Sample records for mylar

  1. Erosion of mylar and protection by thin metal films

    NASA Technical Reports Server (NTRS)

    Fraundorf, P.; Lindstrom, D.; Sandford, S.; Swan, P.; Walker, R.; Zinner, E.; Pailer, N.

    1983-01-01

    Mylar strips, 2.5 microns thick, uncoated and coated with 50A, 100A and 200A of Al, Pd, and Au/Pd were exposed on STS-5 in order to measure the erosion of mylar and to test means of protecting thin plastic foils commonly used for space experiments in low earth orbit. Analysis by optical microscopy, SEM and STEM investigation, EDX measurements, FTIR spectroscopy and weight loss measurements showed that while up to 75 percent of the uncoated mylar was eroded during exposure, thin coatings of the above metals can protect mylar for integrated oxygen-fluxes of at least 10 to the 21st atoms/sq cm.

  2. Dielectric Characterization of Mylar and The Effects of Doping Processes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belcher, Cami Beth

    2016-11-01

    Mylar® polymer is a bi-axially oriented polyethylene terephthalate (PET) polymer film used widely as a dielectric, specifically in capacitors. The dielectric characteristics of Mylar have been well studied and documented over the years; however, many of the mechanisms responsible for dielectric breakdown and failure are not understood for modified versions of the material. Previous studies on Mylar confirm that factors such as temperature, humidity, and voltage ramp rates can also have a significant effect on the dielectric properties and measurement of the dielectric properties. This study seeks to determine how dielectric properties, including permittivity, dielectric loss, and breakdown strength, aremore » affected by doping of the polymer. To do this, two types of Mylar films, virgin film and film doped with a small-molecule electron-acceptor, are tested. Both types of materials are tested under a variety of environmental and experimental conditions, including testing at elevated temperatures, varying relative humidity, and varying ramp rates in dielectric breakdown testing. Analysis of permittivity, dielectric loss, and breakdown strength will be presented comparing virgin and doped Mylar to gain insight into the effects of doping with electron-acceptor molecules on dielectric properties under these varying environmental and test conditions.« less

  3. Tracking chamber made of 15-mm mylar drift tubes

    NASA Astrophysics Data System (ADS)

    Kozhin, A.; Borisov, A.; Bozhko, N.; Fakhrutdinov, R.; Plotnikov, I.

    2017-05-01

    We are presenting a drift chamber composed from three layers of mylar drift tubes with outer diameter 15 mm. The pipe is made of strip of mylar film 125 micrometers thick covered with aluminium from the both sides. A strip of mylar is wrapped around the mandrel. Pipe is created by ultrasonic welding. A single drift tube is self-supported structure withstanding 350 g wire tension without supports and internal overpressure. About 400 such tubes were assembled. Design, quality control procedures of the drift tubes are described. Seven chambers were glued from these tubes of 560 mm length. Each chamber consists of 3 layers, 16 tubes per layer. Several chambers were tested with cosmic rays. Results of the tests, counting rate plateau and coordinate resolution are presented.

  4. Drift chambers on the basis of Mylar tube blocks

    NASA Astrophysics Data System (ADS)

    Budagov, Yu.; Chirikov-Zorin, I.; Golovanov, L.; Khazins, D.; Kuritsin, A.; Pukhov, O.; Zhukov, V.

    1993-06-01

    Prototypes of drift chambers constructed of Mylar tube blocks were tested. The purpose of developing tube blocks technology was to create long chambers (up to 3-4 m). Counting and drift characteristics of the chambers for different values of the gas pressure and different diameters of sense wires are presented. The lifetime of the chambers is determined. A photoeffect in the visible spectrum on the surface of the thin film aluminium cathode, which covers the Mylar tubes was observed.

  5. Exhaled nitric oxide in mylar balloons: influence of storage time, humidity and temperature.

    PubMed Central

    Bodini, Alessandro; Pijnenburg, Mariëlle W H; Boner, Atillio L; de Jongste, Johan C

    2003-01-01

    BACKGROUND: Mylar balloons are used to collect exhaled air for analysis of fractional nitric oxide concentration (FENO). AIM: We studied the effect of storage conditions on the stability of nitric oxide (NO) in mylar balloons. METHODS: Exhaled air samples and calibration gases were stored in mylar balloons at 4, 21 and 37 degrees C, with or without silica gel. NO was measured after 0, 6, 9, 24 and 48 h. Scheffe F-tests were used to compare NO values. RESULTS: NO remained stable in balloons for 9 h at all temperatures, without silica gel. NO increased between 9 and 48 h, but only with low initial FENO. Silica gel increased variability. CONCLUSIONS: FENO in mylar balloons is stable for at least 9 h. The storage temperature is not critical, but silica gel increases variability. PMID:12745548

  6. New process for preparing complex-shaped dielectric film similar to Mylar

    NASA Astrophysics Data System (ADS)

    Lagasse, R. R.; Kraynik, A. M.

    1982-02-01

    A new thermoforming/heat-treatment process yields complex-shaped dielectric film having electrical and shrinkage properties similar to those of flat Mylar film. This similarity should extend to other physical properties because the new process is directly analogous to the process used to prepare Mylar. Commercially available poly(ethylene terephthalate) film is formed into a cavity at approx. 110 C and then heat treated at approx. 180 C. A laboratory-scale forming apparatus has produced cylindrically shaped films having depth/diameter ratio approx. 1, a tapered wall-section, and variation in wall thickness of 3X. Evaluation of other forming methods suggest that the production rate and thickness uniformity can be improved with existing technology. Thermal shrinkage at 150 C, 1 kHz dielectric constant from -55 to +70 C, leakage current at 1 kV, and breakdown voltage have been measured for both the complex-shaped film and Mylar.

  7. A drift chamber constructed of aluminized mylar tubes

    NASA Astrophysics Data System (ADS)

    Baringer, P.; Jung, C.; Ogren, H. O.; Rust, D. R.

    1987-03-01

    A thin reliable drift chamber has been constructed to be used near the interaction point of the PEP storage ring in the HRS detector. It is composed of individual drift tubes with aluminized mylar walls.

  8. Testing Mylar Multi-Gap Resistive Plate Chambers

    NASA Astrophysics Data System (ADS)

    Towell, Cecily; EIC PID Consortium Collaboration

    2016-09-01

    Quantum Chromodynamics (QCD) is the fundamental theory that successfully explains strong force interactions. To continue the effective study of QCD in nuclear structure, plans are being made to construct an Electron Ion Collider (EIC). Part of the preparation for the EIC includes continued detector development to push beyond their current capabilities. This includes Time of Flight (TOF) detectors, which are used for particle identification. Multi-Gap Resistive Plate Chambers (mRPCs) are a type of TOF detector that typically use glass to make small gas gaps within the detector to produce fast signals when a high energy particle goes through the detector. These extremely thin gaps of 0.2mm are key in achieving the excellent timing resolution capability of these detectors. A new mRPC design is being tested with the goal of reaching a timing resolution of 10ps. This design uses sheets of mylar in place of the glass so that the width of the dividers is smaller, thus vastly increasing the number of gas gaps. Multiple versions of this mylar mRPC have been made and tested. The methods for producing these mRPCs and their performance will be discussed. This research was supported by US DOE MENP Grant DE-FG02-03ER41243.

  9. 9. Photocopy of ink on mylar drawing (original drawing in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photocopy of ink on mylar drawing (original drawing in the collection of Archaeological & Historical Consultants, Inc., Centre Hall, Pennsylvania), 1988, revised 1990. SITE PLAN. - Barnes Estate, Generator House, South side U.S. Route 40 between Fairchance & Buttermilk Roads, Hopwood, Fayette County, PA

  10. Radiation response and electrical properties of polymer energy storage capacitors: PVF2, Polysulfone, and Mylar

    NASA Technical Reports Server (NTRS)

    Edwards, L. R.

    1981-01-01

    Efforts were made to develop a polymer film capacitor that is tolerant to radiation. The capacitors are to be utilized in a high voltage pulse discharge application. Radiation response data at high dose/dose rate levels are presented for polyvinylidene fluoride (PVF2), polysulfone, and Mylar. The results show that PVF2 is the most radiation tolerant while Mylar is the least tolerant. The data also show that the radiation response is quite dependent on operating electric stress.

  11. The inverse power law model for the lifetime of a mylar-polyurethane laminated dc hv insulating structure

    NASA Astrophysics Data System (ADS)

    Kalkanis, G.; Rosso, E.

    1989-09-01

    Results of an accelerated test on the lifetime of a mylar-polyurethane laminated dc high voltage insulating structure are reported. This structure consists of mylar ribbons placed side by side in a number of layers, staggered and glued together with a polyurethane adhesive. The lifetime until breakdown as a function of extremely high values of voltage stress is measured and represented by a mathematical model, the inverse power law model with a 2-parameter Weibull lifetime distribution. The statistical treatment of the data — either by graphical or by analytical methods — allowed us to estimate the lifetime distribution and confidence bounds for any required normal voltage stress. The laminated structure under consideration is, according to the analysis, a very reliable dc hv insulating material, with a very good life performance according to the inverse power law model, and with an exponent of voltage stress equal to 6. A large insulator of cylindrical shape with this kind of laminated structure can be constructed by winding helically a mylar ribbon in a number of layers.

  12. Charge division in a small proportional chamber constructed with aluminized mylar tubes

    NASA Astrophysics Data System (ADS)

    Biino, C.; Mussa, R.; Palestini, S.; Pastrone, N.; Pesando, L.

    1988-09-01

    A tracking detector composed of aluminized mylar drift tubes is under development for the Fermilab experiment 760. A prototype chamber has been constructed. Results on the longitudinal coordinate determined by charge division are given. Spatial resolution values below 2 mm (rms) were found, corresponding to <1% of the chamber length. Results on chamber ageing are also discussed.

  13. Increased fracture toughness of graphite-epoxy composites through intermittent interlaminar bonding. [Mylar interlayer

    NASA Technical Reports Server (NTRS)

    Felbeck, D. K.; Jea, L. C.

    1980-01-01

    Intermittent interlaminar bonding, which can lead to a large increase in the fracture surface area, was achieved through the introduction of thin perforated Mylar between the layers of a multi-layer continuous-filament graphite-epoxy composite. For the best optimum condition included in this study, fracture toughness was increased from about 100 kJ/sq m for untreated specimens to an average of about 500 kJ/sq m, while tensile strength dropped from 500 MPa to 400 MPa, and elastic modulus remained the same at about 75 GPa. An approximate analysis is presented to explain the observed improvement in toughness.

  14. Characteristics of electromagnetic interference generated during discharge of Mylar samples. [spacecraft-environment interaction simulation

    NASA Technical Reports Server (NTRS)

    Leung, P. L.

    1984-01-01

    This paper discusses the measurements of the electromagnetic interference (EMI) generated during discharges of Mylar samples. The two components of EMI, the conducted emission and the radiated emission, are characterized by the replacement current and the radiated RF spectrum respectively. The measured radiated RF spectra reveal important information on the source of the electromagnetic radiation. The possible sources are the replacement current pulse and the discharged generated plasma. The scaling of the amplitudes of the EMI, as a function of the area of the test sample, is also discussed.

  15. Space Environmental Effects Testing and Characterization of the Candidate Solar Sail Material Aluminized Mylar

    NASA Technical Reports Server (NTRS)

    Edwards, D. L.; Hubbs, W. S.; Wertz, G. E.; Alstatt, R.; Munafo, Paul (Technical Monitor)

    2001-01-01

    The usage of solar sails as a propellantless propulsion system has been proposed for many years. The technical challenges associated with solar sails are fabrication of ultralightweight films, deploying the sails and controlling the spacecraft. Integral to all these challenges is the mechanical property integrity of the sail while exposed to the harsh environment of space. This paper describes testing and characterization of a candidate solar sail material, Aluminized Mylar. This material was exposed to a simulated Geosynchronous Transfer Orbit (GTO) and evaluated by measuring thermooptical and mechanical property changes. Testing procedures and results are presented.

  16. Track chambers based on precision drift tubes housed inside 30 mm mylar pipe

    NASA Astrophysics Data System (ADS)

    Borisov, A.; Bozhko, N.; Fakhrutdinov, R.; Kozhin, A.; Leontiev, B.; Levin, A.

    2014-06-01

    We describe drift chambers consisting of 3 layers of 30 mm (OD) drift tubes made of double sided aluminized mylar film with thickness 0.125 mm. A single drift tube is self-supported structure withstanding 350 g tension of 50 microns sense wire located in the tube center with 10 microns precision with respect to end-plug outer surface. Such tubes allow to create drift chambers with small amount of material, construction of such chambers doesn't require hard frames. Twenty six chambers with working area from 0.8 × 1.0 to 2.5 × 2.0 m2 including 4440 tubes have been manufactured for experiments at 70-GeV proton accelerator at IHEP(Protvino).

  17. Reducing DRIFT backgrounds with a submicron aluminized-mylar cathode

    NASA Astrophysics Data System (ADS)

    Battat, J. B. R.; Daw, E.; Dorofeev, A.; Ezeribe, A. C.; Fox, J. R.; Gauvreau, J.-L.; Gold, M.; Harmon, L.; Harton, J.; Lafler, R.; Landers, J.; Lauer, R. J.; Lee, E. R.; Loomba, D.; Lumnah, A.; Matthews, J.; Miller, E. H.; Mouton, F.; Murphy, A. St. J.; Paling, S. M.; Phan, N.; Sadler, S. W.; Scarff, A.; Schuckman, F. G.; Snowden-Ifft, D.; Spooner, N. J. C.; Walker, D.

    2015-09-01

    Background events in the DRIFT-IId dark matter detector, mimicking potential WIMP signals, are predominantly caused by alpha decays on the central cathode in which the alpha particle is completely or partially absorbed by the cathode material. We installed a 0.9 μm thick aluminized-mylar cathode as a way to reduce the probability of producing these backgrounds. We study three generations of cathode (wire, thin-film, and radiologically clean thin-film) with a focus on the ratio of background events to alpha decays. Two independent methods of measuring the absolute alpha decay rate are used to ensure an accurate result, and agree to within 10%. Using alpha range spectroscopy, we measure the radiologically cleanest cathode version to have a contamination of 3.3±0.1 ppt 234U and 73±2 ppb 238U. This cathode reduces the probability of producing an RPR from an alpha decay by a factor of 70±20 compared to the original stainless steel wire cathode. First results are presented from a texturized version of the cathode, intended to be even more transparent to alpha particles. These efforts, along with other background reduction measures, have resulted in a drop in the observed background rate from 500/day to 1/day. With the recent implementation of full-volume fiducialization, these remaining background events are identified, allowing for background-free operation.

  18. EFFECTS OF LASER RADIATION ON MATTER: Simulation of photon acceleration upon irradiation of a mylar target by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Andreev, Stepan N.; Rukhadze, Anri A.; Tarakanov, V. P.; Yakutov, B. P.

    2010-01-01

    Acceleration of protons is simulated by the particle-in-cell (PIC) method upon irradiation of mylar targets of different thicknesses by femtosecond plane-polarised pulsed laser radiation and at different angles of radiation incidence on the target. The comparison of the results of calculations with the experimental data obtained in recent experiments shows their good agreement. The optimal angle of incidence (458) at which the proton energy achieves its absolute maximum is obtained.

  19. Water-deuterium oxide exchange in polymers used in spacecraft applications. [outgassing from Mylar and Kapton

    NASA Technical Reports Server (NTRS)

    Carre, D. J.

    1980-01-01

    The replacement of water (H2O) by deuterium oxide (D2O) and the exchange between atmospheric water and adsorbed or absorbed D2O were investigated for the polymeric materials Kapton and Mylar using thermal gravimetric analysis and infrared spectroscopy. Replacement of H2O by D2O is easily accomplished. However, exposure of D2O samples to the ambient atmosphere or gases containing H2O results in rapid proton and deuteron exchange between H2O vapor and adsorbed D2O. Replacement of H2O by D2O would not be a practical solution to alleviate spectral interferences that would result from water outgassing in spacecraft orbital environments. Maintaining the materials of interest in a dehydrated state is a more reasonable approach.

  20. Analysis of ultraviolet exposure effects on the surface properties of epoxy/graphene nanocomposite films on Mylar substrate

    NASA Astrophysics Data System (ADS)

    Clausi, Marialaura; Santonicola, M. Gabriella; Schirone, Luigi; Laurenzi, Susanna

    2017-05-01

    In this paper, we present a study of the effects generated by exposure to UV-C radiation on nanocomposite films made of graphene nanoplatelets dispersed in an epoxy matrix. The nanocomposite films, at different nanoparticle size and concentration, were fabricated on Mylar substrate using the spin coating process. The effects of UV-C irradiation on the surface hydrophobicity and on the electrical properties of the epoxy/graphene films were investigated using contact angle measurements and electrical impedance spectroscopy, respectively. According to our results, the UV-C irradiation selectively degrades the polymer matrix of the nanocomposite films, giving rise to more conductive and hydrophobic layers due to exposure of the graphene component of the composite material. The results presented here have important implications in the design of spacecraft components and structures destined for long-term space missions.

  1. Basic performance of a multilayer insulation system containing 20 to 160 layers. [thermal effectiveness of aluminized Mylar-silk net system

    NASA Technical Reports Server (NTRS)

    Stochl, R. J.

    1974-01-01

    An experimental investigation was conducted to determine the thermal effectiveness of an aluminized Mylar-silk net insulation system containing up to 160 layers. The experimentally measured heat flux was compared with results predicted by using (1) a previously developed semi-empirical equation and (2) an effective-thermal-conductivity value. All tests were conducted at a nominal hot-boundary temperature of 294 K (530 R) with liquid hydrogen as the heat sink. The experimental results show that the insulation performed as expected and that both the semi-empirical equation and effective thermal conductivity of a small number of layers were adequate in predicting the thermal performance of a large number of layers of insulation.

  2. A 18 m 2 cylindrical tracking detector made of 2.6 m long, stereo mylar straw tubes with 100 μm resolution

    NASA Astrophysics Data System (ADS)

    Benussi, L.; Bertani, M.; Bianco, S.; Fabbri, F. L.; Gianotti, P.; Giardoni, M.; Ghezzo, A.; Guaraldo, C.; Lanaro, A.; Locchi, P.; Lu, J.; Lucherini, V.; Mecozzi, A.; Pace, E.; Passamonti, L.; Qaisar, N.; Ricciardi, A.; Sarwar, S.; Serdyouk, V.; Trasatti, L.; Volkov, A.; Zia, A.

    1998-12-01

    An array of 2424 2.6 m-long, 15 mm-diameter mylar straw tubes, arranged in two axial and four stereo layers, has been assembled. The array covers a cylindrical tracking surface of 18 m 2 and provides coordinate measurement in the drift direction and along the wire. A correction of the systematic effects which are introduced by gravitational sag and electrostatics, thus dominating the detector performance especially with long straws, allows to determine wire position from drift-time distribution. The correction has been applied to reach a space resolution of 40 μm with DME, 100 μm with Ar+C 2H 6, and 100-200 μm with CO 2. Such a resolution is the best ever obtained for straws of these dimensions. A study of the gas leakage for the straw system has been performed, and results are reported. The array is being commissioned as a subdetector of the FINUDA spectrometer, and tracking performances are being studied with cosmic rays.

  3. Transportation of perishable and refrigerated foods in mylar foil bags and insulated containers: a time-temperature study.

    PubMed

    Li, Yanyan; Schrade, John P; Su, Haiyan; Specchio, John J

    2014-08-01

    Data are lacking on the temperature changes of food during transport without the use of refrigerated trucks. The purpose of this study was to evaluate the ability of several insulated and noninsulated containers with or without frozen gel packs to keep perishable and refrigerated foods within the temperature safe zone in relationship to duration of transport. The study was designed to duplicate the practices exhibited by customers purchasing perishable food products from a cash-and-carry business. Approximately 40 perishable food items were evaluated. Four types of containers were tested: a mylar foil bag, a commercial insulated bag, a generic insulated bag, and a commercial insulated blanket. Mixed foods were placed into these containers with or without frozen gel packs, transported in unrefrigerated vehicles, and monitored for 4 h for temperature changes. Two environmental temperatures, room temperature of 21.1°C and a stress temperature of 37.8°C, were evaluated. The internal temperature and surface temperature of the food products in these containers increased slowly but remained well below the U.S. Food and Drug Administration Food Code requirements. The various containers were similar in their ability to retain coolness. The presence of frozen gel packs dramatically enhanced the cold-holding capacity of the containers. The temperature of foods increased more rapidly when stressed in a heated environment. The containers tested used with the frozen gel packs can keep the surface and internal temperatures of various perishable foods (starting at 4.4°C or less) within the Food Code recommendation of under 21.1°C for 4 h. Cash-and-carry businesses should strongly encourage their retail customers to utilize these containers with frozen gel packs to safely transport perishable foods.

  4. X-Ray Fluorescence Determination of Sulphur in Oils by a Thin Film Method.

    DTIC Science & Technology

    1983-09-01

    thickness. The procedure utilises a mixture of samp and an alkyd resin to improve adhesion to a Mylar substrate and to reduce sample flow during...thickness. The procedure utilises a mixture of sample and an alkyd resin to improve adhesion to a Mylar substrate and to reduce sample flow during...film. By incorporating an alkyd resin into the sample mixture the adhesion of the oil film to the Mylar sheet substrate is improved to the extent that

  5. Spacecraft outer thermal blankets as hypervelocity impact bumpers

    NASA Astrophysics Data System (ADS)

    Cour-Palais, B. G.

    1996-05-01

    A thermal barrier consisting of a woven fabric outer layer followed by several layers of aluminized mylar insulation has been the primary impact protection against micrometeoroid and orbital impacts for many spacecraft currently in orbit. This paper examines its effectiveness as a hypervelocity "bumper" based on the performance of a NASA space suit. In this case, the thermal barrier consisted of a fabric layer followed by five layers of the aluminized mylar, which shielded either an aluminum rear wall or a rubberized pressure garment. The total areal density of the fabric and mylar layers was 0.052 g/cm2 and the fabric stand-off was 4 mm from the protected surfaces, with the aluminized mylar filling the space. Test results obtained with hypervelocity aluminum projectile impacts up to 8.5 km/s on the thermal barrier and aluminum wall are described, and a semi-empirical equation for this type of shielding is suggested.

  6. Cylindrical cryogenic calorimeter testing of six types of multilayer insulation systems

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Johnson, W. L.

    2018-01-01

    Extensive cryogenic thermal testing of more than 100 different multilayer insulation (MLI) specimens was performed over the last 20 years for the research and development of evacuated reflective thermal insulation systems. From this data library, 26 MLI systems plus several vacuum-only systems are selected for analysis and comparison. The test apparatus, methods, and results enabled the adoption of two new technical consensus standards under ASTM International. Materials tested include reflectors of aluminum foil or double-aluminized Mylar and spacers of fiberglass paper, polyester netting, silk netting, polyester fabric, or discrete polymer standoffs. The six types of MLI systems tested are listed as follows: Mylar/Paper, Foil/Paper, Mylar/Net, Mylar/Blanket, Mylar/Fabric, Mylar/Discrete. Also tested are vacuum-only systems with different cold surface materials/finishes including stainless steel, black, copper, and aluminum. Testing was performed between the boundary temperatures of 78 K and 293 K (and up to 350 K) using a thermally guarded one-meter-long cylindrical calorimeter (Cryostat-100) for absolute heat flow measurement. Cold vacuum pressures include the full range from 1 × 10-6 torr to 760 torr with nitrogen as the residual gas. System variations include number of layers from one to 80 layers, layer densities from 0.5 to 5 layers per millimeter, and installation techniques such layer-by-layer, blankets (multi-layer assemblies), sub-blankets, seaming, butt-joining, spiral wrapping, and roll-wrapping. Experimental thermal performance data for the different MLI systems are presented in terms of heat flux and effective thermal conductivity. Benchmark cryogenic-vacuum thermal performance curves for MLI are given for comparison with different insulation approaches for storage and transfer equipment, cryostats, launch vehicles, spacecraft, or science instruments.

  7. A Versatile System for High-Throughput In Situ X-ray Screening and Data Collection of Soluble and Membrane-Protein Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broecker, Jana; Klingel, Viviane; Ou, Wei-Lin

    In recent years, in situ data collection has been a major focus of progress in protein crystallography. Here, we introduce the Mylar in situ method using Mylar-based sandwich plates that are inexpensive, easy to make and handle, and show significantly less background scattering than other setups. A variety of cognate holders for patches of Mylar in situ sandwich films corresponding to one or more wells makes the method robust and versatile, allows for storage and shipping of entire wells, and enables automated crystal imaging, screening, and goniometerbased X-ray diffraction data-collection at room temperature and under cryogenic conditions for soluble andmore » membrane-protein crystals grown in or transferred to these plates. We validated the Mylar in situ method using crystals of the water-soluble proteins hen egg-white lysozyme and sperm whale myoglobin as well as the 7-transmembrane protein bacteriorhodopsin from Haloquadratum walsbyi. In conjunction with current developments at synchrotrons, this approach promises high-resolution structural studies of membrane proteins to become faster and more routine.« less

  8. Scaling laws and edge effects for polymer surface discharges

    NASA Technical Reports Server (NTRS)

    Balmain, K. G.

    1979-01-01

    Specimens of Mylar sheet were exposed to a 20 kV electron beam. The resulting surface discharge arcs were photographed and the discharge current into a metal backing plate measured as a function of time. The area of the Mylar sheet was defined by a round aperture in a close-fitting metal mask, and the current pulse characteristics were plotted against area on log-log paper. The plots appear as straight lines (due to power-law behavior) with slopes of 0.50 for the peak current, 1.00 for the charge released, 1.49 for the energy and 0.55 for the pulse duration. Evidence is presented for the occurrence of banded charge distributions near grounded edges, on both Teflon and Mylar.

  9. CFM technologies for space transportation: Multipurpose hydrogen testbed system definition and tank procurement

    NASA Technical Reports Server (NTRS)

    Fox, E. C.; Kiefel, E. R.; Mcintosh, G. L.; Sharpe, J. B.; Sheahan, D. R.; Wakefield, M. E.

    1993-01-01

    The development of a test bed tank and system for evaluating cryogenic fluid management technologies in a simulated upper stage liquid hydrogen tank is covered. The tank is 10 ft long and is 10 ft in diameter, and is an ASME certified tank constructed of 5083 aluminum. The tank is insulated with a combination of sprayed on foam insulation, covered by 45 layers of double aluminized mylar separated by dacron net. The mylar is applied by a continuous wrap system adapted from commercial applications, and incorporates variable spacing between the mylar to provide more space between those layers having a high delta temperature, which minimizes heat leak. It also incorporates a unique venting system which uses fewer large holes in the mylar rather than the multitude of small holes used conventionally. This significantly reduces radiation heat transfer. The test bed consists of an existing vacuum chamber at MSFC, the test bed tank and its thermal control system, and a thermal shroud (which may be heated) surrounding the tank. Provisions are made in the tank and chamber for inclusion of a variety of cryogenic fluid management experiments.

  10. Charging of insulators by multiply-charged-ion impact probed by slowing down of fast binary-encounter electrons

    NASA Astrophysics Data System (ADS)

    de Filippo, E.; Lanzanó, G.; Amorini, F.; Cardella, G.; Geraci, E.; Grassi, L.; La Guidara, E.; Lombardo, I.; Politi, G.; Rizzo, F.; Russotto, P.; Volant, C.; Hagmann, S.; Rothard, H.

    2010-12-01

    The interaction of ion beams with insulators leads to charging-up phenomena, which at present are under investigation in connection with guiding phenomena in nanocapillaries with possible application in nanofocused beams. We studied the charging dynamics of insulating foil targets [Mylar, polypropylene (PP)] irradiated with swift ion beams (C, O, Ag, and Xe at 40, 23, 40, and 30 MeV/u, respectively) via the measurement of the slowing down of fast binary-encounter electrons. Also, sandwich targets (Mylar covered with a thin Au layer on both surfaces) and Mylar with Au on only one surface were used. Fast-electron spectra were measured by the time-of-flight method at the superconducting cyclotron of Laboratori Nazionali del Sud (LNS) Catania. The charge buildup leads to target-material-dependent potentials of the order of 6.0 kV for Mylar and 2.8 kV for PP. The sandwich targets, surprisingly, show the same behavior as the insulating targets, whereas a single Au layer on the electron and ion exit side strongly suppresses the charging phenomenon. The accumulated number of projectiles needed for charging up is inversely proportional to electronic energy loss. Thus, the charging up is directly related to emission of secondary electrons.

  11. Response of Two Plant Species to Two Ultraviolet-B Radiation Regimes

    NASA Technical Reports Server (NTRS)

    Levy, Daniel L.; Skiles, J. W.; Peterson, David (Technical Monitor)

    1996-01-01

    The depleted stratospheric ozone layer has been directly linked to increased levels of ultraviolet radiation at the earth's surface. It is important to understand what effect this will have on plants. We tested the hypothesis that in response to increased UV-B radiation (280-320 man), soybean (Glycine max Merrill) and alfalfa (Mercado Saliva L.) would produce higher concentrations of flavonoids than plants screened from UV-B. Soybean and alfalfa plants were grown successively in a growth chamber that provided UV-B radiation intensities 45% above summer field levels. A wooden frame was used to suspend mylar-D film over one group of plants and mono-acetate film over another group. Mylar is opaque in the 280-316 nm range, and acetate absorbs most radiation from 280-290 nm and then reduces intensities in the 290-320 nm range by roughly 15%. Leaf chlorophyll concentration was determined with a Minolta SPAD-502 chlorophyll meter; the BRAD meter was calibrated with N,N- extractions. Flavonoids were extracted with an acidified methanol/water solution. Soybean grown under the acetate treatment showed 26% smaller internodal lengths and higher concentrations of flavonoids compared to plants grown under mylar. Significant results for alfalfa included 22% greater leaf flavonoid concentration under acetate, 14% greater leaf chlorophyll concentration under mylar, and 32% greater above-ground biomass under mylar. We found that increased UV-B radiation leads to increased production of UV-B absorbing compounds (i.e. flavonoids) in soybean and alfalfa leaves. This suggests that a protective mechanism in these plants is triggered by UV-B. In response, flavonoids are produced that absorb UV-B, and consequently decrease potentially damaging effects to the plants. In addition, we hypothesize that this flavonoid protection mechanism saturates at certain UV-B intensities.

  12. Six-Inch Shock Tube Characterization

    DTIC Science & Technology

    2016-12-09

    Change of Address Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic mailing lists should confirm...92A Figure 2 summarizes the peak levels for shots using 92A Mylar® as a membrane with a linear trend line overlaid on the data, which produced the...peak levels for shots using 500A Mylar® as a membrane with a 6th-order polynomial trend line overlaid on the data, which produced the highest R2 value

  13. High Precision Material Study at Near Millimeter Wavelengths.

    DTIC Science & Technology

    1983-08-30

    propagating through these tubes , the beams are allowed to expand for a short distance in free space before they are combined by a mylar -film beam- splitter...Laser Precision Rkp-5200). 22 6 The attenuation of the low-loss EH mode in circular plexiglass tubes of I.D. 0.95 cm, and of various lengths. he...pyroelectric detectors (Laser Precision Rkp-545): L L, and L TPx lens; BS1, wire-mesh beam splitter; BS, mylar -film beam splitter; DPC, double-prism coupler

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hao; Lunt, Barry M.; Gates, Richard J.

    A novel write-once-read-many (WORM) optical stack on Mylar tape is proposed as a replacement for magnetic tape for archival data storage. This optical tape contains a cosputtered bismuth–tellurium–selenium (BTS) alloy as the write layer sandwiched between thin, protective films of reactively sputtered carbon. The composition and thickness of the BTS layer were confirmed by Rutherford Backscattering (RBS) and atomic force microscopy (AFM), respectively. The C/BTS/C stack on Mylar was written to/marked by 532 nm laser pulses. Under the same conditions, control Mylar films without the optical stack were unaffected. Marks, which showed craters/movement of the write material, were characterized bymore » optical microscopy and AFM. The threshold laser powers for making marks on C/BTS/C stacks with different thicknesses were explored. Higher quality marks were made with a 60× objective compared to a 40× objective in our marking apparatus. Finally, the laser writing process was simulated with COMSOL.« less

  15. Color stability of nanocomposites polished with one-step systems.

    PubMed

    Ergücü, Zeynep; Türkün, L Sebnem; Aladag, Akin

    2008-01-01

    This study compared the color changes of five novel resin composites polished with two one-step polishing systems when exposed to coffee solution. The resin composites tested were Filtek Supreme XT, Grandio, CeramX, Premise and Tetric EvoCeram. A total of 150 discs (30/resin composites, 10 x 2 mm) were fabricated. Ten specimens/resin composites cured under Mylar strips served as the control. The other samples were polished with PoGo and OptraPol discs for 30 seconds using a slow speed handpiece and immersed in coffee (Nescafé) for seven days. Color measurements were made with Vita Easyshade at baseline and after one and seven days. Repeated Measures ANOVA and Bonferroni tests were used for statistical analyses (p< or =0.05). The differences between the mean DeltaE* values for the resin composites polished with two different one-step systems were statistically significant (p<0.05). After one week, all materials exhibited significant color changes compared to baseline. All Mylar finished specimens showed the most intense staining (p<0.05). There were no significant differences between the OptraPol and PoGo polished groups. Mylar-finished specimens of CeramX, Tetric EvoCeram, Premise and Filtek Supreme XT presented the greatest staining (p<0.05). For Grandio, there were no significant differences between the Mylar and PoGo groups, while the most stain resistant surfaces were attained with OptraPol. Removing the outermost resin layer by polishing procedures is essential to achieving a stain resistant, more esthetically stable surface. One-step polishing systems can be used successfully for polishing nanocomposites.

  16. A slow positron beam generator for lifetime studies

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; St.clair, Terry L.

    1989-01-01

    A slow positron beam generator using well-annealed polycrystalline tungsten moderators and a Na-22 positron source was developed. A 250 micro c source, deposited on a 2.54 micron thick aluminized mylar, is sandwiched between two (2.54 cm x 2.54 cm x 0.0127 cm) tungsten pieces. Two (2.54 cm x 2.54 cm x t cm) test polymer films insulate the two tungsten moderator pieces from the aluminized mylar source holder (t=0.00127 to 0.0127). A potential difference of 10 to 100 volts--depending on the test polymer film thickness (t)--is applied between the tungsten pieces and the source foil. Thermalized positrons diffusing out of the moderator pieces are attracted to the source foil held at an appropriate potential below the moderator pieces. These positrons have to pass through the test polymer films before they can reach the source foil. The potential difference between the moderator pieces and the aluminized mylar is so adjusted as to force the positrons to stop in the test polymer films. Thus the new generator becomes an effective source of positrons for assaying thin polymer films for their molecular morphology.

  17. Effects of simulated space environment on Skylab parasol material

    NASA Technical Reports Server (NTRS)

    Slemp, W. S.

    1974-01-01

    A material consisting of ripstop nylon bonded to the Mylar side of aluminized Mylar film was used to construct the first Skylab parasol. The mechanical properties of elongation and tensile strength and the radiative properties of solar absorptance and thermal emittance were measured before and after exposure to simulated solar radiation at intensities of 1.0 and 3.5 solar constants for exposure times as long as 947 hours or 3316 equivalent solar hours. The accelerated testing indicated more severe degradation than was experienced in the real-time test (1 solar constant). The results predicted that this material could have given satisfactory performance throughout the planned lifetime of the Skylab workshop.

  18. Dielectric surface discharges: Effects of combined low-energy and high-energy incident electrons

    NASA Technical Reports Server (NTRS)

    Balmain, K. G.; Hirt, W.

    1981-01-01

    Dielectric surface discharges affected by the addition of high energy electrons at 5 pA/sq cm to a primary 20 keV, 10 nA/sq cm electron beam with the high energy broad spectrum particles coming from the beta decay of Strontium 90 are studied. Kapton exhibits significantly increased discharge strength, increased waiting time between discharges, and a decreased number of discharges per specimen before discharge cessation. Mylar exhibits similar but less pronounced effects, while Teflon is relatively unaffected. With Kapton and Mylar, the high energy electrons act in some way to delay the instant of discharge ignition so that more charge can be accumulated and hence released during discharge.

  19. Thermal targets for satellite calibration

    NASA Astrophysics Data System (ADS)

    Villa-Aleman, Eliel; Garrett, Alfred J.; Kurzeja, Robert J.; O'Steen, Byron L.; Pendergast, Malcolm M.

    2001-03-01

    The Savannah River Technology Center (SRTC) is currently calibrating the Multispectral Thermal Imager (MTI) satellite sponsored by the Department of Energy. The MTI imager is a research and development project with 15 wavebands in the visible, near-infrared, short-wave infrared, mid-wave infrared and long-wave infrared spectral regions. A plethora of targets with known temperatures such as power plant heated lakes, volcano lava vents, desert playas and aluminized Mylar tarps are being used in the validation of the five thermal bands of the MTI satellite. SRTC efforts in the production of cold targets with aluminized Mylar tarps will be described. Visible and thermal imagery and wavelength dependent radiance measurements of the calibration targets will be presented.

  20. Infrared blocking, microwave and terahertz low-loss transmission AlN films grown on flexible polymeric substrates

    NASA Astrophysics Data System (ADS)

    Rudenko, E.; Tsybrii, Z.; Sizov, F.; Korotash, I.; Polotskiy, D.; Skoryk, M.; Vuichyk, M.; Svezhentsova, K.

    2017-04-01

    Aluminum nitride (AlN) film coatings on flexible substrates (polymeric Teflon, Mylar) have been obtained using a hybrid helicon-arc ion-plasma deposition technique with high adhesion of coatings. Studies of optical, morphological, and structural properties of AlN films have been carried out. It was found that AlN coatings on Teflon and Mylar thin-film substrates substantially suppress transmission of infrared (IR) radiation within the spectral range λ ˜ 5-20 μm at certain technological parameters and thickness of AlN. Transmission in THz regions by using quasioptics attains T ≈ 79%-95%, and losses measured in the channels within the microwave region 2 to 36 GHz are <0.06 dB. The obtained composite structures (AlN coatings on Teflon and Mylar thin-film substrates), due to a high thermal conductivity of AlN, could be used as efficient blocking structures in the infrared spectral range ("infrared stealth") withdrawing the heat from filters warmed by IR radiation. At the same time, they can be used as the transparent ones in the microwave and THz regions, which can be important for low-temperature detector components of navigation, positioning, and telecommunication systems due to reducing the background noise.

  1. 102Pd(n, {gamma}) Cross Section Measurement Using DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatarik, R.; Alpizar-Vicente, A. M.; Los Alamos National Laboratory, Los Alamos, NM 87545

    2006-03-13

    The neutron capture cross section of the proton rich nucleus 102Pd was measured with the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center. The target was a 2 mg Pd foil with 78% enriched 102Pd. It was held by a 0.9 {mu}m thick Mylar bag which was selected after comparing different thicknesses of Kapton and Mylar for their scattering background. To identify the contribution of the other Pd isotopes the data of a natural Pd sample was compared to the data of the 102Pd enriched sample. A 12C sample was used to determine themore » scattering background. The 102Pd(n, {gamma}) rate is of importance for the p-process nucleosynthesis.« less

  2. Dielectric surface discharges - Effects of combined low-energy and high-energy incident electrons

    NASA Technical Reports Server (NTRS)

    Balmain, K. G.; Hirt, W.

    1983-01-01

    Dielectric surface discharges affected by the addition of high energy electrons at 5 pA/sq cm to a primary 20 keV, 10 nA/sq cm electron beam with the high energy broad spectrum particles coming from the beta decay of Strontium 90 are studied. Kapton exhibits significantly increased discharge strength, increased waiting time between discharges, and a decreased number of discharges per specimen before discharge cessation. Mylar exhibits similar but less pronounced effects, while Teflon is relatively unaffected. With Kapton and Mylar, the high energy electrons act in some way to delay the instant of discharge ignition so that more charge can be accumulated and hence released during discharge. Previously announced in STAR as N82-14222

  3. Inexpensive cryogenic insulation replaces vacuum jacketed line

    NASA Technical Reports Server (NTRS)

    Fuchs, C. E.

    1967-01-01

    Commercially available aluminized Mylar, cork and fiber glass form a multilayered sealed system and provide rugged and economical field installed insulation for cryogenic /liquid nitrogen or oxygen/ pipe lines in an exposed environment.

  4. Inflatable Antenna for CubeSat: Extension of the Previously Developed S-Band Design to the X-Band

    NASA Technical Reports Server (NTRS)

    Babuscia, Alessandra; Choi, Thomas; Cheung, Kar-Ming; Thangavelautham, Jekan; Ravichandran, Mithun; Chandra, Aman

    2015-01-01

    The inflatable antenna for CubeSat is a 1 meter antenna reflector designed with one side reflective Mylar, another side clear Mylar with a patch antenna at the focus. The development of this technology responds to the increasing need for more capable communication systems to allow CubeSats to operate autonomously in interplanetary missions. An initial version of the antenna for the S-Band was developed and tested in both anechoic chamber and vacuum chamber. Recent developments in transceivers and amplifiers for CubeSat at X-band motivated the extension from the S-Band to the X-Band. This paper describes the process of extending the design of the antenna to the X-Band focusing on patch antenna redesign, new manufacturing challenges and initial results of experimental tests.

  5. Optimization experiments on a pixe system and its application to the analysis of trace elements in shaji

    NASA Astrophysics Data System (ADS)

    Yin, Zhongli; Zhang, Shunun; Jiang, Xinzhou; Ma, Changjun; Li, Zhenkun; Hao, Jifang; Zheng, Zhihao; Liu, Zhaoyuan; Liu, Zhengmin; Ma, Shuxun; Yang, Kunshan

    1989-04-01

    This paper describes briefly the optimization of a PIXE setup. Three proton energies 1.5, 2.0 and 2.5 MeV and four kinds of absorbers BE (132 μm), Be (460 μm), Al (28 μm) and Be plus Mylar (460 μm+600 μm) were used. The minimum detection limits (MDL) of PIXE for these various combinations were computed and compared. PIXE analysis of Shaji was performed as an application. The result shows that the stack absorber of 460 μm Be and 600 μm Mylar films and a 2.0 MeV proton energy are most suitable for PIXE analysis of Shaji. Results of the Shaji analysis are presented. Shaji is one of the common seabuckthoms. The Shaji referred to here belongs to Hippophae rhamnoides L. Subsp. Sinensis Rousi.

  6. "Easy-on, Easy-off" Blanket Fastener

    NASA Technical Reports Server (NTRS)

    Kolecki, Ronald E.; Clatterbuck, Carroll H.

    1992-01-01

    Fasteners hold flexible blanket on set of posts on supporting structure. Disk of silicone rubber cast on disk of Mylar, fastened to blanket and press-fit over post to nest securely in groove. No tools needed for installation or removal.

  7. Test Operations Procedure (TOP) 10-2-400 Open End Compressed Gas Driven Shock Tube

    DTIC Science & Technology

    gas-driven shock tube. Procedures are provided for instrumentation, test item positioning, estimation of key test parameters, operation of the shock...tube, data collection, and reporting. The procedures in this document are based on the use of helium gas and Mylar film diaphragms.

  8. Laser Mode Behavior of the Cassini CIRS Fourier Transform Spectrometer at Saturn

    NASA Technical Reports Server (NTRS)

    Brasunas, John C.

    2012-01-01

    The CIRS Fourier transform spectrometer aboard the NASA/ESA/ASI Cassini orbiter has been acquiring spectra of the Saturnian system since 2004. The CIRS reference interferometer employs a laser diode to trigger the interferogram sampling. Although the control of laser diode drive current and operating temperature are stringent enough to restrict laser wavelength variation to a small fraction of CIRS finest resolution element, the CIRS instrument does need to be restarted every year or two, at which time it may start in a new laser mode. By monitoring the Mylar absorption features in uncalibrated spectra due to the beam splitter Mylar substrate, it can be shown that these jumps are to adjacent modes and that most of the eight-year operation so far is restricted to three adjacent modes. For a given mode, the wavelength stability appears consistent with the stability of the laser diode drive curren.t and operating temperature.

  9. Evaluation of spray drift from backpack and UTV spraying

    USDA-ARS?s Scientific Manuscript database

    The objective of these tests was to evaluate pesticide drift from ground applications using a standard manual pump backpack sprayer and a UTV-mounted boomless sprayer. Three deposition sampler types were deployed: Mylar cards, water-sensitive papers, and artificial foliage. This study indicates that...

  10. A broadband permeability measurement of FeTaN lamination stack by the shorted microstrip line method

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Ma, Yungui; Xu, Feng; Wang, Peng; Ong, C. K.

    2009-01-01

    In this paper, the microwave characteristics of a FeTaN lamination stack are studied with a shorted microstrip line method. The FeTaN lamination stack was fabricated by gluing 54 layers of FeTaN units with epoxy together. The FeTaN units were deposited on both sides of an 8 μm polyethylene terephthate (Mylar) film as the substrate by rf magnetron sputtering. On each side of the Mylar substrate, three 100-nm FeTaN layers are laminated with two 8 nm Al2O3 layers. The complex permeability of FeTaN lamination stack is calculated by the scattering parameters using the shorted load transmission line model based on the quasi-transverse-electromagnetic approximation. A full wave analysis combined with an optimization process is employed to determine the accurate effective permeability values. The optimized complex permeability data can be used for the microwave filter design.

  11. Design of a finger ring extremity dosemeter based on OSL readout of alpha-Al2O3:C.

    PubMed

    Durham, J S; Zhang, X; Payne, F; Akselrod, M S

    2002-01-01

    A finger-ring dosemeter and reader has been designed that uses OSL readout of alpha-Al2O3:C (aluminium oxide). The use of aluminium oxide is important because it allows the sensitive element of the dosemeter to be a very thin layer that reduces the beta and gamma energy dependence to acceptable levels without compromising the required sensitivity for dose measurement. OSL readout allows the ring dosemeter to be interrogated with minimal disassembly. The ring dosemeter consists of three components: aluminium oxide powder for measurement of dose, an aluminium substrate that gives structure to the ring, and an aluminised Mylar cover to prevent the aluminium oxide from exposure to light. The thicknesses of the three components have been optimised for beta response using the Monte Carlo computer code FLUKA. A reader was also designed and developed that allows the dosemeter to be read after removing the Mylar. Future efforts are discussed.

  12. Surface roughness of novel resin composites polished with one-step systems.

    PubMed

    Ergücü, Z; Türkün, L S

    2007-01-01

    This study: 1) analyzed the surface roughness of five novel resin composites that contain nanoparticles after polishing with three different one-step systems and 2) evaluated the effectiveness of these polishers and their possible surface damage using scanning electron microscope (SEM) analysis. The resin composites evaluated in this study include CeramX, Filtek Supreme XT, Grandio, Premise and Tetric EvoCeram. A total of 100 discs (20/resin composites, 10 x 2 mm) were fabricated. Five specimens/resin composites cured under Mylar strips served as the control. The samples were polished for 30 seconds with PoGo, OptraPol and One Gloss discs at 15,000 rpm using a slow speed handpiece. The surfaces were tested for roughness (Ra) with a surface roughness tester and examined with SEM. One-way ANOVA was used for statistical analysis (p = 0.05). For all the composites tested, differences between the polishing systems were found to be significant (p < 0.05). For Filtek Supreme XT, Mylar and PoGo created equally smooth surfaces, while significantly rougher surfaces were obtained after OptraPol and One Gloss applications. For Grandio, Mylar and PoGo created equally smooth surfaces, while OptraPol and One Gloss produced equally rougher surfaces. Tetric EvoCeram exhibited the roughest surface with OptraPol, while no significant differences were found between Premise and CeramX. According to SEM images, OptraPol and One Gloss scratched and plucked the particles away from the surface, while PoGo created a uniform finish, although the roughness values were not the same for each composite. Effectiveness of the polishers seems to be material dependent.

  13. Electrets and Electrostatic Measurement

    ERIC Educational Resources Information Center

    Varney, R. N.; Hahn, H. T.

    1975-01-01

    Electrets, the electrical counterparts of magnets, are polarized dielectrics that are permanent on a scale of months. Describes procedures for making electrets out of plastic sheets like Mylar, for testing them and measuring their pole strengths, and for establishing necessary and sufficient demonstrations that they are not simply surface charged.…

  14. Effects of delayed finishing/polishing on surface roughness, hardness and gloss of tooth-coloured restorative materials.

    PubMed

    Yazici, A Ruya; Tuncer, Duygu; Antonson, Sibel; Onen, Alev; Kilinc, Evren

    2010-01-01

    The aim of this study was to investigate the effect of delayed finishing/polishing on the surface roughness, hardness and gloss of tooth-coloured restorative materials. Four different tooth-coloured restoratives: a flowable resin composite- Tetric Flow, a hybrid resin composite- Venus, a nanohybrid resin composite- Grandio, and a polyacid modified resin composite- Dyract Extra were used. 30 specimens were made for each material and randomly assigned into three groups. The first group was finished/polished immediately and the second group was finished/polished after 24 hours. The remaining 10 specimens served as control. The surface roughness of each sample was recorded using a laser profilometer. Gloss measurements were performed using a small-area glossmeter. Vickers microhardness measurements were performed from three locations on each specimen surface under 100g load and 10s dwell time. Data for surface roughness and hardness were analyzed by Kruskal Wallis test and data for gloss were subjected to one-way ANOVA and Tukey test (P <.05). The smoothest surfaces were obtained under Mylar strip for all materials. While there were no significant differences in surface roughness of immediate and delayed finished/polished Dyract Extra samples, immediately finished/polished Venus and Grandio samples showed significantly higher roughness than the delayed polished samples (P <.05). In Tetric Flow samples, immediately finishing/polishing provided smoother surface than delayed finishing/polishing (P <.05). The highest gloss values were recorded under Mylar strip for all materials. While delayed finishing/polishing resulted in a significantly higher gloss compared to immediate finishing/polishing in Venus samples (P <.05), no differences were observed between delayed or immediate finishing/polishing for the other materials (P>.05). The lowest hardness values were found under Mylar strip. Delayed finishing/polishing significantly increased the hardness of all materials. The

  15. Effect of different polishing systems and drinks on the color stability of resin composite.

    PubMed

    Berber, Asll; Cakir, Filiz Yalcin; Baseren, Meserret; Gurgan, Sevil

    2013-07-01

    The purpose of this study was to evaluate the color stability of resin composit using different finishing systems and drinks. Composit disks (5 mm diameter, 2 mm thickness) were prepared for each nanofilled composite using a brass mold. The specimens were divided into 5 finishing system groups Mylar strip (Mylar, DuPont, Wilmington, Del., USA), Soft Lex (3M(™) ESPE(™) St. Paul, MN, USA), Enhance (Dentsply-DeTrey GmbHD Konstanz, Germany), Hiluster (KerrHawe, Bioggio, Switzerland), Opti Disc (KerrHawe, Bioggio, Switzerland) and each group was divided into 10 subgroups (n = 10) and stored for 24 hours at 37°C in different drinks water coffee, coffee with sugar, tea, tea with sugar, diet coke, coke, light sour cherry juice or sour cherry juice. Color of all specimens was measured before and after exposure with a spectrophotometer using CIE L*a*b* relative, and color changes (ΔE*) were then calculated. The data were analyzed with a twoway analysis of variance (ANOVA), and mean values were compared by the Tukey HSD test (p = 0.05). For the drinks, the lowest ΔE* values were observed in the water and highest ΔE* values were observed in sour cherry juice. When drinks with and without sugar were compared, all groups with sugar demonstrated a higher color difference than without sugar. For the different finishing systems, Mylar strip group demonstrated significantly highest color change; Enhance groups demonstrated significantly lowest color change. Finishing treatments and storage solutions significantly affect the color stability of resin composite. The presence of sugar in drinks increased the color difference compared to drinks without composit. Polishing techniques and drinking drinks with sugar may affect the color of esthetic restorations.

  16. History and perspectives of scientific ballooning

    NASA Astrophysics Data System (ADS)

    Lefevre, Frank

    2001-08-01

    Prehistory: Robertson, Biot and Gay-Lussac; Glaisher and the first studies of the atmosphere; Flammarion. The rebirth of scientific ballooning: polyethylene and mylar vehicles at Minneapolis. Super-pressurized balloons. The CNES and the Nasa programs; meteorology, aeronomy and astronomy, The Eole program. The Venus and Mars balloons in the French-Soviet space program. The future.

  17. Evaluation of polymerization shrinkage of resin cements through in vitro and in situ experiments

    NASA Astrophysics Data System (ADS)

    Franco, A. P. G. O.; Karam, L. Z.; Pulido, C. A.; Gomes, O. M. M.; Kalinowski, H. J.

    2014-08-01

    The aim of this study was to evaluate the behavior of two types of resin cements , conventional dual and dual self adhesive, through in vitro and in situ experiments. For the in vitro assay were selected two resin cements that were handled and dispensed over a mylar strip supported by a glass plate. The Bragg grating sensors were positioned and another portion of cement. was placed, covered by another mylar strip. For the in situ experiment 16 single-rooted teeth were selected who were divided into 2 groups: group 1 - conventional dual resin cement Relyx ARC and group 2 - dual self adhesive resin cement Relyx U200 ( 3M/ESPE ). The teeth were treated and prepared to receive the intracanal posts. Two Bragg grating sensors were recorded and introduced into the root canal at different apical and coronal positions. The results showed that the in vitro experiment presented similar values of polymerization shrinkage that the in situ experiment made in cervical position; whereas Relyx ARC resulted lower values compared to Relyx U200; and cervical position showed higher shrinkage than the apical.

  18. Testing of flat conductor cable to Underwriters Laboratory standards UL719 and UL83

    NASA Technical Reports Server (NTRS)

    Loggins, R. W.; Herndon, R. H.

