Science.gov

Sample records for mylitta cytoplasmic polyhedrosis

  1. Genome segment 5 of Antheraea mylitta cytoplasmic polyhedrosis virus encodes a bona fide guanylyltransferase

    PubMed Central

    2014-01-01

    Background Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV), a cypovirus of Reoviridae family, infects non mulberry Indian silk worm, Antheraea mylitta, and contains eleven segmented double stranded RNA in its genome (S1-S11). Some of its genome segments (S1-S3, and S6-S11) have been previously characterized but genome segment encoding the viral guanylyltransferase which helps in RNA capping has not been characterized. Results In this study genome segment 5 (S5) of AmCPV was converted to cDNA, cloned and sequenced. S5 consisted of 2180 nucleotides, with one long ORF of 1818 nucleotides and could encode a protein of 606 amino acids with molecular mass of ~65 kDa (p65). Bioinformatics analysis showed presence of KLRS and HxnH motifs as observed in some other reoviral guanylyltransferase and suggests that S5 may encodes viral guanylyltransferase. The ORF of S5 was expressed in E. coli as 65 kDa his tagged fusion protein, purified through Ni-NTA chromatography and polyclonal antibody was raised. Immunoblot analysis of virion particles with the purified antibody showed specific immunoreactive band and suggests p65 as a viral structural protein. Functional analysis showed that recombinant p65 possesses guanylyltransferase activity, and transfers GMP moiety to the 5' diphosphate (A/G) ended viral RNA after the formation of p65-GMP complex for capping. Kinetic analysis showed Km of this enzyme for GTP and RNA was 34.24 uM and 98.35 nM, respectively. Site directed mutagenesis at K21A in KLRS motif, and H93A or H105A in HxnH motif completely abolished the autoguanylylation activity and indicates importance of these residues at these sites. Thermodynamic analysis showed p65-GTP interaction was primarily driven by enthalpy (ΔH = -399.1 ± 4.1 kJ/mol) whereas the p65-RNA interaction by favorable entropy (0.043 ± 0.0049 kJ/ mol). Conclusion Viral capping enzymes play a critical role in the post transcriptional or post replication modification in case of

  2. Molecular characterization of genome segment 2 encoding RNA dependent RNA polymerase of Antheraea mylitta cytoplasmic polyhedrosis virus

    SciTech Connect

    Ghorai, Suvankar; Chakrabarti, Mrinmay; Roy, Sobhan; Chavali, Venkata Ramana Murthy; Bagchi, Abhisek; Ghosh, Ananta Kumar

    2010-08-15

    Genome segment 2 (S2) from Antheraea mylitta cypovirus (AmCPV) was converted into cDNA, cloned and sequenced. S2 consisted of 3798 nucleotides with a long ORF encoding a 1116 amino acid long protein (123 kDa). BLAST and phylogenetic analysis showed 29% sequence identity and close relatedness of AmCPV S2 with RNA dependent RNA polymerase (RdRp) of other insect cypoviruses, suggesting a common origin of all insect cypoviruses. The ORF of S2 was expressed as 123 kDa soluble His-tagged fusion protein in insect cells via baculovirus recombinants which exhibited RdRp activity in an in vitro RNA polymerase assay without any intrinsic terminal transferase activity. Maximum activity was observed at 37 deg. C at pH 6.0 in the presence of 3 mM MgCl{sub 2.} Site directed mutagenesis confirmed the importance of the conserved GDD motif. This is the first report of functional characterization of a cypoviral RdRp which may lead to the development of anti-viral agents.

  3. Transcriptome analysis of interactions between silkworm and cytoplasmic polyhedrosis virus

    PubMed Central

    Jiang, Liang; Peng, Zhengwen; Guo, Youbing; Cheng, Tingcai; Guo, Huizhen; Sun, Qiang; Huang, Chunlin; Zhao, Ping; Xia, Qingyou

    2016-01-01

    Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) specifically infects silkworm midgut (MG) and multiplication occurs mainly in posterior midgut (PM). In this study, MG and fat body (FB) were extracted at 0, 3, 24, and 72 h after BmCPV infection. The total sequence reads of each sample were more than 1510000, and the mapping ratio exceeded 95.3%. Upregulated transcripts increased in MG during the infection process. Gene ontology (GO) categories showed that antioxidants were all upregulated in FB but not in MG. BGI001299, BGI014434, BGI012068, and BGI009201 were MG-specific genes with transmembrane transport function, the expression of which were induced by BmCPV. BGI001299, BGI014434, and BGI012068 expressed in entire MG and may be involved in BmCPV invasion. BGI009201 expressed only in PM and may be necessary for BmCPV proliferation. BmPGRP-S2 and BGI012452 (a putative serine protease) were induced by BmCPV and may be involved in immune defense against BmCPV. The expression level of BmCPV S1, S2, S3, S6, and S7 was high and there was no expression of S9 in MG 72 h, implying that the expression time of structural protein coding genes is earlier. These results provide insights into the mechanism of BmCPV infection and host defense. PMID:27118345

  4. Cytoplasmic polyhedrosis virus classification by electropherotype; validation by serological analyses and agarose gel electrophoresis.

    PubMed

    Mertens, P P; Crook, N E; Rubinstein, R; Pedley, S; Payne, C C

    1989-01-01

    Serological analyses of several different cytoplasmic polyhedrosis viruses (CPVs), including two type 1 CPVs from Bombyx mori, type 1 CPV from Dendrolimus spectabilis, type 12 CPV from Autographa gamma, type 2 CPV from Inachis io, type 5 CPV from Orgyia pseudotsugata and type 5 CPV from Heliothis armigera, demonstrated a close correlation between the antigenic properties of the polyhedrin or virus particle structural proteins and the genomic dsRNA electropherotypes. The dsRNAs of these viruses were analysed by electrophoresis in 3% and 10% polyacrylamide gels with a discontinuous Tris-HCl/Tris-glycine buffer system or by 1% agarose gel electrophoresis using a continuous Tris-acetate-EDTA buffer system. Electrophoretic analysis in agarose gels was found to be the most suitable for the classification of CPV isolates into electropherotypes, and the results obtained showed a close correlation with the observed antigenic relationships between different virus isolates. However, electrophoretic analysis in 10% polyacrylamide gels was most sensitive for the detection of intra-type variation and the presence of mixed virus isolates.

  5. Sequence analysis and expression of the polyhedrin gene of Choristoneura fumiferana cytoplasmic polyhedrosis virus (CfCPV).

    PubMed

    Echeverry, F; Bergeron, J; Kaupp, W; Guertin, C; Arella, M

    1997-10-01

    The segmented double-stranded RNA genome of Choristoneura fumiferana cytoplasmic polyhedrosis virus (CfCPV) was extracted, polyadenylated, reverse-transcribed into cDNA and cloned. The cDNA clones that hybridized to the smallest genomic segment (segment 10) were identified, and its nucleotide sequence was determined. Genome segment 10 of CfCPV was found to be 1171 nucleotides in length with a single open reading frame in one strand capable of coding a predicted protein of 258 residues (Mr of 29,795), consistent with an apparent Mr of 30.5 kDa determined by SDS-PAGE of purified polyhedrin. Comparison of the nucleotide and amino acid sequences of the polyhedrin gene of CfCPV with those of other CPVs and with several nuclear polyhedrosis viruses revealed no particular homology. Analysis of the hydrophilic profiles and predicted secondary structures of Bombyx mori (BmCPV), Euxoa scandens (EsCPV) and CfCPV indicated the presence of seven similar regions located at the amino terminus of the polyhedrin polypeptide of the three viruses. The expression of the cloned CfCPV polyhedrin gene in Escherichia coli demonstrated that this polyhedrin has the property of self-assembly, since the production of crystal-like occlusion with a well-defined crystalline lattice structure was observed.

  6. iTRAQ-based quantitative proteomic analysis of midgut in silkworm infected with Bombyx mori cytoplasmic polyhedrosis virus.

    PubMed

    Gao, Kun; Deng, Xiang-Yuan; Shang, Meng-Ke; Qin, Guang-Xing; Hou, Cheng-Xiang; Guo, Xi-Jie

    2017-01-30

    Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) specifically infects the epithelial cells in the midgut of silkworm and causes them to death, which negatively affects the sericulture industry. In order to determine the midgut response at the protein levels to the virus infection, differential proteomes of the silkworm midgut responsive to BmCPV infection were identified with isobaric tags for relative and absolute quantitation (iTRAQ) labeling followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). 193, 408, 189 differentially expressed proteins (DEPs) were reliably quantified by iTRAQ analysis in the midgut of BmCPV-infected and control larvae at 24, 48, 72h post infection (hpi) respectively. KEGG enrichment analysis showed that Oxidative phosphorylation, amyotrophic lateral sclerosis, Toll-like receptor signaling pathway, steroid hormone biosynthesis were the significant pathways (Q value≤0.05) both at 24 and 48hpi. qRT-PCR was used to further verify gene transcription of 30 DEPs from iTRAQ, showing that the regulations of 24 genes at the transcript level were consistent with those at the proteomic level. Moreover, the cluster analysis of the three time groups showed that there were seven co-regulated DEPs including BGIBMGA002620-PA, which was a putative p62/sequestosome-1 protein in silkworm. It was upregulated at both the mRNA level and the proteomic level and may play an important role in regulating the autophagy and apoptosis (especially apoptosis) induced by BmCPV infection. This was the first report using an iTRAQ approach to analyze proteomes of the silkworm midgut against BmCPV infection, which contributes to understanding the defense mechanisms of silkworm midgut to virus infection.

  7. 40 CFR 180.1027 - Nuclear polyhedrosis virus of Heliothis zea; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Nuclear polyhedrosis virus of... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1027 Nuclear polyhedrosis virus of... Heliothis zea nuclear polyhedrosis virus (HzSNPV). The identity of the seed virus must be assured...

  8. 40 CFR 180.1149 - Inclusion bodies of the multi-nuclear polyhedrosis virus of Anagrapha falcifera; exemption from...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyhedrosis virus of Anagrapha falcifera; exemption from the requirement of a tolerance. 180.1149 Section 180... Inclusion bodies of the multi-nuclear polyhedrosis virus of Anagrapha falcifera; exemption from the... polyhedrosis virus of Anagrapha falcifera is exempted from the requirement of a tolerance in or on all...

  9. 40 CFR 180.1027 - Nuclear polyhedrosis virus of Heliothis zea; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Nuclear polyhedrosis virus of... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1027 Nuclear polyhedrosis virus of... Heliothis zea nuclear polyhedrosis virus (HzSNPV). The identity of the seed virus must be assured...

  10. 40 CFR 180.1149 - Inclusion bodies of the multi-nuclear polyhedrosis virus of Anagrapha falcifera; exemption from...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polyhedrosis virus of Anagrapha falcifera; exemption from the requirement of a tolerance. 180.1149 Section 180... Inclusion bodies of the multi-nuclear polyhedrosis virus of Anagrapha falcifera; exemption from the... polyhedrosis virus of Anagrapha falcifera is exempted from the requirement of a tolerance in or on all...

  11. 40 CFR 180.1027 - Nuclear polyhedrosis virus of Heliothis zea; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Nuclear polyhedrosis virus of... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1027 Nuclear polyhedrosis virus of... Heliothis zea nuclear polyhedrosis virus (HzSNPV). The identity of the seed virus must be assured...

  12. 40 CFR 180.1149 - Inclusion bodies of the multi-nuclear polyhedrosis virus of Anagrapha falcifera; exemption from...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polyhedrosis virus of Anagrapha falcifera; exemption from the requirement of a tolerance. 180.1149 Section 180... Inclusion bodies of the multi-nuclear polyhedrosis virus of Anagrapha falcifera; exemption from the... polyhedrosis virus of Anagrapha falcifera is exempted from the requirement of a tolerance in or on all...

  13. 40 CFR 180.1149 - Inclusion bodies of the multi-nuclear polyhedrosis virus of Anagrapha falcifera; exemption from...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polyhedrosis virus of Anagrapha falcifera; exemption from the requirement of a tolerance. 180.1149 Section 180... Inclusion bodies of the multi-nuclear polyhedrosis virus of Anagrapha falcifera; exemption from the... polyhedrosis virus of Anagrapha falcifera is exempted from the requirement of a tolerance in or on all...

  14. 40 CFR 180.1027 - Nuclear polyhedrosis virus of Heliothis zea; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Nuclear polyhedrosis virus of... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1027 Nuclear polyhedrosis virus of... Heliothis zea nuclear polyhedrosis virus (HzSNPV). The identity of the seed virus must be assured...

  15. 40 CFR 180.1027 - Nuclear polyhedrosis virus of Heliothis zea; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Nuclear polyhedrosis virus of... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1027 Nuclear polyhedrosis virus of... Heliothis zea nuclear polyhedrosis virus (HzSNPV). The identity of the seed virus must be assured...

  16. 40 CFR 180.1149 - Inclusion bodies of the multi-nuclear polyhedrosis virus of Anagrapha falcifera; exemption from...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyhedrosis virus of Anagrapha falcifera; exemption from the requirement of a tolerance. 180.1149 Section 180... Inclusion bodies of the multi-nuclear polyhedrosis virus of Anagrapha falcifera; exemption from the... polyhedrosis virus of Anagrapha falcifera is exempted from the requirement of a tolerance in or on all...

  17. Extraction conditions of Antheraea mylitta sericin with high yields and minimum molecular weight degradation.

    PubMed

    Yun, Haesung; Oh, Hanjin; Kim, Moo Kon; Kwak, Hyo Won; Lee, Jeong Yun; Um, In Chul; Vootla, Shyam Kumar; Lee, Ki Hoon

    2013-01-01

    Although the technique for extracting the Bombyx mori sericin has been extensively known, the extraction of sericin from wild-silkworm cocoons is not yet standardized. The aim of this study was to find the optimal conditions for the extraction of sericin from Antheraea mylitta cocoons, with high yields and minimum degradation. We attempted to apply various protocols for the extraction of the A. mylitta sericin (AmS). Among these, we found that the extraction of AmS with a sodium carbonate solution exhibited the highest yield except the conventional soap-alkali extraction. To find the optimal conditions for the AmS extraction with the sodium carbonate, we changed the concentration of sodium carbonate and the treatment time. With an increase in the sodium carbonate concentration and the extraction time, the yield of AmS increased, but the molecular weight (MW) of AmS decreased. Considering the yield, molecular weight distribution (MWD) and amino acid composition of AmS, we suggest that the optimal conditions for the AmS extraction require treatment with 0.02 M sodium carbonate and boiling for 60 min.

  18. Elucidation of structural and functional integration of a novel antimicrobial peptide from Antheraea mylitta.

    PubMed

    Dutta, Suhrid R; Gauri, Samiran S; Ghosh, Twisa; Halder, Suman K; DasMohapatra, Pradeep K; Mondal, Keshab C; Ghosh, Ananta K

    2017-03-03

    We report here the amino acid sequence of an antimicrobial peptide of Antheraea mylitta (peptide fraction II) effectively killed urinary tract associated MDR E. coli (Dutta et al., 2016), as Gly-Gly-Gly-Gly-Gly-Gly-His-Leu-Val-Ala. The physicochemical and biological properties of this peptide were evaluated by computational analysis and its isoelectric point, grand average of hydropathicity and Boman index values were found to be 6.74, 0.42 and -1.17kcal/mol, respectively. One valid model of peptide fraction II was constructed, that contains two antiparallel β sheets with a hairpin and appeared as 'U' shaped structure. The glycine rich composition (Gly1, Gly5, Gly6 and Ala10) facilitates mostly for its flexibility or dynamicity, and in its other wing, aggregation prone residues (Leu8, Val9, Ala10) triggered its auto-aggregations when contacted only with the microbial membrane. We employed simulation of peptide binding on the membrane, showed stable and deep insertion of peptide fraction II into the membrane through its hydrophobic tail (up to 3.3±1.46Å). Molecular docking study with Patchdock server revealed that this peptide could interact with the lipid aliphatic chain of 1-palmitoyl-2-oleoyl-phosphoethanolamine (POPE) bilayer and may linked to membrane distortion as we have reported earlier. Further, the studied peptide has been predicted not to exhibit any antigenicity and non-responsive to RBC membrane. These data for the first time provide new insights of an antimicrobial peptide from silkworm A. mylitta and it may serve as the template for the design of novel peptide antibiotics from this group of insect against MDR Gram-negative bacteria.

  19. 40 CFR 180.1118 - Spodoptera exigua nuclear polyhedrosis virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... virus; exemption from the requirement of a tolerance. 180.1118 Section 180.1118 Protection of... polyhedrosis virus; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for the microbial pest control agent Spodoptera exigua nuclear polyhedrosis...

  20. 40 CFR 180.1118 - Spodoptera exigua nuclear polyhedrosis virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... virus; exemption from the requirement of a tolerance. 180.1118 Section 180.1118 Protection of... polyhedrosis virus; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for the microbial pest control agent Spodoptera exigua nuclear polyhedrosis...

  1. 40 CFR 180.1118 - Spodoptera exigua nuclear polyhedrosis virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... virus; exemption from the requirement of a tolerance. 180.1118 Section 180.1118 Protection of... polyhedrosis virus; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for the microbial pest control agent Spodoptera exigua nuclear polyhedrosis...

  2. 40 CFR 180.1118 - Spodoptera exigua nuclear polyhedrosis virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... virus; exemption from the requirement of a tolerance. 180.1118 Section 180.1118 Protection of... polyhedrosis virus; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for the microbial pest control agent Spodoptera exigua nuclear polyhedrosis...

  3. 40 CFR 180.1118 - Spodoptera exigua nuclear polyhedrosis virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... virus; exemption from the requirement of a tolerance. 180.1118 Section 180.1118 Protection of... polyhedrosis virus; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for the microbial pest control agent Spodoptera exigua nuclear polyhedrosis...

  4. Purification and characterization of fibroin from the tropical Saturniid silkworm, Antheraea mylitta.

    PubMed

    Datta, A; Ghosh, A K; Kundu, S C

    2001-09-01

    The fibroin protein isolated from the posterior silkgland of the tropical Saturniid silkworm Antheraea mylitta, was solubilized in lithium dodecyl sulfate and purified by gel filtration. The major fraction from gel filtration was analyzed by SDS-PAGE under non-reducing and reducing conditions. One major protein band of ca 395 kDa was obtained under non-reducing conditions and a doublet band of approximately 197 kDa under reducing conditions. The appearance of a single spot in two-dimensional electrophoresis confirmed the purity of the protein indicating that it may be a homodimeric protein of two similar sized polypeptides. Amino acid composition analysis showed that, like other Saturniid fibroins, it is rich in glycine, alanine and serine amino acids. N-terminal amino acid sequence shows significant homology with other Antheraea species. The enzymatic deglycosylation analysis indicates that the fibroin protein is glycosylated and the oligosaccharides are O-linked to the protein backbone by N-acetylgalactoseamine moiety which conforms to a Core 1 mucin-type glycosylation pattern.

  5. Morphology and histology of Lyonet's gland of the tropical tasar silkworm, Antheraea mylitta.

    PubMed

    Patra, Sudip; Singh, Ravindra Nath; Raziuddin, Mohammad

    2012-01-01

    The morphology and histology of Lyonet's gland in the second to fifth instar larvae of Antheraea mylitta Drury (Lepidoptera: Saturniidae) are described. Each of the paired silk glands of this silk worm were associated with a Lyonet's gland. The paired Lyonet's glands were located on the ventrolateral sides of the esophagus, close to the subesophageal ganglion. Whole mount and SEM observations revealed that each Lyonet's gland consisted of a rosette of glandular mass, and a short narrow tubular duct opening into the anterior part of the silk gland (ASG), close to the common excretory duct. In each instar, these glands were unequal in size. The glandular mass was innervated by fine nerves from the subesophageal ganglion, suggesting a neural control for the glandular activity. The glandular mass was made up of clustered long cells wrapped by a thin basal lamina, which was continuous over the non-secretory low columnar cells of the Lyonet's gland duct and ASG. The narrow bases of long cells of each glandular mass led into the lumen of the duct of the gland. Histochemical analysis of fully developed Lyonet's gland showed clustered lipid granules in the gland cells.

  6. Crystallization and preliminary X-ray diffraction analysis of a protease inhibitor from the haemolymph of the Indian tasar silkworm Antheraea mylitta

    SciTech Connect

    Roy, Sobhan; Aravind, Penmatsa; Madhurantakam, Chaithanya; Ghosh, Ananta Kumar; Sankaranarayanan, Rajan; Das, Amit Kumar

    2006-07-01

    The crystallization and preliminary X-ray crystallographic analysis of a protease inhibitor from the haemolymph of the Indian tasar silk worm A. mylitta is reported. A protein with inhibitory activity against fungal proteases was purified from the haemolymph of the Indian tasar silkworm Antheraea mylitta and was crystallized using the hanging-drop vapour-diffusion method. Polyethylene glycol 3350 was used as a precipitant. Crystals belonged to space group P6{sub 3}22, with unit-cell parameters a = b = 60.6, c = 85.1 Å. X-ray diffraction data were collected and processed to a maximum resolution of 2.1 Å.

  7. Fabrication and Characterization of Conductive Conjugated Polymer-Coated Antheraea mylitta Silk Fibroin Fibers for Biomedical Applications.

    PubMed

    Gh, Darshan; Kong, Dexu; Gautrot, Julien; Vootla, Shyam Kumar

    2017-02-27

    Conductive polymers are interesting materials for a number of biological and medical applications requiring electrical stimulation of cells or tissues. Highly conductive polymers (polypyrrole and polyaniline)/Antheraea mylitta silk fibroin coated fibers are fabricated successfully by in situ polymerization without any modification of the native silk fibroin. Coated fibers characterized by scanning electron microscopy confirm the silk fiber surface is covered by conductive polymers. Thermogravimetric analysis reveals preserved thermal stability of silk fiber after coating process. X-ray diffraction of degummed fiber diffraction peaks at around 2θ = 20.4 and 16.5 confirms the preservation of the β-sheet structure typical of degummed silk II fibers. This phenomenon implies that both polypyrrole and polyaniline chains form interactions with peptide linkages in degummed fiber macromolecules, without significantly disrupting protein assembly. Fourier transform infrared spectroscopy of coated fibers indicates hydrogen bonding and electrostatic interactions exist between silk fibroin macromolecules and conductive polymers. Resulting fibers display good conductive properties compared to corresponding conjugated polymers. In vitro analysis (live/dead assay) of the behavior of human immortalized keratinocytes (HaCaTs) on coated fibers demonstrates improved cell-adhesive properties and viability after polymers coating. Hence, polypyrrole- and polyaniline-coated A. mylitta silk fibers are suitable for application in cell culture and for tissue engineering, where electrical conduction properties are required.

  8. Inactivation of nuclear polyhedrosis virus (Baculovirus subgroup A) by monochromatic UV radiation

    SciTech Connect

    Griego, V.M.; Martignoni, M.E.; Claycomb, A.E.

    1985-03-01

    Monochromatic radiation at wavelengths of 290, 300, 310, and 320 nm inactivated occluded nuclear polyhedrosis virus of the Douglas-fir tussock moth, Orgyia pseudotsugata. Data indicate that all of the wavelengths are capable of causing virus inactivation; much greater fluences are needed for virus inactivation as the wavelength increases.

  9. CYTOPLASMIC MICROTUBULES

    PubMed Central

    Slautterback, David B.

    1963-01-01

    Small cytoplasmic tubules are present in the interstitial cells and cnidoblasts of hydra. They are referred to here as "microtubules." These tubular elements have an outside diameter of 180 A and an inside diameter of 80 A. By difference, the membranous wall is estimated to be 50 A thick. The maximum length of the microtubules cannot be determined from thin sections but is known to exceed 1.5 µ. In the interstitial cells the microtubules are found in the intercellular bridges, free in the cytoplasm and in association with the centrioles. In the cnidoblast they form a framework around the developing nematocyst and in late stages are related to the cnidocil forming a tight skein in the basal part of the cell. Especially in this cell, confluence of microtubules with small spherical vesicles of the Golgi complex has been observed. It is proposed that these tubules function in the transport of water, ions, or small molecules. PMID:14079495

  10. Cytoplasmic dynein.

    PubMed

    Allan, Victoria J

    2011-10-01

    The organization and function of eukaryotic cells rely on the action of many different molecular motor proteins. Cytoplasmic dynein drives the movement of a wide range of cargoes towards the minus ends of microtubules, and these events are needed, not just at the single-cell level, but are vital for correct development. In the present paper, I review recent progress on understanding dynein's mechanochemistry, how it is regulated and how it binds to such a plethora of cargoes. The importance of a number of accessory factors in these processes is discussed.

  11. Viral and host cellular transcription in Autographa californica nuclear polyhedrosis virus-infected gypsy moth cell lines.

    PubMed Central

    Guzo, D; Rathburn, H; Guthrie, K; Dougherty, E

    1992-01-01

    Infection of two gypsy moth cell lines (IPLB-Ld652Y and IPLB-LdFB) by the Autographa californica multiple-enveloped nuclear polyhedrosis virus (AcMNPV) is characterized by extremely attenuated viral protein synthesis followed by a total arrest of all viral and cellular protein production. In this study, AcMNPV- and host cell-specific transcription were examined. Overall levels of viral RNAs in infected gypsy moth cells were, at most measured times, comparable to RNA levels from an infected cell line (TN-368) permissive for AcMNPV replication. Northern blot (RNA) analyses using viral and host gene-specific probes revealed predominantly normal-length virus- and cell-specific transcripts postinfection. Transport of viral RNAs from the nucleus to the cytoplasm and transcript stability in infected gypsy moth cells also appeared normal compared with similar parameters for AcMNPV-infected TN-368 cells. Host cellular and viral mRNAs extracted from gypsy moth and TN-368 cells at various times postinfection and translated in vitro yielded similar spectra of host and viral proteins. Treatment of infected gypsy moth cells with the DNA synthesis inhibitor aphidicolin eliminated the total protein synthesis shutoff in infected IPLB-LdFB cells but had no effect on protein synthesis inhibition in infected IPLB-Ld652Y cells. The apparent selective block in the translation of viral transcripts early in infection and the absence of normal translation or transcription of host cellular genes at later times is discussed. Images PMID:1560533

  12. Molecular analysis of an enhancin gene in the Lymantria dispar nuclear polyhedrosis virus.

    PubMed Central

    Bischoff, D S; Slavicek, J M

    1997-01-01

    A Lymantria dispar nuclear polyhedrosis virus (LdMNPV) gene has been identified that encodes a homolog to the granulovirus (GV) enhancin proteins that are capable of enhancing the infection of other baculoviruses. Enhancin genes have been identified and sequenced for three species of GVs but have not been found in any other nuclear polyhedrosis virus to date. The LdMNPV enhancin gene is located between 67.6 and 70.1 kbp on the viral genome. Northern and primer extension analyses of viral RNAs indicate that the enhancin gene transcripts are expressed at late times postinfection from a consensus baculovirus late promoter. The LdMNPV enhancin exhibits 29% amino acid identity to the enhancin proteins of the Trichoplusia ni, Pseudaletia unipuncta, and Helicoverpa armigera GVs. All four proteins contain a conserved zinc-binding domain characteristic of metalloproteases. A recombinant virus (enhancin::cat) was constructed in which the LdMNPV enhancin gene was inactivated by insertion mutagenesis in order to ascertain the effect of the enhancin protein on viral potency. The bioassay results indicate that disruption of the enhancin gene in the LdMNPV results in a reduction in viral potency. PMID:9343163

  13. N-terminal sequences from Autographa californica nuclear polyhedrosis virus envelope proteins ODV-E66 and ODV-E25 are sufficient to direct reporter proteins to the nuclear envelope, intranuclear microvesicles and the envelope of occlusion derived virus.

    PubMed

    Hong, T; Summers, M D; Braunagel, S C

    1997-04-15

    Baculovirus occlusion-derived virus (ODV) derives its envelope from an intranuclear membrane source. N-terminal amino acid sequences of the Autographa californica nuclear polyhedrosis virus (AcMNPV) envelope proteins, ODV-E66 and ODV-E25 (23 and 24 amino acids, respectively) are highly hydrophobic. Recombinant viruses that express the two N-terminal amino acid sequences fused to green fluorescent protein (23GFP or 24GFP) provided visual markers to follow protein transport and localization within the nucleus during infection. Autoflourescence was first detected along the cytoplasmic periphery of the nucleus and subsequently localized as foci to discrete locations within the nucleus. Immunoelectron microscopy confirmed that these foci predominantly contained intranuclear microvesicles and the reporter fusion proteins were also detected in cytoplasmic membranes near the nucleus, and the outer and inner nuclear membrane. Therefore, these defined hydrophobic domains are sufficient to direct native and fusion proteins to induced membrane microvesicles within a baculovirus-infected cell nucleus and the viral envelope. In addition, these data suggest that movement of these proteins into the nuclear envelope may initiate through cytoplasmic membranes, such as endoplasmic reticulum, and that transport into the nucleus may be mediated through the outer and inner nuclear membrane.

  14. Characterization of 3'----5' exonuclease associated with DNA polymerase of silkworm nuclear polyhedrosis virus.

    PubMed Central

    Mikhailov, V S; Marlyev, K A; Ataeva, J O; Kullyev, P K; Atrazhev, A M

    1986-01-01

    3'----5' Exonuclease specific for single-stranded DNA copurified with DNA polymerase of nuclear polyhedrosis virus of silkworm Bombyx mori (BmNPV Pol). BmNPV Pol has no detectable 5'----3' exonuclease activity on single-stranded or duplex DNA. Analysis of the products of 3'----5' exonucleolytic reaction showed that deoxynucleoside monophosphates were released during the hydrolysis of single-stranded DNA. The exonuclease activity cosedimented with the polymerase activity during ultracentrifugation of BmNPV Pol in glycerol gradient. The polymerase and the exonuclease activities of BmNPV Pol were inactivated by heat with nearly identical kinetics. The mode of the hydrolysis of single-stranded DNA by BmNPV Pol-associated exonuclease was strictly distributive. The enzyme dissociated from single-stranded DNA after the release of a single dNMP and then reassociated with a next polynucleotide being degradated. Images PMID:3012482

  15. Multistage production of Autographa californica nuclear polyhedrosis virus in insect cell cultures.

    PubMed

    Klöppinger, M; Fertig, G; Fraune, E; Miltenburger, H G

    1990-11-01

    The aim of our study was to establish an efficient system for the in vitro production of the insect pathogenic Autographa californica nuclear polyhedrosis virus in a Spodoptera frugiperda cell line. We optimized cultivation conditions for cell proliferation as well as for virus replication in a 1.5 litre stirred tank bioreactor. Cell and virus propagation were found to be optimal at a constant oxygen tension of 40%. In order to provide sufficient nutrients during virus synthesis filtration and perfusion devices were connected to the bioreactor. A virus production procedure in a repeated batch mode by using a two stage bioreactor system is described. Stage I was optimized for cell production and stage II for virus production.

  16. Studies of Choristoneura fumiferana nuclear polyhedrosis virus gene expression in insect cells.

    PubMed

    Qiu, W; Liu, J J; Carstens, E B

    1996-03-15

    To investigate the mechanisms regulating baculovirus virulence and host range we have begun to study Choristoneura fumiferana nuclear polyhedrosis virus (CfMNPV) and its gene expression in permissive and nonpermissive cells. We have identified and mapped three genes on the CfMNPV genome. The polyhedrin gene is located from 0.0 to 2.0 m.u. and two other genes, dnapol and p143, both of which are essential for baculovirus DNA replication, are located from 35.3 to 40.9 m.u. and 55.5 to 63.4 m.u., respectively. To gain insight into the expression of CfMNPV genes in permissive C. fumiferana and nonpermissive Spodoptera frugiperda cells, we constructed three expression plasmids in which the promoter region of the dnapol, the p143, and polyhedrin genes were placed in front of a chloramphenicol acetyltransferase reporter gene. All three CfMNPV promoters were active in nonpermissive cells in the presence of Autographa californica nuclear polyhedrosis virus (AcMNPV) DNA, but no activity was detected in permissive cells either in the presence of CfMNPV DNA or AcMNPV DNA. This lack of promoter activity was not due to failure of viral or plasmid DNA to enter the cell nucleus. It was possible that the reporter plasmids were inefficient templates for transcriptional transactivation so we developed a CfMNPV transfer vector and generated a recombinant virus in which the polyhedrin promoter driving CAT gene cassette was integrated into the CfMNPV genome. In this case, the CfMNPV polyhedrin promoter was highly active in the permissive cells.

  17. Transcription, translation, and cellular localization of three Autographa californica nuclear polyhedrosis virus structural proteins: ODV-E18, ODV-E35, and ODV-EC27.

    PubMed

    Braunagel, S C; He, H; Ramamurthy, P; Summers, M D

    1996-08-01

    This paper identifies two structural proteins of the occluded derived viral envelope of Autographa californica nuclear polyhedrosis virus (AcMNPV): ODV-E18 and ODV-E35. In addition, we identify a protein, ODV-EC27, that is incorporated into the capsid of occluded virus, which is not detected in budded virus. The genes for these proteins reside within the IE0 intron. The intron was sequenced, and five open reading frames (ORF) were identified. ORF 3 (genomic ORF 143) codes for the ODV envelope protein, ODV-E18. ORF 4 (genomic ORF 144) codes for ODV-EC27, and Western blot analyses locate this protein to both the ODV capsid and envelope. Transcripts for both ODV-E18 and ODV-EC27 initiate from conserved TAAG motifs, and transcripts are detected from 16 through 72 hr p.i. Antiserum to ODV-E18 recognizes a band of 18 kDa on Western blots of extracts from infected cells and bands of 18 and 35 kDa on Western blots of proteins from purified ODV envelope. N-terminal amino acid sequencing reveals that both ODV-E18 and ODV-E35 contain the same N-terminus. Antiserum to ODV-EC27 recognizes a protein of 27 kDa on Western blots of extracts from infected cells and bands of 27 and 35 kDa on Western blots of proteins from purified ODV. Using immunogold labeling techniques, ODV-E18 and/or ODV-E35 are detected in viral induced intranuclear microvesicles and are not detected in the plasma membrane, cytoplasmic membranes, or the nuclear envelope. Immunogold labeling using antisera to ODV-EC27 detects this protein on both the ODV envelope and capsid.

  18. Autographa californica nuclear polyhedrosis virus: subcellular localization and protein trafficking of BV/ODV-E26 to intranuclear membranes and viral envelopes.

    PubMed

    Beniya, H; Braunagel, S C; Summers, M D

    1998-01-05

    The Autographa californica nuclear polyhedrosis virus da26 gene codes for an envelope protein of both budded virus (BV) and occlusion derived virus (ODV). Western blot and temporal analysis of infected cell extracts detected a protein of 26 kDa by 4 h postinfection (p.i.). The amount of protein increased by 16 h p.i. and remained at high levels throughout infection. By 36 h p.i. several additional immunoreactive proteins were detected which migrated at approximately 18 kDa and remained through 96 h p.i. Western blot analysis of purified virus envelope and nucleocapsid preparations revealed that both the 26- and 18-kDa proteins are structural proteins of the envelope of BV and ODV. Immunoelectron microscopy performed at a time when only the 26-kDa species of the protein was present confirmed that the protein located to ODV envelope. The protein was named BV/ODV-E26 to designate incorporation into viral progeny, envelope location, and apparent molecular weight. Studies designed to follow localization of BV/ODV-E26 demonstrated that early in infection, the protein was incorporated into cytoplasmic vesicles and by 16 h p.i., BV/ODV-E26 was detected in the nucleus associated with virus-induced intranuclear microvesicles and ODV envelope. Coimmunoprecipitation and yeast two-hybrid assays showed that BV/ODV-E26 and FP25K were capable of interacting with each other to form a complex and coimmunoprecipitation assays indicated that cellular actin was a third component of this complex. Together, these data suggest that FP25K and cellular actin may participate in the regulation, or movement through the cell, of baculovirus proteins and/or virus nucleocapsids.

  19. Cytoplasmic dynein nomenclature

    PubMed Central

    Pfister, K. Kevin; Fisher, Elizabeth M.C.; Gibbons, Ian R.; Hays, Thomas S.; Holzbaur, Erika L.F.; McIntosh, J. Richard; Porter, Mary E.; Schroer, Trina A.; Vaughan, Kevin T.; Witman, George B.; King, Stephen M.; Vallee, Richard B.

    2005-01-01

    A variety of names has been used in the literature for the subunits of cytoplasmic dynein complexes. Thus, there is a strong need for a more definitive consensus statement on nomenclature. This is especially important for mammalian cytoplasmic dyneins, many subunits of which are encoded by multiple genes. We propose names for the mammalian cytoplasmic dynein subunit genes and proteins that reflect the phylogenetic relationships of the genes and the published studies clarifying the functions of the polypeptides. This nomenclature recognizes the two distinct cytoplasmic dynein complexes and has the flexibility to accommodate the discovery of new subunits and isoforms. PMID:16260502

  20. Identification, localization, transcription, and sequence analysis of the Choristoneura fumiferana nuclear polyhedrosis virus DNA polymerase gene.

    PubMed

    Liu, J J; Carstens, E B

    1995-06-01

    The location of the Choristoneura fumiferana baculovirus DNA polymerase gene was determined by hybridization analysis using a probe prepared from the previously identified polymerase gene from the Autographa californica multiple nuclear polyhedrosis virus. DNA sequence analysis revealed that the Choristoneura fumiferana baculovirus DNA polymerase gene consists of 2970 base pairs encoding 990 amino acids (114.2 kDa). Transcriptional analysis demonstrated that overlapping transcripts of 3.2 and 4.6 kb, first detected at 6 hr postinfection, potentially coded for the DNA polymerase gene. The major transcription starts sites, identified at 6 hr postinfection, mapped to baculovirus consensus early start sites CGTGCTCA and CAGT. The relatively low level and late initiation of the DNA polymerase gene coupled with our previous data on the temporal control of DNA replication and late gene synthesis (Liu and Carstens, 1993) suggests that the low virulence of the spruce budworm baculovirus may be related to the regulation of its gene expression at the transcriptional level.

  1. Semipermissive replication of a nuclear polyhedrosis virus of Autographa californica in a gypsy moth cell line

    SciTech Connect

    McClintock, J.T.; Dougherty, E.M.; Weiner, R.M.

    1986-01-01

    Several gypsy moth cell lines have been previously described as nonpermissive for the multiple-embedded nuclear polyhedrosis virus of Autographa californica (AcMNPV). In this report, the authors demonstrate the semipermissive infection of a gypsy moth cell line, IPLB-LD-652Y, with AcMNPV. IPLB-LD-652Y cells infected with AcMNPV produced classic cytopathic effects but failed to yield infectious progeny virus. Results of experiments employing DNA-DNA dot hybridization suggested that AcMNPV DNA synthesis was initiated from 8 to 12 h postinfection (p.i.), continued at a maximum rate from 12 to 20 h p.i., and declined from 20 to 36 h p.i. The rate of AcMNPV DNA synthesis approximated that observed in the permissive TN-368 cell line. AcMNPV-infected IPLB-LD-652Y cells, pulse-labeled with (/sup 35/S)methionine at various time intervals p.i. and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, revealed four virus-induced proteins, one novel to the semipermissive system and three early ..cap alpha.. proteins, synthesized from 1 to 20 h p.i. Thereafter, both host and viral protein synthesis was completely suppressed. These results suggest that AcMNPV adsorbed, penetrated, and initiated limited macromolecular synthesis in the semipermissive gypsy moth cell line. However, the infection cycle was restricted during the early phase of AcMNPV replication.

  2. Improving promiscuous mammalian cell entry by the baculovirus Autographa californica multiple nuclear polyhedrosis virus

    PubMed Central

    O’Flynn, Neil M. J.; Patel, Avnish; Kadlec, Jan; Jones, Ian M.

    2012-01-01

    The insect baculovirus AcMNPV (Autographa californica multiple nuclear polyhedrosis virus) enters many mammalian cell lines, prompting its application as a general eukaryotic gene delivery agent, but the basis of entry is poorly understood. For adherent mammalian cells, we show that entry is favoured by low pH and by increasing the available cell-surface area through a transient release from the substratum. Low pH also stimulated baculovirus entry into mammalian cells grown in suspension which, optimally, could reach 90% of the transduced population. The basic loop, residues 268–281, of the viral surface glycoprotein gp64 was required for entry and a tetra mutant with increasing basicity increased entry into a range of mammalian cells. The same mutant failed to plaque in Sf9 cells, instead showing individual cell entry and minimal cell-to-cell spread, consistent with an altered fusion phenotype. Viruses grown in different insect cells showed different mammalian cell entry efficiencies, suggesting that additional factors also govern entry. PMID:23035899

  3. Data for increase of Lymantria dispar male survival after topical application of single-stranded RING domain fragment of IAP-3 gene of its nuclear polyhedrosis virus

    PubMed Central

    Oberemok, Volodymyr V.; Laikova, Kateryna V.; Zaitsev, Aleksei S.; Gushchin, Vladimir A.; Skorokhod, Oleksii A.

    2016-01-01

    This data article is related to the research article entitled “The RING for gypsy moth control: topical application of fragment of its nuclear polyhedrosis virus anti-apoptosis gene as insecticide” [1]. This article reports on significantly higher survival of gypsy moth Lymantria dispar male individuals in response to topical application of single-stranded DNA, based on RING (really interesting new gene) domain fragment of LdMNPV (L. dispar multicapsid nuclear polyhedrosis virus) IAP-3 (inhibitor of apoptosis) gene and acted as DNA insecticide. PMID:27054151

  4. DNA hybridization assay for detection of gypsy moth nuclear polyhedrosis virus in infected gypsy moth (Lymantria dispar L. ) larvae

    SciTech Connect

    Keating, S.T.; Burand, J.P.; Elkinton, J.S. )

    1989-11-01

    Radiolabeled Lymantria dispar nuclear polyhedrosis virus DNA probes were used in a DNA hybridization assay to detect the presence of viral DNA in extracts from infected larvae. Total DNA was extracted from larvae, bound to nitrocellulose filters, and assayed for the presence of viral DNA by two methods: slot-blot vacuum filtration and whole-larval squashes. The hybridization results were closely correlated with mortality observed in reared larvae. Hybridization of squashes of larvae frozen 4 days after receiving the above virus treatments also produced accurate measures of the incidence of virus infection.

  5. A mechanism for negative gene regulation in Autographa californica multinucleocapsid nuclear polyhedrosis virus

    USGS Publications Warehouse

    Leisy, D.J.; Rasmussen, C.; Owusu, E.O.; Rohrmann, G.F.

    1997-01-01

    The Autographa californica multinucleocapsid nuclear polyhedrosis virus (AcMNPV) ie-1 gene product (IE-1) is thought to play a central role in stimulating early viral transcription. IE-1 has been demonstrated to activate several early viral gene promoters and to negatively regulate the promoters of two other AcMNPV regulatory genes, ie-0 and ie-2. Our results indicate that IE-1 negatively regulates the expression of certain genes by binding directly, or as part of a complex, to promoter regions containing a specific IE-1-binding motif (5'-ACBYGTAA-3') near their mRNA start sites. The IE-1 binding motif was also found within the palindromic sequences of AcMNPV homologous repeat (hr) regions that have been shown to bind IE-1. The role of this IE-1 binding motif in the regulation of the ie-2 and pe-38 promoters was examined by introducing mutations in these promoters in which the central 6 bp were replaced with Bg/II sites. GUS reporter constructs containing ie-2 and pe-38 promoter fragments with and without these specific mutations were cotransfected into Sf9 cells with various amounts of an ie-1-containing plasmid (ple-1). Comparisons of GUS expression produced by the mutant and wild-type constructs demonstrated that the IE-1 binding motif mediated a significant decrease in expression from the ie-2 and pe-38 promoters in response to increasing pIe-1 concentrations. Electrophoretic mobility shift assays with pIe-1-transfected cell extracts and supershift assays with IE-1- specific antiserum demonstrated that IE-1 binds to promoter fragments containing the IE-1 binding motif but does not bind to promoter fragments lacking this motif.

  6. Oxidative Damaged Products, Level of Hydrogen Peroxide, and Antioxidant Protection in Diapausing Pupa of Tasar Silk Worm, Antheraea mylitta: A Comparative Study in Two Voltine Groups.

    PubMed

    Sahoo, Alpana; Dandapat, Jagneshwar; Samanta, Luna

    2015-01-01

    The present study demonstrates tissue-specific (hemolymph and fat body) and inter-voltine [bivoltine (BV) and trivoltine (TV)] differences in oxidatively damaged products, H2O2 content, and the relative level of antioxidant protection in the diapausing pupae of Antheraea mylitta. Results suggest that fat body (FB) of both the voltine groups has oxidative predominance, as evident from the high value of lipid peroxidation and H2O2 content, despite better enzymatic defenses in comparison to hemolymph (HL). This may be attributed to the higher metabolic rate of the tissue concerned, concomitant with high lipid content and abundance of polyunsaturated fatty acids (PUFA). Nondetectable catalase activity in the pupal hemolymph of both strains apparently suggests an additional mechanism for H2O2 metabolism in the tissue. Inter-voltine comparison of the oxidative stress indices and antioxidant defense potential revealed that the TV group has a higher oxidative burden, lower activities for the antioxidant enzymes, and compensatory nonenzymatic protection from reduced glutathione and ascorbic acid.

  7. Integrin Cytoplasmic Tail Interactions

    PubMed Central

    2015-01-01

    Integrins are heterodimeric cell surface adhesion receptors essential for multicellular life. They connect cells to the extracellular environment and transduce chemical and mechanical signals to and from the cell. Intracellular proteins that bind the integrin cytoplasmic tail regulate integrin engagement of extracellular ligands as well as integrin localization and trafficking. Cytoplasmic integrin-binding proteins also function downstream of integrins, mediating links to the cytoskeleton and to signaling cascades that impact cell motility, growth, and survival. Here, we review key integrin-interacting proteins and their roles in regulating integrin activity, localization, and signaling. PMID:24467163

  8. Myeloperoxidase-antineutrophil Cytoplasmic Antibodies with Cytoplasmic Fluorescence Pattern.

    PubMed

    Chhabra, Seema; Minz, Ranjana Walker; Goyal, Lekha; Sharma, Nidhi

    2010-01-01

    We report here two rare cases of myeloperoxidase-antineutrophil cytoplasmic antibody (MPO-ANCA)-positive Wegener's granulomatosis (limited variant) which deceptively produced a cytoplasmic (C-ANCA) pattern on indirect immunofluorescence.

  9. Development of novel electrospun nanofibrous scaffold from P. Ricini And A. Mylitta silk fibroin blend with improved surface and biological properties.

    PubMed

    Panda, N; Bissoyi, A; Pramanik, K; Biswas, A

    2015-03-01

    Biomaterials that stimulate cell attachment and proliferation without any surface modification (e.g. RGD coating) provide potent and cost effective scaffold for regenerative medicine. This study assessed the physico-chemical properties and cell supportive potential of a silk fibroin blend scaffold derived from eri (Philosamia ricini) and tasar (Antheraea mylitta) silk (ET) respectively by electrospinning process. The scanning electron microscopy and transmission electron microscopy study found that the fiber diameters are in 200 to 800nm range with flat morphology. The porosity of ET scaffold is found to be 79±5% with majority of pore diameter between 2.5 to 5nm. Similarly, Bombyx mori (BM) silk fibroin and gelatin nanofibrous scaffolds were prepared and taken as control. The ultimate tensile strength of the ET and BM scaffold are found to be 1.83±0.13MPa and 1.47±0.10MPa respectively. The measured contact angle (a measure of hydrophilicity) for ET (54.7°±1.8°) is found to be lower than BM (62°±2.3°). The ability to deposit apatite over ET is comparable to that of BM nanofibers. All the scaffolds were seeded with cord blood derived mesenchymal stem cells (hMSCs) and cultured for 14days in vitro. The immunofluorescence study reveals enhanced cell attachment with higher metabolic activity for MSCs grown over ET than BM and gelatin. The ET scaffold also demonstrated expression of higher amount cell adhesion molecules (CD29/CD44) and higher proliferation rate than BM and gelatin as confirmed by MTT assay, DNA content estimation assay, flow cytometry study and SEM study. Overall, it may be concluded that ET scaffold may have potential in developing bone tissue grafts for clinical applications in the future.

  10. Cytoplasmic Z-RNA

    SciTech Connect

    Zarling, D.A.; Calhoun, C.J.; Hardin, C.C.; Zarling, A.H.

    1987-09-01

    Specific immunochemical probes for Z-RNA were generated and characterized to search for possible Z-RNA-like double helices in cells. Z-RNA was detected in the cytoplasm of fixed protozoan cells by immunofluorescence microscopy using these anti-Z-RNA IgCs. In contrast, autoimmune or experimentally elicited anti-DNA antibodies, specifically reactive with B-DNA or Z-DNA, stained the nuclei. Pre-or nonimmune IgGs did not bind to the cells. RNase A or T1 digestion eliminated anti-Z-RNA IgG binding to cytoplasmic determinants; however, DNase I or mung bean nuclease had no effect. Doxorubicin and ethidium bromide prevented anti-Z-RNA antibody binding; however, actinomycin D, which does not bind double-stranded RNA, did not. Anti-Z-RNA immunofluorescence was specifically blocked in competition assays by synthetic Z-RNA but not Z-DNA, A-RNA, or single-stranded RNAs. Thus, some cytoplasmic sequences in fixed cells exist in the left-handed Z-RNA conformation.

  11. Microscopy based studies on the interaction of bio-based silver nanoparticles with Bombyx mori Nuclear Polyhedrosis virus.

    PubMed

    Tamilselvan, Selvaraj; Ashokkumar, Thirunavukkarasu; Govindaraju, Kasivelu

    2017-04-01

    In the present investigation, silver nanoparticles (AgNPs) interactions with Bombyx mori Nuclear Polyhedrosis virus (BmNPV) were characterized using High-Resolution Scanning Electron Microscopy (HR-SEM), Energy Dispersive X-ray Analysis (EDAX), Transmission Electron Microscopy (TEM), Atomic Force Microcopy (AFM) and Confocal Microscope (CM). HR-SEM study reveals that the biosynthesized AgNPs have interacted with BmNPV and were found on the surface. TEM micrographs of normal and viral polyhedra treated with AgNPs showed that the nanoparticles were accumulated in the membrane and it was noted that some of the AgNPs successfully penetrated the membrane by reaching the capsid of BmNPV. AFM and confocal microscopy studies reveal that the disruption in the shell membrane tends to lose its stability due to exposure of AgNPs to BmNPV.

  12. Identification, molecular cloning, and transcription analysis of the Choristoneura fumiferana nuclear polyhedrosis virus spindle-like protein gene.

    PubMed

    Liu, J J; Carstens, E B

    1996-09-15

    The Choristoneura fumiferana nuclear polyhedrosis virus spindle-like protein (slp) gene has been identified and localized immediately downstream and in the same orientation as the CfMNPV DNA polymerase gene. The slp gene is 1101 bp long, predicted to code for a 366 amino acid (42.1 kDa) polypeptide. Transcriptional analysis revealed that the CfMNPV slp gene is expressed at late times postinfection, beginning at 24 hr postinfection and is most abundantly expressed after 36 hr. Transcription initiates within a single baculovirus consensus late start site sequence (GTAAG) at position -18 relative to the translation start codon. Based on amino acid comparisons, the CfMNPV gene is closely related to other similar baculovirus genes and distantly but recognizably related to the fusolin proteins of two entomopoxviruses. The conservation of amino acid sequence, glycosylation signals and specific domains throughout the protein suggest that this gene product may play an important role in insect DNA virus replication.

  13. [Antineutrophil cytoplasmic antibodies].

    PubMed

    Sebastiani, G D

    2009-01-01

    Antineutrophil cytoplasmic antibodies (ANCA) are predominantly IgG autoantibodies directed against constituents of primary granules of neutrophils and monocytes lysosomes. Although several antigenic targets have been identified, those ANCA directed to proteinase 3 or myeloperoxidase are clinically relevant, whereas the importance of other ANCA remains unknown. Both are strongly associated with small vessel vasculitides, the ANCA-associated vasculitides, which include Wegener's granulomatosis, microscopic polyangiitis, and Churg-Strauss syndrome, and the localised forms of these diseases (eg, pauci-immune necrotising and crescentic glomerulonephritis). ANCA is a useful serological test to assist in diagnosis of small-vessel vasculitides. 85-95% of patients with Wegener's granulomatosis, microscopic polyangiitis, and pauci-immune necrotising and crescentic glomerulonephritis have serum ANCA. ANCA directed to either proteinase 3 or myeloperoxidase are clinically relevant, yet the relevance of other ANCA remains unknown. Besides their diagnostic potential, ANCA might be valuable in disease monitoring. In addition, data seem to confirm the long-disputed pathogenic role of these antibodies. There is increasing evidence that myeloperoxidase-ANCA are directly involved in the pathogenesis of necrotizing vasculitis. This is less clear for proteinase 3-ANCA, markers for Wegener's granulomatosis. With respect to proteinase 3-ANCA, complementary proteinase 3, a peptide translated from the antisense DNA strand of proteinase 3 and homologous to several microbial peptides, may be involved in induction of proteinase 3-antineutrophil cytoplasmic autoantibodies.

  14. Plant cytoplasm preserved by lightning.

    PubMed

    Wang, X

    2004-10-01

    Usually only an organism with hard parts may be preserved in the fossil record. Cytoplasm, which is a physiologically active part of a plant, is rarely seen in the fossil record. Two Cretaceous plant fossils older than 100 million years with exceptional preservation of cytoplasm are reported here. Some cytoplasm is well preserved with subcellular details while other cytoplasm is highly hydrolyzed in the cortex of the same fossil even though both of preservations may be less than 2 microm away. The unique preservation pattern, sharp contrast of preservation in adjacent cells and the exceptional preservation of cytoplasm in the cortex suggest that lightning should play an important role in the preservation of cytoplasm and that cytoplasmic membranes may be more stable than the cell contents. Interpreting the preservation needs knowledge scattering in several formerly unrelated fields of science, including geophysics, botany, biophysics, cytology and microwave fixation technology. This new interpretation of fossilization will shed new light on preservation of cytoplasm and promote cytoplasm fossils from a position of rarity to a position of common research objects available for biological research. The importance of the identification of cytoplasm in fossil lies not in itself but in how much it influences the future research in paleobotany.

  15. Cytoplasmic bacteriophage display system

    DOEpatents

    Studier, F.W.; Rosenberg, A.H.

    1998-06-16

    Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest. 1 fig.

  16. Cytoplasmic bacteriophage display system

    DOEpatents

    Studier, F. William; Rosenberg, Alan H.

    1998-06-16

    Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest.

  17. Antineutrophil cytoplasmic antibodies (ANCA).

    PubMed

    Radice, A; Sinico, R A

    2005-02-01

    Antineutrophil cytoplasmic antibodies (ANCA) are a sensitive and specific marker for ANCA-associated systemic vasculitis. Using indirect immunofluorescence on ethanol-fixed neutrophils, two major fluoroscopic patterns can be recognised: a diffuse cytoplasmic staining (C-ANCA), and a perinuclear/nuclear staining (P-ANCA). In patients with vasculitis, more of 90% of C-ANCA are directed against proteinase 3 (PR3-ANCA) whereas approximately 80-90% of P-ANCA recognise myelperoxidase (MPO-ANCA). Although C-ANCA (PR3-ANCA) is preferentially associated with Wegener's granulomatosis (WG), and P-ANCA (MPO-ANCA) with microscopic polyangiitis (MPA), idiopathic necrotising crescentic glomerulonephritis (iNCGN) and Churg-Strauss syndrome (CSS), there is not absolute specificity. Between 10-20% of patients with classical WG show P-ANCA (MPO-ANCA), and even a larger percentage of patients with MPA or CSS have C-ANCA (PR3-ANCA). Furthermore, it should be stressed that approximately 10-20% of patients with WG or MPA (and 40-50% of cases of CSS) have negative assay for ANCA. The best diagnostic performance is obtained when indirect immunofluorescence is combined with PR3 and MPO-specific ELISAs. ANCA with different and unknown antigen specificity are found in a variety of conditions other than AASV, including inflammatory bowel diseases, other autoimmune diseases, and infections where their clinical significance is unclear. ANCA levels are useful to monitor disease activity but should not be used by themselves to guide treatment. A significant increase in ANCA titres, or the reappearance of ANCA, should alert the clinicians and lead to a stricter patient control.

  18. Antineutrophil cytoplasmic antibodies.

    PubMed

    Bosch, Xavier; Guilabert, Antonio; Font, Josep

    2006-07-29

    Much like other autoantibodies (eg, anti-double stranded DNA in systemic lupus erythematosus or antiglomerular basement membrane antibodies in Goodpasture's syndrome), antineutrophil cytoplasmic antibodies (ANCA) have provided doctors with a useful serological test to assist in diagnosis of small-vessel vasculitides, including Wegener's granulomatosis, microscopic polyangiitis, Churg-Strauss syndrome, and their localised forms (eg, pauci-immune necrotising and crescentic glomerulonephritis). 85-95% of patients with Wegener's granulomatosis, microscopic polyangiitis, and pauci-immune necrotising and crescentic glomerulonephritis have serum ANCA. ANCA directed to either proteinase 3 or myeloperoxidase are clinically relevant, yet the relevance of other ANCA remains unknown. Besides their diagnostic potential, ANCA might be valuable in disease monitoring. In addition, data seem to confirm the long-disputed pathogenic role of these antibodies. Present treatments for ANCA-associated vasculitis are not free from side-effects and as many as 50% of patients relapse within 5 years. Accurate understanding of the key pathogenic points of ANCA-associated vasculitis can undoubtedly provide a more rational therapeutic approach.

  19. Cellular Subcompartments through Cytoplasmic Streaming.

    PubMed

    Pieuchot, Laurent; Lai, Julian; Loh, Rachel Ann; Leong, Fong Yew; Chiam, Keng-Hwee; Stajich, Jason; Jedd, Gregory

    2015-08-24

    Cytoplasmic streaming occurs in diverse cell types, where it generally serves a transport function. Here, we examine streaming in multicellular fungal hyphae and identify an additional function wherein regimented streaming forms distinct cytoplasmic subcompartments. In the hypha, cytoplasm flows directionally from cell to cell through septal pores. Using live-cell imaging and computer simulations, we identify a flow pattern that produces vortices (eddies) on the upstream side of the septum. Nuclei can be immobilized in these microfluidic eddies, where they form multinucleate aggregates and accumulate foci of the HDA-2 histone deacetylase-associated factor, SPA-19. Pores experiencing flow degenerate in the absence of SPA-19, suggesting that eddy-trapped nuclei function to reinforce the septum. Together, our data show that eddies comprise a subcellular niche favoring nuclear differentiation and that subcompartments can be self-organized as a consequence of regimented cytoplasmic streaming.

  20. Targeted cytoplasmic irradiation and autophagy.

    PubMed

    Wu, Jinhua; Zhang, Bo; Wuu, Yen-Ruh; Davidson, Mercy M; Hei, Tom K

    2017-03-01

    The effect of ionizing irradiation on cytoplasmic organelles is often underestimated because the general dogma considers direct DNA damage in the nuclei to be the primary cause of radiation induced toxicity. Using a precision microbeam irradiator, we examined the changes in mitochondrial dynamics and functions triggered by targeted cytoplasmic irradiation with α-particles. Mitochondrial dysfunction induced by targeted cytoplasmic irradiation led to activation of autophagy, which degraded dysfunctional mitochondria in order to maintain cellular energy homeostasis. The activation of autophagy was cytoplasmic irradiation-specific and was not detected in nuclear irradiated cells. This autophagic process was oxyradical-dependent and required the activity of the mitochondrial fission protein dynamin related protein 1 (DRP1). The resultant mitochondrial fission induced phosphorylation of AMP activated protein kinase (AMPK) which leads to further activation of the extracellular signal-related kinase (ERK) 1/2 with concomitant inhibition of the mammalian target of rapamycin (mTOR) to initiate autophagy. Inhibition of autophagy resulted in delayed DNA damage repair and decreased cell viability, which supports the cytoprotective function of autophagy. Our results reveal a novel mechanism in which dysfunctional mitochondria are degraded by autophagy in an attempt to protect cells from toxic effects of targeted cytoplasmic radiation.

  1. Probing the structure of cytoplasm

    PubMed Central

    1986-01-01

    We have used size-fractionated, fluorescent dextrans to probe the structure of the cytoplasmic ground substance of living Swiss 3T3 cells by fluorescence recovery after photobleaching and video image processing. The data indicate that the cytoplasm of living cells has a fluid phase viscosity four times greater than water and contains structural barriers that restrict free diffusion of dissolved macromolecules in a size-dependent manner. Assuming these structural barriers comprise a filamentous meshwork, the combined fluorescence recovery after photobleaching and imaging data suggest that the average pore size of the meshwork is in the range of 300 to 400 A, but may be as small as 200 A in some cytoplasmic domains. PMID:2423529

  2. [Detection of the nuclear polyhedrosis virus DNA in samples from eggs and caterpillars at different stages of the gypsy moth Lymantria dispar (L.) population dynamics].

    PubMed

    Bakhvalov, S A; Martem'ianov, V V; Bakhvalova, V N; Morozova, O V

    2012-01-01

    The nuclear polyhedrosis virus (NPV) DNA was detected in samples from eggs and caterpillars of the gypsy moth collected in natural populations of the Western Siberia and Ural by means of PCR with primers corresponding to the polyhedrin gene. According to censuring data, the gypsy moth populations of Western Siberia were at the depression stage. The NPV DNA detection frequencies in eggs (8.6 +/- 4.8% - 13.6 +/- 5.2%) and caterpillars (21.0 +/- 6.3% - 22.2 +/- 6.7%) were not significantly differed. In the Urals, collection of the insects was performed in their gradation focus at the phase of maximal abundance. The DNA detection rate in eggs (11.4 +/- 5.0%) was confidently (p < 0.001) lower than in caterpillars (59.8 +/- 5.6%). Consequently, variations of the NPV infection prevalence during ontogenesis of Lymantria dispar (L.) was associated with the gradation cycle of the insect population dynamics.

  3. Cytoplasmic myosin from Drosophila melanogaster

    PubMed Central

    1986-01-01

    Myosin is identified and purified from three different established Drosophila melanogaster cell lines (Schneider's lines 2 and 3 and Kc). Purification entails lysis in a low salt, sucrose buffer that contains ATP, chromatography on DEAE-cellulose, precipitation with actin in the absence of ATP, gel filtration in a discontinuous KI-KCl buffer system, and hydroxylapatite chromatography. Yield of pure cytoplasmic myosin is 5-10%. This protein is identified as myosin by its cross-reactivity with two monoclonal antibodies against human platelet myosin, the molecular weight of its heavy chain, its two light chains, its behavior on gel filtration, its ATP-dependent affinity for actin, its characteristic ATPase activity, its molecular morphology as demonstrated by platinum shadowing, and its ability to form bipolar filaments. The molecular weight of the cytoplasmic myosin's light chains and peptide mapping and immunochemical analysis of its heavy chains demonstrate that this myosin, purified from Drosophila cell lines, is distinct from Drosophila muscle myosin. Two-dimensional thin layer maps of complete proteolytic digests of iodinated muscle and cytoplasmic myosin heavy chains demonstrate that, while the two myosins have some tryptic and alpha-chymotryptic peptides in common, most peptides migrate with unique mobility. One-dimensional peptide maps of SDS PAGE purified myosin heavy chain confirm these structural data. Polyclonal antiserum raised and reacted against Drosophila myosin isolated from cell lines cross-reacts only weakly with Drosophila muscle myosin isolated from the thoraces of adult Drosophila. Polyclonal antiserum raised against Drosophila muscle myosin behaves in a reciprocal fashion. Taken together our data suggest that the myosin purified from Drosophila cell lines is a bona fide cytoplasmic myosin and is very likely the product of a different myosin gene than the muscle myosin heavy chain gene that has been previously identified and characterized. PMID

  4. Single-stranded DNA fragments of insect-specific nuclear polyhedrosis virus act as selective DNA insecticides for gypsy moth control.

    PubMed

    Oberemok, Volodymyr V; Skorokhod, Oleksii A

    2014-07-01

    This paper focuses on the DNA insecticides as a novel preparation against gypsy moth (Lymantria dispar) based on DNA fragments of the anti-apoptotic gene of its nuclear polyhedrosis virus. It was found that the external application of a solution with two single-stranded DNA fragments from BIR and RING domains of LdMNPV (L.dispar multicapsid nuclear polyhedrosis virus) IAP-3 (inhibitor of apoptosis) gene induces a significantly higher mortality of gypsy moth caterpillars in comparison with the application of the control solutions. This effect does not depend on the infection of caterpillars with LdMNPV. The results also show that DNA insecticides based on LdMNPV IAP-3 gene fragments can be selective in action, and at least are not harmful to tobacco hornworm (Manduca sexta) and black cutworm (Agrotis ipsilon). Part of the gypsy moth genome cloned with the fragments of BIR and RING domains of LdMNPV IAP-3 gene as primers, has an overlap with the corresponding part of the LdMNPV IAP-3 gene and L.dispar IAP-1 mRNA for an inhibitor of apoptosis protein with the high cover by query, allows assuming that we cloned a part of gypsy moth anti-apoptosis gene. This finding gives the grounding that proposed here DNA insecticides might act through the blocking of the mechanisms involved in post transcriptional expression of insect anti-apoptosis genes. The results show the insecticidal potential of the viral genome fragments that can be used to create safe and relatively fast-acting DNA insecticides to control the quantity of gypsy moth populations, important task for forestry and agriculture.

  5. Abortive infection of the baculovirus Autographa californica nuclear polyhedrosis virus in Sf-9 cells after mutation of the putative DNA helicase gene.

    PubMed Central

    Kamita, S G; Maeda, S

    1996-01-01

    Homologous recombination between the Autographa californica nuclear polyhedrosis virus (AcNPV) genome and a 0.6-kbp-long DNA fragment derived from the putative DNA helicase gene of Bombyx mori nuclear polyhedrosis virus generates eh2-AcNPV, an expanded-host-range AcNPV mutant (S. Maeda, S.G. Kamita, and A. Kondo, J. Virol. 67:6234-6238, 1993). After inoculation at a high multiplicity of infection (MOI), eh2-AcNPV replicates efficiently in both the Sf-9 (AcNPV-permissive) and BmN (non-AcNPV-permissive) cell lines. In this study, we found that after the inoculation of Sf-9 cells at a low MOI (i.e., 1 and 0.1 PFU per cell), the release of eh2-AcNPV virions was dramatically reduced (approximately 900- and 10,000-fold, respectively, at 72 h postinoculation) compared with that of wild-type AcNPV. In addition, the titer of eh2-AcNPV determined by plaque assay on Sf-9 cells was approximately 200-fold lower than that determined by plaque assay on BmN cells. Analyses of gene expression and viral DNA replication after low-MOI eh2-AcNPV inoculation of Sf-9 cells indicated that viral early genes were expressed normally. However, DNA replication and late-gene expression were significantly reduced. These findings suggested that abortive infection occurred at the stage of viral DNA replication in nearly all low-MOI eh2-AcNPV-infected Sf-9 cells. In the larvae of Spodoptera frugiperda, the organism from which Sf-9 cells are derived, the infectivity of eh2-AcNPV was lower than that of AcNPV; however, abortive infection was not found. PMID:8709251

  6. Active sliding between cytoplasmic microtubules.

    PubMed

    Koonce, M P; Tong, J; Euteneuer, U; Schliwa, M

    Microtubules are versatile cellular polymers that play a role in cell shape determination and mediate various motile processes such as ciliary and flagellar bending, chromosome movements and organelle transport. That a sliding microtubule mechanism can generate force has been demonstrated in highly ordered structures such as axonemes, and microtubule-based force generation almost certainly contributes to the function of mitotic and meiotic spindles. Most cytoplasmic microtubule arrays, however, do not exhibit the structural regularity of axonemes and some spindles, and often appear disorganized. Yet many cellular activities (such as shape changes during morphogenesis, axonal extension and spindle assembly) involve highly coordinated microtubule behaviour and possibly require force generated by an intermicrotubule sliding mechanism, or perhaps use sliding to move microtubules rapidly into a protrusion for stabilization. Here we show that active sliding between cytoplasmic microtubules can occur in microtubule bundles of the amoeba Reticulomyxa. A force-producing mechanism of this sort could be used by this organism to facilitate the extension of cell processes and to generate the dynamic movements of the cytoplasmic network.

  7. Cytoplasmic hydrogen ion diffusion coefficient.

    PubMed Central

    al-Baldawi, N F; Abercrombie, R F

    1992-01-01

    The apparent cytoplasmic proton diffusion coefficient was measured using pH electrodes and samples of cytoplasm extracted from the giant neuron of a marine invertebrate. By suddenly changing the pH at one surface of the sample and recording the relaxation of pH within the sample, an apparent diffusion coefficient of 1.4 +/- 0.5 x 10(-6) cm2/s (N = 7) was measured in the acidic or neutral range of pH (6.0-7.2). This value is approximately 5x lower than the diffusion coefficient of the mobile pH buffers (approximately 8 x 10(-6) cm2/s) and approximately 68x lower than the diffusion coefficient of the hydronium ion (93 x 10(-6) cm2/s). A mobile pH buffer (approximately 15% of the buffering power) and an immobile buffer (approximately 85% of the buffering power) could quantitatively account for the results at acidic or neutral pH. At alkaline pH (8.2-8.6), the apparent proton diffusion coefficient increased to 4.1 +/- 0.8 x 10(-6) cm2/s (N = 7). This larger diffusion coefficient at alkaline pH could be explained quantitatively by the enhanced buffering power of the mobile amino acids. Under the conditions of these experiments, it is unlikely that hydroxide movement influences the apparent hydrogen ion diffusion coefficient. PMID:1617134

  8. Testing for antineutrophil cytoplasmic antibodies.

    PubMed

    Savige, J

    2001-09-01

    The most common reason to request a test for antineutrophil cytoplasmic antibodies (ANCA) is to diagnose Wegener's granulomatosis and microscopic polyangiitis and to monitor inflammatory activity in these diseases. Several retrospective and prospective studies have suggested that the demonstration of ANCA lacks sensitivity and specificity, but these series have detected ANCA with neutrophil-indirect immunofluorescence alone, have used a disease classification that did not describe microscopic polyangiitis and have included patients with inactive disease. The 'International Consensus Statement on Testing and Reporting ANCA' has been developed to optimize the clinical relevance of ANCA testing by the adoption of standardized testing and reporting procedures. International collaborative efforts continue to focus on improving the tests for ANCA.

  9. Identification and analysis of an Autographa californica nuclear polyhedrosis virus structural protein of the occlusion-derived virus envelope: ODV-E56.

    PubMed

    Braunagel, S C; Elton, D M; Ma, H; Summers, M D

    1996-03-01

    An Autographa californica nuclear polyhedrosis virus gene encoding an occlusion-derived virus (ODV) envelope protein of 56 kDa was identified and sequenced. Transcription initiates from a conserved baculovirus late motif (ATAAG) with transcripts detected from 16 through 72 hr p.i. The protein is detected in infected cell extracts from 36 hr p.i. Western blot assay of ODV, BV, viral envelope, and nucleocapsid preparations coupled with immunoelectron microscopy reveal that this protein localizes to the ODV envelope. This protein is named ODV-E56 to identify its viral origin, envelope location, and apparent molecular weight. ODV-E56 is enriched in viral induced intranuclear microvesicles as determined by immunogold labeling. A mutant was constructed with the C-terminal portion of the protein replaced with beta-galactosidase. The fusion protein, E56-beta-gal, locates to the viral nucleocapsids and not to the ODV envelope or intranuclear microvesicles. This suggests that the signals necessary for transport and/or retention into these structures lies within the C-terminal portion of ODV-E56. Additionally, both ODV-E56 and E56-beta-gal are enriched in electron dense regions that cluster around the inner nuclear membrane and within the nucleoplasm.

  10. Characterization of the baculovirus Choristoneura fumiferana multicapsid nuclear polyhedrosis virus p10 gene indicates that the polypeptide contains a coiled-coil domain.

    PubMed

    Wilson, J A; Hill, J E; Kuzio, J; Faulkner, P

    1995-12-01

    The DNA sequence and transcription pattern of the p10 gene from the spruce budworm baculovirus Choristoneura fumiferana multicapsid nuclear polyhedrosis virus (CfMNPV) were analysed. The CfMNPV p10 gene codes for a protein 81 amino acids in length: this is the shortest p10 peptide identified thus far. A novel characteristic of the CfMNPV p10 gene is that it contains tandem late initiation sites (TAAG) having different temporal transcription patterns. Comparative analysis of CfMNPV p10 and the amino acid sequences of other p10 gene products showed that they each appear to have a similar N-terminal structure: an amphipathic alpha-helical terminus which condenses as coiled-coil multimers. Another feature of the p10 N terminus is that the central region of the coiled-coil domain resembles a bend or hairpin loop and could fold into a hairpin or form a bent rod structure. The condensation of p10 monomers to coiled-coil multimers is likely to be a step leading to the formation of p10 fibrous bodies in infected cells.

  11. Baculovirus replication: characterization of DNA and proteins synthesized by a nuclear polyhedrosis virus of Lymantria dispar, the gypsy moth, in a homologous cell line

    SciTech Connect

    McClintock, J.T.

    1985-01-01

    A multiple-embedded nuclear polyhedrosis virus (NPV) of the gypsy moth, Lymantria dispar (LdMNPV), is used for biological control. However, LdMNPV has low natural virulence and a long infection cycle in relation to other NPVs. Therefore, the replicative cycle of LdMNPV was investigated using a homologous cell line, IPLB-LD-652Y. Based on analyses of virus growth curves LdMNPV nonoccluded virus and polyhedral inclusion bodies appeared approximately 20 and 50 hr postinfection (p.i.), respectively. LdMNPV polypeptides, identified by autoradiography of (/sup 35/S)-methionine labeled fractions in SDS-PAGE, were synthesized in sequential phases: (1) an early ..cap alpha.. phase of replication (4 polypeptides from 4 to 12 hr p.i.), (2) an intermediate ..beta.. phase (20 polypeptides from 12 to 24 hr p.i.), and a late ..gamma.. phase (4 polypeptides from 24 to 28 hr p.i.). In infected cells at least four polypeptides were post-translational cleaved and/or modified. Pulse-labeling with (/sup 3/H)-mannose, (/sup 3/H)-N-acetyl-glucosamine or (/sup 32/P)-monosodium phosphate revealed several viral polypeptides which were glycosylated and/or phosphorylated. DNA:DNA dot hybridization experiments suggested that LdMNPV DNA synthesis was initiated between 12 to 16 hr p.i., increasing significantly thereafter.

  12. Measurement of Cytoplasmic Streaming in Drosophila Melanogaster

    NASA Astrophysics Data System (ADS)

    Ganguly, Sujoy; Williams, Lucy; Palacios, Isabel; Goldstein, Raymond

    2010-11-01

    During stage 9 of Drosophila melanogastor oogenesis flow of the oocyte cytoplasm, driven by kinesin 1 motor protein is observed. This cytoplasmic streaming is analyzed by PIV in both wild type and kinesin light chain mutants, revealing striking statistical differences. Further measurements of the rheology of the oocyte allow for estimations of the mechanical energy needed to generate the observed flows.

  13. Cytoplasmic Streaming - Skylab Student Experiment ED-63

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This chart describes the Skylab student experiment (ED-63), Cytoplasmic Streaming, proposed by Cheryl A. Peitz of Arapahoe High School, Littleton, Colorado. Experiment ED-63 was to observe the effect of zero-gravity on cytoplasmic streaming in the aquatic plant named Elodea, commonly called water weed or water thyme. The phenomenon of cytoplasmic streaming is not well understood, but it is recognized as the circulation mechanism of the internal materials or cytoplasm of a cell. Cytoplasm is a gelatinous substance that has the ability to change its viscosity and flow, carrying various cell materials with it. The activity can be stimulated by sunlight or heat. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.

  14. Hydrodynamic property of the cytoplasm is sufficient to mediate cytoplasmic streaming in the Caenorhabditis elegans embryo.

    PubMed

    Niwayama, Ritsuya; Shinohara, Kyosuke; Kimura, Akatsuki

    2011-07-19

    Cytoplasmic streaming is a type of intracellular transport widely seen in nature. Cytoplasmic streaming in Caenorhabditis elegans at the one-cell stage is bidirectional; the flow near the cortex ("cortical flow") is oriented toward the anterior, whereas the flow in the central region ("cytoplasmic flow") is oriented toward the posterior. Both cortical flow and cytoplasmic flow depend on non-muscle-myosin II (NMY-2), which primarily localizes in the cortex. The manner in which NMY-2 proteins drive cytoplasmic flow in the opposite direction from remote locations has not been fully understood. In this study, we demonstrated that the hydrodynamic properties of the cytoplasm are sufficient to mediate the forces generated by the cortical myosin to drive bidirectional streaming throughout the cytoplasm. We quantified the flow velocities of cytoplasmic streaming using particle image velocimetry (PIV) and conducted a three-dimensional hydrodynamic simulation using the moving particle semiimplicit method. Our simulation quantitatively reconstructed the quantified flow velocity distribution resolved through PIV analysis. Furthermore, our PIV analyses detected microtubule-dependent flows during the pronuclear migration stage. These flows were reproduced via hydrodynamic interactions between moving pronuclei and the cytoplasm. The agreement of flow dynamics in vivo and in simulation indicates that the hydrodynamic properties of the cytoplasm are sufficient to mediate cytoplasmic streaming in C. elegans embryos.

  15. Deep cytoplasmic rearrangements in ventralized Xenopus embryos

    NASA Technical Reports Server (NTRS)

    Brown, E. E.; Denegre, J. M.; Danilchik, M. V.

    1993-01-01

    Following fertilization in Xenopus, dramatic rearrangements of the egg cytoplasm relocalize maternally synthesized egg components. During the first cell cycle the vegetal yolk mass rotates relative to the egg surface, toward the sperm entry point (SEP) (J. P. Vincent, G. F. Oster, and J. C. Gerhart, 1986, Dev. Biol. 113, 484-500), while concomitant deep cytoplasmic rearrangements occur in the animal hemisphere (M. V. Danilchik and J. M. Denegre, 1991, Development 111, 845-856). In this paper we examine the role of vegetal yolk mass rotation in producing the animal cytoplasmic rearrangements. We inhibited rotation by uv-irradiating embryos during the first cell cycle, a treatment that yields an extremely ventralized phenotype. Both uv-irradiated embryos and unirradiated control embryos show cytoplasmic rearrangements in the animal hemisphere during the first cell cycle. Cytoplasmic rearrangements on the SEP side of the embryo associated with the path of the sperm pronucleus, plus a swirl on the anti-SEP (dorsal) side, are seen, whether or not yolk mass rotation has occurred. This result suggests a role for the expanding sperm aster in directing animal hemisphere cytoplasmic movements. In unirradiated control embryos the anti-SEP (dorsal) swirl is larger than that in uv-irradiated embryos and often extends into the vegetal hemisphere, consistent with the animal cytoplasm having been pulled dorsally and vegetally by the sliding vegetal yolk mass. Thus the yolk mass rotation may normally enhance the dorsalward cytoplasmic movement, begun by the sperm aster, enough to induce normal axis formation. We extended our observations of unirradiated control and uv-irradiated embryos through early cleavages. The vegetal extent of the anti-SEP (dorsal) swirl pattern seen in control embryos persists through the early cleavage period, such that labeled animal cytoplasm extends deep into dorsal third-tier blastomeres at the 32-cell stage. Significantly, in uv-irradiated embryos

  16. Cytoplasmic rearrangements associated with amphibian egg symmetrization

    NASA Technical Reports Server (NTRS)

    Malacinski, G. M.

