Sample records for myo7a mutation analysis

  1. Novel compound heterozygous mutations in MYO7A in a Chinese family with Usher syndrome type 1.

    PubMed

    Liu, Fei; Li, Pengcheng; Liu, Ying; Li, Weirong; Wong, Fulton; Du, Rong; Wang, Lei; Li, Chang; Jiang, Fagang; Tang, Zhaohui; Liu, Mugen

    2013-01-01

    To identify the disease-causing mutation(s) in a Chinese family with autosomal recessive Usher syndrome type 1 (USH1). An ophthalmic examination and an audiometric test were conducted to ascertain the phenotype of two affected siblings. The microsatellite marker D11S937, which is close to the candidate gene MYO7A (USH1B locus), was selected for genotyping. From the DNA of the proband, all coding exons and exon-intron boundaries of MYO7A were sequenced to identify the disease-causing mutation(s). Restriction fragment length polymorphism (RFLP) analysis was performed to exclude the alternative conclusion that the mutations are non-pathogenic rare polymorphisms. Based on severe hearing impairment, unintelligible speech, and retinitis pigmentosa, a clinical diagnosis of Usher syndrome type 1 was made. The genotyping results did not exclude the USH1B locus, which suggested that the MYO7A gene was likely the gene associated with the disease-causing mutation(s) in the family. With direct DNA sequencing of MYO7A, two novel compound heterozygous mutations (c.3742G>A and c.6051+1G>A) of MYO7A were identified in the proband. DNA sequence analysis and RFLP analysis of other family members showed that the mutations cosegregated with the disease. Unaffected members, including the parents, uncle, and sister of the proband, carry only one of the two mutations. The mutations were not present in the controls (100 normal Chinese subjects=200 chromosomes) according to the RFLP analysis. In this study, we identified two novel mutations, c.3742G>A (p.E1248K) and c.6051+1G>A (donor splice site mutation in intron 44), of MYO7A in a Chinese non-consanguineous family with USH1. The mutations cosegregated with the disease and most likely cause the phenotype in the two affected siblings who carry these mutations compound heterozygously. Our finding expands the mutational spectrum of MYO7A.

  2. An Usher syndrome type 1 patient diagnosed before the appearance of visual symptoms by MYO7A mutation analysis.

    PubMed

    Yoshimura, Hidekane; Iwasaki, Satoshi; Kanda, Yukihiko; Nakanishi, Hiroshi; Murata, Toshinori; Iwasa, Yoh-ichiro; Nishio, Shin-ya; Takumi, Yutaka; Usami, Shin-ichi

    2013-02-01

    Usher syndrome type 1 (USH1) appears to have only profound non-syndromic hearing loss in childhood and retinitis pigmentosa develops in later years. This study examined the frequency of USH1 before the appearance of visual symptoms in Japanese deaf children by MYO7A mutation analysis. We report the case of 6-year-old male with profound hearing loss, who did not have visual symptoms. The frequency of MYO7A mutations in profound hearing loss children is also discussed. We sequenced all exons of the MYO7A gene in 80 Japanese children with severe to profound non-syndromic HL not due to mutations of the GJB2 gene (ages 0-14 years). A total of nine DNA variants were found and six of them were presumed to be non-pathogenic variants. In addition, three variants of them were found in two patients (2.5%) with deafness and were classified as possible pathogenic variants. Among them, at least one nonsense mutation and one missense mutation from the patient were confirmed to be responsible for deafness. After MYO7A mutation analysis, the patient was diagnosed with RP, and therefore, also diagnosed with USH1. This is the first case report to show the advantage of MYO7A mutation analysis to diagnose USH1 before the appearance of visual symptoms. We believed that MYO7A mutation analysis is valid for the early diagnosis of USH1. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Novel compound heterozygous mutations in MYO7A in a Chinese family with Usher syndrome type 1

    PubMed Central

    Liu, Fei; Li, Pengcheng; Liu, Ying; Li, Weirong; Wong, Fulton; Du, Rong; Wang, Lei; Li, Chang; Jiang, Fagang; Tang, Zhaohui

    2013-01-01

    Purpose To identify the disease-causing mutation(s) in a Chinese family with autosomal recessive Usher syndrome type 1 (USH1). Methods An ophthalmic examination and an audiometric test were conducted to ascertain the phenotype of two affected siblings. The microsatellite marker D11S937, which is close to the candidate gene MYO7A (USH1B locus), was selected for genotyping. From the DNA of the proband, all coding exons and exon-intron boundaries of MYO7A were sequenced to identify the disease-causing mutation(s). Restriction fragment length polymorphism (RFLP) analysis was performed to exclude the alternative conclusion that the mutations are non-pathogenic rare polymorphisms. Results Based on severe hearing impairment, unintelligible speech, and retinitis pigmentosa, a clinical diagnosis of Usher syndrome type 1 was made. The genotyping results did not exclude the USH1B locus, which suggested that the MYO7A gene was likely the gene associated with the disease-causing mutation(s) in the family. With direct DNA sequencing of MYO7A, two novel compound heterozygous mutations (c.3742G>A and c.6051+1G>A) of MYO7A were identified in the proband. DNA sequence analysis and RFLP analysis of other family members showed that the mutations cosegregated with the disease. Unaffected members, including the parents, uncle, and sister of the proband, carry only one of the two mutations. The mutations were not present in the controls (100 normal Chinese subjects=200 chromosomes) according to the RFLP analysis. Conclusions In this study, we identified two novel mutations, c.3742G>A (p.E1248K) and c.6051+1G>A (donor splice site mutation in intron 44), of MYO7A in a Chinese non-consanguineous family with USH1. The mutations cosegregated with the disease and most likely cause the phenotype in the two affected siblings who carry these mutations compound heterozygously. Our finding expands the mutational spectrum of MYO7A. PMID:23559863

  4. Genetic analysis of a four generation Indian family with Usher syndrome: a novel insertion mutation in MYO7A.

    PubMed

    Kumar, Arun; Babu, Mohan; Kimberling, William J; Venkatesh, Conjeevaram P

    2004-11-24

    Usher syndrome (USH) is a rare autosomal recessive disorder characterized by deafness and retinitis pigmentosa. The purpose of this study was to determine the genetic cause of USH in a four generation Indian family. Peripheral blood samples were collected from individuals for genomic DNA isolation. To determine the linkage of this family to known USH loci, microsatellite markers were selected from the candidate regions of known loci and used to genotype the family. Exon specific intronic primers for the MYO7A gene were used to amplify DNA samples from one affected individual from the family. PCR products were subsequently sequenced to detect mutation. PCR-SSCP analysis was used to determine if the mutation segregated with the disease in the family and was not present in 50 control individuals. All affected individuals had a classic USH type I (USH1) phenotype which included deafness, vestibular dysfunction and retinitis pigmentosa. Pedigree analysis suggested an autosomal recessive mode of inheritance of USH in the family. Haplotype analysis suggested linkage of this family to the USH1B locus on chromosome 11q. DNA sequence analysis of the entire coding region of the MYO7A gene showed a novel insertion mutation c.2663_2664insA in a homozygous state in all affected individuals, resulting in truncation of MYO7A protein. This is the first study from India which reports a novel MYO7A insertion mutation in a four generation USH family. The mutation is predicted to produce a truncated MYO7A protein. With the novel mutation reported here, the total number of USH causing mutations in the MYO7A gene described to date reaches to 75.

  5. Mutation analysis of the MYO7A and CDH23 genes in Japanese patients with Usher syndrome type 1.

    PubMed

    Nakanishi, Hiroshi; Ohtsubo, Masafumi; Iwasaki, Satoshi; Hotta, Yoshihiro; Takizawa, Yoshinori; Hosono, Katsuhiro; Mizuta, Kunihiro; Mineta, Hiroyuki; Minoshima, Shinsei

    2010-12-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by retinitis pigmentosa and hearing loss. USH type 1 (USH1), the second common type of USH, is frequently caused by MYO7A and CDH23 mutations, accounting for 70-80% of the cases among various ethnicities, including Caucasians, Africans and Asians. However, there have been no reports of mutation analysis for any responsible genes for USH1 in Japanese patients. This study describes the first mutation analysis of MYO7A and CDH23 in Japanese USH1 patients. Five mutations (three in MYO7A and two in CDH23) were identified in four of five unrelated patients. Of these mutations, two were novel. One of them, p.Tyr1942SerfsX23 in CDH23, was a large deletion causing the loss of 3 exons. This is the first large deletion to be found in CDH23. The incidence of the MYO7A and CDH23 mutations in the study population was 80%, which is consistent with previous findings. Therefore, mutation screening for these genes is expected to be a highly sensitive method for diagnosing USH1 among the Japanese.

  6. Identification of a MYO7A mutation in a large Chinese DFNA11 family and genotype-phenotype review for DFNA11.

    PubMed

    Li, Lina; Yuan, Hu; Wang, Hongyang; Guan, Jing; Lan, Lan; Wang, Dayong; Zong, Liang; Liu, Qiong; Han, Bing; Huang, Deliang; Wang, Qiuju

    2018-05-01

    The molecular and genetic research showed the association between DFNA11 and mutations in MYO7A. This research aimed to identify a MYO7A mutation in a family with nonsyndromic autosomal dominant hearing loss. We have ascertained one large multigenerational Chinese family (Z029) with autosomal dominant late-onset progressive non-syndromic sensorineural hearing loss. Genome-wide linkage analysis of the family mapped the disease locus to the DFNA11 interval, where the MYO7A was considered as a candidate gene. Sequencing of the PCR products was carried out for each sample. One hundred and fifty one control subjects with normal hearing functions were also evaluated. The pathogenic mutation (c.2011G>A) was identified in the family. This mutation co-segregated with hearing loss in this family. No mutation of MYO7A gene was found in the 151 controls. The missense mutation of MYO7A is identified in the family displaying the pedigree consistent with DFNA11. We not only examined the clinical and genetic characteristics of the family, but also provided a basis for genetic counseling. We also summarized and analyzed the phenotypes and genotypes of all DFNA11 families, four of nine are Chinese families, suggesting that MYO7A mutations are not rare. Therefore, we should pay more attention to Chinese patients.

  7. CLINICAL PRESENTATION AND DISEASE COURSE OF USHER SYNDROME BECAUSE OF MUTATIONS IN MYO7A OR USH2A.

    PubMed

    Testa, Francesco; Melillo, Paolo; Bonnet, Crystel; Marcelli, Vincenzo; de Benedictis, Antonella; Colucci, Raffaella; Gallo, Beatrice; Kurtenbach, Anne; Rossi, Settimio; Marciano, Elio; Auricchio, Alberto; Petit, Christine; Zrenner, Eberhart; Simonelli, Francesca

    2017-08-01

    To evaluate differences in the visual phenotype and natural history of Usher syndrome caused by mutations in MYO7A or USH2A, the most commonly affected genes of Usher syndrome Type I (USH1) and Type II (USH2), respectively. Eighty-eight patients with a clinical diagnosis of USH1 (26 patients) or USH2 (62 patients) were retrospectively evaluated. Of these, 48 patients had 2 disease-causing mutations in MYO7A (10 USH1 patients), USH2A (33 USH2 patients), and other USH (5 patients) genes. Clinical investigation included best-corrected visual acuity, Goldmann visual field, fundus photography, electroretinography, and audiologic and vestibular assessments. Longitudinal analysis was performed over a median follow-up time of 3.5 years. Patients carrying mutations in MYO7A had a younger age of onset of hearing and visual impairments than those carrying mutations in USH2A, leading to an earlier diagnosis of the disease in the former patients. Longitudinal analysis showed that visual acuity and visual field decreased more rapidly in subjects carrying MYO7A mutations than in those carrying USH2A mutations (mean annual exponential rates of decline of 3.92 vs. 3.44% and of 8.52 vs. 4.97%, respectively), and the former patients reached legal blindness on average 15 years earlier than the latter. The current study confirmed a more severe progression of the retinal disease in USH1 patients rather than in USH2 patients. Furthermore, most visual symptoms (i.e., night blindness, visual acuity worsening) occurred at an earlier age in USH1 patients carrying mutations in MYO7A.

  8. Phenotype of Usher syndrome type II assosiated with compound missense mutations of c.721 C>T and c.1969 C>T in MYO7A in a Chinese Usher syndrome family.

    PubMed

    Zhai, Wei; Jin, Xin; Gong, Yan; Qu, Ling-Hui; Zhao, Chen; Li, Zhao-Hui

    2015-01-01

    To identify the pathogenic mutations in a Chinese pedigree affected with Usher syndrome type II (USH2). The ophthalmic examinations and audiometric tests were performed to ascertain the phenotype of the family. To detect the genetic defect, exons of 103 known RDs -associated genes including 12 Usher syndrome (USH) genes of the proband were captured and sequencing analysis was performed to exclude known genetic defects and find potential pathogenic mutations. Subsequently, candidate mutations were validated in his pedigree and 100 normal controls using polymerase chain reaction (PCR) and Sanger sequencing. The patient in the family occurred hearing loss (HL) and retinitis pigmentosa (RP) without vestibular dysfunction, which were consistent with standards of classification for USH2. He carried the compound heterozygous mutations, c.721 C>T and c.1969 C>T, in the MYO7A gene and the unaffected members carried only one of the two mutations. The mutations were not present in the 100 normal controls. We suggested that the compound heterozygous mutations of the MYO7A could lead to USH2, which had revealed distinguished clinical phenotypes associated with MYO7A and expanded the spectrum of clinical phenotypes of the MYO7A mutations.

  9. Novel and Recurrent MYO7A Mutations in Usher Syndrome Type 1 and Type 2

    PubMed Central

    Liu, Yani; Liu, Xiaoxing; Ha, Shaoping; Liu, Wenzhou; Kang, Xiaoli; Sheng, Xunlun; Zhao, Chen

    2014-01-01

    Usher syndrome (USH) is a group of disorders manifested as retinitis pigmentosa and bilateral sensorineural hearing loss, with or without vestibular dysfunction. Here, we recruited three Chinese families affected with autosomal recessive USH for detailed clinical evaluations and for mutation screening in the genes associated with inherited retinal diseases. Using targeted next-generation sequencing (NGS) approach, three new alleles and one known mutation in MYO7A gene were identified in the three families. In two families with USH type 1, novel homozygous frameshift variant p.Pro194Hisfs*13 and recurrent missense variant p.Thr165Met were demonstrated as the causative mutations respectively. Crystal structural analysis denoted that p.Thr165Met would very likely change the tertiary structure of the protein encoded by MYO7A. In another family affected with USH type 2, novel biallelic mutations in MYO7A, c.[1343+1G>A];[2837T>G] or p.[?];[Met946Arg], were identified with clinical significance. Because MYO7A, to our knowledge, has rarely been correlated with USH type 2, our findings therefore reveal distinguished clinical phenotypes associated with MYO7A. We also conclude that targeted NGS is an effective approach for genetic diagnosis for USH, which can further provide better understanding of genotype-phenotype relationship of the disease. PMID:24831256

  10. Novel and recurrent MYO7A mutations in Usher syndrome type 1 and type 2.

    PubMed

    Rong, Weining; Chen, Xue; Zhao, Kanxing; Liu, Yani; Liu, Xiaoxing; Ha, Shaoping; Liu, Wenzhou; Kang, Xiaoli; Sheng, Xunlun; Zhao, Chen

    2014-01-01

    Usher syndrome (USH) is a group of disorders manifested as retinitis pigmentosa and bilateral sensorineural hearing loss, with or without vestibular dysfunction. Here, we recruited three Chinese families affected with autosomal recessive USH for detailed clinical evaluations and for mutation screening in the genes associated with inherited retinal diseases. Using targeted next-generation sequencing (NGS) approach, three new alleles and one known mutation in MYO7A gene were identified in the three families. In two families with USH type 1, novel homozygous frameshift variant p.Pro194Hisfs*13 and recurrent missense variant p.Thr165Met were demonstrated as the causative mutations respectively. Crystal structural analysis denoted that p.Thr165Met would very likely change the tertiary structure of the protein encoded by MYO7A. In another family affected with USH type 2, novel biallelic mutations in MYO7A, c.[1343+1G>A];[2837T>G] or p.[?];[Met946Arg], were identified with clinical significance. Because MYO7A, to our knowledge, has rarely been correlated with USH type 2, our findings therefore reveal distinguished clinical phenotypes associated with MYO7A. We also conclude that targeted NGS is an effective approach for genetic diagnosis for USH, which can further provide better understanding of genotype-phenotype relationship of the disease.

  11. Mutations in myosin VIIA (MYO7A) and usherin (USH2A) in Spanish patients with Usher syndrome types I and II, respectively.

    PubMed

    Nájera, Carmen; Beneyto, Magdalena; Blanca, José; Aller, Elena; Fontcuberta, Ana; Millán, José María; Ayuso, Carmen

    2002-07-01

    Usher syndrome is an autosomal recessive disorder characterized by congenital hearing impairment and retinitis pigmentosa. Three clinical types are known (USH1, USH2 and USH3), and there is an extensive genetic heterogeneity, with at least ten genes implicated. The most frequently mutated genes are MYO7A, which causes USH1B, and usherin, which causes USH2A. We carried out a mutation analysis of these two genes in the Spanish population. Analysis of the MYO7A gene in patients from 30 USH1 families and sporadic cases identified 32% of disease alleles, with mutation Q821X being the most frequent. Most of the remaining variants are private mutations. With regard to USH2, mutation 2299delG was detected in 25% of the Spanish patients. Altogether the mutations detected in USH2A families account for 23% of the disease alleles. Copyright 2002 Wiley-Liss, Inc.

  12. Novel compound heterozygous mutations in MYO7A Associated with Usher syndrome 1 in a Chinese family.

    PubMed

    Gao, Xue; Wang, Guo-Jian; Yuan, Yong-Yi; Xin, Feng; Han, Ming-Yu; Lu, Jing-Qiao; Zhao, Hui; Yu, Fei; Xu, Jin-Cao; Zhang, Mei-Guang; Dong, Jiang; Lin, Xi; Dai, Pu

    2014-01-01

    Usher syndrome is an autosomal recessive disease characterized by sensorineural hearing loss, age-dependent retinitis pigmentosa (RP), and occasionally vestibular dysfunction. The most severe form is Usher syndrome type 1 (USH1). Mutations in the MYO7A gene are responsible for USH1 and account for 29-55% of USH1 cases. Here, we characterized a Chinese family (no. 7162) with USH1. Combining the targeted capture of 131 known deafness genes, next-generation sequencing, and bioinformatic analysis, we identified two deleterious compound heterozygous mutations in the MYO7A gene: a reported missense mutation c.73G>A (p.G25R) and a novel nonsense mutation c.462C>A (p.C154X). The two compound variants are absent in 219 ethnicity-matched controls, co-segregates with the USH clinical phenotypes, including hearing loss, vestibular dysfunction, and age-dependent penetrance of progressive RP, in family 7162. Therefore, we concluded that the USH1 in this family was caused by compound heterozygous mutations in MYO7A.

  13. Novel compound heterozygous mutations in MYO7A gene associated with autosomal recessive sensorineural hearing loss in a Chinese family.

    PubMed

    Ma, Yalin; Xiao, Yun; Zhang, Fengguo; Han, Yuechen; Li, Jianfeng; Xu, Lei; Bai, Xiaohui; Wang, Haibo

    2016-04-01

    Mutations in MYO7A gene have been reported to be associated with Usher Syndrome type 1B (USH1B) and nonsyndromic hearing loss (DFNB2, DFNA11). Most mutations in MYO7A gene caused USH1B, whereas only a few reported mutations led to DFNB2 and DFNA11. The current study was designed to investigate the mutations among a Chinese family with autosomal recessive hearing loss. In this study, we present the clinical, genetic and molecular characteristics of a Chinese family. Targeted capture of 127 known deafness genes and next-generation sequencing were employed to study the genetic causes of two siblings in the Chinese family. Sanger sequencing was employed to examine those variant mutations in the members of this family and other ethnicity-matched controls. We identified the novel compound heterozygous mutant alleles of MYO7A gene: a novel missense mutation c.3671C>A (p.A1224D) and a reported insert mutation c.390_391insC (p.P131PfsX9). Variants were further confirmed by Sanger sequencing. These two compound heterozygous variants were co-segregated with autosomal recessive hearing loss phenotype. The gene mutation analysis and protein sequence alignment further supported that the novel compound heterozygous mutations were pathogenic. The novel compound heterozygous mutations (c.3671C>A and c.390_391insC) in MYO7A gene identified in this study were responsible for the autosomal recessive sensorineural hearing loss of this Chinese family. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Targeted next generation sequencing in Italian patients with Usher syndrome: phenotype-genotype correlations.

    PubMed

    Eandi, Chiara M; Dallorto, Laura; Spinetta, Roberta; Micieli, Maria Pia; Vanzetti, Mario; Mariottini, Alessandro; Passerini, Ilaria; Torricelli, Francesca; Alovisi, Camilla; Marchese, Cristiana

    2017-11-15

    We report results of DNA analysis with next generation sequencing (NGS) of 21 consecutive Italian patients from 17 unrelated families with clinical diagnosis of Usher syndrome (4 USH1 and 17 USH2) searching for mutations in 11 genes: MYO7A, CDH23, PCDH15, USH1C, USH1G, USH2A, ADGVR1, DFNB31, CLRN1, PDZD7, HARS. Likely causative mutations were found in all patients: 25 pathogenic variants, 18 previously reported and 7 novel, were identified in three genes (USH2A, MYO7A, ADGRV1). All USH1 presented biallelic MYO7A mutations, one USH2 exhibited ADGRV1 mutations, whereas 16 USH2 displayed USH2A mutations. USH1 patients experienced hearing problems very early in life, followed by visual impairment at 1, 4 and 6 years. Visual symptoms were noticed at age 20 in a patient with homozygous novel MYO7A missense mutation c.849G > A. USH2 patients' auditory symptoms, instead, arose between 11 months and 14 years, while visual impairment occurred later on. A homozygous c.5933_5940del;5950_5960dup in USH2A was detected in one patient with early deafness. One patient with homozygous deletion from exon 23 to 32 in USH2A suffered early visual symptoms. Therefore, the type of mutation in USH2A and MYO7A genes seems to affect the age at which both auditory and visual impairment occur in patients with USH.

  15. Novel mutations of MYO7A and USH1G in Israeli Arab families with Usher syndrome type 1.

    PubMed

    Rizel, Leah; Safieh, Christine; Shalev, Stavit A; Mezer, Eedy; Jabaly-Habib, Haneen; Ben-Neriah, Ziva; Chervinsky, Elena; Briscoe, Daniel; Ben-Yosef, Tamar

    2011-01-01

    This study investigated the genetic basis for Usher syndrome type 1 (USH1) in four consanguineous Israeli Arab families. Haplotype analysis for all known USH1 loci was performed in each family. In families for which haplotype analysis was inconclusive, we performed genome-wide homozygosity mapping using a single nucleotide polymorphism (SNP) array. For mutation analysis, specific primers were used to PCR amplify the coding exons of the MYO7A, USH1C, and USH1G genes including intron-exon boundaries. Mutation screening was performed with direct sequencing. A combination of haplotype analysis and genome-wide homozygosity mapping indicated linkage to the USH1B locus in two families, USH1C in one family and USH1G in another family. Sequence analysis of the relevant genes (MYO7A, USH1C, and USH1G) led to the identification of pathogenic mutations in all families. Two of the identified mutations are novel (c.1135-1147dup in MYO7A and c.206-207insC in USH1G). USH1 is a genetically heterogenous condition. Of the five USH1 genes identified to date, USH1C and USH1G are the rarest contributors to USH1 etiology worldwide. It is therefore interesting that two of the four Israeli Arab families reported here have mutations in these two genes. This finding further demonstrates the unique genetic structure of the Israeli population in general, and the Israeli Arab population in particular, which due to high rates of consanguinity segregates many rare autosomal recessive genetic conditions.

  16. Identification of a novel MYO7A mutation in Usher syndrome type 1.

    PubMed

    Cheng, Ling; Yu, Hongsong; Jiang, Yan; He, Juan; Pu, Sisi; Li, Xin; Zhang, Li

    2018-01-05

    Usher syndrome (USH) is an autosomal recessive disease characterized by deafness and retinitis pigmentosa. In view of the high phenotypic and genetic heterogeneity in USH, performing genetic screening with traditional methods is impractical. In the present study, we carried out targeted next-generation sequencing (NGS) to uncover the underlying gene in an USH family (2 USH patients and 15 unaffected relatives). One hundred and thirty-five genes associated with inherited retinal degeneration were selected for deep exome sequencing. Subsequently, variant analysis, Sanger validation and segregation tests were utilized to identify the disease-causing mutations in this family. All affected individuals had a classic USH type I (USH1) phenotype which included deafness, vestibular dysfunction and retinitis pigmentosa. Targeted NGS and Sanger sequencing validation suggested that USH1 patients carried an unreported splice site mutation, c.5168+1G>A, as a compound heterozygous mutation with c.6070C>T (p.R2024X) in the MYO7A gene. A functional study revealed decreased expression of the MYO7A gene in the individuals carrying heterozygous mutations. In conclusion, targeted next-generation sequencing provided a comprehensive and efficient diagnosis for USH1. This study revealed the genetic defects in the MYO7A gene and expanded the spectrum of clinical phenotypes associated with USH1 mutations.

  17. Novel missense mutations in MYO7A underlying postlingual high- or low-frequency non-syndromic hearing impairment in two large families from China.

    PubMed

    Sun, Yi; Chen, Jing; Sun, Hanjun; Cheng, Jing; Li, Jianzhong; Lu, Yu; Lu, Yanping; Jin, Zhanguo; Zhu, Yuhua; Ouyang, Xiaomei; Yan, Denise; Dai, Pu; Han, Dongyi; Yang, Weiyan; Wang, Rongguang; Liu, Xuezhong; Yuan, Huijun

    2011-01-01

    The myosin VIIA (MYO7A) gene encodes a protein classified as an unconventional myosin. Mutations within MYO7A can lead to both syndromic and non-syndromic hearing impairment in humans. Among different mutations reported in MYO7A, only five led to non-syndromic sensorineural deafness autosomal dominant type 11 (DFNA11). Here, we present the clinical, genetic and molecular characteristics of two large Chinese DFNA11 families with either high- or low-frequency hearing loss. Affected individuals of family DX-J033 have a sloping audiogram at young ages with high frequency are most affected. With increasing age, all test frequencies are affected. Affected members of family HB-S037 present with an ascending audiogram affecting low frequencies at young ages, and then all frequencies are involved with increasing age. Genome-wide linkage analysis mapped the disease loci within the DFNA11 interval in both families. DNA sequencing of MYO7A revealed two novel nucleotide variations, c.652G > A (p.D218N) and c.2011G > A (p.G671S), in the two families. It is for the first time that the mutations identified in MYO7A in the present study are being implicated in DFNA11 in a Chinese population. For the first time, we tested electrocochleography (ECochG) in a DFNA11 family with low-frequency hearing loss. We speculate that the low-frequency sensorineural hearing loss in this DFNA11 family was not associated with endolymphatic hydrops.

  18. Genetic Correction of Induced Pluripotent Stem Cells From a Deaf Patient With MYO7A Mutation Results in Morphologic and Functional Recovery of the Derived Hair Cell-Like Cells.

    PubMed

    Tang, Zi-Hua; Chen, Jia-Rong; Zheng, Jing; Shi, Hao-Song; Ding, Jie; Qian, Xiao-Dan; Zhang, Cui; Chen, Jian-Ling; Wang, Cui-Cui; Li, Liang; Chen, Jun-Zhen; Yin, Shan-Kai; Huang, Tao-Sheng; Chen, Ping; Guan, Min-Xin; Wang, Jin-Fu

    2016-05-01

    The genetic correction of induced pluripotent stem cells (iPSCs) induced from somatic cells of patients with sensorineural hearing loss (caused by hereditary factors) is a promising method for its treatment. The correction of gene mutations in iPSCs could restore the normal function of cells and provide a rich source of cells for transplantation. In the present study, iPSCs were generated from a deaf patient with compound heterozygous MYO7A mutations (c.1184G>A and c.4118C>T; P-iPSCs), the asymptomatic father of the patient (MYO7A c.1184G>A mutation; CF-iPSCs), and a normal donor (MYO7A(WT/WT); C-iPSCs). One of MYO7A mutation sites (c.4118C>T) in the P-iPSCs was corrected using CRISPR/Cas9. The corrected iPSCs (CP-iPSCs) retained cell pluripotency and normal karyotypes. Hair cell-like cells induced from CP-iPSCs showed restored organization of stereocilia-like protrusions; moreover, the electrophysiological function of these cells was similar to that of cells induced from C-iPSCs and CF-iPSCs. These results might facilitate the development of iPSC-based gene therapy for genetic disorders. Induced pluripotent stem cells (iPSCs) were generated from a deaf patient with compound heterozygous MYO7A mutations (c.1184G>A and c.4118C>T). One of the MYO7A mutation sites (c.4118C>T) in the iPSCs was corrected using CRISPR/Cas9. The genetic correction of MYO7A mutation resulted in morphologic and functional recovery of hair cell-like cells derived from iPSCs. These findings confirm the hypothesis that MYO7A plays an important role in the assembly of stereocilia into stereociliary bundles. Thus, the present study might provide further insight into the pathogenesis of sensorineural hearing loss and facilitate the development of therapeutic strategies against monogenic disease through the genetic repair of patient-specific iPSCs. ©AlphaMed Press.

  19. Genetic Correction of Induced Pluripotent Stem Cells From a Deaf Patient With MYO7A Mutation Results in Morphologic and Functional Recovery of the Derived Hair Cell-Like Cells

    PubMed Central

    Tang, Zi-Hua; Chen, Jia-Rong; Zheng, Jing; Shi, Hao-Song; Ding, Jie; Qian, Xiao-Dan; Zhang, Cui; Chen, Jian-Ling; Wang, Cui-Cui; Li, Liang; Chen, Jun-Zhen; Yin, Shan-Kai; Huang, Tao-Sheng; Chen, Ping; Guan, Min-Xin

    2016-01-01

    The genetic correction of induced pluripotent stem cells (iPSCs) induced from somatic cells of patients with sensorineural hearing loss (caused by hereditary factors) is a promising method for its treatment. The correction of gene mutations in iPSCs could restore the normal function of cells and provide a rich source of cells for transplantation. In the present study, iPSCs were generated from a deaf patient with compound heterozygous MYO7A mutations (c.1184G>A and c.4118C>T; P-iPSCs), the asymptomatic father of the patient (MYO7A c.1184G>A mutation; CF-iPSCs), and a normal donor (MYO7AWT/WT; C-iPSCs). One of MYO7A mutation sites (c.4118C>T) in the P-iPSCs was corrected using CRISPR/Cas9. The corrected iPSCs (CP-iPSCs) retained cell pluripotency and normal karyotypes. Hair cell-like cells induced from CP-iPSCs showed restored organization of stereocilia-like protrusions; moreover, the electrophysiological function of these cells was similar to that of cells induced from C-iPSCs and CF-iPSCs. These results might facilitate the development of iPSC-based gene therapy for genetic disorders. Significance Induced pluripotent stem cells (iPSCs) were generated from a deaf patient with compound heterozygous MYO7A mutations (c.1184G>A and c.4118C>T). One of the MYO7A mutation sites (c.4118C>T) in the iPSCs was corrected using CRISPR/Cas9. The genetic correction of MYO7A mutation resulted in morphologic and functional recovery of hair cell-like cells derived from iPSCs. These findings confirm the hypothesis that MYO7A plays an important role in the assembly of stereocilia into stereociliary bundles. Thus, the present study might provide further insight into the pathogenesis of sensorineural hearing loss and facilitate the development of therapeutic strategies against monogenic disease through the genetic repair of patient-specific iPSCs. PMID:27013738

  20. Analysis of MYO7A in a Moroccan family with Usher syndrome type 1B: novel loss-of-function mutation and non-pathogenicity of p.Y1719C.

    PubMed

    Boulouiz, Redouane; Li, Yun; Abidi, Omar; Bolz, Hanno; Chafik, Abdelaziz; Kubisch, Christian; Roub, Hassan; Wollnik, Bernd; Barakat, Abdelhamid

    2007-10-02

    Mutations in the MYO7A gene are responsible for Usher syndrome type 1B (USH1B), the most common USH1 subtype, which accounts for the largest proportion of USH1 cases in most populations. Molecular genetic diagnosis in Usher syndrome is well established and identification of the underlying mutations in Usher patients is important for confirmation of the clinical diagnosis and genetic counseling. We analyzed a large consanguineous USH1 family from Morocco and linked the disease in this family to the MYO7A/USH1B locus. We identified the frequently described missense change p.Y1719C. In addition, we found the homozygous c.1687G>A mutation in the last nucleotide of exon 14, which is predicted to result in aberrant splicing and may lead to loss of MYO7A transcript. We further showed that p.Y1719C is not disease-causing but does represent a frequent polymorphism in the Moroccan population, with an estimated carrier frequency of 0.07. This finding has an important impact for molecular diagnosis and genetic counseling in USH1B families.

  1. Reinforcement of a minor alternative splicing event in MYO7A due to a missense mutation results in a mild form of retinopathy and deafness.

    PubMed

    Ben Rebeh, Imen; Morinière, Madeleine; Ayadi, Leila; Benzina, Zeineb; Charfedine, Ilhem; Feki, Jamel; Ayadi, Hammadi; Ghorbel, Abdelmonem; Baklouti, Faouzi; Masmoudi, Saber

    2010-09-30

    Recessive mutations of the myosin VIIA (MYO7A) gene are reported to be responsible for both a deaf-blindness syndrome (Usher type 1B [USH1B] and atypical Usher syndrome) and nonsyndromic hearing loss (HL; Deafness, Neurosensory, Autosomal Recessive 2 [DFNB2]). The existence of DFNB2 is controversial, and often there is no relationship between the type and location of the MYO7A mutations corresponding to the USH1B and DFNB2 phenotype. We investigated the molecular determinant of a mild form of retinopathy in association with a subtle splicing modulation of MYO7A mRNA. Affected members underwent detailed audiologic and ocular characterization. DNA samples from family members were genotyped with polymorphic microsatellite markers. Sequencing of MYO7A was performed. Endogenous lymphoid RNA analysis and a splicing minigene assay were used to study the effect of the c.1935G>A mutation. Funduscopy showed mild retinitis pigmentosa in adults with HL. Microsatellite analysis showed linkage to markers in the region on chromosome 11q13.5. Sequencing of MYO7A revealed a mutation in the last nucleotide of exon 16 (c.1935G>A), which corresponds to a substitution of a methionine to an isoleucine residue at amino acid 645 of the myosin VIIA. However, structural prediction of the molecular model of myosin VIIA shows that this amino acid replacement induces only minor structural changes in the immediate environment of the mutation and thus does not alter the overall native structure. We found that, although predominantly included in mature mRNA, exon 16 is in fact alternatively spliced in control cells and that the mutation at the very last position is associated with a switch toward a predominant exclusion of that exon. This observation was further supported using a splicing minigene transfection assay; the c.1935G>A mutation was found to trigger a partial impairment of the adjacent donor splice site, suggesting that the unique change at the last position of the exon is responsible for the enhanced exon exclusion in this family. This study shows how an exonic mutation that weakens the 5' splice site enhances a minor alternative splicing without abolishing a complete exclusion of the exon and therefore causes a less severe retinitis pigmentosa than the USH1B-associated alleles. It would be interesting to examine a possible correlation between intrafamilial phenotypic variability and the subtle variation in exon 16 inclusion, probably related to genetic background specificities.

  2. Novel mutations in MYO7A and USH2A in Usher syndrome.

    PubMed

    Maubaret, Cécilia; Griffoin, Jean-Michel; Arnaud, Bernard; Hamel, Christian

    2005-03-01

    Usher syndrome is an autosomal recessive disease associating retinitis pigmentosa and neurosensory deafness. Three clinical types (USH1, USH2, USH3) and 11 mutated genes or loci have been described. Mutations in MYO7A and USH2A are responsible for about 40% and 60% of Usher syndromes type 1 and 2, respectively. These genes were screened in a series of patients suffering from Usher syndrome. We performed SSCP screening of MYO7A in 12 unrelated patients suffering from Usher syndrome type 1 (USH1) and USH2A in 28 unrelated patients affected by Usher syndrome type 2 (USH2). Six mutations in MYO7A were found in five patients, including two novel mutations c.397C > G (His133Asp) and 1244-2A > G (Glu459Stop), accounting for 42% of our USH1 patients. Twelve mutations in USH2A were found in 11 patients, including four new mutations c.850delGA, c.1841-2A > G, c.3129insT, and c.3920C > G (Ser1307Stop), accounting for 39% of our USH2 patients

  3. Genetic analysis of Tunisian families with Usher syndrome type 1: toward improving early molecular diagnosis.

    PubMed

    Ben-Rebeh, Imen; Grati, Mhamed; Bonnet, Crystel; Bouassida, Walid; Hadjamor, Imen; Ayadi, Hammadi; Ghorbel, Abdelmonem; Petit, Christine; Masmoudi, Saber

    2016-01-01

    Usher syndrome accounts for about 50% of all hereditary deaf-blindness cases. The most severe form of this syndrome, Usher syndrome type I (USH1), is characterized by profound congenital sensorineural deafness, vestibular dysfunction, and retinitis pigmentosa. Six USH1 genes have been identified, MYO7A, CDH23, PCDH15, USH1C, SANS, and CIB2, encoding myosin VIIA, cadherin-23, protocadherin-15, harmonin, scaffold protein containing ankyrin repeats and a sterile alpha motif (SAM) domain, and calcium- and integrin-binding member 2, respectively. In the present study, we recruited four Tunisian families with a diagnosis of USH1, together with healthy unrelated controls. Affected members underwent detailed audiologic and ocular examinations. We used the North African Deafness (NADf) chip to search for known North African mutations associated with USH. Then, we selected microsatellite markers covering USH1 known loci to genotype the DNA samples. Finally, we performed DNA sequencing of three known USH1 genes: MYO7A, PCDH15, and USH1C. Four biallelic mutations, all single base changes, were found in the MYO7A, USH1C, and PCDH15 genes. These mutations consist of a previously reported splicing defect c.470+1G>A in MYO7A, three novel variants, including two nonsense (p.Arg3X and p.Arg134X) in USH1C and PCDH15, respectively, and one frameshift (p.Lys615Asnfs*6) in MYO7A. We found a remarkable genetic heterogeneity in the studied families with USH1 with a variety of mutations, among which three were novel. These novel mutations will be included in the NADf mutation screening chip that will allow a higher diagnosis efficiency of this extremely genetically heterogeneous disease. Ultimately, efficient molecular diagnosis of USH in a patient's early childhood is of utmost importance, allowing better educational and therapeutic management.

  4. Genetic analysis of Tunisian families with Usher syndrome type 1: toward improving early molecular diagnosis

    PubMed Central

    Ben-Rebeh, Imen; Bonnet, Crystel; Bouassida, Walid; Hadjamor, Imen; Ayadi, Hammadi; Ghorbel, Abdelmonem; Petit, Christine; Masmoudi, Saber

    2016-01-01

    Purpose Usher syndrome accounts for about 50% of all hereditary deaf-blindness cases. The most severe form of this syndrome, Usher syndrome type I (USH1), is characterized by profound congenital sensorineural deafness, vestibular dysfunction, and retinitis pigmentosa. Six USH1 genes have been identified, MYO7A, CDH23, PCDH15, USH1C, SANS, and CIB2, encoding myosin VIIA, cadherin-23, protocadherin-15, harmonin, scaffold protein containing ankyrin repeats and a sterile alpha motif (SAM) domain, and calcium- and integrin-binding member 2, respectively. Methods In the present study, we recruited four Tunisian families with a diagnosis of USH1, together with healthy unrelated controls. Affected members underwent detailed audiologic and ocular examinations. We used the North African Deafness (NADf) chip to search for known North African mutations associated with USH. Then, we selected microsatellite markers covering USH1 known loci to genotype the DNA samples. Finally, we performed DNA sequencing of three known USH1 genes: MYO7A, PCDH15, and USH1C. Results Four biallelic mutations, all single base changes, were found in the MYO7A, USH1C, and PCDH15 genes. These mutations consist of a previously reported splicing defect c.470+1G>A in MYO7A, three novel variants, including two nonsense (p.Arg3X and p.Arg134X) in USH1C and PCDH15, respectively, and one frameshift (p.Lys615Asnfs*6) in MYO7A. Conclusions We found a remarkable genetic heterogeneity in the studied families with USH1 with a variety of mutations, among which three were novel. These novel mutations will be included in the NADf mutation screening chip that will allow a higher diagnosis efficiency of this extremely genetically heterogeneous disease. Ultimately, efficient molecular diagnosis of USH in a patient’s early childhood is of utmost importance, allowing better educational and therapeutic management. PMID:27440999

  5. Structure of Myo7b/USH1C complex suggests a general PDZ domain binding mode by MyTH4-FERM myosins

    PubMed Central

    Li, Jianchao; He, Yunyun; Weck, Meredith L.; Lu, Qing; Tyska, Matthew J.; Zhang, Mingjie

    2017-01-01

    Unconventional myosin 7a (Myo7a), myosin 7b (Myo7b), and myosin 15a (Myo15a) all contain MyTH4-FERM domains (myosin tail homology 4-band 4.1, ezrin, radixin, moesin; MF) in their cargo binding tails and are essential for the growth and function of microvilli and stereocilia. Numerous mutations have been identified in the MyTH4-FERM tandems of these myosins in patients suffering visual and hearing impairment. Although a number of MF domain binding partners have been identified, the molecular basis of interactions with the C-terminal MF domain (CMF) of these myosins remains poorly understood. Here we report the high-resolution crystal structure of Myo7b CMF in complex with the extended PDZ3 domain of USH1C (a.k.a., Harmonin), revealing a previously uncharacterized interaction mode both for MyTH4-FERM tandems and for PDZ domains. We predicted, based on the structure of the Myo7b CMF/USH1C PDZ3 complex, and verified that Myo7a CMF also binds to USH1C PDZ3 using a similar mode. The structure of the Myo7b CMF/USH1C PDZ complex provides mechanistic explanations for >20 deafness-causing mutations in Myo7a CMF. Taken together, these findings suggest that binding to PDZ domains, such as those from USH1C, PDZD7, and Whirlin, is a common property of CMFs of Myo7a, Myo7b, and Myo15a. PMID:28439001

  6. A novel mutation in the MYO7A gene is associated with Usher syndrome type 1 in a Chinese family.

    PubMed

    He, Xiaoguang; Peng, Qi; Li, Siping; Zhu, Pengyuan; Wu, Chunqiu; Rao, Chunbao; Lin, Jingqi; Lu, Xiaomei

    2017-08-01

    We aimed to investigate the genetic causes of hearing loss in a Chinese proband with autosomal recessive congenital deafness. The targeted capture of 159 known deafness genes and next-generation sequencing were performed to study the genetic causes of hearing loss in the Chinese family. Sanger sequencing was employed to verify the variant mutations in members of this family. The proband harbored two mutations in the MYO7A gene in the form of compound heterozygosity. She was found to be heterozygous for a novel insertion mutation c.3847_3848 ins TCTG (p.N1285LfsX24) in exon 30 and for the known mutation c.2239_2240delAG (p.R747S fsX16)in exon 19. The novel mutation was absent in the 1000 Genomes Project. These variants were carried in the heterozygous state by the parents and were therefore co-segregated with the genetic disease. Clinical re-assessment, including detailed audiologic and ocular examinations, revealed congenital deafness and retinitis pigmentosa in the proband. Collectively, the combination of audiometric, ophthalmologic and genetic examinations successfully confirmed the phenotype of Usher syndrome type 1 (USH1). This study demonstrates that the novel mutation c.3847_3848insTCTG (p. N1285LfsX24) in compound heterozygosity with c.2239_2240delAG in the MYO7A gene is the main cause of USH1 in the proband. Our study expands the mutational spectrum of MYO7A and provides a foundation for further investigations elucidating the MYO7A-related mechanisms of USH1. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The effect of novel mutations on the structure and enzymatic activity of unconventional myosins associated with autosomal dominant non-syndromic hearing loss.

    PubMed

    Kwon, Tae-Jun; Oh, Se-Kyung; Park, Hong-Joon; Sato, Osamu; Venselaar, Hanka; Choi, Soo Young; Kim, SungHee; Lee, Kyu-Yup; Bok, Jinwoong; Lee, Sang-Heun; Vriend, Gert; Ikebe, Mitsuo; Kim, Un-Kyung; Choi, Jae Young

    2014-07-01

    Mutations in five unconventional myosin genes have been associated with genetic hearing loss (HL). These genes encode the motor proteins myosin IA, IIIA, VI, VIIA and XVA. To date, most mutations in myosin genes have been found in the Caucasian population. In addition, only a few functional studies have been performed on the previously reported myosin mutations. We performed screening and functional studies for mutations in the MYO1A and MYO6 genes in Korean cases of autosomal dominant non-syndromic HL. We identified four novel heterozygous mutations in MYO6. Three mutations (p.R825X, p.R991X and Q918fsX941) produce a premature truncation of the myosin VI protein. Another mutation, p.R205Q, was associated with diminished actin-activated ATPase activity and actin gliding velocity of myosin VI in an in vitro analysis. This finding is consistent with the results of protein modelling studies and corroborates the pathogenicity of this mutation in the MYO6 gene. One missense variant, p.R544W, was found in the MYO1A gene, and in silico analysis suggested that this variant has deleterious effects on protein function. This finding is consistent with the results of protein modelling studies and corroborates the pathogenic effect of this mutation in the MYO6 gene.

  8. The effect of novel mutations on the structure and enzymatic activity of unconventional myosins associated with autosomal dominant non-syndromic hearing loss

    PubMed Central

    Kwon, Tae-Jun; Oh, Se-Kyung; Park, Hong-Joon; Sato, Osamu; Venselaar, Hanka; Choi, Soo Young; Kim, SungHee; Lee, Kyu-Yup; Bok, Jinwoong; Lee, Sang-Heun; Vriend, Gert; Ikebe, Mitsuo; Kim, Un-Kyung; Choi, Jae Young

    2014-01-01

    Mutations in five unconventional myosin genes have been associated with genetic hearing loss (HL). These genes encode the motor proteins myosin IA, IIIA, VI, VIIA and XVA. To date, most mutations in myosin genes have been found in the Caucasian population. In addition, only a few functional studies have been performed on the previously reported myosin mutations. We performed screening and functional studies for mutations in the MYO1A and MYO6 genes in Korean cases of autosomal dominant non-syndromic HL. We identified four novel heterozygous mutations in MYO6. Three mutations (p.R825X, p.R991X and Q918fsX941) produce a premature truncation of the myosin VI protein. Another mutation, p.R205Q, was associated with diminished actin-activated ATPase activity and actin gliding velocity of myosin VI in an in vitro analysis. This finding is consistent with the results of protein modelling studies and corroborates the pathogenicity of this mutation in the MYO6 gene. One missense variant, p.R544W, was found in the MYO1A gene, and in silico analysis suggested that this variant has deleterious effects on protein function. This finding is consistent with the results of protein modelling studies and corroborates the pathogenic effect of this mutation in the MYO6 gene. PMID:25080041

  9. Functional characterization of mutations in the myosin Vb gene associated with microvillus inclusion disease

    PubMed Central

    Szperl, Agata M.; Golachowska, Magdalena R.; Bruinenberg, Marcel; Prekeris, Rytis; Thunnissen, Andy-Mark W. H.; Karrenbeld, Arend; Dijkstra, Gerard; Hoekstra, Dick; Mercer, David; Ksiazyk, Janusz; Wijmenga, Cisca; Wapenaar, Martin C.; Rings, Edmond H. H. M.; van IJzendoorn, Sven C. D.

    2010-01-01

    Objectives Microvillus inclusion disease (MVID) is a rare autosomal recessive enteropathy characterized by intractable diarrhea and malabsorption. Recently, various MYO5B gene mutations have been identified in MVID patients. Interestingly, several MVID patients showed only a MYO5B mutation in one allele (heterozygous) or no mutations in the MYO5B gene, illustrating the need to further functionally characterize the cell biological effects of the MYO5B mutations. Methods The genomic DNA of nine patients diagnosed with microvillus inclusion disease was screened for MYO5B mutations, and qPCR and immunohistochemistry on the material of two patients was performed to investigate resultant cellular consequences. Results We demonstrate for the first time that MYO5B mutations can be correlated with altered myosin Vb mRNA expression and with an aberrant subcellular distribution of the myosin Vb protein. Moreover, we demonstrate that the typical and myosin Vb–controlled accumulation of rab11a-and FIP5-positive recycling endosomes in the apical cytoplasm of the cells is abolished in MVID enterocytes, which is indicative for altered myosin Vb function. Also, we report 8 novel MYO5B mutations in 9 MVID patients of various etnic backgrounds, including compound heterozygous mutations. Conclusions Our functional analysis indicate that MYO5B mutations can be correlated with an aberrant subcellular distribution of the myosin Vb protein and apical recycling endosomes which, together with the additional compound heterozygous mutations, significantly strengthen the link between MYO5B and MVID. PMID:21206382

  10. Extended mutation spectrum of Usher syndrome in Finland.

    PubMed

    Västinsalo, Hanna; Jalkanen, Reetta; Bergmann, Carsten; Neuhaus, Christine; Kleemola, Leenamaija; Jauhola, Liisa; Bolz, Hanno Jörn; Sankila, Eeva-Marja

    2013-06-01

    The Finnish distribution of clinical Usher syndrome (USH) types is 40% USH3, 34% USH1 and 12% USH2. All patients with USH3 carry the founder mutation in clarin 1 (CLRN1), whereas we recently reported three novel myosin VIIA (MYO7A) mutations in two unrelated patients with USH1. This study was carried out to further investigate the USH mutation spectrum in Finnish patients. We analysed samples from nine unrelated USH patients/families without known mutations and two USH3 families with atypically severe phenotype. The Asper Ophthalmics USH mutation chip was used to screen for known mutations and to evaluate the chip in molecular diagnostics of Finnish patients. The chip revealed a heterozygous usherin (USH2A) mutation, p.N346H, in one patient. Sequencing of MYO7A and/or USH2A in three index patients revealed two novel heterozygous mutations, p.R873W in MYO7A and c.14343+2T>C in USH2A. We did not identify definite pathogenic second mutations in the patients, but identified several probably nonpathogenic variations that may modify the disease phenotype. Possible digenism could not be excluded in two families segregating genomic variations in both MYO7A and USH2A, and two families with CLRN1 and USH2A. We conclude that there is considerable genetic heterogeneity of USH1 and USH2 in Finland, making molecular diagnostics and genetic counselling of patients and families challenging. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.

  11. Characterization of a novel MYO3A missense mutation associated with a dominant form of late onset hearing loss.

    PubMed

    Dantas, Vitor G L; Raval, Manmeet H; Ballesteros, Angela; Cui, Runjia; Gunther, Laura K; Yamamoto, Guilherme L; Alves, Leandro Ucela; Bueno, André Silva; Lezirovitz, Karina; Pirana, Sulene; Mendes, Beatriz C A; Yengo, Christopher M; Kachar, Bechara; Mingroni-Netto, Regina C

    2018-06-07

    Whole-exome sequencing of samples from affected members of two unrelated families with late-onset non-syndromic hearing loss revealed a novel mutation (c.2090 T > G; NM_017433) in MYO3A. The mutation was confirmed in 36 affected individuals, showing autosomal dominant inheritance. The mutation alters a single residue (L697W or p.Leu697Trp) in the motor domain of the stereocilia protein MYO3A, leading to a reduction in ATPase activity, motility, and an increase in actin affinity. MYO3A-L697W showed reduced filopodial actin protrusion initiation in COS7 cells, and a predominant tipward accumulation at filopodia and stereocilia when coexpressed with wild-type MYO3A and espin-1, an actin-regulatory MYO3A cargo. The combined higher actin affinity and duty ratio of the mutant myosin cause increased retention time at stereocilia tips, resulting in the displacement of the wild-type MYO3A protein, which may impact cargo transport, stereocilia length, and mechanotransduction. The dominant negative effect of the altered myosin function explains the dominant inheritance of deafness.

  12. Genetic heterogeneity of Usher syndrome: analysis of 151 families with Usher type I.

    PubMed

    Astuto, L M; Weston, M D; Carney, C A; Hoover, D M; Cremers, C W; Wagenaar, M; Moller, C; Smith, R J; Pieke-Dahl, S; Greenberg, J; Ramesar, R; Jacobson, S G; Ayuso, C; Heckenlively, J R; Tamayo, M; Gorin, M B; Reardon, W; Kimberling, W J

    2000-12-01

    Usher syndrome type I is an autosomal recessive disorder marked by hearing loss, vestibular areflexia, and retinitis pigmentosa. Six Usher I genetic subtypes at loci USH1A-USH1F have been reported. The MYO7A gene is responsible for USH1B, the most common subtype. In our analysis, 151 families with Usher I were screened by linkage and mutation analysis. MYO7A mutations were identified in 64 families with Usher I. Of the remaining 87 families, who were negative for MYO7A mutations, 54 were informative for linkage analysis and were screened with the remaining USH1 loci markers. Results of linkage and heterogeneity analyses showed no evidence of Usher types Ia or Ie. However, one maximum LOD score was observed lying within the USH1D region. Two lesser peak LOD scores were observed outside and between the putative regions for USH1D and USH1F, on chromosome 10. A HOMOG chi(2)((1)) plot shows evidence of heterogeneity across the USH1D, USH1F, and intervening regions. These results provide conclusive evidence that the second-most-common subtype of Usher I is due to genes on chromosome 10, and they confirm the existence of one Usher I gene in the previously defined USH1D region, as well as providing evidence for a second, and possibly a third, gene in the 10p/q region.

  13. Genetic Heterogeneity of Usher Syndrome: Analysis of 151 Families with Usher Type I

    PubMed Central

    Astuto, Lisa M.; Weston, Michael D.; Carney, Carol A.; Hoover, Denise M.; Cremers, Cor W. R. J.; Wagenaar, Mariette; Moller, Claes; Smith, Richard J. H.; Pieke-Dahl, Sandra; Greenberg, Jacquie; Ramesar, Raj; Jacobson, Samuel G.; Ayuso, Carmen; Heckenlively, John R.; Tamayo, Marta; Gorin, Michael B.; Reardon, Willie; Kimberling, William J.

    2000-01-01

    Usher syndrome type I is an autosomal recessive disorder marked by hearing loss, vestibular areflexia, and retinitis pigmentosa. Six Usher I genetic subtypes at loci USH1A–USH1F have been reported. The MYO7A gene is responsible for USH1B, the most common subtype. In our analysis, 151 families with Usher I were screened by linkage and mutation analysis. MYO7A mutations were identified in 64 families with Usher I. Of the remaining 87 families, who were negative for MYO7A mutations, 54 were informative for linkage analysis and were screened with the remaining USH1 loci markers. Results of linkage and heterogeneity analyses showed no evidence of Usher types Ia or Ie. However, one maximum LOD score was observed lying within the USH1D region. Two lesser peak LOD scores were observed outside and between the putative regions for USH1D and USH1F, on chromosome 10. A HOMOG χ2(1) plot shows evidence of heterogeneity across the USH1D, USH1F, and intervening regions. These results provide conclusive evidence that the second-most-common subtype of Usher I is due to genes on chromosome 10, and they confirm the existence of one Usher I gene in the previously defined USH1D region, as well as providing evidence for a second, and possibly a third, gene in the 10p/q region. PMID:11060213

  14. A missense mutation in myosin VIIA prevents aminoglycoside accumulation in early postnatal cochlear hair cells.

    PubMed

    Richardson, G P; Forge, A; Kros, C J; Marcotti, W; Becker, D; Williams, D S; Thorpe, J; Fleming, J; Brown, S D; Steel, K P

    1999-11-28

    Myosin VIIA is expressed by sensory hair cells in the inner ear and proximal tubule cells in the kidney, the two primary targets of aminoglycoside antibiotics. Using cochlear cultures prepared from early postnatal Myo7a6J mice with a missense mutation in the head region of the myosin VIIA molecule we show that this myosin is required for aminoglycoside accumulation in cochlear hair cells. Hair cells in homozygous mutant Myo7a6J cochlear cultures have disorganized hair bundles, but are otherwise morphologically normal and transduce. However, and in contrast to hair cells from heterozygous Myo7a6J cultures, the homozygous Myo7a6J hair cells do not accumulate [3H]gentamicin and do not exhibit an ototoxic response on exposure to aminoglycoside. Possible roles for myosin VIIA in the process of aminoglycoside accumulation are discussed.

  15. The first case of NSHL by direct impression on EYA1 gene and identification of one novel mutation in MYO7A in the Iranian families.

    PubMed

    Razmara, Ehsan; Bitarafan, Fatemeh; Esmaeilzadeh-Gharehdaghi, Elika; Almadani, Navid; Garshasbi, Masoud

    2018-03-01

    Targeted next-generation sequencing (NGS) provides a consequential opportunity to elucidate genetic factors in known diseases, particularly in profoundly heterogeneous disorders such as non-syndromic hearing loss (NSHL). Hearing impairments could be classified into syndromic and non-syndromic types. This study intended to assess the significance of mutations in these genes to the autosomal recessive/dominant non-syndromic genetic load among Iranian families. Two families were involved in this research and two patients were examined by targeted next-generation sequencing. Here we report two novel mutations in the MYO7A and EYA1 genes in two patients detected by targeted NGS. They were confirmed by Sanger sequencing and quantitative real-time PCR techniques. In this investigation, we identified a novel mutation in MYO7A , c.3751G>C, p.A1251P, along with another previously identified mutation (c.1708C>T) in one of the cases. This mutation is located in the MYTH4 protein domain which is a pivotal domain for the myosin function. Another finding in this research was a novel de-novo deletion which deletes the entire EYA1 coding region (EX1-18 DEL). Mutations in EYA1 gene have been found in branchiootorenal (BOR) syndrome. Interestingly the patient with EYA1 deletion did not show any other additional clinical implications apart from HL. This finding might argue for the sole involvement of EYA1 function in the mechanism of hearing. This investigation exhibited that the novel mutations in MYO7A , c.3751G>C, p.A1251P, and EYA1 , EX1-18 DEL, were associated with NSHL. Our research increased the mutation spectrum of hearing loss in the Iranian population.

  16. Identification of a novel homozygous mutation in MYO3A in a Chinese family with DFNB30 non-syndromic hearing impairment.

    PubMed

    Qu, Ronggui; Sang, Qing; Xu, Yao; Feng, Ruizhi; Jin, Li; He, Lin; Wang, Lei

    2016-05-01

    Hearing loss is a common sensory impairment. Several genetic loci or genes responsible for non-syndrome hearing loss have been identified, including the well-known deafness genes GJB2, MT-RNR1 and SLC26A4. MYO3A belongs to the myosin superfamily. Previously only three mutations in this gene have been found in an Isreali family with DFNB30, in which patients demonstrated progressive hearing loss. In this study, we characterized a consanguineous Kazakh family with congenital hearing loss. By targeted sequence capture and next-generation sequencing, we identified a homozygous mutation and did bioinformatics analysis to this mutation. A homozygous mutation, MYO3A:c.1841C>T (p.S614F), was identified to be responsible for the disease. Ser614 is located in the motor domain of MYO3A that is highly conserved among different species. Molecular modeling predicts that the conserved Ser614 may play an important role in maintaining the stability of β-sheet and the interaction between neighboring β-strand. This is the second report on MYO3A mutations in deafness and the first report in China. The finding help facilitate establishing a better relationship between MYO3A mutation and hearing phenotypes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Natural history and retinal structure in patients with Usher syndrome type 1 owing to MYO7A mutation.

    PubMed

    Lenassi, Eva; Saihan, Zubin; Cipriani, Valentina; Le Quesne Stabej, Polona; Moore, Anthony T; Luxon, Linda M; Bitner-Glindzicz, Maria; Webster, Andrew R

    2014-02-01

    To evaluate the phenotypic variability and natural history of ocular disease in a cohort of 28 individuals with MYO7A-related disease. Mutations in the MYO7A gene are the most common cause of Usher syndrome type 1, characterized by profound congenital deafness, vestibular arreflexia, and progressive retinal degeneration. Retrospective case series. Twenty-eight patients from 26 families (age range, 3-65 years; median, 32) with 2 likely disease-causing variants in MYO7A. Clinical investigations included fundus photography, optical coherence tomography, fundus autofluorescence (FAF) imaging, and audiologic and vestibular assessments. Longitudinal visual acuity and FAF data (over a 3-year period) were available for 20 and 10 study subjects, respectively. Clinical, structural, and functional characteristics. All patients with MYO7A mutations presented with features consistent with Usher type 1. The median visual acuity for the cohort was 0.39 logarithm of the minimum angle of resolution (logMAR; range, 0.0-2.7) and visual acuity in logMAR correlated with age (Spearman's rank correlation coefficient, r = 0.71; P<0.0001). Survival analysis revealed that acuity ≤ 0.22 logMAR was maintained in 50% of studied subjects until age 33.9; legal blindness based on loss of acuity (≥ 1.00 logMAR) or loss of field (≤ 20°) was reached at a median age of 40.6 years. Three distinct patterns were observed on FAF imaging: 13 of 22 patients tested had relatively preserved foveal autofluorescence surrounded by a ring of high density, 4 of 22 had increased signal in the fovea with no obvious hyperautofluorescent ring, and 5 of 22 had widespread hypoautofluorescence corresponding to retinal pigment epithelial atrophy. Despite a number of cases presenting with a milder phenotype, there seemed to be no obvious genotype-phenotype correlation. MYO7A-related ocular disease is variable. Central vision typically remains preserved at least until the third decade of life, with 50% of affected individuals reaching legal blindness by 40 years of age. Distinct phenotypic subsets were identified on FAF imaging. A specific allele, previously reported in nonsyndromic deafness, may be associated with a mild retinopathy. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  18. An overview and online registry of microvillus inclusion disease patients and their MYO5B mutations.

    PubMed

    van der Velde, K Joeri; Dhekne, Herschel S; Swertz, Morris A; Sirigu, Serena; Ropars, Virginie; Vinke, Petra C; Rengaw, Trebor; van den Akker, Peter C; Rings, Edmond H H M; Houdusse, Anne; van Ijzendoorn, Sven C D

    2013-12-01

    Microvillus inclusion disease (MVID) is one of the most severe congenital intestinal disorders and is characterized by neonatal secretory diarrhea and the inability to absorb nutrients from the intestinal lumen. MVID is associated with patient-, family-, and ancestry-unique mutations in the MYO5B gene, encoding the actin-based motor protein myosin Vb. Here, we review the MYO5B gene and all currently known MYO5B mutations and for the first time methodologically categorize these with regard to functional protein domains and recurrence in MYO7A associated with Usher syndrome and other myosins. We also review animal models for MVID and the latest data on functional studies related to the myosin Vb protein. To congregate existing and future information on MVID geno-/phenotypes and facilitate its quick and easy sharing among clinicians and researchers, we have constructed an online MOLGENIS-based international patient registry (www.MVID-central.org). This easily accessible database currently contains detailed information of 137 MVID patients together with reported clinical/phenotypic details and 41 unique MYO5B mutations, of which several unpublished. The future expansion and prospective nature of this registry is expected to improve disease diagnosis, prognosis, and genetic counseling. © 2013 WILEY PERIODICALS, INC.

  19. Targeted next generation sequencing identified a novel mutation in MYO7A causing Usher syndrome type 1 in an Iranian consanguineous pedigree.

    PubMed

    Kooshavar, Daniz; Razipour, Masoumeh; Movasat, Morteza; Keramatipour, Mohammad

    2018-01-01

    Usher syndrome (USH) is characterized by congenital hearing loss and retinitis pigmentosa (RP) with a later onset. It is an autosomal recessive trait with clinical and genetic heterogeneity which makes the molecular diagnosis much difficult. In this study, we introduce a pedigree with two affected members with USH type 1 and represent a cost and time effective approach for genetic diagnosis of USH as a genetically heterogeneous disorder. Target region capture in the genes of interest, followed by next generation sequencing (NGS) was used to determine the causative mutations in one of the probands. Then segregation analysis in the pedigree was conducted using PCR-Sanger sequencing. Targeted NGS detected a novel homozygous nonsense variant c.4513G > T (p.Glu1505Ter) in MYO7A. The variant is segregating in the pedigree with an autosomal recessive pattern. In this study, a novel stop gained variant c.4513G > T (p.Glu1505Ter) in MYO7A was found in an Iranian pedigree with two affected members with USH type 1. Bioinformatic as well as pedigree segregation analyses were in line with pathogenic nature of this variant. Targeted NGS panel was showed to be an efficient method for mutation detection in hereditary disorders with locus heterogeneity. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. MYO7A and USH2A gene sequence variants in Italian patients with Usher syndrome.

    PubMed

    Sodi, Andrea; Mariottini, Alessandro; Passerini, Ilaria; Murro, Vittoria; Tachyla, Iryna; Bianchi, Benedetta; Menchini, Ugo; Torricelli, Francesca

    2014-01-01

    To analyze the spectrum of sequence variants in the MYO7A and USH2A genes in a group of Italian patients affected by Usher syndrome (USH). Thirty-six Italian patients with a diagnosis of USH were recruited. They received a standard ophthalmologic examination, visual field testing, optical coherence tomography (OCT) scan, and electrophysiological tests. Fluorescein angiography and fundus autofluorescence imaging were performed in selected cases. All the patients underwent an audiologic examination for the 0.25-8,000 Hz frequencies. Vestibular function was evaluated with specific tests. DNA samples were analyzed for sequence variants of the MYO7A gene (for USH1) and the USH2A gene (for USH2) with direct sequencing techniques. A few patients were analyzed for both genes. In the MYO7A gene, ten missense variants were found; three patients were compound heterozygous, and two were homozygous. Thirty-four USH2A gene variants were detected, including eight missense variants, nine nonsense variants, six splicing variants, and 11 duplications/deletions; 19 patients were compound heterozygous, and three were homozygous. Four MYO7A and 17 USH2A variants have already been described in the literature. Among the novel mutations there are four USH2A large deletions, detected with multiplex ligation dependent probe amplification (MLPA) technology. Two potentially pathogenic variants were found in 27 patients (75%). Affected patients showed variable clinical pictures without a clear genotype-phenotype correlation. Ten variants in the MYO7A gene and 34 variants in the USH2A gene were detected in Italian patients with USH at a high detection rate. A selective analysis of these genes may be valuable for molecular analysis, combining diagnostic efficiency with little time wastage and less resource consumption.

  1. PDZD7-MYO7A complex identified in enriched stereocilia membranes

    PubMed Central

    Morgan, Clive P; Krey, Jocelyn F; Grati, M'hamed; Zhao, Bo; Fallen, Shannon; Kannan-Sundhari, Abhiraami; Liu, Xue Zhong; Choi, Dongseok; Müller, Ulrich; Barr-Gillespie, Peter G

    2016-01-01

    While more than 70 genes have been linked to deafness, most of which are expressed in mechanosensory hair cells of the inner ear, a challenge has been to link these genes into molecular pathways. One example is Myo7a (myosin VIIA), in which deafness mutations affect the development and function of the mechanically sensitive stereocilia of hair cells. We describe here a procedure for the isolation of low-abundance protein complexes from stereocilia membrane fractions. Using this procedure, combined with identification and quantitation of proteins with mass spectrometry, we demonstrate that MYO7A forms a complex with PDZD7, a paralog of USH1C and DFNB31. MYO7A and PDZD7 interact in tissue-culture cells, and co-localize to the ankle-link region of stereocilia in wild-type but not Myo7a mutant mice. Our data thus describe a new paradigm for the interrogation of low-abundance protein complexes in hair cell stereocilia and establish an unanticipated link between MYO7A and PDZD7. DOI: http://dx.doi.org/10.7554/eLife.18312.001 PMID:27525485

  2. Compound heterozygous MYO7A mutations segregating Usher syndrome type 2 in a Han family.

    PubMed

    Zong, Ling; Chen, Kaitian; Wu, Xuan; Liu, Min; Jiang, Hongyan

    2016-11-01

    Identification of rare deafness genes for inherited congenital sensorineural hearing impairment remains difficult, because a large variety of genes are implicated. In this study we applied targeted capture and next-generation sequencing to uncover the underlying gene in a three-generation Han family segregating recessive inherited hearing loss and retinitis pigmentosa. After excluding mutations in common deafness genes GJB2, SLC26A4 and the mitochondrial gene, genomic DNA of the proband of a Han family was subjected to targeted next-generation sequencing. The candidate mutations were confirmed by Sanger sequencing and subsequently analyzed with in silico tools. An unreported splice site mutation c.3924+1G > C compound with c.6028G > A in the MYO7A gene were detected to cosegregate with the phenotype in this pedigree. Both mutations, located in the evolutionarily conserved FERM domain in myosin VIIA, were predicted to be pathogenic. In this family, profound sensorineural hearing impairment and retinitis pigmentosa without vestibular disorder, constituted the typical Usher syndrome type 2. Identification of novel mutation in compound heterozygosity in MYO7A gene revealed the genetic origin of Usher syndrome type 2 in this Han family. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Next-generation sequencing identifies a novel compound heterozygous mutation in MYO7A in a Chinese patient with Usher Syndrome 1B.

    PubMed

    Wei, Xiaoming; Sun, Yan; Xie, Jiansheng; Shi, Quan; Qu, Ning; Yang, Guanghui; Cai, Jun; Yang, Yi; Liang, Yu; Wang, Wei; Yi, Xin

    2012-11-20

    Targeted enrichment and next-generation sequencing (NGS) have been employed for detection of genetic diseases. The purpose of this study was to validate the accuracy and sensitivity of our method for comprehensive mutation detection of hereditary hearing loss, and identify inherited mutations involved in human deafness accurately and economically. To make genetic diagnosis of hereditary hearing loss simple and timesaving, we designed a 0.60 MB array-based chip containing 69 nuclear genes and mitochondrial genome responsible for human deafness and conducted NGS toward ten patients with five known mutations and a Chinese family with hearing loss (never genetically investigated). Ten patients with five known mutations were sequenced using next-generation sequencing to validate the sensitivity of the method. We identified four known mutations in two nuclear deafness causing genes (GJB2 and SLC26A4), one in mitochondrial DNA. We then performed this method to analyze the variants in a Chinese family with hearing loss and identified compound heterozygosity for two novel mutations in gene MYO7A. The compound heterozygosity identified in gene MYO7A causes Usher Syndrome 1B with severe phenotypes. The results support that the combination of enrichment of targeted genes and next-generation sequencing is a valuable molecular diagnostic tool for hereditary deafness and suitable for clinical application. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Mutational Spectrum of MYO15A and the Molecular Mechanisms of DFNB3 Human Deafness

    PubMed Central

    Rehman, Atteeq U.; Bird, Jonathan E.; Faridi, Rabia; Shahzad, Mohsin; Shah, Sujay; Lee, Kwanghyuk; Khan, Shaheen N.; Imtiaz, Ayesha; Ahmed, Zubair M.; Riazuddin, Saima; Santos-Cortez, Regie Lyn P.; Ahmad, Wasim; Leal, Suzanne M.; Riazuddin, Sheikh; Friedman, Thomas B.

    2016-01-01

    Deafness in humans is a common neurosensory disorder and is genetically heterogeneous. Across diverse ethnic groups, mutations of MYO15A at the DFNB3 locus appear to be the third or fourth most common cause of autosomal recessive, nonsyndromic deafness. In 49 of the 67 exons of MYO15A, there are currently 192 recessive mutations identified, including 14 novel mutations reported here. These mutations are distributed uniformly across MYO15A with one enigmatic exception; the alternatively spliced giant exon 2, encoding 1,233 residues, has 17 truncating mutations but no convincing deafness-causing missense mutations. MYO15A encodes three distinct isoform classes, one of which is 395 kDa (3,530 residues), the largest member of the myosin superfamily of molecular motors. Studies of Myo15 mouse models that recapitulate DFNB3 revealed two different pathogenic mechanisms of hearing loss. In the inner ear, myosin 15 is necessary both for the development and the long-term maintenance of stereocilia, mechanosensory sound-transducing organelles that extend from the apical surface of hair cells. The goal of this Mutation Update is to provide a comprehensive review of mutations and functions of MYO15A. PMID:27375115

  5. Mutant p53-associated myosin-X upregulation promotes breast cancer invasion and metastasis.

    PubMed

    Arjonen, Antti; Kaukonen, Riina; Mattila, Elina; Rouhi, Pegah; Högnäs, Gunilla; Sihto, Harri; Miller, Bryan W; Morton, Jennifer P; Bucher, Elmar; Taimen, Pekka; Virtakoivu, Reetta; Cao, Yihai; Sansom, Owen J; Joensuu, Heikki; Ivaska, Johanna

    2014-03-01

    Mutations of the tumor suppressor TP53 are present in many forms of human cancer and are associated with increased tumor cell invasion and metastasis. Several mechanisms have been identified for promoting dissemination of cancer cells with TP53 mutations, including increased targeting of integrins to the plasma membrane. Here, we demonstrate a role for the filopodia-inducing motor protein Myosin-X (Myo10) in mutant p53-driven cancer invasion. Analysis of gene expression profiles from 2 breast cancer data sets revealed that MYO10 was highly expressed in aggressive cancer subtypes. Myo10 was required for breast cancer cell invasion and dissemination in multiple cancer cell lines and murine models of cancer metastasis. Evaluation of a Myo10 mutant without the integrin-binding domain revealed that the ability of Myo10 to transport β₁ integrins to the filopodia tip is required for invasion. Introduction of mutant p53 promoted Myo10 expression in cancer cells and pancreatic ductal adenocarcinoma in mice, whereas suppression of endogenous mutant p53 attenuated Myo10 levels and cell invasion. In clinical breast carcinomas, Myo10 was predominantly expressed at the invasive edges and correlated with the presence of TP53 mutations and poor prognosis. These data indicate that Myo10 upregulation in mutant p53-driven cancers is necessary for invasion and that plasma-membrane protrusions, such as filopodia, may serve as specialized metastatic engines.

  6. Massively Parallel DNA Sequencing Facilitates Diagnosis of Patients with Usher Syndrome Type 1

    PubMed Central

    Yoshimura, Hidekane; Iwasaki, Satoshi; Nishio, Shin-ya; Kumakawa, Kozo; Tono, Tetsuya; Kobayashi, Yumiko; Sato, Hiroaki; Nagai, Kyoko; Ishikawa, Kotaro; Ikezono, Tetsuo; Naito, Yasushi; Fukushima, Kunihiro; Oshikawa, Chie; Kimitsuki, Takashi; Nakanishi, Hiroshi; Usami, Shin-ichi

    2014-01-01

    Usher syndrome is an autosomal recessive disorder manifesting hearing loss, retinitis pigmentosa and vestibular dysfunction, and having three clinical subtypes. Usher syndrome type 1 is the most severe subtype due to its profound hearing loss, lack of vestibular responses, and retinitis pigmentosa that appears in prepuberty. Six of the corresponding genes have been identified, making early diagnosis through DNA testing possible, with many immediate and several long-term advantages for patients and their families. However, the conventional genetic techniques, such as direct sequence analysis, are both time-consuming and expensive. Targeted exon sequencing of selected genes using the massively parallel DNA sequencing technology will potentially enable us to systematically tackle previously intractable monogenic disorders and improve molecular diagnosis. Using this technique combined with direct sequence analysis, we screened 17 unrelated Usher syndrome type 1 patients and detected probable pathogenic variants in the 16 of them (94.1%) who carried at least one mutation. Seven patients had the MYO7A mutation (41.2%), which is the most common type in Japanese. Most of the mutations were detected by only the massively parallel DNA sequencing. We report here four patients, who had probable pathogenic mutations in two different Usher syndrome type 1 genes, and one case of MYO7A/PCDH15 digenic inheritance. This is the first report of Usher syndrome mutation analysis using massively parallel DNA sequencing and the frequency of Usher syndrome type 1 genes in Japanese. Mutation screening using this technique has the power to quickly identify mutations of many causative genes while maintaining cost-benefit performance. In addition, the simultaneous mutation analysis of large numbers of genes is useful for detecting mutations in different genes that are possibly disease modifiers or of digenic inheritance. PMID:24618850

  7. Massively parallel DNA sequencing facilitates diagnosis of patients with Usher syndrome type 1.

    PubMed

    Yoshimura, Hidekane; Iwasaki, Satoshi; Nishio, Shin-Ya; Kumakawa, Kozo; Tono, Tetsuya; Kobayashi, Yumiko; Sato, Hiroaki; Nagai, Kyoko; Ishikawa, Kotaro; Ikezono, Tetsuo; Naito, Yasushi; Fukushima, Kunihiro; Oshikawa, Chie; Kimitsuki, Takashi; Nakanishi, Hiroshi; Usami, Shin-Ichi

    2014-01-01

    Usher syndrome is an autosomal recessive disorder manifesting hearing loss, retinitis pigmentosa and vestibular dysfunction, and having three clinical subtypes. Usher syndrome type 1 is the most severe subtype due to its profound hearing loss, lack of vestibular responses, and retinitis pigmentosa that appears in prepuberty. Six of the corresponding genes have been identified, making early diagnosis through DNA testing possible, with many immediate and several long-term advantages for patients and their families. However, the conventional genetic techniques, such as direct sequence analysis, are both time-consuming and expensive. Targeted exon sequencing of selected genes using the massively parallel DNA sequencing technology will potentially enable us to systematically tackle previously intractable monogenic disorders and improve molecular diagnosis. Using this technique combined with direct sequence analysis, we screened 17 unrelated Usher syndrome type 1 patients and detected probable pathogenic variants in the 16 of them (94.1%) who carried at least one mutation. Seven patients had the MYO7A mutation (41.2%), which is the most common type in Japanese. Most of the mutations were detected by only the massively parallel DNA sequencing. We report here four patients, who had probable pathogenic mutations in two different Usher syndrome type 1 genes, and one case of MYO7A/PCDH15 digenic inheritance. This is the first report of Usher syndrome mutation analysis using massively parallel DNA sequencing and the frequency of Usher syndrome type 1 genes in Japanese. Mutation screening using this technique has the power to quickly identify mutations of many causative genes while maintaining cost-benefit performance. In addition, the simultaneous mutation analysis of large numbers of genes is useful for detecting mutations in different genes that are possibly disease modifiers or of digenic inheritance.

  8. Mutational Spectrum of MYO15A and the Molecular Mechanisms of DFNB3 Human Deafness.

    PubMed

    Rehman, Atteeq U; Bird, Jonathan E; Faridi, Rabia; Shahzad, Mohsin; Shah, Sujay; Lee, Kwanghyuk; Khan, Shaheen N; Imtiaz, Ayesha; Ahmed, Zubair M; Riazuddin, Saima; Santos-Cortez, Regie Lyn P; Ahmad, Wasim; Leal, Suzanne M; Riazuddin, Sheikh; Friedman, Thomas B

    2016-10-01

    Deafness in humans is a common neurosensory disorder and is genetically heterogeneous. Across diverse ethnic groups, mutations of MYO15A at the DFNB3 locus appear to be the third or fourth most common cause of autosomal-recessive, nonsyndromic deafness. In 49 of the 67 exons of MYO15A, there are currently 192 recessive mutations identified, including 14 novel mutations reported here. These mutations are distributed uniformly across MYO15A with one enigmatic exception; the alternatively spliced giant exon 2, encoding 1,233 residues, has 17 truncating mutations but no convincing deafness-causing missense mutations. MYO15A encodes three distinct isoform classes, one of which is 395 kDa (3,530 residues), the largest member of the myosin superfamily of molecular motors. Studies of Myo15 mouse models that recapitulate DFNB3 revealed two different pathogenic mechanisms of hearing loss. In the inner ear, myosin 15 is necessary both for the development and the long-term maintenance of stereocilia, mechanosensory sound-transducing organelles that extend from the apical surface of hair cells. The goal of this Mutation Update is to provide a comprehensive review of mutations and functions of MYO15A. © 2016 WILEY PERIODICALS, INC.

  9. Evidence of genetic heterogeneity in Alberta Hutterites with Usher syndrome type I.

    PubMed

    Zhou, Qi; Lenger, Chaeli; Smith, Richard; Kimberling, William J; Ye, Ming; Lehmann, Ordan; MacDonald, Ian

    2012-01-01

    To identify the genetic defect in a Hutterite population from northern Alberta with Usher syndrome type I. Complete ophthalmic examinations were conducted on two boys and two girls from two related Hutterite families diagnosed with Usher syndrome type I. DNA from patients and their parents was first evaluated for a mutation in exon 10 of the protocadherin-related 15 (PCDH15) gene (c.1471delG), previously reported in southern Alberta Hutterite patients with Usher syndrome (USH1F). Single nucleotide polymorphic linkage analysis was then used to confirm another locus, and DNA was analyzed with the Usher Chip v4.0 platform. Severe hearing impairment, unintelligible speech, and retinitis pigmentosa with varying degrees of visual acuity and visual field loss established a clinical diagnosis of Usher syndrome type I. The patients did not carry the exon 10 mutation in the PCDH15 gene; however, with microarray analysis, a previously reported mutation (c.52C>T; p.Q18X) in the myosin VIIA (MYO7A) gene was found in the homozygous state in the affected siblings. The finding of a MYO7A mutation in two related Hutterite families from northern Alberta provides evidence of genetic heterogeneity in Hutterites affected by Usher syndrome type I.

  10. Comprehensive Molecular Screening in Chinese Usher Syndrome Patients.

    PubMed

    Sun, Tengyang; Xu, Ke; Ren, Yanfan; Xie, Yue; Zhang, Xiaohui; Tian, Lu; Li, Yang

    2018-03-01

    Usher syndrome (USH) refers to a group of autosomal recessive disorders causing deafness and blindness. The objectives of this study were to determine the mutation spectrum in a cohort of Chinese patients with USH and to describe the clinical features of the patients with mutations. A total of 119 probands who were clinically diagnosed with USH were recruited for genetic analysis. All probands underwent ophthalmic examinations. A combination of molecular screening methods, including targeted next-generation sequencing, Sanger-DNA sequencing, and multiplex ligation probe amplification assay, was used to detect mutations. We found biallelic mutations in 92 probands (77.3%), monoallelic mutations in 5 patients (4.2%), and 1 hemizygous mutation in 1 patient (0.8%), resulting in an overall mutation detection rate of 78.2%. Overall, 132 distinct disease-causing mutations involving seven USH (ABHD12, CDH23, GPR98, MYO7A, PCDH15, USH1C, and USH2A) genes; 5 other retinal degeneration genes (CHM, CNGA1, EYS, PDE6B, and TULP1); and 1 nonsyndromic hearing loss gene (MYO15A) were identified, and 78 were novel. Mutations of MYOA7 were responsible for 60% of USH1 families, followed by PCDH15 (20%) and USH1C (10%). Mutations of USH2A accounted for 67.7% of USH2 families, and mutation c.8559-2A>G was the most frequent one, accounting for 19.1% of the identified USH2A alleles. Our results confirm that the mutation spectrum for each USH gene in Chinese patients differs from those of other populations. The formation of the mutation profile for the Chinese population will enable a precise genetic diagnosis for USH patients in the future.

  11. A homozygous MYO7A mutation associated to Usher syndrome and unilateral auditory neuropathy spectrum disorder.

    PubMed

    Xia, Hong; Hu, Pengzhi; Yuan, Lamei; Xiong, Wei; Xu, Hongbo; Yi, Junhui; Yang, Zhijian; Deng, Xiong; Guo, Yi; Deng, Hao

    2017-10-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by sensorineural hearing loss, progressive visual loss and night blindness due to retinitis pigmentosa (RP), with or without vestibular dysfunction. The purpose of this study was to detect the causative gene in a consanguineous Chinese family with USH. A c.3696_3706del (p.R1232Sfs*72) variant in the myosin VIIa gene (MYO7A) was identified in the homozygous state by exome sequencing. The co‑segregation of the MYO7A c.3696_3706del variant with the phenotype of deafness and progressive visual loss in the USH family was confirmed by Sanger sequencing. The variant was absent in 200 healthy controls. Therefore, the c.3696_3706del variant may disrupt the interaction between myosin VIIa and other USH1 proteins, and impair melanosome transport in retinal pigment epithelial cells. Notably, bilateral auditory brainstem responses were absent in two patients of the USH family, while distortion product otoacoustic emissions were elicited in the right ears of the two patients, consistent with clinical diagnosis of unilateral auditory neuropathy spectrum disorder. These data suggested that the homozygous c.3696_3706del variant in the MYO7A gene may be the disease‑causing mutation for the disorder in this family. These findings broaden the phenotype spectrum of the MYO7A gene, and may facilitate understanding of the molecular pathogenesis of the disease, and genetic counseling for the family.

  12. Exome Sequencing Identifies a Novel Nonsense Mutation of MYO6 as the Cause of Deafness in a Brazilian Family.

    PubMed

    Sampaio-Silva, Juliana; Batissoco, Ana Carla; Jesus-Santos, Rafaela; Abath-Neto, Osório; Scarpelli, Luciano Cesar; Nishimura, Patricia Yoshie; Galindo, Layla Testa; Bento, Ricardo Ferreira; Oiticica, Jeanne; Lezirovitz, Karina

    2018-01-01

    We investigated 313 unrelated subjects who presented with hearing loss to identify the novel genetic causes of this condition in Brazil. Causative GJB2/GJB6 mutations were found in 12.7% of the patients. Among the familial cases (100/313), four were selected for exome sequencing. In one case, two novel heterozygous variants were found and were predicted to be pathogenic based on bioinformatics tools, that is, p.Ser906* (MYO6) and p.Arg42Cys (GJB3). We confirmed that this nonsense MYO6 mutation segregated with deafness in this family. Only the proband and her unaffected mother exhibited the GJB3 mutation, which is in the same amino acid of a known Erythrokeratodermia variabilis mutation. None of the patients exhibited this skin disease, but the proband exhibited a more severe hearing loss. Hence, the GJB3 mutation was considered to be a variant of uncertain significance. In conclusion, we described a novel nonsense MYO6 mutation that was responsible for the hearing loss in a Brazilian family. This mutation resides in the neck domain of myosin-VI after the motor domain. Thus, our data give further support for genotype-phenotype correlations, which state that when the motor domain of the protein is functioning, the hearing loss is milder and has a later onset. The three remaining families without mutations in the known genes suggest that there are still deafness genes to be revealed. © 2017 John Wiley & Sons Ltd/University College London.

  13. A Hearing-Loss Associated Myo1c Mutation (R156W) Decreases the Myosin Duty Ratio and Force Sensitivity†

    PubMed Central

    Lin, Tianming; Greenberg, Michael J.; Moore, Jeffrey R.; Ostap, E. Michael

    2011-01-01

    Myo1c is a member of the myosin superfamily that has been proposed to function as the adaptation motor in vestibular and auditory hair cells. A recent study identified a myo1c point mutation (R156W) in a person with bilateral sensorineural hearing loss. This mutated residue is located at the start of the highly conserved switch-1 region, which is a crucial element for the binding of nucleotide. We characterized the key steps on the ATPase pathway at 37 °C using recombinant wild-type (myo1c3IQ) and mutant myo1c (R156W-myo1c3IQ) constructs that consist of the motor domain and three IQ motifs. The R156W mutation only moderately affects the rates of ATP binding, ATP-induced actomyosin dissociation, and ADP release. The actin-activated ATPase rate of the mutant is inhibited > 4-fold, which is likely due to a decrease in the rate of phosphate release. The rate of actin gliding, as measured by the in vitro motility assay, is unaffected by the mutation at high myosin surface densities, but actin gliding is substantially reduced at low surface densities of R156W-myo1c3IQ. We used a frictional-loading assay to measure the affect of resisting forces on the rate of actin gliding and found that R156W-myo1c3IQ is less force sensitive than myo1c3IQ. Taken together, these results indicate that myo1c with the R156W mutation has a lower duty ratio than the wild-type protein and motile properties that are less sensitive to resisting forces. PMID:21265502

  14. Structure of MyTH4-FERM domains in myosin VIIa tail bound to cargo.

    PubMed

    Wu, Lin; Pan, Lifeng; Wei, Zhiyi; Zhang, Mingjie

    2011-02-11

    The unconventional myosin VIIa (MYO7A) is one of the five proteins that form a network of complexes involved in formation of stereocilia. Defects in these proteins cause syndromic deaf-blindness in humans [Usher syndrome I (USH1)]. Many disease-causing mutations occur in myosin tail homology 4-protein 4.1, ezrin, radixin, moesin (MyTH4-FERM) domains in the myosin tail that binds to another USH1 protein, Sans. We report the crystal structure of MYO7A MyTH4-FERM domains in complex with the central domain (CEN) of Sans at 2.8 angstrom resolution. The MyTH4 and FERM domains form an integral structural and functional supramodule binding to two highly conserved segments (CEN1 and 2) of Sans. The MyTH4-FERM/CEN complex structure provides mechanistic explanations for known deafness-causing mutations in MYO7A MyTH4-FERM. The structure will also facilitate mechanistic and functional studies of MyTH4-FERM domains in other myosins.

  15. Identification of two novel pathogenic compound heterozygous MYO7A mutations in Usher syndrome by whole exome sequencing.

    PubMed

    Jia, Ying; Li, Xiaoge; Yang, Dong; Xu, Yi; Guo, Ying; Li, Xin

    2018-01-01

    The current study aims to identify the pathogenic sites in a core pedigree of Usher syndrome (USH). A core pedigree of USH was analyzed by whole exome sequencing (WES). Mutations were verified by polymerase chain reaction (PCR) amplification and Sanger sequencing. Two pathogenic variations (c.849+2T>C and c.5994G>A) in MYO7A were successfully identified and individually separated from parents. One variant (c.849+2T>C) was nonsense mutation, causing the protein terminated in advance, and the other one (c.5994G>A) located near the boundary of exon could cause aberrant splicing. This study provides a meaningful exploration for identification of clinical core genetic pedigrees. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Molecular screening of deafness in Algeria: high genetic heterogeneity involving DFNB1 and the Usher loci, DFNB2/USH1B, DFNB12/USH1D and DFNB23/USH1F.

    PubMed

    Ammar-Khodja, Fatima; Faugère, Valérie; Baux, David; Giannesini, Claire; Léonard, Susana; Makrelouf, Mohamed; Malek, Rahia; Djennaoui, Djamel; Zenati, Akila; Claustres, Mireille; Roux, Anne-Françoise

    2009-01-01

    A systematic approach, involving haplotyping and genotyping, to the molecular diagnosis of non-syndromic deafness within 50 families and 9 sporadic cases from Algeria is described. Mutations at the DFNB1 locus (encompassing the GJB2 and GJB6 genes) are responsible for more than half of autosomal recessive prelingual non-syndromic deafness in various populations. A c.35delG mutation can account for up to 85% of GJB2 mutations and two large deletions del(GJB6-D13S1830) and del(GJB6-D13S1854) have also been reported in several population groups. In view of the genetic heterogeneity a strategy was developed which involved direct analysis of DFNB1. In negative familial cases, haplotype analysis was carried out, where possible, to exclude DFNB1 mutations. Following this, haplotype analysis of five Usher syndrome loci, sometimes involved in autosomal non-syndromic hearing loss, was carried out to identify cases in which Usher gene sequencing was indicated. When homozygosity was observed at a locus in a consanguineous family, the corresponding gene was exhaustively sequenced. Pathogenic DFNB1 genotypes were identified in 40% of the cases. Of the 21 cases identified with 2 pathogenic mutations, c.35delG represented 76% of the mutated alleles. The additional mutations were one nonsense, two missense and one splicing mutation. Four additional patients were identified with a single DFNB1 mutation. None carried the large deletions. Three families with non-syndromic deafness carried novel unclassified variants (UVs) in MYO7A (1 family) and CDH23 (2 families) of unknown pathogenic effect. Additionally, molecular diagnosis was carried out on two Usher type I families and pathogenic mutations in MYO7A and PCDH15 were found.

  17. Myosin 3A Kinase Activity Is Regulated by Phosphorylation of the Kinase Domain Activation Loop*

    PubMed Central

    Quintero, Omar A.; Unrath, William C.; Stevens, Stanley M.; Manor, Uri; Kachar, Bechara; Yengo, Christopher M.

    2013-01-01

    Class III myosins are unique members of the myosin superfamily in that they contain both a motor and kinase domain. We have found that motor activity is decreased by autophosphorylation, although little is known about the regulation of the kinase domain. We demonstrate by mass spectrometry that Thr-178 and Thr-184 in the kinase domain activation loop and two threonines in the loop 2 region of the motor domain are autophosphorylated (Thr-908 and Thr-919). The kinase activity of MYO3A 2IQ with the phosphomimic (T184E) or phosphoblock (T184A) mutations demonstrates that kinase activity is reduced 30-fold as a result of the T184A mutation, although the Thr-178 site only had a minor impact on kinase activity. Interestingly, the actin-activated ATPase activity of MYO3A 2IQ is slightly reduced as a result of the T178A and T184A mutations suggesting coupling between motor and kinase domains. Full-length GFP-tagged T184A and T184E MYO3A constructs transfected into COS7 cells do not disrupt the ability of MYO3A to localize to filopodia structures. In addition, we demonstrate that T184E MYO3A reduces filopodia elongation in the presence of espin-1, whereas T184A enhances filopodia elongation in a similar fashion to kinase-dead MYO3A. Our results suggest that as MYO3A accumulates at the tips of actin protrusions, autophosphorylation of Thr-184 enhances kinase activity resulting in phosphorylation of the MYO3A motor and reducing motor activity. The differential regulation of the kinase and motor activities allows for MYO3A to precisely self-regulate its concentration in the actin bundle-based structures of cells. PMID:24214986

  18. Myosin 3A kinase activity is regulated by phosphorylation of the kinase domain activation loop.

    PubMed

    Quintero, Omar A; Unrath, William C; Stevens, Stanley M; Manor, Uri; Kachar, Bechara; Yengo, Christopher M

    2013-12-27

    Class III myosins are unique members of the myosin superfamily in that they contain both a motor and kinase domain. We have found that motor activity is decreased by autophosphorylation, although little is known about the regulation of the kinase domain. We demonstrate by mass spectrometry that Thr-178 and Thr-184 in the kinase domain activation loop and two threonines in the loop 2 region of the motor domain are autophosphorylated (Thr-908 and Thr-919). The kinase activity of MYO3A 2IQ with the phosphomimic (T184E) or phosphoblock (T184A) mutations demonstrates that kinase activity is reduced 30-fold as a result of the T184A mutation, although the Thr-178 site only had a minor impact on kinase activity. Interestingly, the actin-activated ATPase activity of MYO3A 2IQ is slightly reduced as a result of the T178A and T184A mutations suggesting coupling between motor and kinase domains. Full-length GFP-tagged T184A and T184E MYO3A constructs transfected into COS7 cells do not disrupt the ability of MYO3A to localize to filopodia structures. In addition, we demonstrate that T184E MYO3A reduces filopodia elongation in the presence of espin-1, whereas T184A enhances filopodia elongation in a similar fashion to kinase-dead MYO3A. Our results suggest that as MYO3A accumulates at the tips of actin protrusions, autophosphorylation of Thr-184 enhances kinase activity resulting in phosphorylation of the MYO3A motor and reducing motor activity. The differential regulation of the kinase and motor activities allows for MYO3A to precisely self-regulate its concentration in the actin bundle-based structures of cells.

  19. Variable hearing impairment in a DFNB2 family with a novel MYO7A missense mutation.

    PubMed

    Hildebrand, M S; Thorne, N P; Bromhead, C J; Kahrizi, K; Webster, J A; Fattahi, Z; Bataejad, M; Kimberling, W J; Stephan, D; Najmabadi, H; Bahlo, M; Smith, R J H

    2010-06-01

    Myosin VIIA mutations have been associated with non-syndromic hearing loss (DFNB2; DFNA11) and Usher syndrome type 1B (USH1B). We report clinical and genetic analyses of a consanguineous Iranian family segregating autosomal recessive non-syndromic hearing loss (ARNSHL). The hearing impairment was mapped to the DFNB2 locus using Affymetrix 50K GeneChips; direct sequencing of the MYO7A gene was completed. The Iranian family (L-1419) was shown to segregate a novel homozygous missense mutation (c.1184G>A) that results in a p.R395H amino acid substitution in the motor domain of the myosin VIIA protein. As one affected family member had significantly less severe hearing loss, we used a candidate approach to search for a genetic modifier. This novel MYO7A mutation is the first reported to cause DFNB2 in the Iranian population and this DFNB2 family is the first to be associated with a potential modifier. The absence of vestibular and retinal defects, and less severe low frequency hearing loss, is consistent with the phenotype of a recently reported Pakistani DFNB2 family. Thus, we conclude this family has non-syndromic hearing loss (DFNB2) rather than USH1B, providing further evidence that these two diseases represent discrete disorders.

  20. Myosin 6 is required for iris development and normal function of the outer retina.

    PubMed

    Samuels, Ivy S; Bell, Brent A; Sturgill-Short, Gwen; Ebke, Lindsey A; Rayborn, Mary; Shi, Lanying; Nishina, Patsy M; Peachey, Neal S

    2013-11-01

    To determine the molecular basis and the pathologic consequences of a chemically induced mutation in the translational vision research models 89 (tvrm89) mouse model with ERG defects. Mice from a G3 N-ethyl-N-nitrosourea mutagenesis program were screened for behavioral abnormalities and defects in retinal function by ERGs. The chromosomal position for the recessive tvrm89 mutation was determined in a genome-wide linkage analysis. The critical region was refined, and candidate genes were screened by direct sequencing. The tvrm89 phenotype was characterized by circling behavior, in vivo ocular imaging, detailed ERG-based studies of the retina and RPE, and histological analysis of these structures. The tvrm89 mutation was localized to a region on chromosome 9 containing Myo6. Sequencing identified a T→C point mutation in the codon for amino acid 480 in Myo6 that converts a leucine to a proline. This mutation does not confer a loss of protein expression levels; however, mice homozygous for the Myo6(tvrm89) mutation display an abnormal iris shape and attenuation of both strobe-flash ERGs and direct-current ERGs by 4 age weeks, neither of which is associated with photoreceptor loss. The tvrm89 phenotype mimics that reported for Myosin6-null mice, suggesting that the mutation confers a loss of myosin 6 protein function. The observation that homozygous Myo6(tvrm89) mice display reduced ERG a-wave and b-wave components, as well as components of the ERG attributed to RPE function, indicates that myosin 6 is necessary for the generation of proper responses of the outer retina to light.

  1. Frequency of Usher syndrome type 1 in deaf children by massively parallel DNA sequencing

    PubMed Central

    Yoshimura, Hidekane; Miyagawa, Maiko; Kumakawa, Kozo; Nishio, Shin-ya; Usami, Shin-ichi

    2016-01-01

    Usher syndrome type 1 (USH1) is the most severe of the three USH subtypes due to its profound hearing loss, absent vestibular response and retinitis pigmentosa appearing at a prepubescent age. Six causative genes have been identified for USH1, making early diagnosis and therapy possible through DNA testing. Targeted exon sequencing of selected genes using massively parallel DNA sequencing (MPS) technology enables clinicians to systematically tackle previously intractable monogenic disorders and improve molecular diagnosis. Using MPS along with direct sequence analysis, we screened 227 unrelated non-syndromic deaf children and detected recessive mutations in USH1 causative genes in five patients (2.2%): three patients harbored MYO7A mutations and one each carried CDH23 or PCDH15 mutations. As indicated by an earlier genotype–phenotype correlation study of the CDH23 and PCDH15 genes, we considered the latter two patients to have USH1. Based on clinical findings, it was also highly likely that one patient with MYO7A mutations possessed USH1 due to a late onset age of walking. This first report describing the frequency (1.3–2.2%) of USH1 among non-syndromic deaf children highlights the importance of comprehensive genetic testing for early disease diagnosis. PMID:26791358

  2. Frequency of Usher syndrome type 1 in deaf children by massively parallel DNA sequencing.

    PubMed

    Yoshimura, Hidekane; Miyagawa, Maiko; Kumakawa, Kozo; Nishio, Shin-Ya; Usami, Shin-Ichi

    2016-05-01

    Usher syndrome type 1 (USH1) is the most severe of the three USH subtypes due to its profound hearing loss, absent vestibular response and retinitis pigmentosa appearing at a prepubescent age. Six causative genes have been identified for USH1, making early diagnosis and therapy possible through DNA testing. Targeted exon sequencing of selected genes using massively parallel DNA sequencing (MPS) technology enables clinicians to systematically tackle previously intractable monogenic disorders and improve molecular diagnosis. Using MPS along with direct sequence analysis, we screened 227 unrelated non-syndromic deaf children and detected recessive mutations in USH1 causative genes in five patients (2.2%): three patients harbored MYO7A mutations and one each carried CDH23 or PCDH15 mutations. As indicated by an earlier genotype-phenotype correlation study of the CDH23 and PCDH15 genes, we considered the latter two patients to have USH1. Based on clinical findings, it was also highly likely that one patient with MYO7A mutations possessed USH1 due to a late onset age of walking. This first report describing the frequency (1.3-2.2%) of USH1 among non-syndromic deaf children highlights the importance of comprehensive genetic testing for early disease diagnosis.

  3. UCS protein Rng3p activates actin filament gliding by fission yeast myosin-II

    PubMed Central

    Lord, Matthew; Pollard, Thomas D.

