Science.gov

Sample records for myocardial contractility depression

  1. Depressed Myocardial Contractility: Can It Be Rescued?

    PubMed

    Weber, Karl T

    2016-10-01

    Current dogma suggests patients with advanced systolic heart failure have an irreversible depression in myocardial contractility. Recent experience with improved ventricular function during continuous flow ventricular assist devices used as destination therapy would suggest otherwise. Herein, cellular and molecular signaling involved in reversing depressed myocardial contractility would be addressed. This includes cardiomyocyte thyroid hormone signaling responsible for the reexpression of fetal gene program that preserves cell efficiency (work and energy consumed) and the rescue of an endogenous population of atrophic myocytes bordering on microdomains of fibrosis to improve contractile mass. Copyright © 2016 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  2. Fractalkine Depresses Cardiomyocyte Contractility

    PubMed Central

    Taube, David; Xu, Jiang; Yang, Xiao-Ping; Undrovinas, Albertas; Peterson, Edward; Harding, Pamela

    2013-01-01

    Background Our laboratory reported that male mice with cardiomyocyte-selective knockout of the prostaglandin E2 EP4 receptor sub-type (EP4 KO) exhibit reduced cardiac function. Gene array on left ventricles (LV) showed increased fractalkine, a chemokine implicated in heart failure. We therefore hypothesized that fractalkine is regulated by PGE2 and contributes to depressed contractility via alterations in intracellular calcium. Methods Fractalkine was measured in LV of 28–32 week old male EP4 KO and wild type controls (WT) by ELISA and the effect of PGE2 on fractalkine secretion was measured in cultured neonatal cardiomyocytes and fibroblasts. The effect of fractalkine on contractility and intracellular calcium was determined in Fura-2 AM-loaded, electrical field-paced cardiomyocytes. Cardiomyocytes (AVM) from male C57Bl/6 mice were treated with fractalkine and responses measured under basal conditions and after isoproterenol (Iso) stimulation. Results LV fractalkine was increased in EP4 KO mice but surprisingly, PGE2 regulated fractalkine secretion only in fibroblasts. Fractalkine treatment of AVM decreased both the speed of contraction and relaxation under basal conditions and after Iso stimulation. Despite reducing contractility after Iso stimulation, fractalkine increased the Ca2+ transient amplitude but decreased phosphorylation of cardiac troponin I, suggesting direct effects on the contractile machinery. Conclusions Fractalkine depresses myocyte contractility by mechanisms downstream of intracellular calcium. PMID:23936109

  3. Fractalkine depresses cardiomyocyte contractility.

    PubMed

    Taube, David; Xu, Jiang; Yang, Xiao-Ping; Undrovinas, Albertas; Peterson, Edward; Harding, Pamela

    2013-01-01

    Our laboratory reported that male mice with cardiomyocyte-selective knockout of the prostaglandin E2 EP4 receptor sub-type (EP4 KO) exhibit reduced cardiac function. Gene array on left ventricles (LV) showed increased fractalkine, a chemokine implicated in heart failure. We therefore hypothesized that fractalkine is regulated by PGE2 and contributes to depressed contractility via alterations in intracellular calcium. Fractalkine was measured in LV of 28-32 week old male EP4 KO and wild type controls (WT) by ELISA and the effect of PGE2 on fractalkine secretion was measured in cultured neonatal cardiomyocytes and fibroblasts. The effect of fractalkine on contractility and intracellular calcium was determined in Fura-2 AM-loaded, electrical field-paced cardiomyocytes. Cardiomyocytes (AVM) from male C57Bl/6 mice were treated with fractalkine and responses measured under basal conditions and after isoproterenol (Iso) stimulation. LV fractalkine was increased in EP4 KO mice but surprisingly, PGE2 regulated fractalkine secretion only in fibroblasts. Fractalkine treatment of AVM decreased both the speed of contraction and relaxation under basal conditions and after Iso stimulation. Despite reducing contractility after Iso stimulation, fractalkine increased the Ca(2+) transient amplitude but decreased phosphorylation of cardiac troponin I, suggesting direct effects on the contractile machinery. Fractalkine depresses myocyte contractility by mechanisms downstream of intracellular calcium.

  4. Acute exposure to Catha edulis depresses contractility and induces myocardial infarction in spontaneously contracting, isolated rabbit’s heart

    PubMed Central

    Al-Hashem, Fahaid H.; Dallak, Mohammad A.; Nwoye, Luke O.; Bin-Jaliah, Ismaeel M.; Al-Amri, Hasan S.; Rezk, Mahmoud H.; Sakr, Hussein F.; Shatoor, Abdullah S.; Al-Khateeb, Mahmoud

    2011-01-01

    Khat chewing is a recreational habit known to pose major socio-economic and medical problems in countries of Southern Arabia and the Horn of Africa. Among other adverse health effects, khat chewing has been associated with an increased risk of myocardial infarction (MI) in heavy consumers. This study was carried out to examine the direct effects of Catha edulis extract on contractility of spontaneously contracting, isolated rabbit heart and to investigate its mechanism of action. Isolated six rabbit’s hearts attached to a Langendorff apparatus were perfused with extract at a constant flow rate and continuously bubbled with a 95% O2/5% CO2 gas mixture. Each heart served as its own control, as responses were recorded before and after administration of C. edulis extract. Varying concentrations of extract (50, 100 and 250 mg/ml) were loaded in the perfusate, their effects recorded and effluent fluid collected for assay of cardiac enzymes. Histological examination of the cardiac tissue was performed at the end of perfusion with 250 mg/ml extract. This study revealed that acute exposure to C. edulis extract exerted negative inotropic and chronotropic effects on isolated hearts. The extract also had a vasoconstrictor effect on coronary vessels, independent of α1 adrenergic receptor stimulation. Histological examination of hearts perfused with 250 mg/ml C. edulis extract revealed the presence of histological changes unique to myocardial infarction, a finding consistent with observed increased levels of cardiac enzymes in perfusates. Thus, we have demonstrated experimentally a direct cardiac depressant- and MI inducing effects of C. edulis extract. These results are consistent with the earlier reported deleterious effects of khat on cardiovascular function among khat chewers. PMID:23961167

  5. Regional left ventricular myocardial contractility and stress in a finite element model of posterobasal myocardial infarction.

    PubMed

    Wenk, Jonathan F; Sun, Kay; Zhang, Zhihong; Soleimani, Mehrdad; Ge, Liang; Saloner, David; Wallace, Arthur W; Ratcliffe, Mark B; Guccione, Julius M

    2011-04-01

    Recently, a noninvasive method for determining regional myocardial contractility, using an animal-specific finite element (FE) model-based optimization, was developed to study a sheep with anteroapical infarction (Sun et al., 2009, "A Computationally Efficient Formal Optimization of Regional Myocardial Contractility in a Sheep With Left Ventricular Aneurysm," ASME J. Biomech. Eng., 131(11), p. 111001). Using the methodology developed in the previous study (Sun et al., 2009, "A Computationally Efficient Formal Optimization of Regional Myocardial Contractility in a Sheep With Left Ventricular Aneurysm," ASME J. Biomech. Eng., 131(11), p. 111001), which incorporates tagged magnetic resonance images, three-dimensional myocardial strains, left ventricular (LV) volumes, and LV cardiac catheterization pressures, the regional myocardial contractility and stress distribution of a sheep with posterobasal infarction were investigated. Active material parameters in the noninfarcted border zone (BZ) myocardium adjacent to the infarct (T(max_B)), in the myocardium remote from the infarct (T(max_R)), and in the infarct (T(max_I)) were estimated by minimizing the errors between FE model-predicted and experimentally measured systolic strains and LV volumes using the previously developed optimization scheme. The optimized T(max_B) was found to be significantly depressed relative to T(max_R), while T(max_I) was found to be zero. The myofiber stress in the BZ was found to be elevated, relative to the remote region. This could cause further damage to the contracting myocytes, leading to heart failure.

  6. [Myocardial depression in the burn patient].

    PubMed

    Carrillo-Esper, Raúl; Sánchez-Zúñiga, Martín de Jesús

    2006-01-01

    Myocardial depression and heart failure are frequent complications in critically ill burn patients. The physiopathology is complex and involves the activation of inflammatory pathways, ischemia-reperfusion, oxidative stress and endothelial lesion. Diagnosis should be made early by means of hemodynamic monitoring. Treatment is accomplished by inotropics that act on different pathways of the contractile function and immune response associated with antioxidants and allopurinol.

  7. [Depression and myocardial infaction].

    PubMed

    Testuz, A

    2009-03-04

    Several works show an association between depression and the occurence of a first myocardial infarction. Depression after myocardial infarction seems to be a marker of poorer outcome, regardless of other risk factors or severity of the myocardial infarction. Dysautonomia and alteration of platelet activation are a few physiopathological changes shared by both affections, through which they might be related. Treatment of depression is not associated with better cardiovascular outcome, but selective serotonin reuptake inhibitors have been shown safe and efficient among patients with coronary heart disease. Cognitivo-comportemental approach and cardiovascular rehabilitation program after myocardial infarction also play a role in improving quality of life of the depressed patient with coronary heart disease.

  8. Depressed phosphatidic acid-induced contractile activity of failing cardiomyocytes.

    PubMed

    Tappia, Paramjit S; Maddaford, Thane G; Hurtado, Cecilia; Panagia, Vincenzo; Pierce, Grant N

    2003-01-10

    The effects of phosphatidic acid (PA), a known inotropic agent, on Ca(2+) transients and contractile activity of cardiomyocytes in congestive heart failure (CHF) due to myocardial infarction were examined. In control cells, PA induced a significant increase (25%) in active cell shortening and Ca(2+) transients. The phospholipase C (PLC) inhibitor, 2-nitro-4-carboxyphenyl N,N-diphenylcarbonate, blocked the positive inotropic action induced by PA, indicating that PA induces an increase in contractile activity and Ca(2+) transients through stimulation of PLC. Conversely, in failing cardiomyocytes there was a loss of PA-induced increase in active cell shortening and Ca(2+) transients. PA did not alter resting cell length. Both diastolic and systolic [Ca(2+)] were significantly elevated in the failing cardiomyocytes. In vitro assessment of the cardiac sarcolemmal (SL) PLC activity revealed that the impaired failing cardiomyocyte response to PA was associated with a diminished stimulation of SL PLC activity by PA. Our results identify an important defect in the PA-PLC signaling pathway in failing cardiomyocytes, which may have significant implications for the depressed contractile function during CHF.

  9. Contractile analysis with kriging based on MR myocardial velocity imaging.

    PubMed

    Lee, Su-Lin; Huntbatch, Andrew; Yang, Guang-Zhong

    2008-01-01

    Diagnosis and treatment of coronary artery disease requires a full understanding of the intrinsic contractile mechanics of the heart. MR myocardial velocity imaging is a promising technique for revealing intramural cardiac motion but its ability to depict 3D strain tensor distribution is constrained by anisotropic voxel coverage of velocity imaging due to limited imaging slices and the achievable SNR in patient studies. This paper introduces a novel Kriging estimator for simultaneously improving the tracking and dense inter-slice estimation of the myocardial velocity data. A harmonic embedding technique is employed to determine point correspondence between left ventricle models between subjects, allowing for a statistical shape model to be reconstructed. The use of different semivariograms is investigated for optimal deformation reconstruction. Results from in vivo data demonstrate a marked improvement in tracking myocardial deformation, thus enhancing the potential clinical value of MR myocardial velocity imaging.

  10. Circadian rhythms in fatty acid-induced depression of myocardial contractile function: Potential mediation by the circadian clock within the cardiomyocyte

    USDA-ARS?s Scientific Manuscript database

    Circadian rhythms in susceptibility to cardiovascular (CV) pathologic events (e.g., arrhythmias, myocardial infarction) are well established. These phenomena have been explained largely by diurnal variations in neurohumoral influences, such as sympathetic activity. Circadian clocks are intracellular...

  11. A relationship between ultrasonic integrated backscatter and myocardial contractile function.

    PubMed Central

    Wickline, S A; Thomas, L J; Miller, J G; Sobel, B E; Perez, J E

    1985-01-01

    We have shown previously that the physiologic, mechanical cardiac cycle is associated with a parallel, cardiac cycle-dependent variation of integrated backscatter (IB). However, the mechanisms responsible are not known. The mathematical and physiological considerations explored in the present study suggest that the relationship between backscatter and myocardial contractile function reflects cyclic alterations in myofibrillar elastic parameters, with the juxtaposition of intracellular and extracellular elastic elements that have different intrinsic acoustic impedances providing an appropriately sized scattering interface at the cellular level. Cardiac cycle-dependent changes in the degree of local acoustic impedance mismatch therefore may elicit concomitant changes in backscatter. Because acoustic impedance is determined partly by elastic modulus, changes in local elastic moduli resulting from the non-Hookian behavior of myocardial elastic elements exposed to stretch may alter the extent of impedance mismatch. When cardiac cell mechanical behavior is represented by a three-component Maxwell-type model of muscle mechanics, the systolic decrease in IB that we have observed experimentally is predicted. Our prior observations of regional intramural differences in IB and the dependence of IB on global contractile function are accounted for as well. When the model is tested experimentally by assessing its ability to predict the regional and global behavior of backscatter in response to passive left ventricular distention, good concordance is observed. Images PMID:3908482

  12. Catecholamines and myocardial contractile function during hypodynamia and with an altered thyroid hormone balance

    NASA Technical Reports Server (NTRS)

    Pruss, G. M.; Kuznetsov, V. I.; Zhilinskaya, A. A.

    1980-01-01

    The dynamics of catecholamine content and myocardial contractile function during hypodynamia were studied in 109 white rats whose motor activity was severely restricted for up to 30 days. During the first five days myocardial catecholamine content, contractile function, and physical load tolerance decreased. Small doses of thyroidin counteracted this tendency. After 15 days, noradrenalin content and other indices approached normal levels and, after 30 days, were the same as control levels, although cardiac functional reserve was decreased. Thyroidin administration after 15 days had no noticeable effect. A detailed table shows changes in 17 indices of myocardial contractile function during hypodynamia.

  13. HIP-55 negatively regulates myocardial contractility at the single-cell level.

    PubMed

    Xing, Rui; Li, Shanshan; Liu, Kai; Yuan, Yuan; Li, Qing; Deng, Hao; Yang, Chengzhi; Huang, Jianyong; Zhang, Youyi; Fang, Jing; Xiong, Chunyang; Li, Zijian

    2014-08-22

    Myocardial contractility is crucial for cardiac output and heart function. But the detailed mechanisms of regulation remain unclear. In the present study, we found that HIP-55, an actin binding protein, negatively regulates myocardial contractility at the single-cell level. HIP-55 was overexpressed and knocked down in cardiomyocytes with an adenovirus infection. The traction forces exerted by single cardiomyocyte were measured using cell traction force microscopy. The results showed that HIP-55 knockdown significantly increased the contractility of the cardiomyocytes and HIP-55 overexpression could markedly reverse this process. Furthermore, HIP-55 was obviously co-localized with F-actin in cardiomyocytes, suggesting that HIP-55 regulated cardiac contractile function through the interaction between HIP-55 and F-actin. This study reveals the regulatory mechanisms of myocardial contractility and provides a new target for preventing and treating cardiovascular disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Cardiac-specific overexpression of catalase attenuates lipopolysaccharide-induced myocardial contractile dysfunction: role of autophagy.

    PubMed

    Turdi, Subat; Han, Xuefeng; Huff, Anna F; Roe, Nathan D; Hu, Nan; Gao, Feng; Ren, Jun

    2012-09-15

    Lipopolysaccharide (LPS) from gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complications in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6 mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis, and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity, and carbonyl formation. A Kaplan-Meier curve was constructed for survival after LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice after LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O(2)(-), and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury after LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by the antioxidant N-acetylcysteine and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy.

  15. Cardiac-Specific Overexpression of Catalase Attenuates Lipopolysaccharide-Induced Myocardial Contractile Dysfunction: Role of Autophagy

    PubMed Central

    Turdi, Subat; Han, Xuefeng; Huff, Anna F.; Roe, Nathan D.; Hu, Nan; Gao, Feng; Ren, Jun

    2012-01-01

    Lipopolysaccharide (LPS) from Gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complication in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6 mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity and carbonyl formation. Kaplan-Meier curve was constructed for survival following LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice following LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O2−, and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury following LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by antioxidant NAC and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy. PMID:22902401

  16. Abnormal Myocardial Contractility After Pediatric Heart Transplantation by Cardiac MRI.

    PubMed

    Grotenhuis, Heynric B; Nyns, Emile C A; Kantor, Paul F; Dipchand, Anne I; Greenway, Steven C; Yoo, Shi-Joon; Tomlinson, George; Chaturvedi, Rajiv R; Grosse-Wortmann, Lars

    2017-08-01

    Acute cellular rejection (ACR) compromises graft function after heart transplantation (HTX). The purpose of this study was to describe systolic myocardial deformation in pediatric HTX and to determine whether it is impaired during ACR. Eighteen combined cardiac magnetic resonance imaging (CMR)/endomyocardial biopsy (EMBx) examinations were performed in 14 HTX patients (11 male, age 13.9 ± 4.7 years; 1.2 ± 1.3 years after HTX). Biventricular function and left ventricular (LV) circumferential strain, rotation, and torsion by myocardial tagging CMR were compared to 11 controls as well as between patients with and without clinically significant ACR. HTX patients showed mildly reduced biventricular systolic function when compared to controls [LV ejection fraction (EF): 55 ± 8% vs. 61 ± 3, p = 0.02; right ventricular (RV) EF: 48 ± 7% vs. 53 ± 6, p = 0.04]. Indexed LV mass was mildly increased in HTX patients (67 ± 14 g/m(2) vs. 55 ± 13, p = 0.03). LV myocardial deformation indices were all significantly reduced, expressed by global circumferential strain (-13.5 ± 2.3% vs. -19.1 ± 1.1%, p < 0.01), basal strain (-13.7 ± 3.0% vs. -17.5 ± 2.4%, p < 0.01), mid-ventricular strain (-13.4 ± 2.7% vs. -19.3 ± 2.2%, p < 0.01), apical strain (-13.5 ± 2.8% vs. -19.9 ± 2.0%, p < 0.01), basal rotation (-2.0 ± 2.1° vs. -5.0 ± 2.0°, p < 0.01), and torsion (6.1 ± 1.7° vs. 7.8 ± 1.1°, p < 0.01). EMBx demonstrated ACR grade 0 R in 3 HTX cases, ACR grade 1 R in 11 HTX cases and ACR grade 2 R in 4 HTX cases. When comparing clinically non-significant ACR (grades 0-1 R vs. ACR 2 R), basal rotation, and apical rotation were worse in ACR 2 R patients (-1.4 ± 1.8° vs. -4.2 ± 1.4°, p = 0.01 and 10.2 ± 2.9° vs. 2.8 ± 1.9°, p < 0.01, respectively). Pediatric HTX recipients demonstrate reduced biventricular systolic function and decreased myocardial contractility. Myocardial deformation indices by

  17. The differential effect of propofol on contractility of isolated myocardial trabeculae of rat and guinea-pig

    PubMed Central

    Klarenbosch, J van; Stienen, G J M; Ruijter, W de; Scheffer, G J; Lange, J J de

    2001-01-01

    The effects of propofol on myocardial contractility were studied in rat, in which the contractile activation mainly depends on calcium derived from the sarcoplasmic reticulum (SR), and guinea-pig, in which transsarcolemmal influx of calcium plays a major role. Intact and chemically skinned trabeculae from the right ventricle were studied. Intact trabeculae were electrically stimulated and force development during steady state and post rest contractions was measured. In saponin skinned trabeculae Ca2+ uptake and release by the SR was studied. In Triton skinned trabeculae the influence of propofol on calcium sensitivity of the myofilaments was studied. In intact rat trabeculae propofol in concentrations of 28, 112 and 280 μM did not change peak force development nor the pattern of post rest contraction. In guinea-pig trabeculae propofol significantly reduced peak force to respectively 64, 40 and 23% of control values and the post rest contractions were potentiated. In skinned trabeculae propofol did not affect Ca2+ handling by the SR, nor did it change force production and Ca2+ sensitivity of the myofilaments. This study shows that, in contrast to rat, in guinea-pig propofol directly depresses myocardial contractility, probably by decreasing transsarcolemmal Ca2+ influx. There is no significant influence of propofol on Ca2+ handling by the SR, nor on the contractile proteins. PMID:11159727

  18. Lidocaine Enhances Contractile Function of Ischemic Myocardial Regions in Mouse Model of Sustained Myocardial Ischemia

    PubMed Central

    Kania, Gabriela; Osto, Elena; Jakob, Philipp; Krasniqi, Nazmi; Beck-Schimmer, Beatrice; Blyszczuk, Przemyslaw; Eriksson, Urs

    2016-01-01

    Rationale Perioperative myocardial ischemia is common in high-risk patients. The use of interventional revascularisation or even thrombolysis is limited in this patient subset due to exceedingly high bleeding risks. Blockade of voltage-gated sodium channels (VGSC) with lidocaine had been suggested to reduce infarct size and cardiomyocyte cell death in ischemia/reperfusion models. However, the impact of lidocaine on cardiac function during sustained ischemia still remains unclear. Methods Sustained myocardial ischemia was induced by ligation of the left anterior descending artery in 12–16 weeks old male BALB/c mice. Subcutaneous lidocaine (30 mg/kg) was used to block VGSC. Cardiac function was quantified at baseline and at 72h by conventional and speckle-tracking based echocardiography to allow high-sensitivity in vivo phenotyping. Infarct size and cardiomyocyte cell death were assessed post mortem histologically and indirectly using troponin measurements. Results Ischemia strongly impaired both, global systolic and diastolic function, which were partially rescued in lidocaine treated in mice. No differences regarding infarct size and cardiomyocyte cell death were observed. Mechanistically, and as shown with speckle-tracking analysis, lidocaine specifically improves residual contractility in the ischemic but not in the remote, non-ischemic myocardium. Conclusion VGSC blockade with lidocaine rescues function of ischemic myocardium as a potential bridging to revascularisation in the setting of perioperative myocardial ischemia. PMID:27140425

  19. Effects of minoxidil and nitroprusside on reflex increases in myocardial contractility.

    PubMed Central

    Robie, N W

    1978-01-01

    1 The effects of nitroprusside and minoxidil on increases in myocardial contractility resulting from carotid artery occlusion were investigated in anaesthetized dogs. The results were compared with those produced by intravenous influsion of noradrenaline. 2 Nitroprusside and minoxidil attenuated the pressor responses produced by carotid artery occlusion. 3 Nitroprusside, but not minoxidil, attenuated the maximal myocardial contractility resulting from carotid occlusion. 4 The pressor and contractility responses to noradrenaline infusion were unaffected by either agent. 5 Nitroprusside failed to alter the myocardial responses produced by dimethylphenylpiperazinium. 6 These results, in conjunction with those of other investigators who have demonstrated that nitroprusside does not affect the release of noradrenaline from adrenergic neurons, suggest that nitroprusside may inhibit sympathetic nervous system reflex activity via an afferent and/or central component. PMID:620094

  20. Effect of NO Synthase Blockade on Myocardial Contractility of Hypokinetic Rats during Stimulation of β-Adrenoreceptors.

    PubMed

    Zaripova, R I; Ziyatdinova, N I; Zefirov, T L

    2016-06-01

    Stimulation of β-adrenoreceptors with low (10(-8) and 10(-7) M) or high (10(-6) M) doses of isoproterenol in hypokinetic rats treated with L-NAME (a non-selective blocker of NO synthases) decreased or increased myocardial contractility, respectively. In control rats, all examined doses of isoproterenol used under blockade of NO synthases inhibited myocardial contractility.

  1. Carvedilol Prevents Ovariectomy-Induced Myocardial Contractile Dysfunction in Female Rat

    PubMed Central

    Ribeiro, Rogerio Faustino; Potratz, Felipe F.; Pavan, Brunella M. M.; Forechi, Ludimila; Lima, Filipe Lugon Moulin; Fiorim, Jonaina; Fernandes, Aurelia Araujo; Vassallo, Dalton Valentim; Stefanon, Ivanita

    2013-01-01

    Carvedilol has beneficial effects on cardiac function in patients with heart failure but its effect on ovariectomy-induced myocardial contractile dysfunction remains unclear. Estrogen deficiency induces myocardial contractile dysfunction and increases cardiovascular disease risk in postmenopausal women. Our aim was to investigate whether carvedilol, a beta receptor blocker, would prevent ovariectomy-induced myocardial contractile dysfunction. Female rats (8 weeks old) that underwent bilateral ovariectomy were randomly assigned to receive daily treatment with carvedilol (OVX+CAR, 20 mg/kg), placebo (OVX) and SHAM for 58 days. Left ventricle papillary muscle was mounted for isometric tension recordings. The inotropic response to Ca2+ (0.62 to 3.75 mM) and isoproterenol (Iso 10−8 to 10−2 M) were assessed. Expression of calcium handling proteins was measured by western blot analysis. Carvedilol treatment in the OVX animals: prevented weight gain and slight hypertrophy, restored the reduced positive inotropic responses to Ca2+ and isoproterenol, prevented the reduction in SERCA2a expression, abolished the increase in superoxide anion production, normalized the increase in p22phox expression, and decreased serum angiotensin converting enzyme (ACE) activity. This study demonstrated that myocardial contractile dysfunction and SERCA2a down regulation were prevented by carvedilol treatment. Superoxide anion production and NADPH oxidase seem to be involved in this response. PMID:23308166

  2. Circadian rhythms in myocardial metabolism and contractile function; influence of workload and oleate

    USDA-ARS?s Scientific Manuscript database

    Multiple extra-cardiac stimuli, such as workload and circulating nutrients (e.g., fatty acids), known to influence myocardial metabolism and contractile function exhibit marked circadian rhythms. The aim of the present study was to investigate whether the rat heart exhibits circadian rhythms in its ...

  3. Dilated Cardiomyopathy: Normalized Multiparametric Myocardial Strain Predicts Contractile Recovery

    PubMed Central

    Henn, Matthew C.; Lawrance, Christopher P.; Kar, Julia; Cupps, Brian P.; Kulshrestha, Kevin; Koerner, Danielle; Wallace, Kathleen; Joseph, Susan; Ewald, Greg; Pasque, Michael K.

    2015-01-01

    Background Left ventricular (LV) contractile injury in dilated cardiomyopathy (DCM) may occur in a consistently heterogeneous distribution, suggesting that early injury “sentinel” regions may have prognostic significance. Heightened surveillance of these regions with high-resolution contractile metrics may predict recovery in DCM. Methods Multiple 3D strain parameters were calculated at each of 15,300 LV grid-points from systolic displacement data obtained from cardiac MRI in 124 test subjects. In 24 DCM patients, z-scores for two strain parameters at each grid-point were calculated by comparison of patient-specific strain values to respective point-specific mean and standard deviation values from a normal human strain database (n=100). Multiparametric strain z-scores were averaged over 6 LV regions at basilar, mid, and apical levels (18 sub-regions). DCM patients were stratified into 3 groups based on a blinded review of clinical contractile recovery (complete[n=7]; incomplete[n=7]; none[n=10]). Results Basilar-septal sub-regions were consistently heavily injured. Basilar-septal z-scores were significantly larger (worse) than those for the rest of the LV (2.73±1.27 vs 2.22±0.83; p=0.011) and lateral wall (2.73±1.27 vs 1.44±0.72; p<0.001). All patients with sentinel region average multiparametric strain z-scores <2 standard deviations (n=6) experienced complete recovery, while 17/18 DCM patients with z-scores >2 standard deviations experienced incomplete or no contractile recovery. Conclusions Contractile injury in DCM is heterogeneous with basilar-septal regions injured more than lateral regions. The targeting of early-injury sentinel regions for heightened surveillance with high-resolution metrics of micro-regional contractile function may accurately predict recovery on medical therapy. A 2 standard deviation z-score threshold may predict contractile recovery. PMID:26228597

  4. Impact of preserved myocardial contractile function in the segments attached to the papillary muscles on reduction in functional mitral regurgitation.

    PubMed

    Tatsumi, Kazuhiro; Tanaka, Hidekazu; Kataoka, Toshiya; Norisada, Kazuko; Onishi, Tetsuari; Kawai, Hiroya; Hirata, Ken-ichi

    2013-02-01

    Effectiveness of functional mitral regurgitation (FMR) in heart failure patients is of growing importance for patient prognosis. The purpose of this study was to investigate whether regional myocardial contractile function as assessed by tissue Doppler strain rate imaging can predict reduction in FMR caused by dobutamine. Fifty-one patients with depressed left ventricular (LV) ejection fraction (32 ± 9%) secondary to dilated cardiomyopathy and FMR underwent evaluation of effective regurgitant orifice (ERO) of FMR, mitral valve deformation, global LV remodeling, and regional myocardial contractile function assessed by longitudinal peak systolic strain rate (Ssr) in 6 mid-LV segments from standard apical views. We also determined the average Ssr of segments attached to the papillary muscles, that is, the inferior, inferolateral, and anterolateral segments (PM segments Ssr). Low-dose (10 μg/kg per minute) dobutamine-induced reduction in ERO was compared with baseline variables. Baseline valve tenting was associated with dobutamine-induced reduction in ERO (r = -0.30, P < 0.05). Receiver operating characteristic curve analysis showed that baseline valve tenting, LV sphericity index, inferior Ssr, inferolateral Ssr, and PM segments Ssr were predictors of dobutamine-induced ≥30% reduction in ERO. Importantly, only PM segments Ssr predicted dobutamine-induced ≥20% reduction in valve tenting with area under the curve of 0.67 (P < 0.05). Preserved myocardial contractile function in the segments attached to the PMs was associated with dobutamine-induced reduction in mitral valve tenting and FMR, suggesting that our findings are important for improvement in cardiac function and FMR with medical treatment. © 2012, Wiley Periodicals, Inc.

  5. Albumin resuscitation improves ventricular contractility and myocardial tissue oxygenation in rat endotoxemia.

    PubMed

    Tokunaga, Chiho; Bateman, Ryon M; Boyd, John; Wang, Yingjin; Russell, James A; Walley, Keith R

    2007-05-01

    Fluid resuscitation to improve delivery of oxygen to vital organs is a principal clinical intervention for septic patients. We previously reported that albumin resuscitation in rat endotoxemia improved contractility in isolated cardiomyocytes, but whether this effect occurs in vivo is unknown. We hypothesized that albumin resuscitation would improve decreased ventricular contractility and myocardial tissue oxygenation in vivo. Randomized, controlled, prospective animal study. University animal laboratory. Male Sprague-Dawley rats (250-350 g). Rats were randomized into three groups: control with no lipopolysaccharide (n = 8), lipopolysaccharide (10 mg/kg) without albumin resuscitation (n = 8), and lipopolysaccharide with albumin resuscitation (n = 6). Five hours after lipopolysaccharide injection, animals were resuscitated with 10 mL/kg 5% rat albumin in 0.9% saline. Six hours after 10 mL/kg lipopolysaccharide, a pressure-volume conductance catheter (MIKRO-Tip 2.0-Fr, Millar Instruments, Houston, TX) was inserted into the left ventricle to quantify maximum elastance as an index of contractility. Myocardial tissue Po2 was measured using a fiberoptic oxygen probe. Maximum elastance decreased after lipopolysaccharide relative to control (47%, from 5.9 +/- 0.8 to 3.1 +/- 0.4 mm Hg/microL, p < .05). Albumin resuscitation prevented the lipopolysaccharide-induced decrease in maximum elastance (7.0 +/- 1.2 mm Hg/microL, p < .05 vs. lipopolysaccharide). Myocardial tissue Po2 was reduced in endotoxemia compared with control (53%, from 10.1 +/- 0.9 to 4.7 +/- 0.6 mm Hg, p < .05), and albumin resuscitation improved the lipopolysaccharide-induced tissue hypoxia toward the control value (9.0 +/- 1.4 mm Hg, p < .05). Albumin resuscitation improved decreased ventricular contractility and myocardial oxygenation in endotoxemic rats. This result suggests that albumin resuscitation may improve ventricular dysfunction by improving myocardial hypoxia.

  6. [CHANGES OF GLOBAL AND LOCAL MYOCARDIAL CONTRACTILITY OF CHERNOBYL ACCIDENT CLEAN-UP WORKERS WITH STABLE ANGINA].

    PubMed

    Nastina, O

    2014-01-01

    Changes of global and local myocardial contractility of Chernobyl accident clean-up workers (ChA CW) with stable angina were investigated. There were discovered that regular long-term treatment of ChA CW with stable angina using of antiischemic and metabolic drugs promoted to stabilization of global and local myocardial contractility indexes. Ejection fraction, degree of contraction of front-rear systolic left ventricle size, systolic thickness of interventricular septum sufficiently increased. Step-by-step worsening of global and local myocardial contractility indexes in cases of non-regular treatment was taken place. Sufficient differences between indexes of ejection fraction, left ventricle end-diastolic volume, systolic thickness and excursion of interventricular septum in stable angina patients of general population and ChA CW were discovered. Results of global and local myocardial contractility monitoring in ChA CW with stable angina substantiate the advisability of long-term supporting treatment using evidence-based drugs.

  7. Comparison of effects of sevoflurane/nitrous oxide and enflurane/nitrous oxide on myocardial contractility in humans. Load-independent and noninvasive assessment with transesophageal echocardiography.

    PubMed

    Kikura, M; Ikeda, K

    1993-08-01

    Few studies have been reported on the direct depressive effects of sevoflurane on myocardial contractility in humans. Direct assessment of contractile state is possible by examining the slope of left ventricular end-systolic wall stress (LVESWS) versus velocity of circumferential fiber shortening with heart rate corrected (Vcfc) relationship with echocardiography. Using this contractile index, the effects of sevoflurane/nitrous oxide were compared with that of enflurane/nitrous oxide on myocardia contractility in humans. Twenty-eight subjects were studied during either sevoflurane/nitrous oxide or enflurane/nitrous oxide anesthesia. Systolic, diastolic, and mean arterial blood pressure, heart rate, and transesophageal echocardiographic data were determined at 0.9 MAC and 1.35 MAC of sevoflurane or enflurane, both with 60% N2O, and at 1.6 MAC of sevoflurane with 60% N2O. Furthermore, another 28 awake subjects were studied with transthoracic echocardiography to examine the contractile state at awake state, and echocardiograms, heart rate, and arterial blood pressure were recorded. Heart rate did not changed significantly in either group. Enflurane/nitrous oxide produced significantly greater decrease in arterial blood pressure than did sevoflurane/nitrous oxide. The Vcfc at each anesthetic dose in both anesthetic groups was significantly less than that in the awake subjects group. Sevoflurane/nitrous oxide produced no significant change in Vcfc at 1.5 MAC, whereas enflurane/nitrous oxide caused significant dose-related decrease in Vcfc. Vcfc produced by sevoflurane/nitrous oxide was significantly greater than that produced by enflurane/nitrous oxide. There was no significant difference in LVESWS (index of afterload) between the groups. With respect to the LVESWS-Vcfc relationship, myocardial contractility was significantly depressed in both the sevoflurane and the enflurane groups compared to the awake subjects group. However, myocardial contractility produced by

  8. Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression.

    PubMed

    Bray, Molly S; Shaw, Chad A; Moore, Michael W S; Garcia, Rodrigo A P; Zanquetta, Melissa M; Durgan, David J; Jeong, William J; Tsai, Ju-Yun; Bugger, Heiko; Zhang, Dongfang; Rohrwasser, Andreas; Rennison, Julie H; Dyck, Jason R B; Litwin, Sheldon E; Hardin, Paul E; Chow, Chi-Wing; Chandler, Margaret P; Abel, E Dale; Young, Martin E

    2008-02-01

    Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology is poorly understood. We hypothesized that the circadian clock within the cardiomyocyte influences diurnal variations in myocardial biology. We, therefore, generated a cardiomyocyte-specific circadian clock mutant (CCM) mouse to test this hypothesis. At 12 wk of age, CCM mice exhibit normal myocardial contractile function in vivo, as assessed by echocardiography. Radiotelemetry studies reveal attenuation of heart rate diurnal variations and bradycardia in CCM mice (in the absence of conduction system abnormalities). Reduced heart rate persisted in CCM hearts perfused ex vivo in the working mode, highlighting the intrinsic nature of this phenotype. Wild-type, but not CCM, hearts exhibited a marked diurnal variation in responsiveness to an elevation in workload (80 mmHg plus 1 microM epinephrine) ex vivo, with a greater increase in cardiac power and efficiency during the dark (active) phase vs. the light (inactive) phase. Moreover, myocardial oxygen consumption and fatty acid oxidation rates were increased, whereas cardiac efficiency was decreased, in CCM hearts. These observations were associated with no alterations in mitochondrial content or structure and modest mitochondrial dysfunction in CCM hearts. Gene expression microarray analysis identified 548 and 176 genes in atria and ventricles, respectively, whose normal diurnal expression patterns were altered in CCM mice. These studies suggest that the cardiomyocyte circadian clock influences myocardial contractile function, metabolism, and gene expression.

  9. Creatine Kinase-Overexpression Improves Myocardial Energetics, Contractile Dysfunction and Survival in Murine Doxorubicin Cardiotoxicity

    PubMed Central

    Gupta, Ashish; Rohlfsen, Cory; Leppo, Michelle K.; Chacko, Vadappuram P.; Wang, Yibin; Steenbergen, Charles; Weiss, Robert G.

    2013-01-01

    Doxorubicin (DOX) is a commonly used life-saving antineoplastic agent that also causes dose-dependent cardiotoxicity. Because ATP is absolutely required to sustain normal cardiac contractile function and because impaired ATP synthesis through creatine kinase (CK), the primary myocardial energy reserve reaction, may contribute to contractile dysfunction in heart failure, we hypothesized that impaired CK energy metabolism contributes to DOX-induced cardiotoxicity. We therefore overexpressed the myofibrillar isoform of CK (CK-M) in the heart and determined the energetic, contractile and survival effects of CK-M following weekly DOX (5mg/kg) administration using in vivo31P MRS and 1H MRI. In control animals, in vivo cardiac energetics were reduced at 7 weeks of DOX protocol and this was followed by a mild but significant reduction in left ventricular ejection fraction (EF) at 8 weeks of DOX, as compared to baseline. At baseline, CK-M overexpression (CK-M-OE) increased rates of ATP synthesis through cardiac CK (CK flux) but did not affect contractile function. Following DOX however, CK-M-OE hearts had better preservation of creatine phosphate and higher CK flux and higher EF as compared to control DOX hearts. Survival after DOX administration was significantly better in CK-M-OE than in control animals (p<0.02). Thus CK-M-OE attenuates the early decline in myocardial high-energy phosphates and contractile function caused by chronic DOX administration and increases survival. These findings suggest that CK impairment plays an energetic and functional role in this DOX-cardiotoxicity model and suggests that metabolic strategies, particularly those targeting CK, offer an appealing new strategy for limiting DOX-associated cardiotoxicity. PMID:24098344

  10. Impaired contractile recovery after low-flow myocardial ischemia in a porcine model of metabolic syndrome.

    PubMed

    Huang, Janice V; Lu, Li; Ye, Shuyu; Bergman, Bryan C; Sparagna, Genevieve C; Sarraf, Mohammad; Reusch, Jane E B; Greyson, Clifford R; Schwartz, Gregory G

    2013-03-15

    Clinical metabolic syndrome conveys a poor prognosis in patients with acute coronary syndrome, not fully accounted for by the extent of coronary atherosclerosis. To explain this observation, we determined whether postischemic myocardial contractile and metabolic function are impaired in a porcine dietary model of metabolic syndrome without atherosclerosis. Micropigs (n = 28) were assigned to a control diet (low fat, no added sugars) or an intervention diet (high saturated fat and simple sugars, no added cholesterol) for 7 mo. The intervention diet produced obesity, hypertension, dyslipidemia, and impaired glucose tolerance, but not atherosclerosis. Under open-chest, anesthetized conditions, pigs underwent 45 min of low-flow myocardial ischemia and 120 min of reperfusion. In both diet groups, contractile function was similar at baseline and declined similarly during ischemia. However, after 120 min of reperfusion, regional work recovered to 21 ± 12% of baseline in metabolic syndrome pigs compared with 61 ± 13% in control pigs (P = 0.01). Ischemia-reperfusion caused a progressive decline in mechanical/metabolic efficiency (regional work/O2 consumption) in metabolic syndrome hearts, but not in control hearts. Metabolic syndrome hearts demonstrated altered fatty acyl composition of cardiolipin and increased Akt phosphorylation in both ischemic and nonischemic regions, suggesting tonic activation. Metabolic syndrome hearts used more fatty acid than control hearts (P = 0.03). When fatty acid availability was restricted by prior insulin exposure, differences between groups in postischemic contractile recovery and mechanical/metabolic efficiency were eliminated. In conclusion, pigs with characteristics of metabolic syndrome demonstrate impaired contractile and metabolic recovery after low-flow myocardial ischemia. Contributory mechanisms may include remodeling of cardiolipin, abnormal activation of Akt, and excessive utilization of fatty acid substrates.

  11. Impaired contractile recovery after low-flow myocardial ischemia in a porcine model of metabolic syndrome

    PubMed Central

    Huang, Janice V.; Lu, Li; Ye, Shuyu; Bergman, Bryan C.; Sparagna, Genevieve C.; Sarraf, Mohammad; Reusch, Jane E. B.; Greyson, Clifford R.

    2013-01-01

    Clinical metabolic syndrome conveys a poor prognosis in patients with acute coronary syndrome, not fully accounted for by the extent of coronary atherosclerosis. To explain this observation, we determined whether postischemic myocardial contractile and metabolic function are impaired in a porcine dietary model of metabolic syndrome without atherosclerosis. Micropigs (n = 28) were assigned to a control diet (low fat, no added sugars) or an intervention diet (high saturated fat and simple sugars, no added cholesterol) for 7 mo. The intervention diet produced obesity, hypertension, dyslipidemia, and impaired glucose tolerance, but not atherosclerosis. Under open-chest, anesthetized conditions, pigs underwent 45 min of low-flow myocardial ischemia and 120 min of reperfusion. In both diet groups, contractile function was similar at baseline and declined similarly during ischemia. However, after 120 min of reperfusion, regional work recovered to 21 ± 12% of baseline in metabolic syndrome pigs compared with 61 ± 13% in control pigs (P = 0.01). Ischemia-reperfusion caused a progressive decline in mechanical/metabolic efficiency (regional work/O2 consumption) in metabolic syndrome hearts, but not in control hearts. Metabolic syndrome hearts demonstrated altered fatty acyl composition of cardiolipin and increased Akt phosphorylation in both ischemic and nonischemic regions, suggesting tonic activation. Metabolic syndrome hearts used more fatty acid than control hearts (P = 0.03). When fatty acid availability was restricted by prior insulin exposure, differences between groups in postischemic contractile recovery and mechanical/metabolic efficiency were eliminated. In conclusion, pigs with characteristics of metabolic syndrome demonstrate impaired contractile and metabolic recovery after low-flow myocardial ischemia. Contributory mechanisms may include remodeling of cardiolipin, abnormal activation of Akt, and excessive utilization of fatty acid substrates. PMID:23335793

  12. Adenoviral gene transfer of Akt enhances myocardial contractility and intracellular calcium handling

    PubMed Central

    Cittadini, A; Monti, MG; Iaccarino, G; Di Rella, F; Tsichlis, PN; Di Gianni, A; Strömer, H; Sorriento, D; Peschle, C; Trimarco, B; Saccà, L; Condorelli, G

    2010-01-01

    The serine-threonine kinase Akt/PKB mediates stimuli from different classes of cardiomyocyte receptors, including the growth hormone/insulin like growth factor and the β-adrenergic receptors. Whereas the growth-promoting and antiapoptotic properties of Akt activation are well established, little is known about the effects of Akt on myocardial contractility, intracellular calcium (Ca2+) handling, oxygen consumption, and β-adrenergic pathway. To this aim, Sprague–Dawley rats were subjected to a wild-type Akt in vivo adenoviral gene transfer using a catheter-based technique combined with aortopulmonary crossclamping. Left ventricular (LV) contractility and intracellular Ca2+ handling were evaluated in an isolated isovolumic buffer-perfused, aequorin-loaded whole heart preparations 10 days after the surgery. The Ca2+–force relationship was obtained under steady-state conditions in tetanized muscles. No significant hypertrophy was detected in adenovirus with wild-type Akt (Ad.Akt) versus controls rats (LV-to-body weight ratio 2.6±0.2 versus 2.7±0.1 mg/g, controls versus Ad.Akt, P, NS). LV contractility, measured as developed pressure, increased by 41% in Ad.Akt. This was accounted for by both more systolic Ca2+ available to the contractile machinery (+19% versus controls) and by enhanced myofilament Ca2+ responsiveness, documented by an increased maximal Ca2+-activated pressure (+19% versus controls) and a shift to the left of the Ca2+–force relationship. Such increased contractility was paralleled by a slight increase of myocardial oxygen consumption (14%), while titrated dose of dobutamine providing similar inotropic effect augmented oxygen consumption by 39% (P<0.01). Phospholamban, calsequestrin, and ryanodine receptor LV mRNA and protein content were not different among the study groups, while sarcoplasmic reticulum Ca2+ ATPase protein levels were significantly increased in Ad.Akt rats. β-Adrenergic receptor density, affinity, kinase-1 levels, and

  13. Doppler-derived myocardial systolic strain rate is a strong index of left ventricular contractility

    NASA Technical Reports Server (NTRS)

    Greenberg, Neil L.; Firstenberg, Michael S.; Castro, Peter L.; Main, Michael; Travaglini, Agnese; Odabashian, Jill A.; Drinko, Jeanne K.; Rodriguez, L. Leonardo; Thomas, James D.; Garcia, Mario J.

    2002-01-01

    BACKGROUND: Myocardial fiber strain is directly related to left ventricular (LV) contractility. Strain rate can be estimated as the spatial derivative of velocities (dV/ds) obtained by tissue Doppler echocardiography (TDE). The purposes of the study were (1) to determine whether TDE-derived strain rate may be used as a noninvasive, quantitative index of contractility and (2) to compare the relative accuracy of systolic strain rate against TDE velocities alone. METHODS AND RESULTS: TDE color M-mode images of the interventricular septum were recorded from the apical 4-chamber view in 7 closed-chest anesthetized mongrel dogs during 5 different inotropic stages. Simultaneous LV volume and pressure were obtained with a combined conductance-high-fidelity pressure catheter. Peak elastance (Emax) was determined as the slope of end-systolic pressure-volume relationships during caval occlusion and was used as the gold standard of LV contractility. Peak systolic TDE myocardial velocities (Sm) and peak (epsilon'(p)) and mean (epsilon'(m)) strain rates obtained at the basal septum were compared against Emax by linear regression. Emax as well as TDE systolic indices increased during inotropic stimulation with dobutamine and decreased with the infusion of esmolol. A stronger association was found between Emax and epsilon'(p) (r=0.94, P<0.01, y=0.29x+0.46) and epsilon'(m) (r=0.88, P<0.01) than for Sm (r=0.75, P<0.01). CONCLUSIONS: TDE-derived epsilon'(p) and epsilon'(m) are strong noninvasive indices of LV contractility. These indices appear to be more reliable than S(m), perhaps by eliminating translational artifact.

  14. Endomyocardial upregulation of beta1 adrenoreceptor gene expression and myocardial contractile reserve following cardiac resynchronization therapy.

    PubMed

    Vanderheyden, Marc; Mullens, Wilfried; Delrue, Leen; Goethals, Marc; Verstreken, Sofie; Wijns, William; de Bruyne, Bernard; Bartunek, Jozef

    2008-03-01

    Congestive heart failure (CHF) is associated with a blunted force-frequency relation (FFR) and myocardial contractile reserve (MCR) partially from a downregulation of beta1-adrenoreceptors (beta1-AR). We investigated whether acute and chronic cardiac resynchronization therapy (CRT) was capable of reversing the blunted FFR and MCR and if this was associated with upregulation of beta1-AR. Left ventricle dP/dtmax was invasively measured in 10 CHF patients (New York Heart Association class > or =3; ejection fraction <25%) during incremental dual chamber (DDD)-CRT pacing at 70, 90, 110, and 130 beats/min, with and without continuous infusion of intravenous dobutamine, immediately after CRT implantation (BL) and 4 months later (FU). In a subgroup of 5 patients, serial left ventricle beta1 and beta2-AR gene expression was measured using reverse transcriptase-polymerase chain reaction. Four months after the initiation of resynchronization therapy, DDD-CRT pacing results in a significant upward shift of the heart rate versus LV dP/dtmax relationship (P < .01) with force frequency amplification as evidenced by the steeper slope of the force frequency response (P = .04). Infusion of dobutamine recruits myocardial contractile reserve and increases the heart rate versus LV dP/dtmax relationship at BL and at FU (both P < .05). However, only at follow-up was an additional force frequency amplification noticed (P < .05) during dobutamine infusion. This observation was paralleled by a significant upregulation of beta1-AR gene expression (P = .02). Chronic CRT is associated with a partial restoration of the FFR and with a recruitment in myocardial contractile reserve, which is paralleled by upregulation of beta1-AR.

  15. Role of transient receptor potential vanilloid 4 in the effect of osmotic pressure on myocardial contractility in rat.

    PubMed

    Li, Jing; Wang, Ming-Huan; Wang, Le; Tian, Yang; Duan, Ya-Qi; Luo, Hong-Yan; Hu, Xin-Wu; Hescheler, Jüergen; Tang, Ming

    2008-04-25

    The aim of the present study was to investigate the influence of osmotic pressure on myocardial contractility and the possible mechanism. Electrical stimulation was used to excite papillary muscles of the left ventricle of Sprague-Dawley (SD) rats. The contractilities of myocardium in hyposmotic, isosmotic, and hyperosmotic perfusates were recorded. The influences of agonist and antagonist of the transient receptor potential vanilloid 4 (TRPV4) on the contractility of myocardium under hyposmotic, isosmotic and hyperosmotic conditions were observed. The results were as follows: (1) Compared with that under isosmotic condition (310 mOsm/L), the myocardial contractility was increased by 11.5%, 21.5% and 25.0% (P<0.05) under hyposmotic conditions when the osmotic pressure was at 290, 270 and 230 mOsm/L, respectively; and was decreased by 16.0%, 23.7% and 55.2% (P<0.05) under hyperosmotic conditions when the osmotic pressure was at 350, 370 and 390 mOsm/L, respectively. (2) When ruthenium red (RR), an antagonist of TRPV4, was added to the hyposmotic perfusate (270 mOsm/L), the positive inotropic effect of hyposmia was restrained by 36% (P<0.01); and when RR was added to the hyperosmotic perfusate (390 mOsm/L), the inhibitory effect of hyperosmia on myocardial contractility was increased by 56.1% (P<0.01). (3) When 4-α-phorbol-12,13-didecanoate (4α-PDD), an agonist of TRPV4, was added to the isosmotic perfusate (310 mOsm/L), the myocardial contractility did not change; and when 4α-PDD was added to the hyperosmotic perfusate (390 mOsm/L), the inhibition of myocardial contractility by hyperosmia was increased by 27.1% (P<0.01). These results obtained indicate that TRPV4 is possibly involved in the osmotic pressure-induced inotropic effect.

  16. Myocardial contractility in the echo lab: molecular, cellular and pathophysiological basis

    PubMed Central

    Bombardini, Tonino

    2005-01-01

    In the standard accepted concept, contractility is the intrinsic ability of heart muscle to generate force and to shorten, independently of changes in the preload or afterload with fixed heart rates. At molecular level the crux of the contractile process lies in the changing concentrations of Ca2+ ions in the myocardial cytosol. Ca2+ ions enter through the calcium channel that opens in response to the wave of depolarization that travels along the sarcolemma. These Ca2+ ions "trigger" the release of more calcium from the sarcoplasmic reticulum (SR) and thereby initiate a contraction-relaxation cycle. In the past, several attempts were made to transfer the pure physiological concept of contractility, expressed in the isolated myocardial fiber by the maximal velocity of contraction of unloaded muscle fiber (Vmax), to the in vivo beating heart. Suga and Sagawa achieved this aim by measuring pressure/volume loops in the intact heart: during a positive inotropic intervention, the pressure volume loop reflects a smaller end-systolic volume and a higher end-systolic pressure, so that the slope of the pressure volume relationship moves upward and to the left. The pressure volume relationship is the most reliable index for assessing myocardial contractility in the intact circulation and is almost insensitive to changes in preload and after load. This is widely used in animal studies and occasionally clinically. The limit of the pressure volume relationship is that it fails to take into account the frequency-dependent regulation of contractility: the frequency-dependent control of transmembrane Ca2+ entry via voltage-gated Ca2+ channels provides cardiac cells with a highly sophisticated short-term system for the regulation of intracellular Ca2+ homeostasis. An increased stimulation rate increases the force of contraction: the explanation is repetitive Ca2+ entry with each depolarization and, hence, an accumulation of cytosolic calcium. As the heart fails, there is a change in

  17. Depressed contractile function due to canine mitral regurgitation improves after correction of the volume overload.

    PubMed Central

    Nakano, K; Swindle, M M; Spinale, F; Ishihara, K; Kanazawa, S; Smith, A; Biederman, R W; Clamp, L; Hamada, Y; Zile, M R

    1991-01-01

    It is known that long-standing volume overload on the left ventricle due to mitral regurgitation eventually leads to contractile dysfunction. However, it is unknown whether or not correction of the volume overload can lead to recovery of contractility. In this study we tested the hypothesis that depressed contractile function due to volume overload in mitral regurgitation could return toward normal after mitral valve replacement. Using a canine model of mitral regurgitation which is known to produce contractile dysfunction, we examined contractile function longitudinally in seven dogs at baseline, after 3 mo of mitral regurgitation, 1 mo after mitral valve replacement, and 3 mo after mitral valve replacement. After 3 mo of mitral regurgitation (regurgitant fraction 0.62 +/- 0.04), end-diastolic volume had nearly doubled from 68 +/- 6.8 to 123 +/- 12.1 ml (P less than 0.05). All five indices of contractile function which we examined were depressed. For instance, maximum fiber elastance (EmaxF) obtained by assessment of time-varying elastance decreased from 5.95 +/- 0.71 to 2.25 +/- 0.18 (P less than 0.05). The end-systolic stiffness constant (k) was also depressed from 4.2 +/- 0.4 to 2.1 +/- 0.3. 3 mo after mitral valve replacement all indexes of contractile function had returned to or toward normal (e.g., EmaxF 3.65 +/- 0.21 and k 4.2 +/- 0.3). We conclude that previously depressed contractile function due to volume overload can improve after correction of the overload. PMID:1828252

  18. Endoplasmic reticulum Chaperon Tauroursodeoxycholic Acid Alleviates Obesity-Induced Myocardial Contractile Dysfunction

    PubMed Central

    Ceylan-Isik, Asli F.; Sreejayan, Nair; Ren, Jun

    2010-01-01

    ER stress is involved in the pathophysiology of obesity although little is known about the role of ER stress on obesity-associated cardiac dysfunction. This study was designed to examine the effect of ER chaperone tauroursodeoxycholic acid (TUDCA) on obesity-induced myocardial dysfunction. Adult lean and ob/ob obese mice were treated TUDCA (50 mg/kg/d, p.o.) or vehicle for 5 wks. Oral glucose tolerance test (OGTT) was performed. Echocardiography, cardiomyocyte contractile and intracellular Ca2+ properties were assessed. Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity and protein expression of intracellular Ca2+ regulatory proteins were measured using 45Ca2+ uptake and Western blot analysis, respectively. Insulin signaling, ER stress markers and HSP90 were evaluated. Our results revealed that chronic TUDCA treatment lower systolic blood pressure and lessened glucose intolerance in obese mice. Obesity led to increased diastolic diameter, cardiac hypertrophy, compromised fractional shortening, cardiomyocyte contractile (peak shortening, maximal velocity of shortening/relengthening, and duration of contraction/relaxation) and intracellular Ca2+ properties, all of which were significantly attenuated by TUDCA. TUDCA reconciled obesity-associated decreased in SERCA activity and expression, and increase in serine phosphorylation of IRS, total and phosphorylated cJun, ER stress markers Bip, peIF2α and pPERK. Obesity-induced changes in phospholamban and HSP90 were unaffected by TUDCA. In vitro finding revealed that TUDCA ablated palmitic acid-induced cardiomyocyte contractile dysfunction. In summary, these data depicted a pivotal role of ER stress in obesity-associated cardiac contractile dysfunction, suggesting the therapeutic potential of ER stress as a target in the management of cardiac dysfunction in obesity. PMID:21035453

  19. Myocardial Contractile Dysfunction Is Present without Histopathology in a Mouse Model of Limb-Girdle Muscular Dystrophy-2F and Is Prevented after Claudin-5 Virotherapy.