    1984-01-01

    Cytoplasmic rearrangements which follow fertilization were mentioned in normal and inverted eggs. A set of yolk compartments was resolved by cytological analyses of both normally oriented and inverted eggs. Those compartments were characterized by their yolk platelet compositions and movement during egg inversion. It is found that during egg inversion the yolk compartments shift minor cytoplasmic compartments which line the egg cortex. Those yolk mass shifts occurred only after the inverted egg was activated. The direction of shift of the major yolk components, rather than the sperm entrance site, determines the dorsal/ventral polarity of the inverted egg. Among different spawnings the rate of shift varied. Eggs that displayed the fastest rate of shift exhibited the highest frequency of developmental abnormalities during organogenesis. Interpretation of novel observations on cytoplasmic organization provide criticism of some earlier models. A new density compartment model is presented as a coherent way to view the organization of the egg cytoplasm and the development of bilateral symmetry.

  17. Comparative Transcriptomics of Buzura suppressaria (Lepidoptera: Geometridae) Assembled De Novo Yield Insights Into Response After Buzura suppressaria Nuclear Polyhedrosis Virus Infection.

    PubMed

    Luo, Ji; Zhong, Yating; Zhu, Jiyu; Zhou, Guoying; Huang, Huayan; Wu, Yaojun

    2017-01-20

    Buzura suppressaria Guenee (Lepidoptera: Geometridae) is a defoliator that seriously harms eucalyptus trees in South China. Buzura suppressaria nuclear polyhedrosis virus (BsNPV) is a baculovirus that infects B. suppressaria with high specificity and efficiency. Transcriptomes of B. suppressaria were sequenced before and after BsNPV infection using an Illumina-based platform to probe for differentially expressed genes (DEGs) of B. suppressaria after viral infection. On average, ∼57.4 million high-quality clean reads were generated and assembled de novo into 69,761 unigenes. The NCBI nonredundant protein, Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene ontology (GO), and Cluster of Orthologous Groups databases were used to annotate unigenes through NCBI BLAST; 33,575 unigenes (48.1%) were then mapped to at least one of these databases, and 4,366 unigenes (6.3%) were mapped to all databases. Differential expression analysis showed that 25,212 unigenes were upregulated and 22,880 unigenes were downregulated in at least one pairwise comparison. Control versus 48 h had more DEGs than other two pairwise comparisons in either the GO or KEGG database, because the number of regulated gene would increase as BsNPV infected more tissues and would decrease as more tissues were disabled. To ascertain B. suppressaria immune response to BsNPV infection, DEGs were annotated to the GO and KEGG databases. In total, 89 GO categories are related to immune response and 1,007 DEGs are annotated to these GO categories. Furthermore, 7 downregulated DEGs and 37 upregulated were obtained simultaneously in all three groups. These DEGs were considered to possess a central role throughout viral infection.

  18. Engineering stable cytoplasmic intrabodies with designed specificity.

    PubMed

    Donini, Marcello; Morea, Veronica; Desiderio, Angiola; Pashkoulov, Dimitre; Villani, Maria Elena; Tramontano, Anna; Benvenuto, Eugenio

    2003-07-04

    Many attempts have been made to develop antibody fragments that can be expressed in the cytoplasm ("intrabodies") in a stable and functional form. The recombinant antibody fragment scFv(F8) is characterised by peculiarly high in vitro stability and functional folding in both prokaryotic and eukaryotic cytoplasm. To dissect the relative contribution of different scFv(F8) regions to cytoplasmic stability and specificity we designed and constructed five chimeric molecules (scFv-P1 to P5) in which several groups of residues important for antigen binding in the poorly stable anti-hen egg lysozyme (HEL) scFv(D1.3) were progressively grafted onto the scFv(F8) scaffold. All five chimeric scFvs were expressed in a soluble form in the periplasm and cytoplasm of Escherichia coli. All the periplasmic oxidised forms and the scFv(P3) extracted from the cytoplasm in reducing conditions had HEL binding affinities essentially identical (K(d)=15nM) to that of the cognate scFv(D1.3) fragment (K(d)=16nM). The successful grafting of the antigen binding properties of D1.3 onto the scFv(F8) opens the road to the exploitation of this molecule as a scaffold for the reshaping of intrabodies with desired specificities to be targeted to the cytoplasm.

  19. Cytoplasmic-anti-neutrophil cytoplasmic antibodies targeting myeloperoxidase in Wegener's granulomatosis: a rare phenomenon.

    PubMed

    Venkatesh, Bhavana M; Joshi, Sangeeta; Adhikary, Ranjeeta

    2014-01-01

    Wegener's granulomatosis (WG) patients can rarely have antineutrophil cytoplasmic antibodies (ANCAs) directed against myeloperoxidase (MPO), producing a cytoplasmic pattern on indirect immunofluorescence (IIF). This has important implications in the diagnosis and pathophysiology of the disease. We present to you a report of three cases of WG, demonstrating a cytoplasmic-ANCA pattern on indirect IIF, but directed against MPO. It is necessary to diagnose a patient taking into account both the autoimmune test results and the clinical features.

  20. Cytoplasmic vacuolization in cell death and survival

    PubMed Central

    Komissarov, Alexey A.; Rafieva, Lola M.; Kostrov, Sergey V.

    2016-01-01

    Cytoplasmic vacuolization (also called cytoplasmic vacuolation) is a well-known morphological phenomenon observed in mammalian cells after exposure to bacterial or viral pathogens as well as to various natural and artificial low-molecular-weight compounds. Vacuolization often accompanies cell death; however, its role in cell death processes remains unclear. This can be attributed to studying vacuolization at the level of morphology for many years. At the same time, new data on the molecular mechanisms of the vacuole formation and structure have become available. In addition, numerous examples of the association between vacuolization and previously unknown cell death types have been reported. Here, we review these data to make a deeper insight into the role of cytoplasmic vacuolization in cell death and survival. PMID:27331412

  1. Xenopus egg cytoplasm with intact actin.

    PubMed

    Field, Christine M; Nguyen, Phuong A; Ishihara, Keisuke; Groen, Aaron C; Mitchison, Timothy J

    2014-01-01

    We report optimized methods for preparing Xenopus egg extracts without cytochalasin D, that we term "actin-intact egg extract." These are undiluted egg cytoplasm that contains abundant organelles, and glycogen which supplies energy, and represents the least perturbed cell-free cytoplasm preparation we know of. We used this system to probe cell cycle regulation of actin and myosin-II dynamics (Field et al., 2011), and to reconstitute the large, interphase asters that organize early Xenopus embryos (Mitchison et al., 2012; Wühr, Tan, Parker, Detrich, & Mitchison, 2010). Actin-intact Xenopus egg extracts are useful for analysis of actin dynamics, and interaction of actin with other cytoplasmic systems, in a cell-free system that closely mimics egg physiology, and more generally for probing the biochemistry and biophysics of the egg, zygote, and early embryo. Detailed protocols are provided along with assays used to check cell cycle state and tips for handling and storing undiluted egg extracts.

  2. Cytoplasmic Streaming in the Drosophila Oocyte.

    PubMed

    Quinlan, Margot E

    2016-10-06

    Objects are commonly moved within the cell by either passive diffusion or active directed transport. A third possibility is advection, in which objects within the cytoplasm are moved with the flow of the cytoplasm. Bulk movement of the cytoplasm, or streaming, as required for advection, is more common in large cells than in small cells. For example, streaming is observed in elongated plant cells and the oocytes of several species. In the Drosophila oocyte, two stages of streaming are observed: relatively slow streaming during mid-oogenesis and streaming that is approximately ten times faster during late oogenesis. These flows are implicated in two processes: polarity establishment and mixing. In this review, I discuss the underlying mechanism of streaming, how slow and fast streaming are differentiated, and what we know about the physiological roles of the two types of streaming.

  3. Cytoplasmic Estrogen Receptor in breast cancer

    PubMed Central

    Welsh, Allison W.; Lannin, Donald R.; Young, Gregory S.; Sherman, Mark E.; Figueroa, Jonine D.; Henry, N. Lynn; Ryden, Lisa; Kim, Chungyeul; Love, Richard R.; Schiff, Rachel; Rimm, David L.

    2011-01-01

    Purpose In addition to genomic signaling, it is accepted that ERα has non-nuclear signaling functions, which correlate with tamoxifen resistance in preclinical models. However, evidence for cytoplasmic ER localization in human breast tumors is less established. We sought to determine the presence and implications of non-nuclear ER in clinical specimens. Experimental Design A panel of ERα-specific antibodies (SP1, MC20, F10, 60c, 1D5) were validated by western blot and quantitative immunofluorescent (QIF) analysis of cell lines and patient controls. Then eight retrospective cohorts collected on tissue microarrays were assessed for cytoplasmic ER. Four cohorts were from Yale (YTMA 49, 107, 130, 128) and four others (NCI YTMA 99, South Swedish Breast Cancer Group SBII, NSABP B14, and a Vietnamese Cohort) from other sites around the world. Results Four of the antibodies specifically recognized ER by western and QIF, showed linear increases in amounts of ER in cell line series with progressively increasing ER, and the antibodies were reproducible on YTMA 49 with pearson’s correlations (r2 values)ranging from 0.87-0.94. One antibody with striking cytoplasmic staining (MC20) failed validation. We found evidence for specific cytoplasmic staining with the other 4 antibodies across eight cohorts. The average incidence was 1.5%, ranging from 0 to 3.2%. Conclusions Our data shows ERα present in the cytoplasm in a number of cases using multiple antibodies, while reinforcing the importance of antibody validation. In nearly 3,200 cases, cytoplasmic ER is present at very low incidence, suggesting its measurement is unlikely to be of routine clinical value. PMID:21980134

  4. Cytoplasmic Sterility Factors in VICIA FABA L

    PubMed Central

    Edwardson, J. R.; Bond, D. A.; Christie, R. G.

    1976-01-01

    Tissues of cytoplasmic male sterile, maintainer, restorer, and restored lines, and sterile plants which reverted to fertility in Vicia faba were examined in ultrathin sections. Cytoplasmic spherical bodies (CSB), ca. 70 nm in diameter, were observed in tissues of all sterile plants but not in tissues of maintainer, restorer or restored sterile plants. No CSB were observed in a reverted fertile branch of a tiller-sterile plant, nor in 5 of 6 reverted fertile plants. One reverted fertile plant contained CSB in ovules. It is proposed that the CSB are the sites of, or possibly, products of, sterility factors in Vicia faba. PMID:17248701

  5. CNS Myelination Requires Cytoplasmic Dynein Function

    PubMed Central

    Yang, Michele L.; Shin, Jimann; Kearns, Christina A.; Langworthy, Melissa M.; Snell, Heather; Walker, Macie B.; Appel, Bruce

    2014-01-01

    Background Cytoplasmic dynein provides the main motor force for minus-end-directed transport of cargo on microtubules. Within the vertebrate central nervous system (CNS), proliferation, neuronal migration and retrograde axon transport are among the cellular functions known to require dynein. Accordingly, mutations of DYNC1H1, which encodes the heavy chain subunit of cytoplasmic dynein, have been linked to developmental brain malformations and axonal pathologies. Oligodendrocytes, the myelinating glial cell type of the CNS, migrate from their origins to their target axons and subsequently extend multiple long processes that ensheath axons with specialized insulating membrane. These processes are filled with microtubules, which facilitate molecular transport of myelin components. However, whether oligodendrocytes require cytoplasmic dynein to ensheath axons with myelin is not known. Results We identified a mutation of zebrafish dync1h1 in a forward genetic screen that caused a deficit of oligodendrocytes. Using in vivo imaging and gene expression analyses, we additionally found evidence that dync1h1 promotes axon ensheathment and myelin gene expression. Conclusions In addition to its well known roles in axon transport and neuronal migration, cytoplasmic dynein contributes to neural development by promoting myelination. PMID:25488883

  6. Cytoplasmic Drosha activity generated by alternative splicing

    PubMed Central

    Dai, Lisheng; Chen, Kevin; Youngren, Brenda; Kulina, Julia; Yang, Acong; Guo, Zhengyu; Li, Jin; Yu, Peng; Gu, Shuo

    2016-01-01

    RNase III enzyme Drosha interacts with DGCR8 to form the Microprocessor, initiating canonical microRNA (miRNA) maturation in the nucleus. Here, we re-evaluated where Drosha functions in cells using Drosha and/or DGCR8 knock out (KO) cells and cleavage reporters. Interestingly, a truncated Drosha mutant located exclusively in the cytoplasm cleaved pri-miRNA effectively in a DGCR8-dependent manner. In addition, we demonstrated that in vitro generated pri-miRNAs when transfected into cells could be processed to mature miRNAs in the cytoplasm. These results indicate the existence of cytoplasmic Drosha (c-Drosha) activity. Although a subset of endogenous pri-miRNAs become enriched in the cytoplasm of Drosha KO cells, it remains unclear whether pri-miRNA processing is the main function of c-Drosha. We identified two novel in-frame Drosha isoforms generated by alternative splicing in both HEK293T and HeLa cells. One isoform loses the putative nuclear localization signal, generating c-Drosha. Further analysis indicated that the c-Drosha isoform is abundant in multiple cell lines, dramatically variable among different human tissues and upregulated in multiple tumors, suggesting that c-Drosha plays a unique role in gene regulation. Our results reveal a new layer of regulation on the miRNA pathway and provide novel insights into the ever-evolving functions of Drosha. PMID:27471035

  7. Nitrite Reduces Cytoplasmic Acidosis under Anoxia1

    PubMed Central

    Libourel, I.G.L.; van Bodegom, P.M.; Fricker, M.D.; Ratcliffe, R.G.

    2006-01-01

    The ameliorating effect of nitrate on the acidification of the cytoplasm during short-term anoxia was investigated in maize (Zea mays) root segments. Seedlings were grown in the presence or absence of nitrate, and changes in the cytoplasmic and vacuolar pH in response to the imposition of anoxia were measured by in vivo 31P nuclear magnetic resonance spectroscopy. Soluble ions and metabolites released to the suspending medium by the anoxic root segments were measured by high-performance liquid chromatography and 1H nuclear magnetic resonance spectroscopy, and volatile metabolites were measured by gas chromatography and gas chromatography-mass spectrometry. The beneficial effect of nitrate on cytoplasmic pH regulation under anoxia occurred despite limited metabolism of nitrate under anoxia, and modest effects on the ions and metabolites, including fermentation end products, released from the anoxic root segments. Interestingly, exposing roots grown and treated in the absence of nitrate to micromolar levels of nitrite during anoxia had a beneficial effect on the cytoplasmic pH that was comparable to the effect observed for roots grown and treated in the presence of nitrate. It is argued that nitrate itself is not directly responsible for improved pH regulation under anoxia, contrary to the usual assumption, and that nitrite rather than nitrate should be the focus for further work on the beneficial effect of nitrate on flooding tolerance. PMID:17071644

  8. Subunit organization in cytoplasmic dynein subcomplexes

    PubMed Central

    King, Stephen J.; Bonilla, Myriam; Rodgers, Michael E.; Schroer, Trina A.

    2002-01-01

    Because cytoplasmic dynein plays numerous critical roles in eukaryotic cells, determining the subunit composition and the organization and functions of the subunits within dynein are important goals. This has been difficult partly because of accessory polypeptide heterogeneity of dynein populations. The motor domain containing heavy chains of cytoplasmic dynein are associated with multiple intermediate, light intermediate, and light chain accessory polypeptides. We examined the organization of these subunits within cytoplasmic dynein by separating the molecule into two distinct subcomplexes. These subcomplexes were competent to reassemble into a molecule with dynein-like properties. One subcomplex was composed of the dynein heavy and light intermediate chains whereas the other subcomplex was composed of the intermediate and light chains. The intermediate and light chain subcomplex could be further separated into two pools, only one of which contained dynein light chains. The two pools had distinct intermediate chain compositions, suggesting that intermediate chain isoforms have different light chain–binding properties. When the two intermediate chain pools were characterized by analytical velocity sedimentation, at least four molecular components were seen: intermediate chain monomers, intermediate chain dimers, intermediate chain monomers with bound light chains, and a mixture of intermediate chain dimers with assorted bound light chains. These data provide new insights into the compositional heterogeneity and assembly of the cytoplasmic dynein complex and suggest that individual dynein molecules have distinct molecular compositions in vivo. PMID:11967380

  9. Cytoplasmic permeation pathway of neurotransmitter transporters.

    PubMed

    Rudnick, Gary

    2011-09-06

    Ion-coupled solute transporters are responsible for transporting nutrients, ions, and signaling molecules across a variety of biological membranes. Recent high-resolution crystal structures of several transporters from protein families that were previously thought to be unrelated show common structural features indicating a large structural family representing transporters from all kingdoms of life. This review describes studies that led to an understanding of the conformational changes required for solute transport in this family. The first structure in this family showed the bacterial amino acid transporter LeuT, which is homologous to neurotransmitter transporters, in an extracellularly oriented conformation with a molecule of leucine occluded at the substrate site. Studies with the mammalian serotonin transporter identified positions, buried in the LeuT structure, that defined a potential pathway leading from the cytoplasm to the substrate binding site. Modeling studies utilized an inverted structural repeat within the LeuT crystal structure to predict the conformation of LeuT in which the cytoplasmic permeation pathway, consisting of positions identified in SERT, was open for diffusion of the substrate to the cytoplasm. From the difference between the model and the crystal structures, a simple "rocking bundle" mechanism was proposed, in which a four-helix bundle changed its orientation with respect to the rest of the protein to close the extracellular pathway and open the cytoplasmic one. Subsequent crystal structures from structurally related proteins provide evidence supporting this model for transport.

  10. Hybridization using cytoplasmic male sterility, cytoplasmic herbicide tolerance, and herbicide tolerance from nuclear genes

    SciTech Connect

    Beversdorf, W.D.; Erickson, L.R.; Grant, I.

    1987-04-14

    An improved process is described for producing a substantially homogeneous population of plants of a predetermined hybrid variety of crop which is capable of undergoing self-pollination and cross-pollination. The process comprises: growing in a first planting area a substantially random population of cytoplasmic male sterile plants which exhibit cytoplasmic herbicide tolerance to at least one Type A herbicide and exhibit tolerance to at least one Type B herbicide which is attributable solely to homozygous dominant nuclear genes and male fertile plants which are homozygous recessive maintainer plants for the cytoplasmic male sterile plants and which lack the cytoplasmic herbicide tolerance to at least one Type A herbicide and exhibit tolerance to at least one Type B herbicide attributable solely to the homozygous dominant nuclear genes.

  11. The primary structure of rat brain (cytoplasmic) dynein heavy chain, a cytoplasmic motor enzyme.

    PubMed Central

    Zhang, Z; Tanaka, Y; Nonaka, S; Aizawa, H; Kawasaki, H; Nakata, T; Hirokawa, N

    1993-01-01

    Overlapping cDNA clones encoding the heavy chain of rat brain cytoplasmic dynein have been isolated. The isolated cDNA clones contain an open reading frame of 13,932 bp encoding 4644 aa (M(r), 532,213). The deduced protein sequence of the heavy chain of rat brain dynein shows significant similarity to sea urchin flagellar beta-dynein (27.0% identical) and to Dictyostelium cytoplasmic dynein (53.5% identical) throughout the entire sequence. The heavy chain of rat brain (cytoplasmic) dynein contains four putative nucleotide-binding consensus sequences [GX4GK(T/S)] in the central one-third region that are highly similar to those of sea urchin and Dictyostelium dyneins. The N-terminal one-third of the heavy chain of rat brain (cytoplasmic) dynein shows high similarity (43.8% identical) to that of Dictyostelium cytoplasmic dynein but poor similarity (19.4% identical) to that of sea urchin flagellar dynein. These results suggested that the C-terminal two-thirds of the dynein molecule is conserved and plays an essential role in microtubule-dependent motility activity, whereas the N-terminal regions are different between cytoplasmic and flagellar dyneins. Images Fig. 1 PMID:7690137

  12. Antineutrophil cytoplasmic antibodies in Wegener's granulomatosis.

    PubMed

    Wong, S N; Shah, V; Dillon, M J

    1998-09-01

    The prevalence of antineutrophil cytoplasmic antibodies (ANCA) was studied in 12 children with Wegener's granulomatosis. The serum samples were taken in the active phase of disease and were screened for ANCA by indirect immunofluorescence with normal neutrophils and enzyme linked immunosorbent assay (ELISA) using crude neutrophil extract, proteinase 3, myeloperoxidase, cathepsin G, lactoferrin, and elastase as antigens. Of these 12 patients, 10 wre positive for ANCA in the active phase of their illness, and they showed a predominantly cytoplasmic ANCA staining pattern on indirect immunofluorescence. There were high titres of ANCA directed against crude neutrophil extract, proteinase 3, myeloperoxidase, and cathepsin G. IgM isotypes occurred as commonly as IgG isotypes. Therefore, screening for ANCA is usually but not invariably positive in children with Wegener's granulomatosis. Specific diagnosis still relies on clinical and pathological features, and the value of ANCA in the diagnosis of paediatric Wegener's granulomatosis requires further study.

  13. Mechanism of Cytoplasmic mRNA Translation

    PubMed Central

    2015-01-01

    Protein synthesis is a fundamental process in gene expression that depends upon the abundance and accessibility of the mRNA transcript as well as the activity of many protein and RNA-protein complexes. Here we focus on the intricate mechanics of mRNA translation in the cytoplasm of higher plants. This chapter includes an inventory of the plant translational apparatus and a detailed review of the translational processes of initiation, elongation, and termination. The majority of mechanistic studies of cytoplasmic translation have been carried out in yeast and mammalian systems. The factors and mechanisms of translation are for the most part conserved across eukaryotes; however, some distinctions are known to exist in plants. A comprehensive understanding of the complex translational apparatus and its regulation in plants is warranted, as the modulation of protein production is critical to development, environmental plasticity and biomass yield in diverse ecosystems and agricultural settings. PMID:26019692

  14. Cytoplasmic Volume Modulates Spindle Size During Embryogenesis

    PubMed Central

    Good, Matthew C.; Vahey, Michael D.; Skandarajah, Arunan; Fletcher, Daniel A.; Heald, Rebecca

    2014-01-01

    Rapid and reductive cell divisions during embryogenesis require that intracellular structures adapt to a wide range of cell sizes. The mitotic spindle presents a central example of this flexibility, scaling with the dimensions of the cell to mediate accurate chromosome segregation. To determine whether spindle size regulation is achieved through a developmental program or is intrinsically specified by cell size or shape, we developed a system to encapsulate cytoplasm from Xenopus eggs and embryos inside cell-like compartments of defined sizes. Spindle size was observed to shrink with decreasing compartment size, similar to what occurs during early embryogenesis, and this scaling trend depended on compartment volume rather than shape. Thus, the amount of cytoplasmic material provides a mechanism for regulating the size of intracellular structures. PMID:24233724

  15. Novel WDR72 Mutation and Cytoplasmic Localization

    PubMed Central

    Lee, S.-K.; Seymen, F.; Lee, K.-E.; Kang, H.-Y.; Yildirim, M.; Bahar Tuna, E.; Gencay, K.; Hwang, Y.-H.; Nam, K.H.; De La Garza, R.J.; Hu, J.C.-C.; Simmer, J.P.; Kim, J.-W.

    2010-01-01

    The proven candidate genes for amelogenesis imperfecta (AI) are AMELX, ENAM, MMP20, KLK4, FAM83H, and WDR72. We performed mutation analyses on seven families with hypomaturation AI. A novel WDR72 dinucleotide deletion mutation (g.57,426_57,427delAT; c.1467_ 1468delAT; p.V491fsX497) was identified in both alleles of probands from Mexico and Turkey. Haplotype analyses showed that the mutations arose independently in the two families. The disease perfectly segregated with the genotype. Only persons with both copies of the mutant allele were affected. Their hypomineralized enamel suffered attrition and orange-brown staining following eruption. Expression of WDR72 fused to green fluorescent protein showed a cytoplasmic localization exclusively and was absent from the nucleus. We conclude that WDR72 is a cytoplasmic protein that is critical for dental enamel formation. PMID:20938048

  16. The current status of neutrophil cytoplasmic antibodies.

    PubMed Central

    van der Woude, F J; Daha, M R; van Es, L A

    1989-01-01

    Several studies in the past 10 years have demonstrated the occurrence of autoantibodies against cytoplasmic constituents in patients with vasculitis and glomerulonephritis. In this review the nomenclature of these antibodies is discussed and assays and clinical associations are summarized. Although the antigens involved are not completely identified, antibodies and T cells reactive with myeloid lysozomal enzymes may both play a significant role in pathogenesis. PMID:12412739

  17. Protein diffusion in mammalian cell cytoplasm.

    PubMed

    Kühn, Thomas; Ihalainen, Teemu O; Hyväluoma, Jari; Dross, Nicolas; Willman, Sami F; Langowski, Jörg; Vihinen-Ranta, Maija; Timonen, Jussi

    2011-01-01

    We introduce a new method for mesoscopic modeling of protein diffusion in an entire cell. This method is based on the construction of a three-dimensional digital model cell from confocal microscopy data. The model cell is segmented into the cytoplasm, nucleus, plasma membrane, and nuclear envelope, in which environment protein motion is modeled by fully numerical mesoscopic methods. Finer cellular structures that cannot be resolved with the imaging technique, which significantly affect protein motion, are accounted for in this method by assigning an effective, position-dependent porosity to the cell. This porosity can also be determined by confocal microscopy using the equilibrium distribution of a non-binding fluorescent protein. Distinction can now be made within this method between diffusion in the liquid phase of the cell (cytosol/nucleosol) and the cytoplasm/nucleoplasm. Here we applied the method to analyze fluorescence recovery after photobleach (FRAP) experiments in which the diffusion coefficient of a freely-diffusing model protein was determined for two different cell lines, and to explain the clear difference typically observed between conventional FRAP results and those of fluorescence correlation spectroscopy (FCS). A large difference was found in the FRAP experiments between diffusion in the cytoplasm/nucleoplasm and in the cytosol/nucleosol, for all of which the diffusion coefficients were determined. The cytosol results were found to be in very good agreement with those by FCS.

  18. Cytoplasmic male sterility in Brassicaceae crops.

    PubMed

    Yamagishi, Hiroshi; Bhat, Shripad R

    2014-05-01

    Brassicaceae crops display strong hybrid vigor, and have long been subject to F1 hybrid breeding. Because the most reliable system of F1 seed production is based on cytoplasmic male sterility (CMS), various types of CMS have been developed and adopted in practice to breed Brassicaceae oil seed and vegetable crops. CMS is a maternally inherited trait encoded in the mitochondrial genome, and the male sterile phenotype arises as a result of interaction of a mitochondrial CMS gene and a nuclear fertility restoring (Rf) gene. Therefore, CMS has been intensively investigated for gaining basic insights into molecular aspects of nuclear-mitochondrial genome interactions and for practical applications in plant breeding. Several CMS genes have been identified by molecular genetic studies, including Ogura CMS from Japanese radish, which is the most extensively studied and most widely used. In this review, we discuss Ogura CMS, and other CMS systems, and the causal mitochondrial genes for CMS. Studies on nuclear Rf genes and the cytoplasmic effects of alien cytoplasm on general crop performance are also reviewed. Finally, some of the unresolved questions about CMS are highlighted.

  19. Connexin Channel Permeability to Cytoplasmic Molecules

    PubMed Central

    Harris, Andrew L.

    2007-01-01

    Connexin channels are known to be permeable to a variety of cytoplasmic molecules. The first observation of second messenger junctional permeability, made ∼30 years ago, sparked broad interest in gap junction channels as mediators of intercellular molecular signaling. Since then, much has been learned about the diversity of connexin channels with regard to isoform diversity, tissue and developmental distribution, modes of channel regulation, assembly and expression, biochemical modification and permeability, all of which appear to be dynamically regulated. This information has expanded the potential roles of connexin channels in development, physiology and disease, and made their elucidation much more complex - 30 years ago such an orchestra of junctional dynamics was unanticipated. Only recently, however, have investigators been able to directly address, in this more complex framework, the key issue: What specific biological molecules, second messengers and others, are able to permeate the various types of connexin channels, and how well? An important related issue, given the ever-growing list of connexin-related pathologies, is how these permeabilities are altered by disease-causing connexin mutations. Together, many studies show that a variety of cytoplasmic molecules can permeate the different types of connexin channels. A few studies reveal differences in permeation by different molecules through a particular type of connexin channel, and differences in permeation by a particular molecule through different types of connexin channels. This article describes and evaluates the various methods used to obtain these data, presents an annotated compilation of the results, and discusses the findings in the context of what can be inferred about mechanism of selectivity and potential relevance to signaling. The data strongly suggest that highly specific interactions take place between connexin pores and specific biological molecular permeants, and that those

  20. Cytoplasmic beta-catenin in esophageal cancers.

    PubMed

    Kimura, Y; Shiozaki, H; Doki, Y; Yamamoto, M; Utsunomiya, T; Kawanishi, K; Fukuchi, N; Inoue, M; Tsujinaka, T; Monden, M

    1999-04-20

    beta-Catenin has 2 distinct roles in E-cadherin-mediated cell adhesion and carcinogenesis through APC gene mutation. One occurs at cell-adhesion sites, where cadherins become linked to the actin-based cytoskeleton. The others occur in the cytoplasm and nuclei and are thought to regulate cell transformation. We studied these different beta-catenins and evaluated their significance in carcinogenesis. Fresh surgical specimens were obtained from 22 patients with squamous-cell carcinoma of the esophagus. beta-Catenin in the free soluble fraction and the insoluble fraction was immunoblotted separately. At the same time, its localization was observed by immuno-histochemical techniques. In the normal esophageal epithelium, 91% of beta-catenin was detected in the insoluble fraction and beta-catenin staining occurred at the cell membrane, in co-existence with E-cadherin. In cancerous tissues, the amount of soluble beta-catenin was significantly (about 4-fold) higher than in normal tissues. Also, in cancerous tissues with higher amounts of soluble beta-catenin, immuno-histochemical techniques revealed the presence of beta-catenin in the cytoplasm and nuclei, as well as in the cell membrane. However, in samples with lower amounts of beta-catenin, expression was found only at the cell boundaries. The amount of soluble beta-catenin was not associated with the clinico-pathological grading of the tumors. Our results show that the accumulation of free soluble beta-catenin in the cytoplasm and nuclei frequently occurs during carcinogenesis of the squamous epithelium of the esophagus.

  1. Cytoplasm-to-myonucleus ratios following microgravity

    NASA Technical Reports Server (NTRS)

    Kasper, C. E.; Xun, L.

    1996-01-01

    The cytoplasmic volume-to-myonucleus ratio in the tibialis anterior and gastrocnemius muscles of juvenile rats after 5.4 days of microgravity was studied. Three groups of rats (n = 8 each) were used. The experimental group (space rats) was flown aboard the space shuttle Discovery (NASA, STS-48), while two ground-based groups, one hindlimb suspended (suspended rats), one non-suspended (control), served as controls. Single fibre analysis revealed a significant decrease in cross-sectional area (microns2) in the gastrocnemius for both the space and the suspended rats; in the tibialis anterior only the suspended rats showed a significant decrease. Myonuclei counts (myonuclei per mm) in both the tibialis anterior and gastrocnemius were significantly increased in the space rats but not in the suspended rats. The mean myonuclear volume (individual nuclei: microns3) in tibialis anterior fibres from the space rats, and in gastrocnemius fibres from both the space and the suspended rats, was significantly lower than that in the respective control group. Estimation of the total myonuclear volume (microns3 per.mm), however, revealed no significant differences between the three groups in either the tibialis anterior or gastrocnemius. The described changes in the cross-sectional area and myonuclei numbers resulted in significant decreases in the cytoplasmic volume-to-myonucleus ratio (microns3 x 10(3)) in both muscles and for both space and suspended rats (tibialis anterior; 15.6 +/- 0.6 (space), 17.2 +/- 1.0 (suspended), 20.8 +/- 0.9 (control): gastrocnemius; 13.4 +/- 0.4 (space) and 14.9 +/- 1.1 (suspended) versus 18.1 +/- 1.1 (control)). These results indicate that even short periods of unweighting due to microgravity or limb suspension result in changes in skeletal muscle fibres which lead to significant decreases in the cytoplasmic volume-to-myonucleus ratio.

  2. Mitochondria and cytoplasmic male sterility in plants.

    PubMed

    Hu, Jun; Huang, Wenchao; Huang, Qi; Qin, Xiaojian; Yu, Changchun; Wang, Lili; Li, Shaoqing; Zhu, Renshan; Zhu, Yingguo

    2014-11-01

    Mitochondria are essential organelles in cells not only because they supply over 90% of the cell's energy but also because their dysfunction is associated with disease. Owing to the importance of mitochondria, there are many questions about mitochondria that must be answered. Cytoplasmic male sterility (CMS) is a mysterious natural phenomenon, and the mechanism of the origin of CMS is unknown. Despite successful utilization of CMS and restoration of fertility (Rf) in practice, the underlying mechanisms of these processes remain elusive. This review summarizes the genes involved in CMS and Rf, with a special focus on recent studies reporting the mechanisms of the CMS and Rf pathways, and concludes with potential working models.

  3. Cytoplasmic RNA Granules and Viral Infection

    PubMed Central

    Tsai, Wei-Chih; Lloyd, Richard E.

    2016-01-01

    RNA granules are dynamic cellular structures essential for proper gene expression and homeostasis. The two principle types of cytoplasmic RNA granules are stress granules (SGs), which contain stalled translation initiation complexes, and processing bodies (P-bodies, PBs), which concentrate factors involved in mRNA degradation. RNA granules are associated with gene silencing of transcripts, thus, viruses repress RNA granule functions to favor replication. This review discusses the breadth of viral interactions with cytoplasmic RNA granules, focusing on mechanisms that modulate the functions of RNA granules and that typically promote viral replication. Currently mechanisms for virus manipulation of RNA granules can be loosely grouped into three non-exclusive categories; i) cleavage of key RNA granule factors, ii) regulation of PKR activation and iii) co-opting RNA granule factors for new roles in viral replication. Viral repression of RNA granules supports productive infection by inhibiting their gene silencing functions and counteracting their role in linking stress sensing with innate immune activation. PMID:26958719

  4. Quantifying intermittent transport in cell cytoplasm

    NASA Astrophysics Data System (ADS)

    Lagache, Thibault; Holcman, David

    2008-03-01

    Active cellular transport is a fundamental mechanism for protein and vesicle delivery, cell cycle, and molecular degradation. Viruses can hijack the transport system and use it to reach the nucleus. Most transport processes consist of intermittent dynamics, where the motion of a particle, such as a virus, alternates between pure Brownian and directed movement along microtubules. In this Rapid Communication, we estimate the mean time for a particle to attach to a microtubule network. This computation leads to a coarse grained equation of the intermittent motion in radial and cylindrical geometries. Finally, by using the degradation activity inside the cytoplasm, we obtain refined asymptotic estimations for the probability and the mean time a virus reaches a small nuclear pore.

  5. Anomalous Diffusion of Single Particles in Cytoplasm

    PubMed Central

    Regner, Benjamin M.; Vučinić, Dejan; Domnisoru, Cristina; Bartol, Thomas M.; Hetzer, Martin W.; Tartakovsky, Daniel M.; Sejnowski, Terrence J.

    2013-01-01

    The crowded intracellular environment poses a formidable challenge to experimental and theoretical analyses of intracellular transport mechanisms. Our measurements of single-particle trajectories in cytoplasm and their random-walk interpretations elucidate two of these mechanisms: molecular diffusion in crowded environments and cytoskeletal transport along microtubules. We employed acousto-optic deflector microscopy to map out the three-dimensional trajectories of microspheres migrating in the cytosolic fraction of a cellular extract. Classical Brownian motion (BM), continuous time random walk, and fractional BM were alternatively used to represent these trajectories. The comparison of the experimental and numerical data demonstrates that cytoskeletal transport along microtubules and diffusion in the cytosolic fraction exhibit anomalous (nonFickian) behavior and posses statistically distinct signatures. Among the three random-walk models used, continuous time random walk provides the best representation of diffusion, whereas microtubular transport is accurately modeled with fractional BM. PMID:23601312

  6. Modeling of Single Molecule Cytoplasmic Dynein

    NASA Astrophysics Data System (ADS)

    Yu, Clare

    2010-03-01

    A living cell has an infrastructure much like that of a city. We will describe the transportation system that consists of roads (filaments) and molecular motors (proteins) that haul cargo along these roads. Dynein is one type of motor protein that walks along microtubules towards the nucleus of the cell. Dynein is more complicated in its structure and function than other motors. Experiments have found that, unlike other motors, dynein can take different size steps along microtubules depending on load and ATP concentration. We use Monte Carlo simulations to model the molecular motor function of cytoplasmic dynein at the single molecule level. The theory relates dynein's enzymatic properties to its mechanical force production. Our simulations reproduce the main features of recent single molecule experiments. We make testable predictions that should guide future experiments related to dynein function.

  7. Physical properties of cytoplasmic intermediate filaments.

    PubMed

    Block, Johanna; Schroeder, Viktor; Pawelzyk, Paul; Willenbacher, Norbert; Köster, Sarah

    2015-11-01

    Intermediate filaments (IFs) constitute a sophisticated filament system in the cytoplasm of eukaryotes. They form bundles and networks with adapted viscoelastic properties and are strongly interconnected with the other filament types, microfilaments and microtubules. IFs are cell type specific and apart from biochemical functions, they act as mechanical entities to provide stability and resilience to cells and tissues. We review the physical properties of these abundant structural proteins including both in vitro studies and cell experiments. IFs are hierarchical structures and their physical properties seem to a large part be encoded in the very specific architecture of the biopolymers. Thus, we begin our review by presenting the assembly mechanism, followed by the mechanical properties of individual filaments, network and structure formation due to electrostatic interactions, and eventually the mechanics of in vitro and cellular networks. This article is part of a Special Issue entitled: Mechanobiology.

  8. Non-ideal Solution Thermodynamics of Cytoplasm

    PubMed Central

    Ross-Rodriguez, Lisa U.; McGann, Locksley E.

    2012-01-01

    Quantitative description of the non-ideal solution thermodynamics of the cytoplasm of a living mammalian cell is critically necessary in mathematical modeling of cryobiology and desiccation and other fields where the passive osmotic response of a cell plays a role. In the solution thermodynamics osmotic virial equation, the quadratic correction to the linear ideal, dilute solution theory is described by the second osmotic virial coefficient. Herein we report, for the first time, intracellular solution second osmotic virial coefficients for four cell types [TF-1 hematopoietic stem cells, human umbilical vein endothelial cells (HUVEC), porcine hepatocytes, and porcine chondrocytes] and further report second osmotic virial coefficients indistinguishable from zero (for the concentration range studied) for human hepatocytes and mouse oocytes. PMID:23840923

  9. Structural biology of cytoplasmic and axonemal dyneins.

    PubMed

    Ishikawa, Takashi

    2012-08-01

    Dyneins are microtubule-based, ATP-driven motor proteins with six tandemly linked AAA+ domains, a long N-terminal tail and a coiled-coil stalk. Cytoplasmic dyneins function as individual homodimers and are responsible for minus-end-oriented transport along microtubules. Axonemal dyneins of flagella/cilia are anchored in arrays to peripheral microtubule doublets by their N-terminal tails, and generate sliding motions of adjacent microtubule doublets toward the plus end. The coiled-coil stalk is responsible for communication between the AAA+ domains and the microtubule binding domain. A number of isoforms of axonemal dyneins are integrated to generate bending motion. In this article I will review recent structural studies and address the question as to how dyneins generate force and cause bending in flagella/cilia.

  10. Inborn errors of cytoplasmic triglyceride metabolism.

    PubMed

    Wu, Jiang Wei; Yang, Hao; Wang, Shu Pei; Soni, Krishnakant G; Brunel-Guitton, Catherine; Mitchell, Grant A

    2015-01-01

    Triglyceride (TG) synthesis, storage, and degradation together constitute cytoplasmic TG metabolism (CTGM). CTGM is mostly studied in adipocytes, where starting from glycerol-3-phosphate and fatty acyl (FA)-coenzyme A (CoA), TGs are synthesized then stored in cytoplasmic lipid droplets. TG hydrolysis proceeds sequentially, producing FAs and glycerol. Several reactions of CTGM can be catalyzed by more than one enzyme, creating great potential for complex tissue-specific physiology. In adipose tissue, CTGM provides FA as a systemic energy source during fasting and is related to obesity. Inborn errors and mouse models have demonstrated the importance of CTGM for non-adipose tissues, including skeletal muscle, myocardium and liver, because steatosis and dysfunction can occur. We discuss known inborn errors of CTGM, including deficiencies of: AGPAT2 (a form of generalized lipodystrophy), LPIN1 (childhood rhabdomyolysis), LPIN2 (an inflammatory condition, Majeed syndrome, described elsewhere in this issue), DGAT1 (protein loosing enteropathy), perilipin 1 (partial lipodystrophy), CGI-58 (gene ABHD5, neutral lipid storage disease (NLSD) with ichthyosis and "Jordan's anomaly" of vacuolated polymorphonuclear leukocytes), adipose triglyceride lipase (ATGL, gene PNPLA2, NLSD with myopathy, cardiomyopathy and Jordan's anomaly), hormone-sensitive lipase (HSL, gene LIPE, hypertriglyceridemia, and insulin resistance). Two inborn errors of glycerol metabolism are known: glycerol kinase (GK, causing pseudohypertriglyceridemia) and glycerol-3-phosphate dehydrogenase (GPD1, childhood hepatic steatosis). Mouse models often resemble human phenotypes but may diverge markedly. Inborn errors have been described for less than one-third of CTGM enzymes, and new phenotypes may yet be identified.

  11. The molecular mechanism and physiological role of cytoplasmic streaming.

    PubMed

    Tominaga, Motoki; Ito, Kohji

    2015-10-01

    Cytoplasmic streaming occurs widely in plants ranging from algae to angiosperms. However, the molecular mechanism and physiological role of cytoplasmic streaming have long remained unelucidated. Recent molecular genetic approaches have identified specific myosin members (XI-2 and XI-K as major and XI-1, XI-B, and XI-I as minor motive forces) for the generation of cytoplasmic streaming among 13 myosin XIs in Arabidopsis thaliana. Simultaneous knockout of these myosin XI members led to a reduced velocity of cytoplasmic streaming and marked defects of plant development. Furthermore, the artificial modifications of myosin XI-2 velocity changed plant and cell sizes along with the velocity of cytoplasmic streaming. Therefore, we assume that cytoplasmic streaming is one of the key regulators in determining plant size.

  12. Internal Sense of Direction: Sensing and Signaling from Cytoplasmic Chemoreceptors

    PubMed Central

    Collins, Kieran D.; Lacal, Jesus

    2014-01-01

    SUMMARY Chemoreceptors sense environmental signals and drive chemotactic responses in Bacteria and Archaea. There are two main classes of chemoreceptors: integral inner membrane and soluble cytoplasmic proteins. The latter were identified more recently than integral membrane chemoreceptors and have been studied much less thoroughly. These cytoplasmic chemoreceptors are the subject of this review. Our analysis determined that 14% of bacterial and 43% of archaeal chemoreceptors are cytoplasmic, based on currently sequenced genomes. Cytoplasmic chemoreceptors appear to share the same key structural features as integral membrane chemoreceptors, including the formations of homodimers, trimers of dimers, and 12-nm hexagonal arrays within the cell. Cytoplasmic chemoreceptors exhibit varied subcellular locations, with some localizing to the poles and others appearing both cytoplasmic and polar. Some cytoplasmic chemoreceptors adopt more exotic locations, including the formations of exclusively internal clusters or moving dynamic clusters that coalesce at points of contact with other cells. Cytoplasmic chemoreceptors presumably sense signals within the cytoplasm and bear diverse signal input domains that are mostly N terminal to the domain that defines chemoreceptors, the so-called MA domain. Similar to the case for transmembrane receptors, our analysis suggests that the most common signal input domain is the PAS (Per-Arnt-Sim) domain, but a variety of other N-terminal domains exist. It is also common, however, for cytoplasmic chemoreceptors to have C-terminal domains that may function for signal input. The most common of these is the recently identified chemoreceptor zinc binding (CZB) domain, found in 8% of all cytoplasmic chemoreceptors. The widespread nature and diverse signal input domains suggest that these chemoreceptors can monitor a variety of cytoplasmically based signals, most of which remain to be determined. PMID:25428939

  13. Relationship between nuclear and cytoplasmic RNA in Drosophilia cells.

    PubMed

    Levy, B; McCarthy, B J

    1976-06-01

    Polyadenylated RNA was isolated from nuclei of cultured Drosophila cells, Schneider's line 2, and used as a template to synthesize a complementary DNA probe. Hybridization experiments were performed to study the relationship between nuclear and cytoplasmic RNA. About two-thirds of the nuclear polyadenylated RNA sequences exist in the cytoplasm. Experiments with fractionated cDNA probes demonstrated that RNA sequences that are frequent in the nucleus are also abundant in the cytoplasm. These findings are consistent with a precursor-product relationship in which some polyadenylated molecules in the nucleus are destined for the cytoplasm while other sequences are polyadenylated but not transferred.

  14. A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility.

    PubMed

    Beckmann, John F; Ronau, Judith A; Hochstrasser, Mark

    2017-03-01

    Wolbachia are obligate intracellular bacteria(1) that infect arthropods, including approximately two-thirds of insect species(2). Wolbachia manipulate insect reproduction by enhancing their inheritance through the female germline. The most common alteration is cytoplasmic incompatibility (CI)(3-5), where eggs from uninfected females fail to develop when fertilized by sperm from Wolbachia-infected males. By contrast, if female and male partners are both infected, embryos are viable. CI is a gene-drive mechanism impacting population structure(6) and causing reproductive isolation(7), but its molecular mechanism has remained unknown. We show that a Wolbachia deubiquitylating enzyme (DUB) induces CI. The CI-inducing DUB, CidB, cleaves ubiquitin from substrates and is encoded in a two-gene operon, and the other protein, CidA, binds CidB. Binding is strongest between cognate partners in cidA-cidB homologues. In transgenic Drosophila, the cidA-cidB operon mimics CI when sperm introduce it into eggs, and a catalytically inactive DUB does not induce sterility. Toxicity is recapitulated in yeast by CidB alone; this requires DUB activity but is rescued by coexpressed CidA. A paralogous operon involves a putative nuclease (CinB) rather than a DUB. Analogous binding, toxicity and rescue in yeast were observed. These results identify a CI mechanism involving interacting proteins that are secreted into germline cells by Wolbachia, and suggest new methods for insect control.

  15. Cytoplasmic dynein and early endosome transport

    PubMed Central

    Xiang, Xin; Qiu, Rongde; Yao, Xuanli; Arst, Herbert N.; Peñalva, Miguel A.; Zhang, Jun

    2015-01-01

    Microtubule-based distribution of organelles/vesicles is crucial for the function of many types of eukaryotic cells and the molecular motor cytoplasmic dynein is required for transporting a variety of cellular cargos toward the microtubule minus ends. Early endosomes represent a major cargo of dynein in filamentous fungi, and dynein regulators such as LIS1 and the dynactin complex are both required for early endosome movement. In fungal hyphae, kinesin-3 and dynein drive bi-directional movements of early endosomes. Dynein accumulates at microtubule plus ends; this accumulation depends on kinesin-1 and dynactin, and it is important for early endosome movements towards the microtubule minus ends. The physical interaction between dynein and early endosome requires the dynactin complex, and in particular, its p25 component. The FTS-Hook-FHIP (FHF) complex links dynein-dynactin to early endosomes, and within the FHF complex, Hook interacts with dynein-dynactin, and Hook-early endosome interaction depends on FHIP and FTS. PMID:26001903

  16. Molecular analysis of cytoplasmic male sterility

    SciTech Connect

    Hanson, M.R.

    1990-01-01

    The ultimate aims of the project are to understand the molecular mechanism of the disruption in pollen development which occurs in cytoplasmic male sterile plants and to understand the control of respiratory energy flow in the higher plant cell. A mitochondrial locus termed S-pcf segregates with sterility and with an alteration in respiration in Petunia. This cloned locus contains three genes, an abnormal fused gene termed pcf, a gene for a subunit of an NADH dehydrogenase complex, and a small ribosomal subunit protein. The pcf gene is comprised of partial sequences of ATPase subunit 9, cytochrome oxidase subunit II, and an unidentified reading frame. Components of the S-Pcf locus will be introduced into the nuclear of a fertile genotype under the control of appropriate regulatory signals, and polypeptide products of introduced genes will be directed to the mitochondrion with a transit peptide. By examining transgenic plants, we can determine what elements of the locus are critical for altered respiration or sterility. Such knowledge could explain how mitochondrial DNA affects pollen development in the large number of plant species which exhibit the agronomically important trait of male sterility. 10 refs., 3 figs.

  17. A physical perspective on cytoplasmic streaming

    PubMed Central

    Goldstein, Raymond E.; van de Meent, Jan-Willem

    2015-01-01

    Organisms show a remarkable range of sizes, yet the dimensions of a single cell rarely exceed 100 µm. While the physical and biological origins of this constraint remain poorly understood, exceptions to this rule give valuable insights. A well-known counterexample is the aquatic plant Chara, whose cells can exceed 10 cm in length and 1 mm in diameter. Two spiralling bands of molecular motors at the cell periphery drive the cellular fluid up and down at speeds up to 100 µm s−1, motion that has been hypothesized to mitigate the slowness of metabolite transport on these scales and to aid in homeostasis. This is the most organized instance of a broad class of continuous motions known as ‘cytoplasmic streaming’, found in a wide range of eukaryotic organisms—algae, plants, amoebae, nematodes and flies—often in unusually large cells. In this overview of the physics of this phenomenon, we examine the interplay between streaming, transport and cell size and discuss the possible role of self-organization phenomena in establishing the observed patterns of streaming. PMID:26464789

  18. Regulation of autophagy by cytoplasmic p53.

    PubMed

    Tasdemir, Ezgi; Maiuri, M Chiara; Galluzzi, Lorenzo; Vitale, Ilio; Djavaheri-Mergny, Mojgan; D'Amelio, Marcello; Criollo, Alfredo; Morselli, Eugenia; Zhu, Changlian; Harper, Francis; Nannmark, Ulf; Samara, Chrysanthi; Pinton, Paolo; Vicencio, José Miguel; Carnuccio, Rosa; Moll, Ute M; Madeo, Frank; Paterlini-Brechot, Patrizia; Rizzuto, Rosario; Szabadkai, Gyorgy; Pierron, Gérard; Blomgren, Klas; Tavernarakis, Nektarios; Codogno, Patrice; Cecconi, Francesco; Kroemer, Guido

    2008-06-01

    Multiple cellular stressors, including activation of the tumour suppressor p53, can stimulate autophagy. Here we show that deletion, depletion or inhibition of p53 can induce autophagy in human, mouse and nematode cells subjected to knockout, knockdown or pharmacological inhibition of p53. Enhanced autophagy improved the survival of p53-deficient cancer cells under conditions of hypoxia and nutrient depletion, allowing them to maintain high ATP levels. Inhibition of p53 led to autophagy in enucleated cells, and cytoplasmic, not nuclear, p53 was able to repress the enhanced autophagy of p53(-/-) cells. Many different inducers of autophagy (for example, starvation, rapamycin and toxins affecting the endoplasmic reticulum) stimulated proteasome-mediated degradation of p53 through a pathway relying on the E3 ubiquitin ligase HDM2. Inhibition of p53 degradation prevented the activation of autophagy in several cell lines, in response to several distinct stimuli. These results provide evidence of a key signalling pathway that links autophagy to the cancer-associated dysregulation of p53.

  19. Regulation of autophagy by cytoplasmic p53

    PubMed Central

    Tasdemir, Ezgi; Maiuri, M. Chiara; Galluzzi, Lorenzo; Vitale, Ilio; Djavaheri-Mergny, Mojgan; D'Amelio, Marcello; Criollo, Alfredo; Morselli, Eugenia; Zhu, Changlian; Harper, Francis; Nannmark, Ulf; Samara, Chrysanthi; Pinton, Paolo; Vicencio, José Miguel; Carnuccio, Rosa; Moll, Ute M.; Madeo, Frank; Paterlini-Brechot, Patrizia; Rizzuto, Rosario; Szabadkai, Gyorgy; Pierron, Gérard; Blomgren, Klas; Tavernarakis, Nektarios; Codogno, Patrice; Cecconi, Francesco; Kroemer, Guido

    2009-01-01

    Multiple cellular stressors, including activation of the tumour suppressor p53, can stimulate autophagy. Here we show that knockout, knockdown or pharmacological inhibition of p53 can induce autophagy in human, mouse and nematode cells. Enhanced autophagy improved the survival of p53-deficient cancer cells under conditions of hypoxia and nutrient depletion, allowing them to maintain high ATP levels. Inhibition of p53 led to autophagy in enucleated cells, and cytoplasmic, not nuclear, p53 was able to repress the enhanced autophagy of p53-/- cells. Many different inducers of autophagy (for example, starvation, rapamycin and toxins affecting the endoplasmic reticulum) stimulated proteasome-mediated degradation of p53 through a pathway relying on the E3 ubiquitin ligase HDM2. Inhibition of p53 degradation prevented the activation of autophagy in several cell lines, in response to several distinct stimuli. These results provide evidence of a key signalling pathway that links autophagy to the cancer-associated dysregulation of p53. PMID:18454141

  20. A physical perspective on cytoplasmic streaming.

    PubMed

    Goldstein, Raymond E; van de Meent, Jan-Willem

    2015-08-06

    Organisms show a remarkable range of sizes, yet the dimensions of a single cell rarely exceed 100 µm. While the physical and biological origins of this constraint remain poorly understood, exceptions to this rule give valuable insights. A well-known counterexample is the aquatic plant Chara, whose cells can exceed 10 cm in length and 1 mm in diameter. Two spiralling bands of molecular motors at the cell periphery drive the cellular fluid up and down at speeds up to 100 µm s(-1), motion that has been hypothesized to mitigate the slowness of metabolite transport on these scales and to aid in homeostasis. This is the most organized instance of a broad class of continuous motions known as 'cytoplasmic streaming', found in a wide range of eukaryotic organisms-algae, plants, amoebae, nematodes and flies-often in unusually large cells. In this overview of the physics of this phenomenon, we examine the interplay between streaming, transport and cell size and discuss the possible role of self-organization phenomena in establishing the observed patterns of streaming.

  1. Cytoplasmic mRNA turnover and ageing

    PubMed Central

    Borbolis, Fivos; Syntichaki, Popi

    2015-01-01

    Messenger RNA (mRNA) turnover that determines the lifetime of cytoplasmic mRNAs is a means to control gene expression under both normal and stress conditions, whereas its impact on ageing and age-related disorders has just become evident. Gene expression control is achieved at the level of the mRNA clearance as well as mRNA stability and accessibility to other molecules. All these processes are regulated by cis-acting motifs and trans-acting factors that determine the rates of translation and degradation of transcripts. Specific messenger RNA granules that harbor the mRNA decay machinery or various factors, involved in translational repression and transient storage of mRNAs, are also part of the mRNA fate regulation. Their assembly and function can be modulated to promote stress resistance to adverse conditions and over time affect the ageing process and the lifespan of the organism. Here, we provide insights into the complex relationships of ageing modulators and mRNA turnover mechanisms. PMID:26432921

  2. Developing improved durum wheat germplasm by altering the cytoplasmic genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In eukaryotic organisms, nuclear and cytoplasmic genomes interact to drive cellular functions. These genomes have co-evolved to form specific nuclear-cytoplasmic interactions that are essential to the origin, success, and evolution of diploid and polyploid species. Hundreds of genetic diseases in h...

  3. Can paternal leakage maintain sexually antagonistic polymorphism in the cytoplasm?

    PubMed Central

    Kuijper, B; Lane, N; Pomiankowski, A

    2015-01-01

    A growing number of studies in multicellular organisms highlight low or moderate frequencies of paternal transmission of cytoplasmic organelles, including both mitochondria and chloroplasts. It is well established that strict maternal inheritance is selectively blind to cytoplasmic elements that are deleterious to males – ’mother's curse’. But it is not known how sensitive this conclusion is to slight levels of paternal cytoplasmic leakage. We assess the scope for polymorphism when individuals bear multiple cytoplasmic alleles in the presence of paternal leakage, bottlenecks and recurrent mutation. When fitness interactions among cytoplasmic elements within an individual are additive, we find that sexually antagonistic polymorphism is restricted to cases of strong selection on males. However, when fitness interactions among cytoplasmic elements are nonlinear, much more extensive polymorphism can be supported in the cytoplasm. In particular, mitochondrial mutants that have strong beneficial fitness effects in males and weak deleterious fitness effects in females when rare (i.e. ’reverse dominance’) are strongly favoured under paternal leakage. We discuss how such epistasis could arise through preferential segregation of mitochondria in sex-specific somatic tissues. Our analysis shows how paternal leakage can dampen the evolution of deleterious male effects associated with predominant maternal inheritance of cytoplasm, potentially explaining why ’mother's curse’ is less pervasive than predicted by earlier work. PMID:25653025

  4. Dexamethasone and Acetate Modulate Cytoplasmic Leptin in Bovine Preadipocytes

    PubMed Central

    Yonekura, Shinichi; Hirota, Shohei; Tokutake, Yukako; Rose, Michael T.; Katoh, Kazuo; Aso, Hisashi

    2014-01-01

    Hormonal and nutrient signals regulate leptin synthesis and secretion. In rodents, leptin is stored in cytosolic pools of adipocytes. However, not much information is available regarding the regulation of intracellular leptin in ruminants. Recently, we demonstrated that leptin mRNA was expressed in bovine intramuscular preadipocyte cells (BIP cells) and that a cytoplasmic leptin pool may be present in preadipocytes. In the present study, we investigated the expression of cytoplasmic leptin protein in BIP cells during differentiation as well as the effects of various factors added to the differentiation medium on its expression in BIP cells. Leptin mRNA expression was observed only at 6 and 8 days after adipogenic induction, whereas the cytoplasmic leptin concentration was the highest on day 0 and decreased gradually thereafter. Cytoplasmic leptin was detected at 6 and 8 days after adipogenic induction, but not at 4 days after adipogenic induction. The cytoplasmic leptin concentration was reduced in BIP cells at 4 days after treatment with dexamethasone, whereas cytoplasmic leptin was not observed at 8 days after treatment. In contrast, acetate significantly enhanced the cytoplasmic leptin concentration in BIP cells at 8 days after treatment, although acetate alone did not induce adipocyte differentiation in BIP cells. These results suggest that dexamethasone and acetate modulate the cytoplasmic leptin concentration in bovine preadipocytes. PMID:25049989

  5. Bulk cytoplasmic actin and its functions in meiosis and mitosis.

    PubMed

    Field, Christine M; Lénárt, Péter

    2011-10-11

    Discussions of actin cell biology generally focus on the cortex, a thin, actin-rich layer of cytoplasm under the plasma membrane. Here we review the much less studied biology of actin filaments deeper in the cytoplasm and their recently revealed functions in mitosis and meiosis that are most prominent in large oocyte, egg and early embryo cells. The cellular functions of cytoplasmic actin range from the assembly and positioning of meiotic spindles to the prevention of cytoplasmic streaming. We discuss the possible use of evolutionarily conserved mechanisms to nucleate and organize actin filaments to achieve these diverse cellular functions, the cell-cycle regulation of these functions, and the many unanswered questions about this largely unexplored mechanism of cytoplasmic organization.

  6. Nucleotide sequence of Neurospora crassa cytoplasmic initiator tRNA.

    PubMed Central

    Gillum, A M; Hecker, L I; Silberklang, M; Schwartzbach, S D; RajBhandary, U L; Barnett, W E

    1977-01-01

    Initiator methionine tRNA from the cytoplasm of Neurospora crassa has been purified and sequenced. The sequence is: pAGCUGCAUm1GGCGCAGCGGAAGCGCM22GCY*GGGCUCAUt6AACCCGGAGm7GU (or D) - CACUCGAUCGm1AAACGAG*UUGCAGCUACCAOH. Similar to initiator tRNAs from the cytoplasm of other eukaryotes, this tRNA also contains the sequence -AUCG- instead of the usual -TphiCG (or A)- found in loop IV of other tRNAs. The sequence of the N. crassa cytoplasmic initiator tRNA is quite different from that of the corresponding mitochondrial initiator tRNA. Comparison of the sequence of N. crassa cytoplasmic initiator tRNA to those of yeast, wheat germ and vertebrate cytoplasmic initiator tRNA indicates that the sequences of the two fungal tRNAs are no more similar to each other than they are to those of other initiator tRNAs. Images PMID:146192

  7. Cytoplasmic streaming velocity as a plant size determinant.

    PubMed

    Tominaga, Motoki; Kimura, Atsushi; Yokota, Etsuo; Haraguchi, Takeshi; Shimmen, Teruo; Yamamoto, Keiichi; Nakano, Akihiko; Ito, Kohji

    2013-11-11

    Cytoplasmic streaming is active transport widely occurring in plant cells ranging from algae to angiosperms. Although it has been revealed that cytoplasmic streaming is generated by organelle-associated myosin XI moving along actin bundles, the fundamental function in plants remains unclear. We generated high- and low-speed chimeric myosin XI by replacing the motor domains of Arabidopsis thaliana myosin XI-2 with those of Chara corallina myosin XI and Homo sapiens myosin Vb, respectively. Surprisingly, the plant sizes of the transgenic Arabidopsis expressing high- and low-speed chimeric myosin XI-2 were larger and smaller, respectively, than that of the wild-type plant. This size change correlated with acceleration and deceleration, respectively, of cytoplasmic streaming. Our results strongly suggest that cytoplasmic streaming is a key determinant of plant size. Furthermore, because cytoplasmic streaming is a common system for intracellular transport in plants, our system could have applications in artificial size control in plants.

  8. Antineutrophil Cytoplasmic Antibodies Associated With Infective Endocarditis

    PubMed Central

    Langlois, Vincent; Lesourd, Anais; Girszyn, Nicolas; Ménard, Jean-Francois; Levesque, Hervé; Caron, Francois; Marie, Isabelle

    2016-01-01

    Abstract To determine the prevalence of antineutrophil cytoplasmic antibodies (ANCA) in patients with infective endocarditis (IE) in internal medicine; and to compare clinical and biochemical features and outcome between patients exhibiting IE with and without ANCA. Fifty consecutive patients with IE underwent ANCA testing. The medical records of these patients were reviewed. Of the 50 patients with IE, 12 exhibited ANCA (24%). ANCA-positive patients with IE exhibited: longer duration between the onset of first symptoms and IE diagnosis (P = 0.02); and more frequently: weight loss (P = 0.017) and renal impairment (P = 0.08), lower levels of C-reactive protein (P = 0.0009) and serum albumin (P = 0.0032), involvement of both aortic and mitral valves (P = 0.009), and longer hospital stay (P = 0.016). Under multivariate analysis, significant factors for ANCA-associated IE were: longer hospital stay (P = 0.004), lower level of serum albumin (P = 0.02), and multiple valve involvement (P = 0.04). Mortality rate was 25% in ANCA patients; death was because of IE complications in all these patients. Our study identifies a high prevalence of ANCA in unselected patients with IE in internal medicine (24%). Our findings further underscore that ANCA may be associated with a subacute form of IE leading to multiple valve involvement and more frequent renal impairment. Because death was due to IE complications in all patients, our data suggest that aggressive therapy may be required to improve such patients’ outcome. PMID:26817911

  9. Single cytoplasmic dynein molecule movements: characterization and comparison with kinesin.

    PubMed Central

    Wang, Z; Khan, S; Sheetz, M P

    1995-01-01

    Cytoplasmic dynein is a major microtubule motor for minus-end directed movements including retrograde axonal transport. To better understand the mechanism by which cytoplasmic dynein converts ATP energy into motility, we have analyzed the nanometer-level displacements of latex beads coated with low numbers of cytoplasmic dynein molecules. Cytoplasmic dynein-coated beads exhibited greater lateral movements among microtubule protofilaments (ave. 5.1 times/microns of displacement) compared with kinesin (ave. 0.9 times/micron). In addition, dynein moved rearward up to 100 nm over several hundred milliseconds, often in correlation with off-axis movements from one protofilament to another. We suggest that single molecules of cytoplasmic dynein move the beads because 1) there is a linear dependence of bead motility on dynein/bead ratio, 2) the binding of beads to microtubules studied by laser tweezers is best fit by a first-order Poisson, and 3) the run length histogram of dynein beads follows a first-order decay. At the cellular level, the greater disorder of cytoplasmic dynein movements may facilitate transport by decreasing the duration of collisions between kinesin and cytoplasmic dynein-powered vesicles. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 6 FIGURE 9 PMID:8580344

  10. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    SciTech Connect

    Gou, Ke-Mian; Chang, Chia-Chun; Shen, Qing-Ji; Sung, Li-Ying; Liu, Ji-Long

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.

  11. Replication inhibition by nucleoside analogues of a recombinant Autographa californica multicapsid nuclear polyhedrosis virus harboring the herpes thymidine kinase gene driven by the IE-1(0) promoter: a new way to select recombinant baculoviruses.

    PubMed Central

    Godeau, F; Saucier, C; Kourilsky, P

    1992-01-01

    The expression of the thymidine-thymidylate kinase (HSV1-TK), (ATP: thymidine 5'-phosphotransferase; EC 2.7.1.21) of herpes simplex virus type 1 endows the host cell with a conditional lethal phenotype which depends on the presence of nucleoside analogues metabolized by this enzyme into toxic inhibitors of DNA replication. To generate a recombinant baculovirus that could be selected against by nucleoside analogs, the HSV1-tk coding sequence was placed under the control of the Autographa californica multicapsid nuclear polyhedrosis virus (AcMNPV) immediate early promoterm IE-1(0), and this construction was introduced via homologous recombination into the polyhedrin locus of AcMNPV. Two recombinant baculoviruses harboring this gene construct at the polyhedrin locus were isolated and tested for their ability to replicate in the presence of various concentrations of the nucleoside analog 9-(1,3-Dihydroxy-2-propoxymethyl)guanine (Ganciclovir). Neither Sf9 lepidopteran cell viability nor replication of wild type or beta-Galactosidase-expressing recombinant AcMNPVs were affected by concentrations of Ganciclovir up to 100 microM. In contrast, replication of the recombinant AcMNPV virus harboring the HSV1-tk gene was inhibited by Ganciclovir in a dose-dependent manner. The inhibition was detectable at 2 microM and complete at 100 microM. This property was exploited in model isolations aimed at purifying new recombinant viruses having lost this counter-selectable gene marker as a result of homologous recombination at the polyhedrin locus after cotransfection of the viral DNA with a replacement vector. After being propagated in the presence of Ganciclovir, the progeny of such co-transfections contained over 85% recombinant viruses, demonstrating that counter-selection of parental HSV1-tk-containing viruses by Ganciclovir constitutes a novel approach for recombinant baculovirus isolation. Images PMID:1335569

  12. Vaccinia-like cytoplasmic replication of the giant Mimivirus.

    PubMed

    Mutsafi, Yael; Zauberman, Nathan; Sabanay, Ilana; Minsky, Abraham

    2010-03-30

    Poxviruses are considered to be unique among all DNA viruses, because their infection cycle is carried out exclusively in the host cytoplasm. Such an infection strategy is of interest, because it necessitates generation of elaborate factories in which viral replication and assembly are promoted. By using diverse imaging techniques, we show that the infection cycle of the largest virus currently identified, the Acanthamoeba polyphaga Mimivirus, similarly occurs exclusively in the host cytoplasm. We further show that newly synthesized mRNAs accumulate at discrete cytoplasmic sites that are distinct from the sites where viral replication occurs, and this is observed in vaccinia infection. By revealing substantial physiologic similarity between poxviruses and Mimivirus and thus, implying that an entirely cytoplasmic viral replication might be more common than generally considered, these findings underscore the ability of DNA viruses to generate large and elaborate replication factories.

  13. Nuclear Proteins Hijacked by Mammalian Cytoplasmic Plus Strand RNA Viruses

    PubMed Central

    Lloyd, Richard E.

    2015-01-01

    Plus strand RNA viruses that replicate in the cytoplasm face challenges in supporting the numerous biosynthetic functions required for replication and propagation. Most of these viruses are genetically simple and rely heavily on co-opting cellular proteins, particularly cellular RNA-binding proteins, into new roles for support of virus infection at the level of virus-specific translation, and building RNA replication complexes. In the course of infectious cycles many nuclear-cytoplasmic shuttling proteins of mostly nuclear distribution are detained in the cytoplasm by viruses and re-purposed for their own gain. Many mammalian viruses hijack a common group of the same factors. This review summarizes recent gains in our knowledge of how cytoplasmic RNA viruses use these co-opted host nuclear factors in new functional roles supporting virus translation and virus RNA replication and common themes employed between different virus groups. PMID:25818028

  14. Nuclear proteins hijacked by mammalian cytoplasmic plus strand RNA viruses.

    PubMed

    Lloyd, Richard E

    2015-05-01

    Plus strand RNA viruses that replicate in the cytoplasm face challenges in supporting the numerous biosynthetic functions required for replication and propagation. Most of these viruses are genetically simple and rely heavily on co-opting cellular proteins, particularly cellular RNA-binding proteins, into new roles for support of virus infection at the level of virus-specific translation, and building RNA replication complexes. In the course of infectious cycles many nuclear-cytoplasmic shuttling proteins of mostly nuclear distribution are detained in the cytoplasm by viruses and re-purposed for their own gain. Many mammalian viruses hijack a common group of the same factors. This review summarizes recent gains in our knowledge of how cytoplasmic RNA viruses use these co-opted host nuclear factors in new functional roles supporting virus translation and virus RNA replication and common themes employed between different virus groups.

  15. Immunohistochemical expression of nuclear and cytoplasmic survivin in gastrointestinal carcinoma.

    PubMed

    Shintani, Michiko; Sangawa, Akiko; Yamao, Naoki; Kamoshida, Shingo

    2013-01-01

    Survivin is a protein that is highly expressed in many embryonic tissues, as well as most human tumors. Prior studies have reported both positive and negative correlations between survivin expression and cancer prognosis, but these associations remain controversial. In the present study, we assessed the expression of nuclear and cytoplasmic survivin in gastrointestinal carcinomas. Using these data, we determined the correlation between nuclear and cytoplasmic survivin and, further, investigated correlations between survivin expression and clinicopathological parameters. Seventy-two advanced gastric adenocarcinomas and 78 colorectal adenocarcinomas were analyzed for survivin expression by immunohistochemistry. Expression of both nuclear and cytoplasmic survivin was significantly higher in colorectal carcinomas than in gastric carcinomas (P < 0.01). There was a positive correlation between nuclear and cytoplasmic expression of survivin (r = 0.42, P < 0.001). In gastric carcinomas, the level of survivin protein expression was associated with tumor differentiation, patient age, and lymphatic invasion (P < 0.05, 0.01, and 0.01, respectively). In colorectal carcinomas, the level of nuclear survivin expression was significantly higher in females than in males (P < 0.05). There were no significant associations between survivin expression and most of the clinicopathological parameters. Nevertheless, there was a trend towards an inverse correlation between nuclear survivin expression and tumor aggressiveness in gastric carcinoma; there was a similar trend for cytoplasmic survivin expression. In summary, our results suggest that levels of nuclear and cytoplasmic survivin expression differ between gastric carcinoma and colorectal carcinoma.

  16. Immunohistochemical expression of nuclear and cytoplasmic survivin in gastrointestinal carcinoma

    PubMed Central

    Shintani, Michiko; Sangawa, Akiko; Yamao, Naoki; Kamoshida, Shingo

    2013-01-01

    Survivin is a protein that is highly expressed in many embryonic tissues, as well as most human tumors. Prior studies have reported both positive and negative correlations between survivin expression and cancer prognosis, but these associations remain controversial. In the present study, we assessed the expression of nuclear and cytoplasmic survivin in gastrointestinal carcinomas. Using these data, we determined the correlation between nuclear and cytoplasmic survivin and, further, investigated correlations between survivin expression and clinicopathological parameters. Seventy-two advanced gastric adenocarcinomas and 78 colorectal adenocarcinomas were analyzed for survivin expression by immunohistochemistry. Expression of both nuclear and cytoplasmic survivin was significantly higher in colorectal carcinomas than in gastric carcinomas (P < 0.01). There was a positive correlation between nuclear and cytoplasmic expression of survivin (r = 0.42, P < 0.001). In gastric carcinomas, the level of survivin protein expression was associated with tumor differentiation, patient age, and lymphatic invasion (P < 0.05, 0.01, and 0.01, respectively). In colorectal carcinomas, the level of nuclear survivin expression was significantly higher in females than in males (P < 0.05). There were no significant associations between survivin expression and most of the clinicopathological parameters. Nevertheless, there was a trend towards an inverse correlation between nuclear survivin expression and tumor aggressiveness in gastric carcinoma; there was a similar trend for cytoplasmic survivin expression. In summary, our results suggest that levels of nuclear and cytoplasmic survivin expression differ between gastric carcinoma and colorectal carcinoma. PMID:24294379

  17. Dynamics of Galectin-3 in the Nucleus and Cytoplasm

    PubMed Central

    Haudek, Kevin C.; Spronk, Kimberly J.; Voss, Patricia G.; Patterson, Ronald J.; Wang, John L.; Arnoys, Eric J.

    2009-01-01

    This review summarizes selected studies on galectin-3 (Gal3) as an example of the dynamic behavior of a carbohydrate-binding protein in the cytoplasm and nucleus of cells. Within the 15-member galectin family of proteins, Gal3 (Mr ~30,000) is the sole representative of the chimera subclass in which a proline- and glycine-rich NH2-terminal domain is fused onto a COOH-terminal carbohydrate recognition domain responsible for binding galactose-containing glycoconjugates. The protein shuttles between the cytoplasm and nucleus on the basis of targeting signals that are recognized by importin(s) for nuclear localization and exportin-1 (CRM1) for nuclear export. Depending on the cell type, specific experimental conditions in vitro, or tissue location, Gal3 has been reported to be exclusively cytoplasmic, predominantly nuclear, or distributed between the two compartments. The nuclear versus cytoplasmic distribution of the protein must reflect, then, some balance between nuclear import and export, as well as mechanisms of cytoplasmic anchorage or binding to a nuclear component. Indeed, a number of ligands have been reported for Gal3 in the cytoplasm and in the nucleus. Most of the ligands appear to bind Gal3, however, through protein-protein interactions rather than through protein-carbohydrate recognition. In the cytoplasm, for example, Gal3 interacts with the apoptosis repressor Bcl-2 and this interaction may be involved in Gal3’s anti-apoptotic activity. In the nucleus, Gal3 is a required pre-mRNA splicing factor; the protein is incorporated into spliceosomes via its association with the U1 small nuclear ribonucleoprotein (snRNP) complex. Although the majority of these interactions occur via the carbohydrate recognition domain of Gal3 and saccharide ligands such as lactose can perturb some of these interactions, the significance of the protein’s carbohydrate-binding activity, per se, remains a challenge for future investigations. PMID:19616076

  18. Cytoplasmic pH influences cytoplasmic calcium in MC3T3-E1 osteoblast cells

    NASA Technical Reports Server (NTRS)

    Lin, H. S.; Hughes-Fulford, M.; Kumegawa, M.; Pitts, A. C.; Snowdowne, K. W.

    1993-01-01

    We found that the cytoplasmic concentration of calcium (Cai) of MC3T3-E1 osteoblasts was influenced by the type of pH buffer we used in the perfusing medium, suggesting that intracellular pH (pHi) might influence Cai. To study this effect, the Cai and pHi were monitored as we applied various experimental conditions known to change pHi. Exposure to NH4Cl caused a transient increase in both pHi and Cai without a change in extracellular pH (pHo). Decreasing pHo and pHi by lowering the bicarbonate concentration of the medium decreased Cai, and increasing pHi by the removal of 5% CO2 increased Cai. Clamping pHi to known values with 10 microM nigericin, a potassium proton ionophore, also influenced Cai: acid pHi lowered Cai, whereas alkaline pHi increased it. The rise in Cai appears to be very sensitive to the extracellular concentration of calcium, suggesting the existence of a pH-sensitive calcium influx mechanism. We conclude that physiologic changes in pH could modulate Cai by controlling the influx of calcium ions and could change the time course of the Cai transient associated with hormonal activation.

  19. Assessment of cytoplasm conductivity by nanosecond pulsed electric fields.

    PubMed

    Denzi, Agnese; Merla, Caterina; Palego, Cristiano; Paffi, Alessandra; Ning, Yaqing; Multari, Caroline R; Cheng, Xuanhong; Apollonio, Francesca; Hwang, James C M; Liberti, Micaela

    2015-06-01

    The aim of this paper is to propose a new method for the better assessment of cytoplasm conductivity, which is critical to the development of electroporation protocols as well as insight into fundamental mechanisms underlying electroporation. For this goal, we propose to use nanosecond electrical pulses to bypass the complication of membrane polarization and a single cell to avoid the complication of the application of the "mixing formulas." Further, by suspending the cell in a low-conductivity medium, it is possible to force most of the sensing current through the cytoplasm for a more direct assessment of its conductivity. For proof of principle, the proposed technique was successfully demonstrated on a Jurkat cell by comparing the measured and modeled currents. The cytoplasm conductivity was best assessed at 0.32 S/m and it is in line with the literature. The cytoplasm conductivity plays a key role in the understanding of the basis mechanism of the electroporation phenomenon, and in particular, a large error in the cytoplasm conductivity determination could result in a correspondingly large error in predicting electroporation. Methods for a good estimation of such parameter become fundamental.

  20. Mutualistic Wolbachia infection in Aedes albopictus: accelerating cytoplasmic drive.

    PubMed Central

    Dobson, Stephen L; Marsland, Eric J; Rattanadechakul, Wanchai

    2002-01-01

    Maternally inherited rickettsial symbionts of the genus Wolbachia occur commonly in arthropods, often behaving as reproductive parasites by manipulating host reproduction to enhance the vertical transmission of infections. One manipulation is cytoplasmic incompatibility (CI), which causes a significant reduction in brood hatch and promotes the spread of the maternally inherited Wolbachia infection into the host population (i.e., cytoplasmic drive). Here, we have examined a Wolbachia superinfection in the mosquito Aedes albopictus and found the infection to be associated with both cytoplasmic incompatibility and increased host fecundity. Relative to uninfected females, infected females live longer, produce more eggs, and have higher hatching rates in compatible crosses. A model describing Wolbachia infection dynamics predicts that increased fecundity will accelerate cytoplasmic drive rates. To test this hypothesis, we used population cages to examine the rate at which Wolbachia invades an uninfected Ae. albopictus population. The observed cytoplasmic drive rates were consistent with model predictions for a CI-inducing Wolbachia infection that increases host fecundity. We discuss the relevance of these results to both the evolution of Wolbachia symbioses and proposed applied strategies for the use of Wolbachia infections to drive desired transgenes through natural populations (i.e., population replacement strategies). PMID:11901124

  1. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins.

    PubMed

    Kim, Minsoo; Carman, Christopher V; Springer, Timothy A

    2003-09-19

    Although critical for development, immunity, wound healing, and metastasis, integrins represent one of the few classes of plasma membrane receptors for which the basic signaling mechanism remains a mystery. We investigated cytoplasmic conformational changes in the integrin LFA-1 (alphaLbeta2) in living cells by measuring fluorescence resonance energy transfer between cyan fluorescent protein-fused and yellow fluorescent protein-fused alphaL and beta2 cytoplasmic domains. In the resting state these domains were close to each other, but underwent significant spatial separation upon either intracellular activation of integrin adhesiveness (inside-out signaling) or ligand binding (outside-in signaling). Thus, bidirectional integrin signaling is accomplished by coupling extracellular conformational changes to an unclasping and separation of the alpha and beta cytoplasmic domains, a distinctive mechanism for transmitting information across the plasma membrane.