    1974-01-01

    The flat conductor cable (FCC) which was tested consisted of three AWG No. 12 flat copper conductors laminated between two films of polyethylene terephthalate (Mylar) insulation with a self-extinguishing polyester adhesive. Results of the tests conducted on this cable, according to specifications, warrants the use of this FCC for electrical interconnections in a surface nonmetallic protective covering.

  19. Thin film atomic hydrogen detectors

    NASA Technical Reports Server (NTRS)

    Gruber, C. L.

    1977-01-01

    Thin film and bead thermistor atomic surface recombination hydrogen detectors were investigated both experimentally and theoretically. Devices were constructed on a thin Mylar film substrate. Using suitable Wheatstone bridge techniques sensitivities of 80 microvolts/2x10 to the 13th power atoms/sec are attainable with response time constants on the order of 5 seconds.

  20. Solar array deployment from a spinning spacecraft

    NASA Technical Reports Server (NTRS)

    Carlin, A. H.; Gardner, J. B.; Lassen, H. A.

    1974-01-01

    Cylindrical drum, wrapped with flexible solar array of solar cells mounted on Mylar sheet, is held by two end-fittings with cable (under tension) passing through axel of drum. Drum is held to end-fittings by axial cable through drum axel; drum is released for deployment when cable is cut at each end and end-fittings spring outward.

  1. Trigger drift chamber for the upgraded mark II detector at PEP

    NASA Astrophysics Data System (ADS)

    Ford, W. T.; Smith, J. G.; Wagner, S. R.; Weber, P.; White, S. L.; Alvarez, M.; Calviño, F.; Fernandez, E.

    1987-04-01

    A small cylindrical track detector was built as an array of single-wire drift cells with aluminized mylar cathode tubes. Point measurement resolution of ˜ 90 μm was achieved with a drift gas of 50% argon-50% ethane at atmospheric pressure. The chamber construction, electronics, and calibration are discussed. Performance results from PEP colliding-beam data are presented.

  2. Design and performance of a straw tube drift chamber

    NASA Astrophysics Data System (ADS)

    Oh, S. H.; Wesson, D. K.; Cooke, J.; Goshaw, A. T.; Robertson, W. J.; Walker, W. D.

    1991-06-01

    The design and performance of the straw drift chambers used in E735 is reported. The chambers are constructed from 2.5 cm radius aluminized mylar straw tubes with wall thickness less than 0.2 mm. Also, presented are the results of tests with 2 mm radius straw tubes. The small tube has a direct detector application at the Superconducting Super Collider.

  3. Navy Satellite Communications in the Hellenic Environment

    DTIC Science & Technology

    1988-06-01

    spherical pressurized balloon with an envelope of plastic mylar and aluminum. Its communication capabilities were for a voice baseband bandwidth of 200...N-1780-ARPA, November 1981. 24. Betrosian, Edward Electromagnetic Properties and Communication caracteristics of PACSAT, Rand Corp (R-2920-ARPA...Survivable Command and Control, RAND Note N-1780-ARPA, November 1981. 4. Betrosian, Edward Electromagnetic Properties and Communication caracteristics of

  4. Development and Testing of a Laboratory Spray Table Methodology to Bioassay Simulated Levels of Aerial Spray Drift

    DTIC Science & Technology

    2009-05-01

    was measured on Mylar cards through fluorometric analysis. Plant health measures height and normalized difference vegetation index NDVI were...plant health data were used to generate dose-response relationships. Dose-response curves relating change in plant height and change in measured NDVI ...Held Sensor Model 505, NTech Industries, Inc., Ukiah, California to measure the normalized difference vegetation index NDVI which is directly

  5. Passive radon/thoron personal dosimeter using an electrostatic collector and a diffused-junction detector

    NASA Astrophysics Data System (ADS)

    Bigu, J.; Raz, R.

    1985-01-01

    A solid-state alpha dosimeter has been designed and tested suitable for personal and environmental radon/thoron monitoring. The dosimeter basically consists of an electrostatic collector and an alpha-particle counting system with spectroscopy capabilities. The sensitive volume (˜20 cm3) of the electrostatic collector consists of a cylindrically shaped metal wire screen and a diffused-junction silicon alpha-detector covered with a thin aluminized Mylar sheet. A dc voltage (˜500 V) is applied between the wire screen and the Mylar sheet, with the latter held at negative potential relative to the former. Data can be retrieved during or after sampling by means of a microcomputer (Epson HX20) via a RS-232 communication interface unit. The dosimeter has been calibrated in a large (26 m3) radon/thoron test facility. A linear relationship was found between the dosimeter's alpha-count and both radon gas concentration and radon daughter working level. The dosimeter is mounted on top of an ordinary miner's cap lamp battery and is ideally suited for personal monitoring in underground uranium mines and other working areas. The dosimeter presented here is a considerably improved version of an earlier prototype.

  6. Design and Operation of a Calorimeter for Advanced Multilayer Insulation Testing

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Johnson, Wesley L.; Van Dresar, Neil

    2016-01-01

    A calorimeter has been constructed to accurately measure insulation performance with a nominal 90K outer boundary and a 20K inner boundary. Unique features of this design include use of mechanical cryocoolers instead of cryogens and measurement of the heat load with a calibrated heat conduction rod. The calorimeter is operational and has completed its first test series. The initial test series was designed to look for differences in performance between a single layer of aluminum foil and a sheet of double aluminized Mylar (DAM). Although it has been speculated that the aluminum foil would perform better, since the aluminum coating on the Mylar might not be thick enough to stop the transmission of long wave length infrared radiation, our testing showed a higher heat load for the aluminum foil than the DAM. The aluminum foil showed a heat load of 132 mW at an 87 K outer temperature and 152 mW at a 107K outer temperature, whereas the DAM showed a heat load of 66 mW at an 88 K outer temperature and 81 mW at 108 K.

  7. Design and Operation of a Calorimeter for Advanced Multilayer Insulation Testing

    NASA Technical Reports Server (NTRS)

    Chato, David; Johnson, Wesley; Dresar, Neil Van

    2016-01-01

    A calorimeter has been constructed to accurately measure insulation performance with a nominal 90K cold outer boundary and a 20K inner boundary. Unique features of this design include use of mechanical cryocoolers instead cryogens and measurement of the heat load with a calibrated rod to serve as a conduction path. The calorimeter is operational and has completed its first test series. The initial test series was designed to look for differences in performance between a single layer of aluminum foil and a sheet of double aluminized mylar (DAM). Although it has been speculated that the aluminum foil would perform better, since the mylar coating might not thick enough to stop the transmission of long wave length infrared radiation, our testing showed a higher heat load for the aluminum foil than the DAM. The aluminum foil showed a heat load of 132 mW at an 87 K outer temperature and 152 mW at a 107K outer temperature. Whereas the DAM showed a heat load of 66 mW at an 88 K outer temperature and 81 mW at 108 K.

  8. Near millimeter wave bandpass filters

    NASA Technical Reports Server (NTRS)

    Timusk, T.; Richards, P. L.

    1981-01-01

    The properties of bandpass filters for broadband photometry are reported in the 3-12/cm frequency range. The filters are based on a combination of capacitive grids deposited on thick Mylar substrates and are designed to have very high out-of-band rejection. Low frequencies are blocked by a thick grill that consists of a hexagonal grid of circular holes in a thick metal plate.

  9. North Texas Sediment Budget: Sabine Pass to San Luis Pass

    DTIC Science & Technology

    2006-09-01

    concrete units have been placed over sand-filled fabric tube . .......................................33 Figure 28. Sand-filled fabric tubes protecting...system UTM Zone 15, NAD 83 Longshore drift directions King (in preparation) Based on wave hindcast statistics and limited buoy data Rollover Pass...along with descriptions of the jetties and limited geographic coordinate data1 (Figure 18). The original velum or Mylar sheets from which the report

  10. Super miniaturization of film capacitor dielectrics

    NASA Technical Reports Server (NTRS)

    Lavene, B.

    1981-01-01

    The alignment of the stable electrical characteristics of film capacitors in the physical dimensions of ceramic and tantalum capacitors are discussed. The reliability of polycarbonate and mylar capacitors are described with respect to their compatibility with military specifications. Graphic illustrations are presented which show electrical and physical comparisons of film, ceramic, and tantalum capacitors. The major focus is on volumetric efficiency, weight reduction, and electrical stability.

  11. Enhanced softgoods structures for spacesuit micrometeoroid/debris protective systems

    NASA Technical Reports Server (NTRS)

    Remington, Brian; Cadogan, David; Kosmo, Joseph

    1992-01-01

    A lightweight, flexible thermal micrometeoroid garment (TMG) design for enhanced space suit micrometeoroid/debris (M/D) protection is described. It will consist of an outer layer comprised of orthofabric, multilayers of aluminized Mylar, and a layer of silicone rubber loaded with micron sized particles of tungsten. The shield layers would fragment and/or vaporize the M/D projectile while the backup sheet would stop the resultant debris cloud.

  12. Prototype Development and Dynamic Characterization of Deployable CubeSat Booms

    DTIC Science & Technology

    2010-03-01

    constant force of gravity and the constant force of photons impinging on the reflective Mylar surface of the craft. This could, in effect, provide a much...reflected photons of light for spacecraft propulsion. As acceleration is inversely proportional to the mass for a constant thrust, this method of...of the satellite. Additionally, with so much boom essentially stuffed within a small cavity, binding and entanglement issues are a near certainty

  13. Infrared Chemiluminescence Studies of Ion-Molecule Reactions in a Flowing Afterglow.

    DTIC Science & Technology

    1982-01-01

    reaction rate constants and branching ratios have been addressed in drift tubes and flow drift systems, and the translational energy distribution of atomic...composed of about 40 thin cylindrical sections of flow tube , separated by mylar spacers and connected by precision resistors. In the region of LIF... tube radius (Albritton, 1967). For proper operation of a drift tube , ionic species of only one polarity can be present. Efficient separation of

  14. Cathode readout with stripped resistive drift tubes

    NASA Astrophysics Data System (ADS)

    Bychkov, V. N.; Kekelidze, G. D.; Novikov, E. A.; Peshekhonov, V. D.; Shafranov, M. D.; Zhiltsov, V. E.

    1995-12-01

    A straw tube drift chamber prototype has been constructed and tested. The straw tube material is mylar film covered with a carbon layer with a resistivity of 0.5, 30 and 70 kΩ/□. Both the anode wire and the cathode strip signals were detected to study the behaviour of the chamber in the presence of X-ray ionization. The construction and the results of the study are presented.

  15. High-Voltage, High-Impedance Ion Beam Production

    DTIC Science & Technology

    2009-06-01

    the anode tube with a loosely-crumpled, thin aluminized- mylar foil. This spoils the virtual cathode and greatly reduces the neutron signal, as seen...ions follow ballistic (straight-line) trajectories in the drift tube (see Sec. VIII), then (except for the small displacement associated with bending...mTorr) ambient in the drift tube . Based on our previous experience, we would expect charge, but not necessarily current, neutralization of the beam

  16. Hydrofluoric acid-resistant composite window and method for its fabrication

    DOEpatents

    Ostenak, C.A.; Mackay, H.A.

    1985-07-18

    A hydrofluoric acid-resistant composite window and method for its fabrication are disclosed. The composite window comprises a window having first and second sides. The first side is oriented towards an environment containing hydrofluoric acid. An adhesive is applied to the first side. A layer of transparent hydrofluoric acid-resistant material, such as Mylar, is applied to the adhesive and completely covers the first side. The adhesive is then cured.

  17. Seafood Packaging

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's Technology Transfer Office at Stennis Space Center worked with a New Orleans seafood packaging company to develop a container to improve the shipping longevity of seafood, primarily frozen and fresh fish, while preserving the taste. A NASA engineer developed metalized heat resistant polybags with thermal foam liners using an enhanced version of the metalized mylar commonly known as 'space blanket material,' which was produced during the Apollo era.

  18. Hydrofluoric acid-resistant composite window and method for its fabrication

    DOEpatents

    Ostenak, Carl A.; Mackay, Harold A.

    1987-01-01

    A hydrofluoric acid-resistant composite window and method for its fabrication are disclosed. The composite window comprises a window having first and second sides. The first side is oriented towards an environment containing hydrofluoric acid. An adhesive is applied to the first side. A layer of transparent hydrofluoric acid-resistant material, such as Mylar, is applied to the adhesive and completely covers the first side. The adhesive is then cured.

  19. Brain Vulnerability to Repeated Blast Overpressure and Polytrauma

    DTIC Science & Technology

    2010-05-28

    devoid of any obvious cell loss or injury when assessed using either Nissl or Fluoro Jade stains , they consistently showed widespread fiber degeneration...injured brain after thionine (l) or silver (r) staining . experimental parameters (e.g. driver volume, tube position, Mylar membrane thickness, and type...5. Thionine- (top) and silver- (bottom) stained brain sections following exposure to 126 kPa airblast at the mouth of the tube. From Long et al

  20. A low-friction high-load thrust bearing and the human hip joint.

    PubMed

    McIlraith, A H

    2010-06-01

    A hydrostatic thrust bearing operating at a pressure of 130 MPa and with a coefficient of friction rising to 0.004 in 6 days is described. It consists of interleaved oil-coated Mylar and brass sheets, each 0.1 mm thick. At this pressure, the Mylar deforms to reveal a pool of lubricant bounded by contacting layers at its edges where the pressure tapers off to zero. Thus, most of the load is borne by the oil so its effective Coulomb (slip-stick) friction is very low. Expressions for the effective coefficient of friction, the area of the solid-to-solid contact and the torque needed to rotate the bearing are given in terms of its geometry, the viscosity of the lubricant and elapsed time. The mechanism of a bearing with similar geometry and properties, the human hip joint, is compared with this plastic bearing. While their low friction properties arise from the same basic cause, the different natures of their soft deformable materials lead to the hip joint having a much wider range of action. This work is an example of new engineering leading to a fresh insight into an action of Nature, which in turn suggests an improvement in engineering.

  1. Thermal performance of a liquid hydrogen tank multilayer insulation system at warm boundary temperatures of 630, 530, and 152 R

    NASA Astrophysics Data System (ADS)

    Stochl, Robert J.; Knoll, Richard H.

    1991-06-01

    The results are presented of a study conducted to obtain experimental heat transfer data on a liquid hydrogen tank insulated with 34 layers of MLI (multilayer insulation) for warm side boundary temperatures of 630, 530, and 150 R. The MLI system consisted of two blankets, each blanket made up of alternate layers of double silk net (16 layers) and double aluminized Mylar radiation shields (15 layers) contained between two cover sheets of Dacron scrim reinforced Mylar. The insulation system was designed for and installed on a 87.6 in diameter liquid hydrogen tank. Nominal layer density of the insulation blankets is 45 layers/in. The insulation system contained penetrations for structural support, plumbing, and electrical wiring that would be representative of a cryogenic spacecraft. The total steady state heat transfer rates into the test tank for shroud temperatures of 630, 530, 152 R were 164.4, 95.8, and 15.9 BTU/hr respectively. The noninsulation heat leaks into the tank (12 fiberglass support struts, tank plumbing, and instrumentation lines) represent between 13 to 17 pct. of the total heat input. The heat input values would translate to liquid H2 losses of 2.3, 1.3, and 0.2 pct/day, with the tank held at atmospheric pressure.

  2. Thermal performance of a liquid hydrogen tank multilayer insulation system at warm boundary temperatures of 630, 530, and 152 R

    NASA Astrophysics Data System (ADS)

    Stochl, Robert J.; Knoll, Richard H.

    1991-06-01

    The results are presented of a study conducted to obtain experimental heat transfer data on a liquid hydrogen tank insulated with 34 layers of MLI (multilayer insulation) for warm side boundary temperatures of 630, 530, and 150 R. The MLI system consisted of two blankets, each blanket made up of alternate layers of double silk net (16 layers) and double aluminized Mylar radiation shields (15 layers) contained between two cover sheets of Dacron scrim reinforced Mylar. The insulation system was designed for and installed on an 87.6 in. diameter liquid hydrogen tank. Nominal layer density of the insulation blankets is 45 layers/in. The insulation system contained penetrations for structural support, plumbing, and electrical wiring that would be representative of a cryogenic spacecraft. The total steady state heat transfer rates into the test tank for shroud temperatures of 630, 530, 152 R were 164.4, 95.8, and 15.9 BTU/hr, respectively. The noninsulation heat leaks into the tank (12 fiberglass support struts, tank plumbing, and instrumentation lines) represent between 13 to 17 pct. of the total heat input. The heat input values would translate to liquid H2 losses of 2.3, 1.3, and 0.2 pct/day, with the tank held at atmospheric pressure.

  3. Effect of light energy density on conversion degree and hardness of dual-cured resin cement.

    PubMed

    Komori, Paula Carolina de Paiva; de Paula, Andréia Bolzan; Martin, Airton Abrāo; Tango, Rubens Nisie; Sinhoreti, Mario Alexandre Coelho; Correr-Sobrinho, Lourenço

    2010-01-01

    This study evaluated the effect of different light energy densities on conversion degree (CD) and Knoop hardness number (KHN) of RelyX ARC (RLX) resin cement. After manipulation according to the manufacturer's instructions, RLX was inserted into a rubber mold (0.8 mm x 5 mm) and covered with a Mylar strip. The tip of the light-curing unit (LCU) was positioned in contact with the Mylar surface. Quartz-tungsten-halogen (QTH) and light-emitting diode (LED) LCUs with light densities of 10, 20 and 30 J/cm2 were used to light-cure the specimens. After light curing, the specimens were stored dry in lightproof containers at 37 degrees C. After 24 hours, the CD was analyzed by FT-Raman and, after an additional 24-hours, samples were submitted to Knoop hardness testing. The data of the CD (%) and KHN were submitted to two-way ANOVA and the Tukey's test (alpha = 0.05). QTH and LED were effective light curing units. For QTH, there were no differences among the light energy densities for CD or KHN. For LED, there was a significant reduction in CD with the light energy density set at 10 J/cm2. KHN was not influenced by the light-curing unit and by its light energy density.

  4. Feature Extraction Assessment Study.

    DTIC Science & Technology

    1984-11-01

    base in the form of orthophotos , control manuscripts, . or maps or charts; aids to feature identification such as im- agery (rectified and unrectified...manually delineated (i.e. , drawn by * hand) on a feature manuscript which may be a mylar overlay on an orthophoto or other control base. Once delineated...partition of tiled constant gray level regions, with addi- tive noise in each, it is not clear that any segmentation tech- nique would identify each

  5. Requirements, Technology and Configuration Evaluation for Crash Survivable Flight Data Recording (CSFDR) System

    DTIC Science & Technology

    1981-03-23

    25% Rotational angle - 350 degrees Temperature range - -65°C to + 125°C Vibration - 15 g Shock - 50 g Rotational load life - 25,000,000...structed of multi-layered metal foils, vacuum deposited on thin films of Mylar, Kapton, or similar plastics) slowly outgas and contaminate their own...armor. Intumescent coating is a paint derivative, which swells 5 to 50 times its original thickness when exposed to high temperatures ( 350 ° to 500

  6. Bilayer free-standing beam splitter for Fourier transform infrared spectrometry.

    PubMed

    Rowell, N L; Wang, E A

    1996-06-01

    We describe the design, fabrication, testing, and performance of a two-layer free-standing beam splitter for use in far-infrared Fourier transform infrared spectrometers. This bilayer beam splitter, consisting of a low-index polymer layer in combination with a high-index semiconductor layer, has an efficiency that is higher than that of the best combination of four single-layer Mylar beam splitters currently in use for spectrometry from 50 to 550 cm(-1).

  7. Far Infrared and Dielectric Relaxation Spectra in Supercooled Water and Water + Propylene Glycol Solutions.

    DTIC Science & Technology

    1987-08-01

    cm - 1 were obtained using a Digilahs [TIR spectrophotometer with a 6.25 pm Mylar beam splitter . The instrument was alignced so ihai the maximum...of polar molecular liquids, has been extensively studied over the frequency range 10- 2-10 7 Hz using a.c. bridge or polarisation current techniques...reference beam during all experiments. Baselines for determination of absorp- tion coefficients, were made using an empty cell with two DPE windows in the

  8. Cathode readout with stripped resistive drift tubes

    NASA Astrophysics Data System (ADS)

    Bychkov, V. N.; Kekelidze, G. D.; Novikov, E. A.; Peshekhonov, V. D.; Shafranov, M. D.; Zhiltsov, V. E.

    1994-11-01

    A straw tube drift chamber prototype has been constructed and tested. The straw tube material is mylar film covered with carbon layer of resistivity 0.5, 30 and 70 k Ohm/sq. The gas mixture used was Ar/CH4. Both the anode wire and cathode signals were detected in order to study the behaviour of the chamber in the presence of X-ray ionization. The construction and the results of the study are presented.

  9. Far Infrared Radiometric Spectrometer (FIRRS).

    DTIC Science & Technology

    1983-07-29

    scheme, the following review is given of the limited information available. The effects of humidity heterogeneities on near-millimeter wave propagation is...less dense and therefore has less effect . Although the horizontal beam width of FIRRS will be small at high altitudes, it appears unlikely that humidity ... aluminum coated thin Mylar *: film substrate (6.4 Pm thick) is etched to give metal strips of width 4 um and a grating period 10 v m. The accuracy of

  10. Digital Topographic Support System (DTSS).

    DTIC Science & Technology

    1987-07-29

    effects applications software, a word processing package and a Special Purpose Product Builder ( SPPB ) in terms common to his Job. Through the MI, the...communicating with the TA in terms he understands, the applications software, the SPPB and the GIS form the underlying tools which perform the computations and...displayed on the monitors or plotted on paper or Mylar. The SPPB will guide the TA enabling him to design products which are not included in the applications

  11. A Smart Microwave Vacuum Electron Device (MVED) Using Field Emitters

    DTIC Science & Technology

    2012-01-31

    operation of the device. By using a larger retardation value, the slow wave phase velocity is decreased allowing a lower E/B drift velocity. By reducing...the drift velocity the device is able to run at a lower cathode potential reducing the risk of high voltage arcing. This new slow wave circuit will...sole electrode above the cathode by using a thin dielectric layer ( mylar ) on top of the cathode and placing the sole electrode on the dielectric

  12. Low jitter, low inductance solid dielectric switches.

    PubMed

    Guenther, A H; Strickland, D M; Bettis, J R

    1979-11-01

    It has been shown that the use of graded solid dielectric sandwiches in laser-triggered spark gaps (LTS) can lead to highly desirable multichannel operations while maintaining the low delay and jitter performance characteristics of LTS. As many as ten separate breakdown channels were observed when small circular or hexagonal aluminum inserts were inserted between two Mylar dielectric sheets stressed at 4.1 kV/mil. A reduction in rise time was noted for these multichannel switching events.

  13. Effect of different polishing systems on the surface roughness of nano-hybrid composites.

    PubMed

    Patel, Brijesh; Chhabra, Naveen; Jain, Disha

    2016-01-01

    The study aimed to investigate the influence of different polishing systems on the surface roughness of nano-hybrid composite resins. Different shapes of polishing systems are available according to the site of work. To minimize variability, a new system with single shape is developed that can be utilized in both anterior as well as posterior teeth. Seventy composite discs were fabricated using Teflon well (10 mm × 3 mm). Two main group of nano-hybrid composite Group I - Filtek Z350 and Group II - Tetric N-Ceram were used (n = 35 for each group). Both groups were further divided into four subgroups. Subgroup a - OneGloss (n = 10), Subgroup b - PoGo (n = 10), Subgroup c - Sof-Lex spiral (n = 10), Subgroup d - Mylar strip (control, n = 5). Samples were polished according to the manufacturer's recommendations. Surface roughness test was performed using contact profilometer. The obtained data were analyzed using the one-way analysis of variance test. Tetric N-Ceram produced smoother surfaces than Filtek Z350 (P < 0.05). Mylar strip and "PoGo" created equally smooth surfaces, while significantly rougher surfaces were obtained after applications of "Sof-Lex spiral" and "OneGloss" (P < 0.05). Polishing ability of Tetric N-Ceram is better than Filtek Z350 XT. "PoGo" seems to be a better polishing system than "OneGloss" and "Sof-Lex Spiral."

  14. Large Area and Short-Pulse Shock Initiation of a Tatb/hmx Mixed Explosive

    NASA Astrophysics Data System (ADS)

    Guiji, Wang; Chengwei, Sun; Jun, Chen; Cangli, Liu; Jianheng, Zhao; Fuli, Tan; Ning, Zhang

    2007-12-01

    The large area and short-pulse shock initiation experiments on the plastic bonded mixed explosive of TATB(80%) and HMX(15%) have been performed with an electric gun where a Mylar flyer of 10-19 mm in diameter and 0.05˜0.30 mm in thickness was launched by an electrically exploding metallic bridge foil. The cylindrical explosive specimens (Φ16 mm×8 mm in size) were initiated by the Mylar flyers in thickness of 0.07˜0.20 mm, which induced shock pressure in specimen was of duration ranging from 0.029 to 0.109 μs. The experimental data were treated with the DRM(Delayed Robbins-Monro) procedure and to provide the initiation threshold of flyer velocities at 50% probability are 3.398˜1.713 km/s and that of shock pressure P 13.73˜5.23 GPa, respectively for different pulse durations. The shock initiation criteria of the explosive specimen at 50% and 100% probabilities are yielded. In addition, the 30° wedged sample was tested and the shock to detonation transition (SDT) process emerging on its inclined surface was diagnosed with a device consisting of multiple optical fiber probe, optoelectronic transducer and digital oscilloscope. The POP plot of the explosive has been gained from above SDT data.

  15. Space Weathering Experiments on Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Cooper, R.; Cowardin, H.; Engelhar, D.; Plis, Elena; Hoffman, R.

    2017-01-01

    A project to investigate space environment effects on specific materials with interest to remote sensing was initiated in 2016. The goal of the project is to better characterize changes in the optical properties of polymers and Mylar, specifically those found in multi-layered spacecraft insulation, due to electron bombardment. Previous analysis shows that chemical bonds break and potentially reform when exposed to high energy electrons. Among other properties these chemical changes altered the optical reflectance as documented in laboratory analysis. This paper presents results of the initial experiment results focused on the exposure of materials to various fluences of high energy electrons, used to simulate a portion of the geosynchronous space environment. The paper illustrates how the spectral reflectance changes as a function of time on orbit with respect to GEO environmental factors and investigates the survivability of the material after multiple electron doses. These results provide a baseline for analysis of aging effects on satellite systems used for remote sensing. They also provide preliminary analysis on what materials are most likely to encompass the high area-to-mass population of space debris in the geosynchronous environment. Lastly, the paper provides the results of the initial experimentation as a proof of concept for space aging on polymers and Mylar for conducting more experiments with a larger subset of spacecraft materials.

  16. Space Art "Stardust"

    NASA Image and Video Library

    2008-01-08

    Artist Paul Henry Ramirez captured symbolically the Stardust mission in this peice titled "Stardust". The Stardust mission in January of 2006 completed a seven-year, 2.8 billion mile journey to fly by a comet and return samples to Earth. The material is a first sample of pristine cometary material which will increase human understanding of interstellar dust. Stardust, 2007. Acrylic Micaceous Iron Oxide, Aluminum and crystal, hologram glitter Mylar 20" round canvas. Copyrighted: For more information contact Curator, NASA Art Program.

  17. EXHIBIT - SPACESUITS

    NASA Image and Video Library

    1982-02-08

    S82-26645 (March 1982) --- Spacesuit inner gloves consist of pressure bladders covered by Beta Cloth. EVA outer gloves are made of Beta Cloth, Mylar and a metallic mesh hand area. The thumb and fingertips of the glove are molded of silicone rubber to permit a degree of sensitivity. The inner gloves attach to the suit by pressure sealing rings, similar to these used in helmet-to-suit connections. The outer gloves served as a cover to protect from micrometeorites, abrasions and heat.

  18. Application of remote sensing technology to land evaluation, planning utilization of land resources, and assessment of westland habitat in eastern South Dakota, parts 1 and 2

    NASA Technical Reports Server (NTRS)

    Myers, V. I. (Principal Investigator); Cox, T. L.; Best, R. G.

    1976-01-01

    The author has identified the following significant results. LANDSAT fulfilled the requirements for general soils and land use information. RB-57 imagery was required to provide the information and detail needed for mapping soils for land evaluation. Soils maps for land evaluation were provided on clear mylar at the scale of the county highway map to aid users in locating mapping units. Resulting mapped data were computer processed to provided a series of interpretive maps (land value, limitations to development, etc.) and area summaries for the users.

  19. Assessment of the FY 05 Basic Officer Leader Course (BOLC) Phase II: Instructor Certification Program (ICP) and Single-Site Initial Implementation

    DTIC Science & Technology

    2006-08-01

    You have cut off the Soldier’s smoldering clothing and uncovered the burn . What is the next step? O a. Apply first aid cream or ointments to the...apply a wet field dressing or mud over the phosphorus to exclude air. You would never break the blisters or apply an ointment or grease over burns ...center lane; keep vehicle gunner in defilade, not exposed to lED blast "* Keep ballistic glass up; non-ballistic glass down "* Use mylar film or tape

  20. Lea's Pies

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Technology Transfer Office at Stennis Space Center worked with a pie company owner to develop an inexpensive container that would protect pies and keep them in a near frozen condition for shipping in 48 hours. A NASA engineer made a thermal barrier envelope from a metalized mylar called 'space blanket material,' developed during the Apollo era. The envelope protects the pies from heat transfer. Pictured, a NASA engineer removes the temperature logger from a pecan pie shipped to him in a prototype envelope.

  1. The Loss Cone Imager (LCI)

    DTIC Science & Technology

    2006-07-24

    at this time that the PMO provided the current LCI configuration (integrated DPU/HST on the PM, the RSH units on a composite tube , later to become...approximated by parallel planes of 1000 A of aluminum on a 0.5 mil mylar foil in front of a 1000 tim (or 1500 tim) silicon detector, detector A...above manufacturers form these alloys in tube form. In order to produce a tube , a rod would be formed and then a hold bored through the center. Some of

  2. Microwave Reflectivity of Deposited Aluminum Films for Passive Relay Communications

    NASA Technical Reports Server (NTRS)

    Cuddihy, William F.; Shreve, Lloyd H.

    1961-01-01

    Reflectivity measurements from 400 Mc/sec to 10 kMc/sec on 2,200 A thick aluminum deposited on 1/2-mil-thick Mylar film show this material to be a very good reflector of radio waves. Measurements made under conditions of stress and temperature which would be encountered by a communications sphere, such as Project Echo (1960 Iota), showed very little deterioration of the high reflectivity. packaging effects also caused very little reflectivity change. Under conditions of severe temperature cycling, aluminum removal and decreased reflectivity occurred.

  3. Effect of different polishing systems on the surface roughness of nano-hybrid composites

    PubMed Central

    Patel, Brijesh; Chhabra, Naveen; Jain, Disha

    2016-01-01

    Objective: The study aimed to investigate the influence of different polishing systems on the surface roughness of nano-hybrid composite resins. Background: Different shapes of polishing systems are available according to the site of work. To minimize variability, a new system with single shape is developed that can be utilized in both anterior as well as posterior teeth. Materials and Methods: Seventy composite discs were fabricated using Teflon well (10 mm × 3 mm). Two main group of nano-hybrid composite Group I — Filtek Z350 and Group II — Tetric N-Ceram were used (n = 35 for each group). Both groups were further divided into four subgroups. Subgroup a — OneGloss (n = 10), Subgroup b - PoGo (n = 10), Subgroup c — Sof-Lex spiral (n = 10), Subgroup d - Mylar strip (control, n = 5). Samples were polished according to the manufacturer's recommendations. Surface roughness test was performed using contact profilometer. The obtained data were analyzed using the one-way analysis of variance test. Result: Tetric N-Ceram produced smoother surfaces than Filtek Z350 (P < 0.05). Mylar strip and “PoGo” created equally smooth surfaces, while significantly rougher surfaces were obtained after applications of “Sof-Lex spiral” and “OneGloss” (P < 0.05). Conclusion: Polishing ability of Tetric N-Ceram is better than Filtek Z350 XT. “PoGo” seems to be a better polishing system than “OneGloss” and “Sof-Lex Spiral.” PMID:26957791

  4. Echo's Legacy

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Echo 1 Satellite is simply a very large balloon, the diameter of a 10 story building. Metallized Products, Inc. developed a special material for NASA used for the balloons's skin. For "bouncing signals," material had to be reflective, lightweight, and thin enough to be folded into a beach ball size canister for delivery into orbit, where it would automatically inflate. Material selected was mylar polyester, with a reflective layer of tiny aluminum particles so fine that Echo's skin had a thickness half that of cellophane on a cigarette package.

  5. A composite thin vacuum window for the CLAS photon tagger at Jefferson lab

    NASA Astrophysics Data System (ADS)

    Matthews, S. K.; Crannell, Hall; O'Brien, J. T.; Sober, D. I.

    1999-01-01

    The construction of a thin vacuum window, currently in use on the CLAS photon tagging system at the Thomas Jefferson National Accelerator Facility, is described. A layer of woven Kevlar cloth supports a much thinner membrane of aluminized Mylar. Notable features of this particular window include its overall length (9.6 m), and the fact that the entire load is supported by the epoxy seal with no mechanical clamping around the edges. Results from a diverse program of materials testing, including a clear dependence of leak rate on relative humidity, are also reported.

  6. A straw chambers' tracker for the high rate experiment 835 at the Fermilab accumulator

    NASA Astrophysics Data System (ADS)

    Bagnasco, S.; Dughera, G.; Giraudo, G.; Govi, G.; Marchetto, F.; Menichetti, E.; Pastrone, N.; Rumerio, P.; Trapani, P. P.

    1998-02-01

    Two layers of proportional drift tubes (aluminum mylar straws) are staggered in two cylindrical light chambers to measure charged particles' azimuthal angle. To stand the high rates (˜10 kHz/ cm2) and minimize the pile-up of the high luminosity experiment 835 at FNAL, a fast ASIC Amplifier-Shaper-Discriminator (ASD-8B) was chosen. The front-end electronics, designed exclusively with SMD components, was mounted on the downstream end plug of each chamber to avoid oscillations and noise. Design, construction and operational performances of these detectors are presented.

  7. Effects of Kapton Sample Cell Windows on the Detection Limit of Smectite: Implications for CheMin on the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Ming, Douglas W.; Morris, R. V.; Blake, D. F.

    2012-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity is an X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of providing the mineralogical and chemical compositions of rocks and soils on the surface of Mars. CheMin uses a microfocus X-ray tube with a Co target, transmission geometry, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. CheMin has two different window materials used for sample cells -- Mylar and Kapton. Instrument details are provided elsewhere. Fe/Mg-smectite (e.g., nontronite) has been identified in Gale Crater, the MSL future landing site, by CRISM spectra. While large quantities of phyllosilicate minerals will be easily detected by CheMin, it is important to establish detection limits of such phases to understand capabilities and limitations of the instrument. A previous study indicated that the (001) peak of smectite at 15 Ang was detectable in a mixture of 1 wt.% smectite with olivine when Mylar is the window material for the sample cell. Complications arise when Kapton is the window material because Kapton itself also has a diffraction peak near 15 Ang (6.8 deg 2 Theta). This study presents results of mineral mixtures of smectite and olivine to determine smectite detection limits for Kapton sample cells. Because the intensity and position of the smectite (001) peak depends on the hydration state, we also analyzed mixtures with "hydrated" and "dehydrated"h smectite to examine the effects of hydration state on detection limits.

  8. Intraocular lens fabrication

    DOEpatents

    Salazar, Mike A.; Foreman, Larry R.

    1997-01-01

    This invention describes a method for fabricating an intraocular lens made rom clear Teflon.TM., Mylar.TM., or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube.

  9. Echo 30" Sub Satellite

    NASA Image and Video Library

    2012-09-07

    James Hansen describes the work on Project Echo s air density experiment known as the Sub-Satellite. Before launch engineers subjected the sub-satellite to many tests. Here, the sub-satellite is shown prior to tests to determine the capacity of the 30-inch Sub-Satellite to withstand the high temperature of direct sunlight in space, Langley researchers subjected it to 450 F heat test. Results indicated that the aluminum-covered Mylar plastic would effectively reflect the dangerous heat. -- Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 168.

  10. A Large Tracking Detector In Vacuum Consisting Of Self-Supporting Straw Tubes

    NASA Astrophysics Data System (ADS)

    Wintz, P.

    2004-02-01

    A novel technique to stretch the anode wire simply by the gas over-pressure inside straw drift tubes reduces the necessary straw weight to an absolute minimum. Our detector will consist of more than 3000 straws filling up a cylindrical tracking volume of 1m diameter and 30cm length. The projected spatial resolution is 200μm. The detector with a total mass of less than 15kg will be operated in vacuum, but will have an added wall thickness of 3mm mylar, only. The detector design, production experience and first results will be discussed.

  11. Optimisation of X-ray emission from a laser plasma source for the realisation of microbeam in sub-keV region.

    PubMed

    Di Paolo Emilio, M; Festuccia, R; Palladino, L

    2015-09-01

    In this work, the X-ray emission generated from a plasma produced by focusing Nd-YAG laser beam on the Mylar and Yttrium targets will be characterised. The goal is to reach the best condition that optimises the X-ray conversion efficiency at 500 eV (pre-edge of the Oxigen K-shell), strongly absorbed by carbon-based structures. The characteristics of the microbeam optical system, the software/hardware control and the preliminary measurements of the X-ray fluence will be presented. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Effect of one-step polishing system on the color stability of nanocomposites.

    PubMed

    Alawjali, S S; Lui, J L

    2013-08-01

    This study was to compare the effect of three different one-step polishing systems on the color stability of three different types of nanocomposites after immersion in coffee for one day and seven days and determine which nanocomposite material has the best color stability following polishing with each of the one-step polishing system. The nanocomposites tested were Tetric EvoCeram, Grandio and Herculite Précis. A total of 120 discs (40/nanocomposite, 8mm×2mm) were fabricated. Ten specimens for each nanocomposite cured under Mylar strips served as the control. The other specimens were polished with OptraPol, OneGloss and Occlubrush immersed in coffee (Nescafé) up to seven days. Color measurements were made with a spectrophotometer at baseline and after one and seven days. Two way repeated measure ANOVA, two way ANOVA and Bonferroni tests were used for statistical analyses (P<0.05). The immersion time was a significant factor in the discoloration of the nanocomposites. The effect of three one-step polishing systems on the color stability was also significant. The color change values of the materials cured against Mylar strips were the greatest. The lowest mean color change values were from the Occlubrush polished groups. The effect of the three different types of nanocomposite on the color change was significant. The highest color change values were with Tetric EvoCeram groups. The lowest color change values were with Herculite Précis groups. The color change of nanocomposite resins is affected by the type of composite, polishing procedure and the period of immersion in the staining agent. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Controlled electrostatic methodology for imaging indentations in documents.

    PubMed

    Yaraskavitch, Luke; Graydon, Matthew; Tanaka, Tobin; Ng, Lay-Keow

    2008-05-20

    The electrostatic process for imaging indentations on documents using the ESDA device is investigated under controlled experimental settings. An in-house modified commercial xerographic developer housing is used to control the uniformity and volume of toner deposition, allowing for reproducible image development. Along with this novel development tool, an electrostatic voltmeter and fixed environmental conditions facilitate an optimization process. Sample documents are preconditioned in a humidity cabinet with microprocessor control, and the significant benefit of humidification above 70% RH on image quality is verified. Improving on the subjective methods of previous studies, image quality analysis is carried out in an objective and reproducible manner using the PIAS-II. For the seven commercial paper types tested, the optimum ESDA operating point is found to be at an electric potential near -400V at the Mylar surface; however, for most paper types, the optimum operating regime is found to be quite broad, spanning relatively small electric potentials between -200 and -550V. At -400V, the film right above an indented area generally carries a voltage which is 30-50V less negative than the non-indented background. In contrast with Seward's findings [G.H. Seward, Model for electrostatic imaging of forensic evidence via discharge through Mylar-paper path, J. Appl. Phys. 83 (3) (1998) 1450-1456; G.H. Seward, Practical implications of the charge transport model for electrostatic detection apparatus (ESDA), J. Forensic Sci. 44 (4) (1999) 832-836], a period of charge decay before image development is not required when operating in this optimal regime. A brief investigation of the role played by paper-to-paper friction during the indentation process is conducted using our optimized development method.

  14. Dual-Chamber/Dual-Anode Proportional Counter Incorporating an Intervening Thin-Foil Solid Neutron Converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boatner, Lynn A; Neal, John S; Blackston, Matthew A

    2012-01-01

    A dual-chamber/dual-anode gas proportional counter utilizing thin solid 6LiF or 10B neutron converters coated on a 2-micon-thick Mylar film that is positioned between the two counter chambers and anodes has been designed, fabricated, and tested using a variety of fill gases including naturally abundant helium. In this device, neutron conversion products emitted from both sides of the coated converter foil are detected rather than having half of the products absorbed in the wall of a conventional tube type counter where the solid neutron converter is deposited on the tube wall. Geant4-based radiation transport calculations were used to determine the optimummore » neutron converter coating thickness for both isotopes. Solution methods for applying these optimized-thickness coatings on a Mylar film were developed that were carried out at room temperature without any specialized equipment and that can be adapted to standard coating methods such as silk screen or ink jet printing. The performance characteristics of the dual-chamber/dual-anode neutron detector were determined for both types of isotopically enriched converters. The experimental performance of the 6LiF converter-based detector was described well by modeling results from Geant4. Additional modeling studies of multiple-foil/multiple-chamber/anode configurations addressed the basic issue of the relatively longer absorption range of neutrons versus the shorter range of the conversion products for 6LiF and 10B. Combined with the experimental results, these simulations indicate that a high-performance neutron detector can be realized in a single device through the application of these multiple-foil/solid converter, multiple-chamber detector concepts.« less

  15. Preliminary Experiments Using a Passive Detector for Measuring Indoor 220Rn Progeny Concentrations with an Aerosol Chamber.

    PubMed

    Sorimachi, Atsuyuki; Tokonami, Shinji; Kranrod, Chutima; Ishikawa, Tetsuo

    2015-06-01

    This paper describes preliminary experiments using a passive detector for integrating measurements of indoor thoron (²²⁰Rn) progeny concentrations with an aerosol chamber. A solid state nuclear detector (CR-39) covered with a thin aluminum-vaporized polyethylene plate (Mylar film) was used to detect only alpha particles emitted from ²¹²Po due to ²²⁰Rn progeny deposited on the detector surfaces. The initial experiment showed that Mylar film with area density of more than 5 mg cm⁻² was suitable to cut off completely alpha particles of 7.7 MeV from ²¹⁴Po of ²²²Rn progeny decay. In the experiment using the passive detector, it was observed that the net track density increased linearly with an increase of time-integrating ²²⁰Rn progeny concentration. As a result of dividing deposition rates by atom concentrations, the deposition velocity was given as 0.023 cm s⁻¹ for total ²²⁰Rn progeny. The model estimates of deposition velocities were 0.330 cm s⁻¹ for unattached ²²⁰Rn progeny and 0.0011 cm s⁻¹ for aerosol-attached ²²⁰Rn progeny using Lai-Nazaroff formulae. These deposition velocities were in the same range with the results reported in the literature. It was also found that the exposure experiments showed little influence of vertical profiles and surface orientations of the passive detector in the chamber on the detection responses, which was in good agreement with that in the model estimates. Furthermore, it was inferred that the main uncertainty of the passive detector was inhomogeneous deposition of Rn progeny onto its detection surfaces.

  16. Intraocular lens fabrication

    DOEpatents

    Salazar, M.A.; Foreman, L.R.

    1997-07-08

    This invention describes a method for fabricating an intraocular lens made from clear Teflon{trademark}, Mylar{trademark}, or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube. 13 figs.

  17. Studies of molecular properties of polymeric materials

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Long, Sheila Ann T.; Long, Edward R., Jr.

    1990-01-01

    Aerospace environment effects (high energy electrons, thermal cycling, atomic oxygen, and aircraft fluids) on polymeric and composite materials considered for structural use in spacecraft and advanced aircraft are examined. These materials include Mylar, Ultem, and Kapton. In addition to providing information on the behavior of the materials, attempts are made to relate the measurements to the molecular processes occurring in the material. A summary and overview of the technical aspects are given along with a list of the papers that resulted from the studies. The actual papers are included in the appendices and a glossary of technical terms and definitions is included in the front matter.

  18. Transmittance jump in a thin aluminium layer during laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bykovsky, N E; Senatsky, Yu V; Pershin, S M

    A jump in the transmittance (from ∼0.1% to ∼50% for ∼1 ns) of an optical gate on a Mylar film (a thin aluminium layer on a Lavsan substrate) irradiated by nanosecond (10{sup -7} – 10{sup -8} s) pulses of a neodymium laser with an intensity up to 0.1 GW cm{sup -2} has been recorded. The mechanism of a fast (10{sup -10} – 10{sup -11} s) increase in the transmittance of the aluminium layer upon its overheating (without boiling) to the metal – insulator phase-transition temperature is discussed. (interaction of laser radiation with matter. laser plasma)

  19. Methods to characterize charging effects

    NASA Astrophysics Data System (ADS)

    Slots, H.

    1984-08-01

    Methods to characterize charging in insulating material under high voltage dc stress, leading to electrical breakdown, are reviewed. The behavior of the charges can be studied by ac loss angle measurements after application or removal of dc bias. Measurements were performed on oil-paper and oil-Mylar systems. The poor reproducibility of the measurements makes it impossible to draw more than qualitative conclusions about the charging effects. With an ultrasound pressure wave the electric field distribution in a material can be determined. An alternative derivation for the transient response of a system which elucidates the influence of several parameters in a simple way is given.

  20. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, O. H.; Lai, C. K.; Choo, C. Y.

    2015-04-24

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ∼15 kVp-p at 8.5 kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2 kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film.

  1. The FINUDA straw tube detector

    NASA Astrophysics Data System (ADS)

    Zia, A.; Benussi, L.; Bertani, M.; Bianco, S.; Fabbri, F. L.; Gianotti, P.; Giardoni, M.; Lucherini, V.; Mecozzi, A.; Pace, E.; Passamonti, L.; Qaiser, N.; Russo, V.; Tomassini, S.; Sarwar, S.; Serdyouk, V.

    2001-04-01

    An array of 2424 2.6- m-long, 15- mm-diameter mylar straw tubes, arranged in two axial and four stereo layers, has been assembled at National Laboratories of Frascati of INFN for the FINUDA experiment. The array covers a cylindrical tracking surface of 18 m 2 and provides coordinate measurement in the drift direction and along the wire with a resolution of the order of 100 and 300 μm, respectively. The array has finished the commissioning phase and tests with cosmic rays are underway. The status straw tubes array and a very preliminary result from cosmic rays test are summarized in this work.

  2. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    NASA Astrophysics Data System (ADS)

    Chin, O. H.; Lai, C. K.; Choo, C. Y.; Wong, C. S.; Nor, R. M.; Thong, K. L.

    2015-04-01

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ˜15 kVp-p at 8.5 kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2 kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film.

  3. Vacuum system for the SAMURAI spectrometer

    NASA Astrophysics Data System (ADS)

    Shimizu, Y.; Otsu, H.; Kobayashi, T.; Kubo, T.; Motobayashi, T.; Sato, H.; Yoneda, K.

    2013-12-01

    The first commissioning experiment of the SAMURAI spectrometer and its beam line was performed in March, 2012. The vacuum system for the SAMURAI spectrometer includes its beam line and the SAMURAI vacuum chamber with the windows for detecting neutrons and charged particles. The window for neutrons was made of stainless steel with a thickness of 3 mm and was designed with a shape of partial cylinder to support itself against the atmospheric pressure. The window for charged particles was of the combination of Kevlar and Mylar with the thickness of 280 and 75 μm, respectively. The pressure in the vacuum system was at a few Pa throughout the commissioning experiment.

  4. Making MUSIC: A multiple sampling ionization chamber

    NASA Astrophysics Data System (ADS)

    Shumard, B.; Henderson, D. J.; Rehm, K. E.; Tang, X. D.

    2007-08-01

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. × 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction.

  5. SU-F-T-424: Mitigation of Increased Surface Dose When Treating Through A Carbon Fiber Couch Top

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, E; Misgina, F

    Purpose: To study the effect of the Varian carbon fiber couch top on surface dose for patients being treated using single PA beams in the supine position and to identify simple methods for surface dose reduction. Methods: Measurements of surface dose were obtained in Solid Water phantoms using both a parallel plate ionization chamber (PTW Advanced Markus) and EBT2 Radiochromic films for both 6 and 10MV photons. All measurements were referenced to a depth considered a typical for PA Spine fields. Techniques used to reduce the surface dose included introducing an air standoff using Styrofoam sheets to suspend the phantommore » surface above the couch top and by adding a thin high Z scattering foil on the table surface. Surface doses were evaluated for typical field sizes, standoff heights, and various scattering materials. Comparisons were made to the surface dose obtainable when treating through a Varian Mylar covered tennis racket style couch top. Results: Dependence on typical spine field sizes was relatively minor. Dependence on air gap was much more significant. Surface doses decreased exponentially with increases in air standoff distance. Surface doses were reduced by approximately 50% for an air gap of 10cm and 40% for a 15cm air gap. Surface doses were reduced by an additional 15% by the addition of a 1mm Tin scattering foil. Conclusion: Using simple techniques, it is possible to reduce the surface dose when treating single PA fields through the Varian carbon fiber couch top. Surface doses can be reduced to levels observed when treating though transparent Mylar tops by adding about 15 cm of air gap. Further reductions are possible by adding thin scattering foils, such as Tin or Lead, on the couch surface. This is a low cost approach to reduce surface dose when using the Varian carbon fiber couch top.« less

  6. Geodynamic modeling of the capture and release of a plume conduit by a migrating mid-ocean ridge

    NASA Astrophysics Data System (ADS)

    Hall, P. S.

    2011-12-01

    plates over the relatively stationary, long-lived conduits of mantle plumes. However, paleomagnetic data from the Hawaii-Emperor Seamount Chain suggests that the Hawaiian hotspot moved rapidly (~40 mm/yr) between 81 - 47 Ma [Tarduno et al., 2003]. Recently, Tarduno et al. [2009] suggested that this period of rapid motion might be the surface expression of a plume conduit returning to a largely vertical orientation after having been captured and tilted as the result of being "run over" by migrating mid-ocean ridge. I report on a series of analog geodynamic experiments designed to characterize the evolution of a plume conduit as a mid-ocean ridge migrates over. Experiments were conducted in a clear acrylic tank (100 cm x 70 cm x 50 cm) filled with commercial grade high-fructose corn syrup. Plate-driven flow is modeled by dragging two sheets of Mylar film (driven by independent DC motors) in opposite directions over the surface of the fluid. Ridge migration is achieved by moving the point at which the mylar sheets diverge using a separate motor drive. Buoyant plume flow is generated using a small electrical heater placed at the bottom of the tank. Plate velocities and ridge migration rate are controlled and plume temperature monitored using LabView software. Experiments are recorded using digital video which is then analyzed using digital image analysis software to track the position and shape of the plume conduit throughout the course of the experiment. The intersection of the plume conduit with the surface of the fluid is taken as an analog for the locus of hotspot volcanism and tracked as a function of time to obtain a hotspot migration rate. Results show that the plume conduit experiences significant tilting immediately following the passage of the migrating ridge.

  7. Comparison of a novel fixation device with standard suturing methods for spinal cord stimulators.

    PubMed

    Bowman, Richard G; Caraway, David; Bentley, Ishmael

    2013-01-01

    Spinal cord stimulation is a well-established treatment for chronic neuropathic pain of the trunk or limbs. Currently, the standard method of fixation is to affix the leads of the neuromodulation device to soft tissue, fascia or ligament, through the use of manually tying general suture. A novel semiautomated device is proposed that may be advantageous to the current standard. Comparison testing in an excised caprine spine and simulated bench top model was performed. Three tests were performed: 1) perpendicular pull from fascia of caprine spine; 2) axial pull from fascia of caprine spine; and 3) axial pull from Mylar film. Six samples of each configuration were tested for each scenario. Standard 2-0 Ethibond was compared with a novel semiautomated device (Anulex fiXate). Upon completion of testing statistical analysis was performed for each scenario. For perpendicular pull in the caprine spine, the failure load for standard suture was 8.95 lbs with a standard deviation of 1.39 whereas for fiXate the load was 15.93 lbs with a standard deviation of 2.09. For axial pull in the caprine spine, the failure load for standard suture was 6.79 lbs with a standard deviation of 1.55 whereas for fiXate the load was 12.31 lbs with a standard deviation of 4.26. For axial pull in Mylar film, the failure load for standard suture was 10.87 lbs with a standard deviation of 1.56 whereas for fiXate the load was 19.54 lbs with a standard deviation of 2.24. These data suggest a novel semiautomated device offers a method of fixation that may be utilized in lieu of standard suturing methods as a means of securing neuromodulation devices. Data suggest the novel semiautomated device in fact may provide a more secure fixation than standard suturing methods. © 2012 International Neuromodulation Society.

  8. A new method for fabrication of diamond-dust blocking filters

    NASA Technical Reports Server (NTRS)

    Collard, H. R.; Hogan, R. C.

    1986-01-01

    Thermal embedding of diamond dust onto a polyethylene-coated Al plate has been used to make a blocking filter for FIR applications. The Al plate is sandwiched between two Mylar 'blankets' and the air between the layers is removed by means of a small vacuum pump. After the polyethylene is heated and softened, the diamond dust is applied to the polyethylene coating using a brush. The optimum diamond dust grain sizes corresponding to polyethylene layer thicknesses of 9-12 microns are given in a table, and the application of the blocking filter to spectrometric measurements in the FIR is described. An exploded view diagram of the layered structure of the blocking filter is provided.

