicki S.; Hakim, Frances T.; Gress, Ronald E.

    2016-01-01

    Therapies with novel mechanisms of action are needed for multiple myeloma (MM). B-cell maturation antigen (BCMA) is expressed in most cases of MM. We conducted the first-in-humans clinical trial of chimeric antigen receptor (CAR) T cells targeting BCMA. T cells expressing the CAR used in this work (CAR-BCMA) specifically recognized BCMA-expressing cells. Twelve patients received CAR-BCMA T cells in this dose-escalation trial. Among the 6 patients treated on the lowest 2 dose levels, limited antimyeloma activity and mild toxicity occurred. On the third dose level, 1 patient obtained a very good partial remission. Two patients were treated on the fourth dose level of 9 × 106 CAR+ T cells/kg body weight. Before treatment, the first patient on the fourth dose level had chemotherapy-resistant MM, making up 90% of bone marrow cells. After treatment, bone marrow plasma cells became undetectable by flow cytometry, and the patient’s MM entered a stringent complete remission that lasted for 17 weeks before relapse. The second patient on the fourth dose level had chemotherapy-resistant MM making up 80% of bone marrow cells before treatment. Twenty-eight weeks after this patient received CAR-BCMA T cells, bone marrow plasma cells were undetectable by flow cytometry, and the serum monoclonal protein had decreased by >95%. This patient is in an ongoing very good partial remission. Both patients treated on the fourth dose level had toxicity consistent with cytokine-release syndrome including fever, hypotension, and dyspnea. Both patients had prolonged cytopenias. Our findings demonstrate antimyeloma activity of CAR-BCMA T cells. This trial was registered to www.clinicaltrials.gov as #NCT02215967. PMID:27412889

  11. Consensus guidelines on plasma cell myeloma minimal residual disease analysis and reporting.

    PubMed

    Arroz, Maria; Came, Neil; Lin, Pei; Chen, Weina; Yuan, Constance; Lagoo, Anand; Monreal, Mariela; de Tute, Ruth; Vergilio, Jo-Anne; Rawstron, Andy C; Paiva, Bruno

    2016-01-01

    Major heterogeneity between laboratories in flow cytometry (FC) minimal residual disease (MRD) testing in multiple myeloma (MM) must be overcome. Cytometry societies such as the International Clinical Cytometry Society and the European Society for Clinical Cell Analysis recognize a strong need to establish minimally acceptable requirements and recommendations to perform such complex testing. A group of 11 flow cytometrists currently performing FC testing in MM using different instrumentation, panel designs (≥ 6-color) and analysis software compared the procedures between their respective laboratories and reviewed the literature to propose a consensus guideline on flow-MRD analysis and reporting in MM. Consensus guidelines support i) the use of minimum of five initial gating parameters (CD38, CD138, CD45, forward, and sideward light scatter) within the same aliquot for accurate identification of the total plasma cell compartment; ii) the analysis of potentially aberrant phenotypic markers and to report the antigen expression pattern on neoplastic plasma cells as being reduced, normal or increased, when compared to a normal reference plasma cell immunophenotype (obtained using the same instrument and parameters); and iii) the percentage of total bone marrow plasma cells plus the percentages of both normal and neoplastic plasma cells within the total bone marrow plasma cell compartment, and over total bone marrow cells. Consensus guidelines on minimal current and future MRD analyses should target a lower limit of detection of 0.001%, and ideally a limit of quantification of 0.001%, which requires at least 3 × 10(6) and 5 × 10(6) bone marrow cells to be measured, respectively. © 2015 International Clinical Cytometry Society.

  12. Mesenchymal stem cell contact promotes CCN1 splicing and transcription in myeloma cells.

    PubMed

    Dotterweich, Julia; Ebert, Regina; Kraus, Sabrina; Tower, Robert J; Jakob, Franz; Schütze, Norbert

    2014-06-25

    CCN family member 1 (CCN1), also known as cysteine-rich angiogenic inducer 61 (CYR61), belongs to the extracellular matrix-associated CCN protein family. The diverse functions of these proteins include regulation of cell migration, adhesion, proliferation, differentiation and survival/apoptosis, induction of angiogenesis and cellular senescence. Their functions are partly overlapping, largely non-redundant, cell-type specific, and depend on the local microenvironment. To elucidate the role of CCN1 in the crosstalk between stromal cells and myeloma cells, we performed co-culture experiments with primary mesenchymal stem cells (MSC) and the interleukin-6 (IL-6)-dependent myeloma cell line INA-6. Here we show that INA-6 cells display increased transcription and induction of splicing of intron-retaining CCN1 pre-mRNA when cultured in contact with MSC. Protein analyses confirmed that INA-6 cells co-cultured with MSC show increased levels of CCN1 protein consistent with the existence of a pre-mature stop codon in intron 1 that abolishes translation of unspliced mRNA. Addition of recombinant CCN1-Fc protein to INA-6 cells was also found to induce splicing of CCN1 pre-mRNA in a concentration-dependent manner. Only full length CCN1-Fc was able to induce mRNA splicing of all introns, whereas truncated recombinant isoforms lacking domain 4 failed to induce intron splicing. Blocking RGD-dependent integrins on INA-6 cells resulted in an inhibition of these splicing events. These findings expand knowledge on splicing of the proangiogenic, matricellular factor CCN1 in the tumor microenvironment. We propose that contact with MSC-derived CCN1 leads to splicing and enhanced transcription of CCN1 which further contributes to the translation of angiogenic factor CCN1 in myeloma cells, supporting tumor viability and myeloma bone disease.

  13. Withanolide D Exhibits Similar Cytostatic Effect in Drug-Resistant and Drug-Sensitive Multiple Myeloma Cells.

    PubMed

    Issa, Mark E; Wijeratne, E M K; Gunatilaka, A A L; Cuendet, Muriel

    2017-01-01

    In spite of recent therapeutic advances, multiple myeloma (MM) remains a malignancy with very low curability. This has been partly attributed to the existence of a drug-resistant subpopulation known as cancer stem cells (CSCs). MM-CSCs are equipped with the necessary tools that render them highly resistant to virtually all conventional therapies. In this study, the growth inhibitory effects of withanolide D (WND), a steroidal lactone isolated from Withania somnifera, on drug-sensitive tumoral plasma cells and drug-resistant MM cells have been investigated. In MTT/XTT assays, WND exhibited similar cytostatic effects between drug-resistant and drug-sensitive cell lines in the nM range. WND also induced cell death and apoptosis in MM-CSCs and RPMI 8226 cells, as examined by the calcein/ethidium homodimer and annexin V/propidium iodide stainings, respectively. To determine whether P-glycoprotein (P-gp) efflux affected the cytostatic activity of WND, P-gp was inhibited with verapamil and results indicated that the WND cytostatic effect in MM-CSCs was independent of P-gp efflux. Furthermore, WND did not increase the accumulation of the fluorescent P-gp substrate rhodamine 123 in MM-CSCs, suggesting that WND may not inhibit P-gp at the tested relevant doses. Therefore, the WND-induced cytostatic effect may be independent of P-gp efflux. These findings warrant further investigation of WND in MM-CSC animal models.

  14. Potent induction of apoptosis by beta-lapachone in human multiple myeloma cell lines and patient cells.

    PubMed Central

    Li, Y.; Li, C. J.; Yu, D.; Pardee, A. B.

    2000-01-01

    BACKGROUND: Human multiple myeloma (MM) remains an incurable hematological malignancy. We have reported that beta-lapachone, a pure compound derived from a plant, can induce cell death in a variety of human carcinoma cells, including ovary, colon, lung, prostate, pancreas, and breast, suggesting a wide spectrum of anticancer activity. MATERIALS AND METHODS: We first studied antisurvival effects of beta-lapachone in human MM cells by colony formation assay. To determine whether the differential inhibition of colony formation occurs through antiproliferative activity, we performed MTT assays. The cytotoxicity of beta-lapachone on human peripheral blood mononuclear cells was also measured by MTT assay. To determine whether the cell death induced by beta-lapachone occurs through necrosis or apoptosis, we used the propidium iodide staining procedure to determine the sub-GI fraction, Annexin-V staining for externalization of phosphatidylserine, and fragmentation of cellular genomic DNA subjected to gel electrophoresis. To investigate the mechanism of anti-MM activity, we examined Bcl-2 expression, cytochrome C release, and poly (ADP ribose) polymerase cleavage by Western blot assay. RESULTS: We found that beta-lapachone (less than 4 microM) inhibits cell survival and proliferation by triggering cell death with characteristics of apoptosis in ARH-77, HS Sultan, and MM.1S cell lines, in freshly derived patient MM cells (MM.As), MM cell lines resistant to dexamethasone (MM.1R), doxorubicin (DOX.40), mitoxantrone (MR.20), and mephalan (LR5). Importantly, after treatment with beta-lapachone, we observed no apoptosis in peripheral blood mononuclear cells in either quiescent or proliferative states, freshly isolated from healthy donors. In beta-lapachone treated ARH-77, cytochrome C was released from mitochondria to cytosol, and poly (ADP ribose) polymerase was cleaved, signature events of apoptosis. Finally, the apoptosis induced by beta-lapachone in MM cells was not blocked

  15. Tumor Cell-Derived Microvesicles Induced Not Epithelial-Mesenchymal Transition but Apoptosis in Human Proximal Tubular (HK-2) Cells: Implications for Renal Impairment in Multiple Myeloma

    PubMed Central

    Zhao, Aiqi; Kong, Fancong; Liu, Chun-Jie; Yan, Guoxin; Gao, Fei; Guo, Hao; Guo, An-Yuan; Chen, Zhichao; Li, Qiubai

    2017-01-01

    Renal impairment (RI) is one of the hallmarks of multiple myeloma (MM) and carries a poor prognosis. Microvesicles (MVs) are membrane vesicles and play an important role in disease progression. Here, we investigated the role of MVs derived from MM cells (MM-MVs) in RI of MM. We found that MM-MVs significantly inhibited viability and induced apoptosis, but not epithelial-mesenchymal transition in human kidney-2 (HK-2), a human renal tubular epithelial cell line. The protein levels of cleaved caspase-3, 8, and 9, and E-cadherin, were increased, but vementin levels were decreased in the HK-2 cells treated with MM-MVs. Through a comparative sequencing and analysis of RNA content between the MVs from RPMI8226 MM cells (RPMI8226-MVs) and K562 leukemia cells, RPMI8226-MVs were enriched with more renal-pathogenic miRNAs, in which the selective miRNAs may participate in the up-regulation of the levels of cleaved caspase-3. Furthermore, the levels of CD138+ circulating MVs (cirMVs) in the peripheral blood were positively correlated with the severity of RI in newly-diagnosed MM. Our study supports MM-MVs representing a previously undescribed factor and playing a potential role in the development of RI of MM patients, and sheds light on the potential application of CD138+ cirMV counts in precise diagnosis of RI in MM and exploring MM-MVs as a therapeutic target. PMID:28264449

  16. mTOR pathway activation in multiple myeloma cell lines and primary tumour cells: pomalidomide enhances cytoplasmic-nuclear shuttling of mTOR protein

    PubMed Central

    Guglielmelli, Tommasina; Giugliano, Emilia; Brunetto, Vanessa; Rapa, Ida; Cappia, Susanna; Giorcelli, Jessica; Rrodhe, Sokol; Papotti, Mauro; Saglio, Giuseppe

    2015-01-01

    mTOR is a protein kinase that plays a central role in regulating critical cellular processes. We evaluated the activation and cellular localization of the mTOR pathway in multiple myeloma (MM) and analyzed the role of pomalidomide in regulating mTOR. By immunohistochemistry cytoplasmic p-mTOR stained positive in 57 out 101 (57.6%) cases with a nuclear p-mTOR localization in 14 out 101 samples (13.8%). In the 70 MM samples analyzed for the entire pathway, p-mTOR expression significantly correlated with p-AKT, p-P70S6K, and p-4E-BP1 suggesting that the AKT/mTOR pathway is activated in a subset of MM patients. Immunofluorescence assays demonstrated that mTOR protein is distributed throughout the cytoplasm and the nucleus at baseline in MM cell lines and in plasma cells of 13 MM patients and that pomalidomide facilitated the shift of the mTOR protein in the nucleus. By western blotting, treatment with pomalidomide increased nuclear mTOR and p-mTOR expression levels in the nucleus with a concomitant decrease of the cytoplasmic fractions while does not seem to affect significantly AKT phosphorylation status. In MM cells the anti-myeloma activity of pomalidomide may be mediated by the regulation of the mTOR pathway. PMID:26097872

  17. Importance of Achieving Stringent Complete Response After Autologous Stem-Cell Transplantation in Multiple Myeloma

    PubMed Central

    Kapoor, Prashant; Kumar, Shaji K.; Dispenzieri, Angela; Lacy, Martha Q.; Buadi, Francis; Dingli, David; Russell, Stephen J.; Hayman, Suzanne R.; Witzig, Thomas E.; Lust, John A.; Leung, Nelson; Lin, Yi; Zeldenrust, Steven R.; McCurdy, Arleigh; Greipp, Philip R.; Kyle, Robert A.; Rajkumar, S. Vincent; Gertz, Morie A.

    2013-01-01

    Purpose To study the impact of achieving stringent complete response (sCR), an increasingly attainable goal, after autologous stem-cell transplantation (ASCT) in patients with multiple myeloma (MM). Patients and Methods Maximal response rates were determined in 445 consecutive patients who underwent ASCT within 12 months of diagnosis of MM. The patients achieving varying degrees of complete response (CR) are the focus of our study. Results One hundred and nine patients (25%) achieved sCR after ASCT. The median overall survival (OS) rate from the time of transplantation for patients attaining sCR was not reached (NR), in contrast to those patients achieving conventional complete response (CR; n = 37; OS, 81 months) or near CR (nCR; n = 91; OS, 60 months; P < .001). Five-year OS rates were 80%, 53%, and 47% for sCR, CR, and nCR, respectively. The median time to progression (TTP) from ASCT of patients achieving sCR was significantly longer (50 months) than TTP of patients achieving CR or nCR (20 months and 19 months, respectively). On multivariable analysis, post-ASCT response of sCR was an independent prognostic factor for survival (hazard ratio, 0.44; 95% CI, 0.25 to 0.80; versus CR; P = .008), in addition to proliferation rate, pre-ASCT cytogenetics, and performance status. OS rates of patients attaining sCR continued to remain superior at 2-year landmark (median, NR v 70 months for conventional CR group; P = .007). Conclusion Improved long-term outcome is seen after ASCT with achievement of sCR when compared with lesser degrees of responses. Myeloma trials reporting the response rates should identify patients achieving sCR and CR separately, owing to markedly disparate outcomes of the two categories. PMID:24248686

  18. Cyclin D1 unbalances the redox status controlling cell adhesion, migration, and drug resistance in myeloma cells

    PubMed Central

    Bustany, Sophie; Bourgeais, Jérôme; Tchakarska, Guergana; Body, Simon; Hérault, Olivier; Gouilleux, Fabrice; Sola, Brigitte

    2016-01-01

    The interactions of multiple myeloma (MM) cells with their microenvironment are crucial for pathogenesis. MM cells could interact differentially with their microenvironment depending on the type of cyclin D they express. We established several clones that constitutively express cyclin D1 from the parental RPMI8226 MM cell line and analyzed the impact of cyclin D1 expression on cell behavior. We performed a gene expression profiling study on cyclin D1-expressing vs. control cells and validated the results by semi-quantitative RT-PCR. The expression of cyclin D1 altered the transcription of genes that control adhesion and migration. We confirmed that cyclin D1 increases cell adhesion to stromal cells and fibronectin, stabilizes F-actin fibers, and enhances chemotaxis and inflammatory chemokine secretion. Both control and cyclin D1-expressing cells were more resistant to acute carfilzomib treatment when cultured on stromal cells than in suspension. However, this resistance was specifically reduced in cyclin D1-expressing cells after pomalidomide pre-treatment that modifies tumor cell/microenvironment interactions. Transcriptomic analysis revealed that cyclin D1 expression was also associated with changes in the expression of genes controlling metabolism. We also found that cyclin D1 expression disrupted the redox balance by producing reactive oxygen species. The resulting oxidative stress activated the p44/42 mitogen-activated protein kinase (or ERK1/2) signaling pathway, increased cell adhesion to fibronectin or stromal cells, and controlled drug sensitivity. Our results have uncovered a new function for cyclin D1 in the control of redox metabolism and interactions of cyclin D1-expressing MM cells with their bone marrow microenvironment. PMID:27286258

  19. Importin β1 mediates nuclear factor-κB signal transduction into the nuclei of myeloma cells and affects their proliferation and apoptosis.

    PubMed

    Yan, Wenqing; Li, Rong; He, Jie; Du, Juan; Hou, Jian

    2015-04-01

    Multiple myeloma (MM) is a plasma cell neoplasm that is currently incurable. The activation of nuclear factor-κB (NF-κB) signalling plays a crucial role in the immortalisation of MM cells. As the most important transcription factor of the canonical NF-κB pathway, the p50/p65 heterodimer requires transportation into the nucleus for its successful signal transduction. Importin β1 is the key transport receptor that mediates p50/p65 nuclear import. Currently, it remains unclear whether the regulation of importin β1 function affects the biological behaviour of MM cells. In the present study, we investigated the changes in p65 translocation and the proliferation and apoptosis of MM cells after treatment with small interfering RNA (siRNA) or an importin β1 inhibitor. The underlying mechanisms were also investigated. We found importin β1 over-expression and the excessive nuclear transport of p65 in myeloma cells. Confocal laser scanning microscopy and Western blot analysis results indicated that p65 nuclear transport was blocked after inhibiting importin β1 expression with siRNA and the importin β1-specific inhibitor importazole (IPZ). Importantly, electronic mobility shift assay results also verified that p65 nuclear transport was dramatically reduced. Moreover, the expression of the NF-κB signalling target genes involved in MM cell apoptosis, such as BCL-2, c-IAP1 and XIAP, were markedly reduced, as demonstrated by the RT-PCR results. Furthermore, the proliferation of MM cells was inhibited, as demonstrated by MTT assay results, and the MM cell apoptosis rate was higher, as demonstrated by the annexin V/propidium iodide (PI) double-staining assay results. Additionally, the percentage of S phase cells in the myeloma cell lines treated with IPZ was dramatically reduced. In conclusion, our results clearly show that importin β1 mediates the translocation of NF-κB into the nuclei of myeloma cells, thereby regulating proliferation and blocking apoptosis, which

  20. Effects of DTX3L on the cell proliferation, adhesion, and drug resistance of multiple myeloma cells.

    PubMed

    Shen, Yaodong; Sun, Yuxiang; Zhang, Linlin; Liu, Hong

    2017-06-01

    Cell adhesion-mediated drug resistance is an important factor that influences the effects of chemotherapy in multiple myeloma. DTX3L, a ubiquitin ligase, plays a key role in cell-cycle-related process. Here, we found that the expression of DTX3L gradually increased during the proliferation of myeloma cells, which resulted in arrest of the cell cycle in the G1 phase and promoted the adherence of myeloma cells to fibronectin or bone marrow stromal cells. In addition, silencing of DTX3L improved sensitivity to chemotherapy drugs in multiple myeloma cell lines adherent to bone marrow stromal cells and increased the expression of caspase-3 and poly-adenosine diphosphate-ribose polymerase, two markers of apoptosis. Finally, we also found that DTX3L expression was regulated by focal adhesion kinase. Taken together, the results of this study show that DTX3L plays an important role in the proliferation and cell adhesion-mediated drug resistance of multiple myeloma cells and as such may play a key role in the development of multiple myeloma.

  1. Targeting CD38 Suppresses Induction and Function of T Regulatory Cells to Mitigate Immunosuppression in Multiple Myeloma.

    PubMed

    Feng, Xiaoyan; Zhang, Li; Acharya, Chirag; An, Gang; Wen, Kenneth; Qiu, Lugui; Munshi, Nikhil C; Tai, Yu-Tzu; Anderson, Kenneth C

    2017-08-01

    Purpose: We study CD38 levels in immunosuppressive CD4(+)CD25(high)Foxp3(+) regulatory T cells (Treg) and further define immunomodulating effects of a therapeutic CD38 mAb isatuximab/SAR650984 in multiple myeloma.Experimental Design: We evaluated percentages of CD38-expressing subsets in Tregs from normal donors and multiple myeloma patients. Peripheral blood mononuclear cells (PBMC) were then treated with isatuximab with or without lenalidomide or pomalidomide to identify their impact on the percentage and immunosuppressive activity of Tregs on CD4(+)CD25(-) T cells (Tcons). We investigated the mechanism of increased Tregs in multiple myeloma patients in ex vivo cocultures of multiple myeloma cells with PBMCs or Tcons.Results: CD38 expression is higher on Tregs than Tcons from multiple myeloma patients versus normal donors. CD38 levels and the percentages of CD38(high) Tregs are increased by lenalidomide and pomalidomide. Isatuximab preferentially decreases Treg and increases Tcon frequencies, which is enhanced by pomalidomide/lenalidomide. Isatuximab reduces Foxp3 and IL10 in Tregs and restores proliferation and function of Tcons. It augments multiple myeloma cell lysis by CD8(+) T and natural killer cells. Coculture of multiple myeloma cells with Tcons significantly induces Tregs (iTregs), which express even higher CD38, CD25, and FoxP3 than natural Tregs. This is associated with elevated circulating CD38(+) Tregs in multiple myeloma patients versus normal donors. Conversely, isatuximab decreases multiple myeloma cell- and bone marrow stromal cell-induced iTreg by inhibiting both cell-cell contact and TGFβ/IL10. Finally, CD38 levels correlate with differential inhibition by isatuximab of Tregs from multiple myeloma versus normal donors.Conclusions: Targeting CD38 by isatuximab can preferentially block immunosuppressive Tregs and thereby restore immune effector function against multiple myeloma. Clin Cancer Res; 23(15); 4290-300. ©2017 AACR. ©2017 American

  2. Effect of chemotherapy with alkylating agents on the yield of CD34+ cells in patients with multiple myeloma. Results of the Spanish Myeloma Group (GEM) Study.

    PubMed

    de la Rubia, Javier; Bladé, Joan; Lahuerta, Juan-José; Ribera, Josep M; Martínez, Rafael; Alegre, Adrián; García-Laraña, José; Fernández, Pascual; Sureda, Anna; de Arriba, Felipe; Carrera, Dolores; Besalduch, Joan; García Boyero, Raimundo; Palomera Bernal, Luis; Hernández, Miguel T; García, Paz Ribas; Pérez-Calvo, Javier; Alcalá, Antonio; Casado, Luis Felipe; San Miguel, Jesús

    2006-05-01

    Although alkylating agents are clearly beneficial in multiple myeloma (MM), their deleterious effect on bone marrow hematopoietic progenitor cells usually precludes their use as front-line therapy in patients scheduled to undergo autologous stem cell transplantation (ASCT). We analyzed the impact of first-line chemotherapy with alkylating agents on stem cell collection in MM patients. Seven hundred and eighty-nine patients included in the Spanish multicenter protocol GEM-2000 underwent mobilization therapy after four courses of alternating VBMCP/VBAD chemotherapy. The mobilization regimens consisted of standard or high-dose granulocyte colony-stimulating factor (G-CSF) in 551 (70%) patients, and chemotherapy and G-CSF in 206 (26%) patients. The CD34+ cell yield was lower than 4x10(6)/kg in 388 patients (49%), and equal or greater than 4x10(6)/kg in 401 patients (51%). Multivariate analysis indicated that advanced age (p<0.0001) and longer interval between diagnosis and mobilization (p=0.012) were the two variables associated with a lower CD34+ cell yield. Significant differences in CD34+ cell yield were not observed between the mobilization regimens. Of the 789 patients included in the protocol, 726 (92%) underwent the planned ASCT, whereas 25 (3%) patients did not because of the low number of CD34+ cells collected. Following ASCT, 0.5x10(9) neutrophils/L could be recovered after 11 days (median time; range, 5-71 days) and 20x10(9) platelets/L could be recovered after 12 days (median time; range, 6-69 days). A short-course of therapy with alkylating agents according to the GEM-2000 protocol was associated with an appropriate CD34+ cell collection, and allowed the planned ASCT to be performed in the majority of MM patients.

  3. Smoldering Multiple Myeloma: Emerging Concepts and Therapeutics.

    PubMed

    Sundararajan, Srinath; Kumar, Abhijeet; Korde, Neha; Agarwal, Amit

    2016-04-01

    Smoldering multiple myeloma (SMM) is a pre-malignant condition with an inherent risk for progression to multiple myeloma (MM). The 2014 IMWG guidelines define smoldering multiple myeloma as a monoclonal gammopathy disorder with serum monoclonal protein (IgG or IgA) ≥30 g/L or urinary monoclonal protein ≥500 mg per 24 h and/or clonal bone marrow plasma cells 10-60 % without any myeloma-defining events or amyloidosis. The risk for progression of SMM to MM vary based on clinical, laboratory, imaging, and molecular characteristics. Observation, with periodic monitoring is the current standard of care for SMM. Over last few years, research advances in SMM have led to the delineation of newer risk factors for progression and identification of a "high-risk" group that would potentially benefit from early treatment. This review focuses on advances in the SMM risk-stratification model and recent clinical trials in this patient population.