  2. Diffusion within the Cytoplasm: A Mesoscale Model of Interacting Macromolecules

    PubMed Central

    Trovato, Fabio; Tozzini, Valentina

    2014-01-01

    Recent experiments carried out in the dense cytoplasm of living cells have highlighted the importance of proteome composition and nonspecific intermolecular interactions in regulating macromolecule diffusion and organization. Despite this, the dependence of diffusion-interaction on physicochemical properties such as the degree of poly-dispersity and the balance between steric repulsion and nonspecific attraction among macromolecules was not systematically addressed. In this work, we study the problem of diffusion-interaction in the bacterial cytoplasm, combining theory and experimental data to build a minimal coarse-grained representation of the cytoplasm, which also includes, for the first time to our knowledge, the nucleoid. With stochastic molecular-dynamics simulations of a virtual cytoplasm we are able to track the single biomolecule motion, sizing from 3 to 80 nm, on submillisecond-long trajectories. We demonstrate that the size dependence of diffusion coefficients, anomalous exponents, and the effective viscosity experienced by biomolecules in the cytoplasm is fine-tuned by the intermolecular interactions. Accounting only for excluded volume in these potentials gives a weaker size-dependence than that expected from experimental data. On the contrary, adding nonspecific attraction in the range of 1–10 thermal energy units produces a stronger variation of the transport properties at growing biopolymer sizes. Normal and anomalous diffusive regimes emerge straightforwardly from the combination of high macromolecular concentration, poly-dispersity, stochasticity, and weak nonspecific interactions. As a result, small biopolymers experience a viscous cytoplasm, while the motion of big ones is jammed because the entanglements produced by the network of interactions and the entropic effects caused by poly-dispersity are stronger. PMID:25468337

  3. Transcription factor TFII-I conducts a cytoplasmic orchestra.

    PubMed

    Roy, Ananda L

    2006-11-21

    In response to extracellular ligands, surface receptor tyrosine kinases and G-protein-coupled receptors activate isoforms of phospholipase C (PLC) and initiate calcium signaling. PLC can activate expression of surface transient receptor potential channels (TRPC) such as TRPC3, which modulate calcium entry through the plasma membrane. A recent paper shows that competitive binding of cytoplasmic TFII-I, a transcription factor, to PLC-gamma results in inhibition of TRPC3-mediated agonist-induced Ca(2+) entry. These results establish a novel cytoplasmic function for TFII-I.

  4. Cytoplasmic transduction peptide (CTP): New approach for the delivery of biomolecules into cytoplasm in vitro and in vivo

    SciTech Connect

    Kim, Daeyou; Jeon, Choonju; Kim, Jeong-Hwan; Kim, Mi-Seon; Yoon, Cheol-Hee; Choi, In-Soo; Kim, Sung-Hoon; Bae, Yong-Soo . E-mail: ysbae04@skku.edu

    2006-05-01

    The protein transduction domain (PTD) of HIV-1 TAT has been extensively documented with regard to its membrane transduction potential, as well as its efficient delivery of biomolecules in vivo. However, the majority of PTD and PTD-conjugated molecules translocate to the nucleus rather than to the cytoplasm after transduction, due to the functional nuclear localization sequence (NLS). Here, we report a cytoplasmic transduction peptide (CTP), which was deliberately designed to ensure the efficient cytoplasmic delivery of the CTP-fused biomolecules. In comparison with PTD, CTP and its fusion partners exhibited a clear preference for cytoplasmic localization, and also markedly enhanced membrane transduction potential. Unlike the mechanism underlying PTD-mediated transduction, CTP-mediated transduction occurs independently of the lipid raft-dependent macropinocytosis pathway. The CTP-conjugated Smac/DIABLO peptide (Smac-CTP) was also shown to be much more efficient than Smac-PTD in the blockage of the antiapoptotic properties of XIAP, suggesting that cytoplasmic functional molecules can be more efficiently targeted by CTP-mediated delivery. In in vivo trafficking studies, CTP-fused {beta}-gal exhibited unique organ tropisms to the liver and lymph nodes when systemically injected into mice, whereas PTD-{beta}-gal exhibited no such tropisms. Taken together, our findings implicate CTP as a novel delivery peptide appropriate for (i) molecular targeting to cytoplasmic compartments in vitro, (ii) the development of class I-associated CTL vaccines, and (iii) special drug delivery in vivo, without causing any untoward effects on nuclear genetic material.

  5. Nuclear proteins hijacked by mammalian cytoplasmic plus strand RNA viruses

    SciTech Connect

    Lloyd, Richard E.

    2015-05-15

    Plus strand RNA viruses that replicate in the cytoplasm face challenges in supporting the numerous biosynthetic functions required for replication and propagation. Most of these viruses are genetically simple and rely heavily on co-opting cellular proteins, particularly cellular RNA-binding proteins, into new roles for support of virus infection at the level of virus-specific translation, and building RNA replication complexes. In the course of infectious cycles many nuclear-cytoplasmic shuttling proteins of mostly nuclear distribution are detained in the cytoplasm by viruses and re-purposed for their own gain. Many mammalian viruses hijack a common group of the same factors. This review summarizes recent gains in our knowledge of how cytoplasmic RNA viruses use these co-opted host nuclear factors in new functional roles supporting virus translation and virus RNA replication and common themes employed between different virus groups. - Highlights: • Nuclear shuttling host proteins are commonly hijacked by RNA viruses to support replication. • A limited group of ubiquitous RNA binding proteins are commonly hijacked by a broad range of viruses. • Key virus proteins alter roles of RNA binding proteins in different stages of virus replication.

  6. Cytoplasmic Domains and Voltage-Dependent Potassium Channel Gating

    PubMed Central

    Barros, Francisco; Domínguez, Pedro; de la Peña, Pilar

    2012-01-01

    The basic architecture of the voltage-dependent K+ channels (Kv channels) corresponds to a transmembrane protein core in which the permeation pore, the voltage-sensing components and the gating machinery (cytoplasmic facing gate and sensor–gate coupler) reside. Usually, large protein tails are attached to this core, hanging toward the inside of the cell. These cytoplasmic regions are essential for normal channel function and, due to their accessibility to the cytoplasmic environment, constitute obvious targets for cell-physiological control of channel behavior. Here we review the present knowledge about the molecular organization of these intracellular channel regions and their role in both setting and controlling Kv voltage-dependent gating properties. This includes the influence that they exert on Kv rapid/N-type inactivation and on activation/deactivation gating of Shaker-like and eag-type Kv channels. Some illustrative examples about the relevance of these cytoplasmic domains determining the possibilities for modulation of Kv channel gating by cellular components are also considered. PMID:22470342

  7. [Sexual reproduction of insects is regulated by cytoplasmic bacteria].

    PubMed

    Markov, A V; Zakharov, I A

    2005-01-01

    The effects have been considered that the intracellular symbiotic alpha-proteobacteria Wolbachia pipientis induces in its hosts, such as insects and other arthropods: cytoplasmic incompatibility upon mating, feminization, parthenogenesis, and androcide. Specific features of the bacterium genome and possible mechanisms of its action on hosts are discussed.

  8. Endoplasmic-reticulum-mediated microtubule alignment governs cytoplasmic streaming.

    PubMed

    Kimura, Kenji; Mamane, Alexandre; Sasaki, Tohru; Sato, Kohta; Takagi, Jun; Niwayama, Ritsuya; Hufnagel, Lars; Shimamoto, Yuta; Joanny, Jean-François; Uchida, Seiichi; Kimura, Akatsuki

    2017-04-01

    Cytoplasmic streaming refers to a collective movement of cytoplasm observed in many cell types. The mechanism of meiotic cytoplasmic streaming (MeiCS) in Caenorhabditis elegans zygotes is puzzling as the direction of the flow is not predefined by cell polarity and occasionally reverses. Here, we demonstrate that the endoplasmic reticulum (ER) network structure is required for the collective flow. Using a combination of RNAi, microscopy and image processing of C. elegans zygotes, we devise a theoretical model, which reproduces and predicts the emergence and reversal of the flow. We propose a positive-feedback mechanism, where a local flow generated along a microtubule is transmitted to neighbouring regions through the ER. This, in turn, aligns microtubules over a broader area to self-organize the collective flow. The proposed model could be applicable to various cytoplasmic streaming phenomena in the absence of predefined polarity. The increased mobility of cortical granules by MeiCS correlates with the efficient exocytosis of the granules to protect the zygotes from osmotic and mechanical stresses.

  9. Experimental Analysis of Cell Function Using Cytoplasmic Streaming

    ERIC Educational Resources Information Center

    Janssens, Peter; Waldhuber, Megan

    2012-01-01

    This laboratory exercise investigates the phenomenon of cytoplasmic streaming in the fresh water alga "Nitella". Students use the fungal toxin cytochalasin D, an inhibitor of actin polymerization, to investigate the mechanism of streaming. Students use simple statistical methods to analyze their data. Typical student data are provided. (Contains 3…

  10. Structure of human cytoplasmic dynein-2 primed for its powerstroke

    PubMed Central

    Urnavicius, Linas; Carter, Andrew P.

    2014-01-01

    Members of the dynein family, consisting of cytoplasmic and axonemal isoforms, are motors that move towards the minus ends of microtubules. Cytoplasmic dynein-1 (dynein-1) plays roles in mitosis and cellular cargo transport1, and is implicated in viral infections2 and neurodegenerative diseases3. Cytoplasmic dynein-2 (dynein-2) carries out intraflagellar transport4 and is associated with human skeletal ciliopathies5. Dyneins share a conserved motor domain that couples cycles of ATP hydrolysis with conformational changes to produce movement6-9. Here we present the crystal structure of the human cytoplasmic dynein-2 motor bound to the ATP-hydrolysis transition state analogue ADP.vanadate (ADP.Vi)10. The structure reveals a closure of the motor’s ring of six AAA+ domains (ATPases associated with various cellular activites: AAA1-AAA6). This induces a steric clash with the linker, the key element for the generation of movement, driving it into a conformation that is primed to produce force. Ring closure also changes the interface between the stalk and buttress coiled-coil extensions of the motor domain. This drives helix sliding in the stalk that causes the microtubule binding domain (MTBD) at its tip to release from the microtubule. Our structure answers the key questions of how ATP hydrolysis leads to linker remodelling and microtubule affinity regulation. PMID:25470043

  11. Nuclear repulsion enables division autonomy in a single cytoplasm

    PubMed Central

    Anderson, Cori A.; Eser, Umut; Korndorf, Therese; Borsuk, Mark E.; Skotheim, Jan M.; Gladfelter, Amy S.

    2014-01-01

    Summary Background Current models of cell cycle control, based on classic studies of fused cells, predict that nuclei in a shared cytoplasm respond to the same CDK activities to undergo synchronous cycling. However, synchrony is rarely observed in naturally occurring syncytia, such as the multinucleate fungus Ashbya gossypii. In this system, nuclei divide asynchronously raising the question of how nuclear timing differences are maintained despite sharing a common milieu. Results We observe that neighboring nuclei are highly variable in division cycle duration and neighbors repel one another to space apart and demarcate their own cytoplasmic territories. The size of these territories increases as a nucleus approaches mitosis and can influence cycling rates. This non-random nuclear spacing is regulated by microtubules and is required for nuclear asynchrony, as nuclei that transiently come in very close proximity will partially synchronize. Sister nuclei born of the same mitosis are generally not persistent neighbors over their lifetimes yet remarkably retain similar division cycle times. This indicates that nuclei carry a memory of their birth state that influences their division timing and supports that nuclei subdivide a common cytosol into functionally distinct yet mobile compartments. Conclusions These findings support that nuclei use cytoplasmic microtubules to establish “cells within cells.” Individual compartments appear to push against one another to compete for cytoplasmic territory and insulate the division cycle. This provides a mechanism by which syncytial nuclei can spatially organize cell cycle signaling and suggests size control can act in a system without physical boundaries. PMID:24094857

  12. Optomechatronic System For Automated Intra Cytoplasmic Sperm Injection

    NASA Astrophysics Data System (ADS)

    Shulev, Assen; Tiankov, Tihomir; Ignatova, Detelina; Kostadinov, Kostadin; Roussev, Ilia; Trifonov, Dimitar; Penchev, Valentin

    2015-12-01

    This paper presents a complex optomechatronic system for In-Vitro Fertilization (IVF), offering almost complete automation of the Intra Cytoplasmic Sperm Injection (ICSI) procedure. The compound parts and sub-systems, as well as some of the computer vision algorithms, are described below. System capabilities for ICSI have been demonstrated on infertile oocyte cells.

  13. Gravity-dependent polarity of cytoplasmic streaming in Nitellopsis

    NASA Technical Reports Server (NTRS)

    Wayne, R.; Staves, M. P.; Leopold, A. C.

    1990-01-01

    The internodal cells of the characean alga Nitellopsis obtusa were chosen to investigate the effect of gravity on cytoplasmic streaming. Horizontal cells exhibit streaming with equal velocities in both directions, whereas in vertically oriented cells, the downward-streaming cytoplasm flows ca. 10% faster than the upward-streaming cytoplasm. These results are independent of the orientation of the morphological top and bottom of the cell. We define the ratio of the velocity of the downward- to the upward-streaming cytoplasm as the polar ratio (PR). The normal polarity of a cell can be reversed (PR < 1) by treatment with neutral red (NR). The NR effect may be the result of membrane hyperpolarization, caused by the opening of K+ channels. The K+ channel blocker TEA Cl- inhibits the NR effect. External Ca2+ is required for normal graviresponsiveness. The [Ca2+] of the medium determines the polarity of cytoplasmic streaming. Less than 1 micromole Ca2+ resulted in a PR < 1 while greater than 1 micromole Ca2+ resulted in the normal gravity response. The voltage-dependent Ca(2+)-channel blocker, nifedipine, inhibited the gravity response in a reversible manner, while treatment with LaCl3 resulted in a PR < 1, indicating the presence of two types of Ca2+ channels. A new model for graviperception is presented in which the whole cell acts as the gravity sensor, and the plasma membrane acts as the gravireceptor. This is supported by ligation and UV irradiation experiments which indicate that the membranes at both ends of the cell are required for graviperception. The density of the external medium also affects the PR of Nitellopsis. Calculations are presented that indicate that the weight of the protoplasm may provide enough potential energy to open ion channels.

  14. Mechanodelivery of nanoparticles to the cytoplasm of living cells

    NASA Astrophysics Data System (ADS)

    Emerson, Nyssa T.; Hsia, Chih-Hao; Rafalska-Metcalf, Ilona U.; Yang, Haw

    2014-04-01

    Nanotechnology has opened up the opportunity to probe, sense, and manipulate the chemical environment of biological systems with an unprecedented level of spatiotemporal control. A major obstacle to the full realization of these novel technologies is the lack of a general, robust, and simple method for the delivery of arbitrary nanostructures to the cytoplasm of intact live cells. Here, we identify a new delivery modality, based on mechanical disruption of the plasma membrane, which efficiently mediates the delivery of nanoparticles to the cytoplasm of mammalian cells. We use two distinct execution modes, two adherent cell lines, and three sizes of semiconducting nanocrystals, or quantum dots, to demonstrate its applicability and effectiveness. As the underlying mechanism is purely physical, we anticipate that such ``mechanodelivery'' can be generalized to other modes of execution as well as to the cytoplasmic introduction of a structurally diverse array of functional nanomaterials.Nanotechnology has opened up the opportunity to probe, sense, and manipulate the chemical environment of biological systems with an unprecedented level of spatiotemporal control. A major obstacle to the full realization of these novel technologies is the lack of a general, robust, and simple method for the delivery of arbitrary nanostructures to the cytoplasm of intact live cells. Here, we identify a new delivery modality, based on mechanical disruption of the plasma membrane, which efficiently mediates the delivery of nanoparticles to the cytoplasm of mammalian cells. We use two distinct execution modes, two adherent cell lines, and three sizes of semiconducting nanocrystals, or quantum dots, to demonstrate its applicability and effectiveness. As the underlying mechanism is purely physical, we anticipate that such ``mechanodelivery'' can be generalized to other modes of execution as well as to the cytoplasmic introduction of a structurally diverse array of functional nanomaterials

  15. Imaging of calcium dynamics in pollen tube cytoplasm.

    PubMed

    Barberini, María Laura; Muschietti, Jorge

    2015-01-01

    Cytoplasmic calcium [(Ca(2+))cyt] is a central component of cellular signal transduction pathways. In plants, many external and internal stimuli transiently elevate (Ca(2+))cyt, initiating downstream responses that control different features of plant development. In pollen tubes the establishment of an oscillatory gradient of calcium at the tip is essential for polarized growth. Disruption of the cytosolic Ca(2+) gradient by chelators or channel blockers inhibits pollen tube growth. To quantify the physiological role of (Ca(2+))cyt in cellular systems, genetically encoded Ca(2+) indicators such as Yellow Cameleons (YCs) have been developed. The Cameleons are based on a fluorescence resonance energy transfer (FRET) process. Here, we describe a method for imaging cytoplasmic Ca(2+) dynamics in growing pollen tubes that express the fluorescent calcium indicator Yellow Cameleon 3.6 (YC 3.6), using laser-scanning confocal microscopy.

  16. Axon selection: From a polarized cytoplasm to a migrating neuron.

    PubMed

    de Anda, Froylan Calderon; Tsai, Li-Huei

    2011-05-01

    The shape of a neuron supplies valuable clues as to its function. Neurons typically extend a single long, thin axon, which will transmit signals and several shorter and thicker dendrites, which will receive signals. The understanding of the means by which neurons acquire a polarized morphology is a fundamental issue in developmental neurobiology. The current view suggests that axon selection involves a stochastic mechanism. However, new data suggest that a polarized cytoplasm not only determines the position of neurite emergence, but also sets the conditions for morphological polarization. In vertebrates, neurons migrate before establishing their final morphology. Recent work shows that the polarized cytoplasm also determines how neurons migrate. Thus, neuronal migration might influence the processes by which neurons form an axon.

  17. Quantitative analysis of endocytosis with cytoplasmic pHluorin chimeras.

    PubMed

    Prosser, Derek C; Whitworth, Karen; Wendland, Beverly

    2010-09-01

    The pH-sensitive green fluorescent protein (GFP) variant pHluorin is typically fused to the extracellular domain of transmembrane proteins to monitor endocytosis. Here, we have turned pHluorin inside-out, and show that cytoplasmic fusions of pHluorin are effective quantitative reporters for endocytosis and multivesicular body (MVB) sorting. In yeast in particular, fusion of GFP and its variants on the extracellular side of transmembrane proteins can result in perturbed trafficking. In contrast, cytoplasmic fusions are well tolerated, allowing for the quantitative assessment of trafficking of virtually any transmembrane protein. Quenching of degradation-resistant pHluorin in the acidic vacuole permits quantification of extravacuolar cargo proteins at steady-state levels and is compatible with kinetic analysis of endocytosis in live cells.

  18. What do antineutrophil cytoplasmic antibodies (ANCA) tell us?

    PubMed

    Savige, Judy; Pollock, Wendy; Trevisin, Michelle

    2005-04-01

    Antineutrophil cytoplasmic antibodies (ANCA) are autoantibodies directed against antigens found in the cytoplasmic granules of neutrophils and monocytes. ANCA testing is usually performed to help diagnose or exclude Wegener's granulomatosis and microscopic polyangiitis. The three most commonly used assays are indirect immunofluorescence (IIF) and the direct and 'capture' enzyme-linked immunosorbent assays (ELISAs) for ANCA directed against proteinase 3 (PR3) and myeloperoxidase (MPO). Although the International Consensus Statement for Testing and Reporting ANCA recommends that all sera are screened for ANCA by IIF and that IIF-positivity is confirmed by direct ELISAs, some laboratories test by direct ELISA alone, others screen with direct ELISA and confirm positive sera by IIF, and a few use capture ELISAs. This chapter discusses the various forms of vasculitis associated with ANCA, the usefulness of each of the ANCA assays and how ANCA testing can be used in the management of patients with small-vessel vasculitis.

  19. [Clinical manifestations of antineutrophil cytoplasmic antibodies associated vasculitis].

    PubMed

    Morović-Vergles, Jadranka; Culo, Melanie-Ivana; Sutić, Anamarija

    2014-01-01

    Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitides are rare diseases, with the average of 30 new cases per million inhabitants per year. Their main characteristic is systemic involvement with necrosis of the vessel walls (histological changes showing necrosis of the media and inflammation of adventitia and intima). In some forms granulomas may be found surrounding the vessels. ANCA-associated vasculitides include granulomatosis with polyangiitis (GPA, previously called Wegener's), microscopic polyangiitis (MPA) and eosinophilic granulomatosis with polyangiitis (EGPA, previously called Churg-Straus). Honorific eponyms are now changing to a disease-descriptive or etiology-based nomenclature. ANCA-associated vasculitides are a distinctive group of vasculitides because they dominantly involve small sized vessels, sometimes even medium sized vessels, are associated with antineutrophil cytoplasmic antibodies with high risk of developing glomerulonephritis and respond well to immunosuppresion with cyclophosphamide.

  20. Genetic Analysis of the Cytoplasmic Dynein Subunit Families

    PubMed Central

    Pfister, K. Kevin; Shah, Paresh R; Hummerich, Holger; Russ, Andreas; Cotton, James; Annuar, Azlina Ahmad; King, Stephen M; Fisher, Elizabeth M. C

    2006-01-01

    Cytoplasmic dyneins, the principal microtubule minus-end-directed motor proteins of the cell, are involved in many essential cellular processes. The major form of this enzyme is a complex of at least six protein subunits, and in mammals all but one of the subunits are encoded by at least two genes. Here we review current knowledge concerning the subunits, their interactions, and their functional roles as derived from biochemical and genetic analyses. We also carried out extensive database searches to look for new genes and to clarify anomalies in the databases. Our analysis documents evolutionary relationships among the dynein subunits of mammals and other model organisms, and sheds new light on the role of this diverse group of proteins, highlighting the existence of two cytoplasmic dynein complexes with distinct cellular roles. PMID:16440056

  1. Influenza A Virus Assembly Intermediates Fuse in the Cytoplasm

    PubMed Central

    Lakdawala, Seema S.; Wu, Yicong; Wawrzusin, Peter; Kabat, Juraj; Broadbent, Andrew J.; Lamirande, Elaine W.; Fodor, Ervin; Altan-Bonnet, Nihal; Shroff, Hari; Subbarao, Kanta

    2014-01-01

    Reassortment of influenza viral RNA (vRNA) segments in co-infected cells can lead to the emergence of viruses with pandemic potential. Replication of influenza vRNA occurs in the nucleus of infected cells, while progeny virions bud from the plasma membrane. However, the intracellular mechanics of vRNA assembly into progeny virions is not well understood. Here we used recent advances in microscopy to explore vRNA assembly and transport during a productive infection. We visualized four distinct vRNA segments within a single cell using fluorescent in situ hybridization (FISH) and observed that foci containing more than one vRNA segment were found at the external nuclear periphery, suggesting that vRNA segments are not exported to the cytoplasm individually. Although many cytoplasmic foci contain multiple vRNA segments, not all vRNA species are present in every focus, indicating that assembly of all eight vRNA segments does not occur prior to export from the nucleus. To extend the observations made in fixed cells, we used a virus that encodes GFP fused to the viral polymerase acidic (PA) protein (WSN PA-GFP) to explore the dynamics of vRNA assembly in live cells during a productive infection. Since WSN PA-GFP colocalizes with viral nucleoprotein and influenza vRNA segments, we used it as a surrogate for visualizing vRNA transport in 3D and at high speed by inverted selective-plane illumination microscopy. We observed cytoplasmic PA-GFP foci colocalizing and traveling together en route to the plasma membrane. Our data strongly support a model in which vRNA segments are exported from the nucleus as complexes that assemble en route to the plasma membrane through dynamic colocalization events in the cytoplasm. PMID:24603687

  2. Gel-sol transition of the cytoplasm and its regulation

    NASA Astrophysics Data System (ADS)

    Janmey, Paul A.

    1991-05-01

    The cytoplasm of motile cells contains a dynamic system of filamentous protein polymers that endow the cell with elasticity permitting it to maintain its shape in the presence of mechanical forces encountered in vivo. Part of this cytoskeleton is composed of filaments of polymerized actin. Remodeling of this network is required for cell motility and cytoplasmic restructuring, and the reversible polymerization of actin per se has been suggested to cause morphologic changes such as cell ruffling and pseudopd extension. Changes in the degree of polymerization of acting and in the association of actin filaments into supramolecular structures are often associated with cell activation. Such activation is initiated by extracellular signals that bind to receptors which are often coupled by G-proteins to the production of intracellular second messangers. Cytoplasmic gel-sol transitions therefore can occur by formation and dissolution of actin networks, mediated by a variety of actin-binding proteins which are regulated by intracellular signalling molecules such as Ca2+ and polyphosphoinositides. The effects of three actin binding proteins: profilin, gelsolin and ABP (Tilamin) on the polymerization of actin and the viscoelasticity of the resulting networks measured in vitro suggest possible roles of these proteins in vivo. In particular, gelsolin, which activated by Ca2+ to sever and cap actin filaments, and released from filament ends by PIP2, appears to be a likely candidate for regulation of gel-sol transitions in response to cell activation. Recent results demonstrate that the hydrolysis of ATP that occurs following actin polymerization also influences the structure of the resulting filament. In addition being regulated by acting-binding proteins, the viscoelasticity of actin networks is also affected by the presence of the other two classes of cytoplasmic protein polymers, microtubules and intermediate filaments.

  3. Nucleoporin Nup98 mediates galectin-3 nuclear-cytoplasmic trafficking

    SciTech Connect

    Funasaka, Tatsuyoshi; Balan, Vitaly; Raz, Avraham; Wong, Richard W.

    2013-04-26

    Highlights: •Nuclear pore protein Nup98 is a novel binding partner of galectin-3. •Nup98 transports galectin-3 into cytoplasm. •Nup98 depletion leads to galectin-3 nuclear transport and induces growth retardation. •Nup98 may involve in ß-catenin pathway through interaction with galectin-3. -- Abstract: Nucleoporin Nup98 is a component of the nuclear pore complex, and is important in transport across the nuclear pore. Many studies implicate nucleoporin in cancer progression, but no direct mechanistic studies of its effect in cancer have been reported. We show here that Nup98 specifically regulates nucleus–cytoplasm transport of galectin-3, which is a ß-galactoside-binding protein that affects adhesion, migration, and cancer progression, and controls cell growth through the ß-catenin signaling pathway in cancer cells. Nup98 interacted with galectin-3 on the nuclear membrane, and promoted galectin-3 cytoplasmic translocation whereas other nucleoporins did not show these functions. Inversely, silencing of Nup98 expression by siRNA technique localized galectin-3 to the nucleus and retarded cell growth, which was rescued by Nup98 transfection. In addition, Nup98 RNA interference significantly suppressed downstream mRNA expression in the ß-catenin pathway, such as cyclin D1 and FRA-1, while nuclear galectin-3 binds to ß-catenin to inhibit transcriptional activity. Reduced expression of ß-catenin target genes is consistent with the Nup98 reduction and the galectin-3–nucleus translocation rate. Overall, the results show Nup98’s involvement in nuclear–cytoplasm translocation of galectin-3 and ß-catenin signaling pathway in regulating cell proliferation, and the results depicted here suggest a novel therapeutic target/modality for cancers.

  4. Geologic Map of the Mylitta Fluctus Quadrangle (V-61), Venus

    USGS Publications Warehouse

    Ivanov, Mikhail A.; Head, James W.

    2006-01-01

    INTRODUCTION The Magellan Mission The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included: (1) improving knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology, and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three data sets: (1) synthetic aperture radar (SAR) images of the surface, (2) passive microwave thermal emission observations, and (3) measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging, altimetric, and radiometric mapping of the Venusian surface was done in mission cycles 1, 2, and 3 from September 1990 until September 1992. Ninety-eight percent of the surface was mapped with radar resolution on the order of 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution, and these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal-receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied between about 20? and 45?. High resolution Doppler tracking of the spacecraft took place from September 1992 through October 1994 (mission cycles 4, 5, 6). Approximately 950 orbits of high-resolution gravity observations were obtained between September 1992 and May 1993 while Magellan was in an elliptical orbit with a periapsis near 175 km and an apoapsis near 8,000 km. An additional 1,500 orbits were obtained following orbit-circularization in mid-1993. These data exist as a 75? by 75? harmonic field.

  5. Nuclear lamina at the crossroads of the cytoplasm and nucleus

    PubMed Central

    Huber, Michael D.

    2012-01-01

    The nuclear lamina is a protein meshwork that lines the nuclear envelope in metazoan cells. It is composed largely of a polymeric assembly of lamins, which comprise a distinct sequence homology class of the intermediate filament protein family. On the basis of its structural properties, the lamina originally was proposed to provide scaffolding for the nuclear envelope and to promote anchoring of chromatin and nuclear pore complexes at the nuclear surface. This viewpoint has expanded greatly during the past 25 years, with a host of surprising new insights on lamina structure, molecular composition and functional attributes. It has been established that the self-assembly properties of lamins are very similar to those of cytoplasmic intermediate filament proteins, and that the lamin polymer is physically associated with components of the cytoplasmic cytoskeleton and with a multitude of chromatin and inner nuclear membrane proteins. Cumulative evidence points to an important role for the lamina in regulating signaling and gene activity, and in mechanically coupling the cytoplasmic cytoskeleton to the nucleus. The significance of the lamina has been vaulted to the forefront by the discovery that mutations in lamins and lamina-associated polypeptides lead to an array of human diseases. A key future challenge is to understand how the lamina integrates pathways for mechanics and signaling at the molecular level. Understanding the structure of the lamina from the atomic to supramolecular levels will be essential for achieving this goal. PMID:22126840

  6. Coilin Shuttles between the Nucleus and Cytoplasm In Xenopus Oocytes

    PubMed Central

    Bellini, Michel; Gall, Joseph G.

    1999-01-01

    Coiled bodies are discrete nuclear organelles often identified by the marker protein p80-coilin. Because coilin is not detected in the cytoplasm by immunofluorescence and Western blotting, it has been considered an exclusively nuclear protein. In the Xenopus germinal vesicle (GV), most coilin actually resides in the nucleoplasm, although it is highly concentrated in 50–100 coiled bodies. When affinity-purified anti-coilin antibodies were injected into the cytoplasm of oocytes, they could be detected in coiled bodies within 2–3 h. Coiled bodies were intensely labeled after 18 h, whereas other nuclear organelles remained negative. Because the nuclear envelope does not allow passive diffusion of immunoglobulins, this observation suggests that anti-coilin antibodies are imported into the nucleus as an antigen–antibody complex with coilin. Newly synthesized coilin is not required, because cycloheximide had no effect on nuclear import and subsequent targeting of the antibodies. Additional experiments with myc-tagged coilin and myc-tagged pyruvate kinase confirmed that coilin is a shuttling protein. The shuttling of Nopp140, NO38/B23, and nucleolin was easily demonstrated by the targeting of their respective antibodies to the nucleoli, whereas anti-SC35 did not enter the germinal vesicle. We suggest that coilin, perhaps in association with Nopp140, may function as part of a transport system between the cytoplasm and the coiled bodies. PMID:10512877

  7. Genetic studies on cytoplasmic male sterility in maize

    SciTech Connect

    Laughnan, J.R.

    1992-01-01

    Our research concerns the basic mechanisms of cytoplasmic male sterility (CMS) and fertility restoration in maize. The molecular determination of CMS is in the DNA of the mitochondria (mtDNA) but specific nuclear restorer-of-fertility (Rf) genes can overrule the male-sterile effect of the cytoplasm. Our approach to the study of the Rf genes is threefold. We are attempting to tag the cms-S Rf genes and the cms-T Rf2 gene with controlling elements (CEs). Since we have identified a number of spontaneous Rf genes for cms-S and have demonstrated that they are themselves transposable, we are also searching for cases in which an Rf gene is inserted into a wild-type gene. The other aspect of our research involves the nuclear control over the organization of the mitochondrial genome. We found that the changes in mtDNA organization upon cytoplasmic reversion to fertility were characteristic of the nuclear background in which the reversion event occurred. We have investigated whether these differences are a reflection of differences in the organization of the mtDNA genome before reversion.

  8. Cytoplasmic dynamics reveals two modes of nucleoid-dependent mobility.

    PubMed

    Stylianidou, Stella; Kuwada, Nathan J; Wiggins, Paul A

    2014-12-02

    It has been proposed that forces resulting from the physical exclusion of macromolecules from the bacterial nucleoid play a central role in organizing the bacterial cell, yet this proposal has not been quantitatively tested. To investigate this hypothesis, we mapped the generic motion of large protein complexes in the bacterial cytoplasm through quantitative analysis of thousands of complete cell-cycle trajectories of fluorescently tagged ectopic MS2-mRNA complexes. We find the motion of these complexes in the cytoplasm is strongly dependent on their spatial position along the long axis of the cell, and that their dynamics are consistent with a quantitative model that requires only nucleoid exclusion and membrane confinement. This analysis also reveals that the nucleoid increases the mobility of MS2-mRNA complexes, resulting in a fourfold increase in diffusion coefficients between regions of the lowest and highest nucleoid density. These data provide strong quantitative support for two modes of nucleoid action: the widely accepted mechanism of nucleoid exclusion in organizing the cell and a newly proposed mode, in which the nucleoid facilitates rapid motion throughout the cytoplasm.

  9. gCap39 is a nuclear and cytoplasmic protein.

    PubMed

    Onoda, K; Yu, F X; Yin, H L

    1993-01-01

    gCap39 is a newly identified member of the Ca(2+)- and polyphosphoinositide-modulated gelsolin family of actin binding proteins which is different from gelsolin in several important respects: it caps filament ends, it does not sever filaments, it binds reversibly to actin, it is phosphorylated in vivo, and it is also present in the nucleus. gCap39 and gelsolin coexist in a variety of cells. To better understand the roles of gCap39 and gelsolin, we have compared their relative amounts and intracellular distributions. We found that gCap39 is very abundant in macrophages (accounting for 0.6% of total macrophage proteins), and is present in 12-fold molar excess to gelsolin. Both proteins are highly induced during differentiation of the promyelocytic leukemia cell line into macrophages. gCap39 is less abundant in fibroblasts (0.04% total proteins) and is present in equal molar ratio to gelsolin. The two proteins are colocalized in the cytoplasm, but gCap39 is also found in the nucleus while gelsolin is not. Nuclear gCap39 redistributes throughout the cytoplasm during mitosis and is excluded from regions containing chromosomes. Our results demonstrate that gCap39 is a nuclear and cytoplasmic protein which has unique as well as common functions compared with gelsolin.

  10. Mutant p53 protein localized in the cytoplasm inhibits autophagy.

    PubMed

    Morselli, Eugenia; Tasdemir, Ezgi; Maiuri, Maria Chiara; Galluzzi, Lorenzo; Kepp, Oliver; Criollo, Alfredo; Vicencio, José Miguel; Soussi, Thierry; Kroemer, Guido

    2008-10-01

    The knockout, knockdown or chemical inhibition of p53 stimulates autophagy. Moreover, autophagy-inducing stimuli such as nutrient depletion, rapamycin or lithium cause the depletion of cytoplasmic p53, which in turn is required for the induction of autophagy. Here, we show that retransfection of p53(-/-) HCT 116 colon carcinoma cells with wild type p53 decreases autophagy down to baseline levels. Surprisingly, one third among a panel of 22 cancer-associated p53 single amino acid mutants also inhibited autophagy when transfected into p53(-/-) cells. Those variants of p53 that preferentially localize to the cytoplasm effectively repressed autophagy, whereas p53 mutants that display a prominently nuclear distribution failed to inhibit autophagy. The investigation of a series of deletion mutants revealed that removal of the DNA-binding domain from p53 fails to interfere with its role in the regulation of autophagy. Altogether, these results identify the cytoplasmic localization of p53 as the most important feature for p53-mediated autophagy inhibition. Moreover, the structural requirements for the two biological activities of extranuclear p53, namely induction of apoptosis and inhibition of autophagy, are manifestly different.

  11. DNA methylation affected by male sterile cytoplasm in rice (Oryza sativa L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Male sterile cytoplasm plays an important role in hybrid rice and cytoplasmic effects are sufficiently documented. However, no reports are available on DNA methylation affected by male sterile cytoplasm in hybrid rice. We used a methylation sensitive amplified polymorphism (MSAP) technique to charac...

  12. Anti-neutrophil cytoplasmic antibody-associated paraneoplastic vasculitis.

    PubMed Central

    Navarro, J. F.; Quereda, C.; Rivera, M.; Navarro, F. J.; Ortuño, J.

    1994-01-01

    A 68 year old man presented with a systemic necrotizing vasculitis and elevated levels of anti-neutrophil cytoplasmic antibody (ANCA) which responded to treatment with steroids and cyclophosphamide, with a decrease in the titre of ANCA until its disappearance. Four months later he presented with weakness, loss of weight, aphonia and dysphagia. A computerized tomography scan showed a solid mass in the anterior mediastinum, and histological studies revealed an undifferentiated adenocarcinoma. Vasculitis improved although the malignancy progressed and ANCA was persistently negative. Our case demonstrates an association between ANCA and paraneoplastic vasculitis. Images Figure 2 PMID:8016013

  13. Pitfalls of formalin fixation for determination of antineutrophil cytoplasmic antibodies.

    PubMed

    Chowdhury, S M; Broomhead, V; Spickett, G P; Wilkinson, R

    1999-06-01

    Sera can produce nuclear or perinuclear immunofluorescence staining in neutrophils which may be caused by antibodies with differing antigenic specificities. These include perinuclear antineutrophil cytoplasmic antibodies (P-ANCA), granulocyte specific antinuclear antibody (GS-ANA), and antinuclear antibody (ANA). There is controversy over the value of formalin fixation of neutrophils in differentiating antibodies giving selective or preferential reaction with the nuclear or perinuclear area of neutrophils. In a comparative study of 77 sera, formalin fixation caused inconsistency, nonspecific effects, and false positivity owing to enhanced fluorescence. If formalin fixed neutrophils are used in the routine diagnostic laboratory, this will add confusion to the interpretation of the ANCA assay.

  14. Pitfalls of formalin fixation for determination of antineutrophil cytoplasmic antibodies.

    PubMed Central

    Chowdhury, S M; Broomhead, V; Spickett, G P; Wilkinson, R

    1999-01-01

    Sera can produce nuclear or perinuclear immunofluorescence staining in neutrophils which may be caused by antibodies with differing antigenic specificities. These include perinuclear antineutrophil cytoplasmic antibodies (P-ANCA), granulocyte specific antinuclear antibody (GS-ANA), and antinuclear antibody (ANA). There is controversy over the value of formalin fixation of neutrophils in differentiating antibodies giving selective or preferential reaction with the nuclear or perinuclear area of neutrophils. In a comparative study of 77 sera, formalin fixation caused inconsistency, nonspecific effects, and false positivity owing to enhanced fluorescence. If formalin fixed neutrophils are used in the routine diagnostic laboratory, this will add confusion to the interpretation of the ANCA assay. PMID:10562820

  15. A Balance between Nuclear and Cytoplasmic Volumes Controls Spindle Length

    PubMed Central

    Novakova, Lucia; Kovacovicova, Kristina; Dang-Nguyen, Thanh Quang; Sodek, Martin; Skultety, Michal; Anger, Martin

    2016-01-01

    Proper assembly of the spindle apparatus is crucially important for faithful chromosome segregation during anaphase. Thanks to the effort over the last decades, we have very detailed information about many events leading to spindle assembly and chromosome segregation, however we still do not understand certain aspects, including, for example, spindle length control. When tight regulation of spindle size is lost, chromosome segregation errors emerge. Currently, there are several hypotheses trying to explain the molecular mechanism of spindle length control. The number of kinetochores, activity of molecular rulers, intracellular gradients, cell size, limiting spindle components, and the balance of the spindle forces seem to contribute to spindle size regulation, however some of these mechanisms are likely specific to a particular cell type. In search for a general regulatory mechanism, in our study we focused on the role of cell size and nuclear to cytoplasmic ratio in this process. To this end, we used relatively large cells isolated from 2-cell mouse embryos. Our results showed that the spindle size upper limit is not reached in these cells and suggest that accurate control of spindle length requires balanced ratio between nuclear and cytoplasmic volumes. PMID:26886125

  16. Autophagy of cytoplasmic bulk cargo does not require LC3.

    PubMed

    Engedal, Nikolai; Seglen, Per O

    2016-01-01

    To investigate the role of LC3 in bulk autophagy we compared its autophagic-lysosomal processing (using an improved quantitative immunoblotting method) with autophagic-lysosomal bulk cargo flux (measured by our established LDH [lactate dehydrogenase] sequestration assay) in amino acid-starved rat hepatocytes treated with cycloheximide to prevent new LC3 influx. Block-release experiments with the reversible autophagy inhibitors 3-methyladenine (3MA) and thapsigargin (TG) showed that while only 3MA suppressed phagophoric LC3 attachment (lipidation), both inhibitors prevented phagophore closure (cargo sequestration). Upon release from closure blockade, some autophagic-lysosomal LC3 flux was resumed even in the presence of 3MA, i.e., without an accompanying bulk cargo flux. Conversely, whereas the autophagic-lysosomal flux of LC3 halted within ∼100 min of cycloheximide treatment, the bulk cargo flux continued at a high rate. siRNA-mediated knockdown of LC3 family proteins in LNCaP prostate carcinoma cells confirmed that autophagy of cytoplasmic bulk cargo was completely LC3 independent also in these cells, and in the absence of cycloheximide. However, a strong requirement for GABARAP family proteins was evident. Since bulk autophagy of cytoplasm (macroautophagy) and autophagic-lysosomal LC3 processing may apparently be mutually independent, LC3 would seem to be unsuitable as a general indicator of autophagy.

  17. Progesterone influences cytoplasmic maturation in porcine oocytes developing in vitro

    PubMed Central

    Jin, Yong-Xun; Kwon, Jeong-Woo

    2016-01-01

    Progesterone (P4), an ovarian steroid hormone, is an important regulator of female reproduction. In this study, we explored the influence of progesterone on porcine oocyte nuclear maturation and cytoplasmic maturation and development in vitro. We found that the presence of P4 during oocyte maturation did not inhibit polar body extrusions but significantly increased glutathione and decreased reactive oxygen species (ROS) levels relative to that in control groups. The incidence of parthenogenetically activated oocytes that could develop to the blastocyst stage was higher (p < 0.05) when oocytes were exposed to P4 as compared to that in the controls. Cell numbers were increased in the P4-treated groups. Further, the P4-specific inhibitor mifepristone (RU486) prevented porcine oocyte maturation, as represented by the reduced incidence (p < 0.05) of oocyte first polar body extrusions. RU486 affected maturation promoting factor (MPF) activity and maternal mRNA polyadenylation status. In general, these data show that P4 influences the cytoplasmic maturation of porcine oocytes, at least partially, by decreasing their polyadenylation, thereby altering maternal gene expression. PMID:27672508

  18. Cytoplasmic Incompatibility and Bacterial Density in Nasonia Vitripennis

    PubMed Central

    Breeuwer, JAJ.; Werren, J. H.

    1993-01-01

    Cytoplasmically (maternally) inherited bacteria that cause reproductive incompatibility between strains are widespread among insects. In the parasitoid wasp Nasonia, incompatibility results in improper condensation and fragmentation of the paternal chromosomes in fertilized eggs. Some form of genome imprinting may be involved. Because of haplodiploidy, incompatibility results in conversion of (diploid) female eggs into (haploid) males. Experiments show that bacterial density is correlated with compatibility differences between male and female Nasonia. Males from strains with high bacterial numbers are incompatible with females from strains with lower numbers. Temporal changes in compatibility of females after tetracycline treatment are generally correlated with decreases in bacterial levels in eggs. However, complete loss of bacteria in mature eggs precedes conversion of eggs to the ``asymbiont'' compatibility type by 3-4 days. This result is consistent with a critical ``imprinting'' period during egg maturation, when cytoplasmic bacteria determine compatibility. Consequent inheritance of reduced bacterial numbers in F(1) progeny has different effects on compatibility type of subsequent male vs. female progeny. In some cases, partial incompatibility occurs which results in reduced offspring numbers, apparently due to incomplete paternal chromosome elimination resulting in aneuploidy. PMID:8244014

  19. Calcium wave for cytoplasmic streaming of Physarum polycephalum.

    PubMed

    Yoshiyama, Shinji; Ishigami, Mitsuo; Nakamura, Akio; Kohama, Kazuhiro

    2009-12-16

    The plasmodium Physarum polycephalum exhibits periodic cycles of cytoplasmic streaming in association with those of contraction and relaxation movement. In the present study, we injected Calcium Green dextran as a fluorescent Ca2+ indicator into the thin-spread living plasmodium. We found changes in the [Ca2+]i (intracellular concentration of Ca2+), which propagated in a wave-like form in its cytoplasm. The Ca2+ waves were also detected when we used Fura dextran which detected [Ca2+]i by the ratio of two wavelengths. We prepared the plasmodial fragment from the thin-spread and found that the cycles of the contraction-relaxation movement was so synchronized that the measurement of its area provided an indication of the movement. We observed that [Ca2+]i also synchronized in the entire fragment and that the relaxation ensued upon the reduction in [Ca2+]i. We suggest that the Ca2+ wave generated periodically is one of the major factors playing a crucial role in the relaxation of P. polycephalum.

  20. Cytoplasmic inclusions in pulmonary macrophages of cigarette smokers.

    PubMed

    Brody, A R; Craighead, J E

    1975-02-01

    Alveolar and bronchiolar spaces in the lungs of cigarette smokers usually contain numerous macrophages with pigmented cytoplasmic granules. By electron microscopy the pigmentation appears to be due, at least in part, to increased numbers of lysosomes and phagolysosomes. Within these cytoplasmic organelles, structures are found which we designate "smokers' inclusions", since they are observed exclusively in the interstitial and alveolar macrophages of cigarette users. The inclusions have been referred to by other investigators as "needle-shaped" and "fiber-like". Since cross-sections of the structures are never seen in electron micrographs, a fiber or needle shape seems unlikely. On the other hand, thin sectioning techniques impart varying lengths to the inclusions, suggesting that they have a disc, or platelet, configuration. Surgically resected lung tissue from smokers and nonsmokers was digested in hot potassium hydroxide. Digestates contained varying numbers of hexagonal platelike particles which had features consistent with those of the aluminum silicate kaolinite, and energy-dispersive x-ray spectrometry confirmed the presence of these two elements. The origin of aluminum silicate inclusions in pulmonary macrophages has yet to be determined, although preliminary evidence strongly suggests that they are derived from inhaled tobacco smoke. The cytotoxicity of kaolinite in vitro and the possible role of aluminum silicate crystals in the pathogenesis of pulmonary fibrosis are discussed.

  1. Mitochondrion role in molecular basis of cytoplasmic male sterility.

    PubMed

    Horn, Renate; Gupta, Kapuganti J; Colombo, Noemi

    2014-11-01

    Cytoplasmic male sterility and its fertility restoration via nuclear genes offer the possibility to understand the role of mitochondria during microsporogenesis. In most cases rearrangements in the mitochondrial DNA involving known mitochondrial genes as well as unknown sequences result in the creation of new chimeric open reading frames, which encode proteins containing transmembrane domains. So far, most of the CMS systems have been characterized via restriction fragment polymorphisms followed by transcript analysis. However, whole mitochondrial genome sequence analyses comparing male sterile and fertile cytoplasm open options for deeper insights into mitochondrial genome rearrangements. We more and more start to unravel how mitochondria are involved in triggering death of the male reproductive organs. Reduced levels of ATP accompanied by increased concentrations of reactive oxygen species, which are produced more under conditions of mitochondrial dysfunction, seem to play a major role in the fate of pollen production. Nuclear genes, so called restorer-of-fertility are able to restore the male fertility. Fertility restoration can occur via pentatricopeptide repeat (PPR) proteins or via different mechanisms involving non-PPR proteins.

  2. Antineutrophil cytoplasmic autoantibodies: how should the biologist manage them?

    PubMed

    Beauvillain, C; Delneste, Y; Renier, G; Jeannin, P; Subra, J F; Chevailler, A

    2008-10-01

    Antineutrophil cytoplasmic antibodies (ANCA) are directed against enzymes found in the granules of the polymorphonuclear (PMN) leukocytes. They are detected by indirect immunofluorescence microscopy assays on human ethanol fixed neutrophils. Three different fluorescence patterns can be distinguished: a cytoplasmic pattern (cANCA), a perinuclear pattern (pANCA), and an atypical pattern (aANCA). The use of other fixatives, e.g., formalin and methanol, allows differentiation between the pANCA and the antinuclear antibodies. ANCA specificity is determined by solid phase assays (ELISA, immunodot, and multiplex assay). ANCA with high titres and defined specificities (antiproteinase 3 [PR 3] or antimyeloperoxidase [MPO]) are proven to be good serological markers of active primary systemic vasculitis: c/PR 3-ANCA for Wegener's granulomatosis and p/MPO-ANCA for microscopic polyangiitis. The former have higher sensitivity and specificity for Wegener's granulomatosis than the latter for microscopic polyangiitis. ANCA with low titres and unknown specificity have been detected in a wide range of inflammatory and infectious diseases leading to a critical reappraisal of the diagnostic significance of ANCA testing. Physicians must keep in mind the possible occurrence of infectious diseases like subacute endocarditis that could be dramatically worsened by irrelevant immunosuppressive therapy. ANCA findings in certain manifestations, such as the pulmonary-renal syndrome in which massive pulmonary hemorrhage can quickly be life-threatening, warrant ANCA testing as an emergency test for patient care.

  3. Tracking factors modulating cytoplasmic incompatibilities in the mosquito Culex pipiens.

    PubMed

    Duron, Olivier; Bernard, Clotilde; Unal, Sandra; Berthomieu, Arnaud; Berticat, Claire; Weill, Mylène

    2006-09-01

    Wolbachia are maternally inherited endosymbiotic bacteria that infect many arthropod species and may induce cytoplasmic incompatibility (CI), resulting in abortive embryonic development. One Wolbachia host, Culex pipiens complex mosquitoes, displays high levels of variability in both CI crossing types (cytotypes) and DNA markers. We report here an analysis of 14 mosquito strains, containing 13 Wolbachia variants, and with 13 different cytotypes. Cytotypes were Wolbachia-dependent, as antibiotic treatment rendered all strains tested compatible. Cytotype distributions were independent of geographical distance between sampling sites and host subspecies, suggesting that Wolbachia does not promote a reproductive isolation depending on these parameters. Backcross analysis demonstrated a mild restoring effect of the nuclear genome, indicating that CI is mostly cytoplasmically determined for some crosses. No correlation was found between the phenotypic and genotypic variability of 16 WO prophage and transposon markers, except for the WO prophage Gp15 gene, which encodes a protein similar to a bacterial virulence factor. However, Gp15 is partially correlated with CI expression, suggesting that it could be just linked to a CI gene.

  4. Mitochondrial Extrusion through the cytoplasmic vacuoles during cell death.

    PubMed

    Nakajima, Akihito; Kurihara, Hidetake; Yagita, Hideo; Okumura, Ko; Nakano, Hiroyasu

    2008-08-29

    Under various conditions, noxious stimuli damage mitochondria, resulting in mitochondrial fragmentation; however, the mechanisms by which fragmented mitochondria are eliminated from the cells remain largely unknown. Here we show that cytoplasmic vacuoles originating from the plasma membrane engulfed fragmented mitochondria and subsequently extruded them into the extracellular spaces in undergoing acute tumor necrosis factor alpha-induced cell death in a caspase-dependent fashion. Notably, upon fusion of the membrane encapsulating mitochondria to the plasma membrane, naked mitochondria were released into the extracellular spaces in an exocytotic manner. Mitochondrial extrusion was specific to tumor necrosis factor alpha-induced cell death, because a genotoxic stress-inducing agent such as cisplatin did not elicit mitochondrial extrusion. Moreover, intact actin and tubulin cytoskeletons were required for mitochondrial extrusion as well as membrane blebbing. Furthermore, fragmented mitochondria were engulfed by cytoplasmic vacuoles and extruded from hepatocytes of mice injected with anti-Fas antibody, suggesting that mitochondrial extrusion can be observed in vivo under pathological conditions. Mitochondria are eliminated during erythrocyte maturation under physiological conditions, and anti-mitochondrial antibody is detected in some autoimmune diseases. Thus, elucidating the mechanism underlying mitochondrial extrusion will open a novel avenue leading to better understanding of various diseases caused by mitochondrial malfunction as well as mitochondrial biology.

  5. Endogenous Mouse Dicer Is an Exclusively Cytoplasmic Protein

    PubMed Central

    Much, Christian; Pavlinic, Dinko; Buness, Andreas; Rappsilber, Juri; Benes, Vladimir; Allshire, Robin; O’Carroll, Dónal

    2016-01-01

    Dicer is a large multi-domain protein responsible for the ultimate step of microRNA and short-interfering RNA biogenesis. In human and mouse cell lines, Dicer has been shown to be important in the nuclear clearance of dsRNA as well as the establishment of chromatin modifications. Here we set out to unambiguously define the cellular localization of Dicer in mice to understand if this is a conserved feature of mammalian Dicer in vivo. To this end, we utilized an endogenously epitope tagged Dicer knock-in mouse allele. From primary mouse cell lines and adult tissues, we determined with certainty by biochemical fractionation and confocal immunofluorescence microscopy that endogenous Dicer is exclusively cytoplasmic. We ruled out the possibility that a fraction of Dicer shuttles to and from the nucleus as well as that FGF or DNA damage signaling induce Dicer nuclear translocation. We also explored Dicer localization during the dynamic and developmental context of embryogenesis, where Dicer is ubiquitously expressed and strictly cytoplasmic in all three germ layers as well as extraembryonic tissues. Our data exclude a direct role for Dicer in the nuclear RNA processing in the mouse. PMID:27254021

  6. Selection for male-enforced uniparental cytoplasmic inheritance.

    PubMed

    Sreedharan, Vandana; Shpak, Max

    2010-12-01

    In most sexually reproducing species, including humans, mitochondria and other cytoplasmic elements are uniparentally (usually maternally) inherited. This phenomenon is of broad interest as a mechanism for countering the proliferation of selfish mitochondria. Uniparental inheritance can be enforced either by the female gametes excluding male cytoplasm or male gametes excluding their own from the zygote. Previous studies have shown that male-enforced uniparental inheritance is unlikely to evolve as a primary mechanism, because unlike female enforcement, the positive linkage disequilibrium between the modifier for eliminating the gamete's own mitochondria and a wild-type mitochondrial complement is broken from one generation to the next. However, it has been proposed that with a sufficiently high mutation rate and strong selection, elimination of the gamete's own mitochondria could be favored by selection. In this article, a series of numerical simulations confirm that this is indeed the case, although the conditions where male enforcement is favored are quite restrictive. Specifically, in addition to a high mutation rate to selfish mitochondria and strong selection against them, the cost of uniparental inheritance must be negligible.

  7. A cytoplasmic peptidoglycan amidase homologue controls mycobacterial cell wall synthesis

    PubMed Central

    Boutte, Cara C; Baer, Christina E; Papavinasasundaram, Kadamba; Liu, Weiru; Chase, Michael R; Meniche, Xavier; Fortune, Sarah M; Sassetti, Christopher M; Ioerger, Thomas R; Rubin, Eric J

    2016-01-01

    Regulation of cell wall assembly is essential for bacterial survival and contributes to pathogenesis and antibiotic tolerance in Mycobacterium tuberculosis (Mtb). However, little is known about how the cell wall is regulated in stress. We found that CwlM, a protein homologous to peptidoglycan amidases, coordinates peptidoglycan synthesis with nutrient availability. Surprisingly, CwlM is sequestered from peptidoglycan (PG) by localization in the cytoplasm, and its enzymatic function is not essential. Rather, CwlM is phosphorylated and associates with MurA, the first enzyme in PG precursor synthesis. Phosphorylated CwlM activates MurA ~30 fold. CwlM is dephosphorylated in starvation, resulting in lower MurA activity, decreased cell wall metabolism, and increased tolerance to multiple antibiotics. A phylogenetic analysis of cwlM implies that localization in the cytoplasm drove the evolution of this factor. We describe a system that controls cell wall metabolism in response to starvation, and show that this regulation contributes to antibiotic tolerance. DOI: http://dx.doi.org/10.7554/eLife.14590.001 PMID:27304077

  8. Cytoplasmic protein methylation is essential for neural crest migration

    PubMed Central

    Vermillion, Katie L.; Lidberg, Kevin A.

    2014-01-01

    As they initiate migration in vertebrate embryos, neural crest cells are enriched for methylation cycle enzymes, including S-adenosylhomocysteine hydrolase (SAHH), the only known enzyme to hydrolyze the feedback inhibitor of trans-methylation reactions. The importance of methylation in neural crest migration is unknown. Here, we show that SAHH is required for emigration of polarized neural crest cells, indicating that methylation is essential for neural crest migration. Although nuclear histone methylation regulates neural crest gene expression, SAHH and lysine-methylated proteins are abundant in the cytoplasm of migratory neural crest cells. Proteomic profiling of cytoplasmic, lysine-methylated proteins from migratory neural crest cells identified 182 proteins, several of which are cytoskeleton related. A methylation-resistant form of one of these proteins, the actin-binding protein elongation factor 1 alpha 1 (EF1α1), blocks neural crest migration. Altogether, these data reveal a novel and essential role for post-translational nonhistone protein methylation during neural crest migration and define a previously unknown requirement for EF1α1 methylation in migration. PMID:24379414

  9. Low viscosity in the aqueous domain of cell cytoplasm measured by picosecond polarization microfluorimetry

    PubMed Central

    1991-01-01

    Information about the rheological characteristics of the aqueous cytoplasm can be provided by analysis of the rotational motion of small polar molecules introduced into the cell. To determine fluid-phase cytoplasmic viscosity in intact cells, a polarization microscope was constructed for measurement of picosecond anisotropy decay of fluorescent probes in the cell cytoplasm. We found that the rotational correlation time (tc) of the probes, 2,7-bis-(2-carboxyethyl)-5-(and-6- )carboxyfluorescein (BCECF), 6-carboxyfluorescein, and 8-hydroxypyrene- 1,3,6-trisulfonic acid (HPTS) provided a direct measure of fluid-phase cytoplasmic viscosity that was independent of probe binding. In quiescent Swiss 3T3 fibroblasts, tc values were 20-40% longer than those in water, indicating that the fluid-phase cytoplasm is only 1.2- 1.4 times as viscous as water. The activation energy of fluid-phase cytoplasmic viscosity was 4 kcal/mol, which is similar to that of water. Fluid-phase cytoplasmic viscosity was altered by less than 10% upon addition of sucrose to decrease cell volume, cytochalasin B to disrupt cell cytoskeleton, and vasopressin to activate phospholipase C. Nucleoplasmic and peripheral cytoplasmic viscosities were not different. Our results establish a novel method to measure fluid-phase cytoplasmic viscosity, and indicate that fluid-phase cytoplasmic viscosity in fibroblasts is similar to that of free water. PMID:1993739

  10. The Cytoplasmic Rhodopsin-Protein Interface: Potential for Drug Discovery

    PubMed Central

    Yanamala, Naveena; Gardner, Eric; Riciutti, Alec; Klein-Seetharaman, Judith

    2011-01-01

    The mammalian dim-light photoreceptor rhodopsin is a prototypic G protein coupled receptor (GPCR), interacting with the G protein, transducin, rhodopsin kinase, and arrestin. All of these proteins interact with rhodopsin at its cytoplasmic surface. Structural and modeling studies have provided in-depth descriptions of the respective interfaces. Overlap and thus competition for binding surfaces is a major regulatory mechanism for signal processing. Recently, it was found that the same surface is also targeted by small molecules. These ligands can directly interfere with the binding and activation of the proteins of the signal transduction cascade, but they can also allosterically modulate the retinal ligand binding pocket. Because the pocket that is targeted contains residues that are highly conserved across Class A GPCRs, these findings imply that it may be possible to target multiple GPCRs with the same ligand(s). This is desirable for example in complex diseases such as cancer where multiple GPCRs participate in the disease networks. PMID:21777183

  11. Cytoplasmic sulfur trafficking in sulfur-oxidizing prokaryotes.

    PubMed

    Dahl, Christiane

    2015-04-01

    Persulfide groups are chemically versatile and participate in a wide array of biochemical pathways. Although it is well documented that persulfurated proteins supply a number of important and elaborate biosynthetic pathways with sulfane sulfur, it is far less acknowledged that the enzymatic generation of persulfidic sulfur, the successive transfer of sulfur as a persulfide between multiple proteins, and the oxidation of sulfane sulfur in protein-bound form are also essential steps during dissimilatory sulfur oxidation in bacteria and archaea. Here, the currently available information on sulfur trafficking in sulfur oxidizing prokaryotes is reviewed, and the idea is discussed that sulfur is always presented to cytoplasmic oxidizing enzymes in a protein-bound form, thus preventing the occurrence of free sulfide inside of the prokaryotic cell. Thus, sulfur trafficking emerges as a central element in sulfur-oxidizing pathways, and TusA homologous proteins appear to be central and common elements in these processes.

  12. Antineutrophil cytoplasmic antibodies crescentic allograft glomerulonephritis after sofosbuvir therapy

    PubMed Central

    Gadde, Shilpa; Lee, Belinda; Kidd, Laura; Zhang, Rubin

    2016-01-01

    Antineutrophil cytoplasmic antibodies (ANCA) are well known to be associated with several types of vasculitis, including pauci-immune crescentic glomerulonephritis, a form of rapid progressive glomerular nephritis (RPGN). ANCA vasculitis has also been reported after administration of propylthiouracil, hydralazine, cocaine (adulterated with levimasole), allopurinol, penicillamine and few other drugs. All previously reported cases of drug-associated ANCA glomerulonephritis were in native kidneys. Sofosbuvir is a new and effective drug for hepatitis C virus infection. Here, we report a case of ANCA vasculitis and RPGN following sofosbuvir administration in a kidney transplant recipient. It also represents the first case of drug-associated ANCA vasculitis in a transplanted kidney. Further drug monitoring is necessary to elucidate the degree of association and possible causal effect of sofosbuvir and perinuclear ANCA vasculitis. PMID:27872837

  13. Cytoplasmic effect on gene function in Xenopus laevis.

    PubMed

    Yu, H J; Shi, C P; Niu, M C

    1987-05-01

    The pigmentation gene of Xenopus laevis is dominant and that of albino aP mutant recessive. Heterologous haploid hybrids are produced by UV inactivation of the egg nuclei during second polar body formation in the mutant sperm-fertilized Xenopus eggs. During development of these hybrids, melanin appeared in the eye and melanophores in the skin at stages comparable to those of the wild type, but much earlier than in the albino mutant. The number and intensity of pigment cells are intermediate between the black Xenopus and albino mutant. While a number of pigment cells remain in the hybrids, those in the albino eventually degenerate. Therefore, the development and maintenance of pigmentation in heterologous hybrids are contributed by Xenopus cytoplasm. Tadpole tail-tips were squashed and stained for chromosome counting. The results show that Xenopus and mutants are diploid (36 chromosomes) and heterologous haploid hybrids have 18 chromosomes.

  14. Exporting RNA from the nucleus to the cytoplasm.

    PubMed

    Köhler, Alwin; Hurt, Ed

    2007-10-01

    The transport of RNA molecules from the nucleus to the cytoplasm is fundamental for gene expression. The different RNA species that are produced in the nucleus are exported through the nuclear pore complexes via mobile export receptors. Small RNAs (such as tRNAs and microRNAs) follow relatively simple export routes by binding directly to export receptors. Large RNAs (such as ribosomal RNAs and mRNAs) assemble into complicated ribonucleoprotein (RNP) particles and recruit their exporters via class-specific adaptor proteins. Export of mRNAs is unique as it is extensively coupled to transcription (in yeast) and splicing (in metazoa). Understanding the mechanisms that connect RNP formation with export is a major challenge in the field.

  15. Deep cytoplasmic rearrangements in axis-respecified Xenopus embryos

    NASA Technical Reports Server (NTRS)

    Denegre, J. M.; Danilchik, M. V.

    1993-01-01

    In fertilized eggs of the frog Xenopus, the vegetal yolk mass rotates away from the future dorsal side (J. P. Vincent and J. Gerhart, 1987, Dev. Biol. 123, 526-539), and a major rearrangement of the deep animal hemisphere cytoplasm produces a characteristic swirl in the prospective dorsal side (M. V. Danilchik and J. M. Denegre, 1991, Development 111, 845-856). The relationship between this swirl and determination of the dorsal-ventral axis was further investigated by attempting to experimentally separate the positions of the swirl and the dorsal-ventral axis. Eggs were obliquely oriented in the gravity field to respecify the direction of yolk mass rotation and the position of the dorsal-ventral axis. When yolk mass rotation occurred in the absence of a sperm, as in activated eggs, a swirl pattern formed on the side away from which the yolk mass had rotated. In fertilized eggs tipped with the sperm entry point (SEP) down or to the side, swirl patterns were always found to form on the side away from which the yolk mass was displaced. However, in eggs tipped SEP up, in which the yolk mass was forced to rotate away from the SEP, more complicated rearrangements were observed in addition to the rotation-oriented swirl. Because the direction of yolk mass rotation was found to be influenced by both gravity and the actual position of the SEP in obliquely oriented eggs (SEP to the side), such complicated rearrangement patterns may result from opposing forces generated by both yolk mass rotation and the expanding sperm aster. Thus, except in cases in which the influences of SEP position and unit gravity opposed each other, it was not possible to experimentally separate the position of the deep cytoplasmic swirl from the direction of yolk mass rotation, and therefore the position of the prospective dorsal side.

  16. Anti-neutrophil cytoplasmic autoantibody-associated glomerulonephritis and vasculitis.

    PubMed Central

    Jennette, J. C.; Wilkman, A. S.; Falk, R. J.

    1989-01-01

    Anti-neutrophil cytoplasmic autoantibodies (ANCA) react with constituents of neutrophil primary granules and monocyte lysosomes. Indirect immunofluorescence microscopy using alcohol-fixed neutrophils demonstrates two ANCA types: one causing cytoplasmic staining (C-ANCA), and a second causing artifactual perinuclear staining (P-ANCA) that frequently has specificity for myeloperoxidase. Using indirect immunofluorescence microscopy (IIFM) and enzyme immunoassays (EIA), sera from over 300 patients with renal disease, with and without systemic vasculitis, were analyzed. Of 76 patients with pauci-immune glomerulonephritis with crescents or necrosis, 87% had ANCA by IIFM (38% of C-ANCA type, 49% of P-ANCA type), and 78% had ANCA by EIA. Of 55 patients with nonlupus immune complex-mediated glomerulonephritis, only 11% had ANCA by IIFM and 5% had ANCA by EIA. Of 24 patients with anti-GBM antibody-mediated glomerulonephritis, none had ANCA. Renal and extrarenal lesions were studied in 81 patients with ANCA-associated glomerulonephritis. These patients formed a pathologic continuum ranging from renal-limited to widespread systemic vascular injury, including patients with primary crescentic glomerulonephritis, Wegener's granulomatosis, and polyarteritis nodosa. In ANCA-positive patients the frequency of C-ANCA and P-ANCA correlated with disease distribution. P-ANCA was most frequent with renal-limited disease and C-ANCA was most frequent when there was lung and sinus involvement. It is proposed that ANCA are not only useful diagnostic markers, but may also be directly involved in a novel pathogenetic mechanism that is a frequent cause of crescentic glomerulonephritis and systemic necrotizing vasculitis. Images Figure 1 Figure 4 Figure 5 Figure 6 Figure 7 PMID:2683800

  17. Regulation of Cytoplasmic Dynein ATPase by Lis1

    PubMed Central

    Mesngon, Mariano T.; Tarricone, Cataldo; Hebbar, Sachin; Guillotte, Aimee M.; Schmitt, E. William; Lanier, Lorene; Musacchio, Andrea; King, Stephen J.; Smith, Deanna S.

    2015-01-01

    Mutations in Lis1 cause classical lissencephaly, a developmental brain abnormality characterized by defects in neuronal positioning. Over the last decade, a clear link has been forged between Lis1 and the microtubule motor cytoplasmic dynein. Substantial evidence indicates that Lis1 functions in a highly conserved pathway with dynein to regulate neuronal migration and other motile events. Yeast two-hybrid studies predict that Lis1 binds directly to dynein heavy chains (Sasaki et al., 2000; Tai et al., 2002), but the mechanistic significance of this interaction is not well understood. We now report that recombinant Lis1 binds to native brain dynein and significantly increases the microtubule-stimulated enzymatic activity of dynein in vitro. Lis1 does this without increasing the proportion of dynein that binds to microtubules, indicating that Lis1 influences enzymatic activity rather than microtubule association. Dynein stimulation in vitro is not a generic feature of microtubule-associated proteins, because tau did not stimulate dynein. To our knowledge, this is the first indication that Lis1 or any other factor directly modulates the enzymatic activity of cytoplasmic dynein. Lis1 must be able to homodimerize to stimulate dynein, because a C-terminal fragment (containing the dynein interaction site but missing the self-association domain) was unable to stimulate dynein. Binding and colocalization studies indicate that Lis1 does not interact with all dynein complexes found in the brain. We propose a model in which Lis1 stimulates the activity of a subset of motors, which could be particularly important during neuronal migration and long-distance axonal transport. PMID:16481446

  18. β1-Integrin Cytoplasmic Subdomains Involved in Dominant Negative Function

    PubMed Central

    Retta, S. Francesco; Balzac, Fiorella; Ferraris, Piercarlo; Belkin, Alexey M.; Fässler, Reinhard; Humphries, Martin J.; De Leo, Giacomo; Silengo, Lorenzo; Tarone, Guido

    1998-01-01

    The β1-integrin cytoplasmic domain consists of a membrane proximal subdomain common to the four known isoforms (“common” region) and a distal subdomain specific for each isoform (“variable” region). To investigate in detail the role of these subdomains in integrin-dependent cellular functions, we used β1A and β1B isoforms as well as four mutants lacking the entire cytoplasmic domain (β1TR), the variable region (β1COM), or the common region (β1ΔCOM-B and β1ΔCOM-A). By expressing these constructs in Chinese hamster ovary and β1 integrin-deficient GD25 cells (Wennerberg et al., J Cell Biol 132, 227–238, 1996), we show that β1B, β1COM, β1ΔCOM-B, and β1ΔCOM-A molecules are unable to support efficient cell adhesion to matrix proteins. On exposure to Mn++ ions, however, β1B, but none of the mutants, can mediate cell adhesion, indicating specific functional properties of this isoform. Analysis of adhesive functions of transfected cells shows that β1B interferes in a dominant negative manner with β1A and β3/β5 integrins in cell spreading, focal adhesion formation, focal adhesion kinase tyrosine phosphorylation, and fibronectin matrix assembly. None of the β1 mutants tested shows this property, indicating that the dominant negative effect depends on the specific combination of common and B subdomains, rather than from the absence of the A subdomain in the β1B isoform. PMID:9529373

  19. beta1-integrin cytoplasmic subdomains involved in dominant negative function.

    PubMed

    Retta, S F; Balzac, F; Ferraris, P; Belkin, A M; Fässler, R; Humphries, M J; De Leo, G; Silengo, L; Tarone, G

    1998-04-01

    The beta1-integrin cytoplasmic domain consists of a membrane proximal subdomain common to the four known isoforms ("common" region) and a distal subdomain specific for each isoform ("variable" region). To investigate in detail the role of these subdomains in integrin-dependent cellular functions, we used beta1A and beta1B isoforms as well as four mutants lacking the entire cytoplasmic domain (beta1TR), the variable region (beta1COM), or the common region (beta1 deltaCOM-B and beta1 deltaCOM-A). By expressing these constructs in Chinese hamster ovary and beta1 integrin-deficient GD25 cells (Wennerberg et al., J Cell Biol 132, 227-238, 1996), we show that beta1B, beta1COM, beta1 deltaCOM-B, and beta1 deltaCOM-A molecules are unable to support efficient cell adhesion to matrix proteins. On exposure to Mn++ ions, however, beta1B, but none of the mutants, can mediate cell adhesion, indicating specific functional properties of this isoform. Analysis of adhesive functions of transfected cells shows that beta1B interferes in a dominant negative manner with beta1A and beta3/beta5 integrins in cell spreading, focal adhesion formation, focal adhesion kinase tyrosine phosphorylation, and fibronectin matrix assembly. None of the beta1 mutants tested shows this property, indicating that the dominant negative effect depends on the specific combination of common and B subdomains, rather than from the absence of the A subdomain in the beta1B isoform.

  20. Cytoplasmic dynein is associated with slow axonal transport.

    PubMed Central

    Dillman, J F; Dabney, L P; Pfister, K K

    1996-01-01

    Neuronal function is dependent on the transport of materials from the cell body to the synapse via anterograde axonal transport. Anterograde axonal transport consists of several components that differ in both rate and protein composition. In fast transport, membranous organelles are moved along microtubules by the motor protein kinesin. The cytoskeleton and the cytomatrix proteins move in the two components of slow transport. While the mechanisms underlying slow transport are unknown, it has been hypothesized that the movement of microtubules in slow transport is generated by sliding. To determine whether dynein, a motor protein that causes microtubule sliding in flagella, may play a role in slow axonal transport, we identified the transport rate components with which cytoplasmic dynein is associated in rat optic nerve. Nearly 80% of the anterogradely moving dynein was associated with slow transport, whereas only approximately 15% of the dynein was associated with the membranous organelles of anterograde fast axonal transport. A segmental analysis of the transport of dynein through contiguous regions of the optic nerve and tract showed that dynein is associated with the microfilaments and other proteins of slow component b. Dynein from this transport component has the capacity to bind microtubules in vitro. These results are consistent with the hypothesis that cytoplasmic dynein generates the movement of microtubules in slow axonal transport. A model is presented to illustrate how dynein attached to the slow component b complex of proteins is appropriately positioned to generate force of the correct polarity to slide microtubules down the axon. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8552592

  1. [Possible role of the cytoplasm in the course of morphogenesis, namely, in the case of twinning].

    PubMed

    Giroud, A

    1975-01-01

    A number of facts that cannot be interpreted in terms of nuclear genes would seem to be interpretable in terms of cytoplasmic heredity. The hereditary role of the mitochondria has already been demonstrated in molds. The role of the cytoplasm (matrilineal heredity) has also been shown in some phanerogams, and analogous facts have been noted in insects and molluscs. In amphibians, the influence of an alteration of the egg cortical cytoplasm has been shown to reappear in the following generations. This cortical cytoplasm includes the morphological plan of the organism with its bilateral symmetry. In Tatusia novemcincta the twins may be morphologically or chemically different, which may only be explained by an unequal subdivision of a heterogenic cytoplasm. Similar facts are observed in human twinning. Monozygotic twins are usually discordant with respect to congenital malformations (especially symmelia and anencephaly), which may only be interpreted in terms of unequal distribution of cytoplasmic properties.

  2. Novel origin of lamin-derived cytoplasmic intermediate filaments in tardigrades.

    PubMed

    Hering, Lars; Bouameur, Jamal-Eddine; Reichelt, Julian; Magin, Thomas M; Mayer, Georg

    2016-02-03

    Intermediate filament (IF) proteins, including nuclear lamins and cytoplasmic IF proteins, are essential cytoskeletal components of bilaterian cells. Despite their important role in protecting tissues against mechanical force, no cytoplasmic IF proteins have been convincingly identified in arthropods. Here we show that the ancestral cytoplasmic IF protein gene was lost in the entire panarthropod (onychophoran + tardigrade + arthropod) rather than arthropod lineage and that nuclear, lamin-derived proteins instead acquired new cytoplasmic roles at least three times independently in collembolans, copepods, and tardigrades. Transcriptomic and genomic data revealed three IF protein genes in the tardigrade Hypsibius dujardini, one of which (cytotardin) occurs exclusively in the cytoplasm of epidermal and foregut epithelia, where it forms belt-like filaments around each epithelial cell. These results suggest that a lamin derivative has been co-opted to enhance tissue stability in tardigrades, a function otherwise served by cytoplasmic IF proteins in all other bilaterians.

  3. Maternal transmission of cytoplasmic DNA in interspecific hybrids of peat mosses, Sphagnum (Bryophyta).

    PubMed

    Natcheva, R; Cronberg, N

    2007-07-01

    The progeny of spontaneous interspecific hybrid sporophytes of Sphagnum were used to analyse the inheritance of cytoplasmic DNA. The analysis showed that only the female parent donated chloroplasts and mitochondria in Sphagnum hybrids. Thus, this is the first study demonstrating maternal cytoplasmic inheritance in a nonvascular land plant. This finding has important implications for phylogenetic reconstructions utilizing chloroplast and mitochondrial DNA sequences as well as for the evolution of cytoplasmic inheritance in relation to the life cycle of land plants.

  4. Identification of cytoplasm types in rapeseed (Brassica napus L.) accessions by a multiplex PCR assay.

    PubMed

    Zhao, H X; Li, Z J; Hu, S W; Sun, G L; Chang, J J; Zhang, Z H

    2010-08-01

    Cytoplasmic male sterility (CMS) has widely been used as an efficient pollination control system in rapeseed hybrid production. Identification of cytoplasm type of rapeseed accessions is becoming the most important basic work for hybrid-rapeseed breeding. In this study, we report a simple multiplex PCR method to distinguish the existing common cytoplasm resources, Pol, Nap, Cam, Ogu and Ogu-NWSUAF cytoplasm, in rapeseed. Cytoplasm type of 35 F(1) hybrids and 140 rapeseed open pollinated varieties or breeding lines in our rapeseed breeding programme were tested by this method. The results indicated that 10 of 35 F(1) hybrids are the Nap, and 25 the Pol cytoplasm type, which is consistent with the information provided by the breeders. Out of 140 accessions tested, 100 (71.4%), 21 (15%) and 19 (13.6%) accessions possess Nap, Cam and Pol cytoplasm, respectively. All 19 accessions with Pol cytoplasm are from China. Pedigree analysis indicated that these accessions with Pol cytoplasm were either restorers for Pol CMS, including Shaan 2C, Huiyehui, 220, etc. or derived from hybrids with Pol CMS as female parent. Our molecular results are consistent with those of the classical testcross, suggesting the reliability of this method. The multiplex PCR assay method can be applied to CMS "three-line" breeding, selection and validation of hybrid rapeseed.

  5. Amphibian egg cytoplasm response to altered g-forces and gravity orientation

    NASA Technical Reports Server (NTRS)

    Neff, A. W.; Smith, R. C.; Malacinski, G. M.

    1986-01-01

    Elucidation of dorsal/ventral polarity and primary embryonic axis development in amphibian embryos requires an understanding of cytoplasmic rearrangements in fertile eggs at the biophysical, physiological, and biochemical levels. Evidence is presented that amphibian egg cytoplasmic components are compartmentalized. The effects of altered orientation to the gravitational vector (i.e., egg inversion) and alterations in gravity force ranging from hypergravity (centrifugation) to simulated microgravity (i.e., horizontal clinostat rotation) on cytoplasmic compartment rearrangements are reviewed. The behavior of yolk compartments as well as a newly defined (with monoclonal antibody) nonyolk cytoplasmic compartment, in inverted eggs and in eggs rotated on horizontal clinostats at their buoyant density, is discussed.