  9. Status of the NASA-Lewis flat-plate collector tests with a solar simulator

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1974-01-01

    Simulator test results of 15 collector types are presented. Collectors are given performance ratings according to their use for pool heating, hot water, absorption A/C or heating, and solar Rankine machines. Collectors found to be good performers in the above categories, except for pool heating, were a black nickel coated, 2 glass collector, and a black paint 2 glass collector containing a mylar honeycomb. For pool heating, a black paint, one glass collector was found to be the best performer. Collector performance parameters of 5 collector types were determined to aid in explaining the factors that govern performance. The two factors that had the greatest effect on collector performance were the collector heat loss and the coating absorptivity.

  10. Zero-crossing sampling of Fourier-transform interferograms and spectrum reconstruction using the real-zero interpolation method.

    PubMed

    Minami, K; Kawata, S; Minami, S

    1992-10-10

    The real-zero interpolation method is applied to a Fourier-transformed infrared (FT-IR) interferogram. With this method an interferogram is reconstructed from its zero-crossing information only, without the use of a long-word analog-to-digital converter. We installed a phase-locked loop circuit into an FT-IR spectrometer for oversampling the interferogram. Infrared absorption spectra of polystyrene and Mylar films were measured as binary interferograms by the FT-IR spectrometer, which was equipped with the developed circuits, and their Fourier spectra were successfully reconstructed. The relationship of the oversampling ratio to the dynamic range of the reconstructed interferogram was evaluated through computer simulations. We also discuss the problems of this method for practical applications.

  11. [Analysis of 14 elements for Jinhua bergamot by X-ray fluorescence spectrometry and elemental analyser].

    PubMed

    Wang, Zhi-gang; Yu, Hong-mei

    2012-01-01

    The content of the elements C, H, O and N in Jinhua bergamot was analysed by using Vario III elemental analyser, the bergamot sample was scanned by using X-ray fluorescence spectrometer with PW2400 wavelength dispersion, and the content of the elements Mg, Al, P, S, Cl, K, Ca, Mn, Fe and Sr was analysed by using IQ+ analytical method. It turned out that the result is more ideal if the content of the elements C, H, O and N is processed as fix phase, and the analytical result is more ideal if, to prevent the sample skin from coming off, the sample is wrapped with mylar film with the film coefficient adjusted.

  12. Alignment and Polarization Sensitivity Study for the Cassini-Composite InfraRed Spectrometer (CIRS) Far InfraRed (FIR) Interferometer

    NASA Technical Reports Server (NTRS)

    Crooke, Julie A.; Hagopian, John G.

    1998-01-01

    The Composite InfraRed Spectrometer (CIRS) instrument flying on the Cassini spacecraft to Saturn is a cryogenic spectrometer with far-infrared (FIR) and mid-infrared (MIR) channels. The CIRS FIR channel is a polarizing interferometer that contains three polarizing grid components. These components are an input polarizer, a polarizing beamsplitter, and an output polarizer/analyzer. They consist of a 1.5 micron thick mylar substrate with 2 gm wide copper wires, with 2 gm spacing (4 micron pitch) photolithographically deposited on the substrate. This paper details the polarization sensitivity studies performed on the output polarizer/analyzer, and the alignment sensitivity studies performed on the input polarizer and beamsplitter components in the FIR interferometer.

  13. Dewar technology study

    NASA Technical Reports Server (NTRS)

    Davis, W.

    1975-01-01

    The development of a Dewar system for handling liquid helium under weightless conditions is described. Porous plug designs for the prevention of superfluid creep out of the dewar through the vent line were evaluated. For the purpose of designing a neck to provide a transition from the cold cavity to the outside, the loads carried by the neck and equipment supports were studied. Temperature, pressure, and mass flow instrumentation for monitoring Dewar performance were also evaluated. In addition, multilayer blankets consisting of aluminized Mylar separated by Dacron net sheets were designed to insulate the pressure vessel. The dewar system is suggested for use with the star tracking telescope aboard the relativity satellite.

  14. Degradation of a Multilayer Insulation Due to a Seam and a Penetration

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.

    1976-01-01

    The degradation of the thermal performance of a multilayer insulation due to the presence of a seam and a penetration was studied. The multilayer insulation had 30 aluminized Mylar radiation shields with silk net spacers. The seam, an offset butt joint, caused a heat input of 0.169 watt per meter in addition to the basic insulation thermal performance of 0.388 watt per square meter obtained before the installation of the butt joint. The penetration, a fiberglass tank support strut, provided a heat input (including the degradation of the insulation) of 0.543 watt in addition to the basic insulation thermal performance of 0.452 watt per square meter obtained before the penetration.

  15. Fourier emission infrared microspectrophotometer for surface analysis. I - Application to lubrication problems

    NASA Technical Reports Server (NTRS)

    Lauer, J. L.; King, V. W.

    1979-01-01

    A far-infrared interferometer was converted into an emission microspectrophotometer for surface analysis. To cover the mid-infrared as well as the far-infrared the Mylar beamsplitter was made replaceable by a germanium-coated salt plate, and the Moire fringe counting system used to locate the moveable Michelson mirror was improved to read 0.5 micron of mirror displacement. Digital electronics and a dedicated minicomputer were installed for data collection and processing. The most critical element for the recording of weak emission spectra from small areas was, however, a reflecting microscope objective and phase-locked signal detection with simultaneous referencing to a blackbody source. An application of the technique to lubrication problems is shown.

  16. Carbon Nanotube Microarrays Grown on Nanoflake Substrates

    NASA Technical Reports Server (NTRS)

    Schmidt, Howard K.; Hauge, Robert H.; Pint, Cary; Pheasant, Sean

    2013-01-01

    This innovation consists of a new composition of matter where single-walled carbon nanotubes (SWNTs) are grown in aligned arrays from nanostructured flakes that are coated in Fe catalyst. This method of growth of aligned SWNTs, which can yield well over 400 percent SWNT mass per unit substrate mass, exceeds current yields for entangled SWNT growth. In addition, processing can be performed with minimal wet etching treatments, leaving aligned SWNTs with superior properties over those that exist in entangled mats. The alignment of the nanotubes is similar to that achieved in vertically aligned nanotubes, which are called "carpets. " Because these flakes are grown in a state where they are airborne in a reactor, these flakes, after growing SWNTs, are termed "flying carpets. " These flakes are created in a roll-to-roll evaporator system, where three subsequent evaporations are performed on a 100-ft (approx. =30-m) roll of Mylar. The first layer is composed of a water-soluble "release layer, " which can be a material such as NaCl. After depositing NaCl, the second layer involves 40 nm of supporting layer material . either Al2O3 or MgO. The thickness of the layer can be tuned to synthesize flakes that are larger or smaller than those obtained with a 40-nm deposition. Finally, the third layer consists of a thin Fe catalyst layer with a thickness of 0.5 nm. The thickness of this layer ultimately determines the diameter of SWNT growth, and a layer that is too thick will result in the growth of multiwalled carbon nanotubes instead of single-wall nanotubes. However, between a thickness of 0.5 nm to 1 nm, single-walled carbon nanotubes are known to be the primary constituent. After this three-layer deposition process, the Mylar is rolled through a bath of water, which allows catalyst-coated flakes to detach from the Mylar. The flakes are then collected and dried. The method described here for making such flakes is analogous to that which is used to make birefringent ink that is

  17. On the radiation tolerance of SU-8, a new material for gaseous microstructure radiation detector fabrication

    NASA Astrophysics Data System (ADS)

    Key, M. J.; Cindro, V.; Lozano, M.

    2004-12-01

    SU-8 photosensitive epoxy resin was developed for the fabrication of high-aspect ratio microstructures in MEMS and microengineering applications, and has potential for use in the construction of novel gaseous micropattern radiation detectors. However, little is known of the behaviour of the cured material under irradiation. Mechanical properties of SU-8 film have been measured as a function of neutron exposure and compared with Kapton ® polyimide and Mylar ® PET polyester films, materials routinely used in gaseous radiation detectors, to asses the suitability of SU-8 based microstructures for gaseous detector applications. After exposure to a reactor core neutron fluence of 7.5×10 18 n cm -2, the new material showed a high level of resistance to radiation damage, comparable to Kapton film.

  18. Tensile stress-strain behavior of hybrid composite laminates

    NASA Technical Reports Server (NTRS)

    Kennedy, J. M.

    1983-01-01

    A study was made of the stress-strain response of several hybrid laminates, and the damage was correlated with nonlinear stress-strain response and ultimate strength. The fibers used in the laminates were graphite, S-glass, and Kevlar. Some laminates with graphite fibers had perforated Mylar film between plies, which lowered the interlaminar bond strength. The laminate configurations were chosen to be like those of buffer strips in large panels and fracture coupons. Longitudinal and transverse specimens were loaded in tension to failure. Some specimens were radiographed to reveal damage due to edge effects. Stress-strain response is discussed in terms of damage shown by the radiographs. Ultimate strengths are compared with simple failure criteria, one of which account for damage.

  19. Inside storm window

    NASA Astrophysics Data System (ADS)

    Kaplan, J. I.

    1980-11-01

    The work effort to design, build, install, and evaluate an inside storm window (ISW) is presented. The ISW, made of two separated layers of mylar (like a thermopane window) which, when not in use can be rolled up in a shade, is described. The work effort included: development of a prototype model; the development of production facilities to turn out a small number (50) of ISW's; the production of the windows; the installation of the windows into buildings; the building of a test chamber to determine the R value of the ISW and the subsequent determination of the R value; and a survey to determine how the residents of the homes in which ISW's were installed felt about the windows.

  20. Outgassing of solid material into vacuum thermal insulation spaces

    NASA Technical Reports Server (NTRS)

    Wang, Pao-Lien

    1994-01-01

    Many cryogenic storage tanks use vacuum between inner and outer tank for thermal insulation. These cryogenic tanks also use a radiation shield barrier in the vacuum space to prevent radiation heat transfer. This shield is usually constructed by using multiple wraps of aluminized mylar and glass paper as inserts. For obtaining maximum thermal performance, a good vacuum level must be maintained with the insulation system. It has been found that over a period of time solid insulation materials will vaporize into the vacuum space and the vacuum will degrade. In order to determine the degradation of vacuum, the rate of outgassing of the insulation materials must be determined. Outgassing rate of several insulation materials obtained from literature search were listed in tabular form.

  1. RRM3 Fluid Management Device

    NASA Technical Reports Server (NTRS)

    Barfknecht, P.; Benson, D.; Boyle, R.; DeLee, C.; DiPirro, M.; Francis, J.; Li, X.; McGuire, J.; Mustafi, S.; Tuttle, J.; hide

    2015-01-01

    The current development progress of the fluid management device (FMD) for the Robotic Resupply Mission 3 (RRM3) cryogen source Dewar is described. RRM3 is an on-orbit cryogenic transfer experiment payload for the International Space Station. The fluid management device is a key component of the source Dewar to ensure the ullage bubble is located away from the outlet during transfer. The FMD also facilitates demonstration of radio frequency mass gauging within the source Dewar. The preliminary design of the RRM3 FMD is a number of concentric cones of Mylar which maximizes the volume of liquid in contact with the FMD in the source Dewar. This paper describes the design of the fluid management device and progress of hardware development

  2. Water permeation and electrical properties of pottants, backings, and pottant/backing composites

    NASA Technical Reports Server (NTRS)

    Orehotsky, J.

    1986-01-01

    It is reported that the interface between plastic film back covers and ethylene vinyl acetates (EVA) or polyvinyl butyral (PVB) in photovoltaic modules can influence water permeation, and electrial properties of the composites such as leakage current and dielectric constant. The interface can either be one of two dissimilar materials in physical contact with no intermixing, or the interface can constitute a thin zone which is an interphase of the two materials having a gradient composition from one material to the other. The former condition is described as a discrete interface. A discrete interface model was developed to predict water permeation, dielectric strength, and leakage current for EVA, ethylene methyl acrylate (EMA), and PVB coupled to Tedlar and mylar films. Experimental data was compared with predicted data.

  3. The reaction efficiency of thermal energy oxygen atoms with polymeric materials

    NASA Technical Reports Server (NTRS)

    Koontz, S. L.; Nordine, Paul

    1990-01-01

    The reaction efficiency of several polymeric materials with thermal-energy (0.04 eV translational energy), ground-state (O3P) oxygen atoms was determined by exposing the materials to a room temperature gas containing a known concentration of atomic oxygen. The reaction efficiency measurements were conducted in two flowing afterglow systems of different configuration. Atomic oxygen concentration measurements, flow, transport and surface dose analysis is presented in this paper. The measured reaction efficiencies of Kapton, Mylar, polyethylene, D4-polyethylene and Tedlar are .001 to .0001 those determined with high-energy ground-state oxygen atoms in low earth orbit or in a high-velocity atom beam. D4-polyethylene exhibits a large kinetic isotope effect with atomic oxygen at thermal but not hyperthermal atom energies.

  4. Producing smart sensing films by means of organic field effect transistors.

    PubMed

    Manunza, Ileana; Orgiu, Emanuele; Caboni, Alessandra; Barbaro, Massimo; Bonfiglio, Annalisa

    2006-01-01

    We have fabricated the first example of totally flexible field effect device for chemical detection based on an organic field effect transistor (OFET) made by pentacene films grown on flexible plastic structures. The ion sensitivity is achieved by employing a thin Mylar foil as gate dielectric. A sensitivity of the device to the pH of the electrolyte solution has been observed A similar structure can be used also for detecting mechanical deformations on flexible surfaces. Thanks to the flexibility of the substrate and the low cost of the employed technology, these devices open the way for the production of flexible chemical and strain gauge sensors that can be employed in a variety of innovative applications such as wearable electronics, e-textiles, new man-machine interfaces.

  5. Geologic Map Database of Texas

    USGS Publications Warehouse

    Stoeser, Douglas B.; Shock, Nancy; Green, Gregory N.; Dumonceaux, Gayle M.; Heran, William D.

    2005-01-01

    The purpose of this report is to release a digital geologic map database for the State of Texas. This database was compiled for the U.S. Geological Survey (USGS) Minerals Program, National Surveys and Analysis Project, whose goal is a nationwide assemblage of geologic, geochemical, geophysical, and other data. This release makes the geologic data from the Geologic Map of Texas available in digital format. Original clear film positives provided by the Texas Bureau of Economic Geology were photographically enlarged onto Mylar film. These films were scanned, georeferenced, digitized, and attributed by Geologic Data Systems (GDS), Inc., Denver, Colorado. Project oversight and quality control was the responsibility of the U.S. Geological Survey. ESRI ArcInfo coverages, AMLs, and shapefiles are provided.

  6. An evaluation of 6 dentifrice formulations for supragingival anticalculus and antiplaque activity.

    PubMed

    Disney, J A; Graves, R C; Cancro, L; Payonk, G; Stewart, P

    1989-09-01

    A 4 week, double blind clinical trial was conducted to assess the antiplaque/anticalculus activity of test dentifrices containing varying levels of zinc citrate. Subjects were divided into 6 groups, 4 experimental, 1 positive control and a placebo group. All subjects only brushed at home using the placebo control during study weeks 1 and 3. Plaque and calculus were collected at the end of study weeks 2 and 4 on mylar strips worn on lower incisor teeth. Dentifrice efficacy was assessed by comparing group dry and ash weight decrements. While there were no significant differences between the test and control groups, there was a demonstrable trend toward greater inhibition with higher zinc citrate levels, especially among subjects with high levels of plaque and calculus at baseline.

  7. A range-based method to calibrate a magnetic spectrometer measuring the energy spectrum of the backward electron beam of a plasma focus.

    PubMed

    Ceccolini, E; Rocchi, F; Mostacci, D; Sumini, M; Tartari, A

    2011-08-01

    The electron beam emitted from the back of plasma focus devices is being studied as a radiation source for intraoperative radiation therapy applications. A plasma focus device is being developed for this purpose, and there is a need for characterizing its electron beam, particularly, insofar as the energy spectrum is concerned. The instrument used is a magnetic spectrometer. To calibrate this spectrometer, a procedure relying on the energy-range relation in Mylar® has been devised and applied. By measuring the transmission through increasing thicknesses of the material, electron energies could be assessed and compared to the spectrometer readings. Thus, the original calibration of the instrument has been extended to higher energies and also to better accuracy. Methods and results are presented.

  8. Standardized performance tests of collectors of solar thermal energy - A flat-plate copper collector with parallel mylar striping

    NASA Technical Reports Server (NTRS)

    Johnson, S. M.

    1976-01-01

    Basic test results are reported for a flat plate solar collector whose performance was determined in a solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  9. Charging and discharging characteristics of dielectric materials exposed to low- and mid-energy electrons

    NASA Technical Reports Server (NTRS)

    Coakley, P.; Kitterer, B.; Treadaway, M.

    1982-01-01

    Charging and discharging characteristics of dielectric samples exposed to 1-25 keV and 25-100 keV electrons in a laboratory environment are reported. The materials examined comprised OSR, Mylar, Kapton, perforated Kapton, and Alphaquartz, serving as models for materials employed on spacecraft in geosynchronous orbit. The tests were performed in a vacuum chamber with electron guns whose beams were rastered over the entire surface of the planar samples. The specimens were examined in low-impedance-grounded, high-impedance-grounded, and isolated configurations. The worst-case and average peak discharge currents were observed to be independent of the incident electron energy, the time-dependent changes in the worst case discharge peak current were independent of the energy, and predischarge surface potentials are negligibly dependent on incident monoenergetic electrons.

  10. UV laser-assisted wire stripping and micro-machining

    NASA Astrophysics Data System (ADS)

    Martyniuk, Jerry

    1994-02-01

    Results are reported for the use of a 266 nm frequency quadrupled Nd:YAG ultraviolet laser in the areas of wire stripping of small coaxial type transmission lines and for micro-machining of various materials including copper, glass, polyimide and DuPont TEFLONTM. This new laser is typically run with a 2 KHz repetition rate, 40 ns FWHM pulse and a fluence of about 50 joules/cm2 which makes it possible to micro-machine metals, polymers, glasses and ceramics. The high fluence of this laser allows shielding structures such as Al-MylarTM, Al-KaptonTM or the plated copper used in small coaxial cables to be precisely cut. Cut rates are reported for the above materials as well as results and photos of wire stripping and micro- machining.

  11. Defect design of insulation systems for photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.

    1981-01-01

    A defect-design approach to sizing electrical insulation systems for terrestrial photovoltaic modules is presented. It consists of gathering voltage-breakdown statistics on various thicknesses of candidate insulation films where, for a designated voltage, module failure probabilities for enumerated thickness and number-of-layer film combinations are calculated. Cost analysis then selects the most economical insulation system. A manufacturing yield problem is solved to exemplify the technique. Results for unaged Mylar suggest using fewer layers of thicker films. Defect design incorporates effects of flaws in optimal insulation system selection, and obviates choosing a tolerable failure rate, since the optimization process accomplishes that. Exposure to weathering and voltage stress reduces the voltage-withstanding capability of module insulation films. Defect design, applied to aged polyester films, promises to yield reliable, cost-optimal insulation systems.

  12. Radiation Insulation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Apollo and subsequent spacecraft have had highly effective radiation barriers; made of aluminized polymer film, they bar or let in heat to maintain consistent temperatures inside. Tech 2000, formerly Quantum International Corporation used the NASA technology in its insulating materials, Super "Q" Radiant Barrier, for home, industry and mobile applications. The insulation combines industrial aluminum foil overlaid around a core of another material, usually propylene or mylar. The outer layer reflects up to 97 percent of heat; the central layer creates a thermal break in the structure and thus allows low radiant energy emission. The Quantum Cool Wall, used in cars and trucks, takes up little space while providing superior insulation, thus reducing spoilage and costs. The panels can also dampen sound and engine, exhaust and solar heat.

  13. Characteristics of electromagnetic interference generated by arc discharges. [in spacecraft

    NASA Technical Reports Server (NTRS)

    Leung, Philip

    1986-01-01

    Electromagnetic interference (EMI) signatures resulting from arc discharges are characterized, and the effects of electrostatic discharges (ESDs) on the design of spacecraft systems are investigated. EMI characterization experiments were performed on Mylar, Teflon, Kapton, fused silica, and fiberglass in a vacuum chamber with acrylic walls; the experimental design and procedures are described. Discharge current pulses and RF spectra generated by the sample materials are examined. The relation between the magnitude of EMI generated during an ESD event and the material, environment, and geometry is studied. The solar-array/plasma interaction is analyzed; particular attention is given to the rate of discharge as a function of plasma density. The physical mechanisms of ESD-generated EMI are discussed. The data reveal that ESD parameters are dependent on the test environment.

  14. Thermal performance of gaseous-helium-purged tank-mounted multilayer insulation system during ground-hold and space-hold thermal cycling and exposure to water vapor

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.

    1978-01-01

    An experimental investigation was conducted to determine (1) the ground-hold and space-hold thermal performance of a multilayer insulation (MLI) system mounted on a spherical, liquid-hydrogen propellant tank and (2) the degradation to the space-hold thermal performance of the insulation system that resulted from both thermal cycling and exposure to moisture. The propellant tank had a diameter of 1.39 meters (4.57ft). The MLI consisted of two blankets of insulation; each blanket contained 15 double-aluminized Mylar radiation shields separated by double silk net spacers. Nineteen tests simulating basic cryogenic spacecraft thermal (environmental) conditions were conducted. These tests typically included initial helium purge, liquid-hydrogen fill and ground-hold, ascent, space-hold, and repressurization. No significant degradation of the space-hold thermal performance due to thermal cycling was noted.

  15. Effect of LEO Exposure on Aromatic Polymers Containing Phenylphosphine Oxide Groups

    NASA Technical Reports Server (NTRS)

    Lillehei, P. T.; Smith, J. G., Jr.; Connell, J. W.

    2008-01-01

    As part of the Materials on The International Space Station Experiment (MISSE), aromatic polymers containing phenylphosphine oxide groups were exposed to low Earth orbit for approx.4 years. All of the aromatic polymers containing phenylphosphine oxide groups survived the exposure despite the high fluence of atomic oxygen that completely eroded other polymer films such as Kapton(TradeMark) and Mylar(Trademark) of comparable or greater thickness. The samples were characterized for changes in physical properties, thermal/optical properties surface chemistry, and surface topography. The data from the polymer samples on MISSE were compared to samples from the same batch of material stored under ambient conditions on Earth. In addition, comparisons were made between the MISSE samples and those subjected to shorter term space flight exposures. The results of these analyses will be presented.

  16. KSC-2011-6099

    NASA Image and Video Library

    2011-07-30

    CAPE CANAVERAL, Fla. -- Lockheed Martin technicians push NASA's mylar-covered twin Gravity Recovery and Interior Laboratory lunar spacecraft toward the work area of the Hazardous Processing Facility (HPF) at Astrotech Space Operation's payload processing facility in Titusville, Fla. In the HPF, the spacecraft will undergo two days of fueling activities. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Charisse Nahser

  17. An adaptive optics package designed for astronomical use with a laser guide star tuned to an absorption line of atomic sodium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salmon, J.T.; Avicola, K.; Brase, J.M.

    1994-04-11

    We present the design and implementation of a very compact adaptive optic system that senses the return light from a sodium guide-star and controls a deformable mirror and a pointing mirror to compensate atmospheric perturbations in the wavefront. The deformable mirror has 19 electrostrictive actuators and triangular subapertures. The wavefront sensor is a Hartmann sensor with lenslets on triangular centers. The high-bandwidth steering mirror assembly incorporates an analog controller that samples the tilt with an avalanche photodiode quad cell. An {line_integral}/25 imaging leg focuses the light into a science camera that can either obtain long-exposure images or speckle data. Inmore » laboratory tests overall Strehl ratios were improved by a factor of 3 when a mylar sheet was used as an aberrator. The crossover frequency at unity gain is 30 Hz.« less

  18. Effects of partial interlaminar bonding on impact resistance and loaded-hole behavior of graphite/epoxy quasi-isotropic laminates

    NASA Technical Reports Server (NTRS)

    Illg, W.

    1986-01-01

    A partial-bonding interlaminar toughening concept was evaluated for resistance to impact and for behavior of a loaded hole. Perforated Mylar sheets were interleaved between all 24 plies of a graphite/epoxy quasi-isotropic lay-up. Specimens were impacted by aluminum spheres while under tensile or compressive loads. Impact-failure thresholds and residual strengths were obtained. Loaded-hole specimens were tested in three configurations that were critical in bearing, shear, or tension. Partial bonding reduced the tensile and compressive strengths of undamaged specimens by about one-third. For impact, partial bonding did not change the threshold for impact failure under tensile preload. However, under compressive preload, partial bonding caused serious degradation of impact resistance. Partial bonding reduced the maximum load-carrying capacity of all three types of loaded-hole specimens. Overall, partial bonding degraded both impact resistance and bearing strength of holes.

  19. Beam characterisation of the KIRAMS electron microbeam system.

    PubMed

    Sun, G M; Kim, E H; Song, K B; Jang, M

    2006-01-01

    An electron microbeam system has been installed at the Korea Institute of Radiological and Medical Sciences (KIRAMS) for use in radiation biology studies. The electron beam is produced from a commercial electron gun, and the beam size is defined by a 5 microm diameter pinhole. Beam energy can be varied in the range of 1-100 keV, covering a range of linear energy transfer from 0.4 to 12.1 keV microm-1. The micrometer-sized electron beam selectively irradiates cells cultured in a Mylar-bottomed dish. The positioning of target cells one by one onto the beam exit is automated, as is beam shooting. The electron beam entering the target cells has been calibrated using a Passivated Implanted Planar Silicon (PIPS) detector. This paper describes the KIRAMS microbeam cell irradiation system and its beam characteristics.

  20. Preliminary engineering study: Quick opening valve MSFC high Reynolds number wind tunnel

    NASA Technical Reports Server (NTRS)

    1983-01-01

    FluiDyne Engineering Corporation has conducted a preliminary engineering study of a quick-opening valve for the MSFC High Reynolds Number Wind Tunnel under NASA Contract NAS8-35056. The subject valve is intended to replace the Mylar diaphragm system as the flow initiation device for the tunnel. Only valves capable of opening within 0.05 sec. and providing a minimum of 11.4 square feet of flow area were considered. Also, the study focused on valves which combined the quick-opening and tight shutoff features in a single unit. A ring sleeve valve concept was chosen for refinement and pricing. Sealing for tight shutoff, ring sleeve closure release and sleeve actuation were considered. The resulting cost estimate includes the valve and requisite modifications to the facility to accommodate the valve as well as the associated design and development work.

  1. Thermal performance of a modularized replaceable multilayer insulation system for a cryogenic stage

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.

    1977-01-01

    A rugged modularized MLI system for a 2.23-meter-diameter (87.6-in.-diam) liquid hydrogen tank was designed, fabricated, and tested under simulated near-earth and deep-space environments. The two blankets of the system were each composed of 17 double-aluminized Mylar radiation shields separated by silk net. The unit area weight of the installed system was 1.54 kg/sqm (0.32 lb/sq ft). The overall average heat transferred into the insulated tank was 22.7 and 0.98 watts (77.4 and 3.3 Btu/hr) during simulated near-earth and deep-space testing, respectively. The near-earth result was only 2.6 times that predicted for an undisturbed insulation system (i.e., no seams or penetrations). Tests indicate that this insulation concept could be useful for a cryogenic space tug or orbit transfer vehicle application.

  2. Low-pass interference filters for submillimeter astronomy

    NASA Technical Reports Server (NTRS)

    Whitcomb, S. E.; Keene, J.

    1980-01-01

    Low-pass (long-wave transmitting) interference filters, suitable for broadband photometric observations, previously have been constructed from series of capacitive grids stretched on thin Mylar. These filters have the desired optical properties of high transmission, sharp cut-ons, and good blocking at short wavelengths. Their designs, however, do not scale from one wavelength to another and their performance can deteriorate at low temperatures due to differential contraction of the dielectric backing and the supporting structure. The deviation of these early filters from the predicted scaling was due primarily to the difference in refractive index between the backing material and the medium between the grids. In the present paper, filters are described in which dielectric spacers are used, instead of air, as the medium between the grids. This technique has improved the scaling and has reduced the distortion from differential contraction.

  3. Comfort for Sportsmen

    NASA Technical Reports Server (NTRS)

    1976-01-01

    MPI Outdoor Safety Products developed aluminized mylar to make Echo Satellites more reflective, to insulate cryogenic fluids, and for space suit insulation. This technology has spun off to a variety of consumer products. Sportsman's blankets and jackets, ski parkas, sleeping bags, and even life-raft canopies are among them. Sportsman's blanket weighing 12 ounces can be used equally well to keep heat away or keep available heat in. Emergency rescue blanket has heat retention qualities similar to those of Sportsman's blanket. Strong enough to be used as a litter, yet folds up so small you can carry it in your shirt pocket. 10 ounce reversible jacket absorbs warmth from sun. A silver colored side next to your body retains a large portion of body heat. In warm weather you wear silver side out to reflect sun's rays.

  4. KSC-2011-6097

    NASA Image and Video Library

    2011-07-30

    CAPE CANAVERAL, Fla. -- The protective canister housing NASA's twin Gravity Recovery and Interior Laboratory lunar spacecraft is lifted from around the mylar-covered spacecraft in the Hazardous Processing Facility (HPF) at Astrotech Space Operation's payload processing facility in Titusville, Fla. In the HPF, the spacecraft will undergo two days of fueling activities. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Charisse Nahser

  5. Plume capture by a migrating ridge: Analog geodynamic experiments

    NASA Astrophysics Data System (ADS)

    Mendez, J. S.; Hall, P.

    2010-12-01

    Paleomagnetic data from the Hawaii-Emperor Seamount Chain (HESC) suggests that the Hawaiian hotspot moved rapidly (~40 mm/yr) between 81 - 47 Ma but has remained relatively stationary since that time. This implies that the iconic bend in the HESC may in fact reflect the transition from a period of rapid hotspot motion to a stationary state, rather than a change in motion of the Pacific plate. Tarduno et al. (2009) have suggested that this period of rapid hotspot motion might be the surface expression of a plume conduit returning to a largely vertical orientation after having been “captured” and tilted by a migrating mid-ocean ridge. We report on a series of analog fluid dynamic experiments designed to characterize the interaction between a migrating spreading center and a thermally buoyant mantle plume. Experiments were conducted in a clear acrylic tank (100 cm x 70 cm x 50 cm) filled with commercial grade high-fructose corn syrup. Plate-driven flow is modeled by dragging two sheets of Mylar film (driven by independent DC motors) in opposite directions over the surface of the fluid. Ridge migration is achieved by moving the point at which the mylar sheets diverge using a separate motor drive. Buoyant plume flow is modeled using corn syrup introduced into the bottom of the tank from an external, heated, pressurized reservoir. Small (~2 mm diameter), neutrally buoyant Delrin spheres are mixed into reservoir of plume material to aid in visualization. Plate velocities and ridge migration rate are controlled and plume temperature monitored using LabView software. Experiments are recorded using digital video which is then analyzed using digital image analysis software to track the position and shape of the plume conduit throughout the course of the experiment. The intersection of the plume conduit with the surface of the fluid is taken as an analog for the locus of hotspot volcanism and tracked as a function of time to obtain a hotspot migration rate. Experiments are

  6. A thin gold coated hydrogen heat pipe-cryogenic target for external experiments at COSY

    NASA Astrophysics Data System (ADS)

    Abdel-Bary, M.; Abdel-Samad, S.; Elawadi, G. A.; Kilian, K.; Ritman, J.

    2009-05-01

    A gravity assisted Gold coated heat pipe (GCHP) with 5-mm diameter has been developed and tested to cool a liquid hydrogen target for external beam experiments at COSY. The need for a narrow target diameter leads us to study the effect of reducing the heat pipe diameter to 5 mm instead of 7 mm, to study the effect of coating the external surface of the heat pipe by a shiny gold layer (to decrease the radiation heat load), and to study the effect of using the heat pipe without using 20 layers of' super-insulation around it (aluminized Mylar foil) to keep the target diameter as small as possible. The developed gold coated heat pipe was tested with 20 layers of super-insulation (WI) and without super-insulation (WOI). The operating characteristics for both conditions were compared to show the advantages and disadvantages.

  7. Measured current drainage through holes in various dielectrics up to 2 kilovolts in a dilute plasma

    NASA Technical Reports Server (NTRS)

    Grier, N. T.; Mckinzie, D. J., Jr.

    1972-01-01

    The electron current drained from a plasma through approximately 0.05 cm diameter holes in eight possible space applicable dielectrics placed on a probe biased at voltages up to 2000 V dc have been determined both theoretically and experimentally. The dielectrics tested were Parylene C and N, Teflon FEP type C, Teflon TFE, Nomex, quartz 7940 Corning Glass, Mylar A, and Kapton H polymide film. A Laplace field was used to predict an upper limit for the drainage current. The measured current was less than the computed current for quartz, Teflon FEP, and the 0.0123 cm thick sample of Parylene N for all voltages tested. The drainage current through the other dielectrics became equal to or greater than the computed current at a voltage below 2000 V. The magnitudes of the currents were between 0.1 and 10 microamperes for most of the dielectrics.

  8. Thermal performance of multilayer insulations. [gas evacuation characteristics of three selected multilayer insulation composites

    NASA Technical Reports Server (NTRS)

    Keller, C. W.; Cunnington, G. R.; Glassford, A. P.

    1974-01-01

    Experimental and analytical studies were conducted in order to extend previous knowledge of the thermal performance and gas evacuation characteristics of three selected multilayer insulation (MLI) composites. Flat plate calorimeter heat flux measurements were obtained for 20- and 80- shield specimens using three representative layer densities over boundary temperatures ranging from 39 K (70 R) to 389 K (700 R). Laboratory gas evacuation tests were performed on representative specimens of each MLI composite after initially purging them with helium, nitrogen, or argon gases. In these tests, the specimens were maintained at temperatures between 128 K (230 R) and 300 K (540 R). Based on the results of the laboratory-scale tests, a composite MLI system consisting of 112 unperforated, double-aluminized Mylar reflective shields and 113 water preconditioned silk net spacer pairs was fabricated and installed on a 1.22-m-(4-ft-) diameter calorimeter tank.

  9. Reduction of intensity variations on a photovoltaic array with compound parabolic concentrators

    NASA Technical Reports Server (NTRS)

    Greenman, P.; Ogallagher, J.; Winston, R.; Costogue, E.

    1979-01-01

    The reduction of nonuniformities in the intensity distribution of light focused on a photovoltaic array by a compound parabolic concentrator is investigated. The introduction of small distortions into the surfaces of the reflector in order to diffuse the incident collimated light to fill the angular acceptance of the concentrator is calculated by means of ray tracing to decrease the irradiance nonuniformity at the cost of a lowered effective concentration of the concentrator. Measurements of the intensity distribution on a scale test model in terrestrial sunlight with corrugated aluminized mylar reflectors are shown to be in good agreement with the ray tracing results. A two-stage concentrator consisting of a focusing primary and a nonimaging secondary is also shown to result in a fairly uniform intensity distribution except in the case of a 4-deg incidence angle, which may be corrected by the introduction of distortions into one or both concentration stages.

  10. Studies of molecular properties of polymeric materials: Aerospace environmental effects on three linear polymers

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Ries, H. R.; Bradbury, C. A.; Gray, S. L.; Collins, W. D.; Long, S. A. T.; Long, E. R., Jr.

    1985-01-01

    The development of crystal handling techniques for reflection infrared spectroscopy and methods for the fabrication and testing of tensile specimens are discussed. Data from mechanical, ac and dc electrical, and electron paramagnetic resonance studies conducted to determine the effects of 0.1-MeV and 1.0-MeV electron radiation on Mylar, Kapton, Ultem, and metal-doped Ultem are presented. Total doses ranging from 1 X 10 to the 8 rads to 1 X 10 to the 10 rads and dose rates from 5 X 10 to the 7 rads/hr to 1 X 10 to the 9 rads/hr were employed. The results of a study on the effects of aircraft service-environment fluids on Ultem are also reported. The weights and mechanical properties of Ultem were evaluated before and after exposure to water, JP4, Skydrol, an antifreeze, and a paint stripper.

  11. Inkjet-Printed Membrane for a Capacitive Acoustic Sensor: Development and Characterization Using Laser Vibrometer

    PubMed Central

    Haque, Rubaiyet Iftekharul; Ogam, Erick; Benaben, Patrick; Boddaert, Xavier

    2017-01-01

    This paper describes the fabrication process and the method to determine the membrane tension and defects of an inkjet-printed circular diaphragm. The membrane tension is an important parameter to design and fabricate an acoustic sensor and resonator with the highest sensitivity and selectivity over a determined range of frequency. During this work, the diaphragms are fabricated by inkjet printing of conductive silver ink on pre-strained Mylar thin films, and the membrane tension is determined using the resonant frequency obtained from its measured surface velocity response to an acoustic excitation. The membrane is excited by an acoustic pressure generated by a loudspeaker, and its displacement (response) is acquired using a laser Doppler vibrometer (LDV). The response of the fabricated membrane demonstrates good correlation with the numerical result. However, the inkjet-printed membrane exhibits undesired peaks, which appeared to be due to defects at their boundaries as observed from the scanning mode of LDV. PMID:28481267

  12. An Artificial Turf-Based Surrogate Surface Collector for the Direct Measurement of Atmospheric Mercury Dry Deposition

    PubMed Central

    Hall, Naima L.; Dvonch, Joseph Timothy; Marsik, Frank J.; Barres, James A.; Landis, Matthew S.

    2017-01-01

    This paper describes the development of a new artificial turf surrogate surface (ATSS) sampler for use in the measurement of mercury (Hg) dry deposition. In contrast to many existing surrogate surface designs, the ATSS utilizes a three-dimensional deposition surface that may more closely mimic the physical structure of many natural surfaces than traditional flat surrogate surface designs (water, filter, greased Mylar film). The ATSS has been designed to overcome several complicating factors that can impact the integrity of samples with other direct measurement approaches by providing a passive system which can be deployed for both short and extended periods of time (days to weeks), and is not contaminated by precipitation and/or invalidated by strong winds. Performance characteristics including collocated precision, in-field procedural and laboratory blanks were evaluated. The results of these performance evaluations included a mean collocated precision of 9%, low blanks (0.8 ng), high extraction efficiency (97%–103%), and a quantitative matrix spike recovery (100%). PMID:28208603

  13. Polymer Treatment by Plasma Immersion Ion Implantation of Nitrogen for Formation of Diamond-Like Carbon Film

    NASA Astrophysics Data System (ADS)

    Tan, Ing Hwie; Ueda, Mario; Kostov, Konstantin; Nascente, Pedro Augusto P.; Demarquette, Nicole Raymonde

    2004-09-01

    Nitrogen ions were implanted by plasma immersion in Kapton, Mylar and polypropylene, with the objective of forming a diamond-like carbon layer on these polymers. The Raman spectrum of the implanted polypropylene showed typical Diamond-Like Carbon (DLC) graphite (G) and disorder (D) peaks, with an sp3/sp2 hybridization ratio of approximately 0.4 to 0.6. The XPS analysis of the three implanted polymers also showed peaks of C-C and N-C bonds in the sp3 configuration, with hybridization ratios in the same range as the Raman result. The implanted polymers were exposed to oxygen plasma to test the resistance of the polymers to oxygen degradation. Mass loss rate results, however, showed that the DLC layer formed is not sufficiently robust for this application. Nevertheless, the layer formed can be suitable for other applications such as in gas barriers in beverage containers. Further study of implantation conditions may improve the quality of the DLC layer.

  14. Thermographic In-Situ Process Monitoring of the Electron Beam Melting Technology used in Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinwiddie, Ralph Barton; Dehoff, Ryan R; Lloyd, Peter D

    2013-01-01

    Oak Ridge National Laboratory (ORNL) has been utilizing the ARCAM electron beam melting technology to additively manufacture complex geometric structures directly from powder. Although the technology has demonstrated the ability to decrease costs, decrease manufacturing lead-time and fabricate complex structures that are impossible to fabricate through conventional processing techniques, certification of the component quality can be challenging. Because the process involves the continuous deposition of successive layers of material, each layer can be examined without destructively testing the component. However, in-situ process monitoring is difficult due to metallization on inside surfaces caused by evaporation and condensation of metal from themore » melt pool. This work describes a solution to one of the challenges to continuously imaging inside of the chamber during the EBM process. Here, the utilization of a continuously moving Mylar film canister is described. Results will be presented related to in-situ process monitoring and how this technique results in improved mechanical properties and reliability of the process.« less

  15. Study report on laser storage and retrieval of image data

    NASA Technical Reports Server (NTRS)

    Becker, C. H.

    1976-01-01

    The theoretical foundation is presented for a system of real-time nonphotographic and nonmagnetic digital laser storage and retrieval of image data. The system utilizes diffraction-limited laser focusing upon thin metal films, melting elementary holes in the metal films in laser focus. The metal films are encapsulated in rotating flexible mylar discs which act as the permanent storage carries. Equal sized holes encompass two dimensional digital ensembles of information bits which are time-sequentially (bit by bit) stored and retrieved. The bits possess the smallest possible size, defined by the Rayleigh criterion of coherent physical optics. Space and time invariant reflective read-out of laser discs with a small laser, provides access to the stored digital information. By eliminating photographic and magnetic data processing, which characterize the previous state of the art, photographic grain, diffusion, and gamma-distortion do not exist. Similarly, magnetic domain structures, magnetic gaps, and magnetic read-out are absent with a digital laser disc system.

  16. Electron Beam Exposure of Thermal Control Paints on Carbon-Carbon and Carbon-Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    2006-01-01

    Carbon-carbon and carbon-polyimide composites are being considered for use as radiator face sheets or fins for space radiator applications. Several traditional white thermal control paints are being considered for the surface of the composite face sheets or fins. One threat to radiator performance is high energy electrons. The durability of the thermal control paints applied to the carbon-carbon and carbon-polyimide composites was evaluated after extended exposure to 4.5 MeV electrons. Electron exposure was conducted under argon utilizing a Mylar(TradeMark) bag enclosure. Solar absorptance and infrared emittance was evaluated before and after exposure to identify optical properties degradation. Adhesion of the paints to the carbon-carbon and carbon-polyimide composite substrates was also of interest. Adhesion was evaluated on pristine and electron beam exposed coupons using a variation of the ASTM D-3359 tape test. Results of the optical properties evaluation and the adhesion tape tests are summarized.

  17. Inkjet-Printed Membrane for a Capacitive Acoustic Sensor: Development and Characterization Using Laser Vibrometer.

    PubMed

    Haque, Rubaiyet Iftekharul; Ogam, Erick; Benaben, Patrick; Boddaert, Xavier

    2017-05-06

    This paper describes the fabrication process and the method to determine the membrane tension and defects of an inkjet-printed circular diaphragm. The membrane tension is an important parameter to design and fabricate an acoustic sensor and resonator with the highest sensitivity and selectivity over a determined range of frequency. During this work, the diaphragms are fabricated by inkjet printing of conductive silver ink on pre-strained Mylar thin films, and the membrane tension is determined using the resonant frequency obtained from its measured surface velocity response to an acoustic excitation. The membrane is excited by an acoustic pressure generated by a loudspeaker, and its displacement (response) is acquired using a laser Doppler vibrometer (LDV). The response of the fabricated membrane demonstrates good correlation with the numerical result. However, the inkjet-printed membrane exhibits undesired peaks, which appeared to be due to defects at their boundaries as observed from the scanning mode of LDV.

  18. Electron capture by U(91+) and U(92+) and ionization of U(90+) and U(91+)

    NASA Technical Reports Server (NTRS)

    Gould, H.; Greiner, D.; Lindstrom, P.; Symons, T. J. M.; Crawford, H.

    1984-01-01

    U(92+)/U(91+) and U(91+)/U(90+) electron-capture and ionization cross sections and equilibrium charge-state distributions are measured experimentally in mylar, Cu and Ta of varying thickness. Relativistic U(68+) ions at 437 or 962 MeV/nucleon are produced by a heavy-ion linear accelerator and synchrotron in tandem and passed through the target material into a magnetic specrometer and position-sensitive proportional counter for evaluation of charge states. The results are presented graphically and discussed. At 962 MeV/nucleon, beams containing 85 percent bare U(92+) nuclei are obtained using 150-mg/sq cm Cu or 85-mg/sq cm Ta; at 437 MeV/nucleon, 50 percent bare U(92+) nuclei are obtained with 90-mg/sq cm Cu. The techniques decribed can be applied to produce beams of bare U nuclei for acceleration to ultrarelativistic speeds or beams of few-electron U for atomic-physics experiments on quantum electrodynamics.

  19. An update on the analysis of the Princeton 19Ne beta asymmetry measurement

    NASA Astrophysics Data System (ADS)

    Combs, Dustin; Calaprice, Frank; Jones, Gordon; Pattie, Robert; Young, Albert

    2013-10-01

    We report on the progress of a new analysis of the 1994 19Ne beta asymmetry measurement conducted at Princeton University. In this experiment, a beam of 19Ne atoms were polarized with a Stern-Gerlach magnet and then entered a thin-walled mylar cell through a slit fabricated from a piece of micro channel plate. A pair of Si(Li) detectors at either end of the apparatus were aligned with the direction of spin polarization (one parallel and one anti-parallel to the spin of the 19Ne) and detected positrons from the decays. The difference in the rate in the two detectors was used to calculate the asymmetry. A new analysis procedure has been undertaken using the Monte Carlo package PENELOPE with the goal of determining the systematic uncertainty due to positrons scattering from the face of the detectors causing the incorrect reconstruction of the initial direction of the positron momentum. This was a leading cause of systematic uncertainty in the experiment in 1994.

  20. Test results for electron beam charging of flexible insulators and composites. [solar array substrates, honeycomb panels, and thin dielectric films

    NASA Technical Reports Server (NTRS)

    Staskus, J. V.; Berkopec, F. D.

    1979-01-01

    Flexible solar-array substrates, graphite-fiber/epoxy - aluminum honeycomb panels, and thin dielectric films were exposed to monoenergetic electron beams ranging in energy from 2 to 20 keV in the Lewis Research Center's geomagnetic-substorm-environment simulation facility to determine surface potentials, dc currents, and surface discharges. The four solar-array substrate samples consisted of Kapton sheet reinforced with fabrics of woven glass or carbon fibers. They represented different construction techniques that might be used to reduce the charge accumulation on the array back surface. Five honeycomb-panel samples were tested, two of which were representative of Voyager antenna materials and had either conductive or nonconductive painted surfaces. A third sample was of Navstar solar-array substrate material. The other two samples were of materials proposed for use on Intelsat V. All the honeycomb-panel samples had graphite-fiber/epoxy composite face sheets. The thin dielectric films were 2.54-micrometer-thick Mylar and 7.62-micrometer-thick Kapton.

  1. Local heat-transfer measurements on a large, scale-model turbine blade airfoil using a composite of a heater element and liquid crystals

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.; Russell, L. M.; Torres, F. J.

    1985-01-01

    Local heat transfer coefficients were experimentally mapped along the midchord of a five-time-size turbine blade airfoil in a static cascade operated at room temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a mylar sheet with a layer of cholesteric liquid crystals, that change color with temperature, and a heater sheet made of a carbon-impregnated paper, that produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. The local heat transfer coefficients are presented for Reynolds numbers from 2.8 x 10 to the 5th power to 7.6 x 10 to the 5th power. Comparisons are made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code. Also, a leading edge separation bubble was revealed by thermal and flow visualization.

  2. Development and Ground Testing of a Compactly Stowed Scalable Inflatably Deployed Solar Sail

    NASA Technical Reports Server (NTRS)

    Lichodziejewski, David; Derbes, Billy; Reinert, Rich; Belvin, Keith; Slade, Kara; Mann, Troy

    2004-01-01

    This paper discusses the solar sail design and outlines the interim accomplishments to advance the technology readiness level (TRL) of the subsystem from 3 toward a technology readiness level of 6 in 2005. Under Phase II of the program many component test articles have been fabricated and tested successfully. Most notably an unprecedented section of the conically deployed rigidizable sail support beam, the heart of the inflatable rigidizable structure, has been deployed and tested in the NASA Goddard thermal vacuum chamber with good results. The development testing validated the beam packaging and deployment. The inflatable conically deployed, Sub Tg rigidizable beam technology is now in the TRL 5-6 range. The fabricated masses and structural test results of our beam components have met predictions and no changes to the mass estimates or design assumptions have been identified adding great credibility to the design. Several quadrants of the Mylar sail have also been fabricated and successfully deployed validating our design, manufacturing, and deployment techniques.

  3. Flexible Thick-Film Electrochemical Sensors: Impact of Mechanical Bending and Stress on the Electrochemical Behavior

    PubMed Central

    Cai, Jiaying; Cizek, Karel; Long, Brenton; McAferty, Kenyon; Campbell, Casey G.; Allee, David R.; Vogt, Bryan D.; La Belle, Jeff; Wang, Joseph

    2009-01-01

    The influence of the mechanical bending, rolling and crimping of flexible screen-printed electrodes upon their electrical properties and electrochemical behavior has been elucidated. Three different flexible plastic substrates, Mylar, polyethylene naphthalate (PEN), and Kapton, have been tested in connection to the printing of graphite ink working electrodes. Our data indicate that flexible printed electrodes can be bent to extremely small radii of curvature and still function well, despite a marginal increase the electrical resistance. Below critical radii of curvature of ~8 mm, full recovery of the electrical resistance occurs upon strain release. The electrochemical response is maintained for sub-mm bending radii and a 180° pinch of the electrode does not lead to device failure. The electrodes appear to be resistant to repeated bending. Such capabilities are demonstrated using model compounds, including ferrocyanide, trinitrotoluene (TNT) and nitronaphthalene (NN). These printed electrodes hold great promise for widespread applications requiring flexible, yet robust non-planar sensing devices. PMID:20160861

  4. Investigation of land-use spectral signatures. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Hagewood, J. F.

    1975-01-01

    A technique was developed to obtain bidirectional reflectance data from natural surfaces by using a folding mirror to transfer the reflected energy from the test surface to a spectroradiometer. The folding mirror was a first surface reflector made by stretching Mylar vacuum coated with aluminum over a light weight frame. The optically folding mirror was positioned over the test surfaces with a moveable platform for both laboratory and field tests. Field tests were conducted using a tethered balloon system to position the folding mirror. A spectroradiometer was designed and built specifically for this investigation. The spectroradiometer had an angular field of view of twenty-four minutes in one axis and ten minutes in the other axis. The radiometer was capable of detecting energies in small bandwidths throughout the electromagnetic spectrum from 0.3 microns to 3.0 microns. Bidirectional reflectance data and variations in the data with source angles were obtained for Saint Augustine grass, Bermuda grass, and a black alluvium soil from the Mississippi River delta.

  5. Transverse acoustic trapping using a Gaussian focused ultrasound

    PubMed Central

    Lee, Jungwoo; Teh, Shia-Yen; Lee, Abraham; Kim, Hyung Ham; Lee, Changyang; Shung, K. Kirk

    2009-01-01

    The optical tweezer has become a popular device to manipulate particles in nanometer scales, and to study the underlying principles of many cellular or molecular interactions. Theoretical analysis was previously carried out at the authors’ laboratory, to show that similar acoustic trapping of microparticles may be possible with a single beam ultrasound. This paper experimentally presents the transverse trapping of 125 μm lipid droplets under an acoustically transparent mylar film, which is an intermediate step toward achieving acoustic tweezers in 3D. Despite the lack of axial trapping capability in the current experimental arrangement, it was found that a 30 MHz focused beam could be used to laterally direct the droplets towards the focus. The spatial range within which acoustic traps may guide droplet motion was in the range of hundreds of micrometers, much greater than that of optical traps. This suggests that this acoustic device may offer an alternative for manipulating microparticles in a wider spatial range. PMID:20045590

  6. Use of slope, aspect, and elevation maps derived from digital elevation model data in making soil surveys

    USGS Publications Warehouse

    Klingebiel, A.A.; Horvath, E.H.; Moore, D.G.; Reybold, W.U.

    1987-01-01

    Maps showing different classes of slope, aspect, and elevation were developed from U.S. Geological Survey digital elevation model data. The classes were displayed on clear Mylar at 1:24 000-scale and registered with topographic maps and orthophotos. The maps were used with aerial photographs, topographic maps, and other resource data to determine their value in making order-three soil surveys. They were tested on over 600 000 ha in Wyoming, Idaho, and Nevada under various climatic and topographic conditions. Field evaluations showed that the maps developed from digital elevation model data were accurate, except for slope class maps where slopes were <4%. The maps were useful to soil scientists, especially where (i) class boundaries coincided with soil changes, landform delineations, land use and management separations, and vegetation changes, and (ii) rough terrain and dense vegetation made it difficult to traverse the area. In hot, arid areas of sparse vegetation, the relationship of slope classes to kinds of soil and vegetation was less significant.

  7. A drift chamber with a new type of straws for operation in vacuum

    NASA Astrophysics Data System (ADS)

    Azorskiy, N.; Glonti, L.; Gusakov, Yu.; Elsha, V.; Enik, T.; Kakurin, S.; Kekelidze, V.; Kislov, E.; Kolesnikov, A.; Madigozhin, D.; Movchan, S.; Polenkevich, I.; Potrebenikov, Yu.; Samsonov, V.; Shkarovskiy, S.; Sotnikov, S.; Zinchenko, A.; Danielsson, H.; Bendotti, J.; Degrange, J.; Dixon, N.; Lichard, P.; Morant, J.; Palladino, V.; Gomez, F. Perez; Ruggiero, G.; Vergain, M.