  4. Naltrindole Inhibits Human Multiple Myeloma Cell Proliferation In Vitro and in a Murine Xenograft Model In Vivo

    PubMed Central

    Mundra, Jyoti Joshi; Terskiy, Alexandra

    2012-01-01

    It has been demonstrated previously that immune cell activation and proliferation were sensitive to the effects of naltrindole, a nonpeptidic δ-opioid receptor-selective antagonist; therefore, we hypothesized that human multiple myeloma (MM) would be a valuable model for studying potential antineoplastic properties of naltrindole. [3H]naltrindole exhibited saturable, low-affinity binding to intact human MM cells; however, the pharmacological profile of the binding site differed considerably from the properties of δ-, κ-, and μ-opioid receptors, and opioid receptor mRNA was not detected in MM cells by reverse transcriptase-polymerase chain reaction. Naltrindole inhibited the proliferation of cultured human U266 MM cells in a time- and dose-dependent manner with an EC50 of 16 μM. The naltrindole-induced inhibition of U266 cell proliferation was not blocked by a 10-fold molar excess of naltrexone, a nonselective opioid antagonist. Additive inhibition of MM cell proliferation was observed when using a combination of naltrindole with the histone deacetylase inhibitor sodium valproate, the proteasome inhibitor bortezomib, the glucocorticoid receptor agonist dexamethasone, and the HMG CoA reductase inhibitor simvastatin. Treatment of U266 cells with naltrindole significantly decreased the level of the active, phosphorylated form of the kinases, extracellular signal-regulated kinase and Akt, which may be related to its antiproliferative activity. The antiproliferative activity of naltrindole toward MM cells was maintained in cocultures of MM and bone marrow-derived stromal cells, mimicking the bone marrow microenvironment. In vivo, naltrindole significantly decreased tumor cell volumes in human MM cell xenografts in severe combined immunodeficient mice. We hypothesize that naltrindole inhibits the proliferation of MM cells through a nonopioid receptor-dependent mechanism. PMID:22537770

  5. Circulating plasma cells in multiple myeloma: characterization and correlation with disease stage.

    PubMed

    Rawstron, A C; Owen, R G; Davies, F E; Johnson, R J; Jones, R A; Richards, S J; Evans, P A; Child, J A; Smith, G M; Jack, A S; Morgan, G J

    1997-04-01

    The aim of this study was to develop a flow cytometric test to quantitate low levels of circulating myeloma plasma cells, and to determine the relationship of these cells with disease stage. Cells were characterized using five-parameter flow cytometric analysis with a panel of antibodies, and results were evaluated by comparison with fluorescent consensus-primer IgH-PCR. Bone marrow myeloma plasma cells, defined by high CD38 and Syndecan-1 expression, did not express CD10, 23, 30, 34 or 45RO, and demonstrated weak expression of CD37 and CD45. 65% of patients had CD19- 56+ plasma cells, 30% CD19- 56(low), and 5% CD19+ 56+, and these two antigens discriminated myeloma from normal plasma cells, which were all CD19+ 56(low). Peripheral blood myeloma plasma cells had the same composite phenotype, but expressed significantly lower levels of CD56 and Syndecan-1, and were detected in 75% (38/51) of patients at presentation, 92% (11/12) of patients in relapse, and 40% (4/10) of stem cell harvests. Circulating plasma cells were not detectable in patients in CR (n = 9) or normals (n = 10), at a sensitivity of up to 1 in 10,000 cells. There was good correlation between the flow cytometric test and IgH-PCR results: myeloma plasma cells were detectable by flow cytometry in all PCR positive samples, and samples with no detectable myeloma plasma cells were PCR negative. Absolute numbers decreased in patients responding to treatment, remained elevated in patients with refractory disease, and increased in patients undergoing relapse. We conclude that flow cytometry can provide an effective aternative to IgH-PCR that will allow quantitative assessment of low levels of residual disease.

  6. Input of DNA microarrays to identify novel mechanisms in multiple myeloma biology and therapeutic applications

    PubMed Central

    Mahtouk, Karène; Hose, Dirk; De Vos, John; Moreaux, Jérôme; Jourdan, Michel; Rossi, Jean François; Rème, Thierry; Goldschmidt, Harmut; Klein, Bernard

    2007-01-01

    Multiple myeloma (MM) is a B cell neoplasia characterized by the proliferation of a clone of malignant plasma cells in the bone marrow. We review here the input of gene expression profiling (GEP) of myeloma cells and of their tumor microenvironment to develop new tumor classifiers, to better understand the biology of myeloma cells, to identify some mechanisms of drug sensitivity and resistance, to identify new myeloma growth factors, and to depict the complex interactions between tumor cells and their microenvironment. We discuss how these findings may improve the clinical outcome of this still incurable disease. PMID:18094409

  7. Role of metalloproteinases MMP-9 and MT1-MMP in CXCL12-promoted myeloma cell invasion across basement membranes.

    PubMed

    Parmo-Cabañas, Marisa; Molina-Ortiz, Isabel; Matías-Román, Salomón; García-Bernal, David; Carvajal-Vergara, Xonia; Valle, Inmaculada; Pandiella, Atanasio; Arroyo, Alicia G; Teixidó, Joaquin

    2006-01-01

    Malignant plasma cells in multiple myeloma home to the bone marrow (BM), accumulate in different niches and, in late disease, migrate from the BM into blood. These migratory events involve cell trafficking across extracellular matrix (ECM)-rich basement membranes and interstitial tissues. Metalloproteinases (MMP) degrade ECM and facilitate tumour cell invasion. The chemokine CXCL12 is expressed in the BM, and it was previously shown that it triggers myeloma cell migration and activation. In the present work we show that CXCL12 promotes myeloma cell invasion across Matrigel-reconstituted basement membranes and type I collagen gels. MMP-9 activity was required for invasion through Matrigel towards CXCL12, whereas TIMP-1, a MMP-9 inhibitor that we found to be expressed by myeloma and BM stromal cells, impaired the invasion. In addition, we show that the membrane-bound MT1-MMP metalloproteinase is expressed by myeloma cells and contributes to CXCL12-promoted myeloma cell invasion across Matrigel. Increase in MT1-MMP expression, as well as induction of its membrane polarization by CXCL12 in myeloma cells, might represent potential mechanisms contributing to this invasion. CXCL12-promoted invasion across type I collagen involved metalloproteinases different from MT1-MMP. These data indicate that CXCL12 could contribute to myeloma cell trafficking in the BM involving MMP-9 and MT1-MMP activities.

  8. In vitro and In vivo Antitumor Activity of a Novel Alkylating Agent Melphalan-flufenamide Against Multiple Myeloma Cells

    PubMed Central

    Chauhan, Dharminder; Ray, Arghya; Viktorsson, Kristina; Spira, Jack; Paba-Prada, Claudia; Munshi, Nikhil; Richardson, Paul; Lewensohn, Rolf; Anderson, Kenneth C.

    2014-01-01

    Purpose The alkylating agent melphalan prolongs survival in multiple myeloma (MM) patients; however, it is associated with toxicities and development of drug-resistance. Here, we evaluated the efficacy of melphalan-flufenamide (Mel-flufen), a novel dipeptide prodrug of melphalan in MM. Experimental Design MM cell lines, primary patient cells, and the human MM xenograft animal model were utilized to study the antitumor activity of mel-flufen. Results Low doses of mel-flufen triggers a more rapid and higher intracellular concentrations of melphalan in MM cells than is achievable by free melphalan. Cytotoxicity analysis showed significantly lower IC50 of mel-flufen than melphalan in MM cells. Importantly, mel-flufen induces apoptosis even in melphalan-, and bortezomib-resistant MM cells. Mechanistic studies show that siRNA knockdown of aminopeptidase N, a key enzyme mediating intracellular conversion of mel-flufen to melphalan, attenuates anti-MM activity of mel-flufen. Furthermore, mel-flufen-induced apoptosis was associated with: 1) activation of caspases and PARP cleavage; 2) ROS generation; 3) mitochondrial dysfunction and release of cytochrome-c; and 4) induction of DNA damage. Moreover, mel-flufen inhibits MM cell migration and tumor-associated angiogenesis. Human MM xenograft studies showed a more potent inhibition of tumor growth in mice treated with mel-flufen than mice receiving equimolar doses of melphalan. Finally, combining mel-flufen with lenalidomide, bortezomib, or dexamethasone triggers synergistic anti-MM activity. Conclusion Our preclinical study supports clinical evaluation of mel-flufen to enhance therapeutic potential of melphalan, overcome drug-resistance, and improve MM patient outcome. PMID:23584492

  9. Mechanisms of G1 cell cycle arrest and apoptosis in myeloma cells induced by hybrid-compound histone deacetylase inhibitor

    SciTech Connect

    Fujii, Seiko; Okinaga, Toshinori; Ariyoshi, Wataru; Takahashi, Osamu; Iwanaga, Kenjiro; Nishino, Norikazu; Tominaga, Kazuhiro; Nishihara, Tatsuji

    2013-05-10

    Highlights: •Novel histone deacetylase inhibitor Ky-2, remarkably inhibits myeloma cell growth. •Ky-2 demonstrates no cytotoxicity against normal lymphocytic cells. •Ky-2 induces cell cycle arrest through the cell cycle-associated proteins. •Ky-2 induces Bcl-2-inhibitable apoptosis through a caspase-dependent cascade. -- Abstract: Objectives: Histone deacetylase (HDAC) inhibitors are new therapeutic agents, used to treat various types of malignant cancers. In the present study, we investigated the effects of Ky-2, a hybrid-compound HDAC inhibitor, on the growth of mouse myeloma cells. Materials and methods: Myeloma cells, HS-72, P3U1, and mouse normal cells were used in this study. Effect of HDAC inhibitors on cell viability was determined by WST-assay and trypan blue assay. Cell cycle was analyzed using flow cytometer. The expression of cell cycle regulatory and the apoptosis associated proteins were examined by Western blot analysis. Hoechst’s staining was used to detect apoptotic cells. Results: Our findings showed that Ky-2 decreased the levels of HDACs, while it enhanced acetylation of histone H3. Myeloma cell proliferation was inhibited by Ky-2 treatment. Interestingly, Ky-2 had no cytotoxic effects on mouse normal cells. Ky-2 treatment induced G1-phase cell cycle arrest and accumulation of a sub-G1 phase population, while Western blotting analysis revealed that expressions of the cell cycle-associated proteins were up-regulated. Also, Ky-2 enhanced the cleavage of caspase-9 and -3 in myeloma cells, followed by DNA fragmentation. In addition, Ky-2 was not found to induce apoptosis in bcl-2 overexpressing myeloma cells. Conclusion: These findings suggest that Ky-2 induces apoptosis via a caspase-dependent cascade and Bcl-2-inhibitable mechanism in myeloma cells.

  10. PSMB4 promotes multiple myeloma cell growth by activating NF-κB-miR-21 signaling

    SciTech Connect

    Zheng, Peihao; Guo, Honggang; Li, Guangchao; Han, Siqi; Luo, Fei; Liu, Yi

    2015-03-06

    Proteasomal subunit PSMB4, was recently identified as potential cancer driver genes in several tumors. However, the regulatory mechanism of PSMB4 on carcinogenesis process remains unclear. In this study, we investigated the expression and roles of PSMB4 in multiple myeloma (MM). We found a significant up-regulation of PSMB4 in MM plasma and cell lines. Ectopic overexpression of PSMB4 promoted cell growth and colony forming ability of MM cells, whereas inhibition of PSMB4 led to a decrease of such events. Furthermore, our results demonstrated the up-regulation of miR-21 and a positive correlation between the levels of miR-21 and PSMB4 in MM. Re-expression of miR-21 markedly rescued PSMB4 knockdown-mediated suppression of cell proliferation and clone-formation. Additionally, while enforced expression of PSMB4 profoundly increased NF-κB activity and the level of miR-21, PSMB4 knockdown or NF-κB inhibition suppressed miR-21 expression in MM cells. Taken together, our results demonstrated that PSMB4 regulated MM cell growth in part by activating NF-κB-miR-21 signaling, which may represent promising targets for novel specific therapies. - Highlights: • First reported upregulation of PSMB4 in MM plasma and cell lines. • PSMB4 promoted MM cell growth and colony forming ability. • Further found miR-21 was up-regulated by PSMB4 in MM plasma and cell lines. • PSMB4-induced miR-21 expression was modulated by NF-κB. • PSMB4-NF-κB-miR-21 axis may be potential therapeutic targets of MM.

  11. Identification of the key genes connected with plasma cells of multiple myeloma using expression profiles

    PubMed Central

    Zhang, Kefeng; Xu, Zhongyang; Sun, Zhaoyun

    2015-01-01

    Objective To uncover the potential regulatory mechanisms of the relevant genes that contribute to the prognosis and prevention of multiple myeloma (MM). Methods Microarray data (GSE13591) were downloaded, including five plasma cell samples from normal donors and 133 plasma cell samples from MM patients. Differentially expressed genes (DEGs) were identified by Student’s t-test. Functional enrichment analysis was performed for DEGs using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Transcription factors and tumor-associated genes were also explored by mapping genes in the TRANSFAC, the tumor suppressor gene (TSGene), and tumor-associated gene (TAG) databases. A protein–protein interaction (PPI) network and PPI subnetworks were constructed by Cytoscape software using the Search Tool for the Retrieval of Interacting Genes (STRING) database. Results A total of 63 DEGs (42 downregulated, 21 upregulated) were identified. Functional enrichment analysis showed that HLA-DRB1 and VCAM1 might be involved in the positive regulation of immune system processes, and HLA-DRB1 might be related to the intestinal immune network for IgA production pathway. The genes CEBPD, JUND, and ATF3 were identified as transcription factors. The top ten nodal genes in the PPI network were revealed including HLA-DRB1, VCAM1, and TFRC. In addition, genes in the PPI subnetwork, such as HLA-DRB1 and VCAM1, were enriched in the cell adhesion molecules pathway, whereas CD4 and TFRC were both enriched in the hematopoietic cell pathway. Conclusion Several crucial genes correlated to MM were identified, including CD4, HLA-DRB1, TFRC, and VCAM1, which might exert their roles in MM progression via immune-mediated pathways. There might be certain regulatory correlations between HLA-DRB1, CD4, and TFRC. PMID:26229487

  12. Targeting MET kinase with the small-molecule inhibitor amuvatinib induces cytotoxicity in primary myeloma cells and cell lines

    PubMed Central

    2013-01-01

    Background MET is a receptor tyrosine kinase that is activated by the ligand HGF and this pathway promotes cell survival, migration, and motility. In accordance with its oncogenic role, MET is constitutively active, mutated, or over-expressed in many cancers. Corollary to its impact, inhibition of MET kinase activity causes reduction of the downstream signaling and demise of cells. In myeloma, a B-cell plasma malignancy, MET is neither mutated nor over-expressed, however, HGF is increased in plasma or serum obtained from myeloma patients and this was associated with poor prognosis. The small-molecule, amuvatinib, inhibits MET receptor tyrosine kinase. Based on this background, we hypothesized that targeting the HGF/MET signaling pathway is a rational approach to myeloma therapy and that myeloma cells would be sensitive to amuvatinib. Methods Expression of MET and HGF mRNAs in normal versus malignant plasma cells was compared during disease progression. Cell death and growth as well as MET signaling pathway were assessed in amuvatinib treated primary myeloma cells and cell lines. Results There was a progressive increase in the transcript levels of HGF (but not MET) from normal plasma cells to refractory malignant plasma cells. Amuvatinib readily inhibited MET phosphorylation in primary CD138+ cells from myeloma patients and in concordance, increased cell death. A 48-hr amuvatinib treatment in high HGF-expressing myeloma cell line, U266, resulted in growth inhibition. Levels of cytotoxicity were time-dependent; at 24, 48, and 72 h, amuvatinib (25 μM) resulted in 28%, 40%, and 55% cell death. Consistent with these data, there was an amuvatinib-mediated decrease in MET phosphorylation in the cell line. Amuvatinib at concentrations of 5, 10, or 25 μM readily inhibited HGF-dependent MET, AKT, ERK and GSK-3-beta phosphorylation. MET-mediated effects were not observed in myeloma cell line that has low MET and/or HGF expression. Conclusions These data suggest that at

  13. Early versus delayed autologous stem cell transplantation in patients receiving novel therapies for Multiple Myeloma

    PubMed Central

    Dunavin, Neil C.; Wei, Lai; Elder, Patrick; Phillips, Gary S; Benson, Don M; Hofmeister, Craig C.; Penza, Sam; Greenfield, Carli; Rose, Karen S.; Rieser, Gisele; Merritt, Lisa; Ketcham, Jill; Heerema, Nyla; Byrd, John C.; Devine, Steven M.; Efebera, Yvonne A.

    2013-01-01

    Autologous stem cell transplant (ASCT) is an effective treatment for multiple myeloma (MM). However the timing of ASCT in the era of novel agents (lenalidomide, thalidomide, bortezomib) is unknown. We retrospectively reviewed the outcome of MM patients who received novel agent based induction treatment and received first ASCT within 12 months of diagnosis (early ASCT, N = 102), or at a later date (late ASCT, N = 65). Median time to ASCT was 7.9 months vs. 17.7 months in the early vs. late ASCT. The 3 and 5 yr overall Survival (OS) from diagnosis was 90 and 63% versus 82 and 63% in early and late ASCT respectively (P=0.45). Forty-one and 36 patients in the early and late ASCT have relapsed or progressed with median time to relapse of 28 and 23 mos (p=0.055). On multivariable analysis, factors predictive of increased risk for progression were ISS stage III (p=0.007), and < VGPR post-ASCT (p<0.001). Factor predictive of worst outcomes for OS was being on hemodialysis (p=0.037). No superiority of one agent was seen. In summary, early or late ASCT is a viable option for MM patients receiving induction treatment with novel targeted therapies. PMID:23194056

  14. Autologous Stem Cell Transplant Followed By Maintenance Therapy in Treating Elderly Patients With Multiple Myeloma

    ClinicalTrials.gov

    2017-02-20

    Extramedullary Plasmacytoma; Isolated Plasmacytoma of Bone; Light Chain Deposition Disease; Primary Systemic Amyloidosis; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage III Multiple Myeloma

  15. Suppression of tumor growth by a heterologous antibody directed against multiple myeloma dominant CD38 antigen in SCID mice injected with multiple myeloma cells.

    PubMed

    Barabas, Arpad Z; Cole, Chad D; Graeff, Richard M; Kovacs, Zoltan B; Lafreniere, Rene

    2016-01-01

    Employing passive immunization - using a heterologous anti-CD38 IgG antibody containing serum - in SCID mice injected subcutaneously with human multiple myeloma cells, we have shown that treatments with the antiserum - especially in the presence of complement - significantly decreased cancer growth. However, administered antibody and complement was not sufficient in amount to prevent cancer cell multiplication and cancer growth expansion to a satisfactory degree. Larger volumes of the same components more than likely would have further reduced cancer growth and prolonged the life of mice. In control mice, cancer growth progressed faster proving that lytic immune response against multiple myeloma cells is necessary for cancer cell kill.

  16. International Myeloma Working Group consensus approach to the treatment of multiple myeloma patients who are candidates for autologous stem cell transplantation

    PubMed Central

    Palumbo, Antonio; Moreau, Philippe; Orlowski, Robert; Bladé, Joan; Sezer, Orhan; Ludwig, Heinz; Dimopoulos, Meletios A.; Attal, Michel; Sonneveld, Pieter; Boccadoro, Mario; Anderson, Kenneth C.; Richardson, Paul G.; Bensinger, William; Johnsen, Hans E.; Kroeger, Nicolaus; Gahrton, Gösta; Bergsagel, P. Leif; Vesole, David H.; Einsele, Hermann; Jagannath, Sundar; Niesvizky, Ruben; Durie, Brian G. M.; San Miguel, Jesus; Lonial, Sagar

    2011-01-01

    The role of high-dose therapy followed by autologous stem cell transplantation (ASCT) in the treatment of multiple myeloma (MM) continues to evolve in the novel agent era. The choice of induction therapy has moved from conventional chemotherapy to newer regimens incorporating the immunomodulatory derivatives thalidomide or lenalidomide and the proteasome inhibitor bortezomib. These drugs combine well with traditional therapies and with one another to form various doublet, triplet, and quadruplet regimens. Up-front use of these induction treatments, in particular 3-drug combinations, has affected unprecedented rates of complete response that rival those previously seen with conventional chemotherapy and subsequent ASCT. Autotransplantation applied after novel-agent-based induction regimens provides further improvement in the depth of response, a gain that translates into extended progression-free survival and, potentially, overall survival. High activity shown by immunomodulatory derivatives and bortezomib before ASCT has recently led to their use as consolidation and maintenance therapies after autotransplantation. Novel agents and ASCT are complementary treatment strategies for MM. This article reviews the current literature and provides important perspectives and guidance on the major issues surrounding the optimal current management of younger, transplantation-eligible MM patients. PMID:21447828

  17. High-dose chemotherapy followed by autologous stem cell transplantation changes prognosis of IgD multiple myeloma.

    PubMed

    Maisnar, V; Hájek, R; Scudla, V; Gregora, E; Büchler, T; Tichý, M; Kotoucek, P; Kafková, A; Forraiová, L; Minarík, J; Radocha, J; Bláha, V; Malý, J

    2008-01-01

    Immunoglobulin D (IgD) multiple myeloma (MM) is a rare plasma cell disorder constituting less than 2% of all MM cases. Survival of patients with IgD MM is generally shorter than that of patients with other types of monoclonal (M-) protein. We have retrospectively analyzed patients with IgD MM participating in clinical trials of the Czech Myeloma Group. Twenty-six IgD MM patients treated between 1996 and 2006 were identified, 14 (54%) men and 12 (46%) women. The median age was 61 years (range: 37-79 years). Ten of 26 patients (39%) were treated with first-line high-dose chemotherapy (HDCT) using melphalan 200 mg/m(2) followed by autologous stem cell transplantation (ASCT). Thirteen of 26 patients (50%) received conventional chemotherapy (CHT), mostly melphalan and prednisone or a vincristine/doxorubicin/dexamethasone (VAD) regimen. Treatment responses were evaluable for 23 of 26 (89%) patients. All HDCT patients had treatment responses, including seven patients (70%) with complete responses and three patients (30%) with partial responses. The median progression-free survival was 18 months for HDCT patients and 20 months for CHT patients. The median overall survival (OS) for all patients was 34 months. The median OS for the HDCT group has not yet been reached (70% of the patients are still alive). In contrast, the median OS for CHT patients was only 16 months. The difference in OS between the two groups was statistically significant (P=0.005). In conclusion, the overall response rate for patients with IgD MM aged 65 years or less treated with HDCT and ASCT is similar to that seen in other MM types.

  18. Omega-3 fatty acids, EPA and DHA induce apoptosis and enhance drug sensitivity in multiple myeloma cells but not in normal peripheral mononuclear cells.

    PubMed

    Abdi, J; Garssen, J; Faber, J; Redegeld, F A

    2014-12-01

    The n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to enhance the effect of chemotherapeutic drugs in clinical studies in cancer patients and to induce apoptotic tumor cell death in vitro. Until now, EPA and DHA have never been investigated in multiple myeloma (MM). Human myeloma cells (L363, OPM-1, OPM-2 and U266) and normal peripheral blood mononuclear cells were exposed to EPA and DHA, and effects on mitochondrial function and apoptosis, caspase-3 activation, gene expression and drug toxicity were measured. Exposure to EPA and DHA induced apoptosis and increased sensitivity to bortezomib in MM cells. Importantly, they did not affect viability of normal human peripheral mononuclear cells. Messenger RNA expression arrays showed that EPA and DHA modulated genes involved in multiple signaling pathways including nuclear factor (NF) κB, Notch, Hedgehog, oxidative stress and Wnt. EPA and DHA inhibited NFκB activity and induced apoptosis through mitochondrial perturbation and caspase-3 activation. Our study suggests that EPA and DHA induce selective cytotoxic effects in MM and increase sensitivity to bortezomib and calls for further exploration into a potential application of these n-3 polyunsaturated fatty acids in the therapy of MM.

  19. Quercetin induces cell apoptosis of myeloma and displays a synergistic effect with dexamethasone in vitro and in vivo xenograft models.