    2004-01-01

    We purified native Myo2p/Cdc4p/Rlc1p (Myo2), the myosin-II motor required for cytokinesis by Schizosaccharomyces pombe. The Myo2p heavy chain associates with two light chains, Cdc4p and Rlc1p. Although crude Myo2 supported gliding motility of actin filaments in vitro, purified Myo2 lacked this activity in spite of retaining full Ca-ATPase activity and partial actin-activated Mg-ATPase activity. Unc45-/Cro1p-/She4p-related (UCS) protein Rng3p restored the full motility and actin-activated Mg-ATPase activity of purified Myo2. The COOH-terminal UCS domain of Rng3p alone restored motility to pure Myo2. Thus, Rng3p contributes directly to the motility activity of native Myo2. Consistent with a role in Myo2 activation, Rng3p colocalizes with Myo2p in the cytokinetic contractile ring. The absence of Rlc1p or mutations in the Myo2p head or Rng3p compromise the in vitro motility of Myo2 and explain the defects in cytokinesis associated with some of these mutations. In contrast, Myo2 with certain temperature-sensitive forms of Cdc4p has normal motility, so these mutations compromise other functions of Cdc4p required for cytokinesis. PMID:15504913

  4. Next-generation sequencing identifies three novel missense variants in ILDR1 and MYO6 genes in an Iranian family with hearing loss with review of the literature.

    PubMed

    Talebi, Farah; Mardasi, Farideh Ghanbari; Asl, Javad Mohammadi; Sayahi, Masoomeh

    2017-12-01

    Hearing impairment is the most common sensorineural disorder and is genetically heterogeneous. Identification of the pathogenic mutations underlying hearing impairment is difficult, since causative mutations in 127 different genes have so far been reported. In this study, we performed Next-generation sequencing (NGS) in 2 individuals from a consanguineous family with hearing loss. Three novel mutations in known deafness genes were identified in the family; MYO6-p.R928C and -p.D1223N in heterozygous state and ILDR1-p.Y143C in homozygous state. Sanger sequencing confirmed co-segregation of the three mutations with deafness in the family. The identified mutation in ILDR1 gene is located in the immunoglobulin-type domain of the ILDR1 protein and the detected mutations in MY06 are located in the tail domain of the MYO6 protein. The mutations are predicted to be pathogenic by SIFT, PolyPhen and Mutation Taster. Our results suggest that either the homozygous ILDR1-p.Y143C mutation might be the pathogenic variant for ARNSHL or heterozygous MYO6- p.R928C, -p.D1223N might be involved in these patient's disorder due to compound heterozygousity. To our knowledge, this is the first ILDR1 and MYO6 mutations recognized in the southwest Iran. Our data expands the spectrum of mutations in ILDR1 and MYO6 genes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Usher syndrome in Denmark: mutation spectrum and some clinical observations.

    PubMed

    Dad, Shzeena; Rendtorff, Nanna Dahl; Tranebjærg, Lisbeth; Grønskov, Karen; Karstensen, Helena Gásdal; Brox, Vigdis; Nilssen, Øivind; Roux, Anne-Françoise; Rosenberg, Thomas; Jensen, Hanne; Møller, Lisbeth Birk

    2016-09-01

    Usher syndrome (USH) is a genetically heterogeneous deafness-blindness syndrome, divided into three clinical subtypes: USH1, USH2 and USH3. Mutations in 21 out of 26 investigated Danish unrelated individuals with USH were identified, using a combination of molecular diagnostic methods. Before Next Generation Sequencing (NGS) became available mutations in nine individuals (1 USH1, 7 USH2, 1 USH3) were identified by Sanger sequencing of USH1C , USH2A or CLRN1 or by Arrayed Primer EXtension (APEX) method. Mutations in 12 individuals (7 USH1, 5 USH2) were found by targeted NGS of ten known USH genes. Five novel pathogenic variants were identified. We combined our data with previously published, and obtained an overview of the USH mutation spectrum in Denmark, including 100 unrelated individuals; 32 with USH1, 67 with USH2, and 1 with USH3. Macular edema was observed in 44 of 117 individuals. Olfactory function was tested in 12 individuals and found to be within normal range in all. Mutations that lead to USH1 were predominantly identified in MYO7A (75%), whereas all mutations in USH2 cases were identified in USH2A . The MYO7A mutation c.93C>A, p.(Cys31*) accounted for 33% of all USH1 mutations and the USH2A c.2299delG, p.(Glu767Serfs*21) variant accounted for 45% of all USH2 mutations in the Danish cohort.

  6. No novel, high penetrant gene might remain to be found in Japanese patients with unknown MODY.

    PubMed

    Horikawa, Yukio; Hosomichi, Kazuyoshi; Enya, Mayumi; Ishiura, Hiroyuki; Suzuki, Yutaka; Tsuji, Shoji; Sugano, Sumio; Inoue, Ituro; Takeda, Jun

    2018-07-01

    MODY 5 and 6 have been shown to be low-penetrant MODYs. As the genetic background of unknown MODY is assumed to be similar, a new analytical strategy is applied here to elucidate genetic predispositions to unknown MODY. We examined to find whether there are major MODY gene loci remaining to be identified using SNP linkage analysis in Japanese. Whole-exome sequencing was performed with seven families with typical MODY. Candidates for novel MODY genes were examined combined with in silico network analysis. Some peaks were found only in either parametric or non-parametric analysis; however, none of these peaks showed a LOD score greater than 3.7, which is approved to be the significance threshold of evidence for linkage. Exome sequencing revealed that three mutated genes were common among 3 families and 42 mutated genes were common in two families. Only one of these genes, MYO5A, having rare amino acid mutations p.R849Q and p.V1601G, was involved in the biological network of known MODY genes through the intermediary of the INS. Although only one promising candidate gene, MYO5A, was identified, no novel, high penetrant MODY genes might remain to be found in Japanese MODY.

  7. UMD-USHbases: a comprehensive set of databases to record and analyse pathogenic mutations and unclassified variants in seven Usher syndrome causing genes.

    PubMed

    Baux, David; Faugère, Valérie; Larrieu, Lise; Le Guédard-Méreuze, Sandie; Hamroun, Dalil; Béroud, Christophe; Malcolm, Sue; Claustres, Mireille; Roux, Anne-Françoise

    2008-08-01

    Using the Universal Mutation Database (UMD) software, we have constructed "UMD-USHbases", a set of relational databases of nucleotide variations for seven genes involved in Usher syndrome (MYO7A, CDH23, PCDH15, USH1C, USH1G, USH3A and USH2A). Mutations in the Usher syndrome type I causing genes are also recorded in non-syndromic hearing loss cases and mutations in USH2A in non-syndromic retinitis pigmentosa. Usher syndrome provides a particular challenge for molecular diagnostics because of the clinical and molecular heterogeneity. As many mutations are missense changes, and all the genes also contain apparently non-pathogenic polymorphisms, well-curated databases are crucial for accurate interpretation of pathogenicity. Tools are provided to assess the pathogenicity of mutations, including conservation of amino acids and analysis of splice-sites. Reference amino acid alignments are provided. Apparently non-pathogenic variants in patients with Usher syndrome, at both the nucleotide and amino acid level, are included. The UMD-USHbases currently contain more than 2,830 entries including disease causing mutations, unclassified variants or non-pathogenic polymorphisms identified in over 938 patients. In addition to data collected from 89 publications, 15 novel mutations identified in our laboratory are recorded in MYO7A (6), CDH23 (8), or PCDH15 (1) genes. Information is given on the relative involvement of the seven genes, the number and distribution of variants in each gene. UMD-USHbases give access to a software package that provides specific routines and optimized multicriteria research and sorting tools. These databases should assist clinicians and geneticists seeking information about mutations responsible for Usher syndrome.

  8. A Genomic and Protein-Protein Interaction Analyses of Nonsyndromic Hearing Impairment in Cameroon Using Targeted Genomic Enrichment and Massively Parallel Sequencing.

    PubMed

    Lebeko, Kamogelo; Manyisa, Noluthando; Chimusa, Emile R; Mulder, Nicola; Dandara, Collet; Wonkam, Ambroise

    2017-02-01

    Hearing impairment (HI) is one of the leading causes of disability in the world, impacting the social, economic, and psychological well-being of the affected individual. This is particularly true in sub-Saharan Africa, which carries one of the highest burdens of this condition. Despite this, there are limited data on the most prevalent genes or mutations that cause HI among sub-Saharan Africans. Next-generation technologies, such as targeted genomic enrichment and massively parallel sequencing, offer new promise in this context. This study reports, for the first time to the best of our knowledge, on the prevalence of novel mutations identified through a platform of 116 HI genes (OtoSCOPE ® ), among 82 African probands with HI. Only variants OTOF NM_194248.2:c.766-2A>G and MYO7A NM_000260.3:c.1996C>T, p.Arg666Stop were found in 3 (3.7%) and 5 (6.1%) patients, respectively. In addition and uniquely, the analysis of protein-protein interactions (PPI), through interrogation of gene subnetworks, using a custom script and two databases (Enrichr and PANTHER), and an algorithm in the igraph package of R, identified the enrichment of sensory perception and mechanical stimulus biological processes, and the most significant molecular functions of these variants pertained to binding or structural activity. Furthermore, 10 genes (MYO7A, MYO6, KCTD3, NUMA1, MYH9, KCNQ1, UBC, DIAPH1, PSMC2, and RDX) were identified as significant hubs within the subnetworks. Results reveal that the novel variants identified among familial cases of HI in Cameroon are not common, and PPI analysis has highlighted the role of 10 genes, potentially important in understanding HI genomics among Africans.

  9. Outer Retinal Changes Including the Ellipsoid Zone Band in Usher Syndrome 1B due to MYO7A Mutations.

    PubMed

    Sumaroka, Alexander; Matsui, Rodrigo; Cideciyan, Artur V; McGuigan, David B; Sheplock, Rebecca; Schwartz, Sharon B; Jacobson, Samuel G

    2016-07-01

    To study transition zones from normal to abnormal retina in Usher syndrome IB (USH1B) caused by myosin 7A (MYO7A) mutations. Optical coherence tomography (OCT) scattering layers in outer retina were segmented in patients (n = 16, ages 2-42; eight patients had serial data, average interval 4.5 years) to quantify outer nuclear layer (ONL) and outer segments (OS) as well as the locus of EZ (ellipsoid zone) edge and its extent from the fovea. Static perimetry was measured under dark-adapted (DA) and light-adapted (LA) conditions. Ellipsoid zone edge in USH1B-MYO7A could be located up to 23° from the fovea. Ellipsoid zone extent constricted at a rate of 0.51°/year with slower rates at smaller eccentricities. A well-defined EZ line could be associated with normal or abnormal ONL and/or OS thickness; detectable ONL extended well beyond EZ edge. At the EZ edge, the local slope of LA sensitivity loss was 2.6 (±1.7) dB/deg for central transition zones. At greater eccentricities, the local slope of cone sensitivity loss was shallower (1.1 ± 0.4 dB/deg for LA) than that of rod sensitivity loss (2.8 ± 1.2 dB/deg for DA). In USH1B-MYO7A, constriction rate of EZ extent depends on the initial eccentricity of the transition. Ellipsoid zone edges in the macula correspond to large local changes in cone vision, but extramacular EZ edges show more pronounced losses on rod-based vision tests. It is advisable to use not only the EZ line but also other structural and functional parameters for estimating natural history of disease and possible therapeutic effects in future clinical trials of USH1B-MYO7A.

  10. Comprehensive sequence analysis of nine Usher syndrome genes in the UK National Collaborative Usher Study.

    PubMed

    Le Quesne Stabej, Polona; Saihan, Zubin; Rangesh, Nell; Steele-Stallard, Heather B; Ambrose, John; Coffey, Alison; Emmerson, Jenny; Haralambous, Elene; Hughes, Yasmin; Steel, Karen P; Luxon, Linda M; Webster, Andrew R; Bitner-Glindzicz, Maria

    2012-01-01

    Usher syndrome (USH) is an autosomal recessive disorder comprising retinitis pigmentosa, hearing loss and, in some cases, vestibular dysfunction. It is clinically and genetically heterogeneous with three distinctive clinical types (I-III) and nine Usher genes identified. This study is a comprehensive clinical and genetic analysis of 172 Usher patients and evaluates the contribution of digenic inheritance. The genes MYO7A, USH1C, CDH23, PCDH15, USH1G, USH2A, GPR98, WHRN, CLRN1 and the candidate gene SLC4A7 were sequenced in 172 UK Usher patients, regardless of clinical type. No subject had definite mutations (nonsense, frameshift or consensus splice site mutations) in two different USH genes. Novel missense variants were classified UV1-4 (unclassified variant): UV4 is 'probably pathogenic', based on control frequency <0.23%, identification in trans to a pathogenic/probably pathogenic mutation and segregation with USH in only one family; and UV3 ('likely pathogenic') as above, but no information on phase. Overall 79% of identified pathogenic/UV4/UV3 variants were truncating and 21% were missense changes. MYO7A accounted for 53.2%, and USH1C for 14.9% of USH1 families (USH1C:c.496+1G>A being the most common USH1 mutation in the cohort). USH2A was responsible for 79.3% of USH2 families and GPR98 for only 6.6%. No mutations were found in USH1G, WHRN or SLC4A7. One or two pathogenic/likely pathogenic variants were identified in 86% of cases. No convincing cases of digenic inheritance were found. It is concluded that digenic inheritance does not make a significant contribution to Usher syndrome; the observation of multiple variants in different genes is likely to reflect polymorphic variation, rather than digenic effects.

  11. Comprehensive sequence analysis of nine Usher syndrome genes in the UK National Collaborative Usher Study

    PubMed Central

    Le Quesne Stabej, Polona; Saihan, Zubin; Rangesh, Nell; Steele-Stallard, Heather B; Ambrose, John; Coffey, Alison; Emmerson, Jenny; Haralambous, Elene; Hughes, Yasmin; Steel, Karen P; Luxon, Linda M; Webster, Andrew R

    2011-01-01

    Background Usher syndrome (USH) is an autosomal recessive disorder comprising retinitis pigmentosa, hearing loss and, in some cases, vestibular dysfunction. It is clinically and genetically heterogeneous with three distinctive clinical types (I–III) and nine Usher genes identified. This study is a comprehensive clinical and genetic analysis of 172 Usher patients and evaluates the contribution of digenic inheritance. Methods The genes MYO7A, USH1C, CDH23, PCDH15, USH1G, USH2A, GPR98, WHRN, CLRN1 and the candidate gene SLC4A7 were sequenced in 172 UK Usher patients, regardless of clinical type. Results No subject had definite mutations (nonsense, frameshift or consensus splice site mutations) in two different USH genes. Novel missense variants were classified UV1-4 (unclassified variant): UV4 is ‘probably pathogenic’, based on control frequency <0.23%, identification in trans to a pathogenic/probably pathogenic mutation and segregation with USH in only one family; and UV3 (‘likely pathogenic’) as above, but no information on phase. Overall 79% of identified pathogenic/UV4/UV3 variants were truncating and 21% were missense changes. MYO7A accounted for 53.2%, and USH1C for 14.9% of USH1 families (USH1C:c.496+1G>A being the most common USH1 mutation in the cohort). USH2A was responsible for 79.3% of USH2 families and GPR98 for only 6.6%. No mutations were found in USH1G, WHRN or SLC4A7. Conclusions One or two pathogenic/likely pathogenic variants were identified in 86% of cases. No convincing cases of digenic inheritance were found. It is concluded that digenic inheritance does not make a significant contribution to Usher syndrome; the observation of multiple variants in different genes is likely to reflect polymorphic variation, rather than digenic effects. PMID:22135276

  12. MYO5B, STX3, and STXBP2 mutations reveal a common disease mechanism that unifies a subset of congenital diarrheal disorders: A mutation update

    PubMed Central

    Dhekne, Herschel S.; Pylypenko, Olena; Overeem, Arend W.; Ferreira, Rosaria J.; van der Velde, K. Joeri; Rings, Edmond H.H.M.; Posovszky, Carsten; Swertz, Morris A.; Houdusse, Anne

    2018-01-01

    Abstract Microvillus inclusion disease (MVID) is a rare but fatal autosomal recessive congenital diarrheal disorder caused by MYO5B mutations. In 2013, we launched an open‐access registry for MVID patients and their MYO5B mutations (www.mvid-central.org). Since then, additional unique MYO5B mutations have been identified in MVID patients, but also in non‐MVID patients. Animal models have been generated that formally prove the causality between MYO5B and MVID. Importantly, mutations in two other genes, STXBP2 and STX3, have since been associated with variants of MVID, shedding new light on the pathogenesis of this congenital diarrheal disorder. Here, we review these additional genes and their mutations. Furthermore, we discuss recent data from cell studies that indicate that the three genes are functionally linked and, therefore, may constitute a common disease mechanism that unifies a subset of phenotypically linked congenital diarrheal disorders. We present new data based on patient material to support this. To congregate existing and future information on MVID geno‐/phenotypes, we have updated and expanded the MVID registry to include all currently known MVID‐associated gene mutations, their demonstrated or predicted functional consequences, and associated clinical information. PMID:29266534

  13. EIAV-based retinal gene therapy in the shaker1 mouse model for usher syndrome type 1B: development of UshStat.

    PubMed

    Zallocchi, Marisa; Binley, Katie; Lad, Yatish; Ellis, Scott; Widdowson, Peter; Iqball, Sharifah; Scripps, Vicky; Kelleher, Michelle; Loader, Julie; Miskin, James; Peng, You-Wei; Wang, Wei-Min; Cheung, Linda; Delimont, Duane; Mitrophanous, Kyriacos A; Cosgrove, Dominic

    2014-01-01

    Usher syndrome type 1B is a combined deaf-blindness condition caused by mutations in the MYO7A gene. Loss of functional myosin VIIa in the retinal pigment epithelia (RPE) and/or photoreceptors leads to blindness. We evaluated the impact of subretinally delivered UshStat, a recombinant EIAV-based lentiviral vector expressing human MYO7A, on photoreceptor function in the shaker1 mouse model for Usher type 1B that lacks a functional Myo7A gene. Subretinal injections of EIAV-CMV-GFP, EIAV-RK-GFP (photoreceptor specific), EIAV-CMV-MYO7A (UshStat) or EIAV-CMV-Null (control) vectors were performed in shaker1 mice. GFP and myosin VIIa expression was evaluated histologically. Photoreceptor function in EIAV-CMV-MYO7A treated eyes was determined by evaluating α-transducin translocation in photoreceptors in response to low light intensity levels, and protection from light induced photoreceptor degeneration was measured. The safety and tolerability of subretinally delivered UshStat was evaluated in macaques. Expression of GFP and myosin VIIa was confirmed in the RPE and photoreceptors in shaker1 mice following subretinal delivery of the EIAV-CMV-GFP/MYO7A vectors. The EIAV-CMV-MYO7A vector protected the shaker1 mouse photoreceptors from acute and chronic intensity light damage, indicated by a significant reduction in photoreceptor cell loss, and restoration of the α-transducin translocation threshold in the photoreceptors. Safety studies in the macaques demonstrated that subretinal delivery of UshStat is safe and well-tolerated. Subretinal delivery of EIAV-CMV-MYO7A (UshStat) rescues photoreceptor phenotypes in the shaker1 mouse. In addition, subretinally delivered UshStat is safe and well-tolerated in macaque safety studies These data support the clinical development of UshStat to treat Usher type 1B syndrome.

  14. Gene Therapy for the Retinal Degeneration of Usher Syndrome Caused by Mutations in MYO7A.

    PubMed

    Lopes, Vanda S; Williams, David S

    2015-01-20

    Usher syndrome is a deaf-blindness disorder. One of the subtypes, Usher 1B, is caused by loss of function of the gene encoding the unconventional myosin, MYO7A. A variety of different viral-based delivery approaches have been tested for retinal gene therapy to prevent the blindness of Usher 1B, and a clinical trial based on one of these approaches has begun. This review evaluates the different approaches. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  15. Human deafness mutation E385D disrupts the mechanochemical coupling and subcellular targeting of myosin-1a.

    PubMed

    Yengo, Christopher M; Ananthanarayanan, Shobana K; Brosey, Chris A; Mao, Suli; Tyska, Matthew J

    2008-01-15

    Missense mutations in the membrane-binding actin-based motor protein, myosin-1a (Myo1a), have recently been linked to sensorineural deafness in humans. One of these mutations, E385D, impacts a residue in the switch II region of the motor domain that is present in virtually all members of the myosin superfamily. We sought to examine the impact of E385D on the function of Myo1a, both in terms of mechanochemical activity and ability to target to actin-rich microvilli in polarized epithelial cells. While E385D-Myo1a demonstrated actin-activated ATPase activity, the V(MAX) was reduced threefold relative to wild-type. Despite maintaining an active mechanochemical cycle, E385D-Myo1a was unable to move actin in the sliding filament assay. Intriguingly, when an enhanced-green-fluorescent-protein-tagged form of E385D-Myo1a was stably expressed in polarized epithelial cells, this mutation abolished the microvillar targeting normally demonstrated by wild-type Myo1a. Notably, these data are the first to suggest that mechanical activity is essential for proper localization of Myo1a in microvilli. These studies also provide a unique example of how even the most mild substitution of invariant switch II residues can effectively uncouple enzymatic and mechanical activity of the myosin motor domain.

  16. Two Finnish USH1B patients with three novel mutations in myosin VIIA.

    PubMed

    Vastinsalo, Hanna; Isosomppi, Juha; Aittakorpi, Anne; Sankila, Eeva-Marja

    2006-09-21

    Usher syndrome (USH) is an autosomal recessive disorder resulting in retinal degeneration and sensorineural deafness caused by mutations in at least 10 gene loci. USH is divided into three main clinical types: USH1 (33-44%), USH2 (56-67%), and USH3. Worldwide, USH1 and USH2 account for most of the Usher syndrome cases with rare occurrence of USH3. In Finland, however, USH3 is the most common type (40%), explained by genetic and geographical isolation accompanied with a founder mutation, while USH1 is estimated to comprise 34% and USH2 12% of all USH cases. We examined two unrelated Finnish USH1 patients by sequencing. We found three new myosin VIIA (MYO7A) mutations: p.K923AfsX8, p.Q1896X, and p.E1349K. The p.K923AfsX8 mutation was present in both patients as well as in one of 200 Finnish control chromosomes. This is the first molecular genetic study of USH1 in Finland. We have found three new pathological mutations causing either premature termination of translation or replacement of an evolutionary conserved MYO7A amino acid.

  17. Identification and functional study of a new missense mutation in the motor head domain of myosin VIIA in a family with autosomal dominant hearing impairment (DFNA11).

    PubMed

    Sang, Qing; Yan, Xukun; Wang, Huan; Feng, Ruizhi; Fei, Xiang; Ma, Duan; Xing, Qinghe; Li, Qiaoli; Zhao, Xinzhi; Jin, Li; He, Lin; Li, Huawei; Wang, Lei

    2013-01-01

    The MYO7A encodes a protein classified as an unconventional myosin. Here, we present a family with non-syndromic autosomal dominant hearing impairment that clinically resembles other previously published DFNA11 families. Affected members of the family present with an ascending audiogram affecting low and middle frequencies at young ages and then affecting all frequencies with increasing age. Genome-wide linkage analysis using Illumina Cyto-12 Chip mapped the disease locus to the DFNA11 interval in the family. A c.2003G→A (p.R668H) mutation of the MYO7A, is heterozygous in all affected family members and absent in 100 healthy individuals. Arg668His is located in a region of the myosin VIIA motor domain that is highly conserved among different species. Molecular modeling predicts that the conserved R668 residue plays important structural role in linking different lobes of motor domain together. In the actin-activated ATPase activity assay, the rate of NADH oxidation was higher in the wild-type myosin VIIA, indicating that the ATPase activity in the p.R668H mutant myosin VIIA was significantly destroyed.

  18. Retinal Disease Course in Usher Syndrome 1B Due to MYO7A Mutations

    PubMed Central

    Jacobson, Samuel G.; Cideciyan, Artur V.; Gibbs, Dan; Sumaroka, Alexander; Roman, Alejandro J.; Aleman, Tomas S.; Schwartz, Sharon B.; Olivares, Melani B.; Russell, Robert C.; Steinberg, Janet D.; Kenna, Margaret A.; Kimberling, William J.; Rehm, Heidi L.; Williams, David S.

    2011-01-01

    Purpose. To determine the disease course in Usher syndrome type IB (USH1B) caused by myosin 7A (MYO7A) gene mutations. Methods. USH1B patients (n = 33, ages 2–61) representing 25 different families were studied by ocular examination, kinetic and chromatic static perimetry, dark adaptometry, and optical coherence tomography (OCT). Consequences of the mutant alleles were predicted. Results. All MYO7A patients had severely abnormal ERGs, but kinetic fields revealed regional patterns of visual loss that suggested a disease sequence. Rod-mediated vision could be lost to different degrees in the first decades of life. Cone vision followed a more predictable and slower decline. Central vision ranged from normal to reduced in the first four decades of life and thereafter was severely abnormal. Dark adaptation kinetics was normal. Photoreceptor layer thickness in a wide region of central retina could differ dramatically between patients of comparable ages; and there were examples of severe losses in childhood as well as relative preservation in patients in the third decade of life. Comparisons were made between the mutant alleles in mild versus more severe phenotypes. Conclusions. A disease sequence in USH1B leads from generally full but impaired visual fields to residual small central islands. At most disease stages, there was preserved temporal peripheral field, a potential target for early phase clinical trials of gene therapy. From data comparing patients' rod disease in this cohort, the authors speculate that null MYO7A alleles could be associated with milder dysfunction and fewer photoreceptor structural losses at ages when other genotypes show more severe phenotypes. PMID:21873662

  19. Retinal disease course in Usher syndrome 1B due to MYO7A mutations.

    PubMed

    Jacobson, Samuel G; Cideciyan, Artur V; Gibbs, Dan; Sumaroka, Alexander; Roman, Alejandro J; Aleman, Tomas S; Schwartz, Sharon B; Olivares, Melani B; Russell, Robert C; Steinberg, Janet D; Kenna, Margaret A; Kimberling, William J; Rehm, Heidi L; Williams, David S

    2011-10-07

    PURPOSE. To determine the disease course in Usher syndrome type IB (USH1B) caused by myosin 7A (MYO7A) gene mutations. METHODS. USH1B patients (n = 33, ages 2-61) representing 25 different families were studied by ocular examination, kinetic and chromatic static perimetry, dark adaptometry, and optical coherence tomography (OCT). Consequences of the mutant alleles were predicted. RESULTS. All MYO7A patients had severely abnormal ERGs, but kinetic fields revealed regional patterns of visual loss that suggested a disease sequence. Rod-mediated vision could be lost to different degrees in the first decades of life. Cone vision followed a more predictable and slower decline. Central vision ranged from normal to reduced in the first four decades of life and thereafter was severely abnormal. Dark adaptation kinetics was normal. Photoreceptor layer thickness in a wide region of central retina could differ dramatically between patients of comparable ages; and there were examples of severe losses in childhood as well as relative preservation in patients in the third decade of life. Comparisons were made between the mutant alleles in mild versus more severe phenotypes. CONCLUSIONS. A disease sequence in USH1B leads from generally full but impaired visual fields to residual small central islands. At most disease stages, there was preserved temporal peripheral field, a potential target for early phase clinical trials of gene therapy. From data comparing patients' rod disease in this cohort, the authors speculate that null MYO7A alleles could be associated with milder dysfunction and fewer photoreceptor structural losses at ages when other genotypes show more severe phenotypes.

  20. Structural basis of cargo recognitions for class V myosins

    PubMed Central

    Wei, Zhiyi; Liu, Xiaotian; Yu, Cong; Zhang, Mingjie

    2013-01-01

    Class V myosins (MyoV), the most studied unconventional myosins, recognize numerous cargos mainly via the motor’s globular tail domain (GTD). Little is known regarding how MyoV-GTD recognizes such a diverse array of cargos specifically. Here, we solved the crystal structures of MyoVa-GTD in its apo-form and in complex with two distinct cargos, melanophilin and Rab interacting lysosomal protein-like 2. The apo-MyoVa-GTD structure indicates that most mutations found in patients with Griscelli syndrome, microvillus inclusion disease, or cancers or in “dilute” rodents likely impair the folding of GTD. The MyoVa-GTD/cargo complex structure reveals two distinct cargo-binding surfaces, one primarily via charge–charge interaction and the other mainly via hydrophobic interactions. Structural and biochemical analysis reveal the specific cargo-binding specificities of various isoforms of mammalian MyoV as well as very different cargo recognition mechanisms of MyoV between yeast and higher eukaryotes. The MyoVa-GTD structures resolved here provide a framework for future functional studies of vertebrate class V myosins. PMID:23798443

  1. MYO15A (DFNB3) mutations in Turkish hearing loss families and functional modeling of a novel motor domain mutation.

    PubMed

    Kalay, Ersan; Uzumcu, Abdullah; Krieger, Elmar; Caylan, Refik; Uyguner, Oya; Ulubil-Emiroglu, Melike; Erdol, Hidayet; Kayserili, Hülya; Hafiz, Gunter; Başerer, Nermin; Heister, Angelien J G M; Hennies, Hans C; Nürnberg, Peter; Başaran, Seher; Brunner, Han G; Cremers, Cor W R J; Karaguzel, Ahmet; Wollnik, Bernd; Kremer, Hannie

    2007-10-15

    Myosin XVA is an unconventional myosin which has been implicated in autosomal recessive nonsyndromic hearing impairment (ARNSHI) in humans. In Myo15A mouse models, vestibular dysfunction accompanies the autosomal recessive hearing loss. Genomewide homozygosity mapping and subsequent fine mapping in two Turkish families with ARNSHI revealed significant linkage to a critical interval harboring a known deafness gene MYO15A on chromosome 17p13.1-17q11.2. Subsequent sequencing of the MYO15A gene led to the identification of a novel missense mutation, c.5492G-->T (p.Gly1831Val) and a novel splice site mutation, c.8968-1G-->C. These mutations were not detected in additional 64 unrelated ARNSHI index patients and in 230 Turkish control chromosomes. Gly1831 is a conserved residue located in the motor domains of the different classes of myosins of different species. Molecular modeling of the motor head domain of the human myosin XVa protein suggests that the Gly1831Val mutation inhibits the powerstroke by reducing backbone flexibility and weakening the hydrophobic interactions necessary for signal transmission to the converter domain. Copyright (c) 2007 Wiley-Liss, Inc.

  2. Mutation Profile of the CDH23 Gene in 56 Probands with Usher Syndrome Type I

    PubMed Central

    Oshima, A.; Jaijo, T.; Aller, E.; Millan, J.M.; Carney, C.; Usami, S.; Moller, C.; Kimberling, W.J.

    2008-01-01

    Mutations in the human gene encoding cadherin 23 (CDH23) cause Usher syndrome type 1D (USH1D) and nonsyndromic hearing loss. Individuals with Usher syndrome type I have profound congenital deafness, vestibular areflexia and usually begin to exhibit signs of RP in early adolescence. In the present study, we carried out the mutation analysis in all 69 exons of the CDH23 gene in 56 Usher type 1 probands already screened for mutations in MYO7A. A total of 18 of 56 subjects (32.1%) were observed to have one or two CDH23 variants that are presumed to be pathologic. Twenty one different pathologic genome variants were observed of which 15 were novel. Out of a total of 112 alleles, 31 (27.7%) were considered pathologic. Based on our results it is estimated that about 20% of patients with Usher syndrome type I have CDH23 mutations. PMID:18429043

  3. Identification and Functional Study of a New Missense Mutation in the Motor Head Domain of Myosin VIIA in a Family with Autosomal Dominant Hearing Impairment (DFNA11)

    PubMed Central

    Feng, Ruizhi; Fei, Xiang; Ma, Duan; Xing, Qinghe; Li, Qiaoli; Zhao, Xinzhi; Jin, Li; He, Lin; Li, Huawei; Wang, Lei

    2013-01-01

    The MYO7A encodes a protein classified as an unconventional myosin. Here, we present a family with non-syndromic autosomal dominant hearing impairment that clinically resembles other previously published DFNA11 families. Affected members of the family present with an ascending audiogram affecting low and middle frequencies at young ages and then affecting all frequencies with increasing age. Genome-wide linkage analysis using Illumina Cyto-12 Chip mapped the disease locus to the DFNA11 interval in the family. A c.2003G→A (p.R668H) mutation of the MYO7A, is heterozygous in all affected family members and absent in 100 healthy individuals. Arg668His is located in a region of the myosin VIIA motor domain that is highly conserved among different species. Molecular modeling predicts that the conserved R668 residue plays important structural role in linking different lobes of motor domain together. In the actin-activated ATPase activity assay, the rate of NADH oxidation was higher in the wild-type myosin VIIA, indicating that the ATPase activity in the p.R668H mutant myosin VIIA was significantly destroyed. PMID:23383098

  4. Biochemical and bioinformatic analysis of the MYO19 motor domain

    PubMed Central

    Adikes, Rebecca C.; Unrath, William C.; Yengo, Christopher M.; Quintero, Omar A.

    2014-01-01

    Mitochondrial dynamics are dependent on both the microtubule and actin cytoskeletal systems. Evidence for the involvement of myosin motors has been described in many systems, and until recently a candidate mitochondrial transport motor had not been described in vertebrates. Myosin-XIX (MYO19) was predicted to represent a novel class of myosin and had previously been shown to bind to mitochondria and increase mitochondrial network dynamics when ectopically expressed. Our analyses comparing ∼40 MYO19 orthologs to ∼2000 other myosin motor domain sequences identified instances of homology well-conserved within class XIX myosins that were not found in other myosin classes, suggesting MYO19-specific mechanochemistry. Steady-state biochemical analyses of the MYO19 motor domain indicate that Homo sapiens MYO19 is a functional motor. Insect cell-expressed constructs bound calmodulin as a light chain at the predicted stoichiometry and displayed actin-activated ATPase activity. MYO19 constructs demonstrated high actin affinity in the presence of ATP in actin-cosedimentation assays, and translocated actin filaments in gliding assays. Expression of GFP-MYO19 containing a mutation impairing ATPase activity did not enhance mitochondrial network dynamics, as occurs with wild-type MYO19, indicating that myosin motor activity is required for mitochondrial motility. The measured biochemical properties of MYO19 suggest it is a high-duty ratio motor that could serve to transport mitochondria or anchor mitochondria, depending upon the cellular microenvironment. PMID:23568824

  5. Targeted next generation sequencing for molecular diagnosis of Usher syndrome.

    PubMed

    Aparisi, María J; Aller, Elena; Fuster-García, Carla; García-García, Gema; Rodrigo, Regina; Vázquez-Manrique, Rafael P; Blanco-Kelly, Fiona; Ayuso, Carmen; Roux, Anne-Françoise; Jaijo, Teresa; Millán, José M

    2014-11-18

    Usher syndrome is an autosomal recessive disease that associates sensorineural hearing loss, retinitis pigmentosa and, in some cases, vestibular dysfunction. It is clinically and genetically heterogeneous. To date, 10 genes have been associated with the disease, making its molecular diagnosis based on Sanger sequencing, expensive and time-consuming. Consequently, the aim of the present study was to develop a molecular diagnostics method for Usher syndrome, based on targeted next generation sequencing. A custom HaloPlex panel for Illumina platforms was designed to capture all exons of the 10 known causative Usher syndrome genes (MYO7A, USH1C, CDH23, PCDH15, USH1G, CIB2, USH2A, GPR98, DFNB31 and CLRN1), the two Usher syndrome-related genes (HARS and PDZD7) and the two candidate genes VEZT and MYO15A. A cohort of 44 patients suffering from Usher syndrome was selected for this study. This cohort was divided into two groups: a test group of 11 patients with known mutations and another group of 33 patients with unknown mutations. Forty USH patients were successfully sequenced, 8 USH patients from the test group and 32 patients from the group composed of USH patients without genetic diagnosis. We were able to detect biallelic mutations in one USH gene in 22 out of 32 USH patients (68.75%) and to identify 79.7% of the expected mutated alleles. Fifty-three different mutations were detected. These mutations included 21 missense, 8 nonsense, 9 frameshifts, 9 intronic mutations and 6 large rearrangements. Targeted next generation sequencing allowed us to detect both point mutations and large rearrangements in a single experiment, minimizing the economic cost of the study, increasing the detection ratio of the genetic cause of the disease and improving the genetic diagnosis of Usher syndrome patients.

  6. An inducible mouse model for microvillus inclusion disease reveals a role for myosin Vb in apical and basolateral trafficking

    PubMed Central

    Schneeberger, Kerstin; Vogel, Georg F.; Teunissen, Hans; van Ommen, Domenique D.; Begthel, Harry; El Bouazzaoui, Layla; van Vugt, Anke H. M.; Beekman, Jeffrey M.; Klumperman, Judith; Müller, Thomas; Janecke, Andreas; Gerner, Patrick; Huber, Lukas A.; Hess, Michael W.; Clevers, Hans; van Es, Johan H.; Nieuwenhuis, Edward E. S.; Middendorp, Sabine

    2015-01-01

    Microvillus inclusion disease (MVID) is a rare intestinal enteropathy with an onset within a few days to months after birth, resulting in persistent watery diarrhea. Mutations in the myosin Vb gene (MYO5B) have been identified in the majority of MVID patients. However, the exact pathophysiology of MVID still remains unclear. To address the specific role of MYO5B in the intestine, we generated an intestine-specific conditional Myo5b-deficient (Myo5bfl/fl;Vil-CreERT2) mouse model. We analyzed intestinal tissues and cultured organoids of Myo5bfl/fl;Vil-CreERT2 mice by electron microscopy, immunofluorescence, and immunohistochemistry. Our data showed that Myo5bfl/fl;Vil-CreERT2 mice developed severe diarrhea within 4 d after tamoxifen induction. Periodic Acid Schiff and alkaline phosphatase staining revealed subapical accumulation of intracellular vesicles in villus enterocytes. Analysis by electron microscopy confirmed an almost complete absence of apical microvilli, the appearance of microvillus inclusions, and enlarged intercellular spaces in induced Myo5bfl/fl;Vil-CreERT2 intestines. In addition, we determined that MYO5B is involved not only in apical but also basolateral trafficking of proteins. The analysis of the intestine during the early onset of the disease revealed that subapical accumulation of secretory granules precedes occurrence of microvillus inclusions, indicating involvement of MYO5B in early differentiation of epithelial cells. By comparing our data with a novel MVID patient, we conclude that our mouse model completely recapitulates the intestinal phenotype of human MVID. This includes severe diarrhea, loss of microvilli, occurrence of microvillus inclusions, and subapical secretory granules. Thus, loss of MYO5B disturbs both apical and basolateral trafficking of proteins and causes MVID in mice. PMID:26392529

  7. Utility of whole exome sequencing in the diagnosis of Usher syndrome: Report of novel compound heterozygous MYO7A mutations.

    PubMed

    Ramzan, Khushnooda; Al-Owain, Mohammed; Huma, Rozeena; Al-Hazzaa, Selwa A F; Al-Ageel, Sarah; Imtiaz, Faiqa; Al-Sayed, Moeenaldeen

    2018-05-01

    Next generation sequencing (NGS), such as targeted panel sequencing, whole-exome sequencing and whole-genome sequencing has led to an exponential increase of elucidated genetic causes in both rare diseases, and common but heterogeneous disorders. NGS is applied in both research and clinical settings, and the clinical exome sequencing (CES), which provides not only the sequence variation data but also clinical interpretation, aids in reaching a final conclusion with regards to a genetic diagnosis. Usher syndrome is a group of disorders, characterized by bilateral sensorineural hearing loss, with or without vestibular dysfunction and retinitis pigmentosa. The index patient, a 2-year-old child was initially diagnosed with nonsyndromic hearing impairment. Homozygosity mapping followed by CES was utilized as a diagnostic tool to identify the genetic basis of his hearing loss. A paternally inherited novel insertion, c.198_199insA (p.Val67Serfs*73) and a maternally inherited novel deletion, c.1219_1226del (p.Phe407Aspfs*33) in gene MYO7A were found in compound heterozygous state in the index patient. The result expands the mutational spectrum of MYO7A. In addition it helped in early diagnosis of the syndrome, for planning and adjustments for the patient, and as well as for future family planning. This study highlights the clinical effectiveness of CES for Usher syndrome diagnosis in a child presented with congenital hearing loss. Copyright © 2018. Published by Elsevier B.V.

  8. Identification of mutations in the MYO9A gene in patients with congenital myasthenic syndrome

    PubMed Central

    O’Connor, Emily; Töpf, Ana; Müller, Juliane S.; Cox, Daniel; Evangelista, Teresinha; Colomer, Jaume; Abicht, Angela; Senderek, Jan; Hasselmann, Oswald; Yaramis, Ahmet; Laval, Steven H.

    2016-01-01

    Abstract Congenital myasthenic syndromes are a group of rare and genetically heterogenous disorders resulting from defects in the structure and function of the neuromuscular junction. Patients with congenital myasthenic syndrome exhibit fatigable muscle weakness with a variety of accompanying phenotypes depending on the protein affected. A cohort of patients with a clinical diagnosis of congenital myasthenic syndrome that lacked a genetic diagnosis underwent whole exome sequencing in order to identify genetic causation. Missense biallelic mutations in the MYO9A gene, encoding an unconventional myosin, were identified in two unrelated families. Depletion of MYO9A in NSC-34 cells revealed a direct effect of MYO9A on neuronal branching and axon guidance. Morpholino-mediated knockdown of the two MYO9A orthologues in zebrafish, myo9aa/ab, demonstrated a requirement for MYO9A in the formation of the neuromuscular junction during development. The morphants displayed shortened and abnormally branched motor axons, lack of movement within the chorion and abnormal swimming in response to tactile stimulation. We therefore conclude that MYO9A deficiency may affect the presynaptic motor axon, manifesting in congenital myasthenic syndrome. These results highlight the involvement of unconventional myosins in motor axon functionality, as well as the need to look outside traditional neuromuscular junction-specific proteins for further congenital myasthenic syndrome candidate genes. PMID:27259756

  9. MyTH4-FERM myosins have an ancient and conserved role in filopod formation

    PubMed Central

    Goodson, Holly V.; Arthur, Ashley L.; Luxton, G. W. Gant; Houdusse, Anne; Titus, Margaret A.

    2016-01-01

    The formation of filopodia in Metazoa and Amoebozoa requires the activity of myosin 10 (Myo10) in mammalian cells and of Dictyostelium unconventional myosin 7 (DdMyo7) in the social amoeba Dictyostelium. However, the exact roles of these MyTH4-FERM myosins (myosin tail homology 4-band 4.1, ezrin, radixin, moesin; MF) in the initiation and elongation of filopodia are not well defined and may reflect conserved functions among phylogenetically diverse MF myosins. Phylogenetic analysis of MF myosin domains suggests that a single ancestral MF myosin existed with a structure similar to DdMyo7, which has two MF domains, and that subsequent duplications in the metazoan lineage produced its functional homolog Myo10. The essential functional features of the DdMyo7 myosin were identified using quantitative live-cell imaging to characterize the ability of various mutants to rescue filopod formation in myo7-null cells. The two MF domains were found to function redundantly in filopod formation with the C-terminal FERM domain regulating both the number of filopodia and their elongation velocity. DdMyo7 mutants consisting solely of the motor plus a single MyTH4 domain were found to be capable of rescuing the formation of filopodia, establishing the minimal elements necessary for the function of this myosin. Interestingly, a chimeric myosin with the Myo10 MF domain fused to the DdMyo7 motor also was capable of rescuing filopod formation in the myo7-null mutant, supporting fundamental functional conservation between these two distant myosins. Together, these findings reveal that MF myosins have an ancient and conserved role in filopod formation. PMID:27911821

  10. A novel syndrome of Klippel-Feil anomaly, myopathy, and characteristic facies is linked to a null mutation in MYO18B.

    PubMed

    Alazami, Anas M; Kentab, Amal Y; Faqeih, Eissa; Mohamed, Jawahir Y; Alkhalidi, Hisham; Hijazi, Hadia; Alkuraya, Fowzan S

    2015-06-01

    Klippel-Feil anomaly (KFA) can be seen in a number of syndromes. We describe an apparently novel syndromic association with KFA. Clinical phenotyping of two consanguineous families followed by combined autozygome/exome analysis. Two patients from two apparently unrelated families shared a strikingly similar phenotype characterised by KFA, myopathy, mild short stature, microcephaly, and distinctive facies. They shared a single founder autozygous interval in which whole exome sequencing revealed a truncating mutation in MYO18B. There was virtually complete loss of the transcript in peripheral blood, indicative of nonsense-mediated decay. Electron microscopy of muscle confirms abnormal myosin filaments with accompanying myopathic changes. Deficiency of MYO18B is linked to a novel developmental disorder which combines KFA with myopathy. This suggests a widespread developmental role for this gene in humans, as observed for its murine ortholog. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Molecular Genetics of the Usher Syndrome in Lebanon: Identification of 11 Novel Protein Truncating Mutations by Whole Exome Sequencing

    PubMed Central

    Reddy, Ramesh; Fahiminiya, Somayyeh; El Zir, Elie; Mansour, Ahmad; Megarbane, Andre; Majewski, Jacek; Slim, Rima

    2014-01-01

    Background Usher syndrome (USH) is a genetically heterogeneous condition with ten disease-causing genes. The spectrum of genes and mutations causing USH in the Lebanese and Middle Eastern populations has not been described. Consequently, diagnostic approaches designed to screen for previously reported mutations were unlikely to identify the mutations in 11 unrelated families, eight of Lebanese and three of Middle Eastern origins. In addition, six of the ten USH genes consist of more than 20 exons, each, which made mutational analysis by Sanger sequencing of PCR-amplified exons from genomic DNA tedious and costly. The study was aimed at the identification of USH causing genes and mutations in 11 unrelated families with USH type I or II. Methods Whole exome sequencing followed by expanded familial validation by Sanger sequencing. Results We identified disease-causing mutations in all the analyzed patients in four USH genes, MYO7A, USH2A, GPR98 and CDH23. Eleven of the mutations were novel and protein truncating, including a complex rearrangement in GPR98. Conclusion Our data highlight the genetic diversity of Usher syndrome in the Lebanese population and the time and cost-effectiveness of whole exome sequencing approach for mutation analysis of genetically heterogeneous conditions caused by large genes. PMID:25211151

  12. Molecular genetics of the Usher syndrome in Lebanon: identification of 11 novel protein truncating mutations by whole exome sequencing.

    PubMed

    Reddy, Ramesh; Fahiminiya, Somayyeh; El Zir, Elie; Mansour, Ahmad; Megarbane, Andre; Majewski, Jacek; Slim, Rima

    2014-01-01

    Usher syndrome (USH) is a genetically heterogeneous condition with ten disease-causing genes. The spectrum of genes and mutations causing USH in the Lebanese and Middle Eastern populations has not been described. Consequently, diagnostic approaches designed to screen for previously reported mutations were unlikely to identify the mutations in 11 unrelated families, eight of Lebanese and three of Middle Eastern origins. In addition, six of the ten USH genes consist of more than 20 exons, each, which made mutational analysis by Sanger sequencing of PCR-amplified exons from genomic DNA tedious and costly. The study was aimed at the identification of USH causing genes and mutations in 11 unrelated families with USH type I or II. Whole exome sequencing followed by expanded familial validation by Sanger sequencing. We identified disease-causing mutations in all the analyzed patients in four USH genes, MYO7A, USH2A, GPR98 and CDH23. Eleven of the mutations were novel and protein truncating, including a complex rearrangement in GPR98. Our data highlight the genetic diversity of Usher syndrome in the Lebanese population and the time and cost-effectiveness of whole exome sequencing approach for mutation analysis of genetically heterogeneous conditions caused by large genes.

  13. Identification of mutations in the MYO9A gene in patients with congenital myasthenic syndrome.

    PubMed

    O'Connor, Emily; Töpf, Ana; Müller, Juliane S; Cox, Daniel; Evangelista, Teresinha; Colomer, Jaume; Abicht, Angela; Senderek, Jan; Hasselmann, Oswald; Yaramis, Ahmet; Laval, Steven H; Lochmüller, Hanns

    2016-08-01

    Congenital myasthenic syndromes are a group of rare and genetically heterogenous disorders resulting from defects in the structure and function of the neuromuscular junction. Patients with congenital myasthenic syndrome exhibit fatigable muscle weakness with a variety of accompanying phenotypes depending on the protein affected. A cohort of patients with a clinical diagnosis of congenital myasthenic syndrome that lacked a genetic diagnosis underwent whole exome sequencing in order to identify genetic causation. Missense biallelic mutations in the MYO9A gene, encoding an unconventional myosin, were identified in two unrelated families. Depletion of MYO9A in NSC-34 cells revealed a direct effect of MYO9A on neuronal branching and axon guidance. Morpholino-mediated knockdown of the two MYO9A orthologues in zebrafish, myo9aa/ab, demonstrated a requirement for MYO9A in the formation of the neuromuscular junction during development. The morphants displayed shortened and abnormally branched motor axons, lack of movement within the chorion and abnormal swimming in response to tactile stimulation. We therefore conclude that MYO9A deficiency may affect the presynaptic motor axon, manifesting in congenital myasthenic syndrome. These results highlight the involvement of unconventional myosins in motor axon functionality, as well as the need to look outside traditional neuromuscular junction-specific proteins for further congenital myasthenic syndrome candidate genes. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  14. N-terminal splicing extensions of the human MYO1C gene fine-tune the kinetics of the three full-length myosin IC isoforms.

    PubMed

    Zattelman, Lilach; Regev, Ronit; Ušaj, Marko; Reinke, Patrick Y A; Giese, Sven; Samson, Abraham O; Taft, Manuel H; Manstein, Dietmar J; Henn, Arnon

    2017-10-27

    The MYO1C gene produces three alternatively spliced isoforms, differing only in their N-terminal regions (NTRs). These isoforms, which exhibit both specific and overlapping nuclear and cytoplasmic functions, have different expression levels and nuclear-cytoplasmic partitioning. To investigate the effect of NTR extensions on the enzymatic behavior of individual isoforms, we overexpressed and purified the three full-length human isoforms from suspension-adapted HEK cells. MYO1C C favored the actomyosin closed state (AM C ), MYO1C 16 populated the actomyosin open state (AM O ) and AM C equally, and MYO1C 35 favored the AM O state. Moreover, the full-length constructs isomerized before ADP release, which has not been observed previously in truncated MYO1C C constructs. Furthermore, global numerical simulation analysis predicted that MYO1C 35 populated the actomyosin·ADP closed state (AMD C ) 5-fold more than the actomyosin·ADP open state (AMD O ) and to a greater degree than MYO1C C and MYO1C 16 (4- and 2-fold, respectively). On the basis of a homology model of the 35-amino acid NTR of MYO1C 35 (NTR 35 ) docked to the X-ray structure of MYO1C C , we predicted that MYO1C 35 NTR residue Arg-21 would engage in a specific interaction with post-relay helix residue Glu-469, which affects the mechanics of the myosin power stroke. In addition, we found that adding the NTR 35 peptide to MYO1C C yielded a protein that transiently mimics MYO1C 35 kinetic behavior. By contrast, NTR 35 , which harbors the R21G mutation, was unable to confer MYO1C 35 -like kinetic behavior. Thus, the NTRs affect the specific nucleotide-binding properties of MYO1C isoforms, adding to their kinetic diversity. We propose that this level of fine-tuning within MYO1C broadens its adaptability within cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. The juxtamembrane domain of the E-cadherin cytoplasmic tail contributes to its interaction with Myosin VI

    PubMed Central

    Mangold, Sabine; Norwood, Suzanne J.; Yap, Alpha S.; Collins, Brett M.

    2012-01-01

    We recently identified the atypical myosin, Myosin VI, as a component of epithelial cell-cell junctions that interacts with E-cadherin. Recombinant proteins bearing the cargo-binding domain of Myosin VI (Myo VI-CBD) or the cytoplasmic tail of E-cadherin can interact directly with one another. In this report we further investigate the molecular requirements of the interaction between Myo VI-CBD and E-cadherin combining truncation mutation analysis with in vitro binding assays. We report that a short (28 amino acid) juxtamembrane region of the cadherin cytoplasmic tail is sufficient to bind Myo VI-CBD. However, central regions of the cadherin tail adjacent to the juxtamembrane sequence also display binding activity for Myo VI-CBD. It is therefore possible that the cadherin tail bears two binding sites for Myosin VI, or an extended binding site that includes the juxtamembrane region. Nevertheless, our biochemical data highlight the capacity for the juxtamembrane region to interact with functionally-significant cytoplasmic proteins. PMID:23007415

  16. Detecting novel genetic mutations in Chinese Usher syndrome families using next-generation sequencing technology.

    PubMed

    Qu, Ling-Hui; Jin, Xin; Xu, Hai-Wei; Li, Shi-Ying; Yin, Zheng-Qin

    2015-02-01

    Usher syndrome (USH) is the most common cause of combined blindness and deafness inherited in an autosomal recessive mode. Molecular diagnosis is of great significance in revealing the molecular pathogenesis and aiding the clinical diagnosis of this disease. However, molecular diagnosis remains a challenge due to high phenotypic and genetic heterogeneity in USH. This study explored an approach for detecting disease-causing genetic mutations in candidate genes in five index cases from unrelated USH families based on targeted next-generation sequencing (NGS) technology. Through systematic data analysis using an established bioinformatics pipeline and segregation analysis, 10 pathogenic mutations in the USH disease genes were identified in the five USH families. Six of these mutations were novel: c.4398G > A and EX38-49del in MYO7A, c.988_989delAT in USH1C, c.15104_15105delCA and c.6875_6876insG in USH2A. All novel variations segregated with the disease phenotypes in their respective families and were absent from ethnically matched control individuals. This study expanded the mutation spectrum of USH and revealed the genotype-phenotype relationships of the novel USH mutations in Chinese patients. Moreover, this study proved that targeted NGS is an accurate and effective method for detecting genetic mutations related to USH. The identification of pathogenic mutations is of great significance for elucidating the underlying pathophysiology of USH.

  17. Microvillus inclusion disease: prenatal ultrasound findings, molecular diagnosis and genetic counseling of congenital diarrhea.

    PubMed

    Chen, Chih-Ping; Chiang, Ming-Chou; Wang, Tzu-Hao; Hsueh, Chuen; Chang, Shueen-Dyh; Tsai, Fuu-Jen; Wang, Chao-Ning; Chern, Schu-Rern; Wang, Wayseen

    2010-12-01

    To present prenatal ultrasound findings and molecular diagnosis of microvillus inclusion disease, and to review the literature of abnormal prenatal ultrasound findings associated with congenital diarrhea. A 21-year-old woman, gravida 1, para 0, had generalized bowel dilation of the fetus on prenatal ultrasound at 29 gestational weeks. She and her husband were non-consanguineous, and there was no family history of congenital diarrhea. Prenatal ultrasound at 29 gestational weeks revealed a honeycomb appearance of the bowel without ascites or intraperitoneal calcification. At 36 gestational weeks, polyhydramnios dilated bowel loops were observed, and a 3,355-g male baby was delivered with a distended abdomen. Postnatally, the neonate suffered from watery diarrhea and abdominal distension but there was no mechanical bowel obstruction. An endoscopic biopsy of the small bowel revealed intracytoplasmic inclusions lined by intact microvilli in the apical surface of the intestinal epithelial cells consistent with the diagnosis of microvillus inclusion disease. Mutation analysis of blood samples of the neonate and parents revealed a heterozygous nonsense mutation of c.445C

  18. Phosphorylation Regulates myo-Inositol-3-phosphate Synthase

    PubMed Central

    Deranieh, Rania M.; He, Quan; Caruso, Joseph A.; Greenberg, Miriam L.

    2013-01-01

    myo-Inositol-3-phosphate synthase (MIPS) plays a crucial role in inositol homeostasis. Transcription of the coding gene INO1 is highly regulated. However, regulation of the enzyme is not well defined. We previously showed that MIPS is indirectly inhibited by valproate, suggesting that the enzyme is post-translationally regulated. Using 32Pi labeling and phosphoamino acid analysis, we show that yeast MIPS is a phosphoprotein. Mass spectrometry analysis identified five phosphosites, three of which are conserved in the human MIPS. Analysis of phosphorylation-deficient and phosphomimetic site mutants indicated that the three conserved sites in yeast (Ser-184, Ser-296, and Ser-374) and humans (Ser-177, Ser-279, and Ser-357) affect MIPS activity. Both S296A and S296D yeast mutants and S177A and S177D human mutants exhibited decreased enzymatic activity, suggesting that a serine residue is critical at that location. The phosphomimetic mutations S184D (human S279D) and S374D (human S357D) but not the phosphodeficient mutations decreased activity, suggesting that phosphorylation of these two sites is inhibitory. The double mutation S184A/S374A caused an increase in MIPS activity, conferred a growth advantage, and partially rescued sensitivity to valproate. Our findings identify a novel mechanism of regulation of inositol synthesis by phosphorylation of MIPS. PMID:23902760

  19. A novel WFS1 mutation in a family with dominant low frequency sensorineural hearing loss with normal VEMP and EcochG findings

    PubMed Central

    Bramhall, Naomi F; Kallman, Jeremy C; Verrall, Aimee M; Street, Valerie A

    2008-01-01

    Background Low frequency sensorineural hearing loss (LFSNHL) is an uncommon clinical finding. Mutations within three different identified genes (DIAPH1, MYO7A, and WFS1) are known to cause LFSNHL. The majority of hereditary LFSNHL is associated with heterozygous mutations in the WFS1 gene (wolframin protein). The goal of this study was to use genetic analysis to determine if a small American family's hereditary LFSNHL is linked to a mutation in the WFS1 gene and to use VEMP and EcochG testing to further characterize the family's audiovestibular phenotype. Methods The clinical phenotype of the American family was characterized by audiologic testing, vestibular evoked myogenic potentials (VEMP), and electrocochleography (EcochG) evaluation. Genetic characterization was performed by microsatellite analysis and direct sequencing of WFS1 for mutation detection. Results Sequence analysis of the WFS1 gene revealed a novel heterozygous mutation at c.2054G>C predicting a p.R685P amino acid substitution in wolframin. The c.2054G>C mutation segregates faithfully with hearing loss in the family and is absent in 230 control chromosomes. The p.R685 residue is located within the hydrophilic C-terminus of wolframin and is conserved across species. The VEMP and EcochG findings were normal in individuals segregating the WFS1 c.2054G>C mutation. Conclusion We discovered a novel heterozygous missense mutation in exon 8 of WFS1 predicting a p.R685P amino acid substitution that is likely to underlie the LFSNHL phenotype in the American family. For the first time, we describe VEMP and EcochG findings for individuals segregating a heterozygous WFS1 mutation. PMID:18518985

  20. A novel WFS1 mutation in a family with dominant low frequency sensorineural hearing loss with normal VEMP and EcochG findings.

    PubMed

    Bramhall, Naomi F; Kallman, Jeremy C; Verrall, Aimee M; Street, Valerie A

    2008-06-02

    Low frequency sensorineural hearing loss (LFSNHL) is an uncommon clinical finding. Mutations within three different identified genes (DIAPH1, MYO7A, and WFS1) are known to cause LFSNHL. The majority of hereditary LFSNHL is associated with heterozygous mutations in the WFS1 gene (wolframin protein). The goal of this study was to use genetic analysis to determine if a small American family's hereditary LFSNHL is linked to a mutation in the WFS1 gene and to use VEMP and EcochG testing to further characterize the family's audiovestibular phenotype. The clinical phenotype of the American family was characterized by audiologic testing, vestibular evoked myogenic potentials (VEMP), and electrocochleography (EcochG) evaluation. Genetic characterization was performed by microsatellite analysis and direct sequencing of WFS1 for mutation detection. Sequence analysis of the WFS1 gene revealed a novel heterozygous mutation at c.2054G>C predicting a p.R685P amino acid substitution in wolframin. The c.2054G>C mutation segregates faithfully with hearing loss in the family and is absent in 230 control chromosomes. The p.R685 residue is located within the hydrophilic C-terminus of wolframin and is conserved across species. The VEMP and EcochG findings were normal in individuals segregating the WFS1 c.2054G>C mutation. We discovered a novel heterozygous missense mutation in exon 8 of WFS1 predicting a p.R685P amino acid substitution that is likely to underlie the LFSNHL phenotype in the American family. For the first time, we describe VEMP and EcochG findings for individuals segregating a heterozygous WFS1 mutation.

  1. Cofilin, But Not Profilin, Is Required for Myosin-I-Induced Actin Polymerization and the Endocytic Uptake in Yeast

    PubMed Central

    Idrissi, Fatima-Zahra; Wolf, Bianka L.; Geli, M. Isabel

    2002-01-01

    Mutations in the budding yeast myosins-I (MYO3 and MYO5) cause defects in the actin cytoskeleton and in the endocytic uptake. Robust evidence also indicates that these proteins induce Arp2/3-dependent actin polymerization. Consistently, we have recently demonstrated, using fluorescence microscopy, that Myo5p is able to induce cytosol-dependent actin polymerization on the surface of Sepharose beads. Strikingly, we now observed that, at short incubation times, Myo5p induced the formation of actin foci that resembled the yeast cortical actin patches, a plasma membrane-associated structure that might be involved in the endocytic uptake. Analysis of the machinery required for the formation of the Myo5p-induced actin patches in vitro demonstrated that the Arp2/3 complex was necessary but not sufficient in the assay. In addition, we found that cofilin was directly involved in the process. Strikingly though, the cofilin requirement seemed to be independent of its ability to disassemble actin filaments and profilin, a protein that closely cooperates with cofilin to maintain a rapid actin filament turnover, was not needed in the assay. In agreement with these observations, we found that like the Arp2/3 complex and the myosins-I, cofilin was essential for the endocytic uptake in vivo, whereas profilin was dispensable. PMID:12429847

  2. Assessment of different virus-mediated approaches for retinal gene therapy of Usher 1B.

    PubMed

    Lopes, Vanda S; Diemer, Tanja; Williams, David S

    2014-01-01

    Usher syndrome type 1B, which is characterized by congenital deafness and progressive retinal degeneration, is caused by the loss of the function of MYO7A. Prevention of the retinal degeneration should be possible by delivering functional MYO7A to retinal cells. Although this approach has been used successfully in clinical trials for Leber congenital amaurosis (LCA2), it remains a challenge for Usher 1B because of the large size of the MYO7A cDNA. Different viral vectors have been tested for use in MYO7A gene therapy. Here, we review approaches with lentiviruses, which can accommodate larger genes, as well as attempts to use adeno-associated virus (AAV), which has a smaller packaging capacity. In conclusion, both types of viral vector appear to be effective. Despite concerns about the ability of lentiviruses to access the photoreceptor cells, a phenotype of the photoreceptors of Myo7a-mutant mice can be corrected. And although MYO7A cDNA is significantly larger than the nominal carrying capacity of AAV, AAV-MYO7A in single vectors also corrected Myo7a-mutant phenotypes in photoreceptor and RPE cells. Interestingly, however, a dual AAV vector approach was found to be much less effective.

  3. Identification of a novel mutation in the myosin VIIA motor domain in a family with autosomal dominant hearing loss (DFNA11).

    PubMed

    Di Leva, Francesca; D'Adamo, Pio; Cubellis, Maria Vittoria; D'Eustacchio, Angela; Errichiello, Monica; Saulino, Claudio; Auletta, Gennaro; Giannini, Pasquale; Donaudy, Francesca; Ciccodicola, Alfredo; Gasparini, Paolo; Franzè, Annamaria; Marciano, Elio

    2006-01-01

    We ascertained a large Italian family with an autosomal dominant form of non-syndromic sensorineural hearing loss with vestibular involvement. A genome-wide scan found linkage to locus DFNA11. Sequencing of the MYO7A gene in the linked region identified a new missense mutation resulting in an Ala230Val change in the motor domain of the myosin VIIA. Myosin VIIA has already been implicated in several forms of deafness, but this is the third mutation causing a dominant form of deafness, located in the myosin VIIA motor domain in a region never involved in hearing loss until now. A modelled protein structure of myosin VII motor domain provides evidence for a significant functional effect of this missense mutation. Copyright (c) 2006 S. Karger AG, Basel.

  4. Myosin 7 and its adaptors link cadherins to actin.

    PubMed

    Yu, I-Mei; Planelles-Herrero, Vicente J; Sourigues, Yannick; Moussaoui, Dihia; Sirkia, Helena; Kikuti, Carlos; Stroebel, David; Titus, Margaret A; Houdusse, Anne

    2017-06-29

    Cadherin linkages between adjacent stereocilia and microvilli are essential for mechanotransduction and maintaining their organization. They are anchored to actin through interaction of their cytoplasmic domains with related tripartite complexes consisting of a class VII myosin and adaptor proteins: Myo7a/SANS/Harmonin in stereocilia and Myo7b/ANKS4B/Harmonin in microvilli. Here, we determine high-resolution structures of Myo7a and Myo7b C-terminal MyTH4-FERM domain (MF2) and unveil how they recognize harmonin using a novel binding mode. Systematic definition of interactions between domains of the tripartite complex elucidates how the complex assembles and prevents possible self-association of harmonin-a. Several Myo7a deafness mutants that map to the surface of MF2 disrupt harmonin binding, revealing the molecular basis for how they impact the formation of the tripartite complex and disrupt mechanotransduction. Our results also suggest how switching between different harmonin isoforms can regulate the formation of networks with Myo7a motors and coordinate force sensing in stereocilia.

  5. Efficient myogenic differentiation of human adipose-derived stem cells by the transduction of engineered MyoD protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Min Sun; Biosystems and Bioengineering Program, University of Science and Technology; Mun, Ji-Young

    2013-07-19

    Highlights: •MyoD was engineered to contain protein transduction domain and endosome-disruptive INF7 peptide. •The engineered MyoD-IT showed efficient nuclear targeting through an endosomal escape by INF7 peptide. •By applying MyoD-IT, human adipose-derived stem cells (hASCs) were differentiated into myogenic cells. •hASCs differentiated by applying MyoD-IT fused to myotubes through co-culturing with mouse myoblasts. •Myogenic differentiation using MyoD-IT is a safe method without the concern of altering the genome. -- Abstract: Human adipose-derived stem cells (hASCs) have great potential as cell sources for the treatment of muscle disorders. To provide a safe method for the myogenic differentiation of hASCs, we engineeredmore » the MyoD protein, a key transcription factor for myogenesis. The engineered MyoD (MyoD-IT) was designed to contain the TAT protein transduction domain for cell penetration and the membrane-disrupting INF7 peptide, which is an improved version of the HA2 peptide derived from influenza. MyoD-IT showed greatly improved nuclear targeting ability through an efficient endosomal escape induced by the pH-sensitive membrane disruption of the INF7 peptide. By applying MyoD-IT to a culture, hASCs were efficiently differentiated into long spindle-shaped myogenic cells expressing myosin heavy chains. Moreover, these cells differentiated by an application of MyoD-IT fused to myotubes with high efficiency through co-culturing with mouse C2C12 myoblasts. Because internalized proteins can be degraded in cells without altering the genome, the myogenic differentiation of hASCs using MyoD-IT would be a safe and clinically applicable method.« less

  6. Genetic heterogeneity and consanguinity lead to a “double hit”: Homozygous mutations of MYO7A and PDE6B in a patient with retinitis pigmentosa

    PubMed Central

    Goldenberg-Cohen, Nitza; Banin, Eyal; Zalzstein, Yael; Cohen, Ben; Rotenstreich, Ygal; Rizel, Leah; Basel-Vanagaite, Lina

    2013-01-01

    Purpose Retinitis pigmentosa (RP), the most genetically heterogeneous disorder in humans, actually represents a group of pigmentary retinopathies characterized by night blindness followed by visual-field loss. RP can appear as either syndromic or nonsyndromic. One of the most common forms of syndromic RP is Usher syndrome, characterized by the combination of RP, hearing loss, and vestibular dysfunction. Methods The underlying cause of the appearance of syndromic and nonsyndromic RP in three siblings from a consanguineous Israeli Muslim Arab family was studied with whole-genome homozygosity mapping followed by whole exome sequencing. Results The family was found to segregate novel mutations of two different genes: myosin VIIA (MYO7A), which causes type 1 Usher syndrome, and phosphodiesterase 6B, cyclic guanosine monophosphate-specific, rod, beta (PDE6B), which causes nonsyndromic RP. One affected child was homozygous for both mutations. Since the retinal phenotype seen in this patient results from overlapping pathologies, one might expect to find severe retinal degeneration. Indeed, he was diagnosed with RP based on an abnormal electroretinogram (ERG) at a young age (9 months). However, this early diagnosis may be biased, as two of his older siblings had already been diagnosed, leading to increased awareness. At the age of 32 months, he had relatively good vision with normal visual fields. Further testing of visual function and structure at different ages in the three siblings is needed to determine whether the two RP-causing genes mutated in this youngest sibling confer increased disease severity. Conclusions This report further supports the genetic heterogeneity of RP, and demonstrates how consanguinity could increase intrafamilial clustering of multiple hereditary diseases. Moreover, this report provides a unique opportunity to study the clinical implications of the coexistence of pathogenic mutations in two RP-causative genes in a human patient. PMID:23882135

  7. Genetic heterogeneity and consanguinity lead to a "double hit": homozygous mutations of MYO7A and PDE6B in a patient with retinitis pigmentosa.

    PubMed

    Goldenberg-Cohen, Nitza; Banin, Eyal; Zalzstein, Yael; Cohen, Ben; Rotenstreich, Ygal; Rizel, Leah; Basel-Vanagaite, Lina; Ben-Yosef, Tamar

    2013-01-01

    Retinitis pigmentosa (RP), the most genetically heterogeneous disorder in humans, actually represents a group of pigmentary retinopathies characterized by night blindness followed by visual-field loss. RP can appear as either syndromic or nonsyndromic. One of the most common forms of syndromic RP is Usher syndrome, characterized by the combination of RP, hearing loss, and vestibular dysfunction. The underlying cause of the appearance of syndromic and nonsyndromic RP in three siblings from a consanguineous Israeli Muslim Arab family was studied with whole-genome homozygosity mapping followed by whole exome sequencing. THE FAMILY WAS FOUND TO SEGREGATE NOVEL MUTATIONS OF TWO DIFFERENT GENES: myosin VIIA (MYO7A), which causes type 1 Usher syndrome, and phosphodiesterase 6B, cyclic guanosine monophosphate-specific, rod, beta (PDE6B), which causes nonsyndromic RP. One affected child was homozygous for both mutations. Since the retinal phenotype seen in this patient results from overlapping pathologies, one might expect to find severe retinal degeneration. Indeed, he was diagnosed with RP based on an abnormal electroretinogram (ERG) at a young age (9 months). However, this early diagnosis may be biased, as two of his older siblings had already been diagnosed, leading to increased awareness. At the age of 32 months, he had relatively good vision with normal visual fields. Further testing of visual function and structure at different ages in the three siblings is needed to determine whether the two RP-causing genes mutated in this youngest sibling confer increased disease severity. This report further supports the genetic heterogeneity of RP, and demonstrates how consanguinity could increase intrafamilial clustering of multiple hereditary diseases. Moreover, this report provides a unique opportunity to study the clinical implications of the coexistence of pathogenic mutations in two RP-causative genes in a human patient.

  8. Improving thermostability of phosphatidylinositol-synthesizing Streptomyces phospholipase D.

    PubMed

    Damnjanović, Jasmina; Takahashi, Rie; Suzuki, Atsuo; Nakano, Hideo; Iwasaki, Yugo

    2012-08-01

    Aimed to produce thermostable phosphatidylinositol (PI)-synthesizing phospholipase D (PLD), we initiated site-directed combinatorial mutagenesis followed by high-throughput screening. Previous site-directed combinatorial mutagenesis of wild-type Streptomyces PLD produced a mutant, DYR (W187D/Y191Y/Y385R) with PI-synthesizing ability. Deriving PI as a product of transphosphatidylation between phosphatidylcholine and myo-inositol, with myo-inositol in excess at high-temperature reaction conditions can increase yield due to enhanced solubility of this substrate. Thus, we improved DYR's thermostability by introduction of random mutations into selected amino acid positions having high B-factor. Screening of the libraries under restricted conditions yielded single-point mutants, specifically D40H, T291Y and R329G. Combinations of these point mutations yielded double (D40H/T291Y, D40H/R329G and T291Y/R329G) and triple (D40H/T291Y/R329G) mutants. PI synthesis at elevated temperatures pointed at D40H/T291Y as the most efficient enzyme. Circular dichroism analysis revealed D40H/T291Y to have increased melting temperature and postponed onset of thermal unfolding compared with DYR. Thermal tolerance study at 65°C confirmed D40H/T291Y's thermostability as its half-inactivation time was 8.7 min longer compared with DYR. This mutant had significantly less root-mean-square deviation change compared with DYR and showed no change in root-mean-square fluctuation when temperature shifts from 40 to 60°C, as determined by molecular dynamics analysis. Acquired different degrees of thermostability were also observed for several other DYR mutants.

  9. [From gene to disease; genetic causes of hearing loss and visual impairment sometimes accompanied by vestibular problems (Usher syndrome)].

    PubMed

    Pennings, R J E; Kremer, H; Deutman, A F; Kimberling, W J; Cremers, C W R J

    2002-12-07

    Usher syndrome is an autosomal recessively inherited disease, characterised by sensorineural hearing loss, tapetoretinal degeneration and in some cases vestibular problems. Based on the clinical heterogeneity, the disease can be classified into three clinical types (I, II and III), which have their own genetic subtypes (Usher 1A-Usher IG, Usher 2A-Usher 2C and Usher 3). The majority of the Usher type I cases are caused by mutations in the MYO7A gene (Usher 1B) while mutations in the USH2A gene (Usher 2A) are the cause of most cases of type II. Usher syndrome type III, caused by mutations in the USH3 gene, is frequently seen only in Finland.

  10. Myosin 7 and its adaptors link cadherins to actin

    PubMed Central

    Yu, I-Mei; Planelles-Herrero, Vicente J.; Sourigues, Yannick; Moussaoui, Dihia; Sirkia, Helena; Kikuti, Carlos; Stroebel, David; Titus, Margaret A.; Houdusse, Anne

    2017-01-01

    Cadherin linkages between adjacent stereocilia and microvilli are essential for mechanotransduction and maintaining their organization. They are anchored to actin through interaction of their cytoplasmic domains with related tripartite complexes consisting of a class VII myosin and adaptor proteins: Myo7a/SANS/Harmonin in stereocilia and Myo7b/ANKS4B/Harmonin in microvilli. Here, we determine high-resolution structures of Myo7a and Myo7b C-terminal MyTH4-FERM domain (MF2) and unveil how they recognize harmonin using a novel binding mode. Systematic definition of interactions between domains of the tripartite complex elucidates how the complex assembles and prevents possible self-association of harmonin-a. Several Myo7a deafness mutants that map to the surface of MF2 disrupt harmonin binding, revealing the molecular basis for how they impact the formation of the tripartite complex and disrupt mechanotransduction. Our results also suggest how switching between different harmonin isoforms can regulate the formation of networks with Myo7a motors and coordinate force sensing in stereocilia. PMID:28660889

  11. Mutation screening of the PCDH15 gene in Spanish patients with Usher syndrome type I.

    PubMed

    Jaijo, Teresa; Oshima, Aki; Aller, Elena; Carney, Carol; Usami, Shin-ichi; Millán, José M; Kimberling, William J

    2012-01-01

    PCDH15 codes for protocadherin-15, a cell-cell adhesion protein essential in the morphogenesis and cohesion of stereocilia bundles and in the function or preservation of photoreceptor cells. Mutations in the PCDH15 gene are responsible for Usher syndrome type I (USH1F) and non-syndromic hearing loss (DFNB23). The purpose of this work was to perform PCDH15 mutation screening to identify the genetic cause of the disease in a cohort of Spanish patients with Usher syndrome type I and establish phenotype-genotype correlation. Mutation analysis of PCDH15 included additional exons recently identified and was performed by direct sequencing. The screening was performed in 19 probands with USH already screened for mutations in the most prevalent USH1 genes, myosin VIIA (MYO7A) and cadherin-23 (CDH23), and for copy number variants in PCDH15. Seven different point mutations, five novel, were detected. Including the large PCDH15 rearrangements previously reported in our cohort of patients, a total of seven of 19 patients (36.8%) were carriers of at least one pathogenic allele. Thirteen out of the 38 screened alleles carried pathogenic PCDH15 variants (34.2%). Five out of the seven point mutations reported in the present study are novel, supporting the idea that most PCDH15 mutations are private. Furthermore, no mutational hotspots have been identified. In most patients, detected mutations led to a truncated protein, reinforcing the hypothesis that severe mutations cause the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment.

  12. Mutation screening of the PCDH15 gene in Spanish patients with Usher syndrome type I

    PubMed Central

    Jaijo, Teresa; Oshima, Aki; Aller, Elena; Carney, Carol; Usami, Shin-ichi; Kimberling, William J.

    2012-01-01

    Purpose PCDH15 codes for protocadherin-15, a cell-cell adhesion protein essential in the morphogenesis and cohesion of stereocilia bundles and in the function or preservation of photoreceptor cells. Mutations in the PCDH15 gene are responsible for Usher syndrome type I (USH1F) and non-syndromic hearing loss (DFNB23). The purpose of this work was to perform PCDH15 mutation screening to identify the genetic cause of the disease in a cohort of Spanish patients with Usher syndrome type I and establish phenotype-genotype correlation. Methods Mutation analysis of PCDH15 included additional exons recently identified and was performed by direct sequencing. The screening was performed in 19 probands with USH already screened for mutations in the most prevalent USH1 genes, myosin VIIA (MYO7A) and cadherin-23 (CDH23), and for copy number variants in PCDH15. Results Seven different point mutations, five novel, were detected. Including the large PCDH15 rearrangements previously reported in our cohort of patients, a total of seven of 19 patients (36.8%) were carriers of at least one pathogenic allele. Thirteen out of the 38 screened alleles carried pathogenic PCDH15 variants (34.2%). Conclusions Five out of the seven point mutations reported in the present study are novel, supporting the idea that most PCDH15 mutations are private. Furthermore, no mutational hotspots have been identified. In most patients, detected mutations led to a truncated protein, reinforcing the hypothesis that severe mutations cause the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment. PMID:22815625

  13. A novel founder MYO15A frameshift duplication is the major cause of genetic hearing loss in Oman.

    PubMed

    Palombo, Flavia; Al-Wardy, Nadia; Ruscone, Guido Alberto Gnecchi; Oppo, Manuela; Kindi, Mohammed Nasser Al; Angius, Andrea; Al Lamki, Khalsa; Girotto, Giorgia; Giangregorio, Tania; Benelli, Matteo; Magi, Alberto; Seri, Marco; Gasparini, Paolo; Cucca, Francesco; Sazzini, Marco; Al Khabori, Mazin; Pippucci, Tommaso; Romeo, Giovanni

    2017-02-01

    The increased risk for autosomal recessive disorders is one of the most well-known medical implications of consanguinity. In the Sultanate of Oman, a country characterized by one of the highest rates of consanguineous marriages worldwide, prevalence of genetic hearing loss (GHL) is estimated to be 6/10 000. Families of GHL patients have higher consanguinity rates than the general Omani population, indicating a major role for recessive forms. Mutations in GJB2, the most commonly mutated GHL gene, have been sporadically described. We collected 97 DNA samples of GHL probands, affected/unaffected siblings and parents from 26 Omani consanguineous families. Analyzing a first family by whole-exome sequencing, we identified a novel homozygous frameshift duplication (c.1171_1177dupGCCATCT) in MYO15A, the gene linked to the deafness locus DFNB3. This duplication was then found in a total of 8/26 (28%) families, within a 849 kb founder haplotype. Reconstruction of haplotype structure at MYO15A surrounding genomic regions indicated that the founder haplotype branched out in the past two to three centuries from a haplotype present worldwide. The MYO15A duplication emerges as the major cause of GHL in Oman. These findings have major implications for the design of GHL diagnosis and prevention policies in Oman.

  14. Dissecting the molecular assembly of the Toxoplasma gondii MyoA motility complex.

    PubMed

    Powell, Cameron J; Jenkins, Meredith L; Parker, Michelle L; Ramaswamy, Raghavendran; Kelsen, Anne; Warshaw, David M; Ward, Gary E; Burke, John E; Boulanger, Martin J

    2017-11-24

    Apicomplexan parasites such as Toxoplasma gondii rely on a unique form of locomotion known as gliding motility. Generating the mechanical forces to support motility are divergent class XIV myosins (MyoA) coordinated by accessory proteins known as light chains. Although the importance of the MyoA-light chain complex is well-established, the detailed mechanisms governing its assembly and regulation are relatively unknown. To establish a molecular blueprint of this dynamic complex, we first mapped the adjacent binding sites of light chains MLC1 and ELC1 on the MyoA neck (residues 775-818) using a combination of hydrogen-deuterium exchange mass spectrometry and isothermal titration calorimetry. We then determined the 1.85 Å resolution crystal structure of MLC1 in complex with its cognate MyoA peptide. Structural analysis revealed a bilobed architecture with MLC1 clamping tightly around the helical MyoA peptide, consistent with the stable 10 nm K d measured by isothermal titration calorimetry. We next showed that coordination of calcium by an EF-hand in ELC1 and prebinding of MLC1 to the MyoA neck enhanced the affinity of ELC1 for the MyoA neck 7- and 8-fold, respectively. When combined, these factors enhanced ELC1 binding 49-fold (to a K d of 12 nm). Using the full-length MyoA motor (residues 1-831), we then showed that, in addition to coordinating the neck region, ELC1 appears to engage the MyoA converter subdomain, which couples the motor domain to the neck. These data support an assembly model where staged binding events cooperate to yield high-affinity complexes that are able to maximize force transduction. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Diversity of the Genes Implicated in Algerian Patients Affected by Usher Syndrome

    PubMed Central

    Abdi, Samia; Bahloul, Amel; Behlouli, Asma; Hardelin, Jean-Pierre; Makrelouf, Mohamed; Boudjelida, Kamel; Louha, Malek; Cheknene, Ahmed; Belouni, Rachid; Rous, Yahia; Merad, Zahida; Selmane, Djamel; Hasbelaoui, Mokhtar; Bonnet, Crystel; Zenati, Akila; Petit, Christine

    2016-01-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by a dual sensory impairment affecting hearing and vision. USH is clinically and genetically heterogeneous. Ten different causal genes have been reported. We studied the molecular bases of the disease in 18 unrelated Algerian patients by targeted-exome sequencing, and identified the causal biallelic mutations in all of them: 16 patients carried the mutations at the homozygous state and 2 at the compound heterozygous state. Nine of the 17 different mutations detected in MYO7A (1 of 5 mutations), CDH23 (4 of 7 mutations), PCDH15 (1 mutation), USH1C (1 mutation), USH1G (1 mutation), and USH2A (1 of 2 mutations), had not been previously reported. The deleterious consequences of a missense mutation of CDH23 (p.Asp1501Asn) and the in-frame single codon deletion in USH1G (p.Ala397del) on the corresponding proteins were predicted from the solved 3D-structures of extracellular cadherin (EC) domains of cadherin-23 and the sterile alpha motif (SAM) domain of USH1G/sans, respectively. In addition, we were able to show that the USH1G mutation is likely to affect the binding interface between the SAM domain and USH1C/harmonin. This should spur the use of 3D-structures, not only of isolated protein domains, but also of protein-protein interaction interfaces, to predict the functional impact of mutations detected in the USH genes. PMID:27583663

  16. Diversity of the Genes Implicated in Algerian Patients Affected by Usher Syndrome.

    PubMed

    Abdi, Samia; Bahloul, Amel; Behlouli, Asma; Hardelin, Jean-Pierre; Makrelouf, Mohamed; Boudjelida, Kamel; Louha, Malek; Cheknene, Ahmed; Belouni, Rachid; Rous, Yahia; Merad, Zahida; Selmane, Djamel; Hasbelaoui, Mokhtar; Bonnet, Crystel; Zenati, Akila; Petit, Christine

    2016-01-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by a dual sensory impairment affecting hearing and vision. USH is clinically and genetically heterogeneous. Ten different causal genes have been reported. We studied the molecular bases of the disease in 18 unrelated Algerian patients by targeted-exome sequencing, and identified the causal biallelic mutations in all of them: 16 patients carried the mutations at the homozygous state and 2 at the compound heterozygous state. Nine of the 17 different mutations detected in MYO7A (1 of 5 mutations), CDH23 (4 of 7 mutations), PCDH15 (1 mutation), USH1C (1 mutation), USH1G (1 mutation), and USH2A (1 of 2 mutations), had not been previously reported. The deleterious consequences of a missense mutation of CDH23 (p.Asp1501Asn) and the in-frame single codon deletion in USH1G (p.Ala397del) on the corresponding proteins were predicted from the solved 3D-structures of extracellular cadherin (EC) domains of cadherin-23 and the sterile alpha motif (SAM) domain of USH1G/sans, respectively. In addition, we were able to show that the USH1G mutation is likely to affect the binding interface between the SAM domain and USH1C/harmonin. This should spur the use of 3D-structures, not only of isolated protein domains, but also of protein-protein interaction interfaces, to predict the functional impact of mutations detected in the USH genes.

  17. Impact of the Motor and Tail Domains of Class III Myosins on Regulating the Formation and Elongation of Actin Protrusions*

    PubMed Central

    Quintero, Omar A.; Weck, Meredith L.; Unrath, William C.; Gallagher, James W.; Cui, Runjia; Kachar, Bechara; Tyska, Matthew J.; Yengo, Christopher M.

    2016-01-01

    Class III myosins (MYO3A and MYO3B) are proposed to function as transporters as well as length and ultrastructure regulators within stable actin-based protrusions such as stereocilia and calycal processes. MYO3A differs from MYO3B in that it contains an extended tail domain with an additional actin-binding motif. We examined how the properties of the motor and tail domains of human class III myosins impact their ability to enhance the formation and elongation of actin protrusions. Direct examination of the motor and enzymatic properties of human MYO3A and MYO3B revealed that MYO3A is a 2-fold faster motor with enhanced ATPase activity and actin affinity. A chimera in which the MYO3A tail was fused to the MYO3B motor demonstrated that motor activity correlates with formation and elongation of actin protrusions. We demonstrate that removal of individual exons (30–34) in the MYO3A tail does not prevent filopodia tip localization but abolishes the ability to enhance actin protrusion formation and elongation in COS7 cells. Interestingly, our results demonstrate that MYO3A slows filopodia dynamics and enhances filopodia lifetime in COS7 cells. We also demonstrate that MYO3A is more efficient than MYO3B at increasing formation and elongation of stable microvilli on the surface of cultured epithelial cells. We propose that the unique features of MYO3A, enhanced motor activity, and an extended tail with tail actin-binding motif, allow it to play an important role in stable actin protrusion length and ultrastructure maintenance. PMID:27582493

  18. Genetic counseling in Usher syndrome: linkage and mutational analysis of 10 Colombian families.

    PubMed

    Tamayo, M L; Lopez, G; Gelvez, N; Medina, D; Kimberling, W J; Rodríguez, V; Tamayo, G E; Bernal, J E

    2008-01-01

    Usher Syndrome (US), an autosomal recessive disease, is characterized by retinitis pigmentosa (RP), vestibular dysfunction, and congenital sensorineural deafness. There are three recognized clinical types of the disorder. In order to improve genetic counseling for affected families, we conducted linkage analysis and DNA sequencing in 10 Colombian families with confirmed diagnosis of US (4 type I and 6 type II). Seventy-five percent of the US1 families showed linkage to locus USH1B, while the remaining 25% showed linkage to loci USH1B and USH1C. Among families showing linkage to USH1B we found two different mutations in the MYO7A gene: IVS42-26insTTGAG in exon 43 (heterozygous state) and R634X (CGA-TGA) in exon 16 (homozygous state). All six US2 families showed linkage to locus USH2A. Of them, 4 had c.2299delG mutation (1 homozygote state and 3 heterozygous); in the remaining 2 we did not identify any pathologic DNA variant. USH2A individuals with a 2299delG mutation presented a typical and homogeneous retinal phenotype with bilateral severe hearing loss, except for one individual with a heterozygous 2299delG mutation, whose hearing loss was asymmetric, but more profound than in the other cases. The study of these families adds to the genotype-phenotype characterization of the different types and subtypes of US and facilitates genetic counseling in these families. We would like to emphasize the need to perform DNA studies as a prerequisite for genetic counseling in affected families.

  19. Differentiated evolutionary relationships among chordates from comparative alignments of multiple sequences of MyoD and MyoG myogenic regulatory factors.

    PubMed

    Oliani, L C; Lidani, K C F; Gabriel, J E

    2015-10-16

    MyoD and MyoG are transcription factors that have essential roles in myogenic lineage determination and muscle differentiation. The purpose of this study was to compare multiple amino acid sequences of myogenic regulatory proteins to infer evolutionary relationships among chordates. Protein sequences from Mus musculus (P10085 and P12979), human Homo sapiens (P15172 and P15173), bovine Bos taurus (Q7YS82 and Q7YS81), wild pig Sus scrofa (P49811 and P49812), quail Coturnix coturnix (P21572 and P34060), chicken Gallus gallus (P16075 and P17920), rat Rattus norvegicus (Q02346 and P20428), domestic water buffalo Bubalus bubalis (D2SP11 and A7L034), and sheep Ovis aries (Q90477 and D3YKV7) were searched from a non-redundant protein sequence database UniProtKB/Swiss-Prot, and subsequently analyzed using the Mega6.0 software. MyoD evolutionary analyses revealed the presence of three main clusters with all mammals branched in one cluster, members of the order Rodentia (mouse and rat) in a second branch linked to the first, and birds of the order Galliformes (chicken and quail) remaining isolated in a third. MyoG evolutionary analyses aligned sequences in two main clusters, all mammalian specimens grouped in different sub-branches, and birds clustered in a second branch. These analyses suggest that the evolution of MyoD and MyoG was driven by different pathways.

  20. Function of MYO7A in the Human RPE and the Validity of Shaker1 Mice as a Model for Usher Syndrome 1B

    PubMed Central

    Gibbs, Daniel; Diemer, Tanja; Khanobdee, Kornnika; Hu, Jane; Bok, Dean

    2010-01-01

    Purpose. To investigate the function of MYO7A in human RPE cells and to test the validity of using shaker1 RPE in preclinical studies on therapies for Usher syndrome 1B by comparing human and mouse cells. Methods. MYO7A was localized by immunofluorescence. Primary cultures of human and mouse RPE cells were used to measure melanosome motility and rod outer segment (ROS) phagocytosis and digestion. MYO7A was knocked down in the human RPE cells by RNAi to test for a mutant phenotype in melanosome motility. Results. The distribution of MYO7A in the RPE of human and mouse was found to be comparable, both in vivo and in primary cultures. Primary cultures of human RPE cells phagocytosed and digested ROSs with kinetics comparable to that of primary cultures of mouse RPE cells. Melanosome motility was also comparable, and, after RNAi knockdown, consisted of longer-range fast movements characteristic of melanosomes in shaker1 RPE. Conclusions. The localization and function of MYO7A in human RPE cells is comparable to that in mouse RPE cells. Although shaker1 retinas do not undergo degeneration, correction of mutant phenotypes in the shaker1 RPE represents a valid preclinical test for potential therapeutic treatments. PMID:19643958

  1. Roles of type II myosin and a tropomyosin isoform in retrograde actin flow in budding yeast

    PubMed Central

    Huckaba, Thomas M.; Lipkin, Thomas; Pon, Liza A.

    2006-01-01

    Retrograde flow of cortical actin networks and bundles is essential for cell motility and retrograde intracellular movement, and for the formation and maintenance of microvilli, stereocilia, and filopodia. Actin cables, which are F-actin bundles that serve as tracks for anterograde and retrograde cargo movement in budding yeast, undergo retrograde flow that is driven, in part, by actin polymerization and assembly. We find that the actin cable retrograde flow rate is reduced by deletion or delocalization of the type II myosin Myo1p, and by deletion or conditional mutation of the Myo1p motor domain. Deletion of the tropomyosin isoform Tpm2p, but not the Tpm1p isoform, increases the rate of actin cable retrograde flow. Pretreatment of F-actin with Tpm2p, but not Tpm1p, inhibits Myo1p binding to F-actin and Myo1p-dependent F-actin gliding. These data support novel, opposing roles of Myo1p and Tpm2 in regulating retrograde actin flow in budding yeast and an isoform-specific function of Tpm1p in promoting actin cable function in myosin-driven anterograde cargo transport. PMID:17178912

  2. The fungal myosin I is essential for Fusarium toxisome formation.

    PubMed

    Tang, Guangfei; Chen, Yun; Xu, Jin-Rong; Kistler, H Corby; Ma, Zhonghua

    2018-01-01

    Myosin-I molecular motors are proposed to function as linkers between membranes and the actin cytoskeleton in several cellular processes, but their role in the biosynthesis of fungal secondary metabolites remain elusive. Here, we found that the myosin I of Fusarium graminearum (FgMyo1), the causal agent of Fusarium head blight, plays critical roles in mycotoxin biosynthesis. Inhibition of myosin I by the small molecule phenamacril leads to marked reduction in deoxynivalenol (DON) biosynthesis. FgMyo1 also governs translation of the DON biosynthetic enzyme Tri1 by interacting with the ribosome-associated protein FgAsc1. Disruption of the ATPase activity of FgMyo1 either by the mutation E420K, down-regulation of FgMyo1 expression or deletion of FgAsc1 results in reduced Tri1 translation. The DON biosynthetic enzymes Tri1 and Tri4 are mainly localized to subcellular structures known as toxisomes in response to mycotoxin induction and the FgMyo1-interacting protein, actin, participates in toxisome formation. The actin polymerization disruptor latrunculin A inhibits toxisome assembly. Consistent with this observation, deletion of the actin-associated proteins FgPrk1 and FgEnd3 also results in reduced toxisome formation. Unexpectedly, the FgMyo1-actin cytoskeleton is not involved in biosynthesis of another secondary metabolite tested. Taken together, this study uncovers a novel function of myosin I in regulating mycotoxin biosynthesis in filamentous fungi.

  3. The fungal myosin I is essential for Fusarium toxisome formation

    PubMed Central

    Xu, Jin-Rong

    2018-01-01

    Myosin-I molecular motors are proposed to function as linkers between membranes and the actin cytoskeleton in several cellular processes, but their role in the biosynthesis of fungal secondary metabolites remain elusive. Here, we found that the myosin I of Fusarium graminearum (FgMyo1), the causal agent of Fusarium head blight, plays critical roles in mycotoxin biosynthesis. Inhibition of myosin I by the small molecule phenamacril leads to marked reduction in deoxynivalenol (DON) biosynthesis. FgMyo1 also governs translation of the DON biosynthetic enzyme Tri1 by interacting with the ribosome-associated protein FgAsc1. Disruption of the ATPase activity of FgMyo1 either by the mutation E420K, down-regulation of FgMyo1 expression or deletion of FgAsc1 results in reduced Tri1 translation. The DON biosynthetic enzymes Tri1 and Tri4 are mainly localized to subcellular structures known as toxisomes in response to mycotoxin induction and the FgMyo1-interacting protein, actin, participates in toxisome formation. The actin polymerization disruptor latrunculin A inhibits toxisome assembly. Consistent with this observation, deletion of the actin-associated proteins FgPrk1 and FgEnd3 also results in reduced toxisome formation. Unexpectedly, the FgMyo1-actin cytoskeleton is not involved in biosynthesis of another secondary metabolite tested. Taken together, this study uncovers a novel function of myosin I in regulating mycotoxin biosynthesis in filamentous fungi. PMID:29357387

  4. Moderate Light-Induced Degeneration of Rod Photoreceptors with Delayed Transducin Translocation in shaker1 Mice

    PubMed Central

    Zallocchi, Marisa; Wang, Wei-Min; Delimont, Duane; Cosgrove, Dominic

    2011-01-01

    Purpose. Usher syndrome is characterized by congenital deafness associated with retinitis pigmentosa (RP). Mutations in the myosin VIIa gene (MYO7A) cause a common and severe subtype of Usher syndrome (USH1B). Shaker1 mice have mutant MYO7A. They are deaf and have vestibular dysfunction but do not develop photoreceptor degeneration. The goal of this study was to investigate abnormalities of photoreceptors in shaker1 mice. Methods. Immunocytochemistry and hydroethidine-based detection of intracellular superoxide production were used. Photoreceptor cell densities under various conditions of light/dark exposures were evaluated. Results. In shaker1 mice, the rod transducin translocation is delayed because of a shift of its light activation threshold to a higher level. Even moderate light exposure can induce oxidative damage and significant rod degeneration in shaker1 mice. Shaker1 mice reared under a moderate light/dark cycle develop severe retinal degeneration in less than 6 months. Conclusions. These findings show that, contrary to earlier studies, shaker1 mice possess a robust retinal phenotype that may link to defective rod protein translocation. Importantly, USH1B animal models are likely vulnerable to light-induced photoreceptor damage, even under moderate light. PMID:21447681

  5. Identification of intestinal ion transport defects in microvillus inclusion disease.

    PubMed

    Kravtsov, Dmitri V; Ahsan, Md Kaimul; Kumari, Vandana; van Ijzendoorn, Sven C D; Reyes-Mugica, Miguel; Kumar, Anoop; Gujral, Tarunmeet; Dudeja, Pradeep K; Ameen, Nadia A

    2016-07-01

    Loss of function mutations in the actin motor myosin Vb (Myo5b) lead to microvillus inclusion disease (MVID) and death in newborns and children. MVID results in secretory diarrhea, brush border (BB) defects, villus atrophy, and microvillus inclusions (MVIs) in enterocytes. How loss of Myo5b results in increased stool loss of chloride (Cl(-)) and sodium (Na(+)) is unknown. The present study used Myo5b loss-of-function human MVID intestine, polarized intestinal cell models of secretory crypt (T84) and villus resembling (CaCo2BBe, C2BBe) enterocytes lacking Myo5b in conjunction with immunofluorescence confocal stimulated emission depletion (gSTED) imaging, immunohistochemical staining, transmission electron microscopy, shRNA silencing, immunoblots, and electrophysiological approaches to examine the distribution, expression, and function of the major BB ion transporters NHE3 (Na(+)), CFTR (Cl(-)), and SLC26A3 (DRA) (Cl(-)/HCO3 (-)) that control intestinal fluid transport. We hypothesized that enterocyte maturation defects lead villus atrophy with immature secretory cryptlike enterocytes in the MVID epithelium. We investigated the role of Myo5b in enterocyte maturation. NHE3 and DRA localization and function were markedly reduced on the BB membrane of human MVID enterocytes and Myo5bKD C2BBe cells, while CFTR localization was preserved. Forskolin-stimulated CFTR ion transport in Myo5bKD T84 cells resembled that of control. Loss of Myo5b led to YAP1 nuclear retention, retarded enterocyte maturation, and a cryptlike phenotype. We conclude that preservation of functional CFTR in immature enterocytes, reduced functional expression of NHE3, and DRA contribute to Cl(-) and Na(+) stool loss in MVID diarrhea.

  6. Identification of intestinal ion transport defects in microvillus inclusion disease

    PubMed Central

    Kravtsov, Dmitri V.; Ahsan, Md Kaimul; Kumari, Vandana; van Ijzendoorn, Sven C. D.; Reyes-Mugica, Miguel; Kumar, Anoop; Gujral, Tarunmeet; Dudeja, Pradeep K.

    2016-01-01

    Loss of function mutations in the actin motor myosin Vb (Myo5b) lead to microvillus inclusion disease (MVID) and death in newborns and children. MVID results in secretory diarrhea, brush border (BB) defects, villus atrophy, and microvillus inclusions (MVIs) in enterocytes. How loss of Myo5b results in increased stool loss of chloride (Cl−) and sodium (Na+) is unknown. The present study used Myo5b loss-of-function human MVID intestine, polarized intestinal cell models of secretory crypt (T84) and villus resembling (CaCo2BBe, C2BBe) enterocytes lacking Myo5b in conjunction with immunofluorescence confocal stimulated emission depletion (gSTED) imaging, immunohistochemical staining, transmission electron microscopy, shRNA silencing, immunoblots, and electrophysiological approaches to examine the distribution, expression, and function of the major BB ion transporters NHE3 (Na+), CFTR (Cl−), and SLC26A3 (DRA) (Cl−/HCO3−) that control intestinal fluid transport. We hypothesized that enterocyte maturation defects lead villus atrophy with immature secretory cryptlike enterocytes in the MVID epithelium. We investigated the role of Myo5b in enterocyte maturation. NHE3 and DRA localization and function were markedly reduced on the BB membrane of human MVID enterocytes and Myo5bKD C2BBe cells, while CFTR localization was preserved. Forskolin-stimulated CFTR ion transport in Myo5bKD T84 cells resembled that of control. Loss of Myo5b led to YAP1 nuclear retention, retarded enterocyte maturation, and a cryptlike phenotype. We conclude that preservation of functional CFTR in immature enterocytes, reduced functional expression of NHE3, and DRA contribute to Cl− and Na+ stool loss in MVID diarrhea. PMID:27229121

  7. Vestibular function in families with inherited autosomal dominant hearing loss

    PubMed Central

    Street, Valerie A.; Kallman, Jeremy C.; Strombom, Paul D.; Bramhall, Naomi F.; Phillips, James O.

    2008-01-01

    The inner ear contains the developmentally related cochlea and peripheral vestibular labyrinth. Given the similar physiology between these two organs, hearing loss and vestibular dysfunction may be expected to occur simultaneously in individuals segregating mutations in inner ear genes. Twenty-two different genes have been discovered that when mutated lead to non-syndromic autosomal dominant hearing loss. A review of the literature indicates that families segregating mutations in 13 of these 22 genes have undergone formal clinical vestibular testing. Formal assessment revealed vestibular dysfunction in families with mutations in ten of these 13 genes. Remarkably, only families with mutations in the COCH and MYO7A genes self-report considerable vestibular challenges. Families segregating mutations in the other eight genes do not self-report significant balance problems and appear to compensate well in everyday life for vestibular deficits discovered during formal clinical vestibular assessment. An example of a family (referred to as the HL1 family) with progressive hearing loss and clinically-detected vestibular hypofunction that does not report vestibular symptoms is described in this review. Notably, one member of the HL1 family with clinically-detected vestibular hypofunction reached the summit of Mount Kilimanjaro. PMID:18776598

  8. Using complementary DNA from MyoD-transduced fibroblasts to sequence large muscle genes.

    PubMed

    Waddell, Leigh B; Monnier, Nicole; Cooper, Sandra T; North, Kathryn N; Clarke, Nigel F

    2011-08-01

    Large muscle genes are often sequenced using complementary DNA (cDNA) made from muscle messenger RNA (mRNA) to reduce the cost and workload associated with sequencing from genomic DNA. Two potential barriers are the availability of a frozen muscle biopsy, and difficulties in detecting nonsense mutations due to nonsense-mediated mRNA decay (NMD). We present patient examples showing that use of MyoD-transduced fibroblasts as a source of muscle-specific mRNA overcomes these potential difficulties in sequencing large muscle-related genes. Copyright © 2011 Wiley Periodicals, Inc.