  6. Effects of alien and intraspecies cytoplasms on manifestation of nuclear genes for wheat resistance to brown rust: II. Specificity of cytoplasm influence on different Lr genes

    SciTech Connect

    Voluevich, E.A.; Buloichik, A.A.; Palilova, A.N.

    1995-04-01

    Specificity of expression of the major nuclear genes Lr to two brown rust clones in hybrids with the same maternal cytoplasm was analyzed. It was evaluated by a resistant: susceptible ratio in the F{sub 2}. Reciprocal hybrids were obtained from the cross between the progeny of homozygous susceptible plants of the cultivar Penjamo 62 and its alloplasmatic lines carrying cytoplasms of Triticum dicoccoides var. fulvovillosum, Aegilops squarrosa var. typical, Agropyron trichophorum, and isogenic lines of the cultivar Thatcher (Th) with the Lr1, Lr9, Lr15, and Lr19 genes. It was shown that the effect of the Lr1 gene in the cytoplasm of cultivar Thatcher and in eu-, and alloplasmatic forms of Penjamo 62 was less expressed than that of other Lr genes. Cytoplasm of the alloplasmatic line (dicoccoides)-Penjamo 62 was the only exception: in the F{sub 2}, hybrids with Th (Lr1) had a higher yield of resistant forms than those with Th (Lr15). In the hybrid combinations studied, expression and/or transmission of the Lr19 gene was more significant than that of other genes. This gene had no advantages over Lr15 and Lr19 only in cytoplasm of the alloplasmatic line (squarrosa)-Penjamo 62. In certain hybrid cytoplasms, the display of the Lr1, Lr15, and Lr19 genes, in contrast to Lr9, varied with the virulence of the pathogen clones. 15 refs., 5 tabs.

  7. A Brevibacillus choshinensis system that secretes cytoplasmic proteins.

    PubMed

    Horne, Irene; Williams, Michelle; Sutherland, Tara D; Russell, Robyn J; Oakeshott, John G

    2004-01-01

    Brevibacillus choshinensis has previously been shown to be a useful strain for the secretion of heterologous proteins via the Sec secretory pathway. This pathway involves the secretion of proteins prior to folding, whereas the alternative TAT (twin-arginine translocation) pathway enables pre-folded proteins to be secreted. We have modified the signal peptide of the Brevibacillus expression vector pNCMO2 to accommodate a Sec avoidance signal as well as the twin arginines required for secretion via the TAT system. Use of this modified signal peptide with the phosphotriesterase OpdA enabled B. choshinensis transformants to express and secrete the enzyme in an active and substantially pure form. The system was also used successfully to secrete two cytoplasmic proteins, the phosphotriesterase HocA from Pseudomonas monteilii and the phenylcarbamate-degrading enzyme, PCD, from Arthrobacter oxydans. The inhibitors carbonyl cyanide m-chlorophenyl hydrazine and sodium azide were used to confirm that secretion was occurring via the TAT secretion pathway. The modified B. choshinensis system we have developed may have general utility in secreting a wide range of heterologous proteins in active and conveniently processed form.

  8. Cytoplasmic dynein: a key player in neurodegenerative and neurodevelopmental diseases.

    PubMed

    Chen, Xiang-Jun; Xu, Huan; Cooper, Helen M; Liu, Yaobo

    2014-04-01

    Cytoplasmic dynein is the most important molecular motor driving the movement of a wide range of cargoes towards the minus ends of microtubules. As a molecular motor protein, dynein performs a variety of basic cellular functions including organelle transport and centrosome assembly. In the nervous system, dynein has been demonstrated to be responsible for axonal retrograde transport. Many studies have revealed direct or indirect evidence of dynein in neurodegenerative diseases such as amyotrophic lateral sclerosis, Charcot-Marie-Tooth disease, Alzheimer's disease, Parkinson's disease and Huntington's disease. Among them, a number of mutant proteins involved in various neurodegenerative diseases interact with dynein. Axonal transport disruption is presented as a common feature occurring in neurodegenerative diseases. Dynein heavy chain mutant mice also show features of neurodegenerative diseases. Moreover, defects of dynein-dependent processes such as autophagy or clearance of aggregation-prone proteins are found in most of these diseases. Lines of evidence have also shown that dynein is associated with neurodevelopmental diseases. In this review, we focus on dynein involvement in different neurological diseases and discuss potential underlying mechanisms.

  9. Functional regions of the mouse interleukin-10 receptor cytoplasmic domain.

    PubMed Central

    Ho, A S; Wei, S H; Mui, A L; Miyajima, A; Moore, K W

    1995-01-01

    The functions of wild-type and mutant mouse interleukin-10 receptors (mIL-10R) expressed in murine Ba/F3 cells were studied. As observed previously, IL-10 stimulates proliferation of IL-10R-expressing Ba/F3 cells. Accumulation of viable cells in the proliferation assay is to a significant extent balanced by concomitant cell death. Moreover, growth in IL-10 also induces a previously unrecognized response, differentiation of the cells, as evidenced both by formation of large clusters of cells in cultures with IL-10 and by induction or enhancement of expression of several cell surface antigens, including CD32/16, CD2, LECAM-1 (v-selectin), and heat-stable antigen. Two distinct functional regions near the C terminus of the mIL-10R cytoplasmic domain which mediate proliferation were identified; one of these regions also mediates the differentiation response. A third region proximal to the transmembrane domain was identified; removal of this region renders the cell 10- to 100-fold more sensitive to IL-10 in the proliferation assay. In cells expressing both wild-type and mutant IL-10R, stimulation with IL-10 leads to tyrosine phosphorylation of the kinases JAK1 and TYK2 but not JAK2 or JAK3 under the conditions tested. PMID:7544437

  10. Gram's Stain Does Not Cross the Bacterial Cytoplasmic Membrane.

    PubMed

    Wilhelm, Michael J; Sheffield, Joel B; Sharifian Gh, Mohammad; Wu, Yajing; Spahr, Christian; Gonella, Grazia; Xu, Bolei; Dai, Hai-Lung

    2015-07-17

    For well over a century, Hans Christian Gram's famous staining protocol has been the standard go-to diagnostic for characterizing unknown bacteria. Despite continuous and ubiquitous use, we now demonstrate that the current understanding of the molecular mechanism for this differential stain is largely incorrect. Using the fully complementary time-resolved methods: second-harmonic light-scattering and bright-field transmission microscopy, we present a real-time and membrane specific quantitative characterization of the bacterial uptake of crystal-violet (CV), the dye used in Gram's protocol. Our observations contradict the currently accepted mechanism which depicts that, for both Gram-negative and Gram-positive bacteria, CV readily traverses the peptidoglycan mesh (PM) and cytoplasmic membrane (CM) before equilibrating within the cytosol. We find that not only is CV unable to traverse the CM but, on the time-scale of the Gram-stain procedure, CV is kinetically trapped within the PM. Our results indicate that CV, rather than dyes which rapidly traverse the PM, is uniquely suited as the Gram stain.

  11. [Review article: Antineutrophil cytoplasmic antibody in small vessel vasculitis].

    PubMed

    Nakano, Hiromasa; Ozaki, Shoichi

    2010-05-01

    The vasculitides are defined by the presence of leukocytes in vessel walls with reactive damage to mural structures. Vasculitis may occur as a primary process or may be secondary to another underlying disease. In general, the affected vessels vary in size, type, and location in association with the specific vasculitic disorder. Classically, vasculitic syndromes have been categorized by the predominant sizes of the blood vessels and types of vessel most commonly affected among patients with the disorder. Currently, antineutrophil cytoplasmic antibody (ANCA) testing plays a critical role in the pathogenesis, diagnosis, and classification of vasculitides. Two types of ANCA assay (indirect immunofluorescence assay and enzyme-linked immunosorbent assay (ELISA)) are in wide use. Two major immunofluorescence patterns are observed, the C-ANCA and P-ANCA patterns. In vasculitis, the two relevant target antigens for ANCA are proteinase 3 (PR3) and myeloperoxidase (MPO). Antibodies with target specificities for PR3 and MPO are called PR3-ANCA and MPO-ANCA, respectively. Vasculitides associated with serum positivity for ANCA that affect small to medium-sized vessels are commonly known as ANCA-associated vasculitis and include Wegener's granulomatosis, microscopic polyangiitis, and Churg-Strauss syndrome. In this article, the pathogenesis of ANCA will be reviewed as well as the pitfalls regarding its clinical application.

  12. Cytoplasmic sphingosine-1-phosphate pathway modulates neuronal autophagy

    PubMed Central

    Moruno Manchon, Jose Felix; Uzor, Ndidi-Ese; Dabaghian, Yuri; Furr-Stimming, Erin E.; Finkbeiner, Steven; Tsvetkov, Andrey S.

    2015-01-01

    Autophagy is an important homeostatic mechanism that eliminates long-lived proteins, protein aggregates and damaged organelles. Its dysregulation is involved in many neurodegenerative disorders. Autophagy is therefore a promising target for blunting neurodegeneration. We searched for novel autophagic pathways in primary neurons and identified the cytosolic sphingosine-1-phosphate (S1P) pathway as a regulator of neuronal autophagy. S1P, a bioactive lipid generated by sphingosine kinase 1 (SK1) in the cytoplasm, is implicated in cell survival. We found that SK1 enhances flux through autophagy and that S1P-metabolizing enzymes decrease this flux. When autophagy is stimulated, SK1 relocalizes to endosomes/autophagosomes in neurons. Expression of a dominant-negative form of SK1 inhibits autophagosome synthesis. In a neuron model of Huntington’s disease, pharmacologically inhibiting S1P-lyase protected neurons from mutant huntingtin-induced neurotoxicity. These results identify the S1P pathway as a novel regulator of neuronal autophagy and provide a new target for developing therapies for neurodegenerative disorders. PMID:26477494

  13. Cytoplasmic pH and human erythrocyte shape.

    PubMed Central

    Gedde, M M; Davis, D K; Huestis, W H

    1997-01-01

    Altered external pH transforms human erythrocytes from discocytes to stomatocytes (low pH) or echinocytes (high pH). The mechanism of this transformation is unknown. The preceding companion study (Gedde and Huestis) demonstrated that these shape changes are not mediated by changes in membrane potential, as has been reported. The aim of this study was to identify the physiological properties that mediate this shape change. Red cells were placed in a wide range of physiological states by manipulation of buffer pH, chloride concentration, and osmolality. Morphology and four potential predictor properties (cell pH, membrane potential, cell water, and cell chloride concentration) were assayed. Analysis of the data set by stratification and nonlinear multivariate modeling showed that change in neither cell water nor cell chloride altered the morphology of normal pH cells. In contrast, change in cell pH caused shape change in normal-range membrane potential and cell water cells. The results show that change in cytoplasmic pH is both necessary and sufficient for the shape changes of human erythrocytes equilibrated in altered pH environments. PMID:9138569

  14. Electron microscopic localization of cytoplasmic myosin with ferritin- labeled antibodies

    PubMed Central

    1981-01-01

    We localized myosin in vertebrate nonmuscle cells by electron microscopy using purified antibodies coupled with ferritin. Native and formaldehyde-fixed filaments of purified platelet myosin filaments each consisting of approximately 30 myosin molecules bound an equivalent number of ferritin-antimyosin conjugates. In preparations of crude platelet actomyosin, the ferritin-antimyosin bound exclusively to similar short, 10-15 nm wide filaments. In both cases, binding of the ferritin-antimyosin to the myosin filaments was blocked by preincubation with unlabeled antimyosin. With indirect fluorescent antibody staining at the light microscope level, we found that the ferritin-antimyosin and unlabeled antimyosin stained HeLa cells identically, with the antibodies concentrated in 0.5-microns spots along stress fibers. By electron microscopy, we found that the concentration of ferritin-antimyosin in the dense regions of stress fibers was five to six times that in the intervening less dense regions, 20 times that in the cytoplasmic matrix, and 100 times that in the nucleus. These concentration differences may account for the light microscope antibody staining pattern of spread interphase cells. Some, but certainly not all, of the ferritin-antimyosin was associated with 10-15-nm filaments. In mouse intestinal epithelial cells, ferritin- antimyosin was located almost exclusively in the terminal web. In isolated brush borders exposed to 5 mM MgCl2, ferritin-antimyosin was also concentrated in the terminal web associated with 10-15-nm filaments. PMID:7193682

  15. Does a parthenogenesis-inducing Wolbachia induce vestigial cytoplasmic incompatibility?

    NASA Astrophysics Data System (ADS)

    Kraaijeveld, Ken; Reumer, Barbara M.; Mouton, Laurence; Kremer, Natacha; Vavre, Fabrice; van Alphen, Jacques J. M.

    2011-03-01

    Wolbachia is a maternally inherited bacterium that manipulates the reproduction of its host. Recent studies have shown that male-killing strains can induce cytoplasmic incompatibility (CI) when introgressed into a resistant host. Phylogenetic studies suggest that transitions between CI and other Wolbachia phenotypes have also occurred frequently, raising the possibility that latent CI may be widespread among Wolbachia. Here, we investigate whether a parthenogenesis-inducing Wolbachia strain can also induce CI. Parthenogenetic females of the parasitoid wasp Asobara japonica regularly produce a small number of males that may be either infected or not. Uninfected males were further obtained through removal of the Wolbachia using antibiotics and from a naturally uninfected strain. Uninfected females that had mated with infected males produced a slightly, but significantly more male-biased sex ratio than uninfected females that had mated with uninfected males. This effect was strongest in females that mated with males that had a relatively high Wolbachia titer. Quantitative PCR indicated that infected males did not show higher ratios of nuclear versus mitochondrial DNA content. Wolbachia therefore does not cause diploidization of cells in infected males. While these results are consistent with CI, other alternatives such as production of abnormal sperm by infected males cannot be completely ruled out. Overall, the effect was very small (9%), suggesting that if CI is involved it may have degenerated through the accumulation of mutations.

  16. Excreted Cytoplasmic Proteins Contribute to Pathogenicity in Staphylococcus aureus

    PubMed Central

    Ebner, Patrick; Rinker, Janina; Nguyen, Minh Thu; Popella, Peter; Nega, Mulugeta; Luqman, Arif; Schittek, Birgit; Di Marco, Moreno; Stevanovic, Stefan

    2016-01-01

    Excretion of cytoplasmic proteins in pro- and eukaryotes, also referred to as “nonclassical protein export,” is a well-known phenomenon. However, comparatively little is known about the role of the excreted proteins in relation to pathogenicity. Here, the impact of two excreted glycolytic enzymes, aldolase (FbaA) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), on pathogenicity was investigated in Staphylococcus aureus. Both enzymes bound to certain host matrix proteins and enhanced adherence of the bacterial cells to host cells but caused a decrease in host cell invasion. FbaA and GAPDH also bound to the cell surfaces of staphylococcal cells by interaction with the major autolysin, Atl, that is involved in host cell internalization. Surprisingly, FbaA showed high cytotoxicity to both MonoMac 6 (MM6) and HaCaT cells, while GAPDH was cytotoxic only for MM6 cells. Finally, the contribution of external FbaA and GAPDH to S. aureus pathogenicity was confirmed in an insect infection model. PMID:27001537

  17. Cytoplasmic dynein participates in the centrosomal localization of the Golgi complex

    PubMed Central

    1992-01-01

    The localization of the Golgi complex depends upon the integrity of the microtubule apparatus. At interphase, the Golgi has a restricted pericentriolar localization. During mitosis, it fragments into small vesicles that are dispersed throughout the cytoplasm until telophase, when they again coalesce near the centrosome. These observations have suggested that the Golgi complex utilizes a dynein-like motor to mediate its transport from the cell periphery towards the minus ends of microtubules, located at the centrosome. We utilized semi-intact cells to study the interaction of the Golgi complex with the microtubule apparatus. We show here that Golgi complexes can enter semi-intact cells and associate stably with cytoplasmic constituents. Stable association, termed here "Golgi capture," requires ATP hydrolysis and intact microtubules, and occurs maximally at physiological temperature in the presence of added cytosolic proteins. Once translocated into the semi-intact cell cytoplasm, exogenous Golgi complexes display a distribution similar to endogenous Golgi complexes, near the microtubule-organizing center. The process of Golgi capture requires cytoplasmic tubulin, and is abolished if cytoplasmic dynein is immunodepleted from the cytosol. Cytoplasmic dynein, prepared from CHO cell cytosol, restores Golgi capture activity to reactions carried out with dynein immuno-depleted cytosol. These results indicate that cytoplasmic dynein can interact with isolated Golgi complexes, and participate in their accumulation near the centrosomes of semi-intact, recipient cells. Thus, cytoplasmic dynein appears to play a role in determining the subcellular localization of the Golgi complex. PMID:1387874

  18. Morbillivirus and henipavirus attachment protein cytoplasmic domains differently affect protein expression, fusion support and particle assembly.

    PubMed

    Sawatsky, Bevan; Bente, Dennis A; Czub, Markus; von Messling, Veronika

    2016-05-01

    The amino-terminal cytoplasmic domains of paramyxovirus attachment glycoproteins include trafficking signals that influence protein processing and cell surface expression. To characterize the role of the cytoplasmic domain in protein expression, fusion support and particle assembly in more detail, we constructed chimeric Nipah virus (NiV) glycoprotein (G) and canine distemper virus (CDV) haemagglutinin (H) proteins carrying the respective heterologous cytoplasmic domain, as well as a series of mutants with progressive deletions in this domain. CDV H retained fusion function and was normally expressed on the cell surface with a heterologous cytoplasmic domain, while the expression and fusion support of NiV G was dramatically decreased when its cytoplasmic domain was replaced with that of CDV H. The cell surface expression and fusion support functions of CDV H were relatively insensitive to cytoplasmic domain deletions, while short deletions in the corresponding region of NiV G dramatically decreased both. In addition, the first 10 residues of the CDV H cytoplasmic domain strongly influence its incorporation into virus-like particles formed by the CDV matrix (M) protein, while the co-expression of NiV M with NiV G had no significant effect on incorporation of G into particles. The cytoplasmic domains of both the CDV H and NiV G proteins thus contribute differently to the virus life cycle.

  19. Effect of wild Helianthus cytoplasms on agronomic and oil characteristics of cultivated sunflower (H. annuus L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunflower (Helianthus annuus L.) productions reliance on a single source of cytoplasmic male-sterility, PET1, derived from H. petiolaris Nutt., makes the crop genetically vulnerable. Twenty diverse cytoplasmic substitution lines from annual and perennial wild species were compared with the inbred li...

  20. Response of amphibian egg non-yolk cytoplasm to gravity orientation

    NASA Technical Reports Server (NTRS)

    Smith, R. C.; Neff, A. W.; Malacinski, G. M.

    1985-01-01

    In order to study amphibian egg cytoplasmic organization and egg symmetrization at the molecular level, a library of seventeen monoclonal antibodies (MoAbs) against Xenopus laevis non-yolk egg proteins was produced. Several of these MoAbs react with non-yolk cytoplasmic antigens which are unevenly distributed in the fertile Xenopus egg.

  1. Cytoplasmic pathway followed by chloride ions to enter the CFTR channel pore.

    PubMed

    El Hiani, Yassine; Negoda, Alexander; Linsdell, Paul

    2016-05-01

    Most ATP-binding cassette (ABC) proteins function as ATP-dependent membrane pumps. One exception is the cystic fibrosis transmembrane conductance regulator (CFTR), an ABC protein that functions as a Cl(-) ion channel. As such, the CFTR protein must form a continuous pathway for the movement of Cl(-) ions from the cytoplasm to the extracellular solution when in its open channel state. Extensive functional investigations have characterized most parts of this Cl(-) permeation pathway. However, one region remains unexplored-the pathway connecting the cytoplasm to the membrane-spanning pore. We used patch clamp recording and extensive substituted cysteine accessibility mutagenesis to identify amino acid side-chains in cytoplasmic regions of CFTR that lie close to the pathway taken by Cl(-) ions as they pass from the cytoplasm through this pathway. Our results suggest that Cl(-) ions enter the permeation pathway via a single lateral tunnel formed by the cytoplasmic parts of the protein, and then follow a fairly direct central pathway towards the membrane-spanning parts of the protein. However, this pathway is not lined continuously by any particular part of the protein; instead, the contributions of different cytoplasmic regions of the protein appear to change as the permeation pathway approaches the membrane, which appears to reflect the ways in which different cytoplasmic regions of the protein are oriented towards its central axis. Our results allow us to define for the first time the complete Cl(-) permeation pathway in CFTR, from the cytoplasm to the extracellular solution.

  2. TRIM5{alpha} association with cytoplasmic bodies is not required for antiretroviral activity

    SciTech Connect

    Song, Byeongwoon; Diaz-Griffero, Felipe; Park, Do Hyun; Rogers, Thomas; Stremlau, Matthew; Sodroski, Joseph . E-mail: joseph_sodroski@dfci.harvard.edu

    2005-12-20

    The tripartite motif (TRIM) protein, TRIM5{alpha}, restricts infection by particular retroviruses. Many TRIM proteins form cytoplasmic bodies of unknown function. We investigated the relationship between cytoplasmic body formation and the structure and antiretroviral activity of TRIM5{alpha}. In addition to diffuse cytoplasmic staining, the TRIM5{alpha} proteins from several primate species were located in cytoplasmic bodies of different sizes; by contrast, TRIM5{alpha} from spider monkeys did not form cytoplasmic bodies. Despite these differences, all of the TRIM5{alpha} proteins exhibited the ability to restrict infection by particular retroviruses. Treatment of cells with geldanamycin, an Hsp90 inhibitor, resulted in disappearance or reduction of the TRIM5{alpha}-associated cytoplasmic bodies, yet exerted little effect on the restriction of retroviral infection. Studies of green fluorescent protein-TRIM5{alpha} fusion proteins indicated that no TRIM5{alpha} domain is specifically required for association with cytoplasmic bodies. Apparently, the formation of cytoplasmic bodies is not required for the antiretroviral activity of TRIM5{alpha}.

  3. Different desmin peptides are distinctly deposited in cytoplasmic aggregations and cytoplasm of desmin-related cardiomyopathy patients.

    PubMed

    Shintani-Domoto, Yukako; Hayasaka, Takahiro; Maeda, Daichi; Masaki, Noritaka; Ito, Takashi K; Sakuma, Kei; Tanaka, Michio; Kabashima, Katsuya; Takei, Shiro; Setou, Mitsutoshi; Fukayama, Masashi

    2017-03-21

    Desmin-related cardiomyopathy is a heterogeneous group of myofibrillar myopathies characterized by aggregates of desmin and related proteins in myocytes. It has been debated how the expression and protein structure are altered in the aggregates and other parts of myocytes in patients. To address this question, we investigated the proteome quantification as well as localization in formalin-fixed and paraffin-embedded specimens of the heart of patients by imaging mass spectrometry and liquid chromatography-mass spectrometry analyses. Fifteen tryptic peptide signals were enriched in the desmin-related cardiomyopathy myocardium, twelve of which were identified as desmin peptides with 14.3- to 27.3-fold increase compared to normal hearts. High-intensity signals at m/z 1032.5 and 1002.5, which were desmin peptides 59-70 at the head portion and 213-222 at the 1B domain, were with infrequent colocalization distributed not only in desmin-positive intracytoplasmic aggregates but also in histologically normal cytoplasm, indicating that desmin protein is fragmented and different types of naturally-occurring truncated proteins ectopically assemble throughout the heart of patients. Thus, in addition to conventional histological identification of protein aggregates, specific desmin peptides show a marked difference in quantity and localization in a tissue section of desmin-related cardiomyopathy and differentiate from other cardiomyopathies. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.

  4. Tubulin dynamics during the cytoplasmic cohesiveness cycle in artificially activated sea urchin eggs.

    PubMed

    Coffe, G; Foucault, G; Raymond, M N; Pudles, J

    1983-12-01

    Sedimentation studies and [3H]colchicine-binding assays have demonstrated a relationship between the cytoplasmic cohesiveness cycles and the changes in tubulin organization in Paracentrotus lividus eggs activated by 2.5 mM procaine. The same amount of tubulin (20-25% of the total egg tubulin) is involved in these cyclic process and appears to undergo polymerization and depolymerization cycles. Electron microscopy studies reveal that the microtubules formed during these cytoplasmic cohesiveness cycles are under a particulate form which is sedimentable at low speed. Activation experiments carried out in the presence of cytochalasin B (CB) show that the increase in the cytoplasmic cohesiveness is highly reduced while tubulin polymerization and depolymerization cycles and pronuclear centration are not affected. Although tubulin or actin polymerization can be independently triggered in procaine-activated eggs, the increase in cytoplasmic cohesiveness requires the polymerization of both proteins. However, the cytoplasmic cohesiveness cycles appear to be regulated by tubulin polymerization and depolymerization cycles.

  5. [Wegener's granulomatosis with anti-neutrophil cytoplasmic antibodies against anti-cathepsin G antigen].

    PubMed

    Ocaña Pérez, E; Peña Casas, A M; del Campo Muñoz, T; Avila Casas, A; Luque Barona, R

    2013-12-01

    Wegener's granulomatosis belongs to the group of small vessel vasculitis associated with anti-neutrophil cytoplasmic antibodies characterized by granulomatous inflammation and necrotising vasculitis in various organs with particular involvement of the upper and lower respiratory tracts and kidneys. Wegener's granulomatosis is a rare disorder in childhood and early diagnosis of this disease is critical to the long-term prognosis of the disease. The presence of positive cytoplasmic antineutrophil cytoplasmic antibody staining or a high titre of proteinase 3 antibodies were added as new criteria of vasculitis in childhood. This article presents a case of Wegener's granulomatosis, with the presence of anti-neutrophil cytoplasm antibodies with cytoplasmic pattern with absence of anti-proteinase 3 antibodies and presence of high levels of anti-cathepsin G antibodies, rarely described in Wegener's granulomatosis.

  6. Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria.

    PubMed

    Robinson, Michael-Paul; Ke, Na; Lobstein, Julie; Peterson, Cristen; Szkodny, Alana; Mansell, Thomas J; Tuckey, Corinna; Riggs, Paul D; Colussi, Paul A; Noren, Christopher J; Taron, Christopher H; DeLisa, Matthew P; Berkmen, Mehmet

    2015-08-27

    Current methods for producing immunoglobulin G (IgG) antibodies in engineered cells often require refolding steps or secretion across one or more biological membranes. Here, we describe a robust expression platform for biosynthesis of full-length IgG antibodies in the Escherichia coli cytoplasm. Synthetic heavy and light chains, both lacking canonical export signals, are expressed in specially engineered E. coli strains that permit formation of stable disulfide bonds within the cytoplasm. IgGs with clinically relevant antigen- and effector-binding activities are readily produced in the E. coli cytoplasm by grafting antigen-specific variable heavy and light domains into a cytoplasmically stable framework and remodelling the fragment crystallizable domain with amino-acid substitutions that promote binding to Fcγ receptors. The resulting cytoplasmic IgGs—named 'cyclonals'—effectively bypass the potentially rate-limiting steps of membrane translocation and glycosylation.

  7. Cytoplasmic molecular delivery with shock waves: importance of impulse.

    PubMed Central

    Kodama, T; Hamblin, M R; Doukas, A G

    2000-01-01

    Cell permeabilization using shock waves may be a way of introducing macromolecules and small polar molecules into the cytoplasm, and may have applications in gene therapy and anticancer drug delivery. The pressure profile of a shock wave indicates its energy content, and shock-wave propagation in tissue is associated with cellular displacement, leading to the development of cell deformation. In the present study, three different shock-wave sources were investigated; argon fluoride excimer laser, ruby laser, and shock tube. The duration of the pressure pulse of the shock tube was 100 times longer than the lasers. The uptake of two fluorophores, calcein (molecular weight: 622) and fluorescein isothiocyanate-dextran (molecular weight: 71,600), into HL-60 human promyelocytic leukemia cells was investigated. The intracellular fluorescence was measured by a spectrofluorometer, and the cells were examined by confocal fluorescence microscopy. A single shock wave generated by the shock tube delivered both fluorophores into approximately 50% of the cells (p < 0.01), whereas shock waves from the lasers did not. The cell survival fraction was >0.95. Confocal microscopy showed that, in the case of calcein, there was a uniform fluorescence throughout the cell, whereas, in the case of FITC-dextran, the fluorescence was sometimes in the nucleus and at other times not. We conclude that the impulse of the shock wave (i.e., the pressure integrated over time), rather than the peak pressure, was a dominant factor for causing fluorophore uptake into living cells, and that shock waves might have changed the permeability of the nuclear membrane and transferred molecules directly into the nucleus. PMID:11023888

  8. Characterization of a cytoplasmic trehalase of Escherichia coli.

    PubMed

    Horlacher, R; Uhland, K; Klein, W; Ehrmann, M; Boos, W

    1996-11-01

    Escherichia coli can synthesize trehalose in response to osmotic stress and is able to utilize trehalose as a carbon source. The pathway of trehalose utilization is different at low and high osmolarity. At high osmolarity, a periplasmic trehalase (TreA) is induced that hydrolyzes trehalose in the periplasm to glucose. Glucose is then taken up by the phosphotransferase system. At low osmolarity, trehalose is taken up by a trehalose-specific enzyme II of the phosphotransferase system as trehalose-6-phosphate and then is hydrolyzed to glucose and glucose-6-phosphate. Here we report a novel cytoplasmic trehalase that hydrolyzes trehalose to glucose. treF, the gene encoding this enzyme, was cloned under ara promoter control. The enzyme (TreF) was purified from extracts of an overexpressing strain and characterized biochemically. It is specific for trehalose exhibiting a Km of 1.9 mM and a Vmax of 54 micromol of trehalose hydrolyzed per min per mg of protein. The enzyme is monomeric, exhibits a broad pH optimum at 6.0, and shows no metal dependency. TreF has a molecular weight of 63,703 (549 amino acids) and is highly homologous to TreA. The nonidentical amino acids of TreF are more polar and more acidic than those of TreA. The expression of treF as studied by the expression of a chromosomal treF-lacZ fusion is weakly induced by high osmolarity of the medium and is partially dependent on RpoS, the stationary-phase sigma factor. Mutants producing 17-fold more TreF than does the wild type were isolated.

  9. How is the cytoplasmic calcium concentration controlled in nerve terminals?

    PubMed

    Blaustein, M P; McGraw, C F; Somlyo, A V; Schweitzer, E S

    1980-09-01

    1. The ability of intraterminal organelles to sequester calcium and buffer the cytoplasmic free Ca2+ concentration ([Ca2+]i) has been investigated in isolated mammalian presynaptic nerve terminals (synaptosomes). A combination of biochemical and morphological methods has been used. 2. When the plasmalemma of synaptosomes is disrupted by osmotic shock or saponin, Ca from the medium can be sequestered by two types of intraterminal organelles in the presence of ATP. 2. Typical mitochondrial poisons (e.g., oligomycin, azide and 2,4-dinitrophenol) block the Ca uptake into one type of organelle (mitochondria); the second type of organelle, which has a higher affinity for Ca (half-saturation congruent to 0.35 microM Ca2+) is spared by the mitochondrial poisons. 4. When the "leaky" synaptosomes are incubated in media containing oxalate, and then fixed and prepared for electron microscopy, electron-dense deposits are observed in the intraterminal mitochondria and smooth endoplasmic reticulum (SER). Mitochondrial poisons block the formation of the deposits in the mitochondria, but spare the SER. 5. X-ray microprobe analysis demonstrates that these deposits contain Ca. 6. Experiments with the Ca-sensitive metallochromic indicator, arsenazo III, demonstrate that the intraterminal organelles in the "leaky" synaptosomes can buffer Ca2+ in the medium to below 5 X 10(-7) M. With small (physiological) Ca loads, the Ca2+ is effectively buffered (to < 5 X 10(-7) M) even in the presence of mitochondrial poisons. 7. The data indicate that the SER in presynaptic terminals may play an important role in helping to buffer the Ca that normally enters during neuronal activity.

  10. Molecular mechanism of motion and force generation by cytoplasmic dynein

    NASA Astrophysics Data System (ADS)

    Gennerich, Arne

    2013-03-01

    Cytoplasmic dynein is an intricate microtubule (MT) motor with four AAA (ATPase associated with various cellular activities) ATPases per head domain. Dynein homodimers take hundreds of consecutive steps, during which the leading and trailing heads experience intramolecular tension in opposite directions. We hypothesize that this asymmetry may differentially regulate the MT-binding and ATPase functions in each head, thereby facilitating processive movement. Here, we elucidate the function of tension in regulating dynein-MT interactions, and dissect the roles of its multiple AAA subunits in effecting and modulating this behavior. Using optical tweezers to measure unbinding forces of single S. cerevisiae dynein heads in the absence of nucleotide, we show that intrinsic dynein-MT binding is significantly weaker under forward (MT-minus-end directed) tension than under rearward tension. Thus, forward tension likely promotes rear head detachment in the dimeric motor. The nucleotide states of specific AAA sites modify this intrinsic behavior. Mutational analysis shows that ATP binding to AAA1 substantially weakens MT binding. Moreover, ADP binding to AAA3 `locks' dynein in a previously undescribed, weak MT-binding state with a relatively symmetric response to tension. Interestingly, tension also affects nucleotide affinity: ADP affinity is lower under rearward than under forward load, suggesting that the front head preferentially releases ADP (likely from AAA3), perhaps driving a transition from an ADP state with relatively weak MT attachment to a strongly MT-attached, nucleotide-free state. Our analysis suggests that intramolecular tension is key to dynein motility, and highlights the importance of including multiple AAA ATPases in models for dynein mechanochemistry. NIH R01GM098469

  11. Impaired cytoplasmic ionized calcium mobilization in inherited platelet secretion defects

    SciTech Connect

    Rao, A.K.; Kowalska, M.A.; Disa, J. )

    1989-08-01

    Defects in platelet cytoplasmic Ca++ mobilization have been postulated but not well demonstrated in patients with inherited platelet secretion defects. We describe studies in a 42-year-old white woman, referred for evaluation of easy bruising, and her 23-year-old son. In both subjects, aggregation and {sup 14}C-serotonin secretion responses in platelet-rich plasma (PRP) to adenosine diphosphate (ADP), epinephrine, platelet activating factor (PAF), arachidonic acid (AA), U46619, and ionophore A23187 were markedly impaired. Platelet ADP and adenosine triphosphate (ATP), contents and thromboxane synthesis induced by thrombin and AA were normal. In quin2-loaded platelets, the basal intracellular Ca++ concentration, (Ca++)i, was normal; however, peak (Ca++)i measured in the presence of 1 mmol/L external Ca++ was consistently diminished following activation with ADP (25 mumol/L), PAF (20 mumol/L), collagen (5 micrograms/mL), U46619 (1 mumol/L), and thrombin (0.05 to 0.5 U/mL). In aequorin-loaded platelets, the peak (Ca++)i studied following thrombin (0.05 and 0.5 U/mL) stimulation was diminished. Myosin light chain phosphorylation following thrombin (0.05 to 0.5 U/mL) stimulation was comparable with that in the normal controls, while with ADP (25 mumol/L) it was more strikingly impaired in the propositus. We provide direct evidence that at least in some patients with inherited platelet secretion defects, agonist-induced Ca++ mobilization is impaired. This may be related to defects in phospholipase C activation. These patients provide a unique opportunity to obtain new insights into Ca++ mobilization in platelets.

  12. Microtubule assembly in cytoplasmic extracts of Xenopus oocytes and eggs

    PubMed Central

    1987-01-01

    We have investigated the differences in microtubule assembly in cytoplasm from Xenopus oocytes and eggs in vitro. Extracts of activated eggs could be prepared that assembled extensive microtubule networks in vitro using Tetrahymena axonemes or mammalian centrosomes as nucleation centers. Assembly occurred predominantly from the plus-end of the microtubule with a rate constant of 2 microns.min-1.microM-1 (57 s- 1.microM-1). At the in vivo tubulin concentration, this corresponds to the extraordinarily high rate of 40-50 microns.min-1. Microtubule disassembly rates in these extracts were -4.5 microns.min-1 (128 s-1) at the plus-end and -6.9 microns.min-1 (196 s-1) at the minus-end. The critical concentration for plus-end microtubule assembly was 0.4 microM. These extracts also promoted the plus-end assembly of microtubules from bovine brain tubulin, suggesting the presence of an assembly promoting factor in the egg. In contrast to activated eggs, assembly was never observed in extracts prepared from oocytes, even at tubulin concentrations as high as 20 microM. Addition of oocyte extract to egg extracts or to purified brain tubulin inhibited microtubule assembly. These results suggest that there is a plus-end-specific inhibitor of microtubule assembly in the oocyte and a plus-end-specific promoter of assembly in the eggs. These factors may serve to regulate microtubule assembly during early development in Xenopus. PMID:3680377

  13. On the evolution of cytoplasmic incompatibility in haplodiploid species.

    PubMed

    Egas, Martijn; Vala, Filipa; Breeuwer, J A J Hans

    2002-06-01

    The most enigmatic sexual manipulation by Wolbachia endosymbionts is cytoplasmic incompatibility (CI): infected males are reproductively incompatible with uninfected females. In this paper, we extend the theory on population dynamics and evolution of CI, with emphasis on haplodiploid species. First, we focus on the problem of the threshold to invasion of the Wolbachia infection in a population. Simulations of the dynamics of infection in small populations show that it does not suffice to assume invasion by drift alone (or demographic "accident"). We propose several promising alternatives that may facilitate invasion of Wolbachia in uninfected populations: sex-ratio effects, meta population structure, and other fitness-compensating effects. Including sex-ratio effects of Wolbachia allows invasion whenever infected females produce more infected daughters than uninfected females produce uninfected daughters. Several studies on haplodiploid species suggest the presence of such sex-ratio effects. The simple metapopulation model we analyzed predicts that, given that infecteds are better "invaders," uninfecteds must be better "colonizers" to maintain coexistence of infected and uninfected patches. This condition seems more feasible for species that suffer local extinction due to predation (or parasitization) than for species that suffer local extinction due to overexploiting their resource(s). Finally, we analyze the evolution of CI in haplodiploids once a population has been infected. Evolution does not depend on the type of CI (female mortality or male production), but hinges solely on decreasing the fitness cost and/or increasing the transmission efficiency. Our models offer new perspectives for increasing our understanding of the population and evolutionary dynamics of CI.

  14. Studying Genome Heterogeneity within the Arbuscular Mycorrhizal Fungal Cytoplasm

    PubMed Central

    Halary, Sébastien; Bapteste, Eric; Hijri, Mohamed

    2015-01-01

    Although heterokaryons have been reported in nature, multicellular organisms are generally assumed genetically homogeneous. Here, we investigate the case of arbuscular mycorrhizal fungi (AMF) that form symbiosis with plant roots. The growth advantages they confer to their hosts are of great potential benefit to sustainable agricultural practices. However, measuring genetic diversity for these coenocytes is a major challenge: Within the same cytoplasm, AMF contain thousands of nuclei and show extremely high levels of genetic variation for some loci. The extent and physical location of polymorphism within and between AMF genomes is unclear. We used two complementary strategies to estimate genetic diversity in AMF, investigating polymorphism both on a genome scale and in putative single copy loci. First, we used data from whole-genome pyrosequencing of four AMF isolates to describe genetic diversity, based on a conservative network-based clustering approach. AMF isolates showed marked differences in genome-wide diversity patterns in comparison to a panel of control fungal genomes. This clustering approach further allowed us to provide conservative estimates of Rhizophagus spp. genomes sizes. Second, we designed new putative single copy genomic markers, which we investigated by massive parallel amplicon sequencing for two Rhizophagus irregularis and one Rhizophagus sp. isolates. Most loci showed high polymorphism, with up to 103 alleles per marker. This polymorphism could be distributed within or between nuclei. However, we argue that the Rhizophagus isolates under study might be heterokaryotic, at least for the putative single copy markers we studied. Considering that genetic information is the main resource for identification of AMF, we suggest that special attention is warranted for the study of these ecologically important organisms. PMID:25573960

  15. Targeted Cytoplasmic Irradiation with Alpha Particles Induces Mutations in Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Wu, Li-Jun; Randers-Pehrson, Gerhard; Xu, An; Waldren, Charles A.; Geard, Charles R.; Yu, Zengliang; Hei, Tom K.

    1999-04-01

    Ever since x-rays were shown to induce mutation in Drosophila more than 70 years ago, prevailing dogma considered the genotoxic effects of ionizing radiation, such as mutations and carcinogenesis, as being due mostly to direct damage to the nucleus. Although there was indication that alpha particle traversal through cellular cytoplasm was innocuous, the full impact remained unknown. The availability of the microbeam at the Radiological Research Accelerator Facility of Columbia University made it possible to target and irradiate the cytoplasm of individual cells in a highly localized spatial region. By using dual fluorochrome dyes (Hoechst and Nile Red) to locate nucleus and cellular cytoplasm, respectively, thereby avoiding inadvertent traversal of nuclei, we show here that cytoplasmic irradiation is mutagenic at the CD59 (S1) locus of human-hamster hybrid (AL) cells, while inflicting minimal cytotoxicity. The principal class of mutations induced are similar to those of spontaneous origin and are entirely different from those of nuclear irradiation. Furthermore, experiments with radical scavenger and inhibitor of intracellular glutathione indicated that the mutagenicity of cytoplasmic irradiation depends on generation of reactive oxygen species. These findings suggest that cytoplasm is an important target for genotoxic effects of ionizing radiation, particularly radon, the second leading cause of lung cancer in the United States. In addition, cytoplasmic traversal by alpha particles may be more dangerous than nuclear traversal, because the mutagenicity is accomplished by little or no killing of the target cells.

  16. Human Corin Isoforms with Different Cytoplasmic Tails That Alter Cell Surface Targeting*

    PubMed Central

    Qi, Xiaofei; Jiang, Jingjing; Zhu, Mingqing; Wu, Qingyu

    2011-01-01

    Corin is a cardiac serine protease that activates natriuretic peptides. It consists of an N-terminal cytoplasmic tail, a transmembrane domain, and an extracellular region with a C-terminal trypsin-like protease domain. The transmembrane domain anchors corin on the surface of cardiomyocytes. To date, the function of the corin cytoplasmic tail remains unknown. By examining the difference between human and mouse corin cytoplasmic tails, analyzing their gene sequences, and verifying mRNA expression in hearts, we show that both human and mouse corin genes have alternative exons encoding different cytoplasmic tails. Human corin isoforms E1 and E1a have 45 and 15 amino acids, respectively, in their cytoplasmic tails. In transfected HEK 293 cells and HL-1 cardiomyocytes, corin isoforms E1 and E1a were expressed at similar levels. Compared with isoform E1a, however, isoform E1 was more active in processing natriuretic peptides. By cell surface labeling, glycosidase digestion, Western blotting, and flow cytometry, we found that corin isoform E1 was activated more readily as a result of more efficient cell surface targeting. By mutagenesis, we identified a DDNN motif in the cytoplasmic tail of isoform E1 (which is absent in isoform E1a) that promotes corin surface targeting in both HEK 293 and HL-1 cells. Our data indicate that the sequence in the cytoplasmic tail plays an important role in corin cell surface targeting and zymogen activation. PMID:21518754

  17. Novel nuclear-cytoplasmic interaction in wheat (Triticum aestivum) induces vigorous plants.

    PubMed

    Soltani, Ali; Kumar, Ajay; Mergoum, Mohamed; Pirseyedi, Seyed Mostafa; Hegstad, Justin B; Mazaheri, Mona; Kianian, Shahryar F

    2016-03-01

    Interspecific hybridization can be considered an accelerator of evolution, otherwise a slow process, solely dependent on mutation and recombination. Upon interspecific hybridization, several novel interactions between nuclear and cytoplasmic genomes emerge which provide additional sources of diversity. The magnitude and essence of intergenomic interactions between nuclear and cytoplasmic genomes remain unknown due to the direction of many crosses. This study was conducted to address the role of nuclear-cytoplasmic interactions as a source of variation upon hybridization. Wheat (Triticum aestivum) alloplasmic lines carrying the cytoplasm of Aegilops mutica along with an integrated approach utilizing comparative quantitative trait locus (QTL) and epigenome analysis were used to dissect this interaction. The results indicate that cytoplasmic genomes can modify the magnitude of QTL controlling certain physiological traits such as dry matter weight. Furthermore, methylation profiling analysis detected eight polymorphic regions affected by the cytoplasm type. In general, these results indicate that novel nuclear-cytoplasmic interactions can potentially trigger an epigenetic modification cascade in nuclear genes which eventually change the genetic network controlling physiological traits. These modified genetic networks can serve as new sources of variation to accelerate the evolutionary process. Furthermore, this variation can synthetically be produced by breeders in their programs to develop epigenomic-segregating lines.

  18. Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins.

    PubMed Central

    Stewart, E J; Aslund, F; Beckwith, J

    1998-01-01

    Cytoplasmic proteins do not generally contain structural disulfide bonds, although certain cytoplasmic enzymes form such bonds as part of their catalytic cycles. The disulfide bonds in these latter enzymes are reduced in Escherichia coli by two systems; the thioredoxin pathway and the glutathione/glutaredoxin pathway. However, structural disulfide bonds can form in proteins in the cytoplasm when the gene (trxB) for the enzyme thioredoxin reductase is inactivated by mutation. This disulfide bond formation can be detected by assessing the state of the normally periplasmic enzyme alkaline phosphatase (AP) when it is localized to the cytoplasm. Here we show that the formation of disulfide bonds in cytoplasmic AP in the trxB mutant is dependent on the presence of two thioredoxins in the cell, thioredoxins 1 and 2, the products of the genes trxA and trxC, respectively. Our evidence supports a model in which the oxidized forms of these thioredoxins directly catalyze disulfide bond formation in cytoplasmic AP, a reversal of their normal role. In addition, we show that the recently discovered thioredoxin 2 can perform many of the roles of thioredoxin 1 in vivo, and thus is able to reduce certain essential cytoplasmic enzymes. Our results suggest that the three most effective cytoplasmic disulfide-reducing proteins are thioredoxin 1, thioredoxin 2 and glutaredoxin 1; expression of any one of these is sufficient to support aerobic growth. Our results help to explain how the reducing environment in the cytoplasm is maintained so that disulfide bonds do not normally occur. PMID:9755155

  19. Evidence for a novel cytoplasmic processing event in ribosome maturation in the sea urchin Paracentrotus lividus.

    PubMed

    Bellavia, Daniele; Barbieri, Rainer

    2010-06-01

    In this paper we demonstrate the existence of a cytoplasmic processing step, never before described, involving both the pre-ribosomal subunits in the sea urchin Paracentrotus lividus. Northern-blot hybridization, primer extension, S1 mapping experiments and in situ hybridizations allowed us to demonstrate that cytoplasmic processed particles are successively re-imported into the nucleus where maturation of their RNAs is completed prior to being exported to the cytoplasm. Our findings lead to the proposal of a new model of ribosome maturation and shuttling.

  20. Cytoplasmic streaming affects gravity-induced amyloplast sedimentation in maize coleoptiles

    NASA Technical Reports Server (NTRS)

    Sack, F. D.; Leopold, A. C.

    1985-01-01

    Living maize (Zea mays L.) coleoptile cells were observed using a horizontal microscope to determine the interaction between cytoplasmic streaming and gravity-induced amyloplast sedimentation. Sedimentation is heavily influenced by streaming which may (1) hasten or slow the velocity of amyloplast movement and (2) displace the plastid laterally or even upwards before or after sedimentation. Amyloplasts may move through transvacuolar strands or through the peripheral cytoplasm which may be divided into fine cytoplasmic strands of much smaller diameter than the plastids. The results indicate that streaming may contribute to the dynamics of graviperception by influencing amyloplast movement.

  1. Cytoplasm segmentation on cervical cell images using graph cut-based approach.

    PubMed

    Zhang, Ling; Kong, Hui; Chin, Chien Ting; Wang, Tianfu; Chen, Siping

    2014-01-01

    This paper proposes a method to segment the cytoplasm in cervical cell images using graph cut-based algorithm. First, the A* channel in CIE LAB color space is extracted for contrast enhancement. Then, in order to effectively extract cytoplasm boundaries when image histograms present non-bimodal distribution, Otsu multiple thresholding is performed on the contrast enhanced image to generate initial segments, based on which the segments are refined by the multi-way graph cut method. We use 21 cervical cell images with non-ideal imaging condition to evaluate cytoplasm segmentation performance. The proposed method achieved a 93% accuracy which outperformed state-of-the-art works.

  2. Novel nuclear-cytoplasmic interaction in wheat (Triticum aestivum) induces vigorous plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interspecific hybridization can be considered an accelerator of evolution, otherwise a slow process, solely dependent on mutation and recombination. Upon interspecific hybridization, several novel interactions between nuclear and cytoplasmic genomes emerge which provide additional sources of diversi...

  3. Structure and Function of the Nuclear Pore Complex Cytoplasmic mRNA Export Platform.

    PubMed

    Fernandez-Martinez, Javier; Kim, Seung Joong; Shi, Yi; Upla, Paula; Pellarin, Riccardo; Gagnon, Michael; Chemmama, Ilan E; Wang, Junjie; Nudelman, Ilona; Zhang, Wenzhu; Williams, Rosemary; Rice, William J; Stokes, David L; Zenklusen, Daniel; Chait, Brian T; Sali, Andrej; Rout, Michael P

    2016-11-17

    The last steps in mRNA export and remodeling are performed by the Nup82 complex, a large conserved assembly at the cytoplasmic face of the nuclear pore complex (NPC). By integrating diverse structural data, we have determined the molecular architecture of the native Nup82 complex at subnanometer precision. The complex consists of two compositionally identical multiprotein subunits that adopt different configurations. The Nup82 complex fits into the NPC through the outer ring Nup84 complex. Our map shows that this entire 14-MDa Nup82-Nup84 complex assembly positions the cytoplasmic mRNA export factor docking sites and messenger ribonucleoprotein (mRNP) remodeling machinery right over the NPC's central channel rather than on distal cytoplasmic filaments, as previously supposed. We suggest that this configuration efficiently captures and remodels exporting mRNP particles immediately upon reaching the cytoplasmic side of the NPC.

  4. Antibody against tuberlin: the specific visualization of cytoplasmic microtubules in tissue culture cells.

    PubMed Central

    Weber, K; Pollack, R; Bibring, T

    1975-01-01

    Cytoplasmic microtubules in tissue culture cells can be directly visualized by immunofluorescence microscopy. Antibody against tubulin from the outer doublets of sea urchin sperm flagella decorates a network of fine cytoplasmic fibers in a variety of cell lines of human, monkey, rat, mouse, and chicken origin. These fibers are separate and of uniform thickness and are seen throughout the cytoplasm. The fibers disappear either in a medium containing colchicine or after subjection of the cells to low temperature. The same treatments do not destroy the microfilamentous structures that are visualized by means of antibody against actin. When tryspin-treated enucleated cells are replated and then stained with antibody against tubulin, the fibers can be seen to traverse the entire enucleated cytoplasm. Images PMID:804694

  5. Hybridization using cytoplasmic male sterility and herbicide tolerance from nuclear genes

    SciTech Connect

    Beversdorf, W.D.; Erickson, L.R.; Grant, I.

    1987-04-14

    An improved process is described for producing a substantially homogeneous population of plants of a predetermined hybrid variety of a crop which is capable of undergoing both self-pollination and cross-pollination. This process comprises: growing in a first planting area a substantially random population of cytoplasmic male sterile plants which exhibit tolerance to at least one herbicide attributable solely to homozygous dominant nuclear genes, and male fertile plants which are capable of pollinating the cytoplasmic male sterile plants and which lack the herbicide tolerance because the presence of homozygous recessive nuclear genes for such trait. The cytoplasmic male sterile plants and the male fertile plants are pollinated with pollen derived from the male fertile plants. Seed is formed on the cytoplasmic male sterile plants and on the male fertile plants. Harvesting in bulk the seed is formed on the plants of the first planting area.

  6. Cytoplasm enhancement operator of peripheral blood smear images that are instable-stained and overexposed

    NASA Astrophysics Data System (ADS)

    Zheng, Xin; Wang, Guoyou; Liu, Jianguo

    2015-12-01

    Nucleus and cytoplasm are both essential for white blood cell recognition but the edges of cytoplasm are too blurry to be detected because of instable staining and overexposure. This paper aims at proposing a cytoplasm enhancement operator (CEO) to achieve accurate convergence of the active contour model. The CEO contains two parts. First, a nonlinear over-exposure enhancer map is yielded to correct over-exposure, which suppresses background noise while preserving details and improving contrast. Second, the over-exposed regions of cytoplasm in particular is further enhanced by a tri- modal histogram specification based on the scale-space filtering. The experimental results show that the proposed CEO and its corresponding GVF snake is superior to other unsupervised segmentation approaches.

  7. Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy

    PubMed Central

    Guo, Ming; Ehrlicher, Allen J.; Jensen, Mikkel H.; Renz, Malte; Moore, Jeffrey R.; Goldman, Robert D.; Lippincott-Schwartz, Jennifer; Mackintosh, Frederick C.; Weitz, David A.

    2014-01-01

    SUMMARY Molecular motors in cells typically produce highly directed motion; however, the aggregate, incoherent effect of all active processes also creates randomly fluctuating forces, which drive diffusive-like, non-thermal motion. Here we introduce force-spectrum-microscopy (FSM) to directly quantify random forces within the cytoplasm of cells and thereby probe stochastic motor activity. This technique combines measurements of the random motion of probe particles with independent micromechanical measurements of the cytoplasm to quantify the spectrum of force fluctuations. Using FSM, we show that force fluctuations substantially enhance intracellular movement of small and large components. The fluctuations are three times larger in malignant cells than in their benign counterparts. We further demonstrate that vimentin acts globally to anchor organelles against randomly fluctuating forces in the cytoplasm, with no effect on their magnitude. Thus, FSM has broad applications for understanding the cytoplasm and its intracellular processes in relation to cell physiology in healthy and diseased states. PMID:25126787

  8. Characterization of Novel Cytoplasmic PARP in the Brain of Octopus vulgaris

    PubMed Central

    DE LISA, EMILIA; DE MAIO, ANNA; MOROZ, LEONID L.; MOCCIA, FRANCESCO; MENNELLA, MARIA ROSARIA FARAONE; DI COSMO, ANNA

    2014-01-01

    Recent investigation has focused on the participation of the poly (ADP-ribose) polymerase (PARP) reaction in the invertebrate central nervous system (CNS) during the process of long-term memory (LTM). In this paper, we characterize, localize, and assign a possible role to a cytoplasmic PARP in the brain of Octopus vulgaris. PARP activity was assayed in optic lobes, supraesophageal mass, and optic nerves. The highest levels of enzyme were found in the cytoplasmic fraction. Hyper-activation of the enzyme was detected in Octopus brain after visual discrimination training. Finally, cytoplasmic PARP was found to inhibit Octopus vulgaris actin polymerization. We propose that the cytoplasmic PARP plays a role in vivo to induce the cytoskeletonal reorganization that occurs during learning-induced neuronal plasticity. PMID:22815366

  9. Relation Between Basophilia and Fine Structure of Cytoplasm in the Fungus Allomyces macrogynus Em

    PubMed Central

    Blondel, Benigna; Turian, Gilbert

    1960-01-01

    In a fungus, Allomyces macrogynus Em., staining tests have revealed changes in the location of cytoplasmic basophilia following different phases of the developmental cycle. These variations in location were used to observe which fine structures correspond to basophile and non-basophile areas of the cytoplasm. Hyphae, gametangia, zygotes, and plants were fixed at various developmental stages in OsO4, pH 6.1, and embedded in vestopal. Sections were examined in the electron microscope. Comparison of basophile and non-basophile cytoplasms leads to the conclusion that cytoplasmic particles of 150 to 200 A in diameter are responsible for basophilia. The possibility of these particles being ribosomes is discussed and confirmed. The present paper also describes some observations on the fine structure of other cellular components of this fungus, such as nuclei, mitochondria, various granules, and flagella. PMID:13801597

  10. Regulation and Impact of Cytoplasmic ARID1A in Ovarian Cancer

    DTIC Science & Technology

    2016-03-01

    AWARD NUMBER: W81XWH-15-1-0065 TITLE: Regulation and Impact of Cytoplasmic ARID1A in Ovarian Cancer PRINCIPAL INVESTIGATOR: Thomas P. Conrads, PhD...30 Sept 2015-3 Feb 2016 4. TITLE AND SUBTITLE Regulation and Impact of Cytoplasmic ARID1A in Ovarian Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER...broadly accepted to be a tumor suppressor in an increasing number of cancers , including ovarian. Silencing ARID1A in ovarian surface epithelium

  11. A Physics-Based Approach of Coarse-Graining the Cytoplasm of Escherichia coli (CGCYTO)

    PubMed Central

    Wang, Qian; Cheung, Margaret S.

    2012-01-01

    We have investigated protein stability in an environment of Escherichia coli cytoplasm using coarse-grained computer simulations. To coarse-grain a small slide of E. coli's cytoplasm consisting of over 16 million atoms, we have developed a self-assembled clustering algorithm (CGCYTO). CGCYTO uses the shape parameter and asphericity as well as a parameter λ (ranging from 0 to 1) that measures the covolume of a test protein and a macromolecule against the covolume of a test protein and a sphere of equal volume as that of a macromolecule for the criteria of coarse-graining a cytoplasmic model. A cutoff λc = 0.8 was chosen based on the size of a test protein and computational resources and it determined the resolution of a coarse-grained cytoplasm. We compared the results from a polydisperse cytoplasmic model (PD model) produced by CGCYTO with two other coarse-grained hard-sphere cytoplasmic models: 1), F70 model, macromolecules in the cytoplasm were modeled by homogeneous hard spheres with a radius of 55 Å, the size of Ficoll70 and 2), HS model, each macromolecule in the cytoplasm was modeled by a hard sphere of equal volume. It was found that the folding temperature Tf of a test protein (apoazurin) in a PD model is ∼5° greater than that in a F70 model. In addition, the deviation of Tf in a PD model is twice as much as that in a HS model when an apoazurin is randomly placed at different voids formed by particle fluctuations in PD models. PMID:22677389

  12. Fluorescence ratio imaging microscopy: temporal and spatial measurements of cytoplasmic pH

    PubMed Central

    1987-01-01

    Fluorescence ratio imaging microscopy (Tanasugarn, L., P. McNeil, G. Reynolds, and D. L. Taylor, 1984, J. Cell Biol., 98:717-724) has been used to measure the spatial variations in cytoplasmic pH of individual quiescent and nonquiescent Swiss 3T3 cells. Fundamental issues of ratio imaging that permit precise and accurate temporal and spatial measurements have been addressed including: excitation light levels, lamp operation, intracellular probe concentrations, methods of threshold selection, photobleaching, and spatial signal-to-noise ratio measurements. Subcellular measurements can be measured accurately (less than 3% coefficient of variation) in an area of 3.65 microns 2 with the present imaging system. Quiescent Swiss 3T3 cells have a measured cytoplasmic pH of 7.09 (0.01 SEM), whereas nonquiescent cells have a pH of 7.35 (0.01 SEM) in the presence of bicarbonate buffer. A unimodal distribution of mean cytoplasmic pH in both quiescent and nonquiescent cells was identified from populations of cells measured on a cell by cell basis. Therefore, unlike earlier studies based on cell population averages, it can be stated that cells in each population exhibit a narrow range of cytoplasmic pH. However, the mean cytoplasmic pH can change based on the physiological state of the cells. In addition, there appears to be little, if any, spatial variation in cytoplasmic pH in either quiescent or nonquiescent Swiss 3T3 cells. The pH within the nucleus was always the same as the surrounding cytoplasm. These values will serve as a reference point for investigating the role of temporal and spatial variations in cytoplasmic pH in a variety of cellular processes including growth control and cell movement. PMID:3558476

  13. Novel origin of lamin-derived cytoplasmic intermediate filaments in tardigrades

    PubMed Central

    Hering, Lars; Bouameur, Jamal-Eddine; Reichelt, Julian; Magin, Thomas M; Mayer, Georg

    2016-01-01

    Intermediate filament (IF) proteins, including nuclear lamins and cytoplasmic IF proteins, are essential cytoskeletal components of bilaterian cells. Despite their important role in protecting tissues against mechanical force, no cytoplasmic IF proteins have been convincingly identified in arthropods. Here we show that the ancestral cytoplasmic IF protein gene was lost in the entire panarthropod (onychophoran + tardigrade + arthropod) rather than arthropod lineage and that nuclear, lamin-derived proteins instead acquired new cytoplasmic roles at least three times independently in collembolans, copepods, and tardigrades. Transcriptomic and genomic data revealed three IF protein genes in the tardigrade Hypsibius dujardini, one of which (cytotardin) occurs exclusively in the cytoplasm of epidermal and foregut epithelia, where it forms belt-like filaments around each epithelial cell. These results suggest that a lamin derivative has been co-opted to enhance tissue stability in tardigrades, a function otherwise served by cytoplasmic IF proteins in all other bilaterians. DOI: http://dx.doi.org/10.7554/eLife.11117.001 PMID:26840051

  14. Characterization of cytoplasmic cyclin D1 as a marker of invasiveness in cancer

    PubMed Central

    Santacana, Maria; Fernández-Hernández, Rita; Gatius, Sònia; Pedraza, Neus; Pallarés, Judit; Cemeli, Tània; Valls, Joan; Tarres, Marc; Ferrezuelo, Francisco; Dolcet, Xavier; Matias-Guiu, Xavier; Garí, Eloi

    2016-01-01

    Cyclin D1 (Ccnd1) is a proto-oncogen amplified in many different cancers and nuclear accumulation of Ccnd1 is a characteristic of tumor cells. Ccnd1 activates the transcription of a large set of genes involved in cell cycle progress and proliferation. However, Ccnd1 also targets cytoplasmic proteins involved in the regulation of cell migration and invasion. In this work, we have analyzed by immunohistochemistry the localization of Ccnd1 in endometrial, breast, prostate and colon carcinomas with different types of invasion. The number of cells displaying membranous or cytoplasmic Ccnd1 was significantly higher in peripheral cells than in inner cells in both collective and pushing invasion patterns of endometrial carcinoma, and in collective invasion pattern of colon carcinoma. Also, the cytoplasmic localization of Ccnd1 was higher when tumors infiltrated as single cells, budding or small clusters of cells. To evaluate cytoplasmic function of cyclin D1, we have built a variant (Ccnd1-CAAX) that remains attached to the cell membrane therefore sequestering this cyclin in the cytoplasm. Tumor cells harboring Ccnd1-CAAX showed high levels of invasiveness and metastatic potential compared to those containing the wild type allele of Ccnd1. However, Ccnd1-CAAX expression did not alter proliferative rates of tumor cells. We hypothesize that the role of Ccnd1 in the cytoplasm is mainly associated with the invasive capability of tumor cells. Moreover, we propose that subcellular localization of Ccnd1 is an interesting guideline to measure cancer outcome. PMID:27105504

  15. Exploration of cytoplasmic inheritance as a contributor to maternal effects in Welsh Mountain sheep.

    PubMed

    Pritchard, Tracey; Cahalan, Christine; Ap Dewi, Ioan

    2008-01-01

    Cytoplasmic effects were investigated using a dataset comprising three breeding groups of Welsh Mountain sheep. The influences of cytoplasmic effects were investigated by comparing animal models with and without a random term representing cytoplasmic effects. The models were applied to the eight-week weight, scan weight (mean 152 days) and ultrasonically scanned muscle and fat depth. The animal model included the random effects of animals and the maternal additive genetic, maternal permanent environmental and maternal common environmental effects. In total there were 24 569, 10 509, 8389, 8369 records for the eight-week weight, scan weight, muscle depth and fat depth respectively. Four subsets were further analysed containing maternal lines with at least five, ten, fifteen and twenty animals/line. There was no evidence of cytoplasmic effects on eight-week weight and muscle depth. Cytoplasmic effects contributed 1-2% of phenotypic variance for scan-weight and fat depth, but the effect was generally non-significant (P >0.05). As the number of animals per maternal line increased, the magnitude of cytoplasmic effects also increased for these traits. Direct heritability estimates for the eight-week weight, scan weight, muscle depth and fat depth using the full dataset were 0.18, 0.25, 0.24, and 0.21 respectively.

  16. Guanylate binding proteins promote caspase-11-dependent pyroptosis in response to cytoplasmic LPS.

    PubMed

    Pilla, Danielle M; Hagar, Jon A; Haldar, Arun K; Mason, Ashley K; Degrandi, Daniel; Pfeffer, Klaus; Ernst, Robert K; Yamamoto, Masahiro; Miao, Edward A; Coers, Jörn

    2014-04-22

    IFN receptor signaling induces cell-autonomous immunity to infections with intracellular bacterial pathogens. Here, we demonstrate that IFN-inducible guanylate binding protein (Gbp) proteins stimulate caspase-11-dependent, cell-autonomous immunity in response to cytoplasmic LPS. Caspase-11-dependent pyroptosis is triggered in IFN-activated macrophages infected with the Gram-negative bacterial pathogen Legionella pneumophila. The rapid induction of pyroptosis in IFN-activated macrophages required a cluster of IFN-inducible Gbp proteins encoded on mouse chromosome 3 (Gbp(chr3)). Induction of pyroptosis in naive macrophages by infections with the cytosol-invading ΔsdhA L. pneumophila mutant was similarly dependent on Gbp(chr3), suggesting that these Gbp proteins play a role in the detection of bacteria accessing the cytosol. Cytoplasmic LPS derived from Salmonella ssp. or Escherichia coli has recently been shown to trigger caspase-11 activation and pyroptosis, but the cytoplasmic sensor for LPS and components of the caspase-11 inflammasome are not yet defined. We found that the induction of caspase-11-dependent pyroptosis by cytoplasmic L. pneumophila-derived LPS required Gbp(chr3) proteins. Similarly, pyroptosis induced by cytoplasmic LPS isolated from Salmonella was diminished in Gbp(chr3)-deficient macrophages. These data suggest a role for Gbp(chr3) proteins in the detection of cytoplasmic LPS and the activation of the noncanonical inflammasome.

  17. Localization and function of KLF4 in cytoplasm of vascular smooth muscle cell

    SciTech Connect

    Liu, Yan; Zheng, Bin; Zhang, Xin-hua; Nie, Chan-juan; Li, Yong-hui; Wen, Jin-kun

    2013-06-28

    Highlights: •PDGF-BB prompts the translocation of KLF4 to the cytoplasm. •PDGF-BB promotes interaction between KLF4 and actin in the cytoplasm. •Phosphorylation and SUMOylation of KLF4 participates in regulation of cytoskeletal organization. •KLF4 regulates cytoskeleton by promoting the expression of contraction-associated genes. -- Abstract: The Krüppel-like factor 4 is a DNA-binding transcriptional regulator that regulates a diverse array of cellular processes, including development, differentiation, proliferation, and apoptosis. The previous studies about KLF4 functions mainly focused on its role as a transcription factor, its functions in the cytoplasm are still unknown. In this study, we found that PDGF-BB could prompt the translocation of KLF4 to the cytoplasm through CRM1-mediated nuclear export pathway in vascular smooth muscle cells (VSMCs) and increased the interaction of KLF4 with actin in the cytoplasm. Further study showed that both KLF4 phosphorylation and SUMOylation induced by PDGF-BB participates in regulation of cytoskeletal organization by stabilizing the actin cytoskeleton in VSMCs. In conclusion, these results identify that KLF4 participates in the cytoskeletal organization by stabilizing cytoskeleton in the cytoplasm of VSMCs.

  18. Structure of bacterial cytoplasmic chemoreceptor arrays and implications for chemotactic signaling

    PubMed Central

    Briegel, Ariane; Ladinsky, Mark S; Oikonomou, Catherine; Jones, Christopher W; Harris, Michael J; Fowler, Daniel J; Chang, Yi-Wei; Thompson, Lynmarie K; Armitage, Judith P; Jensen, Grant J

    2014-01-01

    Most motile bacteria sense and respond to their environment through a transmembrane chemoreceptor array whose structure and function have been well-studied, but many species also contain an additional cluster of chemoreceptors in their cytoplasm. Although the cytoplasmic cluster is essential for normal chemotaxis in some organisms, its structure and function remain unknown. Here we use electron cryotomography to image the cytoplasmic chemoreceptor cluster in Rhodobacter sphaeroides and Vibrio cholerae. We show that just like transmembrane arrays, cytoplasmic clusters contain trimers-of-receptor-dimers organized in 12-nm hexagonal arrays. In contrast to transmembrane arrays, however, cytoplasmic clusters comprise two CheA/CheW baseplates sandwiching two opposed receptor arrays. We further show that cytoplasmic fragments of normally transmembrane E. coli chemoreceptors form similar sandwiched structures in the presence of molecular crowding agents. Together these results suggest that the 12-nm hexagonal architecture is fundamentally important and that sandwiching and crowding can replace the stabilizing effect of the membrane. DOI: http://dx.doi.org/10.7554/eLife.02151.001 PMID:24668172

  19. Formin DAAM1 Organizes Actin Filaments in the Cytoplasmic Nodal Actin Network

    PubMed Central

    Luo, Weiwei; Lieu, Zi Zhao; Manser, Ed; Bershadsky, Alexander D.; Sheetz, Michael P.

    2016-01-01

    A nodal cytoplasmic actin network underlies actin cytoplasm cohesion in the absence of stress fibers. We previously described such a network that forms upon Latrunculin A (LatA) treatment, in which formin DAAM1 was localized at these nodes. Knock down of DAAM1 reduced the mobility of actin nodes but the nodes remained. Here we have investigated DAAM1 containing nodes after LatA washout. DAAM1 was found to be distributed between the cytoplasm and the plasma membrane. The membrane binding likely occurs through an interaction with lipid rafts, but is not required for F-actin assembly. Interesting the forced interaction of DAAM1 with plasma membrane through a rapamycin-dependent linkage, enhanced F-actin assembly at the cell membrane (compared to the cytoplasm) after the LatA washout. However, immediately after addition of both rapamycin and LatA, the cytoplasmic actin nodes formed transiently, before DAAM1 moved to the membrane. This was consistent with the idea that DAAM1 was initially anchored to cytoplasmic actin nodes. Further, photoactivatable tracking of DAAM1 showed DAAM1 was immobilized at these actin nodes. Thus, we suggest that DAAM1 organizes actin filaments into a nodal complex, and such nodal complexes seed actin network recovery after actin depolymerization. PMID:27760153

  20. The cytoplasmic domain of Marburg virus GP modulates early steps of viral infection.

    PubMed

    Mittler, Eva; Kolesnikova, Larissa; Hartlieb, Bettina; Davey, Robert; Becker, Stephan

    2011-08-01

    Marburg virus infection is mediated by the only viral surface protein, GP, a trimeric type I transmembrane protein. While its ectodomain mediates receptor binding and fusion of viral and cellular membranes and its transmembrane domain is essential for the recruitment of GP into budding particles by the matrix protein VP40, the role of the short cytoplasmic domain has remained enigmatic. Here we show that a missing cytoplasmic domain did not impair trimerization, intracellular transport, or incorporation of GP into infectious Marburg virus-like particles (iVLPs) but altered the glycosylation pattern as well as the recognition of GP by neutralizing antibodies. These results suggest that subtle conformational changes took place in the ectodomain. To investigate the function of the cytoplasmic domain during viral entry, a novel entry assay was established to monitor the uptake of filamentous VLPs by measuring the occurrence of luciferase-labeled viral nucleocapsids in the cytosol of target cells. This quantitative assay showed that the entry process of VLPs incorporating GP missing its cytoplasmic domain (GPΔCD) was impaired. Supporting these results, iVLPs incorporating a mutant GP missing its cytoplasmic domain were significantly less infectious than iVLPs containing wild-type GP. Taken together, the data indicate that the absence of the short cytoplasmic domain of Marburg virus GP may induce conformational changes in the ectodomain which impact the filoviral entry process.

  1. Microtubule-microtubule sliding by kinesin-1 is essential for normal cytoplasmic streaming in Drosophila oocytes.

    PubMed

    Lu, Wen; Winding, Michael; Lakonishok, Margot; Wildonger, Jill; Gelfand, Vladimir I

    2016-08-23

    Cytoplasmic streaming in Drosophila oocytes is a microtubule-based bulk cytoplasmic movement. Streaming efficiently circulates and localizes mRNAs and proteins deposited by the nurse cells across the oocyte. This movement is driven by kinesin-1, a major microtubule motor. Recently, we have shown that kinesin-1 heavy chain (KHC) can transport one microtubule on another microtubule, thus driving microtubule-microtubule sliding in multiple cell types. To study the role of microtubule sliding in oocyte cytoplasmic streaming, we used a Khc mutant that is deficient in microtubule sliding but able to transport a majority of cargoes. We demonstrated that streaming is reduced by genomic replacement of wild-type Khc with this sliding-deficient mutant. Streaming can be fully rescued by wild-type KHC and partially rescued by a chimeric motor that cannot move organelles but is active in microtubule sliding. Consistent with these data, we identified two populations of microtubules in fast-streaming oocytes: a network of stable microtubules anchored to the actin cortex and free cytoplasmic microtubules that moved in the ooplasm. We further demonstrated that the reduced streaming in sliding-deficient oocytes resulted in posterior determination defects. Together, we propose that kinesin-1 slides free cytoplasmic microtubules against cortically immobilized microtubules, generating forces that contribute to cytoplasmic streaming and are essential for the refinement of posterior determinants.

  2. Cytoplasmic pH-Stat during Phenanthrene Uptake by Wheat Roots: A Mechanistic Consideration.

    PubMed

    Zhan, Xinhua; Yi, Xiu; Yue, Le; Fan, Xiaorong; Xu, Guohua; Xing, Baoshan

    2015-05-19

    Dietary intake of plant-based foods is a major contribution to the total exposure of polycyclic aromatic hydrocarbons (PAHs). However, the mechanisms underlying PAH uptake by roots remain poorly understood. This is the first study, to our knowledge, to reveal cytoplasmic pH change and regulation in response to PAH uptake by wheat roots. An initial drop of cytoplasmic pH, which is concentration-dependent upon exposure to phenanthrene (a model PAH), was followed by a slow recovery, indicating the operation of a powerful cytoplasmic pH regulating system. Intracellular buffers are prevalent and act in the first few minutes of acidification. Phenanthrene activates plasmalemma and tonoplast H(+) pump. Cytolasmic acidification is also accompanied by vacuolar acidification. In addition, phenanthrene decreases the activity of phosphoenolpyruvate carboxylase and malate concentration. Moreover, phenanthrene stimulates nitrate reductase. Therefore, it is concluded that phenanthrene uptake induces cytoplasmic acidification, and cytoplasmic pH recovery is achieved via physicochemical buffering, proton transport outside cytoplasm into apoplast and vacuole, and malate decarboxylation along with nitrate reduction. Our results provide a novel insight into PAH uptake by wheat roots, which is relevant to strategies for reducing PAH accumulation in wheat for food safety and improving phytoremediation of PAH-contaminated soils or water by agronomic practices.

  3. Microtubule–microtubule sliding by kinesin-1 is essential for normal cytoplasmic streaming in Drosophila oocytes

    PubMed Central

    Lu, Wen; Winding, Michael; Lakonishok, Margot; Wildonger, Jill

    2016-01-01

    Cytoplasmic streaming in Drosophila oocytes is a microtubule-based bulk cytoplasmic movement. Streaming efficiently circulates and localizes mRNAs and proteins deposited by the nurse cells across the oocyte. This movement is driven by kinesin-1, a major microtubule motor. Recently, we have shown that kinesin-1 heavy chain (KHC) can transport one microtubule on another microtubule, thus driving microtubule–microtubule sliding in multiple cell types. To study the role of microtubule sliding in oocyte cytoplasmic streaming, we used a Khc mutant that is deficient in microtubule sliding but able to transport a majority of cargoes. We demonstrated that streaming is reduced by genomic replacement of wild-type Khc with this sliding-deficient mutant. Streaming can be fully rescued by wild-type KHC and partially rescued by a chimeric motor that cannot move organelles but is active in microtubule sliding. Consistent with these data, we identified two populations of microtubules in fast-streaming oocytes: a network of stable microtubules anchored to the actin cortex and free cytoplasmic microtubules that moved in the ooplasm. We further demonstrated that the reduced streaming in sliding-deficient oocytes resulted in posterior determination defects. Together, we propose that kinesin-1 slides free cytoplasmic microtubules against cortically immobilized microtubules, generating forces that contribute to cytoplasmic streaming and are essential for the refinement of posterior determinants. PMID:27512034

  4. Interacting cytoplasmic loops of subunits a and c of Escherichia coli F1F0 ATP synthase gate H+ transport to the cytoplasm.

    PubMed

    Steed, P Ryan; Kraft, Kaitlin A; Fillingame, Robert H

    2014-11-25

    H(+)-transporting F1F0 ATP synthase catalyzes the synthesis of ATP via coupled rotary motors within F0 and F1. H(+) transport at the subunit a-c interface in transmembranous F0 drives rotation of a cylindrical c10 oligomer within the membrane, which is coupled to rotation of subunit γ within the α3β3 sector of F1 to mechanically drive ATP synthesis. F1F0 functions in a reversible manner, with ATP hydrolysis driving H(+) transport. ATP-driven H(+) transport in a select group of cysteine mutants in subunits a and c is inhibited after chelation of Ag(+) and/or Cd(+2) with the substituted sulfhydryl groups. The H(+) transport pathway mapped via these Ag(+)(Cd(+2))-sensitive Cys extends from the transmembrane helices (TMHs) of subunits a and c into cytoplasmic loops connecting the TMHs, suggesting these loop regions could be involved in gating H(+) release to the cytoplasm. Here, using select loop-region Cys from the single cytoplasmic loop of subunit c and multiple cytoplasmic loops of subunit a, we show that Cd(+2) directly inhibits passive H(+) transport mediated by F0 reconstituted in liposomes. Further, in extensions of previous studies, we show that the regions mediating passive H(+) transport can be cross-linked to each other. We conclude that the loop-regions in subunits a and c that are implicated in H(+) transport likely interact in a single structural domain, which then functions in gating H(+) release to the cytoplasm.

  5. Functional Architecture of the Cytoplasmic Entrance to the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore.

    PubMed

    El Hiani, Yassine; Linsdell, Paul

    2015-06-19

    As an ion channel, the cystic fibrosis transmembrane conductance regulator must form a continuous pathway for the movement of Cl(-) and other anions between the cytoplasm and the extracellular solution. Both the structure and the function of the membrane-spanning part of this pathway are well defined. In contrast, the structure of the pathway that connects the cytoplasm to the membrane-spanning regions is unknown, and functional roles for different parts of the protein forming this pathway have not been described. We used patch clamp recording and substituted cysteine accessibility mutagenesis to identify positively charged amino acid side chains that attract cytoplasmic Cl(-) ions to the inner mouth of the pore. Our results indicate that the side chains of Lys-190, Arg-248, Arg-303, Lys-370, Lys-1041, and Arg-1048, located in different intracellular loops of the protein, play important roles in the electrostatic attraction of Cl(-) ions. Mutation and covalent modification of these residues have charge-dependent effects on the rate of Cl(-) permeation, demonstrating their functional role in maximization of Cl(-) flux. Other nearby positively charged side chains were not involved in electrostatic interactions with Cl(-). The location of these Cl(-)-attractive residues suggests that cytoplasmic Cl(-) ions enter the pore via a lateral portal located between the cytoplasmic extensions to the fourth and sixth transmembrane helices; a secondary, functionally less relevant portal might exist between the extensions to the 10th and 12th transmembrane helices. These results define the cytoplasmic mouth of the pore and show how it attracts Cl(-) ions from the cytoplasm.