    PubMed

    He, Donghua; Guo, Xing; Zhang, Enfan; Zi, Fuming; Chen, Jing; Chen, Qingxiao; Lin, Xuanru; Yang, Li; Li, Yi; Wu, Wenjun; Yang, Yang; He, Jingsong; Cai, Zhen

    2016-07-19

    Quercetin, a kind of dietary flavonoid, has shown its anticancer activity in many kinds of cancers including hematological malignancies (acute myelogenous leukemia, chronic myelogenous leukemia, chronic lymphocytic leukemia, and MM) in vitro and in vivo. However, its effects on MM need further investigation. In this study, MM cell lines were treated with quercetin alone or in combination with dexamethasone. In order to observe the effects in vivo, a xenograft model of human myeloma was established. Quercetin inhibited proliferation of MM cells (RPMI8226, ARP-1, and MM.1R) by inducing cell cycle arrest in the G2/M phase and apoptosis. Western blot showed that quercetin downregulated c-myc expression and upregulated p21 expression. Quercetin also activated caspase-3, caspase-9, and poly(ADP-ribose)polymerase 1. Caspase inhibitors partially blocked apoptosis induced by quercetin. Furthermore, quercetin combined with dexamethasone significantly increased MM cell apoptosis. In vivo xenograft models, quercetin obviously inhibited tumor growth. Caspase-3 was activated to a greater extent when quercetin was combined with dexamethasone. In conclusion, quercetin alone or in combination with dexamethasone may be an effective therapy for MM.

  20. The role of ubiquitin-specific protease 14 (USP14) in cell adhesion-mediated drug resistance (CAM-DR) of multiple myeloma cells.

    PubMed

    Xu, Xiaohong; Liu, Jing; Shen, Chaoyan; Ding, Linlin; Zhong, Fei; Ouyang, Yu; Wang, Yuchan; He, Song

    2017-01-01

    Cell adhesion-mediated drug resistance (CAM-DR) is one of the mechanisms underlying the drug resistance in multiple myeloma (MM). Ubiquitin-specific protease 14 (USP14) is downregulated in the apoptotic model and upregulated in the adhesive model of MM. This study was undertaken to determine the role of USP14 in CAM-DR of MM cells. We examined the expression of USP14 in the apoptotic model of MM. The mechanism of USP14 in the process of apoptosis was further explored by flow cytometry assay and co-immunoprecipitation. We then performed the cell co-culture and adhesion assay and cell viability assay to investigate the effect of USP14 on adhesive rate and drug resistance in MM. We discovered that USP14 played a negative role in cell apoptosis, which is correlated with Bcl-xl. Moreover, overexpression of USP14 in MM cell adhesion model could enhance the ability of cell adhesion by regulating Wnt-signaling pathways, thereby promoting the CAM-DR in MM. USP14 participates in CAM-DR of MM through acting as a bridge between Bcl-xl apoptotic pathway and Wnt-signaling pathways and may be represented as a good candidate for pursuing clinical trials in MM. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Mesenchymal stromal cells revert multiple myeloma cells to less differentiated phenotype by the combined activities of adhesive interactions and interleukin-6.

    PubMed

    Dezorella, Nili; Pevsner-Fischer, Meirav; Deutsch, Varda; Kay, Sigi; Baron, Shoshana; Stern, Ruth; Tavor, Sigal; Nagler, Arnon; Naparstek, Elizabeth; Zipori, Dov; Katz, Ben-Zion

    2009-07-01

    Multiple myeloma is characterized by the malignant growth of immunoglobulin producing plasma cells, predominantly in the bone marrow. The effects of primary human mesenchymal stromal cells on the differentiation phenotype of multiple myeloma cells were studied by co-culture experiments. The incubation of multiple myeloma cells with bone marrow-derived mesenchymal stromal cells resulted in significant reduction of the expression of the predominant plasma cell differentiation markers CD38 and CD138, and cell surface immunoglobulin light chain. While the down-regulation of CD138 by stromal cells was completely dependent on their adhesive interactions with the multiple myeloma cells, interleukin-6 induced specific down-regulation of CD38. Mesenchymal stromal cells or their conditioned media inhibited the growth of multiple myeloma cell line, thereby reducing the overall amounts of secreted light chains. Analysis of primary multiple myeloma bone marrow samples reveled that the expression of CD38 on multiple myeloma cells was not affected by adhesive interactions. The ex vivo propagation of primary multiple myeloma cells resulted in significant increase in their differentiation markers. Overall, the data indicate that the bone marrow-derived mesenchymal stromal cells revert multiple myeloma cells to less differentiated phenotype by the combined activities of adhesive interactions and interleukin-6.

  2. Multiple myeloma.

    PubMed

    Kumar, Shaji K; Rajkumar, Vincent; Kyle, Robert A; van Duin, Mark; Sonneveld, Pieter; Mateos, María-Victoria; Gay, Francesca; Anderson, Kenneth C

    2017-07-20

    Multiple myeloma is a malignancy of terminally differentiated plasma cells, and patients typically present with bone marrow infiltration of clonal plasma cells and monoclonal protein in the serum and/or urine. The diagnosis of multiple myeloma is made when clear end-organ damage attributable to the plasma cell proliferative disorder or when findings that suggest a high likelihood of their development are present. Distinguishing symptomatic multiple myeloma that requires treatment from the precursor stages of monoclonal gammopathy of undetermined significance and smouldering multiple myeloma is important, as observation is the standard for those conditions. Much progress has been made over the past decade in the understanding of disease biology and individualized treatment approaches. Several new classes of drugs, such as proteasome inhibitors and immunomodulatory drugs, have joined the traditional armamentarium (corticosteroids, alkylating agents and anthracyclines) and, along with high-dose therapy and autologous haemopoietic stem cell transplantation, have led to deeper and durable clinical responses. Indeed, an increasing proportion of patients are achieving lasting remissions, raising the possibility of cure for this disease. Success will probably depend on using combinations of effective agents and treating patients in the early stages of disease, such as patients with smouldering multiple myeloma.

  3. Elevated Th22 as well as Th17 cells associated with therapeutic outcome and clinical stage are potential targets in patients with multiple myeloma

    PubMed Central

    Jia, Yan; He, Na; Li, Daqi; Ji, Chunyan; Ma, Daoxin

    2015-01-01

    T helper (Th) cell imbalance plays important roles in tumor development and their effects in Multiple myeloma (MM) remain unclear. In the present study, we investigated the levels and clinical significance of Th22, Th17 and Th1 cells in patients with MM. Th subsets were examined by flow cytometry. Plasma IL-22, IL-17A and IFN-γ concentrations were measured by ELISA. AHR and RORC mRNA expression was examined by RT-PCR. Here, we found that the frequency of Th22 cells was significantly elevated in peripheral blood (PB) and bone marrow (BM) of newly-diagnosed MM patients, and recovered in complete remission patients after chemotherapy. The circulating Th17 cells accompanied by IL-17A levels were also up-regulated in MM patients and decreased after remission. We also found that there was a significantly positive correlation between Th22 and Th17 cells in MM patients. Moreover, the frequencies of Th22 and Th17 cells were higher in stage III than in stage I+II of MM. Our data demonstrated that Th22 and Th17 cells might be important therapeutic targets in multiple myeloma and could facilitate the effect of antitumor immunotherapy. PMID:26255628

  4. Elevated Th22 as well as Th17 cells associated with therapeutic outcome and clinical stage are potential targets in patients with multiple myeloma.

    PubMed

    Wang, Min; Chen, Ping; Jia, Yan; He, Na; Li, Daqi; Ji, Chunyan; Ma, Daoxin

    2015-07-20

    T helper (Th) cell imbalance plays important roles in tumor development and their effects in Multiple myeloma (MM) remain unclear. In the present study, we investigated the levels and clinical significance of Th22, Th17 and Th1 cells in patients with MM. Th subsets were examined by flow cytometry. Plasma IL-22, IL-17A and IFN-γ concentrations were measured by ELISA. AHR and RORC mRNA expression was examined by RT-PCR. Here, we found that the frequency of Th22 cells was significantly elevated in peripheral blood (PB) and bone marrow (BM) of newly-diagnosed MM patients, and recovered in complete remission patients after chemotherapy. The circulating Th17 cells accompanied by IL-17A levels were also up-regulated in MM patients and decreased after remission. We also found that there was a significantly positive correlation between Th22 and Th17 cells in MM patients. Moreover, the frequencies of Th22 and Th17 cells were higher in stage III than in stage I+II of MM. Our data demonstrated that Th22 and Th17 cells might be important therapeutic targets in multiple myeloma and could facilitate the effect of antitumor immunotherapy.

  5. A simplified method for stem cell autografting in multiple myeloma: a single institution experience.

    PubMed

    López-Otero, A; Ruiz-Delgado, G J; Ruiz-Argüelles, G J

    2009-12-01

    In a 14-year period in a single institution 31 autografts were performed in 26 patients with multiple myeloma (MM), using a simplified and affordable autografting procedure: conducting the grafts on an outpatient basis and avoiding stem cell freezing. Autografts were started on an outpatient basis in all instances, but four patients were admitted to the hospital. Median time to achieve more than 0.5 x 10(9)/l granulocytes was 27 days, whereas median time to recover above 20 x 10(9)/l plts was 37 days. CR was achieved in 19 cases and a very good partial response in 6 cases. The 100-day mortality was 9.6%. The overall median post-transplant survival has not been reached, being above 76 months, whereas the 76-month survival is 80%. The median cost of each procedure was US$ 15 000. Survival results were substantially better than those of historical control in a group of patients treated in the same institution with melphalan/prednisone. It is concluded that high-dose therapy rescued with a simplified autologous stem cell graft is a valid, useful and affordable therapeutic option for patients with MM, even with economical restraints.

  6. MiRNA-34a overexpression inhibits multiple myeloma cancer stem cell growth in mice by suppressing TGIF2

    PubMed Central

    Wu, Songyan; He, Xiangfeng; Li, Miao; Shi, Fangfang; Wu, Di; Pan, Meng; Guo, Mei; Zhang, Rong; Luo, Shouhua; Gu, Ning; Dou, Jun

    2016-01-01

    Hematological malignancy originated from B-cell line, multiple myeloma (MM), is a kind of plasma cells in bone marrow hyperplasia and cause of osteoclast-mediated skeletal destruction disease. MiR-34a plays an important epigenetic regulating role in malignant tumors and presents a therapeutic potential. In this study, we investigated the effects of overexpression of miR-34a in MM cancer stem cells (CSCs) on tumor growth and bone lesions. Here we showed that miR-34a overexpression inhibited cell proliferation, colony formation, and increased CSC apoptosis in vitro. The apparent epigenetic modulation induced by miR-34a overexpression was found no only in MM RPMI8226 cells but also in CSC xenograft MM. Both bioinformatics prediction and dual-luciferase reporter assay showed that transforming growth interaction factor 2 (TGIF2) was sufficient to confer miR-34a regulation. The results of qRT-PCR and Western blot assays demonstrated that the expression of TGIF2 was significant decreased in tumor tissues from NOD/SCID mice injected with miR-34a-MM CSCs. We conclude that miR-34a overexpression in MM CSCs significantly suppressed the tumorigenicity and lytic bone lesions in mouse model by inducing apoptosis and inhibiting TGIF2 expression. PMID:28078014

  7. Characterization of Cyclin E Expression in Multiple Myeloma and Its Functional Role in Seliciclib-Induced Apoptotic Cell Death

    PubMed Central

    Shimoni, Avichai; Ostrovsky, Olga; Samookh, Michal; Peled, Amnon; Nagler, Arnon

    2012-01-01

    Multiple Myeloma (MM) is a lymphatic neoplasm characterized by clonal proliferation of malignant plasma cell that eventually develops resistance to chemotherapy. Drug resistance, differentiation block and increased survival of the MM tumor cells result from high genomic instability. Chromosomal translocations, the most common genomic alterations in MM, lead to dysregulation of cyclin D, a regulatory protein that governs the activation of key cell cycle regulator – cyclin dependent kinase (CDK). Genomic instability was reported to be affected by over expression of another CDK regulator - cyclin E (CCNE). This occurs early in tumorigenesis in various lymphatic malignancies including CLL, NHL and HL. We therefore sought to investigate the role of cyclin E in MM. CCNE1 expression was found to be heterogeneous in various MM cell lines (hMMCLs). Incubation of hMMCLs with seliciclib, a selective CDK-inhibitor, results in apoptosis which is accompanied by down regulation of MCL1 and p27. Ectopic over expression of CCNE1 resulted in reduced sensitivity of the MM tumor cells in comparison to the paternal cell line, whereas CCNE1 silencing with siRNA increased the cell sensitivity to seliciclib. Adhesion to FN of hMMCLs was prevented by seliciclib, eliminating adhesion–mediated drug resistance of MM cells. Combination of seliciclib with flavopiridol effectively reduced CCNE1 and CCND1 protein levels, increased subG1 apoptotic fraction and promoted MM cell death in BMSCs co-culture conditions, therefore over-coming stroma-mediated protection. We suggest that seliciclib may be considered as essential component of modern anti MM drug combination therapy. PMID:22558078

  8. Smac mimetic LCL161 overcomes protective ER stress induced by obatoclax, synergistically causing cell death in multiple myeloma

    PubMed Central

    Prasad, Vivek; Kimlinger, Teresa; Painuly, Utkarsh; Mukhopadhyay, Bedabrata; Haug, Jessica; Bi, Lintao; Rajkumar, S. Vincent; Kumar, Shaji

    2016-01-01

    Bcl2 and IAP families are anti-apoptotic proteins deregulated in multiple myeloma (MM) cells. Pharmacological inhibition of each of these families has shown significant activity only in subgroups of MM patients. Here, we have examined a broad-spectrum Bcl2 family inhibitor Obatoclax (OBX) in combination with a Smac mimetic LCL161 in MM cell lines and patient cells. LCL161/OBX combination induced synergistic cytotoxicity and anti-proliferative effects on a broad range of human MM cell lines. The cytotoxicity was mediated through inhibition of the IAPs, activation of caspases and up regulation of the pro-apoptotic proteins Bid, Bim, Puma and Noxa by the drug combination. In addition, we observed that OBX caused ER stress and activated the Unfolded Protein Response (UPR) leading to drug resistance. LCL161, however inhibited spliced Xbp-1, a pro-survival factor. In addition, we observed that OBX increased GRP78 localization to the cell surface, which then induced PI3K dependent Akt activation and resistance to cell death. LCL161 was able to block OBX induced Akt activation contributing to synergistic cell death. Our results support clinical evaluation of this combination strategy in relapsed refractory MM patients. PMID:27494845

  9. The effect of S1P receptor signaling pathway on the survival and drug resistance in multiple myeloma cells.

    PubMed

    Fu, Di; Li, Yingchun; Li, Jia; Shi, Xiaoyan; Yang, Ronghui; Zhong, Yuan; Wang, Huihan; Liao, Aijun

    2017-01-01

    Multiple myeloma (MM) remains incurable by conventional chemotherapy. Sphingosine-1-phosphate (S1P) receptor-mediated signaling has been recently demonstrated to have critical roles in cell survival and drug resistance in a number of hematological malignancies. To dissect the roles of S1P receptor pathway in MM, we systematically examined cell viability and protein expression associated with cell survival and drug resistance in MM cell lines upon treatment with either pathway activator (S1P) or inhibitor (FTY720). Our results reveal that FTY720 inhibits cell proliferation by downregulating expression of target genes, while S1P has an opposite effect. Knocking down of S1P receptor S1P5R results in a reduction of cell survival-related gene expression; however, it does not have impacts on expression of drug resistance genes. These results suggest that S1P signaling plays a role in cell proliferation and drug resistance in MM, and targeting this pathway will provide a new therapeutic direction for MM management.

  10. Is there still a role for allogeneic stem-cell transplantation in multiple myeloma?

    PubMed Central

    Bensinger, William I.

    2007-01-01

    Despite significant improvements in survival for multiple myeloma patients through autologous stem-cell transplantation (SCT) and the introduction of novel drugs, the disease remains incurable for all but a small fraction of patients. Only allogeneic SCT is potentially curative, due in part to a graft-versus-myeloma effect. High transplant-related mortality with allogeneic SCT is currently the major limitation to wider use of this potentially curative modality. Mortality can be reduced through the use of lower-intensity conditioning regimens which allow engraftment of allogeneic stem cells, but this comes at a cost of higher rates of disease progression and relapse. Promising studies to improve outcomes of allogeneic transplants include the use of more intensive non-myeloablative conditioning regimens, tandem transplants, peripheral blood cells, graft engineering to improve the graft-versus-myeloma activity while reducing graft-versus-host disease (GVHD), post-transplant maintenance, and targeted conditioning therapies such as bone-seeking radioisotopes. PMID:18070719

  11. Thalidomide in newly diagnosed multiple myeloma: influence of thalidomide treatment on peripheral blood stem cell collection yield.

    PubMed

    Breitkreutz, I; Lokhorst, H M; Raab, M S; Holt, B van der; Cremer, F W; Herrmann, D; Glasmacher, A; Schmidt-Wolf, I G H; Blau, I W; Martin, H; Salwender, H; Haenel, A; Sonneveld, P; Goldschmidt, H

    2007-06-01

    In a phase III randomized, multicenter study, the German-speaking Myeloma-Multicenter Group (GMMG) and the Dutch-Belgian Hemato-Oncology Cooperative Group (HOVON) group investigated the influence of thalidomide (Thal) on the outcome of peripheral blood stem cell (PBSC) collection in multiple myeloma (MM) before peripheral autologous blood stem cell transplantation (ABSCT). We analyzed the data of 398 myeloma patients after induction with Thal, doxorubicin and dexamethasone (TAD) in comparison with vincristine, doxorubicin and dexamethasone (VAD) followed by mobilization with cyclophosphamide, doxorubicin, dexamethasone (CAD) and PBSC collection. Within both the study groups, patients treated with TAD showed to collect significantly fewer CD34(+) cells compared with VAD (GMMG, TAD: median 9.8 x 10(6)/kg; range 2.0-33.6; VAD: median 10.9 x 10(6)/kg range 3.0-36.0; P=0.02) (HOVON, TAD: median 7.4 x 10(6)/kg; range 2.0-33.0; VAD: median 9.4 x 10(6)/kg; range 0.0-48.7; P=0.009). However, engraftment after peripheral autologous stem cell transplantation showed no difference between Thal and VAD groups. We conclude that Thal as a part of induction regimen is associated with better response rates (GMMG-HD3: CR/PR 79%, VAD: CR/PR 58%; HOVON-50: TAD: CR/PR 81%, VAD: CR/PR 61%), but significantly affects the yield of PBSC collection. Nevertheless, the number of total CD34(+) cells collected was sufficient for double autologous transplantation in 82% of the Thal patients, with at least 2.5 x 10(6)/kg CD34(+) cells.

  12. CS1-Specific Chimeric Antigen Receptor (CAR)-Engineered Natural Killer Cells Enhance In Vitro and In Vivo Anti-tumor Activity Against Human Multiple Myeloma

    PubMed Central

    Chu, Jianhong; Deng, Youcai; Benson, Don M.; He, Shun; Hughes, Tiffany; Zhang, Jianying; Peng, Yong; Mao, Hsiaoyin; Yi, Ling; Ghoshal, Kalpana; He, Xiaoming; Devine, Steven M.; Zhang, Xiaoliu; Caligiuri, Michael A.; Hofmeister, Craig C.; Yu, Jianhua

    2014-01-01

    Multiple myeloma (MM) is an incurable hematological malignancy. Chimeric antigen receptor (CAR)-expressing T cells have been demonstrated successful in the clinic to treat B-lymphoid malignancies. However, the potential utility of antigen-specific CAR-engineered natural killer (NK) cells to treat MM has not been explored. In this study, we determined whether CS1, a surface protein that is highly expressed on MM cells, can be targeted by CAR NK cells to treat MM. We successfully generated a viral construct of a CS1-specific CAR and expressed it in human NK cells. In vitro, CS1-CAR NK cells displayed enhanced MM cytolysis and IFN-γ production, and showed a specific CS1-dependent recognition of MM cells. Ex vivo, CS1-CAR NK cells also showed similarly enhanced activities when responding to primary MM tumor cells. More importantly, in an aggressive orthotopic MM xenograft mouse model, adoptive transfer of NK-92 cells expressing CS1-CAR efficiently suppressed the growth of human IM9 MM cells and also significantly prolonged mouse survival. Thus, CS1 represents a viable target for CAR-expressing immune cells, and autologous or allogeneic transplantation of CS1-specific CAR NK cells may be a promising strategy to treat MM. PMID:24067492

  13. Isolation of Circulating Plasma Cells in Multiple Myeloma Using CD138 Antibody-Based Capture in a Microfluidic Device

    PubMed Central

    Qasaimeh, Mohammad A.; Wu, Yichao C.; Bose, Suman; Menachery, Anoop; Talluri, Srikanth; Gonzalez, Gabriel; Fulciniti, Mariateresa; Karp, Jeffrey M.; Prabhala, Rao H.; Karnik, Rohit

    2017-01-01

    The necessity for bone marrow aspiration and the lack of highly sensitive assays to detect residual disease present challenges for effective management of multiple myeloma (MM), a plasma cell cancer. We show that a microfluidic cell capture based on CD138 antigen, which is highly expressed on plasma cells, permits quantitation of rare circulating plasma cells (CPCs) in blood and subsequent fluorescence-based assays. The microfluidic device is based on a herringbone channel design, and exhibits an estimated cell capture efficiency of ~40–70%, permitting detection of <10 CPCs/mL using 1-mL sample volumes, which is difficult using existing techniques. In bone marrow samples, the microfluidic-based plasma cell counts exhibited excellent correlation with flow cytometry analysis. In peripheral blood samples, the device detected a baseline of 2–5 CD138+ cells/mL in healthy donor blood, with significantly higher numbers in blood samples of MM patients in remission (20–24 CD138+ cells/mL), and yet higher numbers in MM patients exhibiting disease (45–184 CD138+ cells/mL). Analysis of CPCs isolated using the device was consistent with serum immunoglobulin assays that are commonly used in MM diagnostics. These results indicate the potential of CD138-based microfluidic CPC capture as a useful ‘liquid biopsy’ that may complement or partially replace bone marrow aspiration. PMID:28374831

  14. Isolation of Circulating Plasma Cells in Multiple Myeloma Using CD138 Antibody-Based Capture in a Microfluidic Device

    NASA Astrophysics Data System (ADS)

    Qasaimeh, Mohammad A.; Wu, Yichao C.; Bose, Suman; Menachery, Anoop; Talluri, Srikanth; Gonzalez, Gabriel; Fulciniti, Mariateresa; Karp, Jeffrey M.; Prabhala, Rao H.; Karnik, Rohit

    2017-04-01

    The necessity for bone marrow aspiration and the lack of highly sensitive assays to detect residual disease present challenges for effective management of multiple myeloma (MM), a plasma cell cancer. We show that a microfluidic cell capture based on CD138 antigen, which is highly expressed on plasma cells, permits quantitation of rare circulating plasma cells (CPCs) in blood and subsequent fluorescence-based assays. The microfluidic device is based on a herringbone channel design, and exhibits an estimated cell capture efficiency of ~40-70%, permitting detection of <10 CPCs/mL using 1-mL sample volumes, which is difficult using existing techniques. In bone marrow samples, the microfluidic-based plasma cell counts exhibited excellent correlation with flow cytometry analysis. In peripheral blood samples, the device detected a baseline of 2-5 CD138+ cells/mL in healthy donor blood, with significantly higher numbers in blood samples of MM patients in remission (20-24 CD138+ cells/mL), and yet higher numbers in MM patients exhibiting disease (45-184 CD138+ cells/mL). Analysis of CPCs isolated using the device was consistent with serum immunoglobulin assays that are commonly used in MM diagnostics. These results indicate the potential of CD138-based microfluidic CPC capture as a useful ‘liquid biopsy’ that may complement or partially replace bone marrow aspiration.

  15. The novel, orally bioavailable HSP90 inhibitor NVP-HSP990 induces cell cycle arrest and apoptosis in multiple myeloma cells and acts synergistically with melphalan by increased cleavage of caspases.

    PubMed

    Lamottke, Britta; Kaiser, Martin; Mieth, Maren; Heider, Ulrike; Gao, Zhenhai; Nikolova, Zariana; Jensen, Michael R; Sterz, Jan; von Metzler, Ivana; Sezer, Orhan

    2012-05-01

    Heat shock protein 90 (HSP90) binds and stabilizes numerous proteins and kinases essential for myeloma cell survival and proliferation. We and others have recently demonstrated that inhibition of HSP90 by small molecular mass inhibitors induces cell death in multiple myeloma (MM). However, some of the HSP90 inhibitors involved in early clinical trials have shown limited antitumor activity and unfavorable toxicity profiles. Here, we analyzed the effects of the novel, orally bioavailable HSP90 inhibitor NVP-HSP990 on MM cell proliferation and survival. The inhibitor led to a significant reduction in myeloma cell viability and induced G2 cell cycle arrest, degradation of caspase-8 and caspase-3, and induction of apoptosis. Inhibition of the HSP90 ATPase activity was accompanied by the degradation of MM phospho-Akt and phospho-ERK1/2 and upregulation of Hsp70. Exposure of MM cells to a combination of NVP-HSP990 and either melphalan or histone deacetylase (HDAC) inhibitors caused synergistic inhibition of viability, increased induction of apoptosis, and was able to overcome the primary resistance of the cell line RPMI-8226 to HSP90 inhibition. Combined incubation with melphalan and NVP-HSP990 led to synergistically increased cleavage of caspase-2, caspase-9, and caspase-3. These data demonstrate promising activity for NVP-HSP990 as single agent or combination treatment in MM and provide a rationale for clinical trials.