    2016-07-01

    A 2150×2150 mm2 registration area drift chamber capable of working in vacuum is presented. Thin-wall tubes (straws) of a new type are used in the chamber. A large share of these 9.80 mm diameter drift tubes are made in Dubna from metalized 36 μm Mylar film welded along the generatrix using an ultrasonic welding machine created at JINR. The main features of the chamber and some characteristics of the drift tubes are described. Four such chambers with the X, Y, U, V coordinates each, containing 7168 straws in total, are designed and produced at JINR and CERN. They are installed in the vacuum volume of the NA62 setup in order to study the ultra-rare decay K+ →π+ vv bar and to search for and study rare meson decays. In autumn 2014 the chambers were used for the first time for the data taking in the experimental run of the NA62 at CERN's SPS.

  8. Purging of multilayer insulation by gas diffusion

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.; Spuckler, C. M.

    1976-01-01

    An experimental investigation was conducted to determine the time required to purge a multilayer insulation (MLI) panel with gaseous helium by means of gas diffusion to obtain a condensable (nitrogen) gas concentration of less than 1 percent within the panel. Two flat, rectangular MLI panel configurations, one incorporating a butt joint, were tested. The insulation panels consisted of 15 double-aluminized Mylar radiation shields separated by double silk net spacers. The test results indicated that the rate which the condensable gas concentration at the edge or at the butt joint of an MLI panel was reduced was a significant factor in the total time required to reduce the condensable gas concentration within the panel to less than 1 percent. The experimental data agreed well with analytical predictions made by using a simple, one-dimensional gas diffusion model in which the boundary conditions at the edge of the MLI panel were time dependent.

  9. Purging of a multilayer insulation with dacron tuft spacer by gas diffusion

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.; Fisk, W. J.

    1976-01-01

    The time and purge gas usage required to purge a multilayer insulation (MLI) panel with gaseous helium by means of gas diffusion to obtain a condensable gas (nitrogen) concentration of less than 1 percent within the panel are stipulated. Two different, flat, rectangular MLI panels, one incorporating a butt joint, were constructed of of 11 double-aluminized Mylar (DAM) radiation shields separated by Dacron tuft spacers. The DAM/Dacron tuft concept is known commercially as Superfloc. The nitrogen gas concentration as a function of time within the MLI panel could be adequately predicted by using a simple, one dimensional gas diffusion model in which the boundary conditions at the edge of the MLI panel were time dependent. The time and purge gas usage required to achieve 1 percent nitrogen gas concentration within the MLI panel varied from 208 to 86 minutes and 34.1 to 56.5 MLI panel purge volumes, respectively, for gaseous helium purge rates from 10 to 40 MLI panel volumes per hour.

  10. Prototype Aerogel Insulation for Melamine-Foam Substitute: Critical Space Station Express Rack Technology

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Sibille, Laurent; Smith, David; Cronise, Raymond

    1998-01-01

    There is a current lack of environmentally acceptable foams to insulate Long-Duration Human Spaceflight Missions, including the experimental Express Rack for the Space Station. A recent 60-day manned test in a sealed chamber at Johnson Space Center (JSC) was nearly aborted, because of persistently high formaldehyde concentrations in the chamber. Subsequent investigation showed that the source was melamine foam (used extensively for acoustic insulation). The thermal and acoustic potential for melamine-foam substitutes is evaluated for scale-up to a silica-based foam and aerogel, which is environmentally benign for long duration space flight. These features will be discussed in reference to an aerogel prototype to: 1) assemble material strength data for various formulated aerogels, both silica and organic carbon aerogels; 2) assemble the aerogel into panels of mylar/vacuum-encapsulated rigid boards which can be molded in various shapes and rigidities; and 3) describe a process for space applications for formaldehyde-free, long duration thermal and acoustic insulators.

  11. Effect of LEO Exposure on Aromatic Polymers Containing Phenylphosphine Oxide Groups

    NASA Technical Reports Server (NTRS)

    Watson, K. A.; Ghose, S.; Lillehei, P. T.; Smith, J. G., Jr.; Connell, J. W.

    2007-01-01

    As part of the Materials on The International Space Station Experiment (MISSE), aromatic polymers containing phenylphosphine oxide groups were exposed to low Earth orbit (LEO) for approximately 4 years. All of the aromatic polymers containing phenylphosphine oxide groups survived the exposure despite the high fluence of atomic oxygen that completely eroded other polymer films such as Kapton and Mylar of comparable or greater thickness. The samples consisted of a colorless polyimide film and a poly(arylene ether benzimidazole) film and thread. The samples were characterized for changes in physical properties, thermal/optical properties (i.e. solar absorptivity and thermal emissivity), surface chemistry (X-ray photoelectron spectroscopy), and surface topography (atomic force microscopy). The data from the polymer samples on MISSE were compared to samples from the same batch of material stored under ambient conditions on Earth. In addition, comparisons were made between the MISSE samples and those subjected to shorter term space flight exposures. The results of these analyses will be presented.

  12. Electron beam charging and arc discharging of spacecraft insulating materials

    NASA Technical Reports Server (NTRS)

    Balmain, K. G.

    1983-01-01

    Samples of Mylar and Teflon film were exposed to combinations of monoenergetic electron and lithium ion fluxes in various ratios. The samples' discharge rates and strengths were found to diminish as the ion proportion increased. Various types of capacitors were exposed in air to beta irradiation from a 100 mCie Strontium-90 radioisotope source located at distances ranging from 2 cm to 5 cm from the capacitors. In these preliminary experiments, no evidence of spontaneous electrical breakdown was noted, nor was any change in RF impedance detectable using the available instrumentation. A decrease in DC resistance was noted, apparently due to radiation-induced conductivity. A cylindrical glass vacuum chamber is being assembled. Its inside dimensions are 44 cm diameter by 100 cm length. All necessary associated components and instruments have been acquired, including electron and ion guns, Trek surface potential probe and turbo-molecular pump. A mass-spectrometer detector for leaks and evolved gases will be ordered shortly.

  13. MEASUREMENTS OF ^102Pd(n,γ) REACTIONS USING DANCE(funded via DOE)

    NASA Astrophysics Data System (ADS)

    Hatarik, R.; Alpizar-Vicente, A. M.; Greife, U.; Bredeweg, T. A.; Esch, E.-I.; Haight, R. C.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.

    2004-10-01

    The so called p-nuclei (proton rich, Z > 34) cannot be produced by s or r process, therefore other processes are required in order to produce them. There are two ways to produce p-nuclei: rapid proton capture (rp process) and photo disintegration of neutron rich elements (p process). In the termination range of the rp process are three stable even-even p-nuclei: ^102Pd, ^106Cd and ^112Sn. The exact knowledge of all three (n,γ)-rates are potentially important for disentangling the p- and rp-contributions. ^102Pd(n,γ) was measured with the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center to complete the experimental data set in this range. The target was a sheet of 2 mg ^102Pd (78% enriched) held in a bag of 0.9 μm mylar, which was selected after testing of different plastic support materials. Preliminary results will be presented.

  14. Real time outdoor exposure testing of solar cell modules and component materials

    NASA Technical Reports Server (NTRS)

    Anagnostou, E.; Forestieri, A. F.

    1977-01-01

    Plastic samples, solar cell modules, and sub-modules were exposed at test sites in Florida, Arizona, Puerto Rico, and Cleveland, Ohio, in order to determine materials suitable for use in solar cell modules with a proposed 20-year lifetime. Various environments were encountered including subtropical, subtropical with a sea air atmosphere, desert, rain forest, normal urban, and urban-polluted. The samples were exposed for periods up to six months. Materials found not suitable were polyurethane, polyester, Kapton, Mylar, and UV-stabilized Lexan. Suitable materials were acrylic, FEP-A, and glass. The results of exposure of polyvinylidene fluoride were dependent on the specific formulation, but several types appear suitable. RTV silicone rubber (clear) appears to pick up and hold dirt both as a free film and as a potting medium for modules. The results indicate that dirt accumulation and cleanability are important factors in the selection of solar cell module covers and encapsulants.

  15. Measurement of alpha particle energy using windowless electret ion chambers.

    PubMed

    Dua, S K; Kotrappa, P; Srivastava, R; Ebadian, M A; Stieff, L R

    2002-10-01

    Electret ion chambers are inexpensive, lightweight, robust, commercially available, passive, charge-integrating devices for accurate measurement of different ionizing radiations. In an earlier work a chamber of dimensions larger than the range of alpha particles having aluminized Mylar windows of different thickness was used for measurement of alpha radiation. Correlation between electret mid-point voltage, alpha particle energy, and response was developed and it was shown that this chamber could be used for estimating the effective energy of an unknown alpha source. In the present study, the electret ion chamber is used in the windowless mode so that the alpha particles dissipate their entire energy inside the volume, and the alpha particle energy is determined from the first principles. This requires that alpha disintegration rate be accurately known or measured by an alternate method. The measured energies were within 1 to 4% of the true values for different sources (230Th, 237Np, 239Pu, 241Am, and 224Cm). This method finds application in quantitative determination of alpha energy absorbed in thin membrane and, hence, the absorbed dose.

  16. An assessment of buffer strips for improving damage tolerance

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.; Kennedy, J. M.

    1981-01-01

    Graphite/epoxy panels with buffer strips were tested in tension to measure their residual strength with crack-like damage. Panels were made with 45/0/-45/90(2S) and 45/0/450(2S) layups. The buffer strips were parallel to the loading directions. They were made by replacing narrow strips of the 0 deg graphite plies with strips of either 0 deg S-Glass/epoxy or Kevlar-49/epoxy on either a one for one or a two for one basis. In a third case, O deg graphite/epoxy was used as the buffer material and thin, perforated Mylar strips were placed between the 0 deg piles and the cross-plies to weaken the interfaces and thus to isolate the 0 deg plies. Some panels were made with buffer strips of different widths and spacings. The buffer strips arrested the cracks and increased the residual strengths significantly over those plain laminates without buffer strips. A shear-lag type stress analysis correctly predicted the effects of layups, buffer material, buffer strip width and spacing, and the number of plies of buffer material.

  17. Radial force measurement of endovascular stents: Influence of stent design and diameter.

    PubMed

    Matsumoto, Takuya; Matsubara, Yutaka; Aoyagi, Yukihiko; Matsuda, Daisuke; Okadome, Jun; Morisaki, Koichi; Inoue, Kentarou; Tanaka, Shinichi; Ohkusa, Tomoko; Maehara, Yoshihiko

    2016-04-01

    Angioplasty and endovascular stent placement is used in case to rescue the coverage of main branches to supply blood to brain from aortic arch in thoracic endovascular aortic repair. This study assessed mechanical properties, especially differences in radial force, of different endovascular and thoracic stents. We analyzed the radial force of three stent models (Epic, E-Luminexx and SMART) stents using radial force-tester method in single or overlapping conditions. We also analyzed radial force in three thoracic stents using Mylar film testing method: conformable Gore-TAG, Relay, and Valiant Thoracic Stent Graft. Overlapping SMART stents had greater radial force than overlapping Epic or Luminexx stents (P < 0.01). The radial force of the thoracic stents was greater than that of all three endovascular stents (P < 0.01). Differences in radial force depend on types of stents, site of deployment, and layer characteristics. In clinical settings, an understanding of the mechanical characteristics, including radial force, is important in choosing a stent for each patient. © The Author(s) 2015.

  18. A Panel Prototype for the Mu2e Straw Tube Tracker at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucà, Alessandra

    The Mu2e experiment will search for coherent, neutrino-less conversion of muons into electrons in the Coulomb field of an aluminum nucleus with a sensitivity of four orders of magnitude better than previous experiments. The signature of this process is an electron with energy nearly equal to the muon mass. Mu2e relies on a precision (0.1%) measurement of the outgoing electron momentum to separate signal from background. In order to achieve this goal, Mu2e has chosen a very low-mass straw tracker, made of 20,736 5 mm diameter thin-walled (15more » $$\\mu$$m) Mylar straws, held under tension to avoid the need for supports within the active volume, and arranged in an approximately 3 m long by 0.7 m radius cylinder, operated in vacuum and a 1 T magnetic field. Groups of 96 straws are assembled into modules, called panels. We present the prototype and the assembly procedure for a Mu2e tracker panel built at Fermilab« less

  19. Comparison of reusable insulation systems for cryogenically-tanked earth-based space vehicles

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.; Barber, J. R.

    1978-01-01

    Three reusable insulation systems concepts have been developed for use with cryogenic tanks of earth-based space vehicles. Two concepts utilized double-goldized Kapton (DGK) or double-aluminized Mylar (DAM) multilayer insulation (MLI), while the third utilized a hollow-glass-microsphere, load-bearing insulation (LBI). All three insulation systems have recently undergone experimental testing and evaluation under NASA-sponsored programs. Thermal performance measurements were made under space-hold (vacuum) conditions for insulation warm boundary temperatures of approximately 291 K. The resulting effective thermal conductivity was approximately .00008 W/m-K for the MLI systems (liquid hydrogen test results) and .00054 W/m-K for the LBI system (liquid nitrogen test results corrected to liquid hydrogen temperature). The DGK MLI system experienced a maximum thermal degradation of 38 percent, the DAM MLI system 14 percent, and the LBI system 6.7 percent due to repeated thermal cycling representing typical space flight conditions. Repeated exposure of the DAM MLI system to a high humidity environment for periods as long as 8 weeks provided a maximum degradation of only 24 percent.

  20. Neutron Capture Cross Section Measurement on $$^{238}$$Pu at DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chyzh, A; Wu, C Y

    2011-02-14

    The proposed neutron capture measurement for {sup 238}Pu was carried out in Nov-Dec, 2010, using the DANCE array at LANSCE, LANL. The total beam-on-target time is about 14 days plus additional 5 days for the background measurement. The target was prepared at LLNL with the new electrplating cell capable of plating the {sup 238}Pu isotope simultaneously on both sides of the 3-{micro}m thick Ti backing foil. A total mass of 395 {micro}g with an activity of 6.8 mCi was deposited onto the area of 7 mm in diameter. The {sup 238}Pu sample was enriched to 99.35%. The target was coveredmore » by 1.4 {micro}m double-side aluminized mylar and then inserted into a specially designed vacuum-tight container, shown in Fig. 1, for the {sup 238}Pu containment. The container was tested for leaks in the vacuum chamber at LLNL. An identical container without {sup 238}Pu was made as well and used as a blank for the background measurement.« less

  1. Spatial coherence measurements and x-ray holographic imaging using a laser-generated plasma x-ray source in the water window spectral region

    NASA Astrophysics Data System (ADS)

    Turcu, I. C. E.; Ross, I. N.; Schulz, M. S.; Daido, H.; Tallents, G. J.; Krishnan, J.; Dwivedi, L.; Hening, A.

    1993-06-01

    The properties of a coherent x-ray point source in the water window spectral region generated using a small commercially available KrF laser system focused onto a Mylar (essentially carbon) target have been measured. By operating the source in a low-pressure (approximately 20 Torr) nitrogen environment, the degree of monochromaticity was improved due to the nitrogen acting as an x-ray filter and relatively enhancing the radiation at a wavelength of 3.37 nm (C vi 1s-2p). X-ray pinhole camera images show a minimum source size of 12 μm. A Young's double slit coherence measurement gave fringe visibilities of approximately 62% for a slit separation of 10.5 μm at a distance of 31.7 cm from the source. To demonstrate the viability of the laser plasma as a source for coherent imaging applications a Gabor (in-line) hologram of two carbon fibers, of different sizes, was produced. The exposure time and the repetition rate was 2 min and 10 Hz, respectively.

  2. Experimental testing of a foam/multilayer insulation (FMLI) thermal control system (TCS) for use on a cryogenic upper stage

    NASA Astrophysics Data System (ADS)

    Hastings, Leon J.; Martin, James J.

    1998-01-01

    An 18-m3 system-level test bed termed the Multipurpose Hydrogen Test Bed (MHTB has been used to evaluate a foam/multilayer combination insulation concept. The foam element (Isofoam SS-1171) protects against ground hold/ascent flight environments, and allows the use of dry nitrogen purge as opposed to a more complex/heavy helium purge subsystem. The MLI (45 layers of Double Aluminized Mylar with Dacron spacers) is designed for an on-orbit storage period of 45 days. Unique MLI features included; a variable layer density (reduces weight and radiation losses), larger but fewer DAM vent perforations (reduces radiation losses), and a roll wrap installation which resulted in a very robust MLI and reduced both assembly man-hours and seam heat leak. Ground hold testing resulted in an average heat leak of 63 W/m2 and purge gas liquefaction was successfully prevented. The orbit hold simulation produced a heat leak of 0.22 W/m2 with 305 K boundary which, compared to historical data, represents a 50-percent heat leak reduction.

  3. Digital geologic map of part of the Thompson Falls 1:100,000 quadrangle, Idaho

    USGS Publications Warehouse

    Lewis, Reed S.; Derkey, Pamela D.

    1999-01-01

    The geology of the Thompson Falls 1:100,000 quadrangle, Idaho was compiled by Reed S. Lewis in 1997 onto a 1:100,000-scale greenline mylar of the topographic base map for input into a geographic information system (GIS). The resulting digital geologic map GIS can be queried in many ways to produce a variety of geologic maps. Digital base map data files (topography, roads, towns, rivers and lakes, etc.) are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,000). The map area is located in north Idaho. This open-file report describes the geologic map units, the methods used to convert the geologic map data into a digital format, the Arc/Info GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet.

  4. Passive Standoff Detection of Chemical Warfare Agents on Surfaces

    NASA Astrophysics Data System (ADS)

    Thériault, Jean-Marc; Puckrin, Eldon; Hancock, Jim; Lecavalier, Pierre; Lepage, Carmela Jackson; Jensen, James O.

    2004-11-01

    Results are presented on the passive standoff detection and identification of chemical warfare (CW) liquid agents on surfaces by the Fourier-transform IR radiometry. This study was performed during surface contamination trials at Defence Research and Development Canada-Suffield in September 2002. The goal was to verify that passive long-wave IR spectrometric sensors can potentially remotely detect surfaces contaminated with CW agents. The passive sensor, the Compact Atmospheric Sounding Interferometer, was used in the trial to obtain laboratory and field measurements of CW liquid agents, HD and VX. The agents were applied to high-reflectivity surfaces of aluminum, low-reflectivity surfaces of Mylar, and several other materials including an armored personnel carrier. The field measurements were obtained at a standoff distance of 60 m from the target surfaces. Results indicate that liquid contaminant agents deposited on high-reflectivity surfaces can be detected, identified, and possibly quantified with passive sensors. For low-reflectivity surfaces the presence of the contaminants can usually be detected; however, their identification based on simple correlations with the absorption spectrum of the pure contaminant is not possible.

  5. Solar Concentration for Electricity and Cooking

    NASA Astrophysics Data System (ADS)

    Kim, Mike; Fourt, Connor; Schwartz, Pete; Lee, Michael; Frostholm, Taylor; Fernandes, Josh; Tower, Jared

    2012-11-01

    Over 8000 Schefflers exist worldwide, mostly in Africa and Asia. Having constructed the first Scheffler reflector in North America 2 years ago, the next goal was to make it less expensive. The original model took 4 students 2 months and about 1000. In order to lower the cost and construction time the design was minimized, less expensive materials were used, and the construction process was automated. The original complex frame took 1000 people-hours and it was minimized to a day. Instead of using aluminum for the reflective dish, we turned to using aluminized Mylar, which cut the cost by over 90%. A thermal storage unit was added to extend cooking time well into the evening. Finally, a concentrated solar module of High Efficiency Photo Voltaics (HEPV) is to be placed at the focus of the concentrator to generate electricity and water as a byproduct. The final cost is estimated to be about 200 (0.10 per thermal watt) including the HEPV, an 80% cost reduction. Such technology is practical in the U.S. as well as developing nations.

  6. Pulsed Laser Gate Experiment for Magnetized Liner Inertial Fusion (MagLIF)

    NASA Astrophysics Data System (ADS)

    Miller, S. M.; Slutz, S. A.; Gomez, M. R.; Klein, S. R.; Campbell, P. C.; Woolstrum, J. M.; Yager-Elorriaga, D. A.; Jordan, N. M.; Lau, Y. Y.; Gilgenbach, R. M.; McBride, R. D.

    2017-10-01

    Fuel preheating in full scale magnetized liner inertial fusion (MagLIF) currently has low efficiency. This loss is thought to occur from laser-plasma interactions (LPI) at the laser entrance window (LEW). The gaseous fuel is held in a pressurized vessel by the thin mylar LEW that must be removed right before heating. To ensure more laser energy heats the fuel, the LEW could be weakened at an early time. One proposed solution is to use the current from a small pulse generator to break the LEW allowing it to open outward from the fuel. With the LEW removed away from the laser path, LPI losses would be reduced. Wire attached to a 13 kV mini-pulser will be used to remove the LEW from the laser path. We will report on LEW fabrication and the current state of the laser gate project. This research was funded in part by the University of Michigan, a Faculty Development Grant from the NRC, and Sandia National Laboratories under DOE-NNSA contract DE-NA0003525.

  7. Purging of a tank-mounted multilayer insulation system by gas diffusion

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.

    1978-01-01

    The investigation was conducted on a multilayer insulation (MLI) system mounted on a spherical liquid hydrogen propellant tank. The MLI consisted of two blankets of insulation each containing 15 double-aluminized Mylar radiation shields separated by double silk net spacers. The gaseous nitrogen initially contained within the MLI system and vacuum chamber was purged with gaseous helium introduced both underneath the MLI and into the vacuum chamber. The MLI panels were assumed to be purged primarily by means of gas diffusion. Overall, test results indicated that nitrogen concentrations well below 1 percent could be achieved everywhere within the MLI system. Typical times to achieve 1 percent nitrogen concentration within the MLI panels ranged from 69 minutes at the top of the tank to 158 minutes at the bottom of the tank. Four space-hold thermal performance tests indicated no significant thermal degradation of the MLI system had occurred due to the purge tests conducted. The final measured heat input attributed to the MLI was 7.23 watts as compared to 7.18 watts for the initial baseline thermal performance test.

  8. Investigation of the feasibility of developing low permeability polymeric films

    NASA Technical Reports Server (NTRS)

    Hoggatt, J. T.

    1971-01-01

    The feasibility of reducing the gas permeability rate of Mylar and Kapton films without drastically effecting their flexibility characteristics at cryogenic temperatures was considered. This feasibility was established using a concept of diffusion bonding two layers of metallized films together forming a film-metal-film sandwich laminate. The permeability of kapton film to gaseous helium was reduced from a nominal ten = to the minus 9 power cc-mm/sq cm sec. cm Hg to ten to the minus 13 power cc-mm/ sq cm - sec. cm Hg with some values as low as ten to the minus 15 power cc - mm/sq cm m-sec - cm Hg being obtained. Similar reductions occurred in the liquid hydrogen permeability at -252 C. In the course of the program the permeability, flexibility and bond strength of plain, metalized and diffusion bond film were determined at +25 C, -195 C and -252 C. The cryogenic flexibility of Kapton film was reduced slightly due to the metallization process but no additional loss in flexibility resulted from the diffusion bonding process.

  9. Clinical evaluation of seven anticalculus dentifrice formulations.

    PubMed

    Scruggs, R R; Stewart, P W; Samuels, M S; Stamm, J W

    1991-01-01

    One hundred ninety-two subjects completed a clinical trial to determine the effects of seven dentifrice formulations on calculus inhibition. The double-blind study involved a ten-day control phase and a ten-day experimental phase. For the control phase, subjects were evaluated for calculus present, received a prophylaxis and had pre-weighed mylar strips attached to the lingual surfaces of the mandibular incisors to harvest mineral deposits. Subjects were then assigned the placebo dentifrice for unsupervised twice-daily use and were required to report once a day for a supervised mouthrinse using a 1:3 dilution of the dentrifice. The experimental phase was identical except that subjects were allocated the experimental dentifices using a stratified random assignment based on age, gender and the initial presence of calculus. Simple linear regression analyses of the dry and ash log weights obtained from the strips were performed. The results showed no statistically significant differences among the test products; however, two formulations containing zinc citrate showed some calculus inhibition-potential suggesting that further research and development of such products may be warranted.

  10. Electrostatic testing of thin plastic materials

    NASA Technical Reports Server (NTRS)

    Skinner, S. Ballou

    1988-01-01

    Ten thin plastic materials (Velostat, RCAS 1200, Llumalloy, Herculite 80, RCAS 2400, Wrightlon 7000, PVC, Aclar 22A, Mylar, and Polyethylene) were tested for electrostatic properties by four different devices: (1) The static decay meter, (2) the manual triboelectric testing device, (3) the robotic triboelectric testing device, and (4) the resistivity measurement adapter device. The static decay meter measured the electrostatic decay rates in accordance with the Federal Test Method Standard 101B, Method 4046. The manual and the robotic triboelectric devices measured the triboelectric generated peak voltages and the five-second decay voltages in accordance with the criteria for acceptance standards at Kennedy Space Center. The resistivity measurement adapter measured the surface resistivity of each material. An analysis was made to correlate the data among the four testing devices. For the material tested the pass/fail results were compared for the 4046 method and the triboelectric testing devices. For the limited number of materials tested, the relationship between decay rate and surface resistivity was investigated as well as the relationship between triboelectric peak voltage and surface resistivity.

  11. Inspection of anode and field wires for the COMPASS drift chamber, DC5, with Environmental Scanning Electron Microscope

    NASA Astrophysics Data System (ADS)

    Cyuzuzo, Sonia

    2014-09-01

    The COMPASS experiment at CERN uses a secondary pion beam from the Super Proton Synchrotron (SPS) at CERN to explore the spin structure of nucleons. A new drift chamber, DC5, will be integrated into the COMPASS spectrometer to replace an aging straw tube detector. DC5 will detect muon pairs from Drell-Yan scattering of a pion-beam off a transversely polarized proton target. This data will be used to determine the correlation between transverse proton spin and the intrinsic transverse momentum of up-quarks inside the proton, the Sivers effect. DC5 is a large area planar drift chamber with 8 layers of anode-frames made of G10 fiberglass-epoxy. The G10 frames support printed circuit boards for soldering 20 μm diameter anode and 100 μm diameter field wires. The anode planes are sandwiched by 13 graphite coated Mylar cathode planes. To ensure a well-functioning of DC5, the wires were carefully tested. An optical inspection and a spectral analysis was performed with an Environmental Scanning Electron Microscope (ESEM) to verify the composition and dimensions and the integrity of the gold plating on the surface of these wires. The spectra of the wires were studied at 10 and 30 keV. The COMPASS experiment at CERN uses a secondary pion beam from the Super Proton Synchrotron (SPS) at CERN to explore the spin structure of nucleons. A new drift chamber, DC5, will be integrated into the COMPASS spectrometer to replace an aging straw tube detector. DC5 will detect muon pairs from Drell-Yan scattering of a pion-beam off a transversely polarized proton target. This data will be used to determine the correlation between transverse proton spin and the intrinsic transverse momentum of up-quarks inside the proton, the Sivers effect. DC5 is a large area planar drift chamber with 8 layers of anode-frames made of G10 fiberglass-epoxy. The G10 frames support printed circuit boards for soldering 20 μm diameter anode and 100 μm diameter field wires. The anode planes are sandwiched by 13

  12. IUS materials outgassing condensation effects on sensitive spacecraft surfaces

    NASA Technical Reports Server (NTRS)

    Mullen, C. R.; Shaw, C. G.; Crutcher, E. R.

    1982-01-01

    Four materials used on the inertial upper state (IUS) were subjected to vacuum conditions and heated to near-operational temperatures (93 to 316 C), releasing volatile materials. A fraction of the volatile materials were collected on 25 C solar cells, optical solar reflectors (OSR's) or aluminized Mylar. The contaminated surfaces were exposed to 26 equivalent sun hours of simulated solar ultraviolet (UV) radiation. Measurements of contamination deposit mass, structure, reflectance and effects on solar cell power output were made before and after UV irradiation. Standard total mass loss - volatile condensible materials (TML - VCM) tests were also performed. A 2500 A thick contaminant layer produced by EPDM rubber motor-case insulation outgassing increased the solar absorptance of the OSR's from 0.07 to 0.14, and to 0.18 after UV exposure. An 83,000 A layer caused an increase from 0.07 to 0.21, and then the 0.46 after UV exposure. The Kevlar-epoxy motor-case material outgassing condensation raised the absorptance from 0.07 to 0.13, but UV had no effect. Outgassing from multilayer insulation and carbon-carbon nozzle materials did not affect the solar absorptance of the OSR's.

  13. Analysis of a novel non-contacting waveguide backshort

    NASA Technical Reports Server (NTRS)

    Weller, T. M.; Katehi, L. P. B.; Mcgrath, William R.

    1992-01-01

    A new non-contacting waveguide backshort has been developed for millimeter and submillimeter wave frequencies. The design consists of a metal bar with rectangular or circular holes cut into it, which is covered with a dielectric (mylar) layer to form a snug fit with the walls of a waveguide. Hole geometries are adjusted to obtain a periodic variation of the guide impedance on the correct length scale, in order to produce efficient reflection of RF power. It is a mechanically rugged design which can be easily fabricated for frequencies from 1 to 1000 GHz and is thus a sound alternative to the miniaturization of conventional non-contacting shorts. To aid in high-frequency design, a rigorous full-wave analysis has been completed, which will allow variations of the size, number and spacing of the holes to be easily analyzed. This paper will review the backshort design and the method developed for theoretical characterization, followed by a comparison of the experimental and numerical results. Low frequency models operating from 4-6 GHz are shown to demonstrate return loss of greater than -0.2 dB over a 33 percent bandwidth. The theory is in good agreement with measured data.

  14. An assessment of buffer strips for improving damage tolerance of composite laminates

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.; Kennedy, J. M.

    1980-01-01

    Graphite/epoxy panels with buffer strips were tested in tension to measure their residual strength with crack-like damage. Panels were made with (45/0/-45/90)2S and (45/0/-45/0)2S layups. The buffer strips were parallel to the loading direction. They were made by replacing narrow strips of the 0 deg graphite plies with strips of either 0 deg S-Glass/epoxy or Kevlar-90/epoxy on either a one-for-one or a two-for-one basis. In a third case, 0 deg graphite/epoxy was used as the buffer material and thin, perforated Mylar strips were placed between the 0 deg plies and the cross-plies to weaken the interfaces and thus to isolate the 0 deg plies. Some panels were made with buffer strips of different width and spacings. The buffer strips arrested the cracks and increased the residual strengths significantly over those of plain laminates without buffer strips. A shear-lag type stress analysis correctly predicted the effects of layup, buffer material, buffer strip width and spacing, and the number of plies of buffer material

  15. Development of a Flexible Seal for a 60 psi Cryogenic Pressure Box

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    1998-01-01

    A cryogenic pressure box test facility has been designed and fabricated for use at NASA Langley Research Center (LaRC) to subject 5 ft x 6 ft curved panels to cryogenic temperatures and biaxial tensile loads. The cryogenic pressure box is capable of testing curved panels down to -423 F (20 K) with 54 psig maximum pressure. The key challenge in the design and fabrication of the pressure box was the development of a seal that could remain flexible at -423 F and contain 60 psi gaseous helium as the pressurization gas. A C-shaped seal was developed using a Gore-tex woven fabric. Mechanical testing of the fabric at room and elevated temperature, liquid nitrogen temperature, and liquid helium temperature demonstrated the strength and creep resistance of the material over the desired operating range. A small scale cryogenic pressure box was used to test prototype seals at cryogenic temperatures up to 60 psi. Preliminary tests indicated that excessive leakage was present through the seal. As a result, an aluminized mylar liner was placed inside the Gore-tex seal to reduce leakage through the seal. The final seal configuration resulted in minimal pressure loss during seal testing.

  16. Final design proposal: Zeta group-Valkyrie. A proposal in response to a commercial air transportation study

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Valkyrie flying wing concept is a remotely piloted technology demonstrator designed to serve as a high volume commuter transport in Aeroworld. The 5.02 lb Valkyrie has a planform area of 1440 sq in and a wingspan of 84 in, which results in an aspect ratio of 4.9. The Valkyrie uses the NACA 2R(2)12 airfoil section. A leading edge wing sweep of 13.2 deg and a 2 deg dihedral were incorporated to provide lateral stability. The Valkyrie is semi-monocoque structure manufactured from spruce and balsa wood covered in plastic Mylar skin. The AstroFlight Cobolt 25 electric engine will power the Valkyrie with a Tornado 10-6 propeller. The Valkyrie is designed to take off in less than 20 ft. To eliminate the difficulties associated with rotating the aircraft at takeoff, the wing is mounted on its landing gear at the take off angle of attack of 8 deg. The Valkyrie provides a greater payload to weight ratio than a conventionally configured aircraft of comparable weight. Considering the requirements, the Valkyrie is the most efficient design for the specified mission.

  17. Assembling Resistive Plate Chambers for the PHENIX Detector

    NASA Astrophysics Data System (ADS)

    Drummond, Kirk

    2009-10-01

    A fast muon trigger for the Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) will enable the study of flavor separated quark and anti-quark spin polarizations in the proton through the analysis of single spin asymmetries for W-boson production in proton-proton collisions. The Phenix experiment is capable of measuring high momentum muons at forward rapidity, but the current online trigger does not have sufficient rejection to sample rare leptons from W-decay at the highest luminosities at the Relativistic Heavy Ion Collider. This upgrade will enhance our ability to collect and analyze muons that decay from W-bosons produced in polarized proton-proton collisions. This upgrade is comprised of half-octants which encompass three different Resistive Plate Chamber (RPCs) modules that encase a sandwich of copper, mylar, gas gaps, and a signal plane. The summer of 2009 marked the start of this full production, with teams from many institutions contributing to the production in the assembly tent at Brookhaven National Lab. The North Arm Station 3 part of the upgrade is scheduled to be installed in the fall of 2009, and the remaining stations will be installed by the fall of 2011.

  18. Three diverse target preparations: 14C (12 mg/cm 2), 71Ga 24Mg (12 mg/cm 271Ga, 3 mg/cm 224Mg), and 66,67Zn (1.8-14.9 mg/cm 2)

    NASA Astrophysics Data System (ADS)

    Lozowski, W. R.

    1989-10-01

    A natural-carbon analog of fluffy, intractable 14C powder was produced. With it, a method was developed to produce a pressed disk of 14C of 12.7-mg/cm 2 thickness and 1.27-cm diameter, bound with 2.1 wt.% of adhesive. Aluminized Mylar cover foils and a fritted-disc filter were used to contain the target for ( overlinep, p') experiments. Reduction of 71Ga 2O 3 to the metal was accomplished with an efficiency of 94.3% in a small electroplating cell. Magnesium was chosen as the companion element because 50 at.% could be tolerated in the (p, n) experiment, and GaMg has a melting point of 646 K. A 1.27-cm diameter target, supported at the edge by a Mg foil, was produced in several simple steps. Directly rollable 66,67Zn foils were obtained from an electroplating cell with a Pt screen anode and a highly polished tungsten-carbide cathode. Plating times of 3 h provided metal-recovery efficiencies ranging from 94.2 to 96.5%. The as-deposited foils had many holes but were hole-free and shiny after reduction of 25% by pack rolling.

  19. Proton Induced X-ray Emission Spectroscopy of Red Wine Samples Using the Union College Pelletron Accelerator

    NASA Astrophysics Data System (ADS)

    Schuff, Katie; Labrake, Scott

    2010-11-01

    A 1-megavolt tandem electrostatic Pelletron particle accelerator housed at Union College was used to measure the elemental composition and concentration of homemade Cabernet and Merlot red wine samples. A beam of 1.8-MeV protons directed at an approximately 12-μm thin Mylar substrate onto which 8-μL of concentrated red wine was dried caused inner shell electrons to be ejected from the target nuclei and these vacancies are filled through electronic transitions of higher orbital electrons accompanied by the production of an x-ray photon characteristic of the elemental composition of the target. This is the PIXE Method. Data on the intensity versus energy of the x-rays were collected using an Amptek silicon drift detector and were analyzed to determine the elemental composition and the samples were found to contain P, S, K, Cl, Ca, Sc, Mn, Al, Fe, & Co. Elemental concentrations were determined using the analysis package GUPIX. It is hypothesized that the cobalt seen is a direct result of the uptake by the grapes and as a product of the fermentation process a complex of vitamin B12 is produced.

  20. LighSail Students Testing - ELaNa XI

    NASA Image and Video Library

    2014-09-23

    Students Alex Diaz and Riki Munakata of California Polytechnic State University testing the LightSail CubeSat. LightSail is a citizen-funded technology demonstration mission sponsored by the Planetary Society using solar propulsion for CubeSats. The spacecraft is designed to “sail” on the energy of solar photons striking the thin, reflective sail material. The first LightSail mission is designed to test the spacecraft’s critical systems, including the sequence to autonomously deploy a Mylar solar sail with an area of 32 square meters (344 square feet). The Planetary Society is planning a second, full solar sailing demonstration flight for 2016. Light is made of packets of energy called photons. While photons have no mass, they have energy and momentum. Solar sails use this momentum as a method of propulsion, creating flight by light. LightSail’s solar sail is packaged into a three-unit CubeSat about the size of a loaf of bread. Launched by NASA’s CubeSat Launch Initiative on the ELaNa XI mission as an auxiliary payload aboard the U.S. Air Force X-37B space plane mission on May 20, 2015.

  1. Integrated Solar Concentrator and Shielded Radiator

    NASA Technical Reports Server (NTRS)

    Clark, David Larry

    2010-01-01

    A shielded radiator is integrated within a solar concentrator for applications that require protection from high ambient temperatures with little convective heat transfer. This innovation uses a reflective surface to deflect ambient thermal radiation, shielding the radiator. The interior of the shield is also reflective to provide a view factor to deep space. A key feature of the shield is the parabolic shape that focuses incoming solar radiation to a line above the radiator along the length of the trough. This keeps the solar energy from adding to the radiator load. By placing solar cells along this focal line, the concentration of solar energy reduces the number and mass of required cells. By shielding the radiator, the effective reject temperature is much lower, allowing lower radiator temperatures. This is particularly important for lower-temperature processes, like habitat heat rejection and fuel cell operations where a high radiator temperature is not feasible. Adding the solar cells in the focal line uses the concentrating effect of the shield to advantage to accomplish two processes with a single device. This shield can be a deployable, lightweight Mylar structure for compact transport.

  2. Determination of selenium at trace levels in geologic materials by energy-dispersive X-ray fluorescence spectrometry

    USGS Publications Warehouse

    Wahlberg, J.S.

    1981-01-01

    Low levels of selenium (0.1-500 ppm) in both organic and inorganic geologic materials can be semiquantitatively measured by isolating Se as a thin film for presentation to an energy-dispersive X-ray fluorescence spectrometer. Suitably pulverized samples are first digested by fusing with a mixture of Na2CO3 and Na2O2. The fusion cake is dissolved in distilled water, buffered with NH4Cl, and filtered to remove Si and the R2O3 group. A carrier solution of Na2TeO4, plus solid KI, hydrazine sulfate and Na2SO3, is added to the filtrate. The solution is then vacuum-filtered through a 0.45-??m pore-size filter disc. The filter, with the thin film of precipitate, is supported between two sheets of Mylar?? film for analysis. Good agreement is shown between data reported in this study and literature values reported by epithermal neutron-activation analysis and spectrofluorimetry. The method can be made quantitative by utilizing a secondary precipitation to assure complete recovery of the Se. The X-ray method offers fast turn-around time and a reasonably high production rate. ?? 1981.

  3. Thermal performance of a customized multilayer insulation (MLI)

    NASA Technical Reports Server (NTRS)

    Leonhard, K. E.

    1976-01-01

    The thermal performance of a LH2 tank on a shroudless vehicle was investigated. The 1.52 m (60 in) tank was insulated with 2 MLI blankets consisting of 18 double aluminized Mylar radiation shields and 19 silk net spacers. The temperature of outer space was simulated by using a cryoshroud which was maintained at near liquid hydrogen temperature. The heating effects of a payload were simulated by utilizing a thermal payload simulator (TPS) viewing the tank. The test program consisted of three major test categories: (1) null testing, (2) thermal performance testing of the tank installed MLI system, and (3) thermal testing of a customized MLI configuration. TPS surface temperatures during the null test were maintained at near hydrogen temperature and during test categories 2 and 3 at 289 K (520R). The heat flow rate through the tank installed MLI at a tank/TPS spacing of 0.457 m was 1.204 watts with no MLI on the TPS and 0.059 watts through the customized MLI with three blankets on the TPS. Reducing the tank/TPS spacing from 0.457 m to 0.152 m the heat flow through the customized MLI increased by 10 percent.

  4. Measurement of a Conduction Cooled Nb3Sn Racetrack Coil

    NASA Astrophysics Data System (ADS)

    Kim, HS; Kovacs, C.; Rochester, J.; Sumption, MD; Tomsic, M.; Peng, X.; Doll, D.

    2017-12-01

    Use of superconducting coils for wind turbines and electric aircraft is of interest because of the potential for high power density and weight reduction. Here we test a racetrack coil developed as a proof-of-concept for cryogen-free superconducting motors and generators. The coil was wound with 1209 m of 0.7-mm-diameter insulated tube-type Nb3Sn wire. The coil was epoxy-impregnated, instrumented, covered with numerous layers of aluminized mylar insulation, and inserted vertically into a dewar. The system was cooled to 4.2 K, and a few inches of liquid helium was allowed to collect at the bottom of the dewar but below the coil. The coil was cooled by conduction via copper cooling bars were attached to the coil but also were immersed in the liquid helium at their lower ends. Several current tests were performed on the coil, initially in voltage mode, and one run in current mode. The maximum coil Ic at 4.2 K was 480 A, generating 3.06 T at the surface of the coil. The coil met the design targets with a noticeable margin.

  5. Alignment of smectic mesogens over engineered surfaces

    NASA Astrophysics Data System (ADS)

    Chandran, Achu; Joshi, Tilak; Khanna, P. K.; Mehta, Dalip. S.; Haranath, D.; Biradar, Ashok M.

    2017-07-01

    The alignment of smectic C* liquid crystals (LCs) has been manipulated over and near different surfaces such as bare glass, indium tin oxide (ITO) coated glass, patterned glass, and near spacers. The LC sample cell is made of one ITO coated glass plate and other having striped ITO with a Mylar spacer maintaining a finite cell gap between them. Laser scribing is used to make striped ITO, while the scribed area results in the formation of the patterned glass surface. The geometry of the cell is such that overlapped ITO lie in the middle and spacers are placed in the two extreme corners of the cell. The alignment of LC is found to be homeotropic over the ITO coated glass, while it is planar near the spacer. Interestingly, a transition from homeotropic to planar is observed while moving away from the middle towards either corner of the cell. The origin of both types of alignment in the same cell has been explained by considering the difference in the surface energy of different surfaces. This work renders new advancement towards the manipulation of LC alignment using different surfaces and interfaces for advanced electro-optical and photonic devices based on LCs.

  6. Effects of Wet and Dry Finishing and Polishing on Surface Roughness and Microhardness of Composite Resins

    PubMed Central

    Nasoohi, Negin; Hoorizad, Maryam

    2017-01-01

    Objectives: This study aimed to assess the effect of wet and dry finishing and polishing on microhardness and roughness of microhybrid and nanohybrid composites. Materials and Methods: Thirty samples were fabricated of each of the Polofil Supra and Aelite Aesthetic All-Purpose Body microhybrid and Grandio and Aelite Aesthetic Enamel nanohybrid composite resins. Each group (n=30) was divided into three subgroups of D, W and C (n=10). Finishing and polishing were performed dry in group D and under water coolant in group W. Group C served as the control group and did not receive finishing and polishing. Surface roughness of samples was measured by a profilometer and their hardness was measured by a Vickers hardness tester. Data were analyzed using two-way ANOVA (P<0.05). Results: The smoothest surfaces with the lowest microhardness were obtained under Mylar strip without finishing/polishing for all composites (P<0.0001). The highest surface roughness was recorded for dry finishing/polishing for all composites (P<0.0001). Dry finishing/polishing increased the microhardness of all composites (P<0.0001). Conclusions: Dry finishing and polishing increases the microhardness and surface roughness of microhybrid and nanohybrid composite resins. PMID:29104597

  7. Response of Two Legumes to Two Ultraviolet-B Radiation Regimes

    NASA Technical Reports Server (NTRS)

    Levy, Daniel L.; Skiles, J. W.

    2000-01-01

    Depletion of the stratospheric ozone layer has been directly linked to increased levels of UV radiation at the earth's surface. The purpose of this study was to evaluate the responses of soybean (Glycine max) and alfalfa (Medicago sativa) to increased UV-B radiation (280-320 nm). Soybean and alfalfa were grown successively in a growth chamber that provided UV-B intensities 45% above nominal summer field levels. Mylar-D (UVB opaque) and mono-acetate (UV-B transparent) films were used to establish the two UV-B treatments. Soybean grown under increased UV showed 21% smaller internodal lengths and higher concentrations of UV-B absorbing pigments (i.e. flavonoids) compared to plants grown under no UV. Significant results for alfalfa included 22% greater leaf flavonoid concentration under increased UV, 14% greater leaf chlorophyll concentration under no UV, and 32% greater above-ground biomass with no UV. These leguminous species possess mechanisms that protect against UV-B damage as indicated by increases in foliar concentrations of UV-B absorbing compounds. Alfalfa appears to be more sensitive to UV-B damage than soybean. Remote sensing of chlorophyll fluorescence may offer a means of monitoring UV-induced plant stress and damage.

  8. Transmissivity testing of multilayer insulation at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Johnson, W. L.; Van Dresar, N. T.; Chato, D. J.; Demers, J. R.

    2017-09-01

    The problem of degraded emissivity of thin films at low temperatures has been a long observed phenomena. Previous efforts at measuring properties have suggested that transmission of energy through the films may play a key role in the thermal performance of multilayer insulation systems at low temperatures. Similarly, recent testing on tank applied systems has suggested a radiative degradation at low temperatures. Two different approaches were used to attempt to measure the transmission of energy through MLI at low temperatures. A laser based measurement system was set up to directly measure transmittance and a calorimetric based measurement system was used to measure relative emittance of a single layer between aluminum foil and double aluminized Mylar. Minimal transmission at long wavelengths were observed through standard MLI blanket materials at deposition thicknesses of even 35 nm. Where transmission was measured, it was too low to effect the performance of a multilayers system. Similarly, the calorimeter showed similar increases of emissivity for both standard blanket materials and aluminum foils. Multiple different methodologies of measurement have all yielded the same result: that there is no transmission through standard MLI blanket materials at wavelengths associated with temperatures as low as 2 K.

  9. Lunar landing and launch facilities and operations

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A preliminary design of a lunar landing and launch facility for a Phase 3 lunar base is formulated. A single multipurpose vehicle for the lunar module is assumed. Three traffic levels are envisioned: 6, 12, and 24 landings/launches per year. The facility is broken down into nine major design items. A conceptual description of each of these items is included. Preliminary sizes, capacities, and/or other relevant design data for some of these items are obtained. A quonset hut tent-like structure constructed of aluminum rods and aluminized mylar panels is proposed. This structure is used to provide a constant thermal environment for the lunar modules. A structural design and thermal analysis is presented. Two independent designs for a bridge crane to unload/load heavy cargo from the lunar module are included. Preliminary investigations into cryogenic propellant storage and handling, landing/launch guidance and control, and lunar module maintenance requirements are performed. Also, an initial study into advanced concepts for application to Phase 4 or 5 lunar bases has been completed in a report on capturing, condensing, and recycling the exhaust plume from a lunar launch.

  10. Generation of narrow energy spread ion beams via collisionless shock waves using ultra-intense 1 um wavelength laser systems

    NASA Astrophysics Data System (ADS)

    Albert, Felicie; Pak, A.; Kerr, S.; Lemos, N.; Link, A.; Patel, P.; Pollock, B. B.; Haberberger, D.; Froula, D.; Gauthier, M.; Glenzer, S. H.; Longman, A.; Manzoor, L.; Fedosejevs, R.; Tochitsky, S.; Joshi, C.; Fiuza, F.

    2017-10-01

    In this work, we report on electrostatic collisionless shock wave acceleration experiments that produced proton beams with peak energies between 10-17.5 MeV, with narrow energy spreads between Δ E / E of 10-20%, and with a total number of protons in these peaks of 1e7-1e8. These beams of ions were created by driving an electrostatic collisionless shock wave in a tailored near critical density plasma target using the ultra-intense ps duration Titan laser that operates at a wavelength of 1 um. The near critical density target was produced through the ablation of an initially 0.5 um thick Mylar foil with a separate low intensity laser. A narrow energy spread distribution of carbon / oxygen ions with a similar velocity to the accelerated proton distribution, consistent with the reflection and acceleration of ions from an electrostatic field, was also observed. This work was supported by Lawrence Livermore National Laboratory's Laboratory Directed Research and Development program under project 15-LW-095, and the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA2734.

  11. Large-Scale Liquid Hydrogen Testing of Variable Density Multilayer Insulation with a Foam Substrate

    NASA Technical Reports Server (NTRS)

    Martin, J. J.; Hastings, L.

    2001-01-01

    The multipurpose hydrogen test bed (MHTB), with an 18-cu m liquid hydrogen tank, was used to evaluate a combination foam/multilayer combination insulation (MLI) concept. The foam element (Isofoam SS-1171) insulates during ground hold/ascent flight, and allowed a dry nitrogen purge as opposed to the more complex/heavy helium purge subsystem normally required. The 45-layer MLI was designed for an on-orbit storage period of 45 days. Unique WI features include a variable layer density, larger but fewer double-aluminized Mylar perforations for ascent to orbit venting, and a commercially established roll-wrap installation process that reduced assembly man-hours and resulted in a roust, virtually seamless MLI. Insulation performance was measured during three test series. The spray-on foam insulation (SOFI) successfully prevented purge gas liquefaction within the MLI and resulted in the expected ground hold heat leak of 63 W/sq m. The orbit hold tests resulted in heat leaks of 0.085 and 0.22 W/sq m with warm boundary temperatures of 164 and 305 K, respectively. Compared to the best previously measured performance with a traditional MLI system, a 41-percent heat leak reduction with 25 fewer MLI layers was achieved. The MHTB MLI heat leak is half that calculated for a constant layer density MLI.

  12. Production of Short-Lived ^37K

    NASA Astrophysics Data System (ADS)

    Stephens, Heather; Melconian, Dan; Shidling, Praveen

    2010-11-01

    The purpose of our work during the summer months of 2010 was to produce a beam of ^37K with >= 99% purity and characterize in detail the remaining contaminants. A projectile beam of ^38Ar at 25 and 29 MeV/nucleon from the K500 cyclotron generated the ^37K by reacting with an H2 gas target. The MARS spectrometer was then used to separate the reaction products of interest from the primary beam and other unwanted reaction products. From analysis of our production experiment, we were able to successfully produce 807 counts/nC of ^37K with 99.19% purity at 25MeV/u and 1756 counts/nC with 98.93% purity at 29MeV/u. The purity of this beam and rate of production is more than adequate for use in determining the half-life of ^37K, the next step to be done by the team in August 2010. This measurement will be accomplished by implanting the activity into a Mylar tape, placing it between two high-efficiency gas counters and counting the amount of beta decays as a function of time. It is expected the half-life will be measured using the ^37K produced from ^38Ar at 29MeV/u.

  13. In vivo terahertz imaging of rat skin burns

    NASA Astrophysics Data System (ADS)

    Tewari, Priyamvada; Kealey, Colin P.; Bennett, David B.; Bajwa, Neha; Barnett, Kelli S.; Singh, Rahul S.; Culjat, Martin O.; Stojadinovic, Alexander; Grundfest, Warren S.; Taylor, Zachary D.

    2012-04-01

    A reflective, pulsed terahertz (THz) imaging system was used to acquire high-resolution (d10-90/ λ~1.925) images of deep, partial thickness burns in a live rat. The rat's abdomen was burned with a brass brand heated to ~220°C and pressed against the skin with contact pressure for ~10 sec. The burn injury was imaged beneath a Mylar window every 15 to 30 min for up to 7 h. Initial images display an increase in local water concentration of the burned skin as evidenced by a marked increase in THz reflectivity, and this likely correlates to the post-injury inflammatory response. After ~1 h the area of increased reflectivity consolidated to the region of skin that had direct contact with the brand. Additionally, a low reflecting ring of tissue could be observed surrounding the highly reflective burned tissue. We hypothesize that these regions of increased and decreased reflectivity correlate to the zones of coagulation and stasis that are the classic foundation of burn wound histopathology. While further investigations are necessary to confirm this hypothesis, if true, it likely represents the first in vivo THz images of these pathologic zones and may represent a significant step forward in clinical application of THz technology.

  14. UV-B radiation and photosynthetic irradiance acclimate eggplant for outdoor exposure

    NASA Technical Reports Server (NTRS)

    Latimer, J. G.; Mitchell, C. A.; Mitchell, G. A.

    1987-01-01

    Treatment of greenhouse-grown eggplant (Solanum melongena L. var. esculentum Nees. 'Burpee's Black Beauty') seedlings with supplemental photosynthetically active radiation from cool-white fluorescent lamps increased growth of plants subsequently transferred outdoors relative to growth of plants that received no supplemental radiation or were shaded to 45% of solar irradiation in the greenhouse before transfer outdoors. Eggplant seedlings transferred outdoors were placed under plastic tarps either to provide relative protection from solar ultraviolet-B (UV-B) radiation (280-315 nm) using Mylar film or to allow exposure to UV-B using cellulose acetate. Protection of seedlings from UV-B radiation resulted in greater leaf expansion than for UV-B-exposed seedlings, but no change in leaf or shoot dry weight occurred after 9 days of treatment. Specific leaf weight increased in response to UV-B exposure outdoors. Exposure of eggplant to UV-B radiation from fluorescent sunlamps in the greenhouse also decreased leaf expansion and leaf and shoot dry weight gain after 5 days of treatment. However, there were no differences in leaf or shoot dry weight relative to control plants after 12 days of UV-B treatment, indicating that UV-B treated plants had acclimated to the treatment and actually had caught up with non-UV-B-irradiated plants in terms of growth.