  6. Differential phosphorylation in vivo of cytoplasmic dynein associated with anterogradely moving organelles

    PubMed Central

    1994-01-01

    Two microtubule-stimulated ATPases, cytoplasmic dynein, and kinesin, are believed to be responsible for the intracellular movement of membrane-bound organelles in opposite directions along microtubules. An unresolved component of this model is the mechanism by which cells regulate these two motors to direct various membrane-bound organelles to their proper locations. To determine if phosphorylation may play a role in the regulation of cytoplasmic dynein, the in vivo phosphorylation state of cytoplasmic dynein from two cellular pools was examined. The entire cellular pool of brain cytoplasmic dynein was metabolically labeled by the infusion of [32P]orthophosphate into the cerebrospinal fluid of rat brain ventricles. To characterize the phosphorylation of dynein associated with anterograde membrane-bound organelles, the optic nerve fast axonal transport system was used. Using a monoclonal antibody to the 74-kD polypeptide of brain cytoplasmic dynein, the native dynein complex was immunoprecipitated from the radiolabled tissue extracts. Autoradiographs of one and two dimensional gels showed labeling of nearly all of the polypeptide isoforms of cytoplasmic dynein from rat brain. These polypeptides are phosphorylated on serine residues. Comparison of the amount of 32P incorporated into the dynein polypeptides revealed differences in the phosphorylation of dynein polypeptides from the anterograde and the cellular pools. Most interestingly, the 530-kD heavy chain of dynein appears to be phosphorylated to a lesser extent in the anterograde pool than in the cellular pool. Since the anterograde pool contains inactive dynein, while the entire cellular pool contains both inactive and active dynein, these results are consistent with the hypothesis that phosphorylation regulates the functional activity of cytoplasmic dynein. PMID:7528220

  7. Cytoplasmic inositol hexakisphosphate production is sufficient for mediating the Gle1-mRNA export pathway.

    PubMed

    Miller, Aimee L; Suntharalingam, Mythili; Johnson, Sylvia L; Audhya, Anjon; Emr, Scott D; Wente, Susan R

    2004-12-03

    Production of inositol hexakisphosphate (IP6) by Ipk1, the inositol-1,3,4,5,6-pentakisphosphate 2-kinase, is required for Gle1-mediated mRNA export in Saccharomyces cerevisiae cells. To examine the network of interactions that require IP6 production, an analysis of fitness defects was conducted in mutants harboring both an ipk1 null allele and a mutant allele in genes encoding nucleoporins or transport factors. Enhanced lethality was observed with a specific subset of mutants, including nup42, nup116, nup159, dbp5, and gle2, all of which had been previously connected to Gle1 function. Complementation of the nup116Deltaipk1Delta and nup42Deltaipk1Delta double mutants did not require the Phe-Gly repeat domains in the respective nucleoporins, suggesting that IP6 was acting subsequent to heterogeneous nuclear ribonucleoprotein targeting to the nuclear pore complex. With Nup42 and Nup159 localized exclusively to the nuclear pore complex cytoplasmic side, we speculated that IP6 may regulate a cytoplasmic step in mRNA export. To test this prediction, the spatial requirements for the production of IP6 were investigated. Restriction of Ipk1 to the cytoplasm did not block IP6 production. Moreover, coincident sequestering of both Ipk1 and Mss4 (an enzyme required for phosphatidylinositol 4,5-bisphosphate production) to the cytoplasm also did not block IP6 production. Given that the kinase required for inositol 1,3,4,5,6-pentakisphosphate production (Ipk2) is localized in the nucleus, these results indicated that soluble inositides were diffusing between the nucleus and the cytoplasm. Additionally, the cytoplasmic production of IP6 by plasma membrane-anchored Ipk1 rescued a gle1-2 ipk1-4 synthetic lethal mutant. Thus, cytoplasmic IP6 production is sufficient for mediating the Gle1-mRNA export pathway.

  8. Functional Architecture of the Cytoplasmic Entrance to the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore*

    PubMed Central

    El Hiani, Yassine; Linsdell, Paul

    2015-01-01

    As an ion channel, the cystic fibrosis transmembrane conductance regulator must form a continuous pathway for the movement of Cl− and other anions between the cytoplasm and the extracellular solution. Both the structure and the function of the membrane-spanning part of this pathway are well defined. In contrast, the structure of the pathway that connects the cytoplasm to the membrane-spanning regions is unknown, and functional roles for different parts of the protein forming this pathway have not been described. We used patch clamp recording and substituted cysteine accessibility mutagenesis to identify positively charged amino acid side chains that attract cytoplasmic Cl− ions to the inner mouth of the pore. Our results indicate that the side chains of Lys-190, Arg-248, Arg-303, Lys-370, Lys-1041, and Arg-1048, located in different intracellular loops of the protein, play important roles in the electrostatic attraction of Cl− ions. Mutation and covalent modification of these residues have charge-dependent effects on the rate of Cl− permeation, demonstrating their functional role in maximization of Cl− flux. Other nearby positively charged side chains were not involved in electrostatic interactions with Cl−. The location of these Cl−-attractive residues suggests that cytoplasmic Cl− ions enter the pore via a lateral portal located between the cytoplasmic extensions to the fourth and sixth transmembrane helices; a secondary, functionally less relevant portal might exist between the extensions to the 10th and 12th transmembrane helices. These results define the cytoplasmic mouth of the pore and show how it attracts Cl− ions from the cytoplasm. PMID:25944907

  9. The Precrystalline Cytoplasmic Granules of Alveolar Soft Part Sarcoma Contain Monocarboxylate Transporter 1 and CD147

    PubMed Central

    Ladanyi, Marc; Antonescu, Cristina R.; Drobnjak, Marija; Baren, Ann; Lui, Man Yee; Golde, David W.; Cordon-Cardo, Carlos

    2002-01-01

    Alveolar soft part sarcoma (ASPS) is an unusual tumor of young adults with the characteristic presence on ultrastructural analysis of rhomboid or rectangular cytoplasmic crystals. These membrane-bound crystals are known to form within specific PAS-diastase-resistant electron-dense cytoplasmic granules. The composition of these crystals and the dense granules from which they are derived has remained elusive. After the detection of strong discrete granular cytoplasmic immunoreactivity in ASPS for monocarboxylate transporter 1 (MCT1) in the course of a broad immunohistochemical characterization of an MCT1 antibody, we studied the expression of MCT1 and its interacting partner, CD147, in a panel of 10 ASPS cases using appropriate antibodies. MCT1 is one of a family of widely expressed proton-linked transporters for monocarboxylates such as lactate and pyruvate. In all normal and neoplastic tissues studied to date, MCT1 immunoreactivity is limited to the cell surface. We find that the periodic acid-Schiff-diastase-resistant cytoplasmic granules of ASPS are strongly immunoreactive for MCT1 and CD147. Specifically, intense cytoplasmic granular positivity for MCT1 and CD147 was found in 7 of 10 and 8 of 10 ASPSs, respectively. Ultrastructural immunohistochemistry with immunogold labeling confirmed that the MCT1 immunoreactivity localized to the cytoplasmic electron-dense granules in ASPS. Western blot analysis of several ASPS cases confirmed that the protein reactive with the MCT1 antibody and that reactive with the CD147 antibody both migrated at the size expected for MCT1 and CD147, respectively. Thus, ASPS cells seem to accumulate MCT1-CD147 complexes in the specific cytoplasmic granules known to undergo crystallization. The possible basis for the overproduction or impaired surface localization of these proteins in ASPS remains unclear. PMID:11943706

  10. P granules phase transition induced by cytoplasmic streaming in Caenorhabditis elegans embryo

    NASA Astrophysics Data System (ADS)

    Wang, Hang; Hu, GuoHui

    2017-01-01

    P granules are germ granules contained in Caenorhabditis elegans germ cells. The first germ cell is specified by the one-cell embryo in which P granules localize to the posterior. Previous studies suggested that the mechanism of the localization phenomena is induced by liquid-liquid phase transition (LLPT), in which the polarity proteins control the saturation point of P granules. In the present study, we propose that the P granules phase transition can be triggered by the cytoplasmic streaming. A two-phase flow model is employed to simulate the localization of P granules, i.e., the cytoplasm is considered as a liquid phase, and the droplet-like P granules are another liquid phase. With the presence of the cytoplasmic streaming, P granules, initially distributing uniformly in the entire one-cell embryo, eventually condense/dissolve in the cytoplasm phase, regulated by difference between the saturation pressure and the hydrodynamic pressure. The numerical results reveal that the cytoplasmic streaming has significant effects on the localization of P granules, as well as the embryo division.

  11. Mortalin-based cytoplasmic sequestration of p53 in a nonmammalian cancer model.

    PubMed

    Walker, Charles; Böttger, Stefanie; Low, Ben

    2006-05-01

    In nature the soft shell clam Mya arenaria develops a fatal neoplasm that shares molecular similarity with an unrelated group of human cancers. In leukemic clam hemocytes, wild-type p53 and mortalin proteins co-localize in the cytoplasm. A similar phenotype, characterized by cytoplasmic sequestration of wild-type p53 protein, has been observed in several human cancers (undifferentiated neuroblastoma, retinoblastoma, colorectal and hepatocellular carcinomas, and glioblastoma). In some of these cancers p53 is tethered in the cytoplasm by mortalin when the latter protein is overexpressed. Using co-immunoprecipitation we have demonstrated that mortalin and p53 proteins are complexed in the cytoplasm of leukemic clam hemocytes (and not in normal hemocytes). In addition, treatment of leukemic clam hemocytes with MKT-077, a cationic inhibitor of mortalin, disrupts the interaction of mortalin and p53 proteins, resulting in translocation of some p53 to the nucleus. Based on these data, we introduce leukemic clam hemocytes as novel and easily accessible, in vivo and in vitro models for human cancers displaying a similar mortalin-based phenotype. Treatment of these models with novel chemotherapeutics may help reveal the molecular mechanism(s) involved in inactivating p53 by this form of cytoplasmic sequestration.

  12. Actin behavior in bulk cytoplasm is cell cycle regulated in early vertebrate embryos

    PubMed Central

    Field, Christine M.; Wühr, Martin; Anderson, Graham A.; Kueh, Hao Yuan; Strickland, Devin; Mitchison, Timothy J.

    2011-01-01

    The mechanical properties of cells change as they proceed through the cell cycle, primarily owing to regulation of actin and myosin II. Most models for cell mechanics focus on actomyosin in the cortex and ignore possible roles in bulk cytoplasm. We explored cell cycle regulation of bulk cytoplasmic actomyosin in Xenopus egg extracts, which is almost undiluted cytoplasm from unfertilized eggs. We observed dramatic gelation-contraction of actomyosin in mitotic (M phase) extract where Cdk1 activity is high, but not in interphase (I-phase) extract. In spread droplets, M-phase extract exhibited regular, periodic pulses of gelation-contraction a few minutes apart that continued for many minutes. Comparing actin nucleation, disassembly and myosin II activity between M-phase and I-phase extracts, we conclude that regulation of nucleation is likely to be the most important for cell cycle regulation. We then imaged F-actin in early zebrafish blastomeres using a GFP–Utrophin probe. Polymerization in bulk cytoplasm around vesicles increased dramatically during mitosis, consistent with enhanced nucleation. We conclude that F-actin polymerization in bulk cytoplasm is cell cycle regulated in early vertebrate embryos and discuss possible biological functions of this regulation. PMID:21610091

  13. Cytoplasmic flows as signatures for the mechanics of mitotic spindle positioning

    NASA Astrophysics Data System (ADS)

    Nazockdast, Ehssan; Rahimian, Abtin; Needleman, Daniel; Shelley, Michael

    2015-11-01

    The proper positioning of the mitotic spindle is crucial for asymmetric cell division and generating cell diversity during development. We use dynamic simulations to study the cytoplasmic flows generated by three possible active forcing mechanisms involved in positioning of the mitotic spindle in the first cell division of C.elegans embryo namely cortical pulling, cortical pushing, and cytoplasmic pulling mechanisms. The numerical platform we have developed for simulating cytoskeletal assemblies is the first to incorporate the interactions between the fibers and other intracellular bodies with the cytoplasmic fluid, while also accounting for their polymerization, and interactions with motor proteins. The hydrodynamic interactions are computed using boundary integral methods in Stokes flow coupled with highly efficient fast summation techniques that reduce the computational cost to scale linearly with the number of fibers and other bodies. We show that although all three force transduction mechanisms predict proper positioning and orientation of the mitotic spindle, each model produces a different signature in its induced cytoplasmic flow and MT conformation. We suggest that cytoplasmic flows and MT conformation can be used to differentiate between these mechanisms.

  14. Detection of beta-tubulin in the cytoplasm of the interphasic Entamoeba histolytica trophozoites.

    PubMed

    Gómez-Conde, Eduardo; Vargas-Mejía, Miguel Ángel; Díaz-Orea, María Alicia; Hernández-Rivas, Rosaura; Cárdenas-Perea, María Elena; Guerrero-González, Tayde; González-Barrios, Juan Antonio; Montiel-Jarquín, Álvaro José

    2016-08-01

    It is known that the microtubules (MT) of Entamoeba histolytica trophozoites form an intranuclear mitotic spindle. However, electron microscopy studies and the employment of anti-beta-tubulin (β-tubulin) antibodies have not exhibited these cytoskeletal structures in the cytoplasm of these parasites. The purpose of this work was to detect β-tubulin in the cytoplasm of interphasic E. histolytica trophozoites. Activated or non-activated HMI-IMSS-strain E. histolytica trophozoites were used and cultured for 72 h at 37 °C in TYI-S-33 medium, and then these were incubated with the anti-β-tubulin antibody of E. histolytica. The anti-β-tubulin antibody reacted with the intranuclear mitotic spindle of E. histolytica-activated trophozoites as control. In contrast, in non-activated interphasic parasites, anti-β-tubulin antibody reacted with diverse puntiform structures in the cytoplasm and with ring-shaped structures localized in the cytoplasm, cellular membrane and endocytic stomas. In this work, for the first time, the presence of β-tubulin is shown in the cytoplasm of E. histolytica trophozoites.

  15. Molecular analyses of nuclear-cytoplasmic interactions affecting plant growth and yield. Final technical report

    SciTech Connect

    Newton, K.J.

    1998-11-01

    Mitochondria have a central role in the production of cellular energy. The biogenesis and functioning of mitochondria depends on the expression of both mitochondrial and nuclear genes. One approach to investigating the role of nuclear-mitochondrial cooperation in plant growth and development is to identify combinations of nuclear and mitochondrial genomes that result in altered but sublethal phenotypes. Plants that have certain maize nuclear genotypes in combination with cytoplasmic genomes from more distantly-related teosintes can exhibit incompatible phenotypes, such as reduced plant growth and yield and cytoplasmic male sterility, as well as altered mitochondrial gene expression. The characterization of these nuclear-cytoplasmic interactions was the focus of this grant. The authors were investigating the effects of two maize nuclear genes, RcmI and Mct, on mitochondrial function and gene expression. Plants with the teosinte cytoplasms and homozygous for the recessive rcm allele are small (miniature) and-slow-growing and the kernels are reduced in size. The authors mapped this locus to molecular markers on chromosome 7 and attempted to clone this locus by transposon tagging. The effects of the nuclear-cytoplasmic interaction on mitochondrial function and mitochondrial protein profiles were also studied.

  16. Enhanced electroporation in plant tissues via low frequency pulsed electric fields: influence of cytoplasmic streaming.

    PubMed

    Asavasanti, Suvaluk; Stroeve, Pieter; Barrett, Diane M; Jernstedt, Judith A; Ristenpart, William D

    2012-01-01

    Pulsed electric fields (PEF) are known to be effective at permeabilizing plant tissues. Prior research has demonstrated that lower pulse frequencies induce higher rates of permeabilization, but the underlying reason for this response is unclear. Intriguingly, recent microscopic observations with onion tissues have also revealed a correlation between PEF frequency and the subsequent speed of intracellular convective motion, i.e., cytoplasmic streaming. In this paper, we investigate the effect of cytoplasmic streaming on the efficacy of plant tissue permeabilization via PEF. Onion tissue samples were treated with Cytochalasin B, a known inhibitor of cytoplasmic streaming, and changes in cellular integrity and viability were measured over a wide range of frequencies and field strengths. We find that at low frequencies (f < 1 Hz), the absence of cytoplasmic streaming results in a 19% decrease in the conductivity disintegration index compared with control samples. Qualitatively, similar results were observed using a microscopic cell viability assay. The results suggest that at low frequencies convection plays a statistically significant role in distributing more conductive fluid throughout the tissue, making subsequent pulses more efficacious. The key practical implication is that PEF pretreatment at low frequency can increase the rate of tissue permeabilization in dehydration or extraction processes, and that the treatment will be most effective when cytoplasmic streaming is most active, i.e., with freshly prepared plant tissues.

  17. Drosophila cytoplasmic dynein, a microtubule motor that is asymmetrically localized in the oocyte

    PubMed Central

    1994-01-01

    The unidirectional movements of the microtubule-associated motors, dyneins, and kinesins, provide an important mechanism for the positioning of cellular organelles and molecules. An intriguing possibility is that this mechanism may underlie the directed transport and asymmetric positioning of morphogens that influence the development of multicellular embryos. In this report, we characterize the Drosophila gene, Dhc64C, that encodes a cytoplasmic dynein heavy chain polypeptide. The primary structure of the Drosophila cytoplasmic dynein heavy chain polypeptide has been determined by the isolation and sequence analysis of overlapping cDNA clones. Drosophila cytoplasmic dynein is highly similar in sequence and structure to cytoplasmic dynein isoforms reported for other organisms. The Dhc64C dynein transcript is differentially expressed during development with the highest levels being detected in the ovaries of adult females. Within the developing egg chambers of the ovary, the dynein gene is predominantly transcribed in the nurse cell complex. In contrast, the encoded dynein motor protein displays a striking accumulation in the single cell that will develop as the oocyte. The temporal and spatial pattern of dynein accumulation in the oocyte is remarkably similar to that of several maternal effect gene products that are essential for oocyte differentiation and axis specification. This distribution and its disruption by specific maternal effect mutations lends support to recent models suggesting that microtubule motors participate in the transport of these morphogens from the nurse cell cytoplasm to the oocyte. PMID:8089180

  18. Cleavage, incomplete inversion, and cytoplasmic bridges in Gonium pectorale (Volvocales, Chlorophyta).

    PubMed

    Iida, Hitoshi; Ota, Shuhei; Inouye, Isao

    2013-09-01

    Multicellularity arose several times in evolution of eukaryotes. The volvocine algae have full range of colonial organization from unicellular to colonies, and thus these algae are well-known models for examining the evolution and mechanisms of multicellularity. Gonium pectorale is a multicellular species of Volvocales and is thought to be one of the first small colonial organisms among the volvocine algae. In these algae, a cytoplasmic bridge is one of the key traits that arose during the evolution of multicellularity. Here, we observed the inversion process and the cytoplasmic bridges in G. pectorale using time-lapse, fluorescence, and electron microscopy. The cytoplasmic bridges were located in the middle region of the cell in 2-, 4-, 8-, and 16-celled stages and in inversion stages. However, there were no cytoplasmic bridges in the mature adult stage. Cytoplasmic bridges and cortical microtubules in G. pectorale suggest that a mechanism of kinesin-microtubule machinery similar to that in other volvocine algae is responsible for inversion in this species.

  19. Detection of gravity-induced polarity of cytoplasmic streaming in Chara

    NASA Technical Reports Server (NTRS)

    Staves, M. P.; Wayne, R.; Leopold, A. C.

    1995-01-01

    Gravity induces a polarity of cytoplasmic streaming in vertically-oriented internodal cells of characean algae. The motive force that powers cytoplasmic streaming is generated at the ectoplasmic/endoplasmic interface. The velocity of streaming, which is about 100 micrometers/s at this interface, decreases with distance from the interface on either side of the cell to 0 micrometers/s near the middle. Therefore, when discussing streaming velocity it is necessary to specify the tangential plane through the cell in which streaming is being measured. This is easily done with a moderate resolution light microscope (which has a lateral resolution of 0.6 micrometers and a depth of field of 1.4 micrometers), but is obscured when using any low resolution technique, such as low magnification light microscopy or laser Doppler spectroscopy. In addition, the effect of gravity on the polarity of cytoplasmic streaming declines with increasing physiological age of isolated cells. Using a classical mechanical analysis, we show that the effect of gravity on the polarity of cytoplasmic streaming cannot result from the effect of gravity acting directly on individual cytoplasmic particles. We suggest that gravity may best be perceived by the entire cell at the plasma membrane-extracellular matrix junction.

  20. Plant somatic hybrid cytoplasmic DNA characterization by single-strand conformation polymorphism.

    PubMed

    Olivares-Fuster, Oscar; Hernández-Garrido, María; Guerri, José; Navarro, Luis

    2007-06-01

    Unlike maternal inheritance in sexual hybridization, plant somatic hybridization allows transfer, mixing and recombination of cytoplasmic genomes. In addition to the use of somatic hybridization in plant breeding programs, application of this unique tool should lead to a better understanding of the roles played by the chloroplastic and mitochondrial genomes in determining agronomically important traits. The nucleotide sequences of cytoplasmic genomes are much more conserved than those of nuclear genomes. Cytoplasmic DNA composition in somatic hybrids is commonly elucidated either by length polymorphism analysis of restricted genome regions amplified with universal primers (PCR-RF) or by hybridization of total DNA using universal cytoplasmic probes. In this study, we demonstrate that single-stranded conformational polymorphism (SSCP) analysis is a powerful, quick and easy alternative method for cytoplasmic DNA characterization of somatic hybrids, especially for mitochondrial DNA. The technique allows detection of polymorphisms based on both size and sequence of amplified targets. Twenty-two species of the subfamily Aurantioideae were analyzed with eight universal primers (four from chloroplastic and four from mitochondrial regions). Differences in chloroplastic DNA composition were scored in 98% of all possible two-parent combinations, and different mitochondrial DNA profiles were found in 87% of them. Analysis by SSCP was also successfully used to characterize somatic hybrids and cybrids obtained by fusion of Citrus sinensis (L.) Osb. and C. excelsa Wester protoplasts.

  1. Cytoplasmic calcium levels in protoplasts from the cap and elongation zone of maize roots

    NASA Technical Reports Server (NTRS)

    Kiss, H. G.; Evans, M. L.; Johnson, J. D.

    1991-01-01

    Calcium has been implicated as a key component in the signal transduction process of root gravitropism. We measured cytoplasmic free calcium in protoplasts isolated from the elongation zone and cap of primary roots of light-grown, vertically oriented seedlings of Zea mays L. Protoplasts were loaded with the penta-potassium salts of fura-2 and indo-1 by incubation in acidic solutions of these calcium indicators. Loading increased with decreasing pH but the pH dependence was stronger for indo-1 than for fura-2. In the case of fura-2, loading was enhanced only at the lowest pH (4.5) tested. Dyes loaded in this manner were distributed predominantly in the cytoplasm as indicated by fluorescence patterns. As an alternative method of loading, protoplasts were incubated with the acetoxymethylesters of fura-2 and indo-1. Protoplasts loaded by this method exhibited fluorescence both in the cytoplasm and in association with various organelles. Cytoplasmic calcium levels measured using spectrofluorometry, were found to be 160 +/- 40 nM and 257 +/- 27 nM, respectively, in populations of protoplasts from the root cap and elongation zone. Cytoplasmic free calcium did not increase upon addition of calcium to the incubation medium, indicating that the passive permeability to calcium was low.

  2. Impact of assisted reproductive technologies: a mitochondrial perspective of cytoplasmic transplantation.

    PubMed

    Harvey, A J; Gibson, T C; Quebedeaux, T M; Brenner, C A

    2007-01-01

    Many of the assisted reproductive techniques associated with maternal aging, disease states, or implantation failure aim to correct poor developmental capacity. These techniques are highly invasive and require the exchange of nuclear or cytoplasmic material from a donor oocyte to compensate for deficiencies inherent in the affected individual. These techniques are based on the assumption that the cytoplasm of the donor oocyte can effectively substitute the necessary component(s) to enable development to proceed. Several studies have attempted to inject cytoplasm from "normal" (young) donors, into aged eggs, again assuming that beneficial components of the cytoplasm are transferred to restore developmental capacity. These invasive assisted reproduction technology (ART) procedures aim to eliminate chromosomal abnormalities, improve the quality of oocytes deficient in some important cytoplasmic factors necessary for maturation and/or subsequent development, and eliminate maternally inherited diseases (particularly mitochondrial myopathies). However, in order to develop such ART, understanding the processes involving mitochondrial DNA replication and transcription is imperative, as asynchrony between mitochondrial and nuclear genomes may cause problems in mitochondrial function, localization, and biogenesis.

  3. Export of Precursor tRNAIle from the Nucleus to the Cytoplasm in Human Cells

    PubMed Central

    Wei, Min; Zhao, Xia; Liu, Mi; Niu, Meijuan; Seif, Elias; Kleiman, Lawrence

    2016-01-01

    In the current concept, tRNA maturation in vertebrate cells, including splicing of introns, trimming of 5’ leader and 3’ trailer, and adding of CCA, is thought to occur exclusively in the nucleus. Here we provide evidence to challenge this concept. Unspliced intron-containing precursor tRNAIle was identified in Human Immunodeficiency Virus type 1 (HIV-1) virions, which are synthesized in the cytoplasm. Northern blot, confocal microscopy and quantitative RT-PCR further verified enrichment of this unspliced tRNAIle within the cytoplasm in human cells. In addition to containing an intron, the cytoplasmic precursor tRNAIle also contains a short incompletely processed 5´ leader and a 3´ trailer, which abundance is around 1000 fold higher than the nuclear precursor tRNAIle with long 5’ leader and long 3’ trailer. In vitro data also suggest that the cytoplasmic unspliced end-immature precursor tRNAIle could be processed by short isoform of RNase Z, but not long isoform of RNase Z. These data suggest that precursor tRNAs could export from the nucleus to the cytoplasm in human cells, instead of be processed only in the nucleus. PMID:27101286

  4. Bayesian Inference of Forces Causing Cytoplasmic Streaming in Caenorhabditis elegans Embryos and Mouse Oocytes.

    PubMed

    Niwayama, Ritsuya; Nagao, Hiromichi; Kitajima, Tomoya S; Hufnagel, Lars; Shinohara, Kyosuke; Higuchi, Tomoyuki; Ishikawa, Takuji; Kimura, Akatsuki

    2016-01-01

    Cellular structures are hydrodynamically interconnected, such that force generation in one location can move distal structures. One example of this phenomenon is cytoplasmic streaming, whereby active forces at the cell cortex induce streaming of the entire cytoplasm. However, it is not known how the spatial distribution and magnitude of these forces move distant objects within the cell. To address this issue, we developed a computational method that used cytoplasm hydrodynamics to infer the spatial distribution of shear stress at the cell cortex induced by active force generators from experimentally obtained flow field of cytoplasmic streaming. By applying this method, we determined the shear-stress distribution that quantitatively reproduces in vivo flow fields in Caenorhabditis elegans embryos and mouse oocytes during meiosis II. Shear stress in mouse oocytes were predicted to localize to a narrower cortical region than that with a high cortical flow velocity and corresponded with the localization of the cortical actin cap. The predicted patterns of pressure gradient in both species were consistent with species-specific cytoplasmic streaming functions. The shear-stress distribution inferred by our method can contribute to the characterization of active force generation driving biological streaming.

  5. The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases.

    PubMed

    Chatton, B; Walter, P; Ebel, J P; Lacroute, F; Fasiolo, F

    1988-01-05

    S1 mapping on the VAS1 structural gene indicates the existence of two classes of transcripts initiating at distinct in-frame translation start codons. The longer class of VAS1 transcripts initiates upstream of both ATG codons located 138 base pairs away and the shorter class downstream of the first ATG. A mutation that destroys the first AUG on the long message results in respiratory deficiency but does not affect viability. Mutation of the ATG at position 139 leads to lethality because the initiating methionine codon of the essential cytoplasmic valyl-tRNA synthetase has been destroyed. N-terminal protein sequence data further confirm translation initiation at ATG-139 for the cytoplasmic valyl-tRNA synthetase. From these results, we conclude that the VAS1 single gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. The presequence of the mitochondrial valyl-tRNA synthetase shows amino acid composition but not the amphiphilic character of imported mitochondrial proteins. From mutagenesis of the ATG-139 we conclude that the presequence specifically targets the cytoplasmically synthesized mitochondrial valyl-tRNA synthetase to the mitochondrial outer membrane and prevents binding of the enzyme core to cytoplasmic tRNAVal.

  6. Bayesian Inference of Forces Causing Cytoplasmic Streaming in Caenorhabditis elegans Embryos and Mouse Oocytes

    PubMed Central

    Niwayama, Ritsuya; Nagao, Hiromichi; Kitajima, Tomoya S.; Hufnagel, Lars; Shinohara, Kyosuke; Higuchi, Tomoyuki; Ishikawa, Takuji

    2016-01-01

    Cellular structures are hydrodynamically interconnected, such that force generation in one location can move distal structures. One example of this phenomenon is cytoplasmic streaming, whereby active forces at the cell cortex induce streaming of the entire cytoplasm. However, it is not known how the spatial distribution and magnitude of these forces move distant objects within the cell. To address this issue, we developed a computational method that used cytoplasm hydrodynamics to infer the spatial distribution of shear stress at the cell cortex induced by active force generators from experimentally obtained flow field of cytoplasmic streaming. By applying this method, we determined the shear-stress distribution that quantitatively reproduces in vivo flow fields in Caenorhabditis elegans embryos and mouse oocytes during meiosis II. Shear stress in mouse oocytes were predicted to localize to a narrower cortical region than that with a high cortical flow velocity and corresponded with the localization of the cortical actin cap. The predicted patterns of pressure gradient in both species were consistent with species-specific cytoplasmic streaming functions. The shear-stress distribution inferred by our method can contribute to the characterization of active force generation driving biological streaming. PMID:27472658

  7. Complete mitochondrial genome sequence and identification of a candidate gene responsible for cytoplasmic male sterility in radish (Raphanus sativus L.) containing DCGMS cytoplasm.

    PubMed

    Park, Jee Young; Lee, Young-Pyo; Lee, Jonghoon; Choi, Beom-Soon; Kim, Sunggil; Yang, Tae-Jin

    2013-07-01

    A novel cytoplasmic male sterility (CMS) conferred by Dongbu cytoplasmic and genic male-sterility (DCGMS) cytoplasm and its restorer-of-fertility gene (Rfd1) was previously reported in radish (Raphanus sativus L.). Its inheritance of fertility restoration and profiles of mitochondrial DNA (mtDNA)-based molecular markers were reported to be different from those of Ogura CMS, the first reported CMS in radish. The complete mitochondrial genome sequence (239,186 bp; GenBank accession No. KC193578) of DCGMS mitotype is reported in this study. Thirty-four protein-coding genes and three ribosomal RNA genes were identified. Comparative analysis of a mitochondrial genome sequence of DCGMS and previously reported complete sequences of normal and Ogura CMS mitotypes revealed various recombined structures of seventeen syntenic sequence blocks. Short-repeat sequences were identified in almost all junctions between syntenic sequence blocks. Phylogenetic analysis of three radish mitotypes showed that DCGMS was more closely related to the normal mitotype than to the Ogura mitotype. A single 1,551-bp unique region was identified in DCGMS mtDNA sequences and a novel chimeric gene, designated orf463, consisting of 128-bp partial sequences of cox1 gene and 1,261-bp unidentified sequences were found in the unique region. No other genes with a chimeric structure, a major feature of most characterized CMS-associated genes in other plant species, were found in rearranged junctions of syntenic sequence blocks. Like other known CMS-associated mitochondrial genes, the predicted gene product of orf463 contained 12 transmembrane domains. Thus, this gene product might be integrated into the mitochondrial membrane. In total, the results indicate that orf463 is likely to be a casual factor for CMS induction in radish containing the DCGMS cytoplasm.

  8. The influenza A virus matrix protein 2 undergoes retrograde transport from the endoplasmic reticulum into the cytoplasm and bypasses cytoplasmic proteasomal degradation.

    PubMed

    Bhowmick, Sanchari; Chakravarty, Chandrani; Sellathamby, Shanmugaapriya; Lal, Sunil K

    2017-04-01

    The matrix protein 2 (M2) is a spliced product of segment 7 genome of influenza A virus. Previous studies indicate its role in uncoating of the viral ribonucleoprotein complex during viral entry and in membrane scission while budding. Despite its crucial role in the viral life cycle, little is known about its subcellular distribution and dynamics. In this study, we have shown that the M2 protein is translocated from the membrane to the cytoplasm by a retrograde route via endosomes and the Golgi network. It utilizes retromer cargo while moving from the endosome to the trans-Golgi network and prevents endosome fusion with the lysosome. Further, M2 interacts with the endoplasmic-reticulum-resident AAA-ATPase p97 for its release into the cytoplasm. Our study also revealed that the M2 protein in the cellular milieu does not undergo ubiquitin-mediated proteasomal degradation. The migration of M2 through this pathway inside the infected cell suggests possible new roles that the M2 protein may have in the host cytoplasm, apart from its previously described functions.

  9. Signaling by the Escherichia coli Aspartate Chemoreceptor Tar with a Single Cytoplasmic Domain per Dimer

    NASA Astrophysics Data System (ADS)

    Tatsuno, Ichiro; Homma, Michio; Oosawa, Kenji; Kawagishi, Ikuro

    1996-10-01

    Many transmembrane receptors are oligomeric proteins. Binding of a ligand may alter the oligomeric state of the receptor, induce structural changes within the oligomer, or both. The bacterial aspartate chemoreceptor Tar forms a homodimer in the presence or absence of ligands. Tar mediates attractant and repellent responses by modulating the activity of the cytoplasmic kinase CheA. In vivo intersubunit suppression was used to show that certain combinations of full-length and truncated mutant Tar proteins complemented each other to restore attractant responses to aspartate. These results suggest that heterodimers with only one intact cytoplasmic domain are functional. The signaling mechanism may require interactions between dimers or conformational changes within a single cytoplasmic domain.

  10. A conserved abundant cytoplasmic long noncoding RNA modulates repression by Pumilio proteins in human cells

    PubMed Central

    Tichon, Ailone; Gil, Noa; Lubelsky, Yoav; Havkin Solomon, Tal; Lemze, Doron; Itzkovitz, Shalev; Stern-Ginossar, Noam; Ulitsky, Igor

    2016-01-01

    Thousands of long noncoding RNA (lncRNA) genes are encoded in the human genome, and hundreds of them are evolutionarily conserved, but their functions and modes of action remain largely obscure. Particularly enigmatic lncRNAs are those that are exported to the cytoplasm, including NORAD—an abundant and highly conserved cytoplasmic lncRNA. Here we show that most of the sequence of NORAD is comprised of repetitive units that together contain at least 17 functional binding sites for the two mammalian Pumilio homologues. Through binding to PUM1 and PUM2, NORAD modulates the mRNA levels of their targets, which are enriched for genes involved in chromosome segregation during cell division. Our results suggest that some cytoplasmic lncRNAs function by modulating the activities of RNA-binding proteins, an activity which positions them at key junctions of cellular signalling pathways. PMID:27406171

  11. Complete Atomistic Model of a Bacterial Cytoplasm for Integrating Physics, Biochemistry, and Systems Biology

    PubMed Central

    Feig, Michael; Harada, Ryuhei; Mori, Takaharu; Yu, Isseki; Takahashi, Koichi; Sugita, Yuji

    2015-01-01

    A model for the cytoplasm of Mycoplasma genitalium is presented that integrates data from a variety of sources into a physically and biochemically consistent model. Based on gene annotations, core genes expected to be present in the cytoplasm were determined and a metabolic reaction network was reconstructed. The set of cytoplasmic genes and metabolites from the predicted reactions were assembled into a comprehensive atomistic model consisting of proteins with predicted structures, RNA, protein/RNA complexes, metabolites, ions, and solvent. The resulting model bridges between atomistic and cellular scales, between physical and biochemical aspects, and between structural and systems views of cellular systems and is meant as a starting point for a variety of simulation studies. PMID:25765281

  12. Vesicular Nucleo-Cytoplasmic Transport—Herpesviruses as Pioneers in Cell Biology

    PubMed Central

    Mettenleiter, Thomas C.

    2016-01-01

    Herpesviruses use a vesicle-mediated transfer of intranuclearly assembled nucleocapsids through the nuclear envelope (NE) for final maturation in the cytoplasm. The molecular basis for this novel vesicular nucleo-cytoplasmic transport is beginning to be elucidated in detail. The heterodimeric viral nuclear egress complex (NEC), conserved within the classical herpesviruses, mediates vesicle formation from the inner nuclear membrane (INM) by polymerization into a hexagonal lattice followed by fusion of the vesicle membrane with the outer nuclear membrane (ONM). Mechanisms of capsid inclusion as well as vesicle-membrane fusion, however, are largely unclear. Interestingly, a similar transport mechanism through the NE has been demonstrated in nuclear export of large ribonucleoprotein complexes during Drosophila neuromuscular junction formation, indicating a widespread presence of a novel concept of cellular nucleo-cytoplasmic transport. PMID:27690080

  13. Self-cytoplasmic DNA upregulates the mutator enzyme APOBEC3A leading to chromosomal DNA damage.

    PubMed

    Suspène, Rodolphe; Mussil, Bianka; Laude, Hélène; Caval, Vincent; Berry, Noémie; Bouzidi, Mohamed S; Thiers, Valérie; Wain-Hobson, Simon; Vartanian, Jean-Pierre

    2017-01-18

    Foreign and self-cytoplasmic DNA are recognized by numerous DNA sensor molecules leading to the production of type I interferons. Such DNA agonists should be degraded otherwise cells would be chronically stressed. Most human APOBEC3 cytidine deaminases can initiate catabolism of cytoplasmic mitochondrial DNA. Using the human myeloid cell line THP-1 with an interferon inducible APOBEC3A gene, we show that cytoplasmic DNA triggers interferon α and β production through the RNA polymerase III transcription/RIG-I pathway leading to massive upregulation of APOBEC3A By catalyzing C→U editing in single stranded DNA fragments, the enzyme prevents them from re-annealing so attenuating the danger signal. The price to pay is chromosomal DNA damage in the form of CG→TA mutations and double stranded DNA breaks which, in the context of chronic inflammation, could drive cells down the path toward cancer.

  14. Comparative assessment of genetic diversity in cytoplasmic and nuclear genome of upland cotton.

    PubMed

    Egamberdiev, Sharof S; Saha, Sukumar; Salakhutdinov, Ilkhom; Jenkins, Johnie N; Deng, Dewayne; Y Abdurakhmonov, Ibrokhim

    2016-06-01

    The importance of the cytoplasmic genome for many economically important traits is well documented in several crop species, including cotton. There is no report on application of cotton chloroplast specific SSR markers as a diagnostic tool to study genetic diversity among improved Upland cotton lines. The complete plastome sequence information in GenBank provided us an opportunity to report on 17 chloroplast specific SSR markers using a cost-effective data mining strategy. Here we report the comparative analysis of genetic diversity among a set of 42 improved Upland cotton lines using SSR markers specific to chloroplast and nuclear genome, respectively. Our results revealed that low to moderate level of genetic diversity existed in both nuclear and cytoplasm genome among this set of cotton lines. However, the specific estimation suggested that genetic diversity is lower in cytoplasmic genome compared to the nuclear genome among this set of Upland cotton lines. In summary, this research is important from several perspectives. We detected a set of cytoplasm genome specific SSR primer pairs by using a cost-effective data mining strategy. We reported for the first time the genetic diversity in the cytoplasmic genome within a set of improved Upland cotton accessions. Results revealed that the genetic diversity in cytoplasmic genome is narrow, compared to the nuclear genome within this set of Upland cotton accessions. Our results suggested that most of these polymorphic chloroplast SSRs would be a valuable complementary tool in addition to the nuclear SSR in the study of evolution, gene flow and genetic diversity in Upland cotton.

  15. Cytoplasmic asters are required for progression past the first cell cycle in cloned mouse embryos.

    PubMed

    Miki, Hiromi; Inoue, Kimiko; Ogonuki, Narumi; Mochida, Keiji; Nagashima, Hiroshi; Baba, Tadashi; Ogura, Atsuo

    2004-12-01

    Unlike the oocytes of most other animal species, unfertilized murine oocytes contain cytoplasmic asters, which act as microtubule-organizing centers following fertilization. This study examined the role of asters during the first cell cycle of mouse nuclear transfer (NT) embryos. NT was performed by intracytoplasmic injection of cumulus cells. Cytoplasmic asters were localized by staining with an anti-alpha-tubulin antibody. Enucleation of MII oocytes caused no significant change in the number of cytoplasmic asters. The number of asters decreased after transfer of the donor nuclei into these enucleated oocytes, probably because some of the asters participated in the formation of the spindle that anchors the donor chromosomes. The cytoplasmic asters became undetectable within 2 h of oocyte activation, irrespective of the presence or absence of the donor chromosomes. After the standard NT protocol, a spindle-like structure persisted between the pseudopronuclei of these oocytes throughout the pronuclear stage. The asters reappeared shortly before the first mitosis and formed the mitotic spindle. When the donor nucleus was transferred into preactivated oocytes (delayed NT) that were devoid of free asters, the microtubules and microfilaments were distributed irregularly in the ooplasm and formed dense bundles within the cytoplasm. Thereafter, all of the delayed NT oocytes underwent fragmentation and arrested development. Treatment of these delayed NT oocytes with Taxol, which is a microtubule-assembling agent, resulted in the formation of several aster-like structures and reduced fragmentation. Some Taxol-treated oocytes completed the first cell cycle and developed further. This study demonstrates that cytoplasmic asters play a crucial role during the first cell cycle of murine NT embryos. Therefore, in mouse NT, the use of MII oocytes as recipients is essential, not only for chromatin reprogramming as previously reported, but also for normal cytoskeletal organization

  16. A Mechanism for Cytoplasmic Streaming: Kinesin-Driven Alignment of Microtubules and Fast Fluid Flows.

    PubMed

    Monteith, Corey E; Brunner, Matthew E; Djagaeva, Inna; Bielecki, Anthony M; Deutsch, Joshua M; Saxton, William M

    2016-05-10

    The transport of cytoplasmic components can be profoundly affected by hydrodynamics. Cytoplasmic streaming in Drosophila oocytes offers a striking example. Forces on fluid from kinesin-1 are initially directed by a disordered meshwork of microtubules, generating minor slow cytoplasmic flows. Subsequently, to mix incoming nurse cell cytoplasm with ooplasm, a subcortical layer of microtubules forms parallel arrays that support long-range, fast flows. To analyze the streaming mechanism, we combined observations of microtubule and organelle motions with detailed mathematical modeling. In the fast state, microtubules tethered to the cortex form a thin subcortical layer and undergo correlated sinusoidal bending. Organelles moving in flows along the arrays show velocities that are slow near the cortex and fast on the inward side of the subcortical microtubule layer. Starting with fundamental physical principles suggested by qualitative hypotheses, and with published values for microtubule stiffness, kinesin velocity, and cytoplasmic viscosity, we developed a quantitative coupled hydrodynamic model for streaming. The fully detailed mathematical model and its simulations identify key variables that can shift the system between disordered (slow) and ordered (fast) states. Measurements of array curvature, wave period, and the effects of diminished kinesin velocity on flow rates, as well as prior observations on f-actin perturbation, support the model. This establishes a concrete mechanistic framework for the ooplasmic streaming process. The self-organizing fast phase is a result of viscous drag on kinesin-driven cargoes that mediates equal and opposite forces on cytoplasmic fluid and on microtubules whose minus ends are tethered to the cortex. Fluid moves toward plus ends and microtubules are forced backward toward their minus ends, resulting in buckling. Under certain conditions, the buckling microtubules self-organize into parallel bending arrays, guiding varying directions

  17. Relationship of superoxide production to cytoplasmic free calcium in human monocytes.

    PubMed Central

    Scully, S P; Segel, G B; Lichtman, M A

    1986-01-01

    Calcium has been proposed as an intracellular second messenger for activation of secretion, phagocytosis, and the oxidative burst of neutrophils. We have examined the role of calcium in human monocyte activation. Concanavalin A (Con A)-stimulated monocytes displayed an increment in cytoplasmic ionized calcium at 31 +/- 6 s and the onset of superoxide production at 61 +/- 9 s. The increase in cytoplasmic calcium invariably preceded the onset of superoxide production. If the external calcium concentration was reduced to less than 28 nM by the addition of 10 mM EGTA, superoxide production was not diminished at 5 min; however, superoxide production decreased thereafter. The Con A-evoked increment in cytoplasmic ionized calcium was blunted upon the addition of EGTA and decreased further with time. Both the production of superoxide and the Con A-evoked increment in cytoplasmic ionized calcium displayed a 50% inhibition after 15 min of calcium depletion and were completely inhibited after 60 min. Total cell calcium fell from 0.7 to 0.5 fmol/cell, and the basal level of ionized calcium fell from 83 to 30 nM after 60 min. Histidine, a strong chelator of divalent cations other than calcium and magnesium, had no effect on monocyte superoxide production or on ionized calcium concentrations, indicating that EGTA inhibition was due to cell calcium depletion. In calcium-depleted cells, Con A did not evoke superoxide production until calcium was restored to the incubation medium. The restoration of calcium to Con A-treated, calcium-depleted monocytes permitted a rapid rise in the cytoplasmic ionized calcium, and the production of superoxide within 9 s. These data suggest that an increase in ionized cytoplasmic calcium is necessary for the activation of monocyte superoxide production by Con A. The rise in ionized calcium in response to Con A results, in part, from an internal redistribution of calcium, which is sufficient to permit superoxide generation. PMID:3007579

  18. Cytoplasmic Domain of Zebrafish Myelin Protein Zero: Adhesive Role Depends on β-Conformation

    PubMed Central

    Luo, XiaoYang; Inouye, Hideyo; Gross, Abby A. R.; Hidalgo, Marla M.; Sharma, Deepak; Lee, Daniel; Avila, Robin L.; Salmona, Mario; Kirschner, Daniel A.

    2007-01-01

    Solution spectroscopy studies on the cytoplasmic domain of human myelin protein zero (P0) (hP0-cyt) suggest that H-bonding between β-strands from apposed molecules is likely responsible for the tight cytoplasmic apposition in compact myelin. As a follow-up to these findings, in the current study we used circular dichroism and x-ray diffraction to analyze the same type of model membranes previously used for hP0-cyt to investigate the molecular mechanism underlying the zebrafish cytoplasmic apposition. This space is significantly narrower in teleosts compared with that in higher vertebrates, and can be accounted for in part by the much shorter cytoplasmic domain in the zebrafish protein (zP0-cyt). Circular dichroism measurements on zP0-cyt showed similar structural characteristics to those of hP0-cyt, i.e., the protein underwent a β→α structural transition at lipid/protein (L/P) molar ratios >50, and adopted a β-conformation at lower L/P molar ratios. X-ray diffraction was carried out on lipid vesicle solutions with zP0-cyt before and after dehydration to study the effect of protein on membrane lipid packing. Solution diffraction revealed the electron-density profile of a single membrane bilayer. Diffraction patterns of dried samples suggested a multilamellar structure with the β-folded P0-cyt located at the intermembrane space. Our findings support the idea that the adhesive role of P0 at the cytoplasmic apposition in compact myelin depends on the cytoplasmic domain of P0 being in the β-conformation. PMID:17693467

  19. Proliferating cell nuclear antigen in the cytoplasm interacts with components of glycolysis and cancer.

    PubMed

    Naryzhny, Stanislav N; Lee, Hoyun

    2010-10-22

    Proliferating cell nuclear antigen (PCNA) is involved in a wide range of functions in the nucleus. However, a substantial amount of PCNA is also present in the cytoplasm, although their function is unknown. Here we show, through Far-Western blotting and mass spectrometry, that PCNA is associated with several cytoplasmic oncoproteins, including elongation factor, malate dehydrogenase, and peptidyl-prolyl isomerase. Surprisingly, PCNA is also associated with six glycolytic enzymes that are involved in the regulation of steps 4-9 in the glycolysis pathway.

  20. Structure determination of the UDP-disaccharide fragment of cytoplasmic cofactor isolated from Methanobacterium thermoautotrophicum.

    PubMed

    Marsden, B J; Sauer, F D; Blackwell, B A; Kramer, J K

    1989-03-31

    The methylcoenzyme M methylreductase reaction has an absolute requirement for 7-mercaptoheptanoylthreonine phosphate or component B, which is the active component of the intact molecule previously referred to as cytoplasmic cofactor. A hydrolytic fragment of cytoplasmic cofactor has been purified and identified as uridine 5'-(O-2-acetamido-2-deoxy-beta-manno-pyranuronosyl acid (1----4)-2-acetamido-2-deoxy-alpha-glucopyranosyl diphosphate) by high resolution NMR and fast atom bombardment mass spectro-metry. It is postulated that UDP-disaccharide may function to anchor 7-mercaptoheptanoyl threonine phosphate at the active site of the methyl-reductase enzyme complex.

  1. Cytoplasmic streaming in Chara rhizoids: studies in a reduced gravitational field during parabolic flights of rockets.

    PubMed

    Buchen, B; Hejnowicz, Z; Braun, M; Sievers, A

    1991-01-01

    In-vivo videomicroscopy of Chara rhizoids under 10(-4)g demonstrated that gravity affected the velocities of cytoplasmic streaming. Both, the acropetal and basipetal streaming velocities increased on the change to microgravity. The endogenous difference in the velocities of the oppositely directed cytoplasmic streams was maintained under microgravity, yet the difference was diminished as the basipetal streaming velocity increased more than the acropetal streaming velocity. Direction and structure of microfilaments labeled by rhodamine-phalloidin had not changed after 6 min of microgravity.

  2. Nuclear and Cytoplasmic Soluble Proteins Extraction from a Small Quantity of Drosophila's Whole Larvae and Tissues.

    PubMed

    Lo Piccolo, Luca; Bonaccorso, Rosa; Onorati, Maria Cristina

    2015-06-01

    The identification and study of protein's function in several model organisms is carried out using both nuclear and cytoplasmic extracts. For a long time, Drosophila's embryos have represented the main source for protein extractions, although in the last year, the importance of collecting proteins extracts also from larval tissues has also been understood. Here we report a very simple protocol, improved by a previously developed method, to produce in a single extraction both highly stable nuclear and cytoplasmic protein extracts from a small quantity of whole Drosophila's larvae or tissues, suitable for biochemical analyses like co-immunoprecipitation.

  3. A comparison of nuclear and cytoplasmic genetic effects on sperm competitiveness and female remating in a seed beetle.

    PubMed

    Dowling, D K; Friberg, U; Arnqvist, G

    2007-11-01

    It is widely assumed that male sperm competitiveness evolves adaptively. However, recent studies have found a cytoplasmic genetic component to phenotypic variation in some sperm traits presumed important in sperm competition. As cytoplasmic genes are maternally transmitted, they cannot respond to selection on sperm and this constraint may affect the scope in which sperm competitiveness can evolve adaptively. We examined nuclear and cytoplasmic genetic contributions to sperm competitiveness, using populations of Callosobruchus maculatus carrying orthogonal combinations of nuclear and cytoplasmic lineages. Our design also enabled us to examine genetic contributions to female remating. We found that sperm competitiveness and remating are primarily encoded by nuclear genes. In particular, a male's sperm competitiveness phenotype was contingent on an interaction between the competing male genotypes. Furthermore, cytoplasmic effects were detected on remating but not sperm competitiveness, suggesting that cytoplasmic genes do not generally play a profound evolutionary role in sperm competition.

  4. Towards the elucidation of the cytoplasmic diversity of North American Grape Breeding Programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants have an intriguing tripartite genetic system: Nuclear genome × Mitochondria × Plastids, and their interactions may impact germplasm breeding. In grapevine, the study of cytoplasmic genomes has been limited, and their role with respect to grapevine germplasm diversity has not been elucidated y...

  5. ATM is a cytoplasmic protein in mouse brain required to prevent lysosomal accumulation

    PubMed Central

    Barlow, Carrolee; Ribaut-Barassin, Catherine; Zwingman, Theresa A.; Pope, Amber J.; Brown, Kevin D.; Owens, Jennie W.; Larson, Denise; Harrington, Elizabeth A.; Haeberle, Anne-Marie; Mariani, Jean; Eckhaus, Michael; Herrup, Karl; Bailly, Yannick; Wynshaw-Boris, Anthony

    2000-01-01

    We previously generated a mouse model with a mutation in the murine Atm gene that recapitulates many aspects of the childhood neurodegenerative disease ataxia-telangiectasia. Atm-deficient (Atm−/−) mice show neurological defects detected by motor function tests including the rota-rod, open-field tests and hind-paw footprint analysis. However, no gross histological abnormalities have been observed consistently in the cerebellum of any line of Atm−/− mice analyzed in most laboratories. Therefore, it may be that the neurologic dysfunction found in these animals is associated with predegenerative lesions. We performed a detailed analysis of the cerebellar morphology in two independently generated lines of Atm−/− mice to determine whether there was evidence of neuronal abnormality. We found a significant increase in the number of lysosomes in Atm−/− mice in the absence of any detectable signs of neuronal degeneration or other ultrastructural anomalies. In addition, we found that the ATM protein is predominantly cytoplasmic in Purkinje cells and other neurons, in contrast to the nuclear localization of ATM protein observed in cultured cells. The cytoplasmic localization of ATM in Purkinje cells is similar to that found in human cerebellum. These findings suggest that ATM may be important as a cytoplasmic protein in neurons and that its absence leads to abnormalities of cytoplasmic organelles reflected as an increase in lysosomal numbers. PMID:10639172

  6. Effect of cytoplasmic diversity on post anthesis heat tolerance in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nuclear genomes of ten alloplasmic lines were substituted by backcrossing four or five times using ‘Karl 92’, ‘Ventnor’, ‘U1275’ and ‘Jagger’ as recurrent parents to study the cytoplasmic effects on heat tolerance. During the final backcross, reciprocal crosses were made to develop NILs (Near Is...

  7. Oestradiol rapidly inhibits Ca2+ signals in ciliary neurons through classical oestrogen receptors in cytoplasm.

    PubMed

    Viso-León, M Carmen; Ripoll, Cristina; Nadal, Angel

    2004-10-01

    Oestrogen plays a key role in a great variety of actions in the nervous system, either through classical or alternative pathways. The classical pathways are initiated after oestrogen binding to the oestrogen receptors ERalpha or ERbeta, which translocate from the cytoplasm to the nucleus and act there as transcription factors. Alternative pathways are initiated at the plasma membrane and cytoplasm, via binding to classical or non-classical ERs. Using isolated ciliary ganglion neurons from the chick embryo and Ca2+ imaging, we demonstrated that a 10-min exposure to 17beta-oestradiol reduces Ca2+ influx through the plasma membrane. This effect was not reproduced by oestradiol conjugated to bovine serum albumin, which does not cross the plasma membrane, indicating that 17beta-oestradiol was acting intracellularly. ERalpha was detected in the cytoplasm by immunostaining and its involvement in the regulation of Ca2+ influx by ICI182,780 inhibition. The phosphatidylinositol-3 kinase (Pi3-kinase) inhibitor wortmannin and the nitric oxide synthase (NOS) inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME) both blocked the oestradiol effect. The oestradiol effect was reproduced by 8Br-cGMP and abolished in the presence of the cGMP-dependent protein kinase (PKG) inhibitor KT5823. Our study indicates that 17beta-oestradiol can regulate Ca2+ influx via PI3-kinase, NOS and PKG after activation of cytoplasmic ER.

  8. Cytoplasmic RNA viruses as potential vehicles for the delivery of therapeutic small RNAs.

    PubMed

    Usme-Ciro, Jose A; Campillo-Pedroza, Natalia; Almazán, Fernando; Gallego-Gomez, Juan C

    2013-06-07

    Viral vectors have become the best option for the delivery of therapeutic genes in conventional and RNA interference-based gene therapies. The current viral vectors for the delivery of small regulatory RNAs are based on DNA viruses and retroviruses/lentiviruses. Cytoplasmic RNA viruses have been excluded as viral vectors for RNAi therapy because of the nuclear localization of the microprocessor complex and the potential degradation of the viral RNA genome during the excision of any virus-encoded pre-microRNAs. However, in the last few years, the presence of several species of small RNAs (e.g., virus-derived small interfering RNAs, virus-derived short RNAs, and unusually small RNAs) in animals and cell cultures that are infected with cytoplasmic RNA viruses has suggested the existence of a non-canonical mechanism of microRNA biogenesis. Several studies have been conducted on the tick-borne encephalitis virus and on the Sindbis virus in which microRNA precursors were artificially incorporated and demonstrated the production of mature microRNAs. The ability of these viruses to recruit Drosha to the cytoplasm during infection resulted in the efficient processing of virus-encoded microRNA without the viral genome entering the nucleus. In this review, we discuss the relevance of these findings with an emphasis on the potential use of cytoplasmic RNA viruses as vehicles for the efficient delivery of therapeutic small RNAs.

  9. Production of ABA responses requires both the nuclear and cytoplasmic functional involvement of PYR1.

    PubMed

    Park, EunJoo; Kim, Tae-Houn

    2017-02-26

    Abscisic acid (ABA) enhances stress tolerant responses in plants against unfavorable environmental conditions. In Arabidopsis, ABA promotes interactions between PYR/PYL/RCARs and PP2C, thereby allowing SnRK2s to phosphorylate downstream components required for the regulation of gene expression or for gating ion channels. Because PYR1 is known to localize to nucleus and cytoplasm it is a question whether nuclear or cytoplasmic PYR1 confer different functions to the ABA signaling pathway, as has been previously shown for regulatory proteins. In order to answer this question, transgenic lines expressing nuclear PYR1 were generated in an ABA insensitive mutant background. Enforced nuclear expression of PYR1 was examined by confocal microscopy and western blot analysis. Physiological analyses of the transgenic lines demonstrated that nuclear PYR1 is sufficient to generate ABA responses, such as, the inhibition of seed germination, root growth inhibition, the induction of gene expression, and stomatal closing movement. However, for the full recovery of ABA responses in the mutant background cytoplasmic PYR1 was required. The study suggests both nuclear and cytoplasmic PYR1 participate in the control of ABA signal transduction.

  10. Cytoplasmic Streaming and Ion Transport: A Laboratory Exercise which Tests a Longstanding Botanical Concept.

    ERIC Educational Resources Information Center

    Perley, James E.; Glass, A. D. M.

    1979-01-01

    Presents a method for microscopically examining cytoplasmic streaming in root cells, and physiologically examining the delivery of ions to the xylem exudate. The expected result does not occur and the authors believe that students learn to re-examine the assumptions, thereby increasing their skills in scientific inquiry. (Authors/SA)

  11. Gene knockouts reveal separate functions for two cytoplasmic dyneins in Tetrahymena thermophila.

    PubMed

    Lee, S; Wisniewski, J C; Dentler, W L; Asai, D J

    1999-03-01

    In many organisms, there are multiple isoforms of cytoplasmic dynein heavy chains, and division of labor among the isoforms would provide a mechanism to regulate dynein function. The targeted disruption of somatic genes in Tetrahymena thermophila presents the opportunity to determine the contributions of individual dynein isoforms in a single cell that expresses multiple dynein heavy chain genes. Substantial portions of two Tetrahymena cytoplasmic dynein heavy chain genes were cloned, and their motor domains were sequenced. Tetrahymena DYH1 encodes the ubiquitous cytoplasmic dynein Dyh1, and DYH2 encodes a second cytoplasmic dynein isoform, Dyh2. The disruption of DYH1, but not DYH2, resulted in cells with two detectable defects: 1) phagocytic activity was inhibited, and 2) the cells failed to distribute their chromosomes correctly during micronuclear mitosis. In contrast, the disruption of DYH2 resulted in a loss of regulation of cell size and cell shape and in the apparent inability of the cells to repair their cortical cytoskeletons. We conclude that the two dyneins perform separate tasks in Tetrahymena.

  12. Recruitment into stress granules prevents irreversible aggregation of FUS protein mislocalized to the cytoplasm

    PubMed Central

    Shelkovnikova, Tatyana A; Robinson, Hannah K; Connor-Robson, Natalie; Buchman, Vladimir L

    2013-01-01

    Fused in sarcoma (FUS) belongs to the group of RNA-binding proteins implicated as underlying factors in amyotrophic lateral sclerosis (ALS) and certain other neurodegenerative diseases. Multiple FUS gene mutations have been linked to hereditary forms, and aggregation of FUS protein is believed to play an important role in pathogenesis of these diseases. In cultured cells, FUS variants with disease-associated amino acid substitutions or short deletions affecting nuclear localization signal (NLS) and causing cytoplasmic mislocalization can be sequestered into stress granules (SGs). We demonstrated that disruption of motifs responsible for RNA recognition and binding not only prevents SG recruitment, but also dramatically increases the protein propensity to aggregate in the cell cytoplasm with formation of juxtanuclear structures displaying typical features of aggresomes. Functional RNA-binding domains from TAR DNA-binding protein of 43 kDa (TDP-43) fused to highly aggregation-prone C-terminally truncated FUS protein restored the ability to enter SGs and prevented aggregation of the chimeric protein. Truncated FUS was also able to trap endogenous FUS molecules in the cytoplasmic aggregates. Our data indicate that RNA binding and recruitment to SGs protect cytoplasmic FUS from aggregation, and loss of this protection may trigger its pathological aggregation in vivo. PMID:24013423

  13. Dynamics of vegetative cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Musgrave, M. E.

    1996-01-01

    Ultrastructural changes of pollen cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana were studied. The pollen cytoplasm develops a complicated ultrastructure and changes dramatically during these stages. Lipid droplets increase after generative cell formation and their organization and distribution change with the developmental stage. Starch grains in amyloplasts increase in number and size during generative and sperm cell formation and decrease at pollen maturity. The shape and membrane system of mitochondria change only slightly. Dictyosomes become very prominent, and numerous associated vesicles are observed during and after sperm cell formation. Endoplasmic reticulum appears extensively as stacks during sperm cell formation. Free and polyribosomes are abundant in the cytoplasm at all developmental stages although they appear denser at certain stages and in some areas. In mature pollen, all organelles are randomly distributed throughout the vegetative cytoplasm and numerous small particles appear. Organization and distribution of storage substances and appearance of these small particles during generative and sperm cell formation and pollen maturation are discussed.

  14. Identification of a novel mono-leucine basolateral sorting motif within the cytoplasmic domain of amphiregulin

    PubMed Central

    Gephart, Jonathan D.; Singh, Bhuminder; Higginbotham, James N.; Franklin, Jeffrey L.; Gonzalez, Alfonso; Fölsch, Heike; Coffey, Robert J.

    2011-01-01

    Epithelial cells establish apical and basolateral (BL) membranes with distinct protein and lipid compositions. To achieve this spatial asymmetry, the cell utilizes a variety of mechanisms for differential sorting, delivery and retention of cell surface proteins. The EGF receptor (EGFR) and its ligand, amphiregulin (AREG), are transmembrane proteins delivered to the BL membrane in polarized epithelial cells. Herein, we show that the cytoplasmic domain of AREG contains dominant BL sorting information; replacement of the cytoplasmic domain of apically targeted NGFR with the cytoplasmic domain of AREG redirects the chimera to the BL surface. Using sequential truncations and site-directed mutagenesis of the AREG cytoplasmic domain, we identify a novel BL sorting motif consisting of a single leucine C-terminal to an acidic cluster (EEXXXL). In AP-1B-deficient cells, newly synthesized AREG is initially delivered to the BL surface like in AP-1B-expressing cells. However, in these AP-1B-deficient cells, recycling of AREG back to the BL surface is compromised, leading to its appearance at the apical surface. These results show that recycling, but not delivery, of AREG to the BL surface is AP-1B-dependent. PMID:21917092

  15. Changes of the Cytoplasmic Proteome in Response to Alcoholic Hepatotoxicity in Rats

    PubMed Central

    Kim, Dong Hwan; Lee, Eun-Mi; Do, Sun-Hee; Jeong, Da-Hee; Jeong, Kyu-Shik

    2015-01-01

    Proteomic analyses have already been used in a number of hepatological studies and provide important information. However, few reports have focused on changes in the cytoplasmic proteome. The present study therefore aimed to evaluate changes in cytoplasmic proteome of rats in response to alcoholic hepatotoxicity. Rats were fed a Liber-DeCarli liquid diet containing ethanol for four weeks. Cytoplasmic proteins except mitochondrial proteins from the livers of these animals were investigated using two-dimensional gel electrophoresis and mass spectrometry. Alcohol induced a decrease in body weight gain and an increase in alanine transaminase (ALT), cholesterol, and phospholipid levels. Histopathological observations revealed hepatic damage characterized by necrosis and fatty change in alcohol-treated group at week 2, which continues until week 4. Our proteomic analysis revealed that 25 proteins were differentially expressed in the ethanol-fed group. Of these, 12 cytoplasmic proteins are being reported for the first time. Taken together, our results provide further insights into the disease mechanism and therapeutic information of alcoholic liver disease. PMID:26266409

  16. Detection of cytoplasmic proteins from Helicobacter pylori in Colony Lift Immunoassay.

    PubMed

    Rojas-Rengifo, Diana F; Jaramillo, Carlos A; Haas, Rainer; Jiménez-Soto, Luisa F

    2015-12-01

    Use of the Colony Lift Immunoassay has been described for several Gram negative bacteria of medical interest. In all cases detection was limited to the use of antibodies against outer membrane proteins. Here we describe the adaptation of this method for detection of the cytoplasmic CagA toxin from Helicobacter pylori.

  17. Gawky is a component of cytoplasmic mRNA processing bodies required for early Drosophila development

    PubMed Central

    Schneider, Mary D.; Najand, Nima; Chaker, Sana; Pare, Justin M.; Haskins, Julie; Hughes, Sarah C.; Hobman, Tom C.; Locke, John; Simmonds, Andrew J.

    2006-01-01

    In mammalian cells, the GW182 protein localizes to cytoplasmic bodies implicated in the regulation of messenger RNA (mRNA) stability, translation, and the RNA interference pathway. Many of these functions have also been assigned to analogous yeast cytoplasmic mRNA processing bodies. We have characterized the single Drosophila melanogaster homologue of the human GW182 protein family, which we have named Gawky (GW). Drosophila GW localizes to punctate, cytoplasmic foci in an RNA-dependent manner. Drosophila GW bodies (GWBs) appear to function analogously to human GWBs, as human GW182 colocalizes with GW when expressed in Drosophila cells. The RNA-induced silencing complex component Argonaute2 and orthologues of LSm4 and Xrn1 (Pacman) associated with 5′–3′ mRNA degradation localize to some GWBs. Reducing GW activity by mutation or antibody injection during syncytial embryo development leads to abnormal nuclear divisions, demonstrating an early requirement for GWB-mediated cytoplasmic mRNA regulation. This suggests that gw represents a previously unknown member of a small group of genes that need to be expressed zygotically during early embryo development. PMID:16880270

  18. Ndel1 palmitoylation: a new mean to regulate cytoplasmic dynein activity

    PubMed Central

    Shmueli, Anat; Segal, Michal; Sapir, Tamar; Tsutsumi, Ryouhei; Noritake, Jun; Bar, Avi; Sapoznik, Sivan; Fukata, Yuko; Orr, Irit; Fukata, Masaki; Reiner, Orly

    2010-01-01

    Regulated activity of the retrograde molecular motor, cytoplasmic dynein, is crucial for multiple biological activities, and failure to regulate this activity can result in neuronal migration retardation or neuronal degeneration. The activity of dynein is controlled by the LIS1–Ndel1–Nde1 protein complex that participates in intracellular transport, mitosis, and neuronal migration. These biological processes are subject to tight multilevel modes of regulation. Palmitoylation is a reversible posttranslational lipid modification, which can dynamically regulate protein trafficking. We found that both Ndel1 and Nde1 undergo palmitoylation in vivo and in transfected cells by specific palmitoylation enzymes. Unpalmitoylated Ndel1 interacts better with dynein, whereas the interaction between Nde1 and cytoplasmic dynein is unaffected by palmitoylation. Furthermore, palmitoylated Ndel1 reduced cytoplasmic dynein activity as judged by Golgi distribution, VSVG and short microtubule trafficking, transport of endogenous Ndel1 and LIS1 from neurite tips to the cell body, retrograde trafficking of dynein puncta, and neuronal migration. Our findings indicate, to the best of our knowledge, for the first time that Ndel1 palmitoylation is a new mean for fine-tuning the activity of the retrograde motor cytoplasmic dynein. PMID:19927128

  19. The effect of pollen versus seed flow on the maintenance of nuclear-cytoplasmic gynodioecy.

    PubMed

    Dufay, Mathilde; Pannell, John R

    2010-03-01

    Gynodioecy, where females co-occur with hermaphrodites, is a relatively common sexual system in plants that is often the result of a genetic conflict between maternally inherited male sterility genes in the mitochondrial genome and the biparentally inherited male fertility restorer genes in the nucleus. Previous models have shown that nuclear-cytoplasmic gynodioecy can be maintained under certain conditions by negative frequency-dependent selection, but the effect of other evolutionary processes such as genetic drift and population subdivision is only partially understood. Here, we investigate the joint effects of frequency-dependent selection, drift, and migration through either pollen or seeds on the maintenance of nuclear-cytoplasmic gynodioecy in a subdivided population. We find that the combination of drift and selection causes the loss of gynodioecy under scenarios that would maintain it under the influence of selection alone, and that both seed and, more surprisingly, pollen flow can maintain the polymorphism. In particular, although pollen flow could not avoid the loss of cytoplasmic polymorphism within demes, it allowed the maintenance of nuclear-cytoplasmic polymorphism at the metapopulation level.

  20. Bacterial cytoplasmic display platform Retained Display (ReD) identifies stable human germline antibody frameworks.

    PubMed

    Beasley, Matthew D; Niven, Keith P; Winnall, Wendy R; Kiefel, Ben R

    2015-05-01

    Conventional antibody surface display requires fusion protein export through at least one cellular membrane, constraining the yield and occasioning difficulties in achieving scaled production. To circumvent this limitation, we developed a novel cytoplasmic display platform, Retained Display (ReD), and used it to screen for human scFv frameworks that are highly soluble and stable in the bacterial cytoplasm. ReD, based on the retention of high-molecular weight complexes within detergent-permeabilized Escherichia coli, enabled presentation of exogenous targets to antibodies that were expressed and folded in the cytoplasm. All human λ and κ light chain family genes were expressed as IGHV3-23 fusions. Members of the λ subfamilies 1, 3 and 6 were soluble cytoplasmic partners of IGHV3-23. Contrary to previous in vivo screens for soluble reduced scFvs, the pairings identified by ReD were identical to the human germline sequences for the framework, CDR1 and CDR2 regions. Using the most soluble scFv scaffold identified, we demonstrated tolerance to CDR3 diversification and isolated a binding scFv to an exogenous protein target. This screening system has the potential to rapidly produce antibodies to target threats such as emerging infectious diseases and bioterror agents.

  1. Characterization of the reversible conformational equilibrium of the cytoplasmic domain of erythrocyte membrane band 3.

    PubMed

    Low, P S; Westfall, M A; Allen, D P; Appell, K C

    1984-11-10

    The cytoplasmic domain of the erythrocyte membrane protein, band 3, contains binding sites for hemoglobin, several glycolytic enzymes, and ankyrin, the linkage to the cytoskeleton. In an earlier study, we found evidence which suggested that band 3 might undergo a native conformational change. We demonstrate here that the cytoplasmic domain of band 3 does exist in a reversible, pH-dependent conformational equilibrium among 3 native states. At physiological salt concentrations this equilibrium is characterized by apparent pKa values of 7.2 and 9.2; however, these apparent pKa values change if the domain's sulfhydryl groups are modified. A major component of the structural change appears to involve the pivoting of two subdomains of the cytoplasmic domain at a central hinge, as evidenced by both hydrodynamic and fluorescence energy transfer measurements. The probable site of this hinge is between residues 176 and 191, a region highly accessible to proteases and also rich in proline. These structural rearrangements also apparently extend to the cluster of tryptophan residues near the N terminus, since the domain's intrinsic fluorescence more than doubles between pH 6.5 and 9.5. No measurable change in band 3 secondary or quaternary structure could be detected during the conformational transitions. A structural model of the cytoplasmic domain of band 3 is presented to show the possible spatial relationships between the regions of conformational change and the sites of peripheral protein binding.

  2. Cytoplasmic membrane changes during adaptation of the fresh water cyanobacterium Synechococcus 6311 to salinity

    NASA Technical Reports Server (NTRS)

    Lefort-Tran, M.; Pouphile, M.; Spath, S.; Packer, L.

    1988-01-01

    In this investigation, changes were characterized in cell structure and cytoplasmic membrane organization that occur when the freshwater cyanobacterium Synechococcus 6311 is transferred from 'low salt' (0.03 molar NaCl) to 'high salt' (0.5 molar NaCl) media (i.e. sea water concentration). Cells were examined at several time points after the imposition of the salt stress and compared to control cells, in thin sections and freeze fracture electron microscopy, and by flow cytometry. One minute after exposure to high salt, i.e. 'salt shock', virtually all intracellular granules disappeared, the density of the cytoplasm decreased, and the appearance of DNA material was changed. Glycogen and other granules, however, reappeared by 4 hours after salt exposure. The organization of the cytoplasmic membrane undergoes major reorganization following salt shock. Freeze-fracture electron microscopy showed that small intramembrane particles (diameter 7.5 and 8.5 nanometers) are reduced in number by two- to fivefold, whereas large particles, (diameters 14.5 and 17.5 nanometers) increase two- to fourfold in frequency, compared to control cells grown in low salt medium. The changes in particle size distribution suggest synthesis of new membrane proteins, in agreement with the known increases in respiration, cytochrome oxidase, and sodium proton exchange activity of the cytoplasmic membrane.

  3. ERAD of proteins containing aberrant transmembrane domains requires ubiquitylation of cytoplasmic lysine residues

    PubMed Central

    Briant, Kit; Koay, Yee-Hui; Otsuka, Yuka; Swanton, Eileithyia

    2015-01-01

    ABSTRACT Clearance of misfolded proteins from the endoplasmic reticulum (ER) is mediated by the ubiquitin-proteasome system in a process known as ER-associated degradation (ERAD). The mechanisms through which proteins containing aberrant transmembrane domains are degraded by ERAD are poorly understood. To address this question, we generated model ERAD substrates based on CD8 with either a non-native transmembrane domain but a folded ER luminal domain (CD8TMD*), or the native transmembrane domain but a misfolded luminal domain (CD8LUM*). Although both chimeras were degraded by ERAD, we found that the location of the folding defect determined the initial site of ubiquitylation. Ubiquitylation of cytoplasmic lysine residues was required for the extraction of CD8TMD* from the ER membrane during ERAD, whereas CD8LUM* continued to be degraded in the absence of cytoplasmic lysine residues. Cytoplasmic lysine residues were also required for degradation of an additional ERAD substrate containing an unassembled transmembrane domain and when a non-native transmembrane domain was introduced into CD8LUM*. Our results suggest that proteins with defective transmembrane domains are removed from the ER through a specific ERAD mechanism that depends upon ubiquitylation of cytoplasmic lysine residues. PMID:26446255

  4. Fitness advantage and cytoplasmic incompatibility in Wolbachia single- and superinfected Aedes albopictus.

    PubMed

    Dobson, S L; Rattanadechakul, W; Marsland, E J

    2004-08-01

    Wolbachia are obligate, maternally inherited, intracellular bacteria that infect numerous insects and other invertebrates. Wolbachia infections have evolved multiple mechanisms to manipulate host reproduction and facilitate invasion of naive host populations. One such mechanism is cytoplasmic incompatibility (CI) that occurs in many insect species, including Aedes albopictus (Asian tiger mosquito). The multiple Wolbachia infections that occur naturally in A. albopictus make this mosquito a useful system in which to study CI. Here, experiments employ mosquito strains that have been introgressed to provide genetically similar strains that harbor differing Wolbachia infection types. Cytoplasmic incompatibility levels, host longevity, egg hatch rates, and fecundity are examined. Crossing results demonstrate a pattern of additive unidirectional cytoplasmic incompatibility. Furthermore, relative to uninfected females, infected females are at a reproductive advantage due to both cytoplasmic incompatibility and a fitness increase associated with Wolbachia infection. In contrast, no fitness difference was observed in comparisons of single- and superinfected females. We discuss the observed results in regard to the evolution of the Wolbachia/A. albopictus symbiosis and the observed pattern of Wolbachia infection in natural populations.

  5. Diffusive Promotion by Velocity Gradient of Cytoplasmic Streaming (CPS) in Nitella Internodal Cells

    PubMed Central

    Kikuchi, Kenji; Mochizuki, Osamu

    2015-01-01

    Cytoplasmic streaming (CPS) is well known to assist the movement of nutrients, organelles and genetic material by transporting all of the cytoplasmic contents of a cell. CPS is generated by motility organelles that are driven by motor proteins near a membrane surface, where the CPS has been found to have a flat velocity profile in the flow field according to the sliding theory. There is a consistent mixing of contents inside the cell by CPS if the velocity gradient profile is flattened, which is not assisted by advection diffusion but is only supported by Brownian diffusion. Although the precise flow structure of the cytoplasm has an important role for cellular metabolism, the hydrodynamic mechanism of its convection has not been clarified. We conducted an experiment to visualise the flow of cytoplasm in Nitella cells by injecting tracer fluorescent nanoparticles and using a flow visualisation system in order to understand how the flow profile affects their metabolic system. We determined that the velocity field in the cytosol has an obvious velocity gradient, not a flattened gradient, which suggests that the gradient assists cytosolic mixing by Taylor–Aris dispersion more than by Brownian diffusion. PMID:26694322

  6. Diffusive Promotion by Velocity Gradient of Cytoplasmic Streaming (CPS) in Nitella Internodal Cells.

    PubMed

    Kikuchi, Kenji; Mochizuki, Osamu

    2015-01-01

    Cytoplasmic streaming (CPS) is well known to assist the movement of nutrients, organelles and genetic material by transporting all of the cytoplasmic contents of a cell. CPS is generated by motility organelles that are driven by motor proteins near a membrane surface, where the CPS has been found to have a flat velocity profile in the flow field according to the sliding theory. There is a consistent mixing of contents inside the cell by CPS if the velocity gradient profile is flattened, which is not assisted by advection diffusion but is only supported by Brownian diffusion. Although the precise flow structure of the cytoplasm has an important role for cellular metabolism, the hydrodynamic mechanism of its convection has not been clarified. We conducted an experiment to visualise the flow of cytoplasm in Nitella cells by injecting tracer fluorescent nanoparticles and using a flow visualisation system in order to understand how the flow profile affects their metabolic system. We determined that the velocity field in the cytosol has an obvious velocity gradient, not a flattened gradient, which suggests that the gradient assists cytosolic mixing by Taylor-Aris dispersion more than by Brownian diffusion.

  7. Tumor cell characterization and classification based on cellular specific membrane capacitance and cytoplasm conductivity.