    PubMed

    Milani-Nejad, Nima; Schultz, Eric J; Slabaugh, Jessica L; Janssen, Paul M L; Rafael-Fortney, Jill A

    2016-01-01

    Mutations in several members of the dystrophin glycoprotein complex lead to skeletal and cardiomyopathies. Cardiac care for these muscular dystrophies consists of management of symptoms with standard heart medications after detection of reduced whole heart function. Recent evidence from both Duchenne muscular dystrophy patients and animal models suggests that myocardial dysfunction is present before myocardial damage or deficiencies in whole heart function, and that treatment prior to heart failure symptoms may be beneficial. To determine whether this same early myocardial dysfunction is present in other muscular dystrophy cardiomyopathies, we conducted a physiological assessment of cardiac function at the tissue level in the δ-sarcoglycan null mouse model (Sgcd(-/-)) of Limb-girdle muscular dystrophy type 2F. Baseline cardiac contractile force measurements using ex vivo intact linear muscle preparations, were severely depressed in these mice without the presence of histopathology. Virotherapy withclaudin-5 prevents the onset of cardiomyopathy in another muscular dystrophy model. After virotherapy with claudin-5, the cardiac contractile force deficits in Sgcd(-/-) mice are no longer significant. These studies suggest that screening Limb-girdle muscular dystrophy patients using methods that detect earlier functional changes may provide a longer therapeutic window for cardiac care.

  20. Myocardial Contractile Dysfunction Is Present without Histopathology in a Mouse Model of Limb-Girdle Muscular Dystrophy-2F and Is Prevented after Claudin-5 Virotherapy

    PubMed Central

    Milani-Nejad, Nima; Schultz, Eric J.; Slabaugh, Jessica L.; Janssen, Paul M. L.; Rafael-Fortney, Jill A.

    2016-01-01

    Mutations in several members of the dystrophin glycoprotein complex lead to skeletal and cardiomyopathies. Cardiac care for these muscular dystrophies consists of management of symptoms with standard heart medications after detection of reduced whole heart function. Recent evidence from both Duchenne muscular dystrophy patients and animal models suggests that myocardial dysfunction is present before myocardial damage or deficiencies in whole heart function, and that treatment prior to heart failure symptoms may be beneficial. To determine whether this same early myocardial dysfunction is present in other muscular dystrophy cardiomyopathies, we conducted a physiological assessment of cardiac function at the tissue level in the δ-sarcoglycan null mouse model (Sgcd−/−) of Limb-girdle muscular dystrophy type 2F. Baseline cardiac contractile force measurements using ex vivo intact linear muscle preparations, were severely depressed in these mice without the presence of histopathology. Virotherapy withclaudin-5 prevents the onset of cardiomyopathy in another muscular dystrophy model. After virotherapy with claudin-5, the cardiac contractile force deficits in Sgcd−/− mice are no longer significant. These studies suggest that screening Limb-girdle muscular dystrophy patients using methods that detect earlier functional changes may provide a longer therapeutic window for cardiac care. PMID:27999547

  1. Myocardial contractility in the stress echo lab: from pathophysiological toy to clinical tool

    PubMed Central

    2013-01-01

    Up-regulation of Ca2+ entry through Ca2+ channels by high rates of beating is involved in the frequency-dependent regulation of contractility: this process is crucial in adaptation to exercise and stress and is universally known as force-frequency relation (FFR). Disturbances in calcium handling play a central role in the disturbed contractile function in myocardial failure. Measurements of twitch tension in isolated left-ventricular strips from explanted cardiomyopathic hearts compared with non-failing hearts show flat or biphasic FFR, while it is up-sloping in normal hearts. Starting in 2003 we introduced the FFR measurement in the stress echo lab using the end-systolic pressure (ESP)/End-systolic volume index (ESVi) ratio (the Suga index) at increasing heart rates. We studied a total of 2,031 patients reported in peer-reviewed journals: 483 during exercise, 34 with pacing, 850 with dobutamine and 664 during dipyridamole stress echo. We demonstrated the feasibility of FFR in the stress echo lab, the clinical usefulness of FFR for diagnosing latent contractile dysfunction in apparently normal hearts, and residual contractile reserve in dilated idiopathic and ischemic cardiomyopathy. In 400 patients with left ventricular dysfunction (ejection fraction 30 ± 9%) with negative stress echocardiography results, event-free survival was higher (p < 0.001) in patients with ΔESPVR (the difference between peak and rest end-systolic pressure-volume ratio, ESPVR) ≥ 0.4 mmHg/mL/m2. The prognostic stratification of patients was better with FFR, beyond the standard LV ejection fraction evaluation, also in the particular settings of severe mitral regurgitation or diabetics without stress-induced ischemia. In the particular setting of selection of heart transplant donors, the stress echo FFR was able to correctly select 34 marginal donor hearts efficiently transplanted in emergency recipients. Starting in 2007, we introduced an operator-independent cutaneous sensor

  2. Myocardial contractility in the stress echo lab: from pathophysiological toy to clinical tool.

    PubMed

    Bombardini, Tonino; Zoppè, Monica; Ciampi, Quirino; Cortigiani, Lauro; Agricola, Eustachio; Salvadori, Stefano; Loni, Tiziana; Pratali, Lorenza; Picano, Eugenio

    2013-11-18

    Up-regulation of Ca2+ entry through Ca2+ channels by high rates of beating is involved in the frequency-dependent regulation of contractility: this process is crucial in adaptation to exercise and stress and is universally known as force-frequency relation (FFR). Disturbances in calcium handling play a central role in the disturbed contractile function in myocardial failure. Measurements of twitch tension in isolated left-ventricular strips from explanted cardiomyopathic hearts compared with non-failing hearts show flat or biphasic FFR, while it is up-sloping in normal hearts. Starting in 2003 we introduced the FFR measurement in the stress echo lab using the end-systolic pressure (ESP)/End-systolic volume index (ESVi) ratio (the Suga index) at increasing heart rates. We studied a total of 2,031 patients reported in peer-reviewed journals: 483 during exercise, 34 with pacing, 850 with dobutamine and 664 during dipyridamole stress echo. We demonstrated the feasibility of FFR in the stress echo lab, the clinical usefulness of FFR for diagnosing latent contractile dysfunction in apparently normal hearts, and residual contractile reserve in dilated idiopathic and ischemic cardiomyopathy. In 400 patients with left ventricular dysfunction (ejection fraction 30 ± 9%) with negative stress echocardiography results, event-free survival was higher (p < 0.001) in patients with ΔESPVR (the difference between peak and rest end-systolic pressure-volume ratio, ESPVR) ≥ 0.4 mmHg/mL/m2. The prognostic stratification of patients was better with FFR, beyond the standard LV ejection fraction evaluation, also in the particular settings of severe mitral regurgitation or diabetics without stress-induced ischemia. In the particular setting of selection of heart transplant donors, the stress echo FFR was able to correctly select 34 marginal donor hearts efficiently transplanted in emergency recipients. Starting in 2007, we introduced an operator-independent cutaneous sensor

  3. Effects of Trypanosoma cruzi infection on myocardial morphology, single cardiomyocyte contractile function and exercise tolerance in rats

    PubMed Central

    Novaes, Rômulo D; Penitente, Arlete R; Gonçalves, Reggiani V; Talvani, André; Neves, Clóvis A; Maldonado, Izabel R S C; Natali, Antônio J

    2011-01-01

    The aim of this study was to investigate the effects of Trypanosoma cruzi (T. cruzi) infection on myocardial morphology, single cardiomyocyte contractile function and exercise tolerance in rats. Adult Wistar rats were randomized into control (n = 14) and infected (n = 14) groups. Infected animals were inoculated with T. cruzi Y strain (300,000 trypomastigotes/50 g body weight). After 9 weeks, the animals were subjected to a treadmill running protocol. Then, the right atrium (RA) and left ventricle (LV) were removed for morphological and cell contractile evaluation. The infected animals exhibited a significant reduction in distance travelled, total time to fatigue and workload. In addition, these animals had hypertrophy, increased myocardial cellularity, and an increase in the proportion of collagen and blood vessels. RA and LV myocytes from infected animals showed marked contractile dysfunction under basal conditions and a reduced contractile response to β-adrenergic stimulation. The workload of infected animals was correlated closely with the amplitude of cell shortening of RA and LV myocytes. T. cruzi infection influenced the myocardial morphology and the mechanical properties of RA and LV single myocytes negatively and reduced exercise tolerance. Single cardiomyocyte contractile dysfunction could constitute an additional mechanism of cardiac impairment and reduced exercise tolerance in this infection. PMID:21736646

  4. Myocardial contractile and metabolic properties of familial hypertrophic cardiomyopathy caused by cardiac troponin I gene mutations: a simulation study.

    PubMed

    Wu, Bo; Wang, Longhui; Liu, Qian; Luo, Qingming

    2012-01-01

    Familial hypertrophic cardiomyopathy (FHC) is an inherited disease that is caused by sarcomeric protein gene mutations. The mechanism by which these mutant proteins cause disease is uncertain. Experimentally, cardiac troponin I (CTnI) gene mutations mainly alter myocardial performance via increases in the Ca(2+) sensitivity of cardiac contractility. In this study, we used an integrated simulation that links electrophysiology, contractile activity and energy metabolism of the myocardium to investigate alterations in myocardial contractile function and energy metabolism regulation as a result of increased Ca(2+) sensitivity in CTnI mutations. Simulation results reproduced the following typical features of FHC: (1) slower relaxation (diastolic dysfunction) caused by prolonged [Ca(2+)](i) and force transients; (2) higher energy consumption with the increase in Ca(2+) sensitivity; and (3) reduced fatty acid oxidation and enhanced glucose utilization in hypertrophied heart metabolism. Furthermore, the simulation indicated that in conditions of high energy consumption (that is, more than an 18.3% increase in total energy consumption), the myocardial energetic metabolic network switched from a net consumer to a net producer of lactate, resulting in a low coupling of glucose oxidation to glycolysis, which is a common feature of hypertrophied hearts. This study provides a novel systematic myocardial contractile and metabolic analysis to help elucidate the pathogenesis of FHC and suggests that the alterations in resting heart energy supply and demand could contribute to disease progression.

  5. 3D-wall motion tracking: a new tool for myocardial contractility analysis.

    PubMed

    Perez de Isla, Leopoldo; Montes, Cesar; Monzón, Tania; Herrero, José; Saltijeral, Adriana; Balcones, David Vivas; de Agustin, Alberto; Nuñez-Gil, Ivan; Fernández-Golfín, Covadonga; Almería, Carlos; Rodrigo, José Luis; Marcos-Alberca, Pedro; Macaya, Carlos; Zamorano, Jose

    2010-10-16

    BACKGROUND: Left-ventricular ejection fraction (LVEF), the most frequently used parameter to evaluate left ventricular (LV) systolic function, depends not only on LV contractility, but also on different variables such as pre-load and after-load. Three-dimensional wall motion tracking echocardiography (3D-WMT) is a new technique that provides information regarding different new parameters of LV systolic function. Our aim was to evaluate whether the new 3D-WMT-derived LV systolic function parameters are less dependent on load conditions than LVEF. METHODS: In order to modify the load conditions to study the dependence of the different LV systolic function parameters on them, a group of renal failure patients under chronic hemodialysis treatment was selected. The echocardiographic studies, including the 3D-WMT analysis, were performed immediately before and immediately after the hemodialysis session. RESULTS: Thirty-one consecutive patients were enrolled (mean age 65.5 ± 17.0 years; 74.2% men). There was a statistically significant change in predialysis and postdialysis, pre-load and after-load conditions (E/È ratio and systolic blood pressure) and in the LV end-diastolic volume and LVEF. Nevertheless, the findings did not show any significant change before and after dialysis in the 3D-WMT-derived parameters. CONCLUSIONS: LV 3D-wall motion tracking-derived systolic function parameters are less dependent on load conditions than LVEF. They might measure myocardial contractility in a more direct way than LVEF. Thus, hypothetically, they might be useful to detect early and subtle contractility impairments in a wide number of cardiac patients and they could help to optimize the clinical management of such patients.

  6. Elevated blood pressure and enhanced myocardial contractility in mice with severe IGF-1 deficiency.

    PubMed Central

    Lembo, G; Rockman, H A; Hunter, J J; Steinmetz, H; Koch, W J; Ma, L; Prinz, M P; Ross, J; Chien, K R; Powell-Braxton, L

    1996-01-01

    To circumvent the embryonic lethality of a complete deficiency in insulin-like growth factor 1 (IGF-1), we generated mice homozygous for a site-specific insertional event that created a mutant IGF-1 allele (igf1m). These mice have IGF-1 levels 30% of wild type yet survive to adulthood, thereby allowing physiological analysis of the phenotype. Miniaturized catheterization technology revealed elevated conscious blood pressure in IGF-1(m/m) mice, and measurements of left ventricular contractility were increased. Adenylyl cyclase activity was enhanced in IGF-1(m/m) hearts, without an increase in beta-adrenergic receptor density, suggesting that crosstalk between IGF-1 and beta-adrenergic signaling pathways may mediate the increased contractility. The hypertrophic response of the left ventricular myocardium in response to aortic constriction, however, was preserved in IGF-1(m/m) mice. We conclude that chronic alterations in IGF-1 levels can selectively modulate blood pressure and left ventricular function, while not affecting adaptive myocardial hypertrophy in vivo. PMID:8958230

  7. Food restriction induces in vivo ventricular dysfunction in spontaneously hypertensive rats without impairment of in vitro myocardial contractility.

    PubMed

    Okoshi, K; Fioretto, J R; Okoshi, M P; Cicogna, A C; Aragon, F F; Matsubara, L S; Matsubara, B B

    2004-04-01

    Cardiac structures, function, and myocardial contractility are affected by food restriction (FR). There are few experiments associating undernutrition with hypertension. The aim of the present study was to analyze the effects of FR on the cardiac response to hypertension in a genetic model of hypertension, the spontaneously hypertensive rat (SHR). Five-month-old SHR were fed a control or a calorie-restricted diet for 90 days. Global left ventricle (LV) systolic function was evaluated in vivo by transthoracic echocardiogram and myocardial contractility and diastolic function were assessed in vitro in an isovolumetrically beating isolated heart (Langendorff preparation). FR reduced LV systolic function (control (mean +/- SD): 58.9 +/- 8.2; FR: 50.8 +/- 4.8%, N = 14, P < 0.05). Myocardial contractility was preserved when assessed by the +dP/dt (control: 3493 +/- 379; FR: 3555 +/- 211 mmHg/s, P > 0.05), and developed pressure (in vitro) at diastolic pressure of zero (control: 152 +/- 16; FR: 149 +/- 15 mmHg, N = 9, P > 0.05) and 25 mmHg (control: 155 +/- 9; FR: 150 +/- 10 mmHg, N = 9, P > 0.05). FR also induced eccentric ventricular remodeling, and reduced myocardial elasticity (control: 10.9 +/- 1.6; FR: 9.2 +/- 0.9%, N = 9, P < 0.05) and LV compliance (control: 82.6 +/- 16.5; FR: 68.2 +/- 9.1%, N = 9, P < 0.05). We conclude that FR causes systolic ventricular dysfunction without in vitro change in myocardial contractility and diastolic dysfunction probably due to a reduction in myocardial elasticity.

  8. Effect of exercise training and myocardial infarction on force development and contractile kinetics in isolated canine myocardium.

    PubMed

    Canan, Benjamin D; Haizlip, Kaylan M; Xu, Ying; Monasky, Michelle M; Hiranandani, Nitisha; Milani-Nejad, Nima; Varian, Kenneth D; Slabaugh, Jessica L; Schultz, Eric J; Fedorov, Vadim V; Billman, George E; Janssen, Paul M L

    2016-04-15

    It is well known that moderate exercise training elicits a small increase in ventricular mass (i.e., a physiological hypertrophy) that has many beneficial effects on overall cardiac health. It is also well known that, when a myocardial infarction damages part of the heart, the remaining myocardium remodels to compensate for the loss of viable functioning myocardium. The effects of exercise training, myocardial infarction (MI), and their interaction on the contractile performance of the myocardium itself remain largely to be determined. The present study investigated the contractile properties and kinetics of right ventricular myocardium isolated from sedentary and exercise trained (10-12 wk progressively increasing treadmill running, begun 4 wk after MI induction) dogs with and without a left ventricular myocardial infarction. Exercise training increased force development, whereas MI decreased force development that was not improved by exercise training. Contractile kinetics were significantly slower in the trained dogs, whereas this impact of training was less or no longer present after MI. Length-dependent activation, both evaluated on contractile force and kinetics, was similar in all four groups. The control exercise-trained group exhibited a more positive force-frequency relationship compared with the sedentary control group while both sedentary and trained post-MI dogs had a more negative relationship. Last, the impact of the β-adrenergic receptor agonist isoproterenol resulted in a similar increase in force and acceleration of contractile kinetics in all groups. Thus, exercise training increased developed force but slowed contractile kinetics in control (noninfarcted animals), actions that were attenuated or completely absent in post-MI dogs. Copyright © 2016 the American Physiological Society.

  9. Vascular dysfunction and myocardial contractility in the JCR:LA-corpulent rat.

    PubMed

    Brunner, F; Wölkart, G; Pfeiffer, S; Russell, J C; Wascher, T C

    2000-07-01

    The JCR:LA-corpulent rat is a unique animal model of human vascular disease that exhibits a profound insulin resistance, vasculopathy, and cardiovascular dysfunction. We tested the hypothesis that the defects affect endothelial and smooth muscle function of the coronary microvasculature as well as cardiac contractility. Coronary, myocardial and aortic function were assessed in obese (homozygous for the cp gene, cp/cp) and lean (heterozygous or homozygous normal, +/?) littermates aged 7 and 18 weeks. Coronary endothelial relaxation was examined in isolated perfused hearts by determining the effect of bradykinin (0. 1-1000 nmol l(-1)) on coronary perfusion pressure (CPP), myocardial mechanical function was evaluated in terms of left-ventricular developed pressure (LVDevP), and aortic relaxation with the endothelium-dependent agonist, A 23187 (1-1000 nmol l(-1)). In rats aged 7 weeks, bradykinin reduced CPP from 133+/-1 mmHg to 43+/-1 mmHg (-67%) in lean rats, but only to 64+/-3 mmHg (-52%) in corpulent rats (n=6, P<0.05). Similar differences were found in rats aged 18 weeks (n=8). Inhibition of NO synthase with N(G)-nitro-L-arginine (L-NNA; 0.2 mmol l(-1)) impaired, and tetrahydrobiopterin (0.1 mmol l(-1)), a NO synthase cofactor, restored relaxation in cp/cp rats. Spermine/NO equally reduced CPP in both groups (-58%). Mechanical function was similar in lean and corpulent rats, aortic endothelial relaxation was attenuated by approximately 30% and aortic smooth muscle function was normal (7 weeks) or improved (18 weeks) in the cp/cp genotype. These results suggest that (i) there is a specific impairment of NO-mediated relaxation of the coronary resistance vessels in the JCR:LA-corpulent rat that is not associated with impaired baseline myocardial contractility, and (ii) exogenous tetrahydrobiopterin reversed the relaxation defects that are part of the vascular complications typical for the insulin resistance syndrome.

  10. Do depressive symptoms predict the incidence of myocardial infarction independent of hopelessness?

    PubMed

    Pössel, Patrick; Mitchell, Amanda M; Ronkainen, Kimmo; Kaplan, George A; Kauhanen, Jussi; Valtonen, Maarit

    2015-01-01

    Depression and hopelessness predict myocardial infarction, but it is unclear whether depression and hopelessness are independent predictors of myocardial infarction incidents. Hopelessness, depression, and myocardial infarction incidence rate 18 years later were measured in 2005 men. Cox regressions were conducted with hopelessness and depression serving as individual predictors of myocardial infarction. Another Cox model examined whether the two predictors predict myocardial infarction when adjusting for each other. Depression and hopelessness predicted myocardial infarction in independent regressions, but when adjusting for each other, hopelessness, but not depression, predicted myocardial infarction incidents. Thus, these results suggest that depression and hopelessness are not independent predictors of myocardial infarction. © The Author(s) 2013.

  11. The effects of nitroglycerin on regional myocardial contractile dysfunction produced by treadmill exercise or isoprenaline stimulation in dogs.

    PubMed Central

    Schneider, W.; Grohs, J. G.; Krumpl, G.; Mayer, N.; Raberger, G.

    1988-01-01

    1. To compare different methods of cardiac stress testing that are clinically applied in the management of coronary heart disease, 2 groups of dogs each were chronically instrumented and subjected to treadmill exercise or isoprenaline infusion in the presence of coronary stenosis. 2. It was of interest to determine differences in haemodynamic and regional myocardial contractile parameters, the response to antianginal therapy (nitroglycerin 15 micrograms kg-1 15 min-1, i.v.), and, in particular, whether this response differed according to the mode of cardiac stimulation, i.e. treadmill exercise or isoprenaline infusion. 3. After stenosis of the circumflex branch of the left coronary artery which affected resting myocardial function only minimally, treadmill exercise or isoprenaline infusion induced transient regional contractile dysfunction. Heart rate, arterial blood pressure, left ventricular end-diastolic pressure and left ventricular dp/dtmax were registered and myocardial oxygen demand was calculated. Regional contractile performance was assessed by ultrasonic distance measurement in the underperfused and in a normally perfused area. 4. Treadmill exercise led to an increase in systolic arterial and left ventricular end-diastolic pressure. In contrast, isoprenaline-induced stimulation led to a decrease in diastolic arterial and left ventricular end-diastolic pressure. Regional contractile function in the critically underperfused area showed a deterioration during both modes of stress. Nitroglycerin completely abolished stress-induced contractile dysfunction only in the group where treadmill exercise was employed for stimulation. 5. The inability of nitroglycerin to prevent myocardial dysfunction in the isoprenaline group may be due to exhaustion of the arterial and/or venous vasodilator potency of nitroglycerin in the presence of adrenoceptor vasodilatation induced by isoprenaline. 6. These findings indicate that clinical antianginal drug testing and the

  12. Chronic Lead Exposure Increases Blood Pressure and Myocardial Contractility in Rats

    PubMed Central

    Fioresi, Mirian; Simões, Maylla Ronacher; Furieri, Lorena Barros; Broseghini-Filho, Gilson Brás; Vescovi, Marcos Vinícius A.; Stefanon, Ivanita; Vassallo, Dalton Valentim

    2014-01-01

    We investigated the cardiovascular effects of lead exposure, emphasising its direct action on myocardial contractility. Male Wistar rats were sorted randomly into two groups: control (Ct) and treatment with 100 ppm of lead (Pb) in the drinking water. Blood pressure (BP) was measured weekly. At the end of the treatment period, the animals were anaesthetised and haemodynamic parameters and contractility of the left ventricular papillary muscles were recorded. Blood and tissue samples were properly stored for further biochemical investigations. Statistical analyses were considered to be significant at p<0.05. The lead concentrations in the blood reached approximately 13 µg/dL, while the bone was the site of the highest deposition of this metal. BP in the Pb-treated group was higher from the first week of lead exposure and remained at the same level over the next four weeks. Haemodynamic evaluations revealed increases in systolic (Ct: 96±3.79 vs. Pb: 116±1.37 mmHg) and diastolic blood pressure (Ct: 60±2.93 vs. Pb: 70±3.38 mmHg), left ventricular systolic pressure (Ct: 104±5.85 vs. Pb: 120±2.51 mmHg) and heart rate (Ct: 307±10 vs. Pb: 348±16 bpm). Lead treatment did not alter the force and time derivatives of the force of left ventricular papillary muscles that were contracting isometrically. However, our results are suggestive of changes in the kinetics of calcium (Ca++) in cardiomyocytes increased transarcolemmal Ca++ influx, low Ca++ uptake by the sarcoplasmic reticulum and high extrusion by the sarcolemma. Altogether, these results show that despite the increased Ca++ influx that was induced by lead exposure, the myocytes had regulatory mechanisms that prevented increases in force, as evidenced in vivo by the increased systolic ventricular pressure. PMID:24841481

  13. [The role of thyroid hormones in prevention of disorders of myocardial contractile function and antioxidant activity during heat stress].

    PubMed

    Bozhko, A P; Gorodetskaia, I V

    1998-03-01

    The stress of heat under conditions of immobilisation induced an obvious depression of the cardiodynamic parameters. This correlated well with intensification of lipoperoxydation and a drop in the myocardial antioxydant activity. Small doses of thyroid hormones prevented the decline of the parameters, normalisied myocardial free-radical homeostasis in result of activation of superoxyddysmutase, catalase, and general antioxydant activity.

  14. Microtubule depolymerization normalizes in vivo myocardial contractile function in dogs with pressure-overload left ventricular hypertrophy

    NASA Technical Reports Server (NTRS)

    Koide, M.; Hamawaki, M.; Narishige, T.; Sato, H.; Nemoto, S.; DeFreyte, G.; Zile, M. R.; Cooper G, I. V.; Carabello, B. A.

    2000-01-01

    BACKGROUND: Because initially compensatory myocardial hypertrophy in response to pressure overloading may eventually decompensate to myocardial failure, mechanisms responsible for this transition have long been sought. One such mechanism established in vitro is densification of the cellular microtubule network, which imposes a viscous load that inhibits cardiocyte contraction. METHODS AND RESULTS: In the present study, we extended this in vitro finding to the in vivo level and tested the hypothesis that this cytoskeletal abnormality is important in the in vivo contractile dysfunction that occurs in experimental aortic stenosis in the adult dog. In 8 dogs in which gradual stenosis of the ascending aorta had caused severe left ventricular (LV) pressure overloading (gradient, 152+/-16 mm Hg) with contractile dysfunction, LV function was measured at baseline and 1 hour after the intravenous administration of colchicine. Cardiocytes obtained by biopsy before and after in vivo colchicine administration were examined in tandem. Microtubule depolymerization restored LV contractile function both in vivo and in vitro. CONCLUSIONS: These and additional corroborative data show that increased cardiocyte microtubule network density is an important mechanism for the ventricular contractile dysfunction that develops in large mammals with adult-onset pressure-overload-induced cardiac hypertrophy.

  15. Microtubule depolymerization normalizes in vivo myocardial contractile function in dogs with pressure-overload left ventricular hypertrophy

    NASA Technical Reports Server (NTRS)

    Koide, M.; Hamawaki, M.; Narishige, T.; Sato, H.; Nemoto, S.; DeFreyte, G.; Zile, M. R.; Cooper G, I. V.; Carabello, B. A.

    2000-01-01

    BACKGROUND: Because initially compensatory myocardial hypertrophy in response to pressure overloading may eventually decompensate to myocardial failure, mechanisms responsible for this transition have long been sought. One such mechanism established in vitro is densification of the cellular microtubule network, which imposes a viscous load that inhibits cardiocyte contraction. METHODS AND RESULTS: In the present study, we extended this in vitro finding to the in vivo level and tested the hypothesis that this cytoskeletal abnormality is important in the in vivo contractile dysfunction that occurs in experimental aortic stenosis in the adult dog. In 8 dogs in which gradual stenosis of the ascending aorta had caused severe left ventricular (LV) pressure overloading (gradient, 152+/-16 mm Hg) with contractile dysfunction, LV function was measured at baseline and 1 hour after the intravenous administration of colchicine. Cardiocytes obtained by biopsy before and after in vivo colchicine administration were examined in tandem. Microtubule depolymerization restored LV contractile function both in vivo and in vitro. CONCLUSIONS: These and additional corroborative data show that increased cardiocyte microtubule network density is an important mechanism for the ventricular contractile dysfunction that develops in large mammals with adult-onset pressure-overload-induced cardiac hypertrophy.

  16. Modeling of myocardial contractility using parameterized super-quadric SPECT images.

    PubMed

    Lee, Byeong-Il; Son, Byong-Hwan; Choi, Hyun-Ju; Hwang, Hae-Gil; Kim, Hye-Young; Choi, Heung-Kook

    2006-01-01

    We developed methods to represent cardiac motility. Using an innovative model, we estimated several parameters of cardiac features. We implemented the parameterized super quadric model to visualize the motion of a left ventricle (LV) with OpenGL and Visual C++. We displayed myocardial wall thickening with a super-ellipsoidal model. The time frames in this model changed the measured thickening count. We also parameterized motility using the parameterized super quadric model. We analyzed the motility of the LV myocardium and tested its criteria using a validation study of seven normal subjects and 26 patients with prior myocardial infarction. To analyze motility, we used mean and variance of total motion during a cardiac cycle. The average of a normal subject was 0.46 and variance was 0.02. For patients, average and variance of motility were 0.59 and 0.08 respectively. Although the average value did not differ between normal subjects and patients, the variance differed significantly. Thus, we were able to estimate the difference between normal subjects and patients. In patients, motility was 128% higher than in normal subjects, and the variance was 328% higher. In the patient study, quantity of motion decreased rapidly in a stressed state. The visualization for contractility displayed 15 segment variables; we were able to rotate the locations of all points with a mouse interface. We were able to visualize most of the factors for cardiac motility and cardiac features. We expect that this model can distinguish between normal subjects and abnormal subjects, and that we can produce an exact analysis of momentum using this model.

  17. Depression increases sympathetic activity and exacerbates myocardial remodeling after myocardial infarction: evidence from an animal experiment.

    PubMed

    Shi, Shaobo; Liang, Jinjun; Liu, Tao; Yuan, Xiaoran; Ruan, Bing; Sun, Lifang; Tang, Yanhong; Yang, Bo; Hu, Dan; Huang, Congxin

    2014-01-01

    Depression is an independent risk factor for cardiovascular events and mortality in patients with myocardial infarction (MI). Excessive sympathetic activation and serious myocardial remodeling may contribute to this association. The aim of this study was to discuss the effect of depression on sympathetic activity and myocardial remodeling after MI. Wild-type (WT) rats were divided into a sham group (Sham), a myocardial infarction group (MI), a depression group (D), and a myocardial infarction plus depression group (MI+D). Compared with controls, the MI+D animals displayed depression-like behaviors and attenuated body weight gain. The evaluation of sympathetic activity showed an increased level in plasma concentrations of epinephrine and norepinephrine and higher expression of myocardial tyrosine hydroxylase in the MI+D group than the control groups (p<0.05 for all). Cardiac function and morphologic analyses revealed a decreased fractional shortening accompanied by increased left ventricular dimensions, thinning myocardium wall, and reduced collagen repair in the MI+D group compared with the MI group (p<0.05 for all). Frequent premature ventricular contractions, prolonged QT duration and ventricular repolarization duration, shorted effective refractory period, and increased susceptibility to ventricular arrhythmia were displayed in MI+D rats. These results indicate that sympathetic hyperactivation and exacerbated myocardial remodeling may be a plausible mechanism linking depression to an adverse prognosis after MI.

  18. Cardioselective Dominant-negative Thyroid Hormone Receptor (Δ337T) Modulates Myocardial Metabolism and Contractile Dfficiency

    SciTech Connect

    Hyyti, Outi M.; Olson, Aaron; Ge, Ming; Ning, Xue-Han; Buroker, Norman E.; Chung, Youngran; Jue, Thomas; Portman, Michael A.

    2008-06-03

    Dominant- negative thyroid hormone receptors (TRs) show elevated expression relative to ligand-binding TRs during cardiac hypertrophy. We tested the hypothesis that overexpression of a dominant-negative TR alters cardiac metabolism and contractile efficiency (CE). We used mice expressing the cardioselective dominant-negative TRβ1 mutation Δ337T. Isolated working Δ337T hearts and nontransgenic control (Con) hearts were perfused with 13C-labeled free fatty acids (FFA), acetoacetate (ACAC), lactate, and glucose at physiological concentrations for 30 min. 13C NMR spectroscopy and isotopomer analyses were used to determine substrate flux and fractional contributions (Fc) of acetyl-CoA to the citric acid cycle (CAC). Δ337T hearts exhibited rate depression but higher developed pressure and CE, defined as work per oxygen consumption (MV˙ O2). Unlabeled substrate Fc from endogenous sources was higher in Δ337T, but ACAC Fc was lower. Fluxes through CAC, lactate, ACAC, and FFA were reduced in Δ337T. CE and Fc differences were reversed by pacing Δ337T to Con rates, accompanied by an increase in FFA Fc. Δ337T hearts lacked the ability to increase MV˙ O2. Decreases in protein expression for glucose transporter-4 and hexokinase-2 and increases in pyruvate dehydrogenase kinase-2 and -4 suggest that these hearts are unable to increase carbohydrate oxidation in response to stress. These data show that Δ337T alters the metabolic phenotype in murine heart by reducing substrate flux for multiple pathways. Some of these changes are heart rate dependent, indicating that the substrate shift may represent an accommodation to altered contractile protein kinetics, which can be disrupted by pacing stress.

  19. Transmural stretch-dependent regulation of contractile properties in rat heart and its alteration after myocardial infarction.

    PubMed

    Cazorla, Olivier; Szilagyi, Szabolcs; Le Guennec, Jean-Yves; Vassort, Guy; Lacampagne, Alain

    2005-01-01

    The "stretch-sensitization" response is essential to the regulation of heart contractility. An increase in diastolic volume improves systolic contraction. The cellular mechanisms of this modulation, the Frank-Starling law, are still uncertain. Moreover, their alterations in heart failure remains controversial. Here, using left ventricular skinned rat myocytes, we show a nonuniform stretch-sensitization of myofilament activation across the ventricular wall. Stretch-dependent Ca2+ sensitization of myofilaments increases from sub-epicardium to sub-endocardium and is correlated with an increase in passive tension. This passive tension-dependent component of myofibrillar activation is not associated with expression of titin isoforms, changes in troponin I level, and phosphorylation status. Instead, we observe that stretch induces phosphorylation of ventricular myosin light chain 2 isoform (VLC2b) in sub-endocardium specifically. Thus, VLC2b phosphorylation could act as a stretch-dependent modulator of activation tuned within normal heart. Moreover, in postmyocardial infarcted rat, the gradient of stretch-dependent Ca2+ sensitization disappears associated with a lack of VLC2b phosphorylation in sub-endocardium. In conclusion, nonuniformity is a major characteristic of the normal adult left ventricle (LV). The heterogeneous myocardial deformation pattern might be caused not only by the morphological heterogeneity of the tissue in the LV wall, but also by the nonuniform contractile properties of the myocytes across the wall. The loss of a contractile transmural gradient after myocardial infarction should contribute to the impaired LV function.

  20. An implantable intracardiac accelerometer for monitoring myocardial contractility. The Multicenter PEA Study Group.

    PubMed

    Rickards, A F; Bombardini, T; Corbucci, G; Plicchi, G

    1996-12-01

    implantable device. Pharmacological inotropic stimulation, but not pacing induced chronotropic stimulation, increases PEA amplitude, in keeping with experimental studies, suggesting that PEA is an index of myocardial contractility. Acute variations in PEA are closely paralleled by changes in RV dP/dtmax, but are mainly determined by LV events. The clinical applicability of the method using RV endocardial leads and an implantable device offers potential for diagnostic applications in the long-term monitoring of myocardial function in man.

  1. Extent of Carotid Sinus Regulation of the Myocardial Contractile State in Conscious Dogs

    PubMed Central

    Vatner, Stephen F.; Higgins, Charles B.; Franklin, Dean; Braunwald, Eugene

    1972-01-01

    The effects of bilateral carotid artery occlusion (BCO) and carotid sinus nerve stimulation (CSNS) on left ventricular (LV) pressure (P), diameter (D), velocity of contraction (V), rate of change of pressure (dP/dt), and cardiac output were studied in conscious dogs instrumented with ultrasonic diameter gauges, miniature pressure gauges, and aortic electromagnetic flow transducers. The effects of BCO and CSNS were also studied after automatic blockade and were compared to similar alterations in pressure produced by norepinephrine, methoxamine, and nitroglycerin. When heart rate was maintained constant with atrial stimulation, BCO had little effect on ventricular contractility, increasing isolength systolic pressure (LV Piso) by 36% while isolength velocity of myocardial shortening (Viso) decreased by 12% and (dP/dt)/P fell by 8%. These effects could be explained largely by vasoconstriction, since elevating systolic pressure with methoxamine produced similar results, while norepinephrine increased Viso by 36% and (dP/dt)/P by 56%. CSNS produced directionally opposite results from BCO; it decreased Piso by 15%, Viso increased by 11%, while (dP/dt)/P remained almost constant. These effects may be explained largely by vasodilatation since reducing systolic pressure to the same level with nitroglycerin produced similar results. When peripheral vasoconstriction was minimized by phenoxybenzamine pretreatment. BCO produced a slight positive inotropic effect (Piso increased by 8%, Viso by 4%, and (dp/dt)/P by 10%), while CSNS produced a slight negative inotropic effect (Piso decreased by 3%, Viso decreased by 5%, and (dP/dt)/P by 7%). Thus, in the normal, healthy, conscious dog, the carotid sinuses exert relatively little control of the inotropic state of the left ventricle; moreover, this small inotropic action is masked by the more powerful effects on peripheral resistance. Images PMID:4622571

  2. Myocardial insulin resistance induced by high fat feeding in heart failure is associated with preserved contractile function

    PubMed Central

    Christopher, Bridgette A.; Huang, Hsuan-Ming; Berthiaume, Jessica M.; McElfresh, Tracy A.; Chen, Xiaoqin; Croniger, Colleen M.; Muzic, Raymond F.

    2010-01-01

    Previous studies have reported that high fat feeding in mild to moderate heart failure (HF) results in the preservation of contractile function. Recent evidence has suggested that preventing the switch from fatty acid to glucose metabolism in HF may ameliorate dysfunction, and insulin resistance is one potential mechanism for regulating substrate utilization. This study was designed to determine whether peripheral and myocardial insulin resistance exists with HF and/or a high-fat diet and whether myocardial insulin signaling was altered accordingly. Rats underwent coronary artery ligation (HF) or sham surgery and were randomized to normal chow (NC; 14% kcal from fat) or a high-fat diet (SAT; 60% kcal from fat) for 8 wk. HF + SAT animals showed preserved systolic (+dP/dt and stroke work) and diastolic (−dP/dt and time constant of relaxation) function compared with HF + NC animals. Glucose tolerance tests revealed peripheral insulin resistance in sham + SAT, HF + NC, and HF + SAT animals compared with sham + NC animals. PET imaging confirmed myocardial insulin resistance only in HF + SAT animals, with an uptake ratio of 2.3 ± 0.3 versus 4.6 ± 0.7, 4.3 ± 0.4, and 4.2 ± 0.6 in sham + NC, sham + SAT, and HF + NC animals, respectively; the myocardial glucose utilization rate was similarly decreased in HF + SAT animals only. Western blot analysis of insulin signaling protein expression was indicative of cardiac insulin resistance in HF + SAT animals. Specifically, alterations in Akt and glycogen synthase kinase-3β protein expression in HF + SAT animals compared with HF + NC animals may be involved in mediating myocardial insulin resistance. In conclusion, HF animals fed a high-saturated fat exhibited preserved myocardial contractile function, peripheral and myocardial insulin resistance, decreased myocardial glucose utilization rates, and alterations in cardiac insulin signaling. These results suggest that myocardial insulin resistance may serve a cardioprotective

  3. Depressive symptoms are associated with mental stress-induced myocardial ischemia after acute myocardial infarction.

    PubMed

    Wei, Jingkai; Pimple, Pratik; Shah, Amit J; Rooks, Cherie; Bremner, J Douglas; Nye, Jonathon A; Ibeanu, Ijeoma; Murrah, Nancy; Shallenberger, Lucy; Raggi, Paolo; Vaccarino, Viola

    2014-01-01

    Depression is an adverse prognostic factor after an acute myocardial infarction (MI), and an increased propensity toward emotionally-driven myocardial ischemia may play a role. We aimed to examine the association between depressive symptoms and mental stress-induced myocardial ischemia in young survivors of an MI. We studied 98 patients (49 women and 49 men) age 38-60 years who were hospitalized for acute MI in the previous 6 months. Patients underwent myocardial perfusion imaging at rest, after mental stress (speech task), and after exercise or pharmacological stress. A summed difference score (SDS), obtained with observer-independent software, was used to quantify myocardial ischemia under both stress conditions. The Beck Depression Inventory-II (BDI-II) was used to measure depressive symptoms, which were analyzed as overall score, and as separate somatic and cognitive depressive symptom scores. There was a significant positive association between depressive symptoms and SDS with mental stress, denoting more ischemia. After adjustment for demographic and lifestyle factors, disease severity and medications, each incremental depressive symptom was associated with 0.14 points higher SDS. When somatic and cognitive depressive symptoms were examined separately, both somatic [β = 0.17, 95% CI: (0.04, 0.30), p = 0.01] and cognitive symptoms [β = 0.31, 95% CI: (0.07, 0.56), p = 0.01] were significantly associated with mental stress-induced ischemia. Depressive symptoms were not associated with ischemia induced by exercise or pharmacological stress. Among young post-MI patients, higher levels of both cognitive and somatic depressive symptoms are associated with a higher propensity to develop myocardial ischemia with mental stress, but not with physical (exercise or pharmacological) stress.

  4. Depressive Symptoms Are Associated with Mental Stress-Induced Myocardial Ischemia after Acute Myocardial Infarction

    PubMed Central

    Wei, Jingkai; Pimple, Pratik; Shah, Amit J.; Rooks, Cherie; Bremner, J. Douglas; Nye, Jonathon A.; Ibeanu, Ijeoma; Murrah, Nancy; Shallenberger, Lucy; Raggi, Paolo; Vaccarino, Viola

    2014-01-01

    Objectives Depression is an adverse prognostic factor after an acute myocardial infarction (MI), and an increased propensity toward emotionally-driven myocardial ischemia may play a role. We aimed to examine the association between depressive symptoms and mental stress-induced myocardial ischemia in young survivors of an MI. Methods We studied 98 patients (49 women and 49 men) age 38–60 years who were hospitalized for acute MI in the previous 6 months. Patients underwent myocardial perfusion imaging at rest, after mental stress (speech task), and after exercise or pharmacological stress. A summed difference score (SDS), obtained with observer-independent software, was used to quantify myocardial ischemia under both stress conditions. The Beck Depression Inventory-II (BDI-II) was used to measure depressive symptoms, which were analyzed as overall score, and as separate somatic and cognitive depressive symptom scores. Results There was a significant positive association between depressive symptoms and SDS with mental stress, denoting more ischemia. After adjustment for demographic and lifestyle factors, disease severity and medications, each incremental depressive symptom was associated with 0.14 points higher SDS. When somatic and cognitive depressive symptoms were examined separately, both somatic [β = 0.17, 95% CI: (0.04, 0.30), p = 0.01] and cognitive symptoms [β = 0.31, 95% CI: (0.07, 0.56), p = 0.01] were significantly associated with mental stress-induced ischemia. Depressive symptoms were not associated with ischemia induced by exercise or pharmacological stress. Conclusion Among young post-MI patients, higher levels of both cognitive and somatic depressive symptoms are associated with a higher propensity to develop myocardial ischemia with mental stress, but not with physical (exercise or pharmacological) stress. PMID:25061993

  5. Contractile reserve and calcium regulation are depressed in myocytes from chronically unloaded hearts

    NASA Technical Reports Server (NTRS)

    Ito, Kenta; Nakayama, Masaharu; Hasan, Faisal; Yan, Xinhua; Schneider, Michael D.; Lorell, Beverly H.

    2003-01-01

    BACKGROUND: Chronic cardiac unloading of the normal heart results in the reduction of left ventricular (LV) mass, but effects on myocyte contractile function are not known. METHODS AND RESULTS: Cardiac unloading and reduction in LV mass were induced by heterotopic heart transplantation to the abdominal aorta in isogenic rats. Contractility and [Ca(2+)](i) regulation in LV myocytes were studied at both 2 and 5 weeks after transplantation. Native in situ hearts from recipient animals were used as the controls for all experiments. Contractile function indices in myocytes from 2-week unloaded and native (control) hearts were similar under baseline conditions (0.5 Hz, 1.2 mmol/L [Ca(2+)](o), and 36 degrees C) and in response to stimulation with high [Ca(2+)](o) (range 2.5 to 4.0 mmol/L). In myocytes from 5-week unloaded hearts, there were no differences in fractional cell shortening and peak-systolic [Ca(2+)](i) at baseline; however, time to 50% relengthening and time to 50% decline in [Ca(2+)](i) were prolonged compared with controls. Severe defects in fractional cell shortening and peak-systolic [Ca(2+)](i) were elicited in myocytes from 5-week unloaded hearts in response to high [Ca(2+)](o). However, there were no differences in the contractile response to isoproterenol between myocytes from unloaded and native hearts. In 5-week unloaded hearts, but not in 2-week unloaded hearts, LV protein levels of phospholamban were increased (345% of native heart values). Protein levels of sarcoplasmic reticulum Ca(2+) ATPase and the Na(+)/Ca(2+) exchanger were not changed. CONCLUSIONS: Chronic unloading of the normal heart caused a time-dependent depression of myocyte contractile function, suggesting the potential for impaired performance in states associated with prolonged cardiac atrophy.

  6. Contractile reserve and calcium regulation are depressed in myocytes from chronically unloaded hearts

    NASA Technical Reports Server (NTRS)

    Ito, Kenta; Nakayama, Masaharu; Hasan, Faisal; Yan, Xinhua; Schneider, Michael D.; Lorell, Beverly H.

    2003-01-01

    BACKGROUND: Chronic cardiac unloading of the normal heart results in the reduction of left ventricular (LV) mass, but effects on myocyte contractile function are not known. METHODS AND RESULTS: Cardiac unloading and reduction in LV mass were induced by heterotopic heart transplantation to the abdominal aorta in isogenic rats. Contractility and [Ca(2+)](i) regulation in LV myocytes were studied at both 2 and 5 weeks after transplantation. Native in situ hearts from recipient animals were used as the controls for all experiments. Contractile function indices in myocytes from 2-week unloaded and native (control) hearts were similar under baseline conditions (0.5 Hz, 1.2 mmol/L [Ca(2+)](o), and 36 degrees C) and in response to stimulation with high [Ca(2+)](o) (range 2.5 to 4.0 mmol/L). In myocytes from 5-week unloaded hearts, there were no differences in fractional cell shortening and peak-systolic [Ca(2+)](i) at baseline; however, time to 50% relengthening and time to 50% decline in [Ca(2+)](i) were prolonged compared with controls. Severe defects in fractional cell shortening and peak-systolic [Ca(2+)](i) were elicited in myocytes from 5-week unloaded hearts in response to high [Ca(2+)](o). However, there were no differences in the contractile response to isoproterenol between myocytes from unloaded and native hearts. In 5-week unloaded hearts, but not in 2-week unloaded hearts, LV protein levels of phospholamban were increased (345% of native heart values). Protein levels of sarcoplasmic reticulum Ca(2+) ATPase and the Na(+)/Ca(2+) exchanger were not changed. CONCLUSIONS: Chronic unloading of the normal heart caused a time-dependent depression of myocyte contractile function, suggesting the potential for impaired performance in states associated with prolonged cardiac atrophy.

  7. Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients.

    PubMed

    Montaigne, David; Marechal, Xavier; Coisne, Augustin; Debry, Nicolas; Modine, Thomas; Fayad, Georges; Potelle, Charlotte; El Arid, Jean-Marc; Mouton, Stéphanie; Sebti, Yasmine; Duez, Hélène; Preau, Sébastien; Remy-Jouet, Isabelle; Zerimech, Farid; Koussa, Mohamed; Richard, Vincent; Neviere, Remi; Edme, Jean-Louis; Lefebvre, Philippe; Staels, Bart

    2014-08-12

    Obesity and diabetes mellitus are independently associated with the development of heart failure. In this study, we determined the respective effects of obesity, insulin resistance, and diabetes mellitus on the intrinsic contraction and mitochondrial function of the human myocardium before the onset of cardiomyopathy. Right atrial myocardium was obtained from 141 consecutive patients presenting no sign of cardiomyopathy. We investigated ex vivo isometric contraction, mitochondrial respiration and calcium retention capacity, and respiratory chain complex activities and oxidative stress status. Diabetes mellitus was associated with a pronounced impairment of intrinsic contraction, mitochondrial dysfunction, and increased myocardial oxidative stress, regardless of weight status. In contrast, obesity was associated with less pronounced contractile dysfunction without any significant perturbation of mitochondrial function or oxidative stress status. Tested as continuous variables, glycated hemoglobin A1C, but neither body mass index nor the insulin resistance index (homeostasis model assessment-insulin resistance), was independently associated with cardiac mitochondrial function. Furthermore, diabetes mellitus was associated with cardiac mitochondrial network fragmentation and significantly decreased expression of the mitochondrial fusion related protein MFN1. Myocardial MFN1 content was inversely proportional to hemoglobin A1C. Worsening of intrinsic myocardial contraction in the transition from obesity to diabetes mellitus is likely related to worsening of cardiac mitochondrial function because impaired mitochondrial function and dynamics and contractile dysfunction are observed in diabetic patients but not in "metabolically healthy" obese patients at early stage in insulin resistance. © 2014 American Heart Association, Inc.

  8. Sphingomyelinase depresses force and calcium sensitivity of the contractile apparatus in mouse diaphragm muscle fibers

    PubMed Central

    Ferreira, Leonardo F.; Moylan, Jennifer S.; Stasko, Shawn; Smith, Jeffrey D.; Campbell, Kenneth S.

    2012-01-01

    Diseases that result in muscle weakness, e.g., heart failure, are characterized by elevated sphingomyelinase (SMase) activity. In intact muscle, SMase increases oxidants that contribute to diminished muscle force. However, the source of oxidants, specific processes of muscle contraction that are dysfunctional, and biochemical changes underlying the weakness elicited by SMase remain unknown. We tested three hypotheses: 1) SMase-induced depression of muscle force is mediated by mitochondrial reactive oxygen species (ROS), 2) SMase depresses force and calcium sensitivity of the contractile apparatus, and 3) SMase promotes oxidation and phosphorylation of myofibrillar proteins. Our experiments included intact muscle bundles, permeabilized single fibers, and isolated myofibrillar proteins. The mitochondrial-targeted antioxidant d-Arg-2′,6′-dimethyl-Tyr-Lys-Phe-NH2, decreased cytosolic oxidants and protected intact muscle bundles from weakness stimulated by SMase. SMase depressed maximal calcium-activated force by 20% in permeabilized single fibers (in kN/m2: control 117 ± 6; SMase 93 ± 8; P < 0.05). Calcium sensitivity of permeabilized single fibers decreased from 5.98 ± 0.03 (control) to 5.91 ± 0.02 (SMase; P < 0.05). Myofibrillar protein nitrotyrosines, carbonyls, and phosphorylation were unaltered by SMase. Our study shows that the fall in specific force of intact muscle elicited by SMase is mediated by mitochondrial ROS and can be attributed largely to dysfunction of the contractile apparatus. PMID:22362402

  9. Sulfide intoxication induced circulatory failure is mediated by a depression in cardiac contractility

    PubMed Central

    Sonobe, Takashi; Haouzi, Philippe

    2015-01-01

    Hydrogen sulfide (H2S) intoxication produces a rapid cardio-circulatory failure leading to cardiac arrest. In non-lethal forms of sulfide exposure, the presence of a circulatory shock is associated with long-term neurological sequelae. Our aim was to clarify the mechanisms of H2S-induced circulatory failure. In anesthetized paralyzed and mechanically ventilated rats, cardiac output, arterial pressure and ventricular pressures were determined while NaHS was infused to increase arterial concentration of soluble H2S (CgH2S) from undetectable to levels leading to circulatory failure. Compared to control/saline infusion, blood pressure started to decrease significantly along with a modest drop in peripheral vascular resistance (-19 ± 5%, P<0.01), when CgH2S reached about 1 microM. As CgH2S exceeded 2-3 microM, parameters of ventricular contractility diminished with no further reduction in peripheral resistance. Whenever H2S exposure was maintained at a higher level (CgH2S over 7 microM), a clear inhibition of cardiac contractility was observed, leading to asystole within minutes, but with no evidence of peripheral vasoplegia. The immediate and long-term neurological effects of specifically counteracting sulfide induced cardiac contractility depression following H2S exposure remain to be investigated. PMID:25616319

  10. Sepsis-induced myocardial depression and takotsubo syndrome.

    PubMed

    Y-Hassan, Shams; Settergren, Magnus; Henareh, Loghman

    2014-09-01

    Abstract Background and objectives: Myocardial depression in the setting of sepsis and septic shock is common and has been recognized for a long time. The aim of this study is to find out an association and causal link between sepsis and takotsubo syndrome (TS). Fifteen cases of TS were studied. Critical review of the literature dealing with sepsis and myocardial depression was done Results: Fifteen cases of sepsis-induced TS are described. Fifty-three per cent of the patients were men. The ages ranged from 39 to 76 years (mean age 60 years). Two-thirds of the patients had ST-elevation myocardial infarction ECG changes. Complications occurred in 80% of the patients. No specific types of sepsis or micro-organisms were associated with the development of TS. Critical review of the sepsis-induced myocardial depression shows that the left ventricular dysfunction, which is reversible within one-to-two weeks, is characterized by segmental ventricular dysfunction, and involvement of the right ventricle in one fourth of cases. These features are also consistent with TS. Sepsis triggers TS, which may be the cause of the majority of cases of sepsis-induced myocardial depression. Acute cardiac sympathetic disruption with noradrenaline spill-over may be the cause of sepsis-induced TS.

  11. Taurine depresses cardiac contractility and enhances systemic heart glucose utilization in the cuttlefish, Sepia officinalis.

    PubMed

    MacCormack, Tyson J; Callaghan, N I; Sykes, A V; Driedzic, W R

    2016-02-01

    Taurine is the most abundant amino acid in the blood of the cuttlefish, Sepia officinalis, where levels can exceed 200 mmol L(-1). In mammals, intracellular taurine modulates cardiac Ca(2+) handling and carbohydrate metabolism at much lower concentrations but it is not clear if it exerts similar actions in cephalopods. Blood Ca(2+) levels are high in cephalopods and we hypothesized that taurine would depress cardiac Ca(2+) flux and modulate contractility in systemic and branchial hearts of cuttlefish. Heart performance was assessed with an in situ perfused systemic heart preparation and contractility was evaluated using isometrically contracting systemic and branchial heart muscle rings. Stroke volume, cardiac output, and Ca(2+) sensitivity were significantly lower in systemic hearts perfused with supplemental taurine (100 mmol L(-1)) than in controls. In muscle ring preparations, taurine impaired relaxation at high contraction frequencies, an effect abolished by supra-physiological Ca(2+) levels. Taurine did not affect oxygen consumption in non-contracting systemic heart muscle, but extracellular glucose utilization was twice that of control preparations. Collectively, our results suggest that extracellular taurine depresses cardiac Ca(2+) flux and potentiates glucose utilization in cuttlefish. Variations in taurine levels may represent an important mechanism for regulating cardiovascular function and metabolism in cephalopods.

  12. Systolic modeling of the left ventricle as a mechatronic system: determination of myocardial fiber's sarcomere contractile characteristics and new performance indices.

    PubMed

    Ghista, Dhanjoo N; Zhong, Liang; Chua, Leok P; Ng, Eddie Y K; Lim, Soo T; Tan, Ru S; Chua, Terrance S J

    2005-12-01

    In this paper, the left ventricle (LV) is modeled as a cylinder with myocardial fibers located helically within its wall. A fiber is modeled into myocardial structural units (MSUs); the core entity of each MSU is the sarcomeric contractile element. The relationship between the sarcomere unit's contractile force and shortening velocity is expressed in terms of the LV model's wall stress and deformation, and hence in terms of the monitored LV pressure and volume. Then, the LV systolic performance is investigated in terms of a mechatronic (excitation-contraction) model of the sarcomere unit located within the LV cylindrical model wall. The governing equation of dynamics of the LV myocardial structural unit (MSU) is developed, involving the parameters of the series-elastic element (SE), the viscous element (VE) and the contractile element (CE). We then relate the MSU's force and displacement variables (in terms of SE, VE and CE parameters) to the LV pressure and volume, using the patient's catheterization-ventriculogram data. We thereby evaluate the MSU elements' parameters. We then determine the sarcomere (CE) 'force vs. shortening-velocity' characteristics as well as the power generated by the sarcomere (or CE) element. These are deemed to be important LV functional indices. When our computed sarcomeric peak-power is compared against the traditional LV contractility indices (by linear regression), a high degree of correlation is obtained. We have provided herein, a LV systolic-phase (cylindrical geometry) model whose wall contains the myocardial fibers having sarcomere units. We have expressed the LV myocardial sarcomere's CE (force vs. shortening-velocity) characteristics in terms of the LV pressure-volume data. These CE properties express the intrinsic performance capacity of the LV. Hence, indices containing these properties are deemed to reflect LV performance. In this regard, our new LV contractility index correlates very well with the traditional LV

  13. Cardiac-specific overexpression of catalase attenuates paraquat-induced myocardial geometric and contractile alteration: role of ER stress.