  9. Whole exome sequencing identifies mutations in Usher syndrome genes in profoundly deaf Tunisian patients.

    PubMed

    Riahi, Zied; Bonnet, Crystel; Zainine, Rim; Lahbib, Saida; Bouyacoub, Yosra; Bechraoui, Rym; Marrakchi, Jihène; Hardelin, Jean-Pierre; Louha, Malek; Largueche, Leila; Ben Yahia, Salim; Kheirallah, Moncef; Elmatri, Leila; Besbes, Ghazi; Abdelhak, Sonia; Petit, Christine

    2015-01-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by combined deafness-blindness. It accounts for about 50% of all hereditary deafness blindness cases. Three clinical subtypes (USH1, USH2, and USH3) are described, of which USH1 is the most severe form, characterized by congenital profound deafness, constant vestibular dysfunction, and a prepubertal onset of retinitis pigmentosa. We performed whole exome sequencing in four unrelated Tunisian patients affected by apparently isolated, congenital profound deafness, with reportedly normal ocular fundus examination. Four biallelic mutations were identified in two USH1 genes: a splice acceptor site mutation, c.2283-1G>T, and a novel missense mutation, c.5434G>A (p.Glu1812Lys), in MYO7A, and two previously unreported mutations in USH1G, i.e. a frameshift mutation, c.1195_1196delAG (p.Leu399Alafs*24), and a nonsense mutation, c.52A>T (p.Lys18*). Another ophthalmological examination including optical coherence tomography actually showed the presence of retinitis pigmentosa in all the patients. Our findings provide evidence that USH is under-diagnosed in Tunisian deaf patients. Yet, early diagnosis of USH is of utmost importance because these patients should undergo cochlear implant surgery in early childhood, in anticipation of the visual loss.

  10. Novel mutations in the USH1C gene in Usher syndrome patients.

    PubMed

    Aparisi, María José; García-García, Gema; Jaijo, Teresa; Rodrigo, Regina; Graziano, Claudio; Seri, Marco; Simsek, Tulay; Simsek, Enver; Bernal, Sara; Baiget, Montserrat; Pérez-Garrigues, Herminio; Aller, Elena; Millán, José María

    2010-12-31

    Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by severe-profound sensorineural hearing loss, retinitis pigmentosa, and vestibular areflexia. To date, five USH1 genes have been identified. One of these genes is Usher syndrome 1C (USH1C), which encodes a protein, harmonin, containing PDZ domains. The aim of the present work was the mutation screening of the USH1C gene in a cohort of 33 Usher syndrome patients, to identify the genetic cause of the disease and to determine the relative involvement of this gene in USH1 pathogenesis in the Spanish population. Thirty-three patients were screened for mutations in the USH1C gene by direct sequencing. Some had already been screened for mutations in the other known USH1 genes (myosin VIIA [MYO7A], cadherin-related 23 [CDH23], protocadherin-related 15 [PCDH15], and Usher syndrome 1G [USH1G]), but no mutation was found. Two novel mutations were found in the USH1C gene: a non-sense mutation (p.C224X) and a frame-shift mutation (p.D124TfsX7). These mutations were found in a homozygous state in two unrelated USH1 patients. In the present study, we detected two novel pathogenic mutations in the USH1C gene. Our results suggest that mutations in USH1C are responsible for 1.5% of USH1 disease in patients of Spanish origin (considering the total cohort of 65 Spanish USH1 patients since 2005), indicating that USH1C is a rare form of USH in this population.

  11. Novel mutations in the USH1C gene in Usher syndrome patients

    PubMed Central

    Aparisi, María José; García-García, Gema; Jaijo, Teresa; Rodrigo, Regina; Graziano, Claudio; Seri, Marco; Simsek, Tulay; Simsek, Enver; Bernal, Sara; Baiget, Montserrat; Pérez-Garrigues, Herminio; Millán, José María

    2010-01-01

    Purpose Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by severe-profound sensorineural hearing loss, retinitis pigmentosa, and vestibular areflexia. To date, five USH1 genes have been identified. One of these genes is Usher syndrome 1C (USH1C), which encodes a protein, harmonin, containing PDZ domains. The aim of the present work was the mutation screening of the USH1C gene in a cohort of 33 Usher syndrome patients, to identify the genetic cause of the disease and to determine the relative involvement of this gene in USH1 pathogenesis in the Spanish population. Methods Thirty-three patients were screened for mutations in the USH1C gene by direct sequencing. Some had already been screened for mutations in the other known USH1 genes (myosin VIIA [MYO7A], cadherin-related 23 [CDH23], protocadherin-related 15 [PCDH15], and Usher syndrome 1G [USH1G]), but no mutation was found. Results Two novel mutations were found in the USH1C gene: a non-sense mutation (p.C224X) and a frame-shift mutation (p.D124TfsX7). These mutations were found in a homozygous state in two unrelated USH1 patients. Conclusions In the present study, we detected two novel pathogenic mutations in the USH1C gene. Our results suggest that mutations in USH1C are responsible for 1.5% of USH1 disease in patients of Spanish origin (considering the total cohort of 65 Spanish USH1 patients since 2005), indicating that USH1C is a rare form of USH in this population. PMID:21203349

  12. Genetics Home Reference: microvillus inclusion disease

    MedlinePlus

    ... Citation on PubMed Khubchandani SR, Vohra P, Chitale AR, Sidana P. Microvillous inclusion disease--an ultrastructural diagnosis: ... O, Utermann G, Ruemmele FM, Huber LA, Janecke AR. MYO5B mutations cause microvillus inclusion disease and disrupt ...

  13. Alpha-lactalbumin effect on myo-inositol intestinal absorption: in vivo and in vitro.

    PubMed

    Monastra, Giovanni; Ferruzza, Simonetta; Sambuy, Yula; Ranaldi, Giulia; Ferrari, Daniela

    2018-05-08

    . Myo-inositol is a natural molecule with important therapeutic applications and an impaired oral absorption may result in a reduced clinical effect. Aim of this study was to determine if the combined oral administration of α-lactalbumin and myo-inositol in healthy subjects, could increase the plasma level of myo-inositol administered alone. In vitro studies on human differentiated intestinal Caco-2 cells were also conducted to identify the mechanisms involved in myo-inositol absorption. The in vivo study was conducted on healthy volunteers in two phases. Subjects received a single oral myo-inositol dose. After 7 days washout, the same subjects were administered a single dose of myo-inositol and α-lactalbumin. Cmax, Tmax and AUC for myo-inositol in plasma were calculated from samples collected at different times. Transepithelial myo-inositol passage, with or without addition of digested α-lactalbumin, was measured in vitro in differentiated Caco-2 cells and compared to transepithelial electrical resistance and phenol red passage. The bioavailability of myo-inositol was modified by the concomitant administration of α-lactalbumin. Although peak concentration of myo-inositol at 180 min (Tmax) was similar for both treatments, administration of α-lactalbumin with myo-inositol in a single dose, significantly increased the plasma concentrations of myo-inositol compared to when administered alone. In vitro, myo-inositol absorption in Caco-2 cells was improved in the presence of digested α-lactalbumin, and this change was associated with an increase in tight junction permeability. Better myo-inositol absorption when orally administered with α-lactalbumin can be beneficial in non-responder patients. Preliminary in vitro findings suggest that peptides deriving from α-lactalbumin digestion may modulate tight junction permeability allowing increased absorption of myo-inositol. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Determination of mannitol sorbitol and myo-inositol in olive tree roots and rhizospheric soil by gas chromatography and effect of severe drought conditions on their profiles.

    PubMed

    Mechri, Beligh; Tekaya, Meriem; Cheheb, Hechmi; Hammami, Mohamed

    2015-01-01

    This study reports a method for the analysis of mannitol, sorbitol and myo-inositol in olive tree roots and rhizospheric soil with gas chromatography. The analytical method consists of extraction with a mixture of dichloromethane:methanol (2:1, v/v) for soil samples and a mixture of ethanol:water (80:20) for root samples, silylation using pyridine, hexamethyldisilazane (HMDS) and trimethylchlorosilane (TMCS). The recovery of mannitol sorbitol and myo-inositol (for extraction and analysis in dichloromethane:methanol and ethanol:water) was acceptable and ranged from 100.3 to 114.7%. The time of analysis was <24 min. Among identified polyols extracted from rhizosphere and roots of olive plants, mannitol was the major compound. A marked increase in mannitol content occurred in rhizosphere and roots of water-stressed plants, suggesting a much broader role of mannitol in stress response based on its ability to act as a compatible solute. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Myosin 5b loss of function leads to defects in polarized signaling: implication for microvillus inclusion disease pathogenesis and treatment

    PubMed Central

    Kravtsov, Dmitri; Mashukova, Anastasia; Forteza, Radia; Rodriguez, Maria M.; Ameen, Nadia A.

    2014-01-01

    Microvillus inclusion disease (MVID) is an autosomal recessive condition resulting in intractable secretory diarrhea in newborns due to loss-of-function mutations in myosin Vb (Myo5b). Previous work suggested that the apical recycling endosomal (ARE) compartment is the primary location for phosphoinositide-dependent protein kinase 1 (PDK1) signaling. Because the ARE is disrupted in MVID, we tested the hypothesis that polarized signaling is affected by Myo5b dysfunction. Subcellular distribution of PDK1 was analyzed in human enterocytes from MVID/control patients by immunocytochemistry. Using Myo5b knockdown (kd) in Caco-2BBe cells, we studied phosphorylated kinases downstream of PDK1, electrophysiological parameters, and net water flux. PDK1 was aberrantly localized in human MVID enterocytes and Myo5b-deficient Caco-2BBe cells. Two PDK1 target kinases were differentially affected: phosphorylated atypical protein kinase C (aPKC) increased fivefold and phosohoprotein kinase B slightly decreased compared with control. PDK1 redistributed to a soluble (cytosolic) fraction and copurified with basolateral endosomes in Myo5b kd. Myo5b kd cells showed a decrease in net water absorption that could be reverted with PDK1 inhibitors. We conclude that, in addition to altered apical expression of ion transporters, depolarization of PDK1 in MVID enterocytes may lead to aberrant activation of downstream kinases such as aPKC. The findings in this work suggest that PDK1-dependent signaling may provide a therapeutic target for treating MVID. PMID:25258405

  16. The MYO6 interactome reveals adaptor complexes coordinating early endosome and cytoskeletal dynamics.

    PubMed

    O'Loughlin, Thomas; Masters, Thomas A; Buss, Folma

    2018-04-01

    The intracellular functions of myosin motors requires a number of adaptor molecules, which control cargo attachment, but also fine-tune motor activity in time and space. These motor-adaptor-cargo interactions are often weak, transient or highly regulated. To overcome these problems, we use a proximity labelling-based proteomics strategy to map the interactome of the unique minus end-directed actin motor MYO6. Detailed biochemical and functional analysis identified several distinct MYO6-adaptor modules including two complexes containing RhoGEFs: the LIFT (LARG-Induced F-actin for Tethering) complex that controls endosome positioning and motility through RHO-driven actin polymerisation; and the DISP (DOCK7-Induced Septin disPlacement) complex, a novel regulator of the septin cytoskeleton. These complexes emphasise the role of MYO6 in coordinating endosome dynamics and cytoskeletal architecture. This study provides the first in vivo interactome of a myosin motor protein and highlights the power of this approach in uncovering dynamic and functionally diverse myosin motor complexes. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  17. Synaptic Polarity Depends on Phosphatidylinositol Signaling Regulated by myo-Inositol Monophosphatase in Caenorhabditis elegans

    PubMed Central

    Kimata, Tsubasa; Tanizawa, Yoshinori; Can, Yoko; Ikeda, Shingo; Kuhara, Atsushi; Mori, Ikue

    2012-01-01

    Although neurons are highly polarized, how neuronal polarity is generated remains poorly understood. An evolutionarily conserved inositol-producing enzyme myo-inositol monophosphatase (IMPase) is essential for polarized localization of synaptic molecules in Caenorhabditis elegans and can be inhibited by lithium, a drug for bipolar disorder. The synaptic defect of IMPase mutants causes defects in sensory behaviors including thermotaxis. Here we show that the abnormalities of IMPase mutants can be suppressed by mutations in two enzymes, phospholipase Cβ or synaptojanin, which presumably reduce the level of membrane phosphatidylinositol 4,5-bisphosphate (PIP2). We also found that mutations in phospholipase Cβ conferred resistance to lithium treatment. Our results suggest that reduction of PIP2 on plasma membrane is a major cause of abnormal synaptic polarity in IMPase mutants and provide the first in vivo evidence that lithium impairs neuronal PIP2 synthesis through inhibition of IMPase. We propose that the PIP2 signaling regulated by IMPase plays a novel and fundamental role in the synaptic polarity. PMID:22446320

  18. Nuclear Function of Smad7 Promotes Myogenesis▿

    PubMed Central

    Miyake, Tetsuaki; Alli, Nezeka S.; McDermott, John C.

    2010-01-01

    In the “canonical” view of transforming growth factor β (TGF-β) signaling, Smad7 plays an inhibitory role. While Smad7 represses Smad3 activation by TGF-β, it does not reverse the inhibitory effect of TGF-β on myogenesis, suggesting a different function in myogenic cells. We previously reported a promyogenic role of Smad7 mediated by an interaction with MyoD. Based on this association, we hypothesized a possible nuclear function of Smad7 independent of its role at the level of the receptor. We therefore engineered a chimera of Smad7 with a nuclear localization signal (NLS), which serves to prevent and therefore bypass binding to the TGF-β receptor while concomitantly constitutively localizing Smad7 to the nucleus. This Smad7-NLS did not repress Smad3 activation by TGF-β but did retain its ability to enhance myogenic gene activation and phenotypic myogenesis, indicating that the nuclear, receptor-independent function of Smad7 is sufficient to promote myogenesis. Furthermore, Smad7 physically interacts with MyoD and antagonizes the repressive effects of active MEK on MyoD. Reporter and myogenic conversion assays indicate a pivotal regulation of MyoD transcriptional properties by the balance between Smad7 and active MEK. Thus, Smad7 has a nuclear coactivator function that is independent of TGF-β signaling and necessary to promote myogenic differentiation. PMID:19995910

  19. Characterization of the Methylation Status of Pax7 and Myogenic Regulator Factors in Cell Myogenic Differentiation.

    PubMed

    Chao, Zhe; Zheng, Xin-Li; Sun, Rui-Ping; Liu, Hai-Long; Huang, Li-Li; Cao, Zong-Xi; Deng, Chang-Yan; Wang, Feng

    2016-07-01

    Epigenetic processes in the development of skeletal muscle have been appreciated for over a decade. DNA methylation is a major epigenetic modification important for regulating gene expression and suppressing spurious transcription. Up to now, the importance of epigenetic marks in the regulation of Pax7 and myogenic regulatory factors (MRFs) expression is far less explored. In the present study, semi-quantitative the real-time polymerase chain reaction (RT-PCR) analyses showed MyoD and Myf5 were expressed in activated and quiescent C2C12 cells. MyoG was expressed in a later stage of myogenesis. Pax7 was weakly expressed in differentiated C2C12 cells. To further understand the regulation of expression of these genes, the DNA methylation status of Pax7, MyoD, and Myf5 was determined by bisulfite sequencing PCR. During the C2C12 myoblasts fusion process, the changes of promoter and exon 1 methylation of Pax7, MyoD, and Myf5 genes were observed. In addition, an inverse relationship of low methylation and high expression was found. These results suggest that DNA methylation may be an important mechanism regulating Pax7 and MRFs transcription in cell myogenic differentiation.

  20. Clinical and metabolic outcomes in pregnant women at risk for Gestational Diabetes Mellitus supplemented with myo-inositol. A secondary analysis from 3 RCTs.

    PubMed

    Santamaria, A; Alibrandi, A; Di Benedetto, A; Pintaudi, B; Corrado, F; Facchinetti, F; D'Anna, R

    2018-05-30

    Gestational Diabetes Mellitus (GDM) is defined as carbohydrate intolerance that; begins or it is first recognized during pregnancy. Insulin sensitizing substances as Myo-inositol have been considered for the prevention of GDM and related complications. Since previous studies failed to show a clear reduction of GDM complications, the aim of this study was to evaluate clinical and metabolic outcomes in women at risk for gestational diabetes mellitus supplemented with myo-inositol since first trimester. A secondary analysis of databases from 3 randomized, controlled trials (595 women enrolled), in which women at risk for GDM (a parent with type 2 diabetes, obese or overweight) were supplemented with myo-inositol (4g/day) throughout pregnancy. Main measures were the rate of adverse clinical outcomes: macrosomia (birth weight ≥ 4000 g), Large for Gestational Age babies (fetal growth ≥ 90° centile), Fetal Growth Restriction (fetal growth ≤ 3° percentile), pre-term birth (delivery before the 37° week since the last menstruation), gestational hypertension and GDM. A significant reduction was observed for pre-term birth (10/291, 3.4% vs 23/304, 7.6%, p=0.03), macrosomia (6/291, 2.1% vs 16/304, 5.3%, p=0.04), LGA babies (14/291, 4.8% vs 27/304, 8.9 %,p=0.04) with only a trend to significance for gestational hypertension (4/291, 1.4% vs 12/304, 3.9%, p=0.07). GDM diagnosis was also decreased when compared to control group (32/291, 11.0% vs 77/304, 25.3%, p<0.001). At univariate logistic regression analysis myo-inositol treatment reduced the risk for pre-term birth (OR 0.44, CI 0.20 - 0.93), macrosomia (OR 0.38, CI 0.14 - 0.98) and GDM diagnosis (OR 0.36, CI 0.23 - 0.57). Myo-inositol treatment in early pregnancy is associated with a reduction in the rate of GDM and in the risk of preterm birth and macrosomia in women at risk for GDM. Copyright © 2018. Published by Elsevier Inc.

  1. Ca2+-Induced Rigidity Change of the Myosin VIIa IQ Motif-Single α Helix Lever Arm Extension.

    PubMed

    Li, Jianchao; Chen, Yiyun; Deng, Yisong; Unarta, Ilona Christy; Lu, Qing; Huang, Xuhui; Zhang, Mingjie

    2017-04-04

    Several unconventional myosins contain a highly charged single α helix (SAH) immediately following the calmodulin (CaM) binding IQ motifs, functioning to extend lever arms of these myosins. How such SAH is connected to the IQ motifs and whether the conformation of the IQ motifs-SAH segments are regulated by Ca 2+ fluctuations are not known. Here, we demonstrate by solving its crystal structure that the predicted SAH of myosin VIIa (Myo7a) forms a stable SAH. The structure of Myo7a IQ5-SAH segment in complex with apo-CaM reveals that the SAH sequence can extend the length of the Myo7a lever arm. Although Ca 2+ -CaM remains bound to IQ5-SAH, the Ca 2+ -induced CaM binding mode change softens the conformation of the IQ5-SAH junction, revealing a Ca 2+ -induced lever arm flexibility change for Myo7a. We further demonstrate that the last IQ motif of several other myosins also binds to both apo- and Ca 2+ -CaM, suggesting a common Ca 2+ -induced conformational regulation mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Myosin Vs organize actin cables in fission yeast

    PubMed Central

    Lo Presti, Libera; Chang, Fred; Martin, Sophie G.

    2012-01-01

    Myosin V motors are believed to contribute to cell polarization by carrying cargoes along actin tracks. In Schizosaccharomyces pombe, Myosin Vs transport secretory vesicles along actin cables, which are dynamic actin bundles assembled by the formin For3 at cell poles. How these flexible structures are able to extend longitudinally in the cell through the dense cytoplasm is unknown. Here we show that in myosin V (myo52 myo51) null cells, actin cables are curled, bundled, and fail to extend into the cell interior. They also exhibit reduced retrograde flow, suggesting that formin-mediated actin assembly is impaired. Myo52 may contribute to actin cable organization by delivering actin regulators to cell poles, as myoV∆ defects are partially suppressed by diverting cargoes toward cell tips onto microtubules with a kinesin 7–Myo52 tail chimera. In addition, Myo52 motor activity may pull on cables to provide the tension necessary for their extension and efficient assembly, as artificially tethering actin cables to the nuclear envelope via a Myo52 motor domain restores actin cable extension and retrograde flow in myoV mutants. Together these in vivo data reveal elements of a self-organizing system in which the motors shape their own tracks by transporting cargoes and exerting physical pulling forces. PMID:23051734

  3. Myosin Vs organize actin cables in fission yeast.

    PubMed

    Lo Presti, Libera; Chang, Fred; Martin, Sophie G

    2012-12-01

    Myosin V motors are believed to contribute to cell polarization by carrying cargoes along actin tracks. In Schizosaccharomyces pombe, Myosin Vs transport secretory vesicles along actin cables, which are dynamic actin bundles assembled by the formin For3 at cell poles. How these flexible structures are able to extend longitudinally in the cell through the dense cytoplasm is unknown. Here we show that in myosin V (myo52 myo51) null cells, actin cables are curled, bundled, and fail to extend into the cell interior. They also exhibit reduced retrograde flow, suggesting that formin-mediated actin assembly is impaired. Myo52 may contribute to actin cable organization by delivering actin regulators to cell poles, as myoV defects are partially suppressed by diverting cargoes toward cell tips onto microtubules with a kinesin 7-Myo52 tail chimera. In addition, Myo52 motor activity may pull on cables to provide the tension necessary for their extension and efficient assembly, as artificially tethering actin cables to the nuclear envelope via a Myo52 motor domain restores actin cable extension and retrograde flow in myoV mutants. Together these in vivo data reveal elements of a self-organizing system in which the motors shape their own tracks by transporting cargoes and exerting physical pulling forces.

  4. Doublecortin marks a new population of transiently amplifying muscle progenitor cells and is required for myofiber maturation during skeletal muscle regeneration.

    PubMed

    Ogawa, Ryo; Ma, Yuran; Yamaguchi, Masahiko; Ito, Takahito; Watanabe, Yoko; Ohtani, Takuji; Murakami, Satoshi; Uchida, Shizuka; De Gaspari, Piera; Uezumi, Akiyoshi; Nakamura, Miki; Miyagoe-Suzuki, Yuko; Tsujikawa, Kazutake; Hashimoto, Naohiro; Braun, Thomas; Tanaka, Teruyuki; Takeda, Shin'ichi; Yamamoto, Hiroshi; Fukada, So-Ichiro

    2015-01-01

    Muscle satellite cells are indispensable for muscle regeneration, but the functional diversity of their daughter cells is unknown. Here, we show that many Pax7(+)MyoD(-) cells locate both beneath and outside the basal lamina during myofiber maturation. A large majority of these Pax7(+)MyoD(-) cells are not self-renewed satellite cells, but have different potentials for both proliferation and differentiation from Pax7(+)MyoD(+) myoblasts (classical daughter cells), and are specifically marked by expression of the doublecortin (Dcx) gene. Transplantation and lineage-tracing experiments demonstrated that Dcx-expressing cells originate from quiescent satellite cells and that the microenvironment induces Dcx in myoblasts. Expression of Dcx seems to be necessary for myofiber maturation because Dcx-deficient mice exhibited impaired myofiber maturation resulting from a decrease in the number of myonuclei. Furthermore, in vitro and in vivo studies suggest that one function of Dcx in myogenic cells is acceleration of cell motility. These results indicate that Dcx is a new marker for the Pax7(+)MyoD(-) subpopulation, which contributes to myofiber maturation during muscle regeneration. © 2015. Published by The Company of Biologists Ltd.

  5. PAX3/7 EXPRESSION COINCIDES WITH MYOD DURING CHRONIC SKELETAL MUSCLE OVERLOAD

    PubMed Central

    Hyatt, Jon-Philippe K.; McCall, Gary E.; Kander, Elizabeth M.; Zhong, Hui; Roy, Roland R.; Huey, Kimberly A.

    2009-01-01

    Paired box (Pax) proteins 3 and 7 are key determinants for embryonic skeletal muscle development by initiating myogenic regulatory factor (MRF) gene expression. We show that Pax3 and 7 participate in adult skeletal muscle plasticity during the initial responses to chronic overload (≤7 days) and appear to coordinate MyoD expression, a member of the MRF family of genes. Pax3 and 7 mRNA were higher than control within 12 h after initiation of overload, preceded the increase in MyoD mRNA on day 1, and peaked on day 2. On days 3 and 7, Pax7 mRNA remained higher than control, suggesting that satellite cell self-renewal was occurring. Pax3 and 7 and MyoD protein levels were higher than control on days 2 and 3. These data indicate that Pax3 and 7 coordinate the recapitulation of developmental-like regulatory mechanisms in response to growth-inducing stimuli in adult skeletal muscle, presumably through activation of satellite cells. PMID:18508329

  6. TCDD disrupts posterior palatogenesis and causes cleft palate.

    PubMed

    Yamada, Tomohiro; Hirata, Azumi; Sasabe, Eri; Yoshimura, Tomohide; Ohno, Seiji; Kitamura, Naoya; Yamamoto, Tetsuya

    2014-01-01

    Dioxins (e.g. 2,3,7,8-tetrachlorodibenzo-p-dioxin; TCDD) cause cleft palate at a high rate. A post-fusional split may contribute to the pathogenesis, and tissue fragility may be a concern. The objective of this study was to investigate the effects of TCDD on the palatal epithelium, bone and muscle, which contribute to tissue integrity. ICR mice (10-12 weeks old) were used. TCDD was administered on E12.5 at 40 mg/kg. Immunohistochemical staining for AhR, ER-α, laminin, collagen IV, osteopontin, Runx2, MyoD, and desmin were performed. Furthermore, western blot analysis for osteopontin, Runx2, MyoD, and desmin were performed to evaluate protein expression in the palatal tissue. Immunohistologically, there was little difference in the collagen IV and laminin localization in the palatal epithelium between control versus TCDD-treated mice. Runx2 and osteopontin immunoreactivity decreased in the TCDD-treated palatal bone, and MyoD and desmin decreased in the TCDD-treated palatal muscle. AhR and ER-α immunoreactivity were localized to the normal palatal bone, but ER-α was diminished in the TCDD-treated palate. On western blot analysis, Runx2, MyoD, and desmin were all downregulated in the TCDD-treated palate. TCDD may suppress palatal osteogenesis and myogenesis via AhR, and cause cleft palates via a post-fusional split mechanism, in addition to a failure of palatal fusion. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  7. Unconventional myosin ID is expressed in myelinating oligodendrocytes.

    PubMed

    Yamazaki, Reiji; Ishibashi, Tomoko; Baba, Hiroko; Yamaguchi, Yoshihide

    2014-10-01

    Myelin is a dynamic multilamellar structure that ensheathes axons and is crucial for normal neuronal function. In the central nervous system (CNS), myelin is produced by oligodendrocytes that wrap many layers of plasma membrane around axons. The dynamic membrane trafficking system, which relies on motor proteins, is required for myelin formation and maintenance. Previously, we found that myosin ID (Myo1d), a class I myosin, is enriched in the rat CNS myelin fraction. Myo1d is an unconventional myosin and has been shown to be involved in membrane trafficking in the recycling pathway in an epithelial cell line. Western blotting revealed that Myo1d expression begins early in myelinogenesis and continues to increase into adulthood. The localization of Myo1d in CNS myelin has not been reported, and the function of Myo1d in vivo remains unknown. To demonstrate the expression of Myo1d in CNS myelin and to begin to explore the function of Myo1d in myelination, we produced a new antibody against Myo1d that has a high titer and specificity for rat Myo1d. By using this antibody, we demonstrated that Myo1d is expressed in rat CNS myelin and is especially abundant in abaxonal and adaxonal regions (the outer and inner cytoplasm-containing loops, respectively), but that expression is low in peripheral nervous system myelin. In culture, Myo1d was expressed in mature rat oligodendrocytes. Furthermore, an increase in expression of Myo1d during maturation of CNS white matter (cerebellum and corpus callosum) was demonstrated by histological analysis. These results suggest that Myo1d may be involved in the formation and/or maintenance of CNS myelin. © 2014 Wiley Periodicals, Inc.

  8. Effect of dibutyryl cyclic AMP on the kinetics of myo-inositol transport in cultured astrocytes.

    PubMed

    Isaacks, R E; Bender, A S; Reuben, J S; Kim, C Y; Shi, Y F; Norenberg, M D

    1999-07-01

    Dibutyryl cyclic AMP (dBcAMP) is known to induce maturation and differentiation in astrocytes. As myo-inositol is an important osmoregulator in astrocytes, we examined the effects of maturation and biochemical differentiation on the kinetic properties of myo-inositol transport. Treatment of astrocytes with dBcAMP significantly decreased the Vmax of myo-inositol uptake, but the effect on Km was not significant. The myo-inositol content of astrocytes was significantly decreased in cells treated for 5 days with dBcAMP as compared with untreated controls. Maximum suppression of myo-inositol uptake occurred 7 days after exposure of astrocytes to dBcAMP; this was gradually reversible when dBcAMP was removed from the medium. After exposure to hypertonic medium for 6 h, mRNA expression of the myo-inositol co-transporter was diminished by approximately 36% in astrocytes treated with dBcAMP as compared with untreated cells. It appears that myo-inositol transporters in astrocytes treated with dBcAMP are either decreased in number or inactivated during maturation and differentiation, suggesting that the stage of differentiation and biochemical maturation of astrocytes is an important factor in osmoregulation.

  9. Soluble polysaccharide composition and myo-inositol content help differentiate the antioxidative and hypolipidemic capacity of peeled apples.

    PubMed

    Ker, Yaw-Bee; Peng, Chiung-Huei; Chyau, Charng-Cherng; Peng, Robert Y

    2010-04-28

    Many people prefer to eat peeled apples. The present study investigated the composition of soluble polysaccharides (SP) in peeled apples and its antioxidative and hypolipidemic activity. The yield of SP ranged 0.43-0.88%, having MW ranging 223-848 kDa. All belonged to peptidoglycans. Among the fourteen amino acids found, seven were essential amino acids. In addition, sugar analysis indicated that 50% of apple samples consisted of glucoarabinan, 37.5% comprising taloarabinan and the remaining 12.5% containing alloglucan. Moreover, SP consisted of a huge amount of myo-inositol (>5.61%) and uronic acid (>11.7%), which may play a synergistic role in the hypolipidemic effect. Worth noting, we are the first who reported the presence of talose, allose and fucose in the apple SP. Conclusively, the biological value of SP is attributable to the differential effect of SP and the synergistic effect exerted by its unique SP pattern, high myo-inositol and uronic acid contents.

  10. Isolation and properties of a Bacillus subtilis mutant unable to produce fructose-bisphosphatase.

    PubMed Central

    Fujita, Y; Freese, E

    1981-01-01

    A Bacillus subtilis mutation (gene symbol fdpA1), producing a deficiency of D-fructose-1,6-bisphosphate 1-phosphohydrolase (EC 3.1.3.11, fructose-bisphosphatase), was isolated and genetically purified. An fdpA1-containing mutant did not produce cross-reacting material. It grew on any carbon source that allowed growth of the standard strain except myo-inositol and D-gluconate. Because the mutant could grow on D-fructose, glycerol, or L-malate as the sole carbon source, B. subtilis can produce fructose-6-phosphate and the derived cell wall precursors from these carbon sources in the absence of fructose-bisphosphatase. In other words, during gluconeogenesis B. subtilis must be able to bypass this reaction. Fructose-bisphosphatase is also not needed for the sporulation of B., subtilis. The fdpA1 mutation has the pleiotropic consequence that mutants carrying it cannot produce inositol dehydrogenase (EC 1.1.1.18) and gluconate kinase (EC 2.7.1.12) under conditions that normally induce these enzymes. Images PMID:6257649

  11. An In Vitro Enzyme System for the Production of myo-Inositol from Starch

    PubMed Central

    Fujisawa, Tomoko; Fujinaga, Shohei

    2017-01-01

    ABSTRACT We developed an in vitro enzyme system to produce myo-inositol from starch. Four enzymes were used, maltodextrin phosphorylase (MalP), phosphoglucomutase (PGM), myo-inositol-3-phosphate synthase (MIPS), and inositol monophosphatase (IMPase). The enzymes were thermostable: MalP and PGM from the hyperthermophilic archaeon Thermococcus kodakarensis, MIPS from the hyperthermophilic archaeon Archaeoglobus fulgidus, and IMPase from the hyperthermophilic bacterium Thermotoga maritima. The enzymes were individually produced in Escherichia coli and partially purified by subjecting cell extracts to heat treatment and removing denatured proteins. The four enzyme samples were incubated at 90°C with amylose, phosphate, and NAD+, resulting in the production of myo-inositol with a yield of over 90% at 2 h. The effects of varying the concentrations of reaction components were examined. When the system volume was increased and NAD+ was added every 2 h, we observed the production of 2.9 g myo-inositol from 2.9 g amylose after 7 h, achieving gram-scale production with a molar conversion of approximately 96%. We further integrated the pullulanase from T. maritima into the system and observed myo-inositol production from soluble starch and raw potato with yields of 73% and 57 to 61%, respectively. IMPORTANCE myo-Inositol is an important nutrient for human health and provides a wide variety of benefits as a dietary supplement. This study demonstrates an alternative method to produce myo-inositol from starch with an in vitro enzyme system using thermostable maltodextrin phosphorylase (MalP), phosphoglucomutase (PGM), myo-inositol-3-phosphate synthase, and myo-inositol monophosphatase. By utilizing MalP and PGM to generate glucose 6-phosphate, we can avoid the addition of phosphate donors such as ATP, the use of which would not be practical for scaled-up production of myo-inositol. myo-Inositol was produced from amylose on the gram scale with yields exceeding 90%. Conversion rates were also high, producing over 2 g of myo-inositol within 4 h in a 200-ml reaction mixture. By adding a thermostable pullulanase, we produced myo-inositol from raw potato with yields of 57 to 61% (wt/wt). The system developed here should provide an attractive alternative to conventional methods that rely on extraction or microbial production of myo-inositol. PMID:28600316

  12. Emerin and histone deacetylase 3 (HDAC3) cooperatively regulate expression and nuclear positions of MyoD, Myf5, and Pax7 genes during myogenesis

    PubMed Central

    Demmerle, Justin; Koch, Adam J.; Holaska, James M.

    2016-01-01

    The spatial organization of chromatin is critical in establishing cell-type dependent gene expression programs. The inner nuclear membrane protein emerin has been implicated in regulating global chromatin architecture. We show emerin associates with genomic loci of muscle differentiation promoting factors in murine myogenic progenitors, including Myf5 and MyoD. Prior to their transcriptional activation Myf5 and MyoD loci localized to the nuclear lamina in proliferating progenitors and moved to the nucleoplasm upon transcriptional activation during differentiation. The Pax7 locus, which is transcribed in proliferating progenitors, localized to the nucleoplasm and Pax7 moved to the nuclear lamina upon repression during differentiation. Localization of Myf5, MyoD, and Pax7 to the nuclear lamina and proper temporal expression of these genes required emerin and HDAC3. Interestingly, activation of HDAC3 catalytic activity rescued both Myf5 localization to the nuclear lamina and its expression. Collectively, these data support a model whereby emerin facilitates repressive chromatin formation at the nuclear lamina by activating the catalytic activity of HDAC3 to regulate the coordinated spatiotemporal expression of myogenic differentiation genes. PMID:24062260

  13. Fine mapping on chromosome 13q32-34 and brain expression analysis implicates MYO16 in schizophrenia.

    PubMed

    Rodriguez-Murillo, Laura; Xu, Bin; Roos, J Louw; Abecasis, Gonçalo R; Gogos, Joseph A; Karayiorgou, Maria

    2014-03-01

    We previously reported linkage of schizophrenia and schizoaffective disorder to 13q32-34 in the European descent Afrikaner population from South Africa. The nature of genetic variation underlying linkage peaks in psychiatric disorders remains largely unknown and both rare and common variants may be contributing. Here, we examine the contribution of common variants located under the 13q32-34 linkage region. We used densely spaced SNPs to fine map the linkage peak region using both a discovery sample of 415 families and a meta-analysis incorporating two additional replication family samples. In a second phase of the study, we use one family-based data set with 237 families and independent case-control data sets for fine mapping of the common variant association signal using HapMap SNPs. We report a significant association with a genetic variant (rs9583277) within the gene encoding for the myosin heavy-chain Myr 8 (MYO16), which has been implicated in neuronal phosphoinositide 3-kinase signaling. Follow-up analysis of HapMap variation within MYO16 in a second set of Afrikaner families and additional case-control data sets of European descent highlighted a region across introns 2-6 as the most likely region to harbor common MYO16 risk variants. Expression analysis revealed a significant increase in the level of MYO16 expression in the brains of schizophrenia patients. Our results suggest that common variation within MYO16 may contribute to the genetic liability to schizophrenia.

  14. PC4/Tis7/IFRD1 Stimulates Skeletal Muscle Regeneration and Is Involved in Myoblast Differentiation as a Regulator of MyoD and NF-κB*

    PubMed Central

    Micheli, Laura; Leonardi, Luca; Conti, Filippo; Maresca, Giovanna; Colazingari, Sandra; Mattei, Elisabetta; Lira, Sergio A.; Farioli-Vecchioli, Stefano; Caruso, Maurizia; Tirone, Felice

    2011-01-01

    In skeletal muscle cells, the PC4 (Tis7/Ifrd1) protein is known to function as a coactivator of MyoD by promoting the transcriptional activity of myocyte enhancer factor 2C (MEF2C). In this study, we show that up-regulation of PC4 in vivo in adult muscle significantly potentiates injury-induced regeneration by enhancing myogenesis. Conversely, we observe that PC4 silencing in myoblasts causes delayed exit from the cell cycle, accompanied by delayed differentiation, and we show that such an effect is MyoD-dependent. We provide evidence revealing a novel mechanism underlying the promyogenic actions of PC4, by which PC4 functions as a negative regulator of NF-κB, known to inhibit MyoD expression post-transcriptionally. In fact, up-regulation of PC4 in primary myoblasts induces the deacetylation, and hence the inactivation and nuclear export of NF-κB p65, in concomitance with induction of MyoD expression. On the contrary, PC4 silencing in myoblasts induces the acetylation and nuclear import of p65, in parallel with a decrease of MyoD levels. We also observe that PC4 potentiates the inhibition of NF-κB transcriptional activity mediated by histone deacetylases and that PC4 is able to form trimolecular complexes with p65 and HDAC3. This suggests that PC4 stimulates deacetylation of p65 by favoring the recruitment of HDAC3 to p65. As a whole, these results indicate that PC4 plays a role in muscle differentiation by controlling the MyoD pathway through multiple mechanisms, and as such, it positively regulates regenerative myogenesis. PMID:21127072

  15. A quantitative survey of gravity receptor function in mutant mouse strains.

    PubMed

    Jones, Sherri M; Johnson, Kenneth R; Yu, Heping; Erway, Lawrence C; Alagramam, Kumar N; Pollak, Natasha; Jones, Timothy A

    2005-12-01

    The purpose of this research was to identify vestibular deficits in mice using linear vestibular evoked potentials (VsEPs). VsEP thresholds, peak latencies, and peak amplitudes from 24 strains with known genetic mutations and 6 inbred background strains were analyzed and descriptive statistics generated for each strain. Response parameters from mutant homozygotes were compared with heterozygote and/or background controls and all strain averages were contrasted to normative ranges. Homozygotes of the following recessive mutations had absent VsEPs at the ages tested: Espn(je), Atp2b2dfw-2J, Spnb4qv-lnd2J, Spnb4qv-3J, Myo7ash1, Tmie(sr), Myo6sv, jc, Pcdh15av-J, Pcdh15av-2J, Pcdh15av-3J, Cdh23v-2J, Sans(js), hr, Kcne1pkr and Pou3f4del. These results suggest profound gravity receptor deficits for these homozygotes, which is consistent with the structural deficits that have been documented for many of these strains. Homozygotes of Catna2cdf, Grid2ho4J, Wnt1sw, qk, and Mbpshi strains and heterozygotes of Grid2lc had measurable VsEPs but one or more response parameters differed from the respective control group (heterozygote or background strain) or were outside normal ranges. For example, qk and Mbpshi homozygotes showed significantly prolonged latencies consistent with the abnormal myelin that has been described for these strains. Prolonged latencies may suggest deficits in neural conduction; elevated thresholds suggest reduced sensitivity, and reduced amplitudes may be suggestive for reduced neural synchrony. One mutation, Otx1jv, had all VsEP response parameters within normal limits--an expected finding because the abnormality in Otxljv is presumably restricted to the lateral semicircular canal. Interestingly, some heterozygote groups also showed abnormalities in one or more VsEP response parameters, suggesting that vestibular dysfunction, although less severe, may be present in some heterozygous animals.

  16. Motor Protein Myo1c Is a Podocyte Protein That Facilitates the Transport of Slit Diaphragm Protein Neph1 to the Podocyte Membrane ▿

    PubMed Central

    Arif, E.; Wagner, M. C.; Johnstone, D. B.; Wong, H. N.; George, B.; Pruthi, P. A.; Lazzara, M. J.; Nihalani, D.

    2011-01-01

    The podocyte proteins Neph1 and nephrin organize a signaling complex at the podocyte cell membrane that forms the structural framework for a functional glomerular filtration barrier. Mechanisms regulating the movement of these proteins to and from the membrane are currently unknown. This study identifies a novel interaction between Neph1 and the motor protein Myo1c, where Myo1c plays an active role in targeting Neph1 to the podocyte cell membrane. Using in vivo and in vitro experiments, we provide data supporting a direct interaction between Neph1 and Myo1c which is dynamic and actin dependent. Unlike wild-type Myo1c, the membrane localization of Neph1 was significantly reduced in podocytes expressing dominant negative Myo1c. In addition, Neph1 failed to localize at the podocyte cell membrane and cell junctions in Myo1c-depleted podocytes. We further demonstrate that similarly to Neph1, Myo1c also binds nephrin and reduces its localization at the podocyte cell membrane. A functional analysis of Myo1c knockdown cells showed defects in cell migration, as determined by a wound assay. In addition, the ability to form tight junctions was impaired in Myo1c knockdown cells, as determined by transepithelial electric resistance (TER) and bovine serum albumin (BSA) permeability assays. These results identify a novel Myo1c-dependent molecular mechanism that mediates the dynamic organization of Neph1 and nephrin at the slit diaphragm and is critical for podocyte function. PMID:21402783

  17. Comprehensive molecular diagnosis of 67 Chinese Usher syndrome probands: high rate of ethnicity specific mutations in Chinese USH patients.

    PubMed

    Jiang, Lichun; Liang, Xiaofang; Li, Yumei; Wang, Jing; Zaneveld, Jacques Eric; Wang, Hui; Xu, Shan; Wang, Keqing; Wang, Binbin; Chen, Rui; Sui, Ruifang

    2015-09-04

    Usher syndrome (USH) is the most common disease causing combined deafness and blindness. It is predominantly an autosomal recessive genetic disorder with occasionally digenic cases. Molecular diagnosis of USH patients is important for disease management. Few studies have tried to find the genetic cause of USH in Chinese patients. This study was designed to determine the mutation spectrum of Chinese USH patients. We applied next generation sequencing to characterize the mutation spectrum in 67 independent Chinese families with at least one member diagnosed with USH. Blood was collected at Peking Union Medical College Hospital. This cohort is one of the largest USH cohorts reported. We utilized customized panel and whole exome sequencing, variant analysis, Sanger validation and segregation tests to find disease causing mutations in these families. We identified biallelic disease causing mutations in known USH genes in 70 % (49) of our patients. As has been previously reported, MYO7A is the most frequently mutated gene in our USH type I patients while USH2A is the most mutated gene in our USH type II patients. In addition, we identify mutations in CLRN1, DFNB31, GPR98 and PCDH15 for the first time in Chinese USH patients. Together, mutations in CLRN1, DNFB31, GPR98 and PCDH15 account for 11.4 % of disease in our cohort. Interestingly, although the spectrum of disease genes is quite similar between our Chinese patient cohort and other patient cohorts from different (and primarily Caucasian) ethnic backgrounds, the mutations themselves are dramatically different. In particular, 76 % (52/68) of alleles found in this study have never been previously reported. Interestingly, we observed a strong enrichment for severe protein truncating mutations expected to have severe functional consequence on the protein in USH II patients compared to the reported mutation spectrum in RP patients, who often carry partial protein truncating mutations. Our study provides the first comprehensive genetic characterization of a large collection of Chinese USH patients. Up to 90 % of USH patients have disease caused by mutations in known USH disease genes. By combining NGS-based molecular diagnosis and patient clinical information, a more accurate diagnosis, prognosis and personalized treatment of USH patients can be achieved.

  18. Wnt signaling induces proliferation of sensory precursors in the postnatal mouse cochlea.

    PubMed

    Chai, Renjie; Kuo, Bryan; Wang, Tian; Liaw, Eric J; Xia, Anping; Jan, Taha A; Liu, Zhiyong; Taketo, Makoto M; Oghalai, John S; Nusse, Roeland; Zuo, Jian; Cheng, Alan G

    2012-05-22

    Inner ear hair cells are specialized sensory cells essential for auditory function. Previous studies have shown that the sensory epithelium is postmitotic, but it harbors cells that can behave as progenitor cells in vitro, including the ability to form new hair cells. Lgr5, a Wnt target gene, marks distinct supporting cell types in the neonatal cochlea. Here, we tested the hypothesis that Lgr5(+) cells are Wnt-responsive sensory precursor cells. In contrast to their quiescent in vivo behavior, Lgr5(+) cells isolated by flow cytometry from neonatal Lgr5(EGFP-CreERT2/+) mice proliferated and formed clonal colonies. After 10 d in culture, new sensory cells formed and displayed specific hair cell markers (myo7a, calretinin, parvalbumin, myo6) and stereocilia-like structures expressing F-actin and espin. In comparison with other supporting cells, Lgr5(+) cells were enriched precursors to myo7a(+) cells, most of which formed without mitotic division. Treatment with Wnt agonists increased proliferation and colony-formation capacity. Conversely, small-molecule inhibitors of Wnt signaling suppressed proliferation without compromising the myo7a(+) cells formed by direct differentiation. In vivo lineage tracing supported the idea that Lgr5(+) cells give rise to myo7a(+) hair cells in the neonatal Lgr5(EGFP-CreERT2/+) cochlea. In addition, overexpression of β-catenin initiated proliferation and led to transient expansion of Lgr5(+) cells within the cochlear sensory epithelium. These results suggest that Lgr5 marks sensory precursors and that Wnt signaling can promote their proliferation and provide mechanistic insights into Wnt-responsive progenitor cells during sensory organ development.

  19. Skeletal muscle repair in a mouse model of nemaline myopathy

    PubMed Central

    Sanoudou, Despina; Corbett, Mark A.; Han, Mei; Ghoddusi, Majid; Nguyen, Mai-Anh T.; Vlahovich, Nicole; Hardeman, Edna C.; Beggs, Alan H.

    2012-01-01

    Nemaline myopathy (NM), the most common non-dystrophic congenital myopathy, is a variably severe neuromuscular disorder for which no effective treatment is available. Although a number of genes have been identified in which mutations can cause NM, the pathogenetic mechanisms leading to the phenotypes are poorly understood. To address this question, we examined gene expression patterns in an NM mouse model carrying the human Met9Arg mutation of alpha-tropomyosin slow (Tpm3). We assessed five different skeletal muscles from affected mice, which are representative of muscles with differing fiber-type compositions, different physiological specializations and variable degrees of pathology. Although these same muscles in non-affected mice showed marked variation in patterns of gene expression, with diaphragm being the most dissimilar, the presence of the mutant protein in nemaline muscles resulted in a more similar pattern of gene expression among the muscles. This result suggests a common process or mechanism operating in nemaline muscles independent of the variable degrees of pathology. Transcriptional and protein expression data indicate the presence of a repair process and possibly delayed maturation in nemaline muscles. Markers indicative of satellite cell number, activated satellite cells and immature fibers including M-Cadherin, MyoD, desmin, Pax7 and Myf6 were elevated by western-blot analysis or immunohistochemistry. Evidence suggesting elevated focal repair was observed in nemaline muscle in electron micrographs. This analysis reveals that NM is characterized by a novel repair feature operating in multiple different muscles. PMID:16877500

  20. Skeletal muscle repair in a mouse model of nemaline myopathy.

    PubMed

    Sanoudou, Despina; Corbett, Mark A; Han, Mei; Ghoddusi, Majid; Nguyen, Mai-Anh T; Vlahovich, Nicole; Hardeman, Edna C; Beggs, Alan H

    2006-09-01

    Nemaline myopathy (NM), the most common non-dystrophic congenital myopathy, is a variably severe neuromuscular disorder for which no effective treatment is available. Although a number of genes have been identified in which mutations can cause NM, the pathogenetic mechanisms leading to the phenotypes are poorly understood. To address this question, we examined gene expression patterns in an NM mouse model carrying the human Met9Arg mutation of alpha-tropomyosin slow (Tpm3). We assessed five different skeletal muscles from affected mice, which are representative of muscles with differing fiber-type compositions, different physiological specializations and variable degrees of pathology. Although these same muscles in non-affected mice showed marked variation in patterns of gene expression, with diaphragm being the most dissimilar, the presence of the mutant protein in nemaline muscles resulted in a more similar pattern of gene expression among the muscles. This result suggests a common process or mechanism operating in nemaline muscles independent of the variable degrees of pathology. Transcriptional and protein expression data indicate the presence of a repair process and possibly delayed maturation in nemaline muscles. Markers indicative of satellite cell number, activated satellite cells and immature fibers including M-Cadherin, MyoD, desmin, Pax7 and Myf6 were elevated by western-blot analysis or immunohistochemistry. Evidence suggesting elevated focal repair was observed in nemaline muscle in electron micrographs. This analysis reveals that NM is characterized by a novel repair feature operating in multiple different muscles.

  1. Ovulation induction with myo-inositol alone and in combination with clomiphene citrate in polycystic ovarian syndrome patients with insulin resistance.

    PubMed

    Kamenov, Zdravko; Kolarov, Georgi; Gateva, Antoaneta; Carlomagno, Gianfranco; Genazzani, Alessandro D

    2015-02-01

    Insulin resistance plays a key role in the pathogenesis of polycystic ovarian syndrome (PCOS). One of the methods for correcting insulin resistance is using myo-inositol. The aim of the present study is to evaluate the effectiveness of myo-inositol alone or in combination with clomiphene citrate for (1) induction of ovulation and (2) pregnancy rate in anovulatory women with PCOS and proven insulin resistance. This study included 50 anovulatory PCOS patients with insulin resistance. All of them received myo-inositolduring three spontaneous cycles. If patients remained anovulatory and/or no pregnancy was achieved, combination of myo-inositol and clomiphene citrate was used in the next three cycles. Ovulation and pregnancy rate, changes in body mass index (BMI) and homeostatic model assessment (HOMA) index and the rate of adverse events were assessed. After myo-inositol treatment, ovulation was present in 29 women (61.7%) and 18 (38.3%) were resistant. Of the ovulatory women, 11 became pregnant (37.9%). Of the 18 myo-inositol resistant patients after clomiphene treatment, 13 (72.2%) ovulated. Of the 13 ovulatory women, 6 (42.6%) became pregnant. During follow-up, a reduction of body mass index and HOMA index was also observed. Myo-inositol treatment ameliorates insulin resistance and body weight, and improves ovarian activity in PCOS patients.

  2. The Combined Use of Losartan and Muscle-Derived Stem Cells Significantly Improves the Functional Recovery of Muscle in a Young Mouse Model of Contusion Injuries.

    PubMed

    Kobayashi, Makoto; Ota, Shusuke; Terada, Satoshi; Kawakami, Yohei; Otsuka, Takanobu; Fu, Freddie H; Huard, Johnny

    2016-12-01

    Although muscle injuries tend to heal uneventfully in most cases, incomplete functional recovery commonly occurs as a result of scar tissue formation at the site of injury, even after treatment with muscle-derived stem cells (MDSCs). The transplantation of MDSCs in the presence of a transforming growth factor β1 (TGF-β1) antagonist (losartan) would result in decreased scar tissue formation and enhance muscle regeneration after contusion injuries in a mouse model. Controlled laboratory study. An animal model of muscle contusion was developed using the tibialis anterior muscle in 48 healthy mice at 8 to 10 weeks of age. After sustaining muscle contusion injuries, the mice were divided into 4 groups: (1) saline injection group (control group; n = 15), (2) MDSC transplantation group (MDSC group; n = 15), (3) MDSC transplantation plus oral losartan group (MDSC/losartan group; n = 15), and (4) healthy uninjured group (healthy group; n = 3). Losartan was administrated systemically beginning 3 days after injury and continued until the designated endpoint (1, 2, or 4 weeks after injury). MDSCs were transplanted 4 days after injury. Muscle regeneration and fibrotic scar formation were evaluated by histology, and the expression of follistatin, MyoD, Smad7, and Smad2/3 were analyzed by immunohistochemistry and reverse transcription polymerase chain reaction analysis. Functional recovery was measured via electrical stimulation of the peroneal nerve. When compared with MDSC transplantation alone, MDSC/losartan treatment resulted in significantly decreased scar formation, an increase in the number of regenerating myofibers, and improved functional recovery after muscle contusions. In support of these findings, the expression levels of Smad7 and MyoD were significantly increased in the group treated with both MDSCs and losartan. When compared with MDSCs alone, the simultaneous treatment of muscle contusions with MDSCs and losartan significantly reduced scar formation, increased the number of regenerating myofibers, and improved the functional recovery of muscle; these effects were caused, at least in part, by the losartan-mediated upregulation of Smad7 and MyoD. Increased levels of Smad7 and MyoD together reduced the deposition of scar tissue (via the inhibition of TGF-β1 by Smad7) and committed the transplanted MDSCs toward a myogenic lineage (via Smad7-regulated MyoD expression). The study findings contribute to the development of biological treatments to accelerate and improve the quality of muscle healing after injury. © 2016 The Author(s).

  3. Wnt Protein-mediated Satellite Cell Conversion in Adult and Aged Mice Following Voluntary Wheel Running

    PubMed Central

    Fujimaki, Shin; Hidaka, Ryo; Asashima, Makoto; Takemasa, Tohru; Kuwabara, Tomoko

    2014-01-01

    Muscle represents an abundant, accessible, and replenishable source of adult stem cells. Skeletal muscle-derived stem cells, called satellite cells, play essential roles in regeneration after muscle injury in adult skeletal muscle. Although the molecular mechanism of muscle regeneration process after an injury has been extensively investigated, the regulation of satellite cells under steady state during the adult stage, including the reaction to exercise stimuli, is relatively unknown. Here, we show that voluntary wheel running exercise, which is a low stress exercise, converts satellite cells to the activated state due to accelerated Wnt signaling. Our analysis showed that up-regulated canonical Wnt/β-catenin signaling directly modulated chromatin structures of both MyoD and Myf5 genes, resulting in increases in the mRNA expression of Myf5 and MyoD and the number of proliferative Pax7+Myf5+ and Pax7+ MyoD+ cells in skeletal muscle. The effect of Wnt signaling on the activation of satellite cells, rather than Wnt-mediated fibrosis, was observed in both adult and aged mice. The association of β-catenin, T-cell factor, and lymphoid enhancer transcription factors of multiple T-cell factor/lymphoid enhancer factor regulatory elements, conserved in mouse, rat, and human species, with the promoters of both the Myf5 and MyoD genes drives the de novo myogenesis in satellite cells even in aged muscle. These results indicate that exercise-stimulated extracellular Wnts play a critical role in the regulation of satellite cells in adult and aged skeletal muscle. PMID:24482229

  4. Human Myo19 is a novel myosin that associates with mitochondria

    PubMed Central

    Quintero, Omar A.; DiVito, Melinda M.; Adikes, Rebecca C.; Kortan, Melisa B.; Case, Lindsay B.; Lier, Audun J.; Panaretos, Niki S.; Slater, Stephanie Q.; Rengarajan, Michelle; Feliu, Marianela; Cheney, Richard E.

    2009-01-01

    Summary Mitochondria are pleomorphic organelles [1, 2] that have central roles in cell physiology. Defects in their localization and dynamics lead to human disease [3-5]. Myosins are actin-based motors that power processes such as muscle contraction, cytokinesis, and organelle transport [6]. Here we report the initial characterization of myosin-XIX (Myo19), the founding member of a novel class of myosin that associates with mitochondria. The 970aa heavy chain consists of a motor domain, three IQ motifs, and a short tail. Myo19 mRNA is expressed in multiple tissues and antibodies to human Myo19 detect a ∼109kD band in multiple cell lines. Both endogenous Myo19 and GFP-Myo19 exhibit striking localization to mitochondria. Deletion analysis reveals that the Myo19 tail is necessary and sufficient for mitochondrial localization. Expressing full-length GFP-Myo19 in A549 cells reveals a remarkable gain-of-function where the majority of the mitochondria move continuously. Moving mitochondria travel for many microns with an obvious leading end and distorted shape. The motility and shape-change are sensitive to latrunculin B, indicating that both are actin-dependent. Expressing the GFP-Myo19 tail in CAD cells resulted in decreased mitochondrial run lengths in neurites. These results suggest that this novel myosin functions as an actin-based motor for mitochondrial movement in vertebrate cells. PMID:19932026

  5. Circular RNA circMYO9B facilitates breast cancer cell proliferation and invasiveness via upregulating FOXP4 expression by sponging miR-4316.

    PubMed

    Wang, Nan; Gu, Yuanting; Li, Lin; Wang, Fang; Lv, Pengwei; Xiong, Youyi; Qiu, Xinguang

    2018-04-24

    Recently, circular RNAs (circRNAs) have been demonstrated as essential regulators in human cancers. However, the function and mechanism of circRNAs in breast cancer (BC) remain largely unknown and require to be investigated. In the present study, we found that circMYO9B was highly expressed in BC tissues by bioinformatics analysis. And we showed that circMYO9B expression was positively correlated with patients' prognosis. Moreover, we found that circMYO9B knockdown significantly suppressed the proliferation, migration and invasion of BC cells in vitro. In vivo assays also indicated that circMYO9B silence delayed tumor growth. In mechanism, we found that circMYO9B promoted the expression of FOXP4 by sponging miR-4316 in BC cells. We showed that the expression of miR-4316 was inversely associated with that of circMYO9B or FOXP4 in BC tissues. Finally, we found that restoration of FOXP4 expression significantly reversed the effects of circMYO9B knockdown on BC cell proliferation, migration and invasion. In conclusion, our findings demonstrated a key role of circMYO9B/miR-4316/FOXP4 axis in regulating BC progression. Copyright © 2018. Published by Elsevier Inc.

  6. Pulsed low-level infrared laser alters mRNA levels from muscle repair genes dependent on power output in Wistar rats

    NASA Astrophysics Data System (ADS)

    Trajano, L. A. S. N.; Trajano, E. T. L.; Thomé, A. M. C.; Sergio, L. P. S.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2017-10-01

    Satellite cells are present in skeletal muscle functioning in the repair and regeneration of muscle injury. Activation of these cells depends on the expression of myogenic factor 5 (Myf5), myogenic determination factor 1(MyoD), myogenic regulatory factor 4 (MRF4), myogenin (MyoG), paired box transcription factors 3 (Pax3), and 7 (Pax7). Low-level laser irradiation accelerates the repair of muscle injuries. However, data from the expression of myogenic factors have been controversial. Furthermore, the effects of different laser beam powers on the repair of muscle injuries have been not evaluated. The aim of this study was to evaluate the effects of low-level infrared laser at different powers and in pulsed emission mode on the expression of myogenic regulatory factors and on Pax3 and Pax7 in injured skeletal muscle from Wistar rats. Animals that underwent cryoinjury were divided into three groups: injury, injury laser 25 Mw, and injury laser 75 mW. Low-level infrared laser irradiation (904 nm, 3 J cm-2, 5 kHz) was carried out at 25 and 75 mW. After euthanasia, skeletal muscle samples were withdrawn and the total RNA was extracted for the evaluation of mRNA levels from the MyoD, MyoG, MRF4, Myf5, Pax3, and Pax7 gene. Pax 7 mRNA levels did not alter, but Pax3 mRNA levels increased in the injured and laser-irradiated group at 25 mW. MyoD, MyoG, and MYf5 mRNA levels increased in the injured and laser-irradiated animals at both powers, and MRF4 mRNA levels decreased in the injured and laser-irradiated group at 75 mW. In conclusion, exposure to pulsed low-level infrared laser, by power-dependent effect, could accelerate the muscle repair process altering mRNA levels from paired box transcription factors and myogenic regulatory factors.

  7. Stereospecificity of myo-inositol hexakisphosphate dephosphorylation by a phytate-degrading enzyme of baker's yeast.

    PubMed

    Greiner, R; Alminger, M L; Carlsson, N G

    2001-05-01

    During food processing such as baking, phytate is dephosphorylated to produce degradation products, such as myo-inositol pentakis-, tetrakis-, tris-, bis-, and monophosphates. Certain myo-inositol phosphates have been proposed to have positive effects on human health. The position of the phosphate groups on the myo-inositol ring is thereby of great significance for their physiological functions. Using a combination of high-performance ion chromatography analysis and kinetic studies the stereospecificity of myo-inositol hexakisphosphate dephosphorylation by a phytate-degrading enzyme from baker's yeast (Saccharomyces cerevisiae) was established. The data demonstrate that the phytate-degrading enzyme from baker's yeast dephosphorylates myo-inositol hexakisphosphate in a stereospecific way by sequential removal of phosphate groups via D-Ins(1,2,4,5,6)P(5), D-Ins(1,2,5,6)P(4), D-Ins(1,2,6)P(3), D-Ins(1,2)P(2), to finally Ins(2)P (notation 3/4/5/6/1). Knowledge of the absolute stereochemical specificity of the baker's yeast phytase allows use of the enzyme to produce defined myo-inositol phosphates for kinetic and physiological studies.

  8. Fine Mapping on Chromosome 13q32–34 and Brain Expression Analysis Implicates MYO16 in Schizophrenia

    PubMed Central

    Rodriguez-Murillo, Laura; Xu, Bin; Roos, J Louw; Abecasis, Gonçalo R; Gogos, Joseph A; Karayiorgou, Maria

    2014-01-01

    We previously reported linkage of schizophrenia and schizoaffective disorder to 13q32–34 in the European descent Afrikaner population from South Africa. The nature of genetic variation underlying linkage peaks in psychiatric disorders remains largely unknown and both rare and common variants may be contributing. Here, we examine the contribution of common variants located under the 13q32–34 linkage region. We used densely spaced SNPs to fine map the linkage peak region using both a discovery sample of 415 families and a meta-analysis incorporating two additional replication family samples. In a second phase of the study, we use one family-based data set with 237 families and independent case–control data sets for fine mapping of the common variant association signal using HapMap SNPs. We report a significant association with a genetic variant (rs9583277) within the gene encoding for the myosin heavy-chain Myr 8 (MYO16), which has been implicated in neuronal phosphoinositide 3-kinase signaling. Follow-up analysis of HapMap variation within MYO16 in a second set of Afrikaner families and additional case–control data sets of European descent highlighted a region across introns 2–6 as the most likely region to harbor common MYO16 risk variants. Expression analysis revealed a significant increase in the level of MYO16 expression in the brains of schizophrenia patients. Our results suggest that common variation within MYO16 may contribute to the genetic liability to schizophrenia. PMID:24141571

  9. Muscle satellite cells adopt divergent fates

    PubMed Central

    Zammit, Peter S.; Golding, Jon P.; Nagata, Yosuke; Hudon, Valérie; Partridge, Terence A.; Beauchamp, Jonathan R.

    2004-01-01

    Growth, repair, and regeneration of adult skeletal muscle depends on the persistence of satellite cells: muscle stem cells resident beneath the basal lamina that surrounds each myofiber. However, how the satellite cell compartment is maintained is unclear. Here, we use cultured myofibers to model muscle regeneration and show that satellite cells adopt divergent fates. Quiescent satellite cells are synchronously activated to coexpress the transcription factors Pax7 and MyoD. Most then proliferate, down-regulate Pax7, and differentiate. In contrast, other proliferating cells maintain Pax7 but lose MyoD and withdraw from immediate differentiation. These cells are typically located in clusters, together with Pax7−ve progeny destined for differentiation. Some of the Pax7+ve/MyoD−ve cells then leave the cell cycle, thus regaining the quiescent satellite cell phenotype. Significantly, noncycling cells contained within a cluster can be stimulated to proliferate again. These observations suggest that satellite cells either differentiate or switch from terminal myogenesis to maintain the satellite cell pool. PMID:15277541

  10. Occurrence of 1-glyceryl-1-myo-inosityl phosphate in hyperthermophiles.

    PubMed

    Lamosa, Pedro; Gonçalves, Luís G; Rodrigues, Marta V; Martins, Lígia O; Raven, Neil D H; Santos, Helena

    2006-09-01

    The accumulation of compatible solutes was studied in the hyperthermophilic bacterium Aquifex pyrophilus as a function of the temperature and the NaCl concentration of the growth medium. Nuclear magnetic resonance analysis of cell extracts revealed the presence of alpha- and beta-glutamate, di-mannosyl-di-myo-inositol phosphate, di-myo-inositol phosphate, and an additional compound here identified as 1-glyceryl-1-myo-inosityl phosphate. All solutes accumulated by A. pyrophilus are negatively charged at physiological pH. The intracellular levels of di-myo-inositol phosphate increased in response to supraoptimal growth temperature, while alpha- and beta-glutamate accumulated in response to osmotic stress, especially at growth temperatures below the optimum. The newly discovered compound, 1-glyceryl-1-myo-inosityl phosphate, appears to play a double role in osmo- and thermoprotection, since its intracellular pool increased primarily in response to a combination of osmotic and heat stresses. This work also uncovered the nature of the unknown compound, previously detected in Archaeoglobus fulgidus (L. O. Martins et al., Appl. Environ. Microbiol. 63:896-902, 1997). The curious structural relationship between diglycerol phosphate (found only in Archaeoglobus species), di-myo-inositol phosphate (a canonical solute of hyperthermophiles), and the newly identified solute is highlighted. This is the first report on the occurrence of 1-glyceryl-1-myo-inosityl phosphate in living systems.

  11. Prognostic value of myocardial perfusion SPECT versus exercise electrocardiography in patients with ST-segment depression on resting electrocardiography.

    PubMed

    De Lorenzo, Andrea; Hachamovitch, Rory; Kang, Xingping; Gransar, Heidi; Sciammarella, Maria G; Hayes, Sean W; Friedman, John D; Cohen, Ishac; Germano, Guido; Berman, Daniel S

    2005-01-01

    The value of exercise-induced ST-segment depression for the prognostic evaluation of patients with 1 mm of ST depression or greater on the resting electrocardiogram is controversial. Patients who underwent exercise myocardial perfusion single photon emission computed tomography (MPS) and had resting ST depression of 1 mm or greater with a nondiagnostic exercise electrocardiographic response (n = 1122) were followed up for 3.4 +/- 2.3 years. Those with paced rhythm, pre-excitation, left bundle branch block, or myocardial revascularization within the first 60 days after MPS were excluded. Additional exercise-induced ST-segment depression was considered significant if > or = 2 mm MPS was scored semiquantitatively by use of a 20-segment model of the left ventricle; the percentage of myocardium involved with stress defects (% myo) was derived by normalizing to the maximal possible score of 80. Hard events were defined as nonfatal myocardial infarction or cardiac death. A Cox analysis was used to determine independent predictors of hard events among clinical, exercise, and nuclear variables. Hard event rates increased as a function of % myo for either patients with exercise-induced ST depression (1.4%/y for normal MPS vs 4.1%/y for % myo >10%, P < .03) or those without it (0.7%/y for normal MPS vs 3.0%/y for % myo >10%, P = .0001). Age, diabetes mellitus, shortness of breath as the presenting symptom, and % myo were independent predictors of hard events. Exercise-induced ST depression was predictive of hard events only when it was 3 mm or greater. The presence and extent of perfusion defects, reflected in the % myo, had incremental prognostic value over clinical variables and also over all degrees of exercise-induced ST depression. Although MPS effectively risk-stratifies patients with resting ST depression of 1 mm or greater, the prognostic value of exercise-induced ST depression is limited in these patients, with a small added risk when severe (> or = 3 mm).

  12. Analysis of 24 genes reveals a monogenic cause in 11.1% of cases with steroid-resistant nephrotic syndrome at a single center.

    PubMed

    Tan, Weizhen; Lovric, Svjetlana; Ashraf, Shazia; Rao, Jia; Schapiro, David; Airik, Merlin; Shril, Shirlee; Gee, Heon Yung; Baum, Michelle; Daouk, Ghaleb; Ferguson, Michael A; Rodig, Nancy; Somers, Michael J G; Stein, Deborah R; Vivante, Asaf; Warejko, Jillian K; Widmeier, Eugen; Hildebrandt, Friedhelm

    2018-02-01

    Steroid-resistant nephrotic syndrome (SRNS) is the second most frequent cause of end-stage renal disease (ESRD) among patients manifesting at under 25 years of age. We performed mutation analysis using a high-throughput PCR-based microfluidic technology in 24 single-gene causes of SRNS in a cohort of 72 families, who presented with SRNS before the age of 25 years. Within an 18-month interval, we obtained DNA samples, pedigree information, and clinical information from 77 consecutive children with SRNS from 72 different families seen at Boston Children's Hospital (BCH). Mutation analysis was completed by combining high-throughput multiplex PCR with next-generation sequencing. We analyzed the sequences of 18 recessive and 6 dominant genes of SRNS in all 72 families for disease-causing variants. We identified the disease-causing mutation in 8 out of 72 (11.1%) families. Mutations were detected in the six genes: NPHS1 (2 out of 72), WT1 (2 out of 72), NPHS2, MYO1E, TRPC6, and INF2. Median age at onset was 4.1 years in patients without a mutation (range 0.5-18.8), and 3.2 years in those in whom the causative mutation was detected (range 0.1-14.3). Mutations in dominant genes presented with a median onset of 4.5 years (range 3.2-14.3). Mutations in recessive genes presented with a median onset of 0.5 years (range 0.1-3.2). Our molecular genetic diagnostic study identified underlying monogenic causes of steroid-resistant nephrotic syndrome in ~11% of patients with SRNS using a cost-effective technique. We delineated some of the therapeutic, diagnostic, and prognostic implications. Our study confirms that genetic testing is indicated in pediatric patients with SRNS.

  13. myo-Inositol and Phytate Are Toxic to Formosan Subterranean Termites (Isoptera: Rhinotermitidae).

    PubMed

    Veillon, Lucas; Bourgeois, Jared; Leblanc, Amanda; Henderson, Gregg; Marx, Brian D; Muniruzzaman, Syed; Laine, Roger A

    2014-10-01

    Several rare and common monosaccharides were screened for toxic effects on the Formosan subterranean termite, Coptotermes formosanus Shiraki, with the aim of identifying environmentally friendly termiticides. myo-Inositol and phytic acid, which are nontoxic to mammals, were identified as potential termite control compounds. Feeding bioassays with termite workers, where both compounds were supplied on filter paper in concentrations from 160.2 to 1,281.7 μg/mm(3), showed concentration-dependent toxicity within 2 wk. Interestingly myo-inositol was nontoxic when administered to termites in agar (40 mg/ml) in the absence of a cellulosic food source, an unexplained phenomenon. In addition, decreased populations of termite hindgut protozoa were observed upon feeding on myo-inositol but not phytate-spiked filter paper. Radiotracer feeding studies using myo-inositol-[2-(3)H] with worker termites showed no metabolism after ingestion over a 2-d feeding period, ruling out metabolites responsible for the selective toxicity. © 2014 Entomological Society of America.

  14. Diversity of the causal genes in hearing impaired Algerian individuals identified by whole exome sequencing

    PubMed Central

    Ammar-Khodja, Fatima; Bonnet, Crystel; Dahmani, Malika; Ouhab, Sofiane; Lefèvre, Gaelle M; Ibrahim, Hassina; Hardelin, Jean-Pierre; Weil, Dominique; Louha, Malek; Petit, Christine

    2015-01-01

    The genetic heterogeneity of congenital hearing disorders makes molecular diagnosis expensive and time-consuming using conventional techniques such as Sanger sequencing of DNA. In order to design an appropriate strategy of molecular diagnosis in the Algerian population, we explored the diversity of the involved mutations by studying 65 families affected by autosomal recessive forms of nonsyndromic hearing impairment (DFNB forms), which are the most prevalent early onset forms. We first carried out a systematic screening for mutations in GJB2 and the recurrent p.(Arg34*) mutation in TMC1, which were found in 31 (47.7%) families and 1 (1.5%) family, respectively. We then performed whole exome sequencing in nine of the remaining families, and identified the causative mutations in all the patients analyzed, either in the homozygous state (eight families) or in the compound heterozygous state (one family): (c.709C>T: p.(Arg237*)) and (c.2122C>T: p.(Arg708*)) in OTOF, (c.1334T>G: p.(Leu445Trp)) in SLC26A4, (c.764T>A: p.(Met255Lys)) in GIPC3, (c.518T>A: p.(Cys173Ser)) in LHFPL5, (c.5336T>C: p.(Leu1779Pro)) in MYO15A, (c.1807G>T: p.(Val603Phe)) in OTOA, (c.6080dup: p.(Asn2027Lys*9)) in PTPRQ, and (c.6017del: p.(Gly2006Alafs*13); c.7188_7189ins14: p.(Val2397Leufs*2)) in GPR98. Notably, 7 of these 10 mutations affecting 8 different genes had not been reported previously. These results highlight for the first time the genetic heterogeneity of the early onset forms of nonsyndromic deafness in Algerian families. PMID:26029705

  15. Comparative effects of low-level laser therapy pre- and post-injury on mRNA expression of MyoD, myogenin, and IL-6 during the skeletal muscle repair.

    PubMed

    Alves, Agnelo Neves; Ribeiro, Beatriz Guimarães; Fernandes, Kristianne Porta Santos; Souza, Nadhia Helena Costa; Rocha, Lília Alves; Nunes, Fabio Daumas; Bussadori, Sandra Kalil; Mesquita-Ferrari, Raquel Agnelli

    2016-05-01

    This study analyzed the effect of pre-injury and post-injury irradiation with low-level laser therapy (LLLT) on the mRNA expression of myogenic regulatory factors and interleukin 6 (IL-6) during the skeletal muscle repair. Male rats were divided into six groups: control group, sham group, LLLT group, injury group; pre-injury LLLT group, and post-injury LLLT group. LLLT was performed with a diode laser (wavelength 780 nm; output power 40 mW' and total energy 3.2 J). Cryoinjury was induced by two applications of a metal probe cooled in liquid nitrogen directly onto the belly of the tibialis anterior (TA) muscle. After euthanasia, the TA muscle was removed for the isolation of total RNA and analysis of MyoD, myogenin, and IL-6 using real-time quantitative PCR. Significant increases were found in the expression of MyoD mRNA at 3 and 7 days as well as the expression of myogenin mRNA at 14 days in the post-injury LLLT group in comparison to injury group. A significant reduction was found in the expression of IL-6 mRNA at 3 and 7 days in the pre-injury LLLT and post-injury LLLT groups. A significant increase in IL-6 mRNA was found at 14 days in the post-injury LLLT group in comparison to the injury group. LLLT administered following muscle injury modulates the mRNA expression of MyoD and myogenin. Moreover, the both forms of LLLT administration were able to modulate the mRNA expression of IL-6 during the muscle repair process.

  16. Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D.

    PubMed

    Bolz, H; von Brederlow, B; Ramírez, A; Bryda, E C; Kutsche, K; Nothwang, H G; Seeliger, M; del C-Salcedó Cabrera, M; Vila, M C; Molina, O P; Gal, A; Kubisch, C

    2001-01-01

    Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by congenital sensorineural hearing loss, vestibular dysfunction and visual impairment due to early onset retinitis pigmentosa (RP). So far, six loci (USH1A-USH1F) have been mapped, but only two USH1 genes have been identified: MYO7A for USH1B and the gene encoding harmonin for USH1C. We identified a Cuban pedigree linked to the locus for Usher syndrome type 1D (MIM 601067) within the q2 region of chromosome 10). Affected individuals present with congenital deafness and a highly variable degree of retinal degeneration. Using a positional candidate approach, we identified a new member of the cadherin gene superfamily, CDH23. It encodes a protein of 3,354 amino acids with a single transmembrane domain and 27 cadherin repeats. In the Cuban family, we detected two different mutations: a severe course of the retinal disease was observed in individuals homozygous for what is probably a truncating splice-site mutation (c.4488G-->C), whereas mild RP is present in individuals carrying the homozygous missense mutation R1746Q. A variable expression of the retinal phenotype was seen in patients with a combination of both mutations. In addition, we identified two mutations, Delta M1281 and IVS51+5G-->A, in a German USH1 patient. Our data show that different mutations in CDH23 result in USH1D with a variable retinal phenotype. In an accompanying paper, it is shown that mutations in the mouse ortholog cause disorganization of inner ear stereocilia and deafness in the waltzer mouse.

  17. Mycothiol-Deficient Mycobacterium smegmatis Mutants Are Hypersensitive to Alkylating Agents, Free Radicals, and Antibiotics

    PubMed Central

    Rawat, Mamta; Newton, Gerald L.; Ko, Mary; Martinez, Gladys J.; Fahey, Robert C.; Av-Gay, Yossef

    2002-01-01

    Mycothiol (MSH; 1d-myo-inosityl 2-[N-acetyl-l-cysteinyl]amido-2-deoxy-α-d-glucopyranoside) is the major low-molecular-weight thiol produced by mycobacteria. Mutants of Mycobacterium smegmatis mc2155 deficient in MSH production were produced by chemical mutagenesis as well as by transposon mutagenesis. One chemical mutant (mutant I64) and two transposon mutants (mutants Tn1 and Tn2) stably deficient in MSH production were isolated by screening for reduced levels of MSH content. The MSH contents of transposon mutants Tn1 and Tn2 were found to be less than 0.1% that of the parent strain, and the MSH content of I64 was found to be 1 to 5% that of the parent strain. All three strains accumulated 1d-myo-inosityl 2-deoxy-α-d-glucopyranoside to levels 20- to 25-fold the level found in the parent strain. The cysteine:1d-myo-inosityl 2-amino-2-deoxy-α-d-glucopyranoside ligase (MshC) activities of the three mutant strains were ≤2% that of the parent strain. Phenotypic analysis revealed that these MSH-deficient mutants possess increased susceptibilities to free radicals and alkylating agents and to a wide range of antibiotics including erythromycin, azithromycin, vancomycin, penicillin G, rifamycin, and rifampin. Conversely, the mutants possess at least 200-fold higher levels of resistance to isoniazid than the wild type. We mapped the mutation in the chemical mutant by sequencing the mshC gene and showed that a single amino acid substitution (L205P) is responsible for reduced MSH production and its associated phenotype. Our results demonstrate that there is a direct correlation between MSH depletion and enhanced sensitivity to toxins and antibiotics. PMID:12384335

  18. Bisphenol A Concentrates Preferentially in Human Uterine Leiomyoma and Induces Proliferation in Rat Myometrium.

    PubMed

    Othman, Essam R; Al-Adly, Dina M M; Elgamal, Dalia A; Ghandour, Nagwa; El-Sharkawy, Sawsan

    2016-04-01

    To measure tissue levels of bisphenol A (BPA) in uterine leiomyoma (ULM), adjacent myometrium (Myo-F), and normal myometrium (Myo-N). Also, we tested the effect of BPA treatment on rat myometrium. Uterine leiomyomas and Myo-F tissues were isolated from hysterectomy specimens done to treat symptomatic ULMs (N = 30). Normal myometrium is isolated from hysterectomies done on ULM-free uteri for other benign indications (N = 25). Bisphenol A was measured in 1 g of tissue using solid-phase extraction and high-performance liquid chromatography, with fluorescence detectors. Experimentally, adult female rats were fed BPA orally at a dose of 50 mg/kg/d for 90 days. Animals were killed, and their myometrial thickness and proliferating cell nuclear antigen (PCNA) immunostaining were evaluated. Tissue concentration of BPA in each of ULM (12.3 ± 2.8 µg/g) and Myo-F (10.1 ± 0.2 µg/g) was significantly higher than that of Myo-N (0.58 ± 0.2 µg/g). There was no statistically significant difference in BPA level between ULM and Myo-F within submucous or interstitial/subserous fibroid groups. Compared to control rats, BPA-treated animals showed significantly higher myometrial thickness (168.67 ± 5.7 µm and 281.6 ± 20.32 µm, respectively, P = .003) and increased myometrial PCNA immunoscores (1.5 ± 0.37 and 10.38 ± 0.67, respectively, P ≤ .001). Bisphenol A concentrates in human ULM tissue and its adjacent Myo-F compared to Myo-N. No significant difference is detected in BPA content of ULM tissue of different subtypes. Bisphenol A increases thickness and induces cellular proliferation in rat myometrium. Taken together, our results support a role of BPA in ULM development/growth. © The Author(s) 2015.

  19. CLINICAL PROGRESS IN INHERITED RETINAL DEGENERATIONS: GENE THERAPY CLINICAL TRIALS AND ADVANCES IN GENETIC SEQUENCING.

    PubMed

    Hafler, Brian P

    2017-03-01

    Inherited retinal dystrophies are a significant cause of vision loss and are characterized by the loss of photoreceptors and the retinal pigment epithelium (RPE). Mutations in approximately 250 genes cause inherited retinal degenerations with a high degree of genetic heterogeneity. New techniques in next-generation sequencing are allowing the comprehensive analysis of all retinal disease genes thus changing the approach to the molecular diagnosis of inherited retinal dystrophies. This review serves to analyze clinical progress in genetic diagnostic testing and implications for retinal gene therapy. A literature search of PubMed and OMIM was conducted to relevant articles in inherited retinal dystrophies. Next-generation genetic sequencing allows the simultaneous analysis of all the approximately 250 genes that cause inherited retinal dystrophies. Reported diagnostic rates range are high and range from 51% to 57%. These new sequencing tools are highly accurate with sensitivities of 97.9% and specificities of 100%. Retinal gene therapy clinical trials are underway for multiple genes including RPE65, ABCA4, CHM, RS1, MYO7A, CNGA3, CNGB3, ND4, and MERTK for which a molecular diagnosis may be beneficial for patients. Comprehensive next-generation genetic sequencing of all retinal dystrophy genes is changing the paradigm for how retinal specialists perform genetic testing for inherited retinal degenerations. Not only are high diagnostic yields obtained, but mutations in genes with novel clinical phenotypes are also identified. In the era of retinal gene therapy clinical trials, identifying specific genetic defects will increasingly be of use to identify patients who may enroll in clinical studies and benefit from novel therapies.

  20. Cerebral involvement in axonal Charcot-Marie-Tooth neuropathy caused by mitofusin2 mutations.

    PubMed

    Brockmann, Knut; Dreha-Kulaczewski, Steffi; Dechent, Peter; Bönnemann, Carsten; Helms, Gunther; Kyllerman, Marten; Brück, Wolfgang; Frahm, Jens; Huehne, Kathrin; Gärtner, Jutta; Rautenstrauss, Bernd

    2008-07-01

    Mutations in the mitofusin 2 (MFN2) gene are a major cause of primary axonal Charcot- Marie-Tooth (CMT) neuropathy. This study aims at further characterization of cerebral white matter alterations observed in patients with MFN2 mutations. Molecular genetic, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and diffusion tensor imaging (DTI) investigations were performed in four unrelated patients aged 7 to 38 years with early onset axonal CMT neuropathy. Three distinct and so far undescribed MFN2 mutations were detected. Two patients had secondary macrocephaly and mild diffuse predominantly periventricular white matter alterations on MRI. In addition, one boy had symmetrical T2-hyperintensities in both thalami. Two patients had optic atrophy, one of them with normal MRI. In three patients proton MRS revealed elevated concentrations of total N-acetyl compounds (neuronal marker), total creatine (found in all cells) and myo-inositol (astrocytic marker) in cerebral white and gray matter though with regional variation. These alterations were most pronounced in the two patients with abnormal MRI. DTI of these patients revealed mild reductions of fractional anisotropy and mild increase of mean diffusivity in white matter. The present findings indicate an enhanced cellular density in cerebral white matter of MFN2 neuropathy which is primarily due to a reactive gliosis without axonal damage and possibly accompanied by mild demyelination.

  1. Bardet-Biedl syndrome and Usher syndrome.

    PubMed

    Koenig, Rainer

    2003-01-01

    Bardet-Biedl syndrome (BBS) and Usher syndrome (USH) are the most prevalent syndromic forms of retinitis pigmentosa (RP), together they make up almost a quarter of the patients with RP. BBS is defined by the association of retinopathy, obesity, hypogonadism, renal dysfunction, postaxial polydactyly and mental retardation. This clinically complex syndrome is genetically heterogeneous with linkage to more than 6 loci, and 4 genes have been cloned so far. Recent molecular data present evidence that, in some instances, the clinical manifestation of BBS requires recessive mutations in 1 of the 6 BBS loci plus one or two additional mutations in a second BBS locus (tri- or tetra-allelic inheritance). USH is characterized by the combination of congenital or early-onset sensorineural deafness, RP, and variable degrees of vestibular dysfunction. Each of the three clinical types is genetically heterogeneous: 7 loci have been mapped for type 1, three loci for type 2, and two loci for type 3. Currently, 6 USH genes (MYO7A, USH1C, CDH23, PCDH15, USH2A, USH3) have been identified. Pathogenetically, mutations of the USH1 genes seem to result in defects of auditory and retinal sensory cells, the USH 2 phenotype is caused by defects of extracellular matrix or cell surface receptor proteins, and USH3 may be due to synaptic disturbances. The considerable contribution of syndromic forms of RP requires interdisciplinary approaches to the clinical and diagnostic management of RP patients.

  2. Myogenin, MyoD, and myosin expression after pharmacologically and surgically induced hypertrophy

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Greaser, M. L.; Schultz, E.

    1998-01-01

    The relationship between myogenin or MyoD expression and hypertrophy of the rat soleus produced either by clenbuterol and 3,3', 5-triiodo-L-thyronine (CT) treatment or by surgical overload was examined. Mature female rats were subjected to surgical overload of the right soleus with the left soleus serving as a control. Another group received the same surgical treatment but were administered CT. Soleus muscles were harvested 4 wk after surgical overload and weighed. Myosin heavy chain isoforms were separated by using polyacrylamide gel electrophoresis while myogenin and MyoD expression were evaluated by Northern analysis. CT and functional overload increased soleus muscle weight. CT treatment induced the appearance of the fast type IIX myosin heavy chain isoform, depressed myogenin expression, and induced MyoD expression. However, functional overload did not alter myogenin or MyoD expression in CT-treated or non-CT-treated rats. Thus pharmacologically and surgically induced hypertrophy have differing effects on myogenin and MyoD expression, because their levels were associated with changes in myosin heavy chain composition (especially type IIX) rather than changes in muscle mass.

  3. Zinc-ion-dependent acid phosphatase exhibits magnesium-ion-dependent myo-inositol-1-phosphatase activity.

    PubMed

    Fujimoto, S; Okano, I; Tanaka, Y; Sumida, Y; Tsuda, J; Kawakami, N; Shimohama, S

    1996-06-01

    We have purified bovine brain Zn(2+)-dependent acid phosphatase (Zn(2+)-APase), which requires Zn2+ ions to hydrolyze the substrate p-nitrophenyl phosphate (pNPP) in an acidic environment. The substrate specificity and metal requirement of Zn(2+)-APase at a physiological pH was also studied. The enzyme exhibited hydrolytic activity on myo-inositol-1- and -2-monophosphates, 2'-adenosine monophosphate, 2'-guanosine monophosphate, and the alpha- and beta-glycerophosphates, glucose-1-phosphate, and fructose-6-phosphate in 50 mM Tris-HCl buffer (pH 7.4) in the presence of Mg2+ ions, but not on pNPP and phosphotyrosine. Zn2+, Mn2+ and Co2+ ions were less effective for activation. Among the above substrates, myo-inositol-1-phosphate was the most susceptible to hydrolysis by the enzyme in the presence of 3 mM Mg2+ ions. The enzyme exhibited an optimum pH at around 8 for myo-inositol-1-phosphate in the presence of 3 mM Mg2+ ions. The Mg(2+)-dependent myo-inositol-1-phosphatase activity of the enzyme was significantly inhibited by Li+ ions. The Zn(2+)-dependent p-nitrophenyl phosphatase activity and Mg(2+)-dependent myo-inositol-1-phosphatase activity of the purified enzyme fraction exhibited similar behavior on Sephadex G-100 and Mono Q colomns. These findings suggest that Zn(2+)-APase also exhibits Mg(2+)-dependent myo-inositol-1-phosphatase activity under physiological conditions.

  4. Effects of microgravity on myogenic factor expressions during postnatal development of rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Inobe, Manabu; Inobe, Ikuko; Adams, Gregory R.; Baldwin, Kenneth M.; Takeda, Shin'Ichi

    2002-01-01

    To clarify the role of gravity in the postnatal development of skeletal muscle, we exposed neonatal rats at 7 days of age to microgravity. After 16 days of spaceflight, tibialis anterior, plantaris, medial gastrocnemius, and soleus muscles were removed from the hindlimb musculature and examined for the expression of MyoD-family transcription factors such as MyoD, myogenin, and MRF4. For this purpose, we established a unique semiquantitative method, based on RT-PCR, using specific primers tagged with infrared fluorescence. The relative expression of MyoD in the tibialis anterior and plantaris muscles and that of myogenin in the plantaris and soleus muscles were significantly reduced (P < 0.001) in the flight animals. In contrast, MRF4 expression was not changed in any muscle. These results suggest that MyoD and myogenin, but not MRF4, are sensitive to gravity-related stimuli in some skeletal muscles during postnatal development.

  5. Immobile myosin-II plays a scaffolding role during cytokinesis in budding yeast

    PubMed Central

    Wloka, Carsten; Vallen, Elizabeth A.; Thé, Lydia; Fang, Xiaodong; Oh, Younghoon

    2013-01-01

    Core components of cytokinesis are conserved from yeast to human, but how these components are assembled into a robust machine that drives cytokinesis remains poorly understood. In this paper, we show by fluorescence recovery after photobleaching analysis that Myo1, the sole myosin-II in budding yeast, was mobile at the division site before anaphase and became immobilized shortly before cytokinesis. This immobility was independent of actin filaments or the motor domain of Myo1 but required a small region in the Myo1 tail that is thought to be involved in higher-order assembly. As expected, proteins involved in actin ring assembly (tropomyosin and formin) and membrane trafficking (myosin-V and exocyst) were dynamic during cytokinesis. Strikingly, proteins involved in septum formation (the chitin synthase Chs2) and/or its coordination with the actomyosin ring (essential light chain, IQGAP, F-BAR, etc.) displayed Myo1-dependent immobility during cytokinesis, suggesting that Myo1 plays a scaffolding role in the assembly of a cytokinesis machine. PMID:23358243

  6. Mutations in the Arabidopsis Homolog of LST8/GβL, a Partner of the Target of Rapamycin Kinase, Impair Plant Growth, Flowering, and Metabolic Adaptation to Long Days[C][W

    PubMed Central

    Moreau, Manon; Azzopardi, Marianne; Clément, Gilles; Dobrenel, Thomas; Marchive, Chloé; Renne, Charlotte; Martin-Magniette, Marie-Laure; Taconnat, Ludivine; Renou, Jean-Pierre; Robaglia, Christophe; Meyer, Christian

    2012-01-01

    The conserved Target of Rapamycin (TOR) kinase forms high molecular mass complexes and is a major regulator of cellular adaptations to environmental cues. The Lethal with Sec Thirteen 8/G protein β subunit-like (LST8/GβL) protein is a member of the TOR complexes, and two putative LST8 genes are present in Arabidopsis thaliana, of which only one (LST8-1) is significantly expressed. The Arabidopsis LST8-1 protein is able to complement yeast lst8 mutations and interacts with the TOR kinase. Mutations in the LST8-1 gene resulted in reduced vegetative growth and apical dominance with abnormal development of flowers. Mutant plants were also highly sensitive to long days and accumulated, like TOR RNA interference lines, higher amounts of starch and amino acids, including proline and glutamine, while showing reduced concentrations of inositol and raffinose. Accordingly, transcriptomic and enzymatic analyses revealed a higher expression of genes involved in nitrate assimilation when lst8-1 mutants were shifted to long days. The transcriptome of lst8-1 mutants in long days was found to share similarities with that of a myo-inositol 1 phosphate synthase mutant that is also sensitive to the extension of the light period. It thus appears that the LST8-1 protein has an important role in regulating amino acid accumulation and the synthesis of myo-inositol and raffinose during plant adaptation to long days. PMID:22307851

  7. Direct Microtubule-Binding by Myosin-10 Orients Centrosomes toward Retraction Fibers and Subcortical Actin Clouds.

    PubMed

    Kwon, Mijung; Bagonis, Maria; Danuser, Gaudenz; Pellman, David

    2015-08-10

    Positioning of centrosomes is vital for cell division and development. In metazoan cells, spindle positioning is controlled by a dynamic pool of subcortical actin that organizes in response to the position of retraction fibers. These actin "clouds" are proposed to generate pulling forces on centrosomes and mediate spindle orientation. However, the motors that pull astral microtubules toward these actin structures are not known. Here, we report that the unconventional myosin, Myo10, couples actin-dependent forces from retraction fibers and subcortical actin clouds to centrosomes. Myo10-mediated centrosome positioning requires its direct microtubule binding. Computational image analysis of large microtubule populations reveals a direct effect of Myo10 on microtubule dynamics and microtubule-cortex interactions. Myo10's role in centrosome positioning is distinct from, but overlaps with, that of dynein. Thus, Myo10 plays a key role in integrating the actin and microtubule cytoskeletons to position centrosomes and mitotic spindles. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Direct Microtubule-Binding by Myosin-10 Orients Centrosomes toward Retraction Fibers and Subcortical Actin Clouds

    PubMed Central

    Kwon, Mijung; Bagonis, Maria; Danuser, Gaudenz; Pellman, David

    2015-01-01

    SUMMARY Positioning of centrosomes is vital for cell division and development. In metazoan cells, spindle positioning is controlled by a dynamic pool of subcortical actin that organizes in response to the position of retraction fibers. These actin “clouds” are proposed to generate pulling forces on centrosomes and mediate spindle orientation. However, the motors that pull astral microtubules toward these actin structures are not known. Here, we report that the unconventional myosin, Myo10, couples actin-dependent forces from retraction fibers and subcortical actin clouds to centrosomes. Myo10-mediated centrosome positioning requires its direct microtubule binding. Computational image analysis of large microtubule populations reveals a direct effect of Myo10 on microtubule dynamics and microtubule-cortex interactions. Myo10’s role in centrosome positioning is distinct from, but overlaps with, that of dynein. Thus, Myo10 plays a key role in integrating the actin and microtubule cytoskeletons to position centrosomes and mitotic spindles. PMID:26235048

  9. MyoD and Myf6 gene expression patterns in skeletal muscle during embryonic and posthatch development in the domestic duck (Anas platyrhynchos domestica).

    PubMed

    Li, H; Zhu, C; Tao, Z; Xu, W; Song, W; Hu, Y; Zhu, W; Song, C

    2014-06-01

    The MyoD and Myf6 genes, which are muscle regulatory factors (MRFs), play major roles in muscle growth and development and initiate muscle fibre formation via the regulation of muscle-specific gene translation. Therefore, MyoD and Myf6 are potential candidate genes for meat production traits in animals and poultry. The objective of this study was to evaluate MyoD and Myf6 gene expression patterns in the skeletal muscle during early developmental stage of ducks. Gene expression levels were detected using the quantitative RT-PCR method in the breast muscle (BM) and leg muscle (LM) at embryonic days 13, 17, 21, 25, 27, as well as at 1 week posthatching in Gaoyou and Jinding ducks (Anas platyrhynchos domestica). The MyoD and Myf6 gene profiles in the two duck breeds were consistent during early development, and MyoD gene expression showed a 'wave' trend in BM and an approximate 'anti-√' trend in LM. Myf6 gene expression in BM showed the highest level at embryonic day 21, which subsequently decreased, although remained relatively high, while levels at embryonic days 13, 17 and 21 were higher in LM. The results of correlation analysis showed that MyoD and Myf6 gene expression levels were more strongly correlated in LM than in BM in both duck breeds. These results indicated that different expression patterns of the MyoD and Myf6 genes in BM and LM may be related to muscle development and differentiation, suggesting that MyoD and Myf6 are integral to skeletal muscle development. © 2013 Blackwell Verlag GmbH.

  10. Dictyostelium myosin I double mutants exhibit conditional defects in pinocytosis.

    PubMed

    Novak, K D; Peterson, M D; Reedy, M C; Titus, M A

    1995-12-01

    The functional relationship between three Dictyostelium myosin Is, myoA, myoB, and myoC, has been examined through the creation of double mutants. Two double mutants, myoA-/B- and myoB-/C-, exhibit similar conditional defects in fluid-phase pinocytosis. Double mutants grown in suspension culture are significantly impaired in their ability to take in nutrients from the medium, whereas they are almost indistinguishable from wild-type and single mutant strains when grown on a surface. The double mutants are also found to internalize gp126, a 116-kD membrane protein, at a slower rate than either the wild-type or single mutant cells. Ultrastructural analysis reveals that both double mutants possess numerous small vesicles, in contrast to the wild-type or myosin I single mutants that exhibit several large, clear vacuoles. The alterations in fluid and membrane internalization in the suspension-grown double mutants, coupled with the altered vesicular profile, suggest that these cells may be compromised during the early stages of pinocytosis, a process that has been proposed to occur via actin-based cytoskeletal rearrangements. Scanning electron microscopy and rhodamine-phalloidin staining indicates that the myosin I double mutants appear to extend a larger number of actin-filled structures, such as filopodia and crowns, than wild-type cells. Rhodamine-phalloidin staining of the F-actin cytoskeleton of these suspension-grown cells also reveals that the double mutant cells are delayed in the rearrangement of cortical actin-rich structures upon adhesion to a substrate. We propose that myoA, myoB, and myoC play roles in controlling F-actin filled membrane projections that are required for pinosome internalization in suspension.

  11. Molecular characterization of Myf5 and comparative expression patterns of myogenic regulatory factors in Siniperca chuatsi.

    PubMed

    Zhu, Xin; Li, Yu-Long; Liu, Li; Wang, Jian-Hua; Li, Hong-Hui; Wu, Ping; Chu, Wu-Ying; Zhang, Jian-She

    2016-01-01

    Myogenic regulatory factors (MRFs) are muscle-specific basic helix-loop-helix (bHLH) transcription factor that plays an essential role in regulating skeletal muscle development and growth. To investigate molecular characterization of Myf5 and compare the expressional patterns of the four MRFs, we cloned the Myf5 cDNA sequence and analyzed the MRFs expressional patterns using quantitative real-time polymerase chain reaction in Chinese perch (Siniperca chuatsi). Sequence analysis indicated that Chinese perch Myf5 and other MRFs shared a highly conserved bHLH domain with those of other vertebrates. Sequence alignment and phylogenetic tree showed that Chinese perch MRFs had the highest identity with the MRFs of Epinephelus coioides. Spatio-temporal expressional patterns revealed that the MRFs were primarily expressed in muscle, especially in white muscle. During embryonic development period, Myf5, MyoD and MyoG mRNAs had a steep increase at neurula stage, and their highest expressional level was predominantly observed at hatching period. Whereas the highest expressional level of the MRF4 was observed at the muscular effect stage. The expressional patterns of post-embryonic development showed that the Myf5, MyoD and MyoG mRNAs were highest at 90 days post-hatching (dph). Furthermore, starvation and refeeding results showed that the transcription of the MRFs in the fast skeletal muscle of Chinese perch responded quickly to a single meal after 7 days of fasting. It indicated that the MRFs might contribute to muscle recovery after refeeding in Chinese perch. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Usher syndrome: animal models, retinal function of Usher proteins, and prospects for gene therapy

    PubMed Central

    Williams, David S.

    2009-01-01

    Usher syndrome is a deafness-blindness disorder. The blindness occurs from a progressive retinal degeneration that begins after deafness and after the retina has developed. Three clinical subtypes of Usher syndrome have been identified, with mutations in any one of six different genes giving rise to type 1, in any one of three different genes to type 2, and in one identified gene causing Usher type 3. Mutant mice for most of the genes have been studied; while they have clear inner ear defects, retinal phenotypes are relatively mild and have been difficult to characterize. The retinal functions of the Usher proteins are still largely unknown. Protein binding studies have suggested many interactions among the proteins, and a model of interaction among all the proteins in the photoreceptor synapse has been proposed. However this model is not supported by localization data from some laboratories, or the indication of any synaptic phenotype in mutant mice. An earlier suggestion, based on patient pathologies, of Usher protein function in the photoreceptor cilium continues to gain support from immunolocalization and mutant mouse studies, which are consistent with Usher protein interaction in the photoreceptor ciliary/periciliary region. So far, the most characterized Usher protein is myosin VIIa. It is present in the apical RPE and photoreceptor ciliary/periciliary region, where it is required for organelle transport and clearance of opsin from the connecting cilium, respectively. Usher syndrome is amenable to gene replacement therapy, but also has some specific challenges. Progress in this treatment approach has been achieved by correction of mutant phenotypes in Myo7a-null mouse retinas, following lentiviral delivery of MYO7A. PMID:17936325

  13. Myh7b/miR-499 gene expression is transcriptionally regulated by MRFs and Eos

    PubMed Central

    Yeung, Fan; Chung, Eunhee; Guess, Martin G.; Bell, Matthew L.; Leinwand, Leslie A.