  16. Ku86 variant expression and function in multiple myeloma cells is associated with increased sensitivity to DNA damage.

    PubMed

    Tai, Y T; Teoh, G; Lin, B; Davies, F E; Chauhan, D; Treon, S P; Raje, N; Hideshima, T; Shima, Y; Podar, K; Anderson, K C

    2000-12-01

    Ku is a heterodimer of Ku70 and Ku86 that binds to double-stranded DNA breaks (DSBs), activates the catalytic subunit (DNA-PKcs) when DNA is bound, and is essential in DSB repair and V(D)J recombination. Given that abnormalities in Ig gene rearrangement and DNA damage repair are hallmarks of multiple myeloma (MM) cells, we have characterized Ku expression and function in human MM cells. Tumor cells (CD38(+)CD45RA(-)) from 12 of 14 (86%) patients preferentially express a 69-kDa variant of Ku86 (Ku86v). Immunoblotting of whole cell extracts (WCE) from MM patients shows reactivity with Abs targeting Ku86 N terminus (S10B1) but no reactivity with Abs targeting Ku86 C terminus (111), suggesting that Ku86v has a truncated C terminus. EMSA confirmed a truncated C terminus in Ku86v and further demonstrated that Ku86v in MM cells had decreased Ku-DNA end binding activity. Ku86 forms complexes with DNA-PKcs and activates kinase activity, but Ku86v neither binds DNA-PKcs nor activates kinase activity. Furthermore, MM cells with Ku86v have increased sensitivity to irradiation, mitomycin C, and bleomycin compared with patient MM cells or normal bone marrow donor cells with Ku86. Therefore, this study suggests that Ku86v in MM cells may account for decreased DNA repair and increased sensitivity to radiation and chemotherapeutic agents, whereas Ku86 in MM cells confers resistance to DNA damaging agents. Coupled with a recent report that Ku86 activity correlates with resistance to radiation and chemotherapy, these results have implications for the potential role of Ku86 as a novel therapeutic target.

  17. Disparities in utilization of autologous hematopoietic cell transplantation for treatment of multiple myeloma.

    PubMed

    Costa, Luciano J; Huang, Jia-Xing; Hari, Parameswaran N

    2015-04-01

    Autologous hematopoietic cell transplantation (AHCT) is an established therapy for multiple myeloma (MM), with an impact on quality of remission and survival. We analyzed the role of race, ethnicity, sex, and age disparities in AHCT utilization in the United States. We combined MM incidence derived from the Surveillance, Epidemiology and End Results program with transplantation activity reported to the Center for International Blood and Marrow Transplant Research for the period of 2005 to 2009 to assess the impact of disparities in AHCT. Utilization (number of transplantations/new cases) was compared between groups using the relative utilization ratio (RUR), defined as [utilization for a given category]/[utilization for the entire population]. Data were obtained from 22,462 actual MM cases and 13,311 AHCT. The age-adjusted RUR was 1.17 (95% confidence interval [CI], 1.15 to 1.19) among non-Hispanic Whites (NHW), higher than in non-Hispanic Blacks (NHB) (age-adjusted RUR, .69; 95% CI, .67 to .72; P < .0002), Hispanics (age-adjusted RUR, .64; 95% CI, .60 to .69; P < .002), and Asians (age-adjusted RUR, .65; 95% CI, .58 to .73; P < .0002]. AHCT utilization was higher in men than in women among Hispanics (age-adjusted RUR .72 versus .56, P = .007), but not among NHW, NHB, or Asians. Sex disparity prevents 1.3% of potential AHCTs in patients with MM (10.4% among Hispanics). Racial-ethnic disparities prevent 13.8% of AHCTs (44.7% in Hispanic and Asians, 39.9% in NHBs). Race-ethnicity disparity greatly affects AHCT utilization in MM. Sex disparity plays a lesser role, except among Hispanics. The ongoing decrease in age disparity will continue to drive major increase of AHCT activity. Two-year and 5-year increases in the age of the AHCT population would result in 12% and 32% increases, respectively, in volume of AHCT.

  18. Analysis of renal impairment in MM-003, a phase III study of pomalidomide + low - dose dexamethasone versus high - dose dexamethasone in refractory or relapsed and refractory multiple myeloma.

    PubMed

    Weisel, Katja C; Dimopoulos, Meletios A; Moreau, Philippe; Lacy, Martha Q; Song, Kevin W; Delforge, Michel; Karlin, Lionel; Goldschmidt, Hartmut; Banos, Anne; Oriol, Albert; Alegre, Adrian; Chen, Christine; Cavo, Michele; Garderet, Laurent; Ivanova, Valentina; Martinez-Lopez, Joaquin; Knop, Stefan; Yu, Xin; Hong, Kevin; Sternas, Lars; Jacques, Christian; Zaki, Mohamed H; San Miguel, Jesus

    2016-07-01

    Pomalidomide + low-dose dexamethasone is effective and well tolerated for refractory or relapsed and refractory multiple myeloma after bortezomib and lenalidomide failure. The phase III trial MM-003 compared pomalidomide + low-dose dexamethasone with high-dose dexamethasone. This subanalysis grouped patients by baseline creatinine clearance ≥ 30 - < 60 mL/min (n=93, pomalidomide + low-dose dexamethasone; n=56, high-dose dexamethasone) or ≥ 60 mL/min (n=205, pomalidomide + low-dose dexamethasone; n=93, high-dose dexamethasone). Median progression-free survival was similar for both subgroups and favored pomalidomide + low-dose dexamethasone versus high-dose dexamethasone: 4.0 versus 1.9 months in the group with baseline creatinine clearance ≥ 30 - < 60 mL/min (P<0.001) and 4.0 versus 2.0 months in the group with baseline creatinine clearance ≥ 60 mL/min (P<0.001). Median overall survival for pomalidomide + low-dose dexamethasone versus high-dose dexamethasone was 10.4 versus 4.9 months (P=0.030) and 15.5 versus 9.2 months (P=0.133), respectively. Improved renal function, defined as an increase in creatinine clearance from < 60 to ≥ 60 mL/min, was similar in pomalidomide + low-dose dexamethasone and high-dose dexamethasone patients (42% and 47%, respectively). Improvement in progression-free and overall survival in these patients was comparable with that in patients without renal impairment. There was no increase in discontinuations of therapy, dose modifications, and adverse events in patients with moderate renal impairment. Pomalidomide at a starting dose of 4 mg + low-dose dexamethasone is well tolerated in patients with refractory or relapsed and refractory multiple myeloma, and of comparable efficacy if moderate renal impairment is present. This trial was registered with clinicaltrials.gov identifier 01311687 and EudraCT identifier 2010-019820-30. Copyright© Ferrata Storti Foundation.

  19. Analysis of renal impairment in MM-003, a phase III study of pomalidomide + low - dose dexamethasone versus high - dose dexamethasone in refractory or relapsed and refractory multiple myeloma

    PubMed Central

    Weisel, Katja C.; Dimopoulos, Meletios A.; Moreau, Philippe; Lacy, Martha Q.; Song, Kevin W.; Delforge, Michel; Karlin, Lionel; Goldschmidt, Hartmut; Banos, Anne; Oriol, Albert; Alegre, Adrian; Chen, Christine; Cavo, Michele; Garderet, Laurent; Ivanova, Valentina; Martinez-Lopez, Joaquin; Knop, Stefan; Yu, Xin; Hong, Kevin; Sternas, Lars; Jacques, Christian; Zaki, Mohamed H.; Miguel, Jesus San

    2016-01-01

    Pomalidomide + low-dose dexamethasone is effective and well tolerated for refractory or relapsed and refractory multiple myeloma after bortezomib and lenalidomide failure. The phase III trial MM-003 compared pomalidomide + low-dose dexamethasone with high-dose dexamethasone. This subanalysis grouped patients by baseline creatinine clearance ≥ 30 − < 60 mL/min (n=93, pomalidomide + low-dose dexamethasone; n=56, high-dose dexamethasone) or ≥ 60 mL/min (n=205, pomalidomide + low-dose dexamethasone; n=93, high-dose dexamethasone). Median progression-free survival was similar for both subgroups and favored pomalidomide + low-dose dexamethasone versus high-dose dexamethasone: 4.0 versus 1.9 months in the group with baseline creatinine clearance ≥ 30 − < 60 mL/min (P<0.001) and 4.0 versus 2.0 months in the group with baseline creatinine clearance ≥ 60 mL/min (P<0.001). Median overall survival for pomalidomide + low-dose dexamethasone versus high-dose dexamethasone was 10.4 versus 4.9 months (P=0.030) and 15.5 versus 9.2 months (P=0.133), respectively. Improved renal function, defined as an increase in creatinine clearance from < 60 to ≥ 60 mL/min, was similar in pomalidomide + low-dose dexamethasone and high-dose dexamethasone patients (42% and 47%, respectively). Improvement in progression-free and overall survival in these patients was comparable with that in patients without renal impairment. There was no increase in discontinuations of therapy, dose modifications, and adverse events in patients with moderate renal impairment. Pomalidomide at a starting dose of 4 mg + low-dose dexamethasone is well tolerated in patients with refractory or relapsed and refractory multiple myeloma, and of comparable efficacy if moderate renal impairment is present. This trial was registered with clinicaltrials.gov identifier 01311687 and EudraCT identifier 2010-019820-30. PMID:27081177

  20. Clustering of cancer among families of cases with Hodgkin Lymphoma (HL), Multiple Myeloma (MM), Non-Hodgkin's Lymphoma (NHL), Soft Tissue Sarcoma (STS) and control subjects

    PubMed Central

    2009-01-01

    Background A positive family history of chronic diseases including cancer can be used as an index of genetic and shared environmental influences. The tumours studied have several putative risk factors in common including occupational exposure to certain pesticides and a positive family history of cancer. Methods We conducted population-based studies of Hodgkin lymphoma (HL), Multiple Myeloma (MM), non-Hodgkin's Lymphoma (NHL), and Soft Tissue Sarcoma (STS) among male incident case and control subjects in six Canadian provinces. The postal questionnaire was used to collect personal demographic data, a medical history, a lifetime occupational history, smoking pattern, and the information on family history of cancer. The family history of cancer was restricted to first degree relatives and included relationship to the index subjects and the types of tumours diagnosed among relatives. The information was collected on 1528 cases (HL (n = 316), MM (n = 342), NHL (n = 513), STS (n = 357)) and 1506 age ± 2 years and province of residence matched control subjects. Conditional logistic regression analyses adjusted for the matching variables were conducted. Results We found that most families were cancer free, and a minority included two or more affected relatives. HL [(ORadj (95% CI) 1.79 (1.33, 2.42)], MM (1.38(1.07, 1.78)), NHL (1.43 (1.15, 1.77)), and STS cases (1.30(1.00, 1.68)) had higher incidence of cancer if any first degree relative was affected with cancer compared to control families. Constructing mutually exclusive categories combining "family history of cancer" (yes, no) and "pesticide exposure ≥10 hours per year" (yes, no) indicated that a positive family history was important for HL (2.25(1.61, 3.15)), and for the combination of the two exposures increased risk for MM (1.69(1.14,2.51)). Also, a positive family history of cancer both with (1.72 (1.21, 2.45)) and without pesticide exposure (1.43(1.12, 1.83)) increased risk of NHL. Conclusion HL, MM, NHL, and

  1. Cost analysis of a randomized stem cell mobilization study in multiple myeloma.

    PubMed

    Varmavuo, Ville; Silvennoinen, Raija; Anttila, Pekka; Säily, Marjaana; Sankelo, Marja; Putkonen, Mervi; Ahonen, Jouni; Mahlamäki, Eija; Mäntymaa, Pentti; Savolainen, Eeva-Riitta; Remes, Kari; Jantunen, Esa

    2016-10-01

    Upfront autologous stem cell transplantation (ASCT) is the standard therapy for younger multiple myeloma (MM) patients. MM patients usually undergo stem cell mobilization with cyclophosphamide (CY) followed by granulocyte colony-stimulating factor (G-CSF), or with G-CSF alone. A limited number of randomized studies are available comparing costs of different mobilization strategies. Eighty transplant-eligible patients aged up to 70 years with untreated MM were included in this prospective study. The patients were treated with RVD induction for three 21-day cycles and randomized 1:1 at inclusion into one of the two mobilization arms CY 2 g/m(2) + G-CSF [arm A] vs. G-CSF alone [arm B]. Plerixafor was given according to a specific algorithm if needed. Sixty-nine patients who received mobilization followed by blood graft collection were included in the cost analysis. The median total costs of the mobilization phase were significantly higher in arm A than in arm B (3855 € vs. 772 €, p ≤ 0.001). The cumulative median cost of the mobilization and collection phases was significantly lower in arm B than in arm A (8524 € vs. 11,622 €, p = 0.012). There was no significant difference between the arms in the total median costs of ASCT (n = 59) (34,997 € in arm A vs. 31,981 € in arm B, p = 0.118). Mobilization with G-CSF alone seems to be a preferable mobilization method for MM patients in terms of mobilization and apheresis costs. In addition, it requires less hospital resource utilization.

  2. Autocrine and Paracrine Interactions between Multiple Myeloma Cells and Bone Marrow Stromal Cells by Growth Arrest-specific Gene 6 Cross-talk with Interleukin-6.

    PubMed

    Furukawa, Miki; Ohkawara, Hiroshi; Ogawa, Kazuei; Ikeda, Kazuhiko; Ueda, Koki; Shichishima-Nakamura, Akiko; Ito, Emi; Imai, Jun-Ichi; Yanagisawa, Yuka; Honma, Reiko; Watanabe, Shinya; Waguri, Satoshi; Ikezoe, Takayuki; Takeishi, Yasuchika

    2017-03-10

    The pathogenesis of multiple myeloma (MM) has not yet been fully elucidated. Our microarray analysis and immunohistochemistry revealed significant up-regulation of growth arrest-specific gene 6 (Gas6), a vitamin K-dependent protein with a structural homology with protein S, in bone marrow (BM) cells of MM patients. ELISA showed that the serum levels of soluble Gas6 were significantly increased in the MM patients when compared with healthy controls. Gas6 was overexpressed in the human CD138-positive MM cell line RPMI-8226. Exogenous Gas6 suppressed apoptosis induced by serum deprivation and enhanced cell proliferation of the MM cells. The conditional medium from the human BM stromal cell line HS-5 induced cell proliferation and anti-apoptosis of the MM cells with extracellular signal-regulated kinase, Akt, and nuclear factor-κB phosphorylation, which were reversed by the neutralizing antibody to Gas6 or IL-6. The TAM family receptor Mer, which has been identified as a Gas6 receptor, was overexpressed in BM cells of MM patients. The knockdown of Mer by siRNA inhibited cell proliferation, anti-apoptosis, and up-regulation of intercellular cell adhesion molecule-1 (ICAM-1) in MM cells stimulated by an HS-5 cell-conditioned medium. Furthermore, the Gas6-neutralizing antibody reduced the up-regulation of IL-6 and ICAM-1 induced by a HS-5 cell-conditioned medium in MM cells. The present study provides new evidence that autocrine and paracrine stimulation of Gas6 in concert with IL-6 contributes to the pathogenesis of MM, suggesting that Gas6-Mer-related signaling pathways may be a promising novel target for treating MM.

  3. [Monoclonal Gammopathy in the General Practioners’s Office. Diagnosis and Treatment of Plasma Cell Myeloma].

    PubMed

    Fuchs, Ivo; Gerber, Bernhard; Samaras, Panagiotis

    2015-10-14

    A monoclonal gammopathy is a common finding in the general practitioner’s office. An active search for a paraproteinemia is indicated in case of suspected malignancy, evidence of end organ damage (e.g. anemia, renal insufficiency) or in case of recurrent infections or prolonged fatigue. Plasma cell myeloma is an important differential diagnosis of a monoclonal gammopathy and implies a broad spectrum of diagnostic as well as therapeutic consequences for the patient. Plasma cell myeloma is still being considered an incurable disease, but its prognosis could be significantly improved with the introduction of new drugs.

  4. Recent advances in antimultiple myeloma drug development

    PubMed Central

    Wang, Nuozhou; Bartlow, Patrick; Ouyang, Qin; Xie, Xiang-Qun

    2015-01-01

    Multiple myeloma (MM) is the second most common hematological malignancy and is characterized by the aberrant proliferation of terminally differentiated plasma B cells with impairment in apoptosis capacity. Particularly, osteolytic bone diseases and renal failure resulting from hyperparaproteinemia and hypercalcemia have been the major serious sequelae that are inextricably linked with MM tumor progression. Despite the introduction of new treatment regimens, problematic neuropathy, thrombocytopenia, drug resistance and high MM relapse rates continue to plague the current therapies. New chemical agents are in development on the basis of understanding several signaling pathways and molecular mechanisms like tumor necrosis factor-α, proteasome, PI3K and MARKs. This review focuses on the most recent patents and clinical trials in the development of new medicine for the treatment of multiple myeloma. Furthermore, the important signaling pathways involved in the proliferation, survival and apoptosis of myeloma cells will be discussed. PMID:24998287

  5. Potential crosstalk of the interleukin-6-heme oxygenase-1-dependent mechanism involved in resistance to lenalidomide in multiple myeloma cells.

    PubMed

    Wu, Weibing; Ma, Dan; Wang, Ping; Cao, Lu; Lu, Tangsheng; Fang, Qin; Zhao, Jiangyuan; Wang, Jishi

    2016-03-01

    Interleukin (IL)-6 is one of the most important survival factors in multiple myeloma (MM), and determines the poor prognosis of MM. IL-6 mainly has a paracrine bone marrow stromal cell origin and an autocrine MM cell origin. As an enzyme having cytoprotective effects, heme oxygenase-1 (HO-1) promotes the growth and drug resistance of various malignant tumors. HO-1 expression levels in bone marrow CD138(+) cells of MM patients were significantly higher than those in healthy donors, and positively correlated with both serum IL-6 and intracellular IL-6 mRNA expression levels. Culture of U266, RPMI8226 and CD138(+) cells with exogenous IL-6 in vitro induced high HO-1 expression levels and allowed them to resist lenalidomide. It is hypothesized that this was probably attributable to IL-6-mediated activation of the Janus kinase 2-signal transducer and activator of transcription 3 pathway. In contrast, without IL-6 coculture, enhanced HO-1 expression in U266, RPMI8226 and bone marrow CD138(+) cells from MM patients significantly inreased IL-6 mRNA expression levels and facilitated autocrine IL-6 production. The findings were associated with high HO-1 expression-enhanced p38 mitogen-activated protein kinase phosphorylation. Reduced HO-1 expression sensitized MM cells to lenalidomide. Therefore, we postulated that IL-6 in the bone marrow microenvironment of MM patients stimulated high HO-1 expression in MM cells and their resistance to lenalidomide. High HO-1 expression also stimulated autocrine IL-6 production, and exacerbated drug resistance and disease. This study supports the use of HO-1 as a possible marker for both MM prognosis and drug resistance, and as a potential therapeutic target.

  6. Multiple myeloma

    PubMed Central

    Rajkumar, S. Vincent

    2008-01-01

    Multiple myeloma is a clonal plasma cell malignancy that accounts for slightly more than 10% of all hematologic cancers. In this paper, we present a historically focused review of the disease, from the description of the first case in 1844 to the present. The evolution of drug therapy and stem-cell transplantation for the treatment of myeloma, as well as the development of new agents, is discussed. We also provide an update on current concepts of diagnosis and therapy, with an emphasis on how treatments have emerged from a historical perspective after certain important discoveries and the results of experimental studies. PMID:18332230

  7. A Peculiar Molecular Profile of Umbilical Cord-Mesenchymal Stromal Cells Drives Their Inhibitory Effects on Multiple Myeloma Cell Growth and Tumor Progression

    PubMed Central

    Ciavarella, Sabino; Caselli, Anna; Tamma, Antonella Valentina; Savonarola, Annalisa; Loverro, Giuseppe; Paganelli, Roberto; Tucci, Marco

    2015-01-01

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are under intensive investigation in preclinical models of cytotherapies against cancer, including multiple myeloma (MM). However, the therapeutic use of stromal progenitors holds critical safety concerns due to their potential MM-supporting activity in vivo. Here, we explored whether MSCs from sources other than BM, such as adipose tissue (AD-MSCs) and umbilical cord (UC-MSCs), affect MM cell growth in comparison to either normal (nBM-MSCs) or myelomatous marrow MSCs (MM-BM-MSCs). Results from both proliferation and clonogenic assays indicated that, in contrast to nBM- and MM-BM-MSCs, both AD and particularly UC-MSCs significantly inhibit MM cell clonogenicity and growth in vitro. Furthermore, when co-injected with UC-MSCs into mice, RPMI-8226 MM cells formed smaller subcutaneous tumor masses, while peritumoral injections of the same MSC subtype significantly delayed the tumor burden growing in subcutaneous plasmocytoma-bearing mice. Finally, both microarrays and ELISA revealed different expression of several genes and soluble factors in UC-MSCs as compared with other MSCs. Our data suggest that UC-MSCs have a distinct molecular profile that correlates with their intrinsic anti-MM activity and emphasize the UCs as ideal sources of MSCs for future cell-based therapies against MM. PMID:25758779

  8. A peculiar molecular profile of umbilical cord-mesenchymal stromal cells drives their inhibitory effects on multiple myeloma cell growth and tumor progression.

    PubMed

    Ciavarella, Sabino; Caselli, Anna; Tamma, Antonella Valentina; Savonarola, Annalisa; Loverro, Giuseppe; Paganelli, Roberto; Tucci, Marco; Silvestris, Franco

    2015-06-15

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are under intensive investigation in preclinical models of cytotherapies against cancer, including multiple myeloma (MM). However, the therapeutic use of stromal progenitors holds critical safety concerns due to their potential MM-supporting activity in vivo. Here, we explored whether MSCs from sources other than BM, such as adipose tissue (AD-MSCs) and umbilical cord (UC-MSCs), affect MM cell growth in comparison to either normal (nBM-MSCs) or myelomatous marrow MSCs (MM-BM-MSCs). Results from both proliferation and clonogenic assays indicated that, in contrast to nBM- and MM-BM-MSCs, both AD and particularly UC-MSCs significantly inhibit MM cell clonogenicity and growth in vitro. Furthermore, when co-injected with UC-MSCs into mice, RPMI-8226 MM cells formed smaller subcutaneous tumor masses, while peritumoral injections of the same MSC subtype significantly delayed the tumor burden growing in subcutaneous plasmocytoma-bearing mice. Finally, both microarrays and ELISA revealed different expression of several genes and soluble factors in UC-MSCs as compared with other MSCs. Our data suggest that UC-MSCs have a distinct molecular profile that correlates with their intrinsic anti-MM activity and emphasize the UCs as ideal sources of MSCs for future cell-based therapies against MM.

  9. Genetic polymorphisms of EPHX1, Gsk3beta, TNFSF8 and myeloma cell DKK-1 expression linked to bone disease in myeloma.

    PubMed

    Durie, B G M; Van Ness, B; Ramos, C; Stephens, O; Haznadar, M; Hoering, A; Haessler, J; Katz, M S; Mundy, G R; Kyle, R A; Morgan, G J; Crowley, J; Barlogie, B; Shaughnessy, J

    2009-10-01

    Bone disease in myeloma occurs as a result of complex interactions between myeloma cells and the bone marrow microenvironment. A custom-built DNA single nucleotide polymorphism (SNP) chip containing 3404 SNPs was used to test genomic DNA from myeloma patients classified by the extent of bone disease. Correlations identified with a Total Therapy 2 (TT2) (Arkansas) data set were validated with Eastern Cooperative Oncology Group (ECOG) and Southwest Oncology Group (SWOG) data sets. Univariate correlates with bone disease included: EPHX1, IGF1R, IL-4 and Gsk3beta. SNP signatures were linked to the number of bone lesions, log(2) DKK-1 myeloma cell expression levels and patient survival. Using stepwise multivariate regression analysis, the following SNPs: EPHX1 (P=0.0026); log(2) DKK-1 expression (P=0.0046); serum lactic dehydrogenase (LDH) (P=0.0074); Gsk3beta (P=0.02) and TNFSF8 (P=0.04) were linked to bone disease. This assessment of genetic polymorphisms identifies SNPs with both potential biological relevance and utility in prognostic models of myeloma bone disease.

  10. Multiple myeloma cells recruit tumor-supportive macrophages through the CXCR4/CXCL12 axis and promote their polarization toward the M2 phenotype.