    PubMed

    Ge, Wei; Ge, We; Zhang, Yingmei; Han, Xuefeng; Ren, Jun

    2010-12-15

    Paraquat, a quaternary nitrogen herbicide, is a highly toxic pro-oxidant that causes multiorgan failure including that of the heart via generation of reactive oxygen species, although the underlying mechanism has not been well elucidated. This study examined the influence of cardiac-specific overexpression of catalase, an antioxidant detoxifying H(2)O(2), on paraquat-induced myocardial geometric and functional alterations, with a focus on ER stress. FVB and catalase transgenic mice were administered paraquat for 48h. Myocardial geometry, contractile function, apoptosis, and ER stress were evaluated using echocardiography, edge detection, caspase-3 activity, and immunoblotting. Our results revealed that paraquat treatment significantly enlarged left ventricular (LV) end diastolic and systolic diameters; increased LV mass and resting myocyte length; reduced fractional shortening, cardiomyocyte peak shortening, and maximal velocity of shortening/relengthening; and prolonged relengthening duration in the FVB group. Whereas the catalase transgene itself did not alter myocardial geometry and function, it mitigated or significantly attenuated paraquat-elicited myocardial geometric and functional changes. Paraquat promoted overt apoptosis and ER stress as evidenced by increased caspase-3 activity, apoptosis, and ER stress markers including Bax, Bcl-2, GADD153, calregulin, and phosphorylated JNK, IRE1α, and eIF2α; all were ablated by the catalase transgene. Paraquat-induced cardiomyocyte dysfunction was mitigated by the ER stress inhibitor tauroursodeoxycholic acid. Moreover, the JNK inhibitor SP600125 reversed paraquat-induced ER stress as evidenced by enhanced GADD153 and IRE1α phosphorylation. Taken together, these data revealed that catalase may rescue paraquat-induced myocardial geometric and functional alteration possibly by alleviating JNK-mediated ER stress.

  14. Cardiac-Specific Overexpression of Catalase Attenuates Paraquat-Induced Myocardial Geometric and Contractile Alteration: Role of ER Stress

    PubMed Central

    Ge, We; Zhang, Yingmei; Han, Xuefeng; Ren, Jun

    2010-01-01

    Paraquat, a quarternary nitrogen herbicide, is a highly toxic prooxidant resulting in multi-organ failure including the heart via generation of reactive oxygen species although the underlying mechanism has not been well elucidated. This study examined the influence of cardiac-specific overexpression of catalase, an antioxidant detoxifying H2O2, on paraquat-induced myocardial geometric and functional alterations, with a focus on ER stress. FVB and catalase transgenic mice were administrated paraquat for 48 hrs. Myocardial geometry, contractile function, apoptosis, and ER stress were evaluated using echocardiography, edge-detection, caspase-3 activity and immunoblotting. Our results revealed that paraquat treatment significantly enlarged LV end-diastolic and systolic diameters, increased LV mass and resting myocyte length, reduced fractional shortening, cardiomyocyte peak shortening, maximal velocity of shortening/relengthening and prolonged relengthening duration in FVB group. While catalase transgene itself did not alter myocardial geometry and function, it mitigated or significantly attenuated paraquat-elicited myocardial geometric and functional changes. Paraquat promoted overt apoptosis and ER stress as evidenced by increased caspase-3 activity, apoptosis and ER stress markers including Bax, Bcl-2, GADD153, calregulin and phosphorylation of JNK, IRE1α and eIF2α, all were ablated by catalase transgene. Paraquat-induced cardiomyocyte dysfunction was mitigated by the ER stress inhibitor tauroursodeoxycholic acid. Moreover, the JNK inhibitor SP600125 reversed paraquat-induced ER stress as evidenced by enhanced GADD153 and IRE1α phosphorylation. Taken together, these data revealed that catalase may rescue paraquat-induced myocardial geometric and functional alteration possibly via alleviating JNK-mediated ER stress. PMID:20937379

  15. NPY1 Receptors Participate in the Regulation of Myocardial Contractility in Rats.

    PubMed

    Masliuko, P M; Anikina, T A; Zverev, A A; Krylova, A V; Moiseev, K Yu; Zefirov, T L

    2017-02-01

    Selective agonist (Leu(31)Pro(34)NPY) and blocker (BIBP-3226) of NPY1 receptors were used to determine the type of NPY receptors involved in myocardial contraction. Experiments with isometric contraction of myocardial strips from mature rats showed that the agonist produced the most potent effect in a concentration of 10(-7) M. In this concentration, Leu(31)Pro(34)NPY showed the greatest positive inotropic effect on the contraction of the atria and ventricles. In contrast, selective blocker BIBP-3226 reduced the force of myocardial contractions. Pretreatment of myocardial strips with this blocker abolished the positive inotropic effect of Leu(31)Pro(34)NPY, which attested to important role of NPY1 receptors in myocardial contraction.

  16. Improvement of myocardial contractility in a porcine model of chronic ischemia using a combined transmyocardial revascularization and gene therapy approach.

    PubMed

    Horvath, Keith A; Lu, Chia Yang J; Robert, Emmanuel; Pierce, Glenn F; Greene, Rodney; Sosnowski, Barbara A; Doukas, John

    2005-05-01

    The purpose of this study was to investigate whether a novel fibroblast growth factor-2 gene formulation, providing a localized and sustained availability of the adenoviral vector from a collagen-based matrix, in combination with CO 2 transmyocardial laser revascularization would lead to an enhanced angiogenic response and improved myocardial function. Fibroblast growth factor-2 gene was delivered by means of an adenoviral vector (adenoviral fibroblast growth factor-2) formulated in a collagen-based matrix. The ischemic areas of 33 animals were then treated. Group 1 was treated with CO 2 transmyocardial laser revascularization; group 2 was treated with intramyocardial injections of adenoviral fibroblast growth factor-2 in a collagen-based matrix; group 3 had a combination treatment of matrix adenoviral fibroblast growth factor-2 and CO 2 transmyocardial laser revascularization; and group 4 received injections with saline-formulated adenoviral fibroblast growth factor-2. Baseline left ventricular function was assessed by echocardiography and cine magnetic resonance imaging. Studies were repeated 6 weeks after treatment. Vascular development was assessed using anti-alpha-actin immunohistochemistry. Matrix adenoviral fibroblast growth factor-2 + transmyocardial laser revascularization-treated areas had a 105% increase in arteriolar development versus either treatment alone ( P < .05) and a 390% increase compared with saline-formulated adenoviral fibroblast growth factor-2 treatment alone ( P < .05). Contractility was significantly improved in matrix adenoviral fibroblast growth factor-2 + transmyocardial laser revascularization-treated areas as measured by myocardial wall thickening. This functional improvement was confirmed by cine magnetic resonance imaging, in which a 90% increase in the contractility of the treated segments was demonstrated after matrix adenoviral fibroblast growth factor-2 + transmyocardial laser revascularation. The other treatments provided

  17. [Electrical activity of the heart cells and myocardial contractility during a change in extracellular sodium concentration].

    PubMed

    Kobrin, V I; Alabovskiĭ, V V; Alipov, N N; Oleĭnikov, O D

    1988-09-01

    The transmembrane potentials of the cells of the ventricle contractile myocardium of the rat and frog isolated hearts were studied as well as the strength of the ventricle contraction under the effect of a decrease (to 30 mM) or increase (up to 200 mM) in the sodium chloride concentration in the perfusate. The decrease led to a fibrillation of ventricles, 80-85% of contractile cells generating a high-frequency activity, 12-15% preserving the same AP and 3-5% having completely lost the excitability. The increase only affects the transmembrane potentials of ischemized myocardium. The decrease in the sodium concentration led to an augmentation of the contraction strength through the sodium-calcium exchange mechanism.

  18. Assessment of the relationships between myocardial contractility and infarct tissue revealed by serial magnetic resonance imaging in patients with acute myocardial infarction.

    PubMed

    McComb, Christie; Carrick, David; McClure, John D; Woodward, Rosemary; Radjenovic, Aleksandra; Foster, John E; Berry, Colin

    2015-08-01

    Imaging changes in left ventricular (LV) volumes during the cardiac cycle and LV ejection fraction do not provide information on regional contractility. Displacement ENcoding with Stimulated Echoes (DENSE) is a strain-encoded cardiac magnetic resonance (CMR) technique that measures strain directly. We investigated the relationships between strain revealed by DENSE and the presence and extent of infarction in patients with recent myocardial infarction (MI). 50 male subjects were invited to undergo serial CMR within 7 days of MI (baseline) and after 6 months (follow-up; n = 47). DENSE and late gadolinium enhancement (LGE) images were acquired to enable localised regional quantification of peak circumferential strain (Ecc) and the extent of infarction, respectively. We assessed: (1) receiver operating characteristic (ROC) analysis for the classification of LGE, (2) strain differences according to LGE status (remote, adjacent, infarcted) and (3) changes in strain revealed between baseline and follow-up. 300 and 258 myocardial segments were available for analysis at baseline and follow-up respectively. LGE was present in 130/300 (43%) and 97/258 (38%) segments, respectively. ROC analysis revealed moderately high values for peak Ecc at baseline [threshold 12.8%; area-under-curve (AUC) 0.88, sensitivity 84%, specificity 78%] and at follow-up (threshold 15.8%; AUC 0.76, sensitivity 85%, specificity 64%). Differences were observed between remote, adjacent and infarcted segments. Between baseline and follow-up, increases in peak Ecc were observed in infarcted segments (median difference of 5.6%) and in adjacent segments (1.5%). Peak Ecc at baseline was indicative of the change in LGE status between baseline and follow-up. Strain-encoded CMR with DENSE has the potential to provide clinically useful information on contractility and its recovery over time in patients with MI.

  19. Relationship between myocardial metabolites and contractile abnormalities during graded regional ischemia. Phosphorus-31 nuclear magnetic resonance studies of porcine myocardium in vivo.

    PubMed Central

    Schaefer, S; Schwartz, G G; Gober, J R; Wong, A K; Camacho, S A; Massie, B; Weiner, M W

    1990-01-01

    The mechanisms responsible for changes in myocardial contractility during regional ischemia are unknown. Since changes in high-energy phosphates during ischemia are sensitive to reductions in myocardial blood flow, it was hypothesized that myocardial function under steady-state conditions of graded regional ischemia is closely related to changes in myocardial high-energy phosphates. Therefore, phosphorus-31 nuclear magnetic resonance spectroscopy was employed in an in vivo porcine model of graded coronary stenosis. Simultaneous measurements of regional subendocardial blood flow, high-energy phosphates, pH, and myocardial segment shortening were made during various degrees of regional ischemia in which subendocardial blood flow was reduced by 16-94%. During mild reductions in myocardial blood flow (subendocardial blood flow = 83% of nonischemic myocardium), only the ratio of phosphocreatine to inorganic phosphate (PCr/Pi), Pi, and [H+] were significantly changed from control. PCr, ATP, and PCr/ATP were not significantly reduced from control with mild reductions in blood flow. Changes in myocardial segment shortening were most closely associated with changes in PCr/Pi (r = 0.94). Pi and [H+] were negatively correlated with segment shortening (r = -0.64 and -0.58, respectively) and increased over twofold when blood flow was reduced by 62%. Thus, these data demonstrate that PCr/Pi is sensitive to reductions in myocardial blood flow and closely correlates with changes in myocardial function. These data are also consistent with a role for Pi or H+ as inhibitors of myocardial contractility during ischemia. Images PMID:2312722

  20. Cardiac threat appraisal and depression after first myocardial infarction.

    PubMed

    Vögele, Claus; Christ, Oliver; Spaderna, Heike

    2012-01-01

    The present study investigated cardiac threat appraisal and its association with depression after first myocardial infarction (MI). A semi-structured interview allowing for DSM-IV-axis I diagnoses was administered to 36 patients after first MI. Patients completed self-reports 5-15 days after the MI (time 1), 6-8 weeks later (time 2), and again 6 months later (time 3). Assessments at time 1 included indices of cardiac threat appraisal, locus of control, coping, and depression while at time 2 and time 3 only measures of depression were obtained. Cardiac threat appraisal was significantly correlated with depression at time 1, but was unrelated to depression scores at time 2 and time 3. Furthermore, there was a significant inverse association between cardiac threat appraisal and the subscales "search for affiliation" and "threat minimization" of the coping questionnaire. Additionally, "search for affiliation" correlated negatively with depression scores at time 1 and time 3, and "threat minimization" negatively with depression scores at time 1 and time 2. These results suggest a significant association between cardiac threat appraisal and depressive symptoms shortly after MI. Practical implications for treatment are discussed.

  1. Recovery of the Frank-Starling mechanism by coenzyme Q10 in patients with load-induced contractility depression.

    PubMed

    Oda, T

    1993-01-01

    Load-induced contractility depression, in which supernormal left ventricular ejection fraction and contractility at rest decrease by added afterload, is most often found in children with mitral valve prolapse who have symptoms. Patients have high ventricular end-diastolic pressure at rest, which is further increased by afterload challenge. The Frank-Starling mechanism may be maximally mobilized with high preload even at rest to compensate for the intrinsically depressed inotropic state. Therefore, preload reserve may be easily exhausted due to afterload addition. We aimed to determine left ventricular end-diastolic fiber length, stroke work, and contractility before and during handgrip by echocardiograms to obtain evidence for the Frank-Starling mechanism in patients and controls, including patients treated with coenzyme Q10. The subjects were divided into four groups, each consisting of 30 children aged 6-16 years: group 1, normals; group 2, patients; group 3, the same patients as in group 2 after coenzyme Q10 therapy; and group 4, patients with asymptomatic mitral valve prolapse. Baseline values and percentage increases in systolic blood pressure, heart rate, and left ventricular wall stress showed no differences among the groups. Only in group 2 were the percentage increase in ejection fraction, fiber shortening velocity, contractility, and end-diastolic dimension strongly negative, despite supernormal baseline levels. In other groups, these were significantly positive, without intergroup differences. We conclude that in the heart with load-induced contractility depression, the Frank-Starling mechanism deviates from normal. The normal Frank-Starling mechanism was recovered due to coenzyme Q10, which may improve disturbed bioenergetic function at the molecular level.

  2. Reduced scar maturation and contractility lead to exaggerated left ventricular dilation after myocardial infarction in mice lacking AMPKα1.

    PubMed

    Noppe, Gauthier; Dufeys, Cécile; Buchlin, Patricia; Marquet, Nicolas; Castanares-Zapatero, Diego; Balteau, Magali; Hermida, Nerea; Bouzin, Caroline; Esfahani, Hrag; Viollet, Benoit; Bertrand, Luc; Balligand, Jean-Luc; Vanoverschelde, Jean-Louis; Beauloye, Christophe; Horman, Sandrine

    2014-09-01

    Cardiac fibroblasts (CF) are crucial in left ventricular (LV) healing and remodeling after myocardial infarction (MI). They are typically activated into myofibroblasts that express alpha-smooth muscle actin (α-SMA) microfilaments and contribute to the formation of contractile and mature collagen scars that minimize the adverse dilatation of infarcted areas. CF predominantly express the α1 catalytic subunit of AMP-activated protein kinase (AMPKα1), while AMPKα2 is the major catalytic isoform in cardiomyocytes. AMPKα2 is known to protect the heart by preserving the energy charge of cardiac myocytes during injury, but whether AMPKα1 interferes with maladaptative heart responses remains unexplored. In this study, we investigated the role of AMPKα1 in modulating LV dilatation and CF fibrosis during post-MI remodeling. AMPKα1 knockout (KO) and wild type (WT) mice were subjected to permanent ligation of the left anterior descending coronary artery. The absence of AMPKα1 was associated with increased CF proliferation in infarcted areas, while expression of the myodifferentiation marker α-SMA was decreased. Faulty maturation of myofibroblasts might derive from severe down-regulation of the non-canonical transforming growth factor-beta1/p38 mitogen-activated protein kinase (TGF-β1/p38 MAPK) pathway in KO infarcts. In addition, lysyl oxidase (LOX) protein expression was dramatically reduced in the scar of KO hearts. Although infarct size was similar in AMPK-KO and WT hearts subjected to MI, these changes resulted in compromised scar contractility, defective scar collagen maturation, and exacerbated adverse remodeling, as indicated by increased LV diastolic dimension 30days after MI. Our data genetically demonstrate the centrality of AMPKα1 in post-MI scar formation and highlight the specificity of this catalytic isoform in cardiac fibroblast/myofibroblast biology.

  3. Exposure to low mercury concentration in vivo impairs myocardial contractile function

    SciTech Connect

    Furieri, Lorena Barros; Fioresi, Mirian; Junior, Rogerio Faustino Ribeiro; Bartolome, Maria Visitacion; Fernandes, Aurelia Araujo; Cachofeiro, Victoria; Lahera, Vicente; Salaices, Mercedes; Stefanon, Ivanita; Vassallo, Dalton Valentim

    2011-09-01

    Increased cardiovascular risk after mercury exposure has been described but cardiac effects resulting from controlled chronic treatment are not yet well explored. We analyzed the effects of chronic exposure to low mercury concentrations on hemodynamic and ventricular function of isolated hearts. Wistar rats were treated with HgCl{sub 2} (1st dose 4.6 {mu}g/kg, subsequent dose 0.07 {mu}g/kg/day, im, 30 days) or vehicle. Mercury treatment did not affect blood pressure (BP) nor produced cardiac hypertrophy or changes of myocyte morphometry and collagen content. This treatment: 1) in vivo increased left ventricle end diastolic pressure (LVEDP) without changing left ventricular systolic pressure (LVSP) and heart rate; 2) in isolated hearts reduced LV isovolumic systolic pressure and time derivatives, and {beta}-adrenergic response; 3) increased myosin ATPase activity; 4) reduced Na{sup +}-K{sup +} ATPase (NKA) activity; 5) reduced protein expression of SERCA and phosphorylated phospholamban on serine 16 while phospholamban expression increased; as a consequence SERCA/phospholamban ratio reduced; 6) reduced sodium/calcium exchanger (NCX) protein expression and {alpha}-1 isoform of NKA, whereas {alpha}-2 isoform of NKA did not change. Chronic exposure for 30 days to low concentrations of mercury does not change BP, heart rate or LVSP but produces small but significant increase of LVEDP. However, in isolated hearts mercury treatment promoted contractility dysfunction as a result of the decreased NKA activity, reduction of NCX and SERCA and increased PLB protein expression. These findings offer further evidence that mercury chronic exposure, even at small concentrations, is an environmental risk factor affecting heart function. - Highlights: > Unchanges blood pressure, heart rate, systolic pressure. > Increases end diastolic pressure. > Promotes cardiac contractility dysfunction. > Decreases NKA activity, NCX and SERCA, increases PLB protein expression. > Small

  4. Treatment of post-myocardial infarction depressive disorder.

    PubMed

    Kuyper, Astrid M G; Honig, Adriaan

    2008-07-01

    Both major and minor depressive disorder post-myocardial infarction (MI) are associated with an increased risk of all-cause mortality, cardiac mortality and new cardiovascular events. Post-MI depressive disorder predicts slow recovery and poor quality of life. This review attends to post-MI depressive disorder, its underlying mechanisms and options for and effects of treatment. Evidence has been found for several mechanisms to be involved in the pathophysiology, including hypothalamus-pituitary-adrenal axis activity, immune activity, polyunsaturated fatty acids, serotonin, platelet activation, type D personality and negative health behavior. Five leading randomized controlled trials are discussed, showing safety and efficacy of antidepressive treatment in post-MI patients. Effects on cardiac outcome remain unclear.

  5. Role of calcium and potassium channels in effects of hydrogen sulfide on frog myocardial contractility.

    PubMed

    Sitdikova, G F; Khaertdinov, N N; Zefirov, A L

    2011-06-01

    The effects of sodium hydrosulfide NaHS, a donor of hydrogen sulfide H2S, on the force of muscle contraction were examined on isolated myocardial strips from frog ventricles. NaHS decreased the amplitude of muscle contractions in a dose-dependent manner under normal conditions and during inhibition of Ca channels with nifedipine. In contrast, under conditions of blockade of ATP-dependent potassium channels with glibenclamide, NaHS exerted a positive inotropic effect from the first minute of application. Neither blockade, nor activation of ATP-dependent K-channels with glibenclamide modulated the negative inotropic effect of NaHS. Inhibition of K-channels with tetraethylammonium (TEA) (3, 5, 10 mM) or 4-aminopyridine increased the amplitude of myocardial contractions. Preliminary application of 4-aminopyridine or TEA (3 mM) did not eliminate NaHS-induced negative inotropic effect, although higher TEA concentrations (5 or 10 mM) prevented it. The data indicate that the targets of H(2)S in frog myocardium are ATP-dependent, Ca-activated, and voltage-dependent K-channels.

  6. Depression and the Risk of Myocardial Infarction and Coronary Death

    PubMed Central

    Wu, Qing; Kling, Juliana M.

    2016-01-01

    Abstract Findings regarding the association between depression and risk of coronary heart disease are inconsistent. We aimed to assess the association between depression and risk of myocardial infarction (MI) and coronary death through a meta-analysis. We performed an electronic literature search of MEDLINE, EMBASE, PsycINFO, ISI Web of Science, and Scopus databases through August 1, 2015, and manual search of the references of the eligible papers and related review articles. Two investigators independently conducted study selection and data abstraction. Disagreement was resolved by consensus. Confounder-adjusted hazard ratios (HRs) were pooled using a random-effects model. Heterogeneity was evaluated using the Cochran Q statistic and Higgins index. Publication bias was assessed by funnel plot and Egger test. Study quality was appraised with the Newcastle-Ottawa Scale. Among 19 eligible cohort studies including 323,709 participants, 8447 cases of MI and coronary death were reported during follow-up ranging from 4 to 37 years. The pooled adjusted HRs for patients with depression (vs those without) were 1.22 (95% CI, 1.13–1.32) for combined MI and coronary death, 1.31 (95% CI, 1.09–1.57) for MI alone (9 studies), and 1.36 (95% CI, 1.14–1.63) for coronary death alone (8 studies). The increased risk of MI and coronary death associated with depression was consistent using modified inclusion criteria, across most subgroups, and after adjusting for possible publication bias. Depression is associated with a significantly increased risk of MI and coronary death. Effective prevention and treatment of depression may decrease such risk. PMID:26871852

  7. Control of the Myocardial Contractile State by Carotid Chemo- and Baroreceptor and Pulmonary Inflation Reflexes in Conscious Dogs

    PubMed Central

    Vatner, Stephen F.; Rutherford, John D.

    1978-01-01

    exert a greater increase in myocardial contractility than does carotid baro-receptor unloading. Images PMID:659617

  8. Chlorine inhalation-induced myocardial depression and failure

    PubMed Central

    Zaky, Ahmed; Bradley, Wayne E; Lazrak, Ahmed; Zafar, Iram; Doran, Stephen; Ahmad, Aftab; White, Carl W; Dell'Italia, Louis J; Matalon, Sadis; Ahmad, Shama

    2015-01-01

    Victims of chlorine (Cl2) inhalation that die demonstrate significant cardiac pathology. However, a gap exists in the understanding of Cl2-induced cardiac dysfunction. This study was performed to characterize cardiac dysfunction occurring after Cl2 exposure in rats at concentrations mimicking accidental human exposures (in the range of 500 or 600 ppm for 30 min). Inhalation of 500 ppm Cl2 for 30 min resulted in increased lactate in the coronary sinus of the rats suggesting an increase in anaerobic metabolism by the heart. There was also an attenuation of myocardial contractile force in an ex vivo (Langendorff technique) retrograde perfused heart preparation. After 20 h of return to room air, Cl2 exposure at 500 ppm was associated with a reduction in systolic and diastolic blood pressure as well echocardiographic/Doppler evidence of significant left ventricular systolic and diastolic dysfunction. Cl2 exposure at 600 ppm (30 min) was associated with biventricular failure (observed at 2 h after exposure) and death. Cardiac mechanical dysfunction persisted despite increasing the inspired oxygen fraction concentration in Cl2-exposed rats (500 ppm) to ameliorate hypoxia that occurs after Cl2 inhalation. Similarly ex vivo cardiac mechanical dysfunction was reproduced by sole exposure to chloramine (a potential circulating Cl2 reactant product). These results suggest an independent and distinctive role of Cl2 (and its reactants) in inducing cardiac toxicity and potentially contributing to mortality. PMID:26109193

  9. Myocardial depression in sepsis: from pathogenesis to clinical manifestations and treatment.

    PubMed

    Antonucci, Elio; Fiaccadori, Enrico; Donadello, Katia; Taccone, Fabio Silvio; Franchi, Federico; Scolletta, Sabino

    2014-08-01

    The cardiovascular system plays a key role in sepsis, and septic myocardial depression is a common finding associated with increased morbidity and mortality. Myocardial depression during sepsis is not clearly defined, but it can perhaps be best described as a global (systolic and diastolic) dysfunction of both the left and right sides of the heart. The pathogenesis of septic myocardial depression involves a complex mix of systemic (hemodynamic) factors and genetic, molecular, metabolic, and structural alterations. Pulmonary artery catheterization and modern echo-Doppler techniques are important diagnostic tools in this setting. There are no specific therapies for septic myocardial depression, and the cornerstone of management is control of the underlying infectious process (adequate antibiotic therapy, removal of the source) and hemodynamic stabilization (fluids, vasopressor and inotropic agents). In this review, we will summarize the pathogenesis, diagnosis, and treatment of myocardial depression in sepsis. Additional studies are needed in order to improve diagnosis and identify therapeutic targets in septic myocardial dysfunction. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Compensatory mechanisms for cardiac dysfunction in myocardial infarction.

    PubMed

    Ertl, G; Gaudron, P; Eilles, C; Schorb, W; Kochsiek, K

    1991-01-01

    Loss of contractile myocardial tissue by myocardial infarction would result in depressed cardiac output if compensatory mechanisms would not be operative. Frank-Straub-Starling-mechanism and increased heart rate and contractility due to sympathetic stimulation are unlikely to chronically compensate for cardiac dysfunction. Structural left ventricular dilatation may be compensatory, but results in increased wall stress and, ultimately, in progressive dilatation and heart failure. In patients with myocardial infarction, we have shown left-ventricular dilatation in dependence of infarct size and time after infarction. Dilatation is compensatory first and normalizes stroke volume. However, left ventricular dilatation progresses without further hemodynamic profit and, thus, may participate in development of heart failure.

  11. Intravenous Followed by X-ray Fused with MRI-Guided Transendocardial Mesenchymal Stem Cell Injection Improves Contractility Reserve in a Swine Model of Myocardial Infarction

    PubMed Central

    Schmuck, Eric G.; Koch, Jill M.; Hacker, Timothy A.; Hatt, Charles R.; Tomkowiak, Michael T.; Vigen, Karl K.; Hendren, Nicholas; Leitzke, Cathlyn; Zhao, Ying-qi; Li, Zhanhai; Centanni, John M.; Hei, Derek J.; Schwahn, Denise; Kim, Jaehyup; Hematti, Peiman

    2016-01-01

    The aim of this study is to determine the effects of early intravenous (IV) infusion later followed by transendocardial (TE) injection of allogeneic mesenchymal stem cells (MSCs) following myocardial infarction (MI). Twenty-four swine underwent balloon occlusion reperfusion MI and were randomized into 4 groups: IV MSC (or placebo) infusion (post-MI day 2) and TE MSC (or placebo) injection targeting the infarct border with 2D X-ray fluoroscopy fused to 3D magnetic resonance (XFM) co-registration (post-MI day 14). Continuous ECG recording, MRI, and invasive pressure-volume analyses were performed. IV MSC plus TE MSC treated group was superior to other groups for contractility reserve (p=0.02) and freedom from VT (p=0.03) but had more lymphocytic foci localized to the peri-infarct region (p= 0.002). No differences were observed in post-MI remodeling parameters. IV followed by XFM targeted TE MSC therapy improves contractility reserve and suppresses VT but does not affect post-MI remodeling and may cause an immune response. PMID:26374144

  12. Myocardial response to incremental exercise in endurance-trained athletes: influence of heart rate, contractility and the Frank-Starling effect.

    PubMed

    Warburton, Darren E R; Haykowsky, Mark J; Quinney, H Arthur; Blackmore, Derrick; Teo, Koon K; Humen, Dennis P

    2002-09-01

    Recent evidence indicates that endurance-trained athletes are able to increase their stroke volume (SV) throughout incremental upright exercise, probably due to a progressively greater effect of the Frank-Starling mechanism. This is contrary to the widely held belief that SV reaches a plateau at a submaximal heart rate (irrespective of fitness level), owing to a limitation in the time for diastolic filling. The purpose of this investigation was to evaluate whether endurance-trained athletes rely on a progressively greater effect of the Frank-Starling mechanism throughout incremental exercise. A secondary purpose was to evaluate the effects of postural position on the cardiovascular responses to incremental exercise. Ten male cyclists participated in this investigation. Left ventricular function was assessed throughout incremental exercise in the supine and upright positions (counterbalanced) using radionuclide ventriculography. Stroke volume increased in a linear fashion during incremental exercise in both the upright and supine positions. The increases in cardiac output (Q) throughout incremental to maximal exercise (in both the supine and upright positions) were significantly related to changes in heart rate, myocardial contractility and the Frank-Starling mechanism. Percentage changes in end-diastolic volume and SV were significantly greater in the upright position versus the supine position, reflecting an increased reliance on the Frank-Starling effect to increase Q. We conclude from this investigation that highly trained endurance athletes are able to make progressively increasing usage of the Frank-Starling effect throughout incremental exercise. Postural position has a significant effect on the relative contribution of heart rate, myocardial contractility and the Frank-Starling mechanism to the increase in Q during exercise conditions.

  13. Ablation of Akt2 prevents paraquat-induced myocardial mitochondrial injury and contractile dysfunction: Role of Nrf2.

    PubMed

    Wang, Shuyi; Zhu, Xiaoling; Xiong, Lize; Ren, Jun

    2017-03-05

    Paraquat is a quaternary nitrogen herbicide triggering oxidative stress, mitochondrial damage and multi-organ injuries including hearts. To date, effective measure to combat paraquat toxicity is still lacking. Recent evidence has revealed a role for Akt in cardiac homeostasis. To this end, this study was designed to examine the role of Akt2 in acute paraquat exposure-induced cardiac contractile and mitochondrial injury using a unique murine model of Akt2 knockout. Cardiac contractile and intracellular Ca(2+) properties were evaluated. Mitochondrial integrity, ROS production, lipid peroxidation, ER stress and apoptosis were evaluated using aconitase assay, citrate synthase activity, DHE staining, mitochondrial permeation pore opening, 4-hydroxy-nonenal (4-HNE) and Western blot. Our results revealed compromised echocardiographic, contractile and intracellular Ca(2+) handling properties along with overt mitochondrial damage (reduced levels of PGC-1α, aconitase, citrate synthase activity and NAD(+)) in mice challenged with paraquat (45mg/kg, single injection, i.p.), the effects of which were attenuated by Akt ablation. Paraquat triggered O2(-) production, lipid peroxidation and apoptosis as evidenced by increased DHE staining, 4-HNE, caspase-3 activity, Bax and reduced Bcl-2 levels in association with unchanged ER stress. The redox signaling molecule nuclear factor erythroid related factor 2 (Nrf2) was upregulated in response to paraquat challenge. Findings from in vitro study revealed that stimulation of Nrf2 using sulforaphane (10μM) negated Akt2 ablation-offered beneficial effect against paraquat whereas inhibition of Nrf2 using luteolin (20μM) mimicked Akt2 ablation-induced beneficial effect against paraquat challenge. Taken together, our data indicate that Akt2 ablation may protect against paraquat toxicity-induced cardiac contractile defect and apoptosis possibly via regulation of Nrf2 activation and mitochondrial homeostasis. Copyright © 2017 Elsevier B

  14. Incomplete recovery of myocyte contractile function despite improvement of myocardial architecture with left ventricular assist device support.

    PubMed

    Ambardekar, Amrut V; Walker, John S; Walker, Lori A; Cleveland, Joseph C; Lowes, Brian D; Buttrick, Peter M

    2011-07-01

    Unloading a failing heart with a left ventricular assist device (LVAD) can improve ejection fraction (EF) and LV size; however, recovery with LVAD explantation is rare. We hypothesized that evaluation of myocyte contractility and biochemistry at the sarcomere level before and after LVAD may explain organ-level changes. Paired LV tissue samples were frozen from 8 patients with nonischemic cardiomyopathy at LVAD implantation (before LVAD) and before cardiac transplantation (after LVAD). These were compared with 8 nonfailing hearts. Isolated skinned myocytes were purified and attached to a force transducer, and dimensions, maximum calcium-saturated force, calcium sensitivity, and myofilament cooperativity were assessed. Relative isoform abundance and phosphorylation levels of sarcomeric contractile proteins were measured. With LVAD support, the unloaded EF improved (10.0±1.0% to 25.6±11.0%, P=0.007), LV size decreased (LV internal dimension at end diastole, 7.6±1.2 to 4.9±1.4 cm; P<0.001), and myocyte dimensions decreased (cross-sectional area, 1247±346 to 638±254 μm(2); P=0.001). Maximum calcium-saturated force improved after LVAD (3.6±0.9 to 7.3±1.8 mN/mm(2), P<0.001) implantation but was still lower than in nonfailing hearts (7.3±1.8 versus 17.6±1.8 mN/mm(2), P<0.001). An increase in troponin I (TnI) phosphorylation after LVAD implantation was noted, but protein kinase C phosphorylation of TnI decreased. Biochemical changes of other sarcomeric proteins were not observed after LVAD. There is significant improvement in LV and myocyte size with LVAD, but there is only partial recovery of EF and myocyte contractility. LVAD support was associated only with biochemical changes in TnI, suggesting that alternate mechanisms might contribute to contractile changes after LVAD and that additional interventions may be needed to alter biochemical remodeling of the sarcomere to further enhance myofilament and organ-level recovery.

  15. The effects of apoptosis vulnerability markers on the myocardium in depression after myocardial infarction.

    PubMed

    Wang, Yiming; Liu, Xingde; Zhang, Dongfeng; Chen, Jianhui; Liu, Shuzheng; Berk, Michael

    2013-02-08

    There is an increased incidence of major depressive disorder (MDD) in individuals after myocardial infarction (MI), but the pathophysiological processes mediating this association are unclear. Our previous study demonstrated an increase in pro-apoptotic pathways in the myocardium and hippocampus in MDD, which was reversed by venlafaxine. This study aimed to attempt to confirm the effects of apoptosis vulnerability markers on the myocardium in a model of depression after myocardial infarction. Rats were divided into four groups: sham (N = 8), depression (N = 8, chronic mild unpredictable stress and separation were used in the depression group), MI (N = 13) and post-MI depression (N = 7). The rats in all four groups underwent the same open field and sucrose preference behavioral tests. Evan Blue staining was used to determine the area at risk of myocardial infarction in the left ventricle, and 2,3,5-triphenyl tetrazolium chloride (1.5% TTC) dye was used to detect the size of the myocardial infarction. The expression of bax and bcl-2 protein in the myocardium was investigated by immunohistochemistry, and the mRNA expression of bax, bcl-2 and caspase-3 in the myocardium was investigated by real time RT-PCR. Apoptosis was estimated in the myocardium by measuring the Bax:Bcl-2 ratio. In the depression and post-MI depression rats, there were significantly decreased movements and total sucrose consumption, modeling behavioral deficits and an anhedonic-like state. In terms of myocardial infarction size, no difference was seen between the MI and post-MI depression groups. There was an up-regulated Bax:Bcl-2 ratio in the depression, MI and post-MI depression groups. Furthermore, in the latter group, there was a greater up-regulated Bax:Bcl-2 ratio. However, caspase-3 did not differ among the four groups. These results of this animal model suggest that active pro-apoptotic pathways may be involved in the nexus between myocardial infarction and depression. This mechanism may be

  16. The effects of apoptosis vulnerability markers on the myocardium in depression after myocardial infarction

    PubMed Central

    2013-01-01

    Background There is an increased incidence of major depressive disorder (MDD) in individuals after myocardial infarction (MI), but the pathophysiological processes mediating this association are unclear. Our previous study demonstrated an increase in pro-apoptotic pathways in the myocardium and hippocampus in MDD, which was reversed by venlafaxine. This study aimed to attempt to confirm the effects of apoptosis vulnerability markers on the myocardium in a model of depression after myocardial infarction. Methods Rats were divided into four groups: sham (N = 8), depression (N = 8, chronic mild unpredictable stress and separation were used in the depression group), MI (N = 13) and post-MI depression (N = 7). The rats in all four groups underwent the same open field and sucrose preference behavioral tests. Evan Blue staining was used to determine the area at risk of myocardial infarction in the left ventricle, and 2,3,5-triphenyl tetrazolium chloride (1.5% TTC) dye was used to detect the size of the myocardial infarction. The expression of bax and bcl-2 protein in the myocardium was investigated by immunohistochemistry, and the mRNA expression of bax, bcl-2 and caspase-3 in the myocardium was investigated by real time RT-PCR. Apoptosis was estimated in the myocardium by measuring the Bax:Bcl-2 ratio. Results In the depression and post-MI depression rats, there were significantly decreased movements and total sucrose consumption, modeling behavioral deficits and an anhedonic-like state. In terms of myocardial infarction size, no difference was seen between the MI and post-MI depression groups. There was an up-regulated Bax:Bcl-2 ratio in the depression, MI and post-MI depression groups. Furthermore, in the latter group, there was a greater up-regulated Bax:Bcl-2 ratio. However, caspase-3 did not differ among the four groups. Conclusions These results of this animal model suggest that active pro-apoptotic pathways may be involved in the nexus between myocardial

  17. Transplantation of adipose tissue-derived stem cells improves cardiac contractile function and electrical stability in a rat myocardial infarction model.

    PubMed

    Gautam, Milan; Fujita, Daiki; Kimura, Kazuhiro; Ichikawa, Hinako; Izawa, Atsushi; Hirose, Masamichi; Kashihara, Toshihide; Yamada, Mitsuhiko; Takahashi, Masafumi; Ikeda, Uichi; Shiba, Yuji

    2015-04-01

    The transplantation of adipose tissue-derived stem cells (ADSCs) improves cardiac contractility after myocardial infarction (MI); however, little is known about the electrophysiological consequences of transplantation. The purpose of this study was to clarify whether the transplantation of ADSCs increases or decreases the incidence of ventricular tachyarrhythmias (VT) in a rat model of MI. MI was induced experimentally by permanent occlusion of the left anterior descending artery of Lewis rats. ADSCs were harvested from GFP-transgenic rats, and were cultured until passage four. ADSCs (10×10(6)) resuspended in 100μL saline or pro-survival cocktail (PSC), which enhances cardiac graft survival, were injected directly into syngeneic rat hearts 1week after MI. The recipients of ADSCs suspended in PSC had a larger graft area compared with those receiving ASDCs suspended in saline at 1week post-transplantation (number of graft cells/section: 148.7±10.6 vs. 22.4±3.4, p<0.05, n=5/group). Thereafter, all ADSC recipients were transplanted with ASDCs in PSC. ADSCs were transplanted into infarcted hearts, and the mechanical and electrophysiological functions were assessed. Echocardiography revealed that ADSC recipients had improved contractile function compared with those receiving PSC vehicle (fractional shortening: 21.1±0.9 vs. 14.1±1.2, p<0.05, n≥12/group). Four weeks post-transplantation, VT was induced via in vivo programmed electrical stimulation. The recipients of ADSCs showed a significantly lower incidence of induced VT compared with the control (31.3% vs. 83.3%, p<0.05, n≥12/group). To understand the electrical activity following transplantation, we performed ex vivo optical mapping using a voltage sensitive dye, and found that ADSC transplantation decreased conduction velocity and its dispersion in the peri-infarct area. These results suggest that ADSC transplantation improved cardiac mechanical and electrophysiological functions in subacute MI.

  18. Depression Treatment and 1-Year Mortality Following Acute Myocardial Infarction: Insights from the TRIUMPH Registry.

    PubMed

    Smolderen, Kim G; Buchanan, Donna M; Gosch, Kensey; Whooley, Mary A; Chan, Paul S; Vaccarino, Viola; Parashar, Susmita; Shah, Amit J; Ho, P Michael; Spertus, John A

    2017-02-16

    Background -Depression among patients with acute myocardial infarction (AMI) is prevalent and associated with an adverse quality of life and prognosis. Despite recommendations from some national organizations to screen for depression, it is unclear whether treatment of depression in patients with AMI is associated with better outcomes. We aimed to determine whether prognosis of patients with treated vs. untreated depression differs. Methods -The TRIUMPH study is an observational multi-center cohort study that enrolled 4,062 patients aged ≥18 years with AMI between April 11, 2005 and December 31, 2008 from 24 US hospitals. Research coordinators administered the Patient Health Questionnaire-9 (PHQ-9) during the index AMI admission. Depression was defined by a PHQ-9 score of ≥10. Depression was categorized as 'treated' if there was documentation of a discharge diagnosis, medication prescribed for depression, or referral for counseling, and as 'untreated' if none of these three criteria were documented in the medical records despite a PHQ score ≥10. One-year mortality was compared between patients with AMI having: (1) no depression (PHQ-9 <10; reference); (2) treated depression; and (3) untreated depression adjusting for demographics, AMI severity, and clinical factors. Results -Overall, 759 (18.7%) patients met PHQ-9 criteria for depression and 231 (30.4%) were treated. Compared with 3303 patients without depression, the 231 patients with treated depression had 1-year mortality rates that were not different (6.1% vs. 6.7%, adjusted HR=1.12, 95% CI: 0.63-1.99). In contrast, the 528 patients with untreated depression had higher 1-year mortality when compared with patients without depression (10.8% vs. 6.1%, adjusted HR=1.91, 95%CI 1.39-2.62). Conclusions -Although depression in patients with AMI is associated with increased long-term mortality, this association may be confined to patients with untreated and untreated depression.

  19. Effects of a New Glutamic Acid Derivative on Myocardial Contractility of Stressed Animals under Conditions of Nitric Oxide Synthesis Blockade.

    PubMed

    Tyurenkov, I N; Perfilova, V N; Sadikova, N V; Berestovitskaya, V M; Vasil'eva, O S

    2015-07-01

    Glufimet (glutamic acid derivative) in a dose of 28.7 mg/kg limited the reduction of the cardiac functional reserve in animals subjected to 24-h stress under conditions of nonselective NO synthase blockade with L-NAME (10 mg/kg). Adrenoreactivity and increased afterload tests showed that the increment of myocardial contraction/relaxation rates, left-ventricular pressure, and HR were significantly higher in glufimet-treated stressed animals with NO synthesis blockade than in animals which received no glufimet. The efficiency of glufimet was higher than that of phenibut (the reference drug).

  20. [Evaluation of anxiety and depression in the perioperative period in patients subjected to myocardial revascularization].

    PubMed

    Pawlak, Adam; Krejca, Michał; Janas-Kozik, Małgorzata; Krupka-Matuszczyk, Irena; Rajewska, Jolanta; Bochenek, Andrzej

    2012-01-01

    The aim of the paper is to define a relationship between the anxiety level and depression intensification, as well as to define the impact of: age, sex, education level and family situation on the anxiety level and depression intensification in the pre- and postoperative period in patients subjected to myocardial revascularisation (CABG). Prospective studies were carried out in a group of 100 patients qualified for the surgical myocardial revascularisation in the planned course. The Polish version of the STAI questionnaire was applied to study anxiety as a state and as a trait. Depression intensification was evaluated with the Beck depression scale. 1. The intensity of depression significantly correlates with anxiety as a state and anxiety as a trait before and after CABG surgery. 2. When assessing anxiety as a state, its negative correlation with male patients and with age before CABG were found. A negative correlation of anxiety as a state with a patient's age was identified after CABG. 3. When assessing anxiety as a trait, its negative correlation with male patients before CABG was found. 4. The intensity of depression correlates significantly and negatively with the educational background of the patient before and after CABG surgery. 5. There is no statistically significant correlation between anxiety, depression and family situation in the perioperative period.

  1. Enhanced inotropic state of the failing left ventricle by cardiac contractility modulation electrical signals is not associated with increased myocardial oxygen consumption.

    PubMed

    Butter, Christian; Wellnhofer, Ernst; Schlegl, Michael; Winbeck, Georgia; Fleck, Eckart; Sabbah, Hani N

    2007-03-01

    Previous studies in patients and in dogs with experimentally induced heart failure (HF) showed that electrical signals applied to the failing myocardium during the absolute refractory period improved left ventricular (LV) function. We examined the effects these same cardiac contractility modulating (CCM) electrical signals on myocardial oxygen consumption (MVO(2)) in both patients and dogs with chronic HF. Six dogs with microembolizations-induced HF and 9 HF patients underwent CCM leads and generator (OPTIMIZER II) implantation. After baseline measurements, CCM signals were delivered continuously for 2 hours in dogs and for 30 minutes in patients. MVO(2) was measured before and after CCM therapy. In dogs, CCM therapy increased LV ejection fraction at 2 hours (26 +/- 1 versus 31 +/- 2 %, P = .001) without increasing MVO(2) (257 +/- 41 versus 180 +/- 34 micromol/min). In patients, CCM therapy increased LV peak +dP/dt by 10.1 +/- 1.5 %. As with dogs, the increase in LV function after 30 minutes of CCM therapy was not associated with increased MVO(2) (13.6 +/- 9.7 versus 12.5 +/- 7.2 mL O(2)/min). The study results suggest that unlike cAMP-dependent positive inotropic drugs, the increase in LV function during CCM therapy is elicited without increasing MVO(2).

  2. Contribution of diet and major depression to incidence of acute myocardial infarction (AMI)

    PubMed Central

    2010-01-01

    Background Despite significant improvements in the treatment of coronary heart disease (CHD), it is still a major cause of mortality and morbidity among the Iranian population. Epidemiological studies have documented that risk factors including smoking and the biochemical profile are responsible for the development of acute myocardial infarction (AMI). Psychological factors have been discussed as potential risk factors for coronary heart disease. Among emotional factors, depression correlates with coronary heart disease, particularly myocardial infarction. Methods This case-control study was conducted on 120 cases (69 males and 51 females) of acute myocardial infarction (AMI) and 120 controls, with a mean age of 62.48 ± 15.39 years. Cases and controls were matched by age, residence and sex. Results The results revealed that severe depression was independently associated with the risk of AMI (P = 0.025, OR = 2.6, 95% CI 1.1-5.8). The analysis of variables indicated that risk factors for developing depression were unmarried, low levels of polyunsaturated fatty acids (PUFAs), total dietary fiber (TDF) and carbohydrates. The levels of these dietary factors were lowest in severely depressed patients compared to those categorised as moderate or mild cases. Furthermore, severely depressed subjects were associated with higher levels of total cholesterol, high systolic blood pressure (SBP) and WHR. Age, income, a family history of coronary heart disease, education level, sex, employment and smoking were not associated with severe depression. Conclusion The present study demonstrated that severe depression symptoms are independent risk factors for AMI. Furthermore, severe depression was associated with an unhealthy diet and AMI risk factors. PMID:21087475

  3. Contribution of diet and major depression to incidence of acute myocardial infarction (AMI).

    PubMed

    Yary, Teymoor; Soleimannejad, Kourosh; Abd Rahim, Firdaus; Kandiah, Mirnalini; Aazami, Sanaz; Poor, Seyedehozma Jafar; Wee, Wong Teck; Aazami, Golnaz

    2010-11-18

    Despite significant improvements in the treatment of coronary heart disease (CHD), it is still a major cause of mortality and morbidity among the Iranian population. Epidemiological studies have documented that risk factors including smoking and the biochemical profile are responsible for the development of acute myocardial infarction (AMI). Psychological factors have been discussed as potential risk factors for coronary heart disease. Among emotional factors, depression correlates with coronary heart disease, particularly myocardial infarction. This case-control study was conducted on 120 cases (69 males and 51 females) of acute myocardial infarction (AMI) and 120 controls, with a mean age of 62.48 ± 15.39 years. Cases and controls were matched by age, residence and sex. The results revealed that severe depression was independently associated with the risk of AMI (P = 0.025, OR = 2.6, 95% CI 1.1-5.8). The analysis of variables indicated that risk factors for developing depression were unmarried, low levels of polyunsaturated fatty acids (PUFAs), total dietary fiber (TDF) and carbohydrates. The levels of these dietary factors were lowest in severely depressed patients compared to those categorised as moderate or mild cases. Furthermore, severely depressed subjects were associated with higher levels of total cholesterol, high systolic blood pressure (SBP) and WHR. Age, income, a family history of coronary heart disease, education level, sex, employment and smoking were not associated with severe depression. The present study demonstrated that severe depression symptoms are independent risk factors for AMI. Furthermore, severe depression was associated with an unhealthy diet and AMI risk factors.

  4. Perfect storm: concurrent stress and depressive symptoms increase risk of myocardial infarction or death.

    PubMed

    Alcántara, Carmela; Muntner, Paul; Edmondson, Donald; Safford, Monika M; Redmond, Nicole; Colantonio, Lisandro D; Davidson, Karina W

    2015-03-01

    Depression and stress have each been found to be associated with poor prognosis in patients with coronary heart disease. A recently offered psychosocial perfect storm conceptual model hypothesizes amplified risk will occur in those with concurrent stress and depressive symptoms. We tested this hypothesis in a large sample of US adults with coronary heart disease. Participants included 4487 adults with coronary heart disease from the REasons for Geographic and Racial Differences in Stroke study, a prospective cohort study of 30,239 black and white adults. We conducted Cox proportional hazards regression with the composite outcome of myocardial infarction or death and adjustment for demographic, clinical, and behavioral factors. Overall, 6.1% reported concurrent high stress and high depressive symptoms at baseline. During a median 5.95 years of follow-up, 1337 events occurred. In the first 2.5 years of follow-up, participants with concurrent high stress and high depressive symptoms had increased risk for myocardial infarction or death (adjusted hazard ratio, 1.48 [95% confidence interval, 1.08-2.02]) relative to those with low stress and low depressive symptoms. Those with low stress and high depressive symptoms (hazard ratio, 0.92 [95% confidence interval, 0.66-1.28]) or high stress and low depressive symptoms (hazard ratio, 0.86 [95% confidence interval, 0.57-1.29]) were not at increased risk. The association on myocardial infarction or death was not significant after the initial 2.5 years of follow-up (hazard ratio, 0.89 [95% confidence interval, 0.65-1.22]). Our results provide initial support for a psychosocial perfect storm conceptual model; the confluence of depressive symptoms and stress on medical prognosis in adults with coronary heart disease may be particularly destructive in the shorter term. © 2015 American Heart Association, Inc.

  5. Association of Coexisting Diabetes and Depression With Mortality After Myocardial Infarction

    PubMed Central

    Bot, Mariska; Pouwer, François; Zuidersma, Marij; van Melle, Joost P.; de Jonge, Peter

    2012-01-01

    OBJECTIVE Diabetes and depression are both linked to an increased mortality risk after myocardial infarction (MI). Population-based studies suggest that having both diabetes and depression results in an increased mortality risk, beyond that of having diabetes or depression alone. The purpose of this study was to examine the joint association of diabetes and depression with mortality in MI patients. RESEARCH DESIGN AND METHODS Data were derived from two multicenter cohort studies in the Netherlands, comprising 2,704 patients who were hospitalized for MI. Depression, defined as a Beck Depression Inventory score ≥10, and diabetes were assessed during hospitalization. Mortality data were retrieved for 2,525 patients (93%). RESULTS During an average follow-up of 6.2 years, 439 patients died. The mortality rate was 14% (226 of 1,673) in patients without diabetes and depression, 23% (49 of 210) in patients with diabetes only, 22% (118 of 544) in patients with depression only, and 47% (46 of 98) in patients with both diabetes and depression. After adjustment for age, sex, smoking, hypertension, left ventricular ejection fraction, prior MI, and Killip class, hazard ratios for all-cause mortality were 1.38 (95% CI 1.00–1.90) for patients with diabetes only, 1.39 (1.10–1.76) for patients with depression only, and as much as 2.90 (2.07–4.07) for patients with both diabetes and depression. CONCLUSIONS We observed an increased mortality risk in post-MI patients with both diabetes and depression, beyond the association with mortality of diabetes and depression alone. PMID:22301118

  6. Effects of Ginseng Fruit Saponins on Serotonin System in Sprague-Dawley Rats with Myocardial Infarction, Depression, and Myocardial Infarction Complicated with Depression

    PubMed Central

    He, Dong-Fang; Ren, Yan-Ping; Liu, Mei-Yan

    2016-01-01

    Background: Our previous studies have demonstrated that the levels of 5-hydroxytryptamine (5-HT) and 5-HT 2A receptor (5-HT2AR) in serum and platelet were associated with depression and myocardial infarction (MI), and pretreatment with ginseng fruit saponins (GFS) before MI and depression had an effect on the 5-HT system. In this study, the effects of GFS on the 5-HT system in the Sprague-Dawley (SD) rats with MI, depression, and MI + depression were evaluated. Methods: A total of eighty SD rats were allocated to four groups: MI, depression, MI + depression, and control groups (n = 20 in each group). Each group included two subgroups (n = 10 in each subgroup): Saline treatment subgroup and GFS treatment subgroup. The levels of 5-HT, 5-HT2AR, and serotonin transporter (SERT) were quantified in serum, platelet lysate, and brain tissue through the enzyme-linked immunosorbent assay method, respectively. Results: Compared with those in the saline treatment subgroups, the levels of 5-HT in serum and platelet lysate statistically significantly increased in the GFS treatment subgroups of MI, depression, and MI + depression groups (serum: all P = 0.000; platelet lysate: P = 0.002, 0.000, 0.000, respectively). However, the 5-HT levels in brain homogenate significantly decreased in the GFS treatment subgroups compared with those in the saline treatment subgroups in MI and depression groups (P = 0.025 and 0.044 respectively), and no significant difference was observed between saline and GFS treatment subgroups in MI + depression group (P = 0.663). Compared with that in GFS treatment subgroup of control group, the 5-HT2AR levels in the platelet lysate significantly decreased in GFS treatment subgroups of MI, depression, and MI + depression groups (all P = 0.000). Compared to those in the saline treatment subgroups, the serum SERT levels significantly decreased in the GFS treatment subgroups in MI, depression, and MI + depression groups (P = 0.009, 0.038, and P = 0

  7. Effects of Ginseng Fruit Saponins on Serotonin System in Sprague-Dawley Rats with Myocardial Infarction, Depression, and Myocardial Infarction Complicated with Depression.