    PubMed

    Zhao, Y; Zhao, X T; Chen, D Y; Luo, Y N; Jiang, M; Wei, C; Long, R; Yue, W T; Wang, J B; Chen, J

    2014-07-15

    This paper reports a microfluidic system that enables the characterization of tumor cell electrical properties where cells were aspirated through a constriction channel (cross-section area smaller than that of biological cells) with cellular impedance profiles measured and translated to specific membrane capacitance (Cspecific membrane) and cytoplasm conductivity (σcytoplasm). Two batches of H1299 cells were quantified by the microfluidic platform with different constriction channel cross-section areas, recording no differences with statistical significance (p<0.001) in both Cspecific membrane (1.63±0.52 vs. 1.65±0.43 μF/cm(2)) and σcytoplasm (0.90±0.19 vs. 0.92±0.15S/m), and thus confirming the reliability of the microfluidic platform. For paired high- and low-metastatic carcinoma strains 95D (ncell=537) and 95C cells (ncell=486), significant differences in both Cspecific membrane (2.00±0.43 vs. 1.62±0.39 μF/cm(2)) and σcytoplasm (0.88±0.46 vs. 1.25±0.35S/m) were observed. Statistically significant difference only in Cspecific membrane (2.00±0.43 vs. 1.58±0.30 μF/cm(2)) was observed for 95D cells (ncell=537) and 95D CCNY-KD cells with single oncogene CCNY down regulation (ncell=479, CCNY is a membrane-associated protein). In addition, statistically significant difference only in σcytoplasm (0.73±0.17 vs. 1.01±0.17S/m) was observed for A549 cells (ncell=487) and A549 CypA-KD cells with single oncogene CypA down regulation (ncell=597, CypA is a cytosolic protein). These results validated the developed microfluidic platform for Cspecific membrane and σcytoplasm quantification and confirmed the feasibility of using Cspecific membrane and σcytoplasm for tumor cell classification.

  8. Subcellular localization of cytoplasmic lattice-associated proteins is dependent upon fixation and processing procedures.

    PubMed

    Morency, Eric; Anguish, Lynne; Coonrod, Scott

    2011-02-16

    We and others have recently demonstrated by immuno-EM and mutation analysis that two oocyte-restricted maternal effect genes, PADI6 and MATER, localize, in part, to the oocyte cytoplasmic lattices (CPLs). During these ongoing studies, however, we found that the localization of these factors by confocal immunofluorescence (IF) analysis can vary dramatically depending upon how the oocytes and embryos are processed, with the localization pattern sometimes appearing more uniformly cytoplasmic while at other times appearing to be primarily cortical. We set out to better understand this differential staining pattern by testing a range of IF protocol parameters, changing mainly time and temperature conditions of the primary antibody solution incubation, as well as fixation methods. We found by confocal IF whole mount analysis that PADI6 and MATER localization in germinal vesicle stage oocytes is mainly cytoplasmic when the oocytes are fixed and then incubated with primary antibodies at room temperature for 1 hour, while the localization of these factors is largely limited to the cortex when the oocytes are fixed and incubated in primary antibody at 4 °C overnight. We then probed sections of fixed/embedded ovaries and isolated two-cell embryos with specific antibodies and found that, under these conditions, PADI6 and MATER were again primarily cytoplasmically localized, although the staining for these factors is slightly more cortical at the two-cell stage. Taken together, our results suggest that the localization of CPL-associated proteins by confocal IF is particularly affected by processing conditions. Further, based on our current observations, it appears that PADI6 and MATER are primarily distributed throughout the cytoplasm as opposed to the oocyte subcortex.

  9. Nucleus and cytoplasm segmentation in microscopic images using K-means clustering and region growing

    PubMed Central

    Sarrafzadeh, Omid; Dehnavi, Alireza Mehri

    2015-01-01

    Background: Segmentation of leukocytes acts as the foundation for all automated image-based hematological disease recognition systems. Most of the time, hematologists are interested in evaluation of white blood cells only. Digital image processing techniques can help them in their analysis and diagnosis. Materials and Methods: The main objective of this paper is to detect leukocytes from a blood smear microscopic image and segment them into their two dominant elements, nucleus and cytoplasm. The segmentation is conducted using two stages of applying K-means clustering. First, the nuclei are segmented using K-means clustering. Then, a proposed method based on region growing is applied to separate the connected nuclei. Next, the nuclei are subtracted from the original image. Finally, the cytoplasm is segmented using the second stage of K-means clustering. Results: The results indicate that the proposed method is able to extract the nucleus and cytoplasm regions accurately and works well even though there is no significant contrast between the components in the image. Conclusions: In this paper, a method based on K-means clustering and region growing is proposed in order to detect leukocytes from a blood smear microscopic image and segment its components, the nucleus and the cytoplasm. As region growing step of the algorithm relies on the information of edges, it will not able to separate the connected nuclei more accurately in poor edges and it requires at least a weak edge to exist between the nuclei. The nucleus and cytoplasm segments of a leukocyte can be used for feature extraction and classification which leads to automated leukemia detection. PMID:26605213

  10. FIE, a nuclear PRC2 protein, forms cytoplasmic complexes in Arabidopsis thaliana.

    PubMed

    Oliva, Moran; Butenko, Yana; Hsieh, Tzung-Fu; Hakim, Ofir; Katz, Aviva; Smorodinsky, Nechama I; Michaeli, Daphna; Fischer, Robert L; Ohad, Nir

    2016-11-01

    Polycomb group (PcG) proteins are evolutionarily conserved chromatin modifiers that regulate developmental pathways in plants. PcGs form nuclear multi-subunit Polycomb Repressive Complexes (PRCs). The PRC2 complex mediates gene repression via methylation of lysine 27 on histone H3, which consequently leads to chromatin condensation. In Arabidopsis thaliana, several PRC2 complexes with different compositions were identified, each controlling a particular developmental program.The core subunit FIE is crucial for PRC2 function throughout the plant life cycle, yet accurate information on its spatial and temporal localization was absent. This study focused on identifying FIE accumulation patterns, using microscopy and biochemical approaches. Analysing endogenous FIE and transgenic gFIE-green fluorescent protein fusion protein (gFIE-GFP) showed that FIE accumulates in the nuclei of every cell type examined. Interestingly, gFIE-GFP, as well as the endogenous FIE, also localized to the cytoplasm in all examined tissues. In both vegetative and reproductive organs, FIE formed cytoplasmic high-molecular-mass complexes, in parallel to the nuclear PRC2 complexes. Moreover, size-exclusion chromatography and bimolecular fluorescence complementation assays indicated that in inflorescences FIE formed a cytoplasmic complex with MEA, a PRC2 histone methyltransferase subunit. In contrast, CLF and SWN histone methyltransferases were strictly nuclear. Presence of PRC2 subunits in cytoplasmic complexes has not been previously described in plants. Our findings are in agreement with accumulating evidence demonstrating cytoplasmic localization and function of PcGs in metazoa. The cytosolic accumulation of PRC2 components in plants supports the model that PcGs have alternative non-nuclear functions that go beyond chromatin methylation.

  11. Cytoplasm-to-nucleus translocation of a herpesvirus tegument protein during cell division.

    PubMed

    Elliott, G; O'Hare, P

    2000-03-01

    We have previously shown that the herpes simplex virus tegument protein VP22 localizes predominantly to the cytoplasm of expressing cells. We have also shown that VP22 has the unusual property of intercellular spread, which involves the movement of VP22 from the cytoplasm of these expressing cells into the nuclei of nonexpressing cells. Thus, VP22 can localize in two distinct subcellular patterns. By utilizing time-lapse confocal microscopy of live cells expressing a green fluorescent protein-tagged protein, we now report in detail the intracellular trafficking properties of VP22 in expressing cells, as opposed to the intercellular trafficking of VP22 between expressing and nonexpressing cells. Our results show that during interphase VP22 appears to be targeted exclusively to the cytoplasm of the expressing cell. However, at the early stages of mitosis VP22 translocates from the cytoplasm to the nucleus, where it immediately binds to the condensing cellular chromatin and remains bound there through all stages of mitosis and chromatin decondensation into the G(1) stage of the next cycle. Hence, in VP22-expressing cells the subcellular localization of the protein is regulated by the cell cycle such that initially cytoplasmic protein becomes nuclear during cell division, resulting in a gradual increase over time in the number of nuclear VP22-expressing cells. Importantly, we demonstrate that this process is a feature not only of VP22 expressed in isolation but also of VP22 expressed during virus infection. Thus, VP22 utilizes an unusual pathway for nuclear targeting in cells expressing the protein which differs from the nuclear targeting pathway used during intercellular trafficking.

  12. FIE, a nuclear PRC2 protein, forms cytoplasmic complexes in Arabidopsis thaliana

    PubMed Central

    Oliva, Moran; Butenko, Yana; Hsieh, Tzung-Fu; Hakim, Ofir; Katz, Aviva; Smorodinsky, Nechama I.; Michaeli, Daphna; Fischer, Robert L.; Ohad, Nir

    2016-01-01

    Polycomb group (PcG) proteins are evolutionarily conserved chromatin modifiers that regulate developmental pathways in plants. PcGs form nuclear multi-subunit Polycomb Repressive Complexes (PRCs). The PRC2 complex mediates gene repression via methylation of lysine 27 on histone H3, which consequently leads to chromatin condensation. In Arabidopsis thaliana, several PRC2 complexes with different compositions were identified, each controlling a particular developmental program. The core subunit FIE is crucial for PRC2 function throughout the plant life cycle, yet accurate information on its spatial and temporal localization was absent. This study focused on identifying FIE accumulation patterns, using microscopy and biochemical approaches. Analysing endogenous FIE and transgenic gFIE–green fluorescent protein fusion protein (gFIE-GFP) showed that FIE accumulates in the nuclei of every cell type examined. Interestingly, gFIE-GFP, as well as the endogenous FIE, also localized to the cytoplasm in all examined tissues. In both vegetative and reproductive organs, FIE formed cytoplasmic high-molecular-mass complexes, in parallel to the nuclear PRC2 complexes. Moreover, size-exclusion chromatography and bimolecular fluorescence complementation assays indicated that in inflorescences FIE formed a cytoplasmic complex with MEA, a PRC2 histone methyltransferase subunit. In contrast, CLF and SWN histone methyltransferases were strictly nuclear. Presence of PRC2 subunits in cytoplasmic complexes has not been previously described in plants. Our findings are in agreement with accumulating evidence demonstrating cytoplasmic localization and function of PcGs in metazoa. The cytosolic accumulation of PRC2 components in plants supports the model that PcGs have alternative non-nuclear functions that go beyond chromatin methylation. PMID:27811080

  13. Myosin-Powered Membrane Compartment Drives Cytoplasmic Streaming, Cell Expansion and Plant Development.

    PubMed

    Peremyslov, Valera V; Cole, Rex A; Fowler, John E; Dolja, Valerian V

    2015-01-01

    Using genetic approaches, particle image velocimetry and an inert tracer of cytoplasmic streaming, we have made a mechanistic connection between the motor proteins (myosins XI), cargo transported by these motors (distinct endomembrane compartment defined by membrane-anchored MyoB receptors) and the process of cytoplasmic streaming in plant cells. It is shown that the MyoB compartment in Nicotiana benthamiana is highly dynamic moving with the mean velocity of ~3 μm/sec. In contrast, Golgi, mitochondria, peroxisomes, carrier vesicles and a cytosol flow tracer share distinct velocity profile with mean velocities of 0.6-1.5 μm/sec. Dominant negative inhibition of the myosins XI or MyoB receptors using overexpression of the N. benthamiana myosin cargo-binding domain or MyoB myosin-binding domain, respectively, resulted in velocity reduction for not only the MyoB compartment, but also each of the tested organelles, vesicles and cytoplasmic streaming. Furthermore, the extents of this reduction were similar for each of these compartments suggesting that MyoB compartment plays primary role in cytosol dynamics. Using gene knockout analysis in Arabidopsis thaliana, it is demonstrated that inactivation of MyoB1-4 results in reduced velocity of mitochondria implying slower cytoplasmic streaming. It is also shown that myosins XI and MyoB receptors genetically interact to contribute to cell expansion, plant growth, morphogenesis and proper onset of flowering. These results support a model according to which myosin-dependent, MyoB receptor-mediated transport of a specialized membrane compartment that is conserved in all land plants drives cytoplasmic streaming that carries organelles and vesicles and facilitates cell growth and plant development.

  14. An extranuclear expression system for analysis of cytoplasmic promoters of yeast linear killer plasmids.

    PubMed

    Schründer, J; Meinhardt, F

    1995-03-01

    Based on the cytoplasmically localized killer plasmids pGKL1 and pGKL2 of Kluyveromyces lactis two new linear hybrid plasmids were constructed which consist of pGKL1, into which in addition to the previously developed cytoplasmically expressible LEU2* selectable marker a glucose dehydrogenase-encoding bacterial gene (gdh A) has been integrated. One of the hybrid plasmids carries the bacterial gene preceded by an arbitrarily placed cytoplasmic promoter (upstream conserved sequence) in front of the coding region (pRKL121). The other plasmid was constructed in such a way that the ATG start codon of the gdh A gene was fused in frame to the ATG start codon of the killer plasmid's open reading frame 5 (pRKL122). The structures of both linear hybrid plasmids were confirmed by restriction analysis, Southern hybridization, and sequencing of the junction sites. Yeast strains carrying either of the plasmids expressed the glucose dehydrogenase gene; however, expression of the in phase fused gene was 40-fold higher compared to the arbitrarily placed cytoplasmic promoter. In general, an in phase fusion was not required for expression, but efficiency is dramatically enhanced when the 5' noncoding sequences in front of the heterologous genes are the same as those found on the native killer plasmids. The developed system can serve as a reporter for determining the efficiency of the different cytoplasmic promoters present on both linear plasmids. Hybrid plasmids were stably maintained without selective pressure in K. lactis and they were transferred and expressed also in Saccharomyces cerevisiae.

  15. Fc receptor endocytosis is controlled by a cytoplasmic domain determinant that actively prevents coated pit localization

    PubMed Central

    1992-01-01

    Macrophages and B-lymphocytes express two major isoforms of Fc receptor (FcRII-B2 and FcRII-B1) that exhibit distinct capacities for endocytosis. This difference in function reflects the presence of an in- frame insertion of 47 amino acids in the cytoplasmic domain of the lymphocyte isoform (FcRII-B1) due to alternative mRNA splicing. By expressing wild type and mutant FcRII cDNAs in fibroblasts, we have now examined the mechanism by which the insertion acts to prevent coated pit localization and endocytosis. We first identified the region of the FcRII-B2 cytoplasmic domain that is required for rapid internalization. Using a biochemical assay for endocytosis and an immuno-EM assay to determine coated pit localization directly, we found that the distal half of the cytoplasmic domain, particularly a region including residues 18-31, as needed for coated pit-mediated endocytosis. Elimination of the tyrosine residues at position 26 and 43, separately or together, had little effect on coated pit localization and a partial effect on endocytosis of ligand. Since the FcRII-B1 insertion occurs in the membrane-proximal region of the cytoplasmic domain (residue 6) not required for internalization, it is unlikely to act by physically disrupting the coated pit localization determinant. In fact, the insertion was found to prevent endocytosis irrespective of its position in the cytoplasmic tail and appeared to selectively exclude the receptor from coated regions. Moreover, receptors bearing the insertion exhibited a temperature- and ligand-dependent association with a detergent-insoluble fraction and with actin filaments, perhaps in part explaining the inability of FcRII-B1 to enter coated pits. PMID:1734021

  16. Myosin-Powered Membrane Compartment Drives Cytoplasmic Streaming, Cell Expansion and Plant Development

    PubMed Central

    Peremyslov, Valera V.; Cole, Rex A.; Fowler, John E.; Dolja, Valerian V.

    2015-01-01

    Using genetic approaches, particle image velocimetry and an inert tracer of cytoplasmic streaming, we have made a mechanistic connection between the motor proteins (myosins XI), cargo transported by these motors (distinct endomembrane compartment defined by membrane-anchored MyoB receptors) and the process of cytoplasmic streaming in plant cells. It is shown that the MyoB compartment in Nicotiana benthamiana is highly dynamic moving with the mean velocity of ~3 μm/sec. In contrast, Golgi, mitochondria, peroxisomes, carrier vesicles and a cytosol flow tracer share distinct velocity profile with mean velocities of 0.6–1.5 μm/sec. Dominant negative inhibition of the myosins XI or MyoB receptors using overexpression of the N. benthamiana myosin cargo-binding domain or MyoB myosin-binding domain, respectively, resulted in velocity reduction for not only the MyoB compartment, but also each of the tested organelles, vesicles and cytoplasmic streaming. Furthermore, the extents of this reduction were similar for each of these compartments suggesting that MyoB compartment plays primary role in cytosol dynamics. Using gene knockout analysis in Arabidopsis thaliana, it is demonstrated that inactivation of MyoB1-4 results in reduced velocity of mitochondria implying slower cytoplasmic streaming. It is also shown that myosins XI and MyoB receptors genetically interact to contribute to cell expansion, plant growth, morphogenesis and proper onset of flowering. These results support a model according to which myosin-dependent, MyoB receptor-mediated transport of a specialized membrane compartment that is conserved in all land plants drives cytoplasmic streaming that carries organelles and vesicles and facilitates cell growth and plant development. PMID:26426395

  17. Cytoplasmic effects on DNA methylation between male sterile lines and the maintainer in wheat (Triticum aestivum L.).

    PubMed

    Ba, Qingsong; Zhang, Gaisheng; Niu, Na; Ma, Shoucai; Wang, Junwei

    2014-10-01

    Male sterile cytoplasm plays an important role in hybrid wheat, and three-line system including male sterile (A line), its maintainer (B line) and restoring (R line) has played a major role in wheat hybrid production. It is well known that DNA methylation plays an important role in gene expression regulation during biological development in wheat. However, no reports are available on DNA methylation affected by different male sterile cytoplasms in hybrid wheat. We employed a methylation-sensitive amplified polymorphism technique to characterize nuclear DNA methylation in three male sterile cytoplasms. A and B lines share the same nucleus, but have different cytoplasms which is male sterile for the A and fertile for the B. The results revealed a relationship of DNA methylation at these sites specifically with male sterile cytoplasms, as well as male sterility, since the only difference between the A lines and B line was the cytoplasm. The DNA methylation was markedly affected by male sterile cytoplasms. K-type cytoplasm affected the methylation to a much greater degree than T-type and S-type cytoplasms, as indicated by the ratio of methylated sites, ratio of fully methylated sites, and polymorphism between A lines and B line for these cytoplasms. The genetic distance between the cytoplasm and nucleus for the K-type is much greater than for the T- and S-types because the former is between Aegilops genus and Triticum genus and the latter is within Triticum genus between Triticum spelta and Triticum timopheevii species. Thus, this difference in genetic distance may be responsible for the variation in methylation that we observed.

  18. Cytoplasmic Metadherin (MTDH) provides survival advantage under conditions of stress by acting as RNA-binding protein.

    PubMed

    Meng, Xiangbing; Zhu, Danlin; Yang, Shujie; Wang, Xinjun; Xiong, Zhi; Zhang, Yuping; Brachova, Pavla; Leslie, Kimberly K

    2012-02-10

    Overexpression of metadherin (MTDH) has been documented in many solid tumors and is implicated in metastasis and chemoresistance. MTDH has been detected at the plasma membrane as well as in the cytoplasm and nucleus, and the function of MTDH in these locales remains under investigation. In the nucleus, MTDH acts as a transcription co-factor to induce expression of chemoresistance-associated genes. However, MTDH is predominantly cytoplasmic in prostate tumors, and this localization correlates with poor prognosis. Herein, we used endometrial cancer cells as a model system to define a new role for MTDH in the cytoplasm. First, MTDH was primarily localized to the cytoplasm in endometrial cancer cells, and the N-terminal region of MTDH was required to maintain cytoplasmic localization. Next, we identified novel binding partners for cytoplasmic MTDH, including RNA-binding proteins and components of the RNA-induced silencing complex. Nucleic acids were required for the association of MTDH with these cytoplasmic proteins. Furthermore, MTDH interacted with and regulated protein expression of multiple mRNAs, such as PDCD10 and KDM6A. Depletion of cytoplasmic MTDH was associated with increased stress granule formation, reduced survival in response to chemotherapy and the tyrosine kinase inhibitor BIBF1120, Rad51 nuclear accumulation, and cell cycle arrest at G(2)/M. Finally, in vivo tumor formation was abrogated with knockdown of cytoplasmic MTDH. Taken together, our data identify a novel function for cytoplasmic MTDH as an RNA-binding protein. Our findings implicate cytoplasmic MTDH in cell survival and broad drug resistance via association with RNA and RNA-binding proteins.

  19. Nuclear vs Cytoplasmic localization of Filamin A in Prostate Cancer: Immunohistochemical Correlation with Metastases

    PubMed Central

    Bedolla, Roble G.; Wang, Yu; Asuncion, Alfredo; Chamie, Karim; Siddiqui, Salma; Mudryj, Maria M.; Prihoda, Thomas J.; Siddiqui, Javed; Chinnaiyan, Arul M.; Mehra, Rohit; deVereWhite, Ralph W.; Ghosh, Paramita M.

    2009-01-01

    Purpose We previously showed that nuclear localization of the actin-binding protein FilaminA (FlnA) corresponded to hormone-dependence in prostate cancer (Oncogene, 2007, 26:6061-6070). Intact FlnA (280kDa, cytoplasmic) cleaved to a 90kDa fragment which translocated to the nucleus in hormone-naïve cells, whereas in hormone-refractory cells, FlnA was phosphorylated, preventing its cleavage and nuclear translocation. We now examined whether FlnA localization determines a propensity to metastasis in advanced androgen independent prostate cancer. Experimental Design We examined, by immunohistochemistry, FlnA localization in paraffin-embedded human prostate tissue representing different stages of progression. Results were correlated with in vitro studies in a cell model of prostate cancer. Results Nuclear FlnA was significantly higher in benign prostate (0.6612±0.5888), PIN (0.6024±0.4620) and clinically localized cancers (0.69134±0.5686), compared to metastatic prostate cancers (0.3719±0.4992, p=0.0007). Cytoplasmic FlnA increased from benign prostate (0.0833±0.2677), PIN (0.1409±0.2293), localized cancers (0.3008±0.3762, p=0.0150), to metastases (0.7632±0.4414, p<0.00001). Logistic regression of metastatic vs non-metastatic tissue yielded the area-under-ROC curve as 0.67 for nuclear-FlnA, 0.79 for cytoplasmic-FlnA and 0.82 for both, indicating that metastasis correlates with cytoplasmic-to-nuclear translocation. In vitro studies showed that cytoplasmic localization of FlnA induced cell invasion whereas nuclear translocation of the protein inhibited it. FlnA dephosphorylation with the PKA inhibitor H-89 facilitated FlnA nuclear translocation, resulting in decreased invasiveness and AR transcriptional activity, and induced sensitivity to androgen withdrawal in hormone-refractory cells. Conclusions The data presented in this study indicate that in prostate cancer, metastasis correlates with cytoplasmic localization of FlnA and may be prevented by cleavage and

  20. Homologous Transcription Factors DUX4 and DUX4c Associate with Cytoplasmic Proteins during Muscle Differentiation

    PubMed Central

    Ansseau, Eugénie; Matteotti, Christel; Yip, Cassandre; Liu, Jian; Leroy, Baptiste; Hubeau, Céline; Gerbaux, Cécile; Cloet, Samuel; Wauters, Armelle; Zorbo, Sabrina; Meyer, Pierre; Pirson, Isabelle; Laoudj-Chenivesse, Dalila; Wattiez, Ruddy; Harper, Scott Q.; Belayew, Alexandra; Coppée, Frédérique

    2016-01-01

    Hundreds of double homeobox (DUX) genes map within 3.3-kb repeated elements dispersed in the human genome and encode DNA-binding proteins. Among these, we identified DUX4, a potent transcription factor that causes facioscapulohumeral muscular dystrophy (FSHD). In the present study, we performed yeast two-hybrid screens and protein co-purifications with HaloTag-DUX fusions or GST-DUX4 pull-down to identify protein partners of DUX4, DUX4c (which is identical to DUX4 except for the end of the carboxyl terminal domain) and DUX1 (which is limited to the double homeodomain). Unexpectedly, we identified and validated (by co-immunoprecipitation, GST pull-down, co-immunofluorescence and in situ Proximal Ligation Assay) the interaction of DUX4, DUX4c and DUX1 with type III intermediate filament protein desmin in the cytoplasm and at the nuclear periphery. Desmin filaments link adjacent sarcomere at the Z-discs, connect them to sarcolemma proteins and interact with mitochondria. These intermediate filament also contact the nuclear lamina and contribute to positioning of the nuclei. Another Z-disc protein, LMCD1 that contains a LIM domain was also validated as a DUX4 partner. The functionality of DUX4 or DUX4c interactions with cytoplasmic proteins is underscored by the cytoplasmic detection of DUX4/DUX4c upon myoblast fusion. In addition, we identified and validated (by co-immunoprecipitation, co-immunofluorescence and in situ Proximal Ligation Assay) as DUX4/4c partners several RNA-binding proteins such as C1QBP, SRSF9, RBM3, FUS/TLS and SFPQ that are involved in mRNA splicing and translation. FUS and SFPQ are nuclear proteins, however their cytoplasmic translocation was reported in neuronal cells where they associated with ribonucleoparticles (RNPs). Several other validated or identified DUX4/DUX4c partners are also contained in mRNP granules, and the co-localizations with cytoplasmic DAPI-positive spots is in keeping with such an association. Large muscle RNPs were

  1. Nuclear autophagy: An evolutionarily conserved mechanism of nuclear degradation in the cytoplasm.

    PubMed

    Luo, Majing; Zhao, Xueya; Song, Ying; Cheng, Hanhua; Zhou, Rongjia

    2016-11-01

    Macroautophagy/autophagy is a catabolic process that is essential for cellular homeostasis. Studies on autophagic degradation of cytoplasmic components have generated interest in nuclear autophagy. Although its mechanisms and roles have remained elusive, tremendous progress has been made toward understanding nuclear autophagy. Nuclear autophagy is evolutionarily conserved in eukaryotes that may target various nuclear components through a series of processes, including nuclear sensing, nuclear export, autophagic substrate encapsulation and autophagic degradation in the cytoplasm. However, the molecular processes and regulatory mechanisms involved in nuclear autophagy remain largely unknown. Numerous studies have highlighted the importance of nuclear autophagy in physiological and pathological processes such as cancer. This review focuses on current advances in nuclear autophagy and provides a summary of its research history and landmark discoveries to offer new perspectives.

  2. Parvovirus particles and movement in the cellular cytoplasm and effects of the cytoskeleton

    SciTech Connect

    Lyi, Sangbom Michael; Tan, Min Jie Alvin Parrish, Colin R.

    2014-05-15

    Cell infection by parvoviruses requires that capsids be delivered from outside the cell to the cytoplasm, followed by genome trafficking to the nucleus. Here we microinject capsids into cells that lack receptors and followed their movements within the cell over time. In general the capsids remained close to the positions where they were injected, and most particles did not move to the vicinity of or enter the nucleus. When 70 kDa-dextran was injected along with the capsids that did not enter the nucleus in significant amounts. Capsids conjugated to peptides containing the SV40 large T-antigen nuclear localization signal remained in the cytoplasm, although bovine serum albumen conjugated to the same peptide entered the nucleus rapidly. No effects of disruption of microfilaments, intermediate filaments, or microtubules on the distribution of the capsids were observed. These results suggest that movement of intact capsids within cells is primarily associated with passive processes.

  3. Interaction with Ppil3 leads to the cytoplasmic localization of Apoptin in tumor cells

    SciTech Connect

    Huo Dehua; Yi Lina; Yang Jine

    2008-07-18

    Apoptin, a small protein encoded by chicken anemia virus (CAV), induces cell death specifically in cancer cells. In normal cells, Apoptin remains in the cytoplasm; whereas in cancerous cells, it migrates into the nucleus and kills the cell. Cellular localization appears to be crucial. Through a yeast two-hybrid screen, we identified human Peptidyl-prolyl isomerase-like 3 (Ppil3) as one of the Apoptin-associated proteins. Ppil3 could bind Apoptin directly, and held Apoptin in cytoplasm even in tumor cells. We then demonstrated that the nuclearcytoplasmic distribution of Apoptin is related to the expression level of intrinsic Ppil3. Moreover, extrinsic modifying of Ppil3 levels also resulted in nuclearcytoplasmic shuffling of Apoptin. The Apoptin P109A mutant, located between the putative nuclear localization and export signals, could significantly impair the function of Ppil3. Our results suggest a new direction for the localization mechanism study of Apoptin in cells.

  4. A Stochastic Model for Microtubule Motors Describes the In Vivo Cytoplasmic Transport of Human Adenovirus

    PubMed Central

    Gazzola, Mattia; Burckhardt, Christoph J.; Bayati, Basil; Engelke, Martin; Greber, Urs F.; Koumoutsakos, Petros

    2009-01-01

    Cytoplasmic transport of organelles, nucleic acids and proteins on microtubules is usually bidirectional with dynein and kinesin motors mediating the delivery of cargoes in the cytoplasm. Here we combine live cell microscopy, single virus tracking and trajectory segmentation to systematically identify the parameters of a stochastic computational model of cargo transport by molecular motors on microtubules. The model parameters are identified using an evolutionary optimization algorithm to minimize the Kullback-Leibler divergence between the in silico and the in vivo run length and velocity distributions of the viruses on microtubules. The present stochastic model suggests that bidirectional transport of human adenoviruses can be explained without explicit motor coordination. The model enables the prediction of the number of motors active on the viral cargo during microtubule-dependent motions as well as the number of motor binding sites, with the protein hexon as the binding site for the motors. PMID:20041204

  5. A stochastic model for microtubule motors describes the in vivo cytoplasmic transport of human adenovirus.

    PubMed

    Gazzola, Mattia; Burckhardt, Christoph J; Bayati, Basil; Engelke, Martin; Greber, Urs F; Koumoutsakos, Petros

    2009-12-01

    Cytoplasmic transport of organelles, nucleic acids and proteins on microtubules is usually bidirectional with dynein and kinesin motors mediating the delivery of cargoes in the cytoplasm. Here we combine live cell microscopy, single virus tracking and trajectory segmentation to systematically identify the parameters of a stochastic computational model of cargo transport by molecular motors on microtubules. The model parameters are identified using an evolutionary optimization algorithm to minimize the Kullback-Leibler divergence between the in silico and the in vivo run length and velocity distributions of the viruses on microtubules. The present stochastic model suggests that bidirectional transport of human adenoviruses can be explained without explicit motor coordination. The model enables the prediction of the number of motors active on the viral cargo during microtubule-dependent motions as well as the number of motor binding sites, with the protein hexon as the binding site for the motors.

  6. A neuron-specific cytoplasmic dynein isoform preferentially transports TrkB signaling endosomes

    PubMed Central

    Ha, Junghoon; Lo, Kevin W.-H.; Myers, Kenneth R.; Carr, Tiffany M.; Humsi, Michael K.; Rasoul, Bareza A.; Segal, Rosalind A.; Pfister, K. Kevin

    2008-01-01

    Cytoplasmic dynein is the multisubunit motor protein for retrograde movement of diverse cargoes to microtubule minus ends. Here, we investigate the function of dynein variants, defined by different intermediate chain (IC) isoforms, by expressing fluorescent ICs in neuronal cells. Green fluorescent protein (GFP)–IC incorporates into functional dynein complexes that copurify with membranous organelles. In living PC12 cell neurites, GFP–dynein puncta travel in both the anterograde and retrograde directions. In cultured hippocampal neurons, neurotrophin receptor tyrosine kinase B (TrkB) signaling endosomes are transported by cytoplasmic dynein containing the neuron-specific IC-1B isoform and not by dynein containing the ubiquitous IC-2C isoform. Similarly, organelles containing TrkB isolated from brain by immunoaffinity purification also contain dynein with IC-1 but not IC-2 isoforms. These data demonstrate that the IC isoforms define dynein populations that are selectively recruited to transport distinct cargoes. PMID:18559670

  7. Cytoplasmic Ig-Domain Proteins: Cytoskeletal Regulators with a Role in Human Disease

    PubMed Central

    Otey, Carol A.; Dixon, Richard; Stack, Christianna; Goicoechea, Silvia M.

    2009-01-01

    Immunoglobulin domains are found in a wide variety of functionally diverse transmembrane proteins, and also in a smaller number of cytoplasmic proteins. Members of this latter group are usually associated with the actin cytoskeleton, and most of them bind directly to either actin or myosin, or both. Recently, studies of inherited human disorders have identified disease-causing mutations in five cytoplasmic Ig-domain proteins: myosin-binding protein C, titin, myotilin, palladin, and myopalladin. Together with results obtained from cultured cells and mouse models, these clinical studies have yielded novel insights into the unexpected roles of Ig domain proteins in mechanotransduction and signaling to the nucleus. An emerging theme in this field is that cytoskeleton-associated Ig domain proteins are more than structural elements of the cell, and may have evolved to fill different needs in different cellular compartments. PMID:19466753

  8. Evidence for a cytoplasmic pathway of oxalate biosynthesis in Aspergillus niger.

    PubMed Central

    Kubicek, C P; Schreferl-Kunar, G; Wöhrer, W; Röhr, M

    1988-01-01

    Oxalate accumulation of up to 8 g/liter was induced in Aspergillus niger by shifting the pH from 6 to 8. This required the presence of Pi and a nitrogen source and was inhibited by the protein synthesis inhibitor cycloheximide. Exogenously added 14CO2 was not incorporated into oxalate, but was incorporated into acetate and malate, thus indicating the biosynthesis of oxalate by hydrolytic cleavage of oxaloacetate. Inhibition of mitochondrial citrate metabolism by fluorocitrate did not significantly decrease the oxalate yield. The putative enzyme that was responsible for this was oxaloacetate hydrolase (EC 3.7.1.1), which was induced de novo during the pH shift. Subcellular fractionation of oxalic acid-forming mycelia of A. niger showed that this enzyme is located in the cytoplasm of A. niger. The results are consistent with a cytoplasmic pathway of oxalate formation which does not involve the tricarboxylic acid cycle. PMID:3132096

  9. Attractant Signaling by an Aspartate Chemoreceptor Dimer with a Single Cytoplasmic Domain

    NASA Astrophysics Data System (ADS)

    Gardina, Paul J.; Manson, Michael D.

    1996-10-01

    Signal transduction across cell membranes often involves interactions among identical receptor subunits, but the contribution of individual subunits is not well understood. The chemoreceptors of enteric bacteria mediate attractant responses by interrupting a phosphotransfer circuit initiated at receptor complexes with the protein kinase CheA. The aspartate receptor (Tar) is a homodimer, and oligomerized cytoplasmic domains stimulate CheA activity much more than monomers do in vitro. Intragenic complementation was used to show in Escherichia coli that heterodimers containing one full-length and one truncated Tar subunit mediated responses to aspartate in the presence of full-length Tar homodimers that could not bind aspartate. Thus, a Tar dimer containing only one cytoplasmic domain can initiate an attractant (inhibitory) signal, although it may not be able to stimulate kinase activity of CheA.

  10. Characterization of cytoplasmic hyaline bodies in a hepatocellular carcinoma of a dog.

    PubMed

    Masserdotti, Carlo; Rossetti, Enrica; De Lorenzi, Davide; Della Salda, Leonardo; Palmieri, Chiara

    2014-02-01

    This report describes the morphological and immunohistochemical features of intracytoplasmic inclusion bodies found in a 13-year-old Yorkshire dog with a hepatocellular carcinoma and referred for anorexia, lethargy and mild polydipsia. Fine-needle aspirates of the large abdominal mass revealed high number of pleomorphic neoplastic hepatocytes, containing round to polygonal, well-demarcated, hyaline bodies. Same findings were histologically confirmed on multiple biopsies. Immunohistochemically, the inclusion bodies were negative for alpha-1-antitrypsin, carcinoembryonary antigen, fibrinogen, IgG, IgM, cytokeratins 7, 8, 18, 19, 20. By transmission electron microscopy, the cytoplasmic inclusions were composed of granular homogeneous or reticulated electrondense matrix, enclosed within dilated rough endoplasmic reticulum or remnants of its membranes, consistent with proteinaceous material accumulated within neoplastic hepatocytes due to aberrant protein secretion or transport. This is the first detailed characterization of hyaline cytoplasmic inclusion bodies in canine hepatocellular carcinoma.

  11. Giant cytoplasmic granules in Langerhans cells of Chediak-Higashi syndrome.

    PubMed

    Carrillo-Farga, J; Gutiérrez-Palomera, G; Ruiz-Maldonado, R; Rondán, A; Antuna, S

    1990-02-01

    Giant membrane-bound cytoplasmic granules were found in the epidermal Langerhans cells of a patient with the Chediak-Higashi syndrome. These cells also contained normal-appearing Birbeck granules. The giant granules had a granular or sometimes globular internal structure; they are believed to derive from fusion of lysosomes or some portion of Birbeck granules. It is unclear whether this morphologic change in Langerhans cell interferes with their antigen-presenting function; it may be, in part, responsible for the frequent infections seen in patients with Chediak-Higashi syndrome that are otherwise more clearly related to the abnormalities in neutrophils and lymphocytes. The Langerhans cell is another cellular type in Chediak-Higashi syndrome in which giant cytoplasmic granules are found.

  12. Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification.

    PubMed

    Dejonghe, Wim; Kuenen, Sabine; Mylle, Evelien; Vasileva, Mina; Keech, Olivier; Viotti, Corrado; Swerts, Jef; Fendrych, Matyáš; Ortiz-Morea, Fausto Andres; Mishev, Kiril; Delang, Simon; Scholl, Stefan; Zarza, Xavier; Heilmann, Mareike; Kourelis, Jiorgos; Kasprowicz, Jaroslaw; Nguyen, Le Son Long; Drozdzecki, Andrzej; Van Houtte, Isabelle; Szatmári, Anna-Mária; Majda, Mateusz; Baisa, Gary; Bednarek, Sebastian York; Robert, Stéphanie; Audenaert, Dominique; Testerink, Christa; Munnik, Teun; Van Damme, Daniël; Heilmann, Ingo; Schumacher, Karin; Winne, Johan; Friml, Jiří; Verstreken, Patrik; Russinova, Eugenia

    2016-06-08

    ATP production requires the establishment of an electrochemical proton gradient across the inner mitochondrial membrane. Mitochondrial uncouplers dissipate this proton gradient and disrupt numerous cellular processes, including vesicular trafficking, mainly through energy depletion. Here we show that Endosidin9 (ES9), a novel mitochondrial uncoupler, is a potent inhibitor of clathrin-mediated endocytosis (CME) in different systems and that ES9 induces inhibition of CME not because of its effect on cellular ATP, but rather due to its protonophore activity that leads to cytoplasm acidification. We show that the known tyrosine kinase inhibitor tyrphostinA23, which is routinely used to block CME, displays similar properties, thus questioning its use as a specific inhibitor of cargo recognition by the AP-2 adaptor complex via tyrosine motif-based endocytosis signals. Furthermore, we show that cytoplasm acidification dramatically affects the dynamics and recruitment of clathrin and associated adaptors, and leads to reduction of phosphatidylinositol 4,5-biphosphate from the plasma membrane.

  13. Isolation and properties of poly(A)-containing RNA from the cytoplasm of rat liver cells.

    PubMed

    Brysch, B; Chorazy, M

    1975-01-01

    1. The described technique for preparative isolation of poly(A)-containing RNA by complexing with poly(U)-cellulose and elution at 45 degrees C, is simple, reproducible, and the poly(U)-cellulose preparation is suitable for repeated use. 2. The poly(A)-containing RNA isolated from the poly(U)-cellulose complex is still contaminated by ribosomal RNA which can be removed by recomplexing. The purified preparation is heterogeneous on polyacrylamide-gel electrophoresis and is located over the region from 5-6S to 28S. Poly(A) segments of cytoplasmic RNA show heterogeneous size distribution. 3. In acidic medium, the poly(A) segments form ordered double-stranded structure. 4. The rapid labelling of rat liver and fibroblast cytoplasmic poly(A)-containing RNAs and their base composition resemble closely the corresponding properties of mRNA.

  14. Parvovirus particles and movement in the cellular cytoplasm and effects of the cytoskeleton.

    PubMed

    Lyi, Sangbom Michael; Tan, Min Jie Alvin; Parrish, Colin R

    2014-05-01

    Cell infection by parvoviruses requires that capsids be delivered from outside the cell to the cytoplasm, followed by genome trafficking to the nucleus. Here we microinject capsids into cells that lack receptors and followed their movements within the cell over time. In general the capsids remained close to the positions where they were injected, and most particles did not move to the vicinity of or enter the nucleus. When 70 kDa-dextran was injected along with the capsids that did not enter the nucleus in significant amounts. Capsids conjugated to peptides containing the SV40 large T-antigen nuclear localization signal remained in the cytoplasm, although bovine serum albumen conjugated to the same peptide entered the nucleus rapidly. No effects of disruption of microfilaments, intermediate filaments, or microtubules on the distribution of the capsids were observed. These results suggest that movement of intact capsids within cells is primarily associated with passive processes.

  15. Gravitational effects on the rearrangement of cytoplasmic components during axial formation in amphibian development

    NASA Astrophysics Data System (ADS)

    Phillips, C. R.; Whalon, B.; Moore, J.; Danilchik, M.

    The spatial positioning of the dorsal-ventral axis in the amphibian, Xenopus laevis, can be experimentally manipulated either by tipping the embryo relative to Earth's gravitational force vector or by centrifugation. Experimental evidence suggests that certain cytoplasmic components are redistributed during the first cell cycle and that these components are, in part, responsible for the establishment of this axis. Further studies indicate that at least some of the cytoplasmic components responsible for establishing this axis may be RNA. Recombinant cDNA and PCR technology are utilized to isolate DNA clones for messenger RNA which becomes spatially localized to the dorsal side of the embryo. These clones are being used to study the mechanisms of spatial localization and the function of the localized RNA transcripts.

  16. Antineutrophil cytoplasmic antibodies (ANCA): diagnostic utility and potential role in the pathogenesis of vasculitis.

    PubMed

    Malenica, Branko; Rudolf, Marija; Kozmar, Ana

    2004-01-01

    Antineutrophil cytoplasmic antibodies (ANCA) are a heterogeneous group of circulating antibodies directed toward the cytoplasmic constituents of neutrophils and monocytes. ANCA have been described in various diseases including idiopathic systemic vasculitides, connective tissue diseases, inflammatory bowel diseases, autoimmune liver diseases, infectious diseases, and some drugs. ANCA recognize different target antigens such as proteinase 3 (PR3-ANCA), myeloperoxidase (MPO-ANCA), cathepsin G, lactoferrin, bactericidal/permeability-increasing protein (BPI), and some others. However, only PR3-ANCA and MPO-ANCA are closely associated with systemic vasculitides, in particular Wegener's granulomatosis, microscopic polyangiitis and its renal limited manifestation, and Churg-Strauss syndrome. Both in vitro and in vivo experimental data strongly support a pathogenic role for ANCA in vasculitis and glomerulonephritis.

  17. let-65 is cytoplasmic methionyl tRNA synthetase in C. elegans

    PubMed Central

    Alriyami, Maha Z.; Jones, Martin R.; Johnsen, Robert C.; Banerjee, Yajnavalka; Baillie, David L.

    2014-01-01

    Cytoplasmic methionyl tRNA synthetase (MetRS) is one of more than 20 cytoplasmic aminoacyl tRNA synthetase enzymes (ARS). This family of enzymes catalyzes a process fundamental for protein translation. Using a combination of genetic mapping, oligonucleotide array comparative genomic hybridization, and phenotypic correlation, we show that mutations in the essential gene, let-65, reside within the predicted Caenorhabditis elegans homologue of MetRS, which we have named mars-1. We demonstrate that the lethality associated with alleles of let-65 is fully rescued by a transgenic array that spans the mars-1 genomic region. Furthermore, sequence analysis reveals that six let-65 alleles lead to the alteration of highly conserved amino acids. PMID:25606464

  18. Cytoplasmic streaming emerges naturally from hydrodynamic self-organisation of a microfilament suspension

    NASA Astrophysics Data System (ADS)

    Woodhouse, Francis; Goldstein, Raymond

    2013-03-01

    Cytoplasmic streaming is the ubiquitous phenomenon of deliberate, active circulation of the entire liquid contents of a plant or animal cell by the walking of motor proteins on polymer filament tracks. Its manifestation in the plant kingdom is particularly striking, where many cells exhibit highly organised patterns of flow. How these regimented flow templates develop is biologically unclear, but there is growing experimental evidence to support hydrodynamically-mediated self-organisation of the underlying microfilament tracks. Using the spirally-streaming giant internodal cells of the characean algae Chara and Nitella as our prototype, we model the developing sub-cortical streaming cytoplasm as a continuum microfilament suspension subject to hydrodynamic and geometric forcing. We show that our model successfully reproduces emergent streaming behaviour by evolving from a totally disordered initial state into a steady characean ``conveyor belt'' configuration as a consequence of the cell geometry, and discuss applicability to other classes of steadily streaming plant cells.

  19. Cytoplasmic Phospholipase A2 Antagonists Inhibit Multiple Endocytic Membrane Trafficking Pathways

    PubMed Central

    Doody, Anne M.; Antosh, Amy L.; Brown, William J.

    2009-01-01

    Previous studies have suggested a role for cytosolic Ca2+-independent phospholipase A2 (PLA2) activity in the formation of endosome membrane tubules that participate in the export of transferrin (Tf) and transferrin receptors (TfR) from sorting endosomes (SEs) and the endocytic recycling compartment (ERC). Here we show that the PLA2 requirement is a general feature of endocytic trafficking. The reversible cytoplasmic PLA2-antagonist ONO-RS-082 (ONO) produced a concentration-dependent, differential block in the endocytic recycling of both low-density lipoprotein receptor (LDLR) and TfRs, and in the degradative pathways of LDL and epidermal growth factor (EGF). These results are consistent with the model that a cytoplasmic PLA2 plays a general role in the export of cargo from multiple endocytic compartments by mediating the formation of membrane tubules. PMID:19695219

  20. Invasive amoebiasis is associated with the development of anti-neutrophil cytoplasmic antibody.

    PubMed Central

    Pudifin, D J; Duursma, J; Gathiram, V; Jackson, T F

    1994-01-01

    Features of tissue damage in invasive amoebiasis, in particular polymorphonuclear neutrophil (PMN) degranulation and vasculitis, bear resemblance to that seen in Wegener's granulomatosis, the latter being associated with the presence of anti-neutrophil cytoplasmic antibodies (ANCA). We therefore tested sera from patients with confirmed amoebic liver abscess (ALA) for the presence of ANCA by means of an indirect fluorescent antibody test using pure neutrophils as substrate. ANCA was detected in 97.4% of amoebic sera; the pattern of staining was cytoplasmic, homogeneous, without central accentuation (C-ANCA). A proteinase 3 (PR3) ELISA demonstrated PR3 specificity in 75% of C-ANCA-positive ALA sera. Possible explanations are (i) a cross-reacting antibody to a component of Entamoeba histolytica, or (ii) an antibody to PMN components released, and possibly modified, by the action of E. histolytica on PMN. It is possible that this antibody contributes to the pathogenesis of invasive amoebiasis. Images Fig. 1 PMID:8033420

  1. Invasive amoebiasis is associated with the development of anti-neutrophil cytoplasmic antibody.

    PubMed

    Pudifin, D J; Duursma, J; Gathiram, V; Jackson, T F

    1994-07-01

    Features of tissue damage in invasive amoebiasis, in particular polymorphonuclear neutrophil (PMN) degranulation and vasculitis, bear resemblance to that seen in Wegener's granulomatosis, the latter being associated with the presence of anti-neutrophil cytoplasmic antibodies (ANCA). We therefore tested sera from patients with confirmed amoebic liver abscess (ALA) for the presence of ANCA by means of an indirect fluorescent antibody test using pure neutrophils as substrate. ANCA was detected in 97.4% of amoebic sera; the pattern of staining was cytoplasmic, homogeneous, without central accentuation (C-ANCA). A proteinase 3 (PR3) ELISA demonstrated PR3 specificity in 75% of C-ANCA-positive ALA sera. Possible explanations are (i) a cross-reacting antibody to a component of Entamoeba histolytica, or (ii) an antibody to PMN components released, and possibly modified, by the action of E. histolytica on PMN. It is possible that this antibody contributes to the pathogenesis of invasive amoebiasis.

  2. Early cytoplasmic vacuolization of African green monkey kidney cells by SV40.

    PubMed

    Miyamura, T; Kitahara, T

    1975-01-01

    As early as 3--4 hours after infection with SV40 at a high input multiplicity, African green monkey (Cercopithecus aethiops) kidney (AGMK) cells developed cytoplasmic vacuolization. At 10--20 hours after infection, the vacuolization reached its maximal level, then disappeared and SV40 specific cytopathic change followed. This vacuolization developed before the synthesis of the specific T and V antigens. This early cytoplasmic vacuolization (ECV) was prevented by preincubating the virus with specific antiserum, or by heating the virus with MgCl2. The ECV could be induced by UV-irradiated SV40. Addition of metabolic inhibitors had no effect on the induction of the ECV. These results suggest that the capacity to induce the ECV resides in a structural component(s) of SV40 virion and the vacuolization is not associated with the replication of SV40.

  3. Correlations between nuclear morphology and bundles of cytoplasmic fibrils in 50 cases of acute myeloid leukaemia.

    PubMed Central

    Pearson, E C

    1986-01-01

    An electron microscopic examination was carried out of peripheral blood or bone marrow samples, or both, from 50 patients entered into the Medical Research Council 9th Acute Myeloid Leukaemia Trial. The results showed a striking correlation between the presence of conspicuous bundles of fibrils within the cytoplasm of the leukaemic cells and the degree of convolution or lobulation of the nuclei. In none of the samples were predominantly convoluted or lobed nuclei observed in the absence of prominent fibrillar bundles and in only two cases were nuclei of a more regular outline seen in association with many conspicuous bundles of cytoplasmic fibrils. No correlation was found between the apparent degree of maturity of the nuclei, as assessed by the degree of chromatin condensation, and the absence or abundance of fibrillar bundles. Images PMID:3456357

  4. Concentrations of individual RNA sequences in polyadenylated nuclear and cytoplasmic RNA populations of Drosophila cells.

    PubMed Central

    Biessmann, H

    1980-01-01

    Steady state concentrations of individual RNA sequences in poly(A) nuclear and cytoplasmic RNA populations of Drosophila Kc cells were determined using cloned cDNA fragments. These cDNAs represent poly(A) RNA sequences of different abundance in the cytoplasm of Kc cells, but their steady state concentrations in poly(A) hnRNA was always lower. Of ten different sequences analysed, eight showed some four-fold lower concentration in hnRNA mRNA, two were underrepresented in hnRNA relative to the others. The obvious clustering of mRNA/hnRNA ratios is discussed in relation to sequence complexity and turnover rates of these RNA populations. Images PMID:6162158

  5. Effects of the uncoupling agents FCCP and CCCP on the saltatory movements of cytoplasmic organelles.

    PubMed

    Hollenbeck, P J; Bray, D; Adams, R J

    1985-02-01

    Two potent uncoupling agents, carbonylcyanide-4-trifluoromethoxyphenylhydrazone (FCCP) and carbonylcyanide-3-chlorophenylhydrazone (CCCP) inhibit the movement of organelles in neurites of chick sensory neurones in culture. FCCP applied for 30 minutes at 10 microM reduces the number of moving organelles by 78% and a similar treatment with CCCP causes a reduction of 47%. At 100 microM either compound abolishes all directed movements both in neurites and in cultured 3T3 cells. These effects are probably not due to the discharge of proton gradients since 2,4-dinitrophenol (DNP), at concentrations shown to uncouple mitochondria by the discharge of the permeant cationic fluorescent probe rhodamine 123, fails to inhibit cytoplasmic movements. The inhibition of cytoplasmic movements by FCCP and CCCP is likely to be a consequence of their inhibitory action on a variety of enzymes, including dynein and myosin ATPases, through a reaction with sulfhydryl groups.

  6. Flow-induced channel formation in the cytoplasm of motile cells

    NASA Astrophysics Data System (ADS)

    Guy, Robert D.; Nakagaki, Toshiyuki; Wright, Grady B.

    2011-07-01

    A model is presented to explain the development of flow channels within the cytoplasm of the plasmodium of the giant amoeba Physarum polycephalum. The formation of channels is related to the development of a self-organizing tubular network in large cells. Experiments indicate that the flow of cytoplasm is involved in the development and organization of these networks, and the mathematical model proposed here is motivated by recent experiments involving the observation of development of flow channel in small cells. A model of pressure-driven flow through a polymer network is presented in which the rate of flow increases the rate of depolymerization. Numerical solutions and asymptotic analysis of the model in one spatial dimension show that under very general assumptions this model predicts the formation of channels in response to flow.

  7. Total cytoplasmic calcium in relaxed and maximally contracted rabbit portal vein smooth muscle.

    PubMed Central

    Bond, M; Shuman, H; Somlyo, A P; Somlyo, A V

    1984-01-01

    The concentration of total cytoplasmic Ca in vascular smooth muscle was measured by electron probe microanalysis of strips of rabbit portal anterior mesenteric vein that were rapidly frozen either when relaxed or during a maintained (30 min) maximal contraction stimulated with high K and noradrenaline. Strips were also frozen and analysed after incubation in Ca-free, high-Mg2+ solution. Probe diameters of 0.1-0.2 micron and 1.0-1.5 micron were used to measure, respectively, cytoplasmic and cellular (including stored) Ca. There was a highly significant increase (P less than 0.0005) in cytoplasmic Ca of 1.0 +/- 0.2 (S.D.) mmol Ca/kg dry wt. from 0.8 +/- 0.2 (S.E. of mean) mmol/kg dry wt. (n = 262 spectra, six animals) to 1.8 +/- 0.2 (S.E. of mean) mmol Ca/kg dry wt. (n = 296 spectra, six animals), during maximal contraction. This increase is greater than can be accounted for by Ca binding to calmodulin and to myosin, suggesting the presence of other Ca-binding proteins in smooth muscle. A small amount (0.4-0.6 mmol/kg dry wt.) of cytoplasmic Ca remained after incubation in Ca-free, high-Mg2+ EGTA solution. This tightly bound, cytoplasmic Ca is insufficient to account for the total amount of divalent cation known to be bound to F-actin. We conclude that Mg is the major inexchangeably bound cation in F-actin in smooth as in striated muscle. In the contracted muscles, the cellular Ca concentration, measured with the large probes that include Ca stored in the sarcoplasmic reticulum (s.r.), was 3.2 +/- 0.3 (S.E. of mean) mmol Ca/kg dry wt. (n = 93), significantly higher than the cytoplasmic Ca concentration measured with small probes. This value of cellular Ca is probably an underestimate, as the large-diameter probes did not cover all of the peripheral s.r. The cellular Ca (measured with large probes) was highest in the contracted and lower in the relaxed tissue, and was significantly reduced in the muscles incubated in Ca-free solution. In contracted muscle, cytoplasmic

  8. Human autoantibodies to diacyl-phosphatidylethanolamine recognize a specific set of discrete cytoplasmic domains

    PubMed Central

    Laurino, C C F C; Fritzler, M J; Mortara, R A; Silva, N P; Almeida, I C; Andrade, L E C

    2006-01-01

    The aim of this study was to characterize a novel human autoantibody–autoantigen system represented as cytoplasmic discrete speckles (CDS) in indirect immunofluorescence (IIF). A distinct CDS IIF pattern represented by 3–20 discrete speckles dispersed throughout the cytoplasm was identified among other cytoplasmic speckled IIF patterns. The cytoplasmic domains labelled by human anti-CDS-1 antibodies did not co-localize with endosome/lysosome markers EEA1 and LAMP-2, but showed partial co-localization with glycine–tryptophan bodies (GWB). CDS-1 sera did not react with several cellular extracts in immunoblotting and did not immunoprecipitate recombinant GW182 or EEA1 proteins. The typical CDS-1 IIF labelling pattern was abolished after delipidation of HEp-2 cells. Moreover, CDS-1 sera reacted strongly with a lipid component co-migrating with phosphatidylethanolamine (PE) in high performance thin-layer chromatography (HPTLC)-immunostaining of HEp-2 cell total lipid extracts. The CDS-1 major molecular targets were established by electrospray ionization–mass spectrometry (ESI-MS), HPTLC-immunostaining and chemiluminescent enzyme-linked immunosorbent assay as diacyl-PE species, containing preferentially a cis-C18 : 1 fatty acid chain at C-2 of the glycerol moiety, namely 1,2-cis-C18 : 1-PE and 1-C16 : 0-2-cis-C18 : 1-PE. The clinical association of CDS-1 sera included a variety of systemic and organ-specific autoimmune diseases but they were also observed in patients with no evidence of autoimmune disease. PMID:16487257

  9. The Cytoplasmic and Periplasmic Expression Levels and Folding of Organophosphorus Hydrolase Enzyme in Escherichia coli

    PubMed Central

    Latifi, Ali Mohammad; Khajeh, Khosro; Farnoosh, Gholamreza; Hassanpour, Kazem; Khodi, Samaneh

    2015-01-01

    Background: Organophosphorus hydrolase (OPH) is a type of organophosphate-degrading enzyme which is widely used in the bioremediation process. Objectives: In this study, the periplasmic and cytoplasmic productions and the activity of recombinant OPH in Escherichia coli were investigated and compared using two pET systems (pET21a and pET26b). Materials and Methods: The sequence encoding the opd gene was synthesized and expressed in the form of inclusion body using pET21a-opd and in the periplasmic space in pET26b-opd. Results: Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed a band of about 37 kDa with a maximum expression level at 30°C from pET21a-opd.However, the obtained results of the periplasmic space extraction of OPH (pET26b-opd) showed a very weak band, while the cytoplasmic expression of OPH (pET21a-opd) produced a strong protein band. Conclusions: The activities studied by the production of PNP were determined by following the increase at 410 nm. The maximum PNP was produced at 30°C with an optical density of 10.62 in the presence of cytoplasmic expression of OPH (pET21a-opd). Consequently, our results suggest cytoplasmic expression system as an appropriate candidate with a high amount of OPH in spite of inclusion body formation, which needs an additional refolding step. PMID:26870308

  10. A study of the membrane association and regulatory effect of the phospholemman cytoplasmic domain.

    PubMed

    Hughes, Eleri; Whittaker, Christopher A P; Barsukov, Igor L; Esmann, Mikael; Middleton, David A

    2011-04-01

    Phospholemman (PLM) is a single-span transmembrane protein belonging to the FXYD family of proteins. PLM (or FXYD1) regulates the Na,K-ATPase (NKA) ion pump by altering its affinity for K(+) and Na(+) and by reducing its hydrolytic activity. Structural studies of PLM in anionic detergent micelles have suggested that the cytoplasmic domain, which alone can regulate NKA, forms a partial helix which is stabilized by interactions with the charged membrane surface. This work examines the membrane affinity and regulatory function of a 35-amino acid peptide (PLM(38-72)) representing the PLM cytoplasmic domain. Isothermal titration calorimetry and solid-state NMR measurements confirm that PLM(38-72) associates strongly with highly anionic phospholipid membranes, but the association is weakened substantially when the negative surface charge is reduced to a more physiologically relevant environment. Membrane interactions are also weakened when the peptide is phosphorylated at S68, one of the substrate sites for protein kinases. PLM(38-72) also lowers the maximal velocity of ATP hydrolysis (V(max)) by NKA, and phosphorylation of the peptide at S68 gives rise to a partial recovery of V(max). These results suggest that the PLM cytoplasmic domain populates NKA-associated and membrane-associated states in dynamic equilibrium and that phosphorylation may alter the position of the equilibrium. Interestingly, peptides representing the cytoplasmic domains of two other FXYD proteins, Mat-8 (FXYD3) and CHIF (FXYD4), have little or no interaction with highly anionic phospholipid membranes and have no effect on NKA function. This suggests that the functional and physical properties of PLM are not conserved across the entire FXYD family.

  11. Cytoplasmic tail length influences fatty acid selection for acylation of viral glycoproteins.

    PubMed Central

    Veit, M; Reverey, H; Schmidt, M F

    1996-01-01

    We report remarkable differences in the fatty acid content of thioester-type acylated glycoproteins of enveloped viruses from mammalian cells. The E2 glycoprotein of Semliki Forest virus contains mainly palmitic acid like most other palmitoylated proteins analysed so far. However, the other glycoprotein (E1) of the same virus, as well as the HEF (haemagglutinin esterase fusion) glycoprotein of influenza C virus, are unique in this respect because they are acylated primarily with stearic acid. Comparative radiolabelling of uninfected cells with different fatty acids suggests that stearate may also be the prevailing fatty acid in some cellular acylproteins. To look for further differences between palmitoylated and stearoylated glycoproteins we characterized stearoylation in more detail. We identified the acylation site of HEF as a cysteine residue located at the boundary between the transmembrane region and the cytoplasmic tail. The attachment of stearate to HEF and E1 occurs post-translationally in a pre-Golgi compartment. Thus, stearoylated and palmitoylated proteins cannot be discriminated on the basis of the fatty acid linkage site or the intracellular compartment, where acylation occurs. However, stearoylated acylproteins contain a very short, positively charged cytoplasmic tail, whereas in palmitoylated proteins this molecular region is longer. Replacing the short cytoplasmic tail of stearoylated HEF with the long influenza A virus haemagglutinin (HA) tail in an HEF-HA chimera, and subsequent vaccinia T7 expression in CV-1 cells, yielded proteins with largely palmitic acid bound. The reverse chimera, HA-HEF with a short cytoplasmic tail was not fatty acylated at all during expression, indicating that conformational or topological constraints control fatty acid transfer. PMID:8761467

  12. Plant cytoplasmic GAPDH: redox post-translational modifications and moonlighting properties

    PubMed Central

    Zaffagnini, Mirko; Fermani, Simona; Costa, Alex; Lemaire, Stéphane D.; Trost, Paolo

    2013-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a ubiquitous enzyme involved in glycolysis and shown, particularly in animal cells, to play additional roles in several unrelated non-metabolic processes such as control of gene expression and apoptosis. This functional versatility is regulated, in part at least, by redox post-translational modifications that alter GAPDH catalytic activity and influence the subcellular localization of the enzyme. In spite of the well established moonlighting (multifunctional) properties of animal GAPDH, little is known about non-metabolic roles of GAPDH in plants. Plant cells contain several GAPDH isoforms with different catalytic and regulatory properties, located both in the cytoplasm and in plastids, and participating in glycolysis and the Calvin-Benson cycle. A general feature of all GAPDH proteins is the presence of an acidic catalytic cysteine in the active site that is overly sensitive to oxidative modifications, including glutathionylation and S-nitrosylation. In Arabidopsis, oxidatively modified cytoplasmic GAPDH has been successfully used as a tool to investigate the role of reduced glutathione, thioredoxins and glutaredoxins in the control of different types of redox post-translational modifications. Oxidative modifications inhibit GAPDH activity, but might enable additional functions in plant cells. Mounting evidence support the concept that plant cytoplasmic GAPDH may fulfill alternative, non-metabolic functions that are triggered by redox post-translational modifications of the protein under stress conditions. The aim of this review is to detail the molecular mechanisms underlying the redox regulation of plant cytoplasmic GAPDH in the light of its crystal structure, and to provide a brief inventory of the well known redox-dependent multi-facetted properties of animal GAPDH, together with the emerging roles of oxidatively modified GAPDH in stress signaling pathways in plants. PMID:24282406

  13. Antibody-mediated enzyme replacement therapy targeting both lysosomal and cytoplasmic glycogen in Pompe disease.

    PubMed

    Yi, Haiqing; Sun, Tao; Armstrong, Dustin; Borneman, Scott; Yang, Chunyu; Austin, Stephanie; Kishnani, Priya S; Sun, Baodong

    2017-02-02

    Pompe disease is characterized by accumulation of both lysosomal and cytoplasmic glycogen primarily in skeletal and cardiac muscles. Mannose-6-phosphate receptor-mediated enzyme replacement therapy (ERT) with recombinant human acid α-glucosidase (rhGAA) targets the enzyme to lysosomes and thus is unable to digest cytoplasmic glycogen. Studies have shown that anti-DNA antibody 3E10 penetrates living cells and delivers "cargo" proteins to the cytosol or nucleus via equilibrative nucleoside transporter ENT2. We speculate that 3E10-mediated ERT with GAA will target both lysosomal and cytoplasmic glycogen in Pompe disease. A fusion protein (FabGAA) containing a humanized Fab fragment derived from the murine 3E10 antibody and the 110 kDa human GAA precursor was constructed and produced in CHO cells. Immunostaining with an anti-Fab antibody revealed that the Fab signals did not co-localize with the lysosomal marker LAMP2 in cultured L6 myoblasts or Pompe patient fibroblasts after incubation with FabGAA. Western blot with an anti-GAA antibody showed presence of the 150 kDa full-length FabGAA in the cell lysates, in addition to the 95- and 76 kDa processed forms of GAA that were also seen in the rhGAA-treated cells. Blocking of mannose-6-phosphate receptor with mannose-6-phosphate markedly reduced the 95- and the 76 kDa forms but not the 150 kDa form. In GAA-KO mice, FabGAA achieved similar treatment efficacy as rhGAA at an equal molar dose in reducing tissue glycogen contents. Our data suggest that FabGAA retains the ability of rhGAA to treat lysosomal glycogen accumulation and has the beneficial potential over rhGAA to reduce cytoplasmic glycogen storage in Pompe disease.

  14. Drosophila vigilin, DDP1, localises to the cytoplasm and associates to the rough endoplasmic reticulum.

    PubMed

    Batlle, Marta; Marsellach, Francesc-Xavier; Huertas, Dori; Azorín, Fernando

    2011-01-01

    Functional characterisation of vigilin, a highly conserved multi-KH-domain protein that binds RNA and ssDNA, remains elusive and, to some extent, controversial. Studies performed in Saccharomyces cerevisiae and human cells indicate that vigilin localises to the cytoplasm, binds ribosomes, associates to RER and regulates mRNA translation. On the other hand, we and others reported a contribution to heterochromatin-mediated gene silencing (PEV) and chromosome segregation in S. cerevisiae, Drosophila and human cells. Whether this contribution is direct remains, however, unclear. Here, we report that Drosophila vigilin, DDP1, vastly localises to the cytoplasm, being largely excluded from the nucleus. We also show that DDP1 preferentially associates to RER and co-purifies with several ribosomal proteins, suggesting a contribution to mRNA translation. In light of these results, the contribution of DDP1 to PEV was re-examined. Here, we show that a newly generated null ddp1(Δ) mutation is only a weak suppressor of PEV, which is in contrast with our own previous results showing dominant suppression in the presence of a strong hypomorphic ddp1(15.1) mutation. Similar results were obtained in the fission yeast Schizosaccharomyces pombe, where vigilin (Vgl1) also associates to RER, having no significant contribution to PEV at centromeres, telomeres and the mating-type locus. Altogether, these results indicate that cytoplasmic localisation and association to RER, but not contribution to heterochromatin organisation, are evolutionarily conserved features of vigilin, favouring a model by which vigilin acts in the cytoplasm, regulating RNA metabolism, and affects nuclear functions only indirectly.

  15. Signal transduction by glycophorin A: role of extracellular and cytoplasmic domains in a modulatable process.

    PubMed

    Chasis, J A; Reid, M E; Jensen, R H; Mohandas, N

    1988-10-01

    Binding of ligands to the extracellular region of the erythrocyte transmembrane protein glycophorin A induces a decrease in membrane deformability. Since the property of membrane deformability is regulated by the skeletal proteins on the cytoplasmic side of the membrane, this suggests that ligand binding may initiate a transmembrane signal. To further study this process, we examined which domains of the extracellular region of glycophorin are involved in signal transduction and whether the cytoplasmic domain of the molecule is necessary for transmitting the signal. Using the ektacytometer, we compared the effect on deformability of four monoclonal antibodies that detect different epitopes on glycophorin A. We found that 9A3 (which recognized the amino terminus of glycophorin) caused a 5.8-fold increase in rigidity, R-10 and 10F7 (which recognized epitopes in the mid-region of the extracellular domain) caused a 10.8-fold increase in rigidity and B14 (which binds to glycophorin close to the membrane) caused a 18-fold increase in rigidity. Further, a direct relationship was observed between the degree of antibody-induced rigidity and the amount of glycophorin A that became associated with the skeletal proteins in a Triton shell assay. In Miltenberger V erythrocytes, which contain a hybrid sialoglycoprotein with no cytoplasmic domain, antibody binding did not induce an increase in rigidity. These results imply that glycophorin A is capable of a modulatable form of transmembrane signaling that is determined by the extracellular domain to which the ligand binds, and the cytoplasmic domain of glycophorin A is crucial for this process.

  16. Mechanism of proton entry into the cytoplasmic section of the proton-conducting channel of bacteriorhodopsin.

    PubMed

    Checover, S; Nachliel, E; Dencher, N A; Gutman, M

    1997-11-11

    Bacteriorhodopsin is the light-driven proton-pumping protein of Halobacterium salinarum that extracts protons from the well-buffered cytoplasmic space within the time limits set by the photocycle turnover. The specific mechanism of the proton uptake by the cytoplasmic surface of the protein was investigated in this study by the laser-induced proton pulse technique. The purple membrane preparations were labeled by fluorescein at two residues (36 or 38) of the cytoplasmic surface of the protein, sites that are close to the orifice of the proton-conducting channel. The membranes were pulsed by protons discharged from photoexcited pyranine [Nachliel, E., Gutman, M., Kiryati, S., and Dencher, N.A. (1996) Proc. Nat Acad. Sci. U.S.A. 93, 10747-10752). The reaction of the discharged protons with the pyranine anion and the fluorescein was measured with sub-microsecond resolution. The experimental signals were reconstructed through numeric integration of differential rate equations which quantitated the rates of all proton transfer reactions between all reactants present in the system. The interaction of protons with the orifice of the cytoplasmic channel is enhanced by the exposed carboxylates of the protein. A cluster of three carboxylates acts as a strong proton attractor site while one carboxylate, identified as D36, acts as a mediator that delivers the proton to the channel. The combination of these reactions render the surface of the protein with properties of a proton-collecting antenna. The size of the collecting area is less than that of the protein's surface.

  17. Casein kinase 2 prevents mesenchymal transformation by maintaining Foxc2 in the cytoplasm.

    PubMed

    Golden, D; Cantley, L G

    2015-09-03

    Nuclear Foxc2 is a transcriptional regulator of mesenchymal transformation during developmental epithelial-mesenchymal transition (EMT) and has been associated with EMT in malignant epithelia. Our laboratory has shown that in normal epithelial cells Foxc2 is maintained in the cytoplasm where it promotes an epithelial phenotype. The Foxc2 amino terminus has a consensus casein kinase 2 (CK2) phosphorylation site at serine 124, and we now show that CK2 associates with Foxc2 and phosphorylates this site in vitro. Knockdown or inhibition of the CK2α/α' kinase subunit in epithelial cells causes de novo accumulation of Foxc2 in the nucleus. Mutation of serine 124 to leucine promotes constitutive nuclear localization of Foxc2 and expression of mesenchymal genes, whereas an S124D phosphomimetic leads to constitutive cytoplasmic localization and epithelial maintenance. In malignant breast cancer cells, the CK2β regulatory subunit is downregulated and FOXC2 is found in the nucleus, correlating with an increase in α-smooth muscle actin (SMA) expression. Restoration of CK2β expression in these cells results in cytoplasmic localization of Foxc2, decreased α-SMA expression and reduced cell migration and invasion. In contrast, knockdown of CK2β in normal breast epithelial cells leads to FOXC2 nuclear localization, decreased E-cadherin expression, increased α-SMA and vimentin expression, and enhanced cell migration and invasion. Based on these findings, we propose that Foxc2 is functionally maintained in the cytoplasm of normal epithelial cells by CK2α/α'-mediated phosphorylation at serine 124, which is dependent on proper targeting of the holoenzyme via the CK2β regulatory subunit.

  18. Farnesyl Diphosphate Synthase Localizes to the Cytoplasm of Trypanosoma cruzi and T.brucei

    PubMed Central

    Ferella, Marcela; Li, Zhu-Hong; Andersson, Björn; Docampo, Roberto

    2008-01-01

    The farnesyl diphosphate synthase (FPPS) has previously been characterized in trypanosomes as an essential enzyme for their survival and as the target for bisphosphonates, drugs that are effective both in vitro and in vivo against these parasites. Enzymes from the isoprenoid pathway have been assigned to different compartments in eukaryotes, including trypanosomatids. We here report that FPPS localizes to the cytoplasm of both Trypanosoma cruzi and T. brucei, and is not present in other organelles such as the mitochondria and glycosomes. PMID:18406406

  19. P19ARF stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2

    PubMed Central

    Tao, Weikang; Levine, Arnold J.

    1999-01-01

    The INK4a-ARF locus encodes two distinct tumor suppressors, p16INK4a and p19ARF. Whereas p16INK4a restrains cell growth through preventing phosphorylation of the retinoblastoma protein, p19ARF acts by attenuating Mdm2-mediated degradation of p53, thereby stabilizing p53. Recent data indicate that Mdm2 shuttles between the nucleus and the cytoplasm and that nucleo-cytoplasmic shuttling of Mdm2 is essential for Mdm2’s ability to promote p53 degradation. Therefore, Mdm2 must export p53 from the nucleus to the cytoplasm where it targets p53 for degradation. We show here that coexpression of p19ARF blocks the nucleo-cytoplasmic shuttling of Mdm2. Moreover, subnuclear localization of Mdm2 changes from the nucleoplasm to the nucleolus in a shuttling time-dependent manner, whereas p19ARF is exclusively located in the nucleolus. In heterokaryons containing Mdm2 and p19ARF, the longer the Mdm2 shuttling is allowed, the more Mdm2 protein colocalizes with p19ARF in the nucleolus, implying that Mdm2 moves from the nucleoplasm to the nucleolus and then associates with p19ARF there. Furthermore, whether or not Mdm2 colocalizes with p19ARF in the nucleolus, p19ARF prevents Mdm2 shuttling. This observation suggests that Mdm2 might be exported through the nucleolus and p19ARF could inhibit the nuclear export of Mdm2 by tethering Mdm2 in the nucleolus. Taken together, p19ARF could stabilize p53 by inhibiting the nuclear export of Mdm2. PMID:10359817

  20. Developmentally Regulated RNA-binding Protein 1 (Drb1)/RNA-binding Motif Protein 45 (RBM45), a Nuclear-Cytoplasmic Trafficking Protein, Forms TAR DNA-binding Protein 43 (TDP-43)-mediated Cytoplasmic Aggregates.

    PubMed

    Mashiko, Takafumi; Sakashita, Eiji; Kasashima, Katsumi; Tominaga, Kaoru; Kuroiwa, Kenji; Nozaki, Yasuyuki; Matsuura, Tohru; Hamamoto, Toshiro; Endo, Hitoshi

    2016-07-15

    Cytoplasmic protein aggregates are one of the pathological hallmarks of neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Several RNA-binding proteins have been identified as components of inclusion bodies. Developmentally regulated RNA-binding protein 1 (Drb1)/RNA-binding motif protein 45 is an RNA-binding protein that was recently described as a component in ALS- and FTLD-related inclusion bodies. However, the molecular mechanism underlying cytoplasmic Drb1 aggregation remains unclear. Here, using an in vitro cellular model, we demonstrated that Drb1 co-localizes with cytoplasmic aggregates mediated by TAR DNA-binding protein 43, a major component of ALS and FTLD-related inclusion bodies. We also defined the domains involved in the subcellular localization of Drb1 to clarify the role of Drb1 in the formation of cytoplasmic aggregates in ALS and FTLD. Drb1 predominantly localized in the nucleus via a classical nuclear localization signal in its carboxyl terminus and is a shuttling protein between the nucleus and cytoplasm. Furthermore, we identify a double leucine motif serving as a nuclear export signal. The Drb1 mutant, presenting mutations in both nuclear localization signal and nuclear export signal, is prone to aggregate in the cytoplasm. The mutant Drb1-induced cytoplasmic aggregates not only recruit TAR DNA-binding protein 43 but also decrease the mitochondrial membrane potential. Taken together, these results indicate that perturbation of Drb1 nuclear-cytoplasmic trafficking induces toxic cytoplasmic aggregates, suggesting that mislocalization of Drb1 is involved in the cause of cytotoxicity in neuronal cells.

  1. An Extremely Halophilic Proteobacterium Combines a Highly Acidic Proteome with a Low Cytoplasmic Potassium Content*

    PubMed Central

    Deole, Ratnakar; Challacombe, Jean; Raiford, Douglas W.; Hoff, Wouter D.

    2013-01-01

    Halophilic archaea accumulate molar concentrations of KCl in their cytoplasm as an osmoprotectant and have evolved highly acidic proteomes that function only at high salinity. We examined osmoprotection in the photosynthetic Proteobacteria Halorhodospira halophila and Halorhodospira halochloris. Genome sequencing and isoelectric focusing gel electrophoresis showed that the proteome of H. halophila is acidic. In line with this finding, H. halophila accumulated molar concentrations of KCl when grown in high salt medium as detected by x-ray microanalysis and plasma emission spectrometry. This result extends the taxonomic range of organisms using KCl as a main osmoprotectant to the Proteobacteria. The closely related organism H. halochloris does not exhibit an acidic proteome, matching its inability to accumulate K+. This observation indicates recent evolutionary changes in the osmoprotection strategy of these organisms. Upon growth of H. halophila in low salt medium, its cytoplasmic K+ content matches that of Escherichia coli, revealing an acidic proteome that can function in the absence of high cytoplasmic salt concentrations. These findings necessitate a reassessment of two central aspects of theories for understanding extreme halophiles. First, we conclude that proteome acidity is not driven by stabilizing interactions between K+ ions and acidic side chains but by the need for maintaining sufficient solvation and hydration of the protein surface at high salinity through strongly hydrated carboxylates. Second, we propose that obligate protein halophilicity is a non-adaptive property resulting from genetic drift in which constructive neutral evolution progressively incorporates weakly stabilizing K+-binding sites on an increasingly acidic protein surface. PMID:23144460

  2. Genetic studies on cytoplasmic male sterility in maize. Progress report, April 15, 1990--April 14, 1992

    SciTech Connect

    Laughnan, J.R.

    1992-05-01

    Our research concerns the basic mechanisms of cytoplasmic male sterility (CMS) and fertility restoration in maize. The molecular determination of CMS is in the DNA of the mitochondria (mtDNA) but specific nuclear restorer-of-fertility (Rf) genes can overrule the male-sterile effect of the cytoplasm. Our approach to the study of the Rf genes is threefold. We are attempting to tag the cms-S Rf genes and the cms-T Rf2 gene with controlling elements (CEs). Since we have identified a number of spontaneous Rf genes for cms-S and have demonstrated that they are themselves transposable, we are also searching for cases in which an Rf gene is inserted into a wild-type gene. The other aspect of our research involves the nuclear control over the organization of the mitochondrial genome. We found that the changes in mtDNA organization upon cytoplasmic reversion to fertility were characteristic of the nuclear background in which the reversion event occurred. We have investigated whether these differences are a reflection of differences in the organization of the mtDNA genome before reversion.