    PubMed

    Beider, Katia; Bitner, Hanna; Leiba, Merav; Gutwein, Odit; Koren-Michowitz, Maya; Ostrovsky, Olga; Abraham, Michal; Wald, Hanna; Galun, Eithan; Peled, Amnon; Nagler, Arnon

    2014-11-30

    Multiple myeloma (MM) cells specifically attract peripheral-blood monocytes, while interaction of MM with bone marrow stromal cells (BMSCs) significantly increased monocyte recruitment (p<0.01). The CXCL12 chemokine, produced by both the MM and BMSCs, was found to be a critical regulator of monocyte migration. CXCL12 production was up-regulated under MM-BMSCs co-culture conditions, whereas blockage with anti-CXCR4 antibodies significantly abrogated monocyte recruitment toward a MM-derived conditioned medium (p<0.01). Furthermore, elevated levels of CXCL12 were detected in MM, but not in normal BM samples, whereas malignant MM cells often represented the source of increased CXCL12 in the BM. Blood-derived macrophages effectively supported MM cells proliferation and protected them from chemotherapy-induced apoptosis. Importantly, MM cells affected macrophage polarization, elevating the expression of M2-related scavenger receptor CD206 in macrophages and blocking LPS-induced TNFα secretion (a hallmark of M1 response). Of note, MM-educated macrophages suppressed T-cell proliferation and IFNγ production in response to activation. Finally, increased numbers of CXCR4-expressing CD163+CD206+ macrophages were detected in the BM of MM patients (n=25) in comparison to MGUS (n=11) and normal specimens (n=8). Taken together, these results identify macrophages as important players in MM tumorogenicity, and recognize the CXCR4/CXCL12 axis as a critical regulator of MM-stroma interactions and microenvironment formation.

  11. Multiple myeloma cells recruit tumor-supportive macrophages through the CXCR4/CXCL12 axis and promote their polarization toward the M2 phenotype

    PubMed Central

    Beider, Katia; Bitner, Hanna; Leiba, Merav; Gutwein, Odit; Koren-Michowitz, Maya; Ostrovsky, Olga; Abraham, Michal; Wald, Hanna; Galun, Eithan; Peled, Amnon; Nagler, Arnon

    2014-01-01

    Multiple myeloma (MM) cells specifically attract peripheral-blood monocytes, while interaction of MM with bone marrow stromal cells (BMSCs) significantly increased monocyte recruitment (p<0.01). The CXCL12 chemokine, produced by both the MM and BMSCs, was found to be a critical regulator of monocyte migration. CXCL12 production was up-regulated under MM-BMSCs co-culture conditions, whereas blockage with anti-CXCR4 antibodies significantly abrogated monocyte recruitment toward a MM-derived conditioned medium (p<0.01). Furthermore, elevated levels of CXCL12 were detected in MM, but not in normal BM samples, whereas malignant MM cells often represented the source of increased CXCL12 in the BM. Blood-derived macrophages effectively supported MM cells proliferation and protected them from chemotherapy-induced apoptosis. Importantly, MM cells affected macrophage polarization, elevating the expression of M2-related scavenger receptor CD206 in macrophages and blocking LPS-induced TNFα secretion (a hallmark of M1 response). Of note, MM-educated macrophages suppressed T-cell proliferation and IFNγ production in response to activation. Finally, increased numbers of CXCR4-expressing CD163+CD206+ macrophages were detected in the BM of MM patients (n=25) in comparison to MGUS (n=11) and normal specimens (n=8). Taken together, these results identify macrophages as important players in MM tumorogenicity, and recognize the CXCR4/CXCL12 axis as a critical regulator of MM-stroma interactions and microenvironment formation. PMID:25526031

  12. High Levels of Peripheral Blood Circulating Plasma Cells as a Specific Risk Factor for Progression of Smoldering Multiple Myeloma

    PubMed Central

    Bianchi, Giada; Kyle, Robert A.; Larson, Dirk R.; Witzig, Thomas E.; Kumar, Shaji; Dispenzieri, Angela; Morice, William G.; Rajkumar, S. Vincent

    2012-01-01

    Smoldering multiple myeloma (SMM) carries a 50% risk of progression to multiple myeloma (MM) or related malignancy within the first 5 years following diagnosis. The goal of this study was to determine if high levels of circulating plasma cells (PCs) are predictive of SMM transformation within the first 2–3 years from diagnosis. Ninety-one patients diagnosed with SMM at Mayo Clinic from January 1994 through January 2007 who had testing for circulating PCs using an immunofluorescent assay and adequate follow up to ascertain disease progression, were studied. High level of circulating PCs was defined as absolute peripheral blood PCs >5000 ×106/L and/or > 5% cytoplasmic immunoglobulin (Ig) positive PCs per 100 peripheral blood mononuclear cells. Patients with high circulating PCs (14 of 91 patients, 15%) were significantly more likely to progress to active disease within 2 years compared with patients without high circulating PCs, 71% versus 25%, respectively, P=0.001. Corresponding rates for progression within 3 years were 86% versus 35%, respectively, P<0.001. Overall survival (OS) after both SMM diagnosis and MM diagnosis was also significantly different. High levels of circulating PCs identify SMM patients with an elevated risk of progression within the first 2 to 3 years following diagnosis. PMID:22902364

  13. High levels of peripheral blood circulating plasma cells as a specific risk factor for progression of smoldering multiple myeloma.

    PubMed

    Bianchi, G; Kyle, R A; Larson, D R; Witzig, T E; Kumar, S; Dispenzieri, A; Morice, W G; Rajkumar, S V

    2013-03-01

    Smoldering multiple myeloma (SMM) carries a 50% risk of progression to multiple myeloma (MM) or related malignancy within the first 5 years following diagnosis. The goal of this study was to determine if high levels of circulating plasma cells (PCs) are predictive of SMM transformation within the first 2-3 years from diagnosis. Ninety-one patients diagnosed with SMM at Mayo Clinic from January 1994 through January 2007, who had testing for circulating PCs using an immunofluorescent assay and adequate follow-up to ascertain disease progression, were studied. High level of circulating PCs was defined as absolute peripheral blood PCs >5 × 10(6)/l and/or >5% PCs per 100 cytoplasmic immunoglobulin (Ig)-positive peripheral blood mononuclear cells. Patients with high circulating PCs (14 of 91 patients, 15%) were significantly more likely to progress to active disease within 2 years compared with patients without high circulating PCs, 71% versus 24%, respectively, P=0.001. Corresponding rates for progression within 3 years were 86% versus 34%, respectively, P<0.001. Overall survival (OS) after both SMM diagnosis and MM diagnosis was also significantly different. High levels of circulating PCs identify SMM patients with an elevated risk of progression within the first 2-3 years following diagnosis.

  14. Serum B-cell maturation antigen: a novel biomarker to predict outcomes for multiple myeloma patients.

    PubMed

    Ghermezi, Michael; Li, Mingjie; Vardanyan, Suzie; Harutyunyan, Nika Manik; Gottlieb, Jillian; Berenson, Ariana; Spektor, Tanya M; Andreu-Vieyra, Claudia; Petraki, Sophia; Sanchez, Eric; Udd, Kyle; Wang, Cathy S; Swift, Regina A; Chen, Haiming; Berenson, James R

    2017-04-01

    B-cell maturation antigen is expressed on plasma cells. In this study, we have identified serum B-cell maturation antigen as a novel biomarker that can monitor and predict outcomes for multiple myeloma patients. Compared to healthy donors, patients with multiple myeloma showed elevated serum B-cell maturation antigen levels (P<0.0001). Serum B-cell maturation antigen levels correlated with the proportion of plasma cells in bone marrow biopsies (Spearman's rho = 0.710; P<0.001), clinical status (complete response vs partial response, P=0.0374; complete response vs progressive disease, P<0.0001), and tracked with changes in M-protein levels. Among patients with non-secretory disease, serum B-cell maturation antigen levels correlated with bone marrow plasma cell levels and findings from positron emission tomography scans. Kaplan-Meier analysis demonstrated that serum B-cell maturation antigen levels above the median levels were predictive of a shorter progression-free survival (P=0.0006) and overall survival (P=0.0108) among multiple myeloma patients (n=243). Specifically, patients with serum B-cell maturation antigen levels above the median level at the time of starting front-line (P=0.0043) or a new salvage therapy (P=0.0044) were found to have shorter progression-free survival. Importantly, serum B-cell maturation antigen levels did not show any dependence on renal function and maintained independent significance when tested against other known prognostic markers for multiple myeloma such as age, serum β2 microglobulin, hemoglobin, and bone disease. These data identify serum B-cell maturation antigen as a new biomarker to manage multiple myeloma patients. Copyright© Ferrata Storti Foundation.

  15. MYC protein expression is detected in plasma cell myeloma but not in monoclonal gammopathy of undetermined significance (MGUS).

    PubMed

    Xiao, Ruobing; Cerny, Jan; Devitt, Katherine; Dresser, Karen; Nath, Rajneesh; Ramanathan, Muthalagu; Rodig, Scott J; Chen, Benjamin J; Woda, Bruce A; Yu, Hongbo

    2014-06-01

    It has been recognized that monoclonal gammopathy of undetermined significance (MGUS) precedes a diagnosis of plasma cell myeloma in most patients. Recent gene expression array analysis has revealed that an MYC activation signature is detected in plasma cell myeloma but not in MGUS. In this study, we performed immunohistochemical studies using membrane CD138 and nuclear MYC double staining on bone marrow biopsies from patients who met the diagnostic criteria of plasma cell myeloma or MGUS. Our study demonstrated nuclear MYC expression in CD138-positive plasma cells in 22 of 26 (84%) plasma cell myeloma samples and in none of the 29 bone marrow samples from patients with MGUS. In addition, our data on the follow-up biopsies from plasma cell myeloma patients with high MYC expression demonstrated that evaluation of MYC expression in plasma cells can be useful in detecting residual disease. We also demonstrated that plasma cells gained MYC expression in 5 of 8 patients (62.5%) when progressing from MGUS to plasma cell myeloma. Analysis of additional lymphomas with plasmacytic differentiation, including lymphoplasmacytic lymphoma, marginal zone lymphoma, and plasmablastic lymphoma, reveals that MYC detection can be a useful tool in the diagnosis of plasma cell myeloma.

  16. Constitutively lower expressions of CD54 on primary myeloma cells and their different localizations in bone marrow.

    PubMed

    Iqbal, Mohd S; Otsuyama, Ken-Ichiro; Shamsasenjan, Karim; Asaoku, Hideki; Mahmoud, Maged S; Gondo, Toshikazu; Kawano, Michio M

    2009-10-01

    To evaluate nuclear factor-kappaB (NF-kappaB) activity in primary myeloma cells from myeloma patients, we confirmed that the expression levels of CD54 showed a good correlation with the levels of DNA binding activity for NF-kappaB in human myeloma cell lines, and thus analyzed the expression levels of CD54 on CD38(++) plasma cell fractions as one of NF-kappaB activity. Primary myeloma cells unexpectedly showed constitutively lower expressions of CD54 than normal bone marrow (BM) plasma cells. Furthermore, the expression levels of CD54 on these plasma cells showed a significant correlation with the plasma levels of CXCL12 stromal cell-derived factor-1alpha (SDF-1alpha) in their BM aspirates, and the expressions of CXCR4, the receptor for CXCL12, decreased on primary myeloma cells compared with normal BM plasma cells. It was also confirmed that the addition of CXCL12 to the in vitro culture significantly induced the up-regulation of CD54 expression in primary myeloma cells. In addition, myeloma cells with lower expressions of CD54 were more unstable in the in vitro culture, resulting in a marked reduction of the viable cell number. In the immunohistochemical analysis of BM aspirates, myeloma cells with lower CD54 expression resided in the perivascular regions. Therefore, these data suggest that primary myeloma cells exhibit constitutively lower CD54 that might be partially regulated by CXCL12, and their localizations in the BM may be associated with the expression levels of CD54.

  17. Therapeutic potential of targeting IRES-dependent c-myc translation in multiple myeloma cells during ER stress.

    PubMed

    Shi, Y; Yang, Y; Hoang, B; Bardeleben, C; Holmes, B; Gera, J; Lichtenstein, A

    2016-02-25

    Protein translation is inhibited by the unfolded protein response (UPR)-induced eIF-2α phosphorylation to protect against endoplasmic reticulum (ER) stress. In addition, we found additional inhibition of protein translation owing to diminished mTORC1 (mammalian target of rapamycin complex1) activity in ER-stressed multiple myeloma (MM) cells. However, c-myc protein levels and myc translation was maintained. To ascertain how c-myc was maintained, we studied myc IRES (internal ribosome entry site) function, which does not require mTORC1 activity. Myc IRES activity was upregulated in MM cells during ER stress induced by thapsigargin, tunicamycin or the myeloma therapeutic bortezomib. IRES activity was dependent on upstream MAPK (mitogen-activated protein kinase) and MNK1 (MAPK-interacting serine/threonine kinase 1) signaling. A screen identified hnRNP A1 (A1) and RPS25 as IRES-binding trans-acting factors required for ER stress-activated activity. A1 associated with RPS25 during ER stress and this was prevented by an MNK inhibitor. In a proof of principle, we identified a compound that prevented binding of A1 to the myc IRES and specifically inhibited myc IRES activity in MM cells. This compound, when used alone, was not cytotoxic nor did it inhibit myc translation or protein expression. However, when combined with ER stress inducers, especially bortezomib, a remarkable synergistic cytotoxicity ensued with associated inhibition of myc translation and expression. These results underscore the potential for targeting A1-mediated myc IRES activity in MM cells during ER stress.

  18. Biclonal IgD and IgM Plasma Cell Myeloma: A Report of Two Cases and a Literature Review.

    PubMed

    Chen, Zhongchuan W; Kotsikogianni, Ioanna; Raval, Jay S; Roth, Christine G; Rollins-Raval, Marian A

    2013-01-01

    Biclonal plasma cell myelomas producing two different isotypes of immunoglobulins are extremely rare entities; to date, the combination of IgD and IgM secretion by a biclonal plasma cell myeloma has not been reported. Bone marrow biopsy immunohistochemical studies in two cases revealed neoplastic plasma cells coexpressing IgD and IgM, but serum protein electrophoresis identified only the IgM monoclonal paraprotein in both cases. Biclonal plasma cell myelomas, while currently not well characterized in terms of their clinical behavior, should be distinguished from B-cell lymphoma with plasmacytic differentiation, given the different therapeutic implications. Both cases reported herein demonstrated chemotherapy-resistant clinical courses.

  19. Establishment of stable multiple myeloma cell line with overexpressed PDCD5 and its proapoptosis mechanism.

    PubMed

    Feng, Wenchang; Fu, Yunfeng; Zhang, Yanan; Lv, Ben; Li, Xin; Zhang, Fan; Gui, Rong; Liu, Jing

    2015-01-01

    The transfected multiple myeloma cell line showing a stable doxycycline (DOX)-induced expression of PDCD5 was established. PDCD5 overexpression in the transfected cell line was analyzed for its effect on the dexamethasone (DXM)-induced apoptosis along with a discussion on the mechanism. (1) Lentiviral plasmid was used for the transfection of PDCD5 gene into the multiple myeloma cells. The screening was done by applying puromycin, and PDCD5 expression was induced by DOX. Real-time fluorescence quantitative PCR and Western Blot were performed to detect the expression levels of the target gene in the stable transfection group and the empty vector group; (2) The cell apoptosis rates of stable transfection group, blank group and empty vector group were measured by Annexin-APC/PI double staining flow cytometry; (3) Real-time fluorescence quantitative PCR and Western Blot were carried out to detect the expression levels of survivin, casepase-3 and Bcl-2 genes and proteins. PDCD5 expression was significantly increased in the stably tranfected multiple myeloma cells compared with blank group and empty vector group. The cells in the transfection group were more sensitive to DXM, and the proportion of apoptotic cells was obviously higher than that of the blank group and the empty vector group (P<0.05). Survivin and Bcl-2 were considerably downregulated in U266/PDCD5 cells and combined DXM group than in the single agent group. However, caspase-3 was significantly upregulated. Multiple myeloma cell line transfected with endogenous PDCD5 gene was established. The endogenous PDCD5 overexpression accelerated the cell apoptosis under DXM induction. The proapoptotic action of PDCD5 gene had the effect of activating casepase-3 and downregulating survivin and Bcl-2, which further promoted the apoptosis of multiple myeloma cells.

  20. Pterostilbene Inhibits Human Multiple Myeloma Cells via ERK1/2 and JNK Pathway In Vitro and In Vivo

    PubMed Central

    Xie, Bingqian; Xu, Zhijian; Hu, Liangning; Chen, Gege; Wei, Rong; Yang, Guang; Li, Bo; Chang, Gaomei; Sun, Xi; Wu, Huiqun; Zhang, Yong; Dai, Bojie; Tao, Yi; Shi, Jumei; Zhu, Weiliang

    2016-01-01

    Multiple myeloma (MM) is the second most common malignancy in the hematologic system, which is characterized by accumulation of plasma cells in bone marrow. Pterostilbene (PTE) is a natural dimethylated analog of resveratrol, which has anti-oxidant, anti-inflammatory and anti-tumor properties. In the present study, we examined the anti-tumor effect of PTE on MM cell lines both in vitro and in vivo using the cell counting kit (CCK)-8, apoptosis assays, cell cycle analysis, reactive oxygen species (ROS) generation, JC-1 mitochondrial membrane potential assay, Western blotting and tumor xenograft models. The results demonstrated that PTE induces apoptosis in the H929 cell line and causes cell cycle arrest at G0/G1 phase by enhancing ROS generation and reducing mitochondrial membrane potential. The anti-tumor effect of PTE may be caused by the activation of the extracellular regulated protein kinases (ERK) 1/2 and c-Jun N-terminal kinase (JNK) signaling pathways. Additionally, mice treated with PTE by intraperitoneal injection demonstrated reduced tumor volume. Taken together, the results of this study indicate that the anti-tumor effect of PTE on MM cells may provide a new therapeutic option for MM patients. PMID:27869675

  1. Establishment and characterization of a cytogenetically complex Chinese multiple myeloma-derived cell line with homozygous p53 deletion and cyclin E overexpression.

    PubMed

    Cheng, Suk Hang; Ng, Margaret Heung Ling; Tsang, Kam Sze; Lau, Kin Mang; Chan, Joyce Chee Wun; Liu, Herman Sung Yu; Chu, Raymond Wan; Poon, Cycles Suet Ping; Ng, Ho Keung

    2004-05-01

    We describe the establishment and characterization of a new myeloma-derived cell line (MM17), originating from the sacral plasmacytoma of a 54-year-old Chinese woman diagnosed with multiple myeloma (MM). MM17 was confirmed morphologically and immunophenotypically to be clonal plasma cells positive for CD38 and CD138 and negative for EBV marker. Authenticity was confirmed using comparative genomic hybridization and DNA fingerprinting studies on bone marrow aspirate, sacral tumor tissue and MM17. Combined G-banding and multicolor fluorescence in situ hybridization analyses demonstrated a primarily hypodiploid karyotype with two sidelines sharing common stemline aberrations: +6, -7, -10, -13, -14, -17, -X, der(1;17)(q10;q10), t(2;7)(q23;q11.2), t(8;14)(q24;q32) and ins(16;1)(q13;?q22q41); and a number of hypertriploid cells. The involvement of p53 alteration and cyclin E overexpression, both with relevance to the induction of chromosomal instability, was investigated in MM17 and together with two other MM derived cell lines (U266 and IM-9) for cyclin E expression. Homozygous deletion of p53 gene hitherto not reported in MM, was detected. Both MM17 and U266 with complex cytogenetic aberrations demonstrated overexpression of cyclin E1 and E2, whereas IM-9 with a normal karyotype showed cyclin E2 but not E1 overexpression. These data suggested that E1 but not E2 overexpression was associated with chromosomal abnormalities observed in MM17 and U266, which provides the first supporting evidence for the link of cyclin E and chromosomal instability in MM. This is the first characterized Chinese MM-derived cell line with homozygous p53 deletion which may serve as a valuable in vitro system for studying MM pathogenesis particularly for Chinese.

  2. Interleukin-6 antisense oligonucleotides inhibit the growth of human myeloma cell lines.

    PubMed Central

    Levy, Y; Tsapis, A; Brouet, J C

    1991-01-01

    IL-6 has been shown to be a plasmacytoma growth factor in mice and is believed to play a key role in the development of human multiple myeloma. We investigated the IL-6 requirements for the growth of two human myeloma cell lines, U 266 and RPMI 8226. These cell lines secreted minute amounts of IL-6 (20 U/ml) and featured IL-6 mRNA. IL-6 receptors were detectable at the surface of malignant cells by immunofluorescence. Antibodies to IL-6 did not alter the proliferation of these myeloma cells. There was a dose-dependent decrease, however, in [3H]-thymidine uptake in the presence of IL-6 antisense (and not sense) oligodeoxynucleotides; in the presence of 20 microM IL-6 antisense, an 80 and 95% inhibition of the proliferation of U 266 and RPMI 8226 cells was observed, respectively. These results provide strong evidence for an IL-6 autocrine proliferation of myeloma cells which may occur via internal interaction between IL-6 and the IL-6 receptor. Images PMID:1864979

  3. Identification of translocation products but not K-RAS mutations in memory B cells from patients with multiple myeloma.

    PubMed

    Rasmussen, Thomas; Haaber, Jacob; Dahl, Inger Marie; Knudsen, Lene M; Kerndrup, Gitte B; Lodahl, Marianne; Johnsen, Hans E; Kuehl, Michael

    2010-10-01

    Several laboratories have shown that cells with a memory B-cell phenotype can have the same clonotype as multiple myeloma tumor cells. The aim of this study was to determine whether some memory B cells have the same genetic alterations as their corresponding multiple myeloma malignant plasma cells. The methodology included sorting multiple myeloma or memory B cells into RNA stabilizing medium for generation of subset-specific polymerase chain reaction complementary DNA libraries from one or 100 cells. Cells with the phenotype of tumor plasma cells (CD38(++)CD19(-)CD45(-/+)CD56(-/+/++)) or memory B cells (CD38(-)/CD19(+)/CD27(+)) were isolated by flow activated cell sorting. In samples from all four patients with multiple myeloma and from two of the three with monoclonal gammopathy of undetermined significance, we identified memory B cells expressing multiple myeloma-specific oncogenes (FGFR3; IGH-MMSET; CCND1 high) dysregulated by an IGH translocation in the respective tumor plasma cells. By contrast, in seven patients with multiple myeloma, each of whom had tumor plasma cells with a K-RAS61 mutation, a total of 32,400 memory B cells were analyzed using a sensitive allele-specific, competitive blocker polymerase chain reaction assay, but no K-RAS mutations were identified. The increased expression of a specific "early" oncogene of multiple myeloma (monoclonal gammopathy of undetermined significance) in some memory B cells suggests that dysregulation of the oncogene occurs in a precursor B-cell that can generate memory B cells and transformed plasma cells. However, if memory B cells lack "late" oncogene (K-RAS) mutations but express the "early" oncogene, they cannot be involved in maintaining the multiple myeloma tumor, but presumably represent a clonotypic remnant that is only partially transformed.

  4. Survival of multiple myeloma patients aged 65-70 years in the era of novel agents and autologous stem cell transplantation. A multicenter retrospective collaborative study of the Japanese Society of Myeloma and the European Myeloma Network.

    PubMed

    Ozaki, Shuji; Harada, Takeshi; Saitoh, Takayuki; Shimazaki, Chihiro; Itagaki, Mitsuhiro; Asaoku, Hideki; Kuroda, Yoshiaki; Chou, Takaaki; Yoshiki, Yumiko; Suzuki, Kenshi; Murakami, Hirokazu; Hayashi, Kunihiko; Mina, Roberto; Palumbo, Antonio; Shimizu, Kazuyuki

    2014-01-01

    Novel agents such as thalidomide, lenalidomide and bortezomib have dramatically changed the treatment paradigm of multiple myeloma (MM). However, it is not clear whether these agents improve the prognosis of elderly patients who have undergone autologous stem cell transplantation (auto-SCT). We retrospectively analyzed the outcome of 318 newly diagnosed patients aged 65–70 years who were treated between January 1, 2004, and December 31, 2009. As initial therapy, 192 patients were treated with conventional chemotherapy,88 with novel agent-containing regimens, 21 with conventional chemotherapy plus auto-SCT and the remaining 17 with novel agents plus auto-SCT. The median progression-free survival was 19.1, 24.5, 26.8 and 35.2 months, respectively, and the 5-year overall survival (OS) was 40, 62, 63 and 87%, respectively. Initial therapy with novel agents (p < 0.001) or auto-SCT (p < 0.02) significantly improved OS compared with the group without these treatment modalities. Salvage therapy with novel agents also significantly improved survival after relapse compared with conventional chemotherapy alone (p < 0.04). In a multivariate analysis, the use of novel agents was an independent prognostic factor significantly associated with extended OS(p < 0.003). These results indicate that novel agents and auto-SCT had a major impact on OS in eligible patients in this subgroup of MM. © 2014 S. Karger AG, Basel

  5. A novel 3D mesenchymal stem cell model of the multiple myeloma bone marrow niche: biologic and clinical applications

    PubMed Central

    Jakubikova, Jana; Cholujova, Danka; Hideshima, Teru; Gronesova, Paulina; Soltysova, Andrea; Harada, Takeshi; Joo, Jungnam; Kong, Sun-Young; Szalat, Raphael E.; Richardson, Paul G.; Munshi, Nikhil C.; Dorfman, David M.; Anderson, Kenneth C.