  15. Fracture behavior of hybrid composite laminates

    NASA Technical Reports Server (NTRS)

    Kennedy, J. M.

    1983-01-01

    The tensile fracture behavior of 15 center-notched hybrid laminates was studied. Three basic laminate groups were tested: (1) a baseline group with graphite/epoxy plies, (2) a group with the same stacking sequence but where the zero-deg plies were one or two plies of S-glass or Kevlar, and (3) a group with graphite plies but where the zero-deg plies were sandwiched between layers of perforated Mylar. Specimens were loaded linearly with time; load, far field strain, and crack opening displacement (COD) were monitored. The loading was stopped periodically and the notched region was radiographed to reveal the extent and type of damage (failure progression). Results of the tests showed that the hybrid laminates had higher fracture toughnesses than comparable all-graphite laminates. The higher fracture toughness was due primarily to the larger damage region at the ends of the slit; delamination and splitting lowered the stress concentration in the primary load-carrying plies. A linear elastic fracture analysis, which ignored delamination and splitting, underestimated the fracture toughness. For almost all of the laminates, the tests showed that the fracture toughness increased with crack length. The size of the damage region at the ends of the slit and COD measurements also increased with crack length.

  16. In situ measurements of the optical absorption of dioxythiophene-based conjugated polymers

    NASA Astrophysics Data System (ADS)

    Hwang, J.; Schwendeman, I.; Ihas, B. C.; Clark, R. J.; Cornick, M.; Nikolou, M.; Argun, A.; Reynolds, J. R.; Tanner, D. B.

    2011-05-01

    Conjugated polymers can be reversibly doped by electrochemical means. This doping introduces new subband-gap optical absorption bands in the polymer while decreasing the band-gap absorption. To study this behavior, we have prepared an electrochemical cell allowing in situ measurements of the optical properties of the polymer. The cell consists of a thin polymer film deposited on gold-coated Mylar behind which is another polymer that serves as a counterelectrode. An infrared transparent window protects the upper polymer from ambient air. By adding a gel electrolyte and making electrical connections to the polymer-on-gold films, one may study electrochromism in a wide spectral range. As the cell voltage (the potential difference between the two electrodes) changes, the doping level of the conjugated polymer films is changed reversibly. Our experiments address electrochromism in poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(3,4-dimethylpropylenedioxythiophene) (PProDOT-Me2). This closed electrochemical cell allows the study of the doping induced subband-gap features (polaronic and bipolaronic modes) in these easily oxidized and highly redox switchable polymers. We also study the changes in cell spectra as a function of polymer thickness and investigate strategies to obtain cleaner spectra, minimizing the contributions of water and gel electrolyte features.

  17. Improved Aerogel Vacuum Thermal Insulation

    NASA Technical Reports Server (NTRS)

    Ruemmele, Warren P.; Bue, Grant C.

    2009-01-01

    An improved design concept for aerogel vacuum thermal-insulation panels calls for multiple layers of aerogel sandwiched between layers of aluminized Mylar (or equivalent) poly(ethylene terephthalate), as depicted in the figure. This concept is applicable to both the rigid (brick) form and the flexible (blanket) form of aerogel vacuum thermal-insulation panels. Heretofore, the fabrication of a typical aerogel vacuum insulating panel has involved encapsulation of a single layer of aerogel in poly(ethylene terephthalate) and pumping of gases out of the aerogel-filled volume. A multilayer panel according to the improved design concept is fabricated in basically the same way: Multiple alternating layers of aerogel and aluminized poly(ethylene terephthalate) are assembled, then encapsulated in an outer layer of poly(ethylene terephthalate), and then the volume containing the multilayer structure is evacuated as in the single-layer case. The multilayer concept makes it possible to reduce effective thermal conductivity of a panel below that of a comparable single-layer panel, without adding weight or incurring other performance penalties. Implementation of the multilayer concept is simple and relatively inexpensive, involving only a few additional fabrication steps to assemble the multiple layers prior to evacuation. For a panel of the blanket type, the multilayer concept, affords the additional advantage of reduced stiffness.

  18. THE VERTICAL

    NASA Technical Reports Server (NTRS)

    Albert, Stephen L.; Spencer, Jeffrey B.

    1994-01-01

    'THE VERTICAL' computer keyboard is designed to address critical factors which contribute to Repetitive Motion Injuries (RMI) (including Carpal Tunnel Syndrome) in association with computer keyboard usage. This keyboard splits the standard QWERTY design into two halves and positions each half 90 degrees from the desk. In order to access a computer correctly. 'THE VERTICAL' requires users to position their bodies in optimal alignment with the keyboard. The orthopaedically neutral forearm position (with hands palms-in and thumbs-up) reduces nerve compression in the forearm. The vertically arranged keypad halves ameliorate onset occurrence of keyboard-associated RMI. By utilizing visually-reference mirrored mylar surfaces adjustable to the user's eye, the user is able to readily reference any key indicia (reversed) just as they would on a conventional keyboard. Transverse adjustability substantially reduces cumulative musculoskeletal discomfort in the shoulders. 'THE VERTICAL' eliminates the need for an exterior mouse by offering a convenient finger-accessible curser control while the hands remain in the vertically neutral position. The potential commercial application for 'THE VERTICAL' is enormous since the product can effect every person who uses a computer anywhere in the world. Employers and their insurance carriers are spending hundreds of millions of dollars per year as a result of RMI. This keyboard will reduce the risk.

  19. Uniaxial and biaxial tensioning effects on thin membrane materials. [large space structures

    NASA Technical Reports Server (NTRS)

    Hinson, W. F.; Goslee, J. W.

    1980-01-01

    Thin laminated membranes are being considered for various surface applications on future large space structural systems. Some of the thin membranes would be stretched across or between structural members with the requirement that the membrane be maintained within specified limits of smoothness which would be dictated by the particular applications such as antenna reflector requirements. The multiaxial tensile force required to maintain the smoothness in the membrane needs to be determined for use in the structure design. Therefore, several types of thicknesses of thin membrane materials have been subjected to varied levels of uniaxial and biaxial tensile loads. During the biaxial tests, deviations of the material surface smoothness were measured by a noncontacting capacitance probe. Basic materials consisted of composites of vacuum deposited aluminum on Mylar and Kapton ranging in thickness from 0.00025 in (0.000635 cm) to 0.002 in (0.00508 cm). Some of the material was reinforced with Kevlar and Nomex scrim. The uniaxial tests determined the material elongation and tensile forces up to ultimate conditions. Biaxial tests indicated that a relatively smooth material surface could be achieved with tensile force of approximately 1 to 15 Newtons per centimeter, depending upon the material thickness and/or reinforcement.

  20. JOVE Pilot Research Study in Astronomy and Microgravity Sciences

    NASA Technical Reports Server (NTRS)

    Strauss, Alvin M.; Hmelo, Anthony; Vlasse; Peterson, Steven

    1995-01-01

    The purpose of this project was to develop hardware and software facilities for evaluating the biomechanical interactions between human hands and space suit gloves. We have constructed a prototype of the glove to demonstrate its sensing technologies. There are two types of sensors in the glove. The positions of the fingers are measured using bend sensors based on the CyberGlove design. This sensor consists of two strain gages mounted to a 0.003 inch thick mylar sheet. The sensor is encapsulated using 0.001 inch kapton film to give it sufficient rigidity. A long gage is used to average the strain generated in the sensor due to bending. This average strain produces an output signal proportional to the angle of the bend. The force sensor, FSR, is manufactured by Interlink. It consists of conductive ink sandwiched between two plastic sheets. An electrode is printed on one of the plastic sheets using silver ink. When the electrode makes contact, current flows through the conductive ink. The resistance of the ink pad is sensitive to pressure. We have also developed circuits for exciting and measuring the sensors. The current version requires a single sided twelve volt power supply which is one inch long and 0.4 inches in diameter.

  1. JOVE Pilot Research Study in Astronomy and Microgravity Sciences

    NASA Technical Reports Server (NTRS)

    Strauss, Alvin M.; Hmelo, Anthony; Peterson, Steven

    1996-01-01

    The purpose of this project was to develop hardware and software facilities for evaluating the biomechanical interactions between human hands and space suit gloves. The first task was to measure finger joint angles inside space suit gloves. A preliminary survey identified three potential systems which could be used in the proposed study. In response to the current market situation, a glove for measuring the positions of the hand inside a space suit has been developed. A prototype of the glove has been constructed to demonstrate its sensing technologies. There are two types of sensors in the glove. The positions of the fingers are measured using bend sensors based on the CyberGlove design. This sensor consists of two strain gages mounted to a 0.003 inch thick mylar sheet. The sensor is encapsulated using 0.001 inch kapton film to give it sufficient rigidity. Along gage is used to average the strain generated in the sensor due to bending This average strain produces an output signal proportional to the angle of the bend. The force sensor consists of conductive ink sandwiched between two plastic sheets. An electrode is printed on one of the plastic sheets using silver ink. The resistance of the ink is sensitive to pressure.

  2. Ion Beam Facility at the University of Chile; Applications and Basic Research

    NASA Astrophysics Data System (ADS)

    Miranda, P. A.; Morales, J. R.; Cancino, S.; Dinator, M. I.; Donoso, N.; Sepúlveda, A.; Ortiz, P.; Rojas, S.

    2010-08-01

    The main characteristics of the ion beam facility based on a 3.75 MeV Van de Graaff accelerator at the University of Chile are described at this work. Current activities are mainly focused on the application of the Ion Beam Analysis techniques for environmental, archaeological, and material science analysis. For instance, Rutherford Backscattering Spectrometry (RBS) is applied to measure thin gold film thickness which are used to determine their resistivity and other electrical properties. At this laboratory the Proton Induced X-Ray Emission (PIXE) and Proton Elastic Scattering Analysis (PESA) methodologies are extensively used for trace element analysis of urban aerosols (Santiago, Ciudad de Mexico). A similar study is being carried out at the Antarctica Peninsula. Characterization studies on obsidian and vitreous dacite samples using PIXE has been also perform allowing to match some of these artifacts with geological source sites in Chile. Basic physics research is being carried out by measuring low-energy cross section values for the reactions 63Cu(d,p)64Cu and NatZn(p,x)67Ga. Both radionuclide 64Cu and 67Ga are required for applications in medicine. Ongoing stopping power cross section measurements of proton and alphas on Pd, Cu, Bi and Mylar are briefly discussed.

  3. Importance of integrated results of different non-destructive techniques in order to evaluate defects in panel paintings: the contribution of infrared, optical and ultrasonic techniques

    NASA Astrophysics Data System (ADS)

    Sfarra, S.; Theodorakeas, P.; Ibarra-Castanedo, C.; Avdelidis, N. P.; Paoletti, A.; Paoletti, D.; Hrissagis, K.; Bendada, A.; Koui, M.; Maldague, X.

    2011-06-01

    The increasing deterioration of panel paintings can be due to physical processes that take place during exhibition or transit, or as a result of temperature and humidity fluctuations within a building, church or museum. In response to environmental alterations, a panel painting can expand or contract and a new equilibrium state is eventually reached. These adjustments though, are usually accompanied by a change in shape in order to accommodate to the new conditions. In this work, a holographic method for detecting detached regions and micro-cracks is described. Some of these defects are confirmed by Thermographic Signal Reconstruction (TSR) technique. In addition, Pulsed Phase Thermography (PPT) and Principal Component Thermography (PCT) allow to identify with greater contrast two artificial defects in Mylar which are crucial to understand the topic of interest: the discrimination between defect materials. Finally, traditional contact ultrasounds applications, are widely applied for the evaluation of the wood quality in several characterization procedures. Inspecting the specimen from the front side, the natural and artificial defects of the specimen are confirmed. Experimental results derived by the application of the integrated methods on an Italian panel painting reproduction, called The Angel specimen, are presented. The main advantages that these techniques can offer to the conservation and restoration of artworks are emphasized.

  4. Spacecraft thermal blanket cleaning: Vacuum bake of gaseous flow purging

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1990-01-01

    The mass losses and the outgassing rates per unit area of three thermal blankets consisting of various combinations of Mylar and Kapton, with interposed Dacron nets, were measured with a microbalance using two methods. The blankets at 25 deg C were either outgassed in vacuum for 20 hours, or were purged with a dry nitrogen flow of 3 cu. ft. per hour at 25 deg C for 20 hours. The two methods were compared for their effectiveness in cleaning the blankets for their use in space applications. The measurements were carried out using blanket strips and rolled-up blanket samples fitting the microbalance cylindrical plenum. Also, temperature scanning tests were carried out to indicate the optimum temperature for purging and vacuum cleaning. The data indicate that the purging for 20 hours with the above N2 flow can accomplish the same level of cleaning provided by the vacuum with the blankets at 25 deg C for 20 hours, In both cases, the rate of outgassing after 20 hours is reduced by 3 orders of magnitude, and the weight losses are in the range of 10E-4 gr/sq cm. Equivalent mass loss time constants, regained mass in air as a function of time, and other parameters were obtained for those blankets.

  5. Spacecraft thermal blanket cleaning - Vacuum baking or gaseous flow purging

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1992-01-01

    The mass losses and the outgassing rates per unit area of three thermal blankets consisting of various combinations of Mylar and Kapton, with interposed Dacron nets, were measured with a microbalance using two methods. The blankets at 25 deg C were either outgassed in vacuum for 20 hours, or were purged with a dry nitrogen flow of 3 cu. ft. per hour at 25 deg C for 20 hours. The two methods were compared for their effectiveness in cleaning the blankets for their use in space applications. The measurements were carried out using blanket strips and rolled-up blanket samples fitting the microbalance cylindrical plenum. Also, temperature scanning tests were carried out to indicate the optimum temperature for purging and vacuum cleaning. The data indicate that the purging for 20 hours with the above N2 flow can accomplish the same level of cleaning provided by the vacuum with the blankets at 25 deg C for 20 hours. In both cases, the rate of outgassing after 20 hours is reduced by 3 orders of magnitude, and the weight losses are in the range of 10E-4 gr/sq cm. Equivalent mass loss time constants, regained mass in air as a function of time, and other parameters were obtained for those blankets.

  6. Design, construction, and measurement of a large solar powered thermoacoustic cooler

    NASA Astrophysics Data System (ADS)

    Chen, Reh-Lin

    2001-07-01

    A device based on harnessing concentrated solar power in combination with using thermoacoustic principles has been built, instrumented, and tested. Its acoustic power is generated by solar radiation and is subsequently used to pump heat from external loads. The direct conversion between thermal and mechanical energy without going through any electronic stage makes the mechanism simple. Construction of the solar collector is also rather unsophisticated. It was converted from a 10-ft satellite dish with aluminized Mylar glued on the surface. The thermoacoustic device was mounted on the dish with its engine's hot side positioned near the focus of the parabolic dish, about 1 meter above the center of the dish. A 2-dimensional solar tracking system was built, using two servo motors to position the dish at pre-calculated coordinates. The solar powered thermoacoustic cooler is intended to be used where solar power is abundant and electricity may not be available or reliable. The cooler provides cooling during solar availability. Cooling can be maintained by the latent heat of ice when solar power is unattainable. The device has achieved cooling although compromised by gas leakage and thermal losses and was not able to provide temperatures low enough to freeze water. Improvements of the device are expected through modifications suggested herein.

  7. Use of a liquid-crystal, heater-element composite for quantitative, high-resolution heat transfer coefficients on a turbine airfoil, including turbulence and surface roughness effects

    NASA Astrophysics Data System (ADS)

    Hippensteele, Steven A.; Russell, Louis M.; Torres, Felix J.

    1987-05-01

    Local heat transfer coefficients were measured along the midchord of a three-times-size turbine vane airfoil in a static cascade operated at roon temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a Mylar sheet with a layer of cholestric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. Tests were conducted at two free-stream turbulence intensities: 0.6 percent, which is typical of wind tunnels; and 10 percent, which is typical of real engine conditions. In addition to a smooth airfoil, the effects of local leading-edge sand roughness were also examined for a value greater than the critical roughness. The local heat transfer coefficients are presented for both free-stream turbulence intensities for inlet Reynolds numbers from 1.20 to 5.55 x 10 to the 5th power. Comparisons are also made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code.

  8. Use of a liquid-crystal and heater-element composite for quantitative, high-resolution heat-transfer coefficients on a turbine airfoil including turbulence and surface-roughness effects

    NASA Astrophysics Data System (ADS)

    Hippensteele, S. A.; Russell, L. M.; Torres, F. J.

    Local heat transfer coefficients were measured along the midchord of a three-times-size turbine vane airfoil in a static cascade operated at room temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a Mylar sheet with a layer of cholestric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. Tests were conducted at two free-stream turbulence intensities: 0.6 percent, which is typical of wind tunnels; and 10 percent, which is typical of real engine conditions. In addition to a smooth airfoil, the effects of local leading-edge sand roughness were also examined for a value greater than the critical roughness. The local heat transfer coefficients are presented for both free-stream turbulence intensities for inlet Reynolds numbers from 1.20 to 5.55 x 10 to the 5th power. Comparisons are also made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code.

  9. Use of a liquid-crystal, heater-element composite for quantitative, high-resolution heat transfer coefficients on a turbine airfoil, including turbulence and surface roughness effects

    NASA Technical Reports Server (NTRS)

    Hippensteele, Steven A.; Russell, Louis M.; Torres, Felix J.

    1987-01-01

    Local heat transfer coefficients were measured along the midchord of a three-times-size turbine vane airfoil in a static cascade operated at roon temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a Mylar sheet with a layer of cholestric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. Tests were conducted at two free-stream turbulence intensities: 0.6 percent, which is typical of wind tunnels; and 10 percent, which is typical of real engine conditions. In addition to a smooth airfoil, the effects of local leading-edge sand roughness were also examined for a value greater than the critical roughness. The local heat transfer coefficients are presented for both free-stream turbulence intensities for inlet Reynolds numbers from 1.20 to 5.55 x 10 to the 5th power. Comparisons are also made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code.

  10. Gas phase chemical studies of superheavy elements using the Dubna gas-filled recoil separator - Stopping range determination

    NASA Astrophysics Data System (ADS)

    Wittwer, D.; Abdullin, F. Sh.; Aksenov, N. V.; Albin, Yu. V.; Bozhikov, G. A.; Dmitriev, S. N.; Dressler, R.; Eichler, R.; Gäggeler, H. W.; Henderson, R. A.; Hübener, S.; Kenneally, J. M.; Lebedev, V. Ya.; Lobanov, Yu. V.; Moody, K. J.; Oganessian, Yu. Ts.; Petrushkin, O. V.; Polyakov, A. N.; Piguet, D.; Rasmussen, P.; Sagaidak, R. N.; Serov, A.; Shirokovsky, I. V.; Shaughnessy, D. A.; Shishkin, S. V.; Sukhov, A. M.; Stoyer, M. A.; Stoyer, N. J.; Tereshatov, E. E.; Tsyganov, Yu. S.; Utyonkov, V. K.; Vostokin, G. K.; Wegrzecki, M.; Wilk, P. A.

    2010-01-01

    Currently, gas phase chemistry experiments with heaviest elements are usually performed with the gas-jet technique with the disadvantage that all reaction products are collected in a gas-filled thermalisation chamber adjacent to the target. The incorporation of a physical preseparation device between target and collection chamber opens up the perspective to perform new chemical studies. But this approach requires detailed knowledge of the stopping force (STF) of the heaviest elements in various materials. Measurements of the energy loss of mercury (Hg), radon (Rn), and nobelium (No) in Mylar and argon (Ar) were performed at low kinetic energies of around (40-270) keV per nucleon. The experimentally obtained values were compared with STF calculations of the commonly used program for calculating stopping and ranges of ions in matter (SRIM). Using the obtained data points an extrapolation of the STF up to element 114, eka-lead, in the same stopping media was carried out. These estimations were applied to design and to perform a first chemical experiment with a superheavy element behind a physical preseparator using the nuclear fusion reaction 244Pu( 48Ca; 3n) 289114. One decay chain assigned to an atom of 285112, the α-decay product of 289114, was observed.

  11. The β decay of 34,35Mg and the structure of 34Al

    NASA Astrophysics Data System (ADS)

    Rajabali, Mustafa; Griffin Collaboration On Experiment S1367 Team

    2016-09-01

    Nuclei in the island of inversion, near the N = 20 shell closure, exhibit a fascinating behavior where the nuclear ground states show deformed configurations dominated by particle-hole excitations across the neutron shell gap. The 31-35Mg nuclei are in or at the border of this island displaying intruder ground-state configurations, while the 31-35Al isotopes are suggested to have mixed ground-state configurations of normal and intruder type and thus serve as a transition from intruder dominated Mg isotopes to the normal ground-state configuration in Si isotopes. An experiment was performed at the TRIUMF-ISAC-I facility with the goal of populating states in 33-35Al via the beta decay of 33-35Mg. Mg ions were produced, transported and implanted onto a moving Mylar tape at the center of the GRIFFIN spectrometer. Results obtained from the analysis of the 34,35Mg decay data from this experiment will be presented. This includes the half-lives of 34,35Mg and 34,35Al which clarify current conflicting information in the literature. This work is supported by Tennessee Technological University Research Office, the Canadian Founda- tion for Innovation, the National Research Council of Canada and the Natural Sciences and Engineering Research Council of Canada.

  12. Nuclear Track Detector Characterization via Alpha-Spectrometry for Radioprotection Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morelli, D.; Imme, G.; Catalano, R.

    2011-12-13

    Solid Nuclear Track Detectors (SNTDs), CR-39 type, are usually adopted to monitor radon gas concentrations. In order to characterize the detectors according to track geometrical parameters, detectors were irradiated inside a vacuum chamber by alpha particles at twelve energy values, obtained by different Mylar foils in front of a {sup 241}Am source. The alpha energy values were verified using a Si detector. After the exposure to the alpha particles, the detectors were chemically etched to enlarge the tracks, which were then analyzed by means of a semiautomatic system composed of an optical microscope equipped with a CCD camera connected tomore » a personal computer to store images. A suitable routine analyzed the track parameters: major and minor axis length and mean grey level, allowing us to differentiate tracks according to the incident alpha energy and then to individuate the discrimination factors for radon alpha tracks. The combined use of geometrical and optical parameters allows one to overcome the ambiguity in the alpha energy determination due to the non-monotonicity of each parameter versus energy. After track parameter determination, a calibration procedure was performed by means of a radon chamber. The calibration was verified through an inter-comparing survey.« less

  13. UV-B radiation and photosynthetic irradiance acclimate eggplant for outdoor exposure.

    PubMed

    Latimer, J G; Mitchell, C A; Mitchell, G A

    1987-06-01

    Treatment of greenhouse-grown eggplant (Solanum melongena L. var. esculentum Nees. 'Burpee's Black Beauty') seedlings with supplemental photosynthetically active radiation from cool-white fluorescent lamps increased growth of plants subsequently transferred outdoors relative to growth of plants that received no supplemental radiation or were shaded to 45% of solar irradiation in the greenhouse before transfer outdoors. Eggplant seedlings transferred outdoors were placed under plastic tarps either to provide relative protection from solar ultraviolet-B (UV-B) radiation (280-315 nm) using Mylar film or to allow exposure to UV-B using cellulose acetate. Protection of seedlings from UV-B radiation resulted in greater leaf expansion than for UV-B-exposed seedlings, but no change in leaf or shoot dry weight occurred after 9 days of treatment. Specific leaf weight increased in response to UV-B exposure outdoors. Exposure of eggplant to UV-B radiation from fluorescent sunlamps in the greenhouse also decreased leaf expansion and leaf and shoot dry weight gain after 5 days of treatment. However, there were no differences in leaf or shoot dry weight relative to control plants after 12 days of UV-B treatment, indicating that UV-B treated plants had acclimated to the treatment and actually had caught up with non-UV-B-irradiated plants in terms of growth.

  14. Planetary Geologic Mapping Handbook - 2010. Appendix

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by

  15. A Design for an Orbital Assembly Facility for Complex Missions

    NASA Astrophysics Data System (ADS)

    Feast, S.; Bond, A.

    A design is presented for an Operations Base Station (OBS) in low earth orbit that will function as an integral part of a space transportation system, enabling assembly and maintenance of a Cis-Lunar transportation infrastructure and integration of vehicles for other high energy space missions to be carried out. Construction of the OBS assumes the use of the SKYLON Single-Stage-to-Orbit (SSTO) spaceplane, which imposes design and assembly constraints due to its payload mass limits and payload bay dimensions. It is assumed that the space transport infrastructure and high mission energy vehicles would also make use of SKYLON to deploy standard transport equipment and stages bound by these same constraints. The OBS is therefore a highly modular arrangement, incorporating some of these other vehicle system elements in its layout design. Architecturally, the facilities of the OBS are centred around the Assembly Dock which is in the form of a large cylindrical spaceframe structure with two large doors on either end incorporating a skin of aluminised Mylar to enclose the dock. Longitudinal rails provide internal tether attachments to anchor vehicles and components while manipulators are used for the handling and assembling of vehicle structures. The exterior of the OBS houses the habitation modules for workforce and vehicle crews along with propellant farms and other operational facilities.

  16. Production of Short-Lived 37K

    NASA Astrophysics Data System (ADS)

    Stephens, Heather; Melconian, Dan; Shidling, Praveen

    2011-03-01

    The purpose of our work during the summer months of 2010 was to produce a beam of 37 K with >= 99 % purity and characterize in detail the remaining contaminants. A projectile beam of 38 Ar at 25 and 29 MeV/nucleon from the K500 cyclotron generated the 37 K by reacting with an H2 gas target. The MARS spectrometer was then used to separate the reaction products of interest from the primary beam and other unwanted reaction products. From analysis of our production experiment, we were able to successfully produce 807 counts/nC of 37 K with 99.19% purity at 25MeV/u and 1756 counts/nC with 98.93% purity at 29MeV/u. The purity of this beam and rate of production is more than adequate for use in determining the half-life of 37 K, the next step to be done by the team in August 2010. This measurement will be accomplished by implanting the activity into a Mylar tape, placing it between two high-efficiency gas counters and counting the amount of beta decays as a function of time. It is expected the half-life will be measured using the 37 K produced from 38 Ar at 29MeV/u. Funded by DOE and NSF-REU Program.

  17. Production of Short-Lived 37 K

    NASA Astrophysics Data System (ADS)

    Stephens, Heather; Melconian, Dan; Shidling, Praveen

    2011-04-01

    The purpose of our work during the summer months of 2010 was to produce a beam of 37 K with >= 99% purity and characterize in detail the remaining contaminants. A projectile beam of 38Ar at 25 and 29 MeV/nucleon from the K500 cyclotron generated the 37 K by reacting with an H2 gas target. The MARS spectrometer was then used to separate the reaction products of interest from the primary beam and other unwanted reaction products. From analysis of our production experiment, we were able to successfully produce 807 counts/nC of 37 K with 99.19% purity at 25MeV/u and 1756 counts/nC with 98.93% purity at 29MeV/u. The purity of this beam and rate of production is more than adequate for use in determining the half-life of 37 K, the next step to be done by the team in August 2010. This measurement will be accomplished by implanting the activity into a Mylar tape, placing it between two high-efficiency gas counters and counting the amount of beta decays as a function of time. It is expected the half-life will be measured using the 37 K produced from 38Ar at 29MeV/u. Funded by DOE and NSF-REU Program

  18. Ion Beam Facility at the University of Chile; Applications and Basic Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miranda, P. A.; Morales, J. R.; Cancino, S.

    2010-08-04

    The main characteristics of the ion beam facility based on a 3.75 MeV Van de Graaff accelerator at the University of Chile are described at this work. Current activities are mainly focused on the application of the Ion Beam Analysis techniques for environmental, archaeological, and material science analysis. For instance, Rutherford Backscattering Spectrometry (RBS) is applied to measure thin gold film thickness which are used to determine their resistivity and other electrical properties. At this laboratory the Proton Induced X-Ray Emission (PIXE) and Proton Elastic Scattering Analysis (PESA) methodologies are extensively used for trace element analysis of urban aerosols (Santiago,more » Ciudad de Mexico). A similar study is being carried out at the Antarctica Peninsula. Characterization studies on obsidian and vitreous dacite samples using PIXE has been also perform allowing to match some of these artifacts with geological source sites in Chile.Basic physics research is being carried out by measuring low-energy cross section values for the reactions {sup 63}Cu(d,p){sup 64}Cu and {sup Nat}Zn(p,x){sup 67}Ga. Both radionuclide {sup 64}Cu and {sup 67}Ga are required for applications in medicine. Ongoing stopping power cross section measurements of proton and alphas on Pd, Cu, Bi and Mylar are briefly discussed.« less

  19. Pristine and Surface-Modified Polymers in LEO: MISSE Results versus Predictive Models and Ground-Based Testing

    NASA Astrophysics Data System (ADS)

    Iskanderova, Zelina; Kleiman, Jacob I.; Tennyson, Rod C.

    2009-01-01

    Space flight data, collected and published by NASA Glenn Research Center (GRC) team for a set of pristine polymeric materials selected, compiled, and tested in two LEO flight experiments at the International Space Station, as part of the "Materials International Space Station Experiment" (MISSE), has been used for comparison with previously developed atomic oxygen erosion predictive models. The same set of materials was used for a ground-based fast atomic beam (FAO) experimental erosion study at ITL/UTIAS, where the FAO exposure was performed mostly at a standard fluence of 2×1020 cm-2, with the results collected in a database for the development of a prototype of predictive software. A comparison of MISSE-1 flight data with two predictive correlations has shown good agreement, confirming the developed approach to polymers erosion resistance forecast that might be used also for newly developed or untested in space polymeric materials. A number of surface-modified thin film space polymers, treated by two ITL-developed and patented surface modification technologies, Implantox™ [5] and Photosil™ [6], have been also included in MISSE flight experiment. The results from those MISSE samples have shown full protection of AO-sensitive main space-related hydrocarbon polymers, such as Kapton HN, back-metalized Kapton H and Kapton E, and Mylar, when treated by Implantox™ surface modification technology and significant erosion resistance enhancement up to full protection by Photosil™ treatment.

  20. The recoil transfer chamber—An interface to connect the physical preseparator TASCA with chemistry and counting setups

    NASA Astrophysics Data System (ADS)

    Even, J.; Ballof, J.; Brüchle, W.; Buda, R. A.; Düllmann, Ch. E.; Eberhardt, K.; Gorshkov, A.; Gromm, E.; Hild, D.; Jäger, E.; Khuyagbaatar, J.; Kratz, J. V.; Krier, J.; Liebe, D.; Mendel, M.; Nayak, D.; Opel, K.; Omtvedt, J. P.; Reichert, P.; Runke, J.; Sabelnikov, A.; Samadani, F.; Schädel, M.; Schausten, B.; Scheid, N.; Schimpf, E.; Semchenkov, A.; Thörle-Pospiech, P.; Toyoshima, A.; Türler, A.; Vicente Vilas, V.; Wiehl, N.; Wunderlich, T.; Yakushev, A.

    2011-05-01

    Performing experiments with transactinide elements demands highly sensitive detection methods due to the extremely low production rates (one -atom -at -a -time conditions). Preseparation with a physical recoil separator is a powerful method to significantly reduce the background in experiments with sufficiently long-lived isotopes ( t1/2≥0.5 s). In the last years, the new gas-filled TransActinide Separator and Chemistry Apparatus (TASCA) was installed and successfully commissioned at GSI. Here, we report on the design and performance of a Recoil Transfer Chamber (RTC) for TASCA—an interface to connect various chemistry and counting setups with the separator. Nuclear reaction products recoiling out of the target are separated according to their magnetic rigidity within TASCA, and the wanted products are guided to the focal plane of TASCA. In the focal plane, they pass a thin Mylar window that separates the ˜1 mbar atmosphere in TASCA from the RTC kept at ˜1 bar. The ions are stopped in the RTC and transported by a continuous gas flow from the RTC to the ancillary setup. In this paper, we report on measurements of the transportation yields under various conditions and on the first chemistry experiments at TASCA—an electrochemistry experiment with osmium and an ion exchange experiment with the transactinide element rutherfordium.

  1. THz and mm-Wave Sensing of Corneal Tissue Water Content: In Vivo Sensing and Imaging Results

    PubMed Central

    Taylor, Zachary D.; Garritano, James; Sung, Shijun; Bajwa, Neha; Bennett, David B.; Nowroozi, Bryan; Tewari, Priyamvada; Sayre, James W.; Hubschman, Jean-Pierre; Deng, Sophie X.; Brown, Elliott R.; Grundfest, Warren S.

    2015-01-01

    A pulsed terahertz (THz) imaging system and millimeter-wave reflectometer were used to acquire images and point measurements, respectively, of five rabbit cornea in vivo. These imaging results are the first ever produced of in vivo cornea. A modified version of a standard protocol using a gentle stream of air and a Mylar window was employed to slightly dehydrate healthy cornea. The sensor data and companion central corneal thickness (CCT) measurements were acquired every 10–15 min over the course of two hours using ultrasound pachymmetry.. Statistically significant positive correlations were established between CCT measurements and millimeter wave reflectivity. Local shifts in reflectivity contrast were observed in the THz imagery; however, the THz reflectivity did not display a significant correlation with thickness in the region probed by the 100 GHz and CCT measurements. This is explained in part by a thickness sensitivity at least 10× higher in the mm-wave than the THz systems. Stratified media and effective media modeling suggest that the protocol perturbed the thickness and not the corneal tissue water content (CTWC). To further explore possible etalon effects, an additional rabbit was euthanized and millimeter wave measurements were obtained during death induced edema. These observations represent the first time that the uncoupled sensing of CTWC and CCT have been achieved in vivo. PMID:26161292

  2. Project ARES 2: High-altitude battery-powered aircraft

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A high-altitude, battery-powered, propeller-driven aircraft was designed and is being built by undergraduate students at California State University, Northridge. The aircraft will fly at an altitude of 104,000 ft at Mach 0.2 (190 ft/sec) and will be instrumented to record flight performance data, including low Reynolds number propeller and airfoil information. This project will demonstrate the feasibility of electric-powered flight in a low-density, low-temperature Earth environment that models the atmosphere of Mars. Data collected will be used to design a Mars aircraft to investigate the surface of Mars prior to manned missions. The instrumented payload and the mission profile for the high-altitude Earth flight were determined. Detailed aerodynamic and structural analyses were performed. Control, tracking, and data recording subsystems were developed. Materials were obtained and fabrication begun. The aircraft has a 32-ft wing span, a wing area of 105 sq ft, is 17.5 ft long, has a 12-in payload bay, and weighs 42 lb. It is composed primarily of lightweight materials, including Mylar, and composite materials, including graphite/epoxy and aramid core honeycomb sandwich. Low-altitude flight testing to check guidance and control systems and to calibrate data-gathering instruments will take place this summer, followed shortly by the 104,000-ft flight.

  3. Sub-micron particle sampler apparatus and method for sampling sub-micron particles

    DOEpatents

    Gay, D.D.; McMillan, W.G.

    1984-04-12

    Apparatus and method steps for collecting sub-micron sized particles include a collection chamber and cryogenic cooling. The cooling is accomplished by coil tubing carrying nitrogen in liquid form, with the liquid nitrogen changing to the gas phase before exiting from the collection chamber in the tubing. Standard filters are used to filter out particles of diameter greater than or equal to 0.3 microns; however, the present invention is used to trap particles of less than 0.3 micron in diameter. A blower draws air to said collection chamber through a filter which filters particles with diameters greater than or equal to 0.3 micron. The air is then cryogenically cooled so that moisture and sub-micron sized particles in the air condense into ice on the coil. The coil is then heated so that the ice melts, and the liquid is then drawn off and passed through a Buchner funnel where the liquid is passed through a Nuclepore membrane. A vacuum draws the liquid through the Nuclepore membrane, with the Nuclepore membrane trapping sub-micron sized particles therein. The Nuclepore membrane is then covered on its top and bottom surfaces with sheets of Mylar and the assembly is then crushed into a pellet. This effectively traps the sub-micron sized particles for later analysis. 6 figures.

  4. Sub-micron particle sampler apparatus

    DOEpatents

    Gay, Don D.; McMillan, William G.

    1987-01-01

    Apparatus and method steps for collecting sub-micron sized particles include a collection chamber and cryogenic cooling. The cooling is accomplished by coil tubing carrying nitrogen in liquid form, with the liquid nitrogen changing to the gas phase before exiting from the collection chamber in the tubing. Standard filters are used to filter out particles of diameter greater than or equal to 0.3 microns; however the present invention is used to trap particles of less than 0.3 micron in diameter. A blower draws air to said collection chamber through a filter which filters particles with diameters greater than or equal to 0.3 micron. The air is then cryogenically cooled so that moisture and sub-micron sized particles in the air condense into ice on the coil. The coil is then heated so that the ice melts, and the liquid is then drawn off and passed through a Buchner funnel where the liquid is passed through a Nuclepore membrane. A vacuum draws the liquid through the Nuclepore membrane, with the Nuclepore membrane trapping sub-micron sized particles therein. The Nuclepore membrane is then covered on its top and bottom surfaces with sheets of Mylar.RTM. and the assembly is then crushed into a pellet. This effectively traps the sub-micron sized particles for later analysis.

  5. Method for sampling sub-micron particles

    DOEpatents

    Gay, Don D.; McMillan, William G.

    1985-01-01

    Apparatus and method steps for collecting sub-micron sized particles include a collection chamber and cryogenic cooling. The cooling is accomplished by coil tubing carrying nitrogen in liquid form, with the liquid nitrogen changing to the gas phase before exiting from the collection chamber in the tubing. Standard filters are used to filter out particles of diameter greater than or equal to 0.3 microns; however the present invention is used to trap particles of less than 0.3 micron in diameter. A blower draws air to said collection chamber through a filter which filters particles with diameters greater than or equal to 0.3 micron. The air is then cryogenically cooled so that moisture and sub-micron sized particles in the air condense into ice on the coil. The coil is then heated so that the ice melts, and the liquid is then drawn off and passed through a Buchner funnel where the liquid is passed through a Nuclepore membrane. A vacuum draws the liquid through the Nuclepore membrane, with the Nuclepore membrane trapping sub-micron sized particles therein. The Nuclepore membrane is then covered on its top and bottom surfaces with sheets of Mylar.RTM. and the assembly is then crushed into a pellet. This effectively traps the sub-micron sized particles for later analysis.

  6. Design, construction, prototype tests and performance of a vertex chamber for the MAC detector

    NASA Astrophysics Data System (ADS)

    Ash, W. W.; Band, H. R.; Bloom, E. D.; Bosman, M.; Camporesi, T.; Chadwick, G. B.; Delfino, M. C.; De Sangro, R.; Ford, W. T.; Gettner, M. W.; Goderre, G. P.; Godfrey, G. L.; Groom, D. E.; Hurst, R. B.; Johnson, J. R.; Lau, K. H.; Lavine, T. L.; Leedy, R. E.; Lippi, I.; Maruyama, T.; Messner, R. L.; Moromisato, J. H.; Moss, L. J.; Muller, F.; Nelson, H. N.; Peruzzi, I.; Piccolo, M.; Prepost, R.; Pyrlik, J.; Qi, N.; Read, A. L.; Ritson, D. M.; Rosenberg, L. J.; Shambroom, W. D.; Sleeman, J. C.; Smith, J. G.; Venuti, J. P.; Verdini, P. G.; Von Goeler, E.; Wald, H. B.; Weinstein, R.; Wiser, D. E.; Zdarko, R. W.

    1987-11-01

    The design considerations, construction techniques, prototype tests and performance characteristics of a pressurized drift chamber used in the MAC detector at PEP are described. The chamber consists of 324 aluminized mylar tubes of 6.9 mm diameter with wall thickness of 100 μm. With appropriate shielding it operates successfully at 4.6 cm from the beam line. It was simple to construct and was configured to permit any malfunctioning tubes to be remotely disconnected without affecting operation. The chamber operated without problems for two years in the PEP environment with a gas mixture of 49.5% argon, 49.5% CO 2, 1% CH 4, at 4 atm absolute pressure. The mean spatial resolution averaged over all tubes was 45 μm. The time to distance relation for this gas mixture, along with the geometric positioning of individual wires relative to the central tracking chamber, was obtained with data from Bhabha scattering events. We also describe resolution studies performed with a prototype chamber in a SLAC test beam. A wide range of gases, gas pressures, and electronic parameters were explored. These studies proved that resolutions in the 10-50 μm range were possible. Our experience demonstrates that chambers of this type provide high precision tracking and are particularly suited for operation in regions with difficult physical access and/or high ambient radiation levels.

  7. Reconfiguration of a flexible fiber immersed in a 2D dense granular flow close to the jamming transition

    NASA Astrophysics Data System (ADS)

    Kolb, Evelyne; Algarra, Nicolas; Vandembroucq, Damien; Lazarus, Arnaud

    2015-11-01

    We propose a new fluid/structure interaction in the unusual case of a dense granular medium flowing against an elastic fibre acting as a flexible intruder. We experimentally studied the deflection of a mylar flexible beam clamped at one side, the other free side facing a 2D granular flow in a horizontal cell moving at a constant velocity. We investigated the reconfiguration of the fibre as a function of the fibre's rigidity and of the granular packing fraction close but below the jamming in 2D. Imposing the fibre geometry like its length or thickness sets the critical buckling force the fibre is able to resist if it was not supported by lateral grains, while increasing the granular packing fraction might laterally consolidate the fibre and prevent it from buckling. But on the other side, the approach to jamming transition by increasing the granular packing fraction will be characterized by a dramatically increasing size of the cluster of connected grains forming a solid block acting against the fibre, which might promote the fibre's deflection. Thus, we investigated the granular flow fields, the fibre's deflexion as well as the forces experienced by the fibre and compared them with theoretical predictions from elastica for different loadings along the fibre. PMMH, CNRS UMR 7636, UPMC, ESPCI-ParisTech, 10 rue Vauquelin, 75231 Paris Cedex 05, France.

  8. Optimizing total reflection X-ray fluorescence for direct trace element quantification in proteins I: Influence of sample homogeneity and reflector type

    NASA Astrophysics Data System (ADS)

    Wellenreuther, G.; Fittschen, U. E. A.; Achard, M. E. S.; Faust, A.; Kreplin, X.; Meyer-Klaucke, W.

    2008-12-01

    Total reflection X-ray fluorescence (TXRF) is a very promising method for the direct, quick and reliable multi-elemental quantification of trace elements in protein samples. With the introduction of an internal standard consisting of two reference elements, scandium and gallium, a wide range of proteins can be analyzed, regardless of their salt content, buffer composition, additives and amino acid composition. This strategy also enables quantification of matrix effects. Two potential issues associated with drying have been considered in this study: (1) Formation of heterogeneous residues of varying thickness and/or density; and (2) separation of the internal standard and protein during drying (which has to be prevented to allow accurate quantification). These issues were investigated by microbeam X-ray fluorescence (μXRF) with special emphasis on (I) the influence of sample support and (II) the protein / buffer system used. In the first part, a model protein was studied on well established sample supports used in TXRF, PIXE and XRF (Mylar, siliconized quartz, Plexiglas and silicon). In the second part we imaged proteins of different molecular weight, oligomerization state, bound metals and solubility. A partial separation of protein and internal standard was only observed with untreated silicon, suggesting it may not be an adequate support material. Siliconized quartz proved to be the least prone to heterogeneous drying of the sample and yielded the most reliable results.

  9. Decay of 34Mg

    NASA Astrophysics Data System (ADS)

    Chaney, Donlad; Benjamin Luna Collaboration

    2017-09-01

    One of concepts of modern physics that is not understood is the strong nuclear force. One manifestation of this is our lack of understanding of so-called `islands of inversion', which are groups of nuclides which have deformed ground states. It is known that 34Mg is included in this island, and that its decay (34Al) has a mixed ground state configuration. By studying their decays we hoped to discover definitive information about the branching ratios and the half lives of 34Mg and 34Al. In order to accomplish these goals, we studied the gamma radiation from the decays of 34Mg and 34Al. A Magnesium beam was implanted into a strip of mylar tape and transported to the center of an array of scintillators and germanium detectors, which has allowed us to determine the half-lives for the decays, and the branching ratios for the beta decay. My work on this project began with writing scripts to draw histograms with the data, and using those histograms to gather information that would allow me to gate our data on any number of variables and pieces of information. By cutting out bad portions of our data collection runs and gating on the coincidence of beta decays and other gamma rays, I was able to cut out a significant amount background radiation from our data.

  10. An Artificial Turf-Based Surrogate Surface Collector for the ...

    EPA Pesticide Factsheets

    This paper describes the development of a new artificial turf surrogate surface (ATSS) sampler for use in the measurement of mercury (Hg) dry deposition. In contrast to many existing surrogate surface designs, the ATSS utilizes a three-dimensional deposition surface that may more closely mimic the physical structure of many natural surfaces than traditional flat surrogate surface designs (water, filter, greased Mylar film). The ATSS has been designed to overcome several complicating factors that can impact the integrity of samples with other direct measurement approaches by providing a passive system which can be deployed for both short and extended periods of time (days to weeks), and is not contaminated by precipitation and/or invalidated by strong winds. Performance characteristics including collocated precision, in-field procedural and laboratory blanks were evaluated. The results of these performance evaluations included a mean collocated precision of 9%, low blanks (0.8 ng), high extraction efficiency (97%–103%), and a quantitative matrix spike recovery (100%). In recent years, a growing number of intensive field campaigns and routine measurement networks have provided valuable information on the rates of total mercury (Hg) wet deposition in North America (Guentzel et al., 1995; Rea et al., 1996; Dvonch et al., 1999; Landis and Keeler, 2002; Dvonch et al., 2005; Hall et al., 2005; Keeler et al., 2005; Keeler et al., 2006; Butler et al., 2008; Prestbo an

  11. X-ray microbeam stand-alone facility for cultured cells irradiation

    NASA Astrophysics Data System (ADS)

    Bożek, Sebastian; Bielecki, Jakub; Wiecheć, Anna; Lekki, Janusz; Stachura, Zbigniew; Pogoda, Katarzyna; Lipiec, Ewelina; Tkocz, Konrad; Kwiatek, Wojciech M.

    2017-03-01

    The article describes an X-ray microbeam standalone facility dedicated for irradiation of living cultured cells. The article can serve as an advice for such facilities construction, as it begins from engineering details, through mathematical modeling and experimental procedures, ending up with preliminary experimental results and conclusions. The presented system consists of an open type X-ray tube with microfocusing down to about 2 μm, an X-ray focusing system with optical elements arranged in the nested Kirckpatrick-Baez (or Montel) geometry, a sample stand and an optical microscope with a scientific digital CCD camera. For the beam visualisation an X-ray sensitive CCD camera and a spectral detector are used, as well as a scintillator screen combined with the microscope. A method of precise one by one irradiation of previously chosen cells is presented, as well as a fast method of uniform irradiation of a chosen sample area. Mathematical models of beam and cell with calculations of kerma and dose are presented. The experiments on dose-effect relationship, kinetics of DNA double strand breaks repair, as well as micronuclei observation were performed on PC-3 (Prostate Cancer) cultured cells. The cells were seeded and irradiated on Mylar foil, which covered a hole drilled in the Petri dish. DNA lesions were visualised with γ-H2AX marker combined with Alexa Fluor 488 fluorescent dye.

  12. Planetary Geologic Mapping Handbook - 2009

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  13. Geometry effects on cooling in a standing wave cylindrical thermoacousic resonator

    NASA Astrophysics Data System (ADS)

    Mohd-Ghazali, Normah; Ghazali, Ahmad Dairobi; Ali, Irwan Shah; Rahman, Muhammad Aminullah A.

    2012-06-01

    Numerous reports have established the refrigeration applications of thermoacoustic cooling without compressors and refrigerants. Significant cooling effects can be obtained in a thermoacoustic resonator fitted with a heat exchanging stack and operated at resonance frequency. Past studies, however, have hardly referred to the fundamental relationship between resonant frequency and the resonator geometry. This paper reports the thermoacoustic cooling effects at resonance obtained by changing the diameter of the resonator while holding the length constant and vice versa. Experiments were completed at atmospheric pressure with air as the working fluid using a number of pvc tubes having parallel plate stack from Mylar. The temperature difference measured across the stack showed that a volume increase in the working fluid in general increases the temperature gradient for the quarter-and half-wavelength resonators. Doubling the diameter from 30 mm to 60 mm produced the highest temperature difference due to the greater number of stack plates resulting in a higher overall thermoacaoustic cooling. Increasing the resonator length only produced a small increase in temperature gradient since the resonant frequency at operation is only slightly changed. Investigation on the aspect ratio exhibits no influence on the temperature difference across the stack. This study have shown that the resonator length and diameter do affect the temperature difference across the thermoacoustic stack, and further research should be done to consider the contribution of the stack mass on the overall desired thermoacoustic cooling.

  14. Analytical Models for Variable Density Multilayer Insulation Used in Cryogenic Storage

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Hastings, L. J.; Brown, T.

    2001-01-01

    A unique multilayer insulation concept for orbital cryogenic storage was experimentally evaluated at NASA Marshall Space Flight Center (MSFC) using the Multipurpose Hydrogen Test Bed (MHTB). A combination of foam/Multi layer Insulation (MLI) was used. The MLI (45 layers of Double Aluminized Mylar (DAM) with Dacron net spacers) was designed for an on-orbit storage period of 45 days and included several unique features such as: a variable layer density and larger but fewer DAM perforations for venting during ascent to orbit. The focus of this paper is on analytical modeling of the variable density MLI performance during orbital coast periods. The foam/MLI combination model is considered to have five segments. The first segment represents the foam layer. The second, third, and fourth segments represent the three layers of MLI with different layer densities and number of shields. Finally, the last segment is considered to be a shroud that surrounds the last MLI layer. The hot boundary temperature is allowed to vary from 164 K to 305 K. To simulate MLI performance, two approaches are considered. In the first approach, the variable density MLI is modeled layer by layer while in the second approach, a semi-empirical model is applied. Both models account for thermal radiation between shields, gas conduction, and solid conduction through the separator materials. The heat flux values predicted by each approach are compared for different boundary temperatures and MLI systems with 30, 45, 60, and 75 layers.

  15. Bacterial Survival under Extreme UV Radiation: A Comparative Proteomics Study of Rhodobacter sp., Isolated from High Altitude Wetlands in Chile

    PubMed Central

    Pérez, Vilma; Hengst, Martha; Kurte, Lenka; Dorador, Cristina; Jeffrey, Wade H.; Wattiez, Ruddy; Molina, Veronica; Matallana-Surget, Sabine

    2017-01-01

    Salar de Huasco, defined as a polyextreme environment, is a high altitude saline wetland in the Chilean Altiplano (3800 m.a.s.l.), permanently exposed to the highest solar radiation doses registered in the world. We present here the first comparative proteomics study of a photoheterotrophic bacterium, Rhodobacter sp., isolated from this remote and hostile habitat. We developed an innovative experimental approach using different sources of radiation (in situ sunlight and UVB lamps), cut-off filters (Mylar, Lee filters) and a high-throughput, label-free quantitative proteomics method to comprehensively analyze the effect of seven spectral bands on protein regulation. A hierarchical cluster analysis of 40 common proteins revealed that all conditions containing the most damaging UVB radiation induced similar pattern of protein regulation compared with UVA and visible light spectral bands. Moreover, it appeared that the cellular adaptation of Rhodobacter sp. to osmotic stress encountered in the hypersaline environment from which it was originally isolated, might further a higher resistance to damaging UV radiation. Indeed, proteins involved in the synthesis and transport of key osmoprotectants, such as glycine betaine and inositol, were found in very high abundance under UV radiation compared to the dark control, suggesting the function of osmolytes as efficient reactive oxygen scavengers. Our study also revealed a RecA-independent response and a tightly regulated network of protein quality control involving proteases and chaperones to selectively degrade misfolded and/or damaged proteins. PMID:28694800

  16. PIXE analysis of mineral matter in thin sections of human lung

    NASA Astrophysics Data System (ADS)

    Annegarn, H. J.; Pillay, A. E.; Da Vies, J. C. A.; Faure, D.; Sellschop, J. P. F.

    1988-12-01

    It is postulated that insoluble mineral residues in the lungs of deceased miners may provide a quantitative measure of the integrated lifetime dust exposure. For epidemiological surveys rapid instrumental techniques are required to analyse representative samples of lung tissue. Particle-induced X-ray emission (PIXE) has been evaluated for analysis of microtomed slices of wax-embedded lung and lymph node (Hilar gland) tissue from deceased miners. The 50 μm slices, mounted on Mylar backings and placed in a He atmosphere, were irradiated using 3.2 MeV protons. PIXE analysis provided adequate sensitivity for key mineral elements including Si, Cr and Ti. The porous, nonuniform nature of lung tissue made it impossible to measure the tissue mass in the irradiated area, preventing the calculation of mass concentrations. Instead, biological sulphur was used as an internal standard, assuming that the fraction of S in soft, fat-free tissue is constant. Results are presented for lung and lymph node tissue from gold, chrome, copper, platinum and asbestos miners. Si mineral residues in lymph node tissue were found to be concentrated by a factor 50 relative to lung. Cr residues were clearly observed in the chrome miner's lung, but no excess of Cu was present in the copper miner's lung. There is evidence of preferential Si removal relative to Ti. Results warrant further development of PIXE for scanning of large numbers of lung samples prepared in the above manner.