    PubMed

    He, Dong-Fang; Ren, Yan-Ping; Liu, Mei-Yan

    2016-12-20

    Our previous studies have demonstrated that the levels of 5-hydroxytryptamine (5-HT) and 5-HT 2A receptor (5-HT2AR) in serum and platelet were associated with depression and myocardial infarction (MI), and pretreatment with ginseng fruit saponins (GFS) before MI and depression had an effect on the 5-HT system. In this study, the effects of GFS on the 5-HT system in the Sprague-Dawley (SD) rats with MI, depression, and MI + depression were evaluated. A total of eighty SD rats were allocated to four groups: MI, depression, MI + depression, and control groups (n = 20 in each group). Each group included two subgroups (n = 10 in each subgroup): Saline treatment subgroup and GFS treatment subgroup. The levels of 5-HT, 5-HT2AR, and serotonin transporter (SERT) were quantified in serum, platelet lysate, and brain tissue through the enzyme-linked immunosorbent assay method, respectively. Compared with those in the saline treatment subgroups, the levels of 5-HT in serum and platelet lysate statistically significantly increased in the GFS treatment subgroups of MI, depression, and MI + depression groups (serum: all P = 0.000; platelet lysate: P = 0.002, 0.000, 0.000, respectively). However, the 5-HT levels in brain homogenate significantly decreased in the GFS treatment subgroups compared with those in the saline treatment subgroups in MI and depression groups (P = 0.025 and 0.044 respectively), and no significant difference was observed between saline and GFS treatment subgroups in MI + depression group (P = 0.663). Compared with that in GFS treatment subgroup of control group, the 5-HT2AR levels in the platelet lysate significantly decreased in GFS treatment subgroups of MI, depression, and MI + depression groups (all P = 0.000). Compared to those in the saline treatment subgroups, the serum SERT levels significantly decreased in the GFS treatment subgroups in MI, depression, and MI + depression groups (P = 0.009, 0.038, and P = 0.001, respectively), while the SERT levels

  8. Cardiomyocyte-specific deletion of Gsk3α mitigates post-myocardial infarction remodeling, contractile dysfunction, and heart failure

    PubMed Central

    Zhou, Jibin; Vagnozzi, Ronald J.; Yu, Justine E.; Shang, Xiying; Woodgett, James R.; Gao, Erhe; Force, Thomas

    2014-01-01

    Background Injury due to myocardial infarction (MI) is largely irreversible. Once an infarct has occurred, the clinical goal becomes limiting remodeling, preserving left ventricular (LV) function and preventing heart failure. While traditional approaches (e.g. β-blockers) partially preserve LV function, novel strategies are needed to limit ventricular remodeling post-MI. Objectives The aim of this study was to determine the role of glycogen synthase kinase-3α (GSK-3α) in the post- MI remodeling. Methods Mice with cardiomyocyte specific conditional deletion of Gsk3α and littermate controls underwent sham or MI surgery. Heart function was assessed using serial M-mode echocardiography. Results Gsk3α deletion in the heart markedly limits remodeling and preserves LV function post-MI. This is due, at least in part, to dramatic thinning and expansion of the scar in the control hearts, which was less in the KO. In contrast, the border zone in the KO demonstrated a much thicker scar and there were more viable cardiomyocytes within the scar/border zone. This was associated with less apoptosis and more proliferation of cardiomyocytes in the KO. Mechanistically, reduced apoptosis was due, at least in part, to a marked decrease in the Bax/Bcl-2 ratio, and increased cardiomyocyte proliferation was mediated through cyclin E1 and E2F-1 in the KO hearts. Conclusions Taken together, these findings show that reducing GSK-3α expression in the cardiomyocyte limits ventricular remodeling and preserves cardiac function post- MI. Targeting specifically GSK-3α, could be a novel strategy to limit adverse remodeling and heart failure. PMID:25125302

  9. Left Ventricular Myocardial Fibrosis, Atrophy, and Impaired Contractility in Patients With Pulmonary Arterial Hypertension and a Preserved Left Ventricular Function: A Cardiac Magnetic Resonance Study.

    PubMed

    Homsi, Rami; Luetkens, Julian A; Skowasch, Dirk; Pizarro, Carmen; Sprinkart, Alois M; Gieseke, Juergen; Meyer Zur Heide Gen Meyer-Arend, Julia; Schild, Hans H; Naehle, Claas P

    2017-01-01

    Using a cardiac magnetic resonance (CMR) approach we investigated left ventricular (LV) myocardial changes associated with pulmonary arterial hypertension (PAH) by strain analysis and mapping techniques. Seventeen patients with PAH (9 men; mean age, 64.2±13.6 y) and 20 controls (10 men, 63.2±10.5 y) were examined using CMR at 1.5 T. Native LV T1-relaxation times (T1) and extracellular volume fraction (ECV) were assessed using a MOLLI sequence, T2-relaxation times (T2) by means of a gradient spin-echo sequence, and LV longitudinal strain (LVS) and right ventricular (RV) longitudinal strain (RVS) by means of CMR feature tracking. The hematocrit and serum levels of pro-Brain Natriuretic Peptide were determined on the day of the CMR examination. Pulmonary arterial pressure and 6-minute walking distance were assessed as part of the clinical evaluation. T1 and ECV were higher (1048.5±46.6 vs. 968.3±22.9 ms and 32.4%±5.7% vs. 28.4%±3.8%; P<0.05) and LVS was lower in patients with PAH (-18.0±5.6 vs. -23.0±2.9; P<0.01) compared with controls. LV mass and interventricular septal thickness were lower in PAH patients (65.7±18.0 vs. 86.7±26.9 g and 7.6±1.9 vs. 10±2.4 mm; P<0.05); there were no differences in LV ejection fraction (61.2%±6.9% vs. 61.9%±6.7%; P=0.86). T1-derived parameters correlated significantly with RVS, LVS, the 6-minute walking distance, RV ejection fraction, pro-Brain Natriuretic Peptide, and baseline mean pulmonary arterial pressure. There were no significant differences in T2. In patients with PAH, changes in T1 and ECV support the hypothesis of LV myocardial fibrosis and atrophy with a consecutively impaired contractility despite a preserved LV function, possibly due to longstanding PAH-associated LV underfilling.

  10. Use of insulin to decrease septic shock-induced myocardial depression in a porcine model.

    PubMed

    Levenbrown, Yosef; Penfil, Scott; Rodriguez, Elena; Zhu, Yan; Hossain, Jobayer; Bhat, A Majeed; Hesek, Anne; O'Neil, Karen B; Tobin, Kelly; Shaffer, Thomas H

    2013-12-01

    Insulin is known to attenuate septic shock-induced myocardial depression. Possible mechanisms include an anti-inflammatory or inotropic effect of insulin. The objective of this study was to determine whether the mechanism of action of insulin in attenuating septic shock-induced myocardial depression is through an immunomodulatory effect. Fourteen pigs were assigned to one of two groups. Both groups received a 4-h infusion of lipopolysaccharide endotoxin from Escherichia coli 0111:B4. Group 2 additionally received insulin at 1.5 U/kg/h with infusions of D50 normal saline and KCl to maintain normal serum glucose and potassium levels. Cardiac function was measured with shortening fraction using transthoracic echocardiogram. Plasma TNF-α, IL-1β, and IL-6 levels were obtained every 30 min. Postmortem cytokine analysis and histomorphology were performed on the heart tissue. Although insulin attenuated septic shock-induced myocardial depression, this was not due to an anti-inflammatory effect and, therefore, likely resulted from an inotropic effect of insulin.

  11. Confluence of Depression and Acute Psychological Stress Among Patients With Stable Coronary Heart Disease: Effects on Myocardial Perfusion

    PubMed Central

    Burg, Matthew M.; Meadows, Judith; Shimbo, Daichi; Davidson, Karina W.; Schwartz, Joseph E.; Soufer, Robert

    2014-01-01

    Background Depression is prevalent in coronary heart disease (CHD) patients and increases risk for acute coronary syndrome (ACS) recurrence and mortality despite optimal medical care. The pathways underlying this risk remain elusive. Psychological stress (PS) can provoke impairment in myocardial perfusion and trigger ACS. A confluence of acute PS with depression might reveal coronary vascular mechanisms of risk. We tested whether depression increased risk for impaired myocardial perfusion during acute PS among patients with stable CHD. Methods and Results Patients (N=146) completed the Beck Depression Inventory‐I (BDI‐I), a measure of depression linked to recurrent ACS and post‐ACS mortality, and underwent single‐photon emission computed tomography myocardial perfusion imaging at rest and during acute PS. The likelihood of new/worsening impairment in myocardial perfusion from baseline to PS as a function of depression severity was tested. On the BDI‐I, 41 patients scored in the normal range, 48 in the high normal range, and 57 in the depressed range previously linked to CHD prognosis. A BDI‐I score in the depressed range was associated with a significantly greater likelihood of new/worsening impairment in myocardial perfusion from baseline to PS (odds ratio =2.89, 95% CI: 1.26 to 6.63, P=0.012). This remained significant in models controlling ACS recurrence/mortality risk factors and medications. There was no effect for selective serotonin reuptake inhibitor medications. Conclusions Depressed patients with CHD are particularly susceptible to impairment in myocardial perfusion during PS. The confluence of PS with depression may contribute to a better understanding of the depression‐associated risk for ACS recurrence and mortality. PMID:25359402

  12. Depression, dietary habits, and cardiovascular events among women with suspected myocardial ischemia.

    PubMed

    Rutledge, Thomas; Kenkre, Tanya S; Thompson, Diane V; Bittner, Vera A; Whittaker, Kerry; Eastwood, Jo-Ann; Eteiba, Wafia; Cornell, Carol E; Krantz, David S; Pepine, Carl J; Johnson, B Delia; Handberg, Eileen M; Bairey Merz, C Noel

    2014-09-01

    Dietary habits and depression are associated with cardiovascular disease risk. Patients with depression often report poor eating habits, and dietary factors may help explain commonly observed associations between depression and cardiovascular disease. From 1996 to 2000, 936 women were enrolled in the Women's Ischemia Syndrome Evaluation at 4 US academic medical centers at the time of clinically indicated coronary angiography and then assessed (median follow-up, 5.9 years) for adverse outcomes (cardiovascular disease death, heart failure, myocardial infarction, stroke). Participants completed a protocol including coronary angiography (coronary artery disease severity) and depression assessments (Beck Depression Inventory scores, antidepressant use, and depression treatment history). A subset of 201 women (mean age, 58.5 years; standard deviation, 11.4) further completed the Food Frequency Questionnaire for Adults (1998 Block). We extracted daily fiber intake and daily servings of fruit and vegetables as measures of dietary habits. In separate Cox regression models adjusted for age, smoking, and coronary artery disease severity, Beck Depression Inventory scores (hazard ratio [HR], 1.05; 95% confidence interval [CI], 1.01-1.10), antidepressant use (HR, 2.4; 95% CI, 1.01-5.9), and a history of treatment for depression (HR, 2.4; 95% CI, 1.1-5.3) were adversely associated with time to cardiovascular disease outcomes. Fiber intake (HR, 0.87; 95% CI, 0.78-0.97) and fruit and vegetable consumption (HR, 0.36; 95% CI, 0.19-0.70) were associated with a decreased time to cardiovascular disease event risk. In models including dietary habits and depression, fiber intake and fruit and vegetable consumption remained associated with time to cardiovascular disease outcomes, whereas depression relationships were reduced by 10% to 20% and nonsignificant. Among women with suspected myocardial ischemia, we observed consistent relationships among depression, dietary habits, and time to

  13. Pets, depression and long term survival in community living patients following myocardial infarction

    PubMed Central

    Friedmann, Erika; Thomas, Sue A.; Son, Heesook

    2011-01-01

    Evidence supports the contribution of depression, anxiety, and poor social support to mortality of hospitalized myocardial infarction (MI) patients. The contribution of depression to survival is independent of disease severity. Pet ownership, a non-human form of social support, has also been associated with one year survival of post-MI patients. The current study addresses whether pet ownership contributes independently to long term survival beyond the contributions of depression, anxiety, or low social support in post-MI patients who have already survived at least 6 months. Data from patients (N = 460) enrolled in the “Psychosocial Responses in the Home Automated External Defibrillator Trial (PR-HAT)”were used. Seventeen patients died during a median follow-up of 2.8 years. In Cox proportional hazards regression model that included depression, lack of pet ownership, and the interaction between depression and lack of pet ownership, not owning a pet was the only significant independent predictor of mortality (p = 0.036). The interaction between pet ownership and depression tended to be significant indicating that the effect of pet ownership on survival in this group of people who have supportive spouses/companions living with them may relate to depression. PMID:21857770

  14. Interactive associations of depression and sleep apnea with adverse clinical outcomes after acute myocardial infarction

    PubMed Central

    Hayano, Junichiro; Carney, Robert M.; Watanabe, Eiichi; Kawai, Kiyohiro; Kodama, Itsuo; Stein, Phyllis K.; Watkins, Lana L.; Freedland, Kenneth E.; Blumenthal, James A.

    2012-01-01

    Objective Depression and sleep apnea (SA) are common among patients after acute myocardial infarction (AMI), and both are associated with increased risk for adverse outcomes. We tested the hypothesis that there is an interaction between depression and SA in relation to prognosis in post-AMI patients. Methods Participants were 337 depressed and 379 nondepressed post-AMI patients who participated in a substudy of the Enhancing Recovery in Coronary Heart Disease (ENRICHD) clinical trial. SA was identified from Holter ECG at the entry by an algorithm that detects cyclic variation of heart rate. Results During a median follow-up of 25 months, 43 (6.0%) of patients died and 83 (11.6%) either died or experienced a recurrent AMI. Among 94 patients with both depression and SA, these endpoints occurred in 20 (21.3%) and 25 (26.6%), the prevalence that was 6.9 and 3.9 times higher than predicted probabilities by ENRICHD clinical risk scores (P <.001 for both). In the patients with depression alone, SA alone, or neither, the frequencies did not differ significantly from the predicted probability. Although both depression and SA predicted death and the combined endpoint, we observed depression by SA interactions (P = .03 and .02). SA independently predicted these endpoints in depressed (P <.001 and P = .001), but not in nondepressed patients (P = .73 and .84). Similarly, depression independently predicted these endpoints in SA (P <.001 for both), but not in non-SA patients (P = .61 and .12). Conclusion The combination of depression and SA estimated by CVHR is associated with long-term adverse clinical outcomes after AMI. PMID:23023681

  15. Depressive Symptoms Effect on Self Care Behavior During the First Month After Myocardial Infarction

    PubMed Central

    Niakan, Maryam; Paryad, Ezzat; Leili, Ehsan Kazemnezhad; Sheikholeslami, Farzane

    2015-01-01

    Aim: To determine the effect of severity of depression symptoms on self care behavior in 15th and 30th day after myocardial infarction (MI). Materials and Methods: Gathering data for this cross sectional study was done by Beck depression and self care behavior questionnaires in a heart especial hospital in Rasht in north of Iran. Sample size was 132 after MI patients and data collected from June 2011 to January 2012. Results: Scores of depression symptoms in 15th and 30th day after MI and score of self care behavior in these days had significant difference (P<0.0001). Spearman test showed self care behavior had significant relationship with depression symptoms (P<0.0001). GEE model also showed with control of socio demographic and illness related factors, depression symptoms can decrease self care behavior scores (P<0.001). Conclusion: Severity of depression symptoms increase in 15th to 30th day after MI. This issue can affect on self care behavior. This issue is emphasized on nurses’ notice to plan suitable self care program for these patients. PMID:25946944

  16. Cognitive-affective symptoms of depression after myocardial infarction: different prognostic importance across age groups.

    PubMed

    Denollet, Johan; Freedland, Kenneth E; Carney, Robert M; de Jonge, Peter; Roest, Annelieke M

    2013-09-01

    Cognitive-affective symptoms of depression may not be as strongly related to prognosis after myocardial infarction (MI) as somatic depressive symptoms. Because it is not known whether this pattern of results is influenced by the age at which patients are diagnosed as having MI, we examined whether the importance of these symptoms is age dependent in the Enhancing Recovery in Coronary Heart Disease study. Patients with depression after MI (n = 1823) in the Enhancing Recovery in Coronary Heart Disease study were stratified into the following age groups: younger than 70 years (mean [standard deviation] = 55 [9.0] years) and 70 years or older (mean [standard deviation] = 76 [4.9] years). Measurements included demographic and clinical data and the Beck Depression Inventory. The end point was a composite of recurrent MI and mortality during a mean follow-up of 2.1 years. Patients 70 years or older had more severe manifestations of cardiac disease and somatic comorbidities than did patients younger than 70 years (p < .001). During follow-up, 456 patients died or had a recurrent MI. In patients 70 years or older, increasing age, disease severity, and comorbidities--but not depressive symptoms--independently predicted prognosis. In contrast, cognitive-affective symptoms of depression predicted death/MI in patients younger than 70 years (hazard ratio = 1.03, 95% confidence interval = 1.01-1.04, p = .011), after adjustment for disease severity and comorbidities. Somatic symptoms largely explained the link between cognitive-affective symptoms and adverse events, with the exception of hopelessness (hazard ratio = 1.47, 95% confidence interval = 1.11-1.95, p = .007), suggesting that somatic depressive symptoms accurately reflect the depressed mood state in this age group. Somatic symptoms and hopelessness independently predicted death/MI in MI patients younger than 70 years. Research needs to reexamine the modulating effect of age in studies on somatic and cognitive

  17. A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance.

    PubMed Central

    Parrillo, J E; Burch, C; Shelhamer, J H; Parker, M M; Natanson, C; Schuette, W

    1985-01-01

    We have previously described a subpopulation of patients with septic shock who had a reversible depression of radionuclide-determined left ventricular ejection fraction (EF). To investigate the mechanism of this myocardial depression, an in vitro model of mammalian myocardial cell performance was established employing primary spontaneously beating rat myocardial cells. The contraction of a single cardiac cell was quantitated by recording the changes in area occupied by the cell during contraction and relaxation. In 20 septic shock patients during the acute phase, the mean left ventricular EF was decreased (mean = 0.33, normal mean = 0.50), and serum obtained during this acute phase induced a mean (+/- standard error of the mean) 33 +/- 4% decrease in extent and 25 +/- 4% decrease in velocity of myocardial cell shortening during contraction (P less than 0.001). In contrast, serum obtained from 11 of these same patients before shock (n = 2) or after recovery (n = 9) of the left ventricular EF (mean = 0.50) showed a return toward normal in extent and velocity of shortening (P less than 0.001). Sera from 17 critically ill nonseptic patients, from 10 patients with structural heart disease as a cause for a depressed EF, and from 12 healthy laboratory personnel, induced no significant changes in in vitro myocardial cell performance. In 20 patients during the acute phase of septic shock, the decreased EF in vivo demonstrated a significant correlation (r = +0.52, P less than 0.01) with a decrease in the extent of myocardial cell shortening in vitro. The quantitative and temporal correlation between the decreased left ventricular EF and this serum myocardial depressant substance argues for a pathophysiologic role for this depressant substance in producing the reversible cardiomyopathy seen during septic shock in humans. Images PMID:4056039

  18. Effect of Eye Movement Desensitization and Reprocessing (EMDR) on Depression in Patients With Myocardial Infarction (MI)

    PubMed Central

    Behnammoghadam, Mohammad; Alamdari, Ali Karam; Behnammoghadam, Aziz; Darban, Fatemeh

    2015-01-01

    Background: Coronary heart disease is the most important cause of death and inability in all communities. Depressive symptoms are frequent among post-myocardial infarction (MI) patients and may cause negative effects on cardiac prognosis. This study was conducted to identify efficacy of EMDR on depression of patients with MI. Methods: This study is a clinical trial. Sixty patients with MI were selected by simple sampling, and were separated randomly into experimental and control groups. To collect data, demographic questionnaire and Beck Depression Questionnaire were used. In experimental group, EMDR therapy were performed in three sessions alternate days for 45–90 minutes, during four months after their MI. Depression level of patients was measured before, and a week after EMDR therapy. Data were analyzed using paired –t- test, t–test, and Chi-square. Results: The mean depression level in experimental group 27.26± 6.41 before intervention, and it was 11.76 ± 3.71 after intervention. Hence, it showed a statistically significant difference (P<0.001). The mean depression level in control group was 24.53 ± 5.81 before intervention, and it was 31.66± 6.09 after intervention, so it showed statistically significant difference (P<0.001). The comparison of mean depression level at post treatment, in both groups showed statistically significant difference (P<0.001). Conclusion: EMDR is an effective, useful, efficient, and non-invasive method for treatment and reducing depression in patients with MI. PMID:26153191

  19. Cardiac contractility and structure are not significantly compromised even during the late, hypodynamic stage of sepsis.

    PubMed

    Zhou, M; Wang, P; Chaudry, I H

    1998-05-01

    Although cardiac function is depressed during endotoxic shock, it remains controversial whether the ventricular contractility and structure are altered during sepsis. To resolve this issue, rats were subjected to polymicrobial sepsis by cecal ligation and puncture (CLP). At 2, 5, and 10 h after CLP (i.e., the early, hyperdynamic stage of sepsis) or 20 h after CLP (the late, hypodynamic stage of sepsis, based on the depressed tissue perfusion), in vivo left ventricular contractility parameters such as maximal rate of the left ventricular pressure increase (+dP/dtmax) and decrease (-dP/dtmax), maximal rate of "pressure-normalized" change in ventricular pressure (dP/dtmax/P), and ventricular peak systemic pressure were determined using a Digi-Med Heart Performance Analyzer. In additional groups of animals, ultrastructure of the cardiac muscle in the left ventricle was examined at 5, 10, or 20 h after CLP, using a transmission electron microscope. The results indicate that +dP/dtmax and dP/dtmax/P increased significantly at 2-10 h after CLP. The values of -dP/dtmax and ventricular peak systemic pressure increased significantly at 2 and 5 h after the onset of sepsis, respectively. These in vivo ventricular contractility parameters, however, were not significantly different from shams at 20 h after CLP. Ultrastructural examination showed that enlarged T-tubules were prominent during the hyperdynamic stage of sepsis, which was correlated with the increased cardiac contractility. Although focal and moderate hypertrophy as well as expanded intermyocyte junctions could be observed occasionally, myocardial cells did not appear to be compromised at 20 h after CLP. Thus, the transition from the hyperdynamic to hypodynamic circulation during sepsis does not appear to be due to any depression in myocardial function because cardiac contractility and structure are not compromised even during the late, hypodynamic stage of sepsis. However, further investigation is required to

  20. Clinical implications of anterior S-T segment depression in patients with acute inferior myocardial infarction

    SciTech Connect

    Croft, C.H.; Woodward, W.; Nicod, P.; Corbett, J.R.; Lewis, S.E.; Willerson, J.T.; Rude, R.E.

    1982-09-01

    To assess various factors associated with anterior S-T segment depression during acute inferior myocardial infarction, 47 consecutive patients with electrocardiographic evidence of a first transmural inferior infarction were studied prospectively with radionuclide ventriculography an average of 7.3 hours (range 2.9 to 15.3) after the onset of symptoms. Thirty-nine patients (Group I) had anterior S-T depression in the initial electrocardiogram and 8 (Group II) did not have such reciprocal changes. There was no difference between the two groups in left ventricular end-diastolic or end-diastolic volume index or left ventricular ejection fraction. Stroke volume index was greater in Group I than in Group II. There were no group differences in left ventricular total or regional wall motion scores. A weak correlation existed between the quantities (mV) or inferior S-T segment elevation and reciprocal S-T depression. No relation between anterior S-T segment depression and the left ventricular end-diastolic volume index could be demonstrated; the extent of left ventricular apical and right ventricular wall motion abnormalities, both frequently associated with inferior infarction, did not correlate with the quantity of anterior S-T depression. These data show that anterior S-T segment depression occurs commonly during the early evolution of transmural inferior infarction, is not generally a marker of functionally significant anterior ischemia and cannot be used to predict left ventricular function in individual patients. Anterior S-T segment depression may be determined by reciprocal mechanisms.

  1. Depressive disorder and gastrointestinal dysfunction after myocardial infarct are associated with abnormal tryptophan-5-hydroxytryptamine metabolism in rats

    PubMed Central

    Liu, Chunyan; Wang, Yangang

    2017-01-01

    In this study, we investigated the relationship between tryptophan-5-hydroxytryptamine metabolism, depressive disorder, and gastrointestinal dysfunction in rats after myocardial infarction. Our goal was to elucidate the physiopathologic bases of somatic/psychiatric depression symptoms after myocardial infarction. A myocardial infarction model was established by permanent occlusion of the left anterior descending coronary artery. Depression-like behavior was evaluated using the sucrose preference test, open field test, and forced swim test. Gastric retention and intestinal transit were detected using the carbon powder labeling method. Immunohistochemical staining was used to detect indoleamine 2,3-dioxygenase expression in the hippocampus and ileum. High-performance liquid chromatography with fluorescence and ultraviolet detection determined the levels of 5-hydroxytryptamine, its precursor tryptophan, and its metabolite 5-hydroxyindoleacetic acid in the hippocampus, distal ileum, and peripheral blood. All data were analyzed using one-way analyses of variance. Three weeks after arterial occlusion, rats in the model group began to exhibit depression-like symptoms. For example, the rate of sucrose consumption was reduced, the total and central distance traveled in the open field test were reduced, and immobility time was increased, while swimming, struggling and latency to immobility were decreased in the forced swim test. Moreover, the gastric retention rate and gastrointestinal transit rate were increased in the model group. Expression of indoleamine 2,3-dioxygenase was increased in the hippocampus and ileum, whereas 5-hydroxytryptamine metabolism was decreased, resulting in lower 5-hydroxytryptamine and 5-hydroxyindoleacetic acid levels in the hippocampus and higher levels in the ileum. Depressive disorder and gastrointestinal dysfunction after myocardial infarction involve abnormal tryptophan-5-hydroxytryptamine metabolism, which may explain the somatic, cognitive

  2. Depressive disorder and gastrointestinal dysfunction after myocardial infarct are associated with abnormal tryptophan-5-hydroxytryptamine metabolism in rats.

    PubMed

    Lu, Xiaofang; Wang, Yuefen; Liu, Chunyan; Wang, Yangang

    2017-01-01

    In this study, we investigated the relationship between tryptophan-5-hydroxytryptamine metabolism, depressive disorder, and gastrointestinal dysfunction in rats after myocardial infarction. Our goal was to elucidate the physiopathologic bases of somatic/psychiatric depression symptoms after myocardial infarction. A myocardial infarction model was established by permanent occlusion of the left anterior descending coronary artery. Depression-like behavior was evaluated using the sucrose preference test, open field test, and forced swim test. Gastric retention and intestinal transit were detected using the carbon powder labeling method. Immunohistochemical staining was used to detect indoleamine 2,3-dioxygenase expression in the hippocampus and ileum. High-performance liquid chromatography with fluorescence and ultraviolet detection determined the levels of 5-hydroxytryptamine, its precursor tryptophan, and its metabolite 5-hydroxyindoleacetic acid in the hippocampus, distal ileum, and peripheral blood. All data were analyzed using one-way analyses of variance. Three weeks after arterial occlusion, rats in the model group began to exhibit depression-like symptoms. For example, the rate of sucrose consumption was reduced, the total and central distance traveled in the open field test were reduced, and immobility time was increased, while swimming, struggling and latency to immobility were decreased in the forced swim test. Moreover, the gastric retention rate and gastrointestinal transit rate were increased in the model group. Expression of indoleamine 2,3-dioxygenase was increased in the hippocampus and ileum, whereas 5-hydroxytryptamine metabolism was decreased, resulting in lower 5-hydroxytryptamine and 5-hydroxyindoleacetic acid levels in the hippocampus and higher levels in the ileum. Depressive disorder and gastrointestinal dysfunction after myocardial infarction involve abnormal tryptophan-5-hydroxytryptamine metabolism, which may explain the somatic, cognitive

  3. Smoking Cessation After Acute Myocardial Infarction in Relation to Depression and Personality Factors.

    PubMed

    Schlyter, Mona; Leosdottir, Margrét; Engström, Gunnar; André-Petersson, Lena; Tydén, Patrik; Östman, Margareta

    2016-04-01

    Smoking is an important cardiovascular risk factor and smoking cessation should be a primary target in secondary prevention after a myocardial infarction (MI). The purpose of this study was to examine whether personality, coping and depression were related to smoking cessation after an MI. MI patients ≤70 years (n = 323, 73 % men, 58.7 ± 8.3 years), participating in the Secondary Prevention and Compliance following Acute Myocardial Infarction study in Malmö, Sweden, between 2002 and 2005, were interviewed by a psychologist to assess coping strategies and completed Beck Depression and NEO Personality Inventories, in close proximity to the acute event. Correlation between smoking status (current, former and never), personality factors, coping and depression was assessed at baseline and 24 months after the MI using logistic regression and in a multivariate analysis, adjusting for age and sex. Of the participating patients, 46 % were current smokers. Two years after the event, 44 % of these were still smoking. At baseline, current smokers scored higher on the depression and neuroticism scales and had lower agreeableness scores. Patients who continued to smoke after 2 years had higher scores on being confrontational (i.e. confrontative coping style) compared to those who had managed to quit. Patients who continued to smoke had significantly lower agreeableness and were more often living alone. Personality, coping strategies and psychosocial circumstances are associated with smoking cessation rates in patients with MI. Considering personality factors and coping strategies to better individualise smoking cessation programs in MI patients might be of importance.

  4. Cardiac Overexpression of Insulin-Like Growth Factor I (IGF-1) Attenuates Chronic Alcohol Intake-Induced Myocardial Contractile Dysfunction But Not Hypertrophy: Role of Akt, mTOR, GSK3β and PTEN

    PubMed Central

    Zhang, Bingfang; Turdi, Subat; Li, Quan; Lopez, Faye L.; Eason, Anna R.; Anversa, Piero; Ren, Jun

    2010-01-01

    Chronic alcohol intake leads to the development of alcoholic cardiomyopathy manifested by cardiac hypertrophy and contractile dysfunction. This study was designed to examine the effect of transgenic overexpression of insulin-like growth factor I (IGF-1) on alcohol-induced cardiac contractile dysfunction. Wild-type FVB and cardiac-specific IGF-1 mice were placed on a 4% alcohol or control diet for 16 weeks. Cardiac geometry and mechanical function were evaluated by echocardiography, cardiomyocyte and intracellular Ca2+ properties. Histological analyses for cardiac fibrosis and apoptosis were evaluated by Masson trichrome staining and TUNEL assay, respectively. Expression and/or phosphorylation of Cu/Zn superoxide dismutase (SOD1), Ca2+ handling proteins, key signaling molecules for survival including Akt, mTOR, GSK3β, Foxo3a and the negative regulator of Akt phosphatase and tensin homolog on chromosome ten (PTEN) as well as mitochondrial proteins UCP-2 and PGC1α were evaluated by western blot analysis. Chronic alcohol intake led to cardiac hypertrophy, interstitial fibrosis, reduced mitochondrial number, compromised cardiac contractile function and intracellular Ca2+ handling, decreased SOD1 expression, elevated superoxide production and overt apoptosis, all of which with the exception of cardiac hypertrophy were abrogated by the IGF-1 transgene. Immunoblotting data showed reduced phosphorylation of Akt, mTOR, GSK3β and Foxo3a, upregulated Foxo3a and PTEN, as well as dampened SERCA2a, PGC1α and UCP-2 following alcohol intake. All these alcohol-induced changes in survival and mitochondrial proteins were alleviated by IGF-1. Taken together, these data favor a beneficial role of IGF-1 in alcohol-induced myocardial contractile dysfunction independent of cardiac hypertrophy. PMID:20678571

  5. Cardiac overexpression of insulin-like growth factor 1 attenuates chronic alcohol intake-induced myocardial contractile dysfunction but not hypertrophy: Roles of Akt, mTOR, GSK3beta, and PTEN.

    PubMed

    Zhang, Bingfang; Turdi, Subat; Li, Quan; Lopez, Faye L; Eason, Anna R; Anversa, Piero; Ren, Jun

    2010-10-15

    Chronic alcohol intake leads to the development of alcoholic cardiomyopathy manifested by cardiac hypertrophy and contractile dysfunction. This study was designed to examine the effects of transgenic overexpression of insulin-like growth factor 1 (IGF-1) on alcohol-induced cardiac contractile dysfunction. Wild-type FVB and cardiac-specific IGF-1 mice were placed on a 4% alcohol or control diet for 16weeks. Cardiac geometry and mechanical function were evaluated by echocardiography and cardiomyocyte and intracellular Ca(2+) properties. Histological analyses for cardiac fibrosis and apoptosis were evaluated by Masson trichrome staining and TUNEL assay, respectively. Expression and phosphorylation of Cu/Zn superoxide dismutase (SOD1), Ca(2+) handling proteins, and key signaling molecules for survival including Akt, mTOR, GSK3beta, Foxo3a, and the negative regulator of Akt, phosphatase and tensin homolog on chromosome 10 (PTEN), as well as mitochondrial proteins UCP-2 and PGC1alpha, were evaluated by Western blot analysis. Chronic alcohol intake led to cardiac hypertrophy, interstitial fibrosis, reduced mitochondrial number, compromised cardiac contractile function and intracellular Ca(2+) handling, decreased SOD1 expression, elevated superoxide production, and overt apoptosis, all of which, with the exception of cardiac hypertrophy, were abrogated by the IGF-1 transgene. Immunoblotting data showed reduced phosphorylation of Akt, mTOR, GSK3beta, and Foxo3a; upregulated Foxo3a and PTEN; and dampened SERCA2a, PGC1alpha, and UCP-2 after alcohol intake. All these alcohol-induced changes in survival and mitochondrial proteins were alleviated by IGF-1. Taken together, these data favor a beneficial role for IGF-1 in alcohol-induced myocardial contractile dysfunction independent of cardiac hypertrophy. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Behavioural signs of depression and apoptosis in the limbic system following myocardial infarction: effects of sertraline.

    PubMed

    Wann, B P; Bah, T M; Kaloustian, S; Boucher, M; Dufort, A M; Le Marec, N; Godbout, R; Rousseau, G

    2009-06-01

    Depression is diagnosed in 15-30% of patients following myocardial infarction (MI) and this may also be observed in the rat. We measured the effects of the antidepressant sertraline on behavioural and biochemical events following MI in a rat model. Following surgery, MI rats and sham controls were treated with sertraline (10 mg/kg, i.p.) or saline. Subgroups of rats were tested for behavioural depression 14 days after surgery. Apoptosis was estimated in other rats by measuring caspase-3 activity and TUNEL positive cells (3 days after surgery) in limbic structures (amygdale, hippocampus, hypothalamus, frontal and prefrontal cortices). Bax/Bcl-2 ratio was measured 14 days after surgery. Behavioural signs of depression (decreased sucrose intake and forced swimming time) were found in saline-treated MI rats but not in sertraline-treated rats. Compared with controls, caspase-3 activity and TUNEL positive cells were significantly increased in most limbic structures of MI rats. High prefrontal Bax/Bcl-2 ratio in MI rats correlated with low forced swimming time. Apoptosis was not found in sertraline-treated MI rats. These results establish the bases of a rat model of depression following MI and show for the first time that a selective serotonin reuptake inhibitor prevents both behavioural and biochemical markers in this model.

  7. Risk of anxiety and depressive disorders in patients with myocardial infarction

    PubMed Central

    Feng, Hsin-Pei; Chien, Wu-Chien; Cheng, Wei-Tung; Chung, Chi-Hsiang; Cheng, Shu-Meng; Tzeng, Wen-Chii

    2016-01-01

    Abstract Anxiety and depressive symptoms are associated with adverse cardiovascular events after an acute myocardial infarction (MI). However, most studies focusing on anxiety or depression have used rating scales or self-report methods rather than clinical diagnosis. This study aimed to investigate the association between psychiatrist-diagnosed psychiatric disorders and cardiovascular prognosis. We sampled data from the National Health Insurance Research Database; 1396 patients with MI were recruited as the study cohort and 13,960 patients without MI were recruited as the comparison cohort. Cox proportional hazard regression models were used to examine the effect of MI on the risk of anxiety and depressive disorders. During the first 2 years of follow-up, patients with MI exhibited a significantly higher risk of anxiety disorders (adjusted hazard ratio [HR] = 5.06, 95% confidence interval [CI]: 4.61–5.54) and depressive disorders (adjusted HR = 7.23, 95% CI: 4.88–10.88) than those without MI did. Greater risk for anxiety and depressive disorders was observed among women and patients aged 45 to 64 years following an acute MI. Patients with post-MI anxiety had a 9.37-fold (95% CI: 4.45–19.70) higher risk of recurrent MI than those without MI did after adjustment for age, sex, socioeconomic status, and comorbidities. This nationwide population-based cohort study provides evidence that MI increases the risk of anxiety and depressive disorders during the first 2 years post-MI, and post-MI anxiety disorders are associated with a higher risk of recurrent MI. PMID:27559951

  8. Precordial ST segment depression during acute inferior myocardial infarction: early thallium-201 scintigraphic evidence of adjacent posterolateral or inferoseptal involvement

    SciTech Connect

    Lew, A.S.; Weiss, A.T.; Shah, P.K.; Maddahi, J.; Peter, T.; Ganz, W.; Swan, H.J.; Berman, D.S.

    1985-02-01

    To investigate the myocardial perfusion correlates of precordial ST segment depression during acute inferior myocardial infarction, a rest thallium-201 scintigram and a closely timed 12 lead electrocardiogram were obtained within 6 hours of the onset of infarction in 44 patients admitted with their first acute inferior myocardial infarction. Thirty-six patients demonstrated precordial ST segment depression (group 1) and eight did not (group 2). A perfusion defect involving the inferior wall was present in all 44 patients. Additional perfusion defects of the adjacent posterolateral wall (n . 20), the ventricular septum (n . 9) or both (n . 6) were present in 35 of 36 patients from group 1 compared with only 1 of 8 patients from group 2 (p less than 0.001). There was no significant difference in the frequency of multivessel coronary artery disease or disease of the left anterior descending artery between group 1 and group 2 or between patients with and those without a thallium-201 perfusion defect involving the ventricular septum. Thus, precordial ST segment depression during an acute inferior myocardial infarction is associated with thallium-201 scintigraphic evidence of more extensive involvement of the adjacent posterolateral or inferoseptal myocardial segments, which probably reflects the extent and pattern of distribution of the artery of infarction, rather than the presence of coexistent multivessel coronary artery disease or disease of the left anterior descending artery.

  9. Depressive Symptoms and Mental Stress Induced Myocardial Ischemia in Patients with Coronary Heart Disease

    PubMed Central

    Boyle, Stephen; Samad, Zainab; Becker, Richard C.; Williams, Redford; Kuhn, Cynthia; Ortel, Thomas L.; Kuchibhatla, Maragatha; Prybol, Kevin; Rogers, Joseph; O’Connor, Christopher; Velazquez, Eric J.; Jiang, Wei

    2015-01-01

    Objectives The primary focus of this study was to examine associations between depressive symptoms and mental stress induced myocardial ischemia (MSIMI) in patients with coronary heart disease (CHD). Methods Adult patients with documented CHD were recruited for baseline mental stress and exercise stress screening testing as a part of the enrollment process of the REMIT trial. Patients were administered the Beck Depression Inventory II (BDI-II) and the Center for Epidemiologic Studies Depression Scale (CESD). Following a 24-48-hour Beta-blocker withdrawal, consented patients completed three mental stress tests followed by a treadmill exercise test. Ischemia was defined as 1) any development or worsening of any wall motion abnormality (WMA), 2) reduction of left ventricular ejection fraction (LVEF) ≥ 8% by transthoracic echocardiography, and/or ischemic ST-segment change by electrocardiography during stress testing. MSIMI was considered present when ischemia occurred in at least one mental test. Data were analyzed using logistic regression adjusting for age, gender, and resting left ventricular ejection fraction. Results One hundred twenty five (44.2 %) of 283 patients were found to have MSIMI and 93 (32.9%) had ESIMI. Unadjusted analysis showed that BDI-II scores were positively associated with the probability of MSIMI (OR = .1.30: 95% CI 1.06 – 1.60, p = .013) and number of MSIMI positive tasks (all p < .005). These associations were still significant after adjustment for covariates (ps ≤ .05). Conclusions In CHD patients, depressive symptoms were associated with a higher probability of MSIMI. These observations may enhance our understanding of the mechanisms contributing to the association of depressive symptoms to future cardiovascular events. PMID:24163385

  10. Depression following myocardial infarction--an overseen complication with prognostic importance.

    PubMed

    Larsen, Karen Kjær

    2013-08-01

    Myocardial infarction (MI) is a severe life event that is accompanied by an increased risk of depression. Mounting evidence suggests that post-MI depression is associated with adverse outcomes, but the underlying mechanisms of this association remain unclear, and no previous studies have examined whether the mental burden of MI is so heavy that it increases the risk of suicide. Although post-MI depression is common and burdensome, the condition remains under-recognised and under-treated. The development of new strategies to improve the quality of care for people with post-MI depression requires thorough understanding of the mechanisms that influence the prognosis as well as knowledge of the present care provided. The purpose of this PhD thesis is accordingly subdivided into four specific aims: 1. To estimate the prevalence of depression in people with MI after three months, and to estimate the provided hospital-based psychosocial rehabilitation (Paper I); 2. To examine GPs' practice of screening for depression in people with MI, and to analyse whether the screening rate varied among subgroups of people with a particularly high risk of post-MI depression (Paper II); 3. To examine the association between post-MI depression and new cardiovascular events or death, taking potential mediators into account (Paper III); 4. To examine the association between MI and suicide (Paper IV). Two different study designs were employed: a population-based cohort study using data obtained from registers and questionnaires sent to MI patients and their GPs (Paper I-III); a nationwide population-based matched case-control study using data obtained from registers (Paper IV). Three months after having suffered MI, about one fifth of the patients in our study had depression according to the Hospital Anxiety and Depression Scale (HADS). Upwards of half of the patients had participated in some rehabilitation, thirty per cent had participated in psychosocial support and three per cent

  11. Significance of precordial ST-segment depression in inferior acute myocardial infarction as determined by echocardiography.

    PubMed

    Piérard, L A; Sprynger, M; Gilis, F; Carlier, J

    1986-01-01

    Despite numerous studies, the significance of precordial ST-segment depression in inferior wall acute myocardial infarction (AMI) remains unclear. No clinical studies have used 2-dimensional (2-D) echocardiography to compare AMI location in patients with or without so-called reciprocal ST changes. Therefore, the clinical, electrocardiographic, echocardiographic and angiographic features of 22 patients with their first transmural inferior AMI were prospectively examined. During the first day of AMI an echocardiographic mapping of the area of necrosis was obtained using all conventional views and a ventricular segmentation related to anatomic landmarks. Patients were categorized according to the presence (group I, n = 13) or absence (group II, n = 9) of precordial ST-segment depression, defined as more than 1 mm, measured 80 ms after the J point in at least 2 of the leads V1 to V4. Basal posterolateral akinesia was observed in 11 of the 13 patients in group I and in no patient in group II (p less than 0.001). Posterior right ventricular free wall akinesia was more frequent in group II (p less than 0.02). There was no difference in the prevalence of significant left anterior descending artery (LAD) narrowing (group I, 4 patients; group II, 3 patients). Posterolateral involvement should be strongly considered in the presence of precordial ST-segment depression in association with transmural inferior AMI.

  12. The association of depressed angiogenic factors with reduced capillary density in the Rhesus monkey model of myocardial ischemia.

    PubMed

    Zhang, Wenjing; Zhao, Xinmei; Xiao, Ying; Chen, Jianmin; Han, Pengfei; Zhang, Jingyao; Fu, Haiying; James Kang, Y

    2016-07-13

    Depressed capillary density is associated with myocardial ischemic infarction, in which hypoxia-inducible factor 1α (HIF-1α) is increased. The present study was undertaken to examine changes in the angiogenic factors whose expression is regulated by HIF-1 and their relation to the depressed capillary density in the Rhesus monkey model of myocardial ischemic infarction. Male Rhesus monkeys 2-3 years old were subjected to myocardial ischemia by permanent ligation of left anterior descending (LAD) artery leading to the development of myocardial infarction. Eight weeks after LAD ligation, copper concentrations, myocardial histological changes and capillary density were examined, along with Western blot and immunohistochemical analysis of angiogenic factors and detection of HIF-1 activity. Capillary density was significantly decreased but the concentrations of HIF-1α and HIF-1β were significantly increased in the infarct area. However, the levels of mRNA and protein for VEGF and VEGFR1 were significantly decreased. Other HIF-1 regulated angiogenic factors, including Tie-2, Ang-1 and FGF-1, were also significantly depressed, but vascular destabilizing factor Ang-2 was significantly increased. Copper concentrations were depressed in the infarct area. Copper-independent HIF-1 activity was increased shown by the elevated mRNA level of IGF-2, a HIF-1 target gene. Removal of copper by a copper chelator, tetraethylenepentamine, from primary cultures of neonatal rat cardiomyocytes also suppressed the expression of HIF-1 regulated VEGF and BNIP3, but not IGF-2. The data suggest that under ischemic conditions, copper loss suppressed the expression of critical angiogenic genes regulated by HIF-1, but did not affect copper-independent HIF-1 activation of gene expression. This copper-dependent dysregulation of angiogenic gene expression would contribute to the pathogenesis of myocardial ischemic infarction.

  13. [Propofol-induced myocardial depression: possible role of atrial muscarinic cholinergic receptors].

    PubMed

    Aguero Peña, R E; Pascuzzo-Lima, C; Granado Duque, A E; Bonfante-Cabarcas, R A

    2008-02-01

    To investigate the possible role of muscarinic cholinergic receptors (MCRs) in the depression of myocardial function induced by propofol, an intravenous anesthetic chemically unrelated to other drugs. Although adverse effects are rare, bradycardia has been reported and this can lead to cardiac arrest in some patients. The mechanism behind this effect is still unknown but a possible role for MCRs has been suggested. The interaction of propofol with human atrial MCRs was determined by means of inhibition tests using [3H] quinuclidinyl benzilate ([3H] QNB). The displacement of [3H] QNB binding to human atrial MCRs by propofol was concentration dependent but the observed effect was not consistent with a model of simple competition between propofol and [3H] QNB. Propofol appears to have the ability to modify the activity of human atrial MCRs and this effect may be related to its ability to induce bradycardia.

  14. Clinical efficacy and safety of the Shugan Jieyu capsule in patients with acute myocardial infarction and depression.

    PubMed

    Liu, Wei; Qin, Jun

    2016-08-01

    Objective The aim is to comparatively study Shugan Jieyu capsule and sertraline for non-inferiority in the treatment of patients with acute myocardial infarction and depression (observing the curative effects and safety) by the randomized controlled experiment. Methods A total of 149 patients with acute myocardial infarction and depression were randomly divided into two groups, the Shugan Jieyu group (76 cases) and the sertraline group (73 cases), and received treatments for 24 weeks. Depression states were assessed by the rote diagnostic checklist, and effects were evaluated by the Hamilton depression scale. Drug safety for heart was assessed by left ventricular ejection fraction (reduced by 5%), blood pressure, heart rate, P-wave and R wave interval, Q-R-S complex wave, and corrected Q-T interval after 12 weeks of treatment. Results There were no significant differences in the effective rates of Shugan Jieyu and sertraline groups. Significantly lower adverse event rate was observed in the Shugan Jieyu group. Two groups had a similar cardiac safety. Conclusion Shugan Jieyu capsule has a reliable effect and high safety in patients with acute myocardial infarction and depression.

  15. Cardiac-specific overexpression of metallothionein rescues nicotine-induced cardiac contractile dysfunction and interstitial fibrosis.

    PubMed

    Hu, Nan; Guo, Rui; Han, Xuefeng; Zhu, Baocheng; Ren, Jun

    2011-04-10

    Cigarette smoking is a devastating risk factor for cardiovascular diseases and nicotine is believed the main toxin component responsible for the toxic myocardial effects of smoking. Nonetheless, neither the precise mechanism of nicotine-induced cardiac dysfunction nor effective treatment is elucidated. The aim of this study was to evaluate the impact of cardiac-specific overexpression of heavy metal scavenger metallothionein on myocardial geometry and mechanical function following nicotine exposure. Adult male friend virus B (FVB) wild-type and metallothionein mice were injected with nicotine (2 mg/kg/d) intraperitoneally for 10 days. Mechanical and intracellular Ca²+ properties were examined. Myocardial histology (cross-sectional area and fibrosis) was evaluated by hematoxylin and eosin (H&E) and Masson trichrome staining, respectively. Oxidative stress and apoptosis were measured by fluoroprobe 5-(6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-H₂DCFDA) fluorescence and caspase-3 activity, respectively. Nicotine exposure failed to affect the protein abundance of metallothionein. Our data revealed reduced echocardiographic contractile capacity (fractional shortening), altered cardiomyocyte contractile and intracellular Ca²+ properties including depressed peak shortening amplitude, maximal velocity of shortening/relengthening, resting and electrically-stimulated rise in intracellular Ca²+, as well as prolonged duration of relengthening and intracellular Ca²+ clearance in hearts from nicotine-treated FVB mice, the effect of which was ameliorated by metallothionein. Biochemical and histological findings depicted overt accumulation of reactive oxygen species (ROS), apoptosis and myocardial fibrosis without any change in myocardial cross-sectional area following nicotine treatment, which was mitigated by metallothionein. Taken together, our findings suggest the antioxidant metallothionein may reconcile short-term nicotine exposure

  16. Depression of systolic and diastolic myocardial reserve during atrial pacing tachycardia in patients with dilated cardiomyopathy.

    PubMed Central

    Feldman, M D; Alderman, J D; Aroesty, J M; Royal, H D; Ferguson, J J; Owen, R M; Grossman, W; McKay, R G

    1988-01-01

    Previous reports have shown that increases in heart rate may result in enhanced left ventricular (LV) systolic and diastolic performance. To assess whether this phenomenon occurs in the presence of depressed LV function, the effects of pacing on LV pressure and volume were compared in seven patients with dilated cardiomyopathy (LV ejection fraction 0.19 +/- 0.11) and six patients with no or minimal coronary artery disease (LV ejection fraction 0.69 +/- 0.11). Patients with normal LV function demonstrated significant increases in LV peak-positive dP/dt, LV end-systolic pressure-volume ratio, LV peak filling rate, and a progressive leftward and downward shift of their pressure-volume diagrams, compatible with increased contractility and distensibility in response to pacing tachycardia. There was no change in LV peak-negative dP/dt or tau. Patients with dilated cardiomyopathy, in contrast, demonstrated no increase in either LV peak-positive dP/dt or the end-systolic pressure-volume ratio, and absence of a progressive leftward shift of their pressure-volume diagrams. Moreover, cardiomyopathy patients demonstrated no increase in LV peak-negative dP/dt or LV peak filling rate and a blunted downward shift of the diastolic limb of their pressure-volume diagrams. Tau, as determined from a derivative method, became abbreviated although never reaching control values. We conclude that patients with dilated cardiomyopathy may demonstrate little or no significant enhancement in systolic and diastolic function during atrial pacing tachycardia, suggesting a depression of both inotropic and lusitropic reserve. PMID:3183060

  17. Depressive symptom trajectories over a 6-year period following myocardial infarction: predictive function of cognitive appraisal and coping.

    PubMed

    Kroemeke, Aleksandra

    2016-04-01

    The association between distinct patterns of depression and coping variables in myocardial infarction (MI) survivors over the long-term is unclear. The study aims to evaluate depressive trajectories and their covariates, including coping and cognitive appraisal, following MI over a period of 6 years. Depressive symptoms were assessed in 200 patients a few days after the first MI, and 1 month, 6 months and 6 years later. Cognitive appraisal and coping were assessed during the first three time points. Three latent depressive trajectories were identified: chronic (high; increasing then decreasing; n = 49), rising (moderate; decreasing then increasing; n = 121) and low (low; decreasing then stabilizing; n = 30). The chronic trajectory was associated with higher negative appraisal and emotion-focused coping. The findings clarify the long-term longitudinal trajectories of post-MI depressive symptoms and their association with coping variables, revealing the unfavorable impact of negative cognition and palliative coping.

  18. The effect of chronic digitoxin administration on the contractile state of normal and nonfailing hypertrophied myocardium.

    PubMed Central

    Williams, J F; Potter, R D

    1975-01-01

    To determine the effect of prolonged digitoxin administration on contractile function of nonfailing myocardium, right ventricular papillary muscle mechanics were examined after 6 or 24 wk of glycoside administration to control and pulmonary artery banded cats. Resting length-tension relations were not affected by digitoxin; however, isometrically developed force and the maximal rate of force development at the peak of the length-tension curve were increased in all treated groups. In untreated animals, banding resulted in a 28% incidence of deaths from heart failure. 6 wk after constriction, contractile function was depressed whereas normal function was observed 24 wk after banding. Digitoxin significantly reduced mortality from heart failure and enhanced the recovery of contractile function; contractile function in the 6 wk banded treated group approached that of untreated control and 24-wk banded groups. The long-term effects of digitoxin on contractile function were not importantly related to the temporal association between banding and institution of glycoside administration. Development of myocardial hypertrophy was comparable in treated and untreated banded groups.These results demonstrate that a significant positive inotropic effect persists in both normal and nonfailing hypertrophied myocardium during chronic digitoxin administration. PMID:124747

  19. Association between N-terminal proB-type Natriuretic Peptide and Depressive Symptoms in Patients with Acute Myocardial Infarction

    PubMed Central

    Ren, Yan; Jia, Jiao; Sa, Jian; Qiu, Li-Xia; Cui, Yue-Hua; Zhang, Yue-An; Yang, Hong; Liu, Gui-Fen

    2017-01-01

    Background: While depression and certain cardiac biomarkers are associated with acute myocardial infarction (AMI), the relationship between them remains largely unexplored. We examined the association between depressive symptoms and biomarkers in patients with AMI. Methods: We performed a cross-sectional study using data from 103 patients with AMI between March 2013 and September 2014. The levels of depression, N-terminal proB-type natriuretic peptide (NT-proBNP), and troponin I (TnI) were measured at baseline. The patients were divided into two groups: those with depressive symptoms and those without depressive symptoms according to Zung Self-rating Depression Scale (SDS) score. Baseline comparisons between two groups were made using Student's t-test for continuous variables, Chi-square or Fisher's exact test for categorical variables, and Wilcoxon test for variables in skewed distribution. Binomial logistic regression and multivariate linear regression were performed to assess the association between depressive symptoms and biomarkers while adjusting for demographic and clinical variables. Results: Patients with depressive symptoms had significantly higher NT-proBNP levels as compared to patients without depressive symptoms (1135.0 [131.5, 2474.0] vs. 384.0 [133.0, 990.0], Z = −2.470, P = 0.013). Depressive symptoms were associated with higher NT-proBNP levels (odds ratio [OR] = 2.348, 95% CI: 1.344 to 4.103, P = 0.003) and higher body mass index (OR = 1.169, 95% confidence interval [CI]: 1.016 to 1.345, P = 0.029). The total SDS score was associated with the NT-proBNP level (β = 0.327, 95% CI: 1.674 to 6.119, P = 0.001) after multivariable adjustment. In particular, NT-proBNP was associated with three of the depressive dimensions, including core depression (β = 0.299, 95% CI: 0.551 to 2.428, P = 0.002), cognitive depression (β = 0.320, 95% CI: 0.476 to 1.811, P = 0.001), and somatic depression (β = 0.333, 95% CI: 0.240 to 0.847, P = 0.001). Neither the

  20. Axial flow pump treatment during myocardial depression in calves: an invasive hemodynamic and echocardiographic tissue Doppler study.

    PubMed

    Hubbert, Laila; Peterzén, Bengt; Traff, Stefan; Janerot-Sjoberg, Birgitta; Ahn, Henrik

    2008-01-01

    The aim of this study was to investigate flow characteristics and myocardial function after implantation of an axial pump left ventricular assist device while varying afterload and during progressive myocardial depression. Ten calves were included, seven of which fulfilled the protocol. Invasive hemodynamic monitoring and echocardiography with color-coded systolic tissue Doppler velocity (TD velocity) were used during prepump conditions, at three different pump speeds, during modification of the systemic vascular resistance (SVR), and during increasing degrees of beta-blockade. The TD velocity decreased with the myocardial function whereas left ventricular size, fractional shortening, and pump speed did not correlate significantly with the TD velocity. The TD velocity correlated significantly with native stroke volume, heart rate, SVR and cardiac output but none of these alone could explain more than 20% of the changes in TD velocity. The axial flow pump studied is effective in unloading the severely depressed heart and has a high capacity for maintaining an adequate cardiac output, regardless of differing hemodynamic conditions, pump speed or decreasing LV function. Echocardiography with volumetric rendering and TD velocity imaging are valuable tools for monitoring and quantifying residual myocardial function during pump treatment.