    2012-01-01

    The sarcomeric myosin gene, Myh7b, encodes an intronic microRNA, miR-499, which regulates cardiac and skeletal muscle biology, yet little is known about its transcriptional regulation. To identify the transcription factors involved in regulating Myh7b/miR-499 gene expression, we have mapped the transcriptional start sites and identified an upstream 6.2 kb region of the mouse Myh7b gene whose activity mimics the expression pattern of the endogenous Myh7b gene both in vitro and in vivo. Through promoter deletion analysis, we have mapped a distal E-box element and a proximal Ikaros site that are essential for Myh7b promoter activity in muscle cells. We show that the myogenic regulatory factors, MyoD, Myf5 and Myogenin, bind to the E-box, while a lymphoid transcription factor, Ikaros 4 (Eos), binds to the Ikaros motif. Further, we show that through physical interaction, MyoD and Eos form an active transcriptional complex on the chromatin to regulate the expression of the endogenous Myh7b/miR-499 gene in muscle cells. We also provide the first evidence that Eos can regulate expression of additional myosin genes (Myosin 1 and β-Myosin) via the miR-499/Sox6 pathway. Therefore, our results indicate a novel role for Eos in the regulation of the myofiber gene program. PMID:22638570

  14. CLINICAL PROGRESS IN INHERITED RETINAL DEGENERATIONS: GENE THERAPY CLINICAL TRIALS AND ADVANCES IN GENETIC SEQUENCING

    PubMed Central

    HAFLER, BRIAN P.

    2017-01-01

    Purpose Inherited retinal dystrophies are a significant cause of vision loss and are characterized by the loss of photoreceptors and the retinal pigment epithelium (RPE). Mutations in approximately 250 genes cause inherited retinal degenerations with a high degree of genetic heterogeneity. New techniques in next-generation sequencing are allowing the comprehensive analysis of all retinal disease genes thus changing the approach to the molecular diagnosis of inherited retinal dystrophies. This review serves to analyze clinical progress in genetic diagnostic testing and implications for retinal gene therapy. Methods A literature search of PubMed and OMIM was conducted to relevant articles in inherited retinal dystrophies. Results Next-generation genetic sequencing allows the simultaneous analysis of all the approximately 250 genes that cause inherited retinal dystrophies. Reported diagnostic rates range are high and range from 51% to 57%. These new sequencing tools are highly accurate with sensitivities of 97.9% and specificities of 100%. Retinal gene therapy clinical trials are underway for multiple genes including RPE65, ABCA4, CHM, RS1, MYO7A, CNGA3, CNGB3, ND4, and MERTK for which a molecular diagnosis may be beneficial for patients. Conclusion Comprehensive next-generation genetic sequencing of all retinal dystrophy genes is changing the paradigm for how retinal specialists perform genetic testing for inherited retinal degenerations. Not only are high diagnostic yields obtained, but mutations in genes with novel clinical phenotypes are also identified. In the era of retinal gene therapy clinical trials, identifying specific genetic defects will increasingly be of use to identify patients who may enroll in clinical studies and benefit from novel therapies. PMID:27753762

  15. Profile and bioavailability analysis of myo-inositol phosphates in rye bread supplemented with phytases: a study using an in vitro method and Caco-2 monolayers.

    PubMed

    Duliński, R; Cielecka, E K; Pierzchalska, M; Byczyński, Ł; Żyła, K

    2016-06-01

    Commercial preparations of 6-phytase A alone and in combination with phytase B were used in rye breadmaking. Determination of bioavailability of myo-inositol phosphates from bread was performed by an in vitro digestion method followed by the measurement of an uptake by Caco-2 cells in culture. In bread supplemented with a combination of 6-phytase A and phytase B, a significant reduction in phytate content was observed from 3.62 μmol/g in the control to 0.7 μmol/g. Bioavailability of phytate estimated by an in vitro method simulating digestion in the human alimentary tract was 9% in the bread supplemented with phytase B, 7% (6-phytase A) and 50% in the control bread. In cell culture, the bioaccessibilities of inositol triphosphates from bread baked with the addition of 6-phytase A was higher by 36% as compared to the samples baked with phytase B and by 32% in breads baked with combination of both phytases.

  16. Myogenic transcription factors regulate pro-metastatic miR-182.

    PubMed

    Dodd, R D; Sachdeva, M; Mito, J K; Eward, W C; Brigman, B E; Ma, Y; Dodd, L; Kim, Y; Lev, D; Kirsch, D G

    2016-04-07

    Approximately 30% of patients with soft-tissue sarcoma die from pulmonary metastases. The mechanisms that drive sarcoma metastasis are not well understood. Recently, we identified miR-182 as a driver of sarcoma metastasis in a primary mouse model of soft-tissue sarcoma. We also observed elevated miR-182 in a subset of primary human sarcomas that metastasized to the lungs. Here, we show that myogenic differentiation factors regulate miR-182 levels to contribute to metastasis in mouse models. We find that MyoD directly binds the miR-182 promoter to increase miR-182 expression. Furthermore, mechanistic studies revealed that Pax7 can promote sarcoma metastasis in vivo through MyoD-dependent regulation of pro-metastatic miR-182. Taken together, these results suggest that sarcoma metastasis can be partially controlled through Pax7/MyoD-dependent activation of miR-182 and provide insight into the role that myogenic transcription factors have in sarcoma progression.

  17. Management of women with PCOS using myo-inositol and folic acid. New clinical data and review of the literature.

    PubMed

    Regidor, Pedro-Antonio; Schindler, Adolf Eduard; Lesoine, Bernd; Druckman, Rene

    2018-03-02

    Introduction The use of 2 × 2000 mg myo-inositol +2 × 200 μg folic acid per day is a safe and promising tool in the effective improvement of symptoms and infertility for patients with polycystic ovary syndrome (PCOS). In addition, PCOS is one of the pathological factors involved in the failure of in vitro fertilization (IVF). Typically, PCOS patients suffer of poor quality oocytes. Patients and methods In an open, prospective, non-blinded, non-comparative observational study, 3602 infertile women used myo-inositol and folic acid between 2 and 3 months in a dosage of 2 × 2000 mg myo-inositol +2 × 200 μg folic acid per day. In a subgroup of 32 patients, hormonal values for testosterone, free testosterone and progesterone were analyzed before and after 12 weeks of treatment. The mean time of use was 10.2 weeks. In the second part of this trial it was investigated if the combination of myo-inositol + folic acid was able to improve the oocyte quality, the ratio between follicles and retrieved oocytes, the fertilization rate and the embryo quality in PCOS patients undergoing IVF treatments. Twenty-nine patients with PCOS, underwent IVF protocols for infertility treatment and were randomized prospectively into two groups. Group A (placebo) with 15 patients and group B (4000 mg myo-inositol +400 μg folic acid per day) with 14 patients were evaluated. The patients of group B used 2 months' myo-inositol + folic acid before starting the IVF protocol. For statistically analyses Student's t-test was performed. Results Seventy percent of the women had a restored ovulation, and 545 pregnancies were observed. This means a pregnancy rate of 15.1% of all the myo-inositol and folic acid users. In 19 cases a concomitant medication with clomiphene or dexamethasone was used. One twin pregnancy was documented. Testosterone levels changed from 96.6 ng/mL to 43.3 ng/mL and progesterone from 2.1 ng/mL to 12.3 ng/mL in the mean after 12 weeks of treatment (p < 0.05) Student's t-test. No relevant side effects were present among the patients. The women in the IVF treatment the group A showed a higher number of retrieved oocytes than group B. Nevertheless, the ratio follicle/retrieved oocyte was clearly better in the myo-inositol group (= group B). Out of the 233 oocytes collected in the myo-inositol group, 136 where fertilized whereas only 128 out of 300 oocytes were fertilized in the placebo group. With regards to the oocytes quality, better data were obtained in the myo-inositol group. More metaphase II and I oocytes were retrieved in relation to the total number of oocytes, when compared with the placebo group. Also, more embryos of grade I quality were observed in the myo-inositol group than in the placebo group. The duration of stimulation was 9.7 days (±3.3) in the myo-inositol group and 11.2 (±1.8) days in the placebo group and the number of used follicle-stimulating hormone (FSH) units was lower in the myo-inositol group in comparison to the placebo group: 1850 FSH units (mean) versus 1850 units (mean). Discussion Myo-inositol has proven to be a new treatment option for patients with PCOS and infertility. The achieved pregnancy rates are at least in an equivalent or even superior range than those reported using metformin as an insulin sensitizer. No moderate to severe side effects were observed when myo-inositol was used at a dosage of 4000 mg per day. In addition, our evidence suggests that a myo-inositol therapy in women with PCOS results in better fertilization rates and a clear trend to a better embryo quality. As by the same way the number of retrieved oocytes was smaller in the myo-inositol group, the risk of a hyperstimulation syndrome in these patients can be reduced. Therefore, myo-inositol also represents an improvement in IVF protocols for patients with PCOS.

  18. Defining the transcriptional signature of skeletal muscle stem cells.

    PubMed

    Yablonka-Reuveni, Z; Day, K; Vine, A; Shefer, G

    2008-04-01

    Satellite cells, the main source of myoblasts in postnatal muscle, are located beneath the myofiber basal lamina. The myogenic potential of satellite cells was initially documented based on their capacity to produce progeny that fused into myotubes. More recently, molecular markers of resident satellite cells were identified, further contributing to defining these cells as myogenic stem cells that produce differentiating progeny and self-renew. Herein, we discuss aspects of the satellite cell transcriptional milieu that have been intensively investigated in our research. We elaborate on the expression patterns of the paired box (Pax) transcription factors Pax3 and Pax7, and on the myogenic regulatory factors myogenic factor 5 (Myf5), myogenic determination factor 1 (MyoD), and myogenin. We also introduce original data on MyoD upregulation in newly activated satellite cells, which precedes the first round of cell proliferation. Such MyoD upregulation occurred even when parent myofibers with their associated satellite cells were exposed to pharmacological inhibitors of hepatocyte growth factor and fibroblast growth factor receptors, which are typically involved in promoting satellite cell proliferation. These observations support the hypothesis that most satellite cells in adult muscle are committed to rapidly entering myogenesis. We also detected expression of serum response factor in resident satellite cells prior to MyoD expression, which may facilitate the rapid upregulation of MyoD. Aspects of satellite cell self-renewal based on the reemergence of cells expressing Pax7, but not MyoD, in myogenic cultures are discussed further herein. We conclude by describing our recent studies using transgenic mice in which satellite cells are traced and isolated based on their expression of green fluorescence protein driven by regulatory elements of the nestin promoter (nestin-green fluorescence protein). This feature provides us with a novel means of studying satellite cell transcriptional signatures, heterogeneity among muscle groups, and the role of the myogenic niche in directing satellite cell self-renewal.

  19. SVEP1 is a novel marker of activated pre-determined skeletal muscle satellite cells.

    PubMed

    Shefer, Gabi; Benayahu, Dafna

    2010-03-01

    In this study we explored the expression pattern of SVEP1, a novel cell adhesion molecule (CAM), in bona fide satellite cells and their immediate progeny. We show that SVEP1 is expressed in activated satellite cells prior to their determination to the myogenic lineage. SVEP1 was also expressed during early phases of myogenic differentiation through the initial stage of myoblast fusion and myotube formation. The expression of SVEP1 was shown by immunostaining two cell culture systems: freshly isolated myofibers and primary myoblasts. Pax7 was used to pinpoint satellite cells situated in their niche on myofibers, and activated satellite cells were determined based on BrdU incorporation (Pax7(+)/BrdU(+)cells). MyoD marked satellite cells fated to undergo myogenesis as well as proliferating and differentiating myoblasts. Differentiating myoblasts and myotubes were identified based on their sarcomeric myosin expression. We showed that SVEP1 was specifically expressed in pre-determined activated satellite cells (Pax7(+)/ BrdU(+) /MyoD(-)) accounting for about 24% of total satellite cells. On the other hand, SVEP1 expression was absent in quiescent satellite cells (Pax7(+)/BrdU(-)/MyoD(-)). Moreover, based on MyoD/sarcomeric myosin co-expression SVEP1 was shown to be expressed throughout the early phases of myogenesis up until myoblast fusion and myotube formation. A decline in SVEP1 expression occurred upon myotube maturation. We suggest SVEP1 as a potential biomarker for pre-fated satellite cells. The impact of this finding is that it may allow scrutinizing signals that affect differentiation commitment. Thus, holds a therapeutic potential for maladies that involve deregulated stem cell fate-decision.

  20. Regenerative capacity of mdx mouse muscles after repeated applications of myo-necrotic bupivacaine.

    PubMed

    Itagaki, Y; Saida, K; Iwamura, K

    1995-01-01

    We injected bupivacaine (BPVC), which produces muscle fiber necrosis, repeatedly into the soleus muscles of mdx mice, which represent a model of human Duchenne muscular dystrophy, over a 12-month period. Cytological and morphometric analysis revealed that the regenerative capacity of repeatedly BPVC-injected mdx muscles was almost equal to that of the saline-injected mdx muscles. At 9 months of age the endomysial collagen content of mdx muscles was 4.6 times that of control mice muscles, and was 7.2 times that of control mice muscle at 12 months. These results suggest that the regenerative capacity of the mdx muscle is quite large and that myo-necrosis induced by an extrinsic cause, such as BPVC, may not be an important factor in the disease progress. However, endomysial collagen, for which the mechanism of increase may be related to the defect of dystrophin, may play an important role in gradual decline of regeneration.

  1. Myosin Va associates with mRNA in ribonucleoprotein particles present in myelinated peripheral axons and in the central nervous system.

    PubMed

    Calliari, Aldo; Farías, Joaquina; Puppo, Agostina; Canclini, Lucía; Mercer, John A; Munroe, David; Sotelo, José R; Sotelo-Silveira, José R

    2014-03-01

    Sorting of specific mRNAs to particular cellular locations and regulation of their translation is an essential mechanism underlying cell polarization. The transport of RNAs by kinesins and dyneins has been clearly established in several cell models, including neurons in culture. A similar role appears to exist in higher eukaryotes for the myosins. Myosin Va (Myo5a) has been described as a component of ribonucleoprotein particles (RNPs) in the adult rat nervous system and associated to ZBP1 and ribosomes in ribosomal periaxoplasmic plaques (PARPs), making it a likely candidate for mediating some aspects of RNA transport in neurons. To test this hypothesis, we have characterized RNPs containing Myo5a in adult brains of rats and mice. Microarray analysis of RNAs co-immunoprecipitated with Myo5a indicates that this motor may associate with a specific subpopulation of neuronal mRNAs. We found mRNAs encoding α-synuclein and several proteins with functions in translation in these RNPs. Immunofluorescence analyses of RNPs showed apparent co-localization of Myo5a with ribosomes, mRNA and RNA-binding proteins in discrete structures present both in axons of neurons in culture and in myelinated fibers of medullary roots. Our data suggest that PARPs include RNPs bearing the mRNA coding for Myo5a and are equipped with kinesin and Myo5a molecular motors. In conclusion, we suggest that Myo5a is involved in mRNA trafficking both in the central and peripheral nervous systems. Copyright © 2013 Wiley Periodicals, Inc.

  2. The hedgehog regulated oncogenes Gli1 and Gli2 block myoblast differentiation by inhibiting MyoD-mediated transcriptional activation

    PubMed Central

    Gerber, AN; Wilson, CW; Li, Y-J; Chuang, P-T

    2012-01-01

    The mechanism by which activation of the Hedgehog (Hh) pathway modulates differentiation and promotes oncogenesis in specific tissues is poorly understood. We therefore, analysed rhabdomyosarcomas from mice that were haploinsufficient for the Hh-binding protein, Hip1, or for the Hh receptor, Patched 1 (Ptch1). Transfection of the Hh-regulated transcription factor Gli1, which is expressed in a subset of mouse and human rhabdomyosarcomas, suppressed differentiation of myogenic rhabdomyosarcoma lines generated from Hip1+/− and Ptch1+/− mice. The closely related factor, Gli2, had similar effects. Gli1 and Gli2 inhibited myogenesis by repressing the capacity of MyoD to activate transcription. Deletion analysis of Gli1 indicated that multiple domains of Gli1 are required for efficient inhibition of MyoD. Gli1 reduced the ability of MyoD to heterodimerize with E12 and bind DNA, providing one mechanism whereby the Gli proteins modulate the activity of MyoD. This novel activity of Gli proteins provides new insights into how Hh signaling modulates terminal differentiation through inhibition of tissue-specific factors such as MyoD. This mechanism may contribute to the broad role of Hh signaling and the Gli proteins in differentiation decisions and cancer formation. PMID:16964293

  3. Trafficking Ion Transporters to the Apical Membrane of Polarized Intestinal Enterocytes.

    PubMed

    Engevik, Amy Christine; Goldenring, James R

    2018-01-02

    Epithelial cells lining the gastrointestinal tract require distinct apical and basolateral domains to function properly. Trafficking and insertion of enzymes and transporters into the apical brush border of intestinal epithelial cells is essential for effective digestion and absorption of nutrients. Specific critical ion transporters are delivered to the apical brush border to facilitate fluid and electrolyte uptake. Maintenance of these apical transporters requires both targeted delivery and regulated membrane recycling. Examination of altered apical trafficking in patients with Microvillus Inclusion disease caused by inactivating mutations in MYO5B has led to insights into the regulation of apical trafficking by elements of the apical recycling system. Modeling of MYO5B loss in cell culture and animal models has led to recognition of Rab11a and Rab8a as critical regulators of apical brush border function. All of these studies show the importance of apical membrane trafficking dynamics in maintenance of polarized epithelial cell function. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  4. Monodisperse magnetic poly(glycidyl methacrylate) microspheres for isolation of autoantibodies with affinity for the 46 kDa form of unconventional Myo1C present in autoimmune patients.

    PubMed

    Zasońska, Beata A; Hlídková, Helena; Petrovský, Eduard; Myronovskij, Severyn; Nehrych, Tetyana; Negrych, Nazar; Shorobura, Mariya; Antonyuk, Volodymyr; Stoika, Rostyslav; Kit, Yuriy; Horák, Daniel

    2018-04-23

    Monodisperse nonmagnetic macroporous poly(glycidyl methacrylate) (PGMA) microspheres were synthesized by multistep swelling polymerization of glycidyl methacrylate, ethylene dimethacrylate and 2-[(methoxycarbonyl)methoxy]ethyl methacrylate (MCMEMA). This was followed (a) by ammonolysis to modify the microspheres with amino groups, and (b) by incorporation of iron oxide (γ-Fe 2 O 3 ) into the pores to render the particles magnetic. The resulting porous and magnetic microspheres were characterized by scanning and transmission electron microscopy (SEM and TEM), atomic absorption and Fourier transform infrared spectroscopy (AAS and FTIR), elemental analysis, vibrating magnetometry, mercury porosimetry and Brunauer-Emmett-Teller adsorption/desorption isotherms. The microspheres are meso- and macroporous, typically 5 μm in diameter, contain 0.9 mM · g -1 of amino groups and 14 wt.% of iron according to elemental analysis and AAS, respectively. The particles were conjugated to p46/Myo1C protein, a potential biomarker of autoimmune diseases, to isolate specific autoantibodies in the blood of patients suffering from multiple sclerosis (MS). The p46/Myo1C loaded microspheres are shown to enable the preconcentration of minute quantities of specific immunoglobulins prior to their quantification via SDS-PAGE. The immunoglobulin M (IgM) with affinity to Myo1C was detected in MS patients. Graphical abstract Monodisperse magnetic poly(glycidyl methacrylate) microspheres were synthesized, conjugated with 46 kDa form of unconventional Myo1C protein (p46/Myo1C) via carbodiimide (DIC) chemistry, and specific autoantibodies isolated from blood of multiple sclerosis (MS) patients; immunoglobulin M (IgM) level increased in MS patients.

  5. DE-Cadherin regulates unconventional Myosin ID and Myosin IC in Drosophila left-right asymmetry establishment.

    PubMed

    Petzoldt, Astrid G; Coutelis, Jean-Baptiste; Géminard, Charles; Spéder, Pauline; Suzanne, Magali; Cerezo, Delphine; Noselli, Stéphane

    2012-05-01

    In bilateria, positioning and looping of visceral organs requires proper left-right (L/R) asymmetry establishment. Recent work in Drosophila has identified a novel situs inversus gene encoding the unconventional type ID myosin (MyoID). In myoID mutant flies, the L/R axis is inverted, causing reversed looping of organs, such as the gut, spermiduct and genitalia. We have previously shown that MyoID interacts physically with β-Catenin, suggesting a role of the adherens junction in Drosophila L/R asymmetry. Here, we show that DE-Cadherin co-immunoprecipitates with MyoID and is required for MyoID L/R activity. We further demonstrate that MyoIC, a closely related unconventional type I myosin, can antagonize MyoID L/R activity by preventing its binding to adherens junction components, both in vitro and in vivo. Interestingly, DE-Cadherin inhibits MyoIC, providing a protective mechanism to MyoID function. Conditional genetic experiments indicate that DE-Cadherin, MyoIC and MyoID show temporal synchronicity for their function in L/R asymmetry. These data suggest that following MyoID recruitment by β-Catenin at the adherens junction, DE-Cadherin has a twofold effect on Drosophila L/R asymmetry by promoting MyoID activity and repressing that of MyoIC. Interestingly, the product of the vertebrate situs inversus gene inversin also physically interacts with β-Catenin, suggesting that the adherens junction might serve as a conserved platform for determinants to establish L/R asymmetry both in vertebrates and invertebrates.

  6. ENU Mutagenesis in Mice Identifies Candidate Genes For Hypogonadism

    PubMed Central

    Weiss, Jeffrey; Hurley, Lisa A.; Harris, Rebecca M.; Finlayson, Courtney; Tong, Minghan; Fisher, Lisa A.; Moran, Jennifer L.; Beier, David R.; Mason, Christopher; Jameson, J. Larry

    2012-01-01

    Genome-wide mutagenesis was performed in mice to identify candidate genes for male infertility, for which the predominant causes remain idiopathic. Mice were mutagenized using N-ethyl-N-nitrosourea (ENU), bred, and screened for phenotypes associated with the male urogenital system. Fifteen heritable lines were isolated and chromosomal loci were assigned using low density genome-wide SNP arrays. Ten of the fifteen lines were pursued further using higher resolution SNP analysis to narrow the candidate gene regions. Exon sequencing of candidate genes identified mutations in mice with cystic kidneys (Bicc1), cryptorchidism (Rxfp2), restricted germ cell deficiency (Plk4), and severe germ cell deficiency (Prdm9). In two other lines with severe hypogonadism candidate sequencing failed to identify mutations, suggesting defects in genes with previously undocumented roles in gonadal function. These genomic intervals were sequenced in their entirety and a candidate mutation was identified in SnrpE in one of the two lines. The line harboring the SnrpE variant retains substantial spermatogenesis despite small testis size, an unusual phenotype. In addition to the reproductive defects, heritable phenotypes were observed in mice with ataxia (Myo5a), tremors (Pmp22), growth retardation (unknown gene), and hydrocephalus (unknown gene). These results demonstrate that the ENU screen is an effective tool for identifying potential causes of male infertility. PMID:22258617

  7. Comparison of Genome-Wide Binding of MyoD in Normal Human Myogenic Cells and Rhabdomyosarcomas Identifies Regional and Local Suppression of Promyogenic Transcription Factors

    PubMed Central

    MacQuarrie, Kyle L.; Yao, Zizhen; Fong, Abraham P.; Diede, Scott J.; Rudzinski, Erin R.; Hawkins, Douglas S.

    2013-01-01

    Rhabdomyosarcoma is a pediatric tumor of skeletal muscle that expresses the myogenic basic helix-loop-helix protein MyoD but fails to undergo terminal differentiation. Prior work has determined that DNA binding by MyoD occurs in the tumor cells, but myogenic targets fail to activate. Using MyoD chromatin immunoprecipitation coupled to high-throughput sequencing and gene expression analysis in both primary human muscle cells and RD rhabdomyosarcoma cells, we demonstrate that MyoD binds in a similar genome-wide pattern in both tumor and normal cells but binds poorly at a subset of myogenic genes that fail to activate in the tumor cells. Binding differences are found both across genomic regions and locally at specific sites that are associated with binding motifs for RUNX1, MEF2C, JDP2, and NFIC. These factors are expressed at lower levels in RD cells than muscle cells and rescue myogenesis when expressed in RD cells. MEF2C is located in a genomic region that exhibits poor MyoD binding in RD cells, whereas JDP2 exhibits local DNA hypermethylation in its promoter in both RD cells and primary tumor samples. These results demonstrate that regional and local silencing of differentiation factors contributes to the differentiation defect in rhabdomyosarcomas. PMID:23230269

  8. High-Throughput Screening of Myometrial Calcium-Mobilization to Identify Modulators of Uterine Contractility

    PubMed Central

    Herington, Jennifer L.; Swale, Daniel R.; Brown, Naoko; Shelton, Elaine L.; Choi, Hyehun; Williams, Charles H.; Hong, Charles C.; Paria, Bibhash C.; Denton, Jerod S.; Reese, Jeff

    2015-01-01

    The uterine myometrium (UT-myo) is a therapeutic target for preterm labor, labor induction, and postpartum hemorrhage. Stimulation of intracellular Ca2+-release in UT-myo cells by oxytocin is a final pathway controlling myometrial contractions. The goal of this study was to develop a dual-addition assay for high-throughput screening of small molecular compounds, which could regulate Ca2+-mobilization in UT-myo cells, and hence, myometrial contractions. Primary murine UT-myo cells in 384-well plates were loaded with a Ca2+-sensitive fluorescent probe, and then screened for inducers of Ca2+-mobilization and inhibitors of oxytocin-induced Ca2+-mobilization. The assay exhibited robust screening statistics (Z´ = 0.73), DMSO-tolerance, and was validated for high-throughput screening against 2,727 small molecules from the Spectrum, NIH Clinical I and II collections of well-annotated compounds. The screen revealed a hit-rate of 1.80% for agonist and 1.39% for antagonist compounds. Concentration-dependent responses of hit-compounds demonstrated an EC50 less than 10μM for 21 hit-antagonist compounds, compared to only 7 hit-agonist compounds. Subsequent studies focused on hit-antagonist compounds. Based on the percent inhibition and functional annotation analyses, we selected 4 confirmed hit-antagonist compounds (benzbromarone, dipyridamole, fenoterol hydrobromide and nisoldipine) for further analysis. Using an ex vivo isometric contractility assay, each compound significantly inhibited uterine contractility, at different potencies (IC50). Overall, these results demonstrate for the first time that high-throughput small-molecules screening of myometrial Ca2+-mobilization is an ideal primary approach for discovering modulators of uterine contractility. PMID:26600013

  9. Myosin-1 inhibition by PClP affects membrane shape, cortical actin distribution and lipid droplet dynamics in early Zebrafish embryos

    PubMed Central

    Gupta, Prabuddha; Martin, René; Knölker, Hans-Joachim; Nihalani, Deepak; Kumar Sinha, Deepak

    2017-01-01

    Myosin-1 (Myo1) represents a mechanical link between the membrane and actin-cytoskeleton in animal cells. We have studied the effect of Myo1 inhibitor PClP in 1–8 cell Zebrafish embryos. Our results indicate a unique involvement of Myo1 in early development of Zebrafish embryos. Inhibition of Myo1 (by PClP) and Myo2 (by Blebbistatin) lead to arrest in cell division. While Myo1 isoforms appears to be important for both the formation and the maintenance of cleavage furrows, Myo2 is required only for the formation of furrows. We found that the blastodisc of the embryo, which contains a thick actin cortex (~13 μm), is loaded with cortical Myo1. Myo1 appears to be crucial for maintaining the blastodisc morphology and the actin cortex thickness. In addition to cell division and furrow formation, inhibition of Myo1 has a drastic effect on the dynamics and distribution of lipid droplets (LDs) in the blastodisc near the cleavage furrow. All these results above are effects of Myo1 inhibition exclusively; Myo2 inhibition by blebbistatin does not show such phenotypes. Therefore, our results demonstrate a potential role for Myo1 in the maintenance and formation of furrow, blastodisc morphology, cell-division and LD organization within the blastodisc during early embryogenesis. PMID:28678859

  10. Structural and Enzymatic Analysis of MshA from Corynebacterium glutamicum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vetting,M.; Frantom, P.; Blanchard, J.

    2008-01-01

    The glycosyltransferase termed MshA catalyzes the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to 1-l-myo-inositol-1-phosphate in the first committed step of mycothiol biosynthesis. The structure of MshA from Corynebacterium glutamicum was determined both in the absence of substrates and in a complex with UDP and 1-l-myo-inositol-1-phosphate. MshA belongs to the GT-B structural family whose members have a two-domain structure with both domains exhibiting a Rossman-type fold. Binding of the donor sugar to the C-terminal domain produces a 97 rotational reorientation of the N-terminal domain relative to the C-terminal domain, clamping down on UDP and generating the binding site for 1-l-myo-inositol-1-phosphate. The structuremore » highlights the residues important in binding of UDP-N-acetylglucosamine and 1-l-myo-inositol-1-phosphate. Molecular models of the ternary complex suggest a mechanism in which the {beta}-phosphate of the substrate, UDP-N-acetylglucosamine, promotes the nucleophilic attack of the 3-hydroxyl group of 1-l-myo-inositol-1-phosphate while at the same time promoting the cleavage of the sugar nucleotide bond.« less

  11. Anion-exchange high-performance liquid chromatography with post-column detection for the analysis of phytic acid and other inositol phosphates

    NASA Technical Reports Server (NTRS)

    Rounds, M. A.; Nielsen, S. S.; Mitchell, C. A. (Principal Investigator)

    1993-01-01

    The use of gradient anion-exchange HPLC, with a simple post-column detection system, is described for the separation of myo-inositol phosphates, including "phytic acid" (myo-inositol hexaphosphate). Hexa-, penta-, tetra-, tri- and diphosphate members of this homologous series are clearly resolved within 30 min. This method should facilitate analysis and quantitation of "phytic acid" and other inositol phosphates in plant, food, and soil samples.

  12. Allelic hierarchy of CDH23 mutations causing non-syndromic deafness DFNB12 or Usher syndrome USH1D in compound heterozygotes.

    PubMed

    Schultz, Julie M; Bhatti, Rashid; Madeo, Anne C; Turriff, Amy; Muskett, Julie A; Zalewski, Christopher K; King, Kelly A; Ahmed, Zubair M; Riazuddin, Saima; Ahmad, Nazir; Hussain, Zawar; Qasim, Muhammad; Kahn, Shaheen N; Meltzer, Meira R; Liu, Xue Z; Munisamy, Murali; Ghosh, Manju; Rehm, Heidi L; Tsilou, Ekaterini T; Griffith, Andrew J; Zein, Wadih M; Brewer, Carmen C; Riazuddin, Sheikh; Friedman, Thomas B

    2011-11-01

    Recessive mutant alleles of MYO7A, USH1C, CDH23, and PCDH15 cause non-syndromic deafness or type 1 Usher syndrome (USH1) characterised by deafness, vestibular areflexia, and vision loss due to retinitis pigmentosa. For CDH23, encoding cadherin 23, non-syndromic DFNB12 deafness is associated primarily with missense mutations hypothesised to have residual function. In contrast, homozygous nonsense, frame shift, splice site, and some missense mutations of CDH23, all of which are presumably functional null alleles, cause USH1D. The phenotype of a CDH23 compound heterozygote for a DFNB12 allele in trans configuration to an USH1D allele is not known and cannot be predicted from current understanding of cadherin 23 function in the retina and vestibular labyrinth. To address this issue, this study sought CDH23 compound heterozygotes by sequencing this gene in USH1 probands, and families segregating USH1D or DFNB12. Five non-syndromic deaf individuals were identified with normal retinal and vestibular phenotypes that segregate compound heterozygous mutations of CDH23, where one mutation is a known or predicted USH1 allele. One DFNB12 allele in trans configuration to an USH1D allele of CDH23 preserves vision and balance in deaf individuals, indicating that the DFNB12 allele is phenotypically dominant to an USH1D allele. This finding has implications for genetic counselling and the development of therapies for retinitis pigmentosa in Usher syndrome. ACCESSION NUMBERS: The cDNA and protein Genbank accession numbers for CDH23 and cadherin 23 used in this paper are AY010111.2 and AAG27034.2, respectively.

  13. Myosin MyTH4-FERM structures highlight important principles of convergent evolution.

    PubMed

    Planelles-Herrero, Vicente José; Blanc, Florian; Sirigu, Serena; Sirkia, Helena; Clause, Jeffrey; Sourigues, Yannick; Johnsrud, Daniel O; Amigues, Beatrice; Cecchini, Marco; Gilbert, Susan P; Houdusse, Anne; Titus, Margaret A

    2016-05-24

    Myosins containing MyTH4-FERM (myosin tail homology 4-band 4.1, ezrin, radixin, moesin, or MF) domains in their tails are found in a wide range of phylogenetically divergent organisms, such as humans and the social amoeba Dictyostelium (Dd). Interestingly, evolutionarily distant MF myosins have similar roles in the extension of actin-filled membrane protrusions such as filopodia and bind to microtubules (MT), suggesting that the core functions of these MF myosins have been highly conserved over evolution. The structures of two DdMyo7 signature MF domains have been determined and comparison with mammalian MF structures reveals that characteristic features of MF domains are conserved. However, across millions of years of evolution conserved class-specific insertions are seen to alter the surfaces and the orientation of subdomains with respect to each other, likely resulting in new sites for binding partners. The MyTH4 domains of Myo10 and DdMyo7 bind to MT with micromolar affinity but, surprisingly, their MT binding sites are on opposite surfaces of the MyTH4 domain. The structural analysis in combination with comparison of diverse MF myosin sequences provides evidence that myosin tail domain features can be maintained without strict conservation of motifs. The results illustrate how tuning of existing features can give rise to new structures while preserving the general properties necessary for myosin tails. Thus, tinkering with the MF domain enables it to serve as a multifunctional platform for cooperative recruitment of various partners, allowing common properties such as autoinhibition of the motor and microtubule binding to arise through convergent evolution.

  14. Homozygous inactivation of CHEK2 is linked to a familial case of multiple primary lung cancer with accompanying cancers in other organs

    PubMed Central

    Kukita, Yoji; Okami, Jiro; Yoneda-Kato, Noriko; Nakamae, Ikuko; Kawabata, Takeshi; Higashiyama, Masahiko; Kato, Junya; Kodama, Ken; Kato, Kikuya

    2016-01-01

    In clinical practice, there are a number of cancer patients with clear family histories, but the patients lack mutations in known familial cancer syndrome genes. Recent advances in genomic technologies have enhanced the possibility of identifying causative genes in such cases. Two siblings, an elder sister and a younger brother, were found to have multiple primary lung cancers at the age of 60. The former subsequently developed breast cancer and had a history of uterine myoma. The latter had initially developed prostate cancer at the age of 59 and had a history of colon cancer. Single-nucleotide polymorphism (SNP) genotyping revealed that ∼10% of the genomes were homozygous in both patients. Exome sequencing revealed nonsynonymous mutations in five genes in the runs of homozygosity: CHEK2, FCGRT, INPP5J, MYO18B, and SFI1. Evolutionary conservation of primary protein structures suggested the functional importance of the CHEK2 mutation, p.R474C. This mutation altered the tertiary structure of CHK2 by disrupting the salt bridge between p.R474 and p.E394. No such structural changes were observed with the other mutated genes. Subsequent cell-based transfection analysis revealed that CHK2 p.R474C was unstable and scarcely activated. We concluded that the homozygous CHEK2 variant was contributory in this case of familial cancer. Although homozygous inactivation of CHEK2 in mice led to cancers in multiple organs, accumulation of additional human cases is needed to establish its pathogenic role in humans. PMID:27900359

  15. Homozygous inactivation of CHEK2 is linked to a familial case of multiple primary lung cancer with accompanying cancers in other organs.

    PubMed

    Kukita, Yoji; Okami, Jiro; Yoneda-Kato, Noriko; Nakamae, Ikuko; Kawabata, Takeshi; Higashiyama, Masahiko; Kato, Junya; Kodama, Ken; Kato, Kikuya

    2016-11-01

    In clinical practice, there are a number of cancer patients with clear family histories, but the patients lack mutations in known familial cancer syndrome genes. Recent advances in genomic technologies have enhanced the possibility of identifying causative genes in such cases. Two siblings, an elder sister and a younger brother, were found to have multiple primary lung cancers at the age of 60. The former subsequently developed breast cancer and had a history of uterine myoma. The latter had initially developed prostate cancer at the age of 59 and had a history of colon cancer. Single-nucleotide polymorphism (SNP) genotyping revealed that ∼10% of the genomes were homozygous in both patients. Exome sequencing revealed nonsynonymous mutations in five genes in the runs of homozygosity: CHEK2 , FCGRT , INPP5J , MYO18B , and SFI1 . Evolutionary conservation of primary protein structures suggested the functional importance of the CHEK2 mutation, p.R474C. This mutation altered the tertiary structure of CHK2 by disrupting the salt bridge between p.R474 and p.E394. No such structural changes were observed with the other mutated genes. Subsequent cell-based transfection analysis revealed that CHK2 p.R474C was unstable and scarcely activated. We concluded that the homozygous CHEK2 variant was contributory in this case of familial cancer. Although homozygous inactivation of CHEK2 in mice led to cancers in multiple organs, accumulation of additional human cases is needed to establish its pathogenic role in humans.

  16. [3H]Indole-3-acetyl-myo-inositol hydrolysis by extracts of Zea mays L. vegetative tissue

    NASA Technical Reports Server (NTRS)

    Hall, P. J.; Bandurski, R. S.

    1986-01-01

    [3H]Indole-3-acetyl-myo-inositol was hydrolyzed by buffered extracts of acetone powders prepared from 4 day shoots of dark grown Zea mays L. seedlings. The hydrolytic activity was proportional to the amount of extract added and was linear for up to 6 hours at 37 degrees C. Boiled or alcohol denatured extracts were inactive. Analysis of reaction mixtures by high performance liquid chromatography demonstrated that not all isomers of indole-3-acetyl-myo-inositol were hydrolyzed at the same rate. Buffered extracts of acetone powders were prepared from coleoptiles and mesocotyls. The rates of hydrolysis observed with coleoptile extracts were greater than those observed with mesocotyl extracts. Active extracts also catalyzed the hydrolysis of esterase substrates such as alpha-naphthyl acetate and the methyl esters of indoleacetic acid and naphthyleneacetic acid. Attempts to purify the indole-3-acetyl-myo-inositol hydrolyzing activity by chromatographic procedures resulted in only slight purification with large losses of activity. Chromatography over hydroxylapatite allowed separation of two enzymically active fractions, one of which catalyzed the hydrolysis of both indole-3-acetyl-myo-inositol and esterase substrates. With the other enzymic hydrolysis of esterase substrates was readily demonstrated, but no hydrolysis of indole-3-acetyl-myo-inositol was ever detected.

  17. Identifying Children With Poor Cochlear Implantation Outcomes Using Massively Parallel Sequencing

    PubMed Central

    Wu, Chen-Chi; Lin, Yin-Hung; Liu, Tien-Chen; Lin, Kai-Nan; Yang, Wei-Shiung; Hsu, Chuan-Jen; Chen, Pei-Lung; Wu, Che-Ming

    2015-01-01

    Abstract Cochlear implantation is currently the treatment of choice for children with severe to profound hearing impairment. However, the outcomes with cochlear implants (CIs) vary significantly among recipients. The purpose of the present study is to identify the genetic determinants of poor CI outcomes. Twelve children with poor CI outcomes (the “cases”) and 30 “matched controls” with good CI outcomes were subjected to comprehensive genetic analyses using massively parallel sequencing, which targeted 129 known deafness genes. Audiological features, imaging findings, and auditory/speech performance with CIs were then correlated to the genetic diagnoses. We identified genetic variants which are associated with poor CI outcomes in 7 (58%) of the 12 cases; 4 cases had bi-allelic PCDH15 pathogenic mutations and 3 cases were homozygous for the DFNB59 p.G292R variant. Mutations in the WFS1, GJB3, ESRRB, LRTOMT, MYO3A, and POU3F4 genes were detected in 7 (23%) of the 30 matched controls. The allele frequencies of PCDH15 and DFNB59 variants were significantly higher in the cases than in the matched controls (both P < 0.001). In the 7 CI recipients with PCDH15 or DFNB59 variants, otoacoustic emissions were absent in both ears, and imaging findings were normal in all 7 implanted ears. PCDH15 or DFNB59 variants are associated with poor CI performance, yet children with PCDH15 or DFNB59 variants might show clinical features indistinguishable from those of other typical pediatric CI recipients. Accordingly, genetic examination is indicated in all CI candidates before operation. PMID:26166082

  18. Mouse Myosin-19 Is a Plus-end-directed, High-duty Ratio Molecular Motor*

    PubMed Central

    Lu, Zekuan; Ma, Xiao-Nan; Zhang, Hai-Man; Ji, Huan-Hong; Ding, Hao; Zhang, Jie; Luo, Dan; Sun, Yujie; Li, Xiang-dong

    2014-01-01

    Class XIX myosin (Myo19) is a vertebrate-specific unconventional myosin, responsible for the transport of mitochondria. To characterize biochemical properties of Myo19, we prepared recombinant mouse Myo19-truncated constructs containing the motor domain and the IQ motifs using the baculovirus/Sf9 expression system. We identified regulatory light chain (RLC) of smooth muscle/non-muscle myosin-2 as the light chain of Myo19. The actin-activated ATPase activity and the actin-gliding velocity of Myo19-truncated constructs were about one-third and one-sixth as those of myosin-5a, respectively. The apparent affinity of Myo19 to actin was about the same as that of myosin-5a. The RLCs bound to Myo19 could be phosphorylated by myosin light chain kinase, but this phosphorylation had little effect on the actin-activated ATPase activity and the actin-gliding activity of Myo19-truncated constructs. Using dual fluorescence-labeled actin filaments, we determined that Myo19 is a plus-end-directed molecular motor. We found that, similar to that of the high-duty ratio myosin, such as myosin-5a, ADP release rate was comparable with the maximal actin-activated ATPase activity of Myo19, indicating that ADP release is a rate-limiting step for the ATPase cycle of acto-Myo19. ADP strongly inhibited the actin-activated ATPase activity and actin-gliding activity of Myo19-truncated constructs. Based on the above results, we concluded that Myo19 is a high-duty ratio molecular motor moving to the plus-end of the actin filament. PMID:24825904

  19. myo-Inositol uptake is essential for bulk inositol phospholipid but not glycosylphosphatidylinositol synthesis in Trypanosoma brucei.

    PubMed

    Gonzalez-Salgado, Amaia; Steinmann, Michael E; Greganova, Eva; Rauch, Monika; Mäser, Pascal; Sigel, Erwin; Bütikofer, Peter

    2012-04-13

    myo-Inositol is an essential precursor for the production of inositol phosphates and inositol phospholipids in all eukaryotes. Intracellular myo-inositol is generated by de novo synthesis from glucose 6-phosphate or is provided from the environment via myo-inositol symporters. We show that in Trypanosoma brucei, the causative pathogen of human African sleeping sickness and nagana in domestic animals, myo-inositol is taken up via a specific proton-coupled electrogenic symport and that this transport is essential for parasite survival in culture. Down-regulation of the myo-inositol transporter using RNA interference inhibited uptake of myo-inositol and blocked the synthesis of the myo-inositol-containing phospholipids, phosphatidylinositol and inositol phosphorylceramide; in contrast, it had no effect on glycosylphosphatidylinositol production. This together with the unexpected localization of the myo-inositol transporter in both the plasma membrane and the Golgi demonstrate that metabolism of endogenous and exogenous myo-inositol in T. brucei is strictly segregated.

  20. myo-Inositol Uptake Is Essential for Bulk Inositol Phospholipid but Not Glycosylphosphatidylinositol Synthesis in Trypanosoma brucei*

    PubMed Central

    Gonzalez-Salgado, Amaia; Steinmann, Michael E.; Greganova, Eva; Rauch, Monika; Mäser, Pascal; Sigel, Erwin; Bütikofer, Peter

    2012-01-01

    myo-Inositol is an essential precursor for the production of inositol phosphates and inositol phospholipids in all eukaryotes. Intracellular myo-inositol is generated by de novo synthesis from glucose 6-phosphate or is provided from the environment via myo-inositol symporters. We show that in Trypanosoma brucei, the causative pathogen of human African sleeping sickness and nagana in domestic animals, myo-inositol is taken up via a specific proton-coupled electrogenic symport and that this transport is essential for parasite survival in culture. Down-regulation of the myo-inositol transporter using RNA interference inhibited uptake of myo-inositol and blocked the synthesis of the myo-inositol-containing phospholipids, phosphatidylinositol and inositol phosphorylceramide; in contrast, it had no effect on glycosylphosphatidylinositol production. This together with the unexpected localization of the myo-inositol transporter in both the plasma membrane and the Golgi demonstrate that metabolism of endogenous and exogenous myo-inositol in T. brucei is strictly segregated. PMID:22351763

  1. Temporal and Spatial Patterns of Accumulation of the Transcript of Myo-Inositol-1-Phosphate Synthase and Phytin-Containing Particles during Seed Development in Rice1

    PubMed Central

    Yoshida, Kaoru T.; Wada, Tomikichi; Koyama, Hiroshi; Mizobuchi-Fukuoka, Ritsuko; Naito, Satoshi

    1999-01-01

    Myo-inositol-1-phosphate (I[1]P) synthase (EC 5.5.1.4) catalyzes the reaction from glucose 6-phosphate to I(1)P, the first step of myo-inositol biosynthesis. Among the metabolites of I(1)P is inositol hexakisphosphate, which forms a mixed salt called phytin or phytate, a storage form of phosphate and cations in seeds. We have isolated a rice (Oryza sativa L.) cDNA clone, pRINO1, that is highly homologous to the I(1)P synthase from yeast and plants. Northern analysis of total RNA showed that the transcript accumulated to high levels in embryos but was undetectable in shoots, roots, and flowers. In situ hybridization of developing seeds showed that the transcript first appeared in the apical region of globular-stage embryos 2 d after anthesis (DAA). Strong signals were detected in the scutellum and aleurone layer after 4 DAA. The level of the transcript in these cells increased until 7 DAA, after which time it gradually decreased. Phytin-containing particles called globoids appeared 4 DAA in the scutellum and aleurone layer, coinciding with the localization of the RINO1 transcript. The temporal and spatial patterns of accumulation of the RINO1 transcript and globoids suggest that I(1)P synthase directs phytin biosynthesis in rice seeds. PMID:9880347

  2. miR-129 inhibits tumor growth and potentiates chemosensitivity of neuroblastoma by targeting MYO10.

    PubMed

    Wang, Xiqian; Li, Jing; Xu, Xiao; Zheng, Jiachun; Li, Qingbo

    2018-07-01

    Although the treatment strategies for neuroblastoma (NB) develop rapidly, a considerable number of patients could not benefit from chemotherapy. Here, we revealed a miR-129-MYO10 axis that regulated neuroblastoma growth and chemosensitivity. Mechanistically, MYO10 was up-regulated in neuroblastoma tissues and associated with poor overall survival. While overexpression of MYO10 enhanced tumor growth, genetic inhibition of MYO10 led to growth-inhibitory and chemopotentiating effects in neuroblastoma. MYO10 was further identified as a target of miR-129. Our data showed that miR-129 down-regulated MYO10 expression and subsequently suppressed cell growth. Re-expression of MYO10 significantly rescued miR129-mediated proliferation repression and chemosensitivity. In conclusion, our results demonstrated that miR-129 inhibited neuroblastoma growth and potentiated chemosensitivity by targeting MYO10, which may represent promising targets and rational therapeutic options for neuroblastoma. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. Efficient exon skipping of SGCG mutations mediated by phosphorodiamidate morpholino oligomers.

    PubMed

    Wyatt, Eugene J; Demonbreun, Alexis R; Kim, Ellis Y; Puckelwartz, Megan J; Vo, Andy H; Dellefave-Castillo, Lisa M; Gao, Quan Q; Vainzof, Mariz; Pavanello, Rita C M; Zatz, Mayana; McNally, Elizabeth M

    2018-05-03

    Exon skipping uses chemically modified antisense oligonucleotides to modulate RNA splicing. Therapeutically, exon skipping can bypass mutations and restore reading frame disruption by generating internally truncated, functional proteins to rescue the loss of native gene expression. Limb-girdle muscular dystrophy type 2C is caused by autosomal recessive mutations in the SGCG gene, which encodes the dystrophin-associated protein γ-sarcoglycan. The most common SGCG mutations disrupt the transcript reading frame abrogating γ-sarcoglycan protein expression. In order to treat most SGCG gene mutations, it is necessary to skip 4 exons in order to restore the SGCG transcript reading frame, creating an internally truncated protein referred to as Mini-Gamma. Using direct reprogramming of human cells with MyoD, myogenic cells were tested with 2 antisense oligonucleotide chemistries, 2'-O-methyl phosphorothioate oligonucleotides and vivo-phosphorodiamidate morpholino oligomers, to induce exon skipping. Treatment with vivo-phosphorodiamidate morpholino oligomers demonstrated efficient skipping of the targeted exons and corrected the mutant reading frame, resulting in the expression of a functional Mini-Gamma protein. Antisense-induced exon skipping of SGCG occurred in normal cells and those with multiple distinct SGCG mutations, including the most common 521ΔT mutation. These findings demonstrate a multiexon-skipping strategy applicable to the majority of limb-girdle muscular dystrophy 2C patients.

  4. Cardiovascular disease testing on the Dimension Vista system: biomarkers of acute coronary syndromes.

    PubMed

    Kelley, Walter E; Lockwood, Christina M; Cervelli, Denise R; Sterner, Jamie; Scott, Mitchell G; Duh, Show-Hong; Christenson, Robert H

    2009-09-01

    Performance characteristics of the LOCI cTnI, CK-MB, MYO, NTproBNP and hsCRP methods on the Dimension Vista System were evaluated. Imprecision (following CLSI EP05-A2 guidelines), limit of quantitation (cTnI), limit of blank, linearity on dilution, serum versus plasma matrix studies (cTnI), and method comparison studies were conducted. Method imprecision of 1.8 to 9.7% (cTnI), 1.8 to 5.7% (CK-MB), 2.1 to 2.2% (MYO), 1.6 to 3.3% (NTproBNP), and 3.5 to 4.2% (hsCRP) were demonstrated. The manufacturer's claimed imprecision, detection limits and upper measurement limits were met. Limit of Quantitation was 0.040 ng/mL for the cTnI assay. Agreement of serum and plasma values for cTnI (r=0.99) was shown. Method comparison study results were acceptable. The Dimension Vista cTnI, CK-MB, MYO, NTproBNP, and hsCRP methods demonstrate acceptable performance characteristics for use as an aid in the diagnosis and risk assessment of patients presenting with suspected acute coronary syndromes.

  5. Partial purification and characterization of indol-3-ylacetylglucose:myo-inositol indol-3-ylacetyltransferase (indoleacetic acid-inositol synthase)

    NASA Technical Reports Server (NTRS)

    Kesy, J. M.; Bandurski, R. S.

    1990-01-01

    A procedure is described for the purification of the enzyme indol-3-ylacetylglucose:myo-inositol indol-3-ylacetyltransferase (IAA-myo-inositol synthase). This enzyme catalyzes the transfer of indol-3-ylacetate from 1-0-indol-3-ylacetyl-beta-d-glucose to myo-inositol to form indol-3-ylacetyl-myo-inositol and glucose. A hexokinase or glucose oxidase based assay system is described. The enzyme has been purified approximately 16,000-fold, has an isoelectric point of pH 6.1 and yields three catalytically inactive bands upon acrylamide gel electrophoresis of the native protein. The enzyme shows maximum transferase activity with myo-inositol but shows some transferase activity with scyllo-inositol and myo-inosose-2. No transfer of IAA occurs with myo-inositol-d-galactopyranose, cyclohexanol, mannitol, or glycerol as acyl acceptor. The affinity of the enzyme for 1-0-indol-3-ylacetyl-beta-d-glucose is, Km = 30 micromolar, and for myo-inositol is, Km = 4 millimolar. The enzyme does not catalyze the exchange incorporation of glucose into IAA-glucose indicating the reaction mechanism involves binding of IAA glucose to the enzyme with subsequent hydrolytic cleavage of the acyl moiety by the hydroxyl of myo-inositol to form IAA myo-inositol ester.

  6. Trypanosoma brucei Bloodstream Forms Depend upon Uptake of myo-Inositol for Golgi Complex Phosphatidylinositol Synthesis and Normal Cell Growth.

    PubMed

    González-Salgado, Amaia; Steinmann, Michael; Major, Louise L; Sigel, Erwin; Reymond, Jean-Louis; Smith, Terry K; Bütikofer, Peter

    2015-06-01

    myo-Inositol is a building block for all inositol-containing phospholipids in eukaryotes. It can be synthesized de novo from glucose-6-phosphate in the cytosol and endoplasmic reticulum. Alternatively, it can be taken up from the environment via Na(+)- or H(+)-linked myo-inositol transporters. While Na(+)-coupled myo-inositol transporters are found exclusively in the plasma membrane, H(+)-linked myo-inositol transporters are detected in intracellular organelles. In Trypanosoma brucei, the causative agent of human African sleeping sickness, myo-inositol metabolism is compartmentalized. De novo-synthesized myo-inositol is used for glycosylphosphatidylinositol production in the endoplasmic reticulum, whereas the myo-inositol taken up from the environment is used for bulk phosphatidylinositol synthesis in the Golgi complex. We now provide evidence that the Golgi complex-localized T. brucei H(+)-linked myo-inositol transporter (TbHMIT) is essential in bloodstream-form T. brucei. Downregulation of TbHMIT expression by RNA interference blocked phosphatidylinositol production and inhibited growth of parasites in culture. Characterization of the transporter in a heterologous expression system demonstrated a remarkable selectivity of TbHMIT for myo-inositol. It tolerates only a single modification on the inositol ring, such as the removal of a hydroxyl group or the inversion of stereochemistry at a single hydroxyl group relative to myo-inositol. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Trypanosoma brucei Bloodstream Forms Depend upon Uptake of myo-Inositol for Golgi Complex Phosphatidylinositol Synthesis and Normal Cell Growth

    PubMed Central

    González-Salgado, Amaia; Steinmann, Michael; Major, Louise L.; Sigel, Erwin; Reymond, Jean-Louis

    2015-01-01

    myo-Inositol is a building block for all inositol-containing phospholipids in eukaryotes. It can be synthesized de novo from glucose-6-phosphate in the cytosol and endoplasmic reticulum. Alternatively, it can be taken up from the environment via Na+- or H+-linked myo-inositol transporters. While Na+-coupled myo-inositol transporters are found exclusively in the plasma membrane, H+-linked myo-inositol transporters are detected in intracellular organelles. In Trypanosoma brucei, the causative agent of human African sleeping sickness, myo-inositol metabolism is compartmentalized. De novo-synthesized myo-inositol is used for glycosylphosphatidylinositol production in the endoplasmic reticulum, whereas the myo-inositol taken up from the environment is used for bulk phosphatidylinositol synthesis in the Golgi complex. We now provide evidence that the Golgi complex-localized T. brucei H+-linked myo-inositol transporter (TbHMIT) is essential in bloodstream-form T. brucei. Downregulation of TbHMIT expression by RNA interference blocked phosphatidylinositol production and inhibited growth of parasites in culture. Characterization of the transporter in a heterologous expression system demonstrated a remarkable selectivity of TbHMIT for myo-inositol. It tolerates only a single modification on the inositol ring, such as the removal of a hydroxyl group or the inversion of stereochemistry at a single hydroxyl group relative to myo-inositol. PMID:25888554

  8. Dichotomy of Genetic Abnormalities in PEComas with Therapeutic Implications

    PubMed Central

    Agaram, Narasimhan P; Sung, Yun-Shao; Zhang, Lei; Chen, Chun-Liang; Chen, Hsiao-Wei; Singer, Samuel; Dickson, Mark A.; Berger, Michael F.; Antonescu, Cristina R

    2014-01-01

    Perivascular epithelioid cell neoplasms (PEComa) are a family of rare mesenchymal tumors with hybrid myo-melanocytic differentiation. Although most PEComas harbor loss of function TSC1/TSC2 mutations, a small subset were reported to carry TFE3 gene rearrangements. As no comprehensive genomic study has addressed the molecular classification of PEComa, we sought to investigate by multiple methodologies the incidence and spectrum of genetic abnormalities and their potential genotype-phenotype correlations in a large group of 38 PEComas. The tumors were located in soft tissue (11 cases) and visceral sites (27) including uterus, kidney, liver, lung and urinary bladder. Combined RNA sequencing and Fluorescence In Situ Hybridization (FISH) analysis identified 9 (23%) TFE3 gene rearranged tumors, with 3 cases showing a SFPQ/PSF-TFE3 fusion and one case a novel DVL2-TFE3 gene fusion. The TFE3-positive lesions showed a distinctive nested/alveolar morphology and were equally distributed between soft tissue and visceral sites. Additionally, novel RAD51B gene rearrangements were identified in 3 (8%) uterine PEComas, which showed a complex fusion pattern and were fused to RRAGB/OPHN1 genes in two cases. Other non-recurrent gene fusions, HTR4-ST3GAL1 and RASSF1-PDZRN3, were identified in 2 cases. Targeted exome sequencing using the IMPACT assay was used to address if the presence of gene fusions are mutually exclusive from TSC gene abnormalities. TSC2 mutations were identified in 80% of the TFE3 fusion-negative cases tested. Co-existent TP53 mutations were identified in 63% of the TSC2 mutated PEComas. Our results showed that TFE3-rearranged PEComas lacked co-existing TSC2 mutations, indicating alternative pathways of tumorigenesis. In summary, this comprehensive genetic analysis significantly expands our understanding of molecular alterations in PEComas and brings forth the genetic heterogeneity of these tumors. PMID:25651471

  9. Novel Interactome of Saccharomyces cerevisiae Myosin Type II Identified by a Modified Integrated Membrane Yeast Two-Hybrid (iMYTH) Screen.

    PubMed

    Santiago, Ednalise; Akamine, Pearl; Snider, Jamie; Wong, Victoria; Jessulat, Matthew; Deineko, Viktor; Gagarinova, Alla; Aoki, Hiroyuki; Minic, Zoran; Phanse, Sadhna; San Antonio, Andrea; Cubano, Luis A; Rymond, Brian C; Babu, Mohan; Stagljar, Igor; Rodriguez-Medina, Jose R

    2016-05-03

    Nonmuscle myosin type II (Myo1p) is required for cytokinesis in the budding yeast Saccharomyces cerevisiae Loss of Myo1p activity has been associated with growth abnormalities and enhanced sensitivity to osmotic stress, making it an appealing antifungal therapeutic target. The Myo1p tail-only domain was previously reported to have functional activity equivalent to the full-length Myo1p whereas the head-only domain did not. Since Myo1p tail-only constructs are biologically active, the tail domain must have additional functions beyond its previously described role in myosin dimerization or trimerization. The identification of new Myo1p-interacting proteins may shed light on the other functions of the Myo1p tail domain. To identify novel Myo1p-interacting proteins, and determine if Myo1p can serve as a scaffold to recruit proteins to the bud neck during cytokinesis, we used the integrated split-ubiquitin membrane yeast two-hybrid (iMYTH) system. Myo1p was iMYTH-tagged at its C-terminus, and screened against both cDNA and genomic prey libraries to identify interacting proteins. Control experiments showed that the Myo1p-bait construct was appropriately expressed, and that the protein colocalized to the yeast bud neck. Thirty novel Myo1p-interacting proteins were identified by iMYTH. Eight proteins were confirmed by coprecipitation (Ape2, Bzz1, Fba1, Pdi1, Rpl5, Tah11, and Trx2) or mass spectrometry (AP-MS) (Abp1). The novel Myo1p-interacting proteins identified come from a range of different processes, including cellular organization and protein synthesis. Actin assembly/disassembly factors such as the SH3 domain protein Bzz1 and the actin-binding protein Abp1 represent likely Myo1p interactions during cytokinesis. Copyright © 2016 Santiago et al.

  10. Localization and role of MYO-1, an endocytic protein in hyphae of Neurospora crassa.

    PubMed

    Lara-Rojas, Fernando; Bartnicki-García, Salomón; Mouriño-Pérez, Rosa R

    2016-03-01

    The subapical endocytic collar is a prominent feature of hyphae of Neurospora crassa. It comprises a dynamic collection of actin patches associated with a number of proteins required for endocytosis, namely, ARP-2/3 complex, fimbrin, coronin, etc. We presently show that MYO-1 is another key component of this endocytic collar. A myo-1 sequence was identified in the genome of N. crassa and used it to generate a strain with a myo-1-sgfp allele under the ccg1 promoter. Examination of living hyphae by confocal microscopy, revealed MYO-1-GFP located mainly as a dynamic collection of small patches arranged in collar-like fashion in the hyphal subapex. Dual tagging showed MYO-1-GFP partially colocalized with two other endocytic proteins, fimbrin and coronin. MYO-1 was also present during septum formation. By recovering a viable strain, albeit severely inhibited, after deletion of myo-1, it was possible to investigate the phenotypic consequences of the elimination of MYO-1. Deletion of myo-1 caused a severe reduction in growth rate (95%), near absence of aerial mycelium and no conidiation. A reduced uptake of the lipophilic dye FM4-64 indicated a deficiency in endocytosis in the Δmyo-1 mutant. Hyphae were produced by the Δmyo-1 mutant but their morphogenesis was severely affected; hyphal morphology was distorted displaying irregular periods of isotropic and polarized growth. The morphological alterations were accompanied, and presumably caused, by a disruption in the organization and dynamics of a myosin-deprived actin cytoskeleton that, ultimately, compromised the stability and function of the Spitzenkörper as a vesicle supply center. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Differential expression and molecular characterisation of Lmo7, Myo1e, Sash1, and Mcoln2 genes in Btk-defective B-cells.

    PubMed

    Lindvall, Jessica M; Blomberg, K Emelie M; Wennborg, Anders; Smith, C I Edvard

    2005-05-01

    Bruton's tyrosine kinase is crucial for B-lymphocyte development. By the use of gene expression profiling, we have identified four expressed sequence tags among 38 potential Btk target genes, which have now been characterised. Bioinformatics tools including data mining of additional unpublished gene expression profiles, sequence verification of PCR products and qualitative RT-PCR were used. Stimulations targeting the B-cell receptor and the protein kinase C were used to activate whole B-cell splenocytes. Target genes were characterised as Lim domain only 7 (Lmo7); Myosin1e (Myo1e); SAM and SH3 domain containing 1 (Sash1); and Mucolipin2 (Mcoln2). Expression was found in cell lines of different origin and developmental stages as well as in whole B-cell splenocytes and Transitional type 1 (T1) splenic B-cells from wild type and Btk-defective mice, respectively. By the use of semi-quantitative RT-PCR we found Sash1 not to be expressed in the investigated haematopoietic cell lines, while transcripts were found in whole splenic B-cells from both wild type and Btk-defective mice, whereas Lmo7, Myo1e, and Mcoln2 were expressed in both B-cell lines and primary B-lymphocytes. Except for Lmo7, the transcript level was similarly affected by stimulation in control and Btk-defective cells.

  12. Comparison and analysis of Wuding and avian chicken skeletal muscle satellite cells.

    PubMed

    Tong, H Q; Jiang, Z Q; Dou, T F; Li, Q H; Xu, Z Q; Liu, L X; Gu, D H; Rong, H; Huang, Y; Chen, X B; Jois, M; Te Pas, M F W; Ge, C R; Jia, J J

    2016-10-05

    Chicken skeletal muscle satellite cells are located between the basement membrane and the sarcolemma of mature muscle fibers. Avian broilers have been genetically selected based on their high growth velocity and large muscle mass. The Wuding chicken is a famous local chicken in Yunnan Province that undergoes non-selection breeding and is slow growing. In this study, we aimed to explore differences in the proliferation and differentiation properties of satellite cells isolated from the two chicken breeds. Using immunofluorescence, hematoxylin-eosin staining and real-time polymerase chain reaction analysis, we analyzed the in vitro characteristics of proliferating and differentiating satellite cells isolated from the two chicken breeds. The growth curve of satellite cells was S-shaped, and cells from Wuding chickens entered the logarithmic phase and plateau phase 1 day later than those from Avian chicken. The results also showed that the two skeletal muscle satellite cell lines were positive for Pax7, MyoD and IGF-1. The expression of Pax7 followed a downward trend, whereas that of MyoD and IGF-1 first increased and subsequently decreased in cells isolated from the two chickens. These data indicated that the skeletal muscle satellite cells of Avian chicken grow and differentiate faster than did those of Wuding chickens. We suggest that the methods of breeding selection applied to these breeds regulate the characteristics of skeletal muscle satellite cells to influence muscle growth.

  13. Myosin-X functions in polarized epithelial cells

    PubMed Central

    Liu, Katy C.; Jacobs, Damon T.; Dunn, Brian D.; Fanning, Alan S.; Cheney, Richard E.

    2012-01-01

    Myosin-X (Myo10) is an unconventional myosin that localizes to the tips of filopodia and has critical functions in filopodia. Although Myo10 has been studied primarily in nonpolarized, fibroblast-like cells, Myo10 is expressed in vivo in many epithelia-rich tissues, such as kidney. In this study, we investigate the localization and functions of Myo10 in polarized epithelial cells, using Madin-Darby canine kidney II cells as a model system. Calcium-switch experiments demonstrate that, during junction assembly, green fluorescent protein–Myo10 localizes to lateral membrane cell–cell contacts and to filopodia-like structures imaged by total internal reflection fluorescence on the basal surface. Knockdown of Myo10 leads to delayed recruitment of E-cadherin and ZO-1 to junctions, as well as a delay in tight junction barrier formation, as indicated by a delay in the development of peak transepithelial electrical resistance (TER). Although Myo10 knockdown cells eventually mature into monolayers with normal TER, these monolayers do exhibit increased paracellular permeability to fluorescent dextrans. Importantly, knockdown of Myo10 leads to mitotic spindle misorientation, and in three-dimensional culture, Myo10 knockdown cysts exhibit defects in lumen formation. Together these results reveal that Myo10 functions in polarized epithelial cells in junction formation, regulation of paracellular permeability, and epithelial morphogenesis. PMID:22419816

  14. The structure of the Myo4p globular tail and its function in ASH1 mRNA localization.

    PubMed

    Heuck, Alexander; Fetka, Ingrid; Brewer, Daniel N; Hüls, Daniela; Munson, Mary; Jansen, Ralf-Peter; Niessing, Dierk

    2010-05-03

    Type V myosin (MyoV)-dependent transport of cargo is an essential process in eukaryotes. Studies on yeast and vertebrate MyoV showed that their globular tails mediate binding to the cargo complexes. In Saccharomyces cerevisiae, the MyoV motor Myo4p interacts with She3p to localize asymmetric synthesis of HO 1 (ASH1) mRNA into the bud of dividing cells. A recent study showed that localization of GFP-MS2-tethered ASH1 particles does not require the Myo4p globular tail, challenging the supposed role of this domain. We assessed ASH1 mRNA and Myo4p distribution more directly and found that their localization is impaired in cells expressing globular tail-lacking Myo4p. In vitro studies further show that the globular tail together with a more N-terminal linker region is required for efficient She3p binding. We also determined the x-ray structure of the Myo4p globular tail and identify a conserved surface patch important for She3p binding. The structure shows pronounced similarities to membrane-tethering complexes and indicates that Myo4p may not undergo auto-inhibition of its motor domain.

  15. Deregulation of Rab and Rab Effector Genes in Bladder Cancer

    PubMed Central

    Ho, Joel R.; Chapeaublanc, Elodie; Kirkwood, Lisa; Nicolle, Remy; Benhamou, Simone; Lebret, Thierry; Allory, Yves; Southgate, Jennifer; Radvanyi, François; Goud, Bruno

    2012-01-01

    Growing evidence indicates that Rab GTPases, key regulators of intracellular transport in eukaryotic cells, play an important role in cancer. We analysed the deregulation at the transcriptional level of the genes encoding Rab proteins and Rab-interacting proteins in bladder cancer pathogenesis, distinguishing between the two main progression pathways so far identified in bladder cancer: the Ta pathway characterized by a high frequency of FGFR3 mutation and the carcinoma in situ pathway where no or infrequent FGFR3 mutations have been identified. A systematic literature search identified 61 genes encoding Rab proteins and 223 genes encoding Rab-interacting proteins. Transcriptomic data were obtained for normal urothelium samples and for two independent bladder cancer data sets corresponding to 152 and 75 tumors. Gene deregulation was analysed with the SAM (significant analysis of microarray) test or the binomial test. Overall, 30 genes were down-regulated, and 13 were up-regulated in the tumor samples. Five of these deregulated genes (LEPRE1, MICAL2, RAB23, STXBP1, SYTL1) were specifically deregulated in FGFR3-non-mutated muscle-invasive tumors. No gene encoding a Rab or Rab-interacting protein was found to be specifically deregulated in FGFR3-mutated tumors. Cluster analysis showed that the RAB27 gene cluster (comprising the genes encoding RAB27 and its interacting partners) was deregulated and that this deregulation was associated with both pathways of bladder cancer pathogenesis. Finally, we found that the expression of KIF20A and ZWINT was associated with that of proliferation markers and that the expression of MLPH, MYO5B, RAB11A, RAB11FIP1, RAB20 and SYTL2 was associated with that of urothelial cell differentiation markers. This systematic analysis of Rab and Rab effector gene deregulation in bladder cancer, taking relevant tumor subgroups into account, provides insight into the possible roles of Rab proteins and their effectors in bladder cancer pathogenesis. This approach is applicable to other group of genes and types of cancer. PMID:22724020

  16. The DNA methylation status of MyoD and IGF-I genes are correlated with muscle growth during different developmental stages of Japanese flounder (Paralichthys olivaceus).

    PubMed

    Huang, Yajuan; Wen, Haishen; Zhang, Meizhao; Hu, Nan; Si, Yufeng; Li, Siping; He, Feng

    2018-05-01

    Many genes related to muscle growth modulate myoblast proliferation and differentiation and promote muscle hypertrophy. MyoD is a myogenic determinant that contributes to myoblast determination, and insulin-like growth factor 1 (IGF-I) interacts with MyoD to regulate muscle hypertrophy and muscle mass. In this study, we aimed to assess DNA methylation and mRNA expression patterns of MyoD and IGF-I during different developmental stages of Japanese flounder, and to examine the relationship between MyoD and IGF-I gene. DNA and RNA were extracted from muscles, and DNA methylation of MyoD and IGF-I promoter and exons was detected by bisulfite sequencing. The relative expression of MyoD and IGF-I was measured by quantitative polymerase chain reaction. IGF-I was measured by radioimmunoassay. Interestingly, the lowest expression of MyoD and IGF-I emerged at larva stage, and the mRNA expression was negatively associated with methylation. We hypothesized that many skeletal muscle were required to complete metamorphosis; thus, the expression levels of MyoD and IGF-I genes increased from larva stage and then decreased. The relative expression levels of MyoD and IGF-I exhibited similar patterns, suggesting that MyoD and IGF-I regulated muscle growth through combined effects. Changes in the concentrations of IGF-I hormone were similar to those of IGF-I gene expression. Our results the mechanism through which MyoD and IGF-I regulate muscle development and demonstrated that MyoD interacted with IGF-I to regulate muscle growth during different developmental stages. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. myo-Inositol metabolism during lactation and development in the rat. The prevention of lactation-induced fatty liver by dietary myo-inositol.

    PubMed

    Burton, L E; Wells, W W

    1976-11-01

    Effects of dietary myo-inositol deprivation were examined during prenatal and postnatal development and during lactation in the rat. The deficient diet contained no detectable myo-inositol while the supplemented diet contained 0.5% (w/w) myo-inositol while the supplemented diet ct contained 0.5% (w/w) myo-inositol at the expense of sucrose. Both diets contained 25% casein, adequate amounts of all known vitamins, choline, and essential fatty acids as well as 0.5% (w/w) phthalylsulfathiazole to depress myo-inositol contribution to the diet by microorganisms. Pregnant rats of the Holtzman strain were fed the respective diets during gestation and lactation, and pups were fed the corresponding diet after weaning until 3 months of age. There were no significant differen-es in body weight between experimental groups. Supplementation of the diet with myo-inositol significanly increased the levels of myo-inositol in plasma, liver, kidney, and intestine of pups at all ages examined, and significantly increased the levels of myo-inositol in the milk and mammary tissue during lactation. During lactation, the myo-inositol deprived dams developed severe fatty livers (31% w/w) characterized by diminished phosphatidyl-inositol (50%) and total phospholipid phosphorus (57%) levels as compared with controls. After weaning, the liver lipid content of the myo-inositol deprived dams returned to normal (4.5%). The data suggest that a possible threshold level of free myo-inositol (approximately 0.15 mumoles/g lipid-free tissue) was required to prevent fatty liver in lactating dams under these dietary conditions. Effects of the deficient diet on fertility were also examined. Based on sperm count and production of offspring, there were no differnences between the experimental and control males. Females of both groups showed equal ability to produce offspring.

  18. A long non-coding RNA, LncMyoD, regulates skeletal muscle differentiation by blocking IMP2-mediated mRNA translation.

    PubMed

    Gong, Chenguang; Li, Zhizhong; Ramanujan, Krishnan; Clay, Ieuan; Zhang, Yunyu; Lemire-Brachat, Sophie; Glass, David J

    2015-07-27

    Increasing evidence suggests that long non-coding RNAs (LncRNAs) represent a new class of regulators of stem cells. However, the roles of LncRNAs in stem cell maintenance and myogenesis remain largely unexamined. For this study, hundreds of intergenic LncRNAs were identified that are expressed in myoblasts and regulated during differentiation. One of these LncRNAs, termed LncMyoD, is encoded next to the Myod gene and is directly activated by MyoD during myoblast differentiation. Knockdown of LncMyoD strongly inhibits terminal muscle differentiation, largely due to a failure to exit the cell cycle. LncMyoD directly binds to IGF2-mRNA-binding protein 2 (IMP2) and negatively regulates IMP2-mediated translation of proliferation genes such as N-Ras and c-Myc. While the RNA sequence of LncMyoD is not well conserved between human and mouse, its locus, gene structure, and function are preserved. The MyoD-LncMyoD-IMP2 pathway elucidates a mechanism as to how MyoD blocks proliferation to create a permissive state for differentiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Regulation of myosin IIA and filamentous actin during insulin-stimulated glucose uptake in 3T3-L1 adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stall, Richard; Ramos, Joseph; Kent Fulcher, F.

    Insulin stimulated glucose uptake requires the colocalization of myosin IIA (MyoIIA) and the insulin-responsive glucose transporter 4 (GLUT4) at the plasma membrane for proper GLUT4 fusion. MyoIIA facilitates filamentous actin (F-actin) reorganization in various cell types. In adipocytes F-actin reorganization is required for insulin-stimulated glucose uptake. What is not known is whether MyoIIA interacts with F-actin to regulate insulin-induced GLUT4 fusion at the plasma membrane. To elucidate the relationship between MyoIIA and F-actin, we examined the colocalization of MyoIIA and F-actin at the plasma membrane upon insulin stimulation as well as the regulation of this interaction. Our findings demonstrated thatmore » MyoIIA and F-actin colocalized at the site of GLUT4 fusion with the plasma membrane upon insulin stimulation. Furthermore, inhibition of MyoII with blebbistatin impaired F-actin localization at the plasma membrane. Next we examined the regulatory role of calcium in MyoIIA-F-actin colocalization. Reduced calcium or calmodulin levels decreased colocalization of MyoIIA and F-actin at the plasma membrane. While calcium alone can translocate MyoIIA it did not stimulate F-actin accumulation at the plasma membrane. Taken together, we established that while MyoIIA activity is required for F-actin localization at the plasma membrane, it alone is insufficient to localize F-actin to the plasma membrane. - Highlights: • Insulin induces colocalization of MyoIIA and F-actin at the cortex in adipocytes. • MyoIIA is necessary but not sufficient to localize F-actin at the cell cortex. • MyoIIA-F-actin colocalization is regulated by calcium and calmodulin.« less

  20. A Toxoplasma gondii Class XIV Myosin, Expressed in Sf9 Cells with a Parasite Co-chaperone, Requires Two Light Chains for Fast Motility*

    PubMed Central

    Bookwalter, Carol S.; Kelsen, Anne; Leung, Jacqueline M.; Ward, Gary E.; Trybus, Kathleen M.

    2014-01-01

    Many diverse myosin classes can be expressed using the baculovirus/Sf9 insect cell expression system, whereas others have been recalcitrant. We hypothesized that most myosins utilize Sf9 cell chaperones, but others require an organism-specific co-chaperone. TgMyoA, a class XIVa myosin from the parasite Toxoplasma gondii, is required for the parasite to efficiently move and invade host cells. The T. gondii genome contains one UCS family myosin co-chaperone (TgUNC). TgMyoA expressed in Sf9 cells was soluble and functional only if the heavy and light chain(s) were co-expressed with TgUNC. The tetratricopeptide repeat domain of TgUNC was not essential to obtain functional myosin, implying that there are other mechanisms to recruit Hsp90. Purified TgMyoA heavy chain complexed with its regulatory light chain (TgMLC1) moved actin in a motility assay at a speed of ∼1.5 μm/s. When a putative essential light chain (TgELC1) was also bound, TgMyoA moved actin at more than twice that speed (∼3.4 μm/s). This result implies that two light chains bind to and stabilize the lever arm, the domain that amplifies small motions at the active site into the larger motions that propel actin at fast speeds. Our results show that the TgMyoA domain structure is more similar to other myosins than previously appreciated and provide a molecular explanation for how it moves actin at fast speeds. The ability to express milligram quantities of a class XIV myosin in a heterologous system paves the way for detailed structure-function analysis of TgMyoA and identification of small molecule inhibitors. PMID:25231988

  1. Compositional and expression analyses of the glideosome during the Plasmodium life cycle reveal an additional myosin light chain required for maximum motility

    PubMed Central

    Green, Judith L.; Wall, Richard J.; Vahokoski, Juha; Yusuf, Noor A.; Ridzuan, Mohd A. Mohd; Stanway, Rebecca R.; Stock, Jessica; Knuepfer, Ellen; Brady, Declan; Martin, Stephen R.; Howell, Steven A.; Pires, Isa P.; Moon, Robert W.; Molloy, Justin E.; Kursula, Inari; Tewari, Rita

    2017-01-01

    Myosin A (MyoA) is a Class XIV myosin implicated in gliding motility and host cell and tissue invasion by malaria parasites. MyoA is part of a membrane-associated protein complex called the glideosome, which is essential for parasite motility and includes the MyoA light chain myosin tail domain–interacting protein (MTIP) and several glideosome-associated proteins (GAPs). However, most studies of MyoA have focused on single stages of the parasite life cycle. We examined MyoA expression throughout the Plasmodium berghei life cycle in both mammalian and insect hosts. In extracellular ookinetes, sporozoites, and merozoites, MyoA was located at the parasite periphery. In the sexual stages, zygote formation and initial ookinete differentiation precede MyoA synthesis and deposition, which occurred only in the developing protuberance. In developing intracellular asexual blood stages, MyoA was synthesized in mature schizonts and was located at the periphery of segmenting merozoites, where it remained throughout maturation, merozoite egress, and host cell invasion. Besides the known GAPs in the malaria parasite, the complex included GAP40, an additional myosin light chain designated essential light chain (ELC), and several other candidate components. This ELC bound the MyoA neck region adjacent to the MTIP-binding site, and both myosin light chains co-located to the glideosome. Co-expression of MyoA with its two light chains revealed that the presence of both light chains enhances MyoA-dependent actin motility. In conclusion, we have established a system to study the interplay and function of the three glideosome components, enabling the assessment of inhibitors that target this motor complex to block host cell invasion. PMID:28893907

  2. Compositional and expression analyses of the glideosome during the Plasmodium life cycle reveal an additional myosin light chain required for maximum motility.

    PubMed

    Green, Judith L; Wall, Richard J; Vahokoski, Juha; Yusuf, Noor A; Ridzuan, Mohd A Mohd; Stanway, Rebecca R; Stock, Jessica; Knuepfer, Ellen; Brady, Declan; Martin, Stephen R; Howell, Steven A; Pires, Isa P; Moon, Robert W; Molloy, Justin E; Kursula, Inari; Tewari, Rita; Holder, Anthony A

    2017-10-27

    Myosin A (MyoA) is a Class XIV myosin implicated in gliding motility and host cell and tissue invasion by malaria parasites. MyoA is part of a membrane-associated protein complex called the glideosome, which is essential for parasite motility and includes the MyoA light chain myosin tail domain-interacting protein (MTIP) and several glideosome-associated proteins (GAPs). However, most studies of MyoA have focused on single stages of the parasite life cycle. We examined MyoA expression throughout the Plasmodium berghei life cycle in both mammalian and insect hosts. In extracellular ookinetes, sporozoites, and merozoites, MyoA was located at the parasite periphery. In the sexual stages, zygote formation and initial ookinete differentiation precede MyoA synthesis and deposition, which occurred only in the developing protuberance. In developing intracellular asexual blood stages, MyoA was synthesized in mature schizonts and was located at the periphery of segmenting merozoites, where it remained throughout maturation, merozoite egress, and host cell invasion. Besides the known GAPs in the malaria parasite, the complex included GAP40, an additional myosin light chain designated essential light chain (ELC), and several other candidate components. This ELC bound the MyoA neck region adjacent to the MTIP-binding site, and both myosin light chains co-located to the glideosome. Co-expression of MyoA with its two light chains revealed that the presence of both light chains enhances MyoA-dependent actin motility. In conclusion, we have established a system to study the interplay and function of the three glideosome components, enabling the assessment of inhibitors that target this motor complex to block host cell invasion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. MyoD- and FoxO3-mediated hotspot interaction orchestrates super-enhancer activity during myogenic differentiation

    PubMed Central

    Peng, Xianlu L.; So, Karl K.; He, Liangqiang; Zhao, Yu; Zhou, Jiajian; Li, Yuying; Yao, Mingze; Xu, Bo; Zhang, Suyang; Yao, Hongjie; Hu, Ping

    2017-01-01

    Abstract Super-enhancers (SEs) are cis-regulatory elements enriching lineage specific key transcription factors (TFs) to form hotspots. A paucity of identification and functional dissection promoted us to investigate SEs during myoblast differentiation. ChIP-seq analysis of histone marks leads to the uncovering of SEs which remodel progressively during the course of differentiation. Further analyses of TF ChIP-seq enable the definition of SE hotspots co-bound by the master TF, MyoD and other TFs, among which we perform in-depth dissection for MyoD/FoxO3 interaction in driving the hotspots formation and SE activation. Furthermore, using Myogenin as a model locus, we elucidate the hierarchical and complex interactions among hotspots during the differentiation, demonstrating SE function is propelled by the physical and functional cooperation among hotspots. Finally, we show MyoD and FoxO3 are key in orchestrating the Myogenin hotspots interaction and activation. Altogether our results identify muscle-specific SEs and provide mechanistic insights into the functionality of SE. PMID:28575289

  4. Headbobber: A Combined Morphogenetic and Cochleosaccular Mouse Model to Study 10qter Deletions in Human Deafness

    PubMed Central

    Buniello, Annalisa; Hardisty-Hughes, Rachel E.; Pass, Johanna C.; Bober, Eva; Smith, Richard J.; Steel, Karen P.

    2013-01-01

    The recessive mouse mutant headbobber (hb) displays the characteristic behavioural traits associated with vestibular defects including headbobbing, circling and deafness. This mutation was caused by the insertion of a transgene into distal chromosome 7 affecting expression of native genes. We show that the inner ear of hb/hb mutants lacks semicircular canals and cristae, and the saccule and utricle are fused together in a single utriculosaccular sac. Moreover, we detect severe abnormalities of the cochlear sensory hair cells, the stria vascularis looks severely disorganised, Reissner's membrane is collapsed and no endocochlear potential is detected. Myo7a and Kcnj10 expression analysis show a lack of the melanocyte-like intermediate cells in hb/hb stria vascularis, which can explain the absence of endocochlear potential. We use Trp2 as a marker of melanoblasts migrating from the neural crest at E12.5 and show that they do not interdigitate into the developing strial epithelium, associated with abnormal persistence of the basal lamina in the hb/hb cochlea. We perform array CGH, deep sequencing as well as an extensive expression analysis of candidate genes in the headbobber region of hb/hb and littermate controls, and conclude that the headbobber phenotype is caused by: 1) effect of a 648 kb deletion on distal Chr7, resulting in the loss of three protein coding genes (Gpr26, Cpmx2 and Chst15) with expression in the inner ear but unknown function; and 2) indirect, long range effect of the deletion on the expression of neighboring genes on Chr7, associated with downregulation of Hmx3, Hmx2 and Nkx1.2 homeobox transcription factors. Interestingly, deletions of the orthologous region in humans, affecting the same genes, have been reported in nineteen patients with common features including sensorineural hearing loss and vestibular problems. Therefore, we propose that headbobber is a useful model to gain insight into the mechanisms underlying deafness in human 10qter deletion syndrome. PMID:23457544

  5. Myo19 ensures symmetric partitioning of mitochondria and coupling of mitochondrial segregation to cell division.

    PubMed

    Rohn, Jennifer L; Patel, Jigna V; Neumann, Beate; Bulkescher, Jutta; Mchedlishvili, Nunu; McMullan, Rachel C; Quintero, Omar A; Ellenberg, Jan; Baum, Buzz

    2014-11-03

    During animal cell division, an actin-based ring cleaves the cell into two. Problems with this process can cause chromosome missegregation and defects in cytoplasmic inheritance and the partitioning of organelles, which in turn are associated with human diseases. Although much is known about how chromosome segregation is coupled to cell division, the way organelles coordinate their inheritance during partitioning to daughter cells is less well understood. Here, using a high-content live-imaging small interfering RNA screen, we identify Myosin-XIX (Myo19) as a novel regulator of cell division. Previously, this actin-based motor was shown to control the interphase movement of mitochondria. Our analysis shows that Myo19 is indeed localized to mitochondria and that its silencing leads to defects in the distribution of mitochondria within cells and in mitochondrial partitioning at division. Furthermore, many Myo19 RNAi cells undergo stochastic division failure--a phenotype that can be mimicked using a treatment that blocks mitochondrial fission and rescued by decreasing mitochondrial fusion, implying that mitochondria can physically interfere with cytokinesis. Strikingly, using live imaging we also observe the inappropriate movement of mitochondria to the poles of spindles in cells depleted for Myo19 as they enter anaphase. Since this phenocopies the results of an acute loss of actin filaments in anaphase, these data support a model whereby the Myo19 actin-based motor helps to control mitochondrial movement to ensure their faithful segregation during division. The presence of DNA within mitochondria makes their inheritance an especially important aspect of symmetrical cell division. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. The Combined therapy myo-inositol plus D-Chiro-inositol, in a physiological ratio, reduces the cardiovascular risk by improving the lipid profile in PCOS patients.

    PubMed

    Minozzi, M; Nordio, M; Pajalich, R

    2013-02-01

    Women with Polycystic Ovarian Syndrome (PCOS) present several factors that increase the cardiovascular risk, such as insulin resistance and dyslipidemia. Myo-inositol and D-chiro-inositol have been shown to improve insulin resistance, hyperandrogenism and to induce ovulation in PCOS women. However, their effects on dyslipidemia are less clear. The aim of the present study was to evaluate whether the combined therapy myo-inositol plus D-chiro-inositol (in a in a physiological ratio of 40:1) improve the metabolic profile, therefore, reducing cardiovascular risk in PCOS patients. Twenty obese PCOS patients [BMI 33.7 ± 6 kg/m2 (mean ± SD)] were recruited. The lipid profile was assessed by measuring total cholesterol, LDL, HDL and triglycerides before and after 6 months treatment with the combined therapy. Secondary end points included changes in BMI, waist-hip ratio, percentage of body fat, HOMA-IR and blood pressure. The combined therapy myo-inositol and D-chiro-inositol improved LDL levels (3.50 ± 0.8 mmol/L versus, 3 ± 1.2 mmol/L p < 0.05), HDL (1.1 mmol/L ± 0.3 versus 1.6 mmol/L ± 0.4 p < 0.05) and triglycerides (2.3 ± 1.5 mmol/L versus 1.75 ± 1.9 mmol/L p < 0.05). Furthermore, significant improvements in HOMA-IR were also observed. The combined therapy myo-inositol plus D-chiro-inositol is able to improve the metabolic profile of PCOS women, therefore, reducing the cardiovascular risk.

  7. Inositol as putative integrative treatment for PCOS.

    PubMed

    Genazzani, Alessandro D

    2016-12-01

    Studies over the last decade have demonstrated that some polycystic ovary syndrome (PCOS) patients have abnormal insulin sensitivity (insulin resistance), independently from being overweight or obese. This induces the risk of developing type 2 diabetes in such PCOS patients. The use of insulin sensitizers (i.e. metformin), reduces such metabolic, and most hormonal, impairments. As metformin often induces side effects, new integrative strategies have been proposed to treat insulin resistance, such as the use of inositols. Such compounds are mainly represented in humans by two inositol stereoisomers: myo-inositol (MYO) and d-chiro-inositol (DCI). MYO is the precursor of inositol triphosphate, a second messenger that regulates thyroid-stimulating hormone (TSH) and FSH as well as insulin. DCI derives from the conversion of myo-inositol via an insulin-dependent pathway. Several preliminary studies have indicated possible benefits of inositol therapy in PCOS patients, but to date no meta-analysis has been performed. This review aims to give clinical insights for the clinical use of inositol in PCOS. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  8. Novel grading system for quantification of cystic macular lesions in Usher syndrome.

    PubMed

    Sliesoraityte, Ieva; Peto, Tunde; Mohand-Said, Saddek; Sahel, Jose Alain

    2015-12-10

    To evaluate novel grading system used to quantify optical coherence tomography (OCT) scans for cystic macular lesions (CML) in Usher syndrome (USH) patients, focusing on CML associated alterations in MOY7A and USH2A mutations. Two readers evaluated 76 patients' (mean age 42 ± 14 years) data prospectively uploaded on Eurush database. OCT was used to obtain high quality cross-sectional images through the fovea. The CML was graded as none, mild, moderate or severe, depending on the following features set: subretinal fluid without clearly detectable CML boundaries; central macular thickness; largest diameter of CML; calculated mean of all detectable CML; total number of detectable CML; retinal layers affected by CML. Intra-and inter-grader reproducibility was evaluated. CML were observed in 37 % of USH eyes, while 45 % were observed in MYO7A and 29 % in USH2A cases. Of those with CML: 52 % had mild, 22 % had moderate and 26 % had severe changes, respectively. CML were found in following retinal layers: 50 % inner nuclear layer, 44 % outer nuclear layer, 6 % retinal ganglion cell layer. For the inter-grader repeatability analysis, agreements rates for CML were 97 % and kappa statistics was 0.91 (95 % CI 0.83-0.99). For the intra-grader analysis, agreement rates for CML were 98 %, while kappa statistics was 0.96 (95 % CI 0.92-0.99). The novel grading system is a reproducible tool for grading OCT images in USH complicated by CML, and potentially could be used for objective tracking of macular pathology in clinical therapy trials.

  9. Imbalance of plasma amino acids, metabolites and lipids in patients with lysinuric protein intolerance (LPI).

    PubMed

    Kurko, Johanna; Tringham, Maaria; Tanner, Laura; Näntö-Salonen, Kirsti; Vähä-Mäkilä, Mari; Nygren, Heli; Pöhö, Päivi; Lietzen, Niina; Mattila, Ismo; Olkku, Anu; Hyötyläinen, Tuulia; Orešič, Matej; Simell, Olli; Niinikoski, Harri; Mykkänen, Juha

    2016-09-01

    Lysinuric protein intolerance (LPI [MIM 222700]) is an aminoaciduria with defective transport of cationic amino acids in epithelial cells in the small intestine and proximal kidney tubules due to mutations in the SLC7A7 gene. LPI is characterized by protein malnutrition, failure to thrive and hyperammonemia. Many patients also suffer from combined hyperlipidemia and chronic kidney disease (CKD) with an unknown etiology. Here, we studied the plasma metabolomes of the Finnish LPI patients (n=26) and healthy control individuals (n=19) using a targeted platform for analysis of amino acids as well as two analytical platforms with comprehensive coverage of molecular lipids and polar metabolites. Our results demonstrated that LPI patients have a dichotomy of amino acid profiles, with both decreased essential and increased non-essential amino acids. Altered levels of metabolites participating in pathways such as sugar, energy, amino acid and lipid metabolism were observed. Furthermore, of these metabolites, myo-inositol, threonic acid, 2,5-furandicarboxylic acid, galactaric acid, 4-hydroxyphenylacetic acid, indole-3-acetic acid and beta-aminoisobutyric acid associated significantly (P<0.001) with the CKD status. Lipid analysis showed reduced levels of phosphatidylcholines and elevated levels of triacylglycerols, of which long-chain triacylglycerols associated (P<0.01) with CKD. This study revealed an amino acid imbalance affecting the basic cellular metabolism, disturbances in plasma lipid composition suggesting hepatic steatosis and fibrosis and novel metabolites correlating with CKD in LPI. In addition, the CKD-associated metabolite profile along with increased nitrite plasma levels suggests that LPI may be characterized by increased oxidative stress and apoptosis, altered microbial metabolism in the intestine and uremic toxicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Myo-inositol metabolism in appropriately grown and growth-restricted fetuses: a proton magnetic resonance spectroscopy study.

    PubMed

    Story, Lisa; Damodaram, Mellisa S; Supramaniam, Veena; Allsop, Joanna M; Mcguinness, Amy; Patel, Abhilasha; Wylezinska, Marzena; Kumar, Sailesh; Rutherford, Mary A

    2013-09-01

    Myo-inositol (Myo-ins) is a marker of neuroglial cells, being present in the astrocytes of brain tissue, but also functions as an osmolyte. Numbers of astrocytes are known to increase following injury to the brain. Growth-restricted fetuses are at increased risk of later neurodevelopmental impairments even in the absence of overt lesions and despite preserved/increased cerebral blood flow. This study aims to investigate brain Myo-ins metabolism in fetuses with intrauterine growth restriction (IUGR) and evidence of cerebral redistribution using magnetic resonance spectroscopy (MRS) at a short echo time. Biometry and Doppler assessment of blood flow was assessed using ultrasound in 28 fetuses with IUGR and 47 appropriately grown control subjects. MRI was used to exclude overt brain injury. Proton magnetic resonance spectroscopy of the fetal brain was then performed at an echo time of 42 ms to examine the Myo-ins:Choline (Cho), Myo-ins:Creatine (Cr) and Cho:Cr ratios. No alterations in brain Myo-ins:Cho, Myo-ins:Cr or Cho:Cr ratios were detected between appropriately grown and growth restricted fetuses. IUGR is not associated with a measureable difference in brain myo-inositol ratios. This may be due to the protective effects of preserved cerebral blood flow in growth restriction and comparable astrocyte numbers when compared to controls. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Myo-Inositol content determined by myo-inositol biosynthesis and oxidation in blueberry fruit.

    PubMed

    Song, Fangyuan; Su, Hongyan; Yang, Nan; Zhu, Luying; Cheng, Jieshan; Wang, Lei; Cheng, Xianhao

    2016-11-01

    Myo-inositol metabolism in plant edible organs has become the focus of many recent studies because of its benefits to human health and unique functions in plant development. In this study, myo-inositol contents were analyzed during the development of two blueberry cultivars, cv 'Berkeley' and cv 'Bluecrop'. Furthermore, two VcMIPS 1/2 (Vaccinium corymbosum MIPS) genes, one VcIMP (Vaccinium corymbosum IMP) gene and one VcMIOX (Vaccinium corymbosum MIOX) gene were isolated for the first time from blueberry. The expression patterns of VcMIPS2, VcIMP and VcMIOX genes showed a relationship with the change profiles of myo-inositol content during fruit ripening. The results were further confirmed by the analyses of the enzyme activity. Results indicated that both myo-inositol biosynthesis and oxidation played important roles in determining of myo-inositol levels during the development of blueberry. To our knowledge, this report is the first to discuss myo-inositol levels in fruits in terms of biosynthesis and catabolism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Does myo-inositol oxygenase, the only enzyme to catalyze myo-inositol in vivo, play a role in the etiology of polycystic ovarian syndrome?

    PubMed

    Mertoglu, Cuma; Gunay, Murat; Gul, Vahdet; Kulhan, Mehmet; Aktas, Mehmet; Coban, Taha Abdulkadir

    2018-05-01

    In polycystic ovary syndrome (PCOS), myo-inositol (MI) supplements have shown many beneficial effects. In this study, therefore, we aimed to investigate the serum level of myo-inositol oxygenase (MIOX), which is the only enzyme catalyzing MI in vivo, in patients with PCOS. Serum MIOX enzyme levels and other laboratory parameters were compared between sixty patients, who were diagnosed with PCOS for the first time, and sixty healthy individuals at similar age and sex. MIOX serum levels were not different between two groups (p = 0.7428). MIOX median and 95% CI were 19.4 and 10.6-39.1 in the control group and 16.4 and 7.6-46.2 in the patient group respectively. Demographic data, biochemical and hematological parameters, hormone parameters were not different except from the lymphocyte count between the two groups. Lymphocyte count was higher in the patient group. Although the ratio of LH/FSH was higher in the patient group, it was not statistically significant. Our results suggest that serum MIOX levels do not change in PCOS. It was, therefore, concluded that MI deficiency observed in PCOS was not related to the level of MIOX enzyme which cleaves MI.

  13. Deletion of a dynamic surface loop improves stability and changes kinetic behavior of phosphatidylinositol-synthesizing Streptomyces phospholipase D.

    PubMed

    Damnjanović, Jasmina; Nakano, Hideo; Iwasaki, Yugo

    2014-04-01

    Supplementary phosphatidylinositol (PI) was shown to improve lipid metabolism in animals, thus it is interesting for pharmaceutical and nutritional applications. Homogenous PI can be produced in transphosphatidylation of phosphatidylcholine (PC) with myo-inositol catalyzed by phospholipase D (PLD). Only bacterial enzymes able to catalyze PI synthesis are Streptomyces antibioticus PLD (SaPLD) variants, among which DYR (W187D/Y191Y/Y385R) has the best kinetic profile. Increase in PI yield is possible by providing excess of solvated myo-inositol, which is achievable at high temperatures due to its highly temperature-dependent solubility. However, high-temperature PI synthesis requires the thermostable PLD. Previous site-directed combinatorial mutagenesis at the residues of DYR having high B-factor yielded the most improved variant, D40H/T291Y DYR, obtained by the combination of two selected mutations. D40 and T291 are located within dynamic surface loops, D37-G45 (termed D40 loop) and G273-T313. Thus, in this work, thermostabilization of DYR SaPLD was attempted by rational design based on deletion of the D40 loop, generating two variants, Δ37-45 DYR and Δ38-46 DYR PLD. Δ38-46 DYR showed highest thermostability as its activity half-life at 70°C proved 11.7 and 8.0 times longer than that of the DYR and Δ37-45 DYR, respectively. Studies on molecular dynamics predicted Δ38-46 DYR to have the least average RMSD change as temperature dramatically increases. At 60 and 70°C, both mutants synthesized PI in a twofold higher yield compared to the DYR, while at the same time produced less of the hydrolytic side-product, phosphatidic acid. © 2013 Wiley Periodicals, Inc.

  14. Transport and metabolism of indole-3-acetyl-myo-inositol-galactoside in seedlings of Zea mays

    NASA Technical Reports Server (NTRS)

    Komoszynski, M.; Bandurski, R. S.

    1986-01-01

    Indole-3-acetyl-myo-inositol galactoside labeled with 3H in the indole and 14C in the galactose moieties was applied to kernels of 5 day old germinating seedlings of Zea mays. Indole-3-acetyl-myo-inositol galactoside was not transported into either the shoot or root tissue as the intact molecule but was instead hydrolyzed to yield [3H]indole-3-acetyl-myo-inositol and [3H]indole-3-acetic acid which were then transported to the shoot with little radioactivity going to the root. With certain assumption concerning the equilibration of applied [3H]indole-3-acetyl-myo-inositol-[U-14C]galactose with the endogenous pool, it may be concluded that indole-3-acetyl-myo-inositol galactoside in the endosperm supplies about 2 picomoles per plant per hour of indole-3-acetyl-myo-inositol and 1 picomole per plant per hour of indole-3-acetic acid to the shoot and thus is comparable to indole-3-acetyl-myo-inositol as a source of indole-acetic acid for the shoot. Quantitative estimates of the amount of galactose in the kernels suggest that [3H]indole-3-acetyl-myo-inositol-[14C]galactose is hydrolyzed after the compound leaves the endosperm but before it reaches the shoot. In addition, [3H]indole-3-acetyl-myo-inositol-[14C]galactose supplies appreciable amounts of 14C to the shoot and both 14C and 3H to an uncharacterized insoluble fraction of the endosperm.

  15. Phytases Improve Myo-Inositol Bioaccessibility in Rye Bread: A Study Using an In Vitro Method of Digestion and a Caco-2 Cell Culture Model

    PubMed Central

    Cielecka, Emilia Katarzyna; Pierzchalska, Małgorzata; Żyła, Krzysztof

    2015-01-01

    Summary Preparations of 6-phytase A (EC 3.1.3.26) and phytase B (acid phosphatase, EC 3.1.3.2) were applied alone and combined in the preparation of dough to estimate their catalytic potential for myo-inositol liberation from rye flour in the breadmaking technology. The experimental bread samples were ground after baking and subjected to determination of myo-inositol bioavailability by an in vitro method that simulated digestion in a human alimentary tract, followed by measurements of myo-inositol transport through enterocyte- -like differentiated Caco-2 cells to determine its bioaccessibility. Myo-inositol content was measured by a high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) technique. The concentration of myo-inositol in the dialysates of control bread was 25.3 µg/mL, whereas in the dialysates of bread sample baked with 6-phytase A, the concentration increased to 35.4 µg/mL, and in the bread baked with phytase B to 64.98 µg/mL. Simultaneous application of both enzymes resulted in myo-inositol release of 64.04 µg/mL. The highest bioaccessibility of myo-inositol, assessed by the measurement of the passage through the Caco-2 monolayer was determined in the bread baked with the addition of 6-phytase A. Enzymatically modified rye bread, particularly by the addition of 6-phytase A, may be therefore a rich source of a highly bioaccessible myo- -inositol. PMID:27904333

  16. Phytases Improve Myo-Inositol Bioaccessibility in Rye Bread: A Study Using an In Vitro Method of Digestion and a Caco-2 Cell Culture Model.