    2016-01-01

    Specific niches within the tumor bone marrow (BM) microenvironment afford a sanctuary for multiple myeloma (MM) clones due to stromal cell-tumor cell interactions, which confer survival advantage and drug resistance. Defining the sequelae of tumor cell interactions within the MM niches on an individualized basis may provide the rationale for personalized therapies. To mimic the MM niche, we here describe a new 3D co-culture ex-vivo model in which primary MM patient BM cells are co-cultured with mesenchymal stem cells (MSC) in a hydrogel 3D system. In the 3D model, MSC with conserved phenotype (CD73+CD90+CD105+) formed compact clusters with active fibrous connections, and retained lineage differentiation capacity. Extracellular matrix molecules, integrins, and niche related molecules including N-cadherin and CXCL12 are expressed in 3D MSC model. Furthermore, activation of osteogenesis (MMP13, SPP1, ADAMTS4, and MGP genes) and osteoblastogenic differentiation was confirmed in 3D MSC model. Co-culture of patient-derived BM mononuclear cells with either autologous or allogeneic MSC in 3D model increased proliferation of MM cells, CXCR4 expression, and SP cells. We carried out immune profiling to show that distribution of immune cell subsets was similar in 3D and 2D MSC model systems. Importantly, resistance to novel agents (IMiDs, bortezomib, carfilzomib) and conventional agents (doxorubicin, dexamethasone, melphalan) was observed in 3D MSC system, reflective of clinical resistance. This 3D MSC model may therefore allow for studies of MM pathogenesis and drug resistance within the BM niche. Importantly, ongoing prospective trials are evaluating its utility to inform personalized targeted and immune therapy in MM. PMID:27764795

  6. A novel 3D mesenchymal stem cell model of the multiple myeloma bone marrow niche: biologic and clinical applications.

    PubMed

    Jakubikova, Jana; Cholujova, Danka; Hideshima, Teru; Gronesova, Paulina; Soltysova, Andrea; Harada, Takeshi; Joo, Jungnam; Kong, Sun-Young; Szalat, Raphael E; Richardson, Paul G; Munshi, Nikhil C; Dorfman, David M; Anderson, Kenneth C

    2016-11-22

    Specific niches within the tumor bone marrow (BM) microenvironment afford a sanctuary for multiple myeloma (MM) clones due to stromal cell-tumor cell interactions, which confer survival advantage and drug resistance. Defining the sequelae of tumor cell interactions within the MM niches on an individualized basis may provide the rationale for personalized therapies. To mimic the MM niche, we here describe a new 3D co-culture ex-vivo model in which primary MM patient BM cells are co-cultured with mesenchymal stem cells (MSC) in a hydrogel 3D system. In the 3D model, MSC with conserved phenotype (CD73+CD90+CD105+) formed compact clusters with active fibrous connections, and retained lineage differentiation capacity. Extracellular matrix molecules, integrins, and niche related molecules including N-cadherin and CXCL12 are expressed in 3D MSC model. Furthermore, activation of osteogenesis (MMP13, SPP1, ADAMTS4, and MGP genes) and osteoblastogenic differentiation was confirmed in 3D MSC model. Co-culture of patient-derived BM mononuclear cells with either autologous or allogeneic MSC in 3D model increased proliferation of MM cells, CXCR4 expression, and SP cells. We carried out immune profiling to show that distribution of immune cell subsets was similar in 3D and 2D MSC model systems. Importantly, resistance to novel agents (IMiDs, bortezomib, carfilzomib) and conventional agents (doxorubicin, dexamethasone, melphalan) was observed in 3D MSC system, reflective of clinical resistance. This 3D MSC model may therefore allow for studies of MM pathogenesis and drug resistance within the BM niche. Importantly, ongoing prospective trials are evaluating its utility to inform personalized targeted and immune therapy in MM.

  7. Tumor-associated macrophages infiltrate plasmacytomas and can serve as cell carriers for oncolytic measles virotherapy of disseminated myeloma

    PubMed Central

    Peng, Kah-Whye; Dogan, Ahmet; Vrana, Julie; Liu, Chunsheng; Ong, Hooi T.; Kumar, Shaji; Dispenzieri, Angela; Dietz, Allan B.; Russell, Stephen J.

    2009-01-01

    In multiple myeloma, some of the neoplastic plasma cells are diffusely dispersed among the normal bone marrow cells (bone marrow resident), whereas others are located in discrete, well-vascularized solid tumors (plasmacytomas) that may originate in bone or soft tissue. Interactions between bone marrow-resident myeloma cells and bone marrow stromal cells (BMSCs) are important determinants of myeloma pathogenesis. However, little is known of the factors sustaining myeloma growth and cell viability at the centers of expanding plasmacytomas, where there are no BMSCs. Histologic sections of 22 plasmacytomas from myeloma patients were examined after immunostaining. Abundant CD68+, CD163+, S100-negative macrophage infiltrates were identified in all tumors, accompanied by scattered collections of CD3+ T lymphocytes. The CD68+ tumor-associated macrophages (TAM) accounted for 2– 12% of nucleated cells and were evenly distributed through the parenchyma. The TAM generally had dendritic morphology, and each dendrite was in close contact with multiple plasma cells. In some cases, the TAM were strikingly clustered around CD34+ blood vessels. To determine whether cells of the monocytic lineage might be exploitable as carriers for delivery of therapeutic agents to plasmacytomas, primary human CD14+ cells were infected with oncolytic measles virus and administered intravenously to mice bearing KAS6/1 human myeloma xenografts. The cell carriers localized to KAS6/1 tumors, where they transferred MV infection to myeloma cells and prolonged the survival of mice bearing disseminated human myeloma disease. Thus, TAM are a universal stromal component of the plasmacytomas of myeloma patients and may offer a promising new target for therapeutic exploitation. PMID:19507209

  8. Evaluation of in vitro effects of various targeted drugs on plasma cells and putative neoplastic stem cells in patients with multiple myeloma

    PubMed Central

    Blatt, Katharina; Herrmann, Harald; Stefanzl, Gabriele; Sperr, Wolfgang R.; Valent, Peter

    2016-01-01

    Multiple myeloma (MM) is a malignancy characterized by monoclonal paraproteinemia and tissue plasmocytosis. In advanced MM cytopenia and osteopathy may occur. Although several effective treatment strategies have been developed in recent years, there is still a need to identify new drug targets and to develop more effective therapies for patients with advanced MM. We examined the effects of 15 targeted drugs on growth and survival of primary MM cells and 5 MM cell lines (MM.1S, NCI-H929, OPM-2, RPMI-8226, U-266). The PI3-kinase blocker BEZ235, the pan-BCL-2 inhibitor obatoclax, the Hsp90-targeting drug 17AAG, and the Polo-like kinase-1 inhibitor BI2536, were found to exert major growth-inhibitory effects in all 5 MM cell lines tested. Moreover, these drugs suppressed the in vitro proliferation of primary bone marrow-derived MM cells and induced apoptosis at pharmacologic drug concentrations. Apoptosis-inducing effects were not only seen in the bulk of MM cells but also in MM stem cell-containing CD138−/CD20+/CD27+ memory B-cell fractions. Synergistic growth-inhibitory effects were observed in MM cell lines using various drug combinations, including 17AAG+BI2536 in MM.1S, OPM-2, RPMI-8226, and U-266 cells, 17AAG+BEZ235 in MM.1S, OPM-2, RPMI-8226, and U-266 cells, 17AAG+obatoclax in MM.1S, NCI-H929, OPM-2, and RPMI-8226 cells, BI2536+BEZ235 in MM.1S, NCI-H929, OPM-2, and RPMI-8226 cells, BI2536+obatoclax in MM.1S, OPM-2 and RPMI-8226 cells, and BEZ235+obatoclax in MM.1S and RPMI-8226 cells. Together, our data show that various targeted drugs induce profound and often synergistic anti-neoplastic effects in MM cells which may have clinical implications and may contribute to the development of novel treatment strategies in advanced MM. PMID:27582537

  9. Allogeneic Hematopoietic Cell Transplantation for Myeloma: When and in Whom Does It Work.

    PubMed

    Bashir, Qaiser; Qazilbash, Muzaffar H

    2017-03-11

    The growing list of available therapies for patients with multiple myeloma has resulted in tremendously high response rates and prolonged survival. However, the cure remains elusive. A continued effort at developing strategies to utilize all available treatment modalities in the most effective manner is needed. Allogeneic hematopoietic cell transplantation (allo-HCT) is a robust platform, associated with high response rates, and provides a unique foundation on which immune therapies and novel agents can be employed to improve clinical outcomes. Patients with high-risk myeloma and those relapsing after novel agent-based therapies or early after an autologous HCT should be considered for allo-HCT, ideally in a clinical trial setting. Results from several ongoing studies are expected to provide important information that will help determine the place of allo-HCT in the myeloma treatment algorithm.

  10. Plasma cell myeloma with lymphoplasmacytic morphology and cyclin D1 expression, an uncommon variant

    PubMed Central

    Krause, John R.

    2017-01-01

    The genetic complexity of multiple myeloma is due in part to the accumulation of mutations, with primary and secondary events. One such secondary event is the development of a gene mutation that may result in overexpression of cyclin D1. The pathway involving cyclin D1 is intricately involved in cell cycle regulation from the G1 to S phase, and alterations may contribute to tumorigenesis. We present a case of cyclin D1–positive multiple myeloma with lymphoplasmacytic morphology and discuss potential diagnostic pitfalls and effects on prognosis. PMID:28405079

  11. Contribution of chemotherapy mobilization to disease control in multiple myeloma treated with autologous hematopoietic cell transplantation

    PubMed Central

    Uy, Geoffrey L.; Costa, Luciano J.; Hari, Parameswaran N.; Zhang, Mei-Jie; Huang, Jia-Xing; Anderson, Kenneth C.; Bredeson, Christopher N.; Callander, Natalie S.; Cornell, Robert Frank; Perez, Miguel Angel Diaz; Dispenzieri, Angela; Freytes, César O.; Gale, Robert Peter; Garfall, Alfred; Gertz, Morie A.; Gibson, John; Hamadani, Mehdi; Lazarus, Hillard M.; Kalaycio, Matt E.; Kamble, Rammurti T.; Kharfan-Dabaja, Mohamed A.; Krishnan, Amrita Y.; Kumar, Shaji K.; Kyle, Robert A.; Landau, Heather J.; Lee, Cindy H.; Maiolino, Angelo; Marks, David I.; Mark, Tomer M.; Munker, Reinhold; Nishihori, Taiga; Olsson, Richard F.; Ramanathan, Muthalagu; Rodriguez, Tulio E.; Saad, Ayman A.; Savani, Bipin N.; Schiller, Gary J.; Schouten, Harry C.; Schriber, Jeffrey R.; Scott, Emma; Seo, Sachiko; Sharma, Manish; Ganguly, Siddhartha; Stadtmauer, Edward A.; Tay, Jason; To, L. Bik; Vesole, David H.; Vogl, Dan T.; Wagner, John L.; Wirk, Baldeep; Wood, William A.; D’Souza, Anita

    2015-01-01

    In patients with multiple myeloma (MM) undergoing autologous hematopoietic cell transplantation (auto-HCT), peripheral blood progenitor cells (PBPCs) may be collected following mobilization with growth factor alone (GF) or cytotoxic chemotherapy plus GF ( (CC+GF). It is uncertain whether the method of mobilization affects post-transplant outcomes. We compared these mobilization strategies in a retrospective analysis of 968 patients with MM from the Center for International Blood and Marrow Transplant Research database who received an auto-HCT in the US and Canada between 2007 and 2012. The kinetics of neutrophil engraftment (≥ 0.5 × 109/L) was similar between groups (13 vs. 13 days, P=0.69) while platelet engraftment (≥ 20 × 109/L) was slightly faster with CC+GF (19 vs. 18 days, P=0.006). Adjusted 3-years PFS was 43% (95% C.I. 38–48) in GF and 40% (95% C.I. 35–45) in CC+GF, P=0.33. Adjusted 3-years OS was 82% (95% C.I. 78–86) vs. 80% (95% C.I. 75–84), P=0.43 and adjusted 5-year OS was 62% (95C.I. 54–68) vs. 60% (95% C.I. 52–67), P=0.76, for GF and CC+GF respectively. We conclude that MM patients undergoing auto-HCT have similar outcomes irrespective of the method of mobilization and found no evidence that the addition of chemotherapy to mobilization contributes to disease control. PMID:26301967

  12. [Multiple myeloma: Maintenance therapy after autologous hematopoietic stem cell transplantation, depending on minimal residual disease].

    PubMed

    Solovyev, M V; Mendeleeva, L P; Pokrovskaya, O S; Nareyko, M V; Firsova, M V; Galtseva, I V; Davydova, Yu O; Kapranov, N M; Kuzmina, L A; Gemdzhian, E G; Savchenko, V G

    2017-01-01

    To determine the efficiency of maintenance therapy with bortezomib in patients with multiple myeloma (MM) who have achieved complete remission (CR) after autologous hematopoietic stem cell (auto-HSCT), depending on the presence of minimal residual disease (MRD). In January 2014 to February 2016, fifty-two MM patients (19 men and 33 women) aged 24 to 66 years (median 54 years), who had achieved CR after auto-HSCT, were randomized to perform maintenance therapy with bortezomib during a year. On day 100 after auto-HSCT, all the patients underwent immunophenotyping of bone marrow plasma cells by 6-color flow cytometry to detect MRD. Relapse-free survival (RFS) was chosen as a criterion for evaluating the efficiency of maintenance therapy. After auto-HSCT, MRD-negative patients had a statistically significantly higher 2-year RFS rate than MRD-positive patients: 52.9% (95% confidence interval (CI), 35.5 to 70.5%) versus 37.2% (95% CI, 25.4 to 49.3%) (p=0.05). The presence of MRD statistically significantly increased the risk of relapse (odds ratio 1.7; 95% CI, 1.2 to 3.4; p=0.05). Two-year cumulative risk of relapse (using the Kaplan-Meier) after auto-HSCT did not statistically significantly differ in MRD-negative patients receiving (n=15) and not receiving (n=10) maintenance therapy with bortezomib (p=0.58). After completion of maintenance treatment, 42% of the MRD-positive patients achieved a negative status. In the MRD-positive patients who had received maintenance therapy, the average time to recurrence was 5 months longer than that in the naïve patients: 17.3 versus 12.3 months. The MRD status determined in MM patients who have achieved CR after auto-HSCT is an important factor for deciding on the use of maintenance therapy.

  13. Apigenin inhibits proliferation and induces apoptosis in human multiple myeloma cells through targeting the trinity of CK2, Cdc37 and Hsp90.

    PubMed

    Zhao, Ming; Ma, Jian; Zhu, Hai-Yan; Zhang, Xu-Hui; Du, Zhi-Yan; Xu, Yuan-Ji; Yu, Xiao-Dan

    2011-08-29

    Multiple myeloma (MM) is a B-cell malignancy that is largely incurable and is characterized by the accumulation of malignant plasma cells in the bone marrow. Apigenin, a common flavonoid, has been reported to suppress proliferation in a wide variety of solid tumors and hematological cancers; however its mechanism is not well understood and its effect on MM cells has not been determined. In this study, we investigated the effects of apigenin on MM cell lines and on primary MM cells. Cell viability assays demonstrated that apigenin exhibited cytotoxicity against both MM cell lines and primary MM cells but not against normal peripheral blood mononuclear cells. Together, kinase assays, immunoprecipitation and western blot analysis showed that apigenin inhibited CK2 kinase activity, decreased phosphorylation of Cdc37, disassociated the Hsp90/Cdc37/client complex and induced the degradation of multiple kinase clients, including RIP1, Src, Raf-1, Cdk4 and AKT. By depleting these kinases, apigenin suppressed both constitutive and inducible activation of STAT3, ERK, AKT and NF-κB. The treatment also downregulated the expression of the antiapoptotic proteins Mcl-1, Bcl-2, Bcl-xL, XIAP and Survivin, which ultimately induced apoptosis in MM cells. In addition, apigenin had a greater effects in depleting Hsp90 clients when used in combination with the Hsp90 inhibitor geldanamycin and the histone deacetylase inhibitor vorinostat. Our results suggest that the primary mechanisms by which apigenin kill MM cells is by targeting the trinity of CK2-Cdc37-Hsp90, and this observation reveals the therapeutic potential of apigenin in treating multiple myeloma.

  14. Apigenin inhibits proliferation and induces apoptosis in human multiple myeloma cells through targeting the trinity of CK2, Cdc37 and Hsp90

    PubMed Central

    2011-01-01

    Background Multiple myeloma (MM) is a B-cell malignancy that is largely incurable and is characterized by the accumulation of malignant plasma cells in the bone marrow. Apigenin, a common flavonoid, has been reported to suppress proliferation in a wide variety of solid tumors and hematological cancers; however its mechanism is not well understood and its effect on MM cells has not been determined. Results In this study, we investigated the effects of apigenin on MM cell lines and on primary MM cells. Cell viability assays demonstrated that apigenin exhibited cytotoxicity against both MM cell lines and primary MM cells but not against normal peripheral blood mononuclear cells. Together, kinase assays, immunoprecipitation and western blot analysis showed that apigenin inhibited CK2 kinase activity, decreased phosphorylation of Cdc37, disassociated the Hsp90/Cdc37/client complex and induced the degradation of multiple kinase clients, including RIP1, Src, Raf-1, Cdk4 and AKT. By depleting these kinases, apigenin suppressed both constitutive and inducible activation of STAT3, ERK, AKT and NF-κB. The treatment also downregulated the expression of the antiapoptotic proteins Mcl-1, Bcl-2, Bcl-xL, XIAP and Survivin, which ultimately induced apoptosis in MM cells. In addition, apigenin had a greater effects in depleting Hsp90 clients when used in combination with the Hsp90 inhibitor geldanamycin and the histone deacetylase inhibitor vorinostat. Conclusions Our results suggest that the primary mechanisms by which apigenin kill MM cells is by targeting the trinity of CK2-Cdc37-Hsp90, and this observation reveals the therapeutic potential of apigenin in treating multiple myeloma. PMID:21871133

  15. PGC-1α integrates glucose metabolism and angiogenesis in multiple myeloma cells by regulating VEGF and GLUT-4.

    PubMed

    Cao, Dedong; Zhou, Hao; Zhao, Jikai; Jin, Lu; Yu, Wen; Yan, Han; Hu, Yu; Guo, Tao

    2014-03-01

    Human peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) is a key coactivator in the regulation of gene transcriptional activity in normal tissues. However, it is not clear whether it is involved in the angiogenesis and metabolism of multiple myeloma (MM). The aim of the present study was to investigate the role of PGC-1α in MM. Small interfering RNA (siRNA) was used to inhibit PGC-1α expression in RPMI-8226 cells. An endothelial cell migration assay was performed using transwell chambers and the expression of PGC-1α, estrogen-related receptor-α (ERR-α), vascular endothelial growth factor (VEGF) and glucose transporter-4 (GLUT-4) was tested by reverse transcription-polymerase chain reaction (RT-PCR). The protein expression of PGC-1α, ERR-α and GLUT-4 was assayed by western blot analysis. Lastly, RPMI-8226 cell proliferation was evaluated using CCK-8 assay. VEGF and GLUT-4 mRNA levels were decreased in cells treated with siRNA targeting PGC-1α, as was the level of GLUT-4 protein. Endothelial cell migration was significantly reduced when these cells were cultured with culture medium from RPMI-8226 cells treated with siPGC-1α. The proliferation rates at 24 and 48 h were suppressed by PGC-1α inhibition. Our results showed that inhibition of PGC-1α suppresses cell proliferation probably by downregulation of VEGF and GLUT-4. The present study suggests that PGC-1α integrates angiogenesis and glucose metabolism in myeloma through regulation of VEGF and GLUT-4.

  16. Bidirectional Notch signaling and osteocyte-derived factors in the bone marrow microenvironment promote tumor cell proliferation and bone destruction in multiple myeloma

    PubMed Central

    Delgado-Calle, Jesus; Anderson, Judith; Cregor, Meloney D.; Hiasa, Masahiro; Chirgwin, John M.; Carlesso, Nadia; Yoneda, Toshiyuki; Mohammad, Khalid S.; Plotkin, Lilian I.; Roodman, G. David; Bellido, Teresita

    2016-01-01

    In multiple myeloma (MM) increased numbers of monoclonal plasma cells in the bone marrow induce localized osteolytic lesions that rarely heal, due to increased bone resorption and suppressed bone formation. Numerous studies reported the contributions that different cell types in the MM microenvironment make to MM growth and bone disease, but the role of matrix-embedded osteocytes in MM, which comprise >95% of bone cells and are major regulators of osteoclast and osteoblast activity, is unclear. We report that osteocytes in MM-bearing bones physically interact with MM cells in vivo, undergo caspase3-dependent apoptosis, and express higher RANKL and Sclerostin levels than osteocytes from control mice. Mechanistic studies revealed that osteocyte apoptosis is initiated by activation of Notch signaling in osteocytes through direct contact with MM cells, and is further amplified by MM cell-secreted TNFα. This Notch/TNFα induced osteocyte apoptosis increases osteocytic Rankl expression, the osteocytic Rankl/Opg ratio and the ability of osteocytes to attract osteoclast precursors to induce local bone resorption. Further, osteocytes in contact with MM cells express high levels of Sost/Sclerostin that decrease Wnt signaling in osteoblasts and inhibit osteoblast differentiation. Importantly, direct contact between osteocytes and MM cells reciprocally activates Notch signaling and increases Notch receptor expression in MM cells, in particular Notch3 and 4, and stimulates MM cell growth. These studies reveal a previously unknown role for bidirectional Notch signaling between MM cells and osteocytes that enhances MM growth and bone disease, and suggest the potential of targeting osteocyte-MM cell interactions as a novel MM treatment. PMID:26833121

  17. Granulocyte-like myeloid derived suppressor cells (G-MDSC) are increased in multiple myeloma and are driven by dysfunctional mesenchymal stem cells (MSC).

    PubMed

    Giallongo, Cesarina; Tibullo, Daniele; Parrinello, Nunziatina L; La Cava, Piera; Di Rosa, Michelino; Bramanti, Vincenzo; Di Raimondo, Cosimo; Conticello, Concetta; Chiarenza, Annalisa; Palumbo, Giuseppe A; Avola, Roberto; Romano, Alessandra; Di Raimondo, Francesco

    2016-12-27

    Granulocytic-Myeloid-derived suppressor cells (G-MDSC) are increased in Multiple Myeloma (MM) patients but the mechanisms of G-MDSC generation are still unknown. There are many evidences of the role of mesenchymal stem cells (MSC) in promoting MM cell growth, survival and drug-resistance. We here used a specific experimental model in vitro to evaluate the ability of MSC to induce G-MDSC. We found that although MSC derived from healthy donors (HD), MGUS and MM were able to generate the same amount of MDSC, only MM-MSC-educated G-MDSC exhibited suppressive ability. In addition, in comparison with MSC derived from HD, MM-MSC produce higher amount of immune-modulatory factors that could be involved in MDSC induction. Compared to G-MDSC obtained from co-culture models with MSC from healthy subjects, both MGUS and MM-MSC-educated G-MDSC showed increase of immune-modulatory factors. However, only MM-MSC educated G-MDSC 1) up-regulated immune-suppressive factors as ARG1 and TNFα, 2) expressed higher levels of PROK2, important in angiogenesis and inflammatory process, and 3) showed ability to digest bone matrix.Our data demonstrate that MM-MSC are functionally different from healthy subjects and MGUS-MSC, supporting an evolving concept regarding the contribution of MM-MSC to tumor development and progression.

  18. Granulocyte-like myeloid derived suppressor cells (G-MDSC) are increased in multiple myeloma and are driven by dysfunctional mesenchymal stem cells (MSC)

    PubMed Central

    Parrinello, Nunziatina L.; La Cava, Piera; Di Rosa, Michelino; Bramanti, Vincenzo; Di Raimondo, Cosimo; Conticello, Concetta; Chiarenza, Annalisa; Palumbo, Giuseppe A.; Avola, Roberto

    2016-01-01

    Granulocytic-Myeloid-derived suppressor cells (G-MDSC) are increased in Multiple Myeloma (MM) patients but the mechanisms of G-MDSC generation are still unknown. There are many evidences of the role of mesenchymal stem cells (MSC) in promoting MM cell growth, survival and drug-resistance. We here used a specific experimental model in vitro to evaluate the ability of MSC to induce G-MDSC. We found that although MSC derived from healthy donors (HD), MGUS and MM were able to generate the same amount of MDSC, only MM-MSC-educated G-MDSC exhibited suppressive ability. In addition, in comparison with MSC derived from HD, MM-MSC produce higher amount of immune-modulatory factors that could be involved in MDSC induction. Compared to G-MDSC obtained from co-culture models with MSC from healthy subjects, both MGUS and MM-MSC-educated G-MDSC showed increase of immune-modulatory factors. However, only MM-MSC educated G-MDSC 1) up-regulated immune-suppressive factors as ARG1 and TNFα, 2) expressed higher levels of PROK2, important in angiogenesis and inflammatory process, and 3) showed ability to digest bone matrix. Our data demonstrate that MM-MSC are functionally different from healthy subjects and MGUS-MSC, supporting an evolving concept regarding the contribution of MM-MSC to tumor development and progression. PMID:26967390

  19. Lenalidomide increases human dendritic cell maturation in multiple myeloma patients targeting monocyte differentiation and modulating mesenchymal stromal cell inhibitory properties.