  1. Phospholemman deficiency in postinfarct hearts: enhanced contractility but increased mortality.

    PubMed

    Mirza, M Ayoub; Lane, Susan; Yang, Zequan; Karaoli, Themis; Akosah, Kwame; Hossack, John; McDuffie, Marcia; Wang, JuFang; Zhang, Xue-Qian; Song, Jianliang; Cheung, Joseph Y; Tucker, Amy L

    2012-06-01

    Phospholemman (PLM) regulates [Na(+) ](i), [Ca(2+)](i) and contractility through its interactions with Na(+)-K(+)-ATPase (NKA) and Na(+) /Ca(2+) exchanger (NCX1) in the heart. Both expression and phosphorylation of PLM are altered after myocardial infarction (MI) and heart failure. We tested the hypothesis that absence of PLM regulation of NKA and NCX1 in PLM-knockout (KO) mice is detrimental. Three weeks after MI, wild-type (WT) and PLM-KO hearts were similarly hypertrophied. PLM expression was lower but fractional phosphorylation was higher in WT-MI compared to WT-sham hearts. Left ventricular ejection fraction was severely depressed in WT-MI but significantly less depressed in PLM-KO-MI hearts despite similar infarct sizes. Compared with WT-sham myocytes, the abnormal [Ca(2+) ], transient and contraction amplitudes observed in WT-MI myocytes were ameliorated by genetic absence of PLM. In addition, NCX1 current was depressed in WT-MI but not in PLM-KO-MI myocytes. Despite improved myocardial and myocyte performance, PLM-KO mice demonstrated reduced survival after MI. Our findings indicate that alterations in PLM expression and phosphorylation are important adaptations post-MI, and that complete absence of PLM regulation of NKA and NCX1 is detrimental in post-MI animals.

  2. Phospholemman Deficiency in Postinfarct Hearts: Enhanced Contractility but Increased Mortality

    PubMed Central

    Mirza, M. Ayoub; Lane, Susan; Yang, Zequan; Karaoli, Themis; Akosah, Kwame; Hossack, John; McDuffie, Marcia; Wang, JuFang; Zhang, Xue-Qian; Song, Jianliang; Cheung, Joseph Y.; Tucker, Amy L.

    2013-01-01

    Phospholemman (PLM) regulates [Na+]i, [Ca2+]i and contractility through its interactions with Na+-K+-ATPase (NKA) and Na+/Ca2+ exchanger (NCX1) in the heart. Both expression and phosphorylation of PLM are altered after myocardial infarction (MI) and heart failure. We tested the hypothesis that absence of PLM regulation of NKA and NCX1 in PLM-knockout (KO) mice is detrimental. Three weeks after MI, wild-type (WT) and PLM-KO hearts were similarly hypertrophied. PLM expression was lower but fractional phosphorylation was higher in WT-MI compared to WT-sham hearts. Left ventricular ejection fraction was severely depressed in WT-MI but significantly less depressed in PLM-KO-MI hearts despite similar infarct sizes. Compared with WT-sham myocytes, the abnormal [Ca2+]i transient and contraction amplitudes observed in WT-MI myocytes were ameliorated by genetic absence of PLM. In addition, NCX1 current was depressed in WT-MI but not in PLM-KO-MI myocytes. Despite improved myocardial and myocyte performance, PLM-KO mice demonstrated reduced survival after MI. Our findings indicate that alterations in PLM expression and phosphorylation are important adaptations post-MI, and that complete absence of PLM regulation of NKA and NCX1 is detrimental in post-MI animals. PMID:22686200

  3. Precordial ST-segment depression during acute inferior myocardial infarction: clinical, scintigraphic and angiographic correlations

    SciTech Connect

    Gibson, R.S.; Crampton, R.S.; Watson, D.D.; Taylor, G.J.; Carabello, B.A.; Holt, N.D.; Beller, G.A.

    1982-10-01

    The cause and associated pathophysiology of precordial ST-segment depression during acute inferior myocardial infarction (IMI) are controversial. To investigate this problem, electrocardiographic findings in 48 consecutive patients with acute IMI were prospectively compared with results of coronary angiography, submaximal exercise thallium-201 (/sup 201/Tl) scintigraphy and multigated blood pool imaging, all obtained 2 weeks after IMI, and with clinical follow-up at 3 months. Patients were classified according to the admission ECG obtained 3.3 +/- 3.1 hours after the onset of chest pain. Twenty-one patients (group A) had no or <1.0 mm ST-segment depression, and 27 (group B) had greater than or equal to1.0 mm ST-segment depression in two or more precordial (V/sub 1-6/) leads. Patients in group B had more prolonged chest pain after admission to the coronary care unit than those in group A (2.8 +/- 3.0 vs 1.2 +/- 1.1 hours, p<0.03), greater summed ST-segment elevation in leads II, III, aV/sub F/ (6.7 +/- 4.7 vs 3.3 +/- 4.5 mm, p<0.02), higher plasma peak creatine kinase levels (1133 +/- 781 vs 653 +/- 482 IU/l, p<0.01), a higher prevalence of ''true posterior'' infarction by ECG criteria (26% vs 5%, p<0.05), a lower radionuclide ejection fraction (46 +/- 9% vs 54 +/- 6%, p<0.001), more extensive infarct-related asynergy (p<0.001) and /sup 201/Tl perfusion abnormalities (p<0.01), more complications during hospitalization (p<0.03), and more cardiac events at 3 months (p<0.02). There were no significant differences between group A and group B in the extent of underlying coronary disease, prevalence of left anterior descending coronary artery disease, exercise-induced ST-segment depression or angina, /sup 201/Tl defects or wall motion abnormalities in anterior or septal segments.

  4. 5-Hydroxytryptamine Changes under Different Pretreatments on Rat Models of Myocardial Infarction and/or Depression

    PubMed Central

    Liu, Mei-Yan; Zhang, Li-Jun; Zhou, Yu-Xin; Wei, Wan-Lin

    2017-01-01

    Background: Psychocardiological researches have suggested a central role of 5-hydroxytryptamine (5-HT) on psychocardiological mechanism. This study aimed to further explore the central role of 5-HT and pretreatment effects of XinLingWan on rats with myocardial infarction (MI) and/or depression. Methods: Ninety Sprague-Dawley rats were randomly divided into three groups: MI group, depression group, and MI + depression group (n = 30 in each group). Each group was then divided into three subgroups (n = 10 in each subgroup): a negative control subgroup (NCS), a Western medicine subgroup (WMS), and a traditional Chinese medicine subgroup (TCMS), which were received pretreatment once a day for 4 weeks by saline, 20 mg/kg sertraline mixed with 2 ml saline, and 40 mg/kg XingLingWan mixed with 2 ml saline, respectively. Different rat models were established after different pretreatments. Rats were then sacrificed for detection of serum 5-HT, platelet 5-HT, 5-HT2A receptors (5-HT2AR), and serotonin transporter (SERT). Data were analyzed by one-way analysis of variance (ANOVA) and least-significant difference (LSD) testing. Results: MI group: compared with NCS, there was a significant increase in WMS and TCMS of serum 5-HT (176.15 ± 11.32 pg/ml vs. 334.50 ± 29.09 pg/ml and 474.04 ± 10.86 pg/ml, respectively, both P = 0.000), platelet 5-HT (129.74 ± 27.17 pg/ml vs. 322.24 ± 11.60 pg/ml and 340.4 5 ± 17.99 pg/ml, respectively, both P = 0.000); depression group: compared with NCS, there was a significant increase in WMS and TCMS of serum 5-HT (194.69 ± 5.09 pg/ml vs. 326.21 ± 39.98 pg/ml and 456.33 ± 23.12 pg/ml, respectively, both P = 0.000), platelet 5-HT (175.15 ± 4.07 pg/ml vs. 204.56 ± 18.59 pg/ml and 252.03 ± 22.26 pg/ml, respectively, P = 0.004 and P = 0.000, respectively); MI + depression group: compared with NCS, there was a significant increase in both WMS and TCMS of serum 5-HT (182.50 ± 10.23 pg/ml vs. 372.55 ± 52.23 pg/ml and 441.76 ± 23.38 pg

  5. Depression and Anxiety Screens as Predictors of 8-Year Incidence of Myocardial Infarction and Stroke in Primary Care Patients.

    PubMed

    Stewart, Jesse C; Hawkins, Misty A W; Khambaty, Tasneem; Perkins, Anthony J; Callahan, Christopher M

    2016-06-01

    Because depression and anxiety are typically studied in isolation, our purpose was to examine the relative importance of these overlapping emotional factors in predicting incident cardiovascular disease (CVD). We examined depression and anxiety screens, and their individual items, as predictors of incident hard CVD events, myocardial infarction, and stroke for 8 years in a diverse sample of 2041 older primary care patients initially free of CVD. At baseline, participants completed self-report depression and anxiety screens. Data regarding CVD events were obtained from an electronic medical record system and the Centers for Medicare and Medicaid Services analytic files. During follow-up, 683 (33%) experienced a CVD event. Cox proportional hazards models-adjusted for demographic and CVD risk factors-revealed that a positive anxiety screen, but not a positive depression screen, was associated with an increased risk of a hard CVD event in separate models (Years 0-3: anxiety hazard ratio [HR] = 1.54, 95% confidence interval [CI] = 1.21-1.96, p < .001; Years 3+: anxiety HR = 0.99, CI = 0.81-1.21), p = .93; depression HR = 1.10, CI = 0.88-1.36, p = .41), as well as when entered into the same model (Years 0-3: anxiety HR = 1.53, CI = 1.20-1.95, p < .001; Years 3+: anxiety HR = 0.99, CI = 0.80-1.21, p = .99; depression HR = 1.03, CI = 0.82-1.29, p = .82). Analyses examining individual items and secondary outcomes showed that the anxiety-CVD association was largely driven by the feeling anxious item and the myocardial infarction outcome. Anxiety, especially feeling anxious, is a unique risk factor for CVD events in older adults, independent of conventional risk factors and depression. Anxiety deserves increased attention as a potential factor relevant to CVD risk stratification and a potential target of CVD primary prevention efforts.

  6. Anterior ST segment depression in acute inferior myocardial infarction as a marker of greater inferior, apical, and posterolateral damage

    SciTech Connect

    Ruddy, T.D.; Yasuda, T.; Gold, H.K.; Leinbach, R.C.; Newell, J.B.; McKusick, K.A.; Boucher, C.A.; Strauss, H.W.

    1986-12-01

    The clinical significance of anterior precordial ST segment depression during acute inferior myocardial infarction was evaluated in 67 consecutive patients early after onset of symptoms with gated blood pool scans, thallium-201 perfusion images, and 12-lead ECGs. Patients with anterior ST depression (n = 33) had depressed mean values for left ventricular ejection fraction (54 +/- 2% (mean +/- S.E.M.) vs 59 +/- 2%; p = 0.02), cardiac index (3.1 +/- 0.2 vs 3.6 +/- 0.2 L/m2; p = 0.03), and ratio of systolic blood pressure to end-systolic volume (2.0 +/- 0.1 vs 2.5 +/- 0.3 mm Hg/ml; p = 0.04) compared to patients with no anterior ST depression (n = 34). Patients with anterior ST depression had (1) lower mean wall motion values for the inferior, apical, and inferior posterolateral segments (p less than 0.05) and (2) greater reductions in thallium-201 uptake in the inferior and posterolateral regions (p less than 0.05). However, anterior and septal (1) wall motion and (2) thallium-201 uptake were similar in patients with and without ST depression. Thus, anterior precordial ST segment depression in patients with acute inferior wall myocardial infarction represents more than a reciprocal electrical phenomenon. It identifies patients with more severe wall motion impairment and greater hypoperfusion of the inferior and adjacent segments. The poorer global left ventricular function in these patients is a result of more extensive inferior infarction and not of remote septal or anterior injury.

  7. [Is secondary myocardial hypertrophy a physiological or pathological adaptive mechanism?].

    PubMed

    Krayenbühl, H P

    1982-08-01

    Physiological hypertrophy is present when the increase in myocardial mass resulting from chronic mechanical loading is associated with normal or enhanced myocardial function and myosin ATPase activity. Morphological alterations occurring during the formation of hypertrophy are fully reversible in physiological hypertrophy. In pathological hypertrophy myocardial function and myosin ATPase activity are depressed and morphological changes do not or only incompletely regress following the elimination of the stimulus of hypertrophy. In the experimental animal myocardial hypertrophy resulting from exercise conditioning or slight to moderate ventricular pressure overload fulfills the criteria of physiological hypertrophy. More severe sudden pressure overload is accompanied by depression of contractile function. These pressure overload models have however, little analogy to the more progressive development of pressure loading in humans. In young dogs and in cats with a gradually increasing pressure load, in vivo ventricular ejection fraction remained within normal limits 37 to 60 weeks after banding of the ventricular outflow vessel. In vitro myocardial function evaluated in the hypertrophied papillary muscle was, however, at least in part depressed, notably when hydroxyproline concentration was augmented. Following debanding in rats with aortic constriction hydroxyproline content did not regress suggesting that fibrosis once established is not reversible. In man myocardial hypertrophy from exercise conditioning is associated with normal ventricular function except in older athletes, who may show a subtle reduction in ventricular shortening. Patients with chronic pressure overload from aortic stenosis or volume overload from aortic insufficiency in whom the angiographic muscle mass is severely increased (greater than or equal to 180 g/m2) elicit a depressed left ventricular contractile function. Preserved left ventricular ejection performance in aortic valve disease is

  8. K(ATP) channel gain-of-function leads to increased myocardial L-type Ca(2+) current and contractility in Cantu syndrome.

    PubMed

    Levin, Mark D; Singh, Gautam K; Zhang, Hai Xia; Uchida, Keita; Kozel, Beth A; Stein, Phyllis K; Kovacs, Atilla; Westenbroek, Ruth E; Catterall, William A; Grange, Dorothy Katherine; Nichols, Colin G

    2016-06-14

    Cantu syndrome (CS) is caused by gain-of-function (GOF) mutations in genes encoding pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) KATP channel subunits. We show that patients with CS, as well as mice with constitutive (cGOF) or tamoxifen-induced (icGOF) cardiac-specific Kir6.1 GOF subunit expression, have enlarged hearts, with increased ejection fraction and increased contractility. Whole-cell voltage-clamp recordings from cGOF or icGOF ventricular myocytes (VM) show increased basal L-type Ca(2+) current (LTCC), comparable to that seen in WT VM treated with isoproterenol. Mice with vascular-specific expression (vGOF) show left ventricular dilation as well as less-markedly increased LTCC. Increased LTCC in KATP GOF models is paralleled by changes in phosphorylation of the pore-forming α1 subunit of the cardiac voltage-gated calcium channel Cav1.2 at Ser1928, suggesting enhanced protein kinase activity as a potential link between increased KATP current and CS cardiac pathophysiology.

  9. KATP channel gain-of-function leads to increased myocardial L-type Ca2+ current and contractility in Cantu syndrome

    PubMed Central

    Levin, Mark D.; Singh, Gautam K.; Zhang, Hai Xia; Uchida, Keita; Kozel, Beth A.; Stein, Phyllis K.; Kovacs, Atilla; Westenbroek, Ruth E.; Catterall, William A.; Grange, Dorothy Katherine; Nichols, Colin G.

    2016-01-01

    Cantu syndrome (CS) is caused by gain-of-function (GOF) mutations in genes encoding pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) KATP channel subunits. We show that patients with CS, as well as mice with constitutive (cGOF) or tamoxifen-induced (icGOF) cardiac-specific Kir6.1 GOF subunit expression, have enlarged hearts, with increased ejection fraction and increased contractility. Whole-cell voltage-clamp recordings from cGOF or icGOF ventricular myocytes (VM) show increased basal L-type Ca2+ current (LTCC), comparable to that seen in WT VM treated with isoproterenol. Mice with vascular-specific expression (vGOF) show left ventricular dilation as well as less-markedly increased LTCC. Increased LTCC in KATP GOF models is paralleled by changes in phosphorylation of the pore-forming α1 subunit of the cardiac voltage-gated calcium channel Cav1.2 at Ser1928, suggesting enhanced protein kinase activity as a potential link between increased KATP current and CS cardiac pathophysiology. PMID:27247394

  10. Pretreatment with Ginseng Fruit Saponins Affects Serotonin Expression in an Experimental Comorbidity Model of Myocardial Infarction and Depression

    PubMed Central

    Liu, Mei-Yan; Ren, Yan-Ping; Zhang, Li-Jun; Ding, Jamie Y.

    2016-01-01

    We previously demonstrated that serotonin (5-HT) and 5-HT2A receptor (5-HT2AR) levels in platelets were up- or down-regulated after myocardial infarction (MI) associated with depression. In this study, we further evaluated the effects of pretreatment with ginseng fruit saponins (GFS) on the expression of 5-HT and 5-HT2AR in MI with or without depression. Eighty Sprague-Dawley (SD) rats were treated with saline and GFS (n=40 per group). The animals were then randomly divided into four subgroups: sham, MI, depression, and MI + depression (n=10 per subgroup). Protein levels of 5-HT and 5-HT2AR in the serum, platelets and brain tissues were determined with ELISA. The results demonstrated that serum 5-HT levels was significantly increased by GFS pretreatment in all subgroups (except the sham subgroup) when compared with saline-treated counterparts (p<0.01). In platelets, GFS pretreatment significantly increased 5-HT levels in all subgroups when compared with their respective saline-treated counterparts (p<0.01). Brain 5-HT levels also declined with GFS pretreatment in the MI-only and depression-only subgroups (p<0.05 vs. saline pretreatment). With respect to 5-HT2AR levels, platelet 5-HT2AR was decreased in GFS pretreated MI, depression and MI + depression subgroups (p<0.01 vs. saline pretreatment). Similarly, brain 5-HT2AR levels decreased in all four subgroups pretreated with GFS (p<0.01 vs. saline pretreatment). We conclude that GFS plays a clear role in modulating 5-HT and 5-HT2AR expressions after MI and depression. Although the effects of GFS on brain 5-HT remain to be elucidated, its therapeutic potential for comorbidities of acute cardiovascular events and depression appears to hold much promise. PMID:28053817

  11. Effects of paroxetine-mediated inhibition of GRK2 expression on depression and cardiovascular function in patients with myocardial infarction

    PubMed Central

    Tian, Xiuqing; Wang, Qing; Guo, Rui; Xu, Lingling; Chen, Qin M; Hou, Yinglong

    2016-01-01

    Background Paroxetine is a selective serotonin reuptake inhibitor utilized in the treatment of depression and anxiety disorders. Recent studies have identified paroxetine as a G protein-coupled receptor kinase-2 (GRK2) inhibitor capable of reversing cardiac dysfunction and remodeling in experimental models of acute myocardial infarction (AMI). We determine the clinical importance of paroxetine on cardiac functions in patients having AMI with depression (AMID) in comparison with fluoxetine, an unrelated selective serotonin reuptake inhibitor that does not inhibit GRK2. Methods Diagnosis of depression was based on the 17-item Hamilton Depression Scale and Self-rating Depression Scale in AMI patients after hospital admission. AMID patients were randomly assigned to paroxetine or fluoxetine for treatment of depression. Heart rate variability and cardiac function were evaluated. GRK2 protein levels were measured using peripheral lymphocytes and Western blot. Results GRK2 expression in AMID patients was significantly higher than that in AMI patients without depression. In AMID patients, GRK2 levels were positively correlated with the 17-item Hamilton Depression Scale and the Self-rating Depression Scale scores, and negatively correlated with heart rate variability. Treatment of AMID patients with paroxetine significantly reduced the expression of GRK2, normalized the autonomic nervous system function, and improved cardiac performance. In contrast, fluoxetine normalized the autonomic nervous system but did not reduce the expression of GRK2 nor improved cardiac performance. Conclusion This study suggests that paroxetine is effective for improving cardiac function in patients with AMID and such effect correlates with GRK2 reduction. PMID:27695334

  12. Myocardial viability.

    PubMed Central

    Birnbaum, Y; Kloner, R A

    1996-01-01

    Left ventricular function is a major predictor of outcome in patients with coronary artery disease. Acute ischemia, postischemic dysfunction (stunning), myocardial hibernation, or a combination of these 3 are among the reversible forms of myocardial dysfunction. In myocardial stunning, dysfunction occurs despite normal myocardial perfusion, and function recovers spontaneously over time. In acute ischemia and hibernation, there is regional hypoperfusion. Function improves only after revascularization. Evidence of myocardial viability usually relies on the demonstration of uptake of various metabolic tracers, such as thallium (thallous chloride TI 201) or fludeoxyglucose F 18, by dysfunctional myocardium or by the demonstration of contractile reserve in a dysfunctional region. This can be shown as an augmentation of function during the infusion of various sympathomimetic agents. The response of ventricular segments to increasing doses of dobutamine may indicate the underlying mechanism of dysfunction. Stunned segments that have normal perfusion show dose-dependent augmentation of function. If perfusion is reduced as in hibernating myocardium, however, a biphasic response usually occurs: function improves at low doses of dobutamine, whereas higher doses may induce ischemia and, hence, dysfunction. But in patients with severely impaired perfusion, even low doses may cause ischemia. Myocardial regions with subendocardial infarction or diffuse scarring may also have augmented contractility during catecholamine infusion due to stimulation of the subepicardial layers. In these cases, augmentation of function after revascularization is not expected. Because the underlying mechanism, prognosis, and therapy may differ among these conditions, it is crucial to differentiate among dysfunctional myocardial segments that are nonviable and have no potential to regain function, hibernating or ischemic segments in which recovery of function occurs only after revascularization, and

  13. Combined milrinone and enteral metoprolol therapy in patients with septic myocardial depression

    PubMed Central

    Schmittinger, Christian A; Dünser, Martin W; Haller, Maria; Ulmer, Hanno; Luckner, Günter; Torgersen, Christian; Jochberger, Stefan; Hasibeder, Walter R

    2008-01-01

    Introduction The multifactorial etiology of septic cardiomyopathy is not fully elucidated. Recently, high catecholamine levels have been suggested to contribute to impaired myocardial function. Methods This retrospective analysis summarizes our preliminary clinical experience with the combined use of milrinone and enteral metoprolol therapy in 40 patients with septic shock and cardiac depression. Patients with other causes of shock or cardiac failure, patients with beta-blocker therapy initiated more than 48 hours after shock onset, and patients with pre-existent decompensated congestive heart failure were excluded. In all study patients, beta blockers were initiated only after stabilization of cardiovascular function (17.7 ± 15.5 hours after shock onset or intensive care unit admission) in order to decrease the heart rate to less than 95 beats per minute (bpm). Hemodynamic data and laboratory parameters were extracted from medical charts and documented before and 6, 12, 24, 48, 72, and 96 hours after the first metoprolol dosage. Adverse cardiovascular events were documented. Descriptive statistical methods and a linear mixed-effects model were used for statistical analysis. Results Heart rate control (65 to 95 bpm) was achieved in 97.5% of patients (n = 39) within 12.2 ± 12.4 hours. Heart rate, central venous pressure, and norepinephrine, arginine vasopressin, and milrinone dosages decreased (all P < 0.001). Cardiac index and cardiac power index remained unchanged whereas stroke volume index increased (P = 0.002). In two patients (5%), metoprolol was discontinued because of asymptomatic bradycardia. Norepinephrine and milrinone dosages were increased in nine (22.5%) and six (15%) patients, respectively. pH increased (P < 0.001) whereas arterial lactate (P < 0.001), serum C-reactive protein (P = 0.001), and creatinine (P = 0.02) levels decreased during the observation period. Twenty-eight-day mortality was 33%. Conclusion Low doses of enteral metoprolol in

  14. Depression as a predictor of work resumption following myocardial infarction (MI): a review of recent research evidence

    PubMed Central

    2010-01-01

    Background Depression often coexists with myocardial infarction (MI) and has been found to impede recovery through reduced functioning in key areas of life such as work. In an era of improved survival rates and extended working lives, we review whether depression remains a predictor of poorer work outcomes following MI by systematically reviewing literature from the past 15 years. Methods Articles were identified using medical, health, occupational and social science databases, including PubMed, OVID, Medline, Proquest, CINAHL plus, CCOHS, SCOPUS, Web of Knowledge, and the following pre-determined criteria were applied: (i) collection of depression measures (as distinct from 'psychological distress') and work status at baseline, (ii) examination and statistical analysis of predictors of work outcomes, (iii) inclusion of cohorts with patients exhibiting symptoms consistent with Acute Coronary Syndrome (ACS), (iv) follow-up of work-specific and depression specific outcomes at minimum 6 months, (v) published in English over the past 15 years. Results from included articles were then evaluated for quality and analysed by comparing effect size. Results Of the 12 articles meeting criteria, depression significantly predicted reduced likelihood of return to work (RTW) in the majority of studies (n = 7). Further, there was a trend suggesting that increased depression severity was associated with poorer RTW outcomes 6 to 12 months after a cardiac event. Other common significant predictors of RTW were age and patient perceptions of their illness and work performance. Conclusion Depression is a predictor of work resumption post-MI. As work is a major component of Quality of Life (QOL), this finding has clinical, social, public health and economic implications in the modern era. Targeted depression interventions could facilitate RTW post-MI. PMID:20815937

  15. Evaluation of the relationship between hyperinsulinaemia and myocardial ischaemia/reperfusion injury in a rat model of depression.

    PubMed

    Solskov, Lasse; Løfgren, Bo; Pold, Rasmus; Kristiansen, Steen B; Nielsen, Torsten T; Overstreet, David H; Schmitz, Ole; Bøtker, Hans Erik; Lund, Sten; Wegener, Gregers

    2009-11-09

    Major depression is associated with medical co-morbidity, such as ischaemic heart disease and diabetes, but the underlying pathophysiological mechanisms remain unclear. The FSL (Flinders Sensitive Line) rat is a genetic animal model of depression exhibiting features similar to those of depressed individuals. The aim of the present study was to compare the myocardial responsiveness to I/R (ischaemia/reperfusion) injury and the effects of IPC (ischaemic preconditioning) in hearts from FSL rats using SD (Sprague-Dawley) rats as controls and to characterize differences in glucose metabolism and insulin sensitivity between FSL and SD rats. Hearts were perfused in a Langendorff model and were subjected or not to IPC before 40 min of global ischaemia, followed by 120 min of reperfusion. Myocardial infarct size was found to be significantly larger in the FSL rats than in the SD rats following I/R injury (62.4+/-4.2 compared with 46.9+/-2.9%; P<0.05). IPC reduced the infarct size (P<0.01) and improved haemodynamic function (P<0.01) in both FSL and SD rats. No significant difference was found in blood glucose levels between the two groups measured after 12 h of fasting, but fasting plasma insulin (70.1+/-8.9 compared with 40.9+/-4.7 pmol/l; P<0.05) and the HOMA (homoeostatic model assessment) index (P<0.01) were significantly higher in FSL rats compared with SD rats. In conclusion, FSL rats had larger infarct sizes following I/R injury and were found to be hyperinsulinaemic compared with SD rats, but appeared to have a maintained cardioprotective mechanism against I/R injury, as IPC reduced infarct size in these rats. This animal model may be useful in future studies when examining the mechanisms that contribute to the cardiovascular complications associated with depression.

  16. Nitrendipine: effects on vascular responses and myocardial binding.

    PubMed

    McBride, W; Mukherjee, A; Haghani, Z; Wheeler-Clark, E; Brady, J; Gandler, T; Bush, L; Buja, L M; Willerson, J T

    1984-11-01

    We have further defined the binding characteristics of [3H]nitrendipine to myocardial microsomal membranes of cats, dogs, rats, and rabbits and to canine coronary vasculature (1.5-3.0 mm OD), and we have studied nitrendipine's effect on contractile responses in isolated feline cardiac muscle and canine coronary arteries. [3H]nitrendipine binding is rapid, saturable, and reversible in all four species and in all of these tissues. Feline myocardium has a single binding site with a dissociation constant (KD) of 1.94 nM. Canine myocardium may have two classes of binding sites, with the high-affinity site having a KD of 0.17 nM. Nitrendipine depresses contractility in isolated feline cardiac muscle and canine coronary arteries in a dose-dependent manner [half-maximal dose (ED50) 0.20 microM in isolated feline cardiac muscle and 1.6-6.3 nM for potential dependent contractile responses in isolated canine coronary arteries] and severely blunts the contractile response to increases in extracellular calcium concentration in isolated feline papillary muscles. In contrast to verapamil and D 600, nitrendipine does not prevent the treppe phenomenon. In isolated feline cardiac muscle and large canine coronary arteries, the minimal nitrendipine concentration required for specific binding and for depression of contractile responses is similar. However, only in large canine coronary arteries is the ED50 for nifedipine's depression of contractility similar to the KD for [3H]nitrendipine binding in the respective tissue.

  17. [The influence of halogenated anesthetic agents on the hemodynamics and myocardial metabolism in ischemic heart disease].

    PubMed

    Vasil'ev, A V; Nesterova, Iu V; Brand, Ia B

    2007-01-01

    The authors studied the effects of anesthesia with equipotential concentrations of halothane, enflurane, and isoflurane plus 33% O2 on central hemodynamics, coronary flow, and myocardial metabolism in 60 patients undergoing myocardial revascularization surgery. The study found that halothane and isoflurane with 33% O2 caused dose-dependent and well-controlled arterial hypotension and decreased left ventricular (LV) stroke work index, myocardial consumption of O2 MCO2), total peripheral vascular resistance, and coronary vascular resistance (CVR), which increased coronary volume flow. Monoanesthesia with enflurane lowered myocardial contractility and did not change LV work; MCO2 decreased, while coronary sinus flow increased due to a decrease in CVR. Thus, the comparison of hemodynamic and myocardial effects of the three potent inhaled anesthetics--halothane, enflurane, and isoflurane - demonstrated their positive effects on myocardial oxygen balance in a form of dosed and controlled decrease in its work in cardiological patients with preserved LV contractility. The imported anesthetics enflurane and isoflurane do not have any significant advantage over the Russian-made halothane in this category of patients. At the same time, halothane vs. enflurane has a more noticeable "unloading" effect on afterload and does not cause convulsive episodes and periods of cerebral activity depression; in contrast to isoflurane, halothane dose not cause metabolic disturbances in a compromised myocardium; halothane is used in lower inhaled concentrations to achieve the same degree of myocardial work decrease without a substantial decrease in cardiac efficiency. These facts suggest that halothane has a practical advantage over the other anesthetics.

  18. Risk of anxiety and depressive disorders in patients with myocardial infarction: A nationwide population-based cohort study.

    PubMed

    Feng, Hsin-Pei; Chien, Wu-Chien; Cheng, Wei-Tung; Chung, Chi-Hsiang; Cheng, Shu-Meng; Tzeng, Wen-Chii

    2016-08-01

    Anxiety and depressive symptoms are associated with adverse cardiovascular events after an acute myocardial infarction (MI). However, most studies focusing on anxiety or depression have used rating scales or self-report methods rather than clinical diagnosis. This study aimed to investigate the association between psychiatrist-diagnosed psychiatric disorders and cardiovascular prognosis.We sampled data from the National Health Insurance Research Database; 1396 patients with MI were recruited as the study cohort and 13,960 patients without MI were recruited as the comparison cohort. Cox proportional hazard regression models were used to examine the effect of MI on the risk of anxiety and depressive disorders.During the first 2 years of follow-up, patients with MI exhibited a significantly higher risk of anxiety disorders (adjusted hazard ratio [HR] = 5.06, 95% confidence interval [CI]: 4.61-5.54) and depressive disorders (adjusted HR = 7.23, 95% CI: 4.88-10.88) than those without MI did. Greater risk for anxiety and depressive disorders was observed among women and patients aged 45 to 64 years following an acute MI. Patients with post-MI anxiety had a 9.37-fold (95% CI: 4.45-19.70) higher risk of recurrent MI than those without MI did after adjustment for age, sex, socioeconomic status, and comorbidities.This nationwide population-based cohort study provides evidence that MI increases the risk of anxiety and depressive disorders during the first 2 years post-MI, and post-MI anxiety disorders are associated with a higher risk of recurrent MI.

  19. Prognostic value of myocardial ischemia and necrosis in depressed left ventricular function: a multicenter stress cardiac magnetic resonance registry.

    PubMed

    Husser, Oliver; Monmeneu, Jose V; Bonanad, Clara; Lopez-Lereu, Maria P; Nuñez, Julio; Bosch, Maria J; Garcia, Carlos; Sanchis, Juan; Chorro, Francisco J; Bodi, Vicente

    2014-09-01

    The incremental prognostic value of inducible myocardial ischemia over necrosis derived by stress cardiac magnetic resonance in depressed left ventricular function is unknown. We determined the prognostic value of necrosis and ischemia in patients with depressed left ventricular function referred for dipyridamole stress perfusion magnetic resonance. In a multicenter registry using stress magnetic resonance, the presence (≥ 2 segments) of late enhancement and perfusion defects and their association with major events (cardiac death and nonfatal infarction) was determined. In 391 patients, perfusion defect or late enhancement were present in 224 (57%) and 237 (61%). During follow-up (median, 96 weeks), 47 major events (12%) occurred: 25 cardiac deaths and 22 myocardial infarctions. Patients with major events displayed a larger extent of perfusion defects (6 segments vs 3 segments; P <.001) but not late enhancement (5 segments vs 3 segments; P =.1). Major event rate was significantly higher in the presence of perfusion defects (17% vs 5%; P =.0005) but not of late enhancement (14% vs 9%; P =.1). Patients were categorized into 4 groups: absence of perfusion defect and absence of late enhancement (n = 124), presence of late enhancement and absence of perfusion defect (n = 43), presence of perfusion defect and presence of late enhancement (n = 195), absence of late enhancement and presence of perfusion defect (n = 29). Event rate was 5%, 7%, 16%, and 24%, respectively (P for trend = .003). In a multivariate regression model, only perfusion defect (hazard ratio = 2.86; 95% confidence interval, 1.37-5.95]; P = .002) but not late enhancement (hazard ratio = 1.70; 95% confidence interval, 0.90-3.22; P =.105) predicted events. In depressed left ventricular function, the presence of inducible ischemia is the strongest predictor of major events. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  20. Effects of vanadate on in vivo myocardial reactivity to norepinephrine in diabetic rats.

    PubMed

    Paulson, D J; Kopp, S J; Tow, J P; Peace, D G

    1987-02-01

    Myocardial contractile function is often depressed in patients with diabetes mellitus. Vanadate is an essential trace element that has purportedly an insulin-like action and has been suggested as a therapeutic agent for the treatment of diabetes mellitus. The purpose of the present study was to compare the prophylactic efficacy of oral vanadate therapy (0.8 mg of sodium orthovanadate per milliliter drinking water) to that of insulin treatment (5 units/day s.c.) in terms of its ability to reduce or prevent the progressive cardiodepression that occurs in untreated diabetes mellitus. Diabetes was induced in male rats by i.v. streptozotocin injection (50 mg/kg). Diabetes rats were assigned randomly to one of three regimens for 8 weeks: untreated, insulin-treated or vanadate-treated. Noninjected rats served as controls. In vivo myocardial contractile function was measured under basal conditions and after i.v. norepinephrine infusions in ketamine-xylazine-anesthetized rats using a miniature catheter-tip pressure transducer inserted in the right carotid artery and advanced into the left ventricle. Vanadate and insulin treatment resulted in comparable increases in body weight and reductions in plasma glucose, which were improved relative to untreated diabetics. These findings suggest that vanadium may possess an insulin-like action. Basal in vivo myocardial contractile performance was depressed significantly in untreated diabetic rats as compared to control and insulin-treated diabetic rats. The contractile performance of vanadate-treated diabetic rats was in between untreated diabetic and control groups. In vivo myocardial reactivity to norepinephrine based on assessments of left intraventricular developed pressure, positive and negative dP/dt and delta dP/dt was depressed significantly in untreated diabetic rats.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Moderate ethanol administration accentuates cardiomyocyte contractile dysfunction and mitochondrial injury in high fat diet-induced obesity.

    PubMed

    Yuan, Fang; Lei, Yonghong; Wang, Qiurong; Esberg, Lucy B; Huang, Zaixing; Scott, Glenda I; Li, Xue; Ren, Jun

    2015-03-18

    Light to moderate drinking confers cardioprotection although it remains unclear with regards to the role of moderate drinking on cardiac function in obesity. This study was designed to examine the impact of moderate ethanol intake on myocardial function in high fat diet intake-induced obesity and the mechanism(s) involved with a focus on mitochondrial integrity. C57BL/6 mice were fed low or high fat diet for 16 weeks prior to ethanol challenge (1g/kg/d for 3 days). Cardiac contractile function, intracellular Ca(2+) homeostasis, myocardial histology, and mitochondrial integrity [aconitase activity and the mitochondrial proteins SOD1, UCP-2 and PPARγ coactivator 1α (PGC-1α)] were assessed 24h after the final ethanol challenge. Fat diet intake compromised cardiomyocyte contractile and intracellular Ca(2+) properties (depressed peak shortening and maximal velocities of shortening/relengthening, prolonged duration of relengthening, dampened intracellular Ca(2+) rise and clearance without affecting duration of shortening). Although moderate ethanol challenge failed to alter cardiomyocyte mechanical property under low fat diet intake, it accentuated high fat diet intake-induced changes in cardiomyocyte contractile function and intracellular Ca(2+) handling. Moderate ethanol challenge failed to affect fat diet intake-induced cardiac hypertrophy as evidenced by H&E staining. High fat diet intake reduced myocardial aconitase activity, downregulated levels of mitochondrial protein UCP-2, PGC-1α, SOD1 and interrupted intracellular Ca(2+) regulatory proteins, the effect of which was augmented by moderate ethanol challenge. Neither high fat diet intake nor moderate ethanol challenge affected protein or mRNA levels as well as phosphorylation of Akt and GSK3β in mouse hearts. Taken together, our data revealed that moderate ethanol challenge accentuated high fat diet-induced cardiac contractile and intracellular Ca(2+) anomalies as well as mitochondrial injury. Copyright

  2. Effect of sertraline on the recovery rate of cardiac autonomic function in depressed patients after acute myocardial infarction.

    PubMed

    McFarlane, A; Kamath, M V; Fallen, E L; Malcolm, V; Cherian, F; Norman, G

    2001-10-01

    Brain serotonin is known to possess sympathoinhibitory properties. The aim of this clinical physiologic study was to determine whether sertraline, a selective serotonin reuptake inhibitor, facilitates the rate of recovery of cardiac autonomic function after an acute myocardial infarction (MI) in patients with depression. Thirty-eight post-MI depressed patients were randomized to receive either sertraline 50 mg per day or placebo for 6 months. Depression was defined as a score >15 on the standardized Inventory to Diagnose Depression questionnaire taken at prehospital discharge and again within 2 weeks of the acute infarct. Eleven stable post-MI nondepressed patients served as a nonrandomized reference group during follow-up. Twenty-seven patients completed the randomization. All 3 groups were followed up closely in a multidisciplinary post-MI clinic where they underwent serial testing for both time and frequency domain heart rate variability (HRV) indices at baseline (1-2 weeks after MI) and at 6, 10, 14, 18, and 22 weeks. The rate of recovery of HRV was determined by use of a growth curve model based on repeated-measures analysis of variance. There was a linear rate of increase in the SD of 24-hour N-N intervals (SDNN) in the sertraline-treated group that paralleled that of the nondepressed reference group. This contrasted with a modest but significant decline in SDNN in the placebo group from 2 to 22 weeks (t = 2.10, P <.05). However, the short-term power spectral indices, while trending toward a more rapid rate of recovery in the treated group, did not reach statistical significance compared with the placebo group. In depressed patients who have survived the acute phase of an MI sertraline facilitates the rate of recovery of SDNN, a recognized predictor of clinical outcome.

  3. Efficacy of illness perception focused intervention on quality of life, anxiety, and depression in patients with myocardial infarction

    PubMed Central

    Sararoudi, Reza Bagherian; Motmaen, Maryam; Maracy, Mohammad Reza; Pishghadam, Elnaz; Kheirabadi, Gholam Reza

    2016-01-01

    Background: Myocardial infarction (MI) is one of the major causes of death and disability worldwide, which can reduces quality of life in patients. Some disabilities are depression and anxiety which delay returning to work. The aim of this study was to evaluate the effect of illness perception focused intervention on quality of life, anxiety, and depression in MI patients. Materials and Methods: A randomized controlled trial study of 48 recently hospitalized MI patients was conducted (24 in intervention group and 24 in control group). Intervention group was trained to understand the disease by a mental health counselor in three half-an-hour sessions for three consecutive days. Data were collected from three questionnaires: hospital anxiety and depression scale, the World Health Organization Quality of Life Questionnaire (short form), and Illness Perceptions Questionnaire Brief at admission, 1.5, and 3 months postdischarge. Data were analyzed with ANOVA repeated measure. Results: The mean duration of returning to work was 28.7 ± 8.1 days in intervention groups and 46 ± 7.6 days in control group which was statistically significant (P < 0.001). Moreover, anxiety, depression, and illness perceptions score were significantly decreased in intervention groups which were 8.3 ± 3.3, 6.8 ± 3.5, and 36.5 ± 5 in intervention groups and 15.8 ± 2.1(P < 0.001), 17.1 ± 2.3 (P < 0.001), and 41.9 ± 4 (P < 0.001) in control group, respectively. Mean of quality of life subscales scores just physical health subscale showed a significant reduction after 3 months in the control group. Conclusion: Training MI patients to understand the disease in three half-an-hour sessions for 3 consecutive days can decrease the duration of returning to work, anxiety and depression, and increase illness perceptions which can make a better outcome. PMID:28331511

  4. Contractile State of the Heart during Hypovdemic Shock and Entotoxemia.

    DTIC Science & Technology

    1980-04-01

    basic areas. 1. They had evaluated the degree to which myocardial depression may appear during fatal standardized hemorrhagic shock in both cats and... dogs . The data demonstrated that myocardial depression need not be present despite the lethal progression of hemorrhagic shock. Further it would appear...have demonstrated a myocardial depressant factor in the blood during hemorrhagic shock, they assayed the blood from a large number of dogs in

  5. Loss of duplexmiR-223 (5p and 3p) aggravates myocardial depression and mortality in polymicrobial sepsis.

    PubMed

    Wang, Xiaohong; Huang, Wei; Yang, Yang; Wang, Yigang; Peng, Tianqing; Chang, Jiang; Caldwell, Charles C; Zingarelli, Basilia; Fan, Guo-Chang

    2014-05-01

    Sepsis is the leading cause of death in critically ill patients. While myocardial dysfunction has been recognized as a major manifestation in severe sepsis, the underlying molecular mechanisms associated with septic cardiomyopathy remain unclear. In this study, we performed a miRNA array analysis in hearts collected from a severe septic mouse model induced by cecal ligation and puncture (CLP). Among the 19 miRNAs that were dys-regulated in CLP-mouse hearts, miR-223(3p) and miR-223*(5p) were most significantly downregulated, compared with sham-operated mouse hearts. To test whether a drop of miR-223 duplex plays any roles in sepsis-induced cardiac dysfunction and inflammation, a knockout (KO) mouse model with a deletion of the miR-223 gene locus and wild-type (WT) mice were subjected to CLP or sham surgery. We observed that sepsis-induced cardiac dysfunction, inflammatory response and mortality were remarkably aggravated in CLP-treated KO mice, compared with control WTs. Using Western-blotting and luciferase reporter assays, we identified Sema3A, an activator of cytokine storm and a neural chemorepellent for sympathetic axons, as an authentic target of miR-223* in the myocardium. In addition, we validated that miR-223 negatively regulated the expression of STAT-3 and IL-6 in mouse hearts. Furthermore, injection of Sema3A protein into WT mice revealed an exacerbation of sepsis-triggered inflammatory response and myocardial depression, compared with control IgG1 protein-treated WT mice following CLP surgery. Taken together, these data indicate that loss of miR-223/-223* causes an aggravation of sepsis-induced inflammation, myocardial dysfunction and mortality. Our study uncovers a previously unrecognized mechanism underlying septic cardiomyopathy and thereby, may provide a new strategy to treat sepsis.

  6. Macrophage migration inhibitory factor induces contractile and mitochondria dysfunction by altering cytoskeleton network in the human heart.

    PubMed

    Preau, Sébastien; Montaigne, David; Modine, Thomas; Fayad, George; Koussa, Mohamed; Tardivel, Meryem; Durocher, Alain; Saulnier, Fabienne; Marechal, Xavier; Neviere, Remi

    2013-07-01

    Macrophage migration inhibitory factor (MIF) has been recognized as a potent proinflammatory mediator that may induce myocardial dysfunction. Mechanisms by which MIF affects cardiac function are not completely elucidated; yet, some macrophage migration inhibitory effects have been related to changes in cytoskeleton architecture. We hypothesized that MIF-induced myocardial dysfunction and mitochondrial respiration deficit could be related to cardiac cell microtubule dynamics alterations. Prospective, randomized study. Experimental Cardiovascular Laboratory, University Hospital. Human myocardial (atrial) trabeculae. Atrial trabeculae were obtained at the time of cardiac surgery. Isometrically contracting isolated human right atrial trabeculae were exposed to MIF (100 ng/mL) for 60 minutes, in the presence or not of pretreatment with colchicine (10 µM), a microtubule-depolymerizing agent, or paclitaxel (10 µM) a microtubule-stabilizing agent. Maximal active isometric tension curve and developed isometric force were studied. Trabeculae were then permeabilized for mitochondrial respiration studies using high-resolution oxygraphy. Heart fiber electron microscopy and visualization of βIV tubulin and polymerized actin by confocal microscopy were used to evaluate sarcomere and microtubule disarray. Compared with controls, MIF elicited cardiac contractile and mitochondrial dysfunction, which were largely prevented by pretreatment with colchicine, but not by paclitaxel. Pretreatment with colchicine prevented MIF-induced microtubule network disorganization, excessive tubulin polymerization, and mitochondrial fragmentation. Compound-C, an inhibitor of AMP-activated protein kinase (AMPK), partially prevented contractile dysfunction, suggesting that cardiac deleterious effects of MIF were related to AMPK activation. MIF depresses human myocardial contractile function and impairs mitochondrial respiration. Changes in microtubule network likely promote MIF-induced cardiac

  7. Diurnal variations in myocardial metabolism

    USDA-ARS?s Scientific Manuscript database

    The heart is challenged by a plethora of extracellular stimuli over the course of a normal day, each of which distinctly influences myocardial contractile function. It is therefore not surprising that myocardial metabolism also oscillates in a time-of-day dependent manner. What is becoming increasin...

  8. What does the beck depression inventory measure in myocardial infarction patients? a psychometric approach using item response theory and person-fit.

    PubMed

    Wardenaar, Klaas J; Wanders, Rob B K; Roest, Annelieke M; Meijer, Rob R; De Jonge, Peter

    2015-06-01

    Observed associations between depression following myocardial infarction (MI) and adverse cardiac outcomes could be overestimated due to patients' tendency to over report somatic depressive symptoms. This study was aimed to investigate this issue with modern psychometrics, using item response theory (IRT) and person-fit statistics to investigate if the Beck Depression Inventory (BDI) measures depression or something else among MI-patients. An IRT-model was fit to BDI-data of 1135 MI patients. Patients' adherence to this IRT-model was investigated with person-fit statistics. Subgroups of "atypical" (low person-fit) and "prototypical" (high person-fit) responders were identified and compared in terms of item-response patterns, psychiatric diagnoses, socio-demographics and somatic factors. In the IRT model, somatic items had lower thresholds compared to depressive mood/cognition items. Empirically identified "atypical" responders (n = 113) had more depressive mood/cognitions, scored lower on somatic items and more often had a Comprehensive International Diagnostic Interview (CIDI) depressive diagnosis than "prototypical" responders (n = 147). Additionally, "atypical" responders were younger and more likely to smoke. In conclusion, the BDI measures somatic symptoms in most MI patients, but measures depression in a subgroup of patients with atypical response patterns. The presented approach to account for interpersonal differences in item responding could help improve the validity of depression assessments in somatic patients. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Low-intensity pulsed ultrasound enhances angiogenesis and ameliorates contractile dysfunction of pressure-overloaded heart in mice.

    PubMed

    Ogata, Tsuyoshi; Ito, Kenta; Shindo, Tomohiko; Hatanaka, Kazuaki; Eguchi, Kumiko; Kurosawa, Ryo; Kagaya, Yuta; Monma, Yuto; Ichijo, Sadamitsu; Taki, Hirofumi; Kanai, Hiroshi; Shimokawa, Hiroaki

    2017-01-01

    Chronic left ventricular (LV) pressure overload causes relative ischemia with resultant LV dysfunction. We have recently demonstrated that low-intensity pulsed ultrasound (LIPUS) improves myocardial ischemia in a pig model of chronic myocardial ischemia through enhanced myocardial angiogenesis. In the present study, we thus examined whether LIPUS also ameliorates contractile dysfunction in LV pressure-overloaded hearts. Chronic LV pressure overload was induced with transverse aortic constriction (TAC) in mice. LIPUS was applied to the whole heart three times in the first week after TAC and was repeated once a week for 7 weeks thereafter (n = 22). Animals in the control groups received the sham treatment without LIPUS (n = 23). At 8 weeks after TAC, LV fractional shortening was depressed in the TAC-Control group, which was significantly ameliorated in the TAC-LIPUS group (30.4±0.5 vs. 36.2±3.8%, P<0.05). Capillary density was higher and perivascular fibrosis was less in the LV in the TAC-LIPUS group than in the TAC-Control group. Myocardial relative ischemia evaluated with hypoxyprobe was noted in the TAC-Control group, which was significantly attenuated in the TAC-LIPUS group. In the TAC-LIPUS group, as compared with the control group, mRNA expressions of BNP and collagen III were significantly lower (both P<0.05) and protein expressions of VEGF and eNOS were significantly up-regulated associated with Akt activation (all P<0.05). No adverse effect related to the LIPUS therapy was noted. These results indicate that the LIPUS therapy ameliorates contractile dysfunction in chronically pressure-overloaded hearts through enhanced myocardial angiogenesis and attenuated perivascular fibrosis. Thus, the LIPUS therapy may be a promising, non-invasive treatment for cardiac dysfunction due to chronic pressure overload.

  10. Thallium-201/technetium-99m pyrophosphate overlap in patients with acute myocardial infarction after thrombolysis: prediction of depressed wall motion despite thallium uptake

    SciTech Connect

    Schofer, J.; Spielmann, R.P.; Broemel, T.B.; Bleifeld, W.; Mathey, D.G.

    1986-08-01

    Intracoronary thallium-201/technetium-99m pyrophosphate planar scintigraphy was performed in 60 patients with acute myocardial infarction undergoing intracoronary thrombolysis to predict salvage of myocardium immediately after thrombolysis. In eight patients a significant overlap of new thallium uptake and technetium pyrophosphate accumulation was found after thrombolysis. Intravenous planar thallium scintigraphy revealed thallium uptake in the region of overlap in all patients; circumferential profile analysis showed no difference in the thallium scintigrams before and after technetium injections. Both findings indicate that overlap is not the result of scattering of technetium into the thallium window. Emission computed tomography revealed thallium/technetium pyrophosphate uptake in identical slices and regions. Regional wall motion in the area of overlap remained depressed in all patients, in contrast to patients with similar thallium uptake without overlap. These data suggest that thallium/technetium pyrophosphate overlap reflects the close proximity of viable and necrotic myocardial cells and predicts depressed wall motion after thrombolysis.

  11. Propofol Inhibits Lipopolysaccharide-Induced Tumor Necrosis Factor-Alpha Expression and Myocardial Depression through Decreasing the Generation of Superoxide Anion in Cardiomyocytes

    PubMed Central

    Tang, Jing; Hu, Ji-Jie; Lu, Chun-Hua; Liang, Jia-Ni; Xiao, Jin-Fang; Liu, You-Tan; Lin, Chun-Shui; Qin, Zai-Sheng

    2014-01-01

    TNF-α has been shown to be a major factor responsible for myocardial depression in sepsis. The aim of this study was to investigate the effect of an anesthetic, propofol, on TNF-α expression in cardiomyocytes treated with LPS both in vivo and in vitro. In cultured cardiomyocytes, compared with control group, propofol significantly reduced protein expression of gp91phox and phosphorylation of extracellular regulated protein kinases 1/2 (ERK1/2) and p38 MAPK, which associates with reduced TNF-α production. In in vivo mice studies, propofol significantly improved myocardial depression and increased survival rate of mice after LPS treatment or during endotoxemia, which associates with reduced myocardial TNF-α production, gp91phox, ERK1/2, and p38 MAPK. It is concluded that propofol abrogates LPS-induced TNF-α production and alleviates cardiac depression through gp91phox/ERK1/2 or p38 MAPK signal pathway. These findings have great clinical importance in the application of propofol for patients enduring sepsis. PMID:25180066

  12. Revealing causal heterogeneity using time series analysis of ambulatory assessments: application to the association between depression and physical activity after myocardial infarction.

    PubMed

    Rosmalen, Judith G M; Wenting, Angela M G; Roest, Annelieke M; de Jonge, Peter; Bos, Elisabeth H

    2012-05-01

    Studies in psychosomatic medicine are characterized by analyses that typically compare groups. This nomothetic approach leads to conclusions that apply to the average group member but not necessarily to individual patients. Idiographic studies start at the individual patient and are suitable to study associations that differ between time points or between individuals. We illustrate the advantages of the idiographic approach in analyzing ambulatory assessments, taking the association between depression and physical activity after myocardial infarction as an example. Five middle-aged men who had myocardial infarction with mild to moderate symptoms of depression were included in this study. Four of these participants monitored their physical activity and depressive symptoms during a period of 2 to 3 months using a daily self-registration form. The time series of each individual participant were investigated using vector autoregressive modeling, which enables the analysis of temporal dynamics between physical activity and depression. We found causal heterogeneity in the association between depression and physical activity. Participants differed in the predominant direction of effect, which was either from physical activity to depression (n = 1, 85 observations, unstandardized effect size = -0.183, p = .03) or from depression to physical activity (n = 2, 65 and 59 observations, unstandardized effect sizes = -0.038 and -0.381, p < .001 and p = .04). Also, the persistency of effects differed among individuals. Vector autoregressive models are suitable in revealing causal heterogeneity and can be easily used to analyze ambulatory assessments. We suggest that these models might bridge the gap between science and clinical practice by translating epidemiological results to individual patients.

  13. Association Between Depressive Disorders and Incident Acute Myocardial Infarction in Human Immunodeficiency Virus-Infected Adults: Veterans Aging Cohort Study.

    PubMed

    Khambaty, Tasneem; Stewart, Jesse C; Gupta, Samir K; Chang, Chung-Chou H; Bedimo, Roger J; Budoff, Matthew J; Butt, Adeel A; Crane, Heidi; Gibert, Cynthia L; Leaf, David A; Rimland, David; Tindle, Hilary A; So-Armah, Kaku A; Justice, Amy C; Freiberg, Matthew S

    2016-11-01

    With the advent of highly effective antiretroviral therapy and improved survival, human immunodeficiency virus (HIV)-infected people are living longer and are now at an increased risk for cardiovascular disease (CVD). There is an urgent need to identify novel risk factors and primary prevention approaches for CVD in HIV. Although depression is prevalent in HIV-infected adults and is associated with future CVD in the general population, its association with CVD events has not been examined in the HIV-infected population. To examine whether depressive disorders are prospectively associated with incident acute myocardial infarction (AMI) in a large cohort of adults with HIV. Included in this cohort study were 26 144 HIV-infected veterans without CVD at baseline (1998-2003) participating in the US Department of Veterans Affairs Veterans Aging Cohort Study from April 1, 2003, through December 31, 2009. At baseline, 4853 veterans (19%) with major depressive disorder (MDD; International Classification of Diseases, Ninth Revision [ICD-9] codes 296.2 and 296.3) and 2296 (9%) with dysthymic disorder (ICD-9 code 300.4) were identified. The current analysis was conducted from January 2015 to November 2015. Incident AMI (defined by discharge summary documentation, enzyme/electrocardiography evidence of AMI, inpatient ICD-9 code for AMI (410), or AMI as underlying cause of death [International Statistical Classification of Diseases and Related Health Problems, Tenth Revision code 121]) between the enrollment date and December 31, 2009. The mean (SD) age of those with MDD was 47.3 (7.9) years and for those without MDD was 48.2 (9.7) years. During 5.8 years of follow-up, 490 AMI events (1.9%) occurred. Baseline MDD was associated with incident AMI after adjusting for demographics (hazard ratio [HR], 1.31; 95% CI, 1.05-1.62), CVD risk factors (HR, 1.29; 95% CI, 1.04-1.60), and HIV-specific factors (HR, 1.30; 95% CI, 1.05-1.62). Further adjustment for hepatitis C, renal disease

  14. [Cardiac contractile function following acute cooling of the body and the adaptogenic correction of its disorders].