  3. Exosomal Secretion of Cytoplasmic Prostate Cancer Xenograft-derived Proteins *S⃞

    PubMed Central

    Jansen, Flip H.; Krijgsveld, Jeroen; van Rijswijk, Angelique; van den Bemd, Gert-Jan; van den Berg, Mirella S.; van Weerden, Wytske M.; Willemsen, Rob; Dekker, Lennard J.; Luider, Theo M.; Jenster, Guido

    2009-01-01

    Novel markers for prostate cancer (PCa) are needed because current established markers such as prostate-specific antigen lack diagnostic specificity and prognostic value. Proteomics analysis of serum from mice grafted with human PCa xenografts resulted in the identification of 44 tumor-derived proteins. Besides secreted proteins we identified several cytoplasmic proteins, among which were most subunits of the proteasome. Native gel electrophoresis and sandwich ELISA showed that these subunits are present as proteasome complexes in the serum from xenograft-bearing mice. We hypothesized that the presence of proteasome subunits and other cytoplasmic proteins in serum of xenografted mice could be explained by the secretion of small vesicles by cancer cells, so-called exosomes. Therefore, mass spectrometry and Western blotting analyses of the protein content of exosomes isolated from PCa cell lines was performed. This resulted in the identification of mainly cytoplasmic proteins of which several had previously been identified in the serum of xenografted mice, including proteasome subunits. The isolated exosomes also contained RNA, including the gene fusion TMPRSS2-ERG product. These observations suggest that although their function is not clearly defined cancer-derived exosomes offer possibilities for the identification of novel biomarkers for PCa. PMID:19204029

  4. Cytoplasmic sequestration of cyclin D1 associated with cell cycle withdrawal of neuroblastoma cells

    SciTech Connect

    Sumrejkanchanakij, Piyamas; Eto, Kazuhiro; Ikeda, Masa-Aki . E-mail: mikeda.emb@tmd.ac.jp

    2006-02-03

    The regulation of D-type cyclin-dependent kinase activity is critical for neuronal differentiation and apoptosis. We recently showed that cyclin D1 is sequestered in the cytoplasm and that its nuclear localization induces apoptosis in postmitotic primary neurons. Here, we further investigated the role of the subcellular localization of cyclin D1 in cell cycle withdrawal during the differentiation of N1E-115 neuroblastoma cells. We show that cyclin D1 became predominantly cytoplasmic after differentiation. Targeting cyclin D1 expression to the nucleus induced phosphorylation of Rb and cdk2 kinase activity. Furthermore, cyclin D1 nuclear localization promoted differentiated N1E-115 cells to reenter the cell cycle, a process that was inhibited by p16{sup INK4a}, a specific inhibitor of D-type cyclin activity. These results indicate that cytoplasmic sequestration of cyclin D1 plays a role in neuronal cell cycle withdrawal, and suggests that the abrogation of machinery involved in monitoring aberrant nuclear cyclin D1 activity contributes to neuronal tumorigenesis.

  5. Cytoplasmic localization and asymmetric division in the early embryo of Caenorhabditis elegans.

    PubMed

    Griffin, Erik E

    2015-01-01

    During the initial cleavages of the Caenorhabditis elegans embryo, a series of rapid and invariant asymmetric cell divisions pattern the fate, size, and position of four somatic blastomeres and a single germline blastomere. These asymmetric divisions are orchestrated by a collection of maternally deposited factors that are initially symmetrically distributed in the newly fertilized embryo. Maturation of the sperm-derived centrosome in the posterior cytoplasm breaks this symmetry by triggering a dramatic and highly stereotyped partitioning of these maternal factors. A network of conserved cell polarity regulators, the PAR proteins, form distinct anterior and posterior domains at the cell cortex. From these domains, the PAR proteins direct the segregation of somatic and germline factors into opposing regions of the cytoplasm such that, upon cell division, they are preferentially inherited by the somatic blastomere or the germline blastomere, respectively. The segregation of these factors is controlled, at least in part, by a series of reaction-diffusion mechanisms that are asymmetrically deployed along the anterior/posterior axis. The characterization of these mechanisms has important implications for our understanding of how cells are polarized and how spatial organization is generated in the cytoplasm. For further resources related to this article, please visit the WIREs website.

  6. A Novel Cytoplasmic Tail Motif Regulates Mouse Corin Expression on the Cell Surface

    PubMed Central

    Li, Hui; Zhang, Yue; Wang, Lina; Dong, Ningzheng; Qi, Xiaofei; Wu, Qingyu

    2015-01-01

    Type II transmembrane serine proteases (TTSPs) are important in many biological processes. Cell surface expression is critical for TTSP activation and function. To date, the mechanism underlying TTSP cell surface expression is poorly understood. Corin is a TTSP and acts as the pro-atrial natriuretic peptide convertase that is essential for sodium homeostasis and normal blood pressure. In this study, we investigated how cytoplasmic tail sequences may regulate corin expression and activation on the cell surface. By site-directed mutagenesis, we made mouse corin proteins with truncations or point-mutations in the cytoplasmic tail. We expressed the mutants in transfected HEK293 cells and analyzed corin cell surface expression and activation by Western blotting and flow cytometry. We found that corin truncation mutants lacking a Lys-Phe-Gln sequence at residues 71–73 had higher levels of cell surface expression and activation compared with that in wild-type corin. When Lys-71, Phe-72 and Gln-73 residues were mutated together, but not individually, in corin with the full-length cytoplasmic tail, increased levels of cell surface expression and zymogen activation were also observed. These results indicate that residues Lys-71, Phe-72 and Gln-73 serve as a novel retention motif in the intracellular pathway to regulate corin cell surface expression and activation. PMID:26241673

  7. Cytoplasmic sequestration of p53 promotes survival in leukocytes transformed by Theileria.

    PubMed

    Haller, D; Mackiewicz, M; Gerber, S; Beyer, D; Kullmann, B; Schneider, I; Ahmed, J S; Seitzer, U

    2010-05-27

    The function of the p53 protein as the central effector molecule of the p53 apoptotic pathway was investigated in a reversible model of epigenetic transformation. The infection of bovine leukocytes by the intracellular protozoan parasite Theileria annulata results in parasite-dependent transformation and proliferation of the host cells. We found p53 to be largely localized in the host cell cytoplasm and associated with the parasite membrane of isolated schizonts. Curing infected cells of the parasite with the theilericidal drug buparvaquone resulted in a time-dependent translocation of p53 into the host cell nucleus and the upregulation of the proapoptotic Bax and Apaf-1 and the downregulation of the anti-apoptotic Bcl-2 proteins. Although buparvaquone treatment led to apoptosis of the host cell, inhibition of either p53 or Bax significantly reduced buparvaquone-induced apoptosis of the transformed cells. Thus, the p53 apoptotic pathway of host cells is not induced by infection and transformation with Theileria by a mechanism involving cytoplasmic sequestration of p53. The close association of host cell p53 with the parasite membrane implies that the parasite either interacts directly with p53 or mediates cytoplasmic sequestration of p53 by interacting with other host cell proteins regulating p53 localization.

  8. Regulation of Mouse Oocyte Microtubule and Organelle Dynamics by PADI6 and the Cytoplasmic Lattices

    PubMed Central

    Kan, Rui; Yurttas, Piraye; Kim, Boram; Jin, Mei; Wo, Luccie; Lee, Bora; Gosden, Roger; Coonrod, Scott A.

    2010-01-01

    Organelle positioning and movement in oocytes is largely mediated by microtubules (MTs) and their associated motor proteins. While yet to be studied in germ cells, cargo trafficking in somatic cells is also facilitated by specific recognition of acetylated MTs by motor proteins. We have previously shown that oocyte-restricted PADI6 is essential for formation of a novel oocyte-restricted fibrous structure, the cytoplasmic lattices (CPLs). Here, we show that α-tubulin appears to be associated with the PADI6/CPL complex. Next, we demonstrate that organelle positioning and redistribution is defective in PADI6-null oocytes and that alteration of MT polymerization or MT motor activity does not induce organelle redistribution in these oocytes. Finally, we report that levels of acetylated microtubules are dramatically suppressed in the cytoplasm of PADI6-null oocytes, suggesting that the observed organelle redistribution failure is due to defects in stable cytoplasmic MTs. These results demonstrate that the PADI6/CPL superstructure plays a key role in regulating MT-mediated organelle positioning and movement. PMID:21147087

  9. Cytoplasmic tail domain of glycoprotein B is essential for HHV-6 infection

    SciTech Connect

    Mahmoud, Nora F.; Jasirwan, Chyntia; Kanemoto, Satoshi; Wakata, Aika; Wang, Bochao; Hata, Yuuki; Nagamata, Satoshi; Kawabata, Akiko; Tang, Huamin; Mori, Yasuko

    2016-03-15

    Human herpesvirus 6 (HHV-6) glycoprotein B (gB) is an abundantly expressed viral glycoprotein required for viral entry and cell fusion, and is highly conserved among herpesviruses. The present study examined the function of HHV-6 gB cytoplasmic tail domain (CTD). A gB CTD deletion mutant was constructed which, in contrast to its revertant, could not be reconstituted. Moreover, deletion of gB cytoplasmic tail impaired the intracellular transport of gB protein to the trans-Golgi network (TGN). Taken together, these results suggest that gB CTD is critical for HHV-6 propagation and important for intracellular transportation. - Highlights: • Glycoprotein B (gB) is highly conserved among herpesviruses. • HHV-6 gB is also abundantly expressed in virions. • In the present study, we showed the function of HHV-6 gB cytoplasmic tail domain (CTD). • We found that deletion of gB CTD impairs the intracellular transport of gB protein to the trans-Golgi network (TGN), and CTD of gB is critical for HHV-6 propagation.

  10. Cytoplasm resistivity of mammalian atrial myocardium determined by dielectrophoresis and impedance methods.

    PubMed

    Fry, Christopher H; Salvage, Samantha C; Manazza, Alessandra; Dupont, Emmanuel; Labeed, Fatima H; Hughes, Michael P; Jabr, Rita I

    2012-12-05

    Many cardiac arrhythmias are caused by slowed conduction of action potentials, which in turn can be due to an abnormal increase of intracellular myocardial resistance. Intracellular resistivity is a linear sum of that offered by gap junctions between contiguous cells and the cytoplasm of the myocytes themselves. However, the relative contribution of the two components is unclear, especially in atrial myocardium, as there are no precise measurements of cytoplasmic resistivity, R(c). In this study, R(c) was measured in atrial tissue using several methods: a dielectrophoresis technique with isolated cells and impedance measurements with both isolated cells and multicellular preparations. All methods yielded similar values for R(c), with a mean of 138 ± 5 Ω·cm at 23°C, and a Q(10) value of 1.20. This value is about half that of total intracellular resistivity and thus will be a significant determinant of the actual value of action potential conduction velocity. The dielectrophoresis experiments demonstrated the importance of including divalent cations (Ca(2+) and Mg(2+)) in the suspension medium, as their omission reduced cell integrity by lowering membrane resistivity and increasing cytoplasm resistivity. Accurate measurement of R(c) is essential to develop quantitative computational models that determine the key factors contributing to the development of cardiac arrhythmias.

  11. Visualizing and quantifying difference in cytoplasmic and nuclear metabolism in the hepatobiliary system in vivo

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Ju; Kang, Ning; Lee, Jian-Ye; Lee, Hsuan-Shu; Dong, Chen-Yuan

    2015-01-01

    The liver is a major organ responsible for performing xenobiotic metabolism. In this process, xenobiotic is uptaken and processed in hepatocytes and subsequently excreted into the bile canaliculi. However, the intracellular heterogeneity in such metabolic processes is not known. We use the molecular probe 6-carboxyfluorescein diacetate (6-CFDA) to investigate xenobiotic metabolism in hepatocytes with intravital multiphoton fluorescence microscopy. 6-CFDA is processed by intracellular esterase to fluorescent 6-CF, which can be imaged and quantified. We found that compared to the nucleus, cytoplasmic 6-CF fluorescence intensity reached a maximum earlier (cytoplasm: 11.3±4.4 min nucleus: 14.7±4.9 min) following 6-CFDA injection. We also found a slight difference in the rate of 6-CFDA metabolism as the rates of 6-CF decay at rates of 1.43±0.75 and 1.27±0.72 photons/min for the cytoplasm and nucleus, respectively. These results indicate that molecular transport to the nucleus is additionally hindered and can affect drug transport there.

  12. High content of a nuclear pore complex protein in cytoplasmic annulate lamellae of Xenopus oocytes.

    PubMed

    Cordes, V C; Reidenbach, S; Franke, W W

    1995-11-01

    The Xenopus laevis oocyte and egg represent an established model system to study nucleocytoplasmic transport and the assembly of the nuclear envelope (NE) and its pore complexes (PC). PCs, however, are not restricted to the NE but are also known to occur in cytoplasmic annulate lamellae (AL) in a variety of cells, including the Xenopus oocyte. However, the proportion of PCs found in such AL relative to those located in the NE, is unknown. In this study we have analyzed and quantified cytoplasmic AL in the full-grown (stage VI) Xenopus oocyte by immunolocalization at the light and electron microscopic level. Moreover, we have developed a method to enrich AL from enucleated oocytes, and have quantified a PC marker protein, nucleoporin p62, in both cytoplasmic AL and the NE. For this purpose we have used a specific monoclonal antibody (A225) which recognizes an epitope localized between amino acids 251 and 268 of Xenopus p62. We show that the number of PCs and p62 molecules present in AL far exceeds that of the NE. The possible implications of these findings to nucleocytoplasmic transport and nuclear PC (NPC) assembly are discussed.

  13. Autophagy regulates cytoplasmic remodeling during cell reprogramming in a zebrafish model of muscle regeneration.

    PubMed

    Saera-Vila, Alfonso; Kish, Phillip E; Louie, Ke'ale W; Grzegorski, Steven J; Klionsky, Daniel J; Kahana, Alon

    2016-10-02

    Cell identity involves both selective gene activity and specialization of cytoplasmic architecture and protein machinery. Similarly, reprogramming differentiated cells requires both genetic program alterations and remodeling of the cellular architecture. While changes in genetic and epigenetic programs have been well documented in dedifferentiating cells, the pathways responsible for remodeling the cellular architecture and eliminating specialized protein complexes are not as well understood. Here, we utilize a zebrafish model of adult muscle regeneration to study cytoplasmic remodeling during cell dedifferentiation. We describe activation of autophagy early in the regenerative response to muscle injury, while blocking autophagy using chloroquine or Atg5 and Becn1 knockdown reduced the rate of regeneration with accumulation of sarcomeric and nuclear debris. We further identify Casp3/caspase 3 as a candidate mediator of cellular reprogramming and Fgf signaling as an important activator of autophagy in dedifferentiating myocytes. We conclude that autophagy plays a critical role in cell reprogramming by regulating cytoplasmic remodeling, facilitating the transition to a less differentiated cell identity.

  14. Disassembly of Simian Virus 40 during Passage through the Endoplasmic Reticulum and in the Cytoplasm

    PubMed Central

    Kuksin, Dmitry

    2012-01-01

    The nonenveloped polyomavirus simian virus 40 (SV40) is taken up into cells by a caveola-mediated endocytic process that delivers the virus to the endoplasmic reticulum (ER). Within the ER lumen, the capsid undergoes partial disassembly, which exposes its internal capsid proteins VP2 and VP3 to immunostaining with antibodies. We demonstrate here that the SV40 genome does not become accessible to detection while the virus is in the ER. Instead, the genome becomes accessible two distinct detection procedures, one using anti-bromodeoxyuridine antibodies and the other using a 5-ethynyl-2-deoxyuridine-based chemical reaction, only after the emergence of partially disassembled SV40 particles in the cytoplasm. These cytoplasmic particles retain some of the SV40 capsid proteins, VP1, VP2, and VP3, in addition to the viral genome. Thus, SV40 particles undergo discrete disassembly steps during entry that are separated temporally and topologically. First, a partial disassembly of the particles occurs in the ER, which exposes internal capsid proteins VP2 and VP3. Then, in the cytoplasm, disassembly progresses further to also make the genomic DNA accessible to immune detection. PMID:22090139

  15. Disassembly of simian virus 40 during passage through the endoplasmic reticulum and in the cytoplasm.

    PubMed

    Kuksin, Dmitry; Norkin, Leonard C

    2012-02-01

    The nonenveloped polyomavirus simian virus 40 (SV40) is taken up into cells by a caveola-mediated endocytic process that delivers the virus to the endoplasmic reticulum (ER). Within the ER lumen, the capsid undergoes partial disassembly, which exposes its internal capsid proteins VP2 and VP3 to immunostaining with antibodies. We demonstrate here that the SV40 genome does not become accessible to detection while the virus is in the ER. Instead, the genome becomes accessible two distinct detection procedures, one using anti-bromodeoxyuridine antibodies and the other using a 5-ethynyl-2-deoxyuridine-based chemical reaction, only after the emergence of partially disassembled SV40 particles in the cytoplasm. These cytoplasmic particles retain some of the SV40 capsid proteins, VP1, VP2, and VP3, in addition to the viral genome. Thus, SV40 particles undergo discrete disassembly steps during entry that are separated temporally and topologically. First, a partial disassembly of the particles occurs in the ER, which exposes internal capsid proteins VP2 and VP3. Then, in the cytoplasm, disassembly progresses further to also make the genomic DNA accessible to immune detection.

  16. Heterogeneity in Lipid Composition of the Outer Membrane and Cytoplasmic Membrane of Pseudomonas BAL-31

    PubMed Central

    Diedrich, D. L.; Cota-Robles, E. H.

    1974-01-01

    The outer membranes and cytoplasmic membranes of the marine bacterium Pseudomonas BAL-31 were separated by washing the cells three times in 0.5 M NaCl and twice in 0.5 M sucrose. Electron microscopy during the removal of membranes revealed that the outer membranes fragmented in a regular manner to give rise to fairly uniform vesicles measuring approximately 140 nm in diameter. Isolated outer membranes had a buoyant density in sucrose of 1.230 g per cm3, whereas the cytoplasmic membranes had a density of 1.194 g per cm3. The removal of the outer membrane during the application of this procedure was monitored by measuring the release of 2-keto-3-deoxyoctulosonic acid and phospholipid. The cells lost 85.5% of their 2-keto-3-deoxyoctulosonic acid and 47.3% of their phospholipid during this treatment. Complete recovery of outer membrane material could be achieved. The removal of 25.5% of the 2-keto-3-deoxyoctulosonic acid and 0.9% of the phospholipid rendered the cells sensitive to lysis with Triton X-100. The phospholipid composition of the outer membrane was calculated to be 78.9% phosphatidylethanolamine and 16.1% phosphatidylglycerol. The phospholipid composition of the cytoplasmic membrane proved to be 71.5% phosphatidylethanolamine and 23.5% phosphatidylglycerol. The fatty acid composition was also found to be quantitatively heterogeneous between the two membranes. Images PMID:4852262

  17. Endogenous APOBEC3A DNA cytosine deaminase is cytoplasmic and nongenotoxic.

    PubMed

    Land, Allison M; Law, Emily K; Carpenter, Michael A; Lackey, Lela; Brown, William L; Harris, Reuben S

    2013-06-14

    APOBEC3A (A3A) is a myeloid lineage-specific DNA cytosine deaminase with a role in innate immunity to foreign DNA. Previous studies have shown that heterologously expressed A3A is genotoxic, suggesting that monocytes may have a mechanism to regulate this enzyme. Indeed, we observed no significant cytotoxicity when interferon was used to induce the expression of endogenous A3A in CD14(+)-enriched primary cells or the monocytic cell line THP-1. In contrast, doxycycline-induced A3A in HEK293 cells caused major cytotoxicity at protein levels lower than those observed when CD14(+) cells were stimulated with interferon. Immunofluorescent microscopy of interferon-stimulated CD14(+) and THP-1 cells revealed that endogenous A3A is cytoplasmic, in stark contrast to stably or transiently transfected A3A, which has a cell-wide localization. A3A constructs engineered to be cytoplasmic are also nontoxic in HEK293 cells. These data combine to suggest that monocytic cells use a cytoplasmic retention mechanism to control A3A and avert genotoxicity during innate immune responses.

  18. HDAC4 Reduction: A Novel Therapeutic Strategy to Target Cytoplasmic Huntingtin and Ameliorate Neurodegeneration

    PubMed Central

    Mielcarek, Michal; Landles, Christian; Weiss, Andreas; Bradaia, Amyaouch; Seredenina, Tamara; Inuabasi, Linda; Osborne, Georgina F.; Wadel, Kristian; Touller, Chrystelle; Butler, Rachel; Robertson, Janette; Franklin, Sophie A.; Smith, Donna L.; Park, Larry; Marks, Paul A.; Wanker, Erich E.; Olson, Eric N.; Luthi-Carter, Ruth; van der Putten, Herman; Beaumont, Vahri; Bates, Gillian P.

    2013-01-01

    Histone deacetylase (HDAC) 4 is a transcriptional repressor that contains a glutamine-rich domain. We hypothesised that it may be involved in the molecular pathogenesis of Huntington's disease (HD), a protein-folding neurodegenerative disorder caused by an aggregation-prone polyglutamine expansion in the huntingtin protein. We found that HDAC4 associates with huntingtin in a polyglutamine-length-dependent manner and co-localises with cytoplasmic inclusions. We show that HDAC4 reduction delayed cytoplasmic aggregate formation, restored Bdnf transcript levels, and rescued neuronal and cortico-striatal synaptic function in HD mouse models. This was accompanied by an improvement in motor coordination, neurological phenotypes, and increased lifespan. Surprisingly, HDAC4 reduction had no effect on global transcriptional dysfunction and did not modulate nuclear huntingtin aggregation. Our results define a crucial role for the cytoplasmic aggregation process in the molecular pathology of HD. HDAC4 reduction presents a novel strategy for targeting huntingtin aggregation, which may be amenable to small-molecule therapeutics. PMID:24302884

  19. Phage shock proteins B and C prevent lethal cytoplasmic membrane permeability in Yersinia enterocolitica.

    PubMed

    Horstman, N Kaye; Darwin, Andrew J

    2012-08-01

    The bacterial phage shock protein (Psp) stress response system is activated by events affecting the cytoplasmic membrane. In response, Psp protein levels increase, including PspA, which has been implicated as the master effector of stress tolerance. Yersinia enterocolitica and related bacteria with a defective Psp system are highly sensitive to the mislocalization of pore-forming secretin proteins. However, why secretins are toxic to psp null strains, whereas some other Psp inducers are not, has not been explained. Furthermore, previous work has led to the confounding and disputable suggestion that PspA is not involved in mitigating secretin toxicity. Here we have established a correlation between the amount of secretin toxicity in a psp null strain and the extent of cytoplasmic membrane permeability to large molecules. This leads to a morphological change resembling cells undergoing plasmolysis. Furthermore, using novel strains with dis-regulated Psp proteins has allowed us to obtain unequivocal evidence that PspA is not required for secretin-stress tolerance. Together, our data suggest that the mechanism by which secretin multimers kill psp null cells is by causing a profound defect in the cytoplasmic membrane permeability barrier. This allows lethal molecular exchange with the environment, which the PspB and PspC proteins can prevent.

  20. Widespread nuclear and cytoplasmic accumulation of mutant androgen receptor in SBMA patients.

    PubMed

    Adachi, Hiroaki; Katsuno, Masahisa; Minamiyama, Makoto; Waza, Masahiro; Sang, Chen; Nakagomi, Yuji; Kobayashi, Yasushi; Tanaka, Fumiaki; Doyu, Manabu; Inukai, Akira; Yoshida, Mari; Hashizume, Yoshio; Sobue, Gen

    2005-03-01

    Spinal and bulbar muscular atrophy (SBMA) is an inherited adult onset motor neuron disease caused by the expansion of a polyglutamine (polyQ) tract within the androgen receptor (AR), affecting only males. The characteristic pathological finding is nuclear inclusions (NIs) consisting of mutant AR with an expanded polyQ in residual motor neurons, and in certain visceral organs. We immunohistochemically examined 11 SBMA patients at autopsy with 1C2, an antibody that specifically recognizes expanded polyQ. Our study demonstrated that diffuse nuclear accumulation of mutant AR was far more frequent and extensive than NIs being distributed in a wide array of CNS nuclei, and in more visceral organs than thus far believed. Mutant AR accumulation was also present in the cytoplasm, particularly in the Golgi apparatus; nuclear or cytoplasmic predominance of accumulation was tissue specific. Furthermore, the extent of diffuse nuclear accumulation of mutant AR in motor and sensory neurons of the spinal cord was closely related to CAG repeat length. Thus, diffuse nuclear accumulation of mutant AR apparently is a cardinal pathogenetic process underlying neurological manifestations, as in SBMA transgenic mice, while cytoplasmic accumulation may also contribute to SBMA pathophysiology.

  1. Connexin43 with a cytoplasmic loop deletion inhibits the function of several connexins

    PubMed Central

    Wang, Min; Martínez, Agustín D.; Berthoud, Viviana M.; Seul, Kyung H.; Gemel, Joanna; Valiunas, Virginijus; Kumari, Sindhu; Brink, Peter R.; Beyer, Eric C.

    2009-01-01

    Connexins (Cx) form gap junction channels mediating direct intercellular communication. To study the role of amino acids within the cytoplasmic loop, we produced a recombinant adenovirus containing Cx43 with a deletion of amino acids 130–136 (Cx43del130–136). Cx43del130–136 expressed alone in HeLa cells localized within the cytoplasm and did not allow transfer of ions, neurobiotin or Lucifer yellow. When co-expressed with wild type Cx43, Cx43del130–136 blocked electrical coupling and transfer of neurobiotin or Lucifer yellow. Cx43del130–136 and Cx43 co-localized by immunofluorescence and were co-purified from Triton X-100-solubilized cell extracts. Intercellular transfer mediated by Cx37 and Cx45 (but not Cx26 or Cx40) was inhibited when co-expressed with Cx43del130–136. Cx43del130–136 co-localized with Cx37, Cx40, or Cx45, but not Cx26. These data suggest that Cx43del130–136 produces connexin-specific inhibition of intercellular communication through formation of heteromeric connexons that are non-functional and/or retained in the cytoplasm. PMID:15979566

  2. SIP, a novel ankyrin repeat containing protein, sequesters steroid receptor coactivators in the cytoplasm.

    PubMed

    Zhang, Ying; Zhang, Hua; Liang, Jing; Yu, Wenhua; Shang, Yongfeng

    2007-06-06

    Steroid receptor coactivators (SRCs) exert profound effects on animal development and physiology. These coactivators are nuclear proteins and transcription co-regulators that function to facilitate the transcription initiation mediated by nuclear receptors, as well as by other well-known transcription factors. However, how these co-regulators are functionally regulated is poorly understood. During genome-wide screening for SRC-interacting proteins, we identified a novel ankyrin repeat containing protein, SIP (SRC-Interacting Protein), which interacts with SRC coactivators in the cytoplasm. We demonstrated that extracellular stimuli such as the addition of estrogen, induced phosphorylation of SIP in its PEST (Proline, Glutamate, Serine, and Threonine rich) domain by casein kinase II. The phosphorylation of SIP resulted in dissociation of SRC proteins from SIP in the cytoplasm and led to subsequent nuclear translocation of SRC proteins and gene coactivation. Both gain-of-function and loss-of-function experiments indicate that SIP functions to sequester SRC coactivators in the cytoplasm and buffer the availability of these coactivators, thus providing a mechanism for the regulation of the transcription regulators.

  3. A Mouse Cytoplasmic Exoribonuclease (mXRN1p) with Preference for G4 Tetraplex Substrates

    PubMed Central

    Bashkirov, Vladimir I.; Scherthan, Harry; Solinger, Jachen A.; Buerstedde, Jean-Marie; Heyer, Wolf-Dietrich

    1997-01-01

    Exoribonucleases are important enzymes for the turnover of cellular RNA species. We have isolated the first mammalian cDNA from mouse demonstrated to encode a 5′–3′ exoribonuclease. The structural conservation of the predicted protein and complementation data in Saccharomyces cerevisiae suggest a role in cytoplasmic mRNA turnover and pre-rRNA processing similar to that of the major cytoplasmic exoribonuclease Xrn1p in yeast. Therefore, a key component of the mRNA decay system in S. cerevisiae has been conserved in evolution from yeasts to mammals. The purified mouse protein (mXRN1p) exhibited a novel substrate preference for G4 RNA tetraplex–containing substrates demonstrated in binding and hydrolysis experiments. mXRN1p is the first RNA turnover function that has been localized in the cytoplasm of mammalian cells. mXRN1p was distributed in small granules and was highly enriched in discrete, prominent foci. The specificity of mXRN1p suggests that RNAs containing G4 tetraplex structures may occur in vivo and may have a role in RNA turnover. PMID:9049243

  4. Effects of cytoplasmic Mg2+ on slowly activating channels in isolated vacuoles of Beta vulgaris.

    PubMed

    Carpaneto, A; Cantù, A M; Gambale, F

    2001-07-01

    The slow vacuolar (SV) channel can mediate a large part of the ionic current in plant tonoplasts, but its actual physiological role is still unclear. We demonstrate that in vacuoles from the taproots of sugar beet (Beta vulgaris L.), besides Ca2+, cytoplasmic Mg2+ also plays an important role in promoting the activation of the SV channel. An increase in Mg2+ concentration decreases the time constants of channel activation and deactivation, and determines a consistent shift, towards negative voltages, of the conductance characteristic; as an example, when the free concentration of Mg2+ was increased from the micromolar range up to 10 mM the activation shifted by about -60 mV. The experimental results obtained, which are based on a fast perfusion procedure allowing us to change the solution bathing the vacuole in a few milliseconds, suggest that magnesium-binding is a faster process than the voltage-activation gating of the channel, which constitutes the rate-limiting step controlling channel opening. Interestingly, the activation of the channel mediated by Mg2+ depends on the cooperative binding of at least three magnesium ions. We verified that cytoplasmic magnesium favours the activation of SV channels in the presence of nanomolar cytoplasmic calcium concentrations. A critical discussion on the Calcium Induced Calcium Release (CICR) mechanism proposed for the SV channel is presented.

  5. Chronic Psychosocial Stress and Negative Feedback Inhibition: Enhanced Hippocampal Glucocorticoid Signaling despite Lower Cytoplasmic GR Expression

    PubMed Central

    Füchsl, Andrea M.; Reber, Stefan O.

    2016-01-01

    Chronic subordinate colony housing (CSC), a pre-clinically validated mouse model for chronic psychosocial stress, results in increased basal and acute stress-induced plasma adrenocorticotropic hormone (ACTH) levels. We assessed CSC effects on hippocampal glucocorticoid (GC) receptor (GR), mineralocorticoid receptor (MR), and FK506 binding protein (FKBP51) expression, acute heterotypic stressor-induced GR translocation, as well as GC effects on gene expression and cell viability in isolated hippocampal cells. CSC mice showed decreased GR mRNA and cytoplasmic protein levels compared with single-housed control (SHC) mice. Basal and acute stress-induced nuclear GR protein expression were comparable between CSC and SHC mice, as were MR and FKBP51 mRNA and/or cytoplasmic protein levels. In vitro the effect of corticosterone (CORT) on hippocampal cell viability and gene transcription was more pronounced in CSC versus SHC mice. In summary, CSC mice show an, if at all, increased hippocampal GC signaling capacity despite lower cytoplasmic GR protein expression, making negative feedback deficits in the hippocampus unlikely to contribute to the increased ACTH drive following CSC. PMID:27057751

  6. Deciphering the role of nuclear and cytoplasmic IKKα in skin cancer

    PubMed Central

    Alameda, Josefa P.; Gaspar, Miriam; Ramírez, Ángel; Navarro, Manuel; Page, Angustias; Suárez-Cabrera, Cristian; Fernández, M. Guadalupe; Mérida, Jose R.; Paramio, Jesús M.; García-Fernández, Rosa A.; Fernández-Aceñero, M. Jesús; Casanova, M. Llanos

    2016-01-01

    Nonmelanoma skin cancers (NMSC) are the most common human malignancies. IKKα is an essential protein for skin development and is also involved in the genesis and progression of NMSC, through mechanisms not fully understood. While different studies show that IKKα protects against skin cancer, others indicate that it promotes NMSC. To resolve this controversy we have generated two models of transgenic mice expressing the IKKα protein in the nucleus (N-IKKα mice) or the cytoplasm (C-IKKα mice) of keratinocytes. Chemical skin carcinogenesis experiments show that tumors developed by both types of transgenic mice exhibit histological and molecular characteristics that make them more prone to progression and invasion than those developed by Control mice. However, the mechanisms through which IKKα promotes skin tumors are different depending on its subcellular localization; while IKKα of cytoplasmic localization increases EGFR, MMP-9 and VEGF-A activities in tumors, nuclear IKKα causes tumor progression through regulation of c-Myc, Maspin and Integrin-α6 expression. Additionally, we have found that N-IKKα skin tumors mimic the characteristics associated to aggressive human skin tumors with high risk to metastasize. Our results show that IKKα has different non-overlapping roles in the nucleus or cytoplasm of keratinocytes, and provide new targets for intervention in human NMSC progression. PMID:27121058

  7. The roles of vitamin A for cytoplasmic maturation of bovine oocytes.

    PubMed

    Ikeda, Shuntaro; Kitagawa, Masayuki; Imai, Hiroshi; Yamada, Masayasu

    2005-02-01

    Vitamin A is one of the micronutrients which have been implicated in cattle reproduction. In cattle, ingested vitamin A, mainly as beta-carotene (BC) from forages and retinol ester from formula feed, is metabolized and transported to the oocytes and cumulus-granulosa cells in ovarian follicles through binding to various interacting molecules. The active form of vitamin A, retinoic acid (RA), functions as a regulator of gene expression in these targets. Early research showed the positive effects of vitamin A supplementation on bovine fertility in artificial insemination, and several studies on effects of vitamin A metabolites used in other artificial reproductive techniques (ART), including superovulation, ovum pick up, and in vitro maturation culture have provided evidence for the specific roles of vitamin A in oocyte cytoplasmic maturation (acquisition of developmental competence of oocytes during their meiotic maturation period for the embryonic development after fertilization). BC may enhance cytoplasmic maturation by its antioxidant properties which cannot be replaced by RA. Furthermore, RA may promote cytoplasmic maturation of bovine oocytes via its modulatory effects on the gene expression of gonadotrophin receptors, midkine, cyclooxygenase-2, and nitric oxide synthase in cumulus-granulosa cells.

  8. Chronic Psychosocial Stress and Negative Feedback Inhibition: Enhanced Hippocampal Glucocorticoid Signaling despite Lower Cytoplasmic GR Expression.

    PubMed

    Füchsl, Andrea M; Reber, Stefan O

    2016-01-01

    Chronic subordinate colony housing (CSC), a pre-clinically validated mouse model for chronic psychosocial stress, results in increased basal and acute stress-induced plasma adrenocorticotropic hormone (ACTH) levels. We assessed CSC effects on hippocampal glucocorticoid (GC) receptor (GR), mineralocorticoid receptor (MR), and FK506 binding protein (FKBP51) expression, acute heterotypic stressor-induced GR translocation, as well as GC effects on gene expression and cell viability in isolated hippocampal cells. CSC mice showed decreased GR mRNA and cytoplasmic protein levels compared with single-housed control (SHC) mice. Basal and acute stress-induced nuclear GR protein expression were comparable between CSC and SHC mice, as were MR and FKBP51 mRNA and/or cytoplasmic protein levels. In vitro the effect of corticosterone (CORT) on hippocampal cell viability and gene transcription was more pronounced in CSC versus SHC mice. In summary, CSC mice show an, if at all, increased hippocampal GC signaling capacity despite lower cytoplasmic GR protein expression, making negative feedback deficits in the hippocampus unlikely to contribute to the increased ACTH drive following CSC.

  9. Transient translocation of the cytoplasmic (endo) domain of a type I membrane glycoprotein into cellular membranes

    PubMed Central

    1993-01-01

    The E2 glycoprotein of the alphavirus Sindbis is a typical type I membrane protein with a single membrane spanning domain and a cytoplasmic tail (endo domain) containing 33 amino acids. The carboxyl terminal domain of the tail has been implicated as (a) attachment site for nucleocapsid protein, and (b) signal sequence for integration of the other alpha-virus membrane proteins 6K and E1. These two functions require that the carboxyl terminus be exposed in the cell cytoplasm (a) and exposed in the lumen of the endoplasmic reticulum (b). We have investigated the orientation of this glycoprotein domain with respect to cell membranes by substituting a tyrosine for the normally occurring serine, four amino acids upstream of the carboxyl terminus. Using radioiodination of this tyrosine as an indication of the exposure of the glycoprotein tail, we have provided evidence that this domain is initially translocated into a membrane and is returned to the cytoplasm after export from the ER. This is the first demonstration of such a transient translocation of a single domain of an integral membrane protein and this rearrangement explains some important aspects of alphavirus assembly. PMID:8432728

  10. Oligoadenylation of 3′ decay intermediates promotes cytoplasmic mRNA degradation in Drosophila cells

    PubMed Central

    Harnisch, Christiane; Cuzic-Feltens, Simona; Dohm, Juliane C.; Götze, Michael; Himmelbauer, Heinz; Wahle, Elmar

    2016-01-01

    Post-transcriptional 3′ end addition of nucleotides is important in a variety of RNA decay pathways. We have examined the 3′ end addition of nucleotides during the decay of the Hsp70 mRNA and a corresponding reporter RNA in Drosophila S2 cells by conventional sequencing of cDNAs obtained after mRNA circularization and by deep sequencing of dedicated libraries enriched for 3′ decay intermediates along the length of the mRNA. Approximately 5%–10% of 3′ decay intermediates carried nonencoded oligo(A) tails with a mean length of 2–3 nucleotides. RNAi experiments showed that the oligoadenylated RNA fragments were intermediates of exosomal decay and the noncanonical poly(A) polymerase Trf4-1 was mainly responsible for A addition. A hot spot of A addition corresponded to an intermediate of 3′ decay that accumulated upon inhibition of decapping, and knockdown of Trf4-1 increased the abundance of this intermediate, suggesting that oligoadenylation facilitates 3′ decay. Oligoadenylated 3′ decay intermediates were found in the cytoplasmic fraction in association with ribosomes, and fluorescence microscopy revealed a cytoplasmic localization of Trf4-1. Thus, oligoadenylation enhances exosomal mRNA degradation in the cytoplasm. PMID:26786835

  11. Visualizing Cytoplasmic Flow During Single-cell Wound Healing in Stentor coeruleus

    PubMed Central

    Slabodnick, Mark; Prevo, Bram; Gross, Peter; Sheung, Janet; Marshall, Wallace

    2013-01-01

    Although wound-healing is often addressed at the level of whole tissues, in many cases individual cells are able to heal wounds within themselves, repairing broken cell membrane before the cellular contents leak out. The giant unicellular organism Stentor coeruleus, in which cells can be more than one millimeter in size, have been a classical model organism for studying wound healing in single cells. Stentor cells can be cut in half without loss of viability, and can even be cut and grafted together. But this high tolerance to cutting raises the question of why the cytoplasm does not simply flow out from the size of the cut. Here we present a method for cutting Stentor cells while simultaneously imaging the movement of cytoplasm in the vicinity of the cut at high spatial and temporal resolution. The key to our method is to use a "double decker" microscope configuration in which the surgery is performed under a dissecting microscope focused on a chamber that is simultaneously viewed from below at high resolution using an inverted microscope with a high NA lens. This setup allows a high level of control over the surgical procedure while still permitting high resolution tracking of cytoplasm. PMID:24378633

  12. Visualizing cytoplasmic flow during single-cell wound healing in Stentor coeruleus.

    PubMed

    Slabodnick, Mark; Prevo, Bram; Gross, Peter; Sheung, Janet; Marshall, Wallace

    2013-12-19

    Although wound-healing is often addressed at the level of whole tissues, in many cases individual cells are able to heal wounds within themselves, repairing broken cell membrane before the cellular contents leak out. The giant unicellular organism Stentor coeruleus, in which cells can be more than one millimeter in size, have been a classical model organism for studying wound healing in single cells. Stentor cells can be cut in half without loss of viability, and can even be cut and grafted together. But this high tolerance to cutting raises the question of why the cytoplasm does not simply flow out from the size of the cut. Here we present a method for cutting Stentor cells while simultaneously imaging the movement of cytoplasm in the vicinity of the cut at high spatial and temporal resolution. The key to our method is to use a "double decker" microscope configuration in which the surgery is performed under a dissecting microscope focused on a chamber that is simultaneously viewed from below at high resolution using an inverted microscope with a high NA lens. This setup allows a high level of control over the surgical procedure while still permitting high resolution tracking of cytoplasm.

  13. Insights into subunit interactions in the Sulfolobus acidocaldarius archaellum cytoplasmic complex.

    PubMed

    Banerjee, Ankan; Neiner, Tomasz; Tripp, Patrick; Albers, Sonja-Verena

    2013-12-01

    Archaella are the archaeal motility structure that is the functional pendant of the bacterial flagellum but is assembled by a mechanism similar to that for type IV pili. Recently, it was shown by Banerjee et al. that FlaX, a crenarchaeal archaellum subunit from Sulfolobus acidocaldarius, forms a ring-like oligomer, and it was proposed that this ring may act as a static platform for torque generation in archaellum rotation [Banerjee A et al. (2012) J Biol Chem 287, 43322-43330]. Moreover, the hexameric crystal structure of FlaI was solved, and its dual function in the assembly and the rotation of the archaellum was demonstrated [Reindl S et al. (2013) Mol Cell 49, 1069-1082]. In this study, we show by biochemical and biophysical techniques that FlaX from S. acidocaldarius acts as a cytoplasmic scaffold in archaellum assembly, as it interacts with FlaI as well as with the recA family protein FlaH, the only cytoplasmic components of the archaellum. Interaction studies using various truncated versions of FlaI demonstrated that its N- and C-termini interact with FlaX. Moreover, using microscale thermophoresis, we show that FlaI, FlaX and FlaH interact with high affinities in the nanomolar range. Therefore, we propose that these three proteins form the cytoplasmic motor complex of the archaellum.

  14. Cytoplasmic proteasomes are not indispensable for cell growth in Saccharomyces cerevisiae

    SciTech Connect

    Tsuchiya, Hikaru; Arai, Naoko; Tanaka, Keiji Saeki, Yasushi

    2013-07-05

    Highlights: •We succeeded to control the proteasome localization by the anchor-away technique. •Nuclear proteasome-depleted cells showed a lethal phenotype. •Cytoplasmic proteasomes are not indispensable for cell growth in dividing cells. -- Abstract: The 26S proteasome is an essential protease complex responsible for the degradation of ubiquitinated proteins in eukaryotic cells. In rapidly proliferating yeast cells, proteasomes are mainly localized in the nucleus, but the biological significance of the proteasome localization is still unclear. In this study, we investigated the relationship between the proteasome localization and the functions by the anchor-away technique, a ligand-dependent sequestration of a target protein into specific compartment(s). Anchoring of the proteasome to the plasma membrane or the ribosome resulted in conditional depletion of the nuclear proteasomes, whereas anchoring to histone resulted in the proteasome sequestration into the nucleus. We observed that the accumulation of ubiquitinated proteins in all the proteasome-targeted cells, suggesting that both the nuclear and cytoplasmic proteasomes have proteolytic functions and that the ubiquitinated proteins are produced and degraded in each compartment. Consistent with previous studies, the nuclear proteasome-depleted cells exhibited a lethal phenotype. In contrast, the nuclear sequestration of the proteasome resulted only in a mild growth defect, suggesting that the cytoplasmic proteasomes are not basically indispensable for cell growth in rapidly growing yeast cells.

  15. L-selectin transmembrane and cytoplasmic domains are monomeric in membranes

    PubMed Central

    Srinivasan, Sankaranarayanan; Deng, Wei; Li, Renhao

    2011-01-01

    A recombinant protein termed CLS, which corresponds to the C-terminal portion of human L-selectin and contains its entire transmembrane and cytoplasmic domains (residues Ser473-Arg542), has been produced and its oligomeric state in detergents characterized. CLS migrates in the SDS polyacrylamide gel at a pace that is typically expected from a complex twice of its molecular weight. Additional studies revealed however that this is due to residues in the cytoplasmic domain, as mutations in this region or its deletion significantly increased the electrophoretic rate of CLS. Analytical ultracentrifugation and fluorescence resonance energy transfer studies indicated that CLS reconstituted in dodecylphosphocholine detergent micelles is monomeric. When the transmembrane domain of L-selectin is inserted into the inner membrane of Escherichia coli as a part of a chimeric protein in the TOXCAT assay, little oligomerization of the chimeric protein is observed. Overall, these results suggest that transmembrane and cytoplasmic domains of L-selectin lack the propensity to self-associate in membranes, in contrast to the previously documented dimerization of the transmembrane domain of closely related P-selectin. This study will provide constraints for future investigations on the interaction of L-selectin and its associating proteins. PMID:21316337

  16. Hydrophobic Imbalance in the Cytoplasmic Domain of Phospholamban Is a Determinant for Lethal Dilated Cardiomyopathy*

    PubMed Central

    Ceholski, Delaine K.; Trieber, Catharine A.; Young, Howard S.

    2012-01-01

    The sarco(endo)plasmic reticulum calcium ATPase (SERCA) and its regulatory partner phospholamban (PLN) are essential for myocardial contractility. Arg9 → Cys (R9C) and Arg14 deletion (R14del) mutations in PLN are associated with lethal dilated cardiomyopathy in humans. To better understand these mutations, we made a series of amino acid substitutions in the cytoplasmic domain of PLN and tested their ability to inhibit SERCA. R9C is a complete loss-of-function mutant of PLN, whereas R14del is a mild loss-of-function mutant. When combined with wild-type PLN to simulate heterozygous conditions, the mutants had a dominant negative effect on SERCA function. A series of targeted mutations in this region of the PLN cytoplasmic domain (8TRSAIRR14) demonstrated the importance of hydrophobic balance in proper PLN regulation of SERCA. We found that Arg9 → Leu and Thr8 → Cys substitutions mimicked the behavior of the R9C mutant, and an Arg14 → Ala substitution mimicked the behavior of the R14del mutant. The results reveal that the change in hydrophobicity resulting from the R9C and R14del mutations is sufficient to explain the loss of function and persistent interaction with SERCA. Hydrophobic imbalance in the cytoplasmic domain of PLN appears to be a predictor for the development and progression of dilated cardiomyopathy. PMID:22427649

  17. Mechanisms for independent cytoplasmic inheritance of mitochondria and plastids in angiosperms.

    PubMed

    Nagata, Noriko

    2010-03-01

    The inheritance of mitochondria and plastids in angiosperms has been categorized into three modes:maternal, biparental and paternal. Many mechanisms have been proposed for maternal inheritance, including: (1) physical exclusion of the organelle itself during pollenmitosis I (PMI); (2) elimination of the organelle by formation of enucleated cytoplasmic bodies (ECB); (3) autophagic degradation of organelles during male gametophyte development; (4) digestion of the organelle after fertilization; and (5)--the most likely possibility--digestion of organellar DNA in generative cells just after PMI. In detailed cytological observations, the presence or absence of mitochondrial and plastid DNA in generative cells corresponds to biparental/paternal inheritance or maternal inheritance of the respective organelle examined genetically. These improved cytological observations demonstrate that the replication or digestion of organellar DNA in young generative cells just after PMI is a critical point determining the mode of cytoplasmic inheritance. This review describes the independent control mechanisms in mitochondria and plastids that lead to differences in cytoplasmic inheritance in angiosperms.

  18. Cytoplasmic polyadenylation elements mediate masking and unmasking of cyclin B1 mRNA.

    PubMed Central

    de Moor, C H; Richter, J D

    1999-01-01

    During oocyte maturation, cyclin B1 mRNA is translationally activated by cytoplasmic polyadenylation. This process is dependent on cytoplasmic polyadenylation elements (CPEs) in the 3' untranslated region (UTR) of the mRNA. To determine whether a titratable factor might be involved in the initial translational repression (masking) of this mRNA, high levels of cyclin B1 3' UTR were injected into oocytes. While this treatment had no effect on the poly(A) tail length of endogenous cyclin B1 mRNA, it induced cyclin B1 synthesis. A mutational analysis revealed that the most efficient unmasking element in the cyclin 3' UTR was the CPE. However, other U-rich sequences that resemble the CPE in structure, but which do not bind the CPE-binding polyadenylation factor CPEB, failed to induce unmasking. When fused to the chloramphenical acetyl transferase (CAT) coding region, the cyclin B1 3' UTR inhibited CAT translation in injected oocytes. In addition, a synthetic 3' UTR containing multiple copies of the CPE also inhibited translation, and did so in a dose-dependent manner. Furthermore, efficient CPE-mediated masking required cap-dependent translation. During the normal course of progesterone-induced maturation, cytoplasmic polyadenylation was necessary for mRNA unmasking. A model to explain how cyclin B1 mRNA masking and unmasking could be regulated by the CPE is presented. PMID:10205182

  19. Proteins contribute insignificantly to the intrinsic buffering capacity of yeast cytoplasm

    SciTech Connect

    Poznanski, Jaroslaw; Szczesny, Pawel; Ruszczynska, Katarzyna; Zielenkiewicz, Piotr; Paczek, Leszek

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We predicted buffering capacity of yeast proteome from protein abundance data. Black-Right-Pointing-Pointer We measured total buffering capacity of yeast cytoplasm. Black-Right-Pointing-Pointer We showed that proteins contribute insignificantly to buffering capacity. -- Abstract: Intracellular pH is maintained by a combination of the passive buffering of cytoplasmic dissociable compounds and several active systems. Over the years, a large portion of and possibly most of the cell's intrinsic (i.e., passive non-bicarbonate) buffering effect was attributed to proteins, both in higher organisms and in yeast. This attribution was not surprising, given that the concentration of proteins with multiple protonable/deprotonable groups in the cell exceeds the concentration of free protons by a few orders of magnitude. Using data from both high-throughput experiments and in vitro laboratory experiments, we tested this concept. We assessed the buffering capacity of the yeast proteome using protein abundance data and compared it to our own titration of yeast cytoplasm. We showed that the protein contribution is less than 1% of the total intracellular buffering capacity. As confirmed with NMR measurements, inorganic phosphates play a crucial role in the process. These findings also shed a new light on the role of proteomes in maintaining intracellular pH. The contribution of proteins to the intrinsic buffering capacity is negligible, and proteins might act only as a recipient of signals for changes in pH.

  20. Rapid cytoplasmic turnover of yeast ribosomes in response to rapamycin inhibition of TOR.

    PubMed

    Pestov, Dimitri G; Shcherbik, Natalia

    2012-06-01

    The target of rapamycin (TOR) pathway is the central regulator of cell growth in eukaryotes. Inhibition of TOR by rapamycin elicits changes in translation attributed mainly to altered translation initiation and repression of the synthesis of new ribosomes. Using quantitative analysis of rRNA, we found that the number of existing ribosomes present in a Saccharomyces cerevisiae culture during growth in rich medium rapidly decreases by 40 to 60% when the cells are treated with rapamycin. This process is not appreciably affected by a suppression of autophagy, previously implicated in degradation of ribosomes in eukaryotes upon starvation. Yeast cells deficient in the exosome function or lacking its cytoplasmic Ski cofactors show an abnormal pattern of rRNA degradation, particularly in the large ribosomal subunit, and accumulate rRNA fragments after rapamycin treatment and during diauxic shift. The exosome and Ski proteins are thus important for processing of rRNA decay intermediates, although they are probably not responsible for initiating rRNA decay. The role of cytoplasmic nucleases in rapamycin-induced rRNA degradation suggests mechanistic parallels of this process to nutrient-controlled ribosome turnover in prokaryotes. We propose that ribosome content is regulated dynamically in eukaryotes by TOR through both ribosome synthesis and the cytoplasmic turnover of mature ribosomes.

  1. The cytoplasmic sites of the snRNP protein complexes are punctate structures that are responsive to changes in metabolism and intracellular architecture.

    PubMed

    Zieve, G W

    1999-02-25

    Five anti-Sm monoclonal antibodies, Y12, 7.13, KSm4, KSm6, and 128, stain similar discrete punctate structures distributed throughout the cytoplasm of hamster fibroblasts in addition to the expected intense nuclear staining. Several criteria suggest the cytoplasmic staining reflects the cytoplasmic pools of snRNP core proteins. The relative intensity of the cytoplasmic staining is similar to the 30% relative abundance of the cytoplasmic snRNP core proteins compared to the nuclear snRNP core proteins based on cell-fractionation studies. Moreover, the cytoplasmic staining is removed by the same extraction conditions that solubilize the pools of cytoplasmic snRNP core proteins. The cytoplasmic sites of staining are typically spherical but heterogeneous in diameter (0.2-0.5 microm). The larger particles greatly exceed the diameter of individual snRNP core particles and are likely to represent centers of many snRNP proteins or snRNP protein complexes. The staining, though punctate, is evenly dispersed throughout the cytoplasm with no evidence of major compartmentalization. The cytoplasmic staining pattern collapses into larger foci of intensely staining structures when cellular energy levels are depleted or when cells are exposed to hypertonic medium. Unlike the normal sites of snRNP protein cytoplasmic staining, these larger collapsed foci resist detergent extraction. These results suggest that the cytoplasmic staining identified with the anti-Sm monoclonal antibodies represents the large pools of snRNP core proteins in the cytoplasm.

  2. Cytoplasmic-nuclear shuttling of the urokinase mRNA binding protein regulates message stability.

    PubMed

    Shetty, Sreerama

    2002-08-01

    Treatment of small airway epithelial (SAEC) cells or lung epithelial (Beas2B) cells with TNF-alpha or PMA induces urokinase-type plasminogen activator (uPA) expression. Treatment of these cells with TNF-alpha, PMA or cycloheximide but not TGF-beta increased steady-state expression of uPAmRNA. TNF-alpha, PMA or cycloheximide caused 8-10 fold extensions of the uPAmRNA half-life in SAEC or Beas2B cells treated with DRB, a transcriptional inhibitor. These findings suggest that uPA gene expression involves a post-transcriptional regulatory mechanism. Using gel mobility shift and UV cross-linking assays, we identified a 30 kDa uPA mRNA binding protein (uPA mRNABp) that selectively binds to a 66 nt protein binding fragment of uPA mRNA containing regulatory information for message stabilization. Binding of cytoplasmic uPA mRNABp to uPA mRNA was abolished after treatment with TNF-alpha but not TGF-beta. In addition, we found the accumulation of 30 kDa uPAmRNABp in the nuclear extracts of TNF-alpha but not TGF-beta treated cells. The uPA mRNABp starts moving to the nucleus from the cytoplasmic compartment as early as three hours after TNF-alpha treatment. Complete translocation is achieved between 12-24 h, which coincides with the maximal expression of uPA protein effected by cytokine stimulation. Treatment of Beas2B cells with NaF inhibited TNF-alpha-mediated translocation of uPA mRNABp from the cytoplasm to the nucleus and concomitant inhibition of uPA expression. TNF-alpha stabilizes uPA mRNA by translocating the uPA mRNABp from the cytoplasm to the nucleus. Our results demonstrate a novel mechanism governing uPA mRNA stability through shuttling of uPA mRNABp between the nucleus and cytoplasm. This newly identified pathway may have evolved to regulate uPA-mediated functions of the lung epithelium in inflamation or neoplasia.

  3. Nucleocapsid Protein from Fig Mosaic Virus Forms Cytoplasmic Agglomerates That Are Hauled by Endoplasmic Reticulum Streaming

    PubMed Central

    Ishikawa, Kazuya; Miura, Chihiro; Maejima, Kensaku; Komatsu, Ken; Hashimoto, Masayoshi; Tomomitsu, Tatsuya; Fukuoka, Misato; Yusa, Akira; Yamaji, Yasuyuki

    2014-01-01

    ABSTRACT Although many studies have demonstrated intracellular movement of viral proteins or viral replication complexes, little is known about the mechanisms of their motility. In this study, we analyzed the localization and motility of the nucleocapsid protein (NP) of Fig mosaic virus (FMV), a negative-strand RNA virus belonging to the recently established genus Emaravirus. Electron microscopy of FMV-infected cells using immunogold labeling showed that NPs formed cytoplasmic agglomerates that were predominantly enveloped by the endoplasmic reticulum (ER) membrane, while nonenveloped NP agglomerates also localized along the ER. Likewise, transiently expressed NPs formed agglomerates, designated NP bodies (NBs), in close proximity to the ER, as was the case in FMV-infected cells. Subcellular fractionation and electron microscopic analyses of NP-expressing cells revealed that NBs localized in the cytoplasm. Furthermore, we found that NBs moved rapidly with the streaming of the ER in an actomyosin-dependent manner. Brefeldin A treatment at a high concentration to disturb the ER network configuration induced aberrant accumulation of NBs in the perinuclear region, indicating that the ER network configuration is related to NB localization. Dominant negative inhibition of the class XI myosins, XI-1, XI-2, and XI-K, affected both ER streaming and NB movement in a similar pattern. Taken together, these results showed that NBs localize in the cytoplasm but in close proximity to the ER membrane to form enveloped particles and that this causes passive movements of cytoplasmic NBs by ER streaming. IMPORTANCE Intracellular trafficking is a primary and essential step for the cell-to-cell movement of viruses. To date, many studies have demonstrated the rapid intracellular movement of viral factors but have failed to provide evidence for the mechanism or biological significance of this motility. Here, we observed that agglomerates of nucleocapsid protein (NP) moved rapidly

  4. Regulation of the nuclear genes encoding the cytoplasmic and mitochondrial leucyl-tRNA synthetases of Neurospora crassa.

    PubMed Central

    Chow, C M; Rajbhandary, U L

    1989-01-01

    We show that the nuclear genes for the cytoplasmic and mitochondrial leucyl-tRNA synthetase (LeuRS) of Neurospora crassa are distinct in their encoded proteins, codon usage, mRNA levels, and regulation. The 4.2-kilobase-pair region representing the structural gene for cytoplasmic LeuRS and flanking regions has been sequenced. The positions of the 5' and 3' ends of mRNA and of a single 62-base-pair intron have been mapped. The methionine-initiated open reading frame encoded a protein of 1,123 amino acids and displayed a strong codon bias. Although cytoplasmic LeuRS shares with mitochondrial LeuRS some general features common to most aminoacyl-tRNA synthetases, there is little amino acid sequence similarity between them, mRNA levels for cytoplasmic LeuRS were much higher than those for mitochondrial LeuRS. This observation and the strong codon bias in the cytoplasmic LeuRS gene may contribute to a greater abundance of cytoplasmic LeuRS than mitochondrial LeuRS. The genes for cytoplasmic and mitochondrial LeuRS are regulated independently. The cytoplasmic LeuRS gene is regulated by the cross-pathway control system in N. crassa, which is analogous to general amino acid control in Saccharomyces cerevisiae. The cytoplasmic LeuRS mRNA levels are induced by amino acid starvation resulting from the addition of aminotriazole. Part of this increase is due to utilization of new transcription start sites. In contrast, the mitochondrial LeuRS gene is not induced by amino acid limitation. However, the mitochondrial LeuRS mRNA levels did increase dramatically upon inhibition of mitochondrial protein synthesis by chloramphenicol or ethidium bromide or in the temperature-sensitive strain leu-5 carrying a mutation in the mitochondrial LeuRS structural gene. Images PMID:2532300

  5. In Vitro Assay for the Rap GTPase-Activating Protein Activity of the Purified Cytoplasmic Domain of Plexin.

    PubMed

    Pascoe, Heath G; Wang, Yuxiao; Zhang, Xuewu

    2017-01-01

    Plexins are cell surface receptors that bind semaphorins and regulate essential processes such as axon guidance and angiogenesis. The cytoplasmic regions of plexins contain a functionally essential GTPase-activating protein (GAP) domain, which initiates downstream signaling by specifically inactivating the Rap GTPase. Here we describe the methods for expression and purification of the plexin cytoplasmic region in E. coli, and characterization of its GAP activity using a photometric assay. We also provide a protocol for measuring GAP activity of single-chain constructs with Rap covalently linked to the plexin cytoplasmic region.

  6. Susceptibility to virus-cell fusion at the plasma membrane is reduced through expression of HIV gp41 cytoplasmic domains

    SciTech Connect

    Malinowsky, Katharina; Luksza, Julia; Dittmar, Matthias T.

    2008-06-20

    The cytoplasmic tail of the HIV transmembrane protein plays an important role in viral infection. In this study we analyzed the role of retroviral cytoplasmic tails in modulating the cytoskeleton and interfering with virus-cell fusion. HeLaP4 cells expressing different HIV cytoplasmic tail constructs showed reduced acetylated tubulin levels whereas the cytoplasmic tail of MLV did not alter microtubule stability indicating a unique function for the lentiviral cytoplasmic tail. The effect on tubulin is mediated through the membrane proximal region of the HIV cytoplasmic tail and was independent of membrane localization. Site-directed mutagenesis identified three motifs in the HIV-2 cytoplasmic tail required to effect the reduction in acetylated tubulin. Both the Yxx{phi} domain and amino acids 21 to 45 of the HIV-2 cytoplasmic tail need to be present to change the level of acetylated tubulin in transfected cells. T-cells stably expressing one HIV-2 cytoplasmic tail derived construct showed also a reduction in acetylated tubulin thus confirming the importance of this effect not only for HeLaP4 and 293T cells. Challenge experiments using transiently transfected HeLaP4 cells and T cells stably expressing an HIV cytoplasmic tail construct revealed both reduced virus-cell fusion and replication of HIV-1{sub NL4.3} compared to control cells. In the virus-cell fusion assay only virions pseudotyped with either HIV or MLV envelopes showed reduced fusion efficiency, whereas VSV-G pseudotyped virions where not affected by the expression of HIV derived cytoplasmic tail constructs, indicating that fusion at the plasma but not endosomal membrane is affected. Overexpression of human histone-deacetylase 6 (HDAC6) and constitutively active RhoA resulted in a reduction of acetylated tubulin and reduced virus-cell fusion as significant as that observed following expression of HIV cytoplasmic tail constructs. Inhibition of HDAC6 showed a strong increase in acetylated tubulin and

  7. Heterozygous alleles restore male fertility to cytoplasmic male-sterile radish (Raphanus sativus L.): a case of overdominance.

    PubMed

    Wang, Zhi Wei; De Wang, Chuan; Wang, Chuan; Gao, Lei; Mei, Shi Yong; Zhou, Yuan; Xiang, Chang Ping; Wang, Ting

    2013-04-01

    The practice of hybridization has greatly contributed to the increase in crop productivity. A major component that exploits heterosis in crops is the cytoplasmic male sterility (CMS)/nucleus-controlled fertility restoration (Rf) system. Through positional cloning, it is shown that heterozygous alleles (RsRf3-1/RsRf3-2) encoding pentatricopeptide repeat (PPR) proteins are responsible for restoring fertility to cytoplasmic male-sterile radish (Raphanus sativus L.). Furthermore, it was found that heterozygous alleles (RsRf3-1/RsRf3-2) show higher expression and RNA polymerase II occupancy in the CMS cytoplasmic background compared with their homozygous alleles (RsRf3-1/RsRf3-1 or RsRf3-2/RsRf3-2). These data provide new insights into the molecular mechanism of fertility restoration to cytoplasmic male-sterile plants and illustrate a case of overdominance.

  8. Cytoplasmic Localization of RUNX3 via Histone Deacetylase-Mediated SRC Expression in Oxidative-Stressed Colon Cancer Cells.

    PubMed

    Kang, Kyoung Ah; Piao, Mei Jing; Ryu, Yea Seong; Maeng, Young Hee; Hyun, Jin Won

    2016-12-19

    Runt domain transcription factor 3 (RUNX3) is a transcription factor that functions as a tumor suppressor. RUNX3 is frequently inactivated by epigenetic silencing or its protein mislocalization (cytoplasmic localization) in many cancer types. This study investigated whether oxidative stress induces redistribution of RUNX3 from the nucleus to the cytoplasm. The cytoplasmic localization of RUNX3 was associated with oxidative stress-induced RUNX3 phosphorylation at tyrosine residues via SRC activation. Moreover, oxidative stress increased expression of histone deacetylases (HDACs). RUNX3 phosphorylation and SRC expression induced by oxidative stress were inhibited by knockdown of HDAC1, restoring the nuclear localization of RUNX3 under oxidative stress. In conclusion, these results demonstrate that HDAC1- and SRC-mediated phosphorylation of RUNX3 induced by oxidative stress is associated with the cytoplasmic localization of RUNX3 and can lead to RUNX3 inactivation and carcinogenesis. J. Cell. Physiol. 9999: 1-8, 2016. © 2016 Wiley Periodicals, Inc.

  9. Cytoplasmic Irradiation Induces Metabolic Shift in Human Small Airway Epithelial Cells via Activation of Pim-1 Kinase.

    PubMed

    Wu, Jinhua; Zhang, Qin; Wuu, Yen-Ruh; Zou, Sirui; Hei, Tom K

    2017-02-07

    The unique cellular and molecular consequences of cytoplasmic damage caused by ionizing radiation were studied using a precision microbeam irradiator. Our results indicated that targeted cytoplasmic irradiation induced metabolic shift from an oxidative to glycolytic phenotype in human small airway epithelial cells (SAE). At 24 h postirradiation, there was an increase in the mRNA expression level of key glycolytic enzymes as well as lactate secretion in SAE cells. Using RNA-sequencing analysis to compare genes that were responsive to cytoplasmic versus nuclear irradiation, we found a glycolysis related gene, Pim-1, was significantly upregulated only in cytoplasmic irradiated SAE cells. Inhibition of Pim-1 activity using the selective pharmaceutic inhibitor Smi-4a significantly reduced the level of lactate production and glucose uptake after cytoplasmic irradiation. In addition, Pim-1 also inhibited AMPK activity, which is a well-characterized negative regulator of glycolysis. Distinct from the glycolysis induced by cytoplasmic irradiation, targeted nuclear irradiation also induced a transient and minimal increase in glycolysis that correlated with increased expression of Hif-1α. In an effort to explore the underline mechanism, we found that inhibition of mitochondria fission using the cell-permeable inhibitor mdivi-1 suppressed the induction of Pim-1, thus confirming Pim-1 upregulation as a downstream effect of mitochondrial dysfunction. Our data show and, for the first time, that cytoplasmic irradiation mediate expression level of Pim-1, which lead to glycolytic shift in SAE cells. Additionally, since glycolysis is frequently linked to cancer cell metabolism, our findings further suggest a role of cytoplasmic damage in promoting neoplastic changes.

  10. Cytoplasm-specific Effects of Helminthosporium maydis Race T Toxin on Survival of Corn Mesophyll Protoplasts 1

    PubMed Central

    Earle, Elizabeth D.; Gracen, Vernon E.; Yoder, Olen C.; Gemmill, Karen P.

    1978-01-01

    High yields of mesophyll protoplasts were obtained from leaves of corn (Zea mays L., inbred W64A). Many protoplasts survived a week in the dark in a simple osmoticum. Culture filtrate from Helminthosporium maydis race T at dilutions of 1:10,000 to 1:20,000 destroyed protoplasts with Texas male-sterile (T) cytoplasm. Substantial damage to protoplasts with nonmale-sterile (N) cytoplasm occurred only at a 1:20 dilution. High concentrations of partially purified H. maydis race T (HMT) toxin (32.5-130 μg dry weight/ml) did not reduce survival of protoplasts with N cytoplasm or C or S male-sterile cytoplasms after 6 days of exposure. Protoplasts with T or TRf (fertility restored) cytoplasm collapsed within 1 to 3 days after treatment with 0.13 μg of HMT toxin/ml, which was one-fifth the level causing 50% inhibition of T cytoplasm seedling root growth. Protoplasts with T cytoplasm which were washed after 30 minutes or more of exposure to HMT toxin also collapsed within a few days. Cultured W64A T protoplasts and freshly isolated protoplasts from inbreds C103 and Mo17 with T cytoplasm were less sensitive to HMT toxin than freshly isolated W64A T protoplasts. Toxin-treated protoplasts survived longer in the light than in the dark. The sensitivity and specificity of the system described will facilitate physiological, ultrastructural, and genetic studies of toxin action. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6 PMID:16660306

  11. Accessory Factors of Cytoplasmic Viral RNA Sensors Required for Antiviral Innate Immune Response

    PubMed Central

    Oshiumi, Hiroyuki; Kouwaki, Takahisa; Seya, Tsukasa

    2016-01-01

    Type I interferon (IFN) induces many antiviral factors in host cells. RIG-I-like receptors (RLRs) are cytoplasmic viral RNA sensors that trigger the signal to induce the innate immune response that includes type I IFN production. RIG-I and MDA5 are RLRs that form nucleoprotein filaments along viral double-stranded RNA, resulting in the activation of MAVS adaptor molecule. The MAVS protein forms a prion-like aggregation structure, leading to type I IFN production. RIG-I and MDA5 undergo post-translational modification. TRIM25 and Riplet ubiquitin ligases deliver a K63-linked polyubiquitin moiety to the RIG-I N-terminal caspase activation and recruitment domains (CARDs) and C-terminal region; the polyubiquitin chain then stabilizes the two-CARD tetramer structure required for MAVS assembly. MDA5 activation is regulated by phosphorylation. RIOK3 is a protein kinase that phosphorylates the MDA5 protein in a steady state, and PP1α/γ dephosphorylate this protein, resulting in its activation. RIG-I and MDA5 require cytoplasmic RNA helicases for their efficient activation. LGP2, another RLR, is an RNA helicase involved in RLR signaling. This protein does not possess N-terminal CARDs and, thus, cannot trigger downstream signaling by itself. Recent studies have revealed that this protein modulates MDA5 filament formation, resulting in enhanced type I IFN production. Several other cytoplasmic RNA helicases are involved in RLR signaling. DDX3, DHX29, DHX36, and DDX60 RNA helicases have been reported to be involved in RLR-mediated type I IFN production after viral infection. However, the underlying mechanism is largely unknown. Future studies are required to reveal the role of RNA helicases in the RLR signaling pathway. PMID:27252702

  12. Diagnostic utility of WT-1 cytoplasmic stain in variety of vascular lesions.

    PubMed

    Galfione, Sarah K; Ro, Jae Y; Ayala, Alberto G; Ge, Yimin

    2014-01-01

    Vascular lesions are commonly encountered in routine pathologic practice and often pose diagnostic challenges owing to their morphologic diversity. Although WT-1 expression was reported in some vascular tumors, little is known about its staining patterns in a spectrum of vascular lesions from various locations. We examined WT-1 immunostain in 95 cases of vascular lesions including angiosarcomas (AS, 19 cases), hemangioendotheliomas (HE, 5), Kaposi's sarcomas (KS, 4), cavernous hemangiomas (CVH, 12), capillary hemangiomas (CPH, 7), pyogenic granulomas (PG, 4), lymphangiomas (LA, 4), hemangiopericytomas (HP, 5), glomus tumors (GT, 8), vascular malformation (VM, 13) and granulation tissue (GRT, 14). Strong WT-1 cytoplasmic stain was invariably observed in all cases of malignant and borderline vascular tumors including AS (19/19), KS (4/4) and HE (5/5). WT-1 was also consistently expressed in CPH (7/7), PG (4/4), and GRT (14/14), while it became weaker in VM (10/13) and often negative in CVH (2/12) and LA (0/4). WT1 stain was not demonstrated in HP (0/5) and rarely in GT (2/8). We conclude that consistent and diffuse WT-1 cytoplasmic stain in AS, HE and KS can be useful in distinguishing these tumors from poorly differentiated tumors with mimicking features. On the other hand, reliable WT-1 stain in CPH, PG and GRT may help in differential diagnosis with non-endothelial vascular tumors such as GT and HP. Recognizing the WT-1 cytoplasmic stain in a broad spectrum of benign and neoplastic tissues is critical in formulating appropriate immunohistochemical panels and avoiding misinterpretation of results.

  13. A new cytoplasmic interaction between junctin and ryanodine receptor Ca2+ release channels

    PubMed Central

    Li, Linwei; Mirza, Shamaruh; Richardson, Spencer J.; Gallant, Esther M.; Thekkedam, Chris; Pace, Suzy M.; Zorzato, Francesco; Liu, Dan; Beard, Nicole A.; Dulhunty, Angela F.

    2015-01-01

    ABSTRACT Junctin, a non-catalytic splice variant encoded by the aspartate-β-hydroxylase (Asph) gene, is inserted into the membrane of the sarcoplasmic reticulum (SR) Ca2+ store where it modifies Ca2+ signalling in the heart and skeletal muscle through its regulation of ryanodine receptor (RyR) Ca2+ release channels. Junctin is required for normal muscle function as its knockout leads to abnormal Ca2+ signalling, muscle dysfunction and cardiac arrhythmia. However, the nature of the molecular interaction between junctin and RyRs is largely unknown and was assumed to occur only in the SR lumen. We find that there is substantial binding of RyRs to full junctin, and the junctin luminal and, unexpectedly, cytoplasmic domains. Binding of these different junctin domains had distinct effects on RyR1 and RyR2 activity: full junctin in the luminal solution increased RyR channel activity by ∼threefold, the C-terminal luminal interaction inhibited RyR channel activity by ∼50%, and the N-terminal cytoplasmic binding produced an ∼fivefold increase in RyR activity. The cytoplasmic interaction between junctin and RyR is required for luminal binding to replicate the influence of full junctin on RyR1 and RyR2 activity. The C-terminal domain of junctin binds to residues including the S1–S2 linker of RyR1 and N-terminal domain of junctin binds between RyR1 residues 1078 and 2156. PMID:25609705

  14. Cytoplasmic pH Dynamics in Maize Pulvinal Cells Induced by Gravity Vector Changes1[w

    PubMed Central

    Johannes, Eva; Collings, David A.; Rink, Jochen C.; Allen, Nina Strömgren

    2001-01-01

    In maize (Zea mays) and other grasses, changes in orientation of stems are perceived by pulvinal tissue, which responds to the stimulus by differential growth resulting in upward bending of the stem. The amyloplast-containing bundle sheath cells are the sites of gravity perception, although the initial steps of gravity perception and transmission remain unclear. In columella cells of Arabidopsis roots, we previously found that cytoplasmic pH (pHc) is a mediator in early gravitropic signaling (A.C. Scott, N.S. Allen [1999] Plant Physiol 121: 1291–1298). The question arises whether pHc has a more general role in signaling gravity vector changes. Using confocal ratiometric imaging and the fluorescent pH indicator carboxy seminaphtorhodafluor acetoxymethyl ester acetate, we measured pHc in the cells composing the maize pulvinus. When stem slices were gravistimulated and imaged on a horizontally mounted confocal microscope, pHc changes were only apparent within the bundle sheath cells, and not in the parenchyma cells. After turning, cytoplasmic acidification was observed at the sides of the cells, whereas the cytoplasm at the base of the cells where plastids slowly accumulated became more basic. These changes were most apparent in cells exhibiting net amyloplast sedimentation. Parenchyma cells and isolated bundle sheath cells did not show any gravity-induced pHc changes although all cell types responded to external stimuli in the predicted way: Propionic acid and auxin treatments induced acidification, whereas raising the external pH caused alkalinization. The results suggest that pHc has an important role in the early signaling pathways of maize stem gravitropism. PMID:11553740

  15. Cytoplasmic transport of ribosomal subunits microinjected into the Xenopus laevis oocyte nucleus: a generalized, facilitated process

    PubMed Central

    1990-01-01

    To study the biochemistry of ribonucleoprotein export from the nucleus, we characterized an in vivo assay in which the cytoplasmic appearance of radiolabeled ribosomal subunits was monitored after their microinjection into Xenopus oocyte nuclei. Denaturing gel electrophoresis and sucrose density gradient sedimentation demonstrated that injected subunits were transported intact. Consistent with the usual subcellular distribution of ribosomes, transport was unidirectional, as subunits injected into the cytoplasm did not enter the nucleus. Transport displayed properties characteristic of a facilitated, energy-dependent process; the rate of export was saturable and transport was completely inhibited either by lowering the temperature or by depleting nuclei of ATP; the effect of lowered temperature was completely reversible. Transport of injected subunits was likely a process associated with the nuclear pore complex, since export was also inhibited by prior or simultaneous injection of wheat germ agglutinin, a lectin known to inhibit active nuclear transport by binding to N-acetyl glucosamine-containing glycoproteins present in the NPC (Hart, G. W., R. S. Haltiwanger, G. D. Holt, and W. G. Kelly. 1989. Annu. Rev. Biochem. 58:841-874). Although GlcNAc modified proteins exist on both the nuclear and cytoplasmic sides of the nuclear pore complex, ribosomal subunit export was inhibited only when wheat germ agglutinin was injected into the nucleus. Finally, we found that ribosomal subunits from yeast and Escherichia coli were efficiently exported from Xenopus oocyte nuclei, suggesting that export of some RNP complexes may be directed by a collective biochemical property rather than by specific macromolecular primary sequences or structures. PMID:2211825

  16. Fluoride enhances transfection activity of carbonate apatite by increasing cytoplasmic stability of plasmid DNA

    SciTech Connect

    Chowdhury, E.H.

    2011-06-17

    Highlights: {yields} Cytoplasmic stability of plasmid DNA is enhanced by fluoride incorporation into carbonate apatite carrier. {yields} Fluoridated carbonate apatite promotes a robust increase in transgene expression. {yields} Controlled dissolution of fluoridated carbonate apatite in endosomal acidic environment might buffer the endosomes and prevent degradation of the released DNA. -- Abstract: Intracellular delivery of a functional gene or a nucleic acid sequence to specifically knockdown a harmful gene is a potential approach to precisely treat a critical human disease. The intensive efforts in the last few decades led to the development of a number of viral and non-viral synthetic vectors. However, an ideal delivery tool in terms of the safety and efficacy has yet to be established. Recently, we have developed pH-sensing inorganic nanocrystals of carbonate apatite for efficient and cell-targeted delivery of gene and gene-silencing RNA. Here we show that addition of very low level of fluoride to the particle-forming medium facilitates a robust increase in transgene expression following post-incubation of the particles with HeLa cells. Confocal microscopic observation and Southern blotting prove the cytoplasmic existence of plasmid DNA delivered by likely formed fluoridated carbonate apatite particles while degradation of plasmid DNA presumably by cytoplasmic nucleases was noticed following delivery with apatite particles alone. The beneficial role of fluoride in enhancing carbonate apatite-mediated gene expression might be due to the buffering potential of generated fluoridated apatite in endosomal acidic environment, thereby increasing the half-life of delivered plasmid DNA.