    PubMed

    Duliński, Robert; Cielecka, Emilia Katarzyna; Pierzchalska, Małgorzata; Żyła, Krzysztof

    2015-03-01

    Preparations of 6-phytase A (EC 3.1.3.26) and phytase B (acid phosphatase, EC 3.1.3.2) were applied alone and combined in the preparation of dough to estimate their catalytic potential for myo- inositol liberation from rye flour in the breadmaking technology. The experimental bread samples were ground after baking and subjected to determination of myo- inositol bioavailability by an in vitro method that simulated digestion in a human alimentary tract, followed by measurements of myo- inositol transport through enterocyte- -like differentiated Caco-2 cells to determine its bioaccessibility. Myo- inositol content was measured by a high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) technique. The concentration of myo- inositol in the dialysates of control bread was 25.3 µg/mL, whereas in the dialysates of bread sample baked with 6-phytase A, the concentration increased to 35.4 µg/mL, and in the bread baked with phytase B to 64.98 µg/mL. Simultaneous application of both enzymes resulted in myo- inositol release of 64.04 µg/mL. The highest bioaccessibility of myo- inositol, assessed by the measurement of the passage through the Caco-2 monolayer was determined in the bread baked with the addition of 6-phytase A. Enzymatically modified rye bread, particularly by the addition of 6-phytase A, may be therefore a rich source of a highly bioaccessible myo - -inositol.

  17. [Analysis of genotype and phenotype correlation of MYH7-V878A mutation among ethnic Han Chinese pedigrees affected with hypertrophic cardiomyopathy].

    PubMed

    Wang, Bo; Guo, Ruiqi; Zuo, Lei; Shao, Hong; Liu, Ying; Wang, Yu; Ju, Yan; Sun, Chao; Wang, Lifeng; Zhang, Yanmin; Liu, Liwen

    2017-08-10

    To analyze the phenotype-genotype correlation of MYH7-V878A mutation. Exonic amplification and high-throughput sequencing of 96-cardiovascular disease-related genes were carried out on probands from 210 pedigrees affected with hypertrophic cardiomyopathy (HCM). For the probands, their family members, and 300 healthy volunteers, the identified MYH7-V878A mutation was verified by Sanger sequencing. Information of the HCM patients and their family members, including clinical data, physical examination, echocardiography (UCG), electrocardiography (ECG), and conserved sequence of the mutation among various species were analyzed. A MYH7-V878A mutation was detected in five HCM pedigrees containing 31 family members. Fourteen members have carried the mutation, among whom 11 were diagnosed with HCM, while 3 did not meet the diagnostic criteria. Some of the fourteen members also carried other mutations. Family members not carrying the mutation had normal UCG and ECG. No MYH7-V878A mutation was found among the 300 healthy volunteers. Analysis of sequence conservation showed that the amino acid is located in highly conserved regions among various species. MYH7-V878A is a hot spot among ethnic Han Chinese with a high penetrance. Functional analysis of the conserved sequences suggested that the mutation may cause significant alteration of the function. MYH7-V878A has a significant value for the early diagnosis of HCM.

  18. Age- and stage-dependent variations of muscle-specific gene expression in brown trout Salmo trutta L.

    PubMed

    Churova, Maria V; Meshcheryakova, Olga V; Ruchev, Mikhail; Nemova, Nina N

    2017-09-01

    This study was conducted to characterize the features of muscle-specific genes expression during development of brown trout Salmo trutta inhabiting the river Krivoy ruchey (Kola Peninsula, Russia). Gene expression levels of myogenic regulatory factors (MRFs - MyoD1 paralogs (MyoD1a, MyoD1b, MyoD1c), Myf5, myogenin), myostatin paralogs (MSTN-1a, MSTN-1b, MSTN-2a), fast skeletal myosin heavy chain (MyHC) were measured in the white muscles of brown trout parr of ages 0+ (under-yearling), 1+ (yearling) and 2+ (two year old) and smolts of age 2+. Multidirectional changes in MyoD1 and MSTN paralogs expression along with myogenin, Myf 5 and MyHC expression levels in white muscles in parr of trout with age were revealed. The expression of MyoD1c, myogenin, MSTN-2a was the highest in 0+ parr and then decreased. MyoD1a/b expression levels didn't differ between age groups. The simultaneous elevation of MyHC, Myf5, MSTN-1a, and MSTN-1b was found in trout yearlings. In smolts, expression levels of MSTN paralogs, MyHC, Myf5, MyoD1a was lower than in parr. But in contrast, the MyoD1c and myogenin mRNA levels was higher in smolts. The study revealed that there are definite patterns in simultaneous muscle-specific genes expression in age groups of parr and smolts. As MyoD and MSTN paralogs expression changed differently in dependence on age and stage, it was suggested that paralogs of the same gene complementarily control myogenesis during development. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. PPARγ and MyoD are differentially regulated by myostatin in adipose-derived stem cells and muscle satellite cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Feng; Deng, Bing; Wen, Jianghui

    2015-03-06

    Myostatin (MSTN) is a secreted protein belonging to the transforming growth factor-β (TGF-β) family that is primarily expressed in skeletal muscle and also functions in adipocyte maturation. Studies have shown that MSTN can inhibit adipogenesis in muscle satellite cells (MSCs) but not in adipose-derived stem cells (ADSCs). However, the mechanism by which MSTN differently regulates adipogenesis in these two cell types remains unknown. Peroxisome proliferator-activated receptor-γ (PPARγ) and myogenic differentiation factor (MyoD) are two key transcription factors in fat and muscle cell development that influence adipogenesis. To investigate whether MSTN differentially regulates PPARγ and MyoD, we analyzed PPARγ and MyoDmore » expression by assessing mRNA, protein and methylation levels in ADSCs and MSCs after treatment with 100 ng/mL MSTN for 0, 24, and 48 h. PPARγ mRNA levels were downregulated after 24 h and upregulated after 48 h of treatment in ADSCs, whereas in MSCs, PPARγ levels were downregulated at both time points. MyoD expression was significantly increased in ADSCs and decreased in MSCs. PPARγ and MyoD protein levels were upregulated in ADSCs and downregulated in MSCs. The CpG methylation levels of the PPARγ and MyoD promoters were decreased in ADSCs and increased in MSCs. Therefore, this study demonstrated that the different regulatory adipogenic roles of MSTN in ADSCs and MSCs act by differentially regulating PPARγ and MyoD expression. - Highlights: • PPARγ and MyoD mRNA and protein levels are upregulated by myostatin in ADSCs. • PPARγ and MyoD mRNA and protein levels are downregulated by myostatin in MSCs. • PPARγ exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • MyoD exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • PPARγ and MyoD are differentially regulated by myostatin in ADSCs and MSCs.« less

  20. Effect of myo-inositol and alpha-lipoic acid on oocyte quality in polycystic ovary syndrome non-obese women undergoing in vitro fertilization: a pilot study.

    PubMed

    Rago, R; Marcucci, I; Leto, G; Caponecchia, L; Salacone, P; Bonanni, P; Fiori, C; Sorrenti, G; Sebastianelli, A

    2015-01-01

    The aim of the present study was to evaluate the effectiveness of the combined administration of myo-inositol and α-lipoic acid in polycystic ovary syndrome (PCOS) patients with normal body mass index (BMI), who had previously undergone intracytoplasmic sperm injection (ICSI) and received myo-inositol alone. Thirty-six of 65 normal-weight patients affected by PCOS who did not achieve pregnancy and one patient who had a spontaneous abortion were re-enrolled and given a cycle of treatment with myo-inositol and α-lipoic acid. For all female partners of the treated couples, the endocrine-metabolic and ultrasound parameters, ovarian volume, oocyte and embryo quality, and pregnancy rates were assessed before and after three months of treatment and compared with those of previous in vitro fertilization (IVF) cycle(s). After supplementation of myo-inositol with α-lipoic acid, insulin levels, BMI and ovarian volume were significantly reduced compared with myo-inositol alone. No differences were found in the fertilization and cleavage rate or in the mean number of transferred embryos between the two different treatments, whereas the number of grade 1 embryos was significantly increased, with a significant reduction in the number of grade 2 embryos treated with myo-inositol plus α-lipoic acid. Clinical pregnancy was not significantly different with a trend for a higher percentage for of myo-inositol and α-lipoic acid compared to the myo-inositol alone group. Our preliminary data suggest that the supplementation of myo-inositol and α-lipoic acid in PCOS patients undergoing an IVF cycle can help to improve their reproductive outcome and also their metabolic profiles, opening potential for their use in long-term prevention of PCOS.

  1. MyoR Modulates Cardiac Conduction by Repressing Gata4

    PubMed Central

    Harris, John P.; Bhakta, Minoti; Bezprozvannaya, Svetlana; Wang, Lin; Lubczyk, Christina; Olson, Eric N.

    2014-01-01

    The cardiac conduction system coordinates electrical activation through a series of interconnected structures, including the atrioventricular node (AVN), the central connection point that delays impulse propagation to optimize cardiac performance. Although recent studies have uncovered important molecular details of AVN formation, relatively little is known about the transcriptional mechanisms that regulate AV delay, the primary function of the mature AVN. We identify here MyoR as a novel transcription factor expressed in Cx30.2+ cells of the AVN. We show that MyoR specifically inhibits a Cx30.2 enhancer required for AVN-specific gene expression. Furthermore, we demonstrate that MyoR interacts directly with Gata4 to mediate transcriptional repression. Our studies reveal that MyoR contains two nonequivalent repression domains. While the MyoR C-terminal repression domain inhibits transcription in a context-dependent manner, the N-terminal repression domain can function in a heterologous context to convert the Hand2 activator into a repressor. In addition, we show that genetic deletion of MyoR in mice increases Cx30.2 expression by 50% and prolongs AV delay by 13%. Taken together, we conclude that MyoR modulates a Gata4-dependent regulatory circuit that establishes proper AV delay, and these findings may have wider implications for the variability of cardiac rhythm observed in the general population. PMID:25487574

  2. Adaptive evolution of the myo6 gene in old world fruit bats (family: pteropodidae).

    PubMed

    Shen, Bin; Han, Xiuqun; Jones, Gareth; Rossiter, Stephen J; Zhang, Shuyi

    2013-01-01

    Myosin VI (encoded by the Myo6 gene) is highly expressed in the inner and outer hair cells of the ear, retina, and polarized epithelial cells such as kidney proximal tubule cells and intestinal enterocytes. The Myo6 gene is thought to be involved in a wide range of physiological functions such as hearing, vision, and clathrin-mediated endocytosis. Bats (Chiroptera) represent one of the most fascinating mammal groups for molecular evolutionary studies of the Myo6 gene. A diversity of specialized adaptations occur among different bat lineages, such as echolocation and associated high-frequency hearing in laryngeal echolocating bats, large eyes and a strong dependence on vision in Old World fruit bats (Pteropodidae), and specialized high-carbohydrate but low-nitrogen diets in both Old World and New World fruit bats (Phyllostomidae). To investigate what role(s) the Myo6 gene might fulfill in bats, we sequenced the coding region of the Myo6 gene in 15 bat species and used molecular evolutionary analyses to detect evidence of positive selection in different bat lineages. We also conducted real-time PCR assays to explore the expression levels of Myo6 in a range of tissues from three representative bat species. Molecular evolutionary analyses revealed that the Myo6 gene, which was widely considered as a hearing gene, has undergone adaptive evolution in the Old World fruit bats which lack laryngeal echolocation and associated high-frequency hearing. Real-time PCR showed the highest expression level of the Myo6 gene in the kidney among ten tissues examined in three bat species, indicating an important role for this gene in kidney function. We suggest that Myo6 has undergone adaptive evolution in Old World fruit bats in relation to receptor-mediated endocytosis for the preservation of protein and essential nutrients.

  3. Whole-Genome SNP Association in the Horse: Identification of a Deletion in Myosin Va Responsible for Lavender Foal Syndrome

    PubMed Central

    Brooks, Samantha A.; Gabreski, Nicole; Miller, Donald; Brisbin, Abra; Brown, Helen E.; Streeter, Cassandra; Mezey, Jason; Cook, Deborah; Antczak, Douglas F.

    2010-01-01

    Lavender Foal Syndrome (LFS) is a lethal inherited disease of horses with a suspected autosomal recessive mode of inheritance. LFS has been primarily diagnosed in a subgroup of the Arabian breed, the Egyptian Arabian horse. The condition is characterized by multiple neurological abnormalities and a dilute coat color. Candidate genes based on comparative phenotypes in mice and humans include the ras-associated protein RAB27a (RAB27A) and myosin Va (MYO5A). Here we report mapping of the locus responsible for LFS using a small set of 36 horses segregating for LFS. These horses were genotyped using a newly available single nucleotide polymorphism (SNP) chip containing 56,402 discriminatory elements. The whole genome scan identified an associated region containing these two functional candidate genes. Exon sequencing of the MYO5A gene from an affected foal revealed a single base deletion in exon 30 that changes the reading frame and introduces a premature stop codon. A PCR–based Restriction Fragment Length Polymorphism (PCR–RFLP) assay was designed and used to investigate the frequency of the mutant gene. All affected horses tested were homozygous for this mutation. Heterozygous carriers were detected in high frequency in families segregating for this trait, and the frequency of carriers in unrelated Egyptian Arabians was 10.3%. The mapping and discovery of the LFS mutation represents the first successful use of whole-genome SNP scanning in the horse for any trait. The RFLP assay can be used to assist breeders in avoiding carrier-to-carrier matings and thus in preventing the birth of affected foals. PMID:20419149

  4. MyoD undergoes a distinct G2/M-specific regulation in muscle cells.

    PubMed

    Batonnet-Pichon, Sabrina; Tintignac, Lionel J; Castro, Anna; Sirri, Valentina; Leibovitch, Marie Pierre; Lorca, Thierry; Leibovitch, Serge A

    2006-12-10

    The transcription factors MyoD and Myf5 present distinct patterns of expression during cell cycle progression and development. In contrast to the mitosis-specific disappearance of Myf5, which requires a D-box-like motif overlapping the basic domain, here we describe a stable and inactive mitotic form of MyoD phosphorylated on its serine 5 and serine 200 residues by cyclin B-cdc2. In mitosis, these modifications are required for releasing MyoD from condensed chromosomes and inhibiting its DNA-binding and transcriptional activation ability. Then, nuclear MyoD regains instability in the beginning of G1 phase due to rapid dephosphorylation events. Moreover, a non-phosphorylable MyoD S5A/S200A is not excluded from condensed chromatin and alters mitotic progression with apparent abnormalities. Thus, the drop of MyoD below a threshold level and its displacement from the mitotic chromatin could present another window in the cell cycle for resetting the myogenic transcriptional program and to maintain the myogenic determination of the proliferating cells.

  5. The transcriptional co-repressor TLE3 regulates myogenic differentiation by repressing the activity of the MyoD transcription factor.

    PubMed

    Kokabu, Shoichiro; Nakatomi, Chihiro; Matsubara, Takuma; Ono, Yusuke; Addison, William N; Lowery, Jonathan W; Urata, Mariko; Hudnall, Aaron M; Hitomi, Suzuro; Nakatomi, Mitsushiro; Sato, Tsuyoshi; Osawa, Kenji; Yoda, Tetsuya; Rosen, Vicki; Jimi, Eijiro

    2017-08-04

    Satellite cells are skeletal muscle stem cells that provide myonuclei for postnatal muscle growth, maintenance, and repair/regeneration in adults. Normally, satellite cells are mitotically quiescent, but they are activated in response to muscle injury, in which case they proliferate extensively and exhibit up-regulated expression of the transcription factor MyoD, a master regulator of myogenesis. MyoD forms a heterodimer with E proteins through their basic helix-loop-helix domain, binds to E boxes in the genome and thereby activates transcription at muscle-specific promoters. The central role of MyoD in muscle differentiation has increased interest in finding potential MyoD regulators. Here we identified transducin-like enhancer of split (TLE3), one of the Groucho/TLE family members, as a regulator of MyoD function during myogenesis. TLE3 was expressed in activated and proliferative satellite cells in which increased TLE3 levels suppressed myogenic differentiation, and, conversely, reduced TLE3 levels promoted myogenesis with a concomitant increase in proliferation. We found that, via its glutamine- and serine/proline-rich domains, TLE3 interferes with MyoD function by disrupting the association between the basic helix-loop-helix domain of MyoD and E proteins. Our findings indicate that TLE3 participates in skeletal muscle homeostasis by dampening satellite cell differentiation via repression of MyoD transcriptional activity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Class III myosins shape the auditory hair bundles by limiting microvilli and stereocilia growth

    PubMed Central

    Lelli, Andrea; Michel, Vincent; Boutet de Monvel, Jacques; Cortese, Matteo; Bosch-Grau, Montserrat; Aghaie, Asadollah; Perfettini, Isabelle; Dupont, Typhaine; Avan, Paul

    2016-01-01

    The precise architecture of hair bundles, the arrays of mechanosensitive microvilli-like stereocilia crowning the auditory hair cells, is essential to hearing. Myosin IIIa, defective in the late-onset deafness form DFNB30, has been proposed to transport espin-1 to the tips of stereocilia, thereby promoting their elongation. We show that Myo3a−/−Myo3b−/− mice lacking myosin IIIa and myosin IIIb are profoundly deaf, whereas Myo3a-cKO Myo3b−/− mice lacking myosin IIIb and losing myosin IIIa postnatally have normal hearing. Myo3a−/−Myo3b−/− cochlear hair bundles display robust mechanoelectrical transduction currents with normal kinetics but show severe embryonic abnormalities whose features rapidly change. These include abnormally tall and numerous microvilli or stereocilia, ungraded stereocilia bundles, and bundle rounding and closure. Surprisingly, espin-1 is properly targeted to Myo3a−/−Myo3b−/− stereocilia tips. Our results uncover the critical role that class III myosins play redundantly in hair-bundle morphogenesis; they unexpectedly limit the elongation of stereocilia and of subsequently regressing microvilli, thus contributing to the early hair bundle shaping. PMID:26754646

  7. Differential expression of myogenic regulatory factor MyoD in pacu skeletal muscle (Piaractus mesopotamicus Holmberg 1887: Serrasalminae, Characidae, Teleostei) during juvenile and adult growth phases.

    PubMed

    de Almeida, Fernanda Losi Alves; Carvalho, Robson Francisco; Pinhal, Danillo; Padovani, Carlos Roberto; Martins, Cesar; Dal Pai-Silva, Maeli

    2008-12-01

    Skeletal muscle is the edible part of the fish. It grows by hypertrophy and hyperplasia, events regulated by differential expression of myogenic regulatory factors (MRFs). The study of muscle growth mechanisms in fish is very important in fish farming development. Pacu (Piaractus mesopotamicus) is one of the most important food species farmed in Brazil and has been extensively used in Brazilian aquaculture programs. The aim of this study was to analyze hyperplasia and hypertrophy and the MRF MyoD expression pattern in skeletal muscle of pacu (P. mesopotamicus) during juvenile and adult growth stages. Juvenile (n=5) and adult (n=5) fish were anaesthetized, sacrificed, and weight (g) and total length (cm) determined. White dorsal region muscle samples were collected and immersed in liquid nitrogen. Transverse sections (10 microm thick) were stained with Haematoxilin-Eosin (HE) for morphological and morphometric analysis. Smallest fiber diameter from 100 muscle fibers per animal was calculated in each growth phase. These fibers were grouped into three classes (<20, 20-50, and >50 microm) to evaluate hypertrophy and hyperplasia in white skeletal muscle. MyoD gene expression was determined by semi-quantitative RT-PCR. PCR products were cloned and sequenced. Juvenile and adult pacu skeletal muscle had similar morphology. The large number of <20 microm diameter muscle fibers observed in juvenile fish confirms active hyperplasia. In adult fish, most fibers were over 50 microm diameter and denote more intense muscle fiber hypertrophy. The MyoD mRNA level in juveniles was higher than in adults. A consensus partial sequence for MyoD gene (338 base pairs) was obtained. The Pacu MyoD nucleotide sequence displayed high similarity among several vertebrates, including teleosts. The differential MyoD gene expression observed in pacu white muscle is possibly related to differences in growth patterns during the phases analyzed, with hyperplasia predominant in juveniles and hypertrophy in adult fish. These results should provide a foundation for understanding the molecular control of skeletal muscle growth in economically important Brazilian species, with a view to improving production quality.

  8. Decreased N-Acetyl Aspartate/Myo-Inositol Ratio in the Posterior Cingulate Cortex Shown by Magnetic Resonance Spectroscopy May Be One of the Risk Markers of Preclinical Alzheimer’s Disease: A 7-Year Follow-Up Study

    PubMed Central

    Waragai, Masaaki; Moriya, Masaru; Nojo, Takeshi

    2017-01-01

    Although molecular positron emission tomography imaging of amyloid and tau proteins can facilitate the detection of preclinical Alzheimer’s disease (AD) pathology, it is not useful in clinical practice. More practical surrogate markers for preclinical AD would provide valuable tools. Thus, we sought to validate the utility of conventional magnetic resonance spectroscopy (MRS) as a screening method for preclinical AD. A total of 289 older participants who were cognitively normal at baseline were clinically followed up for analysis of MRS metabolites, including N-acetyl aspartate (NAA) and myo-inositol (MI) in the posterior cingulate cortex (PCC) for 7 years. The 289 participants were retrospectively divided into five groups 7 years after baseline: 200 (69%) remained cognitively normal; 53 (18%) developed mild cognitive impairment (MCI); 21 (7%) developed AD; eight (2%) developed Parkinson’s disease with normal cognition, and seven (2%) developed dementia with Lewy bodies (DLB). The NAA/MI ratios of the PCC in the AD, MCI, and DLB groups were significantly decreased compared with participants who maintained normal cognition from baseline to 7 years after baseline. MMSE scores 7 years after baseline were significantly correlated with MI/Cr and NAA/MI ratios in the PCC. These results suggest that cognitively normal elderly subjects with low NAA/MI ratios in the PCC might be at risk of progression to clinical AD. Thus, the NAA/MI ratio in the PCC measured with conventional 1H MRS should be reconsidered as a possible adjunctive screening marker of preclinical AD in clinical practice. PMID:28968236

  9. Short-hairpin Mediated Myostatin Knockdown Resulted in Altered Expression of Myogenic Regulatory Factors with Enhanced Myoblast Proliferation in Fetal Myoblast Cells of Goats.

    PubMed

    Kumar, Rohit; Singh, Satyendra Pal; Mitra, Abhijit

    2018-01-02

    Myostatin (MSTN) is a well-known negative regulator of skeletal muscle development. Reduced expression due to natural mutations in the coding region and knockout as well as knockdown of MSTN results in an increase in the muscle mass. In the present study, we demonstrated as high as 60 and 52% downregulation (p < 0.01) of MSTN mRNA and protein in the primary fetal myoblast cells of goats using synthetic shRNAs (n = 3), without any interferon response. We, for the first time, evaluated the effect of MSTN knockdown on the expression of MRFs (namely, MyoD, Myf5), follistatin (FST), and IGFs (IGF-1 & IGF-2) in goat myoblast cells. MSTN knockdown caused an upregulation (p < 0.05) of MyoD and downregulation (p < 0.01) of MYf5 and FST expression. Moreover, we report up to ∼four fold (p < 0.001) enhanced proliferation in myoblasts after four days of culture. The anti-MSTN shRNA demonstrated in the present study could be used for the production of transgenic goats to increase the muscle mass.

  10. A KAP1 phosphorylation switch controls MyoD function during skeletal muscle differentiation.

    PubMed

    Singh, Kulwant; Cassano, Marco; Planet, Evarist; Sebastian, Soji; Jang, Suk Min; Sohi, Gurjeev; Faralli, Hervé; Choi, Jinmi; Youn, Hong-Duk; Dilworth, F Jeffrey; Trono, Didier

    2015-03-01

    The transcriptional activator MyoD serves as a master controller of myogenesis. Often in partnership with Mef2 (myocyte enhancer factor 2), MyoD binds to the promoters of hundreds of muscle genes in proliferating myoblasts yet activates these targets only upon receiving cues that launch differentiation. What regulates this off/on switch of MyoD function has been incompletely understood, although it is known to reflect the action of chromatin modifiers. Here, we identify KAP1 (KRAB [Krüppel-like associated box]-associated protein 1)/TRIM28 (tripartite motif protein 28) as a key regulator of MyoD function. In myoblasts, KAP1 is present with MyoD and Mef2 at many muscle genes, where it acts as a scaffold to recruit not only coactivators such as p300 and LSD1 but also corepressors such as G9a and HDAC1 (histone deacetylase 1), with promoter silencing as the net outcome. Upon differentiation, MSK1-mediated phosphorylation of KAP1 releases the corepressors from the scaffold, unleashing transcriptional activation by MyoD/Mef2 and their positive cofactors. Thus, our results reveal KAP1 as a previously unappreciated interpreter of cell signaling, which modulates the ability of MyoD to drive myogenesis. © 2015 Singh et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Time-series responses of swine plasma metabolites to ingestion of diets containing myo-inositol or phytase.

    PubMed

    Cowieson, Aaron J; Roos, Franz F; Ruckebusch, Jean-Paul; Wilson, Jonathan W; Guggenbuhl, Patrick; Lu, Hang; Ajuwon, Kolapo M; Adeola, Olayiwola

    2017-12-01

    The effect of the ingestion of diets containing either myo-inositol or exogenous phytase on plasma metabolites was examined using 29 kg barrows. The diets were: control (maize, soya, rapeseed, rice bran), control plus 2 g/kg myo-inositol, control plus 1000 phytase units (FYT)/kg or 3000 FYT/kg exogenous phytase. Pigs were housed in a PigTurn device and blood was collected, from jugular catheters, via an automated system at -30, (30 min before feeding), 0, 15, 30, 45, 60, 90, 120, 150, 180, 240, 300 and 360 min post-feeding. The addition of 2 g/kg myo-inositol to the basal diet resulted in an increase in plasma myo-inositol concentration that was evident 45-60 min after diet introduction and persisted to 360 min post-feeding. Similarly, supplementation of the basal diet with either 1000 or 3000 FYT/kg exogenous phytase resulted in an increase in plasma myo-inositol concentration that was still rising 360 min post-feeding. Plasma P concentration was increased over time by the addition of 1000 and 3000 FYT/kg phytase, but not by the addition of myo-inositol. Other plasma metabolites examined were not affected by dietary treatment. It can be concluded that oral delivery of myo-inositol results in rapid increase in plasma myo-inositol concentrations that peak approximately 45-60 min after feeding. Use of supplemental phytase achieves similar increases in myo-inositol concentration in plasma but the appearance is more gradual. Furthermore, supplementation of pig diets with exogenous phytase results in rapid appearance of P in plasma that may be sustained over time relative to diets with no added phytase.

  12. Left-right asymmetry is formed in individual cells by intrinsic cell chirality.

    PubMed

    Hatori, Ryo; Ando, Tadashi; Sasamura, Takeshi; Nakazawa, Naotaka; Nakamura, Mitsutoshi; Taniguchi, Kiichiro; Hozumi, Shunya; Kikuta, Junichi; Ishii, Masaru; Matsuno, Kenji

    2014-08-01

    Many animals show left-right (LR) asymmetric morphology. The mechanisms of LR asymmetric development are evolutionarily divergent, and they remain elusive in invertebrates. Various organs in Drosophila melanogaster show stereotypic LR asymmetry, including the embryonic gut. The Drosophila embryonic hindgut twists 90° left-handedly, thereby generating directional LR asymmetry. We recently revealed that the hindgut epithelial cell is chiral in shape and other properties; this is termed planar cell chirality (PCC). We previously showed by computer modeling that PCC is sufficient to induce the hindgut rotation. In addition, both the PCC and the direction of hindgut twisting are reversed in Myosin31DF (Myo31DF) mutants. Myo31DF encodes Drosophila MyosinID, an actin-based motor protein, whose molecular functions in LR asymmetric development are largely unknown. Here, to understand how PCC directs the asymmetric cell-shape, we analyzed PCC in genetic mosaics composed of cells homozygous for mutant Myo31DF, some of which also overexpressed wild-type Myo31DF. Wild-type cell-shape chirality only formed in the Myo31DF-overexpressing cells, suggesting that cell-shape chirality was established in each cell and reflects intrinsic PCC. A computer model recapitulating the development of this genetic mosaic suggested that mechanical interactions between cells are required for the cell-shape behavior seen in vivo. Our mosaic analysis also suggested that during hindgut rotation in vivo, wild-type Myo31DF suppresses the elongation of cell boundaries, supporting the idea that cell-shape chirality is an intrinsic property determined in each cell. However, the amount and distribution of F-actin and Myosin II, which are known to help generate the contraction force on cell boundaries, did not show differences between Myo31DF mutant cells and wild-type cells, suggesting that the static amount and distribution of these proteins are not involved in the suppression of cell-boundary elongation. Taken together, our results suggest that cell-shape chirality is intrinsically formed in each cell, and that mechanical force from intercellular interactions contributes to its formation and/or maintenance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. The Myosin IXb Motor Activity Targets the Myosin IXb RhoGAP Domain as Cargo to Sites of Actin Polymerization

    PubMed Central

    van den Boom, Frank; Düssmann, Heiko; Uhlenbrock, Katharina; Abouhamed, Marouan

    2007-01-01

    Myosin IXb (Myo9b) is a single-headed processive myosin that exhibits Rho GTPase-activating protein (RhoGAP) activity in its tail region. Using live cell imaging, we determined that Myo9b is recruited to extending lamellipodia, ruffles, and filopodia, the regions of active actin polymerization. A functional motor domain was both necessary and sufficient for targeting Myo9b to these regions. The head domains of class IX myosins comprise a large insertion in loop2. Deletion of the large Myo9b head loop 2 insertion abrogated the enrichment in extending lamellipodia and ruffles, but enhanced significantly the enrichment at the tips of filopodia and retraction fibers. The enrichment in the tips of filopodia and retraction fibers depended on four lysine residues C-terminal to the loop 2 insertion and the tail region. Fluorescence recovery after photobleaching and photoactivation experiments in lamellipodia revealed that the dynamics of Myo9b was comparable to that of actin. The exchange rates depended on the Myo9b motor region and motor activity, and they were also dependent on the turnover of F-actin. These results demonstrate that Myo9b functions as a motorized RhoGAP molecule in regions of actin polymerization and identify Myo9b head sequences important for in vivo motor properties. PMID:17314409

  14. Osmotic regulation of myo-inositol uptake in primary astrocyte cultures.

    PubMed

    Isaacks, R E; Bender, A S; Kim, C Y; Prieto, N M; Norenberg, M D

    1994-03-01

    Uptake of myo-inositol by astrocytes in hypertonic medium (440 mosm/kg H2O) was increased near 3-fold after incubation for 24 hours, which continued for 72 hours, as compared with the uptake by cells cultured in isotonic medium (38 nmoles/mg protein). myo-Inositol uptake by astrocytes cultured in hypotonic medium (180 mosm/kg H2O) for periods up to 72 hours was reduced by 74% to 8 to 10 nmoles/mg protein. Astrocytes incubated in either hypotonic or hypertonic medium for 24 hours and then placed in isotonic medium reversed the initial down- or up-regulation of uptake. Activation of chronic RVD and RVI correlates with regulation of myo-inositol uptake. A 30 to 40 mosm/kg H2O deviation from physiological osmolality can influence myo-inositol homeostasis. The intracellular content of myo-inositol in astrocytes in isotonic medium was 25.6 +/- 1.3 micrograms/mg protein (28 mM). This level of myo-inositol is sufficient for this compound to function as an osmoregulator in primary astrocytes and it is likely to contribute to the maintenance of brain volume.

  15. Ectopic expression of a polyalanine expansion mutant of poly(A)-binding protein N1 in muscle cells in culture inhibits myogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Qishan; Bag, Jnanankur

    2006-02-17

    Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset dominant genetic disease caused by the expansion of a GCG trinucleotide repeat that encodes the polyalanine tract at the N-terminus of the nuclear poly(A)-binding protein (PABPN1). Presence of intranuclear inclusions (INIs) containing PABPN1 aggregates in the skeletal muscles is the hallmark of OPMD. Here, we show that ectopic expression of the mutant PABPN1 produced INIs in a muscle cell culture model and reduced expression of several muscle-specific proteins including {alpha}-actin, slow troponin C, muscle creatine kinase, and two myogenic transcription factors, myogenin and MyoD. However, the levels of two upstream regulators of themore » MyoD gene, the Myf-5 and Pax3/7, were not affected, but both proteins co-localized with the PABPN1 aggregates in the mutant PABPN1 overexpressing cells. In these cells, although myogenin and MyoD levels were reduced, these two transcription factors did not co-localize with the mutant PABPN1 aggregates. Therefore, sequestration of Myf5 and Pax3/7 by the mutant PABPN1 aggregates was a specific effect on these factors. Our results suggest that trapping of these two important myogenic determinants may interfere with an early step in myogenesis.« less

  16. Adaptive Evolution of the Myo6 Gene in Old World Fruit Bats (Family: Pteropodidae)

    PubMed Central

    Shen, Bin; Han, Xiuqun; Jones, Gareth; Rossiter, Stephen J.; Zhang, Shuyi

    2013-01-01

    Myosin VI (encoded by the Myo6 gene) is highly expressed in the inner and outer hair cells of the ear, retina, and polarized epithelial cells such as kidney proximal tubule cells and intestinal enterocytes. The Myo6 gene is thought to be involved in a wide range of physiological functions such as hearing, vision, and clathrin-mediated endocytosis. Bats (Chiroptera) represent one of the most fascinating mammal groups for molecular evolutionary studies of the Myo6 gene. A diversity of specialized adaptations occur among different bat lineages, such as echolocation and associated high-frequency hearing in laryngeal echolocating bats, large eyes and a strong dependence on vision in Old World fruit bats (Pteropodidae), and specialized high-carbohydrate but low-nitrogen diets in both Old World and New World fruit bats (Phyllostomidae). To investigate what role(s) the Myo6 gene might fulfill in bats, we sequenced the coding region of the Myo6 gene in 15 bat species and used molecular evolutionary analyses to detect evidence of positive selection in different bat lineages. We also conducted real-time PCR assays to explore the expression levels of Myo6 in a range of tissues from three representative bat species. Molecular evolutionary analyses revealed that the Myo6 gene, which was widely considered as a hearing gene, has undergone adaptive evolution in the Old World fruit bats which lack laryngeal echolocation and associated high-frequency hearing. Real-time PCR showed the highest expression level of the Myo6 gene in the kidney among ten tissues examined in three bat species, indicating an important role for this gene in kidney function. We suggest that Myo6 has undergone adaptive evolution in Old World fruit bats in relation to receptor-mediated endocytosis for the preservation of protein and essential nutrients. PMID:23620821

  17. An SNP in the MyoD1 gene intron 2 associated with growth and carcass traits in three duck populations.

    PubMed

    Wu, Y; Pi, J S; Pan, A L; Pu, Y J; Du, J P; Shen, J; Liang, Z H; Zhang, J R

    2012-12-01

    Myogenic differentiation 1 (MyoD1) genes belong to the MyoD gene family and play key roles in growth and muscle development. This study was designed to investigate the effects of variants in the MyoD1 gene on duck growth and carcass traits. Three duck populations (Cherry Valley, Jingjiang, and Muscovy) were sampled, their growth and carcass traits were measured, and they were genotyped using the PCR-RFLP method. The results showed one novel polymorphism, an alteration in intron 2 of the MyoD1 gene (A to T). It was associated with the traits of weight at 8 weeks, carcass weight, breast muscle weight, leg muscle weight, eviscerated percentage, percentage of leg muscle weight, dressing percentage, and lean meat percentage. This alteration in intron 2 of MyoD1 may be linked with potential major loci or genes affecting some growth and carcass traits.

  18. Occurrence of myo-inositol and alkyl-substituted polysaccharide in the prey-trapping mucilage of Drosera capensis

    NASA Astrophysics Data System (ADS)

    Kokubun, Tetsuo

    2017-10-01

    The chemical composition of the exudate mucilage droplets of the carnivorous plant Drosera capensis was investigated using nuclear magnetic resonance spectroscopy. The mucilage was found to contain beside a very large molecular weight polysaccharide a significant amount of myo-inositol. It appears that myo-inositol escaped detection due to the commonly applied methodology on the chemical analysis of plant mucilage, such as dialysis, precipitation of polysaccharide component with alcohol, acid hydrolysis and detection of the resultant monosaccharide (aldose) units. The possible functions of myo-inositol in the mucilage droplets and the fate after being washed off from the leaf tentacles are proposed. On the polysaccharide component, the presence of methyl ester and alkyl chain-like moieties could be confirmed. These lipophilic moieties may provide the prey-trapping mucilage with the unique adhesive property onto the hydrophobic insect body parts, as well as onto the nature's well-known superhydrophobic surfaces such as the leaves of the sacred lotus plants. A re-evaluation of the mineral components of the mucilage, reported 40 years ago, is presented from the viewpoints of the current result and plants' natural habitat. A case for re-examination of the well-studied plant mucilaginous materials is made in light of the new findings.

  19. The effect of age and medical comorbidities on in vitro myoblast expansion in women with and without pelvic organ prolapse.

    PubMed

    Price, Danielle Markle; Lane, Felicia L; Craig, Jocelyn B; Nistor, Gabriel; Motakef, Saba; Pham, Quynh-Ahn; Keirstead, Hans

    2014-01-01

    This is an observational study is designed to assess the influence of age, prolapse and medical co-morbidities on myogenic stem cells growth in-vitro. A biopsy of the rectus abdominus muscle was obtained during surgery in patients with and without pelvic organ prolapse (POP). Nuclei number and fiber count were correlated with patient's age, presence of POP, and medical comorbidities. Efficiency of expansion of myogenic stem cells in vitro was calculated. The percentage of Pax7-, MyoD-, and desmin-positive cells was correlated with age, POP status, and medical comorbidities. A total of 17 specimens were obtained; 13 specimens were available for histologic analysis. There was no correlation between patient's age, POP status or medical comorbidities and nuclei or fiber count, growth rate, or the percentage of Pax7- and MyoD-positive cells. Patients with 2 to 4 medical comorbidities were noted to have a significantly lower percentage of desmin-positive cells. Specimens with a higher nuclear count had significantly better cellular expansion. Data were analyzed using Kruskal-Wallis or Wilcoxon rank sum statistics. Multiple medical comorbidities but not patient's age or POP status influenced in vitro myogenic stem cell growth. These data suggest that patients with advancing age or POP may be acceptable autologous donors if treatment of urinary or anal incontinence requires myoblast transplantation.

  20. Metformin vs myoinositol: which is better in obese polycystic ovary syndrome patients? A randomized controlled crossover study.

    PubMed

    Tagliaferri, Valeria; Romualdi, Daniela; Immediata, Valentina; De Cicco, Simona; Di Florio, Christian; Lanzone, Antonio; Guido, Maurizio

    2017-05-01

    Due to the central role of metabolic abnormalities in the pathophysiology of polycystic ovary syndrome (PCOS), insulin sensitizing agents have been proposed as a feasible treatment option. To investigate which is the more effective between metformin and myoinositol (MYO) on hormonal, clinical and metabolic parameters in obese patients with PCOS. Crossover randomized controlled study. Thirty-four PCOS obese women (age: 25·62 ± 4·7 years; BMI: 32·55 ± 5·67 kg/m 2 ) were randomized to receive metformin (850 mg twice a day) or MYO (1000 mg twice a day) for 6 months. After a 3 month washout, the same subjects received the other compound for the following 6 months. Ultrasonographic pelvic examinations, hirsutism score, anthropometric and menstrual pattern evaluation, hormonal profile assays, oral glucose tolerance test (OGTT) and lipid profile at baseline and after 6 months of treatment were performed. Both metformin and MYO significantly reduced the insulin response to OGTT and improved insulin sensitivity. Metformin significantly decreased body weight and improved menstrual pattern and Ferriman-Gallwey score. Metformin treatment was also associated with a significant decrease in LH and oestradiol levels, androgens and anti-müllerian hormone levels. None of these clinical and hormonal changes were observed during MYO administration. Both treatments improved the glyco-insulinaemic features of obese PCOS patients, but only metformin seems to exert a beneficial effect on the endocrine and clinical features of the syndrome. © 2017 John Wiley & Sons Ltd.

  1. MyRIP interaction with MyoVa on secretory granules is controlled by the cAMP-PKA pathway.

    PubMed

    Brozzi, Flora; Lajus, Sophie; Diraison, Frederique; Rajatileka, Shavanthi; Hayward, Katy; Regazzi, Romano; Molnár, Elek; Váradi, Anikó

    2012-11-01

    Myosin- and Rab-interacting protein (MyRIP), which belongs to the protein kinase A (PKA)-anchoring family, is implicated in hormone secretion. However, its mechanism of action is not fully elucidated. Here we investigate the role of MyRIP in myosin Va (MyoVa)-dependent secretory granule (SG) transport and secretion in pancreatic beta cells. These cells solely express the brain isoform of MyoVa (BR-MyoVa), which is a key motor protein in SG transport. In vitro pull-down, coimmunoprecipitation, and colocalization studies revealed that MyRIP does not interact with BR-MyoVa in glucose-stimulated pancreatic beta cells, suggesting that, contrary to previous notions, MyRIP does not link this motor protein to SGs. Glucose-stimulated insulin secretion is augmented by incretin hormones, which increase cAMP levels and leads to MyRIP phosphorylation, its interaction with BR-MyoVa, and phosphorylation of the BR-MyoVa receptor rabphilin-3A (Rph-3A). Rph-3A phosphorylation on Ser-234 was inhibited by small interfering RNA knockdown of MyRIP, which also reduced cAMP-mediated hormone secretion. Demonstrating the importance of this phosphorylation, nonphosphorylatable and phosphomimic Rph-3A mutants significantly altered hormone release when PKA was activated. These data suggest that MyRIP only forms a functional protein complex with BR-MyoVa on SGs when cAMP is elevated and under this condition facilitates phosphorylation of SG-associated proteins, which in turn can enhance secretion.

  2. Culturing muscle fibres in hanging drop: a novel approach to solve an old problem.

    PubMed

    Archacka, Karolina; Pozzobon, Michela; Repele, Andrea; Rossi, Carlo Alberto; Campanella, Michelangelo; De Coppi, Paolo

    2014-02-01

    The satellite cells (SCs) associated with muscle fibres play a key role in postnatal growth and regeneration of skeletal muscle. Commonly used methods of isolation and in vitro culture of SCs lead to the mixture of their subpopulations that exist within muscle. To solve this problem, we used the well established technique, the hanging drop system, to culture SCs in a three-dimensional environment and thus, to monitor them in their original niche. Using hanging drop technique, we were able to culture SCs associated with the fibre at least for 9 days with one transfer of fibres to the fresh drops. In comparison, in the classical method of myofibres culture, that is, on the dishes coated with Matrigel, SCs leave the fibres within 3 days after the isolation. Cells cultured in both systems differed in expression of Pax7 and MyoD. While almost all cells cultured in adhesion system expressed MyoD before the fifth day of the culture, the majority of SCs cultured in hanging drop still maintained expression of Pax7 and were not characterised by the presence of MyoD. Among the cells cultured with single myofibre for up to 9 days, we identified two different subclones of SCs: low proliferative clone and high proliferative clone, which differed in proliferation rate and membrane potential. The hanging drop enables the myofibres to be kept in suspension for at least 9 days, and thus, allows SCs and their niche to interact each other for prolonged time. In a consequence, SCs cultured in hanging drop maintain expression of Pax7 while those cultured in a traditional adhesion culture, that is, devoid of signals from the original niche, activate and preferentially undergo differentiation as manifested by expression of MyoD. Thus, the innovative method of SCs culturing in the hanging drop system may serve as a useful tool to study the fate of different subpopulations of these cells in their anatomical location and to determine reciprocal interactions between them and their niche. © 2013 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  3. Inositol bisphosphate and inositol trisphosphate inhibit cell-to-cell passage of carboxyfluorescein in staminal hairs ofSetcreasea purpurea.

    PubMed

    Tucker, E B

    1988-06-01

    pH-buffered carboxyfluorescein (Buffered-CF) alone (control), or Buffered-CF solutions containing one of the following: (1)D-myo-inositol (I); (2)D-myo-inositol 2-monophosphate (IP1); (3)D-myo-inositol 1,4-bisphosphate (IP2); (4)D-myo-inositol 1,4,5-trisphosphate (IP3); (5)D-fructose 2,6-diphosphate (F-2,6P2) were microinjected into the terminal cells of staminal hairs ofSetcreasea purpurea Boom. Passage of the CF from this terminal cell along the chain of cells towards the filament was monitored for 5 min using fluorescence microscopy and quantified using computer-assisted fluorescence-intensity video analysis. Cell-to-cell transport of CF in hairs microinjected with Buffered-CF containing either I, IP1 or F-2,6P2 was similar to that in hairs microinjected with Buffered-CF only. On the other hand, cell-to-cell transport of CF in hairs microinjected with Buffered-CF containing either IP2 or IP3 was inhibited. These results indicate that polyphosphoinositols may be involved in the regulation of intercellular transport of low-molecular-weight, hydrophilic molecules in plants.

  4. Using CRISPR/Cas9-mediated gene editing to further explore growth and trade-off effects in myostatin-mutated F4 medaka (Oryzias latipes).

    PubMed

    Yeh, Ying-Chun; Kinoshita, Masato; Ng, Tze Hann; Chang, Yu-Hsuan; Maekawa, Shun; Chiang, Yi-An; Aoki, Takashi; Wang, Han-Ching

    2017-09-12

    Myostatin (MSTN) suppresses skeletal muscle development and growth in mammals, but its role in fish is less well understood. Here we used CRISPR/Cas9 to mutate the MSTN gene in medaka (Oryzias latipes) and evaluate subsequent growth performance. We produced mutant F0 fish that carried different frameshifts in the OlMSTN coding sequence and confirmed the heritability of the mutant genotypes to the F1 generation. Two F1 fish with the same heterozygous frame-shifted genomic mutations (a 22 bp insertion in one allele; a 32 bp insertion in the other) were then crossbred to produce subsequent generations (F2~F5). Body length and weight of the MSTN -/- F4 medaka were significantly higher than in the wild type fish, and muscle fiber density in the inner and outer compartments of the epaxial muscles was decreased, suggesting that MSTN null mutation induces muscle hypertrophy. From 3~4 weeks post hatching (wph), the expression of three major myogenic related factors (MRFs), MyoD, Myf5 and Myogenin, was also significantly upregulated. Some medaka had a spinal deformity, and we also observed a trade-off between growth and immunity in MSTN -/- F4 medaka. Reproduction was unimpaired in the fast-growth phenotypes.

  5. Mouse Nuclear Myosin I Knock-Out Shows Interchangeability and Redundancy of Myosin Isoforms in the Cell Nucleus

    PubMed Central

    Venit, Tomáš; Dzijak, Rastislav; Kalendová, Alžběta; Kahle, Michal; Rohožková, Jana; Schmidt, Volker; Rülicke, Thomas; Rathkolb, Birgit; Hans, Wolfgang; Bohla, Alexander; Eickelberg, Oliver; Stoeger, Tobias; Wolf, Eckhard; Yildirim, Ali Önder; Gailus-Durner, Valérie; Fuchs, Helmut; de Angelis, Martin Hrabě; Hozák, Pavel

    2013-01-01

    Background Nuclear myosin I (NM1) is a nuclear isoform of the well-known “cytoplasmic” Myosin 1c protein (Myo1c). Located on the 11th chromosome in mice, NM1 results from an alternative start of transcription of the Myo1c gene adding an extra 16 amino acids at the N-terminus. Previous studies revealed its roles in RNA Polymerase I and RNA Polymerase II transcription, chromatin remodeling, and chromosomal movements. Its nuclear localization signal is localized in the middle of the molecule and therefore directs both Myosin 1c isoforms to the nucleus. Methodology/Principal Findings In order to trace specific functions of the NM1 isoform, we generated mice lacking the NM1 start codon without affecting the cytoplasmic Myo1c protein. Mutant mice were analyzed in a comprehensive phenotypic screen in cooperation with the German Mouse Clinic. Strikingly, no obvious phenotype related to previously described functions has been observed. However, we found minor changes in bone mineral density and the number and size of red blood cells in knock-out mice, which are most probably not related to previously described functions of NM1 in the nucleus. In Myo1c/NM1 depleted U2OS cells, the level of Pol I transcription was restored by overexpression of shRNA-resistant mouse Myo1c. Moreover, we found Myo1c interacting with Pol II. The ratio between Myo1c and NM1 proteins were similar in the nucleus and deletion of NM1 did not cause any compensatory overexpression of Myo1c protein. Conclusion/Significance We observed that Myo1c can replace NM1 in its nuclear functions. Amount of both proteins is nearly equal and NM1 knock-out does not cause any compensatory overexpression of Myo1c. We therefore suggest that both isoforms can substitute each other in nuclear processes. PMID:23593477

  6. Mouse nuclear myosin I knock-out shows interchangeability and redundancy of myosin isoforms in the cell nucleus.

    PubMed

    Venit, Tomáš; Dzijak, Rastislav; Kalendová, Alžběta; Kahle, Michal; Rohožková, Jana; Schmidt, Volker; Rülicke, Thomas; Rathkolb, Birgit; Hans, Wolfgang; Bohla, Alexander; Eickelberg, Oliver; Stoeger, Tobias; Wolf, Eckhard; Yildirim, Ali Önder; Gailus-Durner, Valérie; Fuchs, Helmut; de Angelis, Martin Hrabě; Hozák, Pavel

    2013-01-01

    Nuclear myosin I (NM1) is a nuclear isoform of the well-known "cytoplasmic" Myosin 1c protein (Myo1c). Located on the 11(th) chromosome in mice, NM1 results from an alternative start of transcription of the Myo1c gene adding an extra 16 amino acids at the N-terminus. Previous studies revealed its roles in RNA Polymerase I and RNA Polymerase II transcription, chromatin remodeling, and chromosomal movements. Its nuclear localization signal is localized in the middle of the molecule and therefore directs both Myosin 1c isoforms to the nucleus. In order to trace specific functions of the NM1 isoform, we generated mice lacking the NM1 start codon without affecting the cytoplasmic Myo1c protein. Mutant mice were analyzed in a comprehensive phenotypic screen in cooperation with the German Mouse Clinic. Strikingly, no obvious phenotype related to previously described functions has been observed. However, we found minor changes in bone mineral density and the number and size of red blood cells in knock-out mice, which are most probably not related to previously described functions of NM1 in the nucleus. In Myo1c/NM1 depleted U2OS cells, the level of Pol I transcription was restored by overexpression of shRNA-resistant mouse Myo1c. Moreover, we found Myo1c interacting with Pol II. The ratio between Myo1c and NM1 proteins were similar in the nucleus and deletion of NM1 did not cause any compensatory overexpression of Myo1c protein. We observed that Myo1c can replace NM1 in its nuclear functions. Amount of both proteins is nearly equal and NM1 knock-out does not cause any compensatory overexpression of Myo1c. We therefore suggest that both isoforms can substitute each other in nuclear processes.

  7. Fission yeast tropomyosin specifies directed transport of myosin-V along actin cables

    PubMed Central

    Clayton, Joseph E.; Pollard, Luther W.; Sckolnick, Maria; Bookwalter, Carol S.; Hodges, Alex R.; Trybus, Kathleen M.; Lord, Matthew

    2014-01-01

    A hallmark of class-V myosins is their processivity—the ability to take multiple steps along actin filaments without dissociating. Our previous work suggested, however, that the fission yeast myosin-V (Myo52p) is a nonprocessive motor whose activity is enhanced by tropomyosin (Cdc8p). Here we investigate the molecular mechanism and physiological relevance of tropomyosin-mediated regulation of Myo52p transport, using a combination of in vitro and in vivo approaches. Single molecules of Myo52p, visualized by total internal reflection fluorescence microscopy, moved processively only when Cdc8p was present on actin filaments. Small ensembles of Myo52p bound to a quantum dot, mimicking the number of motors bound to physiological cargo, also required Cdc8p for continuous motion. Although a truncated form of Myo52p that lacked a cargo-binding domain failed to support function in vivo, it still underwent actin-dependent movement to polarized growth sites. This result suggests that truncated Myo52p lacking cargo, or single molecules of wild-type Myo52p with small cargoes, can undergo processive movement along actin-Cdc8p cables in vivo. Our findings outline a mechanism by which tropomyosin facilitates sorting of transport to specific actin tracks within the cell by switching on myosin processivity. PMID:24196839

  8. The role of primary myogenic regulatory factors in the developing diaphragmatic muscle in the nitrofen-induced diaphragmatic hernia.

    PubMed

    Dingemann, Jens; Doi, Takashi; Ruttenstock, Elke; Puri, Prem

    2011-06-01

    The nitrofen model of congenital diaphragmatic hernia (CDH) is widely used to investigate the pathogenesis of CDH. However, the exact pathomechanism of the diaphragmatic defect is still unclear. Diaphragmatic muscularization represents the last stage of diaphragmatic development. Myogenic differentiation 1 (MyoD) and myogenic factor 5 (Myf5) play a crucial role in muscularization. MyoD(-/-) : Myf5(+/-) mutant mice show reduced diaphragmatic size, whereas MyoD(+/-) : Myf5(-/-) mutants have normal diaphragms. We designed this study to investigate diaphragmatic gene expression of MyoD and Myf5 in the nitrofen CDH model. Pregnant rats received nitrofen or vehicle on day 9 of gestation (D9), followed by cesarean section on D18 and D21. Fetal diaphragms (n = 40) were micro-dissected and divided into CDH group and controls. MyoD and Myf5 mRNA-expression were determined using Real-time PCR. Immunohistochemistry was performed to evaluate protein expression of MyoD and Myf5. Relative diaphragmatic mRNA expression levels and immunoreactivity of MyoD were decreased in the CDH group on D18 and D21. Myf 5 mRNA and protein expression were not altered in the CDH group. This is the first study showing that MyoD expression is selectively decreased in the diaphragm muscle in the nitrofen model of CDH.

  9. Asymmetric distribution of glucose and indole-3-acetyl-myo-inositol in geostimulated Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Momonoki, Y. S.; Bandurski, R. S. (Principal Investigator)

    1988-01-01

    Indole-3-acetyl-myo-inositol occurs in both the kernel and vegetative shoot of germinating Zea mays seedlings. The effect of a gravitational stimulus on the transport of [3H]-5-indole-3-acetyl-myo-inositol and [U-14C]-D-glucose from the kernel to the seedling shoot was studied. Both labeled glucose and labeled indole-3-acetyl-myo-inositol become asymmetrically distributed in the mesocotyl cortex of the shoot with more radioactivity occurring in the bottom half of a horizontally placed seedling. Asymmetric distribution of [3H]indole-3-acetic acid, derived from the applied [3H]indole-3-acetyl-myo-inositol, occurred more rapidly than distribution of total 3H-radioactivity. These findings demonstrate that the gravitational stimulus can induce an asymmetric distribution of substances being transported from kernel to shoot. They also indicate that, in addition to the transport asymmetry, gravity affects the steady state amount of indole-3-acetic acid derived from indole-3-acetyl-myo-inositol.

  10. A Myo6 mutation destroys coordination between the myosin heads, revealing new functions of myosin VI in the stereocilia of mammalian inner ear hair cells.

    PubMed

    Hertzano, Ronna; Shalit, Ella; Rzadzinska, Agnieszka K; Dror, Amiel A; Song, Lin; Ron, Uri; Tan, Joshua T; Shitrit, Alina Starovolsky; Fuchs, Helmut; Hasson, Tama; Ben-Tal, Nir; Sweeney, H Lee; de Angelis, Martin Hrabe; Steel, Karen P; Avraham, Karen B

    2008-10-03

    Myosin VI, found in organisms from Caenorhabditis elegans to humans, is essential for auditory and vestibular function in mammals, since genetic mutations lead to hearing impairment and vestibular dysfunction in both humans and mice. Here, we show that a missense mutation in this molecular motor in an ENU-generated mouse model, Tailchaser, disrupts myosin VI function. Structural changes in the Tailchaser hair bundles include mislocalization of the kinocilia and branching of stereocilia. Transfection of GFP-labeled myosin VI into epithelial cells and delivery of endocytic vesicles to the early endosome revealed that the mutant phenotype displays disrupted motor function. The actin-activated ATPase rates measured for the D179Y mutation are decreased, and indicate loss of coordination of the myosin VI heads or 'gating' in the dimer form. Proper coordination is required for walking processively along, or anchoring to, actin filaments, and is apparently destroyed by the proximity of the mutation to the nucleotide-binding pocket. This loss of myosin VI function may not allow myosin VI to transport its cargoes appropriately at the base and within the stereocilia, or to anchor the membrane of stereocilia to actin filaments via its cargos, both of which lead to structural changes in the stereocilia of myosin VI-impaired hair cells, and ultimately leading to deafness.

  11. GATA4-mediated cardiac hypertrophy induced by D-myo-inositol 1,4,5-tris-phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Zhiming; Zhu Shanjun; Liu Daoyan

    2005-12-16

    We evaluated the effects of D-myo-inositol 1,4,5-tris-phosphate on cardiac hypertrophy. D-myo-inositol 1,4,5-tris-phosphate augmented cardiac hypertrophy as evidenced by its effects on DNA synthesis, protein synthesis, and expression of immediate-early genes c-myc and c-fos, {beta}-myosin heavy chain, and {alpha}-actin. The administration of D-myo-inositol 1,4,5-tris-phosphate increased the expression of nuclear factor of activated T-cells and cardiac-restricted zinc finger transcription factor (GATA4). Real-time quantitative RT-PCR showed that D-myo-inositol 1,4,5-tris-phosphate-induced GATA4 mRNA was significantly enhanced even in the presence of the calcineurin inhibitor, cyclosporine A. The effect of D-myo-inositol 1,4,5-tris-phosphate was blocked after inhibition of inositol-trisphosphate receptors but not after inhibition of c-Raf/mitogen-activated proteinmore » kinase kinase (MEK)/mitogen-activated protein kinase (ERK) or p38 mitogen-activated protein kinase pathways. The study shows that D-myo-inositol 1,4,5-tris-phosphate-induced cardiac hypertrophy is mediated by GATA4 but independent from the calcineurin pathway.« less

  12. Uncoupling of attenuated myo-(3H)inositol uptake and dysfunction in Na(+)-K(+)-ATPase pumping activity in hypergalactosemic cultured bovine lens epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cammarata, P.R.; Tse, D.; Yorio, T.

    1991-06-01

    Attenuation of both the active transport of myo-inositol and Na(+)-K(+)-ATPase pumping activity has been implicated in the onset of sugar cataract and other diabetic complications in cell culture and animal models of the disease. Cultured bovine lens epithelial cells (BLECs) maintained in galactose-free Eagle's minimal essential medium (MEM) or 40 mM galactose with and without sorbinil for up to 5 days were examined to determine the temporal effects of hypergalactosemia on Na(+)-K(+)-ATPase and myo-inositol uptake. The Na(+)-K(+)-ATPase pumping activity after 5 days of continuous exposure to galactose did not change, as demonstrated by 86Rb uptake. The uptake of myo-(3H)inositol wasmore » lowered after 20 h of incubation in galactose and remained below that of the control throughout the 5-day exposure period. The coadministration of sorbinil to the galactose medium normalized the myo-(3H)inositol uptake. No significant difference in the rates of passive efflux of myo-(3H)inositol or 86Rb from preloaded galactose-treated and control cultures was observed. Culture-media reversal studies were also carried out to determine whether the galactose-induced dysfunction in myo-inositol uptake could be corrected. BLECs were incubated in galactose for 5 days, then changed to galactose-free physiological medium with and without sorbinil for a 1-day recovery period. myo-Inositol uptake was reduced to 34% of control after 6 days of continuous exposure to galactose. Within 24 h of media reversal, myo-inositol uptake returned to or exceeded control values in BLECs switched to either MEM or MEM with sorbinil.2+ reversible and occurred independently of changes in Na(+)-K(+)-ATPase pumping activity in cultured lens epithelium, indicating that the two parameters are not strictly associated and that the deficit in myo-inositol uptake occurs rapidly during hypergalactosemia.« less

  13. 1H MRS spectroscopy in preclinical autosomal dominant Alzheimer disease.

    PubMed

    Joe, Elizabeth; Medina, Luis D; Ringman, John M; O'Neill, Joseph

    2018-06-16

    1 H magnetic resonance spectroscopy (MRS) can reveal changes in brain biochemistry in vivo in humans and has been applied to late onset Alzheimer disease (AD). Carriers of mutations for autosomal dominant Alzheimer disease (ADAD) may show changes in levels of metabolites prior to the onset of clinical symptoms. Proton MR spectra were acquired at 1.5 T for 16 cognitively asymptomatic or mildly symptomatic mutation carriers (CDR < 1) and 11 non-carriers as part of a comprehensive cross-sectional study of preclinical ADAD. Levels of N-acetyl-aspartate+N-acetyl-aspartyl-glutamate (NAA), glutamate/glutamine (Glx), creatine/phosphocreate (Cr), choline (Cho), and myo-inositol (mI) in the left and right anterior cingulate and midline posterior cingulate and precuneus were compared between mutation carriers (MCs) and non-carriers (NCs) using multivariate analysis of variance with age as a covariate. Among MCs, correlations between metabolite levels and time until expected age of dementia diagnosis were calculated. MCs had significantly lower levels of NAA and Glx in the left pregenual anterior cingulate cortex, and lower levels of NAA and higher levels of mI and Cho in the precuneus compared to NCs. Increased levels of mI were seen in these regions in association with increased proximity to expected age of dementia onset. MRS shows effects of ADAD similar to those seen in late onset AD even during the preclinical period including lower levels of NAA and higher levels of mI. These indices of neuronal and glial dysfunction might serve as surrogate outcome measures in prevention studies of putative disease-modifying agents.

  14. Expression profiles and associations of muscle regulatory factor (MRF) genes with growth traits in Tibetan chickens.

    PubMed

    Zhang, R; Li, R; Zhi, L; Xu, Y; Lin, Y; Chen, L

    2018-02-01

    1. Muscle regulatory factors (MRFs), including Myf5, Myf6 (MRF4/herculin), MyoD and MyoG (myogenin), play pivotal roles in muscle growth and development. Therefore, they are considered as candidate genes for meat production traits in livestock and poultry. 2. The objective of this study was to investigate the expression profiles of these genes in skeletal muscles (breast muscle and thigh muscle) at 5 developmental stages (0, 81, 119, 154 and 210 d old) of Tibetan chickens. Relationships between expressions of these genes and growth and carcass traits in these chickens were also estimated. 3. The expression profiles showed that in the breast muscle of both genders the mRNA levels of MRF genes were highest on the day of hatching, then declined significantly from d 0 to d 81, and fluctuated in a certain range from d 81 to d 210. However, the expression of Myf5, Myf6 and MyoG reached peaks in the thigh muscle in 118-d-old females and for MyoD in 154-d-old females, whereas the mRNA amounts of MRF genes in the male thigh muscle were in a narrow range from d 0 to d 210. 4. Correlation analysis suggested that gender had an influence on the relationships of MRF gene expression with growth traits. The RNA levels of MyoD, Myf5 genes in male breast muscle were positively related with several growth traits of Tibetan chickens (P < 0.05). No correlation was found between expressions of MRF genes and carcass traits of the chickens. 5. These results will provide a base for functional studies of MRF genes on growth and development of Tibetan chickens, as well as selective breeding and resource exploration.

  15. Targeting of Chitin Synthase 3 to Polarized Growth Sites in Yeast Requires Chs5p and Myo2p

    PubMed Central

    Santos, Beatriz; Snyder, Michael

    1997-01-01

    Chitin is an essential structural component of the yeast cell wall whose deposition is regulated throughout the yeast life cycle. The temporal and spatial regulation of chitin synthesis was investigated during vegetative growth and mating of Saccharomyces cerevisiae by localization of the putative catalytic subunit of chitin synthase III, Chs3p, and its regulator, Chs5p. Immunolocalization of epitope-tagged Chs3p revealed a novel localization pattern that is cell cycledependent. Chs3p is polarized as a diffuse ring at the incipient bud site and at the neck between the mother and bud in small-budded cells; it is not found at the neck in large-budded cells containing a single nucleus. In large-budded cells undergoing cytokinesis, it reappears as a ring at the neck. In cells responding to mating pheromone, Chs3p is found throughout the projection. The appearance of Chs3p at cortical sites correlates with times that chitin synthesis is expected to occur. In addition to its localization at the incipient bud site and neck, Chs3p is also found in cytoplasmic patches in cells at different stages of the cell cycle. Epitope-tagged Chs5p also localizes to cytoplasmic patches; these patches contain Kex2p, a late Golgi-associated enzyme. Unlike Chs3p, Chs5p does not accumulate at the incipient bud site or neck. Nearly all Chs3p patches contain Chs5p, whereas some Chs5p patches lack detectable Chs3p. In the absence of Chs5p, Chs3p localizes in cytoplasmic patches, but it is no longer found at the neck or the incipient bud site, indicating that Chs5p is required for the polarization of Chs3p. Furthermore, Chs5p localization is not affected either by temperature shift or by the myo2-66 mutation, however, Chs3p polarization is affected by temperature shift and myo2-66. We suggest a model in which Chs3p polarization to cortical sites in yeast is dependent on both Chs5p and the actin cytoskeleton/Myo2p. PMID:9008706

  16. Magnetic resonance spectroscopic analysis of neurometabolite changes in the developing rat brain at 7T.

    PubMed

    Ramu, Jaivijay; Konak, Tetyana; Liachenko, Serguei

    2016-11-15

    We utilized proton magnetic resonance spectroscopy to evaluate the metabolic profile of the hippocampus and anterior cingulate cortex of the developing rat brain from postnatal days 14-70. Measured metabolite concentrations were modeled using linear, exponential, or logarithmic functions and the time point at which the data reached plateau (i.e. when the portion of the data could be fit to horizontal line) was estimated and was interpreted as the time when the brain has reached maturity with respect to that metabolite. N-acetyl-aspartate and myo-inositol increased within the observed period. Gluthathione did not vary significantly, while taurine decreased initially and then stabilized. Phosphocreatine and total creatine had a tendency to increase towards the end of the experiment. Some differences between our data and the published literature were observed in the concentrations and dynamics of phosphocreatine, myo-inositol, and GABA in the hippocampus and creatine, GABA, glutamine, choline and N-acetyl-aspartate in the cortex. Such differences may be attributed to experimental conditions, analysis approaches and animal species. The latter is supported by differences between in-house rat colony and rats from Charles River Labs. Spectroscopy provides a valuable tool for non-invasive brain neurochemical profiling for use in developmental neurobiology research. Special attention needs to be paid to important sources of variation like animal strain and commercial source. Published by Elsevier B.V.

  17. High final energy of gallium arsenide laser increases MyoD gene expression during the intermediate phase of muscle regeneration after cryoinjury in rats.

    PubMed

    Santos, Caroline Pereira; Aguiar, Andreo Fernando; Giometti, Ines Cristina; Mariano, Thaoan Bruno; de Freitas, Carlos Eduardo Assumpção; Nai, Gisele Alborghetti; de Freitas, Selma Zambelli; Pai-Silva, Maeli Dal; Pacagnelli, Francis Lopes

    2018-05-01

    The aim of this study was to determine the effects of gallium arsenide (GaAs) laser on IGF-I, MyoD, MAFbx, and TNF-α gene expression during the intermediate phase of muscle regeneration after cryoinjury 21 Wistar rats were divided into three groups (n = 7 per group): untreated with no injury (control group), cryoinjury without GaAs (injured group), and cryoinjury with GaAs (GaAs-injured group). The cryoinjury was induced in the central region of the tibialis anterior muscle (TA). The region injured was irradiated once a day during 14 days using GaAs laser (904 nm; spot size 0.035 cm 2 , output power 50 mW; energy density 69 J cm -2 ; exposure time 4 s per point; final energy 4.8 J). Twenty-four hours after the last application, the right and left TA muscles were collected for histological (collagen content) and molecular (gene expression of IGF-I, MyoD, MAFbx, and TNF-α) analyses, respectively. Data were analyzed using one-way ANOVA at P < 0.05. There were no significant (P > 0.05) differences in collagen density and IGF-I gene expression in all experimental groups. There were similar (P < 0.05) decreases in MAFbx and TNF-α gene expression in the injured and GaAs-injured groups, compared to control group. The MyoD gene expression increased (P = 0.008) in the GaAs-injured group, but not in the injured group (P = 0.338), compared to control group. GaAs laser therapy had a positive effect on MyoD gene expression, but not IGF-I, MAFbx, and TNF-α, during intermediary phases (14 days post-injury) of muscle repair.

  18. Specific nuclear localizing sequence directs two myosin isoforms to the cell nucleus in calmodulin-sensitive manner.

    PubMed

    Dzijak, Rastislav; Yildirim, Sukriye; Kahle, Michal; Novák, Petr; Hnilicová, Jarmila; Venit, Tomáš; Hozák, Pavel

    2012-01-01

    Nuclear myosin I (NM1) was the first molecular motor identified in the cell nucleus. Together with nuclear actin, they participate in crucial nuclear events such as transcription, chromatin movements, and chromatin remodeling. NM1 is an isoform of myosin 1c (Myo1c) that was identified earlier and is known to act in the cytoplasm. NM1 differs from the "cytoplasmic" myosin 1c only by additional 16 amino acids at the N-terminus of the molecule. This amino acid stretch was therefore suggested to direct NM1 into the nucleus. We investigated the mechanism of nuclear import of NM1 in detail. Using over-expressed GFP chimeras encoding for truncated NM1 mutants, we identified a specific sequence that is necessary for its import to the nucleus. This novel nuclear localization sequence is placed within calmodulin-binding motif of NM1, thus it is present also in the Myo1c. We confirmed the presence of both isoforms in the nucleus by transfection of tagged NM1 and Myo1c constructs into cultured cells, and also by showing the presence of the endogenous Myo1c in purified nuclei of cells derived from knock-out mice lacking NM1. Using pull-down and co-immunoprecipitation assays we identified importin beta, importin 5 and importin 7 as nuclear transport receptors that bind NM1. Since the NLS sequence of NM1 lies within the region that also binds calmodulin we tested the influence of calmodulin on the localization of NM1. The presence of elevated levels of calmodulin interfered with nuclear localization of tagged NM1. We have shown that the novel specific NLS brings to the cell nucleus not only the "nuclear" isoform of myosin I (NM1 protein) but also its "cytoplasmic" isoform (Myo1c protein). This opens a new field for exploring functions of this molecular motor in nuclear processes, and for exploring the signals between cytoplasm and the nucleus.

  19. Myogenin, MyoD and IGF-I regulate muscle mass but not fiber-type conversion during resistance training in rats.

    PubMed

    Aguiar, A F; Vechetti-Júnior, I J; Alves de Souza, R W; Castan, E P; Milanezi-Aguiar, R C; Padovani, C R; Carvalho, R F; Silva, M D P

    2013-04-01

    The purpose of this study was to test the hypothesis that skeletal muscle adaptations induced by long-term resistance training (RT) are associated with increased myogenic regulatory factors (MRF) and insulin-like growth factor-I (IGF-I) mRNA expression in rats skeletal muscle. Male Wistar rats were divided into 4 groups: 8-week control (C8), 8-week trained (T8), 12-week control (C12) and 12-week trained (T12). Trained rats were submitted to a progressive RT program (4 sets of 10-12 repetitions at 65-75% of the 1RM, 3 day/week), using a squat-training apparatus with electric stimulation. Muscle hypertrophy was determined by measurement of muscle fiber cross-sectional area (CSA) of the muscle fibers, and myogenin, MyoD and IGF-I mRNA expression were measured by RT-qPCR. A hypertrophic stabilization occurred between 8 and 12 weeks of RT (control-relative % area increase, T8: 29% vs. T12: 35%; p>0.05) and was accompanied by the stabilization of myogenin (control-relative % increase, T8: 44.8% vs. T12: 37.7%, p>0.05) and MyoD (control-relative % increase, T8: 22.9% vs. T12: 22.3%, p>0.05) mRNA expression and the return of IGF-I mRNA levels to the baseline (control-relative % increase, T8: 30.1% vs. T12: 1.5%, p<0.05). Moreover, there were significant positive correlations between the muscle fiber CSA and mRNA expression for MyoD (r=0.85, p=0.0001), myogenin (r=0.87, p=0.0001), and IGF-I (r=0.88, p=0.0001). The significant (p<0.05) increase in myogenin, MyoD and IGF-I mRNA expression after 8 weeks was not associated with changes in the fiber-type frequency. In addition, there was a type IIX/D-to-IIA fiber conversion at 12 weeks, even with the stabilization of MyoD and myogenin expression and the return of IGF-I levels to baseline. These results indicate a possible interaction between MRFs and IGF-I in the control of muscle hypertrophy during long-term RT and suggest that these factors are involved more in the regulation of muscle mass than in fiber-type conversion. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Myo-inositol soft gel capsules may prevent the risk of coffee-induced neural tube defects.

    PubMed

    De Grazia, Sara; Carlomagno, Gianfranco; Unfer, Vittorio; Cavalli, Pietro

    2012-09-01

    Neural tube defects (NTDs) are classified as folate sensitive (about 70%) and folate resistant (about 30%); although folic acid is able to prevent the former, several data have shown that inositol may prevent the latter. It has recently been proposed that coffee intake might represent a risk factor for NTD, likely by interfering with the inositol signaling. In the present study, we tested the hypothesis that, beside affecting the inositol signaling pathway, coffee also interferes with inositol absorption. In order to evaluate coffee possible negative effects on inositol gastrointestinal absorption, a single-dose bioavailability trial was conducted. Pharmacokinetics (PK) parameters of myo-inositol (MI) powder and MI soft gelatin capsules swallowed with water and with a single 'espresso' were compared. PK profiles were obtained by analysis of MI plasma concentration, and the respective MI bioavailability was compared. Myo-inositol powder administration was negatively affected by coffee intake, thus suggesting an additional explanation to the interference between inositol deficiency and coffee consumption. On the contrary, the concomitant single 'espresso' consumption did not affect MI absorption following MI soft gelatin capsules administration. Furthermore, it was observed that MI soft gelatin capsule administration resulted in improved bioavailability compared to the MI powder form. Myo-inositol soft gelatin capsules should be considered for the preventive treatment of NTDs in folate-resistant subjects due to their higher bioavailability and to the capability to reduce espresso interference.

  1. Relationships of bone characteristics in MYO9B deficient femurs.

    PubMed

    Kim, Do-Gyoon; Jeong, Yong-Hoon; McMichael, Brooke K; Bähler, Martin; Bodnyk, Kyle; Sedlar, Ryan; Lee, Beth S

    2018-08-01

    The objective of this study was to examine relationships among a variety of bone characteristics, including volumetric, mineral density, geometric, dynamic mechanical analysis, and static fracture mechanical properties. As MYO9B is an unconventional myosin in bone cells responsible for normal skeletal growth, bone characteristics of wild-type (WT), heterozygous (HET), and MYO9B knockout (KO) mice groups were compared as an animal model to express different bone quantity and quality. Forty-five sex-matched 12-week-old mice were used in this study. After euthanization, femurs were isolated and scanned using microcomputed tomography (micro-CT) to assess bone volumetric, tissue mineral density (TMD), and geometric parameters. Then, a non-destructive dynamic mechanical analysis (DMA) was performed by applying oscillatory bending displacement on the femur. Finally, the same femur was subject to static fracture testing. KO group had significantly lower length, bone mineral density (BMD), bone mass and volume, dynamic and static stiffness, and strength than WT and HET groups (p < 0.019). On the other hand, TMD parameters of KO group were comparable with those of WT group. HET group showed volumetric, geometric, and mechanical properties similar to WT group, but had lower TMD (p < 0.014). Non-destructive micro-CT and DMA parameters had significant positive correlations with strength (p < 0.015) without combined effect of groups and sex on the correlations (p > 0.077). This comprehensive characterization provides a better understanding of interactive behavior between the tissue- and organ-level of the same femur. The current findings elucidate that MYO9B is responsible for controlling bone volume to determine the growth rate and fracture risk of bone. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Isobaric Tags for Relative and Absolute Quantitation-Based Proteomic Analysis of Patent and Constricted Ductus Arteriosus Tissues Confirms the Systemic Regulation of Ductus Arteriosus Closure.

    PubMed

    Hong, Haifa; Ye, Lincai; Chen, Huiwen; Xia, Yu; Liu, Yue; Liu, Jinfen; Lu, Yanan; Zhang, Haibo

    2015-08-01

    We aimed to evaluate global changes in protein expression associated with patency by undertaking proteomic analysis of human constricted and patent ductus arteriosus (DA). Ten constricted and 10 patent human DAs were excised from infants with ductal-dependent heart disease during surgery. Using isobaric tags for relative and absolute quantitation-based quantitative proteomics, 132 differentially expressed proteins were identified. Of 132 proteins, voltage-gated sodium channel 1.3 (SCN3A), myosin 1d (Myo1d), Rho GTPase activating protein 26 (ARHGAP26), and retinitis pigmentosa 1 (RP1) were selected for validation by Western blot and quantitative real-time polymerase chain reaction analyses. Significant upregulation of SCN3A, Myo1d, and RP1 messenger RNA, and protein levels was observed in the patent DA group (all P ≤ 0.048). ARHGAP26 messenger RNA and protein levels were decreased in patent DA tissue (both P ≤ 0.018). Immunohistochemistry analysis revealed that Myo1d, ARHGAP26, and RP1 were specifically expressed in the subendothelial region of constricted DAs; however, diffuse expression of these proteins was noted in the patent group. Proteomic analysis revealed global changes in the expression of proteins that regulate oxygen sensing, ion channels, smooth muscle cell migration, nervous system, immune system, and metabolism, suggesting a basis for the systemic regulation of DA patency by diverse signaling pathways, which will be confirmed in further studies.

  3. Involvement of an Actomyosin Contractile Ring in Saccharomyces cerevisiae Cytokinesis

    PubMed Central

    Bi, Erfei; Maddox, Paul; Lew, Daniel J.; Salmon, E.D.; McMillan, John N.; Yeh, Elaine; Pringle, John R.

    1998-01-01

    In Saccharomyces cerevisiae, the mother cell and bud are connected by a narrow neck. The mechanism by which this neck is closed during cytokinesis has been unclear. Here we report on the role of a contractile actomyosin ring in this process. Myo1p (the only type II myosin in S. cerevisiae) forms a ring at the presumptive bud site shortly before bud emergence. Myo1p ring formation depends on the septins but not on F-actin, and preexisting Myo1p rings are stable when F-actin is depolymerized. The Myo1p ring remains in the mother–bud neck until the end of anaphase, when a ring of F-actin forms in association with it. The actomyosin ring then contracts to a point and disappears. In the absence of F-actin, the Myo1p ring does not contract. After ring contraction, cortical actin patches congregate at the mother–bud neck, and septum formation and cell separation rapidly ensue. Strains deleted for MYO1 are viable; they fail to form the actin ring but show apparently normal congregation of actin patches at the neck. Some myo1Δ strains divide nearly as efficiently as wild type; other myo1Δ strains divide less efficiently, but it is unclear whether the primary defect is in cytokinesis, septum formation, or cell separation. Even cells lacking F-actin can divide, although in this case division is considerably delayed. Thus, the contractile actomyosin ring is not essential for cytokinesis in S. cerevisiae. In its absence, cytokinesis can still be completed by a process (possibly localized cell–wall synthesis leading to septum formation) that appears to require septin function and to be facilitated by F-actin. PMID:9732290

  4. Myo1c regulates lipid raft recycling to control cell spreading, migration and Salmonella invasion

    PubMed Central

    Brandstaetter, Hemma; Kendrick-Jones, John; Buss, Folma

    2012-01-01

    A balance between endocytosis and membrane recycling regulates the composition and dynamics of the plasma membrane. Internalization and recycling of cholesterol- and sphingolipid-enriched lipid rafts is an actin-dependent process that is mediated by a specialized Arf6-dependent recycling pathway. Here, we identify myosin1c (Myo1c) as the first motor protein that drives the formation of recycling tubules emanating from the perinuclear recycling compartment. We demonstrate that the single-headed Myo1c is a lipid-raft-associated motor protein that is specifically involved in recycling of lipid-raft-associated glycosylphosphatidylinositol (GPI)-linked cargo proteins and their delivery to the cell surface. Whereas Myo1c overexpression increases the levels of these raft proteins at the cell surface, in cells depleted of Myo1c function through RNA interference or overexpression of a dominant-negative mutant, these tubular transport carriers of the recycling pathway are lost and GPI-linked raft markers are trapped in the perinuclear recycling compartment. Intriguingly, Myo1c only selectively promotes delivery of lipid raft membranes back to the cell surface and is not required for recycling of cargo, such as the transferrin receptor, which is mediated by parallel pathways. The profound defect in lipid raft trafficking in Myo1c-knockdown cells has a dramatic impact on cell spreading, cell migration and cholesterol-dependent Salmonella invasion; processes that require lipid raft transport to the cell surface to deliver signaling components and the extra membrane essential for cell surface expansion and remodeling. Thus, Myo1c plays a crucial role in the recycling of lipid raft membrane and proteins that regulate plasma membrane plasticity, cell motility and pathogen entry. PMID:22328521

  5. Myo1c regulates lipid raft recycling to control cell spreading, migration and Salmonella invasion.

    PubMed

    Brandstaetter, Hemma; Kendrick-Jones, John; Buss, Folma

    2012-04-15

    A balance between endocytosis and membrane recycling regulates the composition and dynamics of the plasma membrane. Internalization and recycling of cholesterol- and sphingolipid-enriched lipid rafts is an actin-dependent process that is mediated by a specialized Arf6-dependent recycling pathway. Here, we identify myosin1c (Myo1c) as the first motor protein that drives the formation of recycling tubules emanating from the perinuclear recycling compartment. We demonstrate that the single-headed Myo1c is a lipid-raft-associated motor protein that is specifically involved in recycling of lipid-raft-associated glycosylphosphatidylinositol (GPI)-linked cargo proteins and their delivery to the cell surface. Whereas Myo1c overexpression increases the levels of these raft proteins at the cell surface, in cells depleted of Myo1c function through RNA interference or overexpression of a dominant-negative mutant, these tubular transport carriers of the recycling pathway are lost and GPI-linked raft markers are trapped in the perinuclear recycling compartment. Intriguingly, Myo1c only selectively promotes delivery of lipid raft membranes back to the cell surface and is not required for recycling of cargo, such as the transferrin receptor, which is mediated by parallel pathways. The profound defect in lipid raft trafficking in Myo1c-knockdown cells has a dramatic impact on cell spreading, cell migration and cholesterol-dependent Salmonella invasion; processes that require lipid raft transport to the cell surface to deliver signaling components and the extra membrane essential for cell surface expansion and remodeling. Thus, Myo1c plays a crucial role in the recycling of lipid raft membrane and proteins that regulate plasma membrane plasticity, cell motility and pathogen entry.

  6. Functional analysis of mutations in SLC7A9, and genotype-phenotype correlation in non-Type I cystinuria.

    PubMed

    Font, M A; Feliubadaló, L; Estivill, X; Nunes, V; Golomb, E; Kreiss, Y; Pras, E; Bisceglia, L; d'Adamo, A P; Zelante, L; Gasparini, P; Bassi, M T; George , A L; Manzoni, M; Riboni, M; Ballabio, A; Borsani, G; Reig, N; Fernández, E; Zorzano, A; Bertran, J; Palacín, M

    2001-02-15

    Cystinuria (OMIM 220100) is a common recessive disorder of renal reabsorption of cystine and dibasic amino acids that results in nephrolithiasis of cystine. Mutations in SLC3A1, which encodes rBAT, cause Type I cystinuria, and mutations in SLC7A9, which encodes a putative subunit of rBAT (b(o,+)AT), cause non-Type I cystinuria. Here we describe the genomic structure of SLC7A9 (13 exons) and 28 new mutations in this gene that, together with the seven previously reported, explain 79% of the alleles in 61 non-Type I cystinuria patients. These data demonstrate that SLC7A9 is the main non-Type I cystinuria gene. Mutations G105R, V170M, A182T and R333W are the most frequent SLC7A9 missense mutations found. Among heterozygotes carrying these mutations, A182T heterozygotes showed the lowest urinary excretion values of cystine and dibasic amino acids. Functional analysis of mutation A182T after co-expression with rBAT in HeLa cells revealed significant residual transport activity. In contrast, mutations G105R, V170M and R333W are associated to a complete or almost complete loss of transport activity, leading to a more severe urinary phenotype in heterozygotes. SLC7A9 mutations located in the putative transmembrane domains of b(o,+)AT and affecting conserved amino acid residues with a small side chain generate a severe phenotype, while mutations in non-conserved residues give rise to a mild phenotype. These data provide the first genotype-phenotype correlation in non-Type I cystinuria, and show that a mild urinary phenotype in heterozygotes may associate with mutations with significant residual transport activity.

  7. Myo-inositol reduces β-catenin activation in colitis

    PubMed Central

    Bradford, Emily M; Thompson, Corey A; Goretsky, Tatiana; Yang, Guang-Yu; Rodriguez, Luz M; Li, Linheng; Barrett, Terrence A

    2017-01-01

    AIM To assess dietary myo-inositol in reducing stem cell activation in colitis, and validate pβ-cateninS552 as a biomarker of recurrent dysplasia. METHODS We examined the effects of dietary myo-inositol treatment on inflammation, pβ-cateninS552 and pAkt levels by histology and western blot in IL-10-/- and dextran sodium sulfate-treated colitic mice. Additionally, we assessed nuclear pβ-cateninS552 in patients treated with myo-inositol in a clinical trial, and in patients with and without a history of colitis-induced dysplasia. RESULTS In mice, pβ-cateninS552 staining faithfully reported the effects of myo-inositol in reducing inflammation and intestinal stem cell activation. In a pilot clinical trial of myo-inositol administration in patients with a history of low grade dysplasia (LGD), two patients had reduced numbers of intestinal stem cell activation compared to the placebo control patient. In humans, pβ-cateninS552 staining discriminated ulcerative colitis patients with a history of LGD from those with benign disease. CONCLUSION Enumerating crypts with increased numbers of pβ-cateninS552 - positive cells can be utilized as a biomarker in colitis-associated cancer chemoprevention trials. PMID:28811707

  8. Myo-inositol reduces β-catenin activation in colitis.

    PubMed

    Bradford, Emily M; Thompson, Corey A; Goretsky, Tatiana; Yang, Guang-Yu; Rodriguez, Luz M; Li, Linheng; Barrett, Terrence A

    2017-07-28

    To assess dietary myo-inositol in reducing stem cell activation in colitis, and validate pβ-catenin S552 as a biomarker of recurrent dysplasia. We examined the effects of dietary myo-inositol treatment on inflammation, pβ-catenin S552 and pAkt levels by histology and western blot in IL-10 -/- and dextran sodium sulfate-treated colitic mice. Additionally, we assessed nuclear pβ-catenin S552 in patients treated with myo-inositol in a clinical trial, and in patients with and without a history of colitis-induced dysplasia. In mice, pβ-catenin S552 staining faithfully reported the effects of myo-inositol in reducing inflammation and intestinal stem cell activation. In a pilot clinical trial of myo-inositol administration in patients with a history of low grade dysplasia (LGD), two patients had reduced numbers of intestinal stem cell activation compared to the placebo control patient. In humans, pβ-catenin S552 staining discriminated ulcerative colitis patients with a history of LGD from those with benign disease. Enumerating crypts with increased numbers of pβ-catenin S552 - positive cells can be utilized as a biomarker in colitis-associated cancer chemoprevention trials.

  9. Myo-inositol inhibits intestinal glucose absorption and promotes muscle glucose uptake: a dual approach study.

    PubMed

    Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul

    2016-12-01

    The present study investigated the effects of myo-inositol on muscle glucose uptake and intestinal glucose absorption ex vivo as well as in normal and type 2 diabetes model of rats. In ex vivo study, both intestinal glucose absorption and muscle glucose uptake were studied in isolated rat jejunum and psoas muscle respectively in the presence of increasing concentrations (2.5 % to 20 %) of myo-inositol. In the in vivo study, the effect of a single bolus dose (1 g/kg bw) of oral myo-inositol on intestinal glucose absorption, blood glucose, gastric emptying and digesta transit was investigated in normal and type 2 diabetic rats after 1 h of co-administration with 2 g/kg bw glucose, when phenol red was used as a recovery marker. Myo-inositol inhibited intestinal glucose absorption (IC 50  = 28.23 ± 6.01 %) and increased muscle glucose uptake, with (GU 50  = 2.68 ± 0.75 %) or without (GU 50  = 8.61 ± 0.55 %) insulin. Additionally, oral myo-inositol not only inhibited duodenal glucose absorption and reduced blood glucose increase, but also delayed gastric emptying and accelerated digesta transit in both normal and diabetic animals. Results of this study suggest that dietary myo-inositol inhibits intestinal glucose absorption both in ex vivo and in normal or diabetic rats and also promotes muscle glucose uptake in ex vivo condition. Hence, myo-inositol may be further investigated as a possible anti-hyperglycaemic dietary supplement for diabetic foods and food products.

  10. Is MYO9B the missing link between schizophrenia and celiac disease?

    PubMed

    Jungerius, Bart J; Bakker, Steven C; Monsuur, Alienke J; Sinke, Richard J; Kahn, Rene S; Wijmenga, Cisca

    2008-04-05

    There has long been discussion on the correlation between schizophrenia and autoimmune diseases (especially celiac disease), which makes the recently discovered celiac disease risk factor, MYO9B, an attractive functional and positional candidate gene for schizophrenia. To test this hypothesis we compared allele frequencies of three MYO9B tag SNPs in 315 schizophrenia cases and 1,624 healthy controls in a genetic association study. Highly significant differences in allele frequencies between schizophrenia cases and healthy controls were observed for SNP rs2305767 in intron 14 of MYO9B (P = 1.16 x 10(-4); OR 1.41, 95% CI 1.18-1.67). We demonstrate significant association of allelic variants in MYO9B with schizophrenia. To our knowledge, this is the first molecular genetic evidence for a correlation between autoimmune diseases and the risk of developing schizophrenia. Copyright 2007 Wiley-Liss, Inc.

  11. Patterns of Positive Selection of the Myogenic Regulatory Factor Gene Family in Vertebrates

    PubMed Central

    Zhao, Xiao; Yu, Qi; Huang, Ling; Liu, Qing-Xin

    2014-01-01

    The functional divergence of transcriptional factors is critical in the evolution of transcriptional regulation. However, the mechanism of functional divergence among these factors remains unclear. Here, we performed an evolutionary analysis for positive selection in members of the myogenic regulatory factor (MRF) gene family of vertebrates. We selected 153 complete vertebrate MRF nucleotide sequences from our analyses, which revealed substantial evidence of positive selection. Here, we show that sites under positive selection were more frequently detected and identified from the genes encoding the myogenic differentiation factors (MyoG and Myf6) than the genes encoding myogenic determination factors (Myf5 and MyoD). Additionally, the functional divergence within the myogenic determination factors or differentiation factors was also under positive selection pressure. The positive selection sites were more frequently detected from MyoG and MyoD than Myf6 and Myf5, respectively. Amino acid residues under positive selection were identified mainly in their transcription activation domains and on the surface of protein three-dimensional structures. These data suggest that the functional gain and divergence of myogenic regulatory factors were driven by distinct positive selection of their transcription activation domains, whereas the function of the DNA binding domains was conserved in evolution. Our study evaluated the mechanism of functional divergence of the transcriptional regulation factors within a family, whereby the functions of their transcription activation domains diverged under positive selection during evolution. PMID:24651579

  12. Molecular genetic analysis of patients with sporadic and X-linked infantile nystagmus

    PubMed Central

    Zhao, Hui; Huang, Xiu-Feng; Zheng, Zhi-Li; Deng, Wen-Li; Lei, Xin-Lan; Xing, Dong-Jun; Ye, Liang; Xu, Su-Zhong; Chen, Jie; Zhang, Fang; Yu, Xin-Ping; Jin, Zi-Bing

    2016-01-01

    Objectives Infantile nystagmus (IN) is a genetically heterogeneous condition characterised by involuntary rhythmic oscillations of the eyes accompanied by different degrees of vision impairment. Two genes have been identified as mainly causing IN: FRMD7 and GPR143. The aim of our study was to identify the genetic basis of both sporadic IN and X-linked IN. Design Prospective analysis. Patients Twenty Chinese patients, including 15 sporadic IN cases and 5 from X-linked IN families, were recruited and underwent molecular genetic analysis. We first performed PCR-based DNA sequencing of the entire coding region and the splice junctions of the FRMD7 and GPR143 genes in participants. Mutational analysis and co-segregation confirmation were then performed. Setting All clinical examinations and genetic experiments were performed in the Eye Hospital of Wenzhou Medical University. Results Two mutations in the FRMD7 gene, including one novel nonsense mutation (c.1090C>T, p.Q364X) and one reported missense mutation (c.781C>G, p.R261G), were identified in two of the five (40%) X-linked IN families. However, none of putative mutations were identified in FRMD7 or GPR143 in any of the sporadic cases. Conclusions The results suggest that mutations in FRMD7 appeared to be the major genetic cause of X-linked IN, but not of sporadic IN. Our findings provide further insights into FRMD7 mutations, which could be helpful for future genetic diagnosis and genetic counselling of Chinese patients with nystagmus. PMID:27036142

  13. Calreticulin mutation analysis in non-mutated Janus kinase 2 essential thrombocythemia patients in Chiang Mai University: analysis of three methods and clinical correlations.

    PubMed

    Rattarittamrong, Ekarat; Tantiworawit, Adisak; Kumpunya, Noppamas; Wongtagan, Ornkamon; Tongphung, Ratchanoo; Phusua, Arunee; Chai-Adisaksopha, Chatree; Hantrakool, Sasinee; Rattanathammethee, Thanawat; Norasetthada, Lalita; Charoenkwan, Pimlak; Lekawanvijit, Suree

    2018-03-09

    The primary objective was to determine the prevalence of calreticulin (CALR) mutation in patients with non-JAK2V617F mutated essential thrombocythemia (ET). The secondary objectives were to evaluate the accuracy of CALR mutation analysis by high-resolution melting (HRM) analysis and real-time polymerase chain reaction (PCR) compared with DNA sequencing and to compare clinical characteristics of CALR mutated and JAK2V617F mutated ET. This was a prospective cohort study involving ET patients registered at Chiang Mai University in the period September 2015-September 2017 who were aged more than 2 years, and did not harbor JAK2V617F mutation. The presence of CALR mutation was established by DNA sequencing, HRM, and real-time PCR for type 1 and type 2 mutation. Clinical data were compared with that from ET patients with mutated JAK2V617F. Twenty-eight patients were enrolled onto the study. CALR mutations were found in 10 patients (35.7%). Three patients had type 1 mutation, 5 patients had type 2 mutation, 1 patient had type 18 mutation, and 1 patients had novel mutations (c.1093 C-G, c.1098_1131 del, c.1135 G-A). HRM could differentiate between the types of mutation in complete agreement with DNA sequencing. Patients with a CALR mutation showed a significantly greater male predominance and had a higher platelet count when compared with 42 JAK2V617F patients. The prevalence of CALR mutation in JAK2V617F-negative ET in this study is 35.7%. HRM is an effective method of detecting CALR mutation and is a more advantageous method of screening for CALR mutation.

  14. Mechanotransductive cascade of Myo-II-dependent mesoderm and endoderm invaginations in embryo gastrulation

    PubMed Central

    Mitrossilis, Démosthène; Röper, Jens-Christian; Le Roy, Damien; Driquez, Benjamin; Michel, Aude; Ménager, Christine; Shaw, Gorky; Le Denmat, Simon; Ranno, Laurent; Dumas-Bouchiat, Frédéric; Dempsey, Nora M.; Farge, Emmanuel

    2017-01-01

    Animal development consists of a cascade of tissue differentiation and shape change. Associated mechanical signals regulate tissue differentiation. Here we demonstrate that endogenous mechanical cues also trigger biochemical pathways, generating the active morphogenetic movements shaping animal development through a mechanotransductive cascade of Myo-II medio-apical stabilization. To mimic physiological tissue deformation with a cell scale resolution, liposomes containing magnetic nanoparticles are injected into embryonic epithelia and submitted to time-variable forces generated by a linear array of micrometric soft magnets. Periodic magnetically induced deformations quantitatively phenocopy the soft mechanical endogenous snail-dependent apex pulsations, rescue the medio-apical accumulation of Rok, Myo-II and subsequent mesoderm invagination lacking in sna mutants, in a Fog-dependent mechanotransductive process. Mesoderm invagination then activates Myo-II apical accumulation, in a similar Fog-dependent mechanotransductive process, which in turn initiates endoderm invagination. This reveals the existence of a highly dynamic self-inductive cascade of mesoderm and endoderm invaginations, regulated by mechano-induced medio-apical stabilization of Myo-II. PMID:28112149

  15. Mechanotransductive cascade of Myo-II-dependent mesoderm and endoderm invaginations in embryo gastrulation

    NASA Astrophysics Data System (ADS)

    Mitrossilis, Démosthène; Röper, Jens-Christian; Le Roy, Damien; Driquez, Benjamin; Michel, Aude; Ménager, Christine; Shaw, Gorky; Le Denmat, Simon; Ranno, Laurent; Dumas-Bouchiat, Frédéric; Dempsey, Nora M.; Farge, Emmanuel

    2017-01-01

    Animal development consists of a cascade of tissue differentiation and shape change. Associated mechanical signals regulate tissue differentiation. Here we demonstrate that endogenous mechanical cues also trigger biochemical pathways, generating the active morphogenetic movements shaping animal development through a mechanotransductive cascade of Myo-II medio-apical stabilization. To mimic physiological tissue deformation with a cell scale resolution, liposomes containing magnetic nanoparticles are injected into embryonic epithelia and submitted to time-variable forces generated by a linear array of micrometric soft magnets. Periodic magnetically induced deformations quantitatively phenocopy the soft mechanical endogenous snail-dependent apex pulsations, rescue the medio-apical accumulation of Rok, Myo-II and subsequent mesoderm invagination lacking in sna mutants, in a Fog-dependent mechanotransductive process. Mesoderm invagination then activates Myo-II apical accumulation, in a similar Fog-dependent mechanotransductive process, which in turn initiates endoderm invagination. This reveals the existence of a highly dynamic self-inductive cascade of mesoderm and endoderm invaginations, regulated by mechano-induced medio-apical stabilization of Myo-II.

  16. Biphasic targeting and cleavage furrow ingression directed by the tail of a myosin II

    PubMed Central

    Fang, Xiaodong; Luo, Jianying; Nishihama, Ryuichi; Wloka, Carsten; Dravis, Christopher; Travaglia, Mirko; Iwase, Masayuki; Vallen, Elizabeth A.

    2010-01-01

    Cytokinesis in animal and fungal cells utilizes a contractile actomyosin ring (AMR). However, how myosin II is targeted to the division site and promotes AMR assembly, and how the AMR coordinates with membrane trafficking during cytokinesis, remains poorly understood. Here we show that Myo1 is a two-headed myosin II in Saccharomyces cerevisiae, and that Myo1 localizes to the division site via two distinct targeting signals in its tail that act sequentially during the cell cycle. Before cytokinesis, Myo1 localization depends on the septin-binding protein Bni5. During cytokinesis, Myo1 localization depends on the IQGAP Iqg1. We also show that the Myo1 tail is sufficient for promoting the assembly of a “headless” AMR, which guides membrane deposition and extracellular matrix remodeling at the division site. Our study establishes a biphasic targeting mechanism for myosin II and highlights an underappreciated role of the AMR in cytokinesis beyond force generation. PMID:21173112

  17. Activity of Escherichia coli, Aspergillus niger, and Rye Phytase toward Partially Phosphorylated myo-Inositol Phosphates.

    PubMed

    Greiner, Ralf

    2017-11-08

    Kinetic parameters for the dephosphorylation of sodium phytate and a series of partially phosphorylated myo-inositol phosphates were determined at pH 3.0 and pH 5.0 for three phytase preparations (Aspergillus niger, Escherichia coli, rye). The enzymes showed lower affinity and turnover numbers at pH 3 compared to pH 5 toward all myo-inositol phosphates included in the study. The number and distribution of phosphate groups on the myo-inositol ring affected the kinetic parameters. Representatives of the individual phytate dephosphorylation pathways were identified as the best substrates of the phytases. Within the individual phytate dephosphorylation pathways, the pentakisphosphates were better substrates compared to the tetrakisphosphates or phytate itself. E. coli and rye phytase showed comparable activities at both pH values toward the tetrakis- and trisphosphate, whereas A. niger phytase exhibited a higher activity toward the tetrakisphosphate. A myo-inositol phosphate with alternate phosphate groups was shown to be not significantly dephosphorylated by the phytases.