    PubMed

    Costa, Federica; Vescovini, Rosanna; Bolzoni, Marina; Marchica, Valentina; Storti, Paola; Toscani, Denise; Accardi, Fabrizio; Notarfranchi, Laura; Dalla Palma, Benedetta; Manferdini, Cristina; Manni, Sabrina; Todaro, Giannalisa; Lisignoli, Gina; Piazza, Francesco; Aversa, Franco; Giuliani, Nicola

    2017-08-08

    The use of Lenalidomide (LEN), to reverse tumor-mediated immune suppression and amplify multiple myeloma-specific immunity is currently being explored. Particularly, LEN effects on dendritic cells (DCs) are still unclear. In this study, we investigated the potential effect of LEN on DC differentiation and activity. DCs were differentiated either from CD14(+) cells obtained from patients with multiple myeloma or from a human monocytic cell line. LEN, at the concentration range reached in vivo, significantly increased the median intensity expression of HLA-DR, CD86 and CD209 by DCs derived from both bone marrow and peripheral myeloma monocytes and enhanced the production of Interleukin-8, C-C motif chemokine ligand (CCL) 2, CCL5 and tumor necrosis factor-α. Consistently, LEN pre-treated DCs showed an increased ability to stimulate autologous CD3(+) cell proliferation. LEN effect on dendritic differentiation was associated with the degradation of the Cereblon-related factors Ikaros and Aiolos. Moreover, we showed that LEN also blunted mesenchymal stromal cell inhibitory effect on dendritic differentiation, inhibiting Casein Kinase-1α levels. Finally, in vitro data were confirmed in ex vivo cultures obtained from relapsed myeloma patients treated with LEN, showing a significant increase of DC differentiation from peripheral blood monocytes. In conclusion, LEN increased the expression of mature dendritic markers both directly and indirectly and enhanced DC ability to stimulate T cell proliferation and to release chemokines. This suggests a new possible mechanism by which LEN could exert its anti-myeloma activity.

  20. Phase I study of cord blood-derived natural killer cells combined with autologous stem cell transplantation in multiple myeloma.

    PubMed

    Shah, Nina; Li, Li; McCarty, Jessica; Kaur, Indreshpal; Yvon, Eric; Shaim, Hila; Muftuoglu, Muharrem; Liu, Enli; Orlowski, Robert Z; Cooper, Laurence; Lee, Dean; Parmar, Simrit; Cao, Kai; Sobieiski, Catherine; Saliba, Rima; Hosing, Chitra; Ahmed, Sairah; Nieto, Yago; Bashir, Qaiser; Patel, Krina; Bollard, Catherine; Qazilbash, Muzaffar; Champlin, Richard; Rezvani, Katy; Shpall, Elizabeth J

    2017-03-14

    Multiple myeloma (MM) is a disease with known immune dysregulation. Natural killer (NK) cells have shown preclinical activity in MM. We conducted a first-in-human study of umbilical cord blood-derived (CB) NK cells for MM patients undergoing high dose chemotherapy and autologous haematopoietic stem cell transplantation (auto-HCT). Patients received lenalidomide (10 mg) on days -8 to -2, melphalan 200 mg/m(2) on day -7, CB-NK cells on day -5 and auto-HCT on day 0. Twelve patients were enrolled, three on each of four CB-NK cell dose levels: 5 × 10(6) , 1 × 10(7) , 5 × 10(7) and 1 × 10(8) CB-NK cells/kg. Ten patients had either high-risk chromosomal changes or a history of relapsed/progressed disease. There were no infusional toxicities and no graft-versus-host disease. One patient failed to engraft due to poor autologous graft quality and was rescued with a back-up autologous graft. Overall, 10 patients achieved at least a very good partial response as their best response, including eight with near complete response or better. With a median follow-up of 21 months, four patients have progressed or relapsed, two of whom have died. CB-NK cells were detected in vivo in six patients, with an activated phenotype (NKG2D(+) /NKp30(+) ). These data warrant further development of this novel cellular therapy.

  1. C3 glomerulopathy associated to multiple myeloma successfully treated by autologous stem cell transplant

    PubMed Central

    Hamzi, M. A.; Zniber, A.; Badaoui, G. E.; Mahtat, E.; Alhamany, Z.; Bayahia, R.; Ouzeddoun, N.

    2017-01-01

    A 32-year-old male presented with advanced renal failure and nephrotic proteinuria due to lambda light chain multiple myeloma. Renal biopsy showed a proliferative glomerulonephritis with isolated C3 deposits. Renal recovery was obtained after chemotherapy and autologous stem cell transplant. We review previously described cases of C3 glomerulopathy associated with monoclonal gammopathy. PMID:28356669

  2. Cyclophilin A as a downstream effector of PI3K/Akt signalling pathway in multiple myeloma cells.

    PubMed

    Lin, Zuo-Lin; Wu, Hsin-Jou; Chen, Jin-An; Lin, Kuo-Chih; Hsu, Jung-Hsin

    2015-12-01

    Cyclophilin A (Cyp A), a member of the peptidyl-prolyl isomerase (PPI) family, may function as a molecular signalling switch. Comparative proteomic studies have identified Cyp A as a potential downstream target of protein kinase B (Akt). This study confirmed that Cyp A is a downstream effector of the phosphatidylinositide 3-kinase (PI3K)/Akt signalling pathway. Cyp A was highly phosphorylated in response to interleukin-6 treatment, which was consistent with the accumulation of phosphorylated Akt, suggesting that Cyp A is a phosphorylation target of Akt and downstream effector of the PI3K/Akt pathway. Cyclosporine A (CsA), a PPI inhibitor, inhibited the growth of multiple myeloma (MM) U266 cells. Moreover, CsA treatment inhibited the activation of the signal transducer and activator of transcription 3 (STAT3) in MM U266 cells. Several Cyp A mutants were generated. Mutants with mutated AKT phosphorylation sites increased the G1 phase arrest in MM U266 cells. The other mutants that mimicked the phosphorylated state of Cyp A decreased the percentage of G1 phase. These results demonstrated that the states of phosphorylation of Cyp A by Akt can influence the progress of the cell cycle in MM U266 cells and that this effect is probably mediated through the Janus-activated kinase 2/STAT3 signalling pathway.

  3. SGK Kinase Activity in Multiple Myeloma Cells Protects against ER Stress Apoptosis via a SEK-Dependent Mechanism.

    PubMed

    Hoang, Bao; Shi, Yijiang; Frost, Patrick J; Mysore, Veena; Bardeleben, Carolyne; Lichtenstein, Alan

    2016-04-01

    To assess the role of the serum and glucocorticoid-regulated kinase (SGK) kinase in multiple myeloma, we ectopically expressed wild type or a phosphomimetic version of SGK into multiple myeloma cell lines. These cells were specifically resistant to the ER stress inducers tunicamycin, thapsigargin, and bortezomib. In contrast, there was no alteration of sensitivity to dexamethasone, serum starvation, or mTORC inhibitors. Mining of genomic data from a public database indicated that low baseline SGK expression in multiple myeloma patients correlated with enhanced ability to undergo a complete response to subsequent bortezomib treatment and a longer time to progression and overall survival following treatment. SGK overexpressing multiple myeloma cells were also relatively resistant to bortezomib in a murine xenograft model. Parental/control multiple myeloma cells demonstrated a rapid upregulation of SGK expression and activity (phosphorylation of NDRG-1) during exposure to bortezomib and an SGK inhibitor significantly enhanced bortezomib-induced apoptosis in cell lines and primary multiple myeloma cells. In addition, a multiple myeloma cell line selected for bortezomib resistance demonstrated enhanced SGK expression and SGK activity. Mechanistically, SGK overexpression constrained an ER stress-induced JNK proapoptotic pathway and experiments with a SEK mutant supported the notion that SGK's protection against bortezomib was mediated via its phosphorylation of SEK (MAP2K4) which abated SEK/JNK signaling. These data support a role for SGK inhibitors in the clinical setting for myeloma patients receiving treatment with ER stress inducers like bortezomib. Enhanced SGK expression and activity in multiple myeloma cells contributes to resistance to ER stress, including bortezomib challenge. ©2016 American Association for Cancer Research.

  4. Immature dendritic cells in multiple myeloma are prone to osteoclast-like differentiation through interleukin-17A stimulation.

    PubMed

    Tucci, Marco; Stucci, Stefania; Savonarola, Annalisa; Ciavarella, Sabino; Cafforio, Paola; Dammacco, Franco; Silvestris, Franco

    2013-06-01

    Interleukin 17A (IL17A), a cytokine involved in allergy, inflammation and osteoclastogenesis, was investigated in multiple myeloma (MM) to assess its role in the osteoclast (OC)-like activity of marrow immature dendritic cells (iDCs). Comparing nine MM patients with control subjects affected by monoclonal gammopathy of undetermined significance, we found high IL17A expression in the marrow plasma of MM patients in parallel with its deposits within the stromal matrix. Increased expression of the IL17A receptor (IL17RA) was also found in primary myeloma iDCs, which underwent OC-like transdifferentiation after IL17A stimulation. To assess the role of IL17A, we measured the activity of the IL17/IL17RA pathway in IL17A-transdifferentiated iDCs and the expression of functional OC genes by Western blotting and real-time polymerase chain reaction. These cells showed increased RNA transcription of genes enrolled in the maturation of OCs, while NFATC1 and FOS were induced by IL17A, independently of NFKB1 phosphorylation. Moreover, the concurrent phosphorylation of the Lip isoform of CEBPB and the down-regulation of MAFB supported the activation of IL17RA pathway in OC-like transdifferentiated iDCs that was apparently unrelated to TNFRSF11A signalling. These data emphasize the involvement of iDCs in MM hyperactive osteoclastogenesis and suggest that their bone resorption activity is also regulated, at least in vitro, by IL17RA. © 2013 John Wiley & Sons Ltd.

  5. Cyclophosphamide-based hematopoietic stem cell mobilization before autologous stem cell transplantation in newly diagnosed multiple myeloma.

    PubMed

    Tuchman, Sascha A; Bacon, Wendi A; Huang, Li-Wen; Long, Gwynn; Rizzieri, David; Horwitz, Mitchell; Chute, John P; Sullivan, Keith; Morris Engemann, Ashley; Yopp, Amanda; Li, Zhiguo; Corbet, Kelly; Chao, Nelson; Gasparetto, Cristina

    2015-06-01

    High-dose cyclophosphamide (Cy) is frequently employed for peripheral blood mobilization of hematopoietic stem cells before high-dose chemotherapy with autologous stem cell transplantation (ASCT) in multiple myeloma (MM). The benefit of mobilization with Cy over filgrastim (granulocyte colony-stimulating factor; G-CSF) alone is unclear. Between 2000 and 2008, 167 patients with newly diagnosed MM underwent single ASCT after melphalan conditioning at our institution. Seventy-three patients were mobilized with G-CSF alone, and 94 patients with Cy plus G-CSF (Cy+G-CSF). We retrospectively analyzed Cy's impact on both toxicity and efficacy. Mobilization efficiency was augmented by Cy; a mean total of 12 versus 5.8 × 10(6) CD34+ cells/kg were collected from patients mobilized with Cy+G-CSF versus G-CSF, respectively, (P < 0.01), over a mean of 1.6 versus 2.2 days of peripheral blood apheresis (p = 0.001). Mobilization-related toxicity was also, however, augmented by Cy; 14% of Cy+G-CSF patients were hospitalized because of complications versus none receiving G-CSF (P < 0.0001). Toxicity, including death, related to ASCT was similar between cohorts. Regarding long-term outcomes, multivariate analysis revealed no difference for Cy+G-CSF versus G-CSF (hazard ratio 0.8 for event-free survival [95% confidence interval {CI} 0.57-1.25] and 0.96 for overall survival [95% CI 0.61-1.54]). In summary, we show that mobilization with Cy increases toxicity without positively impacting long-term outcomes in MM. Our findings place into question Cy's benefit as a routine component of stem cell mobilization regimens in MM. Randomized trials are needed to elucidate the risks and benefits of Cy more definitively.

  6. Positive correlation between bone marrow mast cell density and ISS prognostic index in patients with multiple myeloma.

    PubMed

    Pappa, Constantina A; Tsirakis, George; Roussou, Parascevi; Xekalou, Athina; Goulidaki, Nectaria; Konsolas, Ioannis; Alexandrakis, Michael G; Stathopoulos, Efstathios N

    2013-12-01

    We evaluated mast cell density (MCD) in myeloma bone marrow biopsies and correlated it with stage of disease and markers of angiogenesis. Fifty-three untreated myeloma patients and 28 of them responded to therapy were studied. Mast cells were highlighted using immunohistochemical stain for tryptase. Angiogenesis was evaluated measuring microvascular density and serum levels of basic-fibroblast growth factor and tumor necrosis factor-alpha. MCD was higher in untreated patients, compared to healthy population and responders. Significant association was found between MCD with angiogenesis and clinical stage of disease, suggesting that mast cells could be used as target for myeloma treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Genotoxic Stress Induces Senescence-Associated ADAM10-Dependent Release of NKG2D MIC Ligands in Multiple Myeloma Cells.

    PubMed

    Zingoni, Alessandra; Cecere, Francesca; Vulpis, Elisabetta; Fionda, Cinzia; Molfetta, Rosa; Soriani, Alessandra; Petrucci, Maria Teresa; Ricciardi, Maria Rosaria; Fuerst, Daniel; Amendola, Maria Giulia; Mytilineos, Joannis; Cerboni, Cristina; Paolini, Rossella; Cippitelli, Marco; Santoni, Angela

    2015-07-15

    Genotoxic stress can promote antitumor NK cell responses by upregulating the surface expression of activating ligands on cancer cells. Moreover, a number of studies suggested a role for soluble NK group 2D ligands in the impairment of NK cell tumor recognition and killing. We investigated whether genotoxic stress could promote the release of NK group 2D ligands (MHC class I-related chain [MIC]A and MICB), as well as the molecular mechanisms underlying this event in human multiple myeloma (MM) cells. Our results show that genotoxic agents used in the therapy of MM (i.e., doxorubicin and melphalan) selectively affect the shedding of MIC molecules that are sensitive to proteolytic cleavage, whereas the release of the short MICA*008 allele, which is frequent in the white population, is not perturbed. In addition, we found that a disintegrin and metalloproteinase 10 expression is upregulated upon chemotherapeutic treatment both in patient-derived CD138(+)/CD38(+) plasma cells and in several MM cell lines, and we demonstrate a crucial role for this sheddase in the proteolytic cleavage of MIC by means of silencing and pharmacological inhibition. Interestingly, the drug-induced upregulation of a disintegrin and metalloproteinase 10 on MM cells is associated with a senescent phenotype and requires generation of reactive oxygen species. Moreover, the combined use of chemotherapeutic drugs and metalloproteinase inhibitors enhances NK cell-mediated recognition of MM cells, preserving MIC molecules on the cell surface and suggesting that targeting of metalloproteinases in conjunction with chemotherapy could be exploited for NK cell-based immunotherapeutic approaches, thus contributing to avoid the escape of malignant cells from stress-elicited immune responses. Copyright © 2015 by The American Association of Immunologists, Inc.

  8. Multiparametric flow cytometry profiling of neoplastic plasma cells in multiple myeloma.

    PubMed

    Johnsen, Hans E; Bøgsted, Martin; Klausen, Tobias W; Gimsing, Peter; Schmitz, Alexander; Kjaersgaard, Erik; Damgaard, Tina; Voss, Pia; Knudsen, Lene M; Mylin, Anne K; Nielsen, Johan Lanng; Björkstrand, Bo; Gruber, Astrid; Lenhoff, Stig; Remes, Kari; Dahl, Inger Marie; Fogd, Kirsten; Dybkaer, Karen

    2010-09-01

    The clinical impact of multiparametric flow cytometry (MFC) in multiple myeloma (MM) is still unclear and under evaluation. Further progress relies on multiparametric profiling of the neoplastic plasma cell (PC) compartment to provide an accurate image of the stage of differentiation. The primary aim of this study was to perform global analysis of CD expression on the PC compartment and subsequently to evaluate the prognostic impact. Secondary aims were to study the diagnostic and predictive impact. The design included a retrospective analysis of MFC data generated from diagnostic bone marrow (BM) samples of 109 Nordic patients included in clinical trials within NMSG. Whole marrow were analyzed by MFC for identification of end-stage CD45(-) /CD38(++) neoplastic PC and registered the relative numbers of events and mean fluorescence intensity (MFI) staining for CD19, CD20, CD27, CD28, CD38, CD44, CD45, CD56, and isotypes for cluster analysis. The median MFC-PC number was 15%, and the median light microscopy (LM)-PC number was 35%. However, the numbers were significant correlated and the prognostic value with an increased relative risk (95% CI) of 3.1 (1.7-5.5) and 2.9 (1.4-6.2), P < 0.0003 and P < 0.004 of MFC-PC and LM-PC counts, respectively. Unsupervised clustering based on global MFI assessment on PC revealed two clusters based on CD expression profiling. Cluster I with high intensity for CD56, CD38, CD45, right-angle light-scatter signal (SSC), forward-angle light-scatter signal (FSC), and low for CD28, CD19, and a Cluster II, with low intensity of CD56, CD38, CD45, SSC, FSC, and high for CD28, CD19 with a median survival of 39 months and 19 months, respectively (P = 0.02). The MFC analysis of MM BM samples produces diagnostic, prognostic, and predictive information useful in clinical practice, which will be prospectively validated within the European Myeloma Network (EMN). © 2010 International Clinical Cytometry Society. Copyright © 2010 International

  9. Lenalidomide: a review of its continuous use in patients with newly diagnosed multiple myeloma not eligible for stem-cell transplantation.

    PubMed

    McCormack, Paul L

    2015-05-01

    Lenalidomide (Revlimid(®)) is a second-generation immunomodulatory drug structurally related to thalidomide, with improved efficacy and tolerability, for which the label in the EU was recently expanded to include continuous therapy in patients with previously untreated multiple myeloma not eligible for stem-cell transplantation. In randomized, controlled clinical trials, continuous lenalidomide therapy, either in combination with dexamethasone (FIRST trial) or as maintenance monotherapy following induction with melphalan/prednisone/lenalidomide (MM-015 trial), significantly improved progression-free survival (PFS) compared with induction therapy alone (with non-lenalidomide- or lenalidomide-containing regimens) in patients with newly diagnosed multiple myeloma not eligible for stem-cell transplantation. The improvements in PFS with continuous lenalidomide were reflected in improved health-related quality-of-life measures. An overall survival benefit was observed in the FIRST trial, but not in the MM-015 trial. Continuous lenalidomide and continuous thalidomide regimens displayed similar efficacy, but lenalidomide was associated with significantly less toxicity than thalidomide. Continuous use of lenalidomide did not appear to negatively impact on the drug's tolerability and did not increase the incidence of neutropenia or second primary malignancy compared with shorter-term use. The incidence of most adverse events began to reduce after about 18 months of therapy. In conclusion, continuous lenalidomide regimens provide an effective longer-term treatment option in patients with newly diagnosed multiple myeloma ineligible for stem-cell transplantation.

  10. The effects of cannabidiol and its synergism with bortezomib in multiple myeloma cell lines. A role for transient receptor potential vanilloid type-2.

    PubMed

    Morelli, Maria Beatrice; Offidani, Massimo; Alesiani, Francesco; Discepoli, Giancarlo; Liberati, Sonia; Olivieri, Attilio; Santoni, Matteo; Santoni, Giorgio; Leoni, Pietro; Nabissi, Massimo

    2014-06-01

    Multiple myeloma (MM) is a plasma cell (PC) malignancy characterised by the accumulation of a monoclonal PC population in the bone marrow (BM). Cannabidiol (CBD) is a non-psychoactive cannabinoid with antitumoural activities, and the transient receptor potential vanilloid type-2 (TRPV2) channel has been reported as a potential CBD receptor. TRPV2 activation by CBD decreases proliferation and increases susceptibility to drug-induced cell death in human cancer cells. However, no functional role has been ascribed to CBD and TRPV2 in MM. In this study, we identified the presence of heterogeneous CD138+TRPV2+ and CD138+TRPV2- PC populations in MM patients, whereas only the CD138+ TRPV2- population was present in RPMI8226 and U266 MM cell lines. Because bortezomib (BORT) is commonly used in MM treatment, we investigated the effects of CBD and BORT in CD138+TRPV2- MM cells and in MM cell lines transfected with TRPV2 (CD138+TRPV2+). These results showed that CBD by itself or in synergy with BORT strongly inhibited growth, arrested cell cycle progression and induced MM cells death by regulating the ERK, AKT and NF-κB pathways with major effects in TRPV2+ cells. These data provide a rationale for using CBD to increase the activity of proteasome inhibitors in MM.

  11. CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma.

    PubMed

    Casucci, Monica; Nicolis di Robilant, Benedetta; Falcone, Laura; Camisa, Barbara; Norelli, Margherita; Genovese, Pietro; Gentner, Bernhard; Gullotta, Fabiana; Ponzoni, Maurilio; Bernardi, Massimo; Marcatti, Magda; Saudemont, Aurore; Bordignon, Claudio; Savoldo, Barbara; Ciceri, Fabio; Naldini, Luigi; Dotti, Gianpietro; Bonini, Chiara; Bondanza, Attilio

    2013-11-14

    Genetically targeted T cells promise to solve the feasibility and efficacy hurdles of adoptive T-cell therapy for cancer. Selecting a target expressed in multiple-tumor types and that is required for tumor growth would widen disease indications and prevent immune escape caused by the emergence of antigen-loss variants. The adhesive receptor CD44 is broadly expressed in hematologic and epithelial tumors, where it contributes to the cancer stem/initiating phenotype. In this study, silencing of its isoform variant 6 (CD44v6) prevented engraftment of human acute myeloid leukemia (AML) and multiple myeloma (MM) cells in immunocompromised mice. Accordingly, T cells targeted to CD44v6 by means of a chimeric antigen receptor containing a CD28 signaling domain mediated potent antitumor effects against primary AML and MM while sparing normal hematopoietic stem cells and CD44v6-expressing keratinocytes. Importantly, in vitro activation with CD3/CD28 beads and interleukin (IL)-7/IL-15 was required for antitumor efficacy in vivo. Finally, coexpressing a suicide gene enabled fast and efficient pharmacologic ablation of CD44v6-targeted T cells and complete rescue from hyperacute xenogeneic graft-versus-host disease modeling early and generalized toxicity. These results warrant the clinical investigation of suicidal CD44v6-targeted T cells in AML and MM.

  12. SAR650984 directly induces multiple myeloma cell death via lysosomal-associated and apoptotic pathways, which is further enhanced by pomalidomide.

    PubMed

    Jiang, H; Acharya, C; An, G; Zhong, M; Feng, X; Wang, L; Dasilva, N; Song, Z; Yang, G; Adrian, F; Qiu, L; Richardson, P; Munshi, N C; Tai, Y-T; Anderson, K C

    2016-02-01

    The anti-CD38 monoclonal antibody SAR650984 (SAR) is showing promising clinical activity in treatment of relapsed and refractory multiple myeloma (MM). Besides effector-mediated antibody-dependent cellular cytotoxicity and complement-mediated cytotoxicity, we here define molecular mechanisms of SAR-directed MM cell death and enhanced anti-MM activity triggered by SAR with Pomalidomide (Pom). Without Fc-cross-linking agents or effector cells, SAR specifically induces homotypic aggregation (HA)-associated cell death in MM cells dependent on the level of cell surface CD38 expression, actin cytoskeleton and membrane lipid raft. SAR and its F(ab)'2 fragments trigger caspase 3/7-dependent apoptosis in MM cells highly expressing CD38, even with p53 mutation. Importantly, SAR specifically induces lysosome-dependent cell death (LCD) by enlarging lysosomes and increasing lysosomal membrane permeabilization associated with leakage of cathepsin B and LAMP-1, regardless of the presence of interleukin-6 or bone marrow stromal cells. Conversely, the lysosomal vacuolar H+-ATPase inhibitor blocks SAR-induced LCD. SAR further upregulates reactive oxygen species. Pom enhances SAR-induced direct and indirect killing even in MM cells resistant to Pom/Len. Taken together, SAR is the first therapeutic monoclonal antibody mediating direct cytotoxicity against MM cells via multiple mechanisms of action. Our data show that Pom augments both direct and effector cell-mediated MM cytotoxicity of SAR, providing the framework for combination clinical trials.