  17. Microgravity Flame Spread in Exploration Atmospheres: Pressure, Oxygen, and Velocity Effects on Opposed and Concurrent Flame Spread

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Ruff, Gary A.; Fletcher, J. Miller

    2008-01-01

    Microgravity tests of flammability and flame spread were performed in a low-speed flow tunnel to simulate spacecraft ventilation flows. Three thin fuels were tested for flammability (Ultem 1000 (General Electric Company), 10 mil film, Nomex (Dupont) HT90-40, and Mylar G (Dupont) and one fuel for flame spread testing (Kimwipes (Kimberly-Clark Worldwide, Inc.). The 1g Upward Limiting Oxygen Index (ULOI) and 1g Maximum Oxygen Concentration (MOC) are found to be greater than those in 0g, by up to 4% oxygen mole fraction, meaning that the fuels burned in 0g at lower oxygen concentrations than they did using the NASA Standard 6001 Test 1 protocol. Flame spread tests with Kimwipes were used to develop correlations that capture the effects of flow velocity, oxygen concentration, and pressure on flame spread rate. These correlations were used to determine that over virtually the entire range of spacecraft atmospheres and flow conditions, the opposed spread is faster, especially for normoxic atmospheres. The correlations were also compared with 1g MOC for various materials as a function of pressure and oxygen. The lines of constant opposed flow agreed best with the 1g MOC trends, which indicates that Test 1 limits are essentially dictated by the critical heat flux for ignition. Further evaluation of these and other materials is continuing to better understand the 0g flammability of materials and its effect on the oxygen margin of safety.

  18. Shear-induced intracellular loading of cells with molecules by controlled microfluidics.

    PubMed

    Hallow, Daniel M; Seeger, Richard A; Kamaev, Pavel P; Prado, Gustavo R; LaPlaca, Michelle C; Prausnitz, Mark R

    2008-03-01

    This study tested the hypothesis that controlled flow through microchannels can cause shear-induced intracellular loading of cells with molecules. The overall goal was to design a simple device to expose cells to fluid shear stress and thereby increase plasma membrane permeability. DU145 prostate cancer cells were exposed to fluid shear stress in the presence of fluorescent cell-impermeant molecules by using a cone-and-plate shearing device or high-velocity flow through microchannels. Using a syringe pump, cell suspensions were flowed through microchannels of 50-300 microm diameter drilled through Mylar sheets using an excimer laser. As quantified by flow cytometry, intracellular uptake and loss of viability correlated with the average shear stress. Optimal results were observed when exposing the cells to high shear stress for short durations in conical channels, which yielded uptake to over one-third of cells while maintaining viability at approximately 80%. This method was capable of loading cells with molecules including calcein (0.62 kDa), large molecule weight dextrans (150-2,000 kDa), and bovine serum albumin (66 kDa). These results supported the hypothesis that shear-induced intracellular uptake could be generated by flow of cell suspensions through microchannels and further led to the design of a simple, inexpensive, and effective device to deliver molecules into cells. Such a device could benefit biological research and the biotechnology industry. Copyright 2007 Wiley Periodicals, Inc.

  19. Shear-induced intracellular loading of cells with molecules by controlled microfluidics

    PubMed Central

    Hallow, Daniel M.; Seeger, Richard A.; Kamaev, Pavel P.; Prado, Gustavo R.; LaPlaca, Michelle C.; Prausnitz, Mark R.

    2010-01-01

    This study tested the hypothesis that controlled flow through microchannels can cause shear-induced intracellular loading of cells with molecules. The overall goal was to design a simple device to expose cells to fluid shear stress and thereby increase plasma membrane permeability. DU145 prostate cancer cells were exposed to fluid shear stress in the presence of fluorescent cell-impermeant molecules by using a cone-and-plate shearing device or high-velocity flow through microchannels. Using a syringe pump, cell suspensions were flowed through microchannels of 50 – 300 μm diameter drilled through Mylar® sheets using an excimer laser. As quantified by flow cytometry, intracellular uptake and loss of viability correlated with the average shear stress. Optimal results were observed when exposing the cells to high shear stress for short durations in conical channels, which yielded uptake to over one third of cells while maintaining viability at approximately 80%. This method was capable of loading cells with molecules including calcein (0.62 kDa), large molecule weight dextrans (150 - 2000 kDa), and bovine serum albumin (66 kDa). These results supported the hypothesis that shear-induced intracellular uptake could be generated by flow of cell suspensions through microchannels and further led to the design of a simple, inexpensive, and effective device to deliver molecules into cells. Such a device could benefit biological research and the biotechnology industry. PMID:17879304

  20. Aerosol Transport to the Greenland Summit Site, June, 2003 to August 2004

    NASA Astrophysics Data System (ADS)

    Cahill, T. A.; Cliff, S. S.; Jimenez-Cruz, M. P.; Portnoff, L.; Perry, K.; McConnell, J.; Burkhart, J.; Bales, R. C.

    2004-12-01

    With the resumption of year-round staffing of the Summit Greenland Environmental Observatory (GEOSummit) in 2003, we were able to sample aerosols year round by size (8 size modes), time (3 hr to 24 hr), and composition (mass, optical attenuation, and elements H, Na to Mo, plus lead) for association with particulate layers in snow, firn and ice. Sampling was accomplished using a 10 L/min slotted 8-stage rotating drum impactor (DELTA 8 DRUM, http://delta.ucdavis.edu)in the clean sector 0.5 km upwind from the main camp pollution sources. The air intake was approximately 2m above the snow surface. The rotation rate of the DRUM was slowed to 0.5 mm/day, allowing continuous sampling for 48 weeks with 12-hr time resolution on a single set of lightly greased 480 ?g/cm2 Mylar substrates. Early results show transport of relatively coarse (12 to 5 ?m aerodynamic diameter) soil aerosols to the site in spring, 2003, in well -defined plumes of 1- to 2-day duration. Trajectory analysis shows potential Asian sources. Sulfur-containing aerosols, also seen in plumes of short duration, occur in two size modes, a typical accumulation mode aerosol (0.75?0.34 ?m) and a very fine aerosol mode ( 0.34?0.09 ?m), the latter likely stratospheric in origin. We wish to acknowledge the excellent on-site support of the GEOSummit staff, including M. Lewis, R. Abbott, B. Torrison, and K. Hess, and T. Wood.

  1. Evaluating Thin Compression Paddles for Mammographically Compatible Ultrasound

    PubMed Central

    Booi, Rebecca C.; Krücker, Jochen F.; Goodsitt, Mitchell M.; O’Donnell, Matthew; Kapur, Ajay; LeCarpentier, Gerald L.; Roubidoux, Marilyn A.; Fowlkes, J. Brian; Carson, Paul L.

    2007-01-01

    We are developing a combined digital mammography/3D ultrasound system to improve detection and/or characterization of breast lesions. Ultrasound scanning through a mammographic paddle could significantly reduce signal level, degrade beam focusing, and create reverberations. Thus, appropriate paddle choice is essential for accurate sonographic lesion detection and assessment with this system. In this study, we characterized ultrasound image quality through paddles of varying materials (lexan, polyurethane, TPX, mylar) and thicknesses (0.25–2.5 mm). Analytical experiments focused on lexan and TPX, which preliminary results demonstrated were most competitive. Spatial and contrast resolution, sidelobe and range lobe levels, contrast and signal strength were compared with no-paddle images. When the beamforming of the system was corrected to account for imaging through the paddle, the TPX 2.5 mm paddle performed the best. Test objects imaged through this paddle demonstrated ≤ 15% reduction in spatial resolution, ≤ 7.5 dB signal loss, ≤ 3 dB contrast loss, and range lobe levels ≥ 35 dB below signal maximum over 4 cm. TPX paddles < 2.5 mm could also be used with this system, depending on imaging goals. In 10 human subjects with cysts, small CNR losses were observed but were determined to be statistically insignificant. Radiologists concluded that 75% of cysts in through-paddle scans were at least as detectable as in their corresponding direct-contact scans. (Email: rbooi@umich.edu) PMID:17280765

  2. Mutation induction by charged particles of defined linear energy transfer.

    PubMed

    Hei, T K; Chen, D J; Brenner, D J; Hall, E J

    1988-07-01

    The mutagenic potential of charged particles of defined linear energy transfer (LET) was assessed using the hypoxanthine-guanine phosphoribosyl transferase locus (HGPRT) in primary human fibroblasts. Exponentially growing cultures of early passaged fibroblasts were grown as monolayers on thin mylar sheets and were irradiated with accelerated protons, deuterons or helium-3 ions. The mutation rates were compared with those generated by 137Cs gamma-rays. LET values for charged particles accelerated at the Radiological Research Accelerator Facility, using the track segment mode, ranged from 10 to 150 keV/micron. After irradiation, cells were trypsinized, subcultured and assayed for both cytotoxicity and 6-thioguanine resistance. For gamma-rays, and for the charged particles of lower LET, the dose-response curves for cell survival were characterized by a marked initial shoulder, but approximated to an exponential function of dose for higher LETs. Mutation frequencies, likewise, showed a direct correlation to LET over the dose range examined. Relative biological effectiveness (RBE) for mutagenesis, based on the initial slopes of the dose-response curves, ranged from 1.30 for 10 keV/micron protons to 9.40 for 150 keV/micron helium-3 ions. Results of the present studies indicate that high-LET radiations, apart from being efficient inducers of cell lethality, are even more efficient in mutation induction as compared to low-LET ionizing radiation. These data are consistent with results previously obtained with both rodent and human fibroblast cell lines.

  3. A Drift Chamber to Measure Charged Particles at COMPASS-II

    NASA Astrophysics Data System (ADS)

    Heitz, Robert; Compass Collaboration

    2013-10-01

    A new drift chamber (DC05) will be constructed to replace two tracking detector stations based on straw tubes, ST02 and ST03 in the COMPASS spectrometer. DC05 uses the designs from DC04, a previous drift chamber designed at CEA-Saclay, France, but adds the addition of more wires for improved acceptance. In addition to more wires DC05 will also change its front end electronics using a new pre-amplifier-discriminator chip (CMAD). DC05 consists of 8 layers of anode planes and 21 layers of G-10 material frames carrying cathode planes and gas windows. The wires are orientated with two layers in the vertical x-direction, two layers in the horizontal y-direction, two layers offset +10 deg of the vertical x-direction, and two layers offset -10 deg of the vertical x-direction. The wires in parallel directions are offset half a pitch to resolve left-right ambiguities. The purpose for different wire orientations is to reconstruct the 3D space particle trajectory to fit a particle track. Each layer of wires is covered on the top and bottom by a cathode plane of carbon coated mylar. All these layers are sandwiched between two steel stiffening frames for support and noise reduction. A future drift chamber, DC06, is also being designed based off of DC05. Research funded by NSF-PHY-12-05-671 Medium Energy Nuclear Physics.

  4. Atomic oxygen beam source for erosion simulation

    NASA Technical Reports Server (NTRS)

    Cuthbertson, J. W.; Langer, W. D.; Motley, R. W.; Vaughn, J. A.

    1991-01-01

    A device for the production of low energy (3 to 10 eV) neutral atomic beams for surface modification studies is described that reproduces the flux of atomic oxygen in low Earth orbit. The beam is produced by the acceleration of plasma ions onto a negatively biased plate of high-Z metal; the ions are neutralized and reflected by the surface, retaining some fraction of their incident kinetic energy, forming a beam of atoms. The plasma is generated by a coaxial RF exciter which produces a magnetically-confined (4 kG) plasma column. At the end of the column, ions fall through the sheath to the plate, whose bias relative to the plasma can be varied to adjust the beam energy. The source provides a neutral flux approximately equal to 5 x 10(exp 16)/sq cm at a distance of 9 cm and a fluence approximately equal to 10(exp 20)/sq cm in five hours. The composition and energy of inert gas beams was diagnosed using a mass spectometer/energy analyzer. The energy spectra of the beams demonstrate energies in the range 5 to 15 eV, and qualitatively show expected dependences upon incident and reflecting atom species and potential drop. Samples of carbon film, carbon-based paint, Kapton, mylar, and teflon exposed to atomic O beams show erosion quite similar to that observed in orbit on the space shuttle.

  5. Active control of spectral detail radiated by an air-loaded impacted membrane

    NASA Astrophysics Data System (ADS)

    Rollow, J. Douglas, IV

    An active control system is developed to independently operate on the vibration of individual modes of an air-loaded drum head, resulting in changes in the acoustic field radiated from the structure. The timbre of the system is investigated, and techniques for changing the characteristic frequencies by means of the control system are proposed. A feedforward control system is constructed for empirical investigation of this approach, creating a musical instrument which can produce a variety of sounds not available with strictly mechanical systems. The work is motivated by applications for actively controlled structures, active control of sound quality, and musical acoustics. The instrument consists of a Mylar timpano head stretched over an enclosure which has been outfitted with electroacoustic drivers. Sensors are arranged on the surface of the drum head and combined to measure modal vibration, and the array of drivers allows independent control of these modes. A signal processor is used to form modal control filters which can modify the loading of each mode, changing the time-dependent and spectral characteristics, and therefore the timbre, of the radiated sound. A theoretical formulation of active control of structural vibration by means of fluid-coupled actuators is expressed, and computational solutions show the effects of fluid loading and the radiated field. Experimental results with the new instrument are shown, with implementations of the control system providing a demonstrated degree of control, and illustrating several limitations of such systems.

  6. An all solid-state, rolled strip pulse forming line with low impedance and compact structure

    NASA Astrophysics Data System (ADS)

    Yang, Shi; Zhong, Hui-Huang; Qian, Bao-Liang; Yang, Han-Wu

    2010-04-01

    An all solid-state and compact pulsed strip pulse forming line (PFL) is investigated both theoretically and experimentally. The electromagnetic field distribution and the pulse formation in the strip PFL are analyzed numerically. Based on the theoretical analysis and numerical results, a rolled strip PFL with output voltage of 20 kV, pulse duration of 230 ns, and characteristic impedance of 0.5 Ω was designed and manufactured. We use the Mylar film and copper as the dielectric and conductor of the strip PFL. The dimension of the strip line is 23 000×400×1.6 mm3 in the case in which the strip line is unrolled, and the strip line is finally rolled into a cylinder of diameter of 311 mm for the experiment. The dimension and weight are about ten times smaller than those of traditional dielectric (oil or pure water) PFL with the same electrical parameters. Two experiments were performed using the strip line. One was for a transmission line experiment, and the other was for a PFL experiment. In the experiment of transmission line, the transmission time of the voltage signal was 115 ns, and the signal had almost no distortion, which verified the design. In the PFL experiment, results gave a 17.8 kV, 270 ns (full width at half maximum) voltage pulse which was a quasisquare wave on the water load of 0.5 Ω. The current going through the load is about 35.6 kA.

  7. The Explorer XVI Micrometeoroid Satellite Description and Preliminary Results for the Period December 16, 1962 Through January 13, 1963

    NASA Technical Reports Server (NTRS)

    Hastings, E. C., Jr.

    1963-01-01

    Explorer XVI (1962 Beta Chi l) data that have been analyzed for the period between December 16, 1962 (launch date), and January 13, 1963, indicate that the orbit achieved was close to the predicted orbit. Ten punctures of annealed 0.001-inch-thick beryllium-copper have been used to determine a puncture rate of 0.035 per square foot per day in this material. One puncture of a 0.002-inch-thick sample has also occurred in this period. A tentative evaluation of the puncture rate for the 0.001-inch beryllium-copper in terms of the rate for an equivalent thickness of aluminum has been attempted, and the result has been compared with two different puncture rate estimates. The three micrometeoroid impact detecting systems are operating. Counting rates for the high- and low-sensitivity systems were close to anticipated values near the end of one week. Two of the 0.001-inch-steel-covered grid detectors have been punctured, but none of the 0.003- or 0.006-inch-steel-covered grid detectors have indicated punctures. One of the cadmium sulfide cells indicates three punctures of the 0.00025-inch Mylar cover. None of the 0.002- or 0.003-inch-copper-wire cards have indicated a break in the period covered. Telemetry temperatures were initially higher than expected although they remained well within operating limits. Sensor temperatures have remained within the expected bounds.

  8. Laser-driven proton acceleration with nanostructured targets

    NASA Astrophysics Data System (ADS)

    Vallières, Simon; Morabito, Antonia; Veltri, Simona; Scisciò, Massimiliano; Barberio, Marianna; Antici, Patrizio

    2017-05-01

    Laser-driven particle acceleration has become a growing field of research, in particular for its numerous interesting applications. One of the most common proton acceleration mechanism that is obtained on typically available multi-hundred TW laser systems is based on the irradiation of thin solid metal foils by the intense laser, generating the proton acceleration on its rear target surface. The efficiency of this acceleration scheme strongly depends on the type of target used. Improving the acceleration mechanism, i.e. enhancing parameters such as maximum proton energy, laminarity, efficiency, monocromaticy, and number of accelerated particles, is heavily depending on the laser-to-target absorption, where obviously cheap and easy to implement targets are best candidates. In this work, we present nanostructured targets that are able to increase the absorption of light compared to what can be achieved with a classical solid (non-nanostructured) target and are produced with a method that is much simpler and cheaper than conventional lithographic processes. Several layers of gold nanoparticles were deposited on solid targets (aluminum, Mylar and multiwalled carbon nanotube buckypaper) and allow for an increased photon absorption. This ultimately permits to increase the laser-to-particle energy transfer, and thus to enhance the yield in proton production. Experimental characterization results on the nanostructured films are presented (UV-Vis spectroscopy and AFM), along with preliminary experimental proton spectra obtained at the JLF-TITAN laser facility at LLNL.

  9. Hierarchical opal grating films prepared by slide coating of colloidal dispersions in binary liquid media.

    PubMed

    Lee, Wonmok; Kim, Seulgi; Kim, Seulki; Kim, Jin-Ho; Lee, Hyunjung

    2015-02-15

    There are active researches on well ordered opal films due to their possible applications to various photonic devices. A recently developed slide coating method is capable of rapid fabrication of large area opal films from aqueous colloidal dispersion. In the current study, the slide coating of polystyrene colloidal dispersions in water/i-propanol (IPA) binary media is investigated. Under high IPA content in a dispersing medium, resulting opal film showed a deterioration of long range order, as well as a decreased film thickness due to dilution effect. From the binary liquid, the dried opal films exhibited the unprecedented topological groove patterns with varying periodic distances as a function of alcohol contents in the media. The groove patterns were consisted of the hierarchical structures of the terraced opal layers with periodic thickness variations. The origin of the groove patterns was attributed to a shear-induced periodic instability of colloidal concentration within a thin channel during the coating process which was directly converted to a groove patterns in a resulting opal film due to rapid evaporation of liquid. The groove periods of opal films were in the range of 50-500 μm, and the thickness differences between peak and valley of the groove were significantly large enough to be optically distinguishable, such that the coated films can be utilized as the optical grating film to disperse infra-red light. Utilizing a lowered hydrophilicity of water/IPA dispersant, an opal film could be successfully coated on a flexible Mylar film without significant dewetting problem. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Defects detection and non-destructive testing (NDT) techniques in paintings: a unified approach through measurements of deformation

    NASA Astrophysics Data System (ADS)

    Sfarra, S.; Ibarra-Castanedo, C.; Ambrosini, D.; Paoletti, D.; Bendada, A.; Maldague, X.

    2013-05-01

    The present study is focused on two topics. The first one is a mathematical model, useful to understand the deformation of paintings, which uses straining devices, adjustable and micrometrically controlled via a pin supported in a hollow cylinder. Strains were analyzed by holographic interferometry (HI) technique using an appropriate frame. The second one concerns the need to improve the conservator's knowledge about the defect's detection and defect's propagation in acrylic painting characterized of underdrawings and pentimenti. To fulfill this task, a sample was manufactured to clarify the several uncertainties inherent the influence of external factors on their conservation. Subsurface anomalies were also retrieved by near-infrared reflectography (NIRR) and transmittography (NIRT) techniques, using LED lamps and several narrow-band filters mounted on a CMOS camera, working at different wavelengths each other and in combination with UV imaging. In addition, a sponge glued on the rear side of the canvas was impregnated with a precise amount of water by means of a syringe to verify the "stretcher effect" by the digital speckle photography (DSP) technique (using MatPIV). The same effect also affects the sharp transition of the canvas at the stretcher's edge. In this case, a possible mechanism is a direct mechanical contact between stretcher and canvas that was investigated by HI technique. Finally, advanced algorithms applied to the square heating thermography (SHT) data were very useful to detect three Mylar® inserts simulating different type of defects. These fabricated defects were also identified by optical techniques, while the visual inspection was the only one capable of detecting a biological damage.

  11. Parabolic trough solar collector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, J.H.

    1985-01-15

    A parabolic trough solar collector using reflective flexible materials is disclosed. A parabolic cylinder mirror is formed by stretching a flexible reflecting material between two parabolic end formers. The formers are held in place by a spreader bar. The resulting mirror is made to track the sun, focusing the sun's rays on a receiver tube. The ends of the reflective material are attached by glue or other suitable means to attachment straps. The flexible mirror is then attached to the formers. The attachment straps are mounted in brackets and tensioned by tightening associated nuts on the ends of the attachmentmore » straps. This serves both to stretch the flexible material orthogonal to the receiver tube and to hold the flexible material on the formers. The flexible mirror is stretched in the direction of the receiver tube by adjusting tensioning nuts. If materials with matching coefficients of expansion for temperature and humidity have been chosen, for example, aluminum foil for the flexible mirror and aluminum for the spreader bar, the mirror will stay in adjustment through temperature and humidity excursions. With dissimilar materials, e.g., aluminized mylar or other polymeric material and steel, spacers can be replaced with springs to maintain proper adjustment. The spreader bar cross section is chosen to be in the optic shadow of the receiver tube when tracking and not to intercept rays of the sun that would otherwise reach the receiver tube. This invention can also be used to make non-parabolic mirrors for other apparatus and applications.« less

  12. Determining the charged fractions of 218Po and 214Pb using an environmental gamma-ray and Rn detector.

    PubMed

    Maiello, M L; Harley, N H

    1989-07-01

    The rate of 218Po and 214Pb atoms collected electrostatically inside an environmental gamma-ray and 222Rn detector (EGARD) was measured. These measurements were used to directly infer the charged fraction of 218Po and to calculate the charged fraction of 214Pb. Thirty-two percent of the 218Po was collected electrostatically using approximately -1500 V on a 2.54 cm diameter Mylar covered disc inside a vented A1 EGARD of 1 L volume. About 91% of the 214Pb is collected electrostatically under the same conditions. The measurements were performed in a calibrated 222Rn test chamber at the Environmental Measurements Laboratory (EML) using the Thomas alpha-counting method with 222Rn concentrations averaging about 4300 Bq m-3. The atomic collection rates were used with other measured quantities to calculate the thermoluminescent dosimeter (TLD) signal acquired from EGARD for exposure to 1 Bq m-3 of 222Rn. The calculations account for 222Rn progeny collection using a Teflon electret and alpha and beta detection using TLDs inside EGARD. The measured quantities include the energies of 218Po and 214Po alpha-particles degraded by passage through the 25 microns thick electret. The TLD responses to these alpha- and beta-particles with an average energy approaching that obtained from the combined spectra of 214Pb and 214Bi were also measured. The calculated calibration factor is within 30% of the value obtained by exposing EGARD to a known concentration of 222Rn. This result supports our charged fraction estimates for 218Po and 214Pb.

  13. Combination of synchrotron radiation-based Fourier transforms infrared microspectroscopy and confocal laser scanning microscopy to understand spatial heterogeneity in aquatic multispecies biofilms.

    PubMed

    Reuben, Sheela; Banas, Krzysztof; Banas, Agnieszka; Swarup, Sanjay

    2014-11-01

    Understanding the spatial heterogeneity within environmental biofilms can provide an insight into compartmentalization of different functions in biofilm communities. We used a non-destructive and label-free method by combining Synchrotron Radiation-based Fourier Transform Infrared Microspectroscopy (SR-FTIR) with Confocal Laser Scanning Microscopy (CLSM) to distinguish the spatial chemical changes within multispecies biofilms grown from natural storm waters in flow cells. Among the different surfaces tested for biofilm growth and optimal imaging, mylar membranes were most suited and it enabled successful spatial infrared imaging of natural biofilms for obtaining reliable and interpretable FTIR spectra. Time series analysis of biofilm growth showed that influx of water during biofilm growth, results in significant changes in biofilm formation. Early biofilms showed active nutrient acquisition and desiccation tolerance mechanisms corresponding with accumulation of secreted proteins. Statistical approach used for the evaluation of chemical spectra allowed for clustering and classification of various regions of the biofilm. Microheterogeneity was observed in the polymeric components of the biofilm matrix, including cellulose, glycocalyx and dextran-like molecules. Fructan and glycan-rich regions were distinguishable and glycocalyx was abundant in the strongly adhering peripheral regions of biofilms. Inner core showed coexistence of oxygen dimers and ferrihydrite that will likely support growth of Fe (II)-oxidising bacteria. The combined SR-FTIR microspectroscopy and CSLM approach for complex natural biofilms described here will be useful both in understanding heterogeneity of matrix components and in correlating functions of juxtaposed microbial species in complex natural biofilms with physicochemical microenvironment to which they are exposed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Acceptance Testing of Thermoluminescent Dosimeter Holders.

    PubMed

    Romanyukha, Alexander; Grypp, Matthew D; Sharp, Thad J; DiRito, John N; Nelson, Martin E; Mavrogianis, Stanley T; Torres, Jeancarlo; Benevides, Luis A

    2018-05-01

    The U.S. Navy uses the Harshaw 8840/8841 dosimetric (DT-702/PD) system, which employs LiF:Mg,Cu,P thermoluminescent dosimeters (TLDs), developed and produced by Thermo Fisher Scientific (TFS). The dosimeter consists of four LiF:Mg,Cu,P elements, mounted in Teflon® on an aluminum card and placed in a plastic holder. The holder contains a unique filter for each chip made of copper, acrylonitrile butadiene styrene (ABS), Mylar®, and tin. For accredited dosimetry labs, the ISO/IEC 17025:2005(E) requires an acceptance procedure for all new equipment. The Naval Dosimetry Center (NDC) has developed and tested a new non-destructive procedure, which enables the verification and the evaluation of embedded filters in the holders. Testing is based on attenuation measurements of low-energy radiation transmitted through each filter in a representative sample group of holders to verify that the correct filter type and thickness are present. The measured response ratios are then compared with the expected response ratios. In addition, each element's measured response is compared to the mean response of the group. The test was designed and tested to identify significant nonconformities, such as missing copper or tin filters, double copper or double tin filters, or other nonconformities that may impact TLD response ratios. During the implementation of the developed procedure, testing revealed a holder with a double copper filter. To complete the evaluation, the impact of the nonconformities on proficiency testing was examined. The evaluation revealed failures in proficiency testing categories III and IV when these dosimeters were irradiated to high-energy betas.

  15. The thin-wall tube drift chamber operating in vacuum (prototype)

    NASA Astrophysics Data System (ADS)

    Alexeev, G. D.; Glonti, L. N.; Kekelidze, V. D.; Malyshev, V. L.; Piskun, A. A.; Potrbenikov, Yu. K.; Rodionov, V. K.; Samsonov, V. A.; Tokmenin, V. V.; Shkarovskiy, S. N.

    2013-08-01

    The goal of this work was to design drift tubes and a chamber operating in vacuum, and to develop technologies for tubes independent assembly and mounting in the chamber. These design and technology were tested on the prototype. The main features of the chamber are the following: the drift tubes are made of flexible mylar film (wall thickness 36 μm, diameter 9.80 mm, length 2160 mm) using ultrasonic welding along the generatrix; the welding device and methods were developed at JINR. Drift tubes with end plugs, anode wires and spacers were completely assembled outside the chamber. "Self-centering" spacers and bushes were used for precise setting of the anode wires and tubes. The assembled tubes were sealed with O-rings in their seats in the chamber which simplified the chamber assembling. Moreover the tube assembly and the chamber manufacture can be performed independently and in parallel; this sufficiently reduces the total time of chamber manufacture and assembling, its cost and allows tubes to be tested outside the chamber. The technology of independent tube assembling is suitable for a chamber of any shape but a round chamber is preferable for operation in vacuum. Single channel amplifier-discriminator boards which are more stable against cross talks were used for testing the tubes. Independently assembled tubes were mounted into the chamber prototype and its performance characteristic measured under the vacuum conditions. The results showed that both the structure and the tubes themselves normally operate. They are suitable for making a full-scale drift chamber for vacuum.

  16. Hydrogen analysis depth calibration by CORTEO Monte-Carlo simulation

    NASA Astrophysics Data System (ADS)

    Moser, M.; Reichart, P.; Bergmaier, A.; Greubel, C.; Schiettekatte, F.; Dollinger, G.

    2016-03-01

    Hydrogen imaging with sub-μm lateral resolution and sub-ppm sensitivity has become possible with coincident proton-proton (pp) scattering analysis (Reichart et al., 2004). Depth information is evaluated from the energy sum signal with respect to energy loss of both protons on their path through the sample. In first order, there is no angular dependence due to elastic scattering. In second order, a path length effect due to different energy loss on the paths of the protons causes an angular dependence of the energy sum. Therefore, the energy sum signal has to be de-convoluted depending on the matrix composition, i.e. mainly the atomic number Z, in order to get a depth calibrated hydrogen profile. Although the path effect can be calculated analytically in first order, multiple scattering effects lead to significant deviations in the depth profile. Hence, in our new approach, we use the CORTEO Monte-Carlo code (Schiettekatte, 2008) in order to calculate the depth of a coincidence event depending on the scattering angle. The code takes individual detector geometry into account. In this paper we show, that the code correctly reproduces measured pp-scattering energy spectra with roughness effects considered. With more than 100 μm thick Mylar-sandwich targets (Si, Fe, Ge) we demonstrate the deconvolution of the energy spectra on our current multistrip detector at the microprobe SNAKE at the Munich tandem accelerator lab. As a result, hydrogen profiles can be evaluated with an accuracy in depth of about 1% of the sample thickness.

  17. Broadband attenuation and nonlinear propagation in biological fluids: an experimental facility and measurements.

    PubMed

    Verma, Prashant K; Humphrey, Victor F; Duck, Francis A

    2005-12-01

    The design and construction of a versatile experimental facility for making measurements of the frequency-dependence of attenuation coefficient (over the range 1 MHz to 25 MHz) and nonlinear propagation in samples of biological fluids is described. The main feature of the facility is the ability to perform all of the measurements on the same sample of fluid within a short period of time and under temperature control. In particular, the facility allows the axial development of nonlinear waveform distortion to be measured with a wideband bilaminar polyvinylidene difluoride membrane hydrophone to study nonlinear propagation in biological fluids. The system uses a variable length bellows to contain the fluid, with transparent Mylar end-windows to couple the acoustic field into the fluid. Example results for the frequency-dependence of attenuation of Dow Corning 200/350 silicone fluid, used as a standard fluid, are presented and shown to be in good agreement with alternative measurements. Measurements of finite amplitude propagation in amniotic fluid, urine and 4.5% human albumin solutions at physiological temperature (37 degrees C) are presented and compared with theoretical predictions using existing models. The measurements were made using a 2.25-MHz single-element transducer coupled to a polymethyl methacrylate lens with a focal amplitude gain of 12 in water. The transducer was driven with an eight-cycle tone burst at source pressures up to 0.137 MPa. In general, given an accurate knowledge of the medium parameters and source conditions, the agreement with theoretical prediction is good for the first five harmonics.

  18. Compressible pulsating convection through regular and random porous media: the thermoacoustic case

    NASA Astrophysics Data System (ADS)

    Tasnim, Syeda Humaira; Mahmud, Shohel; Fraser, Roydon Andrew

    2012-02-01

    The effects of material, geometry, length and position of the porous channels on energy transfer in air-filled enclosures carrying a compressible pulsating wave are investigated. The pulsating fluid motion is created by an acoustic driver in a resonant chamber. Three different porous materials (Corning Celcor, Reticulated Vitreous Carbon (RVC), and Mylar plastic), three different geometries (square, open foam, and circular cross-section), six different lengths, " L" (varying between 1 and 6.5 cm, L = 0.01-0.068 λ, where λ is the wavelength of the fundamental acoustic mode), and eight different positions (hot end of the channel, varying between 0.5 and 8 cm) of the channels from the pressure anti-node is experimentally measured. The surface temperature distribution on the channel wall and temperature difference generated across the channel walls are measured while energy flow along the channel walls is calculated analytically. The experimental results are compared with a 1-D numerical code and found excellent agreement. The material, geometry, length, and position of the porous channel strongly affect the energy interactions between the porous channel and the working fluid. The temperature difference generated across the porous RVC channel increases as the porosity increases form 20 to 80 PPI; but decreases if the porosity increases further. Corning Celcor shows improved temperature difference generated across the channel as the length of the channel increases; but then decreases if the length is further increased. The results of this study are applicable to the design of thermoacoustic devices.

  19. In vitro biofilm formation on resin-based composites after different finishing and polishing procedures.

    PubMed

    Cazzaniga, Gloria; Ottobelli, Marco; Ionescu, Andrei C; Paolone, Gaetano; Gherlone, Enrico; Ferracane, Jack L; Brambilla, Eugenio

    2017-12-01

    To evaluate the influence of surface treatments of different resin-based composites (RBCs) on S. mutans biofilm formation. 4 RBCs (microhybrid, nanohybrid, nanofilled, bulk-filled) and 6 finishing-polishing (F/P) procedures (open-air light-curing, light-curing against Mylar strip, aluminum oxide discs, one-step rubber point, diamond bur, multi-blade carbide bur) were evaluated. Surface roughness (SR) (n=5/group), gloss (n=5/group), scanning electron microscopy morphological analysis (SEM), energy-dispersive X-ray spectrometry (EDS) (n=3/group), and S. mutans biofilm formation (n=16/group) were assessed. EDS analysis was repeated after the biofilm assay. A morphological evaluation of S. mutans biofilm was also performed using confocal laser-scanning microscopy (CLSM) (n=2/group). The data were analyzed using Wilcoxon (SR, gloss) and two-way ANOVA with Tukey as post-hoc tests (EDS, biofilm formation). F/P procedures as well as RBCs significantly influenced SR and gloss. While F/P procedures did not significantly influence S. mutans biofilm formation, a significant influence of RBCs on the same parameter was found. Different RBCs showed different surface elemental composition. Both F/P procedures and S. mutans biofilm formation significantly modified this parameter. The tested F/P procedures significantly influenced RBCs surface properties but did not significantly affect S. mutans biofilm formation. The significant influence of the different RBCs tested on S. mutans biofilm formation suggests that material characteristics and composition play a greater role than SR. F/P procedures of RBCs may unexpectedly play a minor role compared to that of the restoration material itself in bacterial colonization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Preliminary Evaluation of Commercial Off the Shelf (COTS) Packing Materials for Flight Medication Dispenser (FMD) Technology Development

    NASA Technical Reports Server (NTRS)

    Du, Brian; Daniels, Vernie; Crady, Camille; Putcha, Lakshmi

    2010-01-01

    With the advent of longer duration space missions, pharmaceutical use in space has increased. During the first 33 space shuttle missions, crew members took more than 500 individual doses of 31 different medications . Anecdotal reports from crew members described medications as generally "well tolerated" and "effective". However, reported use of increased medication doses and discrepancies in ground vs. flight efficacy may result from reduced potency or altered bioavailability due to changes in chemical and/or physical parameters of pharmaceutical stability. Based on preliminary results from a ground-based irradiation and an inflight study on pharmaceutical stability, three susceptible medications, Amoxicillin/Clavulanate and Sulfamethoxazole/trimethoprim antibiotics tablets and promethazine (PMZ), an antihistamine were selected for testing using two types of Oliver-Tolas bags, TPC-1475(Clear) and TPF-0599B (Foil) for radiation Shielding effectiveness. The material composition of the bags included aluminum coated Mylar sheathing coated with multifunctional nanocomposities based on polyethylene with dispersed boron-rich nanophases. Two bags of each medication were irradiated for different time intervals with 14.6 rad/min to achieve 0.1 Gy, 1 Gy and 10 Gy of cumulative radiation dose. Active pharmaceutical content (API) in each medication was determined and results analyzed. No significant difference in API content was observed between control and irradiated samples for both antibiotic tablets suggesting both types of bags may offer protection against gamma radiation; results with PMZ were inconclusive. These preliminary results suggest that Oliver-Tolas TPL-1475 and TPF-0599B materials may possess characteristics suitable for protection against ionizing radiation and can be considered for designing and further testing of FMD technology.

  1. Countermeasures to the US National Missile Defense

    NASA Astrophysics Data System (ADS)

    Gronlund, Lisbeth

    2001-04-01

    One of the key technical questions about national missile defenses is whether they can be expected to work under real-world conditions if the attacker takes steps to defeat the defense. This talk will discuss steps that an emerging missile state could take to confuse, overwhelm, or otherwise defeat the planned US NMD system developed by the Clinton administration. It will consider three such ``countermeasures" that would be within the technical capability of a state that could develop and deploy a long-range missile capable of reaching the United States, which is the threat the NMD system is intended to defend against. The talk will be based on the April 2000 report ``Countermeasures: A Technical Evaluation of the Operational Effectiveness of the Planned US National Missile Defense System," which was co-authored by the speaker and 10 other physicists and engineers. Although the talk will refer to the ground-based NMD system under development, the conclusions are applicable to any mid-course NMD system using hit-to-kill infrared-homing interceptors, regardless of their basing mode. The three countermeasures considered are: (1) biological weapons deployed on 100 or more small bomblets, or submunitions, that would be released shortly after the boost phase; (2) nuclear warheads with anti-simulation balloon decoys, in which the attacker disguises the warhead by enclosing it in an aluminum-coated mylar balloon and releasing it along with a large number of otherwise similar but empty balloons; and (3) nuclear warheads with cooled shrouds, in which the attacker foils the kill vehicle's homing process by covering each nuclear warhead with a double-walled cone containing liquid nitrogen.

  2. Influence of ozone on induced resistance in soybean to the Mexican bean beetle (Coleoptera: Coccinellidae)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Hengchen; Kogan, M.; Endress, A.G.

    The influence of ozone (O{sub 3}) on induced resistance in soybean, Glycine max (L.) Merr., cv. Williams 82, was investigated. Feeding by larval soybean looper, Pseudoplusia includens (Walker), was used to induce resistance, and the feeding preference of the Mexican bean beetle, Epilachna varivetis Mulsant, was used to indicate induced resistance. Greenhouse grown soybean plants at the V9 growth stage (eight open trifoliolates) were used in all experiments. One day following feeding injury by the soybean looper, the injured plants and the uninjured controls were exposed to three concentrations of ozone in transparent mylar chambers; level in ambient air (aboutmore » 0.025 ppm), 0.06 ppm, or 0.1 ppm. Plants were exposed for 5 h a day for a period of 2-4 d. Ozone exposure at the levels used in this study produced no visible injuries to leaves. Low doses (up to 4-d-exposure to 0.06 ppm or 2-d exposure to 0.1 ppm) of ozone overrode the resistance in soybean that had been induced by the feeding of soybean looper larvae. Higher doses (3- or 4-d exposure to 0.1 ppm) of ozone actually resulted in a greater acceptability by the Mexican bean beetle of plants injured by the soybean looper than of uninjured plants. Doses of ozone used in these experiments did not significantly alter the feeding preference of the Mexican bean beetle for the uninjured plants. Because ozone pollution and herbivore injury are commonly experienced by plants in nature, the results of this study add another perspective to insect-plant interactions.« less

  3. Narrow Energy Spread Protons and Ions from High-Intensity, High-Contrast Laser Solid Target Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dollar, Franklin; Matsuoka, Takeshi; McGuffey, Christopher

    2010-11-04

    Recent simulations show that an idealized, high intensity, short pulse laser can generate quasi-monoenergetic proton beams with energies over 100 MeV in an interaction with a thin film. However, most short pulse laser facilities with sufficient intensity have difficulty controlling the nanosecond and picosecond contrast necessary to realize such a regime. Experiments were performed to investigate proton and ion acceleration from a high contrast, short pulse laser by employing dual plasma mirrors along with a deformable mirror at the HERCULES laser facility at the Center for Ultrafast Optical Sciences, University of Michigan. Plasma mirrors were characterized, allowing a 50% throughputmore » with an intensity contrast increase of 105. The focal spot quality was also exceptional, showing a 1.1 micron full width at half maximum (FWHM) focal diameter. Experiments were done using temporally cleaned 30 TW, 32 fs pulses to achieve an intensity of up to 10{sup 21} Wcm{sup -2} on Si{sub 3}N{sub 4} and Mylar targets with thicknesses ranging 50 nm to 13 microns. Proton beams with energy spreads below 2 MeV were observed from all thicknesses, peaking with energies up to 10.3 MeV and an energy spread of 0.8 MeV. Similar narrow energy spreads were observed for oxygen, nitrogen, and carbon at the silicon nitride thickness of 50 nm with energies up to 24 MeV with an energy spread of 3 MeV, whereas the energy spread is greatly increased at a larger thickness. Maximum energies were confirmed with CR39 track detectors, while a Thomson ion spectrometer was used to gauge the monoenergetic nature of the beam.« less

  4. High Performance Piezoelectric Thin Films for Shape Control in Large Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Neurgaonkar, R. R.; Nelson, J. G.

    1999-01-01

    The objective of this research and development program was to develop PbZr(1-x)Ti(x)O3 (PZT) and Pb(1-x)Ba(x)Nb2O6 (PBN) materials with large piezoelectric response which are suitable for shape control in large inflatable structures. Two approaches were to be considered: (1) direct deposition of PZT and PBN films on flexible plastic or thin metal foil substrates, and (2) deposition on Si followed by fabrication of hybrid structures on mylar or kapton. Testing in shape control concepts was carried out at JPL and based on their results, the required modifications were made in the final film compositions and deposition techniques. The program objective was to identify and then optimize piezoelectric materials for NASA shape control applications. This involved the bulk piezoelectric and photovoltaic responses and the compatibility of the thin films with appropriate substrate structures. Within the PZT system, Rockwell has achieved the highest reported piezoelectric coefficient (d(sub 33) greater than 100 pC/N) of any ceramic composition. We used this experience in piezoelectric technology to establish compositions that can effectively address the issues of this program. The performance of piezoelectric thin films depends directly on d(sub ij) and Epsilon. The challenge was to find PZT compositions that maintained high d(sub ij) and Epsilon, while also exhibiting a large photovoltaic effect and integrate thin films of this composition into the system structure necessary to meet shape control applications. During the course of this program, several PZT and PLZT compositions were identified that meet these requirements. Two such compositions were successfully used in electrical and optical actuation studies of thin film structures.

  5. High Performance Piezoelectric Thin Films for Shape Control in Large Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Neurgaonkar, R. R.; Nelson, J. G.

    1999-01-01

    The objective of this research and development program was to develop PbZr(1-x)Ti(x)O3 (PZT) and Pb(1-x)Ba(x)Nb2O6 (PBN) materials with large piezoelectric response which are suitable for shape control in large inflatable structures. Two approaches were to be considered: (1) direct deposition of PZT and PBN films on flexible plastic or thin metal foil substrates, and (2) deposition on Si followed by fabrication of hybrid structures on mylar or kapton. Testing in shape control concepts was carried out at JPL and based on their results, the required modifications were made in the final film compositions and deposition techniques. The program objective was to identify and then optimize piezoelectric materials for NASA shape control applications. This involved the bulk piezoelectric and photovoltaic responses and the compatibility of the thin films with appropriate substrate structures. Within the PZT system, Rockwell has achieved the highest reported piezoelectric coefficient (d(sub 33) greater than 100 pC/N) of any ceramic composition. We used this experience in piezoelectric technology to establish compositions that can effectively address the issues of this program. The performance of piezoelectric thin films depends directly on d(sub ij) and epsilin. The challenge was to find PZT compositions that maintained high d(sub ij) and epsilon, while also exhibiting a large photovoltaic effect and integrate thin films of this composition into the system structure necessary to meet shape control applications. During the course of this program, several PZT and PLZT compositions were identified that meet these requirements. Two such compositions were successfully used in electrical and optical actuation studies of thin film structures.

  6. Laboratory manual: mineral X-ray diffraction data retrieval/plot computer program

    USGS Publications Warehouse

    Hauff, Phoebe L.; VanTrump, George

    1976-01-01

    The Mineral X-Ray Diffraction Data Retrieval/Plot Computer Program--XRDPLT (VanTrump and Hauff, 1976a) is used to retrieve and plot mineral X-ray diffraction data. The program operates on a file of mineral powder diffraction data (VanTrump and Hauff, 1976b) which contains two-theta or 'd' values, and intensities, chemical formula, mineral name, identification number, and mineral group code. XRDPLT is a machine-independent Fortran program which operates in time-sharing mode on a DEC System i0 computer and the Gerber plotter (Evenden, 1974). The program prompts the user to respond from a time-sharing terminal in a conversational format with the required input information. The program offers two major options: retrieval only; retrieval and plot. The first option retrieves mineral names, formulas, and groups from the file by identification number, by the mineral group code (a classification by chemistry or structure), or by searches based on the formula components. For example, it enables the user to search for minerals by major groups (i.e., feldspars, micas, amphiboles, oxides, phosphates, carbonates) by elemental composition (i.e., Fe, Cu, AI, Zn), or by a combination of these (i.e., all copper-bearing arsenates). The second option retrieves as the first, but also plots the retrieved 2-theta and intensity values as diagrammatic X-ray powder patterns on mylar sheets or overlays. These plots can be made using scale combinations compatible with chart recorder diffractograms and 114.59 mm powder camera films. The overlays are then used to separate or sieve out unrelated minerals until unknowns are matched and identified.

  7. Digital Geologic Map of the Rosalia 1:100,000 Quadrangle, Washington and Idaho: A Digital Database for the 1990 S.Z. Waggoner Map

    USGS Publications Warehouse

    Derkey, Pamela D.; Johnson, Bruce R.; Lackaff, Beatrice B.; Derkey, Robert E.

    1998-01-01

    The geologic map of the Rosalia 1:100,000-scale quadrangle was compiled in 1990 by S.Z. Waggoner of the Washington state Division of Geology and Earth Resources. This data was entered into a geographic information system (GIS) as part of a larger effort to create regional digital geology for the Pacific Northwest. The intent was to provide a digital geospatial database for a previously published black and white paper geologic map. This database can be queried in many ways to produce a variety of geologic maps. Digital base map data files are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,000) as it has been somewhat generalized to fit the 1:100,000 scale map. The map area is located in eastern Washington and extends across the state border into western Idaho. This open-file report describes the methods used to convert the geologic map data into a digital format, documents the file structures, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. We wish to thank J. Eric Schuster of the Washington Division of Geology and Earth Resources for providing the original stable-base mylar and the funding for it to be scanned. We also thank Dick Blank and Barry Moring of the U.S. Geological Survey for reviewing the manuscript and digital files, respectively.

  8. Expression of Magnaporthe grisea Avirulence Gene ACE1 Is Connected to the Initiation of Appressorium-Mediated Penetration▿

    PubMed Central

    Fudal, Isabelle; Collemare, Jérôme; Böhnert, Heidi U.; Melayah, Delphine; Lebrun, Marc-Henri

    2007-01-01

    Magnaporthe grisea is responsible for a devastating fungal disease of rice called blast. Current control of this disease relies on resistant rice cultivars that recognize M. grisea signals corresponding to specific secreted proteins encoded by avirulence genes. The M. grisea ACE1 avirulence gene differs from others, since it controls the biosynthesis of a secondary metabolite likely recognized by rice cultivars carrying the Pi33 resistance gene. Using a transcriptional fusion between ACE1 promoter and eGFP, we showed that ACE1 is only expressed in appressoria during fungal penetration into rice and barley leaves, onion skin, and cellophane membranes. ACE1 is almost not expressed in appressoria differentiated on Teflon and Mylar artificial membranes. ACE1 expression is not induced by cellophane and plant cell wall components, demonstrating that it does not require typical host plant compounds. Cyclic AMP (cAMP) signaling mutants ΔcpkA and Δmac1 sum1-99 and tetraspanin mutant Δpls1::hph differentiate melanized appressoria with normal turgor but are unable to penetrate host plant leaves. ACE1 is normally expressed in these mutants, suggesting that it does not require cAMP signaling or a successful penetration event. ACE1 is not expressed in appressoria of the buf1::hph mutant defective for melanin biosynthesis and appressorial turgor. The addition of hyperosmotic solutes to buf1::hph appressoria restores appressorial development and ACE1 expression. Treatments of young wild-type appressoria with actin and tubulin inhibitors reduce both fungal penetration and ACE1 expression. These experiments suggest that ACE1 appressorium-specific expression does not depend on host plant signals but is connected to the onset of appressorium-mediated penetration. PMID:17142568

  9. Experimental microbiological issues related to biocontamination and human life support inside manned space modules

    NASA Astrophysics Data System (ADS)

    Canganella, Francesco; Rettberg, Petra; Bianconi, G.; di Mattia, E.; Taddei, A. R.; Iylin, V.; Novikova, N.; Fani, R.; Brigidi, P.; Vitali, B.; Candela, M.; Lobascio, C.; Saverino, A.; Simone, A.; Fossati, F.; Ferraris, M.

    The issue of biocontamination in manned space modules is very important for the International Space Station (ISS) as well as for future planetary bases. We have previously carried out re-search activities concerning biofilm metabolic activities of some reference bacteria on materials commonly used for aerospace industry and currently examined for space greenhouses. It was evaluated the effect on these materials of a mixture of emulsifiers produced by Pseudomonas strain AD1 and recently characterized by chemical methods. The following materials were in-vestigated: Kevlar, Nomex, Betacloth, aluminized Kapton, conventional Kapton, Combitherm, Mylar, copper foil, Teflon, aluminum, carbon fiber composite, aluminum thermo-dissipating tex-tile, aluminum tape, Zylon, Ergoflex, Vectran. Results showed a diverse affinity of materials for bacterial biofilm formation and occasionally sessile colonization was rejected. Pre-conditioning with the emulsifying extract led in some cases to a diminish of biofilm dehydrogenase activity and development compared to untreated materials, taking into account both concentrations and experimental conditions. This also concerned the relationship between the physical traits of materials and the level of bacterial biofilm developed under the experimental conditions. Presently we are investigating microbial biofilm development on either conventional or innova-tive space materials, experimentally treated by biological or chemo-physical coating. VIABLE ISS is a flight experiment concerning the exposure of these materials inside an ISS module for about 4 years. Another initiative (MICHA) on progress is part of the MARS500 Programme, presently going on at the IBMP facility in Moscow. Data will be useful to select appropriate material to be used for life support hardware to decrease the risk of surface biocontamination and health problems inside space modules, a great challenge for both biological and medical research.

  10. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen

    PubMed Central

    Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas

    2016-01-01

    The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent. PMID:27603017

  11. Ocular injuries sustained by survivors of the Oklahoma City bombing.

    PubMed

    Mines, M; Thach, A; Mallonee, S; Hildebrand, L; Shariat, S

    2000-05-01

    The purpose of this study is to provide a review of the ocular injuries sustained by survivors of the April 19, 1995, bombing of the Alfred P. Murrah Federal Building in Oklahoma City. Retrospective, noncomparative case series. The authors retrospectively evaluated data collected on all surviving persons receiving ocular injuries during the bombing and on all at-risk occupants of the federal building and four adjacent buildings. Injury data from survivors were collected from multiple sources to include hospital medical records, a physician survey, emergency medical services run reports, written survivor accounts, building occupant survey, telephone interviews, and mail surveys. The types of ocular injuries, the associated systemic injuries, and the location of the injured at the time of the blast were evaluated. Fifty-five (8%) of the 684 injured bombing survivors sustained an ocular injury. Persons injured in the Murrah building were more than three times more likely to sustain an ocular injury than other injured persons. Seventy-one percent of ocular injuries occurred within 300 feet of the point of detonation. The most common serious ocular injuries included lid/brow lacerations (20 patients, 23 eyes), open globe injuries (12 eyes), orbital fractures (6 eyes), and retinal detachment (5 eyes). A retained intraocular foreign body accounted for only two of the injuries (4%). Glass accounted for nearly two thirds of the ocular injuries. Blasts involving explosions inflict severe ocular injury, mostly as a result of secondary blast effects from glass, debris, etc. Eye injuries in bombings can probably be prevented by increasing the distance from and orientation away from windows (i.e., by facing desks away from windows). Use of such products as laminated glass, toughened window glazing, and Mylar curtains may reduce glass projectiles in the blast vicinity.

  12. A Low Cost Inflatable CubeSat Drag Brake Utilizing Sublimation

    NASA Astrophysics Data System (ADS)

    Horn, Adam Charles

    The United Nations Inter-Agency Debris Coordination Committee has adopted a 25-year post-mission lifetime requirement for any satellite orbiting below 2000 km in order to mitigate the growing orbital debris threat. Low-cost CubeSats have become important satellite platforms with startling capabilities, but this guideline restricts them to altitudes below 600 km because they remain in orbit too long. In order to enable CubeSat deployments at higher release altitudes, a low-cost, ultra-reliable deorbit device is needed. This thesis reports on efforts to develop a deployable and passively inflatable drag brake that can deorbit from higher orbital altitudes, thereby complying with the 25-year orbital lifetime guideline. On the basis of concepts first implemented during the NASA Echo Satellite Project, this study investigated the design of an inflatable CubeSat drag device that utilizes sublimating benzoic acid powder as the inflation propellant. Testing has focused on demonstrating the functionality of charging a Mylar drag brake bladder with appropriate quantities of benzoic acid powder, and the exposure to a controlled-temperature vacuum chamber causing the bladder to inflate. Although results show a measureable increase in internal pressure when introduced to anticipated orbital temperatures, a significant air-derived expansion prior to sublimation was encountered due to the undetectable volume of ambient residual air in the fabricated membrane bladders. These tests have demonstrated the feasibility of this approach, thereby demonstrating that this concept can create a potentially smaller and less expensive drag device, eliminating inflation gas tanks and valves. In that way, this system can provide a low-cost, miniaturized system that reduces a CubeSat's orbital lifetime to less than 25 years, when placed at higher orbital altitude.