    PubMed

    Afanas'ev, S A; Alekseeva, E D; Bardamova, I B; Maslova, L V; Lishmanov, Iu B

    1993-11-01

    In experiments on white Wistar rats the effect of acute 4-hour freezing at -10 degrees C on contractile function of the hearts isolated by the Langendorff technique, and the protective efficacy of Rhodiola rosea extract were investigated. The obtained results testify to the fact that acute cooling leads to a decrease in myocardial contractile activity that recovers during 18 hours. But this recovery cannot be complete as it does not result in stable contractility of isolated heart in perfusion. Preliminary adaptation of animals during treatment with Rhodiola rosea extract prevents the decrease in contractility force immediately after acute cooling and contributes to the stable contractility during 60 minutes of perfusion. Moreover, Rhodiola rosea extract does not remove the disturbance in diastolic function and in all cases leads to a decrease in coronary blood flow. The effect of Rhodiola rosea extract on the myocardium is likely to be similar to that of myocardial recovery after acute cooling.

  15. ST-segment depression in aVR as a predictor of culprit artery and infarct size in acute inferior wall ST-segment elevation myocardial infarction.

    PubMed

    Kanei, Yumiko; Sharma, Jyoti; Diwan, Ravi; Sklash, Ron; Vales, Lori L; Fox, John T; Schweitzer, Paul

    2010-01-01

    ST-segment depression in lead aVR in acute inferior wall ST-segment elevation myocardial infarction (STEMI) has recently been suggested as a predictor of left circumflex (LCx) artery involvement. The purpose of this study is to evaluate the clinical significance of aVR depression during inferior wall STEMI. This study included 106 consecutive patients who presented with inferior wall STEMI and underwent urgent coronary angiogram. Clinical and angiographic findings were compared between patients with and without aVR depression > or = 0.1 mV. The sensitivity and specificity of aVR depression as a predictor of LCx infarction were 53% and 86%, respectively. In patients with right coronary artery infarction, aVR depression was associated with increased cardiac enzymes and the involvement of a large posterolateral branch, which may explain the larger infarction. ST-segment depression in lead aVR in inferior wall STEMI predicts LCx infarction or larger RCA infarction involving a large posterolateral branch. 2010 Elsevier Inc. All rights reserved.

  16. Mechanisms of cell survival in myocardial hibernation.

    PubMed

    Depre, Christophe; Vatner, Stephen F

    2005-04-01

    Myocardial hibernation represents a condition of regional ventricular dysfunction in patients with chronic coronary artery disease, which reverses gradually after revascularization. The precise mechanism mediating the regional dysfunction is still debated. One hypothesis suggests that chronic hypoperfusion results in a self-protecting downregulation in myocardial function and metabolism to match the decreased oxygen supply. An alternative hypothesis suggests that the myocardium is subject to repetitive episodes of ischemic dysfunction resulting from an imbalance between myocardial metabolic demand and supply that eventually creates a sustained depression of contractility. It is generally agreed that hibernating myocardium is submitted repeatedly to ischemic stress, and therefore one question persists: how do myocytes survive in the setting of chronic ischemia? The hallmark of hibernating myocardium is a maintained viability of the dysfunctional myocardium which relies on an increased uptake of glucose. We propose that, in addition to this metabolic adjustment, there must be molecular switches that confer resistance to ischemia in hibernating myocardium. Such mechanisms include the activation of a genomic program of cell survival as well as autophagy. These protective mechanisms are induced by ischemia and remain activated chronically as long as either sustained or intermittent ischemia persists.

  17. Role of microtubules in the contractile dysfunction of hypertrophied myocardium

    NASA Technical Reports Server (NTRS)

    Zile, M. R.; Koide, M.; Sato, H.; Ishiguro, Y.; Conrad, C. H.; Buckley, J. M.; Morgan, J. P.; Cooper, G. 4th

    1999-01-01

    OBJECTIVES: We sought to determine whether the ameliorative effects of microtubule depolymerization on cellular contractile dysfunction in pressure overload cardiac hypertrophy apply at the tissue level. BACKGROUND: A selective and persistent increase in microtubule density causes decreased contractile function of cardiocytes from cats with hypertrophy produced by chronic right ventricular (RV) pressure overloading. Microtubule depolymerization by colchicine normalizes contractility in these isolated cardiocytes. However, whether these changes in cellular function might contribute to changes in function at the more highly integrated and complex cardiac tissue level was unknown. METHODS: Accordingly, RV papillary muscles were isolated from 25 cats with RV pressure overload hypertrophy induced by pulmonary artery banding (PAB) for 4 weeks and 25 control cats. Contractile state was measured using physiologically sequenced contractions before and 90 min after treatment with 10(-5) mol/liter colchicine. RESULTS: The PAB significantly increased RV systolic pressure and the RV weight/body weight ratio in PAB; it significantly decreased developed tension from 59+/-3 mN/mm2 in control to 25+/-4 mN/mm2 in PAB, shortening extent from 0.21+/-0.01 muscle lengths (ML) in control to 0.12+/-0.01 ML in PAB, and shortening rate from 1.12+/-0.07 ML/s in control to 0.55+/-0.03 ML/s in PAB. Indirect immunofluorescence confocal microscopy showed that PAB muscles had a selective increase in microtubule density and that colchicine caused complete microtubule depolymerization in both control and PAB papillary muscles. Microtubule depolymerization normalized myocardial contractility in papillary muscles of PAB cats but did not alter contractility in control muscles. CONCLUSIONS: Excess microtubule density, therefore, is equally important to both cellular and to myocardial contractile dysfunction caused by chronic, severe pressure-overload cardiac hypertrophy.

  18. Effects of histamine on atrial and ventricular contractility in the canine isovolumic heart.

    PubMed

    Vidrio, H; Priola, D V

    1990-03-01

    The effects of intracoronary administration of histamine on atrial and ventricular contractility were determined in a paced canine isovolumic heart preparation. Contractility was assessed by recording the pressure developed in saline-filled balloons placed in each of the four cardiac chambers. At doses above 0.1 mg and up to 100 mg histamine produced dose-related positive inotropic responses in all chambers. These were preceded by transient negative effects. The positive responses were not affected by a combination of H1 and H2 receptor antagonists antazoline and cimetidine but were almost completely abolished by the beta adrenoceptor blocker timolol. The negative responses were uninfluenced by either treatment. It was concluded that, in the canine isovolumic heart not subjected to complicating chronotropic and extracardiac factors, moderate doses of histamine are devoid of inotropic effects. Higher doses do produce myocardial stimulation, not mediated by histamine receptors, but probably due to norepinephrine release. These responses are preceded by transient non-specific depressant effects.

  19. Depression

    MedlinePlus

    ... The depression generally lifts during spring and summer. Bipolar disorder is different from depression but is included in this list is because someone with bipolar disorder experiences episodes of extreme low moods (depression). But ...

  20. Operative contractility: a functional concept of the inotropic state.

    PubMed

    Curiel, Roberto; Perez-Gonzalez, Juan; Torres, Edwar; Landaeta, Ruben; Cerrolaza, Miguel

    2005-10-01

    1. Initial unsuccessful attempts to evaluate ventricular function in terms of the 'heart as a pump' led to focusing on the 'heart as a muscle' and to the concept of myocardial contractility. However, no clinically ideal index exists to assess the contractile state. The aim of the present study was to develop a mathematical model to assess cardiac contractility. 2. A tri-axial system was conceived for preload (PL), afterload (AL) and contractility, where stroke volume (SV) was represented as the volume of the tetrahedron. Based on this model, 'operative' contractility ('OperCon') was calculated from the readily measured values of PL, AL and SV. The model was tested retrospectively under a variety of different experimental and clinical conditions, in 71 studies in humans and 29 studies in dogs. A prospective echocardiographic study was performed in 143 consecutive subjects to evaluate the ability of the model to assess contractility when SV and PL were measured volumetrically (mL) or dimensionally (cm). 3. With inotropic interventions, OperCon changes were comparable to those of ejection fraction (EF), velocity of shortening (Vcf) and dP/dt-max. Only with positive inotropic interventions did elastance (Ees) show significantly larger changes. With load manipulations, OperCon showed significantly smaller changes than EF and Ees and comparable changes to Vcf and dP/dt-max. Values of OperCon were similar when AL was represented by systolic blood pressure or wall stress and when volumetric or dimensional values were used. 4. Operative contractility is a reliable, simple and versatile method to assess cardiac contractility.

  1. Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction

    NASA Technical Reports Server (NTRS)

    Huikuri, H. V.; Makikallio, T. H.; Peng, C. K.; Goldberger, A. L.; Hintze, U.; Moller, M.

    2000-01-01

    BACKGROUND: Preliminary data suggest that the analysis of R-R interval variability by fractal analysis methods may provide clinically useful information on patients with heart failure. The purpose of this study was to compare the prognostic power of new fractal and traditional measures of R-R interval variability as predictors of death after acute myocardial infarction. METHODS AND RESULTS: Time and frequency domain heart rate (HR) variability measures, along with short- and long-term correlation (fractal) properties of R-R intervals (exponents alpha(1) and alpha(2)) and power-law scaling of the power spectra (exponent beta), were assessed from 24-hour Holter recordings in 446 survivors of acute myocardial infarction with a depressed left ventricular function (ejection fraction depressed left ventricular function after an acute myocardial infarction.

  2. Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction

    NASA Technical Reports Server (NTRS)

    Huikuri, H. V.; Makikallio, T. H.; Peng, C. K.; Goldberger, A. L.; Hintze, U.; Moller, M.

    2000-01-01

    BACKGROUND: Preliminary data suggest that the analysis of R-R interval variability by fractal analysis methods may provide clinically useful information on patients with heart failure. The purpose of this study was to compare the prognostic power of new fractal and traditional measures of R-R interval variability as predictors of death after acute myocardial infarction. METHODS AND RESULTS: Time and frequency domain heart rate (HR) variability measures, along with short- and long-term correlation (fractal) properties of R-R intervals (exponents alpha(1) and alpha(2)) and power-law scaling of the power spectra (exponent beta), were assessed from 24-hour Holter recordings in 446 survivors of acute myocardial infarction with a depressed left ventricular function (ejection fraction depressed left ventricular function after an acute myocardial infarction.

  3. Inhibition of DNA Methylation Attenuates Low-Dose Cadmium-Induced Cardiac Contractile and Intracellular Ca2+ Anomalies

    PubMed Central

    Turdi, Subat; Sun, Weixia; Tan, Yi; Yang, Xiaohui; Cai, Lu; Ren, Jun

    2013-01-01

    Cadmium is a human carcinogen with unfavorable health impact probably associated with its DNA methylation property. Recent data suggest that environmental cadmium exposure is associated with incidence of myocardial infarction and peripheral arterial disease. Nonetheless, the effect of chronic cadmium exposure on cardiac contractile function remains elusive. This study was designed to examine the impact of low-dose cadmium exposure on cardiac contractile function and intracellular Ca2+ homeostasis. Adult male mice were exposed to cadmium for 4 weeks with or without the DNA methylation inhibitor (5-aza-2’-deoxyctidene, 5-AZA). Cardiac contractile and intracellular Ca2+ properties were analyzed including echocardiographic left ventricular parameters, fractional shortening (FS), peak shortening amplitude (PS), maximal velocity of shortening/relengthening (± dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90), electrically-stimulated increase of intracellular Ca2+ and intracellular Ca2+ decay. Our results revealed that cadmium exposure depressed FS, PS, ± dL/dt and electrically-stimulated rise in intracellular Ca2+ without affecting TPS, TR90, intracellular Ca2+ level and decay rate, the effects of which were significantly attenuated or nullified by 5-AZA. Cadmium exposure led to overt interstitial fibrosis (collagen deposition), the effect of which was mitigated by 5-AZA. Western blot analysis showed unchanged expression of ICAM-1, TNF-α and Cleaved caspase-3 in response to cadmium exposure and/or 5-AZA treatment, suggesting a relatively minor role of pro-inflammatory cytokines and apoptosis in cadmium- and 5-AZA-induced cardiac responses. Taken together, our data demonstrated for the first time direct cardiac depressant effect following cadmium exposure, which may be rescued by DNA methylation inhibition. PMID:23902534

  4. A study of ventricular contractility and other parameters possibly related to vasodepressor syncope

    NASA Technical Reports Server (NTRS)

    Hyatt, K. H.; Sullivan, R. W.; Spears, W. R.; Vetter, W. R.

    1973-01-01

    The effects of diminished orthostatic and exercise tolerance resulting from prolonged bedrest were studied by noninvasion methods to determine if alterations in myocardial contractility were induced by bedrest. These methods were apexcardiography, systolic time intervals, and echocardiography. It is concluded that bedrest causes detrimental alterations in the contractile state of the myocardium which accounts for the decreases in maximal oxygen uptaken during exercise after bedrest. Tabulated test data are included.

  5. Role of cardiomyocyte circadian clock in myocardial metabolic adaptation

    USDA-ARS?s Scientific Manuscript database

    Marked circadian rhythmicities in cardiovascular physiology and pathophysiology exist. The cardiomyocyte circadian clock has recently been linked to circadian rhythms in myocardial gene expression, metabolism, and contractile function. For instance, the cardiomyocyte circadian clock is essential f...

  6. Depression

    MedlinePlus

    ... the winter months, when there is less natural sunlight. Return to top What causes depression? There is ... alone. Others with moderate to severe depression might benefit from antidepressants. It may take a few weeks ...

  7. Depressants

    MedlinePlus

    ... judgment and mental functioning nausea and vomiting memory loss (depressants can cause users to have no memory of events that happened while they were under the influence) Long-Term Effects When people misuse depressants over a long ...

  8. Depression

    MedlinePlus

    ... the birth of a baby. Some people get seasonal affective disorder in the winter. Depression is one part of bipolar disorder. There are effective treatments for depression, including antidepressants, talk therapy, or ...

  9. Depressants

    MedlinePlus

    ... of depressants, including alcohol and the illegal drugs GHB and Rohypnol , come in liquid or powder form ... by prescription only. Some depressants, including Rohypnol and GHB, are illegal in the United States. Illegal possession ...

  10. Thallium-201 myocardial imaging in evaluation of asymptomatic individuals with ischaemic ST segment depression on exercise electrocardiogram.

    PubMed Central

    Caralis, D G; Bailey, I; Kennedy, H L; Pitt, B

    1979-01-01

    Asymptomatic adults with normal physical examination, normal resting electrocardiogram, and normal routine laboratory evaluation who have a positive exercise electrocardiogram and abnormal exercise thallium-201 myocardial image have a very high probability of angiographically significant coronary artery disease. If, on the other hand, the exercise electrocardiogram is positive for "ischaemic" ST segment changes, but the exercise thallium image is normal, the probability for coronary disease is low. The exercise electrocardiogram combined with thallium-201 myocardial image are safe non-invasive methods which can be performed on an out-patient basis. Images PMID:518780

  11. Post-myocardial infarction anxiety or depressive symptoms and risk of new cardiovascular events or death: a population-based longitudinal study.

    PubMed

    Larsen, Karen Kjær; Christensen, Bo; Nielsen, Tine Jepsen; Vestergaard, Mogens

    2014-01-01

    To examine the association between anxiety symptoms 3 months after myocardial infarction (MI) and/or new cardiovascular events and death, taking into account established risk factors, and to compare the results with those of the impact of depressive symptoms. Post-MI anxiety symptoms have been associated with a composite outcome of new cardiovascular events or death, but previous studies have not fully adjusted for potential confounders. It remains unclear whether anxiety symptoms are independently associated with both new cardiovascular events and death. A population-based cohort study of 896 persons (70% of eligible) with first-time MI between 1 January 2009 and 31 December 2009, completing the Hospital Anxiety and Depression Scale, were followed up until 31 July 2012. A total of 239 new cardiovascular events and 94 deaths occurred during 1975 person-years of follow-up. Cox proportional hazards models showed that anxiety symptoms were associated with both new cardiovascular events and death in analysis adjusted for age only. The estimates decreased when adjusted for dyspnea score, physical activity, and depressive symptoms, and anxiety symptoms were no longer associated with new cardiovascular events (hazard ratio [HR] = 1.02, 95% confidence interval [CI] = 0.98-1.07) or with death (HR = 0.94, 95% CI = 0.88-1.01). In fully adjusted models, depressive symptoms remained associated with death (HR = 1.13, 95% CI = 1.05-1.21), but not with new cardiovascular events (HR = 1.02, 95% CI = 0.99-1.06). Post-MI anxiety symptoms were not an independent prognostic risk factor for new cardiovascular events or for death, whereas depressive symptoms were associated with an increased risk of mortality.

  12. Active contractility in actomyosin networks.

    PubMed

    Wang, Shenshen; Wolynes, Peter G

    2012-04-24

    Contractile forces are essential for many developmental processes involving cell shape change and tissue deformation. Recent experiments on reconstituted actomyosin networks, the major component of the contractile machinery, have shown that active contractility occurs above a threshold motor concentration and within a window of cross-link concentration. We present a microscopic dynamic model that incorporates two essential aspects of actomyosin self-organization: the asymmetric load response of individual actin filaments and the correlated motor-driven events mimicking myosin-induced filament sliding. Using computer simulations, we examine how the concentration and susceptibility of motors contribute to their collective behavior and interplay with the network connectivity to regulate macroscopic contractility. Our model is shown to capture the formation and dynamics of contractile structures and agree with the observed dependence of active contractility on microscopic parameters, including the contractility onset. Cooperative action of load-resisting motors in a force-percolating structure integrates local contraction/buckling events into a global contractile state via an active coarsening process, in contrast to the flow transition driven by uncorrelated kicks of susceptible motors.

  13. Acute methamphetamine exposure inhibits cardiac contractile function.

    PubMed

    Turdi, Subat; Schamber, Robbie M; Roe, Nathan D; Chew, Herbert G; Culver, Bruce; Ren, Jun

    2009-09-10

    Methamphetamine, a commonly seen substance of abuse, has been reported to exert detrimental effect on bodily function including the cardiovascular system although its mechanism of action is poorly understood. This study was designed to examine the direct impact of methamphetamine on isolated whole heart and single cardiomyocyte contractile function. Murine hearts and isolated cardiomyocytes from adult FVB mice were exposed to various concentrations of methamphetamine for 30min prior to the assessment of mechanical function using a Langendroff apparatus and an IonOptix Myocam system, respectively. Cardiac contractile properties analyzed included maximal velocity of left ventricular pressure development and decline (+/-dP/dt), peak shortening amplitude (PS), maximal velocity of shortening/relengthening (+/-dLdt), time-to-PS (TPS), time-to-90% relengthening (TR(90)), resting and electrically stimulated increase of intracellular Ca(2+) as well as intracellular Ca(2+) decay. Our results revealed that acute methamphetamine exposure depressed +/-dP/dt, PS and rise of intracellular Ca(2+) without affecting +/-dLdt, TPS, TR(90), resting intracellular Ca(2+) and intracellular Ca(2+) decay. Furthermore, methamphetamine nullified the adrenergic agonist norepinephrine-elicited positive cardiomyocyte contractile response, including elevated PS, +/-dLdt and shortened TR(90) without affecting TPS. Western blot analysis showed unchanged expression of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a) and phospholamban, associated with upregulated Na(+)-Ca(2+) exchanger levels following acute methamphetamine exposure. In addition, methamphetamine promoted overt cardiomyocyte protein damage evaluated by carbonyl formation. Taken together, these results demonstrate direct cardiac depressant effect of methamphetamine in myocardium and isolated cardiomyocytes, possibly associated with protein damage and dampened adrenergic response.

  14. Acute Methamphetamine Exposure Inhibits Cardiac Contractile Function

    PubMed Central

    Turdi, Subat; Schamber, Robbie M.; Roe, Nathan D.; Chew, Herbert G.; Culver, Bruce; Ren, Jun

    2009-01-01

    Methamphetamine, a commonly seen substance of abuse, has been reported to exert detrimental effect on bodily function including the cardiovascular system although its mechanism of action is poorly understood. This study was designed to examine the direct impact of methamphetamine on isolated whole heart and single cardiomyocyte contractile function. Murine hearts and isolated cardiomyocytes from adult FVB mice were exposed to various concentrations of methamphetamine for 30 min prior to the assessment of mechanical function using a Langendroff apparatus and an IonOptix Myocam® system, respectively. Cardiac contractile properties analyzed included maximal velocity of left ventricular pressure development and decline (± dP/dt), peak shortening amplitude (PS), maximal velocity of shortening/relengthening (± dLdt), time-to-PS (TPS), time-to-90% relengthening (TR90), resting and electrically-stimulated increase of intracellular Ca2+ as well as intracellular Ca2+ decay. Our results revealed that acute methamphetamine exposure depressed ± dP/dt, PS and rise of intracellular Ca2+ without affecting ± dLdt, TPS, TR90, resting intracellular Ca2+ and intracellular Ca2+ decay. Furthermore, methamphetamine nullified the adrenergic agonist norepinephrine-elicited positive cardiomyocyte contractile response, including elevated PS, ± dLdt and shortened TR90 without affecting TPS. Western blot analysis showed unchanged expression of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2a) and phospholamban, associated with upregulated Na+-Ca2+ exchanger levels following acute methamphetamine exposure. In addition, methamphetamine promoted overt cardiomyocyte protein damage evaluated by carbonyl formation. Taken together, these results demonstrate direct cardiac depressant effect of methamphetamine in myocardium and isolated cardiomyocytes, possibly associated with protein damage and dampened adrenergic response. PMID:19481142

  15. Heart Rate Reduction With Ivabradine Protects Against Left Ventricular Remodeling by Attenuating Infarct Expansion and Preserving Remote-Zone Contractile Function and Synchrony in a Mouse Model of Reperfused Myocardial Infarction.

    PubMed

    O'Connor, Daniel M; Smith, Robert S; Piras, Bryan A; Beyers, Ronald J; Lin, Dan; Hossack, John A; French, Brent A

    2016-04-22

    Ivabradine selectively inhibits the pacemaker current of the sinoatrial node, slowing heart rate. Few studies have examined the effects of ivabradine on the mechanical properties of the heart after reperfused myocardial infarction (MI). Advances in ultrasound speckle-tracking allow strain analyses to be performed in small-animal models, enabling the assessment of regional mechanical function. After 1 hour of coronary occlusion followed by reperfusion, mice received 10 mg/kg per day of ivabradine dissolved in drinking water (n=10), or were treated as infarcted controls (n=9). Three-dimensional high-frequency echocardiography was performed at baseline and at days 2, 7, 14, and 28 post-MI. Speckle-tracking software was used to calculate intramural longitudinal myocardial strain (Ell) and strain rate. Standard deviation time to peak radial strain (SD Tpeak Err) and temporal uniformity of strain were calculated from short-axis cines acquired in the left ventricular remote zone. Ivabradine reduced heart rate by 8% to 16% over the course of 28 days compared to controls (P<0.001). On day 28 post-MI, the ivabradine group was found to have significantly smaller end-systolic volumes, greater ejection fraction, reduced wall thinning, and greater peak Ell and Ell rate in the remote zone, as well as globally. Temporal uniformity of strain and SD Tpeak Err were significantly smaller in the ivabradine-treated group by day 28 (P<0.05). High-frequency ultrasound speckle-tracking demonstrated decreased left ventricular remodeling and dyssynchrony, as well as improved mechanical performance in remote myocardium after heart rate reduction with ivabradine. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  16. SERCA1 expression enhances the metabolic efficiency of improved contractility in post-ischemic heart.

    PubMed

    O'Donnell, J Michael; Pound, Kayla; Xu, Xianyao; Lewandowski, E Douglas

    2009-11-01

    Myocardial stunning is characterized by a metabolic uncoupling from function as mitochondrial tricarboxylic acid (TCA) cycle and oxygen consumption remain normal despite reduced contractility. Overexpression of the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA1) in hearts has recently been reported to reduce dysfunction at reperfusion. In this study we determine whether the metabolic coupling to function improves with SERCA treatment. PBS (control) or adenovirus carrying the cDNA for SERCA1 was delivered via coronary perfusion in vivo to Sprague-Dawley rat hearts. Three days following gene transfer, isolated hearts were perfused with 0.4 mM [2,4,6,8,10,12,14,16-13C8] palmitate and 5 mM glucose, and subjected to 15-min ischemia followed by 40-min reperfusion. Consistent with myocardial stunning, rate pressure product (RPP) and left ventricular developed pressure (LVDP) were depressed 30-40% (p<0.05) in the PBS group. With SERCA1 overexpression, dP/dt was 20% greater than controls (p<0.05), and LVDP and RPP recovered to pre-ischemic values. From dynamic 13C NMR, TCA cycle flux at reperfusion was similar to pre-ischemic values for both groups. Therefore, the efficiency of coupling between cardiac work and TCA cycle flux was restored with SERCA1 treatment. Oxidative efficiency was also enhanced with SERCA1 as cytosolic NADH transport into the mitochondria was significantly greater compared to the PBS group. In addition, the phosphocreatine to ATP ratio (PCr/ATP) was not compromised with SERCA1 expression, despite enhanced function, and depressed fatty acid oxidation at 40-min reperfusion in the PBS group was not reversed with SERCA1. These data demonstrate that metabolic coupling and NADH transport are significantly improved with SERCA1 treatment.

  17. SERCA1 Expression Enhances the Metabolic Efficiency of Improved Contractility in Post Ischemic Hearts

    PubMed Central

    O'Donnell, J. Michael; Pound, Kayla; Xu, Xianyao; Lewandowski, E. Douglas

    2009-01-01

    Myocardial stunning is characterized by a metabolic uncoupling from function as mitochondrial tricarboxylic acid (TCA) cycle and oxygen consumption remain normal despite reduced contractility. Overexpression of the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA1) in hearts has recently been reported to reduce dysfunction at reperfusion. In this study we determine whether the metabolic coupling to function improves with SERCA treatment. PBS (control) or adenovirus carrying the cDNA for SERCA1 were delivered via coronary perfusion in vivo to Sprague-Dawley rat hearts. Three days following gene transfer, isolated hearts were perfused with 0.4 mM [2,4,6,8,10,12,14,16-13C8] palmitate and 5 mM glucose, and subjected to 15 min ischemia followed by 40 min reperfusion. Consistent with myocardial stunning, rate-pressure-product (RPP) and left ventricular developed pressure (LVDP) were depressed 30-40% (p<0.05) in the PBS group. With SERCA1 overexpression, dP/dt was 20% greater than controls (p<0.05), and LVDP and RPP recovered to preischemic values. From dynamic 13C NMR, TCA cycle flux at reperfusion was similar to preischemic values for both groups. Therefore, the efficiency of coupling between cardiac work and TCA cycle flux was restored with SERCA1 treatment. Oxidative efficiency was also enhanced with SERCA1 as cytosolic NADH transport into the mitochondria was significantly greater compared to the PBS group. In addition, the phosphocreatine to ATP ratio (PCr/ATP) was not compromised with SERCA1 expression, despite enhanced function, and depressed fatty acid oxidation at 40 min reperfusion in the PBS group was not reversed with SERCA1. These data demonstrate metabolic coupling and NADH transport are significantly improved with SERCA1 treatment. PMID:19744494

  18. Myocardial biochemical changes in furazolidone-induced cardiomyopathy of turkeys.

    PubMed

    Mirsalimi, S M; Qureshi, F S; Julian, R J; O'Brien, P J

    1990-02-01

    This study tested the hypothesis that membrane transport is the major biochemical system of the myocardium altered in furazolidone-induced cardiomyopathy (round heart disease), before the development of myocardial failure, and that metabolic enzymes and contractile proteins are less affected. Compared with controls, maximal percentage depression of activities of myocardium from furazolidone-treated birds were 40 for creatine kinase, 30 for glycolysis, 30 for glycogen, 20 for myofibrils, 20 for Krebs's cycle enzymes, 15 for fatty acid oxidation and 10 for total soluble protein. Sodium and potassium transport, antioxidant system activity, myosin, myosin isoenzyme patterns and amino acid aminotransferases were unaffected. In marked contrast, the calcium-transport ATPase activity of the sarcoplasmic reticulum had undergone a 60 per cent compensatory increase in activity. The pattern of biochemical changes observed is consistent with a role of ischaemia in the pathogenesis of round heart disease and indicates that calcium transport by the sarcoplasmic reticulum is the major biochemical system affected.

  19. Depression.

    ERIC Educational Resources Information Center

    Strock, Margaret

    Approximately ten percent of the population suffers from a depressive illness each year. Although the economic cost is high, the cost in human suffering is immeasurable. To help educate the population about this disorder, this paper presents a definition of depression and its common manifestations. The symptoms that people often experience are…

  20. Overexpression of Hsp20 prevents endotoxin-induced myocardial dysfunction and apoptosis via inhibition of NF-kappaB activation.

    PubMed

    Wang, Xiaohong; Zingarelli, Basilia; O'Connor, Michael; Zhang, Pengyuan; Adeyemo, Adeola; Kranias, Evangelia G; Wang, Yigang; Fan, Guo-Chang

    2009-09-01

    The occurrence of cardiovascular dysfunction in sepsis is associated with a significantly increased mortality rate of 70% to 90% compared with 20% in septic patients without cardiovascular impairment. Thus, rectification or blockade of myocardial depressant factors should partly ameliorate sepsis progression. Heat shock protein 20 (Hsp20) has been shown to enhance myocardial contractile function and protect against doxorubicin-induced cardiotoxicity. To investigate the possible role of Hsp20 in sepsis-mediated cardiac injury, we first examined the expression profiles of five major Hsps in response to lipopolysaccharide (LPS) challenge, and observed that only the expression of Hsp20 was downregulated in LPS-treated myocardium, suggesting that this decrease might be one of the mechanisms contributing to LPS-induced cardiovascular defects. Further studies using loss-of-function and gain-of-function approaches in adult rat cardiomyocytes verified that reduced Hsp20 levels were indeed correlated with the impaired contractile function. In fact, overexpression of Hsp20 significantly enhanced cardiomyocyte contractility upon LPS treatment. Moreover, after administration of LPS (25 microg/g) in vivo, Hsp20 transgenic mice (10-fold overexpression) displayed: 1) an improvement in myocardial function; 2) reduced the degree of cardiac apoptosis; and 3) decreased NF-kappaB activity, accompanied with reduced myocardial cytokines IL-1beta and TNF-alpha production, compared to the LPS-treated non-transgenic littermate controls. Thus, the increases in Hsp20 levels can protect against LPS-induced cardiac apoptosis and dysfunction, associated with inhibition of NF-kappaB activity, suggesting that Hsp20 may be a new therapeutic agent for the treatment of sepsis.

  1. α,β-Unsaturated aldehyde pollutant acrolein suppresses cardiomyocyte contractile function: Role of TRPV1 and oxidative stress.

    PubMed

    Wu, Zhenbiao; He, Emily Y; Scott, Glenda I; Ren, Jun

    2015-01-01

    Air pollution is associated with an increased prevalence of heart disease and is known to trigger a proinflammatory response via stimulation of transient receptor potential vanilloid cation channels (TRPV1, also known as the capsaicin receptor). This study was designed to examine the effect of acrolein, an essential α,β-unsaturated aldehyde pollutant, on myocardial contractile function and the underlying mechanism involved with a focus on TRPV1 and oxidative stress. Cardiomyocyte mechanical and intracellular Ca(2+) properties were evaluated using an IonOptix MyoCam® system including peak shortening (PS), maximal velocity of shortening/relengthening (± dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90 ), fura-2 fluorescence intensity (FFI) and intracellular Ca(2+) decay. Changes in apoptosis and TRPV1 were evaluated using Western blot analysis. The degree of oxidative stress was assessed using the ratio between reduced and oxidized glutathione. Results obtained revealed that exposure of cardiomyocytes to acrolein acutely compromised contractile and intracellular Ca(2+) properties including depressed PS, ± dL/dt and ΔFFI, as well as prolonged TR90 and intracellular Ca(2+) decay. In addition, acrolein exposure upregulated TRPV1 associated with an increase in both apoptosis and oxidative stress. However, the acrolein-induced cardiomyocyte contractile and intracellular Ca(2+) anomalies, as well as apoptosis (as evidenced by Bcl-2, Bax, FasL, Caspase-3 and -8), were negated by the reactive oxygen species (ROS) scavenger glutathione or the TRPV1 antagonist capsazepine. Collectively these data suggest that the α,β-unsaturated aldehyde pollutant acrolein may play a role in the pathogenesis and sequelae of air pollution-induced heart disease via a TRPV1- and oxidative stress-dependent mechanism.

  2. Anabolic steroid- and exercise-induced cardio-depressant cytokines and myocardial β1 receptor expression in CD1 mice.

    PubMed

    Fineschi, Vittorio; Di Paolo, Marco; Neri, Margherita; Bello, Stefania; D'Errico, Stefano; Dinucci, Dinuccio; Parente, Ruggero; Pomara, Cristoforo; Rabozzi, Roberto; Riezzo, Irene; Turillazzi, Emanuela

    2011-02-01

    Few animal model studies have been conducted in order to evaluate the impact of androgenic anabolic steroids (AAS) supraphysiological doses on the cardiovascular system and myocardial injury. Twenty-five male CD1 mice (8-10 weeks old; 35g initial body weight) were randomized into three AAS treated groups and two control groups. The AAS mice received intramuscular Nandrolone Decanoate (DECA-DURABOLIN), vehicled in arachidis oil, for 42 days, twice per week, with different dosages, studying plasma lipid analysis, cardiac histopathological features, cardiac β (1) adrenergic receptor expression, and the effects of the myocardial expression of inflammatory mediators (IL-1β, TNF-α) on the induction of cardiomyocytes apoptosis (HSP 70, TUNEL), using proteomic and immunohistochemical analysis. The mice had free movements in their animal rooms (two groups) or exercised by running on a motor-driven treadmill the others three groups. Recurring high dose AAS administration and physical training in mice produce significant increase in body weight and for total cholesterol. A moderate increase of the heart weight, cardiac hypertrophy and wide colliquative myocytolysis, were observed in high dose AAS administration and physical training group. The expression of HSP70 and inflammatory cytokine IL-1β, increased in the three AAS-treated groups. TNF- α showed a more extensive expression in the AAS-high dose group. A significant apoptotic process randomly sparse in the myocardium was described. Our data support the hypothesis that the combined effects of vigorous training, anabolic steroid abuse and stimulation of the sympathetic nervous system, may predispose to myocardial injury.

  3. Fractal analysis of heart rate dynamics as a predictor of mortality in patients with depressed left ventricular function after acute myocardial infarction. TRACE Investigators. TRAndolapril Cardiac Evaluation

    NASA Technical Reports Server (NTRS)

    Makikallio, T. H.; Hoiber, S.; Kober, L.; Torp-Pedersen, C.; Peng, C. K.; Goldberger, A. L.; Huikuri, H. V.

    1999-01-01

    A number of new methods have been recently developed to quantify complex heart rate (HR) dynamics based on nonlinear and fractal analysis, but their value in risk stratification has not been evaluated. This study was designed to determine whether selected new dynamic analysis methods of HR variability predict mortality in patients with depressed left ventricular (LV) function after acute myocardial infarction (AMI). Traditional time- and frequency-domain HR variability indexes along with short-term fractal-like correlation properties of RR intervals (exponent alpha) and power-law scaling (exponent beta) were studied in 159 patients with depressed LV function (ejection fraction <35%) after an AMI. By the end of 4-year follow-up, 72 patients (45%) had died and 87 (55%) were still alive. Short-term scaling exponent alpha (1.07 +/- 0.26 vs 0.90 +/- 0.26, p <0.001) and power-law slope beta (-1.35 +/- 0.23 vs -1.44 +/- 0.25, p <0.05) differed between survivors and those who died, but none of the traditional HR variability measures differed between these groups. Among all analyzed variables, reduced scaling exponent alpha (<0.85) was the best univariable predictor of mortality (relative risk 3.17, 95% confidence interval 1.96 to 5.15, p <0.0001), with positive and negative predictive accuracies of 65% and 86%, respectively. In the multivariable Cox proportional hazards analysis, mortality was independently predicted by the reduced exponent alpha (p <0.001) after adjustment for several clinical variables and LV function. A short-term fractal-like scaling exponent was the most powerful HR variability index in predicting mortality in patients with depressed LV function. Reduction in fractal correlation properties implies more random short-term HR dynamics in patients with increased risk of death after AMI.

  4. Fractal analysis of heart rate dynamics as a predictor of mortality in patients with depressed left ventricular function after acute myocardial infarction. TRACE Investigators. TRAndolapril Cardiac Evaluation

    NASA Technical Reports Server (NTRS)

    Makikallio, T. H.; Hoiber, S.; Kober, L.; Torp-Pedersen, C.; Peng, C. K.; Goldberger, A. L.; Huikuri, H. V.

    1999-01-01

    A number of new methods have been recently developed to quantify complex heart rate (HR) dynamics based on nonlinear and fractal analysis, but their value in risk stratification has not been evaluated. This study was designed to determine whether selected new dynamic analysis methods of HR variability predict mortality in patients with depressed left ventricular (LV) function after acute myocardial infarction (AMI). Traditional time- and frequency-domain HR variability indexes along with short-term fractal-like correlation properties of RR intervals (exponent alpha) and power-law scaling (exponent beta) were studied in 159 patients with depressed LV function (ejection fraction <35%) after an AMI. By the end of 4-year follow-up, 72 patients (45%) had died and 87 (55%) were still alive. Short-term scaling exponent alpha (1.07 +/- 0.26 vs 0.90 +/- 0.26, p <0.001) and power-law slope beta (-1.35 +/- 0.23 vs -1.44 +/- 0.25, p <0.05) differed between survivors and those who died, but none of the traditional HR variability measures differed between these groups. Among all analyzed variables, reduced scaling exponent alpha (<0.85) was the best univariable predictor of mortality (relative risk 3.17, 95% confidence interval 1.96 to 5.15, p <0.0001), with positive and negative predictive accuracies of 65% and 86%, respectively. In the multivariable Cox proportional hazards analysis, mortality was independently predicted by the reduced exponent alpha (p <0.001) after adjustment for several clinical variables and LV function. A short-term fractal-like scaling exponent was the most powerful HR variability index in predicting mortality in patients with depressed LV function. Reduction in fractal correlation properties implies more random short-term HR dynamics in patients with increased risk of death after AMI.

  5. Energetic basis for reduced contractile reserve in isolated rat hearts.

    PubMed

    Tian, R; Ingwall, J S

    1996-04-01

    To study the relationship between myocardial energetics and contractile reserve, we acutely and selectively inhibited creatine kinase (CK) activity in isolated perfused rat hearts, using increasing doses of iodoacetamide. 31P nuclear magnetic resonance spectroscopy was used to measure intracellular pH and the concentrations of ATP, phosphocreatine, and inorganic phosphate. Contractile reserve was assessed as the increase of rate-pressure product (RPP) from baseline during high-calcium perfusion. Contractile reserve was reduced by 9, 35, and 72% in hearts with 26, 6, and 1% CK activity, respectively. An inverse linear relationship between RPP and the free energy release from ATP hydrolysis ([delta G approximately P[) was shown for all groups. Furthermore, the maximal RPPs of all hearts were achieved at the same level of [delta G approximately P[ (52-53 kJ/mol), which is equal to the free energy requirement of sarcoplasmic reticulum Ca2+ adenosine 5'-triphosphatase (ATPase). We suggest that inhibition of the CK reaction caused a decrease of [delta G approximately P[ which, in turn, limits the Ca(2+)-handling capacity of sarcoplasmic reticulum Ca2+ ATPase. In this way, the ability of the heart to increase its contractile performance is restricted.

  6. Diurnal variations in myocardial metabolism.

    PubMed

    Bray, Molly S; Young, Martin E

    2008-07-15

    The heart is challenged by a plethora of extracellular stimuli over the course of a normal day, each of which distinctly influences myocardial contractile function. It is therefore not surprising that myocardial metabolism also oscillates in a time-of-day dependent manner. What is becoming increasingly apparent is that the heart exhibits diurnal variations in its intrinsic properties, including responsiveness to extracellular stimuli. This article summarizes our current knowledge regarding the mechanism(s) mediating diurnal variations in myocardial metabolism. Particular attention is focused towards the intramyocardial circadian clock, a cell autonomous molecular mechanism that appears to regulate myocardial metabolism both directly (e.g. triglyceride and glycogen metabolism) and indirectly (through modulation of the responsiveness of the myocardium to workload, insulin, and fatty acids). In doing so, the circadian clock within the cardiomyocyte allows the heart to anticipate environmental stimuli (such as changes in workload, feeding status) prior to their onset. This synchronization between the myocardium and its environment is enhanced by regular feeding schedules. Conversely, loss of synchronization may occur through disruption of the circadian clock and/or diurnal variations in neurohumoral factors (as observed during diabetes mellitus). Here, we discuss the possibility that loss of synchronization between the heart and its environment predisposes the heart to metabolic maladaptation and subsequent myocardial contractile dysfunction.

  7. Cardiac contractility modulation in patients with advanced heart failure.

    PubMed

    Kahwash, Rami; Burkhoff, Daniel; Abraham, William T

    2013-05-01

    Cardiac contractility modulation (CCM) is a novel device-based therapy for heart failure that involves applying electrical signals during the absolute refractory period of the myocardial action potential. This therapy has been shown to augment the strength of left ventricular contraction independent of myocardial oxygen consumption in animal models as well as human studies of patients with heart failure and reduced ejection fractions. The mechanism underlying CCM is an alteration of myocardial calcium handling in a fashion that extends beyond the traditional pharmacological effects of inotropic agents. Analysis of myocardial tissue from both animal models and human hearts treated by CCM demonstrates a shift of abnormally expressed genes towards normal function, positively affecting pathways involving proteins that regulate calcium cycling and myocardial contraction. CCM effects are proven to be independent of QRS duration; however, clinical studies to date have primarily focused on patients with normal QRS since cardiac resynchronization therapy is a well-established option for patients with heart failure and a prolonged QRS duration. Clinical trials show that CCM improves exercise tolerance, as measured by VO(2,peak) and quality of life, assessed by the Minnesota Living with Heart Failure Questionnaire. The device is currently available for the treatment of heart failure in Europe. Approval in the USA is pending additional testing currently underway using a protocol approved by the US FDA.

  8. Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction

    PubMed Central

    Richart, Adèle; Vilar, Jose; Lemitre, Mathilde; Marck, Pauline; Branchereau, Maxime; Guerin, Coralie; Gautier, Gregory; Blank, Ulrich; Heymes, Christophe; Luche, Elodie; Cousin, Béatrice; Rodewald, Hans-Reimer

    2016-01-01

    Acute myocardial infarction (MI) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect multiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after MI, using the c-Kit–independent MC-deficient (Cpa3Cre/+) mice. In response to MI, MC progenitors originated primarily from white adipose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac function and depressed cardiomyocyte contractility caused by myofilament Ca2+ desensitization. This effect correlated with increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin I and myosin-binding protein C. MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis. This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated force–Ca2+ interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically addressable regulators. PMID:27353089

  9. Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction.

    PubMed

    Ngkelo, Anta; Richart, Adèle; Kirk, Jonathan A; Bonnin, Philippe; Vilar, Jose; Lemitre, Mathilde; Marck, Pauline; Branchereau, Maxime; Le Gall, Sylvain; Renault, Nisa; Guerin, Coralie; Ranek, Mark J; Kervadec, Anaïs; Danelli, Luca; Gautier, Gregory; Blank, Ulrich; Launay, Pierre; Camerer, Eric; Bruneval, Patrick; Menasche, Philippe; Heymes, Christophe; Luche, Elodie; Casteilla, Louis; Cousin, Béatrice; Rodewald, Hans-Reimer; Kass, David A; Silvestre, Jean-Sébastien

    2016-06-27

    Acute myocardial infarction (MI) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect multiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after MI, using the c-Kit-independent MC-deficient (Cpa3(Cre/+)) mice. In response to MI, MC progenitors originated primarily from white adipose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac function and depressed cardiomyocyte contractility caused by myofilament Ca(2+) desensitization. This effect correlated with increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin I and myosin-binding protein C. MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis. This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated force-Ca(2+) interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically addressable regulators.

  10. Depression

    MedlinePlus

    ... Watch for changes in school work, sleep, and behavior. If you wonder whether your child might be depressed, talk with your health care ... families. This may be due to your genes, behaviors you learn at home, or your ... life events, such as job loss, divorce, or death of a spouse or other family ...

  11. Depression

    MedlinePlus

    ... treatment, the depression will lift Where can I go for help? If you are unsure where to go for help, ask your health provider or check ... one’s health professional. Call 911 for emergency services. Go to the nearest hospital emergency room. Call the ...

  12. Depressants

    MedlinePlus

    ... GHB and Rohypnol ® are also misused to facilitate sexual assault. Affect on mind Depressants used therapeutically do what they are prescribed for to put you to sleep, relieve anxiety and muscle spasms, and prevent seizures. They also: cause amnesia, leaving no memory of events that occur ...

  13. Improvement in identification of multivessel disease after acute myocardial infarction following stress-recovery analysis of ST depression in the heart rate domain during exercise.

    PubMed

    Bigi, R; Maffi, M; Occhi, G; Bolognese, L; Pozzoni, L

    1994-09-01

    The demonstration of extensive coronary artery disease (CAD) after acute myocardial infarction (AMI) has important prognostic implications. Exercise-induced ST segment depression is commonly used for detecting the presence of CAD and evaluating its extension. However, even though there have been many attempts to increase its diagnostic yield, the accuracy of the electrocardiographic signal for identifying multivessel disease (MVD) is relatively low, particularly in post-MI patients. The aim of this study was to evaluate the ability of a simple index, combining information on the amount and kinetics of ST depression in the heart rate domain during exercise and recovery, to identify MVD after AMI. Seventy patients (mean age 53.4 years) underwent a bicycle, symptom-limited exercise stress test and coronary angiography 2-3 weeks and 6 weeks respectively, after uncomplicated AMI while cardioactive therapy was discontinued. After obtaining a computer-derived measurement of ST levels based on incremental averaging of normal complexes, the area subtended to baseline and limited by the ST trend against heart rate during both exercise (A1) and recovery (A2) was calculated. The difference (A1-A2) was defined as the 'Stress-Recovery Index' (SRI) and dichotomized, by means of receiver-operating characteristics curve analysis, at 5 mm x beats.min-1 to define an increased risk of MVD. The SRI of patients with MVD was significantly lower than that of patients with single vessel disease. The sensitivity of SRI < -5 mm x beats.min-1 (65%) for predicting MVD was significantly higher than that obtained by other conventional parameters, without appreciable loss of specificity (81%).(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Leptin Attenuates the Contractile Function of Adult Rat Cardiomyocytes Involved in Oxidative Stress and Autophagy

    PubMed Central

    Luo, Liu-Jin; Liu, Ying-Ping; Yuan, Xun; Zhang, Gui-Ping; Hou, Ning; Wu, Xiao-Qian; Luo, Jian-Dong; Zhang, Gen-Shui

    2016-01-01

    Background Leptin has been identified as an important protein involved in obesity. As a chronic metabolic disorder, obesity is associated with a high risk of developing cardiovascular and metabolic diseases, including heart failure. The aim of this paper was to investigate the effects and the mechanism of leptin on the contractile function of cardiomyocytes in the adult rat. Methods Isolated adult rat cardiomyocytes were exposed to leptin (1, 10, and 100 nmol/L) for 1 hour. The calcium transients and the contraction of adult rat cardiomyocytes were recorded with SoftEdge MyoCam system. Apocynin, tempol and rapamycin were added respectively, and Western blotting was employed to evaluate the expression of LC3B and Beclin-1. Results The peak shortening and maximal velocity of shortening/relengthening (± dL/dtmax) of cell shortening were significantly decreased, and the time to 50% relengthening was prolonged with leptin perfusion. Leptin also significantly reduced the baseline, peak and time to 50% baseline of calcium transient. Leptin attenuated autophagy as indicated by decreased LC3-II and Beclin-1. All of the abnormalities were significantly attenuated by apocynin, tempol or rapamycin. Conclusions Our results indicated that leptin depressed the intracellular free calcium and myocardial systolic function via increasing oxidative stress and inhibiting autophagy. PMID:27899860

  15. Depression.

    PubMed

    Choe, Christine J; Emslie, Graham J; Mayes, Taryn L

    2012-10-01

    This article reviews the assessment and treatment for depression in children and adolescents, emphasizing the implementation of evidence-based treatments into clinical care. Past trials of antidepressant medications are reviewed, as well as the clinical use of antidepressants and pharmacologic strategies for refractory illness or in the context of comorbid conditions. Clinicians who treat youth now have a body of empiric research to help guide treatment decisions; however, personalized treatment based on associated symptoms, comorbid conditions, contextual factors, and psychiatric history is essential. Further research is needed in the pharmacologic treatment of depressed youth, including expanding the study of non-SSRI antidepressants, augmentation and adjunctive strategies, and treatment in patients with comorbid conditions. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Depression.

    PubMed

    McCarron, Robert M; Vanderlip, Erik R; Rado, Jeffrey

    2016-10-04

    This issue provides a clinical overview of depression, focusing on screening, diagnosis, treatment, and practice improvement. The content of In the Clinic is drawn from the clinical information and education resources of the American College of Physicians (ACP), including MKSAP (Medical Knowledge and Self-Assessment Program). Annals of Internal Medicine editors develop In the Clinic in collaboration with the ACP's Medical Education and Publishing divisions and with the assistance of additional science writers and physician writers.

  17. Dual antiplatelet compared to triple antithrombotic therapy in anterior wall acute myocardial infarction complicated by depressed left ventricular ejection fraction.

    PubMed

    Oyetayo, Ola O; Slicker, Kipp; De La Rosa, Lisa; Lane, Wesley; Langsjoen, Dane; Patel, Chhaya; Brough, Kevin; Michel, Jeffrey; Chiles, Christopher

    2015-10-01

    Current guidelines recommend triple antithrombotic therapy (TT) consisting of warfarin, aspirin, and a P2Y12 inhibitor following an anterior ST elevation myocardial infarction (STEMI) complicated by extensive wall motion abnormalities. This recommendation, however, is based on data collected before percutaneous coronary intervention (PCI) became the standard of care for the treatment of STEMI. We designed a retrospective study of patients who received PCI for anterior STEMI over an 8-year period to compare rates of thromboembolic and bleeding events between patients receiving dual antiplatelet therapy (DAPT) and those receiving TT, including warfarin. Patients were included if the predischarge echocardiogram showed extensive wall motion abnormality and an ejection fraction ≤35%. Patients with known left ventricular thrombus were excluded. A total of 124 patients met the criteria, with 80 patients in the DAPT group and 44 in the TT group. The median age was 58 years in the TT group and 64 years in the DAPT group (P < 0.04), with an average ejection fraction of 31%. Thromboembolic events occurred in 4 patients (5%) in the DAPT group compared with 3 patients (6.8%) in the TT group (P = 0.70). Bleeding occurred in 2 patients in the DAPT group and 4 patients in the TT group (2.5% in DAPT vs. 9.1% in TT group, P = 0.18). No differences in rates of clinical embolism or left ventricular thrombus were found. Our data support recent findings that warfarin may not be indicated for patients following PCI for anterior STEMI, even when significant wall motion abnormalities and reduced ejection fraction ≤35% are present.

  18. Dual antiplatelet compared to triple antithrombotic therapy in anterior wall acute myocardial infarction complicated by depressed left ventricular ejection fraction

    PubMed Central

    Oyetayo, Ola O.; Slicker, Kipp; De La Rosa, Lisa; Lane, Wesley; Langsjoen, Dane; Patel, Chhaya; Brough, Kevin; Chiles, Christopher

    2015-01-01

    Current guidelines recommend triple antithrombotic therapy (TT) consisting of warfarin, aspirin, and a P2Y12 inhibitor following an anterior ST elevation myocardial infarction (STEMI) complicated by extensive wall motion abnormalities. This recommendation, however, is based on data collected before percutaneous coronary intervention (PCI) became the standard of care for the treatment of STEMI. We designed a retrospective study of patients who received PCI for anterior STEMI over an 8-year period to compare rates of thromboembolic and bleeding events between patients receiving dual antiplatelet therapy (DAPT) and those receiving TT, including warfarin. Patients were included if the predischarge echocardiogram showed extensive wall motion abnormality and an ejection fraction ≤35%. Patients with known left ventricular thrombus were excluded. A total of 124 patients met the criteria, with 80 patients in the DAPT group and 44 in the TT group. The median age was 58 years in the TT group and 64 years in the DAPT group (P < 0.04), with an average ejection fraction of 31%. Thromboembolic events occurred in 4 patients (5%) in the DAPT group compared with 3 patients (6.8%) in the TT group (P = 0.70). Bleeding occurred in 2 patients in the DAPT group and 4 patients in the TT group (2.5% in DAPT vs. 9.1% in TT group, P = 0.18). No differences in rates of clinical embolism or left ventricular thrombus were found. Our data support recent findings that warfarin may not be indicated for patients following PCI for anterior STEMI, even when significant wall motion abnormalities and reduced ejection fraction ≤35% are present. PMID:26424937

  19. MicroRNA-135a is up-regulated and aggravates myocardial depression in sepsis via regulating p38 MAPK/NF-κB pathway.

    PubMed

    Zheng, Ge; Pan, Minli; Jin, Weimin; Jin, Guoxin; Huang, Yumao

    2017-04-01

    MicroRNA-135a (miR-135a) is implicated in the pathological processes of several cancers. However, the roles and regulatory mechanism of miR-135a in sepsis-induced myocardial depression (MD) remain largely unknown. In this study, the serum of patients with sepsis and healthy controls was obtained. The miR-135a expression was then measured. Then lentiviruses (miR-135a mimic, inhibitor and scramble control) were transfected into BALB/c mice. After 4days of transfection, polymicrobial sepsis model was established by cecal ligation and puncture (CLP) surgery. The serum tumor-necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6 were detected. Cardiac function was assessed. In addition, the protein expressions of p38 MAPK/NF-κB pathway-related proteins were determined. Besides, SB203580 and JSH-23, the inhibitors of p38 MAPK and NF-κB respectively, were used to treat the isolated ventricular myocytes in vitro. MiR-135a was significantly up-regulated in the serum of patients with sepsis. In comparison with CLP group, the concentrations of TNF-α, IL-1β and IL-6 and the expressions of p-p38 and p-p65 in CLP+miR-135a mimic group were significantly increased, while markedly decreased in CLP+miR-135a inhibitor group. Moreover, EF, FS, LVdP/dt (max), LVdP/dt (min) and LVDP of CLP+miR-135a mimic group were all significantly decreased, while markedly increased in CLP+miR-135a inhibitor group. Besides, the increased expressions of p-p38 and p-p65, decreased expression of p-IKBα and the decreased percentage of contraction amplitude in miR-135a mimic group were markedly reversed by SB203580 or JSH-23 treatments. Up-regulation of miR-135a could aggravate sepsis-induced inflammation and myocardial dysfunction via activation of p38 MAPK/NF-κB pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Nitrendipine binding in congestive heart failure due to myocardial infarction

    SciTech Connect

    Dixon, I.M.; Lee, S.L.; Dhalla, N.S. )

    1990-03-01

    Depressed cardiac pump function is the hallmark of congestive heart failure, and it is suspected that decreased influx of Ca2+ into the cardiac cell is responsible for depressed contractile function. Since Ca2+ channels in the sarcolemmal membrane are considered to be an important route for the entry of Ca2+, we examined the status of Ca2+ receptors/channels in failing rat hearts after myocardial infarction of the left ventricular free wall. For this purpose, the left coronary artery was ligated and hearts were examined 4, 8, and 16 weeks later; sham-operated animals served as controls. Hemodynamic assessment revealed decreased total mechanical energy (left ventricular systolic pressure x heart rate), increased left ventricular diastolic pressure, and decreased positive and negative dP/dt in experimental animals at 4, 8, and 16 weeks. Although accumulation of ascites in the abdominal cavity was evident at 4 weeks, other clinical signs of congestive heart failure in experimental rats were evident from the presence of lung congestion and cardiac dilatation at 8 and 16 weeks after induction of myocardial infarction. The density of Ca2+ receptors/channels in crude membranes, as assessed by (3H)nitrendipine binding assay, was found to be decreased in the uninfarcted experimental left ventricle at 8 and 16 weeks; however, no change in the affinity of nitrendipine was evident. A similar depression in the specific binding of another dihydropyridine compound, (3H)PN200-110, was also evident in failing hearts. Brain and skeletal muscle crude membrane preparations, unlike those of the right ventricle and liver, revealed a decrease in Ca2+ receptors/channels density in experimental animals at 16 weeks.