  17. Divergent evolution in the cytoplasmic domains of PRLR and GHR genes in Artiodactyla

    PubMed Central

    Iso-Touru, Terhi; Kantanen, Juha; Li, Meng-Hua; Gizejewski, Zygmunt; Vilkki, Johanna

    2009-01-01

    Background Prolactin receptor (PRLR) and growth hormone receptor (GHR) belong to the large superfamily of class 1 cytokine receptors. Both of them have been identified as candidate genes affecting key quantitative traits, like growth and reproduction in livestock. We have previously studied the molecular anatomy of the cytoplasmic domain of GHR in different cattle breeds and artiodactyl species. In this study we have analysed the corresponding cytoplasmic signalling region of PRLR. Results We sequenced PRLR gene exon 10, coding for the major part of the cytoplasmic domain, from cattle, American bison, European bison, yak, sheep, pig and wild boar individuals. We found different patterns of variation in the two receptors within and between ruminants and pigs. Pigs and bison species have no variation within GHR exon 10, but show high haplotype diversity for the PRLR exon 10. In cattle, PRLR shows lower diversity than GHR. The Bovinae PRLR haplotype network fits better the known phylogenetic relationships between the species than that of the GHR, where differences within cattle breeds are larger than between the different species in the subfamily. By comparison with the wild boar haplotypes, a high number of subsequent nonsynonymous substitutions seem to have accumulated in the pig PRLR exon 10 after domestication. Conclusion Both genes affect a multitude of traits that have been targets of selection after domestication. The genes seem to have responded differently to different selection pressures imposed by human artificial selection. The results suggest possible effects of selective sweeps in GHR before domestication in the pig lineage or species divergence in the Bison lineage. The PRLR results may be explained by strong directional selection in pigs or functional switching. PMID:19622175

  18. Recombinant Expression and Characterization of the Cytoplasmic Rice β-Glucosidase Os1BGlu4

    PubMed Central

    Rouyi, Chen; Baiya, Supaporn; Lee, Sang-Kyu; Mahong, Bancha; Jeon, Jong-Seong; Ketudat-Cairns, James R.; Ketudat-Cairns, Mariena

    2014-01-01

    The Os1BGlu4 β-glucosidase is the only glycoside hydrolase family 1 member in rice that is predicted to be localized in the cytoplasm. To characterize the biochemical function of rice Os1BGlu4, the Os1bglu4 cDNA was cloned and used to express a thioredoxin fusion protein in Escherichia coli. After removal of the tag, the purified recombinant Os1BGlu4 (rOs1BGlu4) exhibited an optimum pH of 6.5, which is consistent with Os1BGlu4's cytoplasmic localization. Fluorescence microscopy of maize protoplasts and tobacco leaf cells expressing green fluorescent protein-tagged Os1BGlu4 confirmed the cytoplasmic localization. Purified rOs1BGlu4 can hydrolyze p-nitrophenyl (pNP)-β-d-glucoside (pNPGlc) efficiently (kcat/Km  =  17.9 mM−1·s−1), and hydrolyzes pNP-β-d-fucopyranoside with about 50% the efficiency of the pNPGlc. Among natural substrates tested, rOs1BGlu4 efficiently hydrolyzed β-(1,3)-linked oligosaccharides of degree of polymerization (DP) 2–3, and β-(1,4)-linked oligosaccharide of DP 3–4, and hydrolysis of salicin, esculin and p-coumaryl alcohol was also detected. Analysis of the hydrolysis of pNP-β-cellobioside showed that the initial hydrolysis was between the two glucose molecules, and suggested rOs1BGlu4 transglucosylates this substrate. At 10 mM pNPGlc concentration, rOs1BGlu4 can transfer the glucosyl group of pNPGlc to ethanol and pNPGlc. This transglycosylation activity suggests the potential use of Os1BGlu4 for pNP-oligosaccharide and alkyl glycosides synthesis. PMID:24802508

  19. A New Model and Method for Understanding Wolbachia-Induced Cytoplasmic Incompatibility

    PubMed Central

    Bossan, Benjamin; Koehncke, Arnulf; Hammerstein, Peter

    2011-01-01

    Wolbachia are intracellular bacteria transmitted almost exclusively vertically through eggs. In response to this mode of transmission, Wolbachia strategically manipulate their insect hosts' reproduction. In the most common manipulation type, cytoplasmic incompatibility, infected males can only mate with infected females, but infected females can mate with all males. The mechanism of cytoplasmic incompatibility is unknown; theoretical and empirical findings need to converge to broaden our understanding of this phenomenon. For this purpose, two prominent models have been proposed: the mistiming-model and the lock-key-model. The former states that Wolbachia manipulate sperm of infected males to induce a fatal delay of the male pronucleus during the first embryonic division, but that the bacteria can compensate the delay by slowing down mitosis in fertilized eggs. The latter states that Wolbachia deposit damaging “locks” on sperm DNA of infected males, but can also provide matching “keys” in infected eggs to undo the damage. The lock-key-model, however, needs to assume a large number of locks and keys to explain all existing incompatibility patterns. The mistiming-model requires fewer assumptions but has been contradicted by empirical results. We therefore expand the mistiming-model by one quantitative dimension to create the new, so-called goalkeeper-model. Using a method based on formal logic, we show that both lock-key- and goalkeeper-model are consistent with existing data. Compared to the lock-key-model, however, the goalkeeper-model assumes only two factors and provides an idea of the evolutionary emergence of cytoplasmic incompatibility. Available cytological evidence suggests that the hypothesized second factor of the goalkeeper-model may indeed exist. Finally, we suggest empirical tests that would allow to distinguish between the models. Generalizing our results might prove interesting for the study of the mechanism and evolution of other host

  20. Altered localization and cytoplasmic domain-binding properties of tyrosine-phosphorylated beta 1 integrin

    PubMed Central

    1994-01-01

    We describe a novel approach to study tyrosine-phosphorylated (PY) integrins in cells transformed by virally encoded tyrosine kinases. We have synthesized a peptide (PY beta 1 peptide) that represents a portion of the cytoplasmic domain of the beta 1 integrin subunit and is phosphorylated on the tyrosine residue known to be the target of oncogenic tyrosine kinases. Antibodies prepared against the PY beta 1 peptide, after removal of cross-reacting antibodies by absorption and affinity purification, recognized the PY beta 1 peptide and the tyrosine-phosphorylated form of the intact beta 1 subunit, but did not bind the nonphosphorylated beta 1 peptide, the nonphosphorylated beta 1 subunit or other unrelated tyrosine-phosphorylated proteins. The anti- PY beta 1 antibodies labeled the podosomes of Rous sarcoma virus- transformed fibroblasts, but did not detectably stain nontransformed fibroblasts. The localization of the tyrosine phosphorylated beta 1 subunits appeared distinct from that of the beta 1 subunit. Adhesion plaques were stained by the anti-beta 1 subunit antibodies in Rous sarcoma virus-transformed fibroblasts plated on fibronectin, whereas neither podosomes nor adhesion plaques were labeled on vitronectin or on uncoated plates. Anti-phosphotyrosine antibodies labeled podosomes, adhesion plaques and cell-cell boundaries regardless of the substratum. One of the SH2 domains of the p85 subunit of phosphatidylinositol-3- kinase bound to the PY beta 1 peptide, but not to the non- phosphorylated beta 1 cytoplasmic peptide. Other SH2 domains did not bind to the PY beta 1 peptide. These results show that the phosphorylated form of the beta 1 integrin subunit is detected in a different subcellular localization than the nonphosphorylated form and suggest that the phosphorylation on tyrosine of the beta 1 subunit cytoplasmic domain may affect cellular signaling pathways. PMID:7520449

  1. The SARS Coronavirus 3a protein binds calcium in its cytoplasmic domain.

    PubMed

    Minakshi, Rinki; Padhan, Kartika; Rehman, Safikur; Hassan, Md Imtaiyaz; Ahmad, Faizan

    2014-10-13

    The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is a positive stranded RNA virus with ∼30kb genome. Among all open reading frames (orfs) of this virus, the orf3a is the largest, and encodes a protein of 274 amino acids, named as 3a protein. Sequence analysis suggests that the orf3a aligned to one calcium pump present in Plasmodium falciparum and the enzyme glutamine synthetase found in Leptospira interrogans. This sequence similarity was found to be limited only to amino acid residues 209-264 which form the cytoplasmic domain of the orf3a. Furthermore, this region was predicted to be involved in the calcium binding. Owing to this hypothesis, we were driven to establish its calcium binding property in vitro. Here, we expressed and purified the cytoplasmic domain of the 3a protein, called Cyto3a, as a recombinant His-tagged protein in the E. coli. The calcium binding nature was established by performing various staining methods such as ruthenium red and stains-all. (45)Ca overlay method was also done to further support the data. Since the 3a protein forms ion channels, we were interested to see any conformational changes occurring in the Cyot3a upon calcium binding, using fluorescence spectroscopy and circular dichroism. These studies clearly indicate a significant change in the conformation of the Cyto3a protein after binding with calcium. Our results strongly suggest that the cytoplasmic domain of the 3a protein of SARS-CoV binds calcium in vitro, causing a change in protein conformation.

  2. Cytoplasmic PELP1 and ERRgamma Protect Human Mammary Epithelial Cells from Tam-Induced Cell Death

    PubMed Central

    Girard, Brian J.; Regan Anderson, Tarah M.; Welch, Siya Lem; Nicely, Julie; Seewaldt, Victoria L.; Ostrander, Julie H.

    2015-01-01

    Tamoxifen (Tam) is the only FDA-approved chemoprevention agent for pre-menopausal women at high risk for developing breast cancer. While Tam reduces a woman's risk of developing estrogen receptor positive (ER+) breast cancer, the molecular mechanisms associated with risk reduction are poorly understood. Prior studies have shown that cytoplasmic proline, glutamic acid and leucine rich protein 1 (PELP1) promotes Tam resistance in breast cancer cell lines. Herein, we tested for PELP1 localization in breast epithelial cells from women at high risk for developing breast cancer and found that PELP1 was localized to the cytoplasm in 36% of samples. In vitro, immortalized HMECs expressing a nuclear localization signal (NLS) mutant of PELP1 (PELP1-cyto) were resistant to Tam-induced death. Furthermore, PELP1-cyto signaling through estrogen-related receptor gamma (ERRγ) promoted cell survival in the presence of Tam. Overexpression of ERRγ in immortalized HMECs protected cells from Tam-induced death, while knockdown of ERRγ sensitized PELP1-cyto expressing HMECs to Tam. Moreover, Tam-induced HMEC cell death was independent of apoptosis and involved accumulation of the autophagy marker LC3-II. Expression of PELP1-cyto and ERRγ reduced Tam-induced LC3-II accumulation, and knockdown of ERRγ increased LC3-II levels in response to Tam. Additionally, PELP1-cyto expression led to the upregulation of MMP-3 and MAOB, known PELP1 and ERRγ target genes, respectively. Our data indicate that cytoplasmic PELP1 induces signaling pathways that converge on ERRγ to promote cell survival in the presence of Tam. These data suggest that PELP1 localization and/or ERRγ activation could be developed as tissue biomarkers for Tam responsiveness. PMID:25789479

  3. Implications of a Poroelastic Cytoplasm for the Dynamics of Animal Cell Shape

    PubMed Central

    TJ, Mitchison; GT, Charras; L, Mahadevan

    2009-01-01

    Two views have dominated recent discussions of the physical basis of cell shape change during migration and division of animal cells: the cytoplasm can be modeled as a viscoelastic continuum, and the forces that change its shape are generated only by actin polymerization and actomyosin contractility in the cell cortex. Here, we question both views: we suggest that the cytoplasm is better described as poroelastic, and that hydrodynamic forces may be generally important for its shape dynamics. In the poroelastic view, the cytoplasm consists of a porous, elastic solid (cytoskeleton, organelles, ribosomes) penetrated by an interstitial fluid (cytosol) that moves through the pores in response to pressure gradients. If the pore size is small (30–60nm), as has been observed in some cells, pressure does not globally equilibrate on time and length scales relevant to cell motility. Pressure differences across the plasma membrane drive blebbing, and potentially other type of protrusive motility. In the poroelastic view, these pressures can be higher in one part of a cell than another, and can thus cause local shape change. Local pressure transients could be generated by actomyosin contractility, or by local activation of osmogenic ion transporters in the plasma membrane. We propose that local activation of Na+/H+ antiporters (NHE1) at the front of migrating cells promotes local swelling there to help drive protrusive motility, acting in combination with actin polymerization. Local shrinking at the equator of dividing cells may similarly help drive invagination during cytokinesis, acting in combination with actomyosin contractility. Testing these hypotheses is not easy, as water is a difficult analyte to track, and will require a joint effort of the cytoskeleton and ion physiology communities. PMID:18395478

  4. A new cytoplasmic interaction between junctin and ryanodine receptor Ca2+ release channels.

    PubMed

    Li, Linwei; Mirza, Shamaruh; Richardson, Spencer J; Gallant, Esther M; Thekkedam, Chris; Pace, Suzy M; Zorzato, Francesco; Liu, Dan; Beard, Nicole A; Dulhunty, Angela F

    2015-03-01

    Junctin, a non-catalytic splice variant encoded by the aspartate-β-hydroxylase (Asph) gene, is inserted into the membrane of the sarcoplasmic reticulum (SR) Ca(2+) store where it modifies Ca(2+) signalling in the heart and skeletal muscle through its regulation of ryanodine receptor (RyR) Ca(2+) release channels. Junctin is required for normal muscle function as its knockout leads to abnormal Ca(2+) signalling, muscle dysfunction and cardiac arrhythmia. However, the nature of the molecular interaction between junctin and RyRs is largely unknown and was assumed to occur only in the SR lumen. We find that there is substantial binding of RyRs to full junctin, and the junctin luminal and, unexpectedly, cytoplasmic domains. Binding of these different junctin domains had distinct effects on RyR1 and RyR2 activity: full junctin in the luminal solution increased RyR channel activity by ∼threefold, the C-terminal luminal interaction inhibited RyR channel activity by ∼50%, and the N-terminal cytoplasmic binding produced an ∼fivefold increase in RyR activity. The cytoplasmic interaction between junctin and RyR is required for luminal binding to replicate the influence of full junctin on RyR1 and RyR2 activity. The C-terminal domain of junctin binds to residues including the S1-S2 linker of RyR1 and N-terminal domain of junctin binds between RyR1 residues 1078 and 2156.

  5. Cytoplasmic pH dynamics in maize pulvinal cells induced by gravity vector changes

    NASA Technical Reports Server (NTRS)

    Johannes, E.; Collings, D. A.; Rink, J. C.; Allen, N. S.; Brown, C. S. (Principal Investigator)

    2001-01-01

    In maize (Zea mays) and other grasses, changes in orientation of stems are perceived by pulvinal tissue, which responds to the stimulus by differential growth resulting in upward bending of the stem. The amyloplast-containing bundle sheath cells are the sites of gravity perception, although the initial steps of gravity perception and transmission remain unclear. In columella cells of Arabidopsis roots, we previously found that cytoplasmic pH (pH(c)) is a mediator in early gravitropic signaling (A.C. Scott, N.S. Allen [1999] Plant Physiol 121: 1291-1298). The question arises whether pH(c) has a more general role in signaling gravity vector changes. Using confocal ratiometric imaging and the fluorescent pH indicator carboxy seminaphtorhodafluor acetoxymethyl ester acetate, we measured pH(c) in the cells composing the maize pulvinus. When stem slices were gravistimulated and imaged on a horizontally mounted confocal microscope, pH(c) changes were only apparent within the bundle sheath cells, and not in the parenchyma cells. After turning, cytoplasmic acidification was observed at the sides of the cells, whereas the cytoplasm at the base of the cells where plastids slowly accumulated became more basic. These changes were most apparent in cells exhibiting net amyloplast sedimentation. Parenchyma cells and isolated bundle sheath cells did not show any gravity-induced pH(c) changes although all cell types responded to external stimuli in the predicted way: Propionic acid and auxin treatments induced acidification, whereas raising the external pH caused alkalinization. The results suggest that pH(c) has an important role in the early signaling pathways of maize stem gravitropism.

  6. Efficient translation of Dnmt1 requires cytoplasmic polyadenylation and Musashi binding elements.

    PubMed

    Rutledge, Charlotte E; Lau, Ho-Tak; Mangan, Hazel; Hardy, Linda L; Sunnotel, Olaf; Guo, Fan; MacNicol, Angus M; Walsh, Colum P; Lees-Murdock, Diane J

    2014-01-01

    Regulation of DNMT1 is critical for epigenetic control of many genes and for genome stability. Using phylogenetic analysis we characterized a block of 27 nucleotides in the 3'UTR of Dnmt1 mRNA identical between humans and Xenopus and investigated the role of the individual elements contained within it. This region contains a cytoplasmic polyadenylation element (CPE) and a Musashi binding element (MBE), with CPE binding protein 1 (CPEB1) known to bind to the former in mouse oocytes. The presence of these elements usually indicates translational control by elongation and shortening of the poly(A) tail in the cytoplasm of the oocyte and in some somatic cell types. We demonstrate for the first time cytoplasmic polyadenylation of Dnmt1 during periods of oocyte growth in mouse and during oocyte activation in Xenopus. Furthermore we show by RNA immunoprecipitation that Musashi1 (MSI1) binds to the MBE and that this element is required for polyadenylation in oocytes. As well as a role in oocytes, site-directed mutagenesis and reporter assays confirm that mutation of either the MBE or CPE reduce DNMT1 translation in somatic cells, but likely act in the same pathway: deletion of the whole conserved region has more severe effects on translation in both ES and differentiated cells. In adult cells lacking MSI1 there is a greater dependency on the CPE, with depletion of CPEB1 or CPEB4 by RNAi resulting in substantially reduced levels of endogenous DNMT1 protein and concurrent upregulation of the well characterised CPEB target mRNA cyclin B1. Our findings demonstrate that CPE- and MBE-mediated translation regulate DNMT1 expression, representing a novel mechanism of post-transcriptional control for this gene.

  7. Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus.

    PubMed

    Pierreux, C E; Nicolás, F J; Hill, C S

    2000-12-01

    Smad4 plays a pivotal role in all transforming growth factor beta (TGF-beta) signaling pathways. Here we describe six widely expressed alternatively spliced variants of human Smad4 with deletions of different exons in the linker, the region of Smad4 that separates the two well-conserved MH1 and MH2 domains. All these Smad4 variants form complexes with activated Smad2 and Smad3 and are incorporated into DNA-binding complexes with the transcription factor Fast-1, regardless of the amount of linker they contain. However, sequences encoded by exons 5 to 7 in the linker are essential for transcriptional activation. Most importantly, our observation that different Smad4 isoforms have different subcellular localizations has led us to the identification of a functional CRM1-dependent nuclear export signal in the Smad4 linker and a constitutively active nuclear localization signal in the N-terminal MH1 domain. In the absence of TGF-beta signaling, we conclude that Smad4 is rapidly and continuously shuttling between the nucleus and the cytoplasm, the distribution of Smad4 between the nucleus and the cytoplasm being dictated by the relative strengths of the nuclear import and export signals. We demonstrate that inhibition of CRM1-mediated nuclear export by treatment of cells with leptomycin B results in endogenous Smad4 accumulating very rapidly in the nucleus. Endogenous Smad2 and Smad3 are completely unaffected by leptomycin B treatment, indicating that the nucleocytoplasmic shuttling is specific for Smad4. We propose that, upon TGF-beta signaling, complex formation between Smad4 and activated Smad2 or -3 leads to nuclear accumulation of Smad4 through inhibition of its nuclear export. We demonstrate that after prolonged TGF-beta signaling Smad2 becomes dephosphorylated and Smad2 and Smad4 accumulate back in the cytoplasm.

  8. The mRNA of human cytoplasmic arginyl-tRNA synthetase recruits prokaryotic ribosomes independently.

    PubMed

    Yang, Fang; Ji, Quan-Quan; Ruan, Liang-Liang; Ye, Qing; Wang, En-Duo

    2014-07-25

    There are two isoforms of cytoplasmic arginyl-tRNA synthetase (hcArgRS) in human cells. The long form is a component of the multiple aminoacyl-tRNA synthetase complex, and the other is an N-terminal truncated form (NhcArgRS), free in the cytoplasm. It has been shown that the two forms of ArgRS arise from alternative translational initiation in a single mRNA. The short form is produced from the initiation at a downstream, in-frame AUG start codon. Interestingly, our data suggest that the alternative translational initiation of hcArgRS mRNA also takes place in Escherichia coli transformants. When the gene encoding full-length hcArgRS was overexpressed in E. coli, two forms of hcArgRS were observed. The N-terminal sequencing experiment identified that the short form was identical to the NhcArgRS in human cytoplasm. By constructing a bicistronic system, our data support that the mRNA encoding the N-terminal extension of hcArgRS has the capacity of independently recruiting E. coli ribosomes. Furthermore, two critical elements for recruiting prokaryotic ribosomes were identified, the “AGGA” core of the Shine-Dalgarno sequence and the “A-rich” sequence located just proximal to the alternative in-frame initiation site. Although the mechanisms of prokaryotic and eukaryotic translational initiation are distinct, they share some common features. The ability of the hcArgRS mRNA to recruit the prokaryotic ribosome may provide clues for shedding light on the mechanism of alternative translational initiation of hcArgRS mRNA in eukaryotic cells.

  9. Population genetics of the cytoplasm and the units of selection on mitochondrial DNA in Drosophila melanogaster

    PubMed Central

    2011-01-01

    Biological variation exists across a nested set of hierarchical levels from nucleotides within genes to populations within species to lineages within the tree of life. How selection acts across this hierarchy is a long-standing question in evolutionary biology. Recent studies have suggested that genome size is influenced largely by the balance of selection, mutation and drift in lineages with different population sizes. Here we use population cage and maternal transmission experiments to identify the relative strength of selection at an individual and cytoplasmic level. No significant trends were observed in the frequency of large (L) and small (S) mtDNAs across 14 generations in population cages. In all replicate cages, new length variants were observed in heteroplasmic states indicating that spontaneous length mutations occurred in these experimental populations. Heteroplasmic flies carrying L genomes were more frequent than those carrying S genomes suggesting an asymmetric mutation dynamic from larger to smaller mtDNAs. Mother-offspring transmission of heteroplasmy showed that the L mtDNA increased in frequency within flies both between and within generations despite sampling drift of the same intensity as occurred in population cages. These results suggest that selection for mtDNA size is stronger at the cytoplasmic than at the organismal level. The fixation of novel mtDNAs within and between species requires a transient intracellular heteroplasmic stage. The balance of population genetic forces at the cytoplasmic and individual levels governs the units of selection on mtDNA, and has implications for evolutionary inference as well as for the effects of mtDNA mutations on fitness, disease and aging. PMID:21538136

  10. Structural and biophysical characterization of the cytoplasmic domains of human BAP29 and BAP31.

    PubMed

    Quistgaard, Esben M; Löw, Christian; Moberg, Per; Guettou, Fatma; Maddi, Karthik; Nordlund, Pär

    2013-01-01

    Two members of the B-cell associated 31 (BAP31) family are found in humans; BAP29 and BAP31. These are ubiquitously expressed receptors residing in the endoplasmic reticulum. BAP31 functions in sorting of membrane proteins and in caspase-8 mediated apoptosis, while BAP29 appears to mainly corroborate with BAP31 in sorting. The N-terminal half of these proteins is membrane-bound while the C-terminal half is cytoplasmic. The latter include the so called variant of death effector domain (vDED), which shares weak sequence homology with DED domains. Here we present two structures of BAP31 vDED determined from a single and a twinned crystal, grown at pH 8.0 and pH 4.2, respectively. These structures show that BAP31 vDED forms a dimeric parallel coiled coil with no structural similarity to DED domains. Solution studies support this conclusion and strongly suggest that an additional α-helical domain is present in the C-terminal cytoplasmic region, probably forming a second coiled coil. The thermal stability of BAP31 vDED is quite modest at neutral pH, suggesting that it may assemble in a dynamic fashion in vivo. Surprisingly, BAP29 vDED is partially unfolded at pH 7, while a coiled coil is formed at pH 4.2 in vitro. It is however likely that folding of the domain is triggered by other factors than low pH in vivo. We found no evidence for direct interaction of the cytoplasmic domains of BAP29 and BAP31.

  11. Structural and Biophysical Characterization of the Cytoplasmic Domains of Human BAP29 and BAP31

    PubMed Central

    Quistgaard, Esben M.; Löw, Christian; Moberg, Per; Guettou, Fatma; Maddi, Karthik; Nordlund, Pär

    2013-01-01

    Two members of the B-cell associated 31 (BAP31) family are found in humans; BAP29 and BAP31. These are ubiquitously expressed receptors residing in the endoplasmic reticulum. BAP31 functions in sorting of membrane proteins and in caspase-8 mediated apoptosis, while BAP29 appears to mainly corroborate with BAP31 in sorting. The N-terminal half of these proteins is membrane-bound while the C-terminal half is cytoplasmic. The latter include the so called variant of death effector domain (vDED), which shares weak sequence homology with DED domains. Here we present two structures of BAP31 vDED determined from a single and a twinned crystal, grown at pH 8.0 and pH 4.2, respectively. These structures show that BAP31 vDED forms a dimeric parallel coiled coil with no structural similarity to DED domains. Solution studies support this conclusion and strongly suggest that an additional α-helical domain is present in the C-terminal cytoplasmic region, probably forming a second coiled coil. The thermal stability of BAP31 vDED is quite modest at neutral pH, suggesting that it may assemble in a dynamic fashion in vivo. Surprisingly, BAP29 vDED is partially unfolded at pH 7, while a coiled coil is formed at pH 4.2 in vitro. It is however likely that folding of the domain is triggered by other factors than low pH in vivo. We found no evidence for direct interaction of the cytoplasmic domains of BAP29 and BAP31. PMID:23967155

  12. In Vitro and in Vivo Demonstration of Photodynamic Activity and Cytoplasm Imaging through TPE Nanoparticles.

    PubMed

    Jayaram, Dhanya T; Ramos-Romero, Sara; Shankar, Balaraman H; Garrido, Cristina; Rubio, Nuria; Sanchez-Cid, Lourdes; Gómez, Salvador Borros; Blanco, Jeronimo; Ramaiah, Danaboyina

    2016-01-15

    We synthesized novel tetraphenylethene (TPE) conjugates, which undergo unique self-assembly to form spherical nanoparticles that exhibited aggregation induced emission (AIE) in the near-infrared region. These nanoparticles showed significant singlet oxygen generation efficiency, negligible dark toxicity, rapid cellular uptake, efficient localization in cytoplasm, and high in vitro photocytotoxicity as well as in vivo photodynamic activity against a human prostate tumor animal model. This study demonstrates, for the first time, the power of the self-assembled AIE active tetraphenylethene conjugates in aqueous media as a nanoplatform for future therapeutic applications.

  13. [Ontogenetic diversity of colonies and intercellular cytoplasmic bridges in the algae of the genuis Volvox].

    PubMed

    Desnitskiĭ, A G

    2014-01-01

    In all representatives of the genus Volvox, cells of cleaving embryos are connected by cytoplasmic bridges, which play an important role in the process of young colony inversion. However, during subsequent development, the intercellular bridges are retained not in all species of Volvox; the occurrence of the bridges in an adult colony correlates withthe small size of mature gonidia (asexual reproductive cells) and with the presence of cell growth in the intervals between divisions. This complex of ontogenetic features is derived and arises independently in three evolutionary lineages of colonial volvocine algae. A putative role of the syncytial state of adult colonies for the evolution of developmental cycles in Volvox is discussed.

  14. The Cytoplasmic Zinc Finger Protein ZPR1 Accumulates in the Nucleolus of Proliferating Cells

    PubMed Central

    Galcheva-Gargova, Zoya; Gangwani, Laxman; Konstantinov, Konstantin N.; Mikrut, Monique; Theroux, Steven J.; Enoch, Tamar; Davis, Roger J.

    1998-01-01

    The zinc finger protein ZPR1 translocates from the cytoplasm to the nucleus after treatment of cells with mitogens. The function of nuclear ZPR1 has not been defined. Here we demonstrate that ZPR1 accumulates in the nucleolus of proliferating cells. The role of ZPR1 was examined using a gene disruption strategy. Cells lacking ZPR1 are not viable. Biochemical analysis demonstrated that the loss of ZPR1 caused disruption of nucleolar function, including preribosomal RNA expression. These data establish ZPR1 as an essential protein that is required for normal nucleolar function in proliferating cells. PMID:9763455

  15. Understanding the organization of the amphibian egg cytoplasm: Gravitational force as a probe

    NASA Astrophysics Data System (ADS)

    Neff, Anton W.; Wakahara, Masami; Yokota, Hiroki; Malacinski, George M.

    1992-07-01

    A combination of hypergravity (centrifugation) and hypogravity (clinostat) studies have been carried out on amphibian (frog, Xenopus) eggs. The results reveal that the twinning caused by centrifugation exhibits substantial spawning to spawning variation. That variation can be attributed to the apparent viscosity of the egg's internal cytoplasm. Simulated hypogravity results in a relocation of the egg's third (horizontal) cleavage furrow, towards the equator. Substantial egg-to-egg variation is also observed in this ``cleavage effect''. For interpreting spaceflight data and for using G-forces as probes for understanding the egg's architecture the egg variation documented herein should be considered.

  16. Understanding the organization of the amphibian egg cytoplasm - Gravitational force as a probe

    NASA Technical Reports Server (NTRS)

    Neff, Anton W.; Malacinski, George M.; Yokota, Hiroki; Wakahara, Masami

    1992-01-01

    A combination of hypergravity (centrifugation) and hypogravity (clinostat) studies have been carried out on amphibian (frog, Xenopus) eggs. The results reveal that the twinning caused by centrifugation exhibits substantial spawning to spawning variation. That variation can be attributed to the apparent viscosity of the egg's internal cytoplasm. Simulated hypogravity results in a relocation of the egg's third (horizontal) cleavage furrow, toward the equator. Substantial egg-to-egg variation is also observed in this 'cleavage effect'. For interpreting spaceflight data and for using G-forces as probes for understanding the egg's architecture the egg variation documented herein should be considered.

  17. Infected Aortic Aneurysm Mimicking Anti-proteinase 3-Antineutrophil Cytoplasmic Antibody-associated Vasculitis

    PubMed Central

    Hachiya, Kenta; Wakami, Kazuaki; Yoshida, Atsuhiro; Suda, Hisao; Ohte, Nobuyuki

    2016-01-01

    We herein report an unusual case of an infected descending aortic pseudoaneurysm with luminal pathognomonic oscillating vegetation with serological findings and clinical features mimicking anti-proteinase 3-antineutrophil cytoplasmic antibody-associated vasculitis. The positive blood cultures and imaging findings, including a pseudoaneurysm and vegetations in the aorta, suggested the presence of an infected aortic aneurysm. The patient was successfully treated with antibiotics and endovascular aortic repair. A precise diagnosis is crucial in order to avoid inappropriate therapy such as immunosuppressive treatment, which could result in life-threatening consequences in a patient with an infected aortic aneurysm. PMID:27904110

  18. Implications of Antiphospholipid and Antineutrophilic Cytoplasmic Antibodies in the Context of Postinfectious Glomerulonephritis

    PubMed Central

    Leifer, Daniel

    2017-01-01

    While antineutrophil cytoplasmic antibody (ANCA) positivity has been documented in some patients with postinfectious glomerulonephritis (PIGN) and is associated with more severe disease, antiphospholipid antibodies (APA) are not known to be a common occurrence. We describe a child with severe acute kidney injury who was noted to have prolonged positivity of both ANCA and APA; a renal biopsy showed noncrescentic immune complex mediated glomerulonephritis with subepithelial deposits compatible with PIGN. He recovered without maintenance immunosuppressive therapy and at last follow-up had normal renal function. We discuss the cooccurrence and implications of ANCA and APA in children with PIGN. PMID:28255306

  19. Vesicles Cytoplasmic Injection: An Efficient Technique to Produce Porcine Transgene-Expressing Embryos.

    PubMed

    Luchetti, C G; Bevacqua, R J; Lorenzo, M S; Tello, M F; Willis, M; Buemo, C P; Lombardo, D M; Salamone, D F

    2016-08-01

    The use of vesicles co-incubated with plasmids showed to improve the efficiency of cytoplasmic injection of transgenes in cattle. Here, this technique was tested as a simplified alternative for transgenes delivery in porcine zygotes. To this aim, cytoplasmic injection of the plasmid alone was compared to the injection with plasmids co-incubated with vesicles both in diploid parthenogenic and IVF zygotes. The plasmid pcx-egfp was injected circular (CP) at 3, 30 and 300 ng/μl and linear (LP) at 30 ng/μl. The experimental groups using parthenogenetic zygotes were as follows: CP naked at 3 ng/μl (N = 105), 30 ng/μl (N = 95) and 300 ng/μl (N = 65); Sham (N = 105); control not injected (N = 223); LP naked at 30 ng/μl (N = 78); LP vesicles (N = 115) and Sham vesicles (N = 59). For IVF zygotes: LP naked (N = 44) LP vesicles (N = 94), Sham (N = 59) and control (N = 79). Cleavage, blastocyst and GFP+ rates were analysed by Fisher's test (p < 0.05). The parthenogenic CP naked group showed lower cleavage respect to control (p < 0.05). The highest concentration of plasmids to allow development to blastocyst stage was 30 ng/μl. There were no differences in DNA fragmentation between groups. The parthenogenic LP naked group resulted in high GFP rates (46%) and also allowed the production of GFP blastocysts (33%). The cytoplasmic injection with LP vesicles into parthenogenic zygotes allowed 100% GFP blastocysts. Injected IVF showed higher cleavage rates than control (p < 0.05). In IVF zygotes, only the use of vesicles produced GFP blastocysts. The use of vesicles co-incubated with plasmids improves the transgene expression efficiency for cytoplasmic injection in porcine zygotes and constitutes a simple technique for easy delivery of plasmids.

  20. Dielectric spectroscopy of single human erythrocytes at physiological ionic strength: dispersion of the cytoplasm.

    PubMed

    Gimsa, J; Müller, T; Schnelle, T; Fuhr, G

    1996-07-01

    Usually dielectrophoretic and electrorotation measurements are carried out at low ionic strength to reduce electrolysis and heat production. Such problems are minimized in microelectrode chambers. In a planar ultramicroelectrode chamber fabricated by semiconductor technology, we were able to measure the dielectric properties of human red blood cells in the frequency range from 2 kHz to 200 MHz up to physiological ion concentrations. At low ionic strength, red cells exhibit a typical electrorotation spectrum with an antifield rotation peak at low frequencies and a cofield rotation peak at higher ones. With increasing medium conductivity, both electrorotational peaks shift toward higher frequencies. The cofield peak becomes antifield for conductivities higher than 0.5 S/m. Because the polarizability of the external medium at these ionic strengths becomes similar to that of the cytoplasm, properties can be measured more sensitively. The critical dielectrophoretic frequencies were also determined. From our measurements, in the wide conductivity range from 2 mS/m to 1.5 S/m we propose a single-shell erythrocyte model. This pictures the cell as an oblate spheroid with a long semiaxis of 3.3 microns and an axial ratio of 1:2. Its membrane exhibits a capacitance of 0.997 x 10(-2) F/m2 and a specific conductance of 480 S/m2. The cytoplasmic parameters, a conductivity of 0.4 S/m at a dielectric constant of 212, disperse around 15 MHz to become 0.535 S/m and 50, respectively. We attribute this cytoplasmic dispersion to hemoglobin and cytoplasmic ion properties. In electrorotation measurements at about 60 MHz, an unexpectedly low rotation speed was observed. Around 180 MHz, the speed increased dramatically. By analysis of the electric chamber circuit properties, we were able to show that these effects are not due to cell polarization but are instead caused by a dramatic increase in the chamber field strength around 180 MHz. Although the chamber exhibits a resonance around 180

  1. Periodic expression of Sm proteins parallels formation of nuclear Cajal bodies and cytoplasmic snRNP-rich bodies.

    PubMed

    Smoliński, Dariusz J; Wróbel, Bogdan; Noble, Anna; Zienkiewicz, Agnieszka; Górska-Brylass, Alicja

    2011-11-01

    Small nuclear ribonucleoproteins (snRNPs) play a fundamental role in pre-mRNA processing in the nucleus. The biogenesis of snRNPs involves a sequence of events that occurs in both the nucleus and cytoplasm. Despite the wealth of biochemical information about the cytoplasmic assembly of snRNPs, little is known about the spatial organization of snRNPs in the cytoplasm. In the cytoplasm of larch microsporocytes, a cyclic appearance of bodies containing small nuclear RNA (snRNA) and Sm proteins was observed during anther meiosis. We observed a correlation between the occurrence of cytoplasmic snRNP bodies, the levels of Sm proteins, and the dynamic formation of Cajal bodies. Larch microsporocytes were used for these studies. This model is characterized by natural fluctuations in the level of RNA metabolism, in which periods of high transcriptional activity are separated from periods of low transcriptional activity. In designing experiments, the authors considered the differences between the nuclear and cytoplasmic phases of snRNP maturation and generated a hypothesis about the direct participation of Sm proteins in a molecular switch triggering the formation of Cajal bodies.

  2. The Final Step in 5.8S rRNA Processing Is Cytoplasmic in Saccharomyces cerevisiae▿ †

    PubMed Central

    Thomson, Emma; Tollervey, David

    2010-01-01

    The 18S rRNA component of yeast (Saccharomyces cerevisiae) 40S ribosomes undergoes cytoplasmic 3′ cleavage following nuclear export, whereas exported pre-60S subunits were believed to contain only mature 5.8S and 25S rRNAs. However, in situ hybridization detected 3′-extended forms of 5.8S rRNA in the cytoplasm, which were lost when Crm1-dependent preribosome export was blocked by treatment with leptomycin B (LMB). LMB treatment rapidly blocked processing of 6S pre-rRNA to 5.8S rRNA, leading to TRAMP-dependent pre-rRNA degradation. The 6S pre-rRNA was coprecipitated with the 60S export adapter Nmd3 and cytoplasmic 60S synthesis factor Lsg1. The longer 5.8S+30 pre-rRNA (a form of 5.8S rRNA 3′ extended by ∼30 nucleotides) is processed to 6S by the nuclear exonuclease Rrp6, and nuclear pre-rRNA accumulated in the absence of Rrp6. In contrast, 6S to 5.8S processing requires the cytoplasmic exonuclease Ngl2, and cytoplasmic pre-rRNA accumulated in strains lacking Ngl2. We conclude that nuclear pre-60S particles containing the 6S pre-rRNA bind Nmd3 and Crm1 and are exported to the cytoplasm prior to final maturation by Ngl2. PMID:20008552

  3. Organelle Simple Sequence Repeat Markers Help to Distinguish Carpelloid Stamen and Normal Cytoplasmic Male Sterile Sources in Broccoli.

    PubMed

    Shu, Jinshuai; Liu, Yumei; Li, Zhansheng; Zhang, Lili; Fang, Zhiyuan; Yang, Limei; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao

    2015-01-01

    We previously discovered carpelloid stamens when breeding cytoplasmic male sterile lines in broccoli (Brassica oleracea var. italica). In this study, hybrids and multiple backcrosses were produced from different cytoplasmic male sterile carpelloid stamen sources and maintainer lines. Carpelloid stamens caused dysplasia of the flower structure and led to hooked or coiled siliques with poor seed setting, which were inherited in a maternal fashion. Using four distinct carpelloid stamens and twelve distinct normal stamens from cytoplasmic male sterile sources and one maintainer, we used 21 mitochondrial simple sequence repeat (mtSSR) primers and 32 chloroplast SSR primers to identify a mitochondrial marker, mtSSR2, that can differentiate between the cytoplasm of carpelloid and normal stamens. Thereafter, mtSSR2 was used to identify another 34 broccoli accessions, with an accuracy rate of 100%. Analysis of the polymorphic sequences revealed that the mtSSR2 open reading frame of carpelloid stamen sterile sources had a deletion of 51 bases (encoding 18 amino acids) compared with normal stamen materials. The open reading frame is located in the coding region of orf125 and orf108 of the mitochondrial genomes in Brassica crops and had the highest similarity with Raphanus sativus and Brassica carinata. The current study has not only identified a useful molecular marker to detect the cytoplasm of carpelloid stamens during broccoli breeding, but it also provides evidence that the mitochondrial genome is maternally inherited and provides a basis for studying the effect of the cytoplasm on flower organ development in plants.

  4. Identification of Proteins Interacting with Cytoplasmic High-Mobility Group Box 1 during the Hepatocellular Response to Ischemia Reperfusion Injury

    PubMed Central

    Zhang, Tianjiao; Wei, Weiwei; Dirsch, Olaf; Krüger, Thomas; Kan, Chunyi; Xie, Chichi; Kniemeyer, Olaf; Fang, Haoshu; Settmacher, Utz; Dahmen, Uta

    2017-01-01

    Ischemia/reperfusion injury (IRI) occurs inevitably in liver transplantations and frequently during major resections, and can lead to liver dysfunction as well as systemic disorders. High-mobility group box 1 (HMGB1) plays a pathogenic role in hepatic IRI. In the normal liver, HMGB1 is located in the nucleus of hepatocytes; after ischemia reperfusion, it translocates to the cytoplasm and it is further released to the extracellular space. Unlike the well-explored functions of nuclear and extracellular HMGB1, the role of cytoplasmic HMGB1 in hepatic IRI remains elusive. We hypothesized that cytoplasmic HMGB1 interacts with binding proteins involved in the hepatocellular response to IRI. In this study, binding proteins of cytoplasmic HMGB1 during hepatic IRI were identified. Liver tissues from rats with warm ischemia reperfusion (WI/R) injury and from normal rats were subjected to cytoplasmic protein extraction. Co-immunoprecipitation using these protein extracts was performed to enrich HMGB1-protein complexes. To separate and identify the immunoprecipitated proteins in eluates, 2-dimensional electrophoresis and subsequent mass spectrometry detection were performed. Two of the identified proteins were verified using Western blotting: betaine–homocysteine S-methyltransferase 1 (BHMT) and cystathionine γ-lyase (CTH). Therefore, our results revealed the binding of HMGB1 to BHMT and CTH in cytoplasm during hepatic WI/R. This finding may help to better understand the cellular response to IRI in the liver and to identify novel molecular targets for reducing ischemic injury. PMID:28275217

  5. Cytoplasmic connection of sperm cells to the pollen vegetative cell nucleus: potential roles of the male germ unit revisited.

    PubMed

    McCue, Andrea D; Cresti, Mauro; Feijó, José A; Slotkin, R Keith

    2011-03-01

    The male germ cells of angiosperm plants are neither free-living nor flagellated and therefore are dependent on the unique structure of the pollen grain for fertilization. During angiosperm male gametogenesis, an asymmetric mitotic division produces the generative cell, which is completely enclosed within the cytoplasm of the larger pollen grain vegetative cell. Mitotic division of the generative cell generates two sperm cells that remain connected by a common extracellular matrix with potential intercellular connections. In addition, one sperm cell has a cytoplasmic projection in contact with the vegetative cell nucleus. The shared extracellular matrix of the two sperm cells and the physical association of one sperm cell to the vegetative cell nucleus forms a linkage of all the genetic material in the pollen grain, termed the male germ unit. Found in species representing both the monocot and eudicot lineages, the cytoplasmic projection is formed by vesicle formation and microtubule elongation shortly after the formation of the generative cell and tethers the male germ unit until just prior to fertilization. The cytoplasmic projection plays a structural role in linking the male germ unit, but potentially plays other important roles. Recently, it has been speculated that the cytoplasmic projection and the male germ unit may facilitate communication between the somatic vegetative cell nucleus and the germinal sperm cells, via RNA and/or protein transport. This review focuses on the nature of the sperm cell cytoplasmic projection and the potential communicative function of the male germ unit.

  6. IgG1 cytoplasmic tail is essential for cell surface expression in Igβ down-regulated cells.

    PubMed

    Todo, Kagefumi; Koga, Orie; Nishikawa, Miwako; Hikida, Masaki

    2014-03-14

    It has been shown that cytoplasmic tail of the IgG1 B cell receptors (BCRs) are essential for the induction of T-dependent immune responses. Also it has been revealed that unique tyrosine residue in the cytoplasmic tail of IgG2a has the potential of being phosphorylated at tyrosine and that this phosphorylation modulates BCR signaling. However, it still remains unclear whether such phosphorylation of IgG cytoplasmic tail is involved in the regulation of BCR surface expression. In order to approach the issue, we established and analyzed the cell lines which express wild-type or mutated forms of IgG1 BCR. As the result, we found that IgG1 BCR expressed normally on the surface of A20 B cell line independent of the cytoplasmic tail. In contrast, IgG1 BCR whose cytoplasmic tyrosine was replaced with glutamic acid which mimics phosphorylated tyrosine, was expressed most efficiently on the surface of non-B lineage cells and Igβ-down-regulated B cell lines. These results suggest that tyrosine residue in IgG cytoplasmic tail is playing a essential role for the efficient expression of IgG BCR on the cell surface when BCR associated signaling molecules, including Igβ, are down-regulated.

  7. Determination of cytoplasmic male sterile factors in onion plants (Allium cepa L.) using PCR-RFLP and SNP markers.

    PubMed

    Cho, Kwang-Soo; Yang, Tae-Jin; Hong, Su-Young; Kwon, Young-Seok; Woo, Jong-Gyu; Park, Hyo-Guen

    2006-06-30

    We have developed a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) marker that can distinguish male-fertile (N) and male-sterile (S) cytoplasm in onions. The PCR-RFLP marker was located in a chloroplast psbA gene amplicon. Digesting the amplicons from different cytoplasm-containing varieties with the restriction enzyme MspI revealed that N-cytoplasm plants have a functional MspI site (CCGG), whereas the S-cytoplasm plants has a substitution in that site (CTGG), and thus no MspI target. The results obtained using this PCR-RFLP marker to distinguish between cytoplasmic male sterile factors in 35 onion varieties corresponded with those using a CMS-specific sequence-characterized amplified region (SCAR) marker. Moreover, the PCR-RFLP marker can identify N- ot S-cytoplasms in DNA sample mixtures in which they are in up to a 10-fold minority, indicating that use of the marker has high diagnostic precision. We also demonstrated the usefulness of the SNP detected in the psbA gene for high-throughput discrimination of CMS factors using Real-time PCR and a TaqMan probe assay.

  8. Whole Mitochondrial Genome Sequencing and Re-Examination of a Cytoplasmic Male Sterility-Associated Gene in Boro-Taichung-Type Cytoplasmic Male Sterile Rice

    PubMed Central

    Kazama, Tomohiko; Toriyama, Kinya

    2016-01-01

    Nuclear genome substitutions between subspecies can lead to cytoplasmic male sterility (CMS) through incompatibility between nuclear and mitochondrial genomes. Boro-Taichung (BT)-type CMS rice was obtained by substituting the nuclear genome of Oryza sativa subsp. indica cultivar Chinsurah Boro II with that of Oryza sativa subsp. japonica cultivar Taichung 65. In BT-type CMS rice, the mitochondrial gene orf79 is associated with male sterility. A complete sequence of the Boro-type mitochondrial genome responsible for BT-type CMS has not been determined to date. Here, we used pyrosequencing to construct the Boro-type mitochondrial genome. The contiguous sequences were assembled into five circular DNA molecules, four of which could be connected into a single circle. The two resulting subgenomic circles were unable to form a reliable master circle, as recombination between them was scarcely detected. We also found an unequal abundance of DNA molecules for the two loci of atp6. These results indicate the presence of multi-partite DNA molecules in the Boro-type mitochondrial genome. Expression patterns were investigated for Boro-type mitochondria-specific orfs, which were not found in the mitochondria from the standard japonica cultivar Nipponbare. Restorer of fertility 1 (RF1)-dependent RNA processing has been observed in orf79-containing RNA but was not detected in other Boro-type mitochondria-specific orfs, supporting the conclusion that orf79 is a unique CMS-associated gene in Boro-type mitochondria. PMID:27414645

  9. Cytological characterization of a thermo-sensitive cytoplasmic male-sterile wheat line having K-type cytoplasm of Aegilops kotschyi

    PubMed Central

    Meng, Liying; Liu, Zihan; Zhang, Lingli; Hu, Gan; Song, Xiyue

    2016-01-01

    Male sterility is an important tool for obtaining crop heterosis. A thermo-sensitive cytoplasmic male-sterile (TCMS) line was developed recently using a new method based on tiller regeneration. In the present study, we explored the critical growth stages required to maintain thermo-sensitive male sterility in TCMS lines and found that fertility is associated with abnormal tapetal and microspore development. We investigated the fertility and cytology of temperature-treated plant anthers at various developmental stages. TCMS line KTM3315A exhibited thermo-sensitive male sterility in Zadoks growth stages 41–49 and 58–59. Morphologically, the line exhibited thermo-sensitive male sterility at 3–9 days before heading and at 3–6 days before flowering, and it was partially restored in three locations during spring and summer. TCMS line KTM3315A plants exhibited premature tapetal programmed cell death (PCD) from the early uninucleate stage of microspore development until the tapetal cells degraded completely. Microspore development was then blocked and the pollen abortion type was stainable abortion. Thus, male fertility in the line KTM3315A is sensitive to temperature and premature tapetal PCD is the main cause of pollen abortion, where it determines the starting period and affects male fertility conversion in K-type TCMS lines at certain temperatures. PMID:28163591

  10. Cytological characterization of a thermo-sensitive cytoplasmic male-sterile wheat line having K-type cytoplasm of Aegilops kotschyi.

    PubMed

    Meng, Liying; Liu, Zihan; Zhang, Lingli; Hu, Gan; Song, Xiyue

    2016-12-01

    Male sterility is an important tool for obtaining crop heterosis. A thermo-sensitive cytoplasmic male-sterile (TCMS) line was developed recently using a new method based on tiller regeneration. In the present study, we explored the critical growth stages required to maintain thermo-sensitive male sterility in TCMS lines and found that fertility is associated with abnormal tapetal and microspore development. We investigated the fertility and cytology of temperature-treated plant anthers at various developmental stages. TCMS line KTM3315A exhibited thermo-sensitive male sterility in Zadoks growth stages 41-49 and 58-59. Morphologically, the line exhibited thermo-sensitive male sterility at 3-9 days before heading and at 3-6 days before flowering, and it was partially restored in three locations during spring and summer. TCMS line KTM3315A plants exhibited premature tapetal programmed cell death (PCD) from the early uninucleate stage of microspore development until the tapetal cells degraded completely. Microspore development was then blocked and the pollen abortion type was stainable abortion. Thus, male fertility in the line KTM3315A is sensitive to temperature and premature tapetal PCD is the main cause of pollen abortion, where it determines the starting period and affects male fertility conversion in K-type TCMS lines at certain temperatures.

  11. Red blood cell thickness is evolutionarily constrained by slow, hemoglobin-restricted diffusion in cytoplasm

    PubMed Central

    Richardson, Sarah L.; Swietach, Pawel

    2016-01-01

    During capillary transit, red blood cells (RBCs) must exchange large quantities of CO2 and O2 in typically less than one second, but the degree to which this is rate-limited by diffusion through cytoplasm is not known. Gas diffusivity is intuitively assumed to be fast and this would imply that the intracellular path-length, defined by RBC shape, is not a factor that could meaningfully compromise physiology. Here, we evaluated CO2 diffusivity (DCO2) in RBCs and related our results to cell shape. DCO2 inside RBCs was determined by fluorescence imaging of [H+] dynamics in cells under superfusion. This method is based on the principle that H+ diffusion is facilitated by CO2/HCO3− buffer and thus provides a read-out of DCO2. By imaging the spread of H+ ions from a photochemically-activated source (6-nitroveratraldehyde), DCO2 in human RBCs was calculated to be only 5% of the rate in water. Measurements on RBCs containing different hemoglobin concentrations demonstrated a halving of DCO2 with every 75 g/L increase in mean corpuscular hemoglobin concentration (MCHC). Thus, to compensate for highly-restricted cytoplasmic diffusion, RBC thickness must be reduced as appropriate for its MCHC. This can explain the inverse relationship between MCHC and RBC thickness determined from >250 animal species. PMID:27777410

  12. Holophytochrome-Interacting Proteins in Physcomitrella: Putative Actors in Phytochrome Cytoplasmic Signaling

    PubMed Central

    Ermert, Anna Lena; Mailliet, Katharina; Hughes, Jon

    2016-01-01

    Phytochromes are the principle photoreceptors in light-regulated plant development, primarily acting via translocation of the light-activated photoreceptor into the nucleus and subsequent gene regulation. However, several independent lines of evidence indicate unambiguously that an additional cytoplasmic signaling mechanism must exist. Directional responses in filament tip cells of the moss Physcomitrella patens are steered by phy4 which has been shown to interact physically with the blue light receptor phototropin at the plasma membrane. This complex might perceive and transduce vectorial information leading to cytoskeleton reorganization and finally a directional growth response. We developed yeast two-hybrid procedures using photochemically functional, full-length phy4 as bait in Physcomitrella cDNA library screens and growth assays under different light conditions, revealing Pfr-dependent interactions possibly associated with phytochrome cytoplasmic signaling. Candidate proteins were then expressed in planta with fluorescent protein tags to determine their intracellular localization in darkness and red light. Of 14 candidates, 12 were confirmed to interact with phy4 in planta using bimolecular fluorescence complementation. We also used database information to study their expression patterns relative to those of phy4. We discuss the likely functional characteristics of these holophytochrome-interacting proteins (HIP’s) and their possible roles in signaling. PMID:27242820

  13. Cofilin is a Component of Intranuclear and Cytoplasmic Actin Rods Induced in Cultured Cells

    NASA Astrophysics Data System (ADS)

    Nishida, Eisuke; Iida, Kazuko; Yonezawa, Naoto; Koyasu, Shigeo; Yahara, Ichiro; Sakai, Hikoichi

    1987-08-01

    Incubation of cultured cells under specific conditions induces a dramatic change in the actin organization: induction of intranuclear and/or cytoplasmic actin rods (actin paracrystal-like intracellular structures). We have found that cofilin, a 21-kDa actin-binding protein, is a component of these rods. Antibodies directed against cofilin labeled intranuclear actin rods induced in cells treated with dimethyl sulfoxide or exposed to heat shock and also labeled cytoplasmic actin rods induced in cells incubated in specific salt buffers. Moreover, we found that these actin rods are not stained with fluorescent phalloidin derivatives at all and appear to be right-handed helices, different from straight bundles of F-actin such as stress fibers. In vitro experiments revealed that cofilin and phalloidin compete with each other for binding to F-actin. Since cofilin and phalloidin have the ability to stoichiometrically bind actin molecule in the filament in vitro, the above results seem to suggest that cofilin directly binds to actin molecule in nearly an equimolar ratio in these rods. We call these rods ``actin/cofilin rods.''

  14. The cytoplasmic tyrosine kinase Arg regulates gastrulation via control of actin organization.

    PubMed

    Bonacci, Gustavo; Fletcher, Jason; Devani, Madhav; Dwivedi, Harsh; Keller, Ray; Chang, Chenbei

    2012-04-01

    Coordinated cell movements are crucial for vertebrate gastrulation and are controlled by multiple signals. Although many factors are shown to mediate non-canonical Wnt pathways to regulate cell polarity and intercalation during gastrulation, signaling molecules acting in other pathways are less investigated and the connections between various signals and cytoskeleton are not well understood. In this study, we show that the cytoplasmic tyrosine kinase Arg modulates gastrulation movements through control of actin remodeling. Arg is expressed in the dorsal mesoderm at the onset of gastrulation, and both gain- and loss-of-function of Arg disrupted axial development in Xenopus embryos. Arg controlled migration of anterior mesendoderm, influenced cell decision on individual versus collective migration, and modulated spreading and protrusive activities of anterior mesendodermal cells. Arg also regulated convergent extension of the trunk mesoderm by influencing cell intercalation behaviors. Arg modulated actin organization to control dynamic F-actin distribution at the cell-cell contact or in membrane protrusions. The functions of Arg required an intact tyrosine kinase domain but not the actin-binding motifs in its carboxyl terminus. Arg acted downstream of receptor tyrosine kinases to regulate phosphorylation of endogenous CrkII and paxillin, adaptor proteins involved in activation of Rho family GTPases and actin reorganization. Our data demonstrate that Arg is a crucial cytoplasmic signaling molecule that controls dynamic actin remodeling and mesodermal cell behaviors during Xenopus gastrulation.

  15. Two conformational states in the crystal structure of the Homo sapiens cytoplasmic ribosomal decoding A site.

    PubMed

    Kondo, Jiro; Urzhumtsev, Alexandre; Westhof, Eric

    2006-01-01

    The decoding A site of the small ribosomal subunit is an RNA molecular switch, which monitors codon-anticodon interactions to guarantee translation fidelity. We have solved the crystal structure of an RNA fragment containing two Homo sapiens cytoplasmic A sites. Each of the two A sites presents a different conformational state. In one state, adenines A1492 and A1493 are fully bulged-out with C1409 forming a wobble-like pair to A1491. In the second state, adenines A1492 and A1493 form non-Watson-Crick pairs with C1409 and G1408, respectively while A1491 bulges out. The first state of the eukaryotic A site is, thus, basically the same as in the bacterial A site with bulging A1492 and A1493. It is the state used for recognition of the codon/anticodon complex. On the contrary, the second state of the H.sapiens cytoplasmic A site is drastically different from any of those observed for the bacterial A site without bulging A1492 and A1493.

  16. Host shutoff is a conserved phenotype of gammaherpesvirus infection and is orchestrated exclusively from the cytoplasm.

    PubMed

    Covarrubias, Sergio; Richner, Justin M; Clyde, Karen; Lee, Yeon J; Glaunsinger, Britt A

    2009-09-01

    Lytic infection with the two human gammaherpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), leads to significant depletion of the cellular transcriptome. This host shutoff phenotype is driven by the conserved herpesviral alkaline exonuclease, termed SOX in KSHV and BGLF5 in EBV, which in gammaherpesviruses has evolved the genetically separable ability to target cellular mRNA. We now show that host shutoff is also a prominent consequence of murine gammaherpesvirus 68 (MHV68) infection, which is widely used as a model system to study pathogenesis of these viruses in vivo. The effector of MHV68-induced host shutoff is its SOX homolog, here termed muSOX. There is remarkable functional conservation of muSOX host shutoff activities with those of KSHV SOX, including the recently described ability of SOX to induce mRNA hyperadenylation in the nucleus as well as cause nuclear relocalization of the poly(A) binding protein. SOX and muSOX localize to both the nucleus and cytoplasm of infected cells. Using spatially restricted variants of these proteins, we go on to demonstrate that all known host shutoff-related activities of SOX and muSOX are orchestrated exclusively from the cytoplasm. These results have important mechanistic implications for how SOX and muSOX target nascent cellular transcripts in the nucleus. Furthermore, our findings establish MHV68 as a new, genetically tractable model to study host shutoff.

  17. Functional Role of Syndecan-1 Cytoplasmic V Region in Lamellipodial Spreading, Actin Bundling, and Cell Migration

    PubMed Central

    Chakravarti, Ritu; Sapountzi, Vasileia; Adams, Josephine C.

    2005-01-01

    Cell protrusions contribute to cell motility and migration by mediating the outward extension and initial adhesion of cell edges. In many cells, these extensions are supported by actin bundles assembled by the actin cross-linking protein, fascin. Multiple extracellular cues regulate fascin and here we focus on the mechanism by which the transmembrane proteoglycan, syndecan-1, specifically activates lamellipodial cell spreading and fascin-and-actin bundling when clustered either by thrombospondin-1, laminin, or antibody to the syndecan-1 extracellular domain. There is almost no knowledge of the signaling mechanisms of syndecan-1 cytoplasmic domain and we have tested the hypothesis that the unique V region of syndecan-1 cytoplasmic domain has a crucial role in these processes. By four criteria—the activities of N-cadherin/V region chimeras, syndecan-1 deletion mutants, or syndecan-1 point mutants, and specific inhibition by a membrane-permeable TAT-V peptide—we demonstrate that the V region is necessary and sufficient for these cell behaviors and map the molecular basis for its activity to multiple residues located across the V region. These activities correlate with a V-region-dependent incorporation of cell-surface syndecan-1 into a detergent-insoluble form. We also demonstrate functional roles of syndecan-1 V region in laminin-dependent C2C12 cell adhesion and three-dimensional cell migration. These data identify for the first time specific cell behaviors that depend on signaling through the V region of syndecan-1. PMID:15930135

  18. Lack of evidence for cytoplasmic effects for four traits of Polypay sheep.

    PubMed

    Van Vleck, L D; Hanford, K J; Snowder, G D

    2005-03-01

    Analyses of birth and weaning weights, fleece weights of ewes, and number born per litter of Polypay sheep collected at the U.S. Sheep Experimental Station from 1978 through 1998, confirmed previous analyses of three other dual-purpose breeds that cytoplasmic effects do not contribute to variation in these four traits. In general, estimates of genetic parameters that would be needed for national genetic evaluation were similar to previous estimates for Columbia, Rambouillet, and Targhee sheep, although estimates of direct heritability for Polypay were somewhat less for birth weight, slightly greater for weaning weight, significantly greater for fleece weight, and the same for number born as for those three breeds. For birth weight only, evidence was found for important dam x year or dam x number born interactions, which are essentially litter effects, as was found for the other dual-purpose breeds. There were 11,896, 11,104, 7,748, and 7,831 records for birth and weaning weights, fleece weight, and number born per litter, with 255 to 316 sires of animals with records. There were 260 and 261 cytoplasmic lines for fleece weight and number born, and 861 and 882 for weaning and birth weights.

  19. MCRS1 associates with cytoplasmic dynein and mediates pericentrosomal material recruitment

    PubMed Central

    Lee, Si-Hyung; Lee, Mi-Sun; Choi, Tae-Ik; Hong, Hyowon; Seo, Jun-Young; Kim, Cheol-Hee; Kim, Joon

    2016-01-01

    MCRS1 is involved in multiple cellular activities, including mitotic spindle assembly, mTOR signaling and tumorigenesis. Although MCRS1 has been reported to bind to the dynein regulator NDE1, a functional interaction between MCRS1 and cytoplasmic dynein remains unaddressed. Here, we demonstrate that MCRS1 is required for dynein-dependent cargo transport to the centrosome and also plays a role in primary cilium formation. MCRS1 localized to centriolar satellites. Knockdown of MCRS1 resulted in a dispersion of centriolar satellites whose establishment depends on cytoplasmic dynein. By contrast, NDE1 was not necessary for the proper distribution of centriolar satellites, indicating a functional distinction between MCRS1 and NDE1. Unlike NDE1, MCRS1 played a positive role for the initiation of ciliogenesis, possibly through its interaction with TTBK2. Zebrafish with homozygous mcrs1 mutants exhibited a reduction in the size of the brain and the eye due to excessive apoptosis. In addition, mcrs1 mutants failed to develop distinct layers in the retina, and showed a defect in melatonin-induced aggregation of melanosomes in melanophores. These phenotypes are reminiscent of zebrafish dynein mutants. Reduced ciliogenesis was also apparent in the olfactory placode of mcrs1 mutants. Collectively, our findings identify MCRS1 as a dynein-interacting protein critical for centriolar satellite formation and ciliogenesis. PMID:27263857

  20. Contrasting levels of variability between cytoplasmic genomes and incompatibility types in the mosquito Culex pipiens.

    PubMed Central

    Guillemaud, T; Pasteur, N; Rousset, F

    1997-01-01

    Reproductive incompatibilities called cytoplasmic incompatibilities are known to affect a large number of arthropod species and are mediated by Wolbachia, a maternally transmitted microorganism. The crossing relationships between strains of potential hosts define their incompatibility types and it is generally assumed that differences between strains of Wolbachia induce different crossing types. Among all the described host species, the mosquito, Culex pipiens, displays the greatest variability of cytoplasmic incompatibility crossing types. We analysed mitochondrial and bacterial DNA variability in Culex pipiens in order to investigate some possible causes of incompatibility crossing type variability. We sequenced fragments of the ftsZ gene, and the A + T-rich control region of the mtDNA. We also sequenced the second subunit of the mitochondrial cytochrome oxidase (COII) gene, in Culex pipiens and a closely related species, C. torrentium, in order to verify the usefulness of the A + T-rich region for the present purposes. No variability was found in the Wolbachia ftsZ gene fragment, and very limited variation of the mitochondrial marker whatever the compatibility type or the origin of the host. A low variability was found in the A + T-rich region and comparison of divergence of the A + T-rich region and COII gene between C. pipiens and C. torrentium did not reveal any special constraints affecting this region. In contrast to observations in other host species, variability of incompatibility crossing types is not due to multiple infections by distantly related Wolbachia strains. PMID:9061971

  1. The native structure of cytoplasmic dynein at work translocating vesicles in Paramecium.

    PubMed

    Ishida, Masaki; Aihara, Marilynn S; Allen, Richard D; Fok, Agnes K

    2011-01-01

    In Paramecium multimicronucleatum, the discoidal vesicles, the acidosomes and the 100-nm carrier vesicles are involved in phagosome formation, phagosome acidification and endosomal processing, respectively. Numerous cross bridges link these vesicles to the kinetic side of the microtubules of a cytopharyngeal microtubular ribbon. Vesicles are translocated along these ribbons in a minus-end direction towards the cytopharynx. A monoclonal antibody specific for the light vanadate-photocleaved fragment of the heavy chain of cytoplasmic dynein was used to show that this dynein is located between the discoidal vesicles and the ribbons as well as on the cytosolic surface of the acidosomes and the 100-nm carrier vesicles. This antibody inhibited the docking of the vesicles to the microtubular ribbons so that the transport of discoidal vesicles and acidosomes were reduced by 60% and 70%, respectively. It had little effect on the dynein's velocity of translocation. These results show that cytoplasmic dynein is the motor for vesicle translocation and its location, between the vesicles and the ribbons, indicates that the cross bridges seen at this location in thin sections and in quick-frozen, deep-etched replicas are apparently the working dyneins. Such a working dynein cross bridge, as preserved by ultra-rapid freezing, is 54 nm long and has two legs arising from a globular head that appears to be firmly bound to its cargo vesicle and each leg consists of ≥3 beaded subunits with the last subunit making contact with the microtubular ribbon.

  2. Nucleo-cytoplasmic translocation and secretion of fibroblast growth factor-2 during avian gastrulation.

    PubMed

    Riese, J; Zeller, R; Dono, R

    1995-01-01

    The expression and distribution of the fibroblast growth factor-2 (FGF-2 or bFGF) proteins during early avian embryogenesis has been analysed in detail. Three FGF-2 protein isoforms of 18.5, 20.0 and 21.5 kDa are expressed during gastrulation of chicken embryos. Using whole mount immunohistochemistry, these proteins were found to be predominantly nuclear in prestreak blastodiscs during mesoderm induction. Distribution of positive cells in the epiblast was mosaic, whereas all cells of the forming hypoblast expressed the FGF-2 proteins. During primitive streak formation, the proteins started to translocate to the cytoplasm in epiblast cells but remained nuclear in the hypoblast. The FGF-2 proteins became predominantly cytoplasmic in all cells during the subsequent developmental stages. Their highest levels were detected in endodermal cells underlying Hensen's node and the newly formed notochord, the dorsal apex of all epiblast cells and, most interestingly, in the extra-cellular basal lamina separating the epiblast from newly formed mesoderm. Heparin and suramin treatment of these advanced embryos (stage 4) revealed a dose-dependent inhibition on the regression of Hensen's node and formation of mesodermal derivatives such as somites. The results are discussed with respect to current models on FGF-mediated functions during vertebrate mesoderm induction and regionalization.

  3. Sas-4 provides a scaffold for cytoplasmic complexes and tethers them in a centrosome.

    PubMed

    Gopalakrishnan, Jayachandran; Mennella, Vito; Blachon, Stephanie; Zhai, Bo; Smith, Andrew H; Megraw, Timothy L; Nicastro, Daniela; Gygi, Steven P; Agard, David A; Avidor-Reiss, Tomer

    2011-06-21

    Centrosomes are conserved organelles that are essential for accurate cell division and cilium formation. A centrosome consists of a pair of centrioles surrounded by a protein network of pericentriolar material (PCM) that is essential for the centrosome's function. In this study, we show that Sas-4 provides a scaffold for cytoplasmic complexes (named S-CAP), which include CNN, Asl and D-PLP, proteins that are all found in the centrosomes at the vicinity of the centriole. When Sas-4 is absent, nascent procentrioles are unstable and lack PCM, and functional centrosomes are not generated. When Sas-4 is mutated, so that it cannot form S-CAP complexes, centrosomes are present but with dramatically reduced levels of PCM. Finally, purified S-CAP complexes or recombinant Sas-4 can bind centrosomes stripped of PCM, whereas recombinant CNN or Asl cannot. In summary, PCM assembly begins in the cytosol where Sas-4 provides a scaffold for pre-assembled cytoplasmic complexes before tethering of the complexes in a centrosome.

  4. Structural changes in human cytomegalovirus cytoplasmic assembly sites in the absence of UL97 kinase activity

    SciTech Connect

    Azzeh, Maysa; Honigman, Alik; Taraboulos, Albert; Rouvinski, Alexander; Wolf, Dana G. . E-mail: wolfd@md.huji.ac.il

    2006-10-10

    Studies of human cytomegalovirus (HCMV) UL97 kinase deletion mutant ({delta}UL97) indicated a multi-step role for this kinase in early and late phases of the viral life cycle, namely, in DNA replication, capsid maturation and nuclear egress. Here, we addressed its possible involvement in cytoplasmic steps of HCMV assembly. Using the {delta}UL97 and the UL97 kinase inhibitor NGIC-I, we demonstrate that the absence of UL97 kinase activity results in a modified subcellular distribution of the viral structural protein assembly sites, from compact structures impacting upon the nucleus to diffuse perinuclear structures punctuated by large vacuoles. Infection by either wild type or {delta}UL97 viruses induced a profound reorganization of wheat germ agglutinin (WGA)-positive Golgi-related structures. Importantly, the viral-induced Golgi remodeling along with the reorganization of the nuclear architecture was substantially altered in the absence of UL97 kinase activity. These findings suggest that UL97 kinase activity might contribute to organization of the viral cytoplasmic assembly sites.

  5. Endosomolytic anionic polymer for the cytoplasmic delivery of siRNAs in localized in vivo applications

    PubMed Central

    Khormaee, Sariah; Choi, Yong; Shen, Michael J.; Xu, Biying; Wu, Haitao; Griffiths, Gary L.; Chen, Rongjun; Slater, Nigel K. H.; Park, John K.

    2013-01-01

    The use of small interfering RNAs (siRNAs) to down-regulate the expression of disease-associated proteins carries significant promise for the treatment of a variety of clinical disorders. One of the main barriers to the widespread clinical use of siRNAs, however, is their entrapment and degradation within the endolysosomal pathway of target cells. Here we report the trafficking and function of PP75, a non-toxic, biodegradable, lipid membrane disruptive anionic polymer composed of phenylalanine derivatized poly(L-lysine iso-phthalamide). PP75 is readily endocytosed by cells, safely permeabilizes endolysosomes in a pH dependent manner and facilitates the transfer of co-endocytosed materials directly into the cytoplasm. The covalent attachment of siRNAs to PP75 using disulfide linkages generates conjugates that effectively traffic siRNAs to the cytoplasm of target cells both in vitro and in vivo. In a subcutaneous malignant glioma tumor model, a locally delivered PP75-stathmin siRNA conjugate decreases stathmin expression in tumor cells and, in combination with the nitrosourea chemotherapy carmustine, is highly effective at inhibiting tumor growth. PP75 may be clinically useful for the local delivery of siRNAs, in particular for the treatment of solid tumors. PMID:24273480

  6. The Robo4 cytoplasmic domain is dispensable for vascular permeability and neovascularization

    PubMed Central

    Zhang, Feng; Prahst, Claudia; Mathivet, Thomas; Pibouin-Fragner, Laurence; Zhang, Jiasheng; Genet, Gael; Tong, Raymond; Dubrac, Alexandre; Eichmann, Anne

    2016-01-01

    Vascular permeability and neovascularization are implicated in many diseases including retinopathies and diabetic wound healing. Robo4 is an endothelial-specific transmembrane receptor that stabilizes the vasculature, as shown in Robo4−/− mice that develop hyperpermeability, but how Robo4 signals remained unclear. Here we show that Robo4 deletion enhances permeability and revascularization in oxygen-induced retinopathy (OIR) and accelerates cutaneous wound healing. To determine Robo4 signalling pathways, we generated transgenic mice expressing a truncated Robo4 lacking the cytoplasmic domain (Robo4ΔCD). Robo4ΔCD expression is sufficient to prevent permeability, and inhibits OIR revascularization and wound healing in Robo4−/− mice. Mechanistically, Robo4 does not affect Slit2 signalling, but Robo4 and Robo4ΔCD counteract Vegfr2-Y949 (Y951 in human VEGFR2) phosphorylation by signalling through the endothelial UNC5B receptor. We conclude that Robo4 inhibits angiogenesis and vessel permeability independently of its cytoplasmic domain, while activating VEGFR2-Y951 via ROBO4 inhibition might accelerate tissue revascularization in retinopathy of prematurity and in diabetic patients. PMID:27882935

  7. Nuclear and cytoplasmic genome composition of Solanum bulbocastanum (+) S. tuberosum somatic hybrids.

    PubMed

    Iovene, Marina; Savarese, Salvatore; Cardi, Teodoro; Frusciante, Luigi; Scotti, Nunzia; Simon, Philipp W; Carputo, Domenico

    2007-05-01

    Somatic hybrids between the wild incongruent species Solanum bulbocastanum (2n = 2x = 24) and S. tuberosum haploids (2n = 2x = 24) have been characterized for their nuclear and cytoplasmic genome composition. Cytologic observations revealed the recovery of 8 (near-)tetraploid and 3 hexaploid somatic hybrids. Multicolor genomic in situ hybridization (GISH) analysis was carried out to study the genomic dosage of the parental species in 5 somatic hybrids with different ploidy. The GISH procedure used was effective in discriminating parental genomes in the hybrids; most chromosomes were unambiguously colored. Two (near-)tetraploid somatic hybrids showed the expected 2:2 cultivated-to-wild genomic dosage; 2 hexaploids revealed a 4:2 cultivated-to-wild genomic dosage, and 1 hexaploid had a 2:4 cultivated-to-wild genomic dosage. Characterization of hybrid cytoplasmic genomes was performed using gene-specific primers that detected polymorphisms between the fusion parents in the intergenic regions. The analysis showed that most of the somatic hybrids inherited the plastidial and mitochondrial DNA of the cultivated parent. A few hybrids, with a rearranged mitochondrial genome (showing fragments derived from both parents), were also identified. These results confirmed the potential of somatic hybridization in producing new variability for genetic studies and breeding.

  8. A mitochondrial DNA sequence is associated with abnormal pollen development in cytoplasmic male sterile bean plants.

    PubMed Central

    Johns, C; Lu, M; Lyznik, A; Mackenzie, S

    1992-01-01

    Cytoplasmic male sterility (CMS) in common bean is associated with the presence of a 3-kb unique mitochondrial sequence designated pvs. The pvs sequence encodes at least two open reading frames (297 and 720 bp in length) with portions derived from the chloroplast genome. Fertility restoration by the nuclear restorer gene Fr results in the loss of this transcriptionally active unique region. We examined the effect of CMS (pvs present) and fertility restoration by Fr (pvs absent) on the pattern of pollen development in bean. In the CMS line, pollen aborted in the tetrad stage late in microgametogenesis. Microspores maintained cytoplasmic connections throughout pollen development, indicating aberrant or incomplete cytokinesis. Pollen-specific events associated with pollen abortion and fertility restoration imply that a gametophytic factor or event may be involved in CMS. In situ hybridization experiments suggested that significant reduction or complete loss of the mitochondrial sterility-associated sequence occurred in fertile pollen of F2 populations segregating for fertility. These observations support a model of fertility restoration by the loss of a mitochondrial DNA sequence prior to or during microsporogenesis/gametogenesis. PMID:1498602

  9. APOBEC3G restricts early HIV-1 replication in the cytoplasm of target cells.

    PubMed

    Anderson, Jenny L; Hope, Thomas J

    2008-05-25

    Cellular APOBEC3G (A3G) protein is packaged into human immunodeficiency virus type 1 (HIV-1) virions in producer cells yet restricts viral replication in target cells. To characterize this restriction in target cells, the effect of A3G on generating various HIV-1 cDNA products was measured by quantitative real-time PCR. A3G decreased cDNA products from Vif-deficient HIV-1, with minor effects on early reverse transcripts and larger declines in late reverse transcripts. However, the greatest decline was typically observed in nuclear 2-LTR circles. Moreover, the magnitude of these declines varied with A3G dose. Adding integration inhibitor did not stop the A3G-mediated loss in 2-LTR circles. Moreover, obstructing HIV-1 nuclear entry using vesicular stomatitis virus matrix protein did not stop the A3G-mediated decline in late reverse transcripts. Collectively, these data suggest that A3G has important restriction activity in the cytoplasm and progressively diminishes viral cytoplasmic and nuclear cDNA forms with increasing magnitude during restriction.

  10. A novel fluorescence ratiometric method confirms the low solvent viscosity of the cytoplasm.

    PubMed Central

    Luby-Phelps, K; Mujumdar, S; Mujumdar, R B; Ernst, L A; Galbraith, W; Waggoner, A S

    1993-01-01

    Two homologous indocyanine dyes, Cy3.18 and Cy5.18, can be used as a ratio pair for fluorometric determination of solvent viscosity. Succinimidyl ester derivatives of these dyes can be attached to inert carrier macromolecules, such as Ficoll 70, for measurement of intracellular or intravesicular solvent viscosity. When the viscosity of the solvent was varied by various methods, the fluorescence intensity ratio (Cy3/Cy5) in a mixture of Cy3.18-Ficoll 70 (Cy3F70) and Cy5.18-Ficoll 70 (Cy5F70) in solution was found to be solely a function of solvent viscosity and was insensitive to other solvent parameters such as dielectric constant, temperature, and the ability of the solvent to form hydrogen bonds. Most important, it was insensitive to the presence of large macromolecules, such as proteins, which increase the shear viscosity but have little effect on solvent viscosity. Following microinjection into the cytoplasm of living tissue culture cells, no binding of Cy3F70 or Cy5F70 to intracellular components was detected by fluorescence recovery after photobleaching. Fluorescence intensity ratio imaging of Cy3F70 and Cy5F70 in non-motile interphase CV1 and PtK1 cells showed that the solvent viscosity of cytoplasm was not significantly different from water and showed no spatial variation. Images FIGURE 4 PMID:8369435

  11. Viral Membrane Fusion and Nucleocapsid Delivery into the Cytoplasm are Distinct Events in Some Flaviviruses

    PubMed Central

    Nour, Adel M.; Li, Yue; Wolenski, Joseph; Modis, Yorgo

    2013-01-01

    Flaviviruses deliver their genome into the cell by fusing the viral lipid membrane to an endosomal membrane. The sequence and kinetics of the steps required for nucleocapsid delivery into the cytoplasm remain unclear. Here we dissect the cell entry pathway of virions and virus-like particles from two flaviviruses using single-particle tracking in live cells, a biochemical membrane fusion assay and virus infectivity assays. We show that the virus particles fuse with a small endosomal compartment in which the nucleocapsid remains trapped for several minutes. Endosomal maturation inhibitors inhibit infectivity but not membrane fusion. We propose a flavivirus cell entry mechanism in which the virus particles fuse preferentially with small endosomal carrier vesicles and depend on back-fusion of the vesicles with the late endosomal membrane to deliver the nucleocapsid into the cytoplasm. Virus entry modulates intracellular calcium release and phosphatidylinositol-3-phosphate kinase signaling. Moreover, the broadly cross-reactive therapeutic antibody scFv11 binds to virus-like particles and inhibits fusion. PMID:24039574

  12. Impact-Free Measurement of Microtubule Rotations on Kinesin and Cytoplasmic-Dynein Coated Surfaces

    PubMed Central

    Mitra, Aniruddha; Ruhnow, Felix; Nitzsche, Bert; Diez, Stefan

    2015-01-01

    Knowledge about the three-dimensional stepping of motor proteins on the surface of microtubules (MTs) as well as the torsional components in their power strokes can be inferred from longitudinal MT rotations in gliding motility assays. In previous studies, optical detection of these rotations relied on the tracking of rather large optical probes present on the outer MT surface. However, these probes may act as obstacles for motor stepping and may prevent the unhindered rotation of the gliding MTs. To overcome these limitations, we devised a novel, impact-free method to detect MT rotations based on fluorescent speckles within the MT structure in combination with fluorescence-interference contrast microscopy. We (i) confirmed the rotational pitches of MTs gliding on surfaces coated by kinesin-1 and kinesin-8 motors, (ii) demonstrated the superiority of our method over previous approaches on kinesin-8 coated surfaces at low ATP concentration, and (iii) identified MT rotations driven by mammalian cytoplasmic dynein, indicating that during collective motion cytoplasmic dynein side-steps with a bias in one direction. Our novel method is easy to implement on any state-of-the-art fluorescence microscope and allows for high-throughput experiments. PMID:26368807

  13. Regional orientation of actin filaments in the pericanalicular cytoplasm of rat hepatocytes.

    PubMed

    Ishii, M; Washioka, H; Tonosaki, A; Toyota, T

    1991-12-01

    To elucidate how actin filaments participate in bile formation, polarity of actin filaments in the pericanalicular cytoplasm was determined with myosin subfragment 1 by transmission electron microscopy of ultrathin sections and deep-etching replicas. Densely concentrated actin filaments were identified around the bile canaliculi in the forms of microvillous core filaments, pericanalicular web filaments, and filaments on the junctional complex. They bound subfragment 1 to form double-helical strands on the deep-etching replica or typical arrowheads on the ultrathin section. All microvillous core filaments showed their arrowheads pointing basally, su