  13. Compression-induced crystallization of amorphous indomethacin in tablets: characterization of spatial heterogeneity by two-dimensional X-ray diffractometry.

    PubMed

    Thakral, Naveen K; Mohapatra, Sarat; Stephenson, Gregory A; Suryanarayanan, Raj

    2015-01-05

    Tablets of amorphous indomethacin were compressed at 10, 25, 50, or 100 MPa using either an unlubricated or a lubricated die and stored individually at 35 °C in sealed Mylar pouches. At selected time points, tablets were analyzed by two-dimensional X-ray diffractometry (2D-XRD), which enabled us to profile the extent of drug crystallization in tablets, in both the radial and axial directions. To evaluate the role of lubricant, magnesium stearate was used as "internal" and/or "external" lubricant. Indomethacin crystallization propensity increased as a function of compression pressure, with 100 MPa pressure causing crystallization immediately after compression (detected using synchrotron radiation). However, the drug crystallization was not uniform throughout the tablets. In unlubricated systems, pronounced crystallization at the radial surface could be attributed to die wall friction. The tablet core remained substantially amorphous, irrespective of the compression pressure. Lubrication of the die wall with magnesium stearate, as external lubricant, dramatically decreased drug crystallization at the radial surface. The spatial heterogeneity in drug crystallization, as a function of formulation composition and compression pressure, was systematically investigated. When formulating amorphous systems as tablets, the potential for compression induced crystallization warrants careful consideration. Very low levels of crystallization on the tablet surface, while profoundly affecting product performance (decrease in dissolution rate), may not be readily detected by conventional analytical techniques. Early detection of crystallization could be pivotal in the successful design of a dosage form where, in order to obtain the desired bioavailability, the drug may be in a high energy state. Specialized X-ray diffractometric techniques (2D; use of high intensity synchrotron radiation) enabled detection of very low levels of drug crystallization and revealed the heterogeneity in

  14. The FLECS expandable module concept for future space missions and an overall description on the material validation

    NASA Astrophysics Data System (ADS)

    Mileti, Sandro; Guarrera, Giuseppe; Marchetti, Mario; Ferrari, Giorgio; Nebiolo, Marco; Augello, Gerlando; Bitetti, Grazia; Carnà, Emiliano; Marranzini, Andrea; Mazza, Fabio

    2006-07-01

    The future space exploration missions aim to reduce the costs associated with design, fabrication and launch for ISS, Moon and Mars modules, while simultaneously increasing the useful volume. Flexible and inflatable structures offer many advantages over conventional structures for space applications. Principal among the advantages is the ability to package these structures into small volumes for launch. Design maturation and the development of advanced materials and fabrication processes have made the concept of an inflatable module achievable in the near future. The Multipurpose Expandable Module (FLECS) Project sponsored by ASI (Italian Space Agency) whose prime contractor is Alcatel Alenia Space Italia, links the conventional and traditional technology of modules with the innovative solutions of inflatable technology. This project emphasizes on demonstrating the capability in using inflatable technology on space structures aiming to substitute the conventional modules in future manned missions. FLECS has been designed using advanced textiles and films in order to guarantee the structural reliability necessary for the deployment and packaging configurations. A non-linear structural analysis has been conducted using several numerical codes that simulate the deployed structural characteristics achieving also the damping resistance during the packaging. All the materials used for the flexible parts have been selected through a series of mechanical tests in order to validate the more appropriate ones for the mission. The multi-layer pneumatic retention bladder and the intermediate restraint layer are composed of polymer sheets, ortho-fabrics and elastomers like polyurethanes. The External protection shield is configured using several layers of impact absorption materials and also several layers of space environment (UV, IR, atomic oxygen) protection materials such as Kapton, Mylar and Nextel. The validation of the fabrics, the films and the final prototype assembly

  15. Ground Testing A 20-Meter Inflation Deployed Solar Sail

    NASA Technical Reports Server (NTRS)

    Mann, Troy; Behun, Vaughn; Lichodziejewski, David; Derbes, Billy; Sleight, David

    2006-01-01

    Solar sails have been proposed for a variety of future space exploration missions and provide a cost effective source of propellantless propulsion. Solar sails span very large areas to capture and reflect photons from the Sun and are propelled through space by the transfer of momentum from the photons to the solar sail. The thrust of a solar sail, though small, is continuous and acts for the life of the mission without the need for propellant. Recent advances in materials and ultra-low mass gossamer structures have enabled a host of useful space exploration missions utilizing solar sail propulsion. The team of L Garde, NASA Jet Propulsion Laboratory (JPL), Ball Aerospace, and NASA Langley Research Center, under the direction of the NASA In-Space Propulsion Office (ISP), has been developing a scalable solar sail configuration to address NASA s future space propulsion needs. The 100-m baseline solar sail concept was optimized around the one astronomical unit (AU) Geostorm mission, and features a Mylar sail membrane with a striped-net sail suspension architecture with inflation-deployed sail support beams consisting of inflatable sub-Tg (glass transition temperature) rigidizable semi-monocoque booms and a spreader system. The solar sail has vanes integrated onto the tips of the support beams to provide full 3-axis control of the solar sail. This same structural concept can be scaled to meet the requirements of a number of other NASA missions. Static and dynamic testing of a 20m scaled version of this solar sail concept have been completed in the Space Power Facility (SPF) at the NASA Glenn Plum Brook facility under vacuum and thermal conditions simulating the operation of a solar sail in space. This paper details the lessons learned from these and other similar ground based tests of gossamer structures during the three year solar sail project.

  16. Ambient Dried Aerogels

    NASA Technical Reports Server (NTRS)

    Jones, Steven M.; Paik, Jong-Ah

    2013-01-01

    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  17. Solar Sail Material Performance Property Response to Space Environmental Effects

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (Ll) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA s Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar[TM], Teonex[TM], and CPl (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were

  18. Space Environmental Effects on Candidate Solar Sail Materials

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Nehls, Mary; Semmel, Charles; Hovater, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted ot a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (L1) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA's Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar, Teonex, and CP1 (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were characterized

  19. Correlation between three-dimentional surface topography and color stability of different nanofilled composites.

    PubMed

    Öztürk, Elif; Güder, Gizem

    2015-01-01

    The aim of this study was to evaluate the 3-dimensional (3D) surface topography and color stability of four different resin composites after immersion in different soft-beverages. One hundred sixty disk-shaped specimens (diameter: 10 mm, and thickness: 2 mm) were made from four different resin composites (i.e., Filtek Z550, Tetric N-Ceram, Clearfil Majesty Esthetic, and Cavex Quadrant Universal LC). Each specimen was cured under mylar strips for 20 sec for both top and bottom surfaces. All of the specimens were stored in distilled water for 24 h at 37°C. Surface measurements were carried out using a noncontact 3D-optical-profilometer in terms of surface topography (Ra values). Color measurements of each specimen were performed with Vita Easy Shade system. All the measurements were performed at baseline and after 30 days of immersion in the selected soft-beverages (Redbull, Coca-Cola and Dimes-Lemonade). Control groups were stored in distilled water during the study. Ra values and color changes (ΔE values) of the groups were recorded. The data were statistically analyzed using a one way ANOVA and Tukey's post-hoc tests (SPSS 18.0). The tested soft-beverages in the present study caused color changes at a 30-day evaluation period for the tested resin composites (p < 0.05). However, 3D surface topography of resin composites was not influenced by the tested soft-beverages (p > 0.05). There was no significant interaction between the composite and beverage type on the Ra values of the resin composites (p > 0.05). No correlation was found between color stability and 3D surface topography of the resin composites. Color stability of resin composites may be affected by soft beverages. © Wiley Periodicals, Inc.

  20. Effect of post-curing treatment on mechanical properties of composite resins.

    PubMed

    Almeida-Chetti, Verónica A; Macchi, Ricardo L; Iglesias, María E

    2014-01-01

    The aim of this study is to assess the effect of additional curing procedures on the flexural strength and modulus of elasticity of indirect and direct composite materials. Twenty-four rectangular prism-shaped 2 mm x 2 mm x 25 mm samples of Belleglass, Premisa (Kerr), Adoro and Heliomolar (Ivoclar Vivadent) were prepared. Each composite was packed in an ad-hoc stainless steel device with a TeflonR instrument. A mylar strip and a glass slab were placed on top to obtain a flat surface. Polymerization was activated for 20 seconds with a halogen unit (Astralis 10, Ivoclar - Vivadent) with soft start regime and an output with a 350 to 1200 mw/cm2 range at four different points according to the diameter of the end of the guide. The specimens obtained were then randomly divided into two different groups: with and without additional treatment. In the group with additional treatment, the samples adorro were submitted to 25 minutes in Lumamat 100 (Ivoclar Vivadent) and the rest to 20 minutes in BelleGlass HP (Kerr). After the curing procedures, all samples were treated with sandpapers of decreasing grain size under water flow, and stored in distilled water for 24 h. Flexural strength was measured according to the ISO 404920 recommendations and elastic modulus was determined following the procedures of ANSI/ADA standard No. 27. Statistical differences were found among the different materials and curing procedures employed (P<0.01). The elastic modulus was significantly higher after the additional curing treatment for all materials except Premisa. Further work is needed to determine the association between the actual monomers present in the matrix and the effect of additional curing processes on the mechanical properties of both direct and indirect composites, and its clinical relevance.

  1. The effect of well-characterized, very low-dose x-ray radiation on fibroblasts

    PubMed Central

    Truong, Katelyn; Bradley, Suzanne; Baginski, Bryana; Wilson, Joseph R.; Medlin, Donald; Zheng, Leon; Wilson, R. Kevin; Rusin, Matthew; Takacs, Endre

    2018-01-01

    The purpose of this study is to determine the effects of low-dose radiation on fibroblast cells irradiated by spectrally and dosimetrically well-characterized soft x-rays. To achieve this, a new cell culture x-ray irradiation system was designed. This system generates characteristic fluorescent x-rays to irradiate the cell culture with x-rays of well-defined energies and doses. 3T3 fibroblast cells were cultured in cups with Mylar® surfaces and were irradiated for one hour with characteristic iron (Fe) K x-ray radiation at a dose rate of approximately 550 μGy/hr. Cell proliferation, total protein analysis, flow cytometry, and cell staining were performed on fibroblast cells to determine the various effects caused by the radiation. Irradiated cells demonstrated increased proliferation and protein production compared to control samples. Flow cytometry revealed that a higher percentage of irradiated cells were in the G0/G1 phase of the cell cycle compared to control counterparts, which is consistent with other low-dose studies. Cell staining results suggest that irradiated cells maintained normal cell functions after radiation exposure, as there were no qualitative differences between the images of the control and irradiated samples. The result of this study suggest that low-dose soft x-ray radiation might cause an initial pause, followed by a significant increase, in proliferation. An initial “pause” in cell proliferation could be a protective mechanism of the cells to minimize DNA damage caused by radiation exposure. The new cell irradiation system developed here allows for unprecedented control over the properties of the x-rays given to the cell cultures. This will allow for further studies on various cell types with known spectral distribution and carefully measured doses of radiation, which may help to elucidate the mechanisms behind varied cell responses to low-dose x-rays reported in the literature. PMID:29300773

  2. Detectors for MUSE

    NASA Astrophysics Data System (ADS)

    Hirschman, Jack; Muon Scattering Experiment (MUSE) Collaboration

    2017-09-01

    Until recently, it was thought that the proton radius was known with an uncertainty of 1%. However, experiments carried-out at the Paul Scherrer Institute (PSI) involving muonic hydrogen yielded a radius 4% smaller with an uncertainty of .1%, a 7.9 σ inconsistency. This problem of properly measuring the radius now requires new and different measurements. The Muon Scattering Experiment (MUSE) will thus be the first to utilize elastic muon scattering with sufficient precision to address the proton radius measurement. MUSE will run in PSI's PiM1 beamline, using a stack of GEM chambers and thin scintillation detectors to identify and track the beam particle species in this mixed e, pi, mu beam. Scattered particles will be measured in two arms with ten layers of Straw Tube Tracking (STT) detectors and a double plastic scintillator wall for timing of and triggering on scattered particles. The STT chambers will employ the anti-Proton Annihilations at Darmstadt (PANDA) design. Each straw consists of a thin wire with high voltage surrounded by an aluminized Mylar tube inflated with a mix of Argon and Carbon Dioxide, the ratio of which is important for optimal operation. The Argon gas, ionized by incoming charged particles, releases electrons which attract to the central wire. The CO2 acts as a quencher, taking-up electrons to prevent an unstable avalanche effect. This project will investigate the effects of altering the gas mixture in the STTs on signal size and timing. This material is based upon work supported by the National Science Foundation under Grant No. OISE-1358175, PHY-1614850, and PHY-1614938. Thank you to the teams at HUJI and PSI, in particular, Dr. G. Ron, Dr. T. Rostomyan, Dr. K. Dieters, and D. Cohen.

  3. Evaluating Field Spectrometer Performance with Transmission Standards: Examples from the USGS Spectral Library and Research Databases

    NASA Astrophysics Data System (ADS)

    Hoefen, T. M.; Kokaly, R. F.; Swayze, G. A.; Livo, K. E.

    2015-12-01

    Collection of spectroscopic data has expanded with the development of field-portable spectrometers. The most commonly available spectrometers span one or several wavelength ranges: the visible (VIS) and near-infrared (NIR) region from approximately 400 to 1000 nm, and the shortwave infrared (SWIR) region from approximately 1000-2500 nm. Basic characteristics of spectrometer performance are the wavelength position and bandpass of each channel. Bandpass can vary across the wavelength coverage of an instrument, due to spectrometer design and detector materials. Spectrometer specifications can differ from one instrument to the next for a given model and between manufacturers. The USGS Spectroscopy Lab in Denver has developed a simple method to evaluate field spectrometer wavelength accuracy and bandpass values using transmission measurements of materials with intense, narrow absorption features, including Mylar* plastic, praseodymium-doped glass, and National Institute of Standards and Technology Standard Reference Material 2035. The evaluation procedure has been applied in laboratory and field settings for 19 years and used to detect deviations from cited manufacturer specifications. Tracking of USGS spectrometers with transmission standards has revealed several instances of wavelength shifts due to wear in spectrometer components. Since shifts in channel wavelengths and differences in bandpass between instruments can impact the use of field spectrometer data to calibrate and analyze imaging spectrometer data, field protocols to measure wavelength standards can limit data loss due to spectrometer degradation. In this paper, the evaluation procedure will be described and examples of observed wavelength shifts during a spectrometer field season will be presented. The impact of changing wavelength and bandpass characteristics on spectral measurements will be demonstrated and implications for spectral libraries will be discussed. *Any use of trade, firm, or product names

  4. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen.

    PubMed

    Kuriakose, Matthew; Skotak, Maciej; Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas

    2016-01-01

    The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent.

  5. Can Reduced-Step Polishers Be as Effective as Multiple-Step Polishers in Enhancing Surface Smoothness?

    PubMed

    Kemaloglu, Hande; Karacolak, Gamze; Turkun, L Sebnem

    2017-02-01

    The aim of this study was to evaluate the effects of various finishing and polishing systems on the final surface roughness of a resin composite. Hypotheses tested were: (1) reduced-step polishing systems are as effective as multiple-step systems on reducing the surface roughness of a resin composite and (2) the number of application steps in an F/P system has no effect on reducing surface roughness. Ninety discs of a nano-hybrid resin composite were fabricated and divided into nine groups (n = 10). Except the control, all of the specimens were roughened prior to be polished by: Enamel Plus Shiny, Venus Supra, One-gloss, Sof-Lex Wheels, Super-Snap, Enhance/PoGo, Clearfil Twist Dia, and rubber cups. The surface roughness was measured and the surfaces were examined under scanning electron microscope. Results were analyzed with analysis of variance and Holm-Sidak's multiple comparisons test (p < 0.05). Significant differences were found among the surface roughness of all groups (p < 0.05). The smoothest surfaces were obtained under Mylar strips and the results were not different than Super-Snap, Enhance/PoGo, and Sof-Lex Spiral Wheels. The group that showed the roughest surface was the rubber cup group and these results were similar to those of the One-gloss, Enamel Plus Shiny, and Venus Supra groups. (1) The number of application steps has no effect on the performance of F/P systems. (2) Reduced-step polishers used after a finisher can be preferable to multiple-step systems when used on nanohybrid resin composites. (3) The effect of F/P systems on surface roughness seems to be material-dependent rather than instrument- or system-dependent. Reduced-step systems used after a prepolisher can be an acceptable alternative to multiple-step systems on enhancing the surface smoothness of a nanohybrid composite; however, their effectiveness depends on the materials' properties. (J Esthet Restor Dent 29:31-40, 2017). © 2016 Wiley Periodicals, Inc.

  6. Effect of finishing and polishing procedures on surface roughness, gloss and color of resin-based composites.

    PubMed

    Paravina, Rade D; Roeder, Leslie; Lu, Huan; Vogel, Karin; Powers, John M

    2004-08-01

    To evaluate the effects of different finishing and polishing procedures on surface roughness, gloss and color of five resin composites: two experimental microhybrid composites - FZ-Dentin (FZD) and FZ-Enamel (FZE), one commercial microhybrid composite - Esthet-X (EX), and two microfilled composites - Heliomolar (HM) and Renamel Microfill (RM). Surface roughness, gloss and color of the disc-shaped specimens (10 mm in diameter and 2-mm thick) were measured as Mylar (baseline), 16-fluted carbide bur and polishing were completed. Sixteen specimens of each composite were randomized to four groups of four. After finishing with a 16-fluted finishing bur, each group was polished by a different system: 1. Astropol (A), 2. Sof-lex disc (S), 3. Po-Go (P), 4. Enhance (E). Average surface roughness (Ra) was measured with a profilometer. Gloss measurements were performed using small-area glossmeter, while color coordinate values were recorded using a spectrophotometer. A deltaE*ab< or =1 was considered to be the limit of perceptibility. The order of surface roughness ranked according to polishing system (for all five composites together) was: P < S < E < A. The order of surface roughness ranked according to composites was: RM < FZD < FZ < HM < EX. The order of gloss ranked according to polishing system (for all five composites together) was: P > E > A > S. The order of gloss values for the polished composites (for each of four polishing systems) was: RM > FZD > FZE > HM > EX. Fisher's PLSD intervals at the 0.05 level of significance for comparisons of means of surface roughness among five composites and four polishing systems were 0.01 and 0.01 microm, respectively. Fisher's PLSD intervals at the 0.05 level of significance for comparisons of means of gloss among five composites and four polishing systems were 6 and 5 GU, respectively. Color differences (deltaE*ab) among five composites and four polishing methods were found to range from 0.2 to 1.1.

  7. Radon emanation based material measurement and selection for the SuperNEMO double beta experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerna, Cédric, E-mail: cerna@cenbg.in2p3.fr; Soulé, Benjamin; Perrot, Frédéric

    The SuperNEMO Demonstrator experiment aims to study the neutrinoless double beta decay of 7 kg of {sup 82}Se in order to reach a limit on the light Majorana neutrino mass mechanism T{sub 1/2} (ββ0ν) > 6.5 10{sup 24} years (90%CL) equivalent to a mass sensitivity mβ{sub β} < 0.20 - 0.40 eV (90%CL) in two years of data taking. The detector construction started in 2014 and its installation in the Laboratoire Souterrain de Modane (LSM) is expected during the course of 2015. The remaining level of {sup 226}Ra ({sup 238}U chain) in the detector components can lead to the emanationmore » of {sup 222}Rn gas. This isotope should be controlled and reduced down to the level of a 150 µBq/m{sup 3} in the tracker chamber of the detector to achieve the physics goals. Besides the HPGe selection of the detector materials for their radiopurity, the most critical materials have been tested and selected in a dedicated setup facility able to measure their {sup 222}Rn emanation level. The operating principle relies on a large emanation tank (0.7m{sup 3}) that allows measuring large material surfaces or large number of construction pieces. The emanation tank is coupled to an electrostatic detector equipped with a silicon diode to perform the alpha spectroscopy of the gas it contains and extract the {sup 222}Rn daughters. The transfer efficiency and the detector efficiency have been carefully calibrated through different methods. The intrinsic background of the system allows one to measure 222Rn activities down to 3 mBq, leading to a typical emanation sensitivity of 20 µBq/m{sup 2}/day for a 30 m{sup 2} surface sample. Several construction materials have been measured and selected, such as nylon and aluminized Mylar films, photomultipliers and tracking of the SuperNEMO Demonstrator.« less

  8. SIMS chemical analysis of extended impacts on the leading and trailing edges of LDEF experiment AO187-2

    NASA Technical Reports Server (NTRS)

    Amari, S.; Foote, J.; Simon, Charles G.; Swan, P.; Walker, R. M.; Zinner, E.; Jessberger, E. K.; Lange, G.; Stadermann, F.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) Experiment AO187-2 consisted of 237 capture cells, 120 on the leading edge and 117 on the trailing edge. Each cell was made of polished Ge plates covered with 2.5 micron thick mylar foil at 200 microns from the Ge. Although all leading edge cells and 105 trailing edge cells had lost their plastic covers during flight, optical and electron microscope examination revealed extended impacts in bare cells from either edge that apparently were produced by high velocity projectiles while the plastic foils were still in place. Detailed optical scanning yielded 53 extended impacts on 100 bare cells from the trailing edge that were selected for SIMS chemical analysis. Lateral multi-element ion probe profiles were obtained on 40 of these impacts. Material that can be attributed to the incoming projectiles was found in all analyzed extended compact features and most seem to be associated with cosmic dust particles. However, LDEF deposits are systematically enriched in the refractory elements Al, Ca, and Ti relative to Mg and Fe when compared to IDP's collected in the stratosphere and to chondritic compositions. These differences are most likely due to elemental fractionation effects during the high velocity impact but real differences between interplanetary particles captured on LDEF and stratospheric IDP's cannot be excluded. Recently we extended our studies to cells from the leading edge and the covered cells from the trailing edge. The 12 covered cells contain 20 extended impact candidates. Ion probe analysis of 3 yielded results similar to those obtained for impacts on the bare cells from the trailing edge. Optical scanning of the bare leading edge cell also reveals many extended impacts (42 on 22 cells scanned to date), demonstrating that the cover foils remained intact at least for some time. However, SIMS analysis showed elements that can reasonably be attributed to micrometeoroids in only 2 out of 11 impacts. Eight impacts

  9. Electrostatic Inflation of Membrane Space Structures

    NASA Astrophysics Data System (ADS)

    Stiles, Laura A.

    Mylar. Remote charging was demonstrated to -500 V with a 5 keV electron beam. Charge emission power levels are below 1 Watt in GEO and from 10's of Watt to a kiloWatt in LEO.

  10. The community-based delivery of an innovative neonatal kit to save newborn lives in rural Pakistan: design of a cluster randomized trial.

    PubMed

    Turab, Ali; Pell, Lisa G; Bassani, Diego G; Soofi, Sajid; Ariff, Shabina; Bhutta, Zulfiqar A; Morris, Shaun K

    2014-09-08

    Worldwide, an estimated 2.9 million neonatal deaths occurred in 2012, accounting for 44% of all under-five deaths. In Pakistan, more than 200,000 newborns die annually and neonatal mortality rates are higher than in any other South Asian country and haven't changed over the last three decades. The high number of neonatal deaths highlights the urgent need for effective and sustainable interventions that target newborn mortality in Pakistan. This cluster randomized trial aims at evaluating the impact of delivering an integrated neonatal kit to pregnant women during the third trimester of pregnancy and providing education on how to use the contents (intervention arm) compared to the current standard of care (control arm) in the district of Rahimyar Khan, Punjab province, Pakistan. The kit, which will be distributed through the national Lady Health Worker program, comprises a clean delivery kit (sterile blade, cord clamp, clean plastic sheet, surgical gloves and hand soap), sunflower oil emollient, chlorhexidine, ThermoSpot™, Mylar infant sleeve, and a reusable instant heat pack. Lady health workers will be provided with a standard portable hand-held electric weighing scale. The primary outcome measure is neonatal mortality (death in the first 28 days of life). While many cost-effective, evidence-based interventions to save newborn lives exist, they are not always accessible nor have they been integrated into a portable kit designed for home-based implementation entirely by caregivers. The implementation of cost-effective, portable, and easy-to-use interventions has tremendous potential for sustainably reducing neonatal mortality and long-term improvements in population health. The bundling of interventions and commodities together also has much potential for cost-effective delivery and maximizing gains from points of contact. This study will provide empirical evidence on the feasibility and effectiveness of the delivery of an innovative neonatal kit to pregnant

  11. Effect of provision of an integrated neonatal survival kit and early cognitive stimulation package by community health workers on developmental outcomes of infants in Kwale County, Kenya: study protocol for a cluster randomized trial.

    PubMed

    Pell, Lisa G; Bassani, Diego G; Nyaga, Lucy; Njagi, Isaac; Wanjiku, Catherine; Thiruchselvam, Thulasi; Macharia, William; Minhas, Ripudaman S; Kitsao-Wekulo, Patricia; Lakhani, Amyn; Bhutta, Zulfiqar A; Armstrong, Robert; Morris, Shaun K

    2016-09-08

    Each year, more than 200 million children under the age of 5 years, almost all in low- and middle-income countries (LMICs), fail to achieve their developmental potential. Risk factors for compromised development often coexist and include inadequate cognitive stimulation, poverty, nutritional deficiencies, infection and complications of being born low birthweight and/or premature. Moreover, many of these risk factors are closely associated with newborn morbidity and mortality. As compromised development has significant implications on human capital, inexpensive and scalable interventions are urgently needed to promote neurodevelopment and reduce risk factors for impaired development. This cluster randomized trial aims at evaluating the impact of volunteer community health workers delivering either an integrated neonatal survival kit, an early stimulation package, or a combination of both interventions, to pregnant women during their third trimester of pregnancy, compared to the current standard of care in Kwale County, Kenya. The neonatal survival kit comprises a clean delivery kit (sterile blade, cord clamp, clean plastic sheet, surgical gloves and hand soap), sunflower oil emollient, chlorhexidine, ThermoSpot(TM), Mylar infant sleeve, and a reusable instant heater. Community health workers are also equipped with a portable hand-held electric scale. The early cognitive stimulation package focuses on enhancing caregiver practices by teaching caregivers three key messages that comprise combining a gentle touch with making eye contact and talking to children, responsive feeding and caregiving, and singing. The primary outcome measure is child development at 12 months of age assessed with the Protocol for Child Monitoring (Infant and Toddler version). The main secondary outcome is newborn mortality. This study will provide evidence on effectiveness of delivering an innovative neonatal survival kit and/or early stimulation package to pregnant women in Kwale County

  12. Solar Sail Material Performance Property Response to Space Environmental Effects

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (L1) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager' and the L1 Diamond '. The Environmental Effects Group at NASA's Marshall Space Fliglit Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail3-'. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar TM, Teonexm, and CP1 (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were

  13. Barium and calcium analyses in sediment cores using µ-XRF core scanners

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Çaǧatay, Namık; Genç, S. Can; Eriş, K. Kadir; Sarı, Erol; Uçarkus, Gülsen

    2017-04-01

    Barium and Ca are used as proxies for organic productivity in paleooceanographic studies. With its heavy atomic weight (137.33 u), barium is easily detectable in small concentrations (several ppm levels) in marine sediments using XRF methods, including the analysis by µ-XRF core scanners. Calcium has an intermediate atomic weight (40.078 u) but is a major element in the earth's crust and in sediments and sedimentary rocks, and hence it is easily detectable by µ-XRF techniques. Normally, µ-XRF elemental analysis of cores are carried out using split half cores or 1-2 cm thich u-channels with an original moisture. Sediment cores show variation in different water content (and porosity) along their length. This in turn results in variation in the XRF counts of the elements and causes error in the elemental concentrations. We tried µ-XRF elemental analysis of split half cores, subsampled as 1 cm thick u-channels with original moisture and 0.3 mm-thin film slices of the core with original wet sample and after air drying with humidity protector mylar film. We found considerable increase in counts of most elements, and in particular for Ba and Ca, when we used 0.3 mm thin film, dried slice. In the case of Ba, the counts increased about three times that of the analysis made with wet and 1 cm thick u-channels. The higher Ba and Ca counts are mainly due to the possible precipitation of Ba as barite and Ca as gypsum from oxidation of Fe-sulphides and the evaporation of pore waters. The secondary barite and gypsum precipitation would be especially serious in unoxic sediment units, such as sapropels, with considerable Fe-sulphides and bio-barite.It is therefore suggested that reseachers should be cautious of such secondary precipitation on core surfaces when analyzing cores that have long been exposed to the atmospheric conditions.

  14. Extent of fungal growth on fiberglass duct liners with and without biocides under challenging environmental conditions.

    PubMed

    Samimi, Behzad S; Ross, Kristen

    2003-03-01

    Eight brands of fiberglass duct liners, including three that contained biocides, were exposed to challenging environmental conditions that would promote fungal growth. Twenty-four rectangular sheet metal ducts in three groups of eight ducts per group were lined with the eight selected liners. Each group of ducts was exposed to one of the three test conditions within an environmental chamber for a period of 15 days. These conditions were a) 75 percent RH, b) 75 percent RH plus water spray, c) 75 percent RH plus dry nutrient, and d) 75 percent RH plus water plus nutrient. Viable spores of Aspergillus niger were aerosolized into each duct as seed. On the 16th day, air and surface samples for fungal spores were collected from inside ducts. The results of air sampling using N6 sampler and visual inspection indicated that two out of three biocide-containing liners, Permacote and Toughgard, inhibited fungal growth but only under condition A. The third biocide-containing liner, Aeroflex Plus, was effective even when it was wet (conditions A and B). All three biocide-containing liners failed to inhibit fungal growth under conditions C and D. Among the five other types of liners that did not contain biocides, ATCO Flex with a smooth Mylar coating was more preferable, exhibiting lower fungal activity during conditions A, B, and C. All liners failed under condition D when nutrient and water were added together. Surface sampling using adhesive tape failed to produce representative results, apparently due to rough/porous surface of duct liners. It was concluded that duct liners with biocide treatment could be less promoting to microbial growth under high humidity as long as their surfaces remain clean and water-free. A liner with an impermeable and smooth surface seems to be less subject to microbial growth under most conditions than biocide-containing liners having porous and/or rough surfaces.

  15. WE-DE-201-05: Evaluation of a Windowless Extrapolation Chamber Design and Monte Carlo Based Corrections for the Calibration of Ophthalmic Applicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, J; Culberson, W; DeWerd, L

    Purpose: To test the validity of a windowless extrapolation chamber used to measure surface dose rate from planar ophthalmic applicators and to compare different Monte Carlo based codes for deriving correction factors. Methods: Dose rate measurements were performed using a windowless, planar extrapolation chamber with a {sup 90}Sr/{sup 90}Y Tracerlab RA-1 ophthalmic applicator previously calibrated at the National Institute of Standards and Technology (NIST). Capacitance measurements were performed to estimate the initial air gap width between the source face and collecting electrode. Current was measured as a function of air gap, and Bragg-Gray cavity theory was used to calculate themore » absorbed dose rate to water. To determine correction factors for backscatter, divergence, and attenuation from the Mylar entrance window found in the NIST extrapolation chamber, both EGSnrc Monte Carlo user code and Monte Carlo N-Particle Transport Code (MCNP) were utilized. Simulation results were compared with experimental current readings from the windowless extrapolation chamber as a function of air gap. Additionally, measured dose rate values were compared with the expected result from the NIST source calibration to test the validity of the windowless chamber design. Results: Better agreement was seen between EGSnrc simulated dose results and experimental current readings at very small air gaps (<100 µm) for the windowless extrapolation chamber, while MCNP results demonstrated divergence at these small gap widths. Three separate dose rate measurements were performed with the RA-1 applicator. The average observed difference from the expected result based on the NIST calibration was −1.88% with a statistical standard deviation of 0.39% (k=1). Conclusion: EGSnrc user code will be used during future work to derive correction factors for extrapolation chamber measurements. Additionally, experiment results suggest that an entrance window is not needed in order for an

  16. Storage conditions for stability of offline measurement of fractional exhaled nitric oxide after collection for epidemiologic research

    PubMed Central

    2012-01-01

    Background The measurement of fractional concentration of nitric oxide in exhaled air (FeNO) is valuable for the assessment of airway inflammation. Offline measurement of FeNO has been used in some epidemiologic studies. However, the time course of the changes in FeNO after collection has not been fully clarified. In this study, the effects of storage conditions on the stability of FeNO measurement in exhaled air after collection for epidemiologic research were examined. Methods Exhaled air samples were collected from 48 healthy adults (mean age 43.4 ± 12.1 years) in Mylar bags. FeNO levels in the bags were measured immediately after collection. The bags were then stored at 4°C or room temperature to measure FeNO levels repeatedly for up to 168 hours. Results In the bags stored at room temperature after collection, FeNO levels were stable for 9 hours, but increased starting at 24 hours. FeNO levels remained stable for a long time at 4°C, and they were 99.7% ± 7.7% and 101.3% ± 15.0% relative to the baseline values at 24 and 96 hours, respectively. When the samples were stored at 4°C, FeNO levels gradually decreased with time among the subjects with FeNO ≥ 51 ppb immediately after collection, although there were almost no changes among the other subjects. FeNO levels among current smokers increased even at 4°C, although the values among ex-smokers decreased gradually, and those among nonsmokers remained stable. The rate of increase was significantly higher among current smokers than among nonsmokers and ex-smokers from 9 hours after collection onwards. Conclusions Storage at 4°C could prolong the stability of FeNO levels after collection. This result suggests that valid measurements can be performed within several days if the samples are stored at 4°C. However, the time course of the changes in FeNO levels differed in relation to initial FeNO values and cigarette smoking. PMID:23116255

  17. Robotically assisted MRgFUS system

    NASA Astrophysics Data System (ADS)

    Jenne, Jürgen W.; Krafft, Axel J.; Maier, Florian; Rauschenberg, Jaane; Semmler, Wolfhard; Huber, Peter E.; Bock, Michael

    2010-03-01

    Magnetic resonance imaging guided focus ultrasound surgery (MRgFUS) is a highly precise method to ablate tissue non-invasively. The objective of this ongoing work is to establish an MRgFUS therapy unit consisting of a specially designed FUS applicator as an add-on to a commercial robotic assistance system originally designed for percutaneous needle interventions in whole-body MRI systems. The fully MR compatible robotic assistance system InnoMotion™ (Synthes Inc., West Chester, USA; formerly InnoMedic GmbH, Herxheim, Germany) offers six degrees of freedom. The developed add-on FUS treatment applicator features a fixed focus ultrasound transducer (f = 1.7 MHz; f' = 68 mm, NA = 0.44, elliptical shaped -6-dB-focus: 8.1 mm length; O/ = 1.1 mm) embedded in a water-filled flexible bellow. A Mylar® foil is used as acoustic window encompassed by a dedicated MRI loop coil. For FUS application, the therapy unit is directly connected to the head of the robotic system, and the treatment region is targeted from above. A newly in-house developed software tool allowed for complete remote control of the MRgFUS-robot system and online analysis of MRI thermometry data. The system's ability for therapeutic relevant focal spot scanning was tested in a closed-bore clinical 1.5 T MR scanner (Magnetom Symphony, Siemens AG, Erlangen, Germany) in animal experiments with pigs. The FUS therapy procedure was performed entirely under MRI guidance including initial therapy planning, online MR-thermometry, and final contrast enhanced imaging for lesion detection. In vivo trials proved the MRgFUS-robot system as highly MR compatible. MR-guided focal spot scanning experiments were performed and a well-defined pattern of thermal tissue lesions was created. A total in vivo positioning accuracy of the US focus better than 2 mm was estimated which is comparable to existing MRgFUS systems. The newly developed FUS-robotic system offers an accurate, highly flexible focus positioning. With its access

  18. Laboratory experiments on subduction-induced circulation in the wedge and the evolution of mantle diapirs

    NASA Astrophysics Data System (ADS)

    Sylvia, R. T.; Kincaid, C. R.; Behn, M. D.; Zhang, N.

    2014-12-01

    Circulation in subduction zones involves large-scale, forced-convection by the motion of the down-going slab and small scale, buoyant diapirs of hydrated mantle or subducted sediments. Models of subduction-diapir interaction often neglect large-scale flow patterns induced by rollback, back-arc extension and slab morphology. We present results from laboratory experiments relating these parameters to styles of 4-D wedge circulation and diapir ascent. A glucose fluid is used to represent the mantle. Subducting lithosphere is modeled with continuous rubber belts moving with prescribed velocities, capable of reproducing a large range in downdip relative rollback plate rates. Differential steepening of distinct plate segments simulates the evolution of slab gaps. Back-arc extension is produced using Mylar sheeting in contact with fluid beneath the overriding plate that moves relative to the slab rollback rate. Diapirs are introduced at the slab-wedge interface in two modes: 1) distributions of low density rigid spheres and 2) injection of low viscosity, low density fluid to the base of the wedge. Results from 30 experiments with imposed along-trench (y) distributions of buoyancy, show near-vertical ascent paths only in cases with simple downdip subduction and ratios (W*) of diapir rise velocity to downdip plate rate of W*>1. For W* = 0.2-1, diapir ascent paths are complex, with large (400 km) lateral offsets between source and surfacing locations. Rollback and back-arc extension enhance these offsets, occasionally aligning diapirs from different along-trench locations into trench-normal, age-progressive linear chains beneath the overriding plate. Diapirs from different y-locations may surface beneath the same volcanic center, despite following ascent paths of very different lengths and transit times. In cases with slab gaps, diapirs from the outside edge of the steep plate move 1000 km parallel to the trench before surfacing above the shallow dipping plate. "Dead zones

  19. Digital Geologic Map of the Wallace 1:100,000 Quadrangle, Idaho

    USGS Publications Warehouse

    Lewis, Reed S.; Burmester, Russell F.; McFaddan, Mark D.; Derkey, Pamela D.; Oblad, Jon R.

    1999-01-01

    The geology of the Wallace 1:100,000 quadrangle, Idaho was compiled by Reed S. Lewis in 1997 primarily from published materials including 1983 data from Foster, Harrison's unpublished mapping done from 1975 to 1985, Hietenan's 1963, 1967, 1968, and 1984 mapping, Hobbs and others 1965 mapping, and Vance's 1981 mapping, supplemented by eight weeks of field mapping by Reed S. Lewis, Russell F. Burmester, and Mark D. McFaddan in 1997 and 1998. This geologic map information was inked onto a 1:100,000-scale greenline mylar of the topographic base map for input into a geographic information system (GIS). The resulting digital geologic map GIS can be queried in many ways to produce a variety of geologic maps. Digital base map data files (topography, roads, towns, rivers and lakes, etc.) are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,000). The map area is located in north Idaho. The primary sources of map data are shown in figure 2 and additional sources are shown in figure 3. This open-file report describes the geologic map units, the methods used to convert the geologic map data into a digital format, the Arc/Info GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. Mapping and compilation was completed by the Idaho Geological Survey under contract with the U.S. Geological Survey (USGS) office in Spokane, Washington. The authors would like to acknowledge the help of the following field assistants: Josh Goodman, Yvonne Issak, Jeremy Johnson and Kevin Myer. Don Winston provided help with our ongoing study of Belt stratigraphy, and Tom Frost assisted with logistical problems and sample collection. Manuscript reviews by Steve Box, Tom Frost, and Brian White are greatly appreciated. We wish to thank Karen S

  20. Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil.

    PubMed

    Johnston, Joe; Gopalarathnam, Ashok

    2012-09-01

    A flap mounted on the upper surface of an airfoil, called a 'lift-enhancing effector', has been shown in wind tunnel tests to have a similar function to a bird's covert feathers, which rise off the wing's surface in response to separated flows. The effector, fabricated from a thin Mylar sheet, is allowed to rotate freely about its leading edge. The tests were performed in the NCSU subsonic wind tunnel at a chord Reynolds number of 4 × 10(5). The maximum lift coefficient with the effector was the same as that for the clean airfoil, but was maintained over an angle-of-attack range from 12° to almost 20°, resulting in a very gentle stall behavior. To better understand the aerodynamics and to estimate the deployment angle of the free-moving effector, fixed-angle effectors fabricated out of stiff wood were also tested. A progressive increase in the stall angle of attack with increasing effector angle was observed, with diminishing returns beyond the effector angle of 60°. Drag tests on both the free-moving and fixed effectors showed a marked improvement in drag at high angles of attack. Oil flow visualization on the airfoil with and without the fixed-angle effectors proved that the effector causes the separation point to move aft on the airfoil, as compared to the clean airfoil. This is thought to be the main mechanism by which an effector improves both lift and drag. A comparison of the fixed-effector results with those from the free-effector tests shows that the free effector's deployment angle is between 30° and 45°. When operating at and beyond the clean airfoil's stall angle, the free effector automatically deploys to progressively higher angles with increasing angles of attack. This slows down the rapid upstream movement of the separation point and avoids the severe reduction in the lift coefficient and an increase in the drag coefficient that are seen on the clean airfoil at the onset of stall. Thus, the effector postpones the stall by 4-8° and makes the

  1. Digital data sets that describe aquifer characteristics of the Vamoosa-Ada aquifer in east-central Oklahoma

    USGS Publications Warehouse

    Abbott, Marvin M.; Runkle, D.L.; Rea, Alan

    1997-01-01

    Nonproprietary format files This diskette contains digitized aquifer boundaries and maps of hydraulic conductivity, recharge, and ground-water level elevation contours for the Vamoosa-Ada aquifer in east-central Oklahoma. The Vamoosa-Ada aquifer is an important source of water that underlies about 2,320-square miles of parts of Osage, Pawnee, Payne, Creek, Lincoln, Okfuskee, and Seminole Counties. Approximately 75 percent of the water withdrawn from the Vamoosa-Ada aquifer is for municipal use. Rural domestic use and water for stock animals account for most of the remaining water withdrawn. The Vamoosa-Ada aquifer is defined in a ground-water report as consisting principally of the rocks of the Late Pennsylvanian-age Vamoosa Formation and overlying Ada Group. The Vamoosa-Ada aquifer consists of a complex sequence of fine- to very fine-grained sandstone, siltstone, shale, and conglomerate interbedded with very thin limestones. The water-yielding capabilities of the aquifer are generally controlled by lateral and vertical distribution of the sandstone beds and their physical characteristics. The Vamoosa-Ada aquifer is unconfined where it outcrops in about an 1,700-square-mile area. Most of the lines in the aquifer boundary, hydraulic conductivity, and recharge data sets were extracted from published digital surficial geology data sets based on a scale of 1:250,000, and represent geologic contacts. Some of lines in the data sets were interpolated in areas where the Vamoosa-Ada aquifer is overlain by alluvial and terrace deposits near streams and rivers. These data sets include only the outcrop area of the Vamoosa-Ada aquifer and where the aquifer is overlain by alluvial and terrace deposits. The hydraulic conductivity value and recharge rate are from a ground-water report about the Vamoosa-Ada aquifer. The water-level elevation contours were digitized from a mylar map, at a scale of 1:250,000, used to publish a plate in a ground-water report about the Vamoosa

  2. Size and Location of Defects at the Coupling Interface Affect Lithotripter Performance

    PubMed Central

    Li, Guangyan; Williams, James C.; Pishchalnikov, Yuri A.; Liu, Ziyue; McAteer, James A.

    2012-01-01

    OBJECTIVE To determine how the size and location of coupling defects caught between the therapy head of a lithotripter and the skin of a surrogate patient (acoustic window of a test chamber) affect the features of shock waves responsible for stone breakage. METHODS Model defects were placed in the coupling gel between the therapy head of a Dornier Compact-S electromagnetic lithotripter and the Mylar window of a water-filled coupling test system. A fiber-optic hydrophone was used to measure acoustic pressures and map the lateral dimensions of the focal zone of the lithotripter. The effect of coupling conditions on stone breakage was assessed using Gypsum model stones. RESULTS Stone breakage decreased in proportion to the area of the coupling defect; a centrally located defect blocking only 18% of the transmission area reduced stone breakage by an average of almost 30%. The effect on stone breakage was greater for defects located on-axis and decreased as the defect was moved laterally; an 18% defect located near the periphery of the coupling window (2.0 cm off-axis) reduced stone breakage by only ~15% compared to when coupling was completely unobstructed. Defects centered within the coupling window acted to narrow the focal width of the lithotripter; an 8.2% defect reduced the focal width ~30% compared to no obstruction (4.4 mm versus 6.5 mm). Coupling defects located slightly off center disrupted the symmetry of the acoustic field; an 18% defect positioned 1.0 cm off-axis shifted the focus of maximum positive pressure ~1.0 mm laterally. Defects on and off-axis imposed a significant reduction in the energy density of shock waves across the focal zone. CONCLUSIONS In addition to blocking the transmission of shock wave energy, coupling defects also disrupt the properties of shock waves that play a role in stone breakage, including the focal width of the lithotripter and the symmetry of the acoustic field; the effect is dependent on the size and location of defects

  3. Bowen ratio/energy balance technique for estimating crop net CO2 assimilation, and comparison with a canopy chamber

    NASA Astrophysics Data System (ADS)

    Held, A. A.; Steduto, P.; Orgaz, F.; Matista, A.; Hsiao, T. C.

    1990-12-01

    This paper describes a Bowen ratio/energy balance (BREB) system which, in conjunction with an infra-red gas analyzer (IRGA), is referred to as BREB+ and is used to estimate evapotranspiration ( ET) and net CO2 flux ( NCF) over crop canopies. The system is composed of a net radiometer, soil heat flux plates, two psychrometers based on platinum resistance thermometers (PRT), bridge circuits to measure resistances, an IRGA, air pumps and switching valves, and a data logger. The psychrometers are triple shielded and aspirated, and with aspiration also between the two inner shields. High resistance (1 000 ohm) PRT's are used for dry and wet bulbs to minimize errors due to wiring and connector resistances. A high (55 K ohm) fixed resistance serves as one arm of the resistance bridge to ensure linearity in output signals. To minimize gaps in data, to allow measurements at short (e.g., 5 min) intervals, and to simplify operation, the psychrometers were fixed at their upper and lower position over the crop and not alternated. Instead, the PRT's, connected to the bridge circuit and the data logger, were carefully calibrated together. Field tests using a common air source showed appartent effects of the local environment around each psychrometer on the temperatures measured. ET rates estimated with the BREB system were compared to those measured with large lysimeters. Daily totals agreed within 5%. There was a tendency, however, for the lysimeter measurements to lag behind the BREB measurements. Daily patterns of NCF estimated with the BREB+ system are consistent with expectations from theories and data in the literature. Side-by-side comparisons with a stirred Mylar canopy chamber showed similar NCF patterns. On the other hand, discrepancies between the results of the two methods were quite marked in the morning or afternoon on certain dates. Part of the discrepancies may be attributed to inaccuracies in the psychrometric temperature measurements. Other possible causes

  4. SEM Characterization of Extinguished Grains from Plasma-Ignited M30 Charges

    NASA Technical Reports Server (NTRS)

    Kinkennon, A.; Birk, A.; DelGuercio, M.; Kaste, P.; Lieb, R.; Newberry, J.; Pesce-Rodriguez, R.; Schroeder, M.

    2000-01-01

    M30 propellant grains that had been ignited in interrupted closed bomb experiments were characterize by scanning electron microscopy (SEM). Previous chemical analysis of extinguished grains had given no indications of plasma-propellant chemical interactions that could explain the increased burning rates that had been previously observed in full-pressure closed bomb experiments. (This does not mean that there is no unique chemistry occurring with plasma ignition. It may occur very early in the ignition event and then become obscured by the burning chemistry.) In this work, SEM was used to look at grain morphologies to determine if there were increases in the surface areas of the plasma-ignited grains which would contribute to the apparent increase in the burning rate. Charges were made using 30 propellant grains (approximately 32 grams) stacked in two tiers and in two concentric circles around a plastic straw. Each grain was notched so that, when the grains were expelled from the bomb during extinguishment, it could be determined in which tier and which circle each grain was originally packed. Charges were ignited in a closed bomb by either a nickel wire/Mylar-capillary plasma or black powder. The bomb contained a blowout disk that ruptured when the pressure reached 35 MPa, and the propellant was vented into a collection chamber packed with polyurethane foam. SEM analysis of the grains fired with a conventional black powder igniter showed no signs of unusual burning characteristics. The surfaces seemed to be evenly burned on the exteriors of the grains and in the perforations. Grains that had been subjected to plasma ignition, however, had pits, gouges, chasms, and cracks in the surfaces. The sides of the grains closest to the plasma had the greatest amount of damage, but even surfaces facing the outer wall of the bomb had small pits. The perforations contained gouges and abnormally burned regions (wormholes) that extended into the web. The SEM photos indicated that

  5. The use of BAS-TR imaging plates calibration in determining the resolving power of Fuji BAS-1800II image plate reader

    NASA Astrophysics Data System (ADS)

    Alnaimi, R.

    2018-01-01

    The importance of this work lies in assuring the reliability of the results obtained from both imaging plates type BAS-TR and Fuji Image Reader BAS-1800II as they are widely used in calculating essential x-ray sources parameters such as the source size, x-ray flux and brilliance, hence, the calibration presented in this work. For such quantitative analysis, a common practice used by many researchers, where Gold resolution meshes are utilised for such purpose, however not quite successful due to the transmission effect of high energy photons at their edges as well as the pixeling effect while magnifying the scanned image to secure the edge spread function (ESF) data. In contrast, the use of resolution test target (RTT) and wire mesh grid together with a set of test samples i.e. Stanley blades, Ta, Ti and Si wafer of 100, 300, 15, and 490 micron thickness respectively appeared to be efficient in determining IP pixel size and the resolution of the reader. Two different experiments were conducted using two different targets and lasers of very different performance. The first, was a 15 μm VHS video tape composed of Mylar as carrier film with Fe2O3 and CrO2 powder. Nd:YAG laser of long pulse 800 ps, 50 Hz repetition rate and single shot were utilised. Whereas, the second experiment were conducted on a 9μm C wire and a short pulse 500fs Cerberus single shot laser was used. The results obtained from both experiments were pretty much similar. The imaging plate spatial resolution was measured to be: 3.4 ± 0.2 pixels and a pixel size of 41.26 ± 1.4 μm, whereas the smallest resolvable object visible to the reader (1:1 imaging with magnification factor) was of order 140.3 ± 0.3 microns. This appeared to be worse by a factor of three which indicates the importance of the reader's calibration on a regular basis, and at the same time one has to reconsider any related work and calculation based upon the previous nominal values.

  6. PECVD de composes de silicium sur polymeres: Etude de la premiere phase du depot

    NASA Astrophysics Data System (ADS)

    Dennler, Gilles

    Since their first introduction in the early 90's, transparent barriers against oxygen and/or water vapor permeation through polymers, such as SiO 2, are the object of increasing interest in the food and pharmaceutical packaging industries, and more recently for the encapsulation of organic-based displays. It is now well known that these thin layers possess barrier properties only if they are thicker than a certain critical thickness, dc. For example, dc is around 12 nm in the case of SiO2 on KaptonRTM PI; below this value, the measured "Oxygen Transmission Rate" (OTR, in standard cm3/m2/day/bar) is roughly the same as that of the uncoated polymer. Until now, no detailed research has been carried out to explain this observation, but a hypothesis was proposed in the literature, based on island-like growth structure of the coating for d ≤ dc. According to this hypothesis, the surface energy of the polymeric substrates is so low that the Volmer-Weber (island-coalescence) growth mode occurs. We have aimed to verify this explanation, that is, to study the initial phase of silicon-compound (SiO2 and SiN) growth on four different polymeric substrates, namely polyimide (KaptonRTM PI), polycarbonate (LexanRTM PC), polypropylene (PP), and polyethyleneterephthalate (MylarRTM PET). Three different deposition methods were used, namely reactive evaporation of SiO, radio-frequency (RF) Plasma Enhanced Chemical Vapor Deposition (RF PECVD), and Distributed Electron Cyclotron Resonance (DECR) PECVD. In this latter case, the substrates were placed in three different positions: (i) in the active glow zone, (ii) downstream, and (iii) downstream, but shielded from photon emission (e.g. VUV) from the plasma. Angle-Resolved X-Ray Photoelectron Spectroscopy (ARXPS), Rutherford Backscattering Spectroscopy (RBS), and Scanning Electron Microscopy (SEM), the latter performed after Reactive Ion Etching (RIE) by oxygen plasma, revealed that growth indeed occurs in a Volmer-Weber mode in the

  7. An Investigation of Low Earth Orbit Internal Charging

    NASA Technical Reports Server (NTRS)

    NeergaardParker, Linda; Minow, Joseph I.; Willis, Emily M.