  1. Taxonomy of segmental myocardial systolic dysfunction

    PubMed Central

    McDiarmid, Adam K.; Pellicori, Pierpaolo; Cleland, John G.

    2017-01-01

    The terms used to describe different states of myocardial health and disease are poorly defined. Imprecision and inconsistency in nomenclature can lead to difficulty in interpreting and applying trial outcomes to clinical practice. In particular, the terms ‘viable’ and ‘hibernating’ are commonly applied interchangeably and incorrectly to myocardium that exhibits chronic contractile dysfunction in patients with ischaemic heart disease. The range of inherent differences amongst imaging modalities used to define myocardial health and disease add further challenges to consistent definitions. The results of several large trials have led to renewed discussion about the classification of dysfunctional myocardial segments. This article aims to describe the diverse myocardial pathologies that may affect the myocardium in ischaemic heart disease and cardiomyopathy, and how they may be assessed with non-invasive imaging techniques in order to provide a taxonomy of myocardial dysfunction. PMID:27147609

  2. Left ventricular diastolic function following myocardial infarction.

    PubMed

    Thune, Jens Jakob; Solomon, Scott D

    2006-12-01

    An acute myocardial infarction causes a loss of contractile fibers which reduces systolic function. Parallel to the effect on systolic function, a myocardial infarction also impacts diastolic function, but this relationship is not as well understood. The two physiologic phases of diastole, active relaxation and passive filling, are both influenced by myocardial ischemia and infarction. Active relaxation is delayed following a myocardial infarction, whereas left ventricular stiffness changes depending on the extent of infarction and remodeling. Interstitial edema and fibrosis cause an increase in wall stiffness which is counteracted by dilation. The effect on diastolic function is correlated to an increased incidence of adverse outcomes. Moreover, patients with comorbid conditions that are associated with worse diastolic function tend to have more adverse outcomes after infarction. There are currently no treatments aimed specifically at treating diastolic dysfunction following a myocardial infarction, but several new drugs, including aldosterone antagonists, may offer promise.

  3. Inhibition of DNA methylation attenuates low-dose cadmium-induced cardiac contractile and intracellular Ca(2+) anomalies.

    PubMed

    Turdi, Subat; Sun, Weixia; Tan, Yi; Yang, Xiaohui; Cai, Lu; Ren, Jun

    2013-10-01

    (1) Cadmium is a human carcinogen with unfavourable health impacts probably associated with its DNA methylation property. Recent data suggest that environmental cadmium exposure is associated with the incidence of myocardial infarction and peripheral arterial disease. Nonetheless, the effect of chronic cadmium exposure on cardiac contractile function remains unknown. (2) The present study was designed to examine the impact of low-dose cadmium exposure on cardiac contractile function and intracellular Ca2+ homeostasis. Adult male mice were exposed to cadmium for 4 weeks (20 nmol/kg, i.p. every other day for 4 weeks) with or without the DNA methylation inhibitor 5-aza-2'-deoxyctidene (5-AZA; 0.25 mg/kg, i.p., twice a week for 6 weeks, starting at the same time as cadmium administration). Cardiac contractile and intracellular Ca2+ properties were analysed, including echocardiographic left ventricular parameters, fractional shortening (FS), peak shortening (PS) amplitude, maximal velocity of shortening/relengthening (±dL/dt), time to PS (TPS), time to 90% relengthening (TR90 ), electrically stimulated increases in intracellular Ca2+ and intracellular Ca2+ decay. (3) Cadmium exposure depressed FS, PS, ±dL/dt and electrically stimulated increases in intracellular Ca2+ without affecting TPS, TR90 , intracellular Ca2+ levels or the decay rate. The effects of cadmium were significantly attenuated (PS) or blocked altogether (all other parameters) by 5-AZA. Cadmium exposure led to overt interstitial fibrosis (collagen deposition), which was mitigated by 5-AZA treatment. Western blot analysis revealed that cadmium exposure and/or 5-AZA treatment had no effect on the expression of intercellular adhesion molecule-1, tumour necrosis factor-α and cleaved caspase 3, suggesting a relatively minor role of proinflammatory cytokines and apoptosis in the cardiac responses to cadmium and 5-AZA. (4) Together, our data demonstrate, for the first time, direct cardiac depressant effects

  4. Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness

    PubMed Central

    Ribeiro, Alexandre J. S.; Ang, Yen-Sin; Fu, Ji-Dong; Rivas, Renee N.; Mohamed, Tamer M. A.; Higgs, Gadryn C.; Srivastava, Deepak; Pruitt, Beth L.

    2015-01-01

    Single cardiomyocytes contain myofibrils that harbor the sarcomere-based contractile machinery of the myocardium. Cardiomyocytes differentiated from human pluripotent stem cells (hPSC-CMs) have potential as an in vitro model of heart activity. However, their fetal-like misalignment of myofibrils limits their usefulness for modeling contractile activity. We analyzed the effects of cell shape and substrate stiffness on the shortening and movement of labeled sarcomeres and the translation of sarcomere activity to mechanical output (contractility) in live engineered hPSC-CMs. Single hPSC-CMs were cultured on polyacrylamide substrates of physiological stiffness (10 kPa), and Matrigel micropatterns were used to generate physiological shapes (2,000-µm2 rectangles with length:width aspect ratios of 5:1–7:1) and a mature alignment of myofibrils. Translation of sarcomere shortening to mechanical output was highest in 7:1 hPSC-CMs. Increased substrate stiffness and applied overstretch induced myofibril defects in 7:1 hPSC-CMs and decreased mechanical output. Inhibitors of nonmuscle myosin activity repressed the assembly of myofibrils, showing that subcellular tension drives the improved contractile activity in these engineered hPSC-CMs. Other factors associated with improved contractility were axially directed calcium flow, systematic mitochondrial distribution, more mature electrophysiology, and evidence of transverse-tubule formation. These findings support the potential of these engineered hPSC-CMs as powerful models for studying myocardial contractility at the cellular level. PMID:26417073

  5. Myocardial contractile patterns predict future cardiac events in sarcoidosis.

    PubMed

    Chen, Jian; Lei, Juan; Scalzetti, Ernest; McGrath, Mary; Feiglin, David; Voelker, Robert; Wang, Jingfeng; Iannuzzi, Michael C; Liu, Kan

    2017-09-09

    The poor prognosis of cardiac sarcoidosis (CS) underscores the need for risk stratification. We evaluated 84 consecutive sarcoidosis patients who were referred for echocardiographic studies for cardiac symptoms or abnormal electrocardiograms. In 54 patients without previous diagnosis of CS or other known structural heart disease, 13 reached endpoints during (median) 24 months follow up. Significantly impaired peak systolic longitudinal strain in their original echocardiograms were identified in 13 of 17 left ventricular segments, clustering in the free wall, interventricular septum and apex. The regional (including 13 clustered segments) peak systolic longitudinal strain (RPSLS) were significantly impaired in patients with endpoints, compared with those without [(-11.4 ± 4.45) vs. (-18.7 ± 3.76) %, P < 0.00001]. Cox multivariate regression analysis revealed that RPSLS was independently associated with endpoints (HR 1.24; 95% CI 1.08-1.42, P = 0.002). Receiver operating characteristic curve suggested a cut-off RPSLS value of -15.0% (84.6% sensitivity and 86.8% specificity) to predict the occurrence of endpoints. Impaired RPSLS correlates with risk of adverse cardiac events in patients with extra-cardiac sarcoidosis.

  6. Attenuated Recovery of Contractile Function in Aging Hearts Following Global Ischemia/Reperfusion: Role of Extracellular HSP27 and TLR4

    PubMed Central

    Ao, Lihua; Zhai, Yufeng; Jin, Chunhua; Cleveland, Joseph C; Fullerton, David A; Meng, Xianzhong

    2016-01-01

    While cardiac functional recovery is attenuated in the elderly following cardiac surgery with obligatory global myocardial ischemia/reperfusion (I/R), the underlying mechanism remains incompletely understood. We observed previously that human and mouse myocardium releases heat shock protein (HSP) 27 during global I/R. Extracellular HSP27 induces myocardial inflammatory response and plays a role in postischemic cardiac dysfunction in adult mouse hearts. This study was to determine the role of extracellular HSP27 and Toll-like receptor 4 (TLR4) in the attenuated functional recovery in aging mouse hearts following global I/R. Hearts isolated from aging (18–24 months) and adult (4–6 months) mice were subjected to ex vivo global I/R. Augmented release of HSP27 in aging hearts was associated with greater production of cytokines (TNF-α and IL-1β) and worse functional recovery. Anti-HSP27 suppressed the inflammatory response and markedly improved functional recovery in aging hearts. Perfusion of recombinant HSP27 to aging hearts resulted in greater cytokine production and more severe contractile depression in comparison to adult hearts. TLR4 deficiency abolished cytokine production and functional injury in aging hearts exposed to recombinant HSP27. Interestingly, aging hearts had higher TLR4 protein levels and displayed enhanced TLR4-mediated NF-κB activation following HSP27 stimulation or I/R. Extracellular HSP27 and TLR4 jointly enhance the inflammatory response and hamper functional recovery following I/R in aging hearts. The enhanced inflammatory response to global I/R and attenuated postischemic functional recovery in aging hearts are due, at least in part, to augmented myocardial release of HSP27 and elevated myocardial TLR4 levels. PMID:28079228

  7. Chronic Contractile Dysfunction without Hypertrophy Does Not Provoke a Compensatory Transcriptional Response in Mouse Hearts

    PubMed Central

    Grubb, David R.; McMullen, Julie R.; Woodcock, Elizabeth A.

    2016-01-01

    Diseased myocardium from humans and experimental animal models shows heightened expression and activity of a specific subtype of phospholipase C (PLC), the splice variant PLCβ1b. Previous studies from our group showed that increasing PLCβ1b expression in adult mouse hearts by viral transduction was sufficient to cause sustained contractile dysfunction of rapid onset, which was maintained indefinitely in the absence of other pathological changes in the myocardium. We hypothesized that impaired contractility alone would be sufficient to induce a compensatory transcriptional response. Unbiased, comprehensive mRNA-sequencing was performed on 6 biological replicates of rAAV6-treated blank, PLCβ1b and PLCβ1a (closely related but inactive splice variant) hearts 8 weeks after injection, when reduced contractility was manifest in PLCβ1b hearts without evidence of induced hypertrophy. Expression of PLCβ1b resulted in expression changes in only 9 genes at FDR<0.1 when compared with control and these genes appeared unrelated to contractility. Importantly, PLCβ1a caused similar mild expression changes to PLCβ1b, despite a complete lack of effect of this isoform on cardiac contractility. We conclude that contractile depression caused by PLCβ1b activation is largely independent of changes in the transcriptome, and thus that lowered contractility is not sufficient in itself to provoke measurable transcriptomic alterations. In addition, our data stress the importance of a stringent control group to filter out transcriptional changes unrelated to cardiac function. PMID:27359099

  8. Myocardial Ischemia

    MedlinePlus

    ... pectoris: Chest pain caused by myocardial ischemia. www.uptodate.com/home. Accessed June 1, 2015. Deedwania PC. Silent myocardial ischemia: Epidemiology and pathogenesis. www.uptodate.com/home. Accessed June 1, 2015. Mann DL, ...

  9. [Instantaneous alteration of the dog heart contractility under instantaneous change in the stimulation rhythm].

    PubMed

    Gur'ianov, M I

    2002-04-01

    Isolated canine heart has an expressed ability for an instantaneous alteration in the sense of re-tuning, of contractility (of the speed of mechanical restitution in diastolic period) under instantaneous change of stimulation rhythm. Postextrasystolic potentiation reflects instantaneous rising of the speed of mechanical restitution under the influence of extrasystole in the condition of instantaneous transition to a higher rhythm. Depression of contractility reflects instantaneous decreasing of the speed of mechanical restitution under the influence of delayed stimulus in the condition of instantaneous transition to a slower rhythm. Alteration (re-tuning) of heart contractility occurred irrespective of the influence of neurohumoral factor and Frank-Starling law on the work of the heart. Alteration (re-tuning) of contractility occurs at an organ (cell) level.

  10. [Effectiveness of various dopamine doses in acute myocardial ischemia complicated by cardiogenic shock (an experimental study)].

    PubMed

    Kipshidze, N N; Korotkov, A A; Marsagishvili, L A; Prigolashvili, T Sh; Bokhua, M R

    1981-06-01

    The effect of various doses of dopamine on the values of cardiac contractile and hemodynamic function under conditions of acute two-hour ischemia complicated by cardiogenic shock was studied in 27 experiments on dogs. In a dose of 5 microgram/kg/min dopamine caused an optimum increase in cardiac productive capacity, reduction of peripheral resistance, adequate increase in coronary circulation and decrease in ST segment depression on the ECG. Infusion of 10 microgram/kg/min dopamine usually caused myocardial hyperfunction with an increase in total peripheral resistance and cardiac performance. Maximum dopamine doses (10 microgram/kg/min and more) were effective in the areactive form of cardiogenic shock. In longterm dopamine infusion it is necessary to establish continuous control over the hemodynamic parameters and the ECG to prevent aggravation of ischemia and for stage-by-stage reduction of the drug concentration and determination of the minimum maintenance dose.

  11. Anisotropic Elastography for Local Passive Properties and Active Contractility of Myocardium from Dynamic Heart Imaging Sequence

    PubMed Central

    Wang, Ge; Sun, L. Z.

    2006-01-01

    Major heart diseases such as ischemia and hypertrophic myocardiopathy are accompanied with significant changes in the passive mechanical properties and active contractility of myocardium. Identification of these changes helps diagnose heart diseases, monitor therapy, and design surgery. A dynamic cardiac elastography (DCE) framework is developed to assess the anisotropic viscoelastic passive properties and active contractility of myocardial tissues, based on the chamber pressure and dynamic displacement measured with cardiac imaging techniques. A dynamic adjoint method is derived to enhance the numerical efficiency and stability of DCE. Model-based simulations are conducted using a numerical left ventricle (LV) phantom with an ischemic region. The passive material parameters of normal and ischemic tissues are identified during LV rapid/reduced filling and artery contraction, and those of active contractility are quantified during isovolumetric contraction and rapid/reduced ejection. It is found that quasistatic simplification in the previous cardiac elastography studies may yield inaccurate material parameters. PMID:23165032

  12. Anisotropic elastography for local passive properties and active contractility of myocardium from dynamic heart imaging sequence.

    PubMed

    Liu, Yi; Wang, Ge; Sun, L Z

    2006-01-01

    Major heart diseases such as ischemia and hypertrophic myocardiopathy are accompanied with significant changes in the passive mechanical properties and active contractility of myocardium. Identification of these changes helps diagnose heart diseases, monitor therapy, and design surgery. A dynamic cardiac elastography (DCE) framework is developed to assess the anisotropic viscoelastic passive properties and active contractility of myocardial tissues, based on the chamber pressure and dynamic displacement measured with cardiac imaging techniques. A dynamic adjoint method is derived to enhance the numerical efficiency and stability of DCE. Model-based simulations are conducted using a numerical left ventricle (LV) phantom with an ischemic region. The passive material parameters of normal and ischemic tissues are identified during LV rapid/reduced filling and artery contraction, and those of active contractility are quantified during isovolumetric contraction and rapid/reduced ejection. It is found that quasistatic simplification in the previous cardiac elastography studies may yield inaccurate material parameters.

  13. Experimental myocardial ischemia. Pt. 2

    SciTech Connect

    Serur, J.R.; Als, A.V.; Paulin, S.

    1982-01-01

    The comparative effects of meglumine sodium diatrizoate (MSD), sodium meglumine calcium metrizoate (SMCM), and metrizamide (M) were studied in an isolated canine heart preparation. The parameters observed were coronary blood flow (CBF), myocardial contractile force (MCF), positive and negative dF/dt, and perfusion pressure during normal and ischemic perfusion conditions. MSD had an initial negative inotropic effect but baseline MCF returned in 1 min during normal perfusion and 2 min under ischemic conditions. SMCM and M had only a positive inotropic effect under normal perfusion. However, during ischemia, the positive effect of SMCM was followed by a decrease in contractile force. M showed only a positive effect on force during ischemia. Our results indicate that calcium additive may increase the risk of coronary arteriography in patients with severe coronary artery disease.

  14. Treatment of depression and anxiety with internet-based cognitive behavior therapy in patients with a recent myocardial infarction (U-CARE Heart): study protocol for a randomized controlled trial.

    PubMed

    Norlund, Fredrika; Olsson, Erik M G; Burell, Gunilla; Wallin, Emma; Held, Claes

    2015-04-11

    Major depression and depressive symptoms are common in patients with a recent myocardial infarction (MI), and depression is associated with adverse cardiovascular outcomes. Anxiety post-MI is less studied, but occurs commonly in patients with heart disease, and is also considered a risk factor for recurrence of cardiac events. Cognitive behavior therapy (CBT) is an established therapy for depression and anxiety disorders. To the best of our knowledge, there have not been any studies to determine if internet-based CBT (iCBT) can reduce the symptoms of depression and anxiety in patients with a recent MI. The main aim of the U-CARE Heart trial is to evaluate an iCBT intervention for patients with a recent MI. This is a randomized, controlled, prospective study with a multicenter design. A total of 500 participants will be randomized at a 1:1 ratio, around two months after an acute MI, to either iCBT or to a control group. Both groups will receive an optimal standard of care according to guidelines. The intervention consists of a self-help program delivered via the internet with individual online support from a psychologist. Treatment duration is 14 weeks. The primary outcome is change in patients' self-rated anxiety and depression symptoms from baseline to end of treatment. An internal pilot study was conducted indicating sufficient levels of study acceptability and engagement in treatment. The present study is designed to evaluate an iCBT intervention targeting symptoms of depression and anxiety in a post-MI population. If effective, iCBT has several advantages, and will potentially be implemented as an easily accessible treatment option added to modern standard of care. This trial was registered with Clinicaltrials.gov (identifier: NCT01504191 ) on 19 December 2011.

  15. Contractile function of the myocardium with prolonged hypokinesia in patients with surgical tuberculosis

    NASA Technical Reports Server (NTRS)

    Zakutayeva, V. P.; Matiks, N. I.

    1978-01-01

    The changes in the myocardial contractile function with hypokinesia in surgical tuberculosis patients are discussed. The phase nature of the changes is noted, specifically the changes in the various systoles, diastole, and other parts of the cardiac cycle. The data compare these changes during confinement in bed with no motor activity to and with a return to motor activity after leaving the in-bed regimen.

  16. MYOCARDIAL AKT: THE OMNIPRESENT NEXUS

    PubMed Central

    Sussman, Mark A.; Völkers, Mirko; Fischer, Kimberlee; Bailey, Brandi; Cottage, Christopher T.; Din, Shabana; Gude, Natalie; Avitabile, Daniele; Alvarez, Roberto; Sundararaman, Balaji; Quijada, Pearl; Mason, Matt; Konstandin, Mathias H.; Malhowski, Amy; Cheng, Zhaokang; Khan, Mohsin; McGregor, Michael

    2013-01-01

    One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses. PMID:21742795

  17. Amoeba proteus: Studying the Contractile Vacuole by Micropuncture.

    PubMed

    Schmidt-Nielsen, B; Schrauger, C R

    1963-02-15

    Direct measurements of the freezing point depression of the protoplasm and of the fluid from the contractile vacuole of fresh-water amoebae showed that the fluid in the vacuole is distinctly hypoosmotic to the protoplasm. Fourteen samples of protoplasm from amoebae, placed in a medium with a milliosmolality of 7, had an average osmolality of 101 milliosmoles with a range of 73 to 116. Eleven samples of vacuolar fluid had an average osmolality of 32 milliosmoles, with a range of 24 to 38. It is suggested that the fluid may be isoosmotic to the protoplasm when secreted and that salt is subsequently reabsorbed, leaving the vacuolar fluid hypoosmotic to the protoplasm.

  18. Modulatory effects of taurine on jejunal contractility

    PubMed Central

    Yao, Q.Y.; Chen, D.P.; Ye, D.M.; Diao, Y.P.; Lin, Y.

    2014-01-01

    Taurine (2-aminoethanesulfonic acid) is widely distributed in animal tissues and has diverse pharmacological effects. However, the role of taurine in modulating smooth muscle contractility is still controversial. We propose that taurine (5-80 mM) can exert bidirectional modulation on the contractility of isolated rat jejunal segments. Different low and high contractile states were induced in isolated jejunal segments of rats to observe the effects of taurine and the associated mechanisms. Taurine induced stimulatory effects on the contractility of isolated rat jejunal segments at 3 different low contractile states, and inhibitory effects at 3 different high contractile states. Bidirectional modulation was not observed in the presence of verapamil or tetrodotoxin, suggesting that taurine-induced bidirectional modulation is Ca2+ dependent and requires the presence of the enteric nervous system. The stimulatory effects of taurine on the contractility of isolated jejunal segments was blocked by atropine but not by diphenhydramine or by cimetidine, suggesting that muscarinic-linked activation was involved in the stimulatory effects when isolated jejunal segments were in a low contractile state. The inhibitory effects of taurine on the contractility of isolated jejunal segments were blocked by propranolol and L-NG-nitroarginine but not by phentolamine, suggesting that adrenergic β receptors and a nitric oxide relaxing mechanism were involved when isolated jejunal segments were in high contractile states. No bidirectional effects of taurine on myosin phosphorylation were observed. The contractile states of jejunal segments determine taurine-induced stimulatory or inhibitory effects, which are associated with muscarinic receptors and adrenergic β receptors, and a nitric oxide associated relaxing mechanism. PMID:25387674

  19. Modulatory effects of taurine on jejunal contractility.

    PubMed

    Yao, Q Y; Chen, D P; Ye, D M; Diao, Y P; Lin, Y

    2014-12-01

    Taurine (2-aminoethanesulfonic acid) is widely distributed in animal tissues and has diverse pharmacological effects. However, the role of taurine in modulating smooth muscle contractility is still controversial. We propose that taurine (5-80 mM) can exert bidirectional modulation on the contractility of isolated rat jejunal segments. Different low and high contractile states were induced in isolated jejunal segments of rats to observe the effects of taurine and the associated mechanisms. Taurine induced stimulatory effects on the contractility of isolated rat jejunal segments at 3 different low contractile states, and inhibitory effects at 3 different high contractile states. Bidirectional modulation was not observed in the presence of verapamil or tetrodotoxin, suggesting that taurine-induced bidirectional modulation is Ca(2+) dependent and requires the presence of the enteric nervous system. The stimulatory effects of taurine on the contractility of isolated jejunal segments was blocked by atropine but not by diphenhydramine or by cimetidine, suggesting that muscarinic-linked activation was involved in the stimulatory effects when isolated jejunal segments were in a low contractile state. The inhibitory effects of taurine on the contractility of isolated jejunal segments were blocked by propranolol and L-NG-nitroarginine but not by phentolamine, suggesting that adrenergic β receptors and a nitric oxide relaxing mechanism were involved when isolated jejunal segments were in high contractile states. No bidirectional effects of taurine on myosin phosphorylation were observed. The contractile states of jejunal segments determine taurine-induced stimulatory or inhibitory effects, which are associated with muscarinic receptors and adrenergic β receptors, and a nitric oxide associated relaxing mechanism.

  20. Tauroursodeoxycholic Acid Mitigates High Fat Diet-Induced Cardiomyocyte Contractile and Intracellular Ca2+ Anomalies

    PubMed Central

    Turdi, Subat; Hu, Nan; Ren, Jun

    2013-01-01

    Objectives The endoplasmic reticulum (ER) chaperone tauroursodeoxycholic acid (TUDCA) has exhibited promises in the treatment of obesity, although its impact on obesity-induced cardiac dysfunction is unknown. This study examined the effect of TUDCA on cardiomyocyte function in high-fat diet-induced obesity. Methods Adult mice were fed low or high fat diet for 5 months prior to treatment of TUDCA (300 mg/kg. i.p., for 15d). Intraperitoneal glucose tolerance test (IPGTT), cardiomyocyte mechanical and intracellular Ca2+ property, insulin signaling molecules including IRS-1, Akt, AMPK, ACC, GSK-3β, c-Jun, ERK and c-Jun N terminal kinase (JNK) as well as ER stress and intracellular Ca2+ regulatory proteins were examined. Myocardial ultrastructure was evaluated using transmission electron microscopy (TEM). Results High-fat diet depressed peak shortening (PS) and maximal velocity of shortening/relengthenin as well as prolonged relengthening duration. TUDCA reversed or overtly ameliorated high fat diet-induced cardiomyocyte dysfunction including prolongation in relengthening. TUDCA alleviated high-fat diet-induced decrease in SERCA2a and phosphorylation of phospholamban, increase in ER stress (GRP78/BiP, CHOP, phosphorylation of PERK, IRE1α and eIF2α), ultrastructural changes and mitochondrial permeation pore opening. High-fat diet feeding inhibited phosphorylation of AMPK and promoted phosphorylation of GSK-3β. TUDCA prevented high fat-induced dephosphorylation of AMPK but not GSK-3β. High fat diet promoted phosphorylation of IRS-1 (Ser307), JNK, and ERK without affecting c-Jun phosphorylation, the effect of which with the exception of ERK phosphorylation was attenuated by TUDCA. Conclusions These data depict that TUDCA may ameliorate high fat diet feeding-induced cardiomyocyte contractile and intracellular Ca2+ defects through mechanisms associated with mitochondrial integrity, AMPK, JNK and IRS-1 serine phosphorylation. PMID:23667647

  1. Tauroursodeoxycholic acid mitigates high fat diet-induced cardiomyocyte contractile and intracellular Ca2+ anomalies.

    PubMed

    Turdi, Subat; Hu, Nan; Ren, Jun

    2013-01-01

    The endoplasmic reticulum (ER) chaperone tauroursodeoxycholic acid (TUDCA) has exhibited promises in the treatment of obesity, although its impact on obesity-induced cardiac dysfunction is unknown. This study examined the effect of TUDCA on cardiomyocyte function in high-fat diet-induced obesity. Adult mice were fed low or high fat diet for 5 months prior to treatment of TUDCA (300 mg/kg. i.p., for 15d). Intraperitoneal glucose tolerance test (IPGTT), cardiomyocyte mechanical and intracellular Ca(2+) property, insulin signaling molecules including IRS-1, Akt, AMPK, ACC, GSK-3β, c-Jun, ERK and c-Jun N terminal kinase (JNK) as well as ER stress and intracellular Ca(2+) regulatory proteins were examined. Myocardial ultrastructure was evaluated using transmission electron microscopy (TEM). High-fat diet depressed peak shortening (PS) and maximal velocity of shortening/relengthenin as well as prolonged relengthening duration. TUDCA reversed or overtly ameliorated high fat diet-induced cardiomyocyte dysfunction including prolongation in relengthening. TUDCA alleviated high-fat diet-induced decrease in SERCA2a and phosphorylation of phospholamban, increase in ER stress (GRP78/BiP, CHOP, phosphorylation of PERK, IRE1α and eIF2α), ultrastructural changes and mitochondrial permeation pore opening. High-fat diet feeding inhibited phosphorylation of AMPK and promoted phosphorylation of GSK-3β. TUDCA prevented high fat-induced dephosphorylation of AMPK but not GSK-3β. High fat diet promoted phosphorylation of IRS-1 (Ser(307)), JNK, and ERK without affecting c-Jun phosphorylation, the effect of which with the exception of ERK phosphorylation was attenuated by TUDCA. These data depict that TUDCA may ameliorate high fat diet feeding-induced cardiomyocyte contractile and intracellular Ca(2+) defects through mechanisms associated with mitochondrial integrity, AMPK, JNK and IRS-1 serine phosphorylation.

  2. Mechanoelectrical feedback: independent role of preload and contractility in modulation of canine ventricular excitability.

    PubMed Central

    Lerman, B B; Burkhoff, D; Yue, D T; Franz, M R; Sagawa, K

    1985-01-01

    Mechanoelectrical feedback, defined as changes in mechanical state that precede and alter transmembrane potential, may have potential importance in understanding the role of altered load and contractility in the initiation and modulation of ventricular arrhythmias. To assess the independent effects of preload and contractility on myocardial excitability and action potential duration, we determined the stimulus strength-interval relationship and recorded monophasic action potentials in isolated canine left ventricles contracting isovolumically. The strength-interval relationship was characterized by three parameters: threshold excitability, relative refractory period, and absolute refractory period. The effects of a threefold increase in left ventricular volume or twofold increase in contractility on these parameters were independently assessed. An increase in preload did not change threshold excitability in 11 ventricles but significantly shortened the absolute refractory period from 205 +/- 15 to 191 +/- 14 ms (P less than 0.001) (mean +/- SD). Similarly, the relative refractory period decreased from 220 +/- 18 to 208 +/- 19 ms (P less than 0.002). Comparable results were observed when contractility was increased as a result of dobutamine infusion in 10 ventricles. That is, threshold excitability was unchanged but the absolute refractory period decreased from 206 +/- 14 to 181 +/- 9 ms (P less than 0.003), and the relative refractory period decreased from 225 +/- 17 to 205 +/- 18 ms (P less than 0.003). Similar results were obtained when contractility was increased with CaCl2, indicating that contractility associated changes were independent of beta-adrenergic receptor stimulation. An increase in preload or contractility was associated with shortening of the action potential. A threefold increase in preload and twofold increase in contractility were associated with a decrease in action potential duration of 22 and 24 ms, respectively. There was a significant

  3. Compensatory Hypertrophy of Skeletal Muscle: Contractile Characteristics

    ERIC Educational Resources Information Center

    Ianuzzo, C. D.; Chen, V.

    1977-01-01

    Describes an experiment using rats that demonstrates contractile characteristics of normal and hypertrophied muscle. Compensatory hypertrophy of the plantaris muscle is induced by surgical removal of the synergistic gastrocnemium muscle. Includes methods for determination of contractile properties of normal and hypertrophied muscle and…

  4. Compensatory Hypertrophy of Skeletal Muscle: Contractile Characteristics

    ERIC Educational Resources Information Center

    Ianuzzo, C. D.; Chen, V.

    1977-01-01

    Describes an experiment using rats that demonstrates contractile characteristics of normal and hypertrophied muscle. Compensatory hypertrophy of the plantaris muscle is induced by surgical removal of the synergistic gastrocnemium muscle. Includes methods for determination of contractile properties of normal and hypertrophied muscle and…

  5. Vascular and cardiac contractile reserve in the dog heart with chronic multiple coronary occlusions.

    PubMed

    Schwarz, F; Flameng, W; Mack, B; Türschmann, W; Schaper, W

    1976-11-01

    Nineteen mongrel dogs survived chronic occlusion of the left circumflex and of the right coronary artery without infarction due to the timely development of a collateral circulation. Only 38 per cent of the conductance of the arteries before occlusion was restored by collateral vessels. In these animals and in 15 control dogs with normal coronary arteries myocardial contractility, contractility reserve, and myocardial blood flow were studied. The same was done in dogs with chronic coronary artery occlusion after aortocoronary bypass. Myocardial blood flow was determined woth the tracer microsphere technique. Contractility reserve was tested and defined as isovolumetric left ventricular pressure and dp/dt max with norepinephrine infusion and cross-clamping of the aorta. Contractile reserve was not significantly different between normal dogs and dogs with chronic coronary artery occlusion before and after aortocoronary bypass. Myocardial blood flow during control conditions was homogenously distributed in all three groups studied. The ratio of blood flow to the endocardium and the epicardium was not significantly different from inity. Coronary reserve was determined at peak reactive hyperemia following a 20 second period of coronary artery occlusion, with ongoing norepinephrine infusion. Under these conditions subendocardial fow in normal dogs rose by a factor of 7.9 while subepicardial flow increased 7.4 times. In dogs with chronic occlusion of two coronary arteries the increase of myocardial flow was nonnomogenous; subendocardial flow to areas supplied by a normal coronary artery rose by a factor of 7.0 while subepicardial flow increased 5.7 times control. Subendocardial collateral flow rose by a factor of 2.4 and subepicardial collateral flow increased 3.5 times control. In normal dogs norepinephrine alone did not result in maximal coronary flow but only 57 per cent thereof. Dogs with chronic coronary occlusion, however, required the entire coronary reserve in

  6. Myocardial perfusion imaging for detection of silent myocardial ischemia

    SciTech Connect

    Beller, G.A.

    1988-04-21

    Despite the widespread use of the exercise stress test in diagnosing asymptomatic myocardial ischemia, exercise radionuclide imaging remains useful for detecting silent ischemia in numerous patient populations, including those who are totally asymptomatic, those who have chronic stable angina, those who have recovered from an episode of unstable angina or an uncomplicated myocardial infarction, and those who have undergone angioplasty or received thrombolytic therapy. Studies show that thallium scintigraphy is more sensitive than exercise electrocardiography in detecting ischemia, i.e., in part, because perfusion defects occur more frequently than ST depression and before angina in the ischemic cascade. Thallium-201 scintigraphy can be performed to differentiate a true- from a false-positive exercise electrocardiographic test in patients with exercise-induced ST depression and no angina. The development of technetium-labeled isonitriles may improve the accuracy of myocardial perfusion imaging. 11 references.

  7. Doxorubicin induces mitochondrial permeability transition and contractile dysfunction in the human myocardium.

    PubMed

    Montaigne, David; Marechal, Xavier; Preau, Sebastien; Baccouch, Riadh; Modine, Thomas; Fayad, George; Lancel, Steve; Neviere, Remi

    2011-01-01

    In human atrial trabeculae, we examined the effects of doxorubicin on the isometric force of contraction, mitochondrial respiration, membrane potential and calcium retention capacity. Compared with untreated controls, doxorubicin induced contractile dysfunction and depression of mitochondrial respiration. Mitochondria isolated from doxorubicin-treated human atrial trabeculae displayed reduced transmembrane potential and calcium retention capacity. Cyclosporine A, a mitochondrial membrane transition pore opening blocker, prevented mitochondrial dysfunction and impaired contractile performance induced by doxorubicin. The study suggests that a mitochondrial membrane transition pore opening is involved in the development of doxorubicin cardiotoxicity in human hearts. Copyright © 2010 Mitochondria Research Society. Published by Elsevier B.V. All rights reserved.

  8. Cardiac-Specific Knockout of ETA Receptor Mitigates Paraquat-Induced Cardiac Contractile Dysfunction.

    PubMed

    Wang, Jiaxing; Lu, Songhe; Zheng, Qijun; Hu, Nan; Yu, Wenjun; Li, Na; Liu, Min; Gao, Beilei; Zhang, Guoyong; Zhang, Yingmei; Wang, Haichang

    2016-07-01

    Paraquat (1,1'-dim ethyl-4-4'-bipyridinium dichloride), a highly toxic quaternary ammonium herbicide widely used in agriculture, exerts potent toxic prooxidant effects resulting in multi-organ failure including the lung and heart although the underlying mechanism remains elusive. Recent evidence suggests possible involvement of endothelin system in paraquat-induced acute lung injury. This study was designed to examine the role of endothelin receptor A (ETA) in paraquat-induced cardiac contractile and mitochondrial injury. Wild-type (WT) and cardiac-specific ETA receptor knockout mice were challenged to paraquat (45 mg/kg, i.p.) for 48 h prior to the assessment of echocardiographic, cardiomyocyte contractile and intracellular Ca(2+) properties, as well as apoptosis and mitochondrial damage. Levels of the mitochondrial proteins for biogenesis and oxidative phosphorylation including UCP2, HSP90 and PGC1α were evaluated. Our results revealed that paraquat elicited cardiac enlargement, mechanical anomalies including compromised echocardiographic parameters (elevated left ventricular end-systolic and end-diastolic diameters as well as reduced factional shortening), suppressed cardiomyocyte contractile function, intracellular Ca(2+) handling, overt apoptosis and mitochondrial damage. ETA receptor knockout itself failed to affect myocardial function, apoptosis, mitochondrial integrity and mitochondrial protein expression. However, ETA receptor knockout ablated or significantly attenuated paraquat-induced cardiac contractile and intracellular Ca(2+) defect, apoptosis and mitochondrial damage. Taken together, these findings revealed that endothelin system in particular the ETA receptor may be involved in paraquat-induced toxic myocardial contractile anomalies possibly related to apoptosis and mitochondrial damage.

  9. Heme-induced contractile dysfunction in human cardiomyocytes caused by oxidant damage to thick filament proteins.

    PubMed

    Alvarado, Gerardo; Jeney, Viktória; Tóth, Attila; Csősz, Éva; Kalló, Gergő; Huynh, An T; Hajnal, Csaba; Kalász, Judit; Pásztor, Enikő T; Édes, István; Gram, Magnus; Akerström, Bo; Smith, Ann; Eaton, John W; Balla, György; Papp, Zoltán; Balla, József

    2015-12-01

    Intracellular free heme predisposes to oxidant-mediated tissue damage. We hypothesized that free heme causes alterations in myocardial contractility via disturbed structure and/or regulation of the contractile proteins. Isometric force production and its Ca(2+)-sensitivity (pCa50) were monitored in permeabilized human ventricular cardiomyocytes. Heme exposure altered cardiomyocyte morphology and evoked robust decreases in Ca(2+)-activated maximal active force (Fo) while increasing Ca(2+)-independent passive force (F passive). Heme treatments, either alone or in combination with H2O2, did not affect pCa50. The increase in F passive started at 3 µM heme exposure and could be partially reversed by the antioxidant dithiothreitol. Protein sulfhydryl (SH) groups of thick myofilament content decreased and sulfenic acid formation increased after treatment with heme. Partial restoration in the SH group content was observed in a protein running at 140 kDa after treatment with dithiothreitol, but not in other proteins, such as filamin C, myosin heavy chain, cardiac myosin binding protein C, and α-actinin. Importantly, binding of heme to hemopexin or alpha-1-microglobulin prevented its effects on cardiomyocyte contractility, suggesting an allosteric effect. In line with this, free heme directly bound to myosin light chain 1 in human cardiomyocytes. Our observations suggest that free heme modifies cardiac contractile proteins via posttranslational protein modifications and via binding to myosin light chain 1, leading to severe contractile dysfunction. This may contribute to systolic and diastolic cardiac dysfunctions in hemolytic diseases, heart failure, and myocardial ischemia-reperfusion injury.

  10. [The role of free radicals in the myocardial reperfusion injuries and in the development of endogenous adaptation].

    PubMed

    Rőth, Erzsébet

    2015-11-22

    The reperfusion of acute ischaemic myocardium is essential for myocardial salvage, so-called "gold standard" therapy, however it can result in serious damage to the myocardium. Functional alterations occur, including depressed contractile function and decreased coronary flow as well as altered vascular reactivity. Over several decades it has been demonstrated that oxygen radical formation is greatly increased in the post-ischaemic heart and serves as a critical central mechanism of ischaemic-reperfusion injury. However it has been demonstrated that free radicals play an important role in the endogenous adaptation phenomenon of the heart, too. Ischaemic preconditioning is a cellular adaptive response of the heart to stress, which provides the most potent endogenous protection against reperfusion arrhytmias, stunning and infarction. Post-conditioning defined as brief periods of ischaemia and reperfusion during the very early minutes of reperfusion stimulates endogenous adaptation. Post-conditioning may also attenuate the damage to endothelial cells and cardiomyocytes from oxidants, cytokines, proteases and inflammatory cells.

  11. Propofol reduced myocardial contraction of vertebrates partly by mediating the cyclic AMP-dependent protein kinase phosphorylation pathway.

    PubMed

    Sun, Xiaotong; Zhang, Xinyu; Bo, Qiyu; Meng, Tao; Lei, Zhen; Li, Jingxin; Hou, Yonghao; Yu, Xiaoqian; Yu, Jingui

    2016-07-15

    Propofol inhibits myocardial contraction in a dose dependent manner. The present study is designed to examine the effect of propofol on PKA mediated myocardial contraction in the absence of adrenoreceptor agonist. The contraction of isolated rat heart was measured in the presence or absence of PKA inhibitor H89 or propofol, using a pressure transducer. The levels of cAMP and PKA kinase activity were detected by ELISA. The mRNA and total protein or phosphorylation level of PKA and downstream proteins were tested in the presence or absence of PKA inhibitor H89 or propofol, using RT-PCR, QPCR and western blotting. The phosphorylation level of PKA was examined thoroughly using immunofluorescence and PKA activity non-radioactive detection kit. Propofol induced a dose-dependent negative contractile response on the rat heart. The inhibitory effect of high concentration propofol (50μM) with 45% decease of control could be partly reversed by the PKA inhibitor H89 (10μM) and the depressant effect of propofol decreased from 45% to 10%. PKA kinase activity was inhibited by propofol in a dose-dependent manner. Propofol also induced a decrease in phosphorylation of PKA, which was also inhibited by H89, but did not alter the production of cAMP and the mRNA levels of PKA. The downstream proteins of PKA, PLN and RyR2 were phosphorylated to a lesser extent with propofol or H89 than control. These results demonstrated that propofol induced a negative myocardial contractile response partly by mediating the PKA phosphorylation pathway. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Magnetic resonance imaging for characterizing myocardial diseases.

    PubMed

    Saeed, Maythem; Liu, Hui; Liang, Chang-Hong; Wilson, Mark W

    2017-03-31

    The National Institute of Health defined cardiomyopathy as diseases of the heart muscle. These myocardial diseases have different etiology, structure and treatment. This review highlights the key imaging features of different myocardial diseases. It provides information on myocardial structure/orientation, perfusion, function and viability in diseases related to cardiomyopathy. The standard cardiac magnetic resonance imaging (MRI) sequences can reveal insight on left ventricular (LV) mass, volumes and regional contractile function in all types of cardiomyopathy diseases. Contrast enhanced MRI sequences allow visualization of different infarct patterns and sizes. Enhancement of myocardial inflammation and infarct (location, transmurality and pattern) on contrast enhanced MRI have been used to highlight the key differences in myocardial diseases, predict recovery of function and healing. The common feature in many forms of cardiomyopathy is the presence of diffuse-fibrosis. Currently, imaging sequences generating the most interest in cardiomyopathy include myocardial strain analysis, tissue mapping (T1, T2, T2*) and extracellular volume (ECV) estimation techniques. MRI sequences have the potential to decode the etiology by showing various patterns of infarct and diffuse fibrosis in myocarditis, amyloidosis, sarcoidosis, hypertrophic cardiomyopathy due to aortic stenosis, restrictive cardiomyopathy, arrythmogenic right ventricular dysplasia and hypertension. Integrated PET/MRI system may add in the future more information for the diagnosis and progression of cardiomyopathy diseases. With the promise of high spatial/temporal resolution and 3D coverage, MRI will be an indispensible tool in diagnosis and monitoring the benefits of new therapies designed to treat myocardial diseases.

  13. Contractile forces in tumor cell migration.

    PubMed

    Mierke, Claudia Tanja; Rösel, Daniel; Fabry, Ben; Brábek, Jan

    2008-09-01

    Cancer is a deadly disease primarily because of the ability of tumor cells to spread from the primary tumor, to invade into the connective tissue, and to form metastases at distant sites. In contrast to cell migration on a planar surface where large cell tractions and contractile forces are not essential, tractions and forces are thought to be crucial for overcoming the resistance and steric hindrance of a dense three-dimensional connective tissue matrix. In this review, we describe recently developed biophysical tools, including 2-D and 3-D traction microscopy to measure contractile forces of cells. We discuss evidence indicating that tumor cell invasiveness is associated with increased contractile force generation.

  14. Reduced calcium responsiveness characterizes contractile dysfunction following coronary microembolization.

    PubMed

    Skyschally, Andreas; Gres, Petra; van Caster, Patrick; van de Sand, Anita; Boengler, Kerstin; Schulz, Rainer; Heusch, Gerd

    2008-11-01

    We addressed calcium responsiveness in microembolized myocardium at 6 h after coronary microembolization (ME). In anesthetized pigs calcium responsiveness was determined as the increase of a myocardial work index (WI; LV pressure development vs. wall thickening) in response to a graded intracoronary infusion of CaCl(2) at baseline and at 6 h after ME or placebo, respectively. At baseline, CaCl(2 )infusion increased WI in both groups (ME: 296 +/- 22 to 468 +/- 47 mmHg*mm; placebo: 324 +/- 24 to 485 +/- 38 mmHg*mm; mean +/- SEM). At 6 h after ME, WI was decreased by 159 +/- 16 mmHg*mm (P < 0.05 vs. baseline) and remained reduced at any calcium concentration, whereas it was unchanged with placebo. The calcium concentration in coronary blood necessary to achieve the half maximal increase in WI remained unchanged from baseline to 6 h and did not differ between placebo and ME. The ME-induced myocardial dysfunction is not related to an altered calcium sensitivity, but is characterized by a reduced maximal contractile force.

  15. Suppression of guinea pig ileum induced contractility by plasma albumin of hibernators

    USGS Publications Warehouse

    Bruce, David S.; Ambler, Douglas L.; Henschel, Timothy M.; Oeltgen, Peter R.; Nilekani, Sita P.; Amstrup, Steven C.

    1992-01-01

    Previous studies suggest that hibernation may be regulated by internal opioids and that the putative “hibernation induction trigger” (HIT) may itself be an opioid. This study examined the effect of plasma albumin (known to bind HIT) on induced contractility of the guinea pig ileum muscle strip. Morphine (400 nM) depressed contractility and 100 nM naloxone restored it. Ten milligrams of lyophilized plasma albumin fractions from hibernating ground squirrels, woodchucks, black bears, and polar bears produced similar inhibition, with partial reversal by naloxone. Five hundredths mg of d-Ala2-d-Leu5-enkephalin (DADLE) also inhibited contractility and naloxone reversed it. Conclusions are that hibernating individuals of these species contain an HIT substance that is opioid in nature and summer animals do not; an endogenous opioid similar to leu-enkephalin may be the HIT compound or give rise to it.

  16. Store-operated Ca2+ entry supports contractile function in hearts of hibernators

    PubMed Central

    Nakipova, Olga V.; Averin, Alexey S.; Evdokimovskii, Edward V.; Pimenov, Oleg Yu.; Kosarski, Leonid; Ignat’ev, Dmitriy; Anufriev, Andrey; Kokoz, Yuri M.; Reyes, Santiago; Terzic, Andre; Alekseev, Alexey E.

    2017-01-01

    Hibernators have a distinctive ability to adapt to seasonal changes of body temperature in a range between 37°C and near freezing, exhibiting, among other features, a unique reversibility of cardiac contractility. The adaptation of myocardial contractility in hibernation state relies on alterations of excitation contraction coupling, which becomes less-dependent from extracellular Ca2+ entry and is predominantly controlled by Ca2+ release from sarcoplasmic reticulum, replenished by the Ca2+-ATPase (SERCA). We found that the specific SERCA inhibitor cyclopiazonic acid (CPA), in contrast to its effect in papillary muscles (PM) from rat hearts, did not reduce but rather potentiated contractility of PM from hibernating ground squirrels (GS). In GS ventricles we identified drastically elevated, compared to rats, expression of Orai1, Stim1 and Trpc1/3/4/5/6/7 mRNAs, putative components of store operated Ca2+ channels (SOC). Trpc3 protein levels were found increased in winter compared to summer GS, yet levels of Trpc5, Trpc6 or Trpc7 remained unchanged. Under suppressed voltage-dependent K+, Na+ and Ca2+ currents, the SOC inhibitor 2-aminoethyl diphenylborinate (2-APB) diminished whole-cell membrane currents in isolated cardiomyocytes from hibernating GS, but not from rats. During cooling-reheating cycles (30°C–7°C–30°C) of ground squirrel PM, 2-APB did not affect typical CPA-sensitive elevation of contractile force at low temperatures, but precluded the contractility at 30°C before and after the cooling. Wash-out of 2-APB reversed PM contractility to control values. Thus, we suggest that SOC play a pivotal role in governing the ability of hibernator hearts to maintain their function during the transition in and out of hibernating states. PMID:28531217

  17. Muscle metaboreflex-induced coronary vasoconstriction limits ventricular contractility during dynamic exercise in heart failure

    PubMed Central

    Coutsos, Matthew; Sala-Mercado, Javier A.; Ichinose, Masashi; Li, ZhenHua; Dawe, Elizabeth J.

    2013-01-01

    Muscle metaboreflex activation (MMA) during dynamic exercise increases cardiac work and myocardial O2 demand via increases in heart rate, ventricular contractility, and afterload. This increase in cardiac work should lead to metabolic coronary vasodilation; however, no change in coronary vascular conductance occurs. This indicates that the MMA-induced increase in sympathetic activity to the heart, which raises heart rate, ventricular contractility, and cardiac output, also elicits coronary vasoconstriction. In heart failure, cardiac output does not increase with MMA presumably due to impaired ability to improve left ventricular contractility. In this setting actual coronary vasoconstriction is observed. We tested whether this coronary vasoconstriction could explain, in part, the reduced ability to increase cardiac performance during MMA. In conscious, chronically instrumented dogs before and after pacing-induced heart failure, MMA responses during mild exercise were observed before and after α1-adrenergic blockade (prazosin 20–50 μg/kg). During MMA, the increases in coronary vascular conductance, coronary blood flow, maximal rate of left ventricular pressure change, and cardiac output were significantly greater after α1-adrenergic blockade. We conclude that in subjects with heart failure, coronary vasoconstriction during MMA limits the ability to increase left ventricular contractility. PMID:23355344

  18. Muscle metaboreflex-induced coronary vasoconstriction limits ventricular contractility during dynamic exercise in heart failure.

    PubMed

    Coutsos, Matthew; Sala-Mercado, Javier A; Ichinose, Masashi; Li, Zhenhua; Dawe, Elizabeth J; O'Leary, Donal S

    2013-04-01

    Muscle metaboreflex activation (MMA) during dynamic exercise increases cardiac work and myocardial O2 demand via increases in heart rate, ventricular contractility, and afterload. This increase in cardiac work should lead to metabolic coronary vasodilation; however, no change in coronary vascular conductance occurs. This indicates that the MMA-induced increase in sympathetic activity to the heart, which raises heart rate, ventricular contractility, and cardiac output, also elicits coronary vasoconstriction. In heart failure, cardiac output does not increase with MMA presumably due to impaired ability to improve left ventricular contractility. In this setting actual coronary vasoconstriction is observed. We tested whether this coronary vasoconstriction could explain, in part, the reduced ability to increase cardiac performance during MMA. In conscious, chronically instrumented dogs before and after pacing-induced heart failure, MMA responses during mild exercise were observed before and after α1-adrenergic blockade (prazosin 20-50 μg/kg). During MMA, the increases in coronary vascular conductance, coronary blood flow, maximal rate of left ventricular pressure change, and cardiac output were significantly greater after α1-adrenergic blockade. We conclude that in subjects with heart failure, coronary vasoconstriction during MMA limits the ability to increase left ventricular contractility.

  19. Effect of phorbol esters on contractile state and calcium flux in cultured chick heart cells

    SciTech Connect

    Leatherman, G.F.; Kim, D.; Smith, T.W.

    1987-07-01

    Phorbol esters are potent tumor promoters that have been widely used in studies of transmembrane signaling because of their ability to activate protein kinase C. To study the effect of phorbol esters (and indirectly, the role of protein kinase C) on the cardiac muscle contractility, the authors examined the effects of phorbol myristate acetate (PMA) on contractile state, transmembrane /sup 45/Ca fluxes, and cytosolic free Ca concentration ((Ca)/sub i/) using spontaneously contracting cultured chick ventricular cells. PMA produced a concentration- and time-dependent decrease in the amplitude of cell motion (half maximum inhibitory concentration) with maximal effect observed at 1 ..mu..M. PMA (1 ..mu..M) reduced /sup 45/Ca uptake rate by 16 /plus minus/ 4% and the size of the rapidly exchangeable Ca pool by 11 /plus minus/ 2%, but did not alter the /sup 45/Ca efflux rate. In fura-2-loaded cells. PMA produced a decrease in (Ca)/sub i/ from 96 /plus minus/ 7 to 72 /plus minus/ 5 nM with a time course similar to that of alteration in contractile amplitude. These results indicate that PMA influences transsarcolemmal Ca uptake, and thus the excitation-contraction process, and suggest that protein kinase C may modulate myocardial Ca homeostassis and contractile state.

  20. Optimization of myocardial function.

    PubMed

    Alpert, N R; Mulieri, L A; Hasenfuss, G; Holubarsch, C

    1993-01-01

    Under normal conditions the cardiac output is designed to meet the metabolic needs of the organism. Thus, the demands imposed on the heart muscle can range from low values at rest to an order of magnitude greater values during exercise. The heart uses a number of strategies to meet the short- and long-term changes in demand. These strategies are of general biological interest and employ similar mechanisms to those responsible for the differences in muscle performance seen between muscle from various species and diverse muscle types within a given animal. This review deals with the heart's utilization of these strategies to meet a broad range of requirements. Tortoise (TM) and rat soleus (RS) muscles are slow, have high economy and develop low power. In contrast (FM) and rat extensor digitorum longus (REDL) are fast, have low economy and have a high power output. These differences are explainable in terms of the characteristics of the myosin head cross-bridge cycle (Cross-bridge tension-time integral: FM/FT = 0.024; REDL/RS = 0.16. Myosin ATPase activity: FM/TM = 15; RDEL/RS = 2.3) and excitation contraction coupling system (time to peak tension: FM/TM = 0.2; REDL/RS = 0.4). Heart muscle employs similar strategies (cross-bridge cycle; excitation contraction coupling) to meet short (catecholamine) and long (hypertrophy secondary to pressure overload or thyrotoxicosis) term changes in demand. In the presence of catecholamine power is increased while economy is decreased. This difference between control (C) and isoproterenol treated hearts (I) is explainable in terms of the contractile and excitation contraction coupling systems (Cross-bridge tension-time integral: I/C = 0.4. Tension independent heat: I/C = 2.0. Tension independent heat rate: I/C = 2.5). A persistent increase in the demand on the heart results in myocardial hypertrophy that is associated with intracellular reorganization. Hyperthyroidism (T) and pressure overload (PO) were used to produce myocardial

  1. Caffeine and taurine containing energy drink increases left ventricular contractility in healthy volunteers.

    PubMed

    Doerner, Jonas M; Kuetting, Daniel L; Luetkens, Julian A; Naehle, Claas P; Dabir, Darius; Homsi, Rami; Nadal, Jennifer; Schild, Hans H; Thomas, Daniel K

    2015-03-01

    To investigate the impact of a caffeine and taurine containing energy drink (ED) on myocardial contractility in healthy volunteers using cardiac MR and cardiac MR based strain analysis. 32 healthy volunteers (mean age 28 years) were investigated before and 1 h after consumption of a caffeine and taurine containing ED. For assessment of global cardiac functional parameters balanced SSFP-Cine imaging was performed, whereas CSPAMM tagging was used to evaluate global and regional myocardial strain. In addition, ten randomly chosen subjects were investigated once more using a caffeine only protocol to further evaluate the effect of caffeine solely. Heart rate and blood pressure were recorded throughout all studies. ED consumption led to a significant increase in peak systolic strain (PSS) and peak systolic strain rate (PSSR) 1 h after consumption (PSS: w/o ED -22.8 ± 2.1%; w ED -24.3 ± 2.4%, P = <0.0001 and PSSR: w/o ED -1.2 ± 0.1 1/s; w ED -1.3 ± 0.2 1/s, P = 0.0056), which was not observed in the caffeine only group. In contrast, global left ventricular function was unchanged (P = 0.2076). No significant changes of vital parameters and diastolic filling pattern were detected 1 h after ED consumption. Consumption of a caffeine and taurine containing ED results in a subtle, but significant increase of myocardial contractility 1 h after consumption.

  2. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice

    PubMed Central

    Green, Eric M.; Wakimoto, Hiroko; Anderson, Robert L.; Evanchik, Marc J.; Gorham, Joshua M.; Harrison, Brooke C.; Henze, Marcus; Kawas, Raja; Oslob, Johan D.; Rodriguez, Hector M.; Song, Yonghong; Wan, William; Leinwand, Leslie A.; Spudich, James A.; McDowell, Robert S.; Seidman, J. G.; Seidman, Christine E.