  18. The Rho regulator Myosin IXb enables nonlymphoid tissue seeding of protective CD8+ T cells.

    PubMed

    Moalli, Federica; Ficht, Xenia; Germann, Philipp; Vladymyrov, Mykhailo; Stolp, Bettina; de Vries, Ingrid; Lyck, Ruth; Balmer, Jasmin; Fiocchi, Amleto; Kreutzfeldt, Mario; Merkler, Doron; Iannacone, Matteo; Ariga, Akitaka; Stoffel, Michael H; Sharpe, James; Bähler, Martin; Sixt, Michael; Diz-Muñoz, Alba; Stein, Jens V

    2018-06-06

    T cells are actively scanning pMHC-presenting cells in lymphoid organs and nonlymphoid tissues (NLTs) with divergent topologies and confinement. How the T cell actomyosin cytoskeleton facilitates this task in distinct environments is incompletely understood. Here, we show that lack of Myosin IXb (Myo9b), a negative regulator of the small GTPase Rho, led to increased Rho-GTP levels and cell surface stiffness in primary T cells. Nonetheless, intravital imaging revealed robust motility of Myo9b -/- CD8 + T cells in lymphoid tissue and similar expansion and differentiation during immune responses. In contrast, accumulation of Myo9b -/- CD8 + T cells in NLTs was strongly impaired. Specifically, Myo9b was required for T cell crossing of basement membranes, such as those which are present between dermis and epidermis. As consequence, Myo9b -/- CD8 + T cells showed impaired control of skin infections. In sum, we show that Myo9b is critical for the CD8 + T cell adaptation from lymphoid to NLT surveillance and the establishment of protective tissue-resident T cell populations. © 2018 Moalli et al.

  19. Myogenic progenitors contribute to open but not closed fracture repair.

    PubMed

    Liu, Renjing; Birke, Oliver; Morse, Alyson; Peacock, Lauren; Mikulec, Kathy; Little, David G; Schindeler, Aaron

    2011-12-22

    Bone repair is dependent on the presence of osteocompetent progenitors that are able to differentiate and generate new bone. Muscle is found in close association with orthopaedic injury, however its capacity to make a cellular contribution to bone repair remains ambiguous. We hypothesized that myogenic cells of the MyoD-lineage are able to contribute to bone repair. We employed a MyoD-Cre+:Z/AP+ conditional reporter mouse in which all cells of the MyoD-lineage are permanently labeled with a human alkaline phosphatase (hAP) reporter. We tracked the contribution of MyoD-lineage cells in mouse models of tibial bone healing. In the absence of musculoskeletal trauma, MyoD-expressing cells are limited to skeletal muscle and the presence of reporter-positive cells in non-muscle tissues is negligible. In a closed tibial fracture model, there was no significant contribution of hAP+ cells to the healing callus. In contrast, open tibial fractures featuring periosteal stripping and muscle fenestration had up to 50% of hAP+ cells detected in the open fracture callus. At early stages of repair, many hAP+ cells exhibited a chondrocyte morphology, with lesser numbers of osteoblast-like hAP+ cells present at the later stages. Serial sections stained for hAP and type II and type I collagen showed that MyoD-lineage cells were surrounded by cartilaginous or bony matrix, suggestive of a functional role in the repair process. To exclude the prospect that osteoprogenitors spontaneously express MyoD during bone repair, we created a metaphyseal drill hole defect in the tibia. No hAP+ staining was observed in this model suggesting that the expression of MyoD is not a normal event for endogenous osteoprogenitors. These data document for the first time that muscle cells can play a significant secondary role in bone repair and this knowledge may lead to important translational applications in orthopaedic surgery. Please see related article: http://www.biomedcentral.com/1741-7015/9/136.

  20. Hydrolysis of membrane phospholipids by phospholipases of rat liver lysosomes

    PubMed Central

    Richards, Donald E.; Irvine, Robin F.; Dawson, Rex M. C.

    1979-01-01

    (1) The hydrolysis of 32P- or myo-[2-3H]inositol-labelled rat liver microsomal phospholipids by rat liver lysosomal enzymes has been studied. (2) The relative rates of hydrolysis of phospholipids at pH4.5 are: sphingomyelin>phosphatidylethanolamine>phosphatidylcholine> phosphatidylinositol. (3) The predominant products of phosphatidylcholine and phosphatidylethanolamine hydrolysis are their corresponding lyso-compounds, indicating a slow rate of total deacylation. (4) Ca2+ inhibits the hydrolysis of all phospholipids, though only appreciably at high (>5mm) concentration. The hydrolysis of sphingomyelin is considerably less sensitive to Ca2+ than that of glycerophospholipids. (5) Analysis of the water-soluble products of phosphatidylinositol hydrolysis (by using myo-[3H]inositol-labelled microsomal fraction as a substrate) produced evidence that more than 95% of the product is phosphoinositol, which was derived by direct cleavage from phosphatidylinositol, rather than by hydrolysis of glycerophosphoinositol. (6) This production of phosphoinositol, allied with negligible lysophosphatidylinositol formation and a detectable accumulation of diacylglycerol, indicates that lysosomes hydrolyse membrane phosphatidylinositol almost exclusively in a phospholipase C-like manner. (7) Comparisons are drawn between the hydrolysis by lysosomal enzymes of membrane substrates and that of pure phospholipid substrates, and also the possible role of phosphatidylinositol-specific lysosomal phospholipase C in cellular phosphatidylinositol catabolism is discussed. PMID:508301

  1. The TREAT-NMD DMD Global Database: Analysis of More than 7,000 Duchenne Muscular Dystrophy Mutations

    PubMed Central

    Bladen, Catherine L; Salgado, David; Monges, Soledad; Foncuberta, Maria E; Kekou, Kyriaki; Kosma, Konstantina; Dawkins, Hugh; Lamont, Leanne; Roy, Anna J; Chamova, Teodora; Guergueltcheva, Velina; Chan, Sophelia; Korngut, Lawrence; Campbell, Craig; Dai, Yi; Wang, Jen; Barišić, Nina; Brabec, Petr; Lahdetie, Jaana; Walter, Maggie C; Schreiber-Katz, Olivia; Karcagi, Veronika; Garami, Marta; Viswanathan, Venkatarman; Bayat, Farhad; Buccella, Filippo; Kimura, En; Koeks, Zaïda; van den Bergen, Janneke C; Rodrigues, Miriam; Roxburgh, Richard; Lusakowska, Anna; Kostera-Pruszczyk, Anna; Zimowski, Janusz; Santos, Rosário; Neagu, Elena; Artemieva, Svetlana; Rasic, Vedrana Milic; Vojinovic, Dina; Posada, Manuel; Bloetzer, Clemens; Jeannet, Pierre-Yves; Joncourt, Franziska; Díaz-Manera, Jordi; Gallardo, Eduard; Karaduman, A Ayşe; Topaloğlu, Haluk; El Sherif, Rasha; Stringer, Angela; Shatillo, Andriy V; Martin, Ann S; Peay, Holly L; Bellgard, Matthew I; Kirschner, Jan; Flanigan, Kevin M; Straub, Volker; Bushby, Kate; Verschuuren, Jan; Aartsma-Rus, Annemieke; Béroud, Christophe; Lochmüller, Hanns

    2015-01-01

    Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations). PMID:25604253

  2. Hand Gesture Data Collection Procedure Using a Myo Armband for Machine Learning

    DTIC Science & Technology

    2015-09-01

    instructions, searching existing data sources , gathering and maintaining the data needed, and completing and reviewing the collection information...data using a Myo armband. The source code for this work is included as an Appendix. 15. SUBJECT TERMS Myo, Machine Learning, Classifier, Data...development in multiple platfonns (e.g., Windows, iOS, Android , etc.) and many languages (e.g. , Java, C++, C#, Lua, etc.). For the data collection

  3. Flexural Stiffness of Myosin Va Subdomains as Measured from Tethered Particle Motion

    PubMed Central

    Michalek, Arthur J.; Kennedy, Guy G.; Warshaw, David M.; Ali, M. Yusuf

    2015-01-01

    Myosin Va (MyoVa) is a processive molecular motor involved in intracellular cargo transport on the actin cytoskeleton. The motor's processivity and ability to navigate actin intersections are believed to be governed by the stiffness of various parts of the motor's structure. Specifically, changes in calcium may regulate motor processivity by altering the motor's lever arm stiffness and thus its interhead communication. In order to measure the flexural stiffness of MyoVa subdomains, we use tethered particle microscopy, which relates the Brownian motion of fluorescent quantum dots, which are attached to various single- and double-headed MyoVa constructs bound to actin in rigor, to the motor's flexural stiffness. Based on these measurements, the MyoVa lever arm and coiled-coil rod domain have comparable flexural stiffness (0.034 pN/nm). Upon addition of calcium, the lever arm stiffness is reduced 40% as a result of calmodulins potentially dissociating from the lever arm. In addition, the flexural stiffness of the full-length MyoVa construct is an order of magnitude less stiff than both a single lever arm and the coiled-coil rod. This suggests that the MyoVa lever arm-rod junction provides a flexible hinge that would allow the motor to maneuver cargo through the complex intracellular actin network. PMID:26770194

  4. Variable haematological and clinical presentation of β-thalassaemia carriers and homozygotes with the Poly A (T→C) mutation in the Indian population.

    PubMed

    Italia, Khushnooma; Sawant, Pratibha; Surve, Reema; Wadia, Marukh; Nadkarni, Anita; Ghosh, Kanjaksha; Colah, Roshan

    2012-08-01

    To study the varied clinical and haematological profile of β-thalassaemia homozygotes, compound heterozygotes and heterozygotes with the Poly A (T→C) mutation and its implication in prenatal diagnosis. Forty individuals were included in the study. Peripheral smear examination, complete blood count and haemoglobin analysis were carried out. β-thalassaemia mutation analysis was carried out by reverse-dot-blot hybridization, amplification refractory mutation system and DNA sequencing of the β-globin gene. Five of the six β-thalassaemia homozygotes with the Poly A (T→C) mutation and five individuals who were compound heterozygous for the Poly A (T→C) mutation along with another common Indian β-thalassaemia mutation showed a severe β-thalassaemia major phenotype, while one individual presented as a thalassaemia intermedia. Majority of the 28 heterozygous individuals with this mutation showed borderline HbA₂ (mean HbA₂ = 3.7 ± 0.4%) levels as compared to individuals with common β-thalassaemia mutations (mean HbA₂ = 5.2 ± 1.4%). The Mean Corpuscular Volume (MCV) levels in individuals heterozygous for the Poly A (T→C) mutation (mean MCV 70.0 ± 5.2 fl) were significantly higher than in individuals with other common β-thalassaemia mutations (mean MCV 60.7 ± 7.7 fl) (P < 0.001). It is important to identify these often silent carriers of β-thalassaemia for prenatal diagnosis as homozygotes have a severe disease. © 2012 John Wiley & Sons A/S.

  5. The anabolic/androgenic steroid nandrolone exacerbates gene expression modifications induced by mutant SOD1 in muscles of mice models of amyotrophic lateral sclerosis

    PubMed Central

    Galbiati, Mariarita; Onesto, Elisa; Zito, Arianna; Crippa, Valeria; Rusmini, Paola; Mariotti, Raffaella; Bentivoglio, Marina; Bendotti, Caterina; Poletti, Angelo

    2012-01-01

    Anabolic/androgenic steroids (AAS) are drugs that enhance muscle mass, and are often illegally utilized in athletes to improve their performances. Recent data suggest that the increased risk for amyotrophic lateral sclerosis (ALS) in male soccer and football players could be linked to AAS abuse. ALS is a motor neuron disease mainly occurring in sporadic (sALS) forms, but some familial forms (fALS) exist and have been linked to mutations in different genes. Some of these, in their wild type (wt) form, have been proposed as risk factors for sALS, i.e. superoxide dismutase 1 (SOD1) gene, whose mutations are causative of about 20% of fALS. Notably, SOD1 toxicity might occur both in motor neurons and in muscle cells. Using gastrocnemius muscles of mice overexpressing human mutant SOD1 (mutSOD1) at different disease stages, we found that the expression of a selected set of genes associated to muscle atrophy, MyoD, myogenin, atrogin-1, and transforming growth factor (TGF)β1, is up-regulated already at the presymptomatic stage. Atrogin-1 gene expression was increased also in mice overexpressing human wtSOD1. Similar alterations were found in axotomized mouse muscles and in cultured ALS myoblast models. In these ALS models, we then evaluated the pharmacological effects of the synthetic AAS nandrolone on the expression of the genes modified in ALS muscle. Nandrolone administration had no effects on MyoD, myogenin, and atrogin-1 expression, but it significantly increased TGFβ1 expression at disease onset. Altogether, these data suggest that, in fALS, muscle gene expression is altered at early stages, and AAS may exacerbate some of the alterations induced by SOD1 possibly acting as a contributing factor also in sALS. PMID:22178654

  6. The anabolic/androgenic steroid nandrolone exacerbates gene expression modifications induced by mutant SOD1 in muscles of mice models of amyotrophic lateral sclerosis.

    PubMed

    Galbiati, Mariarita; Onesto, Elisa; Zito, Arianna; Crippa, Valeria; Rusmini, Paola; Mariotti, Raffaella; Bentivoglio, Marina; Bendotti, Caterina; Poletti, Angelo

    2012-02-01

    Anabolic/androgenic steroids (AAS) are drugs that enhance muscle mass, and are often illegally utilized in athletes to improve their performances. Recent data suggest that the increased risk for amyotrophic lateral sclerosis (ALS) in male soccer and football players could be linked to AAS abuse. ALS is a motor neuron disease mainly occurring in sporadic (sALS) forms, but some familial forms (fALS) exist and have been linked to mutations in different genes. Some of these, in their wild type (wt) form, have been proposed as risk factors for sALS, i.e. superoxide dismutase 1 (SOD1) gene, whose mutations are causative of about 20% of fALS. Notably, SOD1 toxicity might occur both in motor neurons and in muscle cells. Using gastrocnemius muscles of mice overexpressing human mutant SOD1 (mutSOD1) at different disease stages, we found that the expression of a selected set of genes associated to muscle atrophy, MyoD, myogenin, atrogin-1, and transforming growth factor (TGF)β1, is up-regulated already at the presymptomatic stage. Atrogin-1 gene expression was increased also in mice overexpressing human wtSOD1. Similar alterations were found in axotomized mouse muscles and in cultured ALS myoblast models. In these ALS models, we then evaluated the pharmacological effects of the synthetic AAS nandrolone on the expression of the genes modified in ALS muscle. Nandrolone administration had no effects on MyoD, myogenin, and atrogin-1 expression, but it significantly increased TGFβ1 expression at disease onset. Altogether, these data suggest that, in fALS, muscle gene expression is altered at early stages, and AAS may exacerbate some of the alterations induced by SOD1 possibly acting as a contributing factor also in sALS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Tilapia (Oreochromis mossambicus) brain cells respond to hyperosmotic challenge by inducing myo-inositol biosynthesis

    PubMed Central

    Gardell, Alison M.; Yang, Jun; Sacchi, Romina; Fangue, Nann A.; Hammock, Bruce D.; Kültz, Dietmar

    2013-01-01

    SUMMARY This study aimed to determine the regulation of the de novo myo-inositol biosynthetic (MIB) pathway in Mozambique tilapia (Oreochromis mossambicus) brain following acute (25 ppt) and chronic (30, 60 and 90 ppt) salinity acclimations. The MIB pathway plays an important role in accumulating the compatible osmolyte, myo-inositol, in cells in response to hyperosmotic challenge and consists of two enzymes, myo-inositol phosphate synthase and inositol monophosphatase. In tilapia brain, MIB enzyme transcriptional regulation was found to robustly increase in a time (acute acclimation) or dose (chronic acclimation) dependent manner. Blood plasma osmolality and Na+ and Cl− concentrations were also measured and significantly increased in response to both acute and chronic salinity challenges. Interestingly, highly significant positive correlations were found between MIB enzyme mRNA and blood plasma osmolality in both acute and chronic salinity acclimations. Additionally, a mass spectrometry assay was established and used to quantify total myo-inositol concentration in tilapia brain, which closely mirrored the hyperosmotic MIB pathway induction. Thus, myo-inositol is a major compatible osmolyte that is accumulated in brain cells when exposed to acute and chronic hyperosmotic challenge. These data show that the MIB pathway is highly induced in response to environmental salinity challenge in tilapia brain and that this induction is likely prompted by increases in blood plasma osmolality. Because the MIB pathway uses glucose-6-phosphate as a substrate and large amounts of myo-inositol are being synthesized, our data also illustrate that the MIB pathway likely contributes to the high energetic demand posed by salinity challenge. PMID:24072790

  8. Usher syndrome: an effective sequencing approach to establish a genetic and clinical diagnosis.

    PubMed

    Lenarduzzi, S; Vozzi, D; Morgan, A; Rubinato, E; D'Eustacchio, A; Osland, T M; Rossi, C; Graziano, C; Castorina, P; Ambrosetti, U; Morgutti, M; Girotto, G

    2015-02-01

    Usher syndrome is an autosomal recessive disorder characterized by retinitis pigmentosa, sensorineural hearing loss and, in some cases, vestibular dysfunction. The disorder is clinically and genetically heterogeneous and, to date, mutations in 11 genes have been described. This finding makes difficult to get a precise molecular diagnosis and offer patients accurate genetic counselling. To overcome this problem and to increase our knowledge of the molecular basis of Usher syndrome, we designed a targeted resequencing custom panel. In a first validation step a series of 16 Italian patients with known molecular diagnosis were analysed and 31 out of 32 alleles were detected (97% of accuracy). After this step, 31 patients without a molecular diagnosis were enrolled in the study. Three out of them with an uncertain Usher diagnosis were excluded. One causative allele was detected in 24 out 28 patients (86%) while the presence of both causative alleles characterized 19 patients out 28 (68%). Sixteen novel and 27 known alleles were found in the following genes: USH2A (50%), MYO7A (7%), CDH23 (11%), PCDH15 (7%) and USH1G (2%). Overall, on the 44 patients the protocol was able to characterize 74 alleles out of 88 (84%). These results suggest that our panel is an effective approach for the genetic diagnosis of Usher syndrome leading to: 1) an accurate molecular diagnosis, 2) better genetic counselling, 3) more precise molecular epidemiology data fundamental for future interventional plans. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Influence of aerobic exercise intensity on myofibrillar and mitochondrial protein synthesis in young men during early and late postexercise recovery.

    PubMed

    Di Donato, Danielle M; West, Daniel W D; Churchward-Venne, Tyler A; Breen, Leigh; Baker, Steven K; Phillips, Stuart M

    2014-05-01

    Aerobic exercise is typically associated with expansion of the mitochondrial protein pool and improvements in muscle oxidative capacity. The impact of aerobic exercise intensity on the synthesis of specific skeletal muscle protein subfractions is not known. We aimed to study the effect of aerobic exercise intensity on rates of myofibrillar (MyoPS) and mitochondrial (MitoPS) protein synthesis over an early (0.5-4.5 h) and late (24-28 h) period during postexercise recovery. Using a within-subject crossover design, eight males (21 ± 1 yr, Vo2peak 46.7 ± 2.0 ml·kg(-1)·min(-1)) performed two work-matched cycle ergometry exercise trials (LOW: 60 min at 30% Wmax; HIGH: 30 min at 60% Wmax) in the fasted state while undergoing a primed constant infusion of l-[ring-(13)C6]phenylalanine. Muscle biopsies were obtained at rest and 0.5, 4.5, 24, and 28 h postexercise to determine both the "early" and "late" response of MyoPS and MitoPS and the phosphorylation status of selected proteins within both the Akt/mTOR and MAPK pathways. Over 24-28 h postexercise, MitoPS was significantly greater after the HIGH vs. LOW exercise trial (P < 0.05). Rates of MyoPS were increased equivalently over 0.5-4.5 h postexercise recovery (P < 0.05) but remained elevated at 24-28 h postexercise only following the HIGH trial. In conclusion, an acute bout of high- but not low-intensity aerobic exercise in the fasted state resulted in a sustained elevation of both MitoPS and MyoPS at 24-28 h postexercise recovery.

  10. Influence of aerobic exercise intensity on myofibrillar and mitochondrial protein synthesis in young men during early and late postexercise recovery

    PubMed Central

    Di Donato, Danielle M.; West, Daniel W. D.; Churchward-Venne, Tyler A.; Breen, Leigh; Baker, Steven K.

    2014-01-01

    Aerobic exercise is typically associated with expansion of the mitochondrial protein pool and improvements in muscle oxidative capacity. The impact of aerobic exercise intensity on the synthesis of specific skeletal muscle protein subfractions is not known. We aimed to study the effect of aerobic exercise intensity on rates of myofibrillar (MyoPS) and mitochondrial (MitoPS) protein synthesis over an early (0.5–4.5 h) and late (24–28 h) period during postexercise recovery. Using a within-subject crossover design, eight males (21 ± 1 yr, V̇o2peak 46.7 ± 2.0 ml·kg−1·min−1) performed two work-matched cycle ergometry exercise trials (LOW: 60 min at 30% Wmax; HIGH: 30 min at 60% Wmax) in the fasted state while undergoing a primed constant infusion of l-[ring-13C6]phenylalanine. Muscle biopsies were obtained at rest and 0.5, 4.5, 24, and 28 h postexercise to determine both the “early” and “late” response of MyoPS and MitoPS and the phosphorylation status of selected proteins within both the Akt/mTOR and MAPK pathways. Over 24–28 h postexercise, MitoPS was significantly greater after the HIGH vs. LOW exercise trial (P < 0.05). Rates of MyoPS were increased equivalently over 0.5–4.5 h postexercise recovery (P < 0.05) but remained elevated at 24–28 h postexercise only following the HIGH trial. In conclusion, an acute bout of high- but not low-intensity aerobic exercise in the fasted state resulted in a sustained elevation of both MitoPS and MyoPS at 24–28 h postexercise recovery. PMID:24595306

  11. Contrasting roles for MyoD in organizing myogenic promoter structures during embryonic skeletal muscle development.

    PubMed

    Cho, Ok Hyun; Mallappa, Chandrashekara; Hernández-Hernández, J Manuel; Rivera-Pérez, Jaime A; Imbalzano, Anthony N

    2015-01-01

    Among the complexities of skeletal muscle differentiation is a temporal distinction in the onset of expression of different lineage-specific genes. The lineage-determining factor MyoD is bound to myogenic genes at the onset of differentiation whether gene activation is immediate or delayed. How temporal regulation of differentiation-specific genes is established remains unclear. Using embryonic tissue, we addressed the molecular differences in the organization of the myogenin and muscle creatine kinase (MCK) gene promoters by examining regulatory factor binding as a function of both time and spatial organization during somitogenesis. At the myogenin promoter, binding of the homeodomain factor Pbx1 coincided with H3 hyperacetylation and was followed by binding of co-activators that modulate chromatin structure. MyoD and myogenin binding occurred subsequently, demonstrating that Pbx1 facilitates chromatin remodeling and modification before myogenic regulatory factor binding. At the same time, the MCK promoter was bound by HDAC2 and MyoD, and activating histone marks were largely absent. The association of HDAC2 and MyoD was confirmed by co-immunoprecipitation, proximity ligation assay (PLA), and sequential ChIP. MyoD differentially promotes activated and repressed chromatin structures at myogenic genes early after the onset of skeletal muscle differentiation in the developing mouse embryo. © 2014 Wiley Periodicals, Inc.

  12. The Drosophila TGF-beta/Activin-like ligands Dawdle and Myoglianin appear to modulate adult lifespan through regulation of 26S proteasome function in adult muscle

    PubMed Central

    Langerak, Shaughna; Kim, Myung-Jun; Lamberg, Hannah; Godinez, Michael; Main, Mackenzie; Winslow, Lindsey; O'Connor, Michael B.

    2018-01-01

    ABSTRACT The Drosophila Activin signaling pathway employs at least three separate ligands – Activin-β (Actβ), Dawdle (Daw), and Myoglianin (Myo) – to regulate several general aspects of fruit fly larval development, including cell proliferation, neuronal remodeling, and metabolism. Here we provide experimental evidence indicating that both Daw and Myo are anti-ageing factors in adult fruit flies. Knockdown of Myo or Daw in adult fruit flies reduced mean lifespan, while overexpression of either ligand in adult muscle tissues but not in adipose tissues enhanced mean lifespan. An examination of ubiquitinated protein aggregates in adult muscles revealed a strong inverse correlation between Myo- or Daw-initiated Activin signaling and the amount of ubiquitinated protein aggregates. We show that this correlation has important functional implications by demonstrating that the lifespan extension effect caused by overexpression of wild-type Daw or Myo in adult muscle tissues can be completely abrogated by knockdown of a 26S proteasome regulatory subunit Rpn1 in adult fly muscle, and that the prolonged lifespan caused by overexpression of Daw or Myo in adult muscle could be due to enhanced protein levels of the key subunits of 26S proteasome. Overall, our data suggest that Activin signaling initiated by Myo and Daw in adult Drosophila muscles influences lifespan, in part, by modulation of protein homeostasis through either direct or indirect regulation of the 26S proteasome levels. Since Myo is closely related to the vertebrate muscle mass regulator Myostatin (GDF8) and the Myostatin paralog GDF11, our observations may offer a new experimental model for probing the roles of GDF11/8 in ageing regulation in vertebrates. This article has an associated First Person interview with the first author of the paper. PMID:29615416

  13. Age-related changes in anterior cingulate cortex glutamate in schizophrenia: A (1)H MRS Study at 7 Tesla.

    PubMed

    Brandt, Allison S; Unschuld, Paul G; Pradhan, Subechhya; Lim, Issel Anne L; Churchill, Gregory; Harris, Ashley D; Hua, Jun; Barker, Peter B; Ross, Christopher A; van Zijl, Peter C M; Edden, Richard A E; Margolis, Russell L

    2016-04-01

    The extent of age-related changes in glutamate and other neurometabolites in the anterior cingulate cortex (ACC) in individuals with schizophrenia remain unclear. Magnetic resonance spectroscopy (MRS) at 7 T, which yields precise measurements of various metabolites and can distinguish glutamate from glutamine, was used to determine levels of ACC glutamate and other metabolites in 24 individuals with schizophrenia and 24 matched controls. Multiple regression analysis revealed that ACC glutamate decreased with age in patients but not controls. No changes were detected in levels of glutamine, N-acetylaspartate, N-acetylaspartylglutamic acid, myo-inositol, GABA, glutathione, total creatine, and total choline. These results suggest that age may be an important modifier of ACC glutamate in schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Ectopic Expression of a Glycine soja myo-Inositol Oxygenase Gene (GsMIOX1a) in Arabidopsis Enhances Tolerance to Alkaline Stress

    PubMed Central

    Chen, Chen; Sun, Xiaoli; Duanmu, Huizi; Yu, Yang; Liu, Ailin; Xiao, Jialei; Zhu, Yanming

    2015-01-01

    Myo-inositol participates in various aspects of plant physiology, and myo-inositol oxygenase is the key enzyme of the myo-inositol oxygenation pathway. Previous studies indicated that myo-inositol oxygenase may play a role in plant responses to abiotic stresses. In this study, we focused on the functional characterization of GsMIOX1a, a remarkable alkaline stress-responsive gene of Glycine soja 07256, based on RNA-seq data. Using quantitative real-time PCR, we demonstrated that GsMIOX1a is rapidly induced by alkaline stress and expressed predominantly in flowers. We also elucidated the positive function of GsMIOX1a in the alkaline response in the wild type, atmiox1 mutant as well as GsMIOX1a-overexpressing Arabidopsis. We determined that atmiox1 mutant decreased Arabidopsis tolerance to alkaline stress, whereas GsMIOX1a overexpression increased tolerance. Moreover, the expression levels of some alkaline stress-responsive and inducible marker genes, including H+-Ppase, NADP-ME, KIN1 and RD29B, were also up-regulated in GsMIOX1a overexpression lines compared with the wild type and atmiox1 mutant. Together, these results suggest that the GsMIOX1a gene positively regulates plant tolerance to alkaline stress. This is the first report to demonstrate that ectopic expression of myo-inositol oxygenase improves alkaline tolerance in plants. PMID:26091094

  15. Osmoregulatory inositol transporter SMIT1 modulates electrical activity by adjusting PI(4,5)P2 levels

    PubMed Central

    Dai, Gucan; Yu, Haijie; Traynor-Kaplan, Alexis

    2016-01-01

    Myo-inositol is an important cellular osmolyte in autoregulation of cell volume and fluid balance, particularly for mammalian brain and kidney cells. We find it also regulates excitability. Myo-inositol is the precursor of phosphoinositides, key signaling lipids including phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. However, whether myo-inositol accumulation during osmoregulation affects signaling and excitability has not been fully explored. We found that overexpression of the Na+/myo-inositol cotransporter (SMIT1) and myo-inositol supplementation enlarged intracellular PI(4,5)P2 pools, modulated several PI(4,5)P2-dependent ion channels including KCNQ2/3 channels, and attenuated the action potential firing of superior cervical ganglion neurons. Further experiments using the rapamycin-recruitable phosphatase Sac1 to hydrolyze PI(4)P and the P4M probe to visualize PI(4)P suggested that PI(4)P levels increased after myo-inositol supplementation with SMIT1 expression. Elevated relative levels of PIP and PIP2 were directly confirmed using mass spectrometry. Inositol trisphosphate production and release of calcium from intracellular stores also were augmented after myo-inositol supplementation. Finally, we found that treatment with a hypertonic solution mimicked the effect we observed with SMIT1 overexpression, whereas silencing tonicity-responsive enhancer binding protein prevented these effects. These results show that ion channel function and cellular excitability are under regulation by several “physiological” manipulations that alter the PI(4,5)P2 setpoint. We demonstrate a previously unrecognized linkage between extracellular osmotic changes and the electrical properties of excitable cells. PMID:27217553

  16. Genetic investigation of 93 families with microphthalmia or posterior microphthalmos.

    PubMed

    Patel, N; Khan, A O; Alsahli, S; Abdel-Salam, G; Nowilaty, S R; Mansour, A M; Nabil, A; Al-Owain, M; Sogati, S; Salih, M A; Kamal, A M; Alsharif, H; Alsaif, H S; Alzahrani, S S; Abdulwahab, F; Ibrahim, N; Hashem, M; Faquih, T; Shah, Z A; Abouelhoda, M; Monies, D; Dasouki, M; Shaheen, R; Wakil, S M; Aldahmesh, M A; Alkuraya, F S

    2018-06-01

    Microphthalmia is a developmental eye defect that is highly variable in severity and in its potential for systemic association. Despite the discovery of many disease genes in microphthalmia, at least 50% of patients remain undiagnosed genetically. Here, we describe a cohort of 147 patients (93 families) from our highly consanguineous population with various forms of microphthalmia (including the distinct entity of posterior microphthalmos) that were investigated using a next-generation sequencing multi-gene panel (i-panel) as well as whole exome sequencing and molecular karyotyping. A potentially causal mutation was identified in the majority of the cohort with microphthalmia (61%) and posterior microphthalmos (82%). The identified mutations (55 point mutations, 15 of which are novel) spanned 24 known disease genes, some of which have not or only very rarely been linked to microphthalmia (PAX6, SLC18A2, DSC3 and CNKSR1). Our study has also identified interesting candidate variants in 2 genes that have not been linked to human diseases (MYO10 and ZNF219), which we present here as novel candidates for microphthalmia. In addition to revealing novel phenotypic aspects of microphthalmia, this study expands its allelic and locus heterogeneity and highlights the need for expanded testing of patients with this condition. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Photogenerated Hole-Induced Chemical Redox Cycling on Bi2S3/Bi2Sn2O7 Heterojunction: Toward General Amplified Split-Type Photoelectrochemical Immunoassay.

    PubMed

    Cao, Jun-Tao; Wang, Bing; Dong, Yu-Xiang; Wang, Qian; Ren, Shu-Wei; Liu, Yan-Ming; Zhao, Wei-Wei

    2018-06-04

    This work reports the elegant bridging of enzymatic generation of electron donor with photogenerated hole-induced chemical redox cycling amplification (RCA) for innovative photoelectrochemical (PEC) immunoassay, by the aid of a heterojunction photoelectrode with split-type strategy. Specifically, the system was exemplified by the alkaline phosphatase (ALP) catalytic generation of ascorbic acid (AA), the redox cycling of AA by tris (2-carboxyethyl) phosphine (TCEP) as reductant, and the use of a novel Bi 2 S 3 /Bi 2 Sn 2 O 7 heterojunction and myoglobin (Myo) as the photoelectrode and the target, respectively. After the immunoreaction and ALP-induced production of AA, the subsequent oxidation of AA by the photogenerated holes of the Bi 2 S 3 /Bi 2 Sn 2 O 7 heterojunction could be cycled via the regeneration of AA by TCEP from the oxidized product of dehydroascorbic acid, leading to easy signal amplification for the sensitive immunoassay of Myo in real samples. It is believed that this work provided a basis for further design and development of general RCA-based PEC immunoassays.

  18. Specific Nuclear Localizing Sequence Directs Two Myosin Isoforms to the Cell Nucleus in Calmodulin-Sensitive Manner

    PubMed Central

    Dzijak, Rastislav; Yildirim, Sukriye; Kahle, Michal; Novák, Petr; Hnilicová, Jarmila; Venit, Tomáš; Hozák, Pavel

    2012-01-01

    Background Nuclear myosin I (NM1) was the first molecular motor identified in the cell nucleus. Together with nuclear actin, they participate in crucial nuclear events such as transcription, chromatin movements, and chromatin remodeling. NM1 is an isoform of myosin 1c (Myo1c) that was identified earlier and is known to act in the cytoplasm. NM1 differs from the “cytoplasmic” myosin 1c only by additional 16 amino acids at the N-terminus of the molecule. This amino acid stretch was therefore suggested to direct NM1 into the nucleus. Methodology/Principal Findings We investigated the mechanism of nuclear import of NM1 in detail. Using over-expressed GFP chimeras encoding for truncated NM1 mutants, we identified a specific sequence that is necessary for its import to the nucleus. This novel nuclear localization sequence is placed within calmodulin-binding motif of NM1, thus it is present also in the Myo1c. We confirmed the presence of both isoforms in the nucleus by transfection of tagged NM1 and Myo1c constructs into cultured cells, and also by showing the presence of the endogenous Myo1c in purified nuclei of cells derived from knock-out mice lacking NM1. Using pull-down and co-immunoprecipitation assays we identified importin beta, importin 5 and importin 7 as nuclear transport receptors that bind NM1. Since the NLS sequence of NM1 lies within the region that also binds calmodulin we tested the influence of calmodulin on the localization of NM1. The presence of elevated levels of calmodulin interfered with nuclear localization of tagged NM1. Conclusions/Significance We have shown that the novel specific NLS brings to the cell nucleus not only the “nuclear” isoform of myosin I (NM1 protein) but also its “cytoplasmic” isoform (Myo1c protein). This opens a new field for exploring functions of this molecular motor in nuclear processes, and for exploring the signals between cytoplasm and the nucleus. PMID:22295092

  19. A transgenic animal model of osmotic cataract. Part 1: over-expression of bovine Na+/myo-inositol cotransporter in lens fibers.

    PubMed

    Cammarata, P R; Zhou, C; Chen, G; Singh, I; Reeves, R E; Kuszak, J R; Robinson, M L

    1999-07-01

    Intracellular osmotic stress is believed to be linked to the advancement of diabetic cataract. Although the accumulation of organic osmolytes (myo-inositol, sorbitol, taurine) is thought to protect the lens by maintaining osmotic homeostasis, the physiologic implication of osmotic imbalance (i.e., hyperosmotic stress caused by intracellular over-accumulation of organic osmolytes) on diabetic cataract formation is not clearly understood. Studies from this laboratory have identified several osmotic compensatory mechanisms thought to afford the lens epithelium, but not the lens fibers, protection from water stress during intervals of osmotic crisis. This model is founded on the supposition that the fibers of the lens are comparatively more susceptible to damage by osmotic insult than is the lens epithelium. To test this premise, several transgenic mouse lines were developed that over-express the bovine sodium/myo-inositol cotransporter (bSMIT) gene in lens fiber cells. Of the several transgenic mouse lines generated, two, MLR14 and MLR21, were analyzed in detail. Transgenic mRNA expression was analyzed in adult and embryonic transgenic mice by a coupled reverse transcriptase-polymerase chain reaction (RT-PCR) and in situ hybridization on embryonic tissue sections, respectively. Intralenticular myo-inositol content from individual mouse lenses was quantified by anion exchange chromatography and pulsed electrochemical detection. Ocular histology of embryonic day 15.5 (E15.5) embryos from both transgenic (TG) families was analyzed and compared to their respective nontransgenic (NTG) littermates. Both RT-PCR and in situ hybridization determined that transgene expression was higher in line MLR21 than in line MLR14. Consistent with this, intralenticular myo-inositol from MLR21 TG mice was markedly higher compared with NTG littermates or MLR14 TG mice. Histologic analysis of E15.5 MLR21 TG embryos disclosed a marked swelling in the differentiating fibers of the bow region and subcapsular fibers of the central zone, whereas the lens epithelium appeared morphologically normal. The lenticular changes, initiated early during lens development in TG MLR21 embryos, result in severe bilateral nuclear cataracts readily observable in neonates under normal rearing and dietary conditions. In contrast, TG MLR14 pups reared under standard conditions produced no lens opacity. Lens fiber swelling and related cataractous outgrowth positively correlated to the degree of lens bSMIT gene expression and intralenticular myo-inositol content. The affected (i.e., swollen) lens fibers appeared to be unable to cope with the water stress generated by the transgene-induced over-accumulation of myo-inositol and, as a result of this inability to osmoregulate, suffered osmotic damage due to water influx.

  20. Effects of myo-inositol in women with PCOS: a systematic review of randomized controlled trials.

    PubMed

    Unfer, V; Carlomagno, G; Dante, G; Facchinetti, F

    2012-07-01

    Polycystic ovary syndrome (PCOS) affects 5%-10% of women in reproductive age, and it is the most common cause of infertility due to ovarian dysfunction and menstrual irregularity. Several studies have reported that insulin resistance is common in PCOS women, regardless of the body mass index. The importance of insulin resistance in PCOS is also suggested by the fact that insulin-sensitizing compounds have been proposed as putative treatments to solve the hyperinsulinemia-induced dysfunction of ovarian response to endogenous gonadotropins. Rescuing the ovarian response to endogenous gonadotropins reduces hyperandrogenemia and re-establishes menstrual cyclicity and ovulation, increasing the chance of a spontaneous pregnancy. Among the insulin-sensitizing compounds, there is myo-inosiol (MYO). Previous studies have demonstrated that MYO is capable of restoring spontaneous ovarian activity, and consequently fertility, in most patients with PCOS. With the present review, we aim to provide an overview on the clinical outcomes of the MYO use as a treatment to improve ovarian function and metabolic and hormonal parameters in women with PCOS.

  1. Crumbs regulates rhodopsin transport by interacting with and stabilizing myosin V

    PubMed Central

    Shevchenko, Anna

    2011-01-01

    The evolutionarily conserved Crumbs (Crb) complex is crucial for photoreceptor morphogenesis and homeostasis. Loss of Crb results in light-dependent retinal degeneration, which is prevented by feeding mutant flies carotenoid-deficient medium. This suggests a defect in rhodopsin 1 (Rh1) processing, transport, and/or signaling, causing degeneration; however, the molecular mechanism of this remained elusive. In this paper, we show that myosin V (MyoV) coimmunoprecipitated with the Crb complex and that loss of crb led to severe reduction in MyoV levels, which could be rescued by proteasomal inhibition. Loss of MyoV in crb mutant photoreceptors was accompanied by defective transport of the MyoV cargo Rh1 to the light-sensing organelle, the rhabdomere. This resulted in an age-dependent accumulation of Rh1 in the photoreceptor cell (PRC) body, a well-documented trigger of degeneration. We conclude that Crb protects against degeneration by interacting with and stabilizing MyoV, thereby ensuring correct Rh1 trafficking. Our data provide, for the first time, a molecular mechanism for the light-dependent degeneration of PRCs observed in crb mutant retinas. PMID:22105348

  2. A meta-analysis of the relationship between MYO9B gene polymorphisms and susceptibility to Crohn's disease and ulcerative colitis.

    PubMed

    Li, Peng; Yang, Xiao-Ke; Wang, Xiu; Zhao, Meng-Qin; Zhang, Chao; Tao, Sha-Sha; Zhao, Wei; Huang, Qing; Li, Lian-Ju; Pan, Hai-Feng; Ye, Dong-Qing

    2016-10-01

    Both Crohn's disease (CD) and ulcerative colitis (UC) have a complex etiology involving multiple genetic and environmental factors. Multiple UC and CD susceptibility genes have been identified through genome-wide association studies and subsequent meta-analyses. The aim of this meta-analysis was to clarify the impact of MYO9B gene polymorphisms on CD and UC risk. The PubMed, Elsevier Science Direct and Embase databases were searched to identify eligible studies that were published before October 2014. Data were extracted and pooled crude odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated. A total of 11 studies, containing 3297 CD cases, 3903 UC cases and 8174 controls were included in this meta-analysis. Bonferroni correction results showed that rs1545620 A/C polymorphism of MYO9B gene was associated with both CD and UC susceptibility in Caucasians (OR=0.88, 95% CI=0.82∼0.95, P=0.001; OR=0.82, 95% CI=0.76∼0.89, P<0.001), but not in Chinese. rs1457092 G/T and rs2305764 C/T polymorphisms are associated with UC susceptibility (OR=0.85, 95% CI=0.79∼0.91, P<0.001; OR=0.88, 95% CI=0.83∼0.93, P<0.001), but not with CD susceptibility in Caucasians. This meta-analysis suggested that rs1545620 is both CD and UC susceptible locus in Caucasians; rs1457092 and rs2305764 are UC susceptible loci, but are not CD susceptible loci in Caucasians. Further studies with more sample size are needed for a definitive conclusion. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  3. The effects of a medical hypnotherapy on clothing industry employees suffering from chronic pain.

    PubMed

    Roja, Zenija; Kalkis, Valdis; Roja, Inara; Kalkis, Henrijs

    2013-09-25

    Problems associated with pain in several body regions due to work-related musculoskeletal disorders (WRMDs), repetitive movement and negative stress at work are quite common in many manufacturing industries of Latvia, int.al. clothing industry. The aim of this study was to evaluate efficiency of the psychotherapeutic intervention using medical hypnotherapy (MH) program for mind-body relaxation with pain-blocking imagery, cognitive restructuring of unpleasant physical and emotional experience. 300 sewers and 50 cutters with chronic pain were involved in the study. Self-rated WRMDs symptoms, pain intensity and interference were assessed using the extended version of Nordic Musculoskeletal Questionnaire and Brief Pain Inventory Scale. Assessment of the functional state of muscles was carried out using myotonometric (MYO) measurements. Work heaviness degree was estimated via heart rate monitoring (HRM). The MH program was composed of cognitive hypnotherapy and self-hypnosis training. Sunnen Trance Scale was used to determine person's hypnotic susceptibility. Life quality assessment before and after MH program was carried out using Quality of Life Scale. At the beginning of MH program sessions both sewers and cutters reported on pain interference with general activities, mood, sleep, normal work, etc., but after MH the interference of pain significantly decreased. HRM data confirmed that work heaviness degree of sewers and cutters can be referred to as light and moderate work (energy expenditure for their tasks varies from 3.4 till 4.7 kcal/min). Using MYO measurements it was stated that before MH 22% of workers involved in the study fell under III MYO category indices, consequently, their muscle tone was increased, which is associated with muscular fatigue. After MH muscle tone remained within the normal range meaning that they were able to adapt to the existing workload (II MYO category) or fully relax (I MYO category). MH program including exercises-workouts, cognitive hypnotherapy and self-hypnosis training sessions is an effective method to decrease composite chronic pain intensity for sewers and cutters, as well as to decrease psychogenic tension and muscle fatigue (proved by objective measurements of muscles tone) and to increase the life quality.

  4. The effects of a medical hypnotherapy on clothing industry employees suffering from chronic pain

    PubMed Central

    2013-01-01

    Background Problems associated with pain in several body regions due to work-related musculoskeletal disorders (WRMDs), repetitive movement and negative stress at work are quite common in many manufacturing industries of Latvia, int.al. clothing industry. The aim of this study was to evaluate efficiency of the psychotherapeutic intervention using medical hypnotherapy (MH) program for mind-body relaxation with pain-blocking imagery, cognitive restructuring of unpleasant physical and emotional experience. Methods 300 sewers and 50 cutters with chronic pain were involved in the study. Self-rated WRMDs symptoms, pain intensity and interference were assessed using the extended version of Nordic Musculoskeletal Questionnaire and Brief Pain Inventory Scale. Assessment of the functional state of muscles was carried out using myotonometric (MYO) measurements. Work heaviness degree was estimated via heart rate monitoring (HRM). The MH program was composed of cognitive hypnotherapy and self-hypnosis training. Sunnen Trance Scale was used to determine person’s hypnotic susceptibility. Life quality assessment before and after MH program was carried out using Quality of Life Scale. Results At the beginning of MH program sessions both sewers and cutters reported on pain interference with general activities, mood, sleep, normal work, etc., but after MH the interference of pain significantly decreased. HRM data confirmed that work heaviness degree of sewers and cutters can be referred to as light and moderate work (energy expenditure for their tasks varies from 3.4 till 4.7 kcal/min). Using MYO measurements it was stated that before MH 22% of workers involved in the study fell under III MYO category indices, consequently, their muscle tone was increased, which is associated with muscular fatigue. After MH muscle tone remained within the normal range meaning that they were able to adapt to the existing workload (II MYO category) or fully relax (I MYO category). Conclusions MH program including exercises-workouts, cognitive hypnotherapy and self-hypnosis training sessions is an effective method to decrease composite chronic pain intensity for sewers and cutters, as well as to decrease psychogenic tension and muscle fatigue (proved by objective measurements of muscles tone) and to increase the life quality. PMID:24066847

  5. Decreased prefrontal Myo-inositol in major depressive disorder.

    PubMed

    Coupland, Nick J; Ogilvie, Catherine J; Hegadoren, Kathleen M; Seres, Peter; Hanstock, Chris C; Allen, Peter S

    2005-06-15

    Postmortem studies have shown robust prefrontal cortex glial losses and more subtle neuronal changes in major depressive disorder (MDD). Earlier proton magnetic resonance spectroscopy (1H-MRS) studies of the glial marker myo-inositol in MDD were subject to potential confounds. The primary hypothesis of this study was that MDD patients would show reduced prefrontal/anterior cingulate cortex levels of myo-inositol. Thirteen nonmedicated moderate-severe MDD patients and 13 matched control subjects were studied (six male, seven female per group). Proton magnetic resonance spectroscopy stimulated echo acquisition mode spectra (3.0 T; echo time=168 msec; mixing time=28 msec; repetition time=3000 msec) were obtained from prefrontal/anterior cingulate cortex. Metabolite data were adjusted for tissue composition. Patients with MDD showed significantly lower myo-inositol/creatine ratios (.94+/-.23) than control subjects (1.32+/-.37) [F(1,23)=6.9; p=.016]. These data suggest a reduction of myo-inositol in prefrontal/anterior cingulate cortex in MDD, which could be a consequence of glial loss or altered glial metabolism. Additional in vivo studies of glial markers could add to the understanding of the pathophysiology of MDD.

  6. Force Generation by Membrane-Associated Myosin-I

    PubMed Central

    Pyrpassopoulos, Serapion; Arpağ, Göker; Feeser, Elizabeth A.; Shuman, Henry; Tüzel, Erkan; Ostap, E. Michael

    2016-01-01

    Vertebrate myosin-IC (Myo1c) is a type-1 myosin that links cell membranes to the cytoskeleton via its actin-binding motor domain and its phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2)-binding tail domain. While it is known that Myo1c bound to PtdIns(4,5)P2 in fluid-lipid bilayers can propel actin filaments in an unloaded motility assay, its ability to develop forces against external load on actin while bound to fluid bilayers has not been explored. Using optical tweezers, we measured the diffusion coefficient of single membrane-bound Myo1c molecules by force-relaxation experiments, and the ability of ensembles of membrane-bound Myo1c molecules to develop and sustain forces. To interpret our results, we developed a computational model that recapitulates the basic features of our experimental ensemble data and suggests that Myo1c ensembles can generate forces parallel to lipid bilayers, with larger forces achieved when the myosin works away from the plane of the membrane or when anchored to slowly diffusing regions. PMID:27156719

  7. Quantitative comparison of the expression of myogenic regulatory factors in flounder ( Paralichthys olivaceus) embryos and adult tissues

    NASA Astrophysics Data System (ADS)

    Zhang, Yuqing; Tan, Xungang; Xu, Peng; Sun, Wei; Xu, Yongli; Zhang, Peijun

    2010-03-01

    MyoD, Myf5, and myogenin are myogenic regulatory factors that play important roles during myogenesis. It is thought that MyoD and Myf5 are required for myogenic determination, while myogenin is important for terminal differentiation and lineage maintenance. To better understand the function of myogenic regulatory factors in muscle development of flounder, an important economic fish in Asia, real-time quantitative RT-PCR was used to characterize the expression patterns of MyoD, Myf5, and myogenin at early stages of embryo development, and in different tissues of the adult flounder. The results show that, Myf5 is the first gene to be expressed during the early stages of flounder development, followed by MyoD and myogenin. The expressions of Myf5, yoD, and myogenin at the early stages have a common characteristic: expression gradually increased to a peak level, and then gradually decreased to an extremely low level. In the adult flounder, the expression of the three genes in muscle is much higher than that in other tissues, indicating that they are important for muscle growth and maintenance of grown fish. During embryonic stages, the expression level of MyoD might serve an important role in the balance between muscle cell differentiation and proliferation. When the MyoD expression is over 30% of its highest level, the muscle cells enter the differentiation stage.

  8. Magnetic poly(2-hydroxyethyl methacrylate) microspheres for affinity purification of monospecific anti-p46 kDa/Myo1C antibodies for early diagnosis of multiple sclerosis patients

    PubMed Central

    Hlídková, Helena; Kit, Yurii; Antonyuk, Volodymyr; Myronovsky, Severyn; Stoika, Rostyslav

    2017-01-01

    The aim of the present study is to develop new magnetic polymer microspheres with functional groups available for easy protein and antibody binding. Monodisperse macroporous poly(2-hydroxyethyl methacrylate) (PHEMA-COOH) microspheres ~4 µm in diameter and containing ∼1 mmol COOH/g were synthesized by multistep swelling polymerization of 2-hydroxyethyl methacrylate (HEMA), ethylene dimethacrylate (EDMA), and 2-[(methoxycarbonyl)methoxy]ethyl methacrylate (MCMEMA), which was followed by MCMEMA hydrolysis. The microspheres were rendered magnetic by precipitation of iron oxide inside the pores, which made them easily separable in a magnetic field. Properties of the resulting magnetic poly(2-hydroxyethyl methacrylate) (mgt.PHEMA) particles with COOH functionality were examined by scanning and transmission electron microscopy (SEM and TEM), static volumetric adsorption of helium and nitrogen, mercury porosimetry, Fourier transform infrared (FTIR) and atomic absorption spectroscopy (AAS), and elemental analysis. Mgt.PHEMA microspheres were coupled with p46/Myo1C protein purified from blood serum of multiple sclerosis (MS) patients, which enabled easy isolation of monospecific anti-p46/Myo1C immunoglobulin G (IgG) antibodies from crude antibody preparations of mouse blood serum. High efficiency of this approach was confirmed by SDS/PAGE, Western blot, and dot blot analyses. The newly developed mgt.PHEMA microspheres conjugated with a potential disease biomarker, p46/Myo1C protein, are thus a promising tool for affinity purification of antibodies, which can improve diagnosis and treatment of MS patients. PMID:28351895

  9. Dose-dependent Effect of Boric Acid on Myogenic Differentiation of Human Adipose-derived Stem Cells (hADSCs).

    PubMed

    Apdik, Hüseyin; Doğan, Ayşegül; Demirci, Selami; Aydın, Safa; Şahin, Fikrettin

    2015-06-01

    Boron, a vital micronutrient for plant metabolism, is not fully elucidated for embryonic and adult body development, and tissue regeneration. Although optimized amount of boron supplement has been shown to be essential for normal gestational development in zebrafish and frog and beneficial for bone regeneration in higher animals, effects of boron on myogenesis and myo-regeneration remains to be solved. In the current study, we investigated dose-dependent activity of boric acid on myogenic differentiation of human adipose-derived stem cells (hADSCs) using immunocytochemical, gene, and protein expression analysis. The results revealed that while low- (81.9 μM) and high-dose (819.6 μM) boron treatment increased myogenic gene expression levels such as myosin heavy chain (MYH), MyoD, myogenin, and desmin at day 4 of differentiation, high-dose treatment decreased myogenic-related gene and protein levels at day 21 of differentiation, confirmed by immunocytochemical analysis. The findings of the study present not only an understanding of boron's effect on myogenic differentiation but also an opportunity for the development of scaffolds to be used in skeletal tissue engineering and supplements for embryonic muscle growth. However, fine dose tuning and treatment period arranging are highly warranted as boron treatment over required concentrations and time might result in detrimental outcomes to myogenesis and myo-regeneration.

  10. Mutation analysis of the STRA6 gene in isolated and non-isolated anophthalmia/microphthalmia.

    PubMed

    Chassaing, N; Ragge, N; Kariminejad, A; Buffet, A; Ghaderi-Sohi, S; Martinovic, J; Calvas, P

    2013-03-01

    PDAC syndrome [Pulmonary hypoplasia/agenesis, Diaphragmatic hernia/eventration, Anophthalmia/microphthalmia (A/M) and Cardiac Defect] is a condition associated with recessive mutations in the STRA6 gene in some of these patients. Recently, cases with isolated anophthalmia have been associated with STRA6 mutations. To determine the minimal findings associated with STRA6 mutations, we performed mutation analysis of the STRA6 gene in 28 cases with anophthalmia. In 7 of the cases the anophthalmia was isolated, in 14 cases it was associated with one of the major features included in PDAC and 7 had other abnormalities. Mutations were identified in two individuals: one with bilateral anophthalmia and some features included in PDAC, who was a compound heterozygote for a missense mutation and a large intragenic deletion, and the second case with all the major features of PDAC and who had a homozygous splicing mutation. This study suggests that STRA6 mutations are more likely to be identified in individuals with A/M and other abnormalities included in the PDAC spectrum, rather than in isolated A/M cases. © 2012 John Wiley & Sons A/S.

  11. Satellite cell response to concurrent resistance exercise and high-intensity interval training in sedentary, overweight/obese, middle-aged individuals.

    PubMed

    Pugh, Jamie K; Faulkner, Steve H; Turner, Mark C; Nimmo, Myra A

    2018-02-01

    Sarcopenia can begin from the 4-5th decade of life and is exacerbated by obesity and inactivity. A combination of resistance exercise (RE) and endurance exercise is recommended to combat rising obesity and inactivity levels. However, work continues to elucidate whether interference in adaptive outcomes occur when RE and endurance exercise are performed concurrently. This study examined whether a single bout of concurrent RE and high-intensity interval training (HIIT) alters the satellite cell response following exercise compared to RE alone. Eight sedentary, overweight/obese, middle-aged individuals performed RE only (8 × 8 leg extensions at 70% 1RM), or RE + HIIT (10 × 1 min at 90% HR max on a cycle ergometer). Muscle biopsies were collected from the vastus lateralis before and 96 h after the RE component to determine muscle fiber type-specific total (Pax7 + cells) and active (MyoD + cells) satellite cell number using immunofluorescence microscopy. Type-I-specific Pax7 + (P = 0.001) cell number increased after both exercise trials. Type-I-specific MyoD + (P = 0.001) cell number increased after RE only. However, an elevated baseline value in RE + HIIT compared to RE (P = 0.046) was observed, with no differences between exercise trials at 96 h (P = 0.21). Type-II-specific Pax7 + and MyoD + cell number remained unchanged after both exercise trials (all P ≥ 0.13). Combining a HIIT session after a single bout of RE does not interfere with the increase in type-I-specific total, and possibly active, satellite cell number, compared to RE only. Concurrent RE + HIIT may offer a time-efficient way to maximise the physiological benefits from a single bout of exercise in sedentary, overweight/obese, middle-aged individuals.

  12. Expression of progesterone receptor protein in the ovine uterus during the estrous cycle: Effects of nutrition, arginine and FSH.

    PubMed

    Grazul-Bilska, Anna T; Thammasiri, Jiratti; Kraisoon, Aree; Reyaz, Arshi; Bass, Casie S; Kaminski, Samantha L; Navanukraw, Chainarong; Redmer, Dale A

    2018-03-01

    To evaluate expression of progesterone receptor (PGR) AB in follicle stimulating hormone (FSH)-treated or non-treated sheep administered with arginine (Arg) or saline (Sal) fed a control (C), excess (O) or restricted (U) diet, uterine tissues were collected at the early, mid and/or late luteal phases. In exp. 1, ewes from each diet were randomly assigned to one of two treatments, Arg or Sal administration three times daily from day 0 of the first estrous cycle until uterine tissue collection. In exp. 2, ewes were injected twice daily with FSH on days 13-15 of the first estrous cycle. Uterine tissues were immunostained to detect PGR followed by image analysis. PGR were detected in luminal epithelium (LE), endometrial glands (EG), endometrial stroma (ES), myometrium (Myo), and endometrial and myometrial blood vessels. The percentage of PR-positive cells and/or intensity of staining were affected by phase of the estrous cycle, plane of nutrition, and/or FSH but not by Arg. In exp. 1, percentage of PGR-positive cells in LE and EG but not in ES and Myo was greater at the early and mid than late luteal phase, was not affected by plane of nutrition, and was similar in LE and EG. Intensity of staining was affected by phase of the estrous cycle and plane of nutrition in LE, EG and Myo, and was the greatest in LE, less in EG, and least in ES and Myo. In exp. 2, percentage of PGR-positive cells in LE, EG, ES and Myo was affected by phase of the estrous cycle, but not by plane of nutrition; was greater at the early than mid luteal phase; and was greatest in LE and EG, less in luminal (superficial) ES and Myo and least in deep ES. Intensity of staining was affected by phase of the estrous cycle and plane of nutrition in all compartments but ES, and was the greatest in LE and luminal EG, less in deep EG, and least in ES and Myo. Comparison of data for FSH (superovulated) and Sal-treated (non-superovulated) ewes demonstrated that FSH affected PR expression in all evaluated uterine compartments depending on plane of nutrition and phase of the estrous cycle. Thus, PGR are differentially distributed in uterine compartments, and PGR expression is affected by nutritional plane and FSH, but not Arg depending on phase of the estrous cycle. Such changes in dynamics of PGR expression indicate that diet plays a regulatory role and that FSH-treatment may alter uterine functions. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. KCNQ1, KCNE2, and Na+-Coupled Solute Transporters Form Reciprocally Regulating Complexes that Affect Neuronal Excitability

    PubMed Central

    Abbott, Geoffrey W.; Tai, Kwok-Keung; Neverisky, Daniel; Hansler, Alex; Hu, Zhaoyang; Roepke, Torsten K.; Lerner, Daniel J.; Chen, Qiuying; Liu, Li; Zupan, Bojana; Toth, Miklos; Haynes, Robin; Huang, Xiaoping; Demirbas, Didem; Buccafusca, Roberto; Gross, Steven S.; Kanda, Vikram A.; Berry, Gerard T.

    2014-01-01

    Na+-coupled solute transport is crucial for the uptake of nutrients and metabolic precursors, such as myo-inositol, an important osmolyte and precursor for various cell signaling molecules. Here, we found that various solute transporters and potassium channel subunits formed complexes and reciprocally regulated each other in vitro and in vivo. Global metabolite profiling revealed that mice lacking KCNE2, a K+ channel β subunit, showed a reduction in the myo-inositol concentration in cerebrospinal fluid (CSF) but not in serum. Increased behavorial responsiveness to stress and seizure susceptibility in Kcne2−/− mice were alleviated by injections of myo-inositol. Suspecting a defect in myo-inositol transport, we found that KCNE2 and KCNQ1, a voltage-gated potassium channel α subunit, colocalized and coimmunoprecipitated with SMIT1, a Na+-coupled myo-inositol transporter, in the choroid plexus epithelium. Heterologous coexpression demonstrated that myo-inositol transport by SMIT1 was augmented by coexpression of KCNQ1 but inhibited by coexpression of both KCNQ1 and KCNE2, which form a constitutively active, heteromeric K+ channel. SMIT1 and the related transporter SMIT2 were also inhibited by a constitutively active mutant form of KCNQ1. The activity of KCNQ1 and KCNQ1-KCNE2 were augmented by SMIT1 and the glucose transporter SGLT1, but suppressed by SMIT2. Channel-transporter signaling complexes may be a widespread mechanism to facilitate solute transport and electrochemical crosstalk. PMID:24595108

  14. KCNQ1, KCNE2, and Na+-coupled solute transporters form reciprocally regulating complexes that affect neuronal excitability.

    PubMed

    Abbott, Geoffrey W; Tai, Kwok-Keung; Neverisky, Daniel L; Hansler, Alex; Hu, Zhaoyang; Roepke, Torsten K; Lerner, Daniel J; Chen, Qiuying; Liu, Li; Zupan, Bojana; Toth, Miklos; Haynes, Robin; Huang, Xiaoping; Demirbas, Didem; Buccafusca, Roberto; Gross, Steven S; Kanda, Vikram A; Berry, Gerard T

    2014-03-04

    Na(+)-coupled solute transport is crucial for the uptake of nutrients and metabolic precursors, such as myo-inositol, an important osmolyte and precursor for various cell signaling molecules. We found that various solute transporters and potassium channel subunits formed complexes and reciprocally regulated each other in vitro and in vivo. Global metabolite profiling revealed that mice lacking KCNE2, a K(+) channel β subunit, showed a reduction in myo-inositol concentration in cerebrospinal fluid (CSF) but not in serum. Increased behavioral responsiveness to stress and seizure susceptibility in Kcne2(-/-) mice were alleviated by injections of myo-inositol. Suspecting a defect in myo-inositol transport, we found that KCNE2 and KCNQ1, a voltage-gated potassium channel α subunit, colocalized and coimmunoprecipitated with SMIT1, a Na(+)-coupled myo-inositol transporter, in the choroid plexus epithelium. Heterologous coexpression demonstrated that myo-inositol transport by SMIT1 was augmented by coexpression of KCNQ1 but was inhibited by coexpression of both KCNQ1 and KCNE2, which form a constitutively active, heteromeric K(+) channel. SMIT1 and the related transporter SMIT2 were also inhibited by a constitutively active mutant form of KCNQ1. The activities of KCNQ1 and KCNQ1-KCNE2 were augmented by SMIT1 and the glucose transporter SGLT1 but were suppressed by SMIT2. Channel-transporter signaling complexes may be a widespread mechanism to facilitate solute transport and electrochemical crosstalk.

  15. Rapamycin does not prevent increases in myofibrillar or mitochondrial protein synthesis following endurance exercise

    PubMed Central

    Philp, Andrew; Schenk, Simon; Perez-Schindler, Joaquin; Hamilton, D Lee; Breen, Leigh; Laverone, Erin; Jeromson, Stewart; Phillips, Stuart M; Baar, Keith

    2015-01-01

    Abstract The present study aimed to investigate the role of the mechanistic target of rapamycin complex 1 (mTORC1) in the regulation of myofibrillar (MyoPS) and mitochondrial (MitoPS) protein synthesis following endurance exercise. Forty-two female C57BL/6 mice performed 1 h of treadmill running (18 m min−1; 5° grade), 1 h after i.p. administration of rapamycin (1.5 mg · kg−1) or vehicle. To quantify skeletal muscle protein fractional synthesis rates, a flooding dose (50 mg · kg−1) of l-[ring-13C6]phenylalanine was administered via i.p. injection. Blood and gastrocnemius muscle were collected in non-exercised control mice, as well as at 0.5, 3 and 6 h after completing exercise (n = 4 per time point). Skeletal muscle MyoPS and MitoPS were determined by measuring isotope incorporation in their respective protein pools. Activation of the mTORC1-signalling cascade was measured via direct kinase activity assay and immunoblotting, whereas genes related to mitochondrial biogenesis were measured via a quantitative RT-PCR. MyoPS increased rapidly in the vehicle group post-exercise and remained elevated for 6 h, whereas this response was transiently blunted (30 min post-exercise) by rapamycin. By contrast, MitoPS was unaffected by rapamycin, and was increased over the entire post-exercise recovery period in both groups (P < 0.05). Despite rapid increases in both MyoPS and MitoPS, mTORC1 activation was suppressed in both groups post-exercise for the entire 6 h recovery period. Peroxisome proliferator activated receptor-γ coactivator-1α, pyruvate dehydrogenase kinase 4 and mitochondrial transcription factor A mRNA increased post-exercise (P < 0.05) and this response was augmented by rapamycin (P < 0.05). Collectively, these data suggest that endurance exercise stimulates MyoPS and MitoPS in skeletal muscle independently of mTORC1 activation. Key points Previous studies have shown that endurance exercise increases myofibrillar (MyoPS) and mitochondrial (MitoPS) protein synthesis in skeletal muscle. The mechanistic target of rapamycin (mTOR) is considered to be a key intracellular nutrient-sensing protein complex, which activates MyoPS in response to anabolic stimuli. Little is known regarding the regulation of MyoPS and MitoPS in response to endurance exercise. In the present study, we show that MyoPS and MitoPS increase in skeletal muscle following endurance exercise, despite suppression of mTORC1 during the post-exercise recovery period. Our data suggests that mTORC1 independent processes regulate both MyoPS and MitoPS following acute endurance exercise. PMID:26227152

  16. Molecular Analysis of Congenital Hypothyroidism in Saudi Arabia: SLC26A7 Mutation Is a Novel Defect in Thyroid Dyshormonogenesis.

    PubMed

    Zou, Minjing; Alzahrani, Ali S; Al-Odaib, Ali; Alqahtani, Mohammad A; Babiker, Omer; Al-Rijjal, Roua A; BinEssa, Huda A; Kattan, Walaa E; Al-Enezi, Anwar F; Al Qarni, Ali; Al-Faham, Manar S A; Baitei, Essa Y; Alsagheir, Afaf; Meyer, Brian F; Shi, Yufei

    2018-05-01

    Congenital hypothyroidism (CH) is the most common neonatal endocrine disorder, affecting one in 3000 to 4000 newborns. Since the introduction of a newborn screening program in 1988, more than 300 cases have been identified. The underlying genetic defects have not been systematically studied. To identify the mutation spectrum of CH-causing genes. Fifty-five patients from 47 families were studied by next-generation exome sequencing. Mutations were identified in 52.7% of patients (29 of 55) in the following 11 genes: TG, TPO, DUOX2, SLC26A4, SLC26A7, TSHB, TSHR, NKX2-1, PAX8, CDCA8, and HOXB3. Among 30 patients with thyroid dyshormonogenesis, biallelic TG mutations were found in 12 patients (40%), followed by biallelic mutations in TPO (6.7%), SLC26A7 (6.7%), and DUOX2 (3.3%). Monoallelic SLC26A4 mutations were found in two patients, one of them coexisting with two tandem biallelic deletions in SLC26A7. In 25 patients with thyroid dysgenesis, biallelic mutations in TSHR were found in six patients (24%). Biallelic mutations in TSHB, PAX 8, NKX2-1, or HOXB3 were found once in four different patients. A monoallelic CDCA8 mutation was found in one patient. Most mutations were novel, including three TG, two TSHR, and one each in DUOX2, TPO, SLC26A7, TSHB, NKX2-1, PAX8, CDCA8, and HOXB3. SLC26A7 and HOXB3 were novel genes associated with thyroid dyshormonogenesis and dysgenesis, respectively. TG and TSHR mutations are the most common genetic defects in Saudi patients with CH. The prevalence of other disease-causing mutations is low, reflecting the consanguineous nature of the population. SLC26A7 mutations appear to be associated with thyroid dyshormonogenesis.

  17. Molecular cloning of the myo-inositol oxygenase gene from the kidney of baboons

    PubMed Central

    González-Álvarez, Rafael; Pérez-Ibave, Diana Cristina; Garza-Rodríguez, María Lourdes; Lugo-Trampe, Ángel; Delgado-Enciso, Iván; Tejero-Barrera, María Elizabeth; Martínez-De-Villarreal, Laura Elia; Garza-Guajardo, Raquel; Sánchez-Chaparro, María Marisela; Ruiz-Ayma, Gabriel; Barboza-Quintana, Oralia; Barrera-Saldaña, Hugo Alberto; Rocha-Pizaña, María Del Refugio; Rodríguez-Sánchez, Irám Pablo

    2017-01-01

    The enzyme myo-Inositol oxygenase (MIOX) is also termed ALDRL6. It is a kidney-specific member of the aldo-keto reductase family. MIOX catalyzes the first reaction involved in the myo-inositol metabolism signaling pathway and is fully expressed in mammalian tissues. MIOX catalyzes the oxidative cleavage of myo-Inositol and its epimer, D-chiro-Inositol to D-glucuronate. The dioxygen-dependent cleavage of the C6 and C1 bond in myo-Inositol is achieved by utilizing the Fe2+/Fe3+ binuclear iron center of MIOX. This enzyme has also been implicated in the complications of diabetes, including diabetic nephropathy. The MIOX gene was amplified with reverse transcription-polymerase chain reaction from baboon tissue samples, and the product was cloned and sequenced. MIOX expression in the baboon kidney is described in the present study. The percentages of nucleotide and amino acid similarities between baboons and humans were 95 and 96%, respectively. The MIOX protein of the baboon may be structurally identical to that of humans. Furthermore, the evolutionary changes, which have affected these sequences, have resulted from purifying forces. PMID:29085625

  18. Molecular cloning of the myo-inositol oxygenase gene from the kidney of baboons.

    PubMed

    González-Álvarez, Rafael; Pérez-Ibave, Diana Cristina; Garza-Rodríguez, María Lourdes; Lugo-Trampe, Ángel; Delgado-Enciso, Iván; Tejero-Barrera, María Elizabeth; Martínez-De-Villarreal, Laura Elia; Garza-Guajardo, Raquel; Sánchez-Chaparro, María Marisela; Ruiz-Ayma, Gabriel; Barboza-Quintana, Oralia; Barrera-Saldaña, Hugo Alberto; Rocha-Pizaña, María Del Refugio; Rodríguez-Sánchez, Irám Pablo

    2017-10-01

    The enzyme myo-Inositol oxygenase (MIOX) is also termed ALDRL6. It is a kidney-specific member of the aldo-keto reductase family. MIOX catalyzes the first reaction involved in the myo-inositol metabolism signaling pathway and is fully expressed in mammalian tissues. MIOX catalyzes the oxidative cleavage of myo-Inositol and its epimer, D-chiro-Inositol to D-glucuronate. The dioxygen-dependent cleavage of the C6 and C1 bond in myo-Inositol is achieved by utilizing the Fe 2+ /Fe 3+ binuclear iron center of MIOX. This enzyme has also been implicated in the complications of diabetes, including diabetic nephropathy. The MIOX gene was amplified with reverse transcription-polymerase chain reaction from baboon tissue samples, and the product was cloned and sequenced. MIOX expression in the baboon kidney is described in the present study. The percentages of nucleotide and amino acid similarities between baboons and humans were 95 and 96%, respectively. The MIOX protein of the baboon may be structurally identical to that of humans. Furthermore, the evolutionary changes, which have affected these sequences, have resulted from purifying forces.

  19. [The role of inositol deficiency in the etiology of polycystic ovary syndrome disorders].

    PubMed

    Jakimiuk, Artur J; Szamatowicz, Jacek

    2014-01-01

    Inositol acts as a second messenger in insulin signaling pathway Literature data suggest inositol deficiency in insulin-resistant women with the polycystic ovary syndrome. Supplementation of myo-inisitol decreases insulin resistance as it works as an insulin sensitizing agent. The positive role of myo-inositol in the treatment of polycystic ovary syndrome has been of increased evidence recently The present review presents the effects of myo-inositol on the ovarian, hormonal and metabolic parameters in women with PCOS.

  20. Identifcation of a Novel Mutation p.I240T in the FRMD7 gene in a Family with Congenital Nystagmus

    NASA Astrophysics Data System (ADS)

    Zhu, Yihua; Zhuang, Jianfu; Ge, Xianglian; Zhang, Xiao; Wang, Zheng; Sun, Ji; Yang, Juhua; Gu, Feng

    2013-10-01

    Congenital Nystagmus (CN) is a genetically heterogeneous ocular disease, which causes a significant proportion of childhood visual impairment. To identify the underlying genetic defect of a CN family, twenty-two members were recruited. Genotype analysis showed that affected individuals shared a common haplotype with markers flanking FRMD7 locus. Sequencing FRMD7 revealed a T > C transition in exon 8, causing a conservative substitution of Isoleucine to Tyrosine at codon 240. By protein structural modeling, we found the mutation may disrupt the hydrophobic core and destabilize the protein structure. We reviewed the literature and found that exons 2, 8, and 9 (11.4% of the sequence of FRMD7 mRNA) represent the majority (55.3%) of the reported FRMD7 mutations. In summary, we identified a novel mutation in FRMD7, showed its molecular consequence, and revealed the mutation-rich exons of the FRMD7 gene. Collectively, this provides molecular insights for future CN clinical genetic diagnosis and treatment.

  1. Identifcation of a novel mutation p.I240T in the FRMD7 gene in a family with congenital nystagmus.

    PubMed

    Zhu, Yihua; Zhuang, Jianfu; Ge, Xianglian; Zhang, Xiao; Wang, Zheng; Sun, Ji; Yang, Juhua; Gu, Feng

    2013-10-30

    Congenital Nystagmus (CN) is a genetically heterogeneous ocular disease, which causes a significant proportion of childhood visual impairment. To identify the underlying genetic defect of a CN family, twenty-two members were recruited. Genotype analysis showed that affected individuals shared a common haplotype with markers flanking FRMD7 locus. Sequencing FRMD7 revealed a T > C transition in exon 8, causing a conservative substitution of Isoleucine to Tyrosine at codon 240. By protein structural modeling, we found the mutation may disrupt the hydrophobic core and destabilize the protein structure. We reviewed the literature and found that exons 2, 8, and 9 (11.4% of the sequence of FRMD7 mRNA) represent the majority (55.3%) of the reported FRMD7 mutations. In summary, we identified a novel mutation in FRMD7, showed its molecular consequence, and revealed the mutation-rich exons of the FRMD7 gene. Collectively, this provides molecular insights for future CN clinical genetic diagnosis and treatment.

  2. Identifcation of a Novel Mutation p.I240T in the FRMD7 gene in a Family with Congenital Nystagmus

    PubMed Central

    Zhu, Yihua; Zhuang, Jianfu; Ge, Xianglian; Zhang, Xiao; Wang, Zheng; Sun, Ji; Yang, Juhua; Gu, Feng

    2013-01-01

    Congenital Nystagmus (CN) is a genetically heterogeneous ocular disease, which causes a significant proportion of childhood visual impairment. To identify the underlying genetic defect of a CN family, twenty-two members were recruited. Genotype analysis showed that affected individuals shared a common haplotype with markers flanking FRMD7 locus. Sequencing FRMD7 revealed a T > C transition in exon 8, causing a conservative substitution of Isoleucine to Tyrosine at codon 240. By protein structural modeling, we found the mutation may disrupt the hydrophobic core and destabilize the protein structure. We reviewed the literature and found that exons 2, 8, and 9 (11.4% of the sequence of FRMD7 mRNA) represent the majority (55.3%) of the reported FRMD7 mutations. In summary, we identified a novel mutation in FRMD7, showed its molecular consequence, and revealed the mutation-rich exons of the FRMD7 gene. Collectively, this provides molecular insights for future CN clinical genetic diagnosis and treatment. PMID:24169426

  3. Magnetic Resonance Spectroscopy (MRS) of Prostatic Fluids for Early Detection of Prostate Cancer

    DTIC Science & Technology

    2006-10-01

    nuclear magnetic resonance spectroscopy (1H-NMRS). The metabolites quantified included citrate, spermine, myo- inositol , lactate, alanine...adjusting for age. The LR models indicated that the absolute concentrations of citrate, myo- inositol , and spermine were highly predictive of PCa and...inversely related to the risk of PCa. The areas under the receiver operating characteristic curves (AUROC) for citrate, myo- inositol and spermine were

  4. Magnetic Resonance Spectroscopy (MRS) of Prostatic Fluids for Early Detection of Prostate Cancer

    DTIC Science & Technology

    2007-04-01

    quantitative proton nuclear magnetic resonance spectroscopy (1H-NMRS). The metabolites quantified included citrate, spermine, myo- inositol , lactate, alanine...concentrations while adjusting for age. The LR models indicated that the absolute concentrations of citrate, myo- inositol , and spermine were highly predictive...of PCa and inversely related to the risk of PCa. The areas under the receiver operating characteristic curves (AUROC) for citrate, myo- inositol and

  5. Regioselective SN2 reactions for rapid syntheses of azido-inositols by one-pot sequence-specific nucleophilysis.

    PubMed

    Ravi, Arthi; Hassan, Syed Zahid; Vanikrishna, Ajithkumar N; Sureshan, Kana M

    2017-04-04

    Triflates of myo-inositol undergo facile solvolysis in DMSO and DMF yielding S N 2 products substituted with O-nucleophiles; DMF showed slower kinetics. Axial O-triflate undergoes faster substitution than equatorial O-triflate. By exploiting this difference in kinetics, solvent-tuning and sequence-controlled nucleophilysis, rapid synthesis of three azido-inositols of myo-configuration from myo-inositol itself has been achieved.

  6. Molecular analysis of congenital goitres with hypothyroidism caused by defective thyroglobulin synthesis. Identification of a novel c.7006C>T [p.R2317X] mutation and expression of minigenes containing nonsense mutations in exon 7.

    PubMed

    Machiavelli, Gloria A; Caputo, Mariela; Rivolta, Carina M; Olcese, María C; Gruñeiro-Papendieck, Laura; Chiesa, Ana; González-Sarmiento, Rogelio; Targovnik, Héctor M

    2010-01-01

    Thyroglobulin (TG) deficiency is an autosomal-recessive disorder that results in thyroid dyshormonogenesis. A number of distinct mutations have been identified as causing human hypothyroid goitre. The purpose of this study was to identify and characterize new mutations in the TG gene in an attempt to increase the understanding of the genetic mechanism responsible for this disorder. A total of six patients from four nonconsanguineous families with marked impairment of TG synthesis were studied. Single-strand conformation polymorphism (SSCP) analysis, sequencing of DNA, genotyping, expression of chimeric minigenes and bioinformatic analysis were performed. Four different inactivating TG mutations were identified: one novel mutation (c.7006C>T [p.R2317X]) and three previously reported (c.886C>T [p.R277X], c.6701C>A [p.A2215D] and c.6725G>A [p.R2223H]). Consequently, one patient carried a compound heterozygous for p.R2223H/p.R2317X mutations; two brothers showed a homozygous p.A2215D substitution and the remaining three patients, from two families with typical phenotype, had a single p.R277X mutated allele. We also showed functional evidences that premature stop codons inserted at different positions in exon 7, which disrupt exonic splicing enhancer (ESE) sequences, do not interfere with exon definition and processing. In this study, we have identified a novel nonsense mutation p.R2317X in the acetylcholinesterase homology domain of TG. We have also observed that nonsense mutations do not interfere with the pre-mRNA splicing of exon 7. The results are in accordance with previous observations confirming the genetic heterogeneity of TG defects.

  7. Repression of choline kinase by inositol and choline in Saccharomyces cerevisiae.

    PubMed Central

    Hosaka, K; Murakami, T; Kodaki, T; Nikawa, J; Yamashita, S

    1990-01-01

    The regulation of choline kinase (EC 2.7.1.32), the initial enzyme in the CDP-choline pathway, was examined in Saccharomyces cerevisiae. The addition of myo-inositol to a culture of wild-type cells resulted in a significant decrease in choline kinase activity. Additional supplementation of choline caused a further reduction in the activity. The coding frame of the choline kinase gene, CK1, was joined to the carboxyl terminus of lacZ and expressed in Escherichia coli as a fusion protein, which was then used to prepare an anti-choline kinase antibody. Upon Western (immuno-) and Northern (RNA) blot analyses using the antibody and a CK1 probe, respectively, the decrease in the enzyme activity was found to be correlated with decreases in the enzyme amount and mRNA abundance. The molecular mass of the enzyme was estimated to be 66 kilodaltons, in agreement with the value predicted previously from the nucleotide sequence of the gene. The coding region of CK1 was replaced with that of lacZ, and CK1 expression was measured by assaying beta-galactosidase. The expression of beta-galactosidase from this fusion was repressed by myo-inositol and choline and derepressed in a time-dependent manner upon their removal. The present findings indicate that yeast choline kinase is regulated by myo-inositol and choline at the level of mRNA abundance. Images FIG. 3 FIG. 4 PMID:2156807

  8. Meta-analysis of neuroblastomas reveals a skewed ALK mutation spectrum in tumors with MYCN amplification.

    PubMed

    De Brouwer, Sara; De Preter, Katleen; Kumps, Candy; Zabrocki, Piotr; Porcu, Michaël; Westerhout, Ellen M; Lakeman, Arjan; Vandesompele, Jo; Hoebeeck, Jasmien; Van Maerken, Tom; De Paepe, Anne; Laureys, Geneviève; Schulte, Johannes H; Schramm, Alexander; Van Den Broecke, Caroline; Vermeulen, Joëlle; Van Roy, Nadine; Beiske, Klaus; Renard, Marleen; Noguera, Rosa; Delattre, Olivier; Janoueix-Lerosey, Isabelle; Kogner, Per; Martinsson, Tommy; Nakagawara, Akira; Ohira, Miki; Caron, Huib; Eggert, Angelika; Cools, Jan; Versteeg, Rogier; Speleman, Frank

    2010-09-01

    Activating mutations of the anaplastic lymphoma kinase (ALK) were recently described in neuroblastoma. We carried out a meta-analysis of 709 neuroblastoma tumors to determine their frequency and mutation spectrum in relation to genomic and clinical parameters, and studied the prognostic significance of ALK copy number and expression. The frequency and type of ALK mutations, copy number gain, and expression were analyzed in a new series of 254 neuroblastoma tumors. Data from 455 published cases were used for further in-depth analysis. ALK mutations were present in 6.9% of 709 investigated tumors, and mutations were found in similar frequencies in favorable [International Neuroblastoma Staging System (INSS) 1, 2, and 4S; 5.7%] and unfavorable (INSS 3 and 4; 7.5%) neuroblastomas (P = 0.087). Two hotspot mutations, at positions R1275 and F1174, were observed (49% and 34.7% of the mutated cases, respectively). Interestingly, the F1174 mutations occurred in a high proportion of MYCN-amplified cases (P = 0.001), and this combined occurrence was associated with a particular poor outcome, suggesting a positive cooperative effect between both aberrations. Furthermore, the F1174L mutant was characterized by a higher degree of autophosphorylation and a more potent transforming capacity as compared with the R1275Q mutant. Chromosome 2p gains, including the ALK locus (91.8%), were associated with a significantly increased ALK expression, which was also correlated with poor survival. ALK mutations occur in equal frequencies across all genomic subtypes, but F1174L mutants are observed in a higher frequency of MYCN-amplified tumors and show increased transforming capacity as compared with the R1275Q mutants.

  9. Oriented antibody immobilization on self-assembled monolayers applied as impedance biosensors

    NASA Astrophysics Data System (ADS)

    Tsugimura, Kaiki; Ohnuki, Hitoshi; Wu, Haiyun; Endo, Hideaki; Tsuya, Daiju; Izumi, Mitsuru

    2017-11-01

    Oriented immobilization of antibodies on a sensor chip is crucial for enhancing both the sensitivity and antigen-binding capacity of immunosensors. Here, we report a comparative study of the effect of oriented and random antibody immobilization on the binding efficiency by electrochemical impedance spectroscopy (EIS). Oriented immobilization of anti-myoglobin immunoglobulin G (anti-Myo IgG) was achieved by bonding to an Fc receptor of protein G (PrG) on a self-assembled monolayer (SAM), which results in the myoglobin (Myo) binding sites being exposed outside the sensing surface. Random immobilization of anti-Myo IgG was achieved by direct covalent attachment to the SAM surface. Both immobilizations were applied to interdigitated electrodes to enhance the electrochemical signal, and the Myo biosensor performance was then evaluated by a series of EIS measurements. We found that (i) the rate of the normalized charge transfer resistance for the oriented sample was 3 times higher than that for the random sample and (ii) the detection limit was 0.001 ng/mL, which is the lowest recorded detection limit among Myo immunosensors based on EIS. These findings indicate that oriented antibody immobilization is crucial for preparing highly sensitive EIS-based biosensors.

  10. Thigh muscle segmentation of chemical shift encoding-based water-fat magnetic resonance images: The reference database MyoSegmenTUM.

    PubMed

    Schlaeger, Sarah; Freitag, Friedemann; Klupp, Elisabeth; Dieckmeyer, Michael; Weidlich, Dominik; Inhuber, Stephanie; Deschauer, Marcus; Schoser, Benedikt; Bublitz, Sarah; Montagnese, Federica; Zimmer, Claus; Rummeny, Ernst J; Karampinos, Dimitrios C; Kirschke, Jan S; Baum, Thomas

    2018-01-01

    Magnetic resonance imaging (MRI) can non-invasively assess muscle anatomy, exercise effects and pathologies with different underlying causes such as neuromuscular diseases (NMD). Quantitative MRI including fat fraction mapping using chemical shift encoding-based water-fat MRI has emerged for reliable determination of muscle volume and fat composition. The data analysis of water-fat images requires segmentation of the different muscles which has been mainly performed manually in the past and is a very time consuming process, currently limiting the clinical applicability. An automatization of the segmentation process would lead to a more time-efficient analysis. In the present work, the manually segmented thigh magnetic resonance imaging database MyoSegmenTUM is presented. It hosts water-fat MR images of both thighs of 15 healthy subjects and 4 patients with NMD with a voxel size of 3.2x2x4 mm3 with the corresponding segmentation masks for four functional muscle groups: quadriceps femoris, sartorius, gracilis, hamstrings. The database is freely accessible online at https://osf.io/svwa7/?view_only=c2c980c17b3a40fca35d088a3cdd83e2. The database is mainly meant as ground truth which can be used as training and test dataset for automatic muscle segmentation algorithms. The segmentation allows extraction of muscle cross sectional area (CSA) and volume. Proton density fat fraction (PDFF) of the defined muscle groups from the corresponding images and quadriceps muscle strength measurements/neurological muscle strength rating can be used for benchmarking purposes.

  11. d-myo-Inositol-3-Phosphate Affects Phosphatidylinositol-Mediated Endomembrane Function in Arabidopsis and Is Essential for Auxin-Regulated Embryogenesis[W][OA

    PubMed Central

    Luo, Yu; Qin, Genji; Zhang, Jun; Liang, Yuan; Song, Yingqi; Zhao, Meiping; Tsuge, Tomohiko; Aoyama, Takashi; Liu, Jingjing; Gu, Hongya; Qu, Li-Jia

    2011-01-01

    In animal cells, myo-inositol is an important regulatory molecule in several physiological and biochemical processes, including signal transduction and membrane biogenesis. However, the fundamental biological functions of myo-inositol are still far from clear in plants. Here, we report the genetic characterization of three Arabidopsis thaliana genes encoding d-myo-inositol-3-phosphate synthase (MIPS), which catalyzes the rate-limiting step in de novo synthesis of myo-inositol. Each of the three MIPS genes rescued the yeast ino1 mutant, which is defective in yeast MIPS gene INO1, and they had different dynamic expression patterns during Arabidopsis embryo development. Although single mips mutants showed no obvious phenotypes, the mips1 mips2 double mutant and the mips1 mips2 mips3 triple mutant were embryo lethal, whereas the mips1 mips3 and mips1 mips2+/− double mutants had abnormal embryos. The mips phenotypes resembled those of auxin mutants. Indeed, the double and triple mips mutants displayed abnormal expression patterns of DR5:green fluorescent protein, an auxin-responsive fusion protein, and they had altered PIN1 subcellular localization. Also, membrane trafficking was affected in mips1 mips3. Interestingly, overexpression of PHOSPHATIDYLINOSITOL SYNTHASE2, which converts myo-inositol to membrane phosphatidylinositol (PtdIns), largely rescued the cotyledon and endomembrane defects in mips1 mips3. We conclude that myo-inositol serves as the main substrate for synthesizing PtdIns and phosphatidylinositides, which are essential for endomembrane structure and trafficking and thus for auxin-regulated embryogenesis. PMID:21505066

  12. First-line gefitinib in Caucasian EGFR mutation-positive NSCLC patients: a phase-IV, open-label, single-arm study

    PubMed Central

    Douillard, J-Y; Ostoros, G; Cobo, M; Ciuleanu, T; McCormack, R; Webster, A; Milenkova, T

    2014-01-01

    Background: Phase-IV, open-label, single-arm study (NCT01203917) to assess efficacy and safety/tolerability of first-line gefitinib in Caucasian patients with stage IIIA/B/IV, epidermal growth factor receptor (EGFR) mutation-positive non-small-cell lung cancer (NSCLC). Methods: Treatment: gefitinib 250 mg day−1 until progression. Primary endpoint: objective response rate (ORR). Secondary endpoints: disease control rate (DCR), progression-free survival (PFS), overall survival (OS) and safety/tolerability. Pre-planned exploratory objective: EGFR mutation analysis in matched tumour and plasma samples. Results: Of 1060 screened patients with NSCLC (859 known mutation status; 118 positive, mutation frequency 14%), 106 with EGFR sensitising mutations were enrolled (female 70.8% adenocarcinoma 97.2% never-smoker 64.2%). At data cutoff: ORR 69.8% (95% confidence interval (CI) 60.5–77.7), DCR 90.6% (95% CI 83.5–94.8), median PFS 9.7 months (95% CI 8.5–11.0), median OS 19.2 months (95% CI 17.0–NC; 27% maturity). Most common adverse events (AEs; any grade): rash (44.9%), diarrhoea (30.8%); CTC (Common Toxicity Criteria) grade 3/4 AEs: 15% SAEs: 19%. Baseline plasma 1 samples were available in 803 patients (784 known mutation status; 82 positive; mutation frequency 10%). Plasma 1 EGFR mutation test sensitivity: 65.7% (95% CI 55.8–74.7). Conclusion: First-line gefitinib was effective and well tolerated in Caucasian patients with EGFR mutation-positive NSCLC. Plasma samples could be considered for mutation analysis if tumour tissue is unavailable. PMID:24263064

  13. Analysis of PTPN22, ZFAT and MYO9B polymorphisms in Turner Syndrome and risk of autoimmune disease.

    PubMed

    Villanueva-Ortega, E; Ahedo, B; Fonseca-Sánchez, M A; Pérez-Durán, J; Garibay-Nieto, N; Macías-Galavíz, M T; Trujillo-Cabrera, Y; García-Latorre, E; Queipo, G

    2017-08-01

    Turner syndrome (TS) is one of the most common sexual chromosome abnormalities and is clearly associated with an increased risk of autoimmune diseases, particularly thyroid disease and coeliac disease (CD). Single-nucleotide polymorphism analyses have been shown to provide correlative evidence that specific genes are associated with autoimmune disease. Our aim was to study the functional polymorphic variants of PTPN22 and ZFAT in relation to thyroid disease and those of MYO9B in relation to CD. A cross-sectional comparative analysis was performed on Mexican mestizo patients with TS and age-matched healthy females. Our data showed that PTPN22 C1858T (considered a risk variant) is not associated with TS (X 2  = 3.50, p = .61, and OR = 0.33 [95% CI = 0.10-1.10]). Also, ZFAT was not associated with TS (X 2  = 1.2, p = .28, and OR = 1.22 [95% CI = 0.84-1.79]). However, for the first time, rs2305767 MYO9B was revealed to have a strong association with TS (X 2  = 58.6, p = .0001, and OR = 10.44 [95% C = 5.51-19.80]), supporting a high level of predisposition to CD among TS patients. This report addresses additional data regarding the polymorphic variants associated with autoimmune disease, one of the most common complications in TS. © 2017 John Wiley & Sons Ltd.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosatelli, M.C.; Faa, V.; Sardu, R.

    This study reports the molecular characterization of [beta]-thalassemia in the Sardinian population. Three thousand [beta]-thalassemia chromosomes from prospective parents presenting at the genetic service were initially analyzed by dot blot analysis with oligonucleotide probes complementary to the most common [beta]-thalassemia mutations in the Mediterranean at-risk populations. The mutation which remained uncharacterized by this approach were defined by denaturing gradient gel electrophoresis (DGGE) followed by direct sequence analysis on amplified DNA. The authors reconfirmed that the predominant mutation in the Sardinian population is the codon 39 nonsense mutation, which accounts for 95.7% of the [beta]-thalassemia chromosomes. The other two relatively commonmore » mutations are frameshifts at codon 6 (2.1%) and at codon 76 (0.7%), relatively uncommon in other Mediterranean-origin populations. In this study they have detected a novel [beta]-thalassemia mutation, i.e., a frameshift at codon 1, in three [beta]-thalassemia chromosomes. The DGGE procedure followed by direct sequencing on amplified DNA is a powerful approach for the characterization of unknown mutations in this genetic system.« less

  15. A novel mutation in FRMD7 causing X-linked idiopathic congenital nystagmus in a large family

    PubMed Central

    He, Xiang; Gu, Feng; Wang, Yujing; Yan, Jinting; Zhang, Meng; Huang, Shangzhi

    2008-01-01

    Purpose To identify the gene responsible for causing an X-linked idiopathic congenital nystagmus (XLICN) in a six-generation Chinese family. Methods Forty-nine members of an XLICN family were recruited and examined after obtaining informed consent. Affected male individuals were genotyped with microsatellite markers around the FRMD7 locus. Mutations were comprehensively screened by direct sequencing using gene specific primers. An X-inactivation pattern was investigated by X chromosome methylation analysis. Results The patients showed phenotypes consistent with XLICN. Genotype analysis showed that male affected individuals in the family shared a common haplotype with the selected markers. Sequencing FRMD7 revealed a G>T transversion (c.812G>T) in exon 9, which caused a conservative substitution of Cys to Phe at codon 271 (p.C271F). This mutation co-segregated with all affected individuals and was present in the obligate, non-penetrant female carriers. However, the mutation was not observed in unaffected familial males or 400 control males. Females with the mutant gene could be affected or carrier and they shared the same inactivated X chromosome harboring the mutation in blood cells, which showed there is no clear causal link between X-inactivation pattern and phenotype. Conclusions We identified a novel mutation in FRMD7 and confirmed the role of this mutation in the pathogenesis of X-linked congenital nystagmus. PMID:18246032

  16. Distinct effects of tubulin isotype mutations on neurite growth in Caenorhabditis elegans

    PubMed Central

    Zheng, Chaogu; Diaz-Cuadros, Margarete; Nguyen, Ken C. Q.; Hall, David H.; Chalfie, Martin

    2017-01-01

    Tubulins, the building block of microtubules (MTs), play a critical role in both supporting and regulating neurite growth. Eukaryotic genomes contain multiple tubulin isotypes, and their missense mutations cause a range of neurodevelopmental defects. Using the Caenorhabditis elegans touch receptor neurons, we analyzed the effects of 67 tubulin missense mutations on neurite growth. Three types of mutations emerged: 1) loss-of-function mutations, which cause mild defects in neurite growth; 2) antimorphic mutations, which map to the GTP binding site and intradimer and interdimer interfaces, significantly reduce MT stability, and cause severe neurite growth defects; and 3) neomorphic mutations, which map to the exterior surface, increase MT stability, and cause ectopic neurite growth. Structure-function analysis reveals a causal relationship between tubulin structure and MT stability. This stability affects neuronal morphogenesis. As part of this analysis, we engineered several disease-associated human tubulin mutations into C. elegans genes and examined their impact on neuronal development at the cellular level. We also discovered an α-tubulin (TBA-7) that appears to destabilize MTs. Loss of TBA-7 led to the formation of hyperstable MTs and the generation of ectopic neurites; the lack of potential sites for polyamination and polyglutamination on TBA-7 may be responsible for this destabilization. PMID:28835377

  17. Myo1g is an active player in maintaining cell stiffness in B-lymphocytes.

    PubMed

    López-Ortega, O; Ovalle-García, E; Ortega-Blake, I; Antillón, A; Chávez-Munguía, B; Patiño-López, G; Fragoso-Soriano, R; Santos-Argumedo, L

    2016-05-01

    B-lymphocytes are migrating cells that specialize in antigen presentation, antibody secretion, and endocytosis; these processes implicate the modulation of plasma membrane elasticity. Cell stiffness is a force generated by the interaction between the actin-cytoskeleton and the plasma membrane, which requires the participation of several proteins. These proteins include class I myosins, which are now considered to play a role in controlling membrane-cytoskeleton interactions. In this study, we identified the motor protein Myosin 1g (Myo1g) as a mediator of this phenomenon. The absence of Myo1g decreased the cell stiffness, affecting cell adhesion, cell spreading, phagocytosis, and endocytosis in B-lymphocytes. The results described here reveal a novel molecular mechanism by which Myo1g mediates and regulates cell stiffness in B-lymphocytes. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Silencing the myotrophin gene by RNA interference leads to the regression of cardiac hypertrophy.

    PubMed

    Gupta, Sudhiranjan; Maitra, Ratan; Young, Dave; Gupta, Anasuya; Sen, Subha

    2009-08-01

    Myotrophin-induced activation of NF-kappaB has been shown to be associated with cardiac hypertrophy (CH) that progresses to heart failure (HF). In the present study, we examined the cause-and-effect relationship between myotrophin and NF-kappaB activation using small hairpin RNA (shRNA) against myotrophin both in vitro (using neonatal rat myocytes) and in vivo [using myotrophin transgenic (Myo-Tg) mice, which overexpress myotrophin in the heart, develop CH, and gradually progress to HF]. Among several lentiviral vectors expressing myotrophin shRNAs, L-sh-109 showed the best silencing effect at both the mRNA (155.3 +/- 5.9 vs. 32.5 +/- 5.5, P < 0.001) and protein levels associated with a significant reduction of atrial natriuretic factor (ANF) and NF-kappaB. In vivo, when L-sh-109 was delivered directly into the hearts of 10-wk-old Myo-Tg mice, we observed a significant regression of cardiac mass (8.0 vs. 5.7 mg/g, P < 0.001) and myotrophin gene expression (54.5% over untreated Myo-Tg mice, P < 0.001) associated with a reduction in ANF and NF-kappaB signaling components. Our data suggest that using RNA interference to silence the myotrophin gene prevents NF-kappaB activation, associated with an attenuation of CH. This strategy could be an excellent therapeutic means for the treatment of CH and HF.

  19. Clinical follow up of mexican women with early onset of breast cancer and mutations in the BRCA1 and BRCA2 genes.

    PubMed

    Calderón-Garcidueñas, Ana Laura; Ruiz-Flores, Pablo; Cerda-Flores, Ricardo M; Barrera-Saldaña, Hugo A

    2005-01-01

    This study describes the presence of mutations in BRCA1 and BRCA2 genes in a group of Mexican women and the clinical evolution of early onset breast cancer (EOBC). A prospective hospital-based study was performed in a sample of 22 women with EOBC (7 in clinical stage IIA, 8 in IIB, and 7 in IIIA). The patients attended a tertiary care hospital in northeastern Mexico in 1997 and were followed up over a 5-year period. Molecular analysis included: 1) a mutation screening by heteroduplex analysis (HA) of BRCA1 and BRCA2 genes and 2) a sequence analysis. Of 22 patients, 14 (63.6%) showed a variant band detected by heteroduplex analysis of the BRCA1 and BRCA2 genes: 8 polymorphisms, 4 mutations of uncertain significance, and 2 novel truncated protein mutations, one in BRCAI (exon 11, 3587delT) and the other in the BRCA2 gene (exon 11, 2664InsA). These findings support future studies to determine the significance and impact of the genetic factor in this Mexican women population.

  20. Genetic Analysis of Japanese Children With Acute Recurrent and Chronic Pancreatitis.

    PubMed

    Saito, Nobutomo; Suzuki, Mitsuyoshi; Sakurai, Yumiko; Nakano, Satoshi; Naritaka, Nakayuki; Minowa, Kei; Sai, Jin K; Shimizu, Toshiaki

    2016-10-01

    Causes of acute recurrent pancreatitis (ARP) or chronic pancreatitis (CP) are sometimes difficult to determine in children. In such patients, genetic analysis may prove helpful. The present study analyzed mutations of cationic trypsinogen (PRSS1), serine protease inhibitor Kazal type 1 (SPINK1), chymotrypsin C (CTRC), and carboxypeptidase A1 (CPA1) and investigated the clinical features of children with these mutations. Genetic analyses of mutations in these 4 genes were conducted in 128 patients with ARP or CP. Characteristics of the patients showing mutations were investigated using medical records. Fifty of the 128 (39.1%) subjects had at least 1 mutation (median age at onset, 7.6 years). Abdominal pain was the presenting symptom of pancreatitis in 48 of the 50 patients (96%). Fifteen of those 50 patients (30.0%) had a family history of pancreatitis. Gene mutations were present in PRSS1 in 26 patients, SPINK1 in 23, CTRC in 3, and CPA1 in 5. In the 31 patients with mutations in SPINK1, CTRC, or CPA1, 16 (51.6%) had homozygous or heterozygous mutations with other mutations. Three patients underwent surgery and another 4 patients underwent endoscopy to manage ARP or CP. Although 3 of the 7 patients complained of mild abdominal pain, none of those 7 patients experienced any obvious episode of ARP after treatment. In pediatric patients with idiopathic ARP and CP, genetic analysis is useful for identifying the cause of pancreatitis. Early endoscopic or surgical treatment prevents ARP by extending the interval between episodes of pancreatitis in this population.