    2014-01-01

    Low Earth orbit is usually considered a relatively benign environment for internal charging threats due to the low flux of penetrating electrons with energies of a few MeV that are encountered over an orbit. There are configurations, however, where insulators and ungrounded conductors used on the outside of a spacecraft hull may charge when exposed to much lower energy electrons of some 100's keV in a process that is better characterized as internal charging than surface charging. For example, the minimal radiation shielding afforded by thin thermal control materials such as metalized polymer sheets (e.g., aluminized Kapton or Mylar) and multilayer insulation may allow electrons of 100's of keV to charge underlying materials. Yet these same thermal control materials protect the underlying insulators and ungrounded conductors from surface charging currents due to electrons and ions at energies less than a few keV as well as suppress the photoemission, secondary electron, and backscattered electron processes associated with surface charging. We investigate the conditions required for this low Earth orbit "internal charging" to occur and evaluate the environments for which the process may be a threat to spacecraft. First, we describe a simple one-dimensional internal charging model that is used to compute the charge accumulation on materials under thin shielding. Only the electron flux that penetrates exposed surface shielding material is considered and we treat the charge balance in underlying insulation as a parallel plate capacitor accumulating charge from the penetrating electron flux and losing charge due to conduction to a ground plane. Charge dissipation due to conduction can be neglected to consider the effects of charging an ungrounded conductor. In both cases, the potential and electric field is computed as a function of time. An additional charge loss process is introduced due to an electrostatic discharge current when the electric field reaches a

  8. Aerogel-Based Multilayer Insulation with Micrometeoroid Protection

    NASA Technical Reports Server (NTRS)

    Begag, Redouane; White, Shannon

    2013-01-01

    Ultra-low-density, highly hydrophobic, fiber-reinforced aerogel material integrated with MLI (aluminized Mylar reflectors and B4A Dacron separators) offers a highly effective insulation package by providing unsurpassed thermal performance and significant robustness, delivering substantial MMOD protection via the addition of a novel, durable, external aerogel layer. The hydrophobic nature of the aerogel is an important property for maintaining thermal performance if the material is exposed to the environment (i.e. rain, snow, etc.) during ground installations. The hybrid aerogel/MLI/MMOD solution affords an attractive alternative because it will perform thermally in the same range as MLI at all vacuum levels (including high vacuum), and offers significant protection from micrometeoroid damage. During this effort, the required low-density and resilient aerogel materials have been developed that are needed to optimize the thermal performance for space (high vacuum) cryotank applications. The proposed insulation/MMOD package is composed of two sections: a stack of interleaved aerogel layers and MLI intended for cryotank thermal insulation, and a 1.5- to 1-in. (.2.5- to 3.8- cm) thick aerogel layer (on top of the insulation portion) for MMOD protection. Learning that low-density aerogel cannot withstand the hypervelocity impact test conditions, the innovators decided during the course of the program to fabricate a high-density and strong material based on a cross-linked aerogel (X-aerogel; developed elsewhere by the innovators) for MMOD protection. This system has shown a very high compressive strength that is capable of withstanding high-impact tests if a proper configuration of the MMOD aerogel layer is used. It was learned that by stacking two X-aerogel layers [1.5-in. (.3.8-cm) thick] separated by an air gap, the system would be able to hold the threat at a speed of 5 km/s and gpass h the test. The first aerogel panel stopped the projectile from damaging the second

  9. Large Scale Testing of a Foam/Multilayer Insulation Thermal Control System (TCS) for Cryogenic Upper Stages

    NASA Technical Reports Server (NTRS)

    Hastings, Leon; Martin, James

    1998-01-01

    The development of high energy cryogenic upper stages is essential for the efficient delivery of large payloads to various destinations envisioned in future programs. A key element in such upper stages is cryogenic fluid management (CFM) advanced development/technology. Due to the cost of and limited opportunities for orbital experiments, ground testing must be employed to the fullest extent possible. Therefore, a system level test bed termed the Multipurpose Hydrogen Test Bed (MHTB), which is representative in size and shape (3 meter diameter by 3 meter long with a volume of 18 cubic meters) of a fully integrated space transportation vehicle liquid hydrogen propellant tank has been established. To date, upper stage studies have often baselined the foam/multilayer insulation (FMLI) combination concept; however, hardware experience with the concept is minimal and was therefore selected for the MHTB. The foam element (isofoam SS-1 171 with an average thickness of 3.5 centimeters) is designed to protect against ground hold/ascent flight environments, and allows for the use of a dry nitrogen purge as opposed to the more complex/heavy helium purge subsystem normally required with MLI in cryogenic applications. The MLI (45 layers of Double Aluminized Mylar with Dacron spacers) provides protection in the vacuum environment of space and is designed for an on-orbit storage period of 45 days. Several unique features were incorporated in the MLI concept and included: variable density MLI (reduces weight and radiation losses by changing the layer density), larger but fewer DAM perforations for venting during ascent to orbit (reduces radiation losses), and roll wrap installation of the MLI with a commercially established process to lower assembly man-hours and reduce seam heat leak. Thermal performance testing of the MHTB TCS was conducted during three test series conducted between September 1995 and May 1996. Results for the ground hold portion of the tests were as expected

  10. Mitigating Backgrounds with a Novel Thin-Film Cathode in the DRIFT-IId Dark Matter Detector

    NASA Astrophysics Data System (ADS)

    Miller, Eric H.

    The nature of dark matter, which comprises 85% of the matter density in the universe, is a major outstanding question in physics today. The standard hypothesis is that the dark matter is a new weakly interacting massive particle, which is present throughout the galaxy. These particles could interact within detectors on Earth, producing low-energy nuclear recoils. Two distinctive signatures arise from the solar motion through the galaxy. The DRIFT experiment aims to measure one of these, the directional signature that is based on the sidereal modulation of the nuclear recoil directions. Although DRIFT has demonstrated its capability for detecting this signature, it has been plagued by a large number of backgrounds that have limited its reach. The focus of this thesis is on characterizing these backgrounds and describing techniques that have essentially eliminated them. The background events in the DRIFT-IId detector are predominantly caused by alpha decays on the central cathode in which the alpha particles completely or partially absorbed by the cathode material. This thesis describes the installation a 0.9 mum thick aluminized-mylar cathode as a way to reduce the probability of producing these backgrounds. We study three generations of cathode (wire, thin-film, and radiologically clean thin-film) with a focus on identifying and quantifying the sources of alpha decay backgrounds, as well as their contributions to the background rate in the detector. This in-situ study is based on alpha range spectroscopy and the determination of the absolute alpha detection efficiency. The results for the final radiologically clean version of the cathode give a contamination of 3.3 +/- 0.1 ppt 234U and 73 +/- 2 ppb 238U, and an efficiency for rejecting an RPR from an alpha decay that is a factor 70 +/- 20 higher than for the original wire cathode. Along with other background reduction measures, the thin-film cathode has reduced the observed background rate from 130/day to 1.7/day

  11. Sandbox Simulations of the Evolution of a Subduction Wedge following Subduction Initiation

    NASA Astrophysics Data System (ADS)

    Brandon, M. T.; Ma, K. F.; DeWolf, W.

    2012-12-01

    Subduction wedges at accreting subduction zones are bounded by a landward dipping pro-shear zone (= subduction thrust) and a seaward-dipping retro-shear zone in the overriding plate. For the Cascadia subduction zone, the surface trace of the retro-shear zone corresponds to the east side of the Coast Ranges of Oregon and Washington and the Insular Mountains of Vancouver Island. This coastal high or forearc high shows clear evidence of long-term uplift and erosion along its entire length, indicating that it is an active part of the Cascadia subduction wedge. The question addressed here is what controls the location of the retro-shear zone? In the popular double-sided wedge model of Willet et al (Geology 1993), the retro-shear zone remains pinned to the S point, which is interpreted to represent where the upper-plate Moho intersects the subduction zone. For this interpretation, the relatively strong mantle is considered to operate as a flat backstop. That model, however. is somewhat artificial in that the two plates collide in a symmetric fashion with equal crustal thicknesses on both sides. Using sandbox experiments, we explore a more realistic configuration where the upper and lower plate are separated by a gentle dipping (10 degree) pro-shear zone, to simulate the initial asymmetric geometry of the subduction thrust immediately after initiation of subduction. The entire lithosphere must fail along some plane for subduction to begin and this failure plane must dip in the direction of subduction. Thus, the initial geometry of the overriding plate is better approximated as a tapered wedge than as a layer of uniform thickness, as represented in the Willett et al models. We demonstrate this model using time-lapse movies of a sand wedge above a mylar subducting plate. We use particle image velocimetry (PIV) to show the evolution of strain and structure within the overriding plate. Material accreted to the tapered end of the overriding plate drives deformation and causes

  12. Design and Construction of a Vertex Chamber and Measurement of the Average Beta-Hadron Lifetime

    NASA Astrophysics Data System (ADS)

    Nelson, Harry Norman

    Four parameters describe the mixing of the three quark generations in the Standard Model of the weak charged current interaction. These four parameters are experimental inputs to the model. A measurement of the mean lifetime of hadrons containing b-quarks, or B-Hadrons, constrains the magnitudes of two of these parameters. Measurement of the B-Hadron lifetime requires a device that can measure the locations of the stable particles that result from B-Hadron decay. This device must function reliably in an inaccessible location, and survive high radiation levels. We describe the design and construction of such a device, a gaseous drift chamber. Tubes of 6.9 mm diameter, having aluminized mylar walls of 100 μm thickness are utilized in this Vertex Chamber. It achieves a spatial resolution of 45 mum, and a resolution in extrapolation to the B-Hadron decay location of 87 mum. Its inner layer is 4.6 cm from e^+e ^- colliding beams. The Vertex Chamber is situated within the MAC detector at PEP. We have analyzed both the 94 pb ^{-1} of integrated luminosity accumulated at sqrt{s} = 29 GeV with the Vertex Chamber in place as well as the 210 pb^{-1} accumulated previously. We require a lepton with large momentum transverse to the event thrust axis to obtain a sample of events enriched in B-Hadron decays. The distribution of signed impact parameters of all tracks in these events is used to measure the B-Hadron flight distance, and hence lifetime. The trimmed mean signed impact parameters are 130 +/- 19 μm for data accumulated with the Vertex Chamber, and 162 +/- 25 μm for previous data. Together these indicate an average B-Hadron lifetime of tau_{b} = (1.37_sp{-0.19}{+0.22} stat. +/- 0.11 sys.) times (1 +/- 0.15 sys.) psec. We separate additive and multiplicative systematic errors because the second does not degrade the statistical significance of the difference of the result from 0. If b-c dominates b-quark decay the corresponding weak mixing matrix element mid V_ {cb

  13. Materials Assessment of Components of the Extravehicular Mobility Unit

    NASA Technical Reports Server (NTRS)

    Olivas, John D.; Barrera, Enrique V.

    1996-01-01

    Current research interests for Extravehicular Mobility Unit (EMU) design and development are directed toward enhancements of the Shuttle EMU, implementation of the Mark 3 technology for Shuttle applications, and development of a next generation suit (the X suit) which has applications for prolonged space flight, longer extravehicular activity (EVA), and Moon and Mars missions. In this research project two principal components of the EMU were studied from the vantage point of the materials and their design criteria. An investigation of the flexible materials which make up the lay-up of materials for abrasion and tear protection, thermal insulation, pressure restrain, etc. was initiated. A central focus was on the thermal insulation. A vacuum apparatus for measuring the flexibility of the materials was built to access their durability in vacuum. Plans are to include a Residual Gas Analyzer on the vacuum chamber to measure volatiles during the durability testing. These tests will more accurately simulate space conditions and provide information which has not been available on the materials currently used on the EMU. Durability testing of the aluminized mylar with a nylon scrim showed that the material strength varied in the machine and transverse directions. Study of components of the EMU also included a study of the EMU Bearing Assemblies as to materials selection, engineered materials, use of coatings and flammability issues. A comprehensive analysis of the performance of the current design, which is a stainless steel assembly, was conducted and use of titanium alloys or engineered alloy systems and coatings was investigated. The friction and wear properties are of interest as are the general manufacturing costs. Recognizing that the bearing assembly is subject to an oxygen environment, all currently used materials as well as titanium and engineered alloys were evaluated as to their flammability. An aim of the project is to provide weight reduction since bearing

  14. Effect of laser generated shockwaves 1 on ex-vivo pigskin.

    PubMed

    Ramaprasad, Vidyunmala; Navarro, Artemio; Patel, Shahzad; Patel, Vikash; Nowroozi, Bryan N; Taylor, Zach D; Yong, William; Gupta, Vijay; Grundfest, Warren S

    2014-10-01

    Persistent bacterial infection prolongs hospitalizations, leading to increased healthcare costs. Treatment of these infections costs several billion dollars annually. Biofilm production is one mechanism by which bacteria become resistant. With the help of biofilms, bacteria withstand the host immune response and are much less susceptible to antibiotics. Currently, there is interest in the use of laser-generated shockwaves (LGS) to delaminate biofilm from infected wound surfaces; however, the safety of such an approach has not yet been established. Of particular concern are the thermal and mechanical effects of the shockwave treatment on the epidermis and the underlying collagen structure of the dermis. The present study is a preliminary investigation of the effect of LGS on freshly harvested ex vivo porcine skin tissue samples. Tissue samples for investigation were harvested immediately post-mortem and treated with LGS within 30 minutes. Previous studies have shown that laser fluences between 100 and 500 mJ/pulse are capable of delaminating biofilms off a variety of surfaces, thus our preliminary investigation focused on this range of laser energy. For each sample, LGS were produced via laser irradiation of a thin layer (0.5 µm) of titanium sandwiched between a 50 and 100 µm thick layer of water glass and a 0.1 mm thick sheet of Mylar. The rapid thermal expansion of the irradiated titanium film generates a transient compressive wave that is coupled through a liquid layer to the surface of the ex vivo pigskin sample. Shocked samples were immediately fixed in formalin and prepared for histological analysis. A blinded pathologist evaluated and scored each section on the basis of its overall appearance (O) and presence of linear/slit-like spaces roughly parallel to the surface of the skin (S). The scores were given on a scale of 0-3. The present investigation revealed no visible difference between the tissue sections of the control sample and those that

  15. An analysis of the deployment of a pumpkin balloon on mars

    NASA Astrophysics Data System (ADS)

    Rand, J.; Phillips, M.

    The design of large superpressure balloons has received significant attention in recent years due to the successful demonstration of various enabling technologies and materials. Of particular note is the "pumpkin" shaped balloon concept, which allows the stress in the envelope to be limited by the surface geometry. Unlike a sphere, which produces stress resultants determined by the volume of the system, the pumpkin utilizes a system of meridional tendons to react the loading in one direction, and form a number of lobes, which limit the stress in the circumferential direction. The application of this technology to very large systems is currently being demonstrated by NASA's Ultra Long Duration Balloon (ULDB) Program. However, this type of balloon has certain features that may be exploited to produce a system far more robust than a comparable sphere during deployment, inflation, and operation for long periods of time. When this concept is applied to a system designed to carry two kilograms in the atmosphere of Mars, the resulting balloon is small enough to alter the construction techniques and produce an envelope which is free of tucks and folds which may cause uncontrolled stress concentrations. A technique has been demonstrated where high strength tendons may be pretensioned prior to installation along the centerline of each gore. Since this position is the shortest distance between the apex and nadir of the balloon, the tendons will automatically resist the forces caused by deployment and inflation and thereby protect the thin film gas barrier from damage. A suitable balloon has been designed for this type of mission using five-micron Mylar Type C film for the gas barrier and P O braided cables for the meridionalB load carrying members. The deployment of this balloon is assumed to occur while falling on a decelerator suitably designed for the Mars atmosphere. The inflation is accomplished by a ten-kilogram system suspended at the nadir of the balloon. As the

  16. EFFECT OF GAMMA RADIATION, CHEMICAL, AND PACKAGING TREATMENTS ON REFRIGERATED LIFE OF STRAWBERRIES AND SWEET CHERRIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, G.M.; Salunkhe, D.K.

    1963-06-01

    After preirradiation chemical treatments and/or packaging in films, the fruits were sealed in perforated cans and irradiated at the Materials Test Reactor Station, Arco, Idaho, with spent-fuel rods of U/sup 235/. The doses were: strawberries 1, 2, and 3 x 10/sup 5/ rad; and cherries 2, 3, and 4 x 10/sup 5/ rad. Fruits were aerated during irradiation and then placed in storage at 40 deg F and 80% relative humidity for various periods. The cans were then opened; the percentage of marketable fruits was calculated, and fungi infecting the fruits were identified. The following results were obtained with strawberries.more » A dose of 2 x 10/sup 5/ rad was optimum for radiopasteurization; shelf-life was extentded approximates 15 days at tissue caused the berries to have a spongy, water-soaked texture. Captan proved a better fungus-inhibiting chemical than potassium sorbate when used with radiation. Hormodendrum and Botryis were the most common fungi; Penicillium was killed in all irradiated treatments. Varieties such as Kasuga, Lindalicious, and Sparkle, when harvested at the firm- ripe stage of maturity and then irradiated kept better tham other varieties. With sweet cherries it was found that a dose of 3 x 10/sup 6/ rad was effective in extending shelf-life beyond 30 days. Cherries turned brown at the high (4 x 10/sup 5/-rad) dose; however, pigment development and ripening were progressively retarded in all irradiated samples. Fungus control was better with Myprozine, captan, and Mycostatin than with other chemicals used with radiation. Storage life increased significantly when Mylar packaging was combined with radiation and chemical treatments. Alternaria was the most prevalent fungus growth; Penicillium was not observed. Bing, Lambert, and Windsor varieties responded better to radiopasteurization than did Napoleon. With some varieties of cherries, deterioration of the fruit was greater after low doses tham in the absence of irradiation, which indicates that

  17. Laser energy transformation to shock waves in multi-layer flyers

    NASA Astrophysics Data System (ADS)

    Kasperczuk, A.; Pisarczyk, T.; Gus'kov, S. Yu.; Ullschmied, J.; Krouský, E.; Masek, K.; Pfeifer, M.; Rohlena, K.; Skala, J.; Kalal, M.; Tikhonchuk, V.; Pisarczyk, P.

    Investigations of powerful laser pulse action on planar flyer targets consisting of the layers of different materials are of importance from the basic as well as the applied physics point of view. One important aspect of this research deals with optimization of inertial fusion targets design. Here, the role of a thin heavy metal layer as a protector against preliminary heating of compressed thermonuclear fuel by thermal X-ray radiation can be mentioned as one particular topic to be properly understood. In this paper, the results of our studies of such a thin layer influence on the laser-produced energy deposition in the flyer foils as well as on the hydrodynamic motion of the foils as a hole will be reported. A 0.4 μ m thick gold layer was located between an aluminum layer of 6 μ m thickness and mylar layer with thickness of 2.5 μ m, used here as an ablator. For comparison, the flyer target without the gold layer but of the same area density was employed. Two different target constructions were used: (1) with a 2 mm gap separating the foil and the massive targets for measuring the foil velocity and (2) with gaps of 50, 100 and 200 μ m for laser energy transfer efficiency measurements. Targets were irradiated by laser beam energies of ˜100 J in the case of the first harmonic, and by laser beam energies ˜120 J in the case of the third one using the Prague Asterix Laser System iodine laser. The interaction spot radius of 200 μ m and the laser pulse duration of ˜250 ps were employed in these experiments. A three-frame interferometric and shadowgraphic system was set-up as to measure velocities of the rear side of the foils and to determine electron density distributions at different stages of plasma evolution. Volumes of craters produced by collisions of accelerated foils with a massive aluminum block were used as an indicator of the laser energy transfer efficiency into the foils of both types. These experiments have shown that the presence of the thin gold

  18. Optical Properties of Multi-Layered Insulation

    NASA Technical Reports Server (NTRS)

    Rodriguez, Heather M.; Abercromby, Kira J.; Barker, Edwin

    2007-01-01

    Multi-layer insulation, MLI, is a material used on rocket bodies and satellites mainly for thermal insulation. MLI can be comprised of a variety of materials, layer numbers, and dimensions based on its purpose. A common composition of MLI consists of outer facing copper-colored Kapton with an aluminized backing for the top and bottom layers and the middle consisting of alternating layers of DARCON or Nomex netting with aluminized Mylar. If this material became separated from the spacecraft or rocket body its orbit would vary greatly in eccentricity due to its high area to mass (A/m) and susceptibility to solar radiation pressure perturbations. Recently a debris population was found with high A/m, which could be MLI. Laboratory photometric measurements of one intact piece and three different layers of MLI is presented in an effort to predict the characteristics of a MLI light curve and aid in identifying the source of the new population. For this paper, the layers used will be consistent with the common MLI mentioned in the above paragraph. Using a robotic arm, the piece was rotated from 0-360 degrees in one degree increments along the object s longest axis. Laboratory photometric data was recorded with a CCD camera using various filters (Johnson B, Johnson V and Bessell R). The measurements were taken at an 18 degree (light-object-camera) phase angle. As expected, the MLI pieces showed characteristics similar to a bimodal magnitude plot of a flat plate, but with more photometric features, dependant upon the layer of MLI. Time exposures varied from piece to piece such that the amount of pixels saturated would be minimal. In addition to photometric laboratory measurements, laboratory spectral measurements are shown for the same MLI samples. Spectral data will be combined to match the wavelength region of photometric data so a measure of truth can be established for the photometric measurements. Spectral data shows a strong absorption feature near 4800 angstroms

  19. Phyllosilicate analysis capabilities of the CheMin mineralogical instrument on the Mars Science Laboratory (MSL '11) Curiosity Rover

    NASA Astrophysics Data System (ADS)

    Blake, D. F.; Bish, D. L.; Vaniman, D. T.; Chipera, S.; Bristow, T. F.; Sarrazin, P.

    2011-12-01

    The CheMin mineralogical instrument on the MSL '11 Curiosity rover will return quantitative X-ray diffraction data (XRD) from scooped soil samples and drilled rock powders collected from the Mars surface. Samples of 45-65 mm3 from material sieved to <150 μm will be delivered through a funnel to one of 27 reuseable sample cells (five additional cells on the sample wheel contain diffraction or fluorescence standards). Sample cells are 8-mm diameter discs with 7-μm thick Mylar or Kapton windows spaced 170 μm apart. Within this volume, the sample is shaken by piezoelectric vibration at sonic frequencies, causing the powder to flow past a narrow, collimated X-ray beam in random orientations over the course of an analysis. In this way, diffraction patterns exhibiting little to no preferred orientation can be obtained even from minerals normally exhibiting strong preferred orientation such as phyllosilicates. Individual analyses will require several hours over one or more Mars sols. For typical well-ordered minerals, CheMin has a Minimum Detection Limit (MDL) of <3% by mass, an accuracy of better than 15% and a precision of better than 10% for phases present in concentrations >4X MDL (12%). The resolution of the diffraction patterns is 0.30 degrees 2θ, and the angular measurement range is 4-55 degrees 2θ. With this performance, CheMin can identify and distinguish a number of clay minerals. For example, discrimination between 1:1 phyllosilicates (such as the kaolin minerals), with repeat distances of ~7Å, and smectites (e.g., montmorillonite, nontronite, saponite), with repeat distances from 10-15Å, is straightforward. However, it is important to note that the variety of treatments used in terrestrial laboratories to aid in discrimination of clay minerals will not be accessible on Mars (e.g., saturation with ethylene glycol vapor, heat treatments). Although these treatments will not be available on Mars, dehydration within the CheMin instrument could be used to

  20. Off-line exhaled nitric oxide measurements in children.

    PubMed

    Barreto, M; Villa, M P; Martella, S; Falasca, C; Guglielmi, F; Pagani, J; Darder, M T; Ronchetti, R

    2001-08-01

    The concentration of exhaled nitric oxide (eNO) is a useful marker of asthmatic bronchial inflammation. eNO can now be measured away from the laboratory (off-line), even in children. Short exhalation maneuvers (8 sec) and small samples (1 L) of exhaled gas are probably sufficient in children, but more information is needed about the effect of different measurement conditions. As a preliminary step before conducting epidemiological studies in schoolchildren, we investigated the effects of expiratory flow, dead space, and expiratory time on eNO concentrations collected in 1-L mylar collection bags. We studied 101 cooperative subjects (62 males) aged 5-18 years (30 healthy volunteers, 51 asthmatics, and 20 children with various other respiratory diseases) in our pulmonary function laboratory. On-line and off-line eNO were compared in a single session, and analyzed with a Sievers NOA 280 nitric oxide analyzer. For both methods of collecting expired gas, subjects did a single exhalation without breath-holding against an expiratory pressure 10 cm H(2)O. We investigated the effects of expiratory flow, dead space, and exhalation time on eNO; we also compared on-line and off-line eNO measurements, and the repeatability of both techniques at a given flow rate. Expiratory flows of 58 mL/sec provided more reproducible data than lower flows (coefficient of repeatability 1.1 ppb for 58 mL/sec vs. 2.8 for 27 mL/sec vs. 5.7 for 18 mL/sec). eNO concentrations were about 25% higher in off-line than in on-line recordings if the initial 250 mL of exhaled gas were not eliminated, and 37% higher if exhalation lasted longer (16 sec vs. 8 sec). Eliminating 250 mL of dead space and shortening the filling time to 8 sec yielded off-line eNO values close to those on-line (geometric mean off-line eNO 14.4 ppb, 95% confidence interval: 12.2-17.0) vs. on-line eNO 13.8 ppb (95% confidence interval: 11.6-16.5). On-line and off-line results were highly correlated (r = 0.996, P = 0.000) and had

  1. Analysis of Near Simultaneous Jimsphere and AMPS High Resolution Wind Profiles

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.

    2003-01-01

    The high-resolution wind profile of the Automated Meteorological Profiling System (HRAMPS) is the proposed replacement for the Jimsphere measurement system used to support NASA Shuttle launches from the Eastern Test Range (ETR). Samples of twenty-six ETR near simultaneous Jimsphere and HRAMPS wind profiles were obtained for Shuttle program HRAMPS certification studies. Shuttle systems engineering certification is to ensure that spacecraft and launch vehicle systems performance and safety evaluations for each launch (derived from flight simulations with Jimsphere wind profile data bases) retain their validity when HRAMPS profiles are used on day-of-launch (DOL) in trajectory and loads simulations to support the commit-to-launch decision. This paper describes a statistical analysis of the near simultaneous profiles. In principle the differences between a Jimsphere profile and an HRAMPS profile should be attributed to tracking technology (radar versus GPS tracking of a Jimsphere flight element) and the method for derivation of wind vectors from the raw tracking data. In reality, it is not technically feasible to track the same Jimsphere balloon with the two systems. The aluminized Mylar surface of the standard Jimsphere flight element facilitates radar tracking, but it interferes with HRAMPS during simultaneous tracking. Suspending a radar reflector from an HRAMPS flight element (Jimsphere without aluminized coating) does not produce satisfactory Jimsphere profiles because of intermittent radar returns. Thus, differences between the Jimsphere and HRAMPS profiles are also attributed to differences in the trajectories of separate flight elements. Because of small sample size and a test period limited to one winter season, test measurements during extreme high winds aloft could not have been expected and did not occur. It is during the highest winds that the largest differences between Jimsphere and HRAMPS would occur because the distance between flight elements would be

  2. Surficial Geologic Map of the Worcester North-Oxford- Wrentham-Attleboro Nine-Quadrangle Area in South- Central Massachusetts

    USGS Publications Warehouse

    Stone, Byron D.; Stone, Janet R.; DiGiacomo-Cohen, Mary L.

    2008-01-01

    The surficial geologic map layer shows the distribution of nonlithified earth materials at land surface in an area of nine 7.5-minute quadrangles (417 mi2 total) in south-central Massachusetts (fig. 1). Across Massachusetts, these materials range from a few feet to more than 500 ft in thickness. They overlie bedrock, which crops out in upland hills and in resistant ledges in valley areas. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relationships, and age. Surficial materials also are known in engineering classifications as unconsolidated soils, which include coarse-grained soils, fine-grained soils, or organic fine-grained soils. Surficial materials underlie and are the parent materials of modern pedogenic soils, which have developed in them at the land surface. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for water resources, construction aggregate resources, earth-surface hazards assessments, and land-use decisions. The mapped distribution of surficial materials that lie between the land surface and the bedrock surface is based on detailed geologic mapping of 7.5-minute topographic quadrangles, produced as part of an earlier (1938-1982) cooperative statewide mapping program between the U.S. Geological Survey and the Massachusetts Department of Public Works (now Massachusetts Highway Department) (Page, 1967; Stone, 1982). Each published geologic map presents a detailed description of local geologic map units, the genesis of the deposits, and age correlations among units. Previously unpublished field compilation maps exist on paper or mylar sheets and these have been digitally rendered for the present map compilation. Regional summaries based on the Massachusetts surficial geologic mapping

  3. Study of supernovae and massive stars and prospects with the 4m International Liquid Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Kumar, Brajesh

    2014-11-01

    significant level of polarization during various phases of their evolution at different wavelengths. We have investigated the broad band polarimetric properties of a Type II plateau SN 2012aw and compared it with other well studied CCSNe of similar kinds (Kumar et al., 2014a). In the framework of the present thesis, we have also contributed to the development of the 4m International Liquid Mirror Telescope (ILMT) project which is a joint collaborative effort among different universities and research institutes in Belgium, India, Canada and Poland. We performed various experiments including the spin casting of the primary mirror, optical quality tests of the mercury surface, mylar film experiments, etc. The possible scientific capabilities and future contributions of this telescope are also discussed. We propose our plans to identify the transients (specially supernovae) with the ILMT and their further follow-up scheme. The installation of the ILMT will start very soon at the Devasthal observatory, ARIES Nainital, India.

  4. Geologic Map of the Mount Trumbull 30' X 60' Quadrangle, Mohave and Coconino Counties, Northwestern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Wellmeyer, Jessica L.

    2003-01-01

    The geologic map of the Mount Trumbull 30' x 60' quadrangle is a cooperative product of the U.S. Geological Survey, the National Park Service, and the Bureau of Land Management that provides geologic map coverage and regional geologic information for visitor services and resource management of Grand Canyon National Park, Lake Mead Recreational Area, and Grand Canyon Parashant National Monument, Arizona. This map is a compilation of previous and new geologic mapping that encompasses the Mount Trumbull 30' x 60' quadrangle of Arizona. This digital database, a compilation of previous and new geologic mapping, contains geologic data used to produce the 100,000-scale Geologic Map of the Mount Trumbull 30' x 60' Quadrangle, Mohave and Coconino Counties, Northwestern Arizona. The geologic features that were mapped as part of this project include: geologic contacts and faults, bedrock and surficial geologic units, structural data, fold axes, karst features, mines, and volcanic features. This map was produced using 1:24,000-scale 1976 infrared aerial photographs followed by extensive field checking. Volcanic rocks were mapped as separate units when identified on aerial photographs as mappable and distinctly separate units associated with one or more pyroclastic cones and flows. Many of the Quaternary alluvial deposits that have similar lithology but different geomorphic characteristics were mapped almost entirely by photogeologic methods. Stratigraphic position and amount of erosional degradation were used to determine relative ages of alluvial deposits having similar lithologies. Each map unit and structure was investigated in detail in the field to ensure accuracy of description. Punch-registered mylar sheets were scanned at the Flagstaff Field Center using an Optronics 5040 raster scanner at a resolution of 50 microns (508 dpi). The scans were output in .rle format, converted to .rlc, and then converted to ARC/INFO grids. A tic file was created in geographic coordinates

  5. Technical Note: An investigation of polarity effects for wide-angle free-air chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, H., E-mail: Hong.Shen@nrc-cnrc.gc.ca; Ross,

    2016-07-15

    Purpose: Wide-angle free-air chambers (WAFACs) are used as primary standard measurement devices for establishing the air-kerma strength of low-energy, low-dose rate brachytherapy seeds. The National Research Council of Canada (NRC) is commissioning a primary standard wide-angle free-air chamber (NRC WAFAC) to serve the calibration needs of Canadian clients. The University of Wisconsin has developed a similar variable-aperture free-air chamber (UW VAFAC) to be used as a research tool. As part of the NRC commissioning, measurements were carried out for both polarities of the applied bias voltage and the resulting effects were observed to be very large. Similar effects were identifiedmore » with the UW VAFAC. The authors describe the measurements carried out to determine the underlying causes of the polarity effect and the approach used to eliminate it. Methods: The NRC WAFAC is based on the WAFAC design developed at the National Institute of Standards and Technology in the USA. Charge measurements for {sup 125}I and {sup 241}Am sources were carried out for both negative and positive polarities on the NRC WAFAC and UW VAFAC. Two aperture sizes were also investigated with the UW VAFAC. In addition, measurements on the NRC WAFAC were carried out with a small bias between the collecting electrode and the shield foil at the downstream end of the chamber. To mitigate all of the polarity effects, the downstream surface of the collecting electrode was covered with a thin layer of graphite on both the NRC and UW chambers. Results: Both chamber designs showed a difference of more than 30 % between the charge collected with positive and negative bias voltages for the smallest electrode separation. It was shown for the NRC WAFAC that charge could be collected in the small gap downstream of the collecting volume by applying a voltage between the shield foil and the collecting electrode, even though an insulating foil (Mylar or polyimide film) separated the conducting surface

  6. Size and location of defects at the coupling interface affect lithotripter performance.

    PubMed

    Li, Guangyan; Williams, James C; Pishchalnikov, Yuri A; Liu, Ziyue; McAteer, James A

    2012-12-01

    Study Type--Therapy (case series) Level of Evidence 4. What's known on the subject? and What does the study add? In shock wave lithotripsy air pockets tend to get caught between the therapy head of the lithotripter and the skin of the patient. Defects at the coupling interface hinder the transmission of shock wave energy into the body, reducing the effectiveness of treatment. This in vitro study shows that ineffective coupling not only blocks the transmission of acoustic pulses but also alters the properties of shock waves involved in the mechanisms of stone breakage, with the effect dependent on the size and location of defects at the coupling interface. • To determine how the size and location of coupling defects caught between the therapy head of a lithotripter and the skin of a surrogate patient (i.e. the acoustic window of a test chamber) affect the features of shock waves responsible for stone breakage. • Model defects were placed in the coupling gel between the therapy head of a Dornier Compact-S electromagnetic lithotripter (Dornier MedTech, Kennesaw, GA, USA) and the Mylar (biaxially oriented polyethylene terephthalate) (DuPont Teijin Films, Chester, VA, USA) window of a water-filled coupling test system. • A fibre-optic probe hydrophone was used to measure acoustic pressures and map the lateral dimensions of the focal zone of the lithotripter. • The effect of coupling conditions on stone breakage was assessed using gypsum model stones. • Stone breakage decreased in proportion to the area of the coupling defect; a centrally located defect blocking only 18% of the transmission area reduced stone breakage by an average of almost 30%. • The effect on stone breakage was greater for defects located on-axis and decreased as the defect was moved laterally; an 18% defect located near the periphery of the coupling window (2.0 cm off-axis) reduced stone breakage by only ~15% compared to when coupling was completely unobstructed. • Defects centred

  7. An Assessment of GEO Orbital Debris Photometric Properties Derived from Laboratory-Based Measurements

    NASA Astrophysics Data System (ADS)

    Cowardin, H.; Abercromby, K.; Barker, E.; Seitzer, P.; Mulrooney, M.; Schildknecht, T.

    the same object under different illumination conditions). For example, specular reflections from multiple facets of the target surface (e.g. Mylar or Aluminized Kapton) can lead to erratic, orientation-dependent lightcurves. This paper will investigate published color photometric data for a series of orbital debris targets and compare it to the empirical photometric measurements generated in the OMC. The specific materials investigated (known to exist in GEO) are: an intact piece of MLI, separated layers of MLI, and multiple solar cells materials. Using the data acquired over specific rotational angles through different filters (B, V, R, I), a color index is acquired (B-R, R-I). As a secondary check, the spectrometer is used to define color indexes for the same material. Using these values and their associated lightcurves, this laboratory data is compared to observational data obtained on the 1m telescope of the Astronomical Institute of the University of Bern (AUIB) and the 0.9 m Small and Moderate Aperture Research Telescope System (SMARTS) telescope at Cerro Tololo Inter-American Observatory (CTIO). We will present laboratory generated lightcurves with color indexes of the high A/m materials alongside telescopic data of targets with high A/m values. We will discuss the relationship of laboratory to telescope data in the context of classification of GEO debris objects.

  8. Evaluation of the Effect of Surface Polishing, Oral Beverages and Food Colorants on Color Stability and Surface Roughness of Nanocomposite Resins.

    PubMed

    Kumari, R Veena; Nagaraj, Hema; Siddaraju, Kishore; Poluri, Ramya Krishna

    2015-07-01

    Subgroup C, fourth in Subgroup D, and fifth in Subgroup E. Each was immersed in the respective test solution for 10 min, twice a day for 30 days. Group A - Tea, Group B - Coffee, Group C - Cola, Group D - Turmeric, Group E - Control (artificial saliva). Post immersion profilometric value was recorded to evaluate roughness bought about by the solutions (Ra3) and spectrophotometric value was recorded to evaluate the color change in samples (ΔE2). Results were statistically analyzed using ANOVA. Higher mean roughness (Ra2-Ra1) value was recorded in Sof-Lex, followed by Diamond polishing paste and Control group. Comparison of surface roughness caused due to beverages and food colorant solution showed subgroup C (Coca Cola) increased surface roughness in all groups (Group I, II, III). Subgroup D (Turmeric) had the highest discoloration potential (P < 0001) in all groups, followed by coffee, tea, coca-cola and artificial saliva. Sof-Lex polishing System showed most color stability. Polishing procedures significantly roughen the surface of the restoration compared to the unpolished Mylar controls. One-step polishing system (diamond polishing paste) produces a smoother surface compared to a multi-step system (Sof-Lex polishing disks). Turmeric solution caused maximum staining of the samples, to a visually perceptible level.

  9. Developments in Acoustic Metamaterials for Acoustic Ground Cloaks

    NASA Astrophysics Data System (ADS)

    Kerrian, Peter Adam

    inclusions. Non-destructive acoustic excitation techniques were used to extract the material parameters of different grades of foam to identify the ideal grade for use in a multi-inclusion unit cell. Single inclusion and multi-inclusion bulk metamaterial samples were constructed and tested to characterize the effective material properties to determine if they exhibited the desired homogeneous anisotropic behavior. The single steel inclusion metamaterial behaved as expected, demonstrating anisotropic mass density and isotropic bulk modulus. Almost no sound energy was transmitted through the multi-inclusion metamaterial, contrary to expectation, because of the presence of air bubbles, both on the surface of the foam as well as potentially in between the inclusions. Finally, an underwater acoustic ground cloak was constructed from perforated steel plates and experimentally tested to conceal an object on a pressure release surface. The perforated plate acoustic ground cloak successfully cloaked the scattered object over a broad frequency range of 7 [kHz] to 12 [kHz]. There was excellent agreement between the phase of the surface reflection and the cloak reflection with a small amplitude difference attributed to the difference between a water - air and a water - mylar - air boundary. Above 15 [kHz], the cloaking performance decreased as the effective material parameters of the perforated plate metamaterial deviated from the required material parameters.

  10. An Assessment of GEO Orbital Debris Photometric Properties Derived from Laboratory-Based Measurements

    NASA Technical Reports Server (NTRS)

    Rodriquez-Cowardin, H.; Abercromby, K.; Barker, E.; Mulrooney, M.; Seitzer, P.; Schildknecht, T.

    2009-01-01

    objects can vary greatly (even for the same object under different illumination conditions). For example, specular reflections from multiple facets of the target surface (e.g. Mylar or Aluminized Kapton) can lead to erratic, orientation-dependent light curves. This paper will investigate published color photometric data for a series of orbital debris targets and compare it to the empirical photometric measurements generated in the OMC. The specific materials investigated (known to exist in GEO) are: an intact piece of MLI, separated layers of MLI, and multiple solar cells materials. Using the data acquired over specific rotational angles through different filters (B, V, R, I), a color index is acquired (B-R, R-I). As a secondary check, the spectrometer is used to define color indexes for the same material. Using these values and their associated lightcurves, this laboratory data is compared to observational data obtained on the 1m telescope of the Astronomical Institute of the University of Bern (AUIB) and the 0.9 m Small and Moderate Aperture Research Telescope System (SMARTS) telescope at Cerro Tololo Inter-American Observatory (CTIO). We will present laboratory generated lightcurves with color indexes of the high A/m materials alongside telescopic data of targets with high A/m values. We will discuss the relationship of laboratory to telescope data in the context of classification of GEO debris objects.

  11. Characterization of a multilayer ionization chamber prototype for fast verification of relative depth ionization curves and spread-out-Bragg-peaks in light ion beam therapy.

    PubMed

    Mirandola, Alfredo; Magro, Giuseppe; Lavagno, Marco; Mairani, Andrea; Molinelli, Silvia; Russo, Stefania; Mastella, Edoardo; Vai, Alessandro; Maestri, Davide; La Rosa, Vanessa; Ciocca, Mario

    2018-05-01

    To dosimetrically characterize a multilayer ionization chamber (MLIC) prototype for quality assurance (QA) of pristine integral ionization curves (ICs) and spread-out-Bragg-peaks (SOBPs) for scanning light ion beams. QUBE (De.Tec.Tor., Torino, Italy) is a modular detector designed for QA in particle therapy (PT). Its main module is a MLIC detector, able to evaluate particle beam relative depth ionization distributions at different beam energies and modulations. The charge collecting electrodes are made of aluminum, for a nominal water equivalent thickness (WET) of ~75 mm. The detector prototype was calibrated by acquiring the signals in the initial plateau region of a pristine BP and in terms of WET. Successively, it was characterized in terms of repeatability response, linearity, short-term stability and dose rate dependence. Beam-induced measurements of activation in terms of ambient dose equivalent rate were also performed. To increase the detector coarse native spatial resolution (~2.3 mm), several consecutive acquisitions with a set of certified 0.175-mm-thick PMMA sheets (Goodfellow, Cambridge Limited, UK), placed in front of the QUBE mylar entrance window, were performed. The ICs/SOBPs were achieved as the result of the sum of the set of measurements, made up of a one-by-one PMMA layer acquisition. The newly obtained detector spatial resolution allowed the experimental measurements to be properly comparable against the reference curves acquired in water with the PTW Peakfinder. Furthermore, QUBE detector was modeled in the FLUKA Monte Carlo (MC) code following the technical design details and ICs/SOBPs were calculated. Measurements showed a high repeatability: mean relative standard deviation within ±0.5% for all channels and both particle types. Moreover, the detector response was linear with dose (R 2  > 0.998) and independent on the dose rate. The mean deviation over the channel-by-channel readout respect to the reference beam flux (100%) was equal

  12. NEWS: Eye safety and the solar eclipse

    NASA Astrophysics Data System (ADS)

    LeConte, David

    1999-05-01

    generically referred to as `aluminized Mylar') or polymer. Users should ensure that they are marked as having been supplied specifically for direct viewing of the Sun and carry the `CE' mark. To be awarded CE certification, the viewers must be tested in the visual, infrared and ultraviolet by Approved Bodies appointed by the Secretary of State for Trade and Industry, and they must pass a standard based on a specification prepared by Dr B Ralph Chou, University of Waterloo, Canada (see http://sunearth.gsfc.nasa.gov/eclipse/safety2.html). Any method of solar eclipse observation, whether direct or indirect, is not without its hazards. Severe eye damage can be caused, for example, by looking through a pinhole, rather than at the projected image, and will certainly result from looking through any optical instrument. Eclipse viewers should be placed over the eyes before looking up at the Sun and not removed until after looking away. Whatever method is used, children must be clearly instructed and closely supervised. Eclipse viewers are probably not appropriate for very young children. Descriptions of observing methods are in the activities packs for primary and secondary schools prepared by the Association for Astronomy Education and are available from CLEAPSS Schools Science Service and the National Eclipse Line (0345 600444).

  13. Evaluation of the Effect of Surface Polishing, Oral Beverages and Food Colorants on Color Stability and Surface Roughness of Nanocomposite Resins

    PubMed Central

    Kumari, R Veena; Nagaraj, Hema; Siddaraju, Kishore; Poluri, Ramya Krishna

    2015-01-01

    sample in Subgroup A, second in Subgroup B, third in Subgroup C, fourth in Subgroup D, and fifth in Subgroup E. Each was immersed in the respective test solution for 10 min, twice a day for 30 days. Group A - Tea, Group B - Coffee, Group C - Cola, Group D - Turmeric, Group E - Control (artificial saliva). Post immersion profilometric value was recorded to evaluate roughness bought about by the solutions (Ra3) and spectrophotometric value was recorded to evaluate the color change in samples (ΔE2). Results were statistically analyzed using ANOVA. Results: Higher mean roughness (Ra2-Ra1) value was recorded in Sof-Lex, followed by Diamond polishing paste and Control group. Comparison of surface roughness caused due to beverages and food colorant solution showed subgroup C (Coca Cola) increased surface roughness in all groups (Group I, II, III). Subgroup D (Turmeric) had the highest discoloration potential (P < 0001) in all groups, followed by coffee, tea, coca-cola and artificial saliva. Sof-Lex polishing System showed most color stability. Conclusion: Polishing procedures significantly roughen the surface of the restoration compared to the unpolished Mylar controls. One-step polishing system (diamond polishing paste) produces a smoother surface compared to a multi-step system (Sof-Lex polishing disks). Turmeric solution caused maximum staining of the samples, to a visually perceptible level. PMID:26229373

  14. Meeting the Grand Challenge of Protecting Astronauts Health: Electrostatic Active Space Radiation Shielding for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.

    2016-01-01

    This report describes the research completed during 2011 for the NASA Innovative Advanced Concepts (NIAC) project. The research is motivated by the desire to safely send humans in deep space missions and to keep radiation exposures within permitted limits. To this end current material shielding, developed for low earth orbit missions, is not a viable option due to payload and cost penalties. The active radiation shielding is the path forward for such missions. To achieve active space radiation shielding innovative large lightweight gossamer space structures are used. The goal is to deflect enough positive ions without attracting negatively charged plasma and to investigate if a charged Gossamer structure can perform charge deflections without significant structural instabilities occurring. In this study different innovative configurations are explored to design an optimum active shielding. In addition, to establish technological feasibility experiments are performed with up to 10kV of membrane charging, and an electron flux source with up to 5keV of energy and 5mA of current. While these charge flux energy levels are much less than those encountered in space, the fundamental coupled interaction of charged Gossamer structures with the ambient charge flux can be experimentally investigated. Of interest are, will the EIMS remain inflated during the charge deflections, and are there visible charge flux interactions. Aluminum coated Mylar membrane prototype structures are created to test their inflation capability using electrostatic charging. To simulate the charge flux, a 5keV electron emitter is utilized. The remaining charge flux at the end of the test chamber is measured with a Faraday cup mounted on a movable boom. A range of experiments with this electron emitter and detector were performed within a 30x60cm vacuum chamber with vacuum environment capability of 10-7 Torr. Experiments are performed with the charge flux aimed at the electrostatically inflated

  15. Characterization of scintillator materials for fast-ion loss detectors in nuclear fusion reactors

    NASA Astrophysics Data System (ADS)

    Jiménez-Ramos, M. C.; García López, J.; García-Muñoz, M.; Rodríguez-Ramos, M.; Carmona Gázquez, M.; Zurro, B.

    2014-08-01

    . The solid angle subtended by the fiber is ∼2.2 × 10-5 sr. The final element is a compact and high sensitive spectrometer, QE6500 (Ocean Optics Inc.) with a 2D area detector which allow us to measure simultaneously in the range of 200-1100 nm with a spectral resolution ∼1-2 nm. The measured signals were analyzed and stored with the SpectraSuite software [6]. The absolute calibration of the optical system described above was carried out with a HL-2000-CAL Tungsten Halogen Calibration Standard light source which provides absolute intensity values (in μW/cm2/nm) at the fiber port at wavelengths from 360-1050 nm.The beam fluxes used to irradiate the phosphors were ∼ 1012 p/cm2s- for the IL yields determination, and up to ten times higher for the degradation analyses.The Rutherford Backscattering Spectrometry (RBS) measurements of the screens were accomplished in the same vacuum chamber using protons at 3 MeV and 5 MeV. Two different energies were employed due to the large difference between the thicknesses of the samples. The proton beam intensity was 10 nA and the beam size 1 mm of diameter. The analysis were performed with a Passivated Implanted Planar Silicon (PIPS) detector of 300 mm2, positioned at 150° and with a 10 μm thick aluminized mylar foil placed at the detector surface to avoid the light emitted by the scintillators. The RBS spectra were analyzed using the SIMNRA code [7].The scintillators investigated in this work were selected according to their availability, radiation hardness, fast response, and/or prior use in plasma diagnostics. In this paper, three different kinds of materials have been analyzed. The TG-Green (so called by the manufacturer, Sarnoff Corporation, USA) is a Eu doped SrGa2S4 powder substrate with density of 3.65 g/cm3, and presents an emission at 540 nm with a very short decay time.≈490 ns [8]. A TG-Green scintillator coating has been applied, for the first time, to a fusion plasma diagnostics for the detection of fast

  16. Report about the Solar Eclipse on August 11, 1999

    NASA Astrophysics Data System (ADS)

    1999-08-01

    pix - 49k] [JPEG: 800 x 612 pix - 262k] [JPEG: 3039 x 1846 pix - 3.6M] Eclipse Photo by Philippe Duhoux Second "Diamond Ring" [JPEG: 400 x 301 pix - 34k] [JPEG: 800 x 601 pix - 163k] [JPEG: 2905 x 2181 pix - 2.0M] The Corona (Philippe Duhoux) "For the observation of the eclipse, I chose a field on a hill offering a wide view towards the western horizon and located about 10 kilometers north west of Garching." "While the partial phase was mostly cloudy, the sky went clear 3 minutes before the totality and remained so for about 15 minutes. Enough to enjoy the event!" "The images were taken on Agfa CT100 colour slide film with an Olympus OM-20 at the focus of a Maksutov telescope (f = 1000 mm, f/D = 10). The exposure times were automatically set by the camera. During the partial phase, I used an off-axis mask of 40 mm diameter with a mylar filter ND = 3.6, which I removed for the diamond rings and the corona." Note in particular the strong, detached protuberances to the right of the rim, particularly noticeable in the last photo. Eclipse Photo by Cyril Cavadore Totality [JPEG: 400 x 360 pix - 45k] [JPEG: 800 x 719 pix - 144k] [JPEG: 908 x 816 pix - 207k] The Corona (Cyril Cavadore) "We (C.Cavadore from ESO and L. Bernasconi and B. Gaillard from Obs. de la Cote d'Azur) took this photo in France at Vouzier (Champagne-Ardennes), between Reims and Nancy. A large blue opening developed in the sky at 10 o'clock and we decided to set up the telescope and the camera at that time. During the partial phase, a lot of clouds passed over, making it hard to focus properly. Nevertheless, 5 min before totality, a deep blue sky opened above us, allowing us to watch it and to take this picture. 5-10 Minutes after the totality, the sky was almost overcast up to the 4th contact". "The image was taken with a 2x2K (14 µm pixels) Thomson "homemade" CCD camera mounted on a CN212 Takahashi (200 mm diameter telescope) with a 1/10.000 neutral filter. The acquisition software set exposure time (2

  17. PREFACE: Nanoscale science and technology

    NASA Astrophysics Data System (ADS)

    Bellucci, Stefano

    2008-11-01

    realization of the vertical and horizontal integration recognized as a condition for nanotehnology application to industry and society, including the definition and development of integrated methodologies and environments to study, design, develop and test nanotechnology based metamaterials, devices, sensors and systems. F Canganella presented research activities concerning the biofilm properties of some reference bacteria on materials commonly used for the aerospace industry. His group evaluated the effect on these materials on a mixture of biosurfactants produced by the Pseudomonas strain AD1 recently isolated by the research group. The following materials were investigated: Kevlar, Nomex, Betacloth, aluminized Kapton, conventional Kapton, Combitherm, Mylar, copper foil, Teflon, aluminum, carbon fiber composite, aluminum thermo-dissipating textile and aluminum tape. Results showed a diverse affinity of materials for the bacterial biofilm development and in some cases sessile colonization was rejected. Pre-conditioning with biosurfactants led, in some cases, to a diminish of biofilm development compared to untreated materials, taking into account both concentrations and experimental conditions. Obtained data may be useful to screen and select appropriate material to be used for life support hardware to avoid or decrease the risk of surface biocontamination. M Chiaretti reported on the biological effects of multi-wall carbon nanotubes (MWCNTs, CNT for short) on laboratory animals in vivo, on the immunological effects and the effects on three different cell types. Large numbers of researchers are directly involved in the handling of nanomaterials such as CNT, nanoparticles. It is important to assess the potential health risks related to their daily exposure to nanoparticles. The administration of sterilized nanosamples has been performed on laboratory animals in acute and chronic administration and the pathological effects on the parenchymal tissues have been studied. The

  18. Ep7_Total Eclipse over America

    NASA Image and Video Library

    2017-08-18

    glasses the other day. I looked up at the sun, i said, yeah. And i pulled the eclipse glasses off before i stopped looking at the sun, so then i had a bright blob. Just for a second, i had a bright blob in my eyes for a little while. So be careful with them. They re often made of aluminized mylar and they look-- they re kind of silvery. >> Okay. >> And also, don t put any pinholes or anything in them. That-- you want to-- you want to keep them like they are. >> Keep them-- so what are the special eclipse glasses? They have-- they re just like really intense sunglasses? Is that kind of what i think? >> Yeah, it s kind of super sunglasses. >> Okay. >> Which here s the thing, you want to avoid any homemade glasses. >> Oh. >> Don t put on multiple sunglasses or something. Don t use smoked glass, or photographic film, or neutral density filters, or anything like that. You re not sure there s enough there to block the light to make it safe. >> Okay. >> So stick with the-- with the-- with the kind that you can get. They re not very expensive and you can-- you can get them online and other places. >> Okay. >> One exception is number 14 welder s glass is safe, because that s designed also for very bright. Like the welders use. >> Oh, okay. >> All right, so that s okay. And the-- and even more important part is don t look at the sun-- don t look at the bright disk of the sun with any instruments, with telescopes or binoculars without proper filters on them, because those things actually magnify the strength of the sun. >> Ooh. They ll your-- >> and just like when i was a boy, i used to use the magnifying glass on the ants, you know? That could do that to your eye, so you need to be very, very careful. >> Yeah. >> So i would avoid-- i would avoid those, unless you have properly designed equipment. Now, don t like take your binoculars and put your sunglasses at the eyepiece, because it s so intense it could burn right through your special glasses. So there s-- be very, very careful