  13. Increased effect of IMiDs by addition of cytokine-induced killer cells in multiple myeloma.

    PubMed

    Bullok, Katharina F; Sippel, Christoph; Schmidt-Wolf, Ingo G H

    2016-12-01

    Immunomodulatory drugs (IMiDs), such as thalidomide, lenalidomide and pomalidomide, represent the basic principle of multiple myeloma treatment. However, the development of resistance is a limiting factor. Over the last years, the efficient application of cytokine-induced killer (CIK) cells has been reported as an alternative strategy to treat hematological neoplasms. In this study, we tested for a potential synergistic effect by combining the IMiDs thalidomide, lenalidomide and pomalidomide with CIK cells in different myeloma cell lines in vitro. Myeloma cells tested with CIK cells were significantly reduced. In the combination, myeloma cells were significantly reduced compared with cells only tested with IMiDs but not to the cells tested with CIK cells. Otherwise, the number of CIK cells was significantly reduced when treated with IMiDs. Because IMiDs are active in patients with myeloma, these results lead to the expectation that combination of IMiDs and CIK cells achieve better results in the treatment of multiple myeloma compared with the single use of IMiDs. Therefore, further examinations in an in vivo setting are necessary to have a closer look on the cellular interactions. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Fractionated stem cell infusions for patients with plasma cell myeloma undergoing autologous hematopoietic cell transplantation.

    PubMed

    Landau, Heather; Wood, Kevin; Chung, David J; Koehne, Guenther; Lendvai, Nikoletta; Hassoun, Hani; Lesokhin, Alexander; Hoover, Elizabeth; Zheng, Junting; Devlin, Sean M; Giralt, Sergio

    2016-08-01

    We conducted a phase II trial investigating the impact of fractionated hematopoietic cell infusions on engraftment kinetics and symptom burden in patients with plasma cell myeloma (PCM) undergoing autologous hematopoietic cell transplant (AHCT). We hypothesized that multiple hematopoietic cell infusions would reduce duration of neutropenia and enhance immune recovery resulting in a better tolerated procedure. Twenty-six patients received high-dose melphalan followed by multiple cell infusions (Days 0, +2, +4, +6) and were compared to PCM patients (N = 77) who received high-dose melphalan and a single infusion (Day 0) (concurrent control group). The primary endpoint was number of days with ANC <500K/mcL. Symptom burden was assessed using the MSK-modified MD Anderson Symptom Inventory. Median duration of neutropenia was similar in study (4 days, range 3-5) and control patients (4 days, range 3-9) (p = 0.654). There was no significant difference in the number of red cell or platelet transfusions, days of fever, diarrhea, antibiotics, number of documented infections, or length of admission. Symptom burden surveys showed that AHCT was well-tolerated in both study and control patients. We conclude that fractionated stem cell infusions following high-dose melphalan do not enhance engraftment kinetics or significantly alter patients' clinical course following AHCT in PCM.

  15. Conditioning regimens in autologous stem cell transplantation for multiple myeloma: a comparative study of efficacy and toxicity from the Spanish Registry for Transplantation in Multiple Myeloma.

    PubMed

    Lahuerta, J J; Martinez-Lopez, J; Grande, C; Bladé, J; de la Serna, J; Alegre, A; García-Laraña, J; Caballero, D; Sureda, A; de la Rubia, J; Alvarez, A M; Marín, J; Escudero, A; Conde, E; Perez-Equiza, K; García Ruiz, J C; Moraleda, J M; León, A; Bargay, J; Cabrera, R; Hernandez-García, M T; Diaz-Mediavilla, J; Miguel, J S

    2000-04-01

    High-dose chemoradiotherapy conditioning regimens for autologous stem cell transplantation (ASCT) are generally held to give similar results in multiple myeloma (MM), but no specific comparative study has been published. We addressed this issue by comparing the main high-dose chemoradiotherapy regimens used in the Spanish Registry. Patient cohorts included 315 cases treated with 200 mg/m2 melphalan (MEL200), 127 patients with 140 mg/m2 melphalan plus total body irradiation (MEL140 + TBI) and 121 cases with 12 mg/kg busulphan plus 140 mg/m2 melphalan (BUMEL). After ASCT, granulocyte and platelet recovery time was similar in all conditioning groups. There were no differences in transplant-related mortality. All regimens yielded a similar response in reference to pre-ASCT MM status, although BUMEL produced a slightly better overall response when compared with the other regimens (97% vs. 89% and 92%, P = 0.003). The 5-year overall survival (OS) with BUMEL was 47% [95% confidence interval (CI) 26-68] compared with 43% (CI 31-54) for MEL140 + TBI and 37% (CI: 18-56) for MEL200. The median survival for the BUMEL group was 64 months compared with 45 and 37 months for the MEL200 and MEL140 + TBI groups respectively. These differences were non-significant (P = 0.2). The median event-free survival (EFS) was better for BUMEL (32 months) than for MEL200 (22 months) or for MEL140 + TBI (20 months). The differences in EFS between BUMEL and the other conditioning regimens reached statistical significance (P = 0.01). Nevertheless, the adjusted multivariate analysis for OS and EFS revealed that the conditioning regimens had no independent prognostic value. We concluded that three different conditioning regimens, commonly used for ASCT in MM, have a similar antimyeloma effect. However, the trend for better results observed in our series with BUMEL requires a prospective trial.

  16. Amyloid arthropathy associated with multiple myeloma: polyarthritis without synovial infiltration of CD20+ or CD38+ cells.

    PubMed

    Pessler, Frank; Ogdie, Alexis R; Mayer, Christian T; Kretzschmar, Warren W; Dai, Lie; Elsaman, Ahmed M; Einhorn, Eugene; Krenn, Veit; Schumacher, H Ralph

    2014-03-01

    To describe histological, immunohistochemical and ultrastructural features of synovial biopsies of amyloid arthropathy associated with multiple myeloma (MM). Synovial biopsies from affected joints of two patients with MM and amyloid arthropathy were examined with light and electron microscopy, and immunohistochemically for expression of CD3, CD8, CD20, CD38, CD68, Ki-67 and vWF. Results were compared to values from osteoarthritis (OA, n = 26), rheumatoid arthritis (RA, n = 24) and normal (n = 15) synovial membranes. There was no or only mild lining hyperplasia. Vascular density was not elevated, and there were few Ki-67+ proliferating cells in the stroma. The Krenn synovitis score classified one specimen as "low-grade" and one as "high-grade" synovitis. CD68+ and CD3+ cells were the predominant mononuclear inflammatory cells, whereas CD20+ and CD38+ cells were absent from both synovial membrane and synovial fluid sediment. Electron microscopy demonstrated amyloid phagocytosis by synovial macrophages. In hierarchical clustering the two amyloid arthropathy specimens were more closely related to OA than to RA or normal synovium. This first detailed immunohistological analysis of MM-associated amyloid arthropathy suggests that it is a chronic synovitis that evolves despite the loss of humoral immunity seen in advanced MM. Instead, amyloid phagocytosis by synovial macrophages likely triggers and perpetuates local disease.

  17. Smoldering Multiple Myeloma

    PubMed Central

    Gao, Minjie; Yang, Guang; Kong, Yuanyuan; Wu, Xiaosong; Shi, Jumei

    2015-01-01

    Smoldering multiple myeloma (SMM) is an asymptomatic precursor stage of multiple myeloma (MM) characterized by clonal bone marrow plasma cells (BMPC) ≥ 10% and/or M protein level ≥ 30 g/L in the absence of end organ damage. It represents an intermediate stage between monoclonal gammopathy of undetermined significance (MGUS) and symptomatic MM. The risk of progression to symptomatic MM is not uniform, and several parameters have been reported to predict the risk of progression. These include the level of M protein and the percentage of BMPC, the proportion of immunophenotypically aberrant plasma cells, and the presence of immunoparesis, free light-chain (FLC) ratio, peripheral blood plasma cells (PBPC), pattern of serum M protein evolution, abnormal magnetic resonance imaging (MRI), cytogenetic abnormalities, IgA isotype, and Bence Jones proteinuria. So far treatment is still not recommended for SMM, because several trials suggested that patients with SMM do not benefit from early treatment. However, the Mateos et al. trial showed a survival benefit after early treatment with lenalidomide plus dexamethasone in patients with high-risk SMM. This trial has prompted a reevaluation of early treatment in an asymptomatic patient population. PMID:26000300

  18. Smoldering multiple myeloma.

    PubMed

    Gao, Minjie; Yang, Guang; Kong, Yuanyuan; Wu, Xiaosong; Shi, Jumei

    2015-01-01

    Smoldering multiple myeloma (SMM) is an asymptomatic precursor stage of multiple myeloma (MM) characterized by clonal bone marrow plasma cells (BMPC) ≥ 10% and/or M protein level ≥ 30 g/L in the absence of end organ damage. It represents an intermediate stage between monoclonal gammopathy of undetermined significance (MGUS) and symptomatic MM. The risk of progression to symptomatic MM is not uniform, and several parameters have been reported to predict the risk of progression. These include the level of M protein and the percentage of BMPC, the proportion of immunophenotypically aberrant plasma cells, and the presence of immunoparesis, free light-chain (FLC) ratio, peripheral blood plasma cells (PBPC), pattern of serum M protein evolution, abnormal magnetic resonance imaging (MRI), cytogenetic abnormalities, IgA isotype, and Bence Jones proteinuria. So far treatment is still not recommended for SMM, because several trials suggested that patients with SMM do not benefit from early treatment. However, the Mateos et al. trial showed a survival benefit after early treatment with lenalidomide plus dexamethasone in patients with high-risk SMM. This trial has prompted a reevaluation of early treatment in an asymptomatic patient population.

  19. Prognostic Significance of Blood Transfusion in Newly Diagnosed Multiple Myeloma Patients without Autologous Hematopoietic Stem Cell Transplantation

    PubMed Central

    Fan, Liping; Fu, Danhui; Zhang, Jinping; Wang, Qingqing; Ye, Yamei; Xie, Qianling

    2017-01-01

    The aim of this study was to evaluate whether blood transfusions affect overall survival (OS) and progression-free survival (PFS) in newly diagnosed multiple myeloma (MM) patients without hematopoietic stem cell transplantation. A total of 181 patients were enrolled and divided into two groups: 68 patients in the transfused group and 113 patients in the nontransfused group. Statistical analyses showed that there were significant differences in ECOG scoring, Ig isotype, platelet (Plt) counts, hemoglobin (Hb) level, serum creatinine (Scr) level, and β2-microglobulin (β2-MG) level between the two groups. Univariate analyses showed that higher International Staging System staging, Plt counts < 100 × 109/L, Scr level ≥ 177 μmol/L, serum β2-MG ≥ 5.5 μmol/L, serum calcium (Ca) ≥ 2.75 mmol/L, and thalidomide use were associated with both OS and PFS in MM patients. Age ≥ 60 was associated with OS and Ig isotype was associated with PFS in MM patients. Moreover, blood transfusion was associated with PFS but not OS in MM patients. Multivariate analyses showed that blood transfusion was not an independent factor for PFS in MM patients. Our preliminary results suggested that newly diagnosed MM patients may benefit from a liberal blood transfusion strategy, since blood transfusion is not an independent impact factor for survival. PMID:28567420

  20. Mass cytometry analysis shows that a novel memory phenotype B cell is expanded in multiple myeloma

    PubMed Central

    Hansmann, Leo; Blum, Lisa; Ju, Chia-Hsin; Liedtke, Michaela; Robinson, William H.; Davis, Mark M.

    2015-01-01

    It would be very beneficial if the status of cancers could be determined from a blood specimen. However, peripheral blood leukocytes are very heterogeneous between individuals and thus high resolution technologies are likely required. We used cytometry by time-of-flight (CyTOF) and next generation sequencing to ask whether a plasma cell cancer (multiple myeloma) and related pre-cancerous states had any consistent effect on the peripheral blood mononuclear cell phenotypes of patients. Analysis of peripheral blood samples from 13 cancer patients, 9 pre-cancer patients, and 9 healthy individuals revealed significant differences in the frequencies of the T, B, and natural killer cell compartments. Most strikingly, we identified a novel B-cell population that normally accounts for 4.0±0.7% (mean±SD) of total B cells and is up to 13-fold expanded in multiple myeloma patients with active disease. This population expressed markers previously associated with both memory (CD27+) and naïve (CD24loCD38+) phenotypes. Single-cell immunoglobulin gene sequencing showed polyclonality, indicating that these cells are not precursors to the myeloma, and somatic mutations, a characteristic of memory cells. SYK, ERK, and p38 phosphorylation responses, and the fact that most of these cells expressed isotypes other than IgM or IgD, confirmed the memory character of this population, defining it as a novel type of memory B cells. PMID:25711758

  1. Absence of spontaneous response improvement beyond day +100 after autologous stem cell transplantation in multiple myeloma.

    PubMed

    Fernández de Larrea, C; Dávila, J; Isola, I; Ocio, E M; Rosiñol, L; García-Sanz, R; Cibeira, M T; Tovar, N; Rovira, M; Mateos, M V; Miguel, J S; Bladé, J

    2017-04-01

    The response evaluation after autologous stem-cell transplantation (ASCT) is usually performed at day +100 in patients with multiple myeloma (MM). A recent report suggests that improvement in the response can be observed beyond day +100. The aim of the present study has been to evaluate the rate of improved response and outcome beyond day +100 after ASCT, with and without maintenance therapy. One hundred and forty-four patients who underwent single ASCT with chemosensitive disease and achieved less than CR at day 100 post ASCT were evaluated. Seventy-four patients (51.4%) did not receive any maintenance with only one of them showing an upgrade in the response. The remaining 70 patients (48.6%) received maintenance therapy; eleven of them (15.7%) improved their response beyond day +100. The outcome of these patients was better than those who did not upgrade their response in both progression-free survival and overall survival (P=0.019 and P=0.031, respectively). In conclusion, the improvement in response beyond day +100 after ASCT in patients not receiving any therapy is exceedingly rare. A minority of patients receiving maintenance therapy after ASCT upgrades their response and this finding is associated with better outcome.

  2. Prognostic impact of circulating plasma cells in patients with multiple myeloma: implications for plasma cell leukaemia definition.

    PubMed

    Granell, Miquel; Calvo, Xavier; Garcia-Guiñón, Antoni; Escoda, Lourdes; Abella, Eugènia; Martínez, Clara M; Teixidó, Montserrat; Gimenez, Maria Teresa; Senín, Alicia; Sanz, Patricia; Campoy, Desirée; Vicent, Ana; Arenillas, Leonor; Rosiñol, Laura; Sierra, Jorge; Blade, Joan; Fernández de Larrea, Carlos

    2017-03-02

    The presence of circulating plasma cells in patients with multiple myeloma is considered a marker for highly proliferative disease. In the present study, the impact of circulating plasma cells assessed by cytology on survival of patients with multiple myeloma was analysed. Wright-Giemsa stained peripheral blood smears of 482 patients with newly diagnosed myeloma or plasma cell leukaemia were reviewed and patients were classified in four categories according to the percentage of circulating plasma cells: 0%, 1-4%, 5-20% and plasma cell leukemia with the following frequencies: 382 (79.2%), 83 (17.2%), 12 (2.5%) and 5 (1.0%) respectively. Median overall survival according to the circulating plasma cells group was 47, 50, 6 and 14 months, respectively. At multivariate analysis, presence of 5 to 20% circulating plasma cells was associated with a worse overall survival (relative risk 4.9, 95%CI 2.6-9.3) independently of age, creatinine, Durie-Salmon and international stage. Patients with ≥5% circulating plasma cells had lower platelet counts (median 86x109/L vs. 214x109/L, p<0.0001) and higher bone marrow plasma cells (median 53% vs. 36%, p=0.004). The presence of ≥5% circulating plasma cells in patients with multiple myeloma has similar adverse prognostic impact as plasma cell leukemia.

  3. Inhibition of autophagy with chloroquine potentiates carfilzomib-induced apoptosis in myeloma cells in vitro and in vivo.

    PubMed

    Jarauta, Vidal; Jaime, Paula; Gonzalo, Oscar; de Miguel, Diego; Ramírez-Labrada, Ariel; Martínez-Lostao, Luis; Anel, Alberto; Pardo, Julián; Marzo, Isabel; Naval, Javier

    2016-11-01

    The proteasome inhibitor bortezomib is now the cornerstone of combination therapy of multiple myeloma (MM). Carfilzomib, a second-generation inhibitor, has shown a substantial benefit vs bortezomib in combination regimes. Here we have analyzed in detail the mechanism of cell death induced by carfilzomib and its crosstalk with autophagy and applied the results to the in vivo treatment of MM in a mouse model. Carfilzomib induced apoptosis essentially by the intrinsic pathway, through the up-regulation of Puma and Noxa proteins followed by the interaction of Puma, Noxa and Bim with Bax and of Noxa with Bak. Carfilzomib also produces an increase in the formation of autophagosomes but, as apoptosis progresses, autophagy is disrupted, probably owing to Beclin 1 and p62 inactivation. Cotreatment with chloroquine, which blocks autophagy, strongly potentiated apoptosis in vitro and in vivo. Accordingly, combination therapy with carfilzomib plus chloroquine was highly effective in the treatment of MM in a mouse xenograft model. Chloroquine also enhanced carfilzomib-induced calreticulin exposure in MM cells undergoing apoptosis, increasing the immunogenic ability of carfilzomib. These results support design of trials combining carfilzomib with chloroquine to improve MM therapy.

  4. Effect of cAMP signaling on expression of glucocorticoid receptor, Bim and Bad in glucocorticoid-sensitive and resistant leukemic and multiple myeloma cells.

    PubMed

    Dong, Hongli; Carlton, Michael E; Lerner, Adam; Epstein, Paul M

    2015-01-01

    Stimulation of cAMP signaling induces apoptosis in glucocorticoid-sensitive and resistant CEM leukemic and MM.1 multiple myeloma cell lines, and this effect is enhanced by dexamethasone in both glucocorticoid-sensitive cell types and in glucocorticoid-resistant CEM cells. Expression of the mRNA for the glucocorticoid receptor alpha (GR) promoters 1A3, 1B and 1C, expression of mRNA and protein for GR, and the BH3-only proapoptotic proteins, Bim and Bad, and the phosphorylation state of Bad were examined following stimulation of the cAMP and glucocorticoid signaling pathways. Expression levels of GR promoters were increased by cAMP and glucocorticoid signaling, but GR protein expression was little changed in CEM and decreased in MM.1 cells. Stimulation of these two signaling pathways induced Bim in CEM cells, induced Bad in MM.1 cells, and activated Bad, as indicated by its dephosphorylation on ser112, in both cell types. This study shows that leukemic and multiple myeloma cells, including those resistant to glucocorticoids, can be induced to undergo apoptosis by stimulating the cAMP signaling pathway, with enhancement by glucocorticoids, and the mechanism by which this occurs may be related to changes in Bim and Bad expression, and in all cases, to activation of Bad.

  5. Effect of cAMP signaling on expression of glucocorticoid receptor, Bim and Bad in glucocorticoid-sensitive and resistant leukemic and multiple myeloma cells

    PubMed Central

    Dong, Hongli; Carlton, Michael E.; Lerner, Adam; Epstein, Paul M.

    2015-01-01

    Stimulation of cAMP signaling induces apoptosis in glucocorticoid-sensitive and resistant CEM leukemic and MM.1 multiple myeloma cell lines, and this effect is enhanced by dexamethasone in both glucocorticoid-sensitive cell types and in glucocorticoid-resistant CEM cells. Expression of the mRNA for the glucocorticoid receptor alpha (GR) promoters 1A3, 1B and 1C, expression of mRNA and protein for GR, and the BH3-only proapoptotic proteins, Bim and Bad, and the phosphorylation state of Bad were examined following stimulation of the cAMP and glucocorticoid signaling pathways. Expression levels of GR promoters were increased by cAMP and glucocorticoid signaling, but GR protein expression was little changed in CEM and decreased in MM.1 cells. Stimulation of these two signaling pathways induced Bim in CEM cells, induced Bad in MM.1 cells, and activated Bad, as indicated by its dephosphorylation on ser112, in both cell types. This study shows that leukemic and multiple myeloma cells, including those resistant to glucocorticoids, can be induced to undergo apoptosis by stimulating the cAMP signaling pathway, with enhancement by glucocorticoids, and the mechanism by which this occurs may be related to changes in Bim and Bad expression, and in all cases, to activation of Bad. PMID:26528184

  6. Small interfering RNA-mediated silencing of nicotinamide phosphoribosyltransferase (NAMPT) and lysosomal trafficking regulator (LYST) induce growth inhibition and apoptosis in human multiple myeloma cells: A preliminary study.

    PubMed

    Bong, Ivyna Pau Ni; Ng, Ching Ching; Fakiruddin, Shaik Kamal; Lim, Moon Nian; Zakaria, Zubaidah

    2016-11-10

    Multiple myeloma (MM) is a malignancy of B lymphocytes or plasma cells. Our array-based comparative genomic hybridization findings revealed chromosomal gains at 7q22.3 and 1q42.3, where nicotinamide (NAM) phosphoribosyltransferase (NAMPT) and lysosomal trafficking regulator (LYST) genes are localized, respectively. This led us to further study the functions of these genes in myeloma cells. NAMPT is a key enzyme involved in nicotinamide adenine dinucleotide salvage pathway, and it is frequently overexpressed in human cancers. In contrast, little is known about the function of LYST in cancer. The expression of LYST is shown to affect lysosomal size, granule size, and autophagy in human cells. In this study, the effects of small interfering RNA (siRNA)-mediated silencing of NAMPT and LYST on cell proliferation and apoptosis were evaluated in RPMI 8226 myeloma cells. Transfection efficiencies were determined by quantitative real time reverse transcriptase PCR. Cell proliferation was determined using MTT assay, while apoptosis was analyzed with flow cytometry using Annexin V-fluorescein isothiocyanate/propidium iodide assay. The NAMPT protein expression in siRNA-treated cells was estimated by enzyme-linked immunosorbent assay. Our results showed that NAMPT and LYST were successfully knockdown by siRNA transfection (p < 0.05). NAMPT or LYST gene silencing significantly inhibited cell proliferation and induced apoptosis in RPMI 8226 cells (p < 0.05). Silencing of NAMPT gene also decreased NAMPT protein levels (p < 0.01). Our study demonstrated that NAMPT and LYST play pivotal roles in the molecular pathogenesis of MM. This is the first report describing the possible functions of LYST in myelomagenesis and its potential role as a therapeutic target in MM.

  7. Small interfering RNA-mediated silencing of nicotinamide phosphoribosyltransferase (NAMPT) and lysosomal trafficking regulator (LYST) induce growth inhibition and apoptosis in human multiple myeloma cells: A preliminary study

    PubMed Central

    Bong, Ivyna Pau Ni; Ng, Ching Ching; Fakiruddin, Shaik Kamal; Lim, Moon Nian; Zakaria, Zubaidah

    2016-01-01

    Multiple myeloma (MM) is a malignancy of B lymphocytes or plasma cells. Our array-based comparative genomic hybridization findings revealed chromosomal gains at 7q22.3 and 1q42.3, where nicotinamide (NAM) phosphoribosyltransferase (NAMPT) and lysosomal trafficking regulator (LYST) genes are localized, respectively. This led us to further study the fprotein expression in unctions of these genes in myeloma cells. NAMPT is a key enzyme involved in nicotinamide adenine dinucleotide salvage pathway, and it is frequently overexpressed in human cancers. In contrast, little is known about the function of LYST in cancer. The expression of LYST is shown to affect lysosomal size, granule size, and autophagy in human cells. In this study, the effects of small interfering RNA (siRNA)-mediated silencing of NAMPT and LYST on cell proliferation and apoptosis were evaluated in RPMI 8226 myeloma cells. Transfection efficiencies were determined by quantitative real time reverse transcriptase PCR. Cell proliferation was determined using MTT assay, while apoptosis was analyzed with flow cytometry using Annexin V-fluorescein isothiocyanate/propidium iodide assay. The NAMPT protein expression in siRNA-treated cells was estimated by enzyme-linked immunosorbent assay. Our results showed that NAMPT and LYST were successfully knockdown by siRNA transfection (p < 0.05). NAMPT or LYST gene silencing significantly inhibited cell proliferation and induced apoptosis in RPMI 8226 cells (p < 0.05). Silencing of NAMPT gene also decreased NAMPT protein levels (p < 0.01). Our study demonstrated that NAMPT and LYST play pivotal roles in the molecular pathogenesis of MM. This is the first report describing the possible functions of LYST in myelomagenesis and its potential role as a therapeutic target in MM. PMID:27754828

  8. A 13 mer LNA-i-miR-221 Inhibitor Restores Drug Sensitivity in Melphalan-Refractory Multiple Myeloma Cells.

    PubMed

    Gullà, Annamaria; Di Martino, Maria Teresa; Gallo Cantafio, Maria Eugenia; Morelli, Eugenio; Amodio, Nicola; Botta, Cirino; Pitari, Maria Rita; Lio, Santo Giovanni; Britti, Domenico; Stamato, Maria Angelica; Hideshima, Teru; Muns