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is an inherited disease of heart muscle that can be caused by mutations in sarcomere proteins. Clinical diagnosis depends on an abnormal thickening of the heart, but the earliest signs of disease are hyperdynamic contraction and impaired relaxation. Whereas some in vitro studies of power generation by mutant and wild-type sarcomere proteins are consistent with mutant sarcomeres exhibiting enhanced contractile power, others are not. We identified a small molecule, MYK-461, that reduces contractility by decreasing the adenosine triphosphatase activity of the cardiac myosin heavy chain. Here we demonstrate that early, chronic administration of MYK-461 suppresses the development of ventricular hypertrophy, cardiomyocyte disarray, and myocardial fibrosis and attenuates hypertrophic and profibrotic gene expression in mice harboring heterozygous human mutations in the myosin heavy chain. These data indicate that hyperdynamic contraction is essential for HCM pathobiology and that inhibitors of sarcomere contraction may be a valuable therapeutic approach for HCM. PMID:26912705

  3. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice.

    PubMed

    Green, Eric M; Wakimoto, Hiroko; Anderson, Robert L; Evanchik, Marc J; Gorham, Joshua M; Harrison, Brooke C; Henze, Marcus; Kawas, Raja; Oslob, Johan D; Rodriguez, Hector M; Song, Yonghong; Wan, William; Leinwand, Leslie A; Spudich, James A; McDowell, Robert S; Seidman, J G; Seidman, Christine E

    2016-02-05

    Hypertrophic cardiomyopathy (HCM) is an inherited disease of heart muscle that can be caused by mutations in sarcomere proteins. Clinical diagnosis depends on an abnormal thickening of the heart, but the earliest signs of disease are hyperdynamic contraction and impaired relaxation. Whereas some in vitro studies of power generation by mutant and wild-type sarcomere proteins are consistent with mutant sarcomeres exhibiting enhanced contractile power, others are not. We identified a small molecule, MYK-461, that reduces contractility by decreasing the adenosine triphosphatase activity of the cardiac myosin heavy chain. Here we demonstrate that early, chronic administration of MYK-461 suppresses the development of ventricular hypertrophy, cardiomyocyte disarray, and myocardial fibrosis and attenuates hypertrophic and profibrotic gene expression in mice harboring heterozygous human mutations in the myosin heavy chain. These data indicate that hyperdynamic contraction is essential for HCM pathobiology and that inhibitors of sarcomere contraction may be a valuable therapeutic approach for HCM.

  4. [Modifying effect of incorporated 137Cs on the mechanism of adrenergic control of myocardial contraction].

    PubMed

    Lobanok, L M; Bulanova, K Ia; Gerasimovich, N V; Sineleva, M V; Miliutin, A A

    1994-01-01

    Incorporated 137Cs (absorbed dose of 0.26 Gy) causes decrease of myocardial's contractile function and inotropic response to beta-adrenagonists effect, isoproterenol-stimulated adenylate cyclase activity and beta-adrenoreceptors affinity. Adrenergic effects, mediated by alpha-adrenergic structures on heart contractile function, on the contrary, become stronger, that is due to the increase of the receptors' density on sarcolemma surface.

  5. Oxidative modification of tropomyosin and myocardial dysfunction following coronary microembolization.

    PubMed

    Canton, Marcella; Skyschally, Andreas; Menabò, Roberta; Boengler, Kerstin; Gres, Petra; Schulz, Rainer; Haude, Michael; Erbel, Raimund; Di Lisa, Fabio; Heusch, Gerd

    2006-04-01

    We addressed a potential mechanism of myocardial dysfunction following coronary microembolization at the level of myofibrillar proteins. Anaesthetized pigs underwent intracoronary infusion of microspheres. After 6 h, the microembolized areas (MEA) had decreased systolic wall thickening to 38 +/- 7% of baseline and a 2.62 +/- 0.40-fold increase in the formation of disulphide cross-bridges (DCB) in tropomyosin relative to that in remote areas. The impairment in contractile function correlated inversely with DCB formation (r = -0.68; P = 0.015) and was associated with increased TNF-alpha content. DCB formation was reflected by increased tropomyosin immunoreactivity and abolished in vitro by dithiothreitol. Ascorbic acid prevented contractile dysfunction as well as increased DCB and TNF-alpha. In anaesthetized dogs, 8 h after intracoronary microspheres infusion, contractile function was reduced to 8+/-10% of baseline and DCB in MEA was 1.48+/-0.12 higher than that in remote areas. In conscious dogs, 6 days after intracoronary microspheres infusion, myocardial function had returned to baseline and DCB was no longer different between remote and MEA. Again contractile function correlated inversely with DCB formation (r = -0.83; P = 0.005). Myofibrillar protein oxidation may represent a mechanistic link between inflammation and contractile dysfunction following coronary microembolization.

  6. Dynamic Dyssynchrony and Impaired Contractile Reserve of the Left Ventricle in Beta-Thalassaemia Major: An Exercise Echocardiographic Study

    PubMed Central

    Cheung, Yiu-fai; Yu, Wei; Li, Shu-na; Lam, Wendy W. M.; Ho, Yuen-chi; Wong, Sophia J.; Chan, Godfrey C. F.; Ha, Shau-yin

    2012-01-01

    Background Performance of the left ventricle during exercise stress in thalassaemia patients is uncertain. We aimed to explore the phenomenon of dynamic dyssynchrony and assess contractile reserve in patients with beta-thalassaemia major and determine their relationships with myocardial iron load. Methods and Results Thirty-two thalassaemia patients (16 males), aged 26.8±6.9 years, without heart failure and 17 healthy controls were studied. Their left ventricular (LV) volumes, ejection fraction, systolic dyssynchrony index (SDI), and myocardial acceleration during isovolumic LV contraction (IVA) were determined at rest and during submaximal bicycle exercise testing using 3-dimensional and tissue Doppler echocardiography. Myocardial iron load as assessed by T2* cardiac magnetic resonance in patients were further related to indices of LV dyssynchrony and contractile reserve. At rest, patients had significantly greater LV SDI (p<0.001) but similar IVA (p = 0.22) compared with controls. With exercise stress, the prevalence of mechanical dyssynchrony (SDI>4.6%, control+2SD) increased from baseline 25% to 84% in patients. Δ SDIexercise-baseline correlated with exercise-baseline differences in LV ejection fraction (p<0.001) and stroke volume (p = 0.006). Compared with controls, patients had significantly less exercise-induced increase in LV ejection fraction, cardiac index, and IVA (interaction, all p<0.05) and had impaired contractile reserve as reflected by the gentler IVA-heart rate slope (p = 0.018). Cardiac T2* in patients correlated with baseline LV SDI (r = −0.44, p = 0.011) and IVA-heart rate slope (r = 0.36, p = 0.044). Conclusions Resting LV dyssynchrony is associated with myocardial iron load. Exercise stress further unveils LV dynamic dyssynchrony and impaired contractile reserve in patients with beta-thalassaemia major. PMID:23028894

  7. Regulation of cardiac myocyte contractility by phospholemman: Na+/Ca2+ exchange versus Na+ -K+ -ATPase.

    PubMed

    Song, Jianliang; Zhang, Xue-Qian; Wang, JuFang; Cheskis, Ellina; Chan, Tung O; Feldman, Arthur M; Tucker, Amy L; Cheung, Joseph Y

    2008-10-01

    Phospholemman (PLM) regulates cardiac Na(+)/Ca(2+) exchanger (NCX1) and Na(+)-K(+)-ATPase in cardiac myocytes. PLM, when phosphorylated at Ser(68), disinhibits Na(+)-K(+)-ATPase but inhibits NCX1. PLM regulates cardiac contractility by modulating Na(+)-K(+)-ATPase and/or NCX1. In this study, we first demonstrated that adult mouse cardiac myocytes cultured for 48 h had normal surface membrane areas, t-tubules, and NCX1 and sarco(endo)plasmic reticulum Ca(2+)-ATPase levels, and retained near normal contractility, but alpha(1)-subunit of Na(+)-K(+)-ATPase was slightly decreased. Differences in contractility between myocytes isolated from wild-type (WT) and PLM knockout (KO) hearts were preserved after 48 h of culture. Infection with adenovirus expressing green fluorescent protein (GFP) did not affect contractility at 48 h. When WT PLM was overexpressed in PLM KO myocytes, contractility and cytosolic Ca(2+) concentration ([Ca(2+)](i)) transients reverted back to those observed in cultured WT myocytes. Both Na(+)-K(+)-ATPase current (I(pump)) and Na(+)/Ca(2+) exchange current (I(NaCa)) in PLM KO myocytes rescued with WT PLM were depressed compared with PLM KO myocytes. Overexpressing the PLMS68E mutant (phosphomimetic) in PLM KO myocytes resulted in the suppression of I(NaCa) but had no effect on I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the PLMS68E mutant were depressed compared with PLM KO myocytes overexpressing GFP. Overexpressing the PLMS68A mutant (mimicking unphosphorylated PLM) in PLM KO myocytes had no effect on I(NaCa) but decreased I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the S68A mutant were similar to PLM KO myocytes overexpressing GFP. We conclude that at the single-myocyte level, PLM affects cardiac contractility and [Ca(2+)](i) homeostasis primarily by its direct

  8. Electrically contractile polymers augment right ventricular output in the heart.

    PubMed

    Ruhparwar, Arjang; Piontek, Patricia; Ungerer, Matthias; Ghodsizad, Ali; Partovi, Sasan; Foroughi, Javad; Szabo, Gabor; Farag, Mina; Karck, Matthias; Spinks, Geoffrey M; Kim, Seon Jeong

    2014-12-01

    Research into the development of artificial heart muscle has been limited to assembly of stem cell-derived cardiomyocytes seeded around a matrix, while nonbiological approaches to tissue engineering have rarely been explored. The aim of the study was to apply electrically contractile polymer-based actuators as cardiomyoplasty for positive inotropic support of the right ventricle. Complex trilayer polypyrrole (PPy) bending polymers for high-speed applications were generated. Bending motion occurred directly as a result of electrochemically driven charging and discharging of the PPy layers. In a rat model (n = 5), strips of polymers (3 × 20 mm) were attached and wrapped around the right ventricle (RV). RV pressure was continuously monitored invasively by direct RV cannulation. Electrical activation occurred simultaneously with either diastole (in order to evaluate the polymer's stand-alone contraction capacity; group 1) or systole (group 2). In group 1, the pressure generation capacity of the polymers was measured by determining the area under the pressure curve (area under curve, AUC). In group 2, the RV pressure AUC was measured in complexes directly preceding those with polymer contraction and compared to RV pressure complexes with simultaneous polymer contraction. In group 1, the AUC generated by polymer contraction was 2768 ± 875 U. In group 2, concomitant polymer contraction significantly increased AUC compared with complexes without polymer support (5987 ± 1334 U vs. 4318 ± 691 U, P ≤ 0.01). Electrically contractile polymers are able to significantly augment right ventricular contraction. This approach may open new perspectives for myocardial tissue engineering, possibly in combination with fetal or embryonic stem cell-derived cardiomyocytes.

  9. Facilitated ethanol metabolism promotes cardiomyocyte contractile dysfunction through autophagy in murine hearts

    PubMed Central

    Guo, Rui; Hu, Nan; Kandadi, Machender R.; Ren, Jun

    2012-01-01

    Chronic drinking leads to myocardial contractile dysfunction where ethanol metabolism plays an essential role. Acetaldehyde, the main ethanol metabolite, mediates alcohol-induced cell injury although the underlying mechanism is still elusive. This study was designed to examine the mechanism involved in accelerated ethanol metabolism-induced cardiac defect with a focus on autophagy. Wild-type FVB and cardiac-specific overexpression of alcohol dehydrogenase mice were placed on a 4% nutrition-balanced alcohol diet for 8 weeks. Myocardial histology, immunohistochemistry, autophagy markers and signal molecules were examined. Expression of micro RNA miR-30a, a potential target of Beclin 1, was evaluated by real-time PCR. Chronic alcohol intake led to cardiac acetaldehyde accumulation, hypertrophy and overt autophagosome accumulation (LC3-II and Atg7), the effect of which was accentuated by ADH. Signaling molecules governing autophagy initiation including class III PtdIns3K, phosphorylation of mTOR and p70S6K were enhanced and dampened, respectively, following alcohol intake. These alcohol-induced signaling responses were augmented by ADH. ADH accentuated or unmasked alcohol-induced downregulation of Bcl-2, Bcl-xL and MiR-30a. Interestingly, ADH aggravated alcohol-induced p62 accumulation. Autophagy inhibition using 3-MA abolished alcohol-induced cardiomyocyte contractile anomalies. Moreover, acetaldehyde led to cardiomyocyte contractile dysfunction and autophagy induction, which was ablated by 3-MA. Ethanol or acetaldehyde increased GFP-LC3 puncta in H9c2 cells, the effect of which was ablated by 3-MA but unaffected by lysosomal inhibition using bafilomycin A1, E64D and pepstatin A. In summary, these data suggested that facilitated acetaldehyde production via ADH following alcohol intake triggered cardiac autophagosome formation along with impaired lysosomal degradation, en route to myocardial defect. PMID:22441020

  10. Patterns of ectopy leading to increased risk of fatal or near-fatal cardiac arrhythmia in patients with depressed left ventricular function after an acute myocardial infarction.

    PubMed

    Lerma, Claudia; Gorelick, Alexander; Ghanem, Raja N; Glass, Leon; Huikuri, Heikki V

    2013-09-01

    To identify potential new markers for assessing the risk of sudden arrhythmic events based on a method that captures features of premature ventricular complexes (PVCs) in relation to sinus RR intervals in Holter recordings (heartprint). Holter recordings obtained 6 weeks after acute myocardial infarction from 227 patients with reduced ventricular function (left ventricular ejection fraction ≤ 40%) were used to produce heartprints. Measured indices were: PVCs per hour, standard deviation of coupling interval (SDCI), and the number of occurrences of the most prevalent form of PVCs (SNIB). Predictive values, survival analysis, and Cox regression with adjustment for clinical variables were performed based on primary endpoint, defined as an electrocardiogram-documented fatal or near-fatal arrhythmic event, death from any cause, and cardiac death. High ectopy (PVCs per hour ≥10) was a predictor of all endpoints. Repeating forms of PVCs (SNIB ≥ 83) was a predictor of primary endpoint, hazard ratio = 3.5 (1.3-9.5), and all-cause death, hazard ratio = 2.8 (1.1-7.3), but not cardiac death. SDCI ≤ 80 ms was a predictor of all-cause death and cardiac death, but not of primary endpoint. High ectopy, prevalence of repeating forms of PVCs, and low coupling interval variability are potentially useful risk markers of fatal or near-fatal arrhythmias after myocardial infarction.

  11. Myocardial uptake of digoxin in chronically digitalized dogs.

    PubMed Central

    Steiness, E; Valentin, N

    1976-01-01

    1 The time course of myocardial uptake of digoxin, increase in contractility and changes in myocardial potassium concentration was studied for 90 min following an intravenous digoxin dose to long-term digitalized dogs. 2 Nineteen dogs were investigated by the use of a biopsy technique which allowed sampling before and after administration of digoxin. 3 Ten minutes after administration of digoxin the myocardial concentration increased from 60 to 306 nmol/kg tissue, the myocardial concentration of digoxin was significantly lower (250 nmol/kg tissue) after 30 min and then increased again. 4 The transmural myocardial distribution of digoxin was uniform before and 90 min after administration of digoxin in long-term digitalized dogs but at 10 min after administration, both the subepicardial and the subendocardial concentration of digoxin were significantly lower than that of the mesocardial layer. 5 During the first 10 min the dp/dtmax increased to 135% of the control level. The increase remained unchanged during the rest of the study. 6 Myocardial potassium decreased throughout the study. 7 The M-configuration of the myocardial uptake curve and the non-uniformity of myocardial distribution of digoxin observed at 10 min after administrating digoxin to long-term digitalized dogs indicate that the distribution of myocardial blood flow may be changed during chronic digitalization. PMID:1000132

  12. Combretastatin A4 disodium phosphate-induced myocardial injury

    PubMed Central

    Tochinai, Ryota; Nagata, Yuriko; Ando, Minoru; Hata, Chie; Suzuki, Tomo; Asakawa, Naoyuki; Yoshizawa, Kazuhiko; Uchida, Kazumi; Kado, Shoichi; Kobayashi, Toshihide; Kaneko, Kimiyuki; Kuwahara, Masayoshi

    2016-01-01

    Histopathological and electrocardiographic features of myocardial lesions induced by combretastatin A4 disodium phosphate (CA4DP) were evaluated, and the relation between myocardial lesions and vascular changes and the direct toxic effect of CA4DP on cardiomyocytes were discussed. We induced myocardial lesions by administration of CA4DP to rats and evaluated myocardial damage by histopathologic examination and electrocardiography. We evaluated blood pressure (BP) of CA4DP-treated rats and effects of CA4DP on cellular impedance-based contractility of human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs). The results revealed multifocal myocardial necrosis with a predilection for the interventricular septum and subendocardial regions of the apex of the left ventricular wall, injury of capillaries, morphological change of the ST junction, and QT interval prolongation. The histopathological profile of myocardial lesions suggested that CA4DP induced a lack of myocardial blood flow. CA4DP increased the diastolic BP and showed direct effects on hiPS-CMs. These results suggest that CA4DP induces dysfunction of small arteries and capillaries and has direct toxicity in cardiomyocytes. Therefore, it is thought that CA4DP induced capillary and myocardial injury due to collapse of the microcirculation in the myocardium. Moreover, the direct toxic effect of CA4DP on cardiomyocytes induced myocardial lesions in a coordinated manner. PMID:27559241

  13. Muscle contractile function and neural control after repetitive endurance cycling.

    PubMed

    Ross, Emma Z; Gregson, Warren; Williams, Karen; Robertson, Colin; George, Keith

    2010-01-01

    To examine alterations in muscle contractile properties, cortical excitability, and voluntary activation as a consequence of 20 d of repetitive endurance cycling within a 22-d period. Eight well-trained male cyclists completed 20 prolonged cycling stages interspersed by two rest days (days 9 and 17), which replicated the 2007 Tour de France route and schedule. Isometric knee extensor torque and EMG responses of the vastus lateralis in response to percutaneous electrical stimulation and transcranial magnetic stimulation were measured before, on days 9 and 17, and 2 d after completion of Tour de France. Postexercise measurements on days 9 and 17 were taken >18 h after cessation of the previous exercise bout. Maximal voluntary contraction of the knee extensors decreased by 20 +/- 10% (P < 0.01) during Tour de France but recovered after 2 d of rest. Peripherally evoked M-wave and potentiated twitch responses were also significantly decreased during Tour de France, up to 31 +/- 21% and 22 +/- 18%, respectively (P < 0.05), but returned to baseline values after 2 d of recovery. Voluntary activation was reduced to 75 +/- 8% (P < 0.05) during Tour de France and remained significantly depressed (79 +/- 7%, P < 0.05) after completion. The amplitude of motor evoked potentials was decreased by 44 +/- 28% (P < 0.01) on day 9 and remained significantly depressed during the remainder of, and after, Tour de France. A reduction in knee extensor strength, which occurs after repetitive prolonged cycling exercise, is a result of both central and peripheral processes. Reduced sarcolemmal excitability and impairment of contractile mechanisms exists even after 18 h of recovery. An enduring reduction in corticomotor output persists even after 2 d of rest.

  14. Calpain system and its involvement in myocardial ischemia and reperfusion injury

    PubMed Central

    Neuhof, Christiane; Neuhof, Heinz

    2014-01-01

    Calpains are ubiquitous non-lysosomal Ca2+-dependent cysteine proteases also present in myocardial cytosol and mitochondria. Numerous experimental studies reveal an essential role of the calpain system in myocardial injury during ischemia, reperfusion and postischemic structural remodelling. The increasing Ca2+-content and Ca2+-overload in myocardial cytosol and mitochondria during ischemia and reperfusion causes an activation of calpains. Upon activation they are able to injure the contractile apparatus and impair the energy production by cleaving structural and functional proteins of myocytes and mitochondria. Besides their causal involvement in acute myocardial dysfunction they are also involved in structural remodelling after myocardial infarction by the generation and release of proapoptotic factors from mitochondria. Calpain inhibition can prevent or attenuate myocardial injury during ischemia, reperfusion, and in later stages of myocardial infarction. PMID:25068024

  15. The influence of hypertonic mannitol on regional myocardial blood flow during acute and chronic myocardial ischemia in anesthetized and awake intact dogs.

    PubMed Central

    Willerson, J T; Watson, J T; Hutton, I; Fixler, D E; Curry, G C; Templeton, G H

    1975-01-01

    The influence of hypertonic mannitol on regional myocardial blood flow and ventricular performance was studied during acute myocardial ischemia in awake, unsedated and in anesthesized dogs and after myocardial infarction in awake unsedated dogs. Regional myocardial blood flow was measured with radioactive microspheres. Generalized increases in regional myocardial blood flow occurred after mannitol in all of the different animal models studied. The increases in coronary blood flow after mannitol were just as impressive in the nonischemic regions as in the ischemic portion of the left ventricle in all of the different models that were examined in this study. Improvement in regional myocardial blood flow to the ischemic area of the left ventricle after mannitol was associated with a reduction in ST segment elevation during acute myocardial ischemia in anesthetized dogs. The increases in regional myocardial flow after mannitol were also associated with increases in contractility, but the increases in flow appeared to be more impressive than the changes in contractility. The data obtained demonstrate that mannitol increases regional coronary blood flow to both ischemic and nonischemic myocardium in both anesthetized and awake, unsedated, intact dogs with acute and chronic myocardial ischemia and that mannitol reduces ST segment elevation during acute myocardial ischemia in anesthetized dogs. Thus the results suggest that under these circumstances the increases in regional myocardial blood flow after mannitol are of physiological importance in reducing the extent of myocardial injury. Since coronary blood flow increased to nonischemic regions the increases in regional myocardial flow demonstrated in this study after mannitol cannot be entirely explained by the mechanism of reduction in ischemic cell swelling. PMID:1123427

  16. Correlation between myocardial dysfunction and perfusion impairment in diabetic rats with velocity vector imaging and myocardial contrast echocardiography.

    PubMed

    Wei, Zhangrui; Zhang, Haibin; Su, Haili; Zhu, Ting; Zhu, Yongsheng; Zhang, Jun

    2012-11-01

    The purpose of this study was to investigate whether myocardial systolic dysfunction and perfusion impairment occur in diabetic rats, and to assess their relationship using velocity vector imaging (VVI) and myocardial contrast echocardiography (MCE). Forty-six rats were randomly divided into either control or the diabetes mellitus (DM) groups. DM was induced by intraperitoneal administration of streptozotocin. Twelve weeks later, 39 survival rats underwent VVI and MCE in short-axis view at the middle level of the left ventricle, both at rest and after dipyridamole stress. VVI-derived contractile parameters included peak systolic velocity (Vs ), circumferential strain (εc ), strain rate (SRc ), and their reserves. MCE-derived perfusion parameters consisted of myocardial blood flow (MBF) and myocardial flow reserve (MFR). At rest, SRc in the DM group was significantly lower than in the control group, Vs , εc , and MBF did not differ significantly between groups. After dipyridamole stress, all VVI parameters and their reserves in the DM group were significantly lower than those in the control group, MBF and MFR were substantially lower than those in the control group, too. Meanwhile, significant correlations between VVI parameter reserves and MFR were observed in the DM group. Both myocardial systolic function and perfusion were impaired in DM rats. Decreased MFR could be an important contributor to the reduction in myocardial contractile reserve.

  17. Contractile forces in tumor cell migration

    PubMed Central

    Mierke, Claudia Tanja; Rösel, Daniel; Fabry, Ben; Brábek, Jan

    2008-01-01

    Cancer is a deadly disease primarily because of the ability of tumor cells to spread from the primary tumor, to invade into the connective tissue, and to form metastases at distant sites. In contrast to cell migration on a planar surface where large cell tractions and contractile forces are not essential, tractions and forces are thought to be crucial for overcoming the resistance and steric hindrance of a dense 3-dimensional connective tissue matrix. In this review, we describe recently developed biophysical tools including 2-D and 3-D traction microscopy to measure contractile forces of cells. We discuss evidence indicating that tumor cell invasiveness is associated with increased contractile force generation. PMID:18295931

  18. Controlling contractile instabilities in the actomyosin cortex

    PubMed Central

    Nishikawa, Masatoshi; Naganathan, Sundar Ram; Jülicher, Frank; Grill, Stephan W

    2017-01-01

    The actomyosin cell cortex is an active contractile material for driving cell- and tissue morphogenesis. The cortex has a tendency to form a pattern of myosin foci, which is a signature of potentially unstable behavior. How a system that is prone to such instabilities can rveliably drive morphogenesis remains an outstanding question. Here, we report that in the Caenorhabditis elegans zygote, feedback between active RhoA and myosin induces a contractile instability in the cortex. We discover that an independent RhoA pacemaking oscillator controls this instability, generating a pulsatory pattern of myosin foci and preventing the collapse of cortical material into a few dynamic contracting regions. Our work reveals how contractile instabilities that are natural to occur in mechanically active media can be biochemically controlled to robustly drive morphogenetic events. DOI: http://dx.doi.org/10.7554/eLife.19595.001 PMID:28117665

  19. Commonly used intravenous anesthetics decrease bladder contractility: An in vitro study of the effects of propofol, ketamine, and midazolam on the rat bladder

    PubMed Central

    Ceran, Canan; Pampal, Arzu; Goktas, Ozgur; Pampal, H. Kutluk; Olmez, Ercument

    2010-01-01

    Aim: This study was designed to test the hypothesis that propofol, ketamine, and midazolam could alter the contractile activity of detrusor smooth muscle. Materials and Methods: Four detrusor muscle strips isolated from each rat bladder (n = 12) were placed in 4 tissue baths containing Krebs-Henseleit solution. The carbachol (10 −8to 10−4mol/L)-induced contractile responses as well as 5, 10, 20, 30, 40, 50 Hz electrical field stimulation (EFS)-evoked contractile responses of the detrusor muscles were recorded using isometric contraction measurements. After obtaining basal responses, the in vitro effects of propofol, ketamine, midazolam (10−5 to 10−3 mol/L), and saline on the contractile responses of the detrusor muscle strips were recorded and evaluated. Results: All the 3 drugs reduced the carbachol-induced and/or EFS-evoked contractile responses of rat detrusor smooth muscles in different degrees. Midazolam (10−4 to 10−3 mol/L) caused a significant decrease in the contractile responses elicited by either EFS or carbachol (P=0.000−0.013). Propofol (10−3mol/L) caused a decrease only in EFS-evoked contractile responses (P=0.001−0.004) and ketamine (10−3mol/L) caused a decrease only in carbachol-induced contractile responses (P=0.001−0.034). Conclusion: We evaluated the effects of the 3 different intravenous anesthetics on detrusor contractile responses in vitro and found that there are possible interactions between anesthetic agents and detrusor contractile activity. The depressant effects of midazolam on the contractile activity were found to be more significant than ketamine and propofol. Despite the necessity of further studies, it could be a piece of wise advice to clinicians to keep the probable alterations due to intravenous anesthetics in mind, while evaluating the results of urodynamic studies in children under sedation. PMID:21116355

  20. Genetic removal of basal nitric oxide enhances contractile activity in isolated murine collecting lymphatic vessels.

    PubMed

    Scallan, Joshua P; Davis, Michael J

    2013-04-15

    The role of nitric oxide (NO) in regulating lymphatic contractile function and, consequently, lymph flow has been the subject of intense study. Despite this, the precise effects of NO on lymphatic contractile activity remain unclear. Recent hypotheses posit that basal levels of endogenous NO increase lymphatic contraction strength as a consequence of lowering frequency (i.e. positive lusitropy), whereas higher agonist-evoked concentrations of NO exert purely inhibitory effects on contractile function. We tested both hypotheses directly by isolating and cannulating collecting lymphatic vessels from genetically modified mice for ex vivo study. The effects of basal NO and agonist-evoked NO were evaluated, respectively, by exposing wild-type (WT), endothelial NO synthase (eNOS)(-/-) and inducible NO synthase (iNOS)(-/-) lymphatic vessels to controlled pressure steps followed by ACh doses. To compare with pharmacological inhibition of eNOS, we repeated both tests in the presence of l-NAME. Surprisingly, genetic removal of basal NO enhanced contraction amplitude significantly without increasing contraction frequency. Higher levels of NO production stimulated by ACh evoked dilation, decreased tone, slowed contraction frequency and reduced fractional pump flow. We conclude that basal NO specifically depresses contraction amplitude, and that greater NO production then inhibits all other aspects of contractile function. Further, this work demonstrates definitively that mouse collecting lymphatic vessels exhibit autonomous, large-amplitude contractions that respond to pressure similarly to collecting lymphatics of other mammalian species. At least in the peripheral lymphatic vasculature, NO production depresses contractile function, which influences lymph flow needed for fluid regulation, humoral immunity and cancer metastasis.

  1. Diaphragm muscle weakness in mice is early-onset post-myocardial infarction and associated with elevated protein oxidation.

    PubMed

    Bowen, T Scott; Mangner, Norman; Werner, Sarah; Glaser, Stefanie; Kullnick, Yvonne; Schrepper, Andrea; Doenst, Torsten; Oberbach, Andreas; Linke, Axel; Steil, Leif; Schuler, Gerhard; Adams, Volker

    2015-01-01

    Heart failure induced by myocardial infarction (MI) causes diaphragm muscle weakness, with elevated oxidants implicated. We aimed to determine whether diaphragm muscle weakness is 1) early-onset post-MI (i.e., within the early left ventricular remodeling phase of 72 h); and 2) associated with elevated protein oxidation. Ligation of the left coronary artery to induce MI (n = 10) or sham operation (n = 10) was performed on C57BL6 mice. In vitro contractile function of diaphragm muscle fiber bundles was assessed 72 h later. Diaphragm mRNA and protein expression, enzyme activity, and individual carbonylated proteins (by two-dimensional differential in-gel electrophoresis and mass spectrometry) were subsequently assessed. Infarct size averaged 57 ± 1%. Maximal diaphragm function was reduced (P < 0.01) by 20% post-MI, with the force-frequency relationship depressed (P < 0.01) between 80 and 300 Hz. The mRNA expression of inflammation, atrophy, and regulatory Ca(2+) proteins remained unchanged post-MI, as did the protein expression of key contractile proteins. However, enzyme activity of the oxidative sources NADPH oxidase and xanthine oxidase was increased (P < 0.01) by 45 and 33%, respectively. Compared with sham, a 57 and 45% increase (P < 0.05) was observed in the carbonylation of sarcomeric actin and creatine kinase post-MI, respectively. In conclusion, diaphragm muscle weakness was rapidly induced in mice during the early left ventricular remodeling phase of 72 h post-MI, which was associated with increased oxidation of contractile and energetic proteins. Collectively, these findings suggest diaphragm muscle weakness may be early onset in heart failure, which is likely mediated in part by posttranslational oxidative modifications at the myofibrillar level. Copyright © 2015 the American Physiological Society.

  2. Diaphragm muscle weakness in mice is early-onset post-myocardial infarction and associated with elevated protein oxidation

    PubMed Central

    Mangner, Norman; Werner, Sarah; Glaser, Stefanie; Kullnick, Yvonne; Schrepper, Andrea; Doenst, Torsten; Oberbach, Andreas; Linke, Axel; Steil, Leif; Schuler, Gerhard; Adams, Volker

    2014-01-01

    Heart failure induced by myocardial infarction (MI) causes diaphragm muscle weakness, with elevated oxidants implicated. We aimed to determine whether diaphragm muscle weakness is 1) early-onset post-MI (i.e., within the early left ventricular remodeling phase of 72 h); and 2) associated with elevated protein oxidation. Ligation of the left coronary artery to induce MI (n = 10) or sham operation (n = 10) was performed on C57BL6 mice. In vitro contractile function of diaphragm muscle fiber bundles was assessed 72 h later. Diaphragm mRNA and protein expression, enzyme activity, and individual carbonylated proteins (by two-dimensional differential in-gel electrophoresis and mass spectrometry) were subsequently assessed. Infarct size averaged 57 ± 1%. Maximal diaphragm function was reduced (P < 0.01) by 20% post-MI, with the force-frequency relationship depressed (P < 0.01) between 80 and 300 Hz. The mRNA expression of inflammation, atrophy, and regulatory Ca2+ proteins remained unchanged post-MI, as did the protein expression of key contractile proteins. However, enzyme activity of the oxidative sources NADPH oxidase and xanthine oxidase was increased (P < 0.01) by 45 and 33%, respectively. Compared with sham, a 57 and 45% increase (P < 0.05) was observed in the carbonylation of sarcomeric actin and creatine kinase post-MI, respectively. In conclusion, diaphragm muscle weakness was rapidly induced in mice during the early left ventricular remodeling phase of 72 h post-MI, which was associated with increased oxidation of contractile and energetic proteins. Collectively, these findings suggest diaphragm muscle weakness may be early onset in heart failure, which is likely mediated in part by posttranslational oxidative modifications at the myofibrillar level. PMID:25359720

  3. Requirements for contractility in disordered cytoskeletal bundles

    NASA Astrophysics Data System (ADS)

    Lenz, Martin; Gardel, Margaret L.; Dinner, Aaron R.

    2012-03-01

    Actomyosin contractility is essential for biological force generation, and is well understood in highly organized structures such as striated muscle. Additionally, actomyosin bundles devoid of this organization are known to contract both in vivo and in vitro, which cannot be described by standard muscle models. To narrow down the search for possible contraction mechanisms in these systems, we investigate their microscopic symmetries. We show that contractile behavior requires non-identical motors that generate large-enough forces to probe the nonlinear elastic behavior of F-actin. This suggests a role for filament buckling in the contraction of these bundles, consistent with recent experimental results on reconstituted actomyosin bundles.

  4. [Relationship between the amplitude of myocardial contractions in frogs and the frequency of electrical stimulation. Role of external and intracellular calcium in the coupling of excitation and contraction].

    PubMed

    Khodorov, B I; Mukumov, M R; Kitaĭgorodskaia, G M; Khodorova, A B

    1977-01-01

    Ionic currents were studied on the frog atrial trabeculae (Rana ridibunda) at 20 degrees C using a double sucrose gap voltage clamp arrangement. The net inward current peaks did not change in the course of repetitive stimulation (0,5/s) in contrast to the increase of the contraction amplitude (isometric tension) in the similar conditions (Bowdich staircase). The slow component of the net inward current revealed under the action of TTX (2-10(-8) g/ml) was increased upon the increase of external Ca concentration but was blocked when D-600 was introduced into the solution. The inhibitory action of D-600 on the contraction amplitude was frequency independent (in the ranges: 0,1--0,7/s). The decrease of external Na+ (isoosmotic replacement of 70% NaCl by sucrose) or the increase (5-fold) of the external Ca2+ significantly enhanced the myocardial contraction depressed with D-600. However these contractions fall in the course of rhythmical stimulation, and the effect being strongly dependent on the rate of stimulation. The results confirm the assumption (see: Biophysics, 6, 1024, 1976), that intracellular Ca stores (sarcoplasmic reticulum, internal surface of the cellular membrane) are involved in the control of the contractility in the amphibian myocardial cells. Many peculiarities of the excitation-contraction coupling in the frog myocardial cells can be explaned if one assumes that: 1) there is no space separation of primary uptake and release of Ca ion sites in the frog myocardium; 2) the system of "resting Ca chanels" in the frog myocardial cells is not so well developed as in the mammalian myocardial cells.

  5. α,β-Unsaturated aldehyde crotonaldehyde triggers cardiomyocyte contractile dysfunction: role of TRPV1 and mitochondrial function.

    PubMed

    Pei, Zhaohui; Zhuang, Zhiqiang; Sang, Hanfei; Wu, Zhenbiao; Meng, Rongsen; He, Emily Y; Scott, Glenda I; Maris, Jackie R; Li, Ruiman; Ren, Jun

    2014-04-01

    Recent evidence has suggested that cigarette smoking is associated with an increased prevalence of heart diseases. Given that cigarette smoking triggers proinflammatory response via stimulation of the capsaicin-sensitive transient receptor potential cation channel TRPV1, this study was designed to evaluate the effect of an essential α,β-unsaturated aldehyde from cigarette smoke crotonaldehyde on myocardial function and the underlying mechanism with a focus on TRPV1 and mitochondria. Cardiomyocyte mechanical and intracellular Ca2+ properties were evaluated including peak shortening (PS), maximal velocity of shortening/relengthening (±dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90), fura-2 fluorescence intensity (FFI), intracellular Ca2+ decay and SERCA activity. Apoptosis and TRPV1 were evaluated using Western blot analysis. Production of reactive oxygen species (ROS) and DNA damage were measured using the intracellular fluoroprobe 5-(6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate and 8-hydroxy-2'-deoxyguanosine (8-OHdG), respectively. Our data revealed that crotonaldehyde interrupted cardiomyocyte contractile and intracellular Ca2+ property including depressed PS, ±dL/dt, ΔFFI and SERCA activity, as well as prolonged TR90 and intracellular Ca2+ decay. Crotonaldehyde exposure increased TRPV1 and NADPH oxidase levels, promoted apoptosis, mitochondrial injury (decreased aconitase activity, PGC-1α and UCP-2) as well as production of ROS and 8-OHdG. Interestingly, crotonaldehyde-induced cardiac defect was obliterated by the ROS scavenger glutathione and the TRPV1 inhibitor capsazepine. Capsazepine (not glutathione) ablated crotonaldehyde-induced mitochondrial damage. Capsazepine, glutathione and the NADPH inhibitor apocynin negated crotonaldehyde-induced ROS accumulation. Our data suggest a role of crotonaldehyde compromises cardiomyocyte mechanical function possibly through a TRPV1- and mitochondria-dependent oxidative stress mechanism.

  6. Severe Hypokalemia Masquerading Myocardial Ischemia

    PubMed Central

    Petrov, Daniel Bogdanov; Sardovski, Svetlozar Ivanov; Milanova, Maria Hristova

    2012-01-01

    An advanced degree of body potassium deficit may produce striking changes in the electrocardiogram (ECG). These changes can result in incidental findings on the 12-lead ECG or precipitate potentially life-threatening dysrhythmias. Although usually readily recognized, at times these abnormalities may be confused with myocardial ischemia. The object was to report a case of severe hypokalemia mimicking myocardial ischemia. A 33-year-old, previously healthy man, presented to the Emergency Department (ED) with a progressive weakness and chest discomfort. The electrocardiogram showed a marked ST-segment depression in leads II, III, aVF, V1-V6. The initial diagnosis was non ST-elevation myocardial infarction. Echocardiography was normal and troponin levels were within normal limits. A more detailed history revealed that the patient had an episode of acute gastroenteritis with diarrhea and vomiting. Serum chemistries were notable for a potassium concentration of 1,8 mmol per liter. With aggressive electrolyte correction, the ECG abnormalities reverted as potassium levels normalized. Hypokalemia induced ST-segment depression may simulate myocardial ischemia. The differential diagnosis might be difficult, especially in the cases when ST changes are accompanied with chest discomfort.

  7. [Psychiatric disorders following myocardial infarction].

    PubMed

    Meincke, Ulrich; Hoff, Paul

    2006-05-15

    The number of patients who survive acute myocardial infarction has increased during recent decades. In addition, demographic development results in a rising incidence of cardiovascular diseases. Based on these facts, also the significance of psychiatric disorders is growing that may occur after myocardial infarction, such as depression, posttraumatic stress and anxiety disorders. Physicians are faced with the challenge to identify these clinical entities, that show a syndromal overlap with somatic complaints after myocardial infarction. After differentiation prompt start of adequate psychiatric-psychotherapeutic interventions is of relevance, not only regarding the patient's quality of life, but also in terms of cardiovascular prognosis. Indeed, depressive and anxiety disorders are known to be associated with a poor compliance as for rehabilitation and secondary prevention of cardiovascular disorders. Moreover, some studies suggest depression to be an independent risk factor of coronary heart disease. Consequently, early recognition and treatment, most often primarily in the hands of internists and cardiologists, are of enormous importance for the course and prognosis of the psychiatric disorder but also of cardiovascular disease.

  8. Architecture and Connectivity Govern Actin Network Contractility.

    PubMed

    Ennomani, Hajer; Letort, Gaëlle; Guérin, Christophe; Martiel, Jean-Louis; Cao, Wenxiang; Nédélec, François; De La Cruz, Enrique M; Théry, Manuel; Blanchoin, Laurent

    2016-03-07

    Actomyosin contractility plays a central role in a wide range of cellular processes, including the establishment of cell polarity, cell migration, tissue integrity, and morphogenesis during development. The contractile response is variable and depends on actomyosin network architecture and biochemical composition. To determine how this coupling regulates actomyosin-driven contraction, we used a micropatterning method that enables the spatial control of actin assembly. We generated a variety of actin templates and measured how defined actin structures respond to myosin-induced forces. We found that the same actin filament crosslinkers either enhance or inhibit the contractility of a network, depending on the organization of actin within the network. Numerical simulations unified the roles of actin filament branching and crosslinking during actomyosin contraction. Specifically, we introduce the concept of "network connectivity" and show that the contractions of distinct actin architectures are described by the same master curve when considering their degree of connectivity. This makes it possible to predict the dynamic response of defined actin structures to transient changes in connectivity. We propose that, depending on the connectivity and the architecture, network contraction is dominated by either sarcomeric-like or buckling mechanisms. More generally, this study reveals how actin network contractility depends on its architecture under a defined set of biochemical conditions.

  9. Effect of propafenone on the contractile activity of Latissimus dorsi muscle isolated in an organ chamber: experimental study in rats.

    PubMed

    Simões, Ricardo; Machado, Eduardo Luis Guimarães; Freitas, Odilon Gariglio de Alvarenga; Moreira, Maria da Consolação Vieira; Gomes, Otoni Moreira

    2002-03-01

    To study the effect of propafenone on the contractile function of latissimus dorsi muscle isolated from rats in an organ chamber. We studied 20 latissimus dorsi muscles of Wistar rats and divided them into 2 groups: group I (n=10), or control group - we studied the feasibility of muscle contractility; group II (n=10), in which the contralateral muscles were grouped - we analyzed the effect of propafenone on muscle contractility. After building a muscle ring, 8 periods of sequential 2-minute baths were performed, with intervals of preprogrammed electrical stimulation using a pacemaker of 50 stimuli/min. In group II, propafenone, at the concentration of 9.8 microgram/mL, was added to the bath in period 2 and withdrawn in period 4. In group I, no significant depression in muscle contraction occurred up to period 5 (p>0.05). In group II, a significant depression occurred in all periods, except between the last 2 periods (p<0.05). Comparing groups I and II only in period 1, which was a standard period for both groups, we found no significant difference (p>0.05). Propafenone had a depressing effect on the contractile function of latissimus dorsi muscle isolated from rats and studied in an organ chamber.

  10. Combined assessment of reflow and collateral blood flow by myocardial contrast echocardiography after acute reperfused myocardial infarction

    PubMed Central

    Leclercq, F; Messner-Pellenc, P; Descours, Q; Daures, J; Pasquie, J; Hager, F; Davy, J; Grolleau-Raoux, R

    1999-01-01

    OBJECTIVE—To evaluate the combined assessment of reflow and collateral blood flow by myocardial contrast echocardiography after myocardial infarction.
DESIGN—Myocardial contrast echocardiography was performed in patients with acute myocardial infarction shortly after successful coronary reperfusion (TIMI 3 patency) by direct angioplasty. Collateral flow was assessed before coronary angioplasty, and contrast reflow was evaluated 15 minutes after reperfusion. The presence of contractile reserve was assessed by low dose dobutamine echocardiography (5 to 15 µg/kg/min) at (mean (SD)) 3 (2) days after myocardial infarction. Recovery of segmental function (myocardial viability) was evaluated by resting echocardiography at a two month follow up. The study was prospective.
PATIENTS—35 consecutive patients referred for acute transmural myocardial infarction.
RESULTS—Contrast reflow was observed in 20 patients (57%) and collateral flow in 14 (40%). Contrast reflow and collateral contrast flow were both correlated with reversible dysfunction on initial dobutamine echocardiography and at follow up (p < 0.05). The presence of reflow or collateral flow on myocardial contrast echocardiography was a highly sensitive (100%) but weakly specific (60%) indicator of segmental dysfunction recovery. Simultaneous presence of contrast reflow and collateral flow was more specific of reversible dysfunction than reflow alone (90% v 60%).
CONCLUSIONS—Combined assessment of reflow and collateral blood flow enhanced the sensitivity of myocardial contrast echocardiography in predicting myocardial viability after acute, reperfused myocardial infarction. The simultaneous presence of reflow and collateral blood flow was highly specific of recovery of segmental dysfunction.


Keywords: contrast echocardiography; coronary reflow; collateral blood flow; dobutamine echocardiography; myocardial dysfunction PMID:10377311

  11. [Changes in left-ventricular contractility and diastolic rigidity and the dynamics of various indicators of blood circulation in patients after aortic valve prosthesis].

    PubMed

    Vladimirov, P V; Tskhovrebov, S V; Lishchuk, V A; Zhadin, M M; Mostkova, E V

    1988-04-01

    The relationship between the stroke output and parameters relating to left-ventricular contraction and relaxation was examined within the early hours after the implantation of prosthetic aortic valve. Quantitative analysis demonstrated a close correlation between left-ventricular performance and diastolic regidity. Left-ventricular diastolic regidity is shown to make a more important contribution than contractility to the formation of stroke output. For this reasons, a therapy aiming only to improve myocardial contractility in patients after prosthetic aortic valve implantation failed to effectively improve their clinical condition.

  12. Recent insights in the paracrine modulation of cardiomyocyte contractility by cardiac endothelial cells.

    PubMed

    Noireaud, Jacques; Andriantsitohaina, Ramaroson

    2014-01-01

    The cardiac endothelium is formed by a continuous monolayer of cells that line the cavity of the heart (endocardial endothelial cells (EECs)) and the luminal surface of the myocardial blood vessels (intramyocardial capillary endothelial cells (IMCEs)). EECs and IMCEs can exercise substantial control over the contractility of cardiomyocytes by releasing various factors such as nitric oxide (NO) via a constitutive endothelial NO-synthase (eNOS), endothelin-1, prostaglandins, angiotensin II, peptide growth factors, and neuregulin-1. The purpose of the present paper is actually to shortly review recent new information concerning cardiomyocytes as effectors of endothelium paracrine signaling, focusing particularly on contractile function. The modes of action and the regulatory paracrine role of the main mediators delivered by cardiac endothelial cells upon cardiac contractility identified in cardiomyocytes are complex and not fully described. Thus, careful evaluation of new therapeutic approaches is required targeting important physiological signaling pathways, some of which have been until recently considered as deleterious, like reactive oxygen species. Future works in the field of cardiac endothelial cells and cardiac function will help to better understand the implication of these mediators in cardiac physiopathology.

  13. Recent Insights in the Paracrine Modulation of Cardiomyocyte Contractility by Cardiac Endothelial Cells

    PubMed Central

    Andriantsitohaina, Ramaroson

    2014-01-01

    The cardiac endothelium is formed by a continuous monolayer of cells that line the cavity of the heart (endocardial endothelial cells (EECs)) and the luminal surface of the myocardial blood vessels (intramyocardial capillary endothelial cells (IMCEs)). EECs and IMCEs can exercise substantial control over the contractility of cardiomyocytes by releasing various factors such as nitric oxide (NO) via a constitutive endothelial NO-synthase (eNOS), endothelin-1, prostaglandins, angiotensin II, peptide growth factors, and neuregulin-1. The purpose of the present paper is actually to shortly review recent new information concerning cardiomyocytes as effectors of endothelium paracrine signaling, focusing particularly on contractile function. The modes of action and the regulatory paracrine role of the main mediators delivered by cardiac endothelial cells upon cardiac contractility identified in cardiomyocytes are complex and not fully described. Thus, careful evaluation of new therapeutic approaches is required targeting important physiological signaling pathways, some of which have been until recently considered as deleterious, like reactive oxygen species. Future works in the field of cardiac endothelial cells and cardiac function will help to better understand the implication of these mediators in cardiac physiopathology. PMID:24745027

  14. Intravenous myocardial contrast echocardiography predicts regional and global left ventricular remodelling after acute myocardial infarction: comparison with low dose dobutamine stress echocardiography

    PubMed Central

    Abe, Y; Muro, T; Sakanoue, Y; Komatsu, R; Otsuka, M; Naruko, T; Itoh, A; Yoshiyama, M; Haze, K; Yoshikawa, J

    2005-01-01

    Objective: To assess the role of intravenous myocardial contrast echocardiography (MCE) in predicting functional recovery and regional or global left ventricular (LV) remodelling after acute myocardial infarction (AMI) compared with low dose dobutamine stress echocardiography (LDSE). Methods: 21 patients with anterior AMI and successful primary angioplasty underwent MCE and LDSE during the subacute stage (2–4 weeks after AMI). Myocardial perfusion and contractile reserve were assessed in each segment (12 segment model) with MCE and LDSE. The 118 dyssynergic segments in the subacute stage were classified as recovered, unchanged, or remodelled according to wall motion at six months’ follow up. Percentage increase in LV end diastolic volume (%ΔEDV) was also calculated. Results: The presence of perfusion was less accurate than the presence of contractile reserve in predicting regional recovery (55% v 81%, p < 0.0001). However, the absence of perfusion was more accurate than the absence of contractile reserve in predicting regional remodelling (83% v 48%, p < 0.0001). The number of segments without perfusion was an independent predictor of %ΔEDV, whereas the number of segments without contractile reserve was not. The area under the receiver operating characteristic curve showed that the number of segments without perfusion predicted substantial LV dilatation (%ΔEDV > 20%) more accurately than did the number of segments without contractile reserve (0.88 v 0.72). Conclusion: In successfully revascularised patients with AMI, myocardial perfusion assessed by MCE is predictive of regional and global LV remodelling rather than of functional recovery, whereas contractile reserve assessed by LDSE is predictive of functional recovery rather than of LV remodelling. PMID:15797931

  15. 3-dimensional structures to enhance cell therapy and engineer contractile tissue.

    PubMed

    Schussler, Olivier; Chachques, Juan C; Mesana, Thierry G; Suuronen, Erik J; Lecarpentier, Yves; Ruel, Marc

    2010-02-01

    Experimental studies in animals and recent human clinical trials have revealed the current limitations of cellular transplantation, which include poor cell survival, lack of cell engraftment, and poor differentiation. Evidence in animals suggests that use of a 3-dimensional scaffold may enhance cell therapy and engineer myocardial tissue by improving initial cell retention, survival, differentiation, and integration. Several scaffolds of synthetic or natural origin are under development. Until now, contractility has been demonstrated in vitro only in biological scaffolds prepared from decellularized organs or tissue, or in collagenic porous scaffold obtained by crosslinking collagen fibers. While contractility of a cellularized collagen construct is poor, it can be greatly enhanced by tumor basement membrane extract. Recent advances in biochemistry have shown improved cell-matrix interactions by coupling adhesion molecules to achieve an efficient and safe bioartificial myocardium with no tumoral component. Fixation of adhesion molecules may also be a way to enhance cell homing and/or differentiation to increase local angiogenesis. Whatever the clinically successful combination ultimately proves to be, it is likely that cell therapy will require providing a supportive biochemical, physical, and spatial environment that will allow the cells to optimally differentiate and integrate within the target myocardial tissue.

  16. [Effect of geomagnetic storms on the state of heart mitochondria and their role in providing energy for myocardial contraction].

    PubMed

    Frolov, V A; Pukhlianko, V P; Kazanskaia, T A; Chibisov, S M; Siatkin, S P

    1986-05-01

    The experiments on intact rabbits have shown that geomagnetic storm breaks the relationship between the size of myocardial mitochondria and the degree of cardiac contractility, causes swelling and further destruction of mitochondria. Geomagnetic storm leads to a decline in the left ventricular contractility. The development of geomagnetic storm is associated with a significant strong positive correlation between the size of mitochondria and the blood level of free fatty acids.

  17. Normal Contractile State of Hypertrophied Myocardium after Pulmonary Artery Constriction in the Cat

    PubMed Central

    Williams, John F.; Potter, Ralph D.

    1974-01-01

    The contractile function of right ventricular papillary muscles from normal cats and cats in which the pulmonary artery had been constricted for 6 or 24 wk was examined. Acute pulmonary artery constriction reduced cross-sectional area by an average of 70%, resulting in a 30% mortality from congestive heart failure, all such deaths occurring within the first 3 wk after banding. The increase in right ventricular mass in animals surviving for 6 or 24 wk was similar, averaging 70%. No banded animals had evidence of congestive heart failure at the time of sacrifice, and cardiac output and right atrial pressures were similar to those in control animals. 6 wk after banding, the active length-tension curve, maximal rate of rise of isometric force, force-velocity relations, and isometric force with paired stimulation and norepinephrine were all significantly depressed when compared to their respective values in control animals. In contrast, none of these variables was significantly different from control values in animals banded for 24 wk. These observations indicate that depressed contractile state is not a fundamental characteristic of pressure-induced hypertrophied myocardium and reemphasize the important temporal relationship between contractile state and the imposition of sudden sustained loads. Images PMID:4279927

  18. Contractile function is unaltered in diaphragm from mice lacking calcium release channel isoform 3

    NASA Technical Reports Server (NTRS)

    Clancy, J. S.; Takeshima, H.; Hamilton, S. L.; Reid, M. B.

    1999-01-01

    Skeletal muscle expresses at least two isoforms of the calcium release channel in the sarcoplasmic reticulum (RyR1 and RyR3). Whereas the function of RyR1 is well defined, the physiological significance of RyR3 is unclear. Some authors have suggested that RyR3 participates in excitation-contraction coupling and that RyR3 may specifically confer resistance to fatigue. To test this hypothesis, we measured contractile function of diaphragm strips from adult RyR3-deficient mice (exon 2-targeted mutation) and their heterozygous and wild-type littermates. In unfatigued diaphragm, there were no differences in isometric contractile properties (twitch characteristics, force-frequency relationships, maximal force) among the three groups. Our fatigue protocol (30 Hz, 0.25 duty cycle, 37 degrees C) depressed force to 25% of the initial force; however, lack of RyR3 did not accelerate the decline in force production. The force-frequency relationship was shifted to higher frequencies and was depressed in fatigued diaphragm; lack of RyR3 did not exaggerate these changes. We therefore provide evidence that RyR3 deficiency does not alter contractile function of adult muscle before, during, or after fatigue.

  19. Contractile function is unaltered in diaphragm from mice lacking calcium release channel isoform 3

    NASA Technical Reports Server (NTRS)

    Clancy, J. S.; Takeshima, H.; Hamilton, S. L.; Reid, M. B.

    1999-01-01

    Skeletal muscle expresses at least two isoforms of the calcium release channel in the sarcoplasmic reticulum (RyR1 and RyR3). Whereas the function of RyR1 is well defined, the physiological significance of RyR3 is unclear. Some authors have suggested that RyR3 participates in excitation-contraction coupling and that RyR3 may specifically confer resistance to fatigue. To test this hypothesis, we measured contractile function of diaphragm strips from adult RyR3-deficient mice (exon 2-targeted mutation) and their heterozygous and wild-type littermates. In unfatigued diaphragm, there were no differences in isometric contractile properties (twitch characteristics, force-frequency relationships, maximal force) among the three groups. Our fatigue protocol (30 Hz, 0.25 duty cycle, 37 degrees C) depressed force to 25% of the initial force; however, lack of RyR3 did not accelerate the decline in force production. The force-frequency relationship was shifted to higher frequencies and was depressed in fatigued diaphragm; lack of RyR3 did not exaggerate these changes. We therefore provide evidence that RyR3 deficiency does not alter contractile function of adult muscle before, during, or after fatigue.

  20. Usefulness of the QRS-T angle to improve long-term risk stratification of patients with acute myocardial infarction and depressed left ventricular ejection fraction.

    PubMed

    Raposeiras-Roubín, Sergio; Virgós-Lamela, Alejandro; Bouzas-Cruz, Noelia; López-López, Andrea; Castiñeira-Busto, María; Fernández-Garda, Rita; García-Castelo, Alberto; Rodríguez-Mañero, Moisés; García-Acuña, José María; Abu-Assi, Emad; González-Juanatey, José Ramón

    2014-04-15

    In light of the low cost, the widespread availability of the electrocardiogram, and the increasing economic burden of the health-related problems, we aimed to analyze the prognostic value of automatic frontal QRS-T angle to predict mortality in patients with left ventricular (LV) systolic dysfunction after acute myocardial infarction (AMI). About 467 consecutive patients discharged with diagnosis