  1. Muscle wasting in osteoarthritis model induced by anterior cruciate ligament transection.

    PubMed

    Silva, Jordana Miranda de Souza; Alabarse, Paulo Vinicius Gil; Teixeira, Vivian de Oliveira Nunes; Freitas, Eduarda Correa; de Oliveira, Francine Hehn; Chakr, Rafael Mendonça da Silva; Xavier, Ricardo Machado

    2018-01-01

    This study aimed to investigate the molecular pathways involved in muscle wasting in an animal model of osteoarthritis (OA) induced by anterior cruciate ligament transection (ACLT) in rats. Reduction of protein syntheses, increased proteolysis and impaired muscle regeneration are important pathways related to muscle wasting, and myogenin, MyoD, myostatin and MuRF-1 are some of their markers. Female Wistar rats were allocated into two groups: OA (submitted to the ACLT) and SHAM (submitted to surgery without ACLT). Nociception, spontaneous exploratory locomotion and body weight of animals were evaluated weekly. Twelve weeks after the disease induction, animals were euthanized, and the right knee joints were collected. Gastrocnemius muscle of the right hind paw were dissected and weighed. Gastrocnemius was used for evaluation of muscle atrophy and expression of IL-1β, TNF-α, Pax7, myogenin, MyoD, myostatin and MuRF-1. Histopathology of the knee confirmed the development of the disease in animals of OA group. Gastrocnemius of OA animals showed a reduction of about 10% in area and an increased IL-1β expression compared to animals of SHAM group. Expression of myostatin was increased in OA group, while myogenin expression was decreased. TNF-α, Pax7, MuRF-1 and MyoD expression was similar in both OA and SHAM groups. Nociception was significantly elevated in OA animals in the last two weeks of experimental period. Spontaneous exploratory locomotion, body weight and weight of gastrocnemius showed no difference between OA and SHAM groups. Gastrocnemius atrophy in OA induced by ACLT involves elevated expression of IL-1β within the muscle, as well as increased expression of myostatin and decreased expression of myogenin. Therefore, muscle wasting may be linked to impaired muscle regeneration.

  2. Myocyte enhancer factor 2A promotes proliferation and its inhibition attenuates myogenic differentiation via myozenin 2 in bovine skeletal muscle myoblast

    PubMed Central

    Wang, Ya-Ning; Yang, Wu-Cai; Li, Pei-Wei; Wang, Hong-Bao; Zhang, Ying-Ying

    2018-01-01

    Myocyte enhancer factor 2A (MEF2A) is widely distributed in various tissues or organs and plays crucial roles in multiple biological processes. To examine the potential effects of MEF2A on skeletal muscle myoblast, the functional role of MFE2A in myoblast proliferation and differentiation was investigated. In this study, we found that the mRNA expression level of Mef2a was dramatically increased during the myogenesis of bovine skeletal muscle primary myoblast. Overexpression of MEF2A significantly promoted myoblast proliferation, while knockdown of MEF2A inhibited the proliferation and differentiation of myoblast. RT-PCR and western blot analysis revealed that this positive effect of MEF2A on the proliferation of myoblast was carried out by triggering cell cycle progression by activating CDK2 protein expression. Besides, MEF2A was found to be an important transcription factor that bound to the myozenin 2 (MyoZ2) proximal promoter and performed upstream of MyoZ2 during myoblast differentiation. This study provides the first experimental evidence that MEF2A is a positive regulator in skeletal muscle myoblast proliferation and suggests that MEF2A regulates myoblast differentiation via regulating MyoZ2. PMID:29698438

  3. A Unique β-1,2-Mannosyltransferase of Thermotoga maritima That Uses Di-myo-Inositol Phosphate as the Mannosyl Acceptor▿

    PubMed Central

    Rodrigues, Marta V.; Borges, Nuno; Almeida, Carla P.; Lamosa, Pedro; Santos, Helena

    2009-01-01

    In addition to di-myo-inositol-1,3′-phosphate (DIP), a compatible solute widespread in hyperthermophiles, the organic solute pool of Thermotoga maritima comprises 2-(O-β-d-mannosyl)-di-myo-inositol-1,3′-phosphate (MDIP) and 2-(O-β-d-mannosyl-1,2-O-β-d-mannosyl)-di-myo-inositol-1,3′-phosphate (MMDIP), two newly identified β-1,2-mannosides. In cells grown under heat stress, MDIP was the major solute, accounting for 43% of the total pool; MMDIP and DIP accumulated to similar levels, each corresponding to 11.5% of the total pool. The synthesis of MDIP involved the transfer of the mannosyl group from GDP-mannose to DIP in a single-step reaction catalyzed by MDIP synthase. This enzyme used MDIP as an acceptor of a second mannose residue, yielding the di-mannosylated compound. Minor amounts of the tri-mannosylated form were also detected. With a genomic approach, putative genes for MDIP synthase were identified in the genome of T. maritima, and the assignment was confirmed by functional expression in Escherichia coli. Genes with significant sequence identity were found only in the genomes of Thermotoga spp., Aquifex aeolicus, and Archaeoglobus profundus. MDIP synthase of T. maritima had maximal activity at 95°C and apparent Km values of 16 mM and 0.7 mM for DIP and GDP-mannose, respectively. The stereochemistry of MDIP was characterized by isotopic labeling and nuclear magnetic resonance (NMR): DIP selectively labeled with carbon 13 at position C1 of the l-inositol moiety was synthesized and used as a substrate for MDIP synthase. This β-1,2-mannosyltransferase is unrelated to known glycosyltransferases, and within the domain Bacteria, it is restricted to members of the two deepest lineages, i.e., the Thermotogales and the Aquificales. To our knowledge, this is the first β-1,2-mannosyltransferase characterized thus far. PMID:19648237

  4. E6 and E7 Gene Polymorphisms in Human Papillomavirus Types-58 and 33 Identified in Southwest China

    PubMed Central

    Wen, Qiang; Wang, Tao; Mu, Xuemei; Chenzhang, Yuwei; Cao, Man

    2017-01-01

    Cancer of the cervix is associated with infection by certain types of human papillomavirus (HPV). The gene variants differ in immune responses and oncogenic potential. The E6 and E7 proteins encoded by high-risk HPV play a key role in cellular transformation. HPV-33 and HPV-58 types are highly prevalent among Chinese women. To study the gene intratypic variations, polymorphisms and positive selections of HPV-33 and HPV-58 E6/E7 in southwest China, HPV-33 (E6, E7: n = 216) and HPV-58 (E6, E7: n = 405) E6 and E7 genes were sequenced and compared to others submitted to GenBank. Phylogenetic trees were constructed by Maximum-likelihood and the Kimura 2-parameters methods by MEGA 6 (Molecular Evolutionary Genetics Analysis version 6.0). The diversity of secondary structure was analyzed by PSIPred software. The selection pressures acting on the E6/E7 genes were estimated by PAML 4.8 (Phylogenetic Analyses by Maximun Likelihood version4.8) software. The positive sites of HPV-33 and HPV-58 E6/E7 were contrasted by ClustalX 2.1. Among 216 HPV-33 E6 sequences, 8 single nucleotide mutations were observed with 6/8 non-synonymous and 2/8 synonymous mutations. The 216 HPV-33 E7 sequences showed 3 single nucleotide mutations that were non-synonymous. The 405 HPV-58 E6 sequences revealed 8 single nucleotide mutations with 4/8 non-synonymous and 4/8 synonymous mutations. Among 405 HPV-58 E7 sequences, 13 single nucleotide mutations were observed with 10/13 non-synonymous mutations and 3/13 synonymous mutations. The selective pressure analysis showed that all HPV-33 and 4/6 HPV-58 E6/E7 major non-synonymous mutations were sites of positive selection. All variations were observed in sites belonging to major histocompatibility complex and/or B-cell predicted epitopes. K93N and R145 (I/N) were observed in both HPV-33 and HPV-58 E6. PMID:28141822

  5. Truncation- and motif-based pan-cancer analysis reveals tumor-suppressing kinases.

    PubMed

    Hudson, Andrew M; Stephenson, Natalie L; Li, Cynthia; Trotter, Eleanor; Fletcher, Adam J; Katona, Gitta; Bieniasz-Krzywiec, Patrycja; Howell, Matthew; Wirth, Chris; Furney, Simon; Miller, Crispin J; Brognard, John

    2018-04-17

    A major challenge in cancer genomics is identifying "driver" mutations from the many neutral "passenger" mutations within a given tumor. To identify driver mutations that would otherwise be lost within mutational noise, we filtered genomic data by motifs that are critical for kinase activity. In the first step of our screen, we used data from the Cancer Cell Line Encyclopedia and The Cancer Genome Atlas to identify kinases with truncation mutations occurring within or before the kinase domain. The top 30 tumor-suppressing kinases were aligned, and hotspots for loss-of-function (LOF) mutations were identified on the basis of amino acid conservation and mutational frequency. The functional consequences of new LOF mutations were biochemically validated, and the top 15 hotspot LOF residues were used in a pan-cancer analysis to define the tumor-suppressing kinome. A ranked list revealed MAP2K7, an essential mediator of the c-Jun N-terminal kinase (JNK) pathway, as a candidate tumor suppressor in gastric cancer, despite its mutational frequency falling within the mutational noise for this cancer type. The majority of mutations in MAP2K7 abolished its catalytic activity, and reactivation of the JNK pathway in gastric cancer cells harboring LOF mutations in MAP2K7 or the downstream kinase JNK suppressed clonogenicity and growth in soft agar, demonstrating the functional relevance of inactivating the JNK pathway in gastric cancer. Together, our data highlight a broadly applicable strategy to identify functional cancer driver mutations and define the JNK pathway as tumor-suppressive in gastric cancer. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. [Clinical significance of JAK2、CALR and MPL gene mutations in 1 648 Philadelphia chromosome negative myeloproliferative neoplasms patients from a single center].

    PubMed

    Li, M Y; Chao, H Y; Sun, A N; Qiu, H Y; Jin, Z M; Tang, X W; Han, Y; Fu, C C; Chen, S N; Wu, D P

    2017-04-14

    Objective: To explore the prevalences of JAK2, CALR and MPL gene mutations and the mutation types in patients with Philadelphia chromosome negative myeloproliferative neoplasms (MPNs) , and to compare their clinical characteristics of different mutation types with each other and mutation negative group. Methods: The mutations of JAK2 V617F, JAK2 gene at exon 12, CALR gene at exon 9 and MPL gene at exon 10 in 1 648 Ph negative MPNs patients were detected by direct sequencing. Results: ① The JAK2V617F mutation was found in 471 (92.7%) of 508 PV patients, 819 (78.1%) of 1 049 ET patients and 74 (81.3%) of 91 PMF patients respectively, with the total mutation rate as 82.8% (1 364/1 648) . The JAK2 exon12 mutation was found in 9 (1.7%) of 508 PV patients, none was found in ET or PMF patients, with the total mutation rate as 0.5% (9/1 648) . The CALR mutation was found in 132 (12.6%) of 1 049 ET patients and 11 (12.1%) of 91 PMF patients respectively, with the total mutation rate as 8.7% (143/1 648) ; the MPL mutation was found in 9 (0.9%) of 1 049 ET patients and 1 (1.1%) of 91 PMF patients respectively, with the total mutation rate as 0.6% (10/1 648) . The co-occurrence of any two types of driver gene mutations was not detected by direct sequencing. ②The median onset age of patients with JAK2V617F[61 (15-95) y] was significant higher than of with JAK2 exon12 mutation[49 (33-62) y] or without mutations[42 (3-78) y] ( P <0.001) , but not for patients with CALR[57 (17-89) y] or MPL mutation[59 (22-71) y] ( P >0.05) . Patients with JAK2V617F had higher white blood cell count and hemoglobin level ( P <0.05) when compared with patients with CALR mutation or without mutations, or only significantly higher white blood cell count when compared with patients with MPL mutation ( P =0.013) . The platelet count of patients with CALR mutation was significantly higher than of with JAK2V617F[966 (400-2 069) ×10(9)/L vs 800 (198-3 730) ×10(9)/L, P <0.001]. ③Karyotype analysis was conducted in 1 160 patients with MPNs, the rates of karyotype abnormality of patients with and without CALR mutation were 9.8% (8/82) and 7.4% (80/1 078) ( P =0.441) respectively; The rates of karyotype abnormality of patients with and without JAK2V617F mutation were 7.7% (75/971) and 6.9% (13/189) ( P =0.688) respectively. The incidence of karyotype abnormality of patients with CALR mutation was higher than of with JAK2V617F[9.8% (8/82) vs 7.7% (75/971) ] without statistically significant difference ( P =0.512) . The karyotype analysis of 7 cases of JAK2 exon12 mutation and 6 ones with MPL gene mutation revealed normal karyotype. Conclusions: Driver gene mutations detection could ensure the diagnosis and prognosis judgment of MPN more reliable, different subtypes of MPNs had different profiles of driver gene mutations, the latter lead to unique clinical phenotype.

  7. In vitro and in vivo tetracycline-controlled myogenic conversion of NIH-3T3 cells: evidence of programmed cell death after muscle cell transplantation.

    PubMed

    Del Bo, R; Torrente, Y; Corti, S; D'Angelo, M G; Comi, G P; Fagiolari, G; Salani, S; Cova, A; Pisati, F; Moggio, M; Ausenda, C; Scarlato, G; Bresolin, N

    2001-01-01

    Ex vivo gene therapy of Duchenne muscular dystrophy based on autologous transplantation of genetically modified myoblasts is limited by their premature senescence. MyoD-converted fibroblasts represent an alternative source of myogenic cells. In this study the forced MyoD-dependent conversion of murine NIH-3T3 fibroblasts into myoblasts under the control of an inducible promoter silent in the presence of tetracycline was evaluated. After tetracycline withdrawal this promoter drives the transcription of MyoD in the engineered fibroblasts, inducing their myogenesis and giving rise to beta-galactosidase-positive cells. MyoD-expressing fibroblasts withdrew from the cell cycle, but were unable to fuse in vitro into multinucleated myotubes. Five days following implantation of engineered fibroblasts in muscles of C57BL/10J mice we observed a sevenfold increase of beta-galactosidase-positive regenerating myofibers in animals not treated with antibiotic compared with treated animals. After 1 week the number of positive fibers decreased and several apoptotic myonuclei were detected. Three weeks following implantation of MyoD-converted fibroblasts in recipient mice, no positive "blue" fiber was observed. Our results suggest that transactivation by tetracycline of MyoD may drive an in vivo myogenic conversion of NIH-3T3 fibroblasts and that, in this experimental setting, apoptosis plays a relevant role in limiting the efficacy of engineered fibroblast transplantation. This work opens the question whether apoptotic phenomena also play a general role as limiting factors of cell-mediated gene therapy of inherited muscle disorders.

  8. KRAS Mutation as a Potential Prognostic Biomarker of Biliary Tract Cancers

    PubMed Central

    Yokoyama, Masaaki; Ohnishi, Hiroaki; Ohtsuka, Kouki; Matsushima, Satsuki; Ohkura, Yasuo; Furuse, Junji; Watanabe, Takashi; Mori, Toshiyuki; Sugiyama, Masanori

    2016-01-01

    BACKGROUND The aim of this study was to identify the unique molecular characteristics of biliary tract cancer (BTC) for the development of novel molecular-targeted therapies. MATERIALS AND METHODS We performed mutational analysis of KRAS, BRAF, PIK3CA, and FBXW7 and immunohistochemical analysis of EGFR and TP53 in 63 Japanese patients with BTC and retrospectively evaluated the association between the molecular characteristics and clinicopathological features of BTC. RESULTS KRAS mutations were identified in 9 (14%) of the 63 BTC patients; no mutations were detected within the analyzed regions of BRAF, PIK3CA, and FBXW7. EGFR overexpression was observed in 5 (8%) of the 63 tumors, while TP53 overexpression was observed in 48% (30/63) of the patients. Overall survival of patients with KRAS mutation was significantly shorter than that of patients with the wild-type KRAS gene (P = 0.005). By multivariate analysis incorporating molecular and clinicopathological features, KRAS mutations and lymph node metastasis were identified to be independently associated with shorter overall survival (KRAS, P = 0.004; lymph node metastasis, P = 0.015). CONCLUSIONS Our data suggest that KRAS mutation is a poor prognosis predictive biomarker for the survival in BTC patients. PMID:28008299

  9. Resistance training‐induced changes in integrated myofibrillar protein synthesis are related to hypertrophy only after attenuation of muscle damage

    PubMed Central

    Damas, Felipe; Libardi, Cleiton A.; Vechin, Felipe C.; Lixandrão, Manoel E.; Jannig, Paulo R.; Costa, Luiz A. R.; Bacurau, Aline V.; Snijders, Tim; Parise, Gianni; Tricoli, Valmor; Roschel, Hamilton; Ugrinowitsch, Carlos

    2016-01-01

    Key points Skeletal muscle hypertrophy is one of the main outcomes from resistance training (RT), but how it is modulated throughout training is still unknown.We show that changes in myofibrillar protein synthesis (MyoPS) after an initial resistance exercise (RE) bout in the first week of RT (T1) were greater than those seen post‐RE at the third (T2) and tenth week (T3) of RT, with values being similar at T2 and T3.Muscle damage (Z‐band streaming) was the highest during post‐RE recovery at T1, lower at T2 and minimal at T3.When muscle damage was the highest, so was the integrated MyoPS (at T1), but neither were related to hypertrophy; however, integrated MyoPS at T2 and T3 were correlated with hypertrophy.We conclude that muscle hypertrophy is the result of accumulated intermittent increases in MyoPS mainly after a progressive attenuation of muscle damage. Abstract Skeletal muscle hypertrophy is one of the main outcomes of resistance training (RT), but how hypertrophy is modulated and the mechanisms regulating it are still unknown. To investigate how muscle hypertrophy is modulated through RT, we measured day‐to‐day integrated myofibrillar protein synthesis (MyoPS) using deuterium oxide and assessed muscle damage at the beginning (T1), at 3 weeks (T2) and at 10 weeks of RT (T3). Ten young men (27 (1) years, mean (SEM)) had muscle biopsies (vastus lateralis) taken to measure integrated MyoPS and muscle damage (Z‐band streaming and indirect parameters) before, and 24 h and 48 h post resistance exercise (post‐RE) at T1, T2 and T3. Fibre cross‐sectional area (fCSA) was evaluated using biopsies at T1, T2 and T3. Increases in fCSA were observed only at T3 (P = 0.017). Changes in MyoPS post‐RE at T1, T2 and T3 were greater at T1 (P < 0.03) than at T2 and T3 (similar values between T2 and T3). Muscle damage was the highest during post‐RE recovery at T1, attenuated at T2 and further attenuated at T3. The change in MyoPS post‐RE at both T2 and T3, but not at T1, was strongly correlated (r ≈ 0.9, P < 0.04) with muscle hypertrophy. Initial MyoPS response post‐RE in an RT programme is not directed to support muscle hypertrophy, coinciding with the greatest muscle damage. However, integrated MyoPS is quickly ‘refined’ by 3 weeks of RT, and is related to muscle hypertrophy. We conclude that muscle hypertrophy is the result of accumulated intermittent changes in MyoPS post‐RE in RT, which coincides with progressive attenuation of muscle damage. PMID:27219125

  10. Resistance training-induced changes in integrated myofibrillar protein synthesis are related to hypertrophy only after attenuation of muscle damage.

    PubMed

    Damas, Felipe; Phillips, Stuart M; Libardi, Cleiton A; Vechin, Felipe C; Lixandrão, Manoel E; Jannig, Paulo R; Costa, Luiz A R; Bacurau, Aline V; Snijders, Tim; Parise, Gianni; Tricoli, Valmor; Roschel, Hamilton; Ugrinowitsch, Carlos

    2016-09-15

    Skeletal muscle hypertrophy is one of the main outcomes from resistance training (RT), but how it is modulated throughout training is still unknown. We show that changes in myofibrillar protein synthesis (MyoPS) after an initial resistance exercise (RE) bout in the first week of RT (T1) were greater than those seen post-RE at the third (T2) and tenth week (T3) of RT, with values being similar at T2 and T3. Muscle damage (Z-band streaming) was the highest during post-RE recovery at T1, lower at T2 and minimal at T3. When muscle damage was the highest, so was the integrated MyoPS (at T1), but neither were related to hypertrophy; however, integrated MyoPS at T2 and T3 were correlated with hypertrophy. We conclude that muscle hypertrophy is the result of accumulated intermittent increases in MyoPS mainly after a progressive attenuation of muscle damage. Skeletal muscle hypertrophy is one of the main outcomes of resistance training (RT), but how hypertrophy is modulated and the mechanisms regulating it are still unknown. To investigate how muscle hypertrophy is modulated through RT, we measured day-to-day integrated myofibrillar protein synthesis (MyoPS) using deuterium oxide and assessed muscle damage at the beginning (T1), at 3 weeks (T2) and at 10 weeks of RT (T3). Ten young men (27 (1) years, mean (SEM)) had muscle biopsies (vastus lateralis) taken to measure integrated MyoPS and muscle damage (Z-band streaming and indirect parameters) before, and 24 h and 48 h post resistance exercise (post-RE) at T1, T2 and T3. Fibre cross-sectional area (fCSA) was evaluated using biopsies at T1, T2 and T3. Increases in fCSA were observed only at T3 (P = 0.017). Changes in MyoPS post-RE at T1, T2 and T3 were greater at T1 (P < 0.03) than at T2 and T3 (similar values between T2 and T3). Muscle damage was the highest during post-RE recovery at T1, attenuated at T2 and further attenuated at T3. The change in MyoPS post-RE at both T2 and T3, but not at T1, was strongly correlated (r ≈ 0.9, P < 0.04) with muscle hypertrophy. Initial MyoPS response post-RE in an RT programme is not directed to support muscle hypertrophy, coinciding with the greatest muscle damage. However, integrated MyoPS is quickly 'refined' by 3 weeks of RT, and is related to muscle hypertrophy. We conclude that muscle hypertrophy is the result of accumulated intermittent changes in MyoPS post-RE in RT, which coincides with progressive attenuation of muscle damage. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  11. Loss of MyoD and Myf5 in Skeletal Muscle Stem Cells Results in Altered Myogenic Programming and Failed Regeneration.

    PubMed

    Yamamoto, Masakazu; Legendre, Nicholas P; Biswas, Arpita A; Lawton, Alexander; Yamamoto, Shoko; Tajbakhsh, Shahragim; Kardon, Gabrielle; Goldhamer, David J

    2018-03-13

    MyoD and Myf5 are fundamental regulators of skeletal muscle lineage determination in the embryo, and their expression is induced in satellite cells following muscle injury. MyoD and Myf5 are also expressed by satellite cell precursors developmentally, although the relative contribution of historical and injury-induced expression to satellite cell function is unknown. We show that satellite cells lacking both MyoD and Myf5 (double knockout [dKO]) are maintained with aging in uninjured muscle. However, injured muscle fails to regenerate and dKO satellite cell progeny accumulate in damaged muscle but do not undergo muscle differentiation. dKO satellite cell progeny continue to express markers of myoblast identity, although their myogenic programming is labile, as demonstrated by dramatic morphological changes and increased propensity for non-myogenic differentiation. These data demonstrate an absolute requirement for either MyoD or Myf5 in muscle regeneration and indicate that their expression after injury stabilizes myogenic identity and confers the capacity for muscle differentiation. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Low-Load High Volume Resistance Exercise Stimulates Muscle Protein Synthesis More Than High-Load Low Volume Resistance Exercise in Young Men

    PubMed Central

    Burd, Nicholas A.; West, Daniel W. D.; Staples, Aaron W.; Atherton, Philip J.; Baker, Jeff M.; Moore, Daniel R.; Holwerda, Andrew M.; Parise, Gianni; Rennie, Michael J.; Baker, Steven K.; Phillips, Stuart M.

    2010-01-01

    Background We aimed to determine the effect of resistance exercise intensity (% 1 repetition maximum—1RM) and volume on muscle protein synthesis, anabolic signaling, and myogenic gene expression. Methodology/Principal Findings Fifteen men (21±1 years; BMI = 24.1±0.8 kg/m2) performed 4 sets of unilateral leg extension exercise at different exercise loads and/or volumes: 90% of repetition maximum (1RM) until volitional failure (90FAIL), 30% 1RM work-matched to 90%FAIL (30WM), or 30% 1RM performed until volitional failure (30FAIL). Infusion of [ring-13C6] phenylalanine with biopsies was used to measure rates of mixed (MIX), myofibrillar (MYO), and sarcoplasmic (SARC) protein synthesis at rest, and 4 h and 24 h after exercise. Exercise at 30WM induced a significant increase above rest in MIX (121%) and MYO (87%) protein synthesis at 4 h post-exercise and but at 24 h in the MIX only. The increase in the rate of protein synthesis in MIX and MYO at 4 h post-exercise with 90FAIL and 30FAIL was greater than 30WM, with no difference between these conditions; however, MYO remained elevated (199%) above rest at 24 h only in 30FAIL. There was a significant increase in AktSer473 at 24h in all conditions (P = 0.023) and mTORSer2448 phosphorylation at 4 h post-exercise (P = 0.025). Phosporylation of Erk1/2Tyr202/204, p70S6KThr389, and 4E-BP1Thr37/46 increased significantly (P<0.05) only in the 30FAIL condition at 4 h post-exercise, whereas, 4E-BP1Thr37/46 phosphorylation was greater 24 h after exercise than at rest in both 90FAIL (237%) and 30FAIL (312%) conditions. Pax7 mRNA expression increased at 24 h post-exercise (P = 0.02) regardless of condition. The mRNA expression of MyoD and myogenin were consistently elevated in the 30FAIL condition. Conclusions/Significance These results suggest that low-load high volume resistance exercise is more effective in inducing acute muscle anabolism than high-load low volume or work matched resistance exercise modes. PMID:20711498

  13. Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle.

    PubMed

    Tamaki, Tetsuro; Akatsuka, Akira; Ando, Kiyoshi; Nakamura, Yoshihiko; Matsuzawa, Hideyuki; Hotta, Tomomitsu; Roy, Roland R; Edgerton, V Reggie

    2002-05-13

    Putative myogenic and endothelial (myo-endothelial) cell progenitors were identified in the interstitial spaces of murine skeletal muscle by immunohistochemistry and immunoelectron microscopy using CD34 antigen. Enzymatically isolated cells were characterized by fluorescence-activated cell sorting on the basis of cell surface antigen expression, and were sorted as a CD34+ and CD45- fraction. Cells in this fraction were approximately 94% positive for Sca-1, and mostly negative (<3% positive) for CD14, 31, 49, 144, c-kit, and FLK-1. The CD34+/45- cells formed colonies in clonal cell cultures and colony-forming units displayed the potential to differentiate into adipocytes, endothelial, and myogenic cells. The CD34+/45- cells fully differentiated into vascular endothelial cells and skeletal muscle fibers in vivo after transplantation. Immediately after sorting, CD34+/45- cells expressed only c-met mRNA, and did not express any other myogenic cell-related markers such as MyoD, myf-5, myf-6, myogenin, M-cadherin, Pax-3, and Pax-7. However, after 3 d of culture, these cells expressed mRNA for all myogenic markers. CD34+/45- cells were distinct from satellite cells, as they expressed Bcrp1/ABCG2 gene mRNA (Zhou et al., 2001). These findings suggest that myo-endothelial progenitors reside in the interstitial spaces of mammalian skeletal muscles, and that they can potentially contribute to postnatal skeletal muscle growth.

  14. Myofibroblast secretome and its auto-/paracrine signaling

    PubMed Central

    Bomb, Ritin; Heckle, Mark R.; Sun, Yao; Mancarella, Salvatore; Guntaka, Ramareddy V.; Gerling, Ivan C.; Weber, Karl T.

    2016-01-01

    Summary Myofibroblasts (myoFb) are phenotypically transformed, contractile fibroblast-like cells expressing α-smooth muscle actin microfilaments. They are integral to collagen fibrillogenesis with scar tissue formation at sites of repair irrespective of the etiologic origins of injury or tissue involved. MyoFb can persist long after healing is complete, where their ongoing turnover of collagen accounts for a progressive structural remodeling of an organ (a.k.a. fibrosis, sclerosis or cirrhosis). Such persistent metabolic activity is derived from a secretome consisting of requisite components in the de novo generation of angiotensin (Ang) II. Autocrine and paracrine signaling induced by tissue AngII is expressed via AT1 receptor ligand binding to respectively promote: i) regulation of myoFb collagen synthesis via the fibrogenic cytokine TGF-β1-Smad pathway; and ii) dedifferentiation and protein degradation of atrophic myocytes immobilized and ensnared by fibrillar collagen at sites of scarring. Several cardioprotective strategies in the prevention of fibrosis and involving myofibroblasts are considered. They include: inducing myoFb apoptosis through inactivation of antiapoptotic proteins; AT1 receptor antagonist to interfere with auto-/paracrine myoFb signaling or to induce counterregulatory expression of ACE2; and attacking the AngII-AT1R-TGF-β1-Smad pathway by antibody or the use of triplex-forming oligonucleotides. PMID:26818589

  15. Exploratory transcriptomic analysis in muscle tissue of broilers fed a phytase-supplemented diet.

    PubMed

    Schmeisser, J; Séon, A-A; Aureli, R; Friedel, A; Guggenbuhl, P; Duval, S; Cowieson, A J; Fru-Nji, F

    2017-06-01

    The effect of phytase on phosphorus retention, broiler (Gallus gallus) performance and bone mineralization in diets with reduced inorganic phosphate concentration is well documented. Furthermore, so-called 'extra-phosphoric' effects of phytase have been described in the literature that may be associated with changes in mineral and amino acid partitioning and requirements per se. In particular, the role of myo-inositol in phytase responses is implied but not well elucidated. It was the purpose of the experiment reported herein to explore the effect of phytase on broiler growth, nutrient digestibility, blood biochemistry and gene expression. A 5-week broiler floor pen trial was conducted to evaluate the effect of supplementation of a moderately phosphorus-deficient diet with 1000 U/kg of a 6-microbial phytase. Parameters measured were growth performance, phosphorus (P), calcium (Ca) and myo-inositol plasma concentrations, apparent ileal P digestibility, bone mineralization, breast meat weight and Pectoralis major muscle transcriptome. Supplementation of the diet with phytase improved weight gain during the starter period (18%) and the whole period (24%) compared with animals that received the control diet (p < 0.05). Improved feed conversion ratio, increased myo-inositol plasma concentration, tibia ash contents and breast meat weight were also observed in animals fed phytase. The transcriptomic analysis revealed that some differentially expressed genes (DEG) in broilers, receiving phytase in comparison with animals fed reduced phosphorus diet without phytase, were part of pathways involved in muscle development, via calmodulin/calcineurin and insulin-like growth factor. Microarray data confirmation was performed on six genes by quantitative PCR (qPCR): PI3K regulatory and catalytic subunit, Phospholipase C beta, Myocyte Enhancer Factors 2A and 2C, and calcineurin A. The results suggested that dietary supplementation with this phytase could generate low molecular weight phytate esters and indirectly myo-inositol, and could help us to understand how muscle metabolism may be affected at a gene level. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  16. p.H1069Q mutation in ATP7B and biochemical parameters of copper metabolism and clinical manifestation of Wilson's disease.

    PubMed

    Gromadzka, Graznya; Schmidt, Harmut H J; Genschel, Janine; Bochow, Bettina; Rodo, M; Tarnacka, Beatek; Litwin, Thomas; Chabik, Grzegorz; Członkowska, Anna

    2006-02-01

    We compared the effect of the p.H1069Q mutation and other non-p.H1069Q mutations in ATP7B on the phenotypic expression of Wilson's disease (WD), and assessed whether the clinical phenotype of WD in compound heterozygotes depends on the type of mutation coexisting with the p.H1069Q. One hundred forty-two patients with clinically, biochemically, and genetically diagnosed WD were studied. The mutational analysis of ATP7B was performed by direct sequencing. A total number of 26 mutations in ATP7B were identified. The p.His1069Gln was the most common mutation (allelic frequency: 72%). Seventy-three patients were homozygous for this mutation. Of compound heterozygotes, 37 had frameshift/nonsense mutation, and 20 had other missense mutation on one of their ATP7B alleles. Twelve patients had two non-p.H1069Q mutations. Patients homozygous for the p.H1069Q mutation had the less severe disturbances of copper metabolism and the latest presentation of first WD symptoms. The most severely disturbed copper metabolism and the earliest age at initial disease manifestation was noticed in non-p.H1069Q patients. In compound heterozygotes, the type of mutation coexisting with the p.H1069Q to a small extent influenced WD phenotype. The phenotype of WD varied considerably among patients with the same genotype. The p.H1069Q mutation is associated with late WD manifestation and with a mild disruption of copper metabolism. In compound heterozygotes, the phenotype of WD to a small extent depends on the type of mutation coexisting with the p.H1069Q. Besides genotype, additional modifying factors seem to determine WD manifestations. Copyright (c) 2005 Movement Disorder Society.

  17. Structure of the glycosyl-phosphatidylinositol membrane anchor of acetylcholinesterase from the electric organ of the electric-fish, Torpedo californica.

    PubMed Central

    Mehlert, A; Varon, L; Silman, I; Homans, S W; Ferguson, M A

    1993-01-01

    The structure of the glycan moiety of the glycosyl-phosphatidylinositol (GPI) membrane anchor from Torpedo californica (electric fish) electric-organ acetylcholinesterase was solved using n.m.r., methylation analysis and chemical and enzymic micro-sequencing. Two structures were found to be present: Glc alpha 1-2Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcN alpha 1-6myo-inositol and Glc alpha 1-2Man alpha 1-2Man alpha 1-6(GalNAc beta 1-4)Man alpha 1-4GlcN alpha 1-6myo-inositol. The presence of glucose in this GPI anchor structure is a novel feature. The anchor was also shown to contain 2.3 residues of ethanolamine per molecule. PMID:8257440

  18. [Mutation analysis of beta myosin heavy chain gene in hypertrophic cardiomyopathy families].

    PubMed

    Fan, Xin-ping; Yang, Zhong-wei; Feng, Xiu-li; Yang, Fu-hui; Xiao, Bai; Liang, Yan

    2011-08-01

    To detect the gene mutations of beta-myosin heavy chain gene (MYH7) in Chinese pedigrees with hypertrophic cardiomyopathy (HCM), and to analyze the correlation between the genotype and phenotype. Exons 3, 5, 7-9, 11-16 and 18-23 of the MYH7 gene were amplified with PCR in three Chinese pedigrees with HCM. The products were sequenced. Sequence alignment between the detected and the standard sequences was performed. A missense mutation of Thr441Met in exon 14 was identified in a pedigree, which was not detected in the controls. Several synonymous mutations of MYH7 gene were detected in the three pedigrees. The mutation of Thr441Met, located in the actin binding domain of the globular head, was first identified in Chinese. It probably caused HCM. HCM is a heterogeneous disease. Many factors are involved in the process of its occurrence and development.

  19. TGF-β signaling in insects regulates metamorphosis via juvenile hormone biosynthesis

    PubMed Central

    Ishimaru, Yoshiyasu; Tomonari, Sayuri; Matsuoka, Yuji; Watanabe, Takahito; Miyawaki, Katsuyuki; Bando, Tetsuya; Tomioka, Kenji; Ohuchi, Hideyo; Noji, Sumihare; Mito, Taro

    2016-01-01

    Although butterflies undergo a dramatic morphological transformation from larva to adult via a pupal stage (holometamorphosis), crickets undergo a metamorphosis from nymph to adult without formation of a pupa (hemimetamorphosis). Despite these differences, both processes are regulated by common mechanisms that involve 20-hydroxyecdysone (20E) and juvenile hormone (JH). JH regulates many aspects of insect physiology, such as development, reproduction, diapause, and metamorphosis. Consequently, strict regulation of JH levels is crucial throughout an insect’s life cycle. However, it remains unclear how JH synthesis is regulated. Here, we report that in the corpora allata of the cricket, Gryllus bimaculatus, Myoglianin (Gb’Myo), a homolog of Drosophila Myoglianin/vertebrate GDF8/11, is involved in the down-regulation of JH production by suppressing the expression of a gene encoding JH acid O-methyltransferase, Gb’jhamt. In contrast, JH production is up-regulated by Decapentaplegic (Gb’Dpp) and Glass-bottom boat/60A (Gb’Gbb) signaling that occurs as part of the transcriptional activation of Gb’jhamt. Gb’Myo defines the nature of each developmental transition by regulating JH titer and the interactions between JH and 20E. When Gb’myo expression is suppressed, the activation of Gb’jhamt expression and secretion of 20E induce molting, thereby leading to the next instar before the last nymphal instar. Conversely, high Gb’myo expression induces metamorphosis during the last nymphal instar through the cessation of JH synthesis. Gb’myo also regulates final insect size. Because Myo/GDF8/11 and Dpp/bone morphogenetic protein (BMP)2/4-Gbb/BMP5–8 are conserved in both invertebrates and vertebrates, the present findings provide common regulatory mechanisms for endocrine control of animal development. PMID:27140602

  20. TGF-β signaling in insects regulates metamorphosis via juvenile hormone biosynthesis.

    PubMed

    Ishimaru, Yoshiyasu; Tomonari, Sayuri; Matsuoka, Yuji; Watanabe, Takahito; Miyawaki, Katsuyuki; Bando, Tetsuya; Tomioka, Kenji; Ohuchi, Hideyo; Noji, Sumihare; Mito, Taro

    2016-05-17

    Although butterflies undergo a dramatic morphological transformation from larva to adult via a pupal stage (holometamorphosis), crickets undergo a metamorphosis from nymph to adult without formation of a pupa (hemimetamorphosis). Despite these differences, both processes are regulated by common mechanisms that involve 20-hydroxyecdysone (20E) and juvenile hormone (JH). JH regulates many aspects of insect physiology, such as development, reproduction, diapause, and metamorphosis. Consequently, strict regulation of JH levels is crucial throughout an insect's life cycle. However, it remains unclear how JH synthesis is regulated. Here, we report that in the corpora allata of the cricket, Gryllus bimaculatus, Myoglianin (Gb'Myo), a homolog of Drosophila Myoglianin/vertebrate GDF8/11, is involved in the down-regulation of JH production by suppressing the expression of a gene encoding JH acid O-methyltransferase, Gb'jhamt In contrast, JH production is up-regulated by Decapentaplegic (Gb'Dpp) and Glass-bottom boat/60A (Gb'Gbb) signaling that occurs as part of the transcriptional activation of Gb'jhamt Gb'Myo defines the nature of each developmental transition by regulating JH titer and the interactions between JH and 20E. When Gb'myo expression is suppressed, the activation of Gb'jhamt expression and secretion of 20E induce molting, thereby leading to the next instar before the last nymphal instar. Conversely, high Gb'myo expression induces metamorphosis during the last nymphal instar through the cessation of JH synthesis. Gb'myo also regulates final insect size. Because Myo/GDF8/11 and Dpp/bone morphogenetic protein (BMP)2/4-Gbb/BMP5-8 are conserved in both invertebrates and vertebrates, the present findings provide common regulatory mechanisms for endocrine control of animal development.

  1. The MyoRobot: A novel automated biomechatronics system to assess voltage/Ca2+ biosensors and active/passive biomechanics in muscle and biomaterials.

    PubMed

    Haug, M; Reischl, B; Prölß, G; Pollmann, C; Buckert, T; Keidel, C; Schürmann, S; Hock, M; Rupitsch, S; Heckel, M; Pöschel, T; Scheibel, T; Haynl, C; Kiriaev, L; Head, S I; Friedrich, O

    2018-04-15

    We engineered an automated biomechatronics system, MyoRobot, for robust objective and versatile assessment of muscle or polymer materials (bio-)mechanics. It covers multiple levels of muscle biosensor assessment, e.g. membrane voltage or contractile apparatus Ca 2+ ion responses (force resolution 1µN, 0-10mN for the given sensor; [Ca 2+ ] range ~ 100nM-25µM). It replaces previously tedious manual protocols to obtain exhaustive information on active/passive biomechanical properties across various morphological tissue levels. Deciphering mechanisms of muscle weakness requires sophisticated force protocols, dissecting contributions from altered Ca 2+ homeostasis, electro-chemical, chemico-mechanical biosensors or visco-elastic components. From whole organ to single fibre levels, experimental demands and hardware requirements increase, limiting biomechanics research potential, as reflected by only few commercial biomechatronics systems that can address resolution, experimental versatility and mostly, automation of force recordings. Our MyoRobot combines optical force transducer technology with high precision 3D actuation (e.g. voice coil, 1µm encoder resolution; stepper motors, 4µm feed motion), and customized control software, enabling modular experimentation packages and automated data pre-analysis. In small bundles and single muscle fibres, we demonstrate automated recordings of (i) caffeine-induced-, (ii) electrical field stimulation (EFS)-induced force, (iii) pCa-force, (iv) slack-tests and (v) passive length-tension curves. The system easily reproduces results from manual systems (two times larger stiffness in slow over fast muscle) and provides novel insights into unloaded shortening velocities (declining with increasing slack lengths). The MyoRobot enables automated complex biomechanics assessment in muscle research. Applications also extend to material sciences, exemplarily shown here for spider silk and collagen biopolymers. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A genetic study of Wilson’s disease in the United Kingdom

    PubMed Central

    Coffey, Alison J.; Durkie, Miranda; Hague, Stephen; McLay, Kirsten; Emmerson, Jennifer; Lo, Christine; Klaffke, Stefanie; Joyce, Christopher J.; Dhawan, Anil; Hadzic, Nedim; Mieli-Vergani, Giorgina; Kirk, Richard; Elizabeth Allen, K.; Nicholl, David; Wong, Siew; Griffiths, William; Smithson, Sarah; Giffin, Nicola; Taha, Ali; Connolly, Sally; Gillett, Godfrey T.; Tanner, Stuart; Bonham, Jim; Sharrack, Basil; Palotie, Aarno; Rattray, Magnus; Dalton, Ann

    2013-01-01

    Previous studies have failed to identify mutations in the Wilson’s disease gene ATP7B in a significant number of clinically diagnosed cases. This has led to concerns about genetic heterogeneity for this condition but also suggested the presence of unusual mutational mechanisms. We now present our findings in 181 patients from the United Kingdom with clinically and biochemically confirmed Wilson’s disease. A total of 116 different ATP7B mutations were detected, 32 of which are novel. The overall mutation detection frequency was 98%. The likelihood of mutations in genes other than ATP7B causing a Wilson’s disease phenotype is therefore very low. We report the first cases with Wilson’s disease due to segmental uniparental isodisomy as well as three patients with three ATP7B mutations and three families with Wilson’s disease in two consecutive generations. We determined the genetic prevalence of Wilson’s disease in the United Kingdom by sequencing the entire coding region and adjacent splice sites of ATP7B in 1000 control subjects. The frequency of all single nucleotide variants with in silico evidence of pathogenicity (Class 1 variant) was 0.056 or 0.040 if only those single nucleotide variants that had previously been reported as mutations in patients with Wilson’s disease were included in the analysis (Class 2 variant). The frequency of heterozygote, putative or definite disease-associated ATP7B mutations was therefore considerably higher than the previously reported occurrence of 1:90 (or 0.011) for heterozygote ATP7B mutation carriers in the general population (P < 2.2 × 10-16 for Class 1 variants or P < 5 × 10-11 for Class 2 variants only). Subsequent exclusion of four Class 2 variants without additional in silico evidence of pathogenicity led to a further reduction of the mutation frequency to 0.024. Using this most conservative approach, the calculated frequency of individuals predicted to carry two mutant pathogenic ATP7B alleles is 1:7026 and thus still considerably higher than the typically reported prevalence of Wilson’s disease of 1:30 000 (P = 0.00093). Our study provides strong evidence for monogenic inheritance of Wilson’s disease. It also has major implications for ATP7B analysis in clinical practice, namely the need to consider unusual genetic mechanisms such as uniparental disomy or the possible presence of three ATP7B mutations. The marked discrepancy between the genetic prevalence and the number of clinically diagnosed cases of Wilson’s disease may be due to both reduced penetrance of ATP7B mutations and failure to diagnose patients with this eminently treatable disorder. PMID:23518715

  3. Phosphatidylinositol-specific phospholipase C from Bacillus cereus combines intrinsic phosphotransferase and cyclic phosphodiesterase activities: A sup 31 P NMR study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shashidhar, M.S.; Kuppe, A.; Volwerk, J.J.

    1990-09-04

    The inositol phosphate products formed during the cleavage of phosphatidylinositol by phosphatidylinositol-specific phospholipase C from Bacillus cereus were analyzed by {sup 31}P NMR. {sup 31}P NMR spectroscopy can distinguish between the inositol phosphate species and phosphatidylinositol. Chemical shift values (with reference to phosphoric acid) observed are {minus}0.41, 3.62, 4.45, and 16.30 ppm for phosphatidylinositol, myo-inositol 1-monophosphate, myo-inositol 2-monophosphate, and myo-inositol 1,2-cyclic monophosphate, respectively. It is shown that under a variety of experimental conditions this phospholipase C cleaves phosphatidylinositol via an intramolecular phosphotransfer reaction producing diacylglycerol and D-myo-inositol 1,2-cyclic monophosphate. The authors also report the new and unexpected observation that themore » phosphatidylinositol-specific phospholipase C from B. cereus is able to hydrolyze the inositol cyclic phosphate to form D-myo-inositol 1-monophosphate. The enzyme, therefore, possesses phosphotransferase and cyclic phosphodiesterase activities. The second reaction requires thousandfold higher enzyme concentrations to be observed by {sup 31}P NMR. This reaction was shown to be regiospecific in that only the 1-phosphate was produced and stereospecific in that only D-myo-inositol 1,2-cyclic monophosphate was hydrolyzed. Inhibition with a monoclonal antibody specific for the B.cereus phospholipase C showed that the cyclic phosphodiesterase activity is intrinsic to the bacterial enzyme. They propose a two-step mechanism for the phosphatidyl-inositol-specific phospholipase C from B. cereus involving sequential phosphotransferase and cyclic phosphodiesterase activities. This mechanism bears a resemblance to the well-known two-step mechanism of pancreatic ribonuclease, RNase A.« less

  4. [Analysis of clinical phenotype and CGH1 gene mutations in a family affected with dopa-responsive dystonia].

    PubMed

    Yan, Yaping; Chen, Xiaohong; Luo, Wei

    2017-04-10

    To explore genetic mutations and clinical features of a pedigree affected with dopa-responsive dystonia. PCR and Sanger sequencing were applied to detect mutations of the GCH1 gene among 7 members from the pedigree. The family was detected to have a known heterozygous mutation of the GCH1 gene (c.550C>T). For the 7 members from the pedigree, the age of onset has ranged from 13 to 60 years. The mother of the proband has carried the same mutation but was still healthy at 80. The symptoms of the other three patients were in slow progression, with diurnal fluctuation which can be improved with sleeping, dystonias of lower limbs, and tremor of both hands. Treatment with small dose of levodopa has resulted in significant improvement of clinical symptoms. By database analysis, the c.550C>T mutation was predicted as probably pathological. The c.550C>T mutation probably underlies the disease in this pedigree. The clinical phenotypes of family members may be variable for their ages of onset. Some may even be symptom free.

  5. Effect of repeat copy number on variable-number tandem repeat mutations in Escherichia coli O157:H7.

    PubMed

    Vogler, Amy J; Keys, Christine; Nemoto, Yoshimi; Colman, Rebecca E; Jay, Zack; Keim, Paul

    2006-06-01

    Variable-number tandem repeat (VNTR) loci have shown a remarkable ability to discriminate among isolates of the recently emerged clonal pathogen Escherichia coli O157:H7, making them a very useful molecular epidemiological tool. However, little is known about the rates at which these sequences mutate, the factors that affect mutation rates, or the mechanisms by which mutations occur at these loci. Here, we measure mutation rates for 28 VNTR loci and investigate the effects of repeat copy number and mismatch repair on mutation rate using in vitro-generated populations for 10 E. coli O157:H7 strains. We find single-locus rates as high as 7.0 x 10(-4) mutations/generation and a combined 28-locus rate of 6.4 x 10(-4) mutations/generation. We observed single- and multirepeat mutations that were consistent with a slipped-strand mispairing mutation model, as well as a smaller number of large repeat copy number mutations that were consistent with recombination-mediated events. Repeat copy number within an array was strongly correlated with mutation rate both at the most mutable locus, O157-10 (r2= 0.565, P = 0.0196), and across all mutating loci. The combined locus model was significant whether locus O157-10 was included (r2= 0.833, P < 0.0001) or excluded (r2= 0.452, P < 0.0001) from the analysis. Deficient mismatch repair did not affect mutation rate at any of the 28 VNTRs with repeat unit sizes of >5 bp, although a poly(G) homomeric tract was destabilized in the mutS strain. Finally, we describe a general model for VNTR mutations that encompasses insertions and deletions, single- and multiple-repeat mutations, and their relative frequencies based upon our empirical mutation rate data.

  6. Class XI Myosins Move Specific Organelles in Pollen Tubes and Are Required for Normal Fertility and Pollen Tube Growth in Arabidopsis1[OPEN

    PubMed Central

    Madison, Stephanie L.; Buchanan, Matthew L.; Glass, Jeremiah D.; McClain, Tarah F.; Park, Eunsook; Nebenführ, Andreas

    2015-01-01

    Pollen tube growth is an essential aspect of plant reproduction because it is the mechanism through which nonmotile sperm cells are delivered to ovules, thus allowing fertilization to occur. A pollen tube is a single cell that only grows at the tip, and this tip growth has been shown to depend on actin filaments. It is generally assumed that myosin-driven movements along these actin filaments are required to sustain the high growth rates of pollen tubes. We tested this conjecture by examining seed set, pollen fitness, and pollen tube growth for knockout mutants of five of the six myosin XI genes expressed in pollen of Arabidopsis (Arabidopsis thaliana). Single mutants had little or no reduction in overall fertility, whereas double mutants of highly similar pollen myosins had greater defects in pollen tube growth. In particular, myo11c1 myo11c2 pollen tubes grew more slowly than wild-type pollen tubes, which resulted in reduced fitness compared with the wild type and a drastic reduction in seed set. Golgi stack and peroxisome movements were also significantly reduced, and actin filaments were less organized in myo11c1 myo11c2 pollen tubes. Interestingly, the movement of yellow fluorescent protein-RabA4d-labeled vesicles and their accumulation at pollen tube tips were not affected in the myo11c1 myo11c2 double mutant, demonstrating functional specialization among myosin isoforms. We conclude that class XI myosins are required for organelle motility, actin organization, and optimal growth of pollen tubes. PMID:26358416

  7. Pretreatment with myo-inositol in non polycystic ovary syndrome patients undergoing multiple follicular stimulation for IVF: a pilot study.

    PubMed

    Lisi, Franco; Carfagna, Piero; Oliva, Mario Montanino; Rago, Rocco; Lisi, Rosella; Poverini, Roberta; Manna, Claudio; Vaquero, Elena; Caserta, Donatella; Raparelli, Valeria; Marci, Roberto; Moscarini, Massimo

    2012-07-23

    Aim of this pilot study is to examine the effects of myo-inositol administration on ovarian response and oocytes and embryos quality in non PolyCystic Ovary Syndrome (PCOS) patients undergoing multiple follicular stimulation and in vitro insemination by conventional in vitro fertilization or by intracytoplasmic sperm injection. One hundred non-PCOS women aged <40 years and with basal FSH <10 mUI/ml were down-regulated with triptorelin acetate from the mid-luteal phase for 2 weeks, before starting the stimulation protocol for oocytes recovery. All patients received rFSH, at a starting dose of 150 IU for 6 days. The dose was subsequently adjusted according to individual response. Group B (n=50) received myo-inositol and folic acid for 3 months before the stimulation period and then during the stimulation itself. Group A (n-50) received only folic acid as additional treatment in the 3 months before and through treatment. Total length of the stimulation was similar between the two groups. Nevertheless, total amount of gonadotropins used to reach follicular maturation was found significantly lower in group B. In addition, the number of oocytes retrieved was significantly reduced in the group pretreated with myo-inositol. Clinical pregnancy and implantation rate were not significantly different in the two groups. Our findings suggest that the addition of myo-inositol to folic acid in non PCOS-patients undergoing multiple follicular stimulation for in-vitro fertilization may reduce the numbers of mature oocytes and the dosage of rFSH whilst maintaining clinical pregnancy rate. Further, a trend in favor of increased incidence of implantation in the group pretreated with myo-inositol was apparent in this study. Further investigations are warranted to clarify this pharmacological approach, and the benefit it may hold for patients.

  8. Myosin1D is an evolutionarily conserved regulator of animal left-right asymmetry.

    PubMed

    Juan, Thomas; Géminard, Charles; Coutelis, Jean-Baptiste; Cerezo, Delphine; Polès, Sophie; Noselli, Stéphane; Fürthauer, Maximilian

    2018-05-16

    The establishment of left-right (LR) asymmetry is fundamental to animal development, but the identification of a unifying mechanism establishing laterality across different phyla has remained elusive. A cilia-driven, directional fluid flow is important for symmetry breaking in numerous vertebrates, including zebrafish. Alternatively, LR asymmetry can be established independently of cilia, notably through the intrinsic chirality of the acto-myosin cytoskeleton. Here, we show that Myosin1D (Myo1D), a previously identified regulator of Drosophila LR asymmetry, is essential for the formation and function of the zebrafish LR organizer (LRO), Kupffer's vesicle (KV). Myo1D controls the orientation of LRO cilia and interacts functionally with the planar cell polarity (PCP) pathway component VanGogh-like2 (Vangl2), to shape a productive LRO flow. Our findings identify Myo1D as an evolutionarily conserved regulator of animal LR asymmetry, and show that functional interactions between Myo1D and PCP are central to the establishment of animal LR asymmetry.

  9. Fusion, fission, and transport control asymmetric inheritance of mitochondria and protein aggregates

    PubMed Central

    Böckler, Stefan; Chelius, Xenia; Hock, Nadine; Weiss, Matthias

    2017-01-01

    Partitioning of cell organelles and cytoplasmic components determines the fate of daughter cells upon asymmetric division. We studied the role of mitochondria in this process using budding yeast as a model. Anterograde mitochondrial transport is mediated by the myosin motor, Myo2. A genetic screen revealed an unexpected interaction of MYO2 and genes required for mitochondrial fusion. Genetic analyses, live-cell microscopy, and simulations in silico showed that fused mitochondria become critical for inheritance and transport across the bud neck in myo2 mutants. Similarly, fused mitochondria are essential for retention in the mother when bud-directed transport is enforced. Inheritance of a less than critical mitochondrial quantity causes a severe decline of replicative life span of daughter cells. Myo2-dependent mitochondrial distribution also is critical for the capture of heat stress–induced cytosolic protein aggregates and their retention in the mother cell. Together, these data suggest that coordination of mitochondrial transport, fusion, and fission is critical for asymmetric division and rejuvenation of daughter cells. PMID:28615194

  10. [Fluoroquinolone resistance mutations in topoisomerase genes of Salmonella typhimurium isolates].

    PubMed

    Guo, Yunchang; Pei, Xiaoyan; Liu, Xiumei

    2004-09-01

    Mutations in topoisomerase genes were main cause of the resistence of Salmonella typhimurium to fluoroquinolone. The MICs of three Salmonella typhimurium isolates X2, X7, X11 to ciprofloxacin were above 32 microg/ml, 0.38 microg/ml and 0.023 microg/ml, respectively. The genetic alterations in four topoisomerase genes, gyrA, gyrB, parC, and parE were detected by multiplex PCR amplimer conformation analysis in these three strains. X2 isolate showed both gyrA mutations (Ser83-->Phe, Asp87-->Asn) and parC mutation (Ser80-->Arg). X7 isolate showed a single gyrA mutation (Ser83-->Phe) and X11 isolate had no changes in all of the four quinolone resistance genes, gyrA, gyrB, parC, and parE. X7 isolate with a single gyrA mutation was less resistant to ciprofloxacin than X2 with double gyrA mutations and an additional parC mutation. GyrA and parC genes play important role of the resistance of Salmonella typhimurium to ciprofloxacin.

  11. Gene structure and mutations of glutaryl-coenzyme A dehydrogenase: Impaired association of enzyme subunits that is due to an A421V substitution causes glutaric acidemia type I in the Amish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biery, B.J.; Stein, D.E.; Goodman, S.I.

    The structure of the human glutaryl coenzyme A dehydrogenase (GCD) gene was determined to contain 11 exons and to span {approximately}7 kb. Fibroblast DNA from 64 unrelated glutaric academia type I (GA1) patients was screened for mutations by PCR amplification and analysis of SSCP. Fragments with altered electrophoretic mobility were subcloned and sequenced to detect mutations that caused GA1. This report describes the structure of the GCD gene, as well as point mutations and polymorphisms found in 7 of its 11 exons. Several mutations were found in more than one patient, but no one prevalent mutation was detected in themore » general population. As expected from pedigree analysis, a single mutant allele causes GA1 in the Old Order Amish of Lancaster County, Pennsylvania. Several mutations have been expressed in Escherichia coli, and all produce diminished enzyme activity. Reduced activity in GCD encoded by the A421V mutation in the Amish may be due to impaired association of enzyme subunits. 13 refs., 5 figs., 3 tabs.« less

  12. Fragment analysis represents a suitable approach for the detection of hotspot c.7541_7542delCT NOTCH1 mutation in chronic lymphocytic leukemia.

    PubMed

    Vavrova, Eva; Kantorova, Barbara; Vonkova, Barbara; Kabathova, Jitka; Skuhrova-Francova, Hana; Diviskova, Eva; Letocha, Ondrej; Kotaskova, Jana; Brychtova, Yvona; Doubek, Michael; Mayer, Jiri; Pospisilova, Sarka

    2017-09-01

    The hotspot c.7541_7542delCT NOTCH1 mutation has been proven to have a negative clinical impact in chronic lymphocytic leukemia (CLL). However, an optimal method for its detection has not yet been specified. The aim of our study was to examine the presence of the NOTCH1 mutation in CLL using three commonly used molecular methods. Sanger sequencing, fragment analysis and allele-specific PCR were compared in the detection of the c.7541_7542delCT NOTCH1 mutation in 201 CLL patients. In 7 patients with inconclusive mutational analysis results, the presence of the NOTCH1 mutation was also confirmed using ultra-deep next generation sequencing. The NOTCH1 mutation was detected in 15% (30/201) of examined patients. Only fragment analysis was able to identify all 30 NOTCH1-mutated patients. Sanger sequencing and allele-specific PCR showed a lower detection efficiency, determining 93% (28/30) and 80% (24/30) of the present NOTCH1 mutations, respectively. Considering these three most commonly used methodologies for c.7541_7542delCT NOTCH1 mutation screening in CLL, we defined fragment analysis as the most suitable approach for detecting the hotspot NOTCH1 mutation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Prevalence and predictors of antiretroviral drug resistance in newly diagnosed HIV-1 infection.

    PubMed

    Booth, Clare L; Garcia-Diaz, Ana M; Youle, Michael S; Johnson, Margaret A; Phillips, Andrew; Geretti, Anna Maria

    2007-03-01

    To determine prevalence and predictors of antiretroviral drug resistance in newly diagnosed individuals with HIV-1 infection, using a systematic approach to avoid selection bias. Plasma samples from all persons diagnosed HIV-1 seropositive at a large London centre between April 2004 and February 2006 underwent sequencing of HIV-1 reverse transcriptase (RT) and protease genes. Subtype was assigned by phylogenetic analysis. Resistance was scored according to the IAS-USA list (2005) modified to include T215revertants and exclude isolated E44D or V118I and minor protease mutations. Recent seroconversion was identified by HIV antibody avidity testing. The cohort of 239 included 169 (70.7%) males, 126 (52.7%) homosexuals, 118 (49.5%) persons of white ethnicity and 144 (60.0%) persons born outside the UK. Subtypes included B 134 (56.1%), C 46 (19.2%), A 17 (7.1%), other non-B 42 (17.6%). The prevalence of resistance mutations was 17/239 (7.1%; 95% confidence interval 4.5-11.1%), comprising 10/239 (4.2%) nucleoside/nucleotide RT inhibitor (NRTI); 4/239 (1.7%) non-nucleoside RT inhibitor (NNRTI) and 4/239 (1.7%) protease inhibitor (PI) associated mutations. Dual-class (NRTI + PI) resistance mutations were detected in 1/239 (0.4%) person. The prevalence of resistance mutations was 7/85 (8.2%) and 10/154 (6.5%) in persons with recent and established infection, respectively. In multivariate analysis, having been born in the UK and high CD4 count, but not gender, age, risk group, ethnicity or subtype, were independent predictors of resistance. In an unselected UK cohort, subtypes other than B accounted for 43.9% of new HIV-1 diagnoses. The prevalence of resistance mutations was 7.1% and highest in those born in the UK.

  14. Effects of APOE ε4, age, and HIV on glial metabolites and cognitive deficits.

    PubMed

    Chang, Linda; Jiang, Caroline; Cunningham, Eric; Buchthal, Steven; Douet, Vanessa; Andres, Marilou; Ernst, Thomas

    2014-06-17

    We aimed to evaluate the combined effects of HIV and APOE ε4 allele(s) on glial metabolite levels, and on known cognitive deficits associated with either condition, across the ages. One hundred seventy-seven participants, primarily of white and mixed race (97 seronegative subjects: aged 44.7 ± 1.3 years, 85 [87.6%] men, 28 [28.9%] APOE ε4+; 80 HIV+ subjects: aged 47.3 ± 1.1 years, 73 [91.3%] men, 23 [28.8%] APOE ε4+), were assessed cross-sectionally for metabolite concentrations using proton magnetic resonance spectroscopy in 4 brain regions and for neuropsychological performance. Frontal white matter myo-inositol was elevated in subjects with HIV across the age span but showed age-dependent increase in seronegative subjects, especially in APOE ε4+ carriers. In contrast, only seronegative APOE ε4+ subjects showed elevated myo-inositol in parietal cortex. All APOE ε4+ subjects had lower total creatine in basal ganglia. While all HIV subjects showed greater cognitive deficits, HIV+ APOE ε4+ subjects had the poorest executive function, fluency memory, and attention/working memory. Higher myo-inositol levels were associated with poorer fine motor function across all subjects, slower speed of information processing in APOE ε4+ subjects, and worse fluency in HIV+ APOE ε4+ subjects. In frontal white matter of subjects with HIV, the persistent elevation and lack of normal age-dependent increase in myo-inositol suggest that persistent glial activation attenuated the typical antagonistic pleiotropic effects of APOE ε4 on neuroinflammation. APOE ε4 negatively affects energy metabolism in brain regions rich in dopaminergic synapses. The combined effects of HIV infection and APOE ε4 may lead to greater cognitive deficits, especially in those with greater neuroinflammation. APOE ε4 allele(s) may be a useful genetic marker to identify white and mixed-race HIV subjects at risk for cognitive decline. © 2014 American Academy of Neurology.

  15. [The Usher Syndrome, a Human Ciliopathy].

    PubMed

    Wolfrum, Uwe; Nagel-Wolfrum, Kerstin

    2018-03-01

    The human Usher syndrome (USH) is a complex, rare disease manifesting in its most common form of inherited deaf-blindness. Due to the heterogeneous manifestation of the clinical symptoms, three clinical types (USH1-3) are distinguished according to the severity of the disease pattern. For a correct diagnosis, in addition to the auditory tests in early newborn screening, ophthalmological examinations and molecular genetic analysis are important. Ten known USH genes encode proteins, which are from heterogeneous protein families, interact in functional protein networks. In the eye and in the ear, USH proteins are expressed primarily in the mechano-sensitive hair cells and the rod and cone photoreceptor cells, respectively. In the hair cells, the USH protein networks are essential for the correct differentiation of the hair bundles as well as for the function of the mechano-electrical transduction complex in the matured cell. In the photoreceptor cells, USH proteins are located in the ciliary region and participate in intracellular transport processes. In addition, a USH protein network is present in the so-called calyceal processes. The lack of calyceal processes and the absence of a prominent visual phenotype in the mouse disqualifies mice as models for studies on the ophthalmic component of USH. While hearing impairments can be compensated with hearing aids and cochlear implants, there is no practical therapy for USH in the eye. Currently, gene-based therapy concepts, such as gene addition, applications of antisense oligonucleotides and TRIDs ("translational readthrough inducing drugs") for the readthrough of nonsense mutations are preclinically evaluated. For USH1B/MYO7A the UshStat gene therapy clinical trial is ongoing. Georg Thieme Verlag KG Stuttgart · New York.

  16. Myosin IXa Regulates Epithelial Differentiation and Its Deficiency Results in Hydrocephalus

    PubMed Central

    Abouhamed, Marouan; Grobe, Kay; Leefa Chong San, Isabelle V.; Thelen, Sabine; Honnert, Ulrike; Balda, Maria S.; Matter, Karl

    2009-01-01

    The ependymal multiciliated epithelium in the brain restricts the cerebrospinal fluid to the cerebral ventricles and regulates its flow. We report here that mice deficient for myosin IXa (Myo9a), an actin-dependent motor molecule with a Rho GTPase–activating (GAP) domain, develop severe hydrocephalus with stenosis and closure of the ventral caudal 3rd ventricle and the aqueduct. Myo9a is expressed in maturing ependymal epithelial cells, and its absence leads to impaired maturation of ependymal cells. The Myo9a deficiency further resulted in a distorted ependyma due to irregular epithelial cell morphology and altered organization of intercellular junctions. Ependymal cells occasionally delaminated, forming multilayered structures that bridged the CSF-filled ventricular space. Hydrocephalus formation could be significantly attenuated by the inhibition of the Rho-effector Rho-kinase (ROCK). Administration of ROCK-inhibitor restored maturation of ependymal cells, but not the morphological distortions of the ependyma. Similarly, down-regulation of Myo9a by siRNA in Caco-2 adenocarcinoma cells increased Rho-signaling and induced alterations in differentiation, cell morphology, junction assembly, junctional signaling, and gene expression. Our results demonstrate that Myo9a is a critical regulator of Rho-dependent and -independent signaling mechanisms that guide epithelial differentiation. Moreover, Rho-kinases may represent a new target for therapeutic intervention in some forms of hydrocephalus. PMID:19828736

  17. Effects of inositol, inositol-generating phytase B applied alone, and in combination with 6-phytase A to phosphorus-deficient diets on laying performance, eggshell quality, yolk cholesterol, and fatty acid deposition in laying hens.

    PubMed

    Zyla, K; Mika, M; Duliński, R; Swiatkiewicz, S; Koreleski, J; Pustkowiak, H; Piironen, J

    2012-08-01

    Phytase B, a product of Aspergillus niger phyB gene expressed in Trichoderma reesei, which increased myo-inositol concentrations in 20 mM sodium phytate solution 7.5-fold during 120-min incubation, a combination of phytase B with 6-phytase A, and pure myo-inositol were tested as feed supplements in Bovans Brown laying hens. In the 2-factorial experiment (2×5), birds from wk 50 to 62 were fed 2 basal diets, corn-soybean (CSM) or wheat-soybean (WSM), using 12 one-hen cages per treatment. For both basal diets, the dietary treatments included negative control (0.08% nonphytate P in CSM, 0.13% nonphytate P in WSM; NC); internal control groups, NC+0.04% nonphytate P from monocalcium phosphate, MCP (IC); NC+0.1% of myo-inositol (Inos), NC+phytase B at 1,300 units of phytase B-acid phosphatase activity (AcPU)/kg (PhyB), NC+phytase B at 1,300 AcPU/kg+6-phytase A at 300 FTU/kg (PhyA+B). Feed intake, laying performance, and eggshell quality were determined. The total lipid and cholesterol contents as well as fatty acid profile were assessed in egg yolks collected from hens fed CSM diets, as was fatty acid profile. The hens fed the WSM diet consumed significantly more feed, laid a higher mass of eggs daily with higher mean weights, and had a higher hen-day egg production than the birds receiving the CSM diets. Similarly, higher values for yolk weights, shell weights, shell thickness, shell density, and breaking strengths were determined in the eggs laid by the hens fed the WSM diets. In hens fed either the CSM diets with phytase B alone, or in combination with 6-phytase A, enhanced feed intakes, egg mass, and hen-day egg production were recorded. Phytases also enhanced the eggshell quality parameters in the hens fed both variants of the diets. Phytase B alone, or in combination with 6-phytase A, reduced the total lipid and cholesterol concentrations in egg yolks collected from the hens fed the CSM diets, whereas the combination of both phytases improved the n-6:n-3 polyunsaturated fatty acids ratio. In the CSM diets, the supplemental myo-inositol suppressed feed intakes, reduced egg production, had no effect on eggshell quality and reduced the deposition of eicosanoid fatty acids in yolks. When comparing the effects of feeding MCP, myo-inositol, and phytases on the nutritional quality of the eggs laid by the hens fed phosphorus-deficient CSM diets, it seems that the enhancements in nutritional quality cannot be attributed solely to higher phosphorus level or higher concentrations of myo-inositol.

  18. Shaping Gene Expression by Landscaping Chromatin Architecture: Lessons from a Master.

    PubMed

    Sartorelli, Vittorio; Puri, Pier Lorenzo

    2018-05-19

    Since its discovery as a skeletal muscle-specific transcription factor able to reprogram somatic cells into differentiated myofibers, MyoD has provided an instructive model to understand how transcription factors regulate gene expression. Reciprocally, studies of other transcriptional regulators have provided testable hypotheses to further understand how MyoD activates transcription. Using MyoD as a reference, in this review, we discuss the similarities and differences in the regulatory mechanisms employed by tissue-specific transcription factors to access DNA and regulate gene expression by cooperatively shaping the chromatin landscape within the context of cellular differentiation. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis.

    PubMed

    Zou, Zhang-Yu; Zhou, Zhi-Rui; Che, Chun-Hui; Liu, Chang-Yun; He, Rao-Li; Huang, Hua-Pin

    2017-07-01

    Genetic studies have shown that C9orf72 , SOD1 , TARDBP and FUS are the most common mutated genes in amyotrophic lateral sclerosis (ALS). Here, we performed a meta-analysis to determine the mutation frequencies of these major ALS-related genes in patients with ALS. We performed an extensive literature research to identify all original articles reporting frequencies of C9orf72 , SOD1 , TARDBP and FUS mutations in ALS. The mutation frequency and effect size of each study were combined. Possible sources of heterogeneity across studies were determined by meta-regression, sensitivity analysis and subgroup analysis. 111 studies were included in the meta-analysis. The overall pooled mutation frequencies of these major ALS-related genes were 47.7% in familial amyotrophic lateral sclerosis (FALS) and 5.2% in sporadic ALS (SALS). A significant difference was identified regarding the frequencies of mutations in major ALS genes between European and Asian patients. In European populations, the most common mutations were the C9orf72 repeat expansions (FALS 33.7%, SALS 5.1%), followed by SOD1 (FALS 14.8%, SALS 1.2%), TARDBP (FALS 4.2%, SALS 0.8%) and FUS mutations (FALS 2.8%, SALS 0.3%), while in Asian populations the most common mutations were SOD1 mutations (FALS 30.0%, SALS 1.5%), followed by FUS (FALS 6.4%, SALS 0.9%), C9orf72 (FALS 2.3%, SALS 0.3%) and TARDBP (FALS 1.5%, SALS 0.2%) mutations. These findings demonstrated that the genetic architecture of ALS in Asian populations is distinct from that in European populations, which need to be given appropriate consideration when performing genetic testing of patients with ALS. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Activity of metabolic enzymes and muscle-specific gene expression in parr and smolts Atlantic salmon Salmo salar L. of different age groups.

    PubMed

    Churova, Maria V; Meshcheryakova, Olga V; Veselov, Aleksey E; Efremov, Denis A; Nemova, Nina N

    2017-08-01

    This study was conducted to characterize the energy metabolism level and the features of muscle growth regulation during the development of Atlantic salmon (Salmo salar) inhabiting the Indera River (Kola Peninsula, Russia). The activities of aerobic and anaerobic enzymes (cytochrome c oxidase and lactate dehydrogenase) and carbohydrate metabolism enzymes (glucose-6-phosphate dehydrogenase, glycerol-3-phosphate dehydrogenase, and aldolase) were measured in muscle and liver tissue. Gene expression levels of myosin heavy chain (MyHC), myostatin (MSTN-1a), and myogenic regulatory factors (MRFs-MyoD1a, MyoD1b, MyoD1c, Myf5, myogenin) were measured in the white muscles of salmon parr of ages 0+, 1+, 2+, and 3+ and smolts of ages 2+ and 3+. Multidirectional changes in the activity of enzymes involved in aerobic and anaerobic energy metabolism with age were shown in the white muscles of the parr. The cytochrome c oxidase activity was higher in muscles of underyearlings (0+) and yearlings (1+) and decreased in 2+ and 3+ age groups. The activity of lactate dehydrogenase, in contrast, increased with age. The patterns of changes in expression levels of MyoD1a, MyoD1b, myogenin, MyHC, and MSTN-1a at different ages of the parr were similar. Particularly, the expression of these genes peaked in the yearling parr (1+) and then decreased in elder groups. The differences were revealed in parameters studied between the parr and smolts. The level of aerobic and anaerobic metabolism enzyme activities was higher in the white muscles of smolts than in parr. The activity of carbohydrate metabolism enzymes was decreased in the smolts' livers. The expression levels of MyHC, MyoD1a, MyoD1b, and myogenin were lower in smolts at age 2+ compared to parr. These findings expand our knowledge of age-related and stage-related features of energy metabolism and muscle development regulation in young Atlantic salmon in their natural habitat. The results might be used for monitoring of the salmon population during restoration and rearing.

  1. Predicted Mutation Strength of Nontruncating PKD1 Mutations Aids Genotype-Phenotype Correlations in Autosomal Dominant Polycystic Kidney Disease.

    PubMed

    Heyer, Christina M; Sundsbak, Jamie L; Abebe, Kaleab Z; Chapman, Arlene B; Torres, Vicente E; Grantham, Jared J; Bae, Kyongtae T; Schrier, Robert W; Perrone, Ronald D; Braun, William E; Steinman, Theodore I; Mrug, Michal; Yu, Alan S L; Brosnahan, Godela; Hopp, Katharina; Irazabal, Maria V; Bennett, William M; Flessner, Michael F; Moore, Charity G; Landsittel, Douglas; Harris, Peter C

    2016-09-01

    Autosomal dominant polycystic kidney disease (ADPKD) often results in ESRD but with a highly variable course. Mutations to PKD1 or PKD2 cause ADPKD; both loci have high levels of allelic heterogeneity. We evaluated genotype-phenotype correlations in 1119 patients (945 families) from the HALT Progression of PKD Study and the Consortium of Radiologic Imaging Study of PKD Study. The population was defined as: 77.7% PKD1, 14.7% PKD2, and 7.6% with no mutation detected (NMD). Phenotypic end points were sex, eGFR, height-adjusted total kidney volume (htTKV), and liver cyst volume. Analysis of the eGFR and htTKV measures showed that the PKD1 group had more severe disease than the PKD2 group, whereas the NMD group had a PKD2-like phenotype. In both the PKD1 and PKD2 populations, men had more severe renal disease, but women had larger liver cyst volumes. Compared with nontruncating PKD1 mutations, truncating PKD1 mutations associated with lower eGFR, but the mutation groups were not differentiated by htTKV. PKD1 nontruncating mutations were evaluated for conservation and chemical change and subdivided into strong (mutation strength group 2 [MSG2]) and weak (MSG3) mutation groups. Analysis of eGFR and htTKV measures showed that patients with MSG3 but not MSG2 mutations had significantly milder disease than patients with truncating cases (MSG1), an association especially evident in extreme decile populations. Overall, we have quantified the contribution of genic and PKD1 allelic effects and sex to the ADPKD phenotype. Intrafamilial correlation analysis showed that other factors shared by families influence htTKV, with these additional genetic/environmental factors significantly affecting the ADPKD phenotype. Copyright © 2016 by the American Society of Nephrology.

  2. EPR analysis of cyanide complexes of wild-type human neuroglobin and mutants in comparison to horse heart myoglobin.

    PubMed

    Van Doorslaer, Sabine; Trandafir, Florin; Harmer, Jeffrey R; Moens, Luc; Dewilde, Sylvia

    2014-06-01

    Electron paramagnetic resonance (EPR) data reveal large differences between the ferric ((13)C-)cyanide complexes of wild-type human neuroglobin (NGB) and its H64Q and F28L point mutants and the cyanide complexes of mammalian myo- and haemoglobin. The point mutations, which involve residues comprising the distal haem pocket in NGB, induce smaller, but still significant changes, related to changes in the stabilization of the cyanide ligand. Furthermore, for the first time, the full (13)C hyperfine tensor of the cyanide carbon of cyanide-ligated horse heart myoglobin (hhMb) was determined using Davies ENDOR (electron nuclear double resonance). Disagreement of these experimental data with earlier predictions based on (13)C NMR data and a theoretical model reveal significant flaws in the model assumptions. The same ENDOR procedure allowed also partial determination of the corresponding (13)C hyperfine tensor of cyanide-ligated NGB and H64QNGB. These (13)C parameters differ significantly from those of cyanide-ligated hhMb and challenge our current theoretical understanding of how the haem environment influences the magnetic parameters obtained by EPR and NMR in cyanide-ligated haem proteins. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. [The myo-inositol is beneficial in the therapy of pregnancy with insulin-dependent type 2 diabetes and polycystic ovary syndrome].

    PubMed

    Kun, Attila; Tornóczky, János

    2017-04-01

    Authors would like to demonstrate the beneficial effect of myo-inositol supplementation in a pregnant woman with insulin-dependent type 2 diabetes mellitus and polycystic ovary syndrome. Insulin and metformin treatment could not achieve normalization of glucose homeostasis for 3 years, and hypoglycemic episodes were frequent. Myo-inositol and folic acid supplementation added to the basic treatment resulted in improved glucose levels in 2 months. At this time she became pregnant. During pregnancy serum glucose levels still improved in the next 2 months. The amniotic membrane ruptured at the 19th gestational week, and pregnancy had to be finished. Developmental disturbances were excluded by the pathologist. She became pregnant again and gave birth to a premature male neonate at the 29th gestational week. The aim of the report was to demonstrate that myo-inositol supplementation may improve the efficacy of the therapy in type 2 diabetes mellitus. Orv. Hetil., 2017, 158(14), 541-545.

  4. Molecular Diagnostics of Copper-Transporting Protein Mutations Allows Early Onset Individual Therapy of Menkes Disease.

    PubMed

    Králík, L; Flachsová, E; Hansíková, H; Saudek, V; Zeman, J; Martásek, P

    2017-01-01

    Menkes disease is a severe X-linked recessive disorder caused by a defect in the ATP7A gene, which encodes a membrane copper-transporting ATPase. Deficient activity of the ATP7A protein results in decreased intestinal absorption of copper, low copper level in serum and defective distribution of copper in tissues. The clinical symptoms are caused by decreased activities of copper-dependent enzymes and include neurodegeneration, connective tissue disorders, arterial changes and hair abnormalities. Without therapy, the disease is fatal in early infancy. Rapid diagnosis of Menkes disease and early start of copper therapy is critical for the effectiveness of treatment. We report a molecular biology-based strategy that allows early diagnosis of copper transport defects and implementation of individual therapies before the full development of pathological symptoms. Low serum copper and decreased activity of copperdependent mitochondrial cytochrome c oxidase in isolated platelets found in three patients indicated a possibility of functional defects in copper-transporting proteins, especially in the ATPA7 protein, a copper- transporting P-type ATPase. Rapid mutational screening of the ATP7A gene using high-resolution melting analysis of DNA indicated presence of mutations in the patients. Molecular investigation for mutations in the ATP7A gene revealed three nonsense mutations: c.2170C>T (p.Gln724Ter); c.3745G>T (p.Glu1249Ter); and c.3862C>T (p.Gln1288Ter). The mutation c.3745G>T (p.Glu1249Ter) has not been identified previously. Molecular analysis of the ATOX1 gene as a possible modulating factor of Menkes disease did not reveal presence of pathogenic mutations. Molecular diagnostics allowed early onset of individual therapies, adequate genetic counselling and prenatal diagnosis in the affected families.

  5. Myo-inositol may improve oocyte quality in intracytoplasmic sperm injection cycles. A prospective, controlled, randomized trial.

    PubMed

    Papaleo, Enrico; Unfer, Vittorio; Baillargeon, Jean-Patrice; Fusi, Francesco; Occhi, Francesca; De Santis, Lucia

    2009-05-01

    To determine the effects of myo-inositol on oocyte quality in polycystic ovary syndrome (PCOS) patients undergoing intracytoplasmic sperm injection (ICSI) cycles. A prospective, controlled, randomized trial. Assisted reproduction centers. Sixty infertile PCO patients undergoing ovulation induction for ICSI. All participants underwent standard long protocol. Starting on the day of GnRH administration, 30 participants received myo-inositol combined with folic acid (Inofolic) 2 g twice a day and 30 control women received folic acid alone, administrated continuously. Primary end points were number of morphologically mature oocytes retrieved, embryo quality, and pregnancy and implantation rates. Secondary end points were total number of days of FSH stimulation, total dose of gonadotropin administered, E(2) level on the day of hCG administration, fertilization rate per number of retrieved oocytes, embryo cleavage rate, live birth and miscarriage rates, cancellation rate, and incidence of moderate or severe ovarian hyperstimulation syndrome. Total r-FSH units (1,958 +/- 695 vs. 2,383 +/- 578) and number of days of stimulation (11.4 +/- 0.9 vs. 12.4 +/- 1.4) were significantly reduced in the myo-inositol group. Furthermore, peak E(2) levels (2,232 +/- 510 vs. 2,713 +/- 595 pg/mL) at hCG administration were significantly lower in patients receiving myo-inositol. The mean number of oocytes retrieved did not differ in the two groups, whereas in the group cotreated with myo-inositol the mean number of germinal vesicles and degenerated oocytes was significantly reduced (1.0 +/- 0.9 vs. 1.6 +/- 1.0), with a trend for increased percentage of oocytes in metaphase II (0.82 +/- 0.11% vs. 0.75 +/- 0.15%). These data show that in patients with PCOS, treatment with myo-inositol and folic acid, but not folic acid alone, reduces germinal vesicles and degenerated oocytes at ovum pick-up without compromising total number of retrieved oocytes. This approach, reducing E(2) levels at hGC administration, could be adopted to decrease the risk of hyperstimulation in such patients.

  6. Deleterious ABCA7 mutations and transcript rescue mechanisms in early onset Alzheimer's disease.

    PubMed

    De Roeck, Arne; Van den Bossche, Tobi; van der Zee, Julie; Verheijen, Jan; De Coster, Wouter; Van Dongen, Jasper; Dillen, Lubina; Baradaran-Heravi, Yalda; Heeman, Bavo; Sanchez-Valle, Raquel; Lladó, Albert; Nacmias, Benedetta; Sorbi, Sandro; Gelpi, Ellen; Grau-Rivera, Oriol; Gómez-Tortosa, Estrella; Pastor, Pau; Ortega-Cubero, Sara; Pastor, Maria A; Graff, Caroline; Thonberg, Håkan; Benussi, Luisa; Ghidoni, Roberta; Binetti, Giuliano; de Mendonça, Alexandre; Martins, Madalena; Borroni, Barbara; Padovani, Alessandro; Almeida, Maria Rosário; Santana, Isabel; Diehl-Schmid, Janine; Alexopoulos, Panagiotis; Clarimon, Jordi; Lleó, Alberto; Fortea, Juan; Tsolaki, Magda; Koutroumani, Maria; Matěj, Radoslav; Rohan, Zdenek; De Deyn, Peter; Engelborghs, Sebastiaan; Cras, Patrick; Van Broeckhoven, Christine; Sleegers, Kristel

    2017-09-01

    Premature termination codon (PTC) mutations in the ATP-Binding Cassette, Sub-Family A, Member 7 gene (ABCA7) have recently been identified as intermediate-to-high penetrant risk factor for late-onset Alzheimer's disease (LOAD). High variability, however, is observed in downstream ABCA7 mRNA and protein expression, disease penetrance, and onset age, indicative of unknown modifying factors. Here, we investigated the prevalence and disease penetrance of ABCA7 PTC mutations in a large early onset AD (EOAD)-control cohort, and examined the effect on transcript level with comprehensive third-generation long-read sequencing. We characterized the ABCA7 coding sequence with next-generation sequencing in 928 EOAD patients and 980 matched control individuals. With MetaSKAT rare variant association analysis, we observed a fivefold enrichment (p = 0.0004) of PTC mutations in EOAD patients (3%) versus controls (0.6%). Ten novel PTC mutations were only observed in patients, and PTC mutation carriers in general had an increased familial AD load. In addition, we observed nominal risk reducing trends for three common coding variants. Seven PTC mutations were further analyzed using targeted long-read cDNA sequencing on an Oxford Nanopore MinION platform. PTC-containing transcripts for each investigated PTC mutation were observed at varying proportion (5-41% of the total read count), implying incomplete nonsense-mediated mRNA decay (NMD). Furthermore, we distinguished and phased several previously unknown alternative splicing events (up to 30% of transcripts). In conjunction with PTC mutations, several of these novel ABCA7 isoforms have the potential to rescue deleterious PTC effects. In conclusion, ABCA7 PTC mutations play a substantial role in EOAD, warranting genetic screening of ABCA7 in genetically unexplained patients. Long-read cDNA sequencing revealed both varying degrees of NMD and transcript-modifying events, which may influence ABCA7 dosage, disease severity, and may create opportunities for therapeutic interventions in AD.

  7. Genetic study of the PAH locus in the Iranian population: familial gene mutations and minihaplotypes.

    PubMed

    Razipour, Masoumeh; Alavinejad, Elaheh; Sajedi, Seyede Zahra; Talebi, Saeed; Entezam, Mona; Mohajer, Neda; Kazemi-Sefat, Golnaz-Ensieh; Gharesouran, Jalal; Setoodeh, Aria; Mohaddes Ardebili, Seyyed Mojtaba; Keramatipour, Mohammad

    2017-10-01

    Phenylketonuria (PKU), one of the most common inborn errors of amino acid metabolism, is caused by mutations in the phenylalanine hydroxylase (PAH) gene (PAH). PKU has wide allelic heterogeneity, and over 600 different disease-causing mutations in PAH have been detected to date. Up to now, there have been no reports on the minihaplotype (VNTR/STR) analysis of PAH locus in the Iranian population. The aims of the present study were to determine PAH mutations and minihaplotypes in Iranian families with PAH deficiency and to investigate the correlation between them. A total of 81 Iranian families with PAH deficiency were examined using PCR-sequencing of all 13 PAH exons and their flanking intron regions to identify sequence variations. Fragment analysis of the PAH minihaplotypes was performed by capillary electrophoresis for 59 families. In our study, 33 different mutations were found accounting for 95% of the total mutant alleles. The majority of these mutations (72%) were distributed across exons 7, 11, 2 and their flanking intronic regions. Mutation c.1066-11G > A was the most common with a frequency of 20.37%. The less frequent mutations, p.Arg261Gln (8%), p.Arg243Ter (7.4%), p.Leu48Ser (7.4%), p.Lys363Asnfs*37 (6.79%), c.969 + 5G > A (6.17%), p.Pro281Leu (5.56), c.168 + 5G > C (5.56), and p.Arg261Ter (4.94) together comprised about 52% of all mutant alleles. In this study, a total of seventeen PAH gene minihaplotypes were detected, six of which associated exclusively with particular mutations. Our findings indicate a broad PAH mutation spectrum in the Iranian population, which is consistent with previous studies reporting a wide range of PAH mutations, most likely due to ethnic heterogeneity. High prevalence of c.1066-11G > A mutation linked to minihaplotype 7/250 among both Iranian and Mediterranean populations is indicative of historical and geographical links between them. Also, strong association between particular mutations and minihaplotypes could be useful for prenatal diagnosis (PND) and preimplantation genetic diagnosis (PGD) in affected families.

  8. Loss of oxidative defense and potential blockade of satellite cell maturation in the skeletal muscle of patients with cancer but not in the healthy elderly.

    PubMed

    Brzeszczyńska, Joanna; Johns, Neil; Schilb, Alain; Degen, Simone; Degen, Martin; Langen, Ramon; Schols, Annemie; Glass, David J; Roubenoff, Ronenn; Greig, Carolyn A; Jacobi, Carsten; Fearon, Kenneth Ch; Ross, James A

    2016-08-01

    Muscle wasting in old age or cancer may result from failed myofiber regeneration and/or accelerated atrophy. This study aimed to determine from transcriptomic analysis of human muscle the integrity of the cellular stress response system in relation to satellite cell differentiation or apoptosis in patients with cancer (weight-stable (CWS) or weight-losing (CWL)) or healthy elderly (HE) when compared with healthy middle-aged controls (HMA). 28 patients with cancer (CWS: 18 and CWL: 10), HE: 21 and HMA: 20 underwent biopsy of quadriceps muscle. The expression of transcription factors for muscle regeneration (Pax3, Pax7 and MyoD) was increased in CWS and HE compared with HMA (p≤0.001). In contrast, the expression of the late myogenic differentiation marker MyoG was reduced in CWS and CWL but increased in HE (p≤0.0001). Bax was significantly increased in CWS, CWL and HE (p≤0.0001). Expression of the oxidative defense genes SOD2, GCLM, and Nrf2 was decreased in CWS and CWL but increased in HE (p≤0.0001). There is evidence for blockade of satellite cell maturation, upregulation of apoptosis and reduced oxidative defense in the muscle of cancer patients. In the healthy elderly the potential for differentiation and oxidative defense is maintained.

  9. Locus-specific mutational events in a multilocus variable-number tandem repeat analysis of Escherichia coli O157:H7.

    PubMed

    Noller, Anna C; McEllistrem, M Catherine; Shutt, Kathleen A; Harrison, Lee H

    2006-02-01

    Multilocus variable-number tandem repeat analysis (MLVA) is a validated molecular subtyping method for detecting and evaluating Escherichia coli O157:H7 outbreaks. In a previous study, five outbreaks with a total of 21 isolates were examined by MLVA. Nearly 20% of the epidemiologically linked strains were single-locus variants (SLV) of their respective predominant outbreak clone. This result prompted an investigation into the mutation rates of the seven MLVA loci (TR1 to TR7). With an outbreak strain that was an SLV at the TR1 locus of the predominant clone, parallel and serial batch culture experiments were performed. In a parallel experiment, none (0/384) of the strains analyzed had mutations at the seven MLVA loci. In contrast, in the two 5-day serial experiments, 4.3% (41/960) of the strains analyzed had a significant variation in at least one of these loci (P < 0.001). The TR2 locus accounted for 85.3% (35/41) of the mutations, with an average mutation rate of 3.5 x 10(-3); the mutations rates for TR1 and TR5 were 10-fold lower. Single additions accounted for 77.1% (27/35) of the mutation events in TR2 and all (6/6) of the additions in TR1 and TR5. The remaining four loci had no slippage events detected. The mutation rates were locus specific and may impact the interpretation of MLVA data for epidemiologic investigations.

  10. Molecular genetic analysis of some mutations in the cystic fibrosis gene in Moldova: Characterization of molecular markers and their linkage to various mutations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gimbovskaya, S.D.; Kalinin, V.N.; Ivashchenko, T.E.

    1994-12-01

    Sixty-one patients with cystic fibrosis (CF) from Moldova were tested for mutations {Delta}F508, G551D, and R553X. Frequencies of various alleles of the repeated GATT sequence in intron 6B of the GFTR gene, their linkage to other polymorphic markers, and various mutations were determined. The frequency of occurrence of mutation {Delta}F508 was only 25%. An absolute majority of CF patients (80%) had pancreatic insufficiency. Mutations G551D and R553X were not found in our sample. Each of 31 chromosomes with mutation {Delta}F508 carry the 6-GATT allele. Most {open_quotes}non {Delta}F508{close_quotes} (78%) and normal (80%) chromosomes were marked by the 7-GATT allele. Twenty-seven {Delta}F508more » chromosomes (96.4%) belong to haplotype B6, and only one to D6. Most chromosomes with {open_quotes}non {Delta}F508{close_quotes} mutations are associated with haplotypes D7 (26.3%) and C7 (21%). In addition, a significant portion of chromosomes from this subgroup were associated with haplotypes A7 (23.7%), A6 (10.5%), and C6 (2.7%), which are not yet described for mutant chromosomes. The results obtained demonstrate that CF in Moldova is mainly associated with mutations other than {Delta}F508, G551D, and R553X. Severe forms of the disease, with pancreatic insufficiency, are more frequently caused by these mutations; moreover, our data provides strong evidence for the presence of at least seven additional CF mutations in Moldova, apart from {Delta}F508, G551D, and R553X. Some of these are probably not described.« less

  11. Diversity of Interstitial Lung Fibroblasts Is Regulated by Platelet-Derived Growth Factor Receptor α Kinase Activity.

    PubMed

    Green, Jenna; Endale, Mehari; Auer, Herbert; Perl, Anne-Karina T

    2016-04-01

    Epithelial-mesenchymal cell interactions and factors that control normal lung development are key players in lung injury, repair, and fibrosis. A number of studies have investigated the roles and sources of epithelial progenitors during lung regeneration; such information, however, is limited in lung fibroblasts. Thus, understanding the origin, phenotype, and roles of fibroblast progenitors in lung development, repair, and regeneration helps address these limitations. Using a combination of platelet-derived growth factor receptor α-green fluorescent protein (PDGFRα-GFP) reporter mice, microarray, real-time polymerase chain reaction, flow cytometry, and immunofluorescence, we characterized two distinct interstitial resident fibroblasts, myo- and matrix fibroblasts, and identified a role for PDGFRα kinase activity in regulating their activation during lung regeneration. Transcriptional profiling of the two populations revealed a myo- and matrix fibroblast gene signature. Differences in proliferation, smooth muscle actin induction, and lipid content in the two subpopulations of PDGFRα-expressing fibroblasts during alveolar regeneration were observed. Although CD140α(+)CD29(+) cells behaved as myofibroblasts, CD140α(+)CD34(+) appeared as matrix and/or lipofibroblasts. Gain or loss of PDGFRα kinase activity using the inhibitor nilotinib and a dominant-active PDGFRα-D842V mutation revealed that PDGFRα was important for matrix fibroblast differentiation. We demonstrated that PDGFRα signaling promotes alveolar septation by regulating fibroblast activation and matrix fibroblast differentiation, whereas myofibroblast differentiation was largely PDGFRα independent. These studies provide evidence for the phenotypic and functional diversity as well as the extent of specificity of interstitial resident fibroblasts differentiation during regeneration after partial pneumonectomy.

  12. Diversity of Interstitial Lung Fibroblasts Is Regulated by Platelet-Derived Growth Factor Receptor α Kinase Activity

    PubMed Central

    Green, Jenna; Endale, Mehari; Auer, Herbert

    2016-01-01

    Epithelial–mesenchymal cell interactions and factors that control normal lung development are key players in lung injury, repair, and fibrosis. A number of studies have investigated the roles and sources of epithelial progenitors during lung regeneration; such information, however, is limited in lung fibroblasts. Thus, understanding the origin, phenotype, and roles of fibroblast progenitors in lung development, repair, and regeneration helps address these limitations. Using a combination of platelet-derived growth factor receptor α–green fluorescent protein (PDGFRα-GFP) reporter mice, microarray, real-time polymerase chain reaction, flow cytometry, and immunofluorescence, we characterized two distinct interstitial resident fibroblasts, myo- and matrix fibroblasts, and identified a role for PDGFRα kinase activity in regulating their activation during lung regeneration. Transcriptional profiling of the two populations revealed a myo- and matrix fibroblast gene signature. Differences in proliferation, smooth muscle actin induction, and lipid content in the two subpopulations of PDGFRα-expressing fibroblasts during alveolar regeneration were observed. Although CD140α+CD29+ cells behaved as myofibroblasts, CD140α+CD34+ appeared as matrix and/or lipofibroblasts. Gain or loss of PDGFRα kinase activity using the inhibitor nilotinib and a dominant-active PDGFRα-D842V mutation revealed that PDGFRα was important for matrix fibroblast differentiation. We demonstrated that PDGFRα signaling promotes alveolar septation by regulating fibroblast activation and matrix fibroblast differentiation, whereas myofibroblast differentiation was largely PDGFRα independent. These studies provide evidence for the phenotypic and functional diversity as well as the extent of specificity of interstitial resident fibroblasts differentiation during regeneration after partial pneumonectomy. PMID:26414960

  13. Impact of tissue type and content of neoplastic cells of samples on the quality of epidermal growth factor receptor mutation analysis among patients with lung adenocarcinoma

    PubMed Central

    PALIOGIANNIS, PANAGIOTIS; ATTENE, FEDERICO; COSSU, ANTONIO; DEFRAIA, EFISIO; PORCU, GIUSEPPE; CARTA, ANNAMARIA; SOTGIU, MARIA IGNAZIA; PAZZOLA, ANTONIO; CORDERO, LORENZO; CAPELLI, FRANCESCA; FADDA, GIOVANNI MARIA; ORTU, SALVATORE; SOTGIU, GIOVANNI; PALOMBA, GRAZIA; SINI, MARIA CRISTINA; PALMIERI, GIUSEPPE; COLOMBINO, MARIA

    2015-01-01

    Assessment of the epidermal growth factor receptor (EGFR) mutational status has become crucial in recent years in the molecular classification of patients with lung cancer. The impact of the type and quantity of malignant cells of the neoplastic specimen on the quality of mutation analysis remains to be elucidated, and only empirical and sporadic data are available. The aim of the present study was to investigate the impact of tissue type and content of neoplastic cells in the specimen on the quality of EGFR mutation analysis among patients with lung adenocarcinoma. A total of 515 patients with histologically-confirmed disease were included in the present study. Formalin-fixed paraffin embedded tissue samples were used for the mutation analysis and the content of the neoplastic cells was evaluated using light microscopy. Genomic DNA was isolated using a standard protocol. The coding sequences and splice junctions of exons 18, 19 and 21 in the EGFR gene were then screened for mutations by direct automated sequencing. The mean age of the patients examined was 64.9 years and 357 (69.3%) were male. A total of 429 tissue samples (83.3%) were obtained by biopsy and the remaining samples were obtained by surgery. A total of 456 samples (88.5%) were observed from primary lung adenocarcinomas, while 59 (11.5%) were from metastatic lesions. EGFR mutations occurred in 59 cases (11.5%); exon 18 mutations were detected in one case (1.7%), whereas exon 19 and 21 mutations were detected in 30 (51%) and 28 (47.3%) cases, respectively. EGFR mutations were more frequent in females and patients that had never smoked. The distribution of the mutations among primary and metastatic tissues exhibited no significant differences in the proportions of EGFR mutations detected. However, a statistically significant difference in the number of mutations detected was found between samples with at least 50% of neoplastic cells (450 cases-57 mutations; 12.7%) and those with <50% of neoplastic cells (65 cases-2 mutations; 3.1%). PMID:25683726

  14. Synthesis and evaluation of 3-modified 1D-myo-inositols as inhibitors and substrates of phosphatidylinositol synthase and inhibitors of myo-inositol uptake by cells.

    PubMed

    Johnson, S C; Dahl, J; Shih, T L; Schedler, D J; Anderson, L; Benjamin, T L; Baker, D C

    1993-11-12

    A number of 3-substituted 1D-myo-inositols were synthesized and evaluated as substrates for phosphatidylinositol synthase and uptake by intact cells. 1D-3-Amino-, -3-chloro-, and -3-(acetylthio)-3-deoxy-myo-inositols were all synthesized by nucleophilic displacement of the 6-O-(trifluoromethyl)sulfonyl group of 1L-1,2:3,4-di-O-cyclohexylidene-5-O-methyl-6-O-[(trifluoromethyl)-sulfon yl] - chiro-inositol (which was prepared from L-quebrachitol), respectively, by reaction with LiN3, followed by reduction of the azido function, and with LiCl and KSAc to give the O-protected compounds. O-Demethylation using BBr3 and concomitant acetal hydrolysis furnished the free-hydroxy 3-amino- and 3-chloro-3-deoxy-1D-myo-inositols. The 3-mercapto analogue was obtained by removal of the acetal groups of the acetylthio analogue, followed by acetylation and purification of the peracetate, and subsequent O-demethylation and deacetylation. The 3-deoxy derivative was synthesized from the 6-O-(imidazol-1-ylthiocarbonyl) compound via Barton-McCombie deoxygenation. The 3-azido derivative was directly synthesized from 1L-1-O-tosyl-chiro-inositol via displacement with azide. The 3-keto analogue was prepared by Pt-catalyzed air oxidation of 1L-chiro-inositol. The compounds were all evaluated as substrates for phosphatidylinositol (PtdIns) synthase from mouse brain. The 3-NH2, 3-F, 3-deoxy, and 3-keto analogues all showed activity as substrates, as measured by liberation of cytidine monophosphate. These compounds also showed inhibition of the reaction of myo-[3H]inositol with PtdIns synthase. These results taken together indicate that these compounds are likely to be incorporated into phospholipids. As a further indication that these compounds might be useful as probes for the PtdIns pathway, it was demonstrated that the 3-NH2, 3-F, and 3-deoxy compounds are taken up by intact fibroblast cells as evidenced by their competing with myo-[3H]inositol uptake.

  15. Identification of cis-regulatory modules in promoters of human genes exploiting mutual positioning of transcription factors

    PubMed Central

    Nandi, Soumyadeep; Blais, Alexandre; Ioshikhes, Ilya

    2013-01-01

    In higher organisms, gene regulation is controlled by the interplay of non-random combinations of multiple transcription factors (TFs). Although numerous attempts have been made to identify these combinations, important details, such as mutual positioning of the factors that have an important role in the TF interplay, are still missing. The goal of the present work is in silico mapping of some of such associating factors based on their mutual positioning, using computational screening. We have selected the process of myogenesis as a study case, and we focused on TF combinations involving master myogenic TF Myogenic differentiation (MyoD) with other factors situated at specific distances from it. The results of our work show that some muscle-specific factors occur together with MyoD within the range of ±100 bp in a large number of promoters. We confirm co-occurrence of the MyoD with muscle-specific factors as described in earlier studies. However, we have also found novel relationships of MyoD with other factors not specific for muscle. Additionally, we have observed that MyoD tends to associate with different factors in proximal and distal promoter areas. The major outcome of our study is establishing the genome-wide connection between biological interactions of TFs and close co-occurrence of their binding sites. PMID:23913413

  16. A novel mutation of the NDUFS7 gene leads to activation of a cryptic exon and impaired assembly of mitochondrial complex I in a patient with Leigh syndrome.

    PubMed

    Lebon, Sophie; Minai, Limor; Chretien, Dominique; Corcos, Johanna; Serre, Valérie; Kadhom, Noman; Steffann, Julie; Pauchard, Jean-Yves; Munnich, Arnold; Bonnefont, Jean-Paul; Rötig, Agnès

    2007-01-01

    Complex I deficiency is a frequent cause of mitochondrial disease as it accounts for one third of these disorders. By genotyping several putative disease loci using microsatellite markers we were able to describe a new NDUFS7 mutation in a consanguineous family with Leigh syndrome and isolated complex I deficiency. This mutation lies in the first intron of the NDUFS7 gene (c.17-1167 C>G) and creates a strong donor splice site resulting in the generation of a cryptic exon. This mutation is predicted to result in a shortened mutant protein of 41 instead of 213 amino acids containing only the first five amino acids of the normal protein. Analysis of the assembly state of the respiratory chain complexes under native condition revealed a marked decrease of fully assembled complex I while the quantity of the other complexes was not altered. These results report the first intronic NDUFS7 gene mutation and demonstrate the crucial role of NDUFS7 in the biogenesis of complex I.

  17. RAS mutation prevalence among patients with metastatic colorectal cancer: a meta-analysis of real-world data.

    PubMed

    Kafatos, George; Niepel, Daniela; Lowe, Kimberley; Jenkins-Anderson, Sophie; Westhead, Hal; Garawin, Tamer; Traugottová, Zuzana; Bilalis, Antonios; Molnar, Edit; Timar, Jozsef; Toth, Erika; Gouvas, Nikolaos; Papaxoinis, George; Murray, Samuel; Mokhtar, Nadia; Vosmikova, Hana; Fabian, Pavel; Skalova, Alena; Wójcik, Piotr; Tysarowski, Andrzej; Barugel, Mario; van Krieken, J Han; Trojan, Jörg

    2017-07-27

    A confirmed wild-type RAS tumor status is commonly required for prescribing anti-EGFR treatment for metastatic colorectal cancer. This noninterventional, observational research project estimated RAS mutation prevalence from real-world sources. Aggregate RAS mutation data were collected from 12 sources in three regions. Each source was analyzed separately; pooled prevalence estimates were then derived from meta-analyses. The pooled RAS mutation prevalence from 4431 tumor samples tested for RAS mutation status was estimated to be 43.6% (95% CI: 38.8-48.5%); ranging from 33.7% (95% CI: 28.4-39.3%) to 54.1% (95% CI: 51.7-56.5%) between sources. The RAS mutation prevalence estimates varied among sources. The reasons for this are not clear and highlight the need for further research.

  18. Enhancing the Predictive Power of Mutations in the C-Terminus of the KCNQ1-Encoded Kv7.1 Voltage-Gated Potassium Channel.

    PubMed

    Kapplinger, Jamie D; Tseng, Andrew S; Salisbury, Benjamin A; Tester, David J; Callis, Thomas E; Alders, Marielle; Wilde, Arthur A M; Ackerman, Michael J

    2015-04-01

    Despite the overrepresentation of Kv7.1 mutations among patients with a robust diagnosis of long QT syndrome (LQTS), a background rate of innocuous Kv7.1 missense variants observed in healthy controls creates ambiguity in the interpretation of LQTS genetic test results. A recent study showed that the probability of pathogenicity for rare missense mutations depends in part on the topological location of the variant in Kv7.1's various structure-function domains. Since the Kv7.1's C-terminus accounts for nearly 50 % of the overall protein and nearly 50 % of the overall background rate of rare variants falls within the C-terminus, further enhancement in mutation calling may provide guidance in distinguishing pathogenic long QT syndrome type 1 (LQT1)-causing mutations from rare non-disease-causing variants in the Kv7.1's C-terminus. Therefore, we have used conservation analysis and a large case-control study to generate topology-based estimative predictive values to aid in interpretation, identifying three regions of high conservation within the Kv7.1's C-terminus which have a high probability of LQT1 pathogenicity.

  19. Expression, Gene Cloning, and Characterization of Five Novel Phytases from Four Basidiomycete Fungi: Peniophora lycii, Agrocybe pediades, a Ceriporia sp., and Trametes pubescens

    PubMed Central

    Lassen, Søren F.; Breinholt, Jens; Østergaard, Peter R.; Brugger, Roland; Bischoff, Andrea; Wyss, Markus; Fuglsang, Claus C.

    2001-01-01

    Phytases catalyze the hydrolysis of phosphomonoester bonds of phytate (myo-inositol hexakisphosphate), thereby creating lower forms of myo-inositol phosphates and inorganic phosphate. In this study, cDNA expression libraries were constructed from four basidiomycete fungi (Peniophora lycii, Agrocybe pediades, a Ceriporia sp., and Trametes pubescens) and screened for phytase activity in yeast. One full-length phytase-encoding cDNA was isolated from each library, except for the Ceriporia sp. library where two different phytase-encoding cDNAs were found. All five phytases were expressed in Aspergillus oryzae, purified, and characterized. The phytases revealed temperature optima between 40 and 60°C and pH optima at 5.0 to 6.0, except for the P. lycii phytase, which has a pH optimum at 4.0 to 5.0. They exhibited specific activities in the range of 400 to 1,200 U · mg, of protein−1 and were capable of hydrolyzing phytate down to myo-inositol monophosphate. Surprisingly, 1H nuclear magnetic resonance analysis of the hydrolysis of phytate by all five basidiomycete phytases showed a preference for initial attack at the 6-phosphate group of phytic acid, a characteristic that was believed so far not to be seen with fungal phytases. Accordingly, the basidiomycete phytases described here should be grouped as 6-phytases (EC 3.1.3.26). PMID:11571175

  20. An evolutionary analysis identifies a conserved pentapeptide stretch containing the two essential lysine residues for rice L-myo-inositol 1-phosphate synthase catalytic activity

    PubMed Central

    Basak, Papri; Maitra-Majee, Susmita; Das, Jayanta Kumar; Mukherjee, Abhishek; Ghosh Dastidar, Shubhra; Pal Choudhury, Pabitra

    2017-01-01

    A molecular evolutionary analysis of a well conserved protein helps to determine the essential amino acids in the core catalytic region. Based on the chemical properties of amino acid residues, phylogenetic analysis of a total of 172 homologous sequences of a highly conserved enzyme, L-myo-inositol 1-phosphate synthase or MIPS from evolutionarily diverse organisms was performed. This study revealed the presence of six phylogenetically conserved blocks, out of which four embrace the catalytic core of the functional protein. Further, specific amino acid modifications targeting the lysine residues, known to be important for MIPS catalysis, were performed at the catalytic site of a MIPS from monocotyledonous model plant, Oryza sativa (OsMIPS1). Following this study, OsMIPS mutants with deletion or replacement of lysine residues in the conserved blocks were made. Based on the enzyme kinetics performed on the deletion/replacement mutants, phylogenetic and structural comparison with the already established crystal structures from non-plant sources, an evolutionarily conserved peptide stretch was identified at the active pocket which contains the two most important lysine residues essential for catalytic activity. PMID:28950028

  1. Effects of myo-inositol, gymnemic acid, and L-methylfolate in polycystic ovary syndrome patients.

    PubMed

    Stracquadanio, M; Ciotta, L; Palumbo, M A

    2018-06-01

    Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine and metabolic disorder, characterized by chronic anovulation/oligomenorrhea, hyperandrogenism, and insulin-resistance. Moreover, some studies propose a possible association between insulin resistance and hyperhomocysteinemia, which is a significant long-term risk for factor for atherogenesis and chronic vascular damage, especially in situations where insulin levels are increased. Insulin-sensitizing agents are used in the treatment of PCOS: in fact, inositols were shown to have insulin-mimetic properties. Synergic action to myo-inositol is that of gymnemic acids that have antidiabetic, anti-sweetener, and anti-inflammatory activities. Gymnemic acid formulations have also been found useful against obesity due to their ability to delay the glucose absorption in the blood. L-methyl-folate increases peripheral sensitivity to insulin, maintaining folatemia stable, and thus restoring normal homocysteine levels. Unlike folic acid, L-methyl folate has a higher bioavailability, no drug/food interferences, high absorption, and it is stable to UV-A exposure. The aim of our study is to compare the clinical, endocrine, and metabolic parameters in 100 PCOS women treated with myo-inositol, gymnemic acid, and l-methylfolate (Group A) or myo inositol and folic acid only (Group B), continuously for 6 months. From a clinical point of view, it was noticed a more significant improvement of the menstrual cycle regularity and a more significant reduction of BMI in Group A. Moreover, a more significant decrease of total testosterone and increase of SHBG serum levels were noticed in Group A. The metabolic assessment found a more significant decrease of total cholesterol and homocysteine levels; OGTT glycemia and insulinemia values were significantly more improved after treatment with myo-inositol + gymnemic acid. In conclusion, we can state that a good option for the treatment of PCOS is the combined administration of myo-inositol + gymnemic acid + l-methyl-folate, especially for overweight/obese patients with marked insulin resistance and with associated hyperhomocysteinemia.

  2. Mutational analysis of STE5 in the yeast Saccharomyces cerevisiae: Application of a differential interaction trap assay for examining protein-protein interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inouye, C.; Dhillon, N.; Durfee, T.

    1997-10-01

    Ste5 is essential for the yeast mating pheromone response pathway and is thought to function as a scaffold that organized the components of the mitogen-activated protein kinase (MAKP) cascade. A new method was developed to isolate missense mutations in Ste5 that differentially affect the ability of Ste5 to interact with either of two MAPK cascade constituents, the MEKK (Ste11) and the MEK (Ste7). Mutations that affect association with Ste7 or with Ste11 delineate discrete regions of Ste5 that are critical for each interaction. Co-immunoprecipitation analysis, examining the binding in vitro of Ste5 to Ste11, Ste7, Ste4 (G protein {beta} subunit),more » and Fus3 (MAPK), confirmed that each mutation specifically affects the interaction of Ste5 with only one protein. When expressed in a ste5{delta} cell, mutant Ste5 proteins that are defective in their ability to interact with either Ste11 or Ste7 result in a markedly reduced mating proficiency. One mutation that clearly weakened (but did not eliminate) interaction of Ste5 with Ste7 permitted mating at wild-type efficiency, indicating that an efficacious signal is generated even when Ste5 associates with only a small fraction of (or only transiently with) Ste7. Ste5 mutants defective in association with Ste11 or Ste7 showed strong interallelic complementation when co-expressed, suggesting that the functional form of Ste5 in vivo is an oligomer. 69 refs., 6 figs., 3 tabs.« less

  3. Calpain 3 is important for muscle regeneration: evidence from patients with limb girdle muscular dystrophies.

    PubMed

    Hauerslev, Simon; Sveen, Marie-Louise; Duno, Morten; Angelini, Corrado; Vissing, John; Krag, Thomas O

    2012-03-23

    Limb girdle muscular dystrophy (LGMD) type 2A is caused by mutations in the CAPN3 gene and complete lack of functional calpain 3 leads to the most severe muscle wasting. Calpain 3 is suggested to be involved in maturation of contractile elements after muscle degeneration. The aim of this study was to investigate how mutations in the four functional domains of calpain 3 affect muscle regeneration. We studied muscle regeneration in 22 patients with LGMD2A with calpain 3 deficiency, in five patients with LGMD2I, with a secondary reduction in calpain 3, and in five patients with Becker muscular dystrophy (BMD) with normal calpain 3 levels. Regeneration was assessed by using the developmental markers neonatal myosin heavy chain (nMHC), vimentin, MyoD and myogenin and counting internally nucleated fibers. We found that the recent regeneration as determined by the number of nMHC/vimentin-positive fibers was greatly diminished in severely affected LGMD2A patients compared to similarly affected patients with LGMD2I and BMD. Whorled fibers, a sign of aberrant regeneration, was highly elevated in patients with a complete lack of calpain 3 compared to patients with residual calpain 3. Regeneration is not affected by location of the mutation in the CAPN3 gene. Our findings suggest that calpain 3 is needed for the regenerative process probably during sarcomere remodeling as the complete lack of functional calpain 3 leads to the most severe phenotypes.

  4. Sequence variants in four genes underlying Bardet-Biedl syndrome in consanguineous families

    PubMed Central

    Ullah, Asmat; Umair, Muhammad; Yousaf, Maryam; Khan, Sher Alam; Nazim-ud-din, Muhammad; Shah, Khadim; Ahmad, Farooq; Azeem, Zahid; Ali, Ghazanfar; Alhaddad, Bader; Rafique, Afzal; Jan, Abid; Haack, Tobias B.; Strom, Tim M.; Meitinger, Thomas; Ghous, Tahseen

    2017-01-01

    Purpose To investigate the molecular basis of Bardet-Biedl syndrome (BBS) in five consanguineous families of Pakistani origin. Methods Linkage in two families (A and B) was established to BBS7 on chromosome 4q27, in family C to BBS8 on chromosome 14q32.1, and in family D to BBS10 on chromosome 12q21.2. Family E was investigated directly with exome sequence analysis. Results Sanger sequencing revealed two novel mutations and three previously reported mutations in the BBS genes. These mutations include two deletions (c.580_582delGCA, c.1592_1597delTTCCAG) in the BBS7 gene, a missense mutation (p.Gln449His) in the BBS8 gene, a frameshift mutation (c.271_272insT) in the BBS10 gene, and a nonsense mutation (p.Ser40*) in the MKKS (BBS6) gene. Conclusions Two novel mutations and three previously reported variants, identified in the present study, further extend the body of evidence implicating BBS6, BBS7, BBS8, and BBS10 in causing BBS. PMID:28761321

  5. Is High Resolution Melting Analysis (HRMA) Accurate for Detection of Human Disease-Associated Mutations? A Meta Analysis

    PubMed Central

    Ma, Feng-Li; Jiang, Bo; Song, Xiao-Xiao; Xu, An-Gao

    2011-01-01

    Background High Resolution Melting Analysis (HRMA) is becoming the preferred method for mutation detection. However, its accuracy in the individual clinical diagnostic setting is variable. To assess the diagnostic accuracy of HRMA for human mutations in comparison to DNA sequencing in different routine clinical settings, we have conducted a meta-analysis of published reports. Methodology/Principal Findings Out of 195 publications obtained from the initial search criteria, thirty-four studies assessing the accuracy of HRMA were included in the meta-analysis. We found that HRMA was a highly sensitive test for detecting disease-associated mutations in humans. Overall, the summary sensitivity was 97.5% (95% confidence interval (CI): 96.8–98.5; I2 = 27.0%). Subgroup analysis showed even higher sensitivity for non-HR-1 instruments (sensitivity 98.7% (95%CI: 97.7–99.3; I2 = 0.0%)) and an eligible sample size subgroup (sensitivity 99.3% (95%CI: 98.1–99.8; I2 = 0.0%)). HRMA specificity showed considerable heterogeneity between studies. Sensitivity of the techniques was influenced by sample size and instrument type but by not sample source or dye type. Conclusions/Significance These findings show that HRMA is a highly sensitive, simple and low-cost test to detect human disease-associated mutations, especially for samples with mutations of low incidence. The burden on DNA sequencing could be significantly reduced by the implementation of HRMA, but it should be recognized that its sensitivity varies according to the number of samples with/without mutations, and positive results require DNA sequencing for confirmation. PMID:22194806

  6. Proton MR spectroscopy of gliomatosis cerebri: case report of elevated myoinositol with normal choline levels.

    PubMed

    Saraf-Lavi, Efrat; Bowen, Brian C; Pattany, Pradip M; Sklar, Evelyn M L; Murdoch, James B; Petito, Carol K

    2003-05-01

    A 69-year-old woman presented with clinical and imaging findings suspicious for gliomatosis cerebri, later confirmed by biopsy (moderately cellular, infiltrating glioma). Single voxel proton MR spectroscopy (TE 20 and TE 135) and spectroscopic imaging (TE 135) performed at admission showed normal choline, decreased N-acetyl, and elevated myo-inositol levels relative to creatine. The primary conclusion is that in suspected cases of gliomatosis cerebri, myo-inositol/creatine and myo-inositol/N-acetyl should be determined because they may provide evidence of tumor, even though choline/creatine is normal. A corollary to this conclusion is that choline/creatine may be misleading if used to demarcate infiltrating glioma from edema.

  7. [The mutation analysis of PAH gene and prenatal diagnosis in classical phenylketonuria family].

    PubMed

    Yan, Yousheng; Hao, Shengju; Yao, Fengxia; Sun, Qingmei; Zheng, Lei; Zhang, Qinghua; Zhang, Chuan; Yang, Tao; Huang, Shangzhi

    2014-12-01

    To characterize the mutation spectrum of phenylalanine hydroxylase (PAH) gene and perform prenatal diagnosis for families with classical phenylketonuria. By stratified sequencing, mutations were detected in the exons and flaking introns of PAH gene of 44 families with classical phenylketonuria. 47 fetuses were diagnosed by combined sequencing with linkage analysis of three common short tandem repeats (STR) (PAH-STR, PAH-26 and PAH-32) in the PAH gene. Thirty-one types of mutations were identified. A total of 84 mutations were identified in 88 alleles (95.45%), in which the most common mutation have been R243Q (21.59%), EX6-96A>G (6.82%), IVS4-1G>A (5.86%) and IVS7+2T>A (5.86%). Most mutations were found in exons 3, 5, 6, 7, 11 and 12. The polymorphism information content (PIC) of these three STR markers was 0.71 (PAH-STR), 0.48 (PAH-26) and 0.40 (PAH-32), respectively. Prenatal diagnosis was performed successfully with the combined method in 47 fetuses of 44 classical phenylketonuria families. Among them, 11 (23.4%) were diagnosed as affected, 24 (51.1%) as carriers, and 12 (25.5%) as unaffected. Prenatal diagnosis can be achieved efficiently and accurately by stratified sequencing of PAH gene and linkage analysis of STR for classical phenylketonuria families.

  8. Mutation profiles in early-stage lung squamous cell carcinoma with clinical follow-up and correlation with markers of immune function.

    PubMed

    Choi, M; Kadara, H; Zhang, J; Parra, E R; Rodriguez-Canales, J; Gaffney, S G; Zhao, Z; Behrens, C; Fujimoto, J; Chow, C; Kim, K; Kalhor, N; Moran, C; Rimm, D; Swisher, S; Gibbons, D L; Heymach, J; Kaftan, E; Townsend, J P; Lynch, T J; Schlessinger, J; Lee, J; Lifton, R P; Herbst, R S; Wistuba, I I

    2017-01-01

    Lung squamous cell carcinoma (LUSC) accounts for 20–30% of non-small cell lung cancers (NSCLCs). There are limited treatment strategies for LUSC in part due to our inadequate understanding of the molecular underpinnings of the disease. We performed whole-exome sequencing (WES) and comprehensive immune profiling of a unique set of clinically annotated early-stage LUSCs to increase our understanding of the pathobiology of this malignancy. Matched pairs of surgically resected stage I-III LUSCs and normal lung tissues (n = 108) were analyzed by WES. Immunohistochemistry and image analysis-based profiling of 10 immune markers were done on a subset of LUSCs (n = 91). Associations among mutations, immune markers and clinicopathological variables were statistically examined using analysis of variance and Fisher’s exact test. Cox proportional hazards regression models were used for statistical analysis of clinical outcome. This early-stage LUSC cohort displayed an average of 209 exonic mutations per tumor. Fourteen genes exhibited significant enrichment for somatic mutation: TP53, MLL2, PIK3CA, NFE2L2, CDH8, KEAP1, PTEN, ADCY8, PTPRT, CALCR, GRM8, FBXW7, RB1 and CDKN2A. Among mutated genes associated with poor recurrence-free survival, MLL2 mutations predicted poor prognosis in both TP53 mutant and wild-type LUSCs. We also found that in treated patients, FBXW7 and KEAP1 mutations were associated with poor response to adjuvant therapy, particularly in TP53-mutant tumors. Analysis of mutations with immune markers revealed that ADCY8 and PIK3CA mutations were associated with markedly decreased tumoral PD-L1 expression, LUSCs with PIK3CA mutations exhibited elevated CD45ro levels and CDKN2A-mutant tumors displayed an up-regulated immune response. Our findings pinpoint mutated genes that may impact clinical outcome as well as personalized strategies for targeted immunotherapies in early-stage LUSC.

  9. Translocation of radiolabeled indole-3-acetic acid and indole-3-acetyl-myo-inositol from kernel to shoot of Zea mays L

    NASA Technical Reports Server (NTRS)

    Chisnell, J. R.; Bandurski, R. S.

    1988-01-01

    Either 5-[3H]indole-3-acetic acid (IAA) or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm of kernels of dark-grown Zea mays seedlings. The distribution of total radioactivity, radiolabeled indole-3-acetic acid, and radiolabeled ester conjugated indole-3-acetic acid, in the shoots was then determined. Differences were found in the distribution and chemical form of the radiolabeled indole-3-acetic acid in the shoot depending upon whether 5-[3H]indole-3-acetic acid or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm. We demonstrated that indole-3-acetyl-myo-inositol applied to the endosperm provides both free and ester conjugated indole-3-acetic acid to the mesocotyl and coleoptile. Free indole-3-acetic acid applied to the endosperm supplies some of the indole-3-acetic acid in the mesocotyl but essentially no indole-3-acetic acid to the coleoptile or primary leaves. It is concluded that free IAA from the endosperm is not a source of IAA for the coleoptile. Neither radioactive indole-3-acetyl-myo-inositol nor IAA accumulates in the tip of the coleoptile or the mesocotyl node and thus these studies do not explain how the coleoptile tip controls the amount of IAA in the shoot.

  10. Miscibility as a factor for component crystallization in multisolute frozen solutions.

    PubMed

    Izutsu, Ken-Ichi; Shibata, Hiroko; Yoshida, Hiroyuki; Goda, Yukihiro

    2014-07-01

    The relationship between the miscibility of formulation ingredients and their crystallization during the freezing segment of the lyophilization process was studied. The thermal properties of frozen solutions containing myo-inositol and cosolutes were obtained by performing heating scans from -70 °C before and after heat treatment at -20 °C to -5 °C. Addition of dextran 40,000 reduced and prevented crystallization of myo-inositol. In the first scan, some frozen solutions containing an inositol-rich mixture with dextran showed single broad transitions (Tg's: transition temperatures of maximally freeze-concentrated solutes) that indicated incomplete mixing of the concentrated amorphous solutes. Heat treatment of these frozen solutions induced separation of the solutes into inositol-dominant and solute mixture phases (Tg' splitting) following crystallization of myo-inositol (Tg' shifting). The crystal growth involved myo-inositol molecules in the solute mixture phase. The amorphous-amorphous phase separation and resulting loss of the heteromolecular interaction in the freeze-concentrated inositol-dominant phase should allow ordered assembly of the solute molecules required for nucleation. Some dextran-rich and intermediate concentration ratio frozen solutions retained single Tg's of the amorphous solute mixture, both before and after heat treatments. The relevance of solute miscibility on the crystallization of myo-inositol was also indicated in the systems containing glucose or recombinant human albumin. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Effect of nandrolone decanoate on skeletal muscle repair.

    PubMed

    Piovesan, R F; Fernandes, K P S; Alves, A N; Teixeira, V P; Silva Junior, J A; Martins, M D; Bussadori, S K; Albertini, R; Mesquita-Ferrari, R A

    2013-01-01

    This study analyzed the effect of nandrolone decanoate (ND) on muscle repair and the expression of myogenic regulatory factors following cryoinjury in rat skeletal muscle. Adult male Wistar rats were randomly divided into 4 groups: control group, sham group, cryoinjured group treated with ND and non-injured group treated with ND. Treatment consisted of subcutaneous injections of ND (5 mg/kg) twice a week. After sacrifice, the tibialis anterior muscle was removed for the isolation of total RNA and analysis of myogenic regulatory factors using real-time PCR as well as morphological analysis using the hematoxylin-eosin assay. There was a significant increase in MyoD mRNA after 7 days and in myogenin mRNA after 21 days in the cryoinjured ND group in comparison to other groups in the same period. The morphological analysis revealed no edema or myonecrosis after 7 days as well as no edema or inflammatory infiltrate after 14 days in the cryoinjured ND group. In conclusion the anabolic steroid nandrolone decanoate can modulate the muscle repair process in rats following cryoinjury by influencing the expression of regulatory myogenic factors and phases of muscle repair. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Building blocks for the synthesis of glycosyl-myo-inositols involved in the insulin intracellular signalling process.

    PubMed

    Zapata, A; Martín-Lomas, M

    1992-10-09

    Glycosylation of (+/- )-1-O-benzyl-2,3:5,6-di-O-isopropylidene-myo-inositol (4) with 6-O-acetyl-4-O-allyl-2-azido-3-O-benzyl-2-deoxy-beta-D-glucopyranosyl trichloroacetimidate (6) gave the 4-O-(2-amino-2-deoxy-alpha-D-glucopyranosyl)- myo-inositol derivative (9) as a mixture of diastereoisomers which could be resolved by chromatography. Likewise alpha-glycosylation of 4 with 6-O-acetyl-2-azido-3-O-benzoyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-beta- D- galactopyranosyl)-D-glucopyranosyl trichloroacetimidate (10) gave the corresponding pseudotrisaccharide derivative 16 as a mixture of diastereomers which could be resolved partially by chromatography. alpha-Glycosylation of enantiomerically pure 2,3:5,6- (18) and 2,3:4,5-di-O-isopropylidene-1-O-menthoxycarbonyl-myo-inositol (19) with 3,4,6-tri-O-acetyl-2-azido-2-deoxy-D-glucopyranosyl trichloroacetimidate (20) gave the pseudodisaccharide derivatives 21 and 22, respectively. Likewise, alpha-glycosylation of 18 with 10 afforded a pseudotrisaccharide derivative (23).

  13. Phosphatidylinositol(4,5)bisphosphate and phosphatidylinositol(4)phosphate in plant tissues. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irvine, R.F.; Letcher, A.J.; Lander, D.J.

    1989-03-01

    Pea (Pisum sativum) leaf discs or swimming suspensions of Chlamydomonas eugametos were radiolabeled with ({sup 3}H)myo-inositol or ({sup 32}P)Pi and the lipids were extracted, deacylated, and their glycerol moieties removed. The resulting inositol trisphosphate and bisphosphate fractions were examined by periodate degradation, reduction and dephosphorylation, or by incubation with human red cell membranes. Their likely structures were identified as D-myo-inositol(1,4,5)trisphosphate and D-myo-inositol(1,4,)-bisphosphate. It is concluded that plants contain phosphatidylinositol(4)phosphate and phosphatidylinositol(4,5)bisphosphate; no other polyphosphoinositides were detected.

  14. Comparison between effects of myo-inositol and D-chiro-inositol on ovarian function and metabolic factors in women with PCOS.

    PubMed

    Pizzo, Alfonsa; Laganà, Antonio Simone; Barbaro, Luisa

    2014-03-01

    Myo-inositol and D-chiro-inositol are capable of improving the ovarian function and metabolism of polycystic ovary syndrome (PCOS) patients. The aim of this work is to compare the effects of myo-inositol and D-chiro-inositol in PCOS. We enrolled 50 patients, with homogeneous bio-physical features, affected by PCOS and menstrual irregularities, and we randomly divided them into two groups: 25 were treated with 4 g of myo-inositol/die plus 400 mcg of folic acid/die orally for six months, 25 with 1 g of D-chiro-inositol/die plus 400 mcg of folic acid/die orally for six months. We analyzed in both groups pre-treatment and post-treatment BMI, systolic and diastolic blood pressure, Ferriman-Gallwey score, Cremoncini score, serum LH, LH/FSH ratio, total and free testosterone, dehydroepiandrosterone sulfate (DHEA-S), Δ-4-androstenedione, SHBG, prolactin, glucose/immunoreactive insulin (IRI) ratio, homeostatic model assessment (HOMA) index, and the resumption of regular menstrual cycles. Both the isoforms of inositol were effective in improving ovarian function and metabolism in patients with PCOS, although myo-inositol showed the most marked effect on the metabolic profile, whereas D-chiro-inositol reduced hyperandrogenism better.

  15. Analysis of genetic mutations in the 7a7b open reading frame of coronavirus of cheetahs (Acinonyx jubatus).

    PubMed

    Kennedy, Melissa A; Moore, Emily; Wilkes, Rebecca P; Citino, Scott B; Kania, Stephen A

    2006-04-01

    To analyze the 7a7b genes of the feline coronavirus (FCoV) of cheetahs, which are believed to play a role in virulence of this virus. Biologic samples collected during a 4-year period from 5 cheetahs at the same institution and at 1 time point from 4 cheetahs at different institutions. Samples were first screened for FCoV via a reverse transcription-PCR procedure involving primers that encompassed the 3'-untranslated region. Samples that yielded positive assay results were analyzed by use of primers that targeted the 7a7b open reading frames. The nucleotide sequences of the 7a7b amplification products were determined and analyzed. In most isolates, substantial deletional mutations in the 7a gene were detected that would result in aberrant or no expression of the 7a product because of altered reading frames. Although the 7b gene was also found to contain mutations, these were primarily point mutations resulting in minor amino acid changes. The coronavirus associated with 1 cheetah with feline infectious peritonitis had intact 7a and 7b genes. The data suggest that mutations arise readily in the 7a region and may remain stable in FCoV of cheetahs. In contrast, an intact 7b gene may be necessary for in vivo virus infection and replication. Persistent infection with FCoV in a cheetah population results in continued virus circulation and may lead to a quasispecies of virus variants.

  16. Effect of Repeat Copy Number on Variable-Number Tandem Repeat Mutations in Escherichia coli O157:H7

    PubMed Central

    Vogler, Amy J.; Keys, Christine; Nemoto, Yoshimi; Colman, Rebecca E.; Jay, Zack; Keim, Paul

    2006-01-01

    Variable-number tandem repeat (VNTR) loci have shown a remarkable ability to discriminate among isolates of the recently emerged clonal pathogen Escherichia coli O157:H7, making them a very useful molecular epidemiological tool. However, little is known about the rates at which these sequences mutate, the factors that affect mutation rates, or the mechanisms by which mutations occur at these loci. Here, we measure mutation rates for 28 VNTR loci and investigate the effects of repeat copy number and mismatch repair on mutation rate using in vitro-generated populations for 10 E. coli O157:H7 strains. We find single-locus rates as high as 7.0 × 10−4 mutations/generation and a combined 28-locus rate of 6.4 × 10−4 mutations/generation. We observed single- and multirepeat mutations that were consistent with a slipped-strand mispairing mutation model, as well as a smaller number of large repeat copy number mutations that were consistent with recombination-mediated events. Repeat copy number within an array was strongly correlated with mutation rate both at the most mutable locus, O157-10 (r2 = 0.565, P = 0.0196), and across all mutating loci. The combined locus model was significant whether locus O157-10 was included (r2 = 0.833, P < 0.0001) or excluded (r2 = 0.452, P < 0.0001) from the analysis. Deficient mismatch repair did not affect mutation rate at any of the 28 VNTRs with repeat unit sizes of >5 bp, although a poly(G) homomeric tract was destabilized in the mutS strain. Finally, we describe a general model for VNTR mutations that encompasses insertions and deletions, single- and multiple-repeat mutations, and their relative frequencies based upon our empirical mutation rate data. PMID:16740932

  17. Apigenin enhances skeletal muscle hypertrophy and myoblast differentiation by regulating Prmt7

    PubMed Central

    Jang, Young Jin; Son, Hyo Jeong; Choi, Yong Min; Ahn, Jiyun; Jung, Chang Hwa; Ha, Tae Youl

    2017-01-01

    Apigenin, a natural flavone abundant in various plant-derived foods including parsley and celery, has been shown to prevent inflammation and inflammatory diseases. However, the effect of apigenin on skeletal muscle hypertrophy and myogenic differentiation has not previously been elucidated. Here, we investigated the effects of apigenin on quadricep muscle weight and running distance using C57BL/6 mice on an accelerating treadmill. Apigenin stimulated mRNA expression of MHC (myosin heavy chain) 1, MHC2A, and MHC2B in the quadricep muscles of these animals. GPR56 (G protein-coupled receptor 56) and its ligand collagen III were upregulated by apigenin supplementation, together with enhanced PGC-1α, PGC-1α1, PGC-1α4, IGF1, and IGF2 expression. Prmt7 protein expression increased in conjunction with Akt and mTORC1 activation. Apigenin treatment also upregulated FNDC5 (fibronectin type III domain containing 5) mRNA expression and serum irisin levels. Furthermore, apigenin stimulated C2C12 myogenic differentiation and upregulated total MHC, MHC2A, and MHC2B expression. These events were attributable to an increase in Prmt7-p38-myoD expression and Akt and S6K1 phosphorylation. We also observed that Prmt7 regulates both PGC-1α1 and PGC-1α4 expression, resulting in a subsequent increase in GPR56 expression and mTORC1 activation. Taken together, these findings suggest that apigenin supplementation can promote skeletal muscle hypertrophy and myogenic differentiation by regulating the Prmt7-PGC-1α-GPR56 pathway, as well as the Prmt7-p38-myoD pathway, which may contribute toward the prevention of skeletal muscle weakness. PMID:29108230

  18. Apigenin enhances skeletal muscle hypertrophy and myoblast differentiation by regulating Prmt7.

    PubMed

    Jang, Young Jin; Son, Hyo Jeong; Choi, Yong Min; Ahn, Jiyun; Jung, Chang Hwa; Ha, Tae Youl

    2017-10-03

    Apigenin, a natural flavone abundant in various plant-derived foods including parsley and celery, has been shown to prevent inflammation and inflammatory diseases. However, the effect of apigenin on skeletal muscle hypertrophy and myogenic differentiation has not previously been elucidated. Here, we investigated the effects of apigenin on quadricep muscle weight and running distance using C57BL/6 mice on an accelerating treadmill. Apigenin stimulated mRNA expression of MHC (myosin heavy chain) 1, MHC2A, and MHC2B in the quadricep muscles of these animals. GPR56 (G protein-coupled receptor 56) and its ligand collagen III were upregulated by apigenin supplementation, together with enhanced PGC-1α, PGC-1α1, PGC-1α4, IGF1, and IGF2 expression. Prmt7 protein expression increased in conjunction with Akt and mTORC1 activation. Apigenin treatment also upregulated FNDC5 (fibronectin type III domain containing 5) mRNA expression and serum irisin levels. Furthermore, apigenin stimulated C2C12 myogenic differentiation and upregulated total MHC, MHC2A, and MHC2B expression. These events were attributable to an increase in Prmt7-p38-myoD expression and Akt and S6K1 phosphorylation. We also observed that Prmt7 regulates both PGC-1α1 and PGC-1α4 expression, resulting in a subsequent increase in GPR56 expression and mTORC1 activation. Taken together, these findings suggest that apigenin supplementation can promote skeletal muscle hypertrophy and myogenic differentiation by regulating the Prmt7-PGC-1α-GPR56 pathway, as well as the Prmt7-p38-myoD pathway, which may contribute toward the prevention of skeletal muscle weakness.

  19. APOE genotype modulates proton magnetic resonance spectroscopy metabolites in the aging brain.

    PubMed

    Gomar, Jesus J; Gordon, Marc L; Dickinson, Dwight; Kingsley, Peter B; Uluğ, Aziz M; Keehlisen, Lynda; Huet, Sarah; Buthorn, Justin J; Koppel, Jeremy; Christen, Erica; Conejero-Goldberg, Concepcion; Davies, Peter; Goldberg, Terry E

    2014-05-01

    Proton magnetic resonance spectroscopy ((1)H-MRS) studies on healthy aging have reported inconsistent findings and have not systematically taken into account the possible modulatory effect of APOE genotype. We aimed to quantify brain metabolite changes in healthy subjects in relation to age and the presence of the APOE E4 genetic risk factor for Alzheimer's disease. Additionally, we examined these measures in relation to cognition. We studied a cohort of 112 normal adults between 50 and 86 years old who were genotyped for APOE genetic polymorphism. Measurements of (1)H-MRS metabolites were obtained in the posterior cingulate and precuneus region. Measures of general cognitive functioning, memory, executive function, semantic fluency, and speed of processing were also obtained. General linear model analysis demonstrated that older APOE E4 carriers had significantly higher choline/creatine and myo-inositol/creatine ratios than APOE E3 homozygotes. Structural equation modeling resulted in a model with an excellent goodness of fit and in which the APOE × age interaction and APOE status each had a significant effect on (1)H-MRS metabolites (choline/creatine and myo-inositol/creatine). Furthermore, the APOE × age variable modulation of cognition was mediated by (1)H-MRS metabolites. In a healthy aging normal population, choline/creatine and myo-inositol/creatine ratios were significantly increased in APOE E4 carriers, suggesting the presence of neuroinflammatory processes and greater membrane turnover in older carriers. Structural equation modeling analysis confirmed these possible neurodegenerative markers and also indicated the mediator role of these metabolites on cognitive performance among older APOE E4 carriers. Copyright © 2014 Society of Biological Psychiatry. All rights reserved.

  20. Rapid Glucose Depletion Immobilizes Active Myosin-V on Stabilized Actin Cables

    PubMed Central

    Xu, Li; Bretscher, Anthony

    2014-01-01

    Summary Polarization of eukaryotic cells requires organelles and protein complexes to be transported to their proper destinations along the cytoskeleton [1]. When nutrients are abundant, budding yeast grows rapidly transporting secretory vesicles for localized growth and actively segregating organelles [2, 3]. This is mediated by myosin-Vs transporting cargos along F-actin bundles known as actin cables [4]. Actin cables are dynamic structures regulated by assembly, stabilization and disassembly [5]. Polarized growth and actin filament dynamics consume energy. For most organisms, glucose is the preferred energy source and generally represses alternative carbon source usage [6]. Thus upon abrupt glucose depletion, yeast shuts down pathways consuming large amounts of energy, including the vacuolar-ATPase [7, 8], translation [9] and phosphoinositide metabolism [10]. Here we show that glucose withdrawal rapidly (<1 min) depletes ATP levels and the yeast myosin V, Myo2, responds by relocalizing to actin cables, making it the fastest response documented. Myo2 immobilized on cables releases its secretory cargo, defining a new rigor-like state of a myosin-V in vivo. Only actively transporting Myo2 can be converted to the rigor-like state. Glucose depletion has differential effects on the actin cytoskeleton resulting in disassembly of actin patches with concomitant inhibition of endocytosis, and strong stabilization of actin cables, thereby revealing a selective and previously unappreciated ATP requirement for actin cable disassembly. A similar response is seen in HeLa cells to ATP depletion. These findings reveal a new fast-acting energy conservation strategy halting growth by immobilizing myosin-V in a newly described state on selectively stabilized actin cables. PMID:25308080

  1. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Fei; Kishida, Tsunao; Ejima, Akika

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblastsmore » from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases.« less

  2. UCS Protein Rng3p Is Essential for Myosin-II Motor Activity during Cytokinesis in Fission Yeast

    PubMed Central

    Stark, Benjamin C.; James, Michael L.; Pollard, Luther W.; Sirotkin, Vladimir; Lord, Matthew

    2013-01-01

    UCS proteins have been proposed to operate as co-chaperones that work with Hsp90 in the de novo folding of myosin motors. The fission yeast UCS protein Rng3p is essential for actomyosin ring assembly and cytokinesis. Here we investigated the role of Rng3p in fission yeast myosin-II (Myo2p) motor activity. Myo2p isolated from an arrested rng3-65 mutant was capable of binding actin, yet lacked stability and activity based on its expression levels and inactivity in ATPase and actin filament gliding assays. Myo2p isolated from a myo2-E1 mutant (a mutant hyper-sensitive to perturbation of Rng3p function) showed similar behavior in the same assays and exhibited an altered motor conformation based on limited proteolysis experiments. We propose that Rng3p is not required for the folding of motors per se, but instead works to ensure the activity of intrinsically unstable myosin-II motors. Rng3p is specific to conventional myosin-II and the actomyosin ring, and is not required for unconventional myosin motor function at other actin structures. However, artificial destabilization of myosin-I motors at endocytic actin patches (using a myo1-E1 mutant) led to recruitment of Rng3p to patches. Thus, while Rng3p is specific to myosin-II, UCS proteins are adaptable and can respond to changes in the stability of other myosin motors. PMID:24244528

  3. Make your own cigarettes: toxicant exposure, smoking topography, and subjective effects.

    PubMed

    Koszowski, Bartosz; Rosenberry, Zachary R; Viray, Lauren C; Potts, Jennifer L; Pickworth, Wallace B

    2014-09-01

    Despite considerable use of make your own (MYO) cigarettes worldwide and increasing use in the United States, relatively little is known about how these cigarettes are smoked and the resultant toxicant exposure. In a laboratory study, we compared two types of MYO cigarettes-roll your own (RYO) and personal machine made (PMM)-with factory-made (FM) cigarettes in three groups of smokers who exclusively used RYO (n = 34), PMM (n = 23), or FM (n = 20). Within each group, cigarettes were smoked in three conditions: (i) after confirmed overnight tobacco abstinence; (ii) in an intense smoking paradigm; and (iii) without restrictions. All cigarettes were smoked ad lib through a smoking topography unit. Plasma nicotine significantly increased after cigarettes in all conditions except PMM in the intense smoking paradigm. Puff volume, puff duration, total puff volume, and puff velocity did not differ between cigarette types but the puffs per cigarette and time to smoke were significantly smaller for RYO compared with PMM and FM. Regardless of the cigarette, participants consumed the first three puffs more vigorously than the last three puffs. Despite the belief of many of their consumers, smoking MYO cigarettes is not a safe alternative to FM cigarettes. Like FM, MYO cigarettes expose their users to harmful constituents of tobacco smoke. Despite differences in size and design their puffing profiles are remarkably similar. These data are relevant to health and regulatory considerations on the MYO cigarettes. ©2014 American Association for Cancer Research.

  4. Upper extremity outcome measures for collagen VI-related myopathy and LAMA2-related muscular dystrophy

    PubMed Central

    Bendixen, Roxanna M.; Butrum, Jocelyn; Jain, Mina S.; Parks, Rebecca; Hodsdon, Bonnie; Nichols, Carmel; Hsia, Michelle; Nelson, Leslie; Keller, Katherine C.; McGuire, Michelle; Elliott, Jeffrey S.; Linton, Melody M.; Arveson, Irene C.; Tounkara, Fatou; Vasavada, Ruhi; Harnett, Elizabeth; Punjabi, Monal; Donkervoort, Sandra; Dastgir, Jahannaz; Leach, Meganne E.; Rutkowski, Anne; Waite, Melissa; Collins, James; Bönnemann, Carsten G.; Meilleur, Katherine G.

    2017-01-01

    Purpose Congenital muscular dystrophy (CMD) comprises a rare group of genetic muscle diseases that present at birth or early during infancy. Two common subtypes of CMD are collagen VI-related muscular dystrophy (COL6-RD) and laminin alpha 2-related dystrophy (LAMA2-RD). Traditional outcome measures in CMD include gross motor and mobility assessments, yet significant motor declines underscore the need for valid upper extremity (UE) motor assessments as a clinical endpoint. This study validated a battery of UE measures in these two CMD subtypes for future clinical trials. Methods For this cross-sectional study, 42 participants were assessed over the same 2–5 day period at the National Institutes of Health Clinical Center (CC). All UE measures were correlated with the Motor Function Measure 32 (MFM32). The battery of UE assessments included the Jebsen Taylor Hand Function Test, Quality of Upper Extremity Skills Test (QUEST), hand held dynamometry, goniometry, and MyoSet Tools. Spearman Rho was used for correlations to the MFM32. Pearson was performed to correlate the Jebsen, QUEST, hand-held dynamometry, goniometry and the MyoSet Tools. Correlations were considered significant at the 0.01 level (2-tailed). Results Significant correlations were found between both the MFM32 and MFM Dimension 3 only (Distal Motor function) and the Jebsen, QUEST, MyoGrip and MyoPinch, elbow flexion/extension ROM and myometry. Additional correlations between the assessments are reported. Conclusions The Jebsen, the Grasp and Dissociated Movements domains of the QUEST, the MyoGrip and the MyoPinch tools, as well as elbow ROM and myometry were determined to be valid and feasible in this population, provided variation in test items, and assessed a range of difficulty in CMD. To move forward, it will be of utmost importance to determine whether these UE measures are reproducible and sensitive to change over time. PMID:28087121

  5. Pretreatment with myo-inositol in non polycystic ovary syndrome patients undergoing multiple follicular stimulation for IVF: a pilot study

    PubMed Central

    2012-01-01

    Background Aim of this pilot study is to examine the effects of myo-inositol administration on ovarian response and oocytes and embryos quality in non PolyCystic Ovary Syndrome (PCOS) patients undergoing multiple follicular stimulation and in vitro insemination by conventional in vitro fertilization or by intracytoplasmic sperm injection. Methods One hundred non-PCOS women aged <40 years and with basal FSH <10 mUI/ml were down-regulated with triptorelin acetate from the mid-luteal phase for 2 weeks, before starting the stimulation protocol for oocytes recovery. All patients received rFSH, at a starting dose of 150 IU for 6 days. The dose was subsequently adjusted according to individual response. Group B (n = 50) received myo-inositol and folic acid for 3 months before the stimulation period and then during the stimulation itself. Group A (n-50) received only folic acid as additional treatment in the 3 months before and through treatment. Results Total length of the stimulation was similar between the two groups. Nevertheless, total amount of gonadotropins used to reach follicular maturation was found significantly lower in group B. In addition, the number of oocytes retrieved was significantly reduced in the group pretreated with myo-inositol. Clinical pregnancy and implantation rate were not significantly different in the two groups. Conclusions Our findings suggest that the addition of myo-inositol to folic acid in non PCOS-patients undergoing multiple follicular stimulation for in-vitro fertilization may reduce the numbers of mature oocytes and the dosage of rFSH whilst maintaining clinical pregnancy rate. Further, a trend in favor of increased incidence of implantation in the group pretreated with myo-inositol was apparent in this study. Further investigations are warranted to clarify this pharmacological approach, and the benefit it may hold for patients. PMID:22823904

  6. Ovarian Stimulation in Patients With Cancer: Impact of Letrozole and BRCA Mutations on Fertility Preservation Cycle Outcomes.

    PubMed

    Turan, Volkan; Bedoschi, Giuliano; Emirdar, Volkan; Moy, Fred; Oktay, Kutluk

    2018-01-01

    Aromatase inhibitors (AI) have been introduced to reduce estrogen exposure in women with estrogen-sensitive cancer undergoing ovarian stimulation for oocyte/embryo cryopreservation. There have been questions regarding whether the addition of AI and the presence of BRCA mutations affect cycle outcomes. We sought to determine the impact of letrozole and BRCA mutations on fertility preservation (FP) cycle outcomes of patients undergoing ovarian stimulation with an antagonist protocol. The data were generated by the secondary analysis of a prospective database of all females diagnosed with cancer who underwent embryo or oocyte cryopreservation for FP. The final analysis included 145 patients stimulated with an antagonist protocol either using letrozole combined with recombinant follicle-stimulating hormone (rFSH; LF, n = 118) or rFSH alone (FA, n = 24). The mean number of total (15.6 [7.9] vs 10.2 [7.8]; P = .004) and mature oocytes (10.4 [5.1] vs 7.8 [3.5]; P = .044) and embryos frozen (7.7 [5.3] vs 5.3 [2.7]; P = .043) were significantly higher after LF stimulation versus FA. In the LF group, women with BRCA mutations produced significantly fewer oocytes (11.0 [8.0] vs 16.4 [7.7], P = .015) and embryos (5.1 [4.4] vs 8.2 [4.7], P = .013), compared to those who were mutation negative. After adjusting for age, body mass index, baseline FSH level, and BRCA status, LF protocol still resulted in higher number of total oocytes (95% confidence interval [CI]: 1.9 to 3.6; P = .002) mature oocyte (95% CI: 0.3 to 1.4; P = .028), and embryo yield (95% CI: 0.7 to 1.4; P = .015). In women with cancer undergoing FP, letrozole appears to enhance response to ovarian stimulation while the presence of BRCA mutations is associated with lower oocyte and embryo yield.

  7. Evaluating the impact of missenses mutations in CYP2D6*7 and CYP2D6*14A: does it compromise tamoxifen metabolism?

    PubMed

    Borba, Maria Acsm; Melo-Neto, Renato P; Leitão, Glauber M; Castelletti, Carlos Hm; Lima-Filho, José L; Martins, Danyelly Bg

    2016-04-01

    CYP2D6 is a high polymorphic enzyme from P450, responsible for metabolizing almost 25% of drugs. The distribution of different mutations among CYP2D6 alleles has been associated with poor, intermediate, extensive and ultra-metabolizers. To evaluate how missenses mutations in CYP2D6*7 and CYP2D6*14A poor metabolizer alleles affect CYP2D6 stability and function. CYPalleles database was used to collect polymorphisms data present in 105 alleles. We selected only poor metabolizers alleles that presented exclusively missenses mutations. They were analyzed through seven algorithms to predict the impact on CYP2D6 structure and function. H324P, the unique mutation in CYP2D6*7, has high impact in enzyme function due to its occurrence between two alpha-helixes involved in active site dynamics. G169R, a mutation that occurs only in CYP2D6*14A, leads to the gain of solvent accessibility and severe protein destabilization. Our in silico analysis showed that missenses mutations in CYP2D6*7 and CYP2D6*14A cause CYP2D6 dysfunction.

  8. Social isolation stress and chronic glutathione deficiency have a common effect on the glutamine-to-glutamate ratio and myo-inositol concentration in the mouse frontal cortex.

    PubMed

    Corcoba, Alberto; Gruetter, Rolf; Do, Kim Q; Duarte, João M N

    2017-09-01

    Environmental stress can interact with genetic predisposition to increase the risk of developing psychopathology. In this work, we tested the hypothesis that social isolation stress interacts with impaired glutathione synthesis and have cumulative effects on the neurochemical profile of the frontal cortex. A mouse model with chronic glutathione deficit induced by knockout (-/-) of the glutamate-cysteine ligase modulatory subunit (Gclm) was exposed to social isolation stress from weaning to post-natal day 65. Using magnetic resonance methods at high-field (14.1 T), we analysed the neurochemical profile in the frontal cortex, brain size and ventricular volume of adult animals. Glutathione deficit was accompanied by elevated concentrations of N-acetylaspartate, alanine, and glutamine, as well as the ratio of glutamine-to-glutamate (Gln/Glu), and by a reduction in levels of myo-inositol and choline-containing compounds in the frontal cortex of -/- animals with respect to wild-type littermates. Although there was no significant interaction between social isolation stress and glutathione deficiency, mice reared in isolation displayed lower myo-inositol concentration (-8.4%, p < 0.05) and larger Gln/Glu (+7.6%, p < 0.05), relative to those in group housing. Furthermore, glutathione deficiency caused a reduction in whole brain volume and enlargement of ventricles, but social isolation had no effect on these parameters. We conclude that social isolation caused neurochemical alterations that may add to those associated to impaired glutathione synthesis. © 2017 International Society for Neurochemistry.

  9. Sarcomeric hypertrophic cardiomyopathy: genetic profile in a Portuguese population.

    PubMed

    Brito, Dulce; Miltenberger-Miltenyi, Gabriel; Vale Pereira, Sónia; Silva, Doroteia; Diogo, António Nunes; Madeira, Hugo

    2012-09-01

    Sarcomeric hypertrophic cardiomyopathy has heterogeneous phenotypic expressions, of which sudden cardiac death is the most feared. A genetic diagnosis is essential to identify subjects at risk in each family. The spectrum of disease-causing mutations in the Portuguese population is unknown. Seventy-seven unrelated probands with hypertrophic cardiomyopathy were systematically screened for mutations by PCR and sequencing of five sarcomeric genes: MYBPC3, MYH7, TNNT2, TNNI3 and MYL2. Familial cosegregation analysis was performed in most patients. Thirty-four different mutations were identified in 41 (53%) index patients, 71% with familial hypertrophic cardiomyopathy. The most frequently involved gene was MYBPC3 (66%) with 22 different mutations (8 novel) in 27 patients, followed by MYH7 (22%), TNNT2 (12%) and TNNI3 (2.6%). In three patients (7%), two mutations were found in MYBPC3 and/or MYH7. Additionally, 276 relatives were screened, leading to the identification of a mean of three other affected relatives for each pedigree with the familial form of the disease. Disease-associated mutations were identified mostly in familial hypertrophic cardiomyopathy, corroborating the idea that rarely studied genes may be implicated in sporadic forms. Private mutations are the rule, MYBPC3 being the most commonly involved gene. Mutations in MYBPC3 and MYH7 accounted for most cases of sarcomere-related disease. Multiple mutations in these genes may occur, which highlights the importance of screening both. The detection of novel mutations strongly suggests that all coding regions should be systematically screened. Genotyping in hypertrophic cardiomyopathy enables a more precise diagnosis of the disease, with implications for risk stratification and genetic counseling. Copyright © 2011 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  10. Kinetic activity, membrane mitochondrial potential, lipid peroxidation, intracellular pH and calcium of frozen/thawed bovine spermatozoa treated with metabolic enhancers.

    PubMed

    Boni, R; Gallo, A; Cecchini, S

    2017-01-01

    Owing to the progressive decline of sperm motility during storage there is a need to find substances capable of enhancing sperm energy metabolism and motility and/or preserving it from oxidative damage. The aim of this study was to evaluate in frozen/thawed bovine spermatozoa the effect of several compounds, such as myo-inositol, pentoxifylline, penicillamine + hypotaurine + epinephrine mixture (PHE), caffeine and coenzyme Q10+ zinc + d-aspartate mixture (CZA), on either kinetic or metabolic parameters. Sperm kinetics was evaluated by Sperm Class Analyser whereas specific fluorochromes were used to evaluated mitochondrial membrane potential (MMP), intracellular pH, intracellular calcium concentration and lipid peroxidation. Lipid peroxidation was also evaluated by TBARS analysis. Treatments significantly affected total and progressive motility with different dynamics in relation to the incubation time. After the first hour of incubation, CZA treatment produced the best performance in total and progressive sperm motility as well as in curvilinear velocity, average path velocity and amplitude of head displacement, whereas pentoxifylline stimulated the highest straight-line velocity. MMP showed higher values (p < 0.01) after treatment with pentoxifylline and PHE. Intracytoplasmic calcium concentration and lipid peroxidation were significantly (p < 0.05) affected by the incubation time rather than the treatments. Intracellular pH varied significantly (p < 0.01) in relation to either the incubation time or treatments. In particular, it showed a progressive increase throughout incubation with values in control group significantly higher than in myo-inositol, PHE, caffeine, pentoxifylline and CZA groups (7.37 ± 0.03 vs. 7.29 ± 0.03, 7.28 ± 0.03, 7.26 ± 0.03, 7.22 ± 0.03 and 7.00 ± 0.03, respectively; p < 0.01).; however, among treatments, CZA displayed the lowest values. Significant correlations were found between sperm kinetic and metabolic parameters. These findings provide new comparative information on the effects of putative metabolic enhancers on kinetics and metabolic activities of bovine spermatozoa. In this study, a rapid methodological approach for evaluating sperm quality is proposed. © 2016 American Society of Andrology and European Academy of Andrology.

  11. Electrochemical detection of cardiac biomarker myoglobin using polyphenol as imprinted polymer receptor.

    PubMed

    Ribeiro, J A; Pereira, C M; Silva, A F; Sales, M Goreti F

    2017-08-15

    An electrochemical biosensor was developed by merging the features of Molecular Imprinting technique and Screen-Printed Electrode (SPE) for the simple and fast screening of cardiac biomarker myoglobin (Myo) in point-of-care (POC). The MIP artificial receptor for Myo was prepared by electrooxidative polymerization of phenol (Ph) on a AuSPE in the presence of Myo as template molecule. The choice of the most effective protein extraction procedure from the various extraction methods tested (mildly acidic/basic solutions, pure/mixed organic solvents, solutions containing surfactants and enzymatic digestion methods), and the optimization of the thickness of the polymer film was carefully undertaken in order to improve binding characteristics of Myo to the imprinted polymer receptor and increase the sensitivity of the MIP biosensor. The film thickness was optimized by adjusting scan rate and the number of cycles during cyclic voltammetric electropolymerization of Ph. The thickness of the polyphenol nanocoating of only few nanometres (∼4.4 nm), and similar to the protein diameter, brought in significant improvements in terms of sensor sensitivity. The binding affinity of MIP receptor film was estimated by fitting the experimental data to Freundlich isotherm and a ∼8 fold increase in the binding affinity of Myo to the imprinted polymer (K F = 0.119 ± 0.002 ng -1  mL) when compared to the non-imprinted polymer (K F  = 0.015 ± 0.002 ng -1  mL) which demonstrated excellent (re)binding affinity for the imprinted protein. The incubation of the Myo MIP receptor modified electrode with increasing concentration of protein (from 0.001 ng mL -1 to 100 μg mL -1 ) resulted in a decrease of the ferro/ferricyanide redox current. LODs of 2.1 and 14 pg mL -1 were obtained from calibration curves built in neutral buffer and diluted artificial serum, respectively, using SWV technique, enabling the detection of the protein biomarker at clinically relevant levels. The prepared MIP biosensor was applied to the determination of Myo spiked serum samples with satisfactory results. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Intragenic Mapping of Chemically Induced ad-7 Mutants of Schizosaccharomyces pombe

    PubMed Central

    Loprieno, Nicola

    1967-01-01

    Thirty adenine-requiring ad-7 mutants of Schizosaccharomyces pombe, induced by ethylmethanesulfonate, methyl-methanesulfonate, and hydroxylamine and exhibiting low spontaneous reversion frequencies, were located by intragenic recombination analysis. Their identification as ad-7 mutants was assessed in relation to two previously mapped ad-7 mutants. Each mutant was found to occupy a distinct mutational site; the smallest recombination fraction observed between the two closest mutational sites was of the order of 0.5 × 10−6. PMID:6051345

  13. Myo-inositol esters of indole-3-acetic acid are endogenous components of Zea mays L. shoot tissue

    NASA Technical Reports Server (NTRS)

    Chisnell, J. R.

    1984-01-01

    Indole-3-acetyl-myo-inositol esters have been demonstrated to be endogenous components of etiolated Zea mays shoots tissue. This was accomplished by comparison of the putative compounds with authentic, synthetic esters. The properties compared were liquid and gas-liquid chromatographic retention times and the 70-ev mass spectral fragmentation pattern of the pentaacetyl derivative. The amount of indole-3-acetyl-myo-inositol esters in the shoots was determined to be 74 nanomoles per kilogram fresh weight as measured by isotope dilution, accounting for 19% of the ester indole-3-acetic acid of the shoot. This work is the first characterization of an ester conjugate of indole-3-acetate acid from vegetative shoot tissue using multiple chromatographic properties and mass spectral identification. The kernel and the seedling shoot both contain indole-3-acetyl-myo-inositol esters, and these esters comprise approximately the same percentage of the total ester content of the kernel and of the shoot.

  14. Dosage analysis of cancer predisposition genes by multiplex ligation-dependent probe amplification

    PubMed Central

    Bunyan, D J; Eccles, D M; Sillibourne, J; Wilkins, E; Thomas, N Simon; Shea-Simonds, J; Duncan, P J; Curtis, C E; Robinson, D O; Harvey, J F; Cross, N C P

    2004-01-01

    Multiplex ligation-dependent probe amplification (MLPA) is a recently described method for detecting gross deletions or duplications of DNA sequences, aberrations which are commonly overlooked by standard diagnostic analysis. To determine the incidence of copy number variants in cancer predisposition genes from families in the Wessex region, we have analysed the hMLH1 and hMSH2 genes in patients with hereditary nonpolyposis colorectal cancer (HNPCC), BRCA1 and BRCA2 in families with hereditary breast/ovarian cancer (BRCA) and APC in patients with familial adenomatous polyposis coli (FAP). Hereditary nonpolyposis colorectal cancer (n=162) and FAP (n=74) probands were fully screened for small mutations, and cases for which no causative abnormality were found (HNPCC, n=122; FAP, n=24) were screened by MLPA. Complete or partial gene deletions were identified in seven cases for hMSH2 (5.7% of mutation-negative HNPCC; 4.3% of all HNPCC), no cases for hMLH1 and six cases for APC (25% of mutation negative FAP; 8% of all FAP). For BRCA1 and BRCA2, a partial mutation screen was performed and 136 mutation-negative cases were selected for MLPA. Five deletions and one duplication were found for BRCA1 (4.4% of mutation-negative BRCA cases) and one deletion for BRCA2 (0.7% of mutation-negative BRCA cases). Cost analysis indicates it is marginally more cost effective to perform MLPA prior to point mutation screening, but the main advantage gained by prescreening is a greatly reduced reporting time for the patients who are positive. These data demonstrate that dosage analysis is an essential component of genetic screening for cancer predisposition genes. PMID:15475941

  15. Mutation abundance affects the therapeutic efficacy of EGFR-TKI in patients with advanced lung adenocarcinoma: A retrospective analysis.

    PubMed

    Wang, Huijuan; Zhang, Mina; Tang, Wanyu; Ma, Jie; Wei, Bing; Niu, Yuanyuan; Zhang, Guowei; Li, Peng; Yan, Xiangtao; Ma, Zhiyong

    2018-03-22

    To investigate the influence of mutation abundance and sites of epidermal growth factor receptor (EGFR) on therapeutic efficacies of EGFR-tyrosine kinase inhibitor (EGFR-TKIs) treatments of patients with advanced non-small cell lung carcinoma (NSCLC). EGFR mutational sites and mutation abundance were analyzed by amplification refractory mutation system (ARMS) in paraffin-embedded tissue sections taken from primary or metastatic tumors of 194 NSCLC patients. The median progression-free survival (PFS) time of the enrolled patients was 9.3 months (95% CI, 8.2-10.8 months). The PFS was significantly different with EGFR gene mutation abundance after EGFR-TKI therapy (P = 0.014). The median PFS was significantly longer when the cut-off value of EGFR mutation abundance of exon 19 or exon 21, and solely exon 19 was > 26.7% and 61.8%, respectively. For patients who received EGFR-TKI as first-line treatment, the median PFS was significantly longer in the high mutation abundance group than in the low mutation abundance group (12.7 vs 8.7 months, P = 0.002). The PFS benefits were greater in patients with a higher abundance of exon 19 deletion mutations in the EGFR gene after EGFR-TKI treatment and first line EGFR-TKI treatment led to improved PFS in high mutation abundance patients.

  16. CHARGE syndrome: a recurrent hotspot of mutations in CHD7 IVS25 analyzed by bioinformatic tools and minigene assays.

    PubMed

    Legendre, Marine; Rodriguez-Ballesteros, Montserrat; Rossi, Massimiliano; Abadie, Véronique; Amiel, Jeanne; Revencu, Nicole; Blanchet, Patricia; Brioude, Frédéric; Delrue, Marie-Ange; Doubaj, Yassamine; Sefiani, Abdelaziz; Francannet, Christine; Holder-Espinasse, Muriel; Jouk, Pierre-Simon; Julia, Sophie; Melki, Judith; Mur, Sébastien; Naudion, Sophie; Fabre-Teste, Jennifer; Busa, Tiffany; Stamm, Stephen; Lyonnet, Stanislas; Attie-Bitach, Tania; Kitzis, Alain; Gilbert-Dussardier, Brigitte; Bilan, Frédéric

    2018-02-01

    CHARGE syndrome is a rare genetic disorder mainly due to de novo and private truncating mutations of CHD7 gene. Here we report an intriguing hot spot of intronic mutations (c.5405-7G > A, c.5405-13G > A, c.5405-17G > A and c.5405-18C > A) located in CHD7 IVS25. Combining computational in silico analysis, experimental branch-point determination and in vitro minigene assays, our study explains this mutation hot spot by a particular genomic context, including the weakness of the IVS25 natural acceptor-site and an unconventional lariat sequence localized outside the common 40 bp upstream the acceptor splice site. For each of the mutations reported here, bioinformatic tools indicated a newly created 3' splice site, of which the existence was confirmed using pSpliceExpress, an easy-to-use and reliable splicing reporter tool. Our study emphasizes the idea that combining these two complementary approaches could increase the efficiency of routine molecular diagnosis.

  17. Myosin-1C uses a novel phosphoinositide-dependent pathway for nuclear localization.

    PubMed

    Nevzorov, Ilja; Sidorenko, Ekaterina; Wang, Weihuan; Zhao, Hongxia; Vartiainen, Maria K

    2018-02-01

    Accurate control of macromolecule transport between nucleus and cytoplasm underlines several essential biological processes, including gene expression. According to the canonical model, nuclear import of soluble proteins is based on nuclear localization signals and transport factors. We challenge this view by showing that nuclear localization of the actin-dependent motor protein Myosin-1C (Myo1C) resembles the diffusion-retention mechanism utilized by inner nuclear membrane proteins. We show that Myo1C constantly shuttles in and out of the nucleus and that its nuclear localization does not require soluble factors, but is dependent on phosphoinositide binding. Nuclear import of Myo1C is preceded by its interaction with the endoplasmic reticulum, and phosphoinositide binding is specifically required for nuclear import, but not nuclear retention, of Myo1C. Our results therefore demonstrate, for the first time, that membrane association and binding to nuclear partners is sufficient to drive nuclear localization of also soluble proteins, opening new perspectives to evolution of cellular protein sorting mechanisms. © 2018 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  18. Tumour risks and genotype-phenotype correlations associated with germline variants in succinate dehydrogenase subunit genes SDHB, SDHC and SDHD.

    PubMed

    Andrews, Katrina A; Ascher, David B; Pires, Douglas Eduardo Valente; Barnes, Daniel R; Vialard, Lindsey; Casey, Ruth T; Bradshaw, Nicola; Adlard, Julian; Aylwin, Simon; Brennan, Paul; Brewer, Carole; Cole, Trevor; Cook, Jackie A; Davidson, Rosemarie; Donaldson, Alan; Fryer, Alan; Greenhalgh, Lynn; Hodgson, Shirley V; Irving, Richard; Lalloo, Fiona; McConachie, Michelle; McConnell, Vivienne P M; Morrison, Patrick J; Murday, Victoria; Park, Soo-Mi; Simpson, Helen L; Snape, Katie; Stewart, Susan; Tomkins, Susan E; Wallis, Yvonne; Izatt, Louise; Goudie, David; Lindsay, Robert S; Perry, Colin G; Woodward, Emma R; Antoniou, Antonis C; Maher, Eamonn R

    2018-06-01

    Germline pathogenic variants in SDHB/SDHC / SDHD are the most frequent causes of inherited phaeochromocytomas/paragangliomas. Insufficient information regarding penetrance and phenotypic variability hinders optimum management of mutation carriers. We estimate penetrance for symptomatic tumours and elucidate genotype-phenotype correlations in a large cohort of SDHB/SDHC / SDHD mutation carriers. A retrospective survey of 1832 individuals referred for genetic testing due to a personal or family history of phaeochromocytoma/paraganglioma. 876 patients (401 previously reported) had a germline mutation in SDHB/SDHC / SDHD (n=673/43/160). Tumour risks were correlated with in silico structural prediction analyses. Tumour risks analysis provided novel penetrance estimates and genotype-phenotype correlations. In addition to tumour type susceptibility differences for individual genes, we confirmed that the SDHD: p.Pro81Leu mutation has a distinct phenotype and identified increased age-related tumour risks with highly destabilising SDHB missense mutations. By Kaplan-Meier analysis, the penetrance (cumulative risk of clinically apparent tumours) in SDHB and (paternally inherited) SDHD mutation-positive non-probands (n=371/67 with detailed clinical information) by age 60 years was 21.8% (95% CI 15.2% to 27.9%) and 43.2% (95% CI 25.4% to 56.7%), respectively. Risk of malignant disease at age 60 years in non-proband SDHB mutation carriers was 4.2%(95% CI 1.1% to 7.2%). With retrospective cohort analysis to adjust for ascertainment, cumulative tumour risks for SDHB mutation carriers at ages 60 years and 80 years were 23.9% (95% CI 20.9% to 27.4%) and 30.6% (95% CI 26.8% to 34.7%). Overall risks of clinically apparent tumours for SDHB mutation carriers are substantially lower than initially estimated and will improve counselling of affected families. Specific genotype-tumour risk associations provides a basis for novel investigative strategies into succinate dehydrogenase-related mechanisms of tumourigenesis and the development of personalised management for SDHB/SDHC / SDHD mutation carriers. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Disruption of the APC gene by t(5;7) translocation in a Turcot family.

    PubMed

    Sahnane, Nora; Bernasconi, Barbara; Carnevali, Ileana; Furlan, Daniela; Viel, Alessandra; Sessa, Fausto; Tibiletti, Maria Grazia

    2016-03-01

    Turcot syndrome (TS) refers to the combination of colorectal polyps and primary tumours of the central nervous system. TS is a heterogeneous genetic condition due to APC and/or mismatch repair germline mutations. When APC is involved the vast majority of mutations are truncating, but in approximately 20%-30% of patients with familial polyposis no germline mutation can be found. A 30-year-old Caucasian woman with a positive pedigree for TS was referred to our Genetic Counselling Service. She was negative for APC and MUTYH but showed a reciprocal balanced translocation t(5;7)(q22;p15) at chromosome analysis. FISH analysis using specific BAC probes demonstrated that 5q22 breakpoint disrupted the APC gene. Transcript analysis by MLPA and digital PCR revealed that the cytogenetic rearrangement involving the 3' end of the APC gene caused a defective expression of a truncated transcript. This result allowed cytogenetic analysis to be offered to all the other family members and segregation analysis clearly demonstrated that all the carriers were affected, whereas non-carriers did not have the polyposis. A cytogenetic approach permitted the identification of the mutation-causing disease in this family, and the segregation analysis together with the transcript study supported the pathogenetic role of this mutation. Karyotype analysis was used as a predictive test in all members of this family. This family suggests that clinically positive TS and FAP cases, which test negative with standard molecular analysis, could be easily and cost-effectively resolved by a classical and molecular cytogenetic approach. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Global Gene Expression Profiling in Omental Adipose Tissue of Morbidly Obese Diabetic African Americans.

    PubMed

    Doumatey, Ayo P; Xu, Huichun; Huang, Hanxia; Trivedi, Niraj S; Lei, Lin; Elkahloun, Abdel; Adeyemo, Adebowale; Rotimi, Charles N

    2015-06-01

    Adipose tissues play important role in the pathophysiology of obesity-related diseases including type 2 diabetes (T2D). To describe gene expression patterns and functional pathways in obesity-related T2D, we performed global transcript profiling of omental adipose tissue (OAT) in morbidly obese individuals with or without T2D. Twenty morbidly obese (mean BMI: about 54 kg/m 2 ) subjects were studied, including 14 morbidly obese individuals with T2D (cases) and 6 morbidly obese individuals without T2D (reference group). Gene expression profiling was performed using the Affymetrix U133 Plus 2.0 human genome expression array. Analysis of covariance was performed to identify differentially expressed genes (DEGs). Bioinformatics tools including PANTHER and Ingenuity Pathway Analysis (IPA) were applied to the DEGs to determine biological functions, networks and canonical pathways that were overrepresented in these individuals. At an absolute fold-change threshold of 2 and false discovery rate (FDR) < 0.05, 68 DEGs were identified in cases compared to the reference group. Myosin X (MYO10) and transforming growth factor beta regulator 1 (TBRG1) were upregulated. MYO10 encodes for an actin-based motor protein that has been associated with T2D. Telomere extension by telomerase ( HNRNPA1, TNKS2 ), D-myo-inositol (1, 4, 5)-trisphosphate biosynthesis (PIP5K1A, PIP4K2A), and regulation of actin-based motility by Rho (ARPC3) were the most significant canonical pathways and overlay with T2D signaling pathway. Upstream regulator analysis predicted 5 miRNAs (miR-320b, miR-381-3p, miR-3679-3p, miR-494-3p, and miR-141-3p,) as regulators of the expression changes identified. This study identified a number of transcripts and miRNAs in OAT as candidate novel players in the pathophysiology of T2D in African Americans.

  1. Expression and Mutational Analysis of c-kit in Ovarian Surface Epithelial Tumors

    PubMed Central

    Lee, Myung-Hoon; Park, Tae-In; Bae, Han-Ik

    2006-01-01

    Coexpression of Kit ligand and c-kit has been reported in some gynecologic tumors. To determine whether imatinib mesylate is useful in ovarian epithelial tumors, we performed immunohistochemical and mutational analysis. The cases consisted of 33 cases, which included 13 serous cystadenocarcinomas, 1 borderline serous tumor, 8 mucinous cystadenocarcinomas, 6 borderline mucinous tumors and 5 clear cell carcinomas. Five cases of serous cystadenoma and 5 cases of mucinous cystadenoma were also included. In the immunohistochemical study, 3 cases (3/6, 50%) of borderline mucinous cystic tumor and two cases (2/8, 25%) of mucinous cystadenocarcinoma show positive staining for KIT protein. Only one case (1/13, 7.7%) of serous cystadenocarcinoma had positive staining. On mutational analysis, no mutation was identified at exon 11. However, two cases of borderline mucinous tumors and one case of mucinous cystadenocarcinoma had mutations at exon 17. In these cases, the immunohistochemistry also shows focal positive staining at epithelial component. Although, KIT protein expression showed higher incidence in mucinous tumors than serous tumors, they lack KIT-activating mutations in exon 11. Thus, ovarian surface epithelial tumors are unlikely to respond to imatinib mesylate. PMID:16479070

  2. Uveal melanoma hepatic metastases mutation spectrum analysis using targeted next-generation sequencing of 400 cancer genes.

    PubMed

    Luscan, A; Just, P A; Briand, A; Burin des Roziers, C; Goussard, P; Nitschké, P; Vidaud, M; Avril, M F; Terris, B; Pasmant, E

    2015-04-01

    Uveal melanoma (UM) is the most common malignant tumour of the eye. Diagnosis often occurs late in the course of disease, and prognosis is generally poor. Recently, recurrent somatic mutations were described, unravelling additional specific altered pathways in UM. Targeted next-generation sequencing (NGS) can now be applied to an accurate and fast identification of somatic mutations in cancer. The aim of the present study was to characterise the mutation pattern of five UM hepatic metastases with well-defined clinical and pathological features. We analysed the UM mutation spectrum using targeted NGS on 409 cancer genes. Four previous reported genes were found to be recurrently mutated. All tumours presented mutually exclusive GNA11 or GNAQ missense mutations. BAP1 loss-of-function mutations were found in three UMs. SF3B1 missense mutations were found in the two UMs with no BAP1 mutations. We then searched for additional mutation targets. We identified the Arg505Cys mutation in the tumour suppressor FBXW7. The same mutation was previously described in different cancer types, and FBXW7 was recently reported to be mutated in UM exomes. Further studies are required to confirm FBXW7 implication in UM tumorigenesis. Elucidating the molecular mechanisms underlying UM tumorigenesis holds the promise for novel and effective targeted UM therapies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. Survival According to BRAF-V600 Tumor Mutations – An Analysis of 437 Patients with Primary Melanoma

    PubMed Central

    Meckbach, Diana; Bauer, Jürgen; Pflugfelder, Annette; Meier, Friedegund; Busch, Christian; Eigentler, Thomas K.; Capper, David; von Deimling, Andreas; Mittelbronn, Michel; Perner, Sven; Ikenberg, Kristian; Hantschke, Markus; Büttner, Petra; Garbe, Claus; Weide, Benjamin

    2014-01-01

    The prognostic impact of BRAF-V600 tumor mutations in stage I/II melanoma patients has not yet been analyzed in detail. We investigated primary tumors of 437 patients diagnosed between 1989 and 2006 by Sanger sequencing. Mutations were detected in 38.7% of patients and were associated with age, histological subtype as well as mitotic rate. The mutational rate was 36.7% in patients with disease-free course and 51.7% in those with subsequent distant metastasis (p = 0.031). No difference in overall survival (p = 0.119) but a trend for worse distant-metastasis-free survival (p = 0.061) was observed in BRAF mutant compared to BRAF wild-type patients. Independent prognostic factors for overall survival were tumor thickness, mitotic rate and ulceration. An interesting significant prognostic impact was observed in patients with tumor thickness of 1 mm or less, with the mutation present in 6 of 7 patients dying from melanoma. In conclusion, no significant survival differences were found according to BRAF-V600 tumor mutations in patients with primary melanoma but an increasing impact of the mutational status was observed in the subgroup of patients with tumor thickness of 1 mm or less. A potential role of the mutational status as a prognostic factor especially in this subgroup needs to be investigated in larger studies. PMID:24475086

  4. Proven germline mosaicism in a father of two children with CHARGE syndrome.

    PubMed

    Pauli, S; Pieper, L; Häberle, J; Grzmil, P; Burfeind, P; Steckel, M; Lenz, U; Michelmann, H W

    2009-05-01

    CHARGE syndrome is an autosomal dominant malformation syndrome caused by mutations in the CHD7 gene. The majority of cases are sporadic and only few familial cases have been reported. In these families, mosaicism in one parent, as well as parent- to-child transmission of a CHD7 mutation, has been described. In some further cases, germline mosaicism has been suggested. Here, we report the first case in which germline mosaicism could be demonstrated in a father of two affected children with CHARGE syndrome. The truncating mutation c.7302dupA in exon 34 of the CHD7 gene was found in both affected children but was not detected in parental lymphocytes. However, in DNA extracted from the father's spermatozoa, the c.7302dupA mutation could be identified. Furthermore, mutation analysis of DNA isolated from 59 single spermatozoa revealed that the c.7302dupA mutation occurs in 16 spermatozoa, confirming germline mosaicism in the father of the affected children. This result has a high impact for genetic counselling of the family and for their recurrence risk in further pregnancies.

  5. An Uncharacterized Member of the Ribokinase Family in Thermococcus kodakarensis Exhibits myo-Inositol Kinase Activity*

    PubMed Central

    Sato, Takaaki; Fujihashi, Masahiro; Miyamoto, Yukika; Kuwata, Keiko; Kusaka, Eriko; Fujita, Haruo; Miki, Kunio; Atomi, Haruyuki

    2013-01-01

    Here we performed structural and biochemical analyses on the TK2285 gene product, an uncharacterized protein annotated as a member of the ribokinase family, from the hyperthermophilic archaeon Thermococcus kodakarensis. The three-dimensional structure of the TK2285 protein resembled those of previously characterized members of the ribokinase family including ribokinase, adenosine kinase, and phosphofructokinase. Conserved residues characteristic of this protein family were located in a cleft of the TK2285 protein as in other members whose structures have been determined. We thus examined the kinase activity of the TK2285 protein toward various sugars recognized by well characterized ribokinase family members. Although activity with sugar phosphates and nucleosides was not detected, kinase activity was observed toward d-allose, d-lyxose, d-tagatose, d-talose, d-xylose, and d-xylulose. Kinetic analyses with the six sugar substrates revealed high Km values, suggesting that they were not the true physiological substrates. By examining activity toward amino sugars, sugar alcohols, and disaccharides, we found that the TK2285 protein exhibited prominent kinase activity toward myo-inositol. Kinetic analyses with myo-inositol revealed a greater kcat and much lower Km value than those obtained with the monosaccharides, resulting in over a 2,000-fold increase in kcat/Km values. TK2285 homologs are distributed among members of Thermococcales, and in most species, the gene is positioned close to a myo-inositol monophosphate synthase gene. Our results suggest the presence of a novel subfamily of the ribokinase family whose members are present in Archaea and recognize myo-inositol as a substrate. PMID:23737529

  6. MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration

    PubMed Central

    Mokalled, Mayssa H.; Johnson, Aaron N.; Creemers, Esther E.; Olson, Eric N.

    2012-01-01

    In response to skeletal muscle injury, satellite cells, which function as a myogenic stem cell population, become activated, expand through proliferation, and ultimately fuse with each other and with damaged myofibers to promote muscle regeneration. Here, we show that members of the Myocardin family of transcriptional coactivators, MASTR and MRTF-A, are up-regulated in satellite cells in response to skeletal muscle injury and muscular dystrophy. Global and satellite cell-specific deletion of MASTR in mice impairs skeletal muscle regeneration. This impairment is substantially greater when MRTF-A is also deleted and is due to aberrant differentiation and excessive proliferation of satellite cells. These abnormalities mimic those associated with genetic deletion of MyoD, a master regulator of myogenesis, which is down-regulated in the absence of MASTR and MRTF-A. Consistent with an essential role of MASTR in transcriptional regulation of MyoD expression, MASTR activates a muscle-specific postnatal MyoD enhancer through associations with MEF2 and members of the Myocardin family. Our results provide new insights into the genetic circuitry of muscle regeneration and identify MASTR as a central regulator of this process. PMID:22279050

  7. D242N, a KV7.1 LQTS mutation uncovers a key residue for IKs voltage dependence.

    PubMed

    Moreno, Cristina; Oliveras, Anna; Bartolucci, Chiara; Muñoz, Carmen; de la Cruz, Alicia; Peraza, Diego A; Gimeno, Juan R; Martín-Martínez, Mercedes; Severi, Stefano; Felipe, Antonio; Lambiase, Pier D; Gonzalez, Teresa; Valenzuela, Carmen

    2017-09-01

    K V 7.1 and KCNE1 co-assemble to give rise to the I Ks current, one of the most important repolarizing currents of the cardiac action potential. Its relevance is underscored by the identification of >500 mutations in K V 7.1 and, at least, 36 in KCNE1, that cause Long QT Syndrome (LQTS). The aim of this study was to characterize the biophysical and cellular consequences of the D242N K V 7.1 mutation associated with the LQTS. The mutation is located in the S4 transmembrane segment, within the voltage sensor of the K V 7.1 channel, disrupting the conserved charge balance of this region. Perforated patch-clamp experiments show that, unexpectedly, the mutation did not disrupt the voltage-dependent activation but it removed the inactivation and slowed the activation kinetics of D242N K V 7.1 channels. Biotinylation of cell-surface protein and co-immunoprecipitation experiments revealed that neither plasma membrane targeting nor co-assembly between K V 7.1 and KCNE1 was altered by the mutation. However, the association of D242N K V 7.1 with KCNE1 strongly shifted the voltage dependence of activation to more depolarized potentials (+50mV), hindering I Ks current at physiologically relevant membrane potentials. Both functional and computational analysis suggest that the clinical phenotype of the LQTS patients carrying the D242N mutation is due to impaired action potential adaptation to exercise and, in particular, to increase in heart rate. Moreover, our data identify D242 aminoacidic position as a potential residue involved in the KCNE1-mediated regulation of the voltage dependence of activation of the K V 7.1 channel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The Globular Tail Domain of Myosin-5a Functions as a Dimer in Regulating the Motor Activity.

    PubMed

    Zhang, Wen-Bo; Yao, Lin-Lin; Li, Xiang-Dong

    2016-06-24

    Myosin-5a contains two heavy chains, which are dimerized via the coiled-coil regions. Thus, myosin-5a comprises two heads and two globular tail domains (GTDs). The GTD is the inhibitory domain that binds to the head and inhibits its motor function. Although the two-headed structure is essential for the processive movement of myosin-5a along actin filaments, little is known about the role of GTD dimerization. Here, we investigated the effect of GTD dimerization on its inhibitory activity. We found that the potent inhibitory activity of the GTD is dependent on its dimerization by the preceding coiled-coil regions, indicating synergistic interactions between the two GTDs and the two heads of myosin-5a. Moreover, we found that alanine mutations of the two conserved basic residues at N-terminal extension of the GTD not only weaken the inhibitory activity of the GTD but also enhance the activation of myosin-5a by its cargo-binding protein melanophilin (Mlph). These results are consistent with the GTD forming a head to head dimer, in which the N-terminal extension of the GTD interacts with the Mlph-binding site in the counterpart GTD. The Mlph-binding site at the GTD-GTD interface must be exposed prior to the binding of Mlph. We therefore propose that the inhibited Myo5a is equilibrated between the folded state, in which the Mlph-binding site is buried, and the preactivated state, in which the Mlph-binding site is exposed, and that Mlph is able to bind to the Myo5a in preactivated state and activates its motor function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. A Mitochondrial DNA A8701G Mutation Associated with Maternally Inherited Hypertension and Dilated Cardiomyopathy in a Chinese Pedigree of a Consanguineous Marriage

    PubMed Central

    Zhu, Ye; Gu, Xiang; Xu, Chao

    2016-01-01

    Background: Cardiovascular diseases, including dilated cardiomyopathy (DCM) and hypertension, are the leading cause of death worldwide. The role of mitochondrial DNA (mtDNA) in the pathogenesis of these diseases has not been completely clarified. In this study, we evaluate whether A8701G mutation is associated with maternally inherited hypertension and DCM in a Chinese pedigree of a consanguineous marriage. Methods: Fourteen subjects in a three-generation Han Chinese family with hypertension and DCM, in which consanguineous marriage was present in the parental generation, were interviewed. We divided all the family members into case (7 maternal members) and control group (7 nonmaternal members) for comparison. Clinical evaluations and sequence analysis of mtDNA were obtained from all participants. Frequency differences between maternal and nonmaternal members were tested to locate the disease-associated mutations. Results: The majority of the family members presented with a maternal inheritance of hypertension and DCM. Sequence analysis of mtDNA in this pedigree identified eight mtDNA mutations. Among the mutations identified, there was only one significant mutation: A8701G (P = 0.005), which is a homoplasmic mitochondrial missense mutation in all the matrilineal relatives. There was no clear evidence for any synergistic effects between A8701G and other mutations. Conclusions: A8701G mutation may act as an inherited risk factor for the matrilineal transmission of hypertension and DCM in conjunction with genetic disorders caused by consanguineous marriage. PMID:26831225

  10. Gain-of-function mutation of a voltage-gated sodium channel NaV1.7 associated with peripheral pain and impaired limb development.

    PubMed

    Tanaka, Brian S; Nguyen, Phuong T; Zhou, Eray Yihui; Yang, Yong; Yarov-Yarovoy, Vladimir; Dib-Hajj, Sulayman D; Waxman, Stephen G

    2017-06-02

    Dominant mutations in voltage-gated sodium channel Na V 1.7 cause inherited erythromelalgia, a debilitating pain disorder characterized by severe burning pain and redness of the distal extremities. Na V 1.7 is preferentially expressed within peripheral sensory and sympathetic neurons. Here, we describe a novel Na V 1.7 mutation in an 11-year-old male with underdevelopment of the limbs, recurrent attacks of burning pain with erythema, and swelling in his feet and hands. Frequency and duration of the episodes gradually increased with age, and relief by cooling became less effective. The patient's sister had short stature and reported similar complaints of erythema and burning pain, but with less intensity. Genetic analysis revealed a novel missense mutation in Na V 1.7 (2567G>C; p.Gly856Arg) in both siblings. The G856R mutation, located within the DII/S4-S5 linker of the channel, substitutes a highly conserved non-polar glycine by a positively charged arginine. Voltage-clamp analysis of G856R currents revealed that the mutation hyperpolarized (-11.2 mV) voltage dependence of activation and slowed deactivation but did not affect fast inactivation, compared with wild-type channels. A mutation of Gly-856 to aspartic acid was previously found in a family with limb pain and limb underdevelopment, and its functional assessment showed hyperpolarized activation, depolarized fast inactivation, and increased ramp current. Structural modeling using the Rosetta computational modeling suite provided structural clues to the divergent effects of the substitution of Gly-856 by arginine and aspartic acid. Although the proexcitatory changes in gating properties of G856R contribute to the pathophysiology of inherited erythromelalgia, the link to limb underdevelopment is not well understood. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Exciplex and excimer molecular probes: detection of conformational flip in a myo-inositol chair.

    PubMed

    Kadirvel, Manikandan; Arsic, Biljana; Freeman, Sally; Bichenkova, Elena V

    2008-06-07

    2-O-tert-Butyldimethylsilyl-4,6-bis-O-pyrenoyl-myo-inositol-1,3,5-orthoformate (6) and 2-O-tert-butyldimethylsilyl-4-O-[4-(dimethylamino)benzoyl]-6-O-pyrenoyl-myo-inositol-1,3,5-orthoacetate (10) adopt conformationally restricted unstable chairs with five axial substituents. In the symmetrical diester 6, the two pi-stacked pyrenoyl groups are electron acceptor-donor partners, giving a strong intramolecular excimer emission. In the mixed ester 10, the pyrenoyl group is the electron acceptor and the 4-(dimethylamino)benzoyl ester is the electron donor, giving a strong intramolecular exciplex emission. The conformation of the mixed ester 10 was assessed using 1H NMR spectroscopy (1H-NOESY) and computational studies. which showed the minimum inter-centroid distance between the two aromatic systems to be approximately 3.9 A. Upon addition of acid, the orthoformate/orthoacetate trigger in 6 and 10 was cleaved, which caused a switch of the conformation of the myo-inositol ring to the more stable penta-equatorial chair, leading to separation of the aromatic ester groups and loss of excimer and exciplex fluorescence, respectively. This study provides proof of principle for the development of novel fluorescent molecular probes.

  12. Functional Characterization of Pneumocystis carinii Inositol Transporter 1

    PubMed Central

    Collins, Margaret S.; Sesterhenn, Thomas; Porollo, Aleksey; Vadukoot, Anish Kizhakkekkara; Merino, Edward J.

    2016-01-01

    ABSTRACT Fungi in the genus Pneumocystis live in the lungs of mammals, where they can cause a fatal pneumonia (PCP [Pneumocystis pneumonia]) in hosts with compromised immune systems. The absence of a continuous in vitro culture system for any species of Pneumocystis has led to limited understanding of these fungi, especially for the discovery of new therapies. We recently reported that Pneumocystis carinii, Pneumocystis murina, and most significantly, Pneumocystis jirovecii lack both enzymes necessary for myo-inositol biosynthesis but contain genes with homologies to fungal myo-inositol transporters. Since myo-inositol is essential for eukaryotic viability, the primary transporter, ITR1, was functionally and structurally characterized in P. carinii. The predicted structure of P. carinii ITR1 (PcITR1) contained 12 transmembrane alpha-helices with intracellular C and N termini, consistent with other inositol transporters. The apparent Km was 0.94 ± 0.08 (mean ± standard deviation), suggesting that myo-inositol transport in P. carinii is likely through a low-affinity, highly selective transport system, as no other sugars or inositol stereoisomers were significant competitive inhibitors. Glucose transport was shown to use a different transport system. The myo-inositol transport was distinct from mammalian transporters, as it was not sodium dependent and was cytochalasin B resistant. Inositol transport in these fungi offers an attractive new drug target because of the reliance of the fungi on its transport, clear differences between the mammalian and fungal transporters, and the ability of the host to both synthesize and transport this critical nutrient, predicting low toxicity of potential inhibitors to the fungal transporter. PMID:27965450

  13. Increased Frequency of KRAS Mutations in African Americans Compared with Caucasians in Sporadic Colorectal Cancer.

    PubMed

    Staudacher, Jonas J; Yazici, Cemal; Bul, Vadim; Zeidan, Joseph; Khalid, Ahmer; Xia, Yinglin; Krett, Nancy; Jung, Barbara

    2017-10-19

    The basis for over-representation of colorectal cancer (CRC) in African-American (AA) populations compared with Caucasians are multifactorial and complex. Understanding the mechanisms for this racial disparity is critical for delivery of better care. Several studies have investigated sporadic CRC for differences in somatic mutations between AAs and Caucasians, but owing to small study sizes and conflicting results to date, no definitive conclusions have been reached. Here, we present the first systematic literature review and meta-analysis investigating the mutational differences in sporadic CRC between AAs and Caucasians focused on frequent driver mutations (APC,TP53, KRAS,PI3CA, FBXW7,SMAD4, and BRAF). Publication inclusion criteria comprised sporadic CRC, human subjects, English language, information on ethnicity (AA, Caucasian, or both), total subject number >20, and information on mutation frequencies. We identified 6,234 publications. Meta-analysis for APC, TP54, FBXW7, or SMAD4 was not possible owing to paucity of data. KRAS mutations were statistically less frequent in non-Hispanic Whites when compared with AAs (odds ratio, 0.640; 95% confidence interval (CI): 0.5342-0.7666; P=0.0001), while the mutational differences observed in BRAF and PI3CA did not reach statistical significance. Here, we report the mutational patterns for KRAS, BRAF, and PI3CA in sporadic CRC of AAs and Caucasians in a systematic meta-analysis of previously published data. We identified an increase in KRAS mutations in sporadic CRC in AAs, which may contribute to worse prognosis and increased mortality of CRC in AAs. Future studies investigating health-care disparities in CRC in AAs should control for KRAS mutational frequency.

  14. RNA/DNA ratio and LPL and MyoD mRNA expressions in muscle of Oreochromis niloticus fed with elevated levels of palm oil

    NASA Astrophysics Data System (ADS)

    Ayisi, Christian Larbi; Zhao, Jinliang

    2016-02-01

    Palm oil is of great potential as one of the sustainable alternatives to fish oil (FO) in aquafeeds. In this present study, five isonitrogenous diets (32% crude protein) with elevated palm oil levels of 0%, 2%, 4%, 6% and 8% were used during an 8-week feeding trial to evaluate its effects on RNA/DNA ratio and lipoprotein lipase (LPL) and MyoD mRNA expressions in muscle of Oreochromis niloticus. The results showed that RNA, DNA content as well as ratio of RNA to DNA were significantly affected ( P < 0.05), in each case the highest was recorded in fish group subjected to 6% palm oil level. There was a strong positive correlation between nucleic acid concentration (RNA concentration and RNA: DNA ratio) and specific growth rate (SGR), protein efficiency ratio (PER), while a negative correlation existed between nucleic acid concentration (RNA concentration and RNA: DNA ratio) and feed conversion ratio (FCR). The mRNA expressions of LPL and MyoD in muscle were not significantly affected by the different palm oil levels, although the highest expression was observed in fish fed with 6% palm oil level. There also existed a strong positive correlation between the mRNA expression of LPL, MyoD and SGR, PER, while their correlation with FCR was negative. In conclusion, elevated palm oil affected the RNA, DNA concentration as well as RNA/DNA ratio significantly, although the mRNA expression of LPL and MyoD were not affected significantly by elevated palm oil levels.

  15. Monitoring on the Move

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The MyoMonitor EMG system was developed by Delsys, Inc. under SBIR funding from Johnson Space Center. It is a wearable four-channel device that can monitor muscle performance. Presently, its application include rehabilitative therapy, injury prevention, sports medicine, exercise training, and various other muscle monitoring activities. The MyoMonitor uses a two-bar single differential electrode. Due to the electrode-skin interface in traditional EMG equipment, during rigorous muscular activity, the movement of the skin causes the electrode detection surfaces to become compromised. The MyoMonitor eliminates this problem, enabling a wide array of applications and experiments during intense muscular activity. The ability to make such recordings, for example, enables novel experiments aboard the International Space Station for investigating the effect of microgravity on muscle performance. Product still commercially available as of March 2002.

  16. Role of proton magnetic resonance spectroscopy in the diagnosis of gliomatosis cerebri: a unique pattern of normal choline but elevated Myo-inositol metabolite levels.

    PubMed

    Mohana-Borges, Aurea V R; Imbesi, Steven G; Dietrich, Rosalind; Alksne, John; Amjadi, Darius K

    2004-01-01

    A patient with histologically proven gliomatosis cerebri presented with a normal choline level but a markedly abnormal elevated myo-inositol level on magnetic resonance (MR) spectroscopy. We describe the case presentation, imaging findings (in particular, the unique MR spectroscopic pattern), and their significance regarding the diagnosis of this relatively rare neoplasm.

  17. The acquisition of mechano-electrical transducer current adaptation in auditory hair cells requires myosin VI.

    PubMed

    Marcotti, Walter; Corns, Laura F; Goodyear, Richard J; Rzadzinska, Agnieszka K; Avraham, Karen B; Steel, Karen P; Richardson, Guy P; Kros, Corné J

    2016-07-01

    The transduction of sound into electrical signals occurs at the hair bundles atop sensory hair cells in the cochlea, by means of mechanosensitive ion channels, the mechano-electrical transducer (MET) channels. The MET currents decline during steady stimuli; this is termed adaptation and ensures they always work within the most sensitive part of their operating range, responding best to rapidly changing (sound) stimuli. In this study we used a mouse model (Snell's waltzer) for hereditary deafness in humans that has a mutation in the gene encoding an unconventional myosin, myosin VI, which is present in the hair bundles. We found that in the absence of myosin VI the MET current fails to acquire its characteristic adaptation as the hair bundles develop. We propose that myosin VI supports the acquisition of adaptation by removing key molecules from the hair bundle that serve a temporary, developmental role. Mutations in Myo6, the gene encoding the (F-actin) minus end-directed unconventional myosin, myosin VI, cause hereditary deafness in mice (Snell's waltzer) and humans. In the sensory hair cells of the cochlea, myosin VI is expressed in the cell bodies and along the stereocilia that project from the cells' apical surface. It is required for maintaining the structural integrity of the mechanosensitive hair bundles formed by the stereocilia. In this study we investigate whether myosin VI contributes to mechano-electrical transduction. We report that Ca(2+) -dependent adaptation of the mechano-electrical transducer (MET) current, which serves to keep the transduction apparatus operating within its most sensitive range, is absent in outer and inner hair cells from homozygous Snell's waltzer mutant mice, which fail to express myosin VI. The operating range of the MET channels is also abnormal in the mutants, resulting in the absence of a resting MET current. We found that cadherin 23, a component of the hair bundle's transient lateral links, fails to be downregulated along the length of the stereocilia in maturing Myo6 mutant mice. MET currents of heterozygous littermates appear normal. We propose that myosin VI, by removing key molecules from developing hair bundles, is required for the development of the MET apparatus and its Ca(2+) -dependent adaptation. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  18. GTF2I mutation frequently occurs in more indolent thymic epithelial tumors and predicts better prognosis.

    PubMed

    Feng, Yanfen; Lei, Yiyan; Wu, Xiaoyan; Huang, Yuhua; Rao, Huilan; Zhang, Yu; Wang, Fang

    2017-08-01

    A missense mutation in GTF2I was previously identified in thymic epithelioid tumor (TET). However, the clinicopathological relevance of GTF2I mutation has not been illustrated. We studied the prognostic importance of GTF2I mutation as well as its relation to histological subtypes in a large number of TETs. TET samples from 296 patients with clinical and follow-up data were collected, and histological subtypes were classified. Analysis of the GTF2I (chromosome 7 c.74146970T>A) mutation was undertaken by using quantitative real time polymerase chain reaction (qPCR) and direct sequencing. The association of GTF2I mutation with clinicopathological features as well as prognosis was analyzed. One hundred twenty-four out of 296 (41.9%) patients harbored the GTF2I mutation (chromosome 7 c.74146970T>A). GTF2I mutation was observed in 20 (87.0%) cases of type A thymoma, 70 (78.7%) of type AB thymoma, and the frequency decreased with the degree of histological subtype aggressiveness, with the lowest rate in thymic carcinoma (7.7%). The difference of GTF2I mutation distribution in histological subtypes was statistically significant (p<0.001). The GTF2I mutation was found more frequently in patients with early Masaoka stage (I-II, n=112, 90.3%) than in those with advanced stage (III-IV) disease (n=12, 9.6%, p<0.001). However, only histological subtype significantly predicted the presence of the GTF2I mutation in patients with TETs. The presence of the GTF2I mutation correlated with better prognosis (90.0% compared to 72.0% 5-year survival, and 86% compared to 56% 10-year survival, respectively; log-rank p=0.001). Moreover, it was an independent prognostic factor [hazard ratio (HR), 0.35; 95% confidential interval (CI), 0.15-0.81; p=0.014)]. The frequency of the GTF2I mutation is higher in more indolent TETs, and correlates with better prognosis. Further studies are required to elucidate the role of the GTF2I mutation in TETs and its clinical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. 17ß-Estradiol increases non-CpG methylation in exon 1 of the rainbow trout (Oncorhynchus mykiss) MyoD gene

    USDA-ARS?s Scientific Manuscript database

    CpH methylations are epigenetic markers enriched in stem cells which are lost during cell differentiation. DNMT3a and DNMT3b are de novo methyltransferases contributing to CpH methylations. MyoD is an important myogenic transcription factor necessary for the differentiation of myogenic precursor cel...

  20. Shifted termination assay (STA) fragment analysis to detect BRAF V600 mutations in papillary thyroid carcinomas

    PubMed Central

    2013-01-01

    Background BRAF mutation is an important diagnostic and prognostic marker in patients with papillary thyroid carcinoma (PTC). To be applicable in clinical laboratories with limited equipment, diverse testing methods are required to detect BRAF mutation. Methods A shifted termination assay (STA) fragment analysis was used to detect common V600 BRAF mutations in 159 PTCs with DNAs extracted from formalin-fixed paraffin-embedded tumor tissue. The results of STA fragment analysis were compared to those of direct sequencing. Serial dilutions of BRAF mutant cell line (SNU-790) were used to calculate limit of detection (LOD). Results BRAF mutations were detected in 119 (74.8%) PTCs by STA fragment analysis. In direct sequencing, BRAF mutations were observed in 118 (74.2%) cases. The results of STA fragment analysis had high correlation with those of direct sequencing (p < 0.00001, κ = 0.98). The LOD of STA fragment analysis and direct sequencing was 6% and 12.5%, respectively. In PTCs with pT3/T4 stages, BRAF mutation was observed in 83.8% of cases. In pT1/T2 carcinomas, BRAF mutation was detected in 65.9% and this difference was statistically significant (p = 0.007). Moreover, BRAF mutation was more frequent in PTCs with extrathyroidal invasion than tumors without extrathyroidal invasion (84.7% versus 62.2%, p = 0.001). To prepare and run the reactions, direct sequencing required 450 minutes while STA fragment analysis needed 290 minutes. Conclusions STA fragment analysis is a simple and sensitive method to detect BRAF V600 mutations in formalin-fixed paraffin-embedded clinical samples. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5684057089135749 PMID:23883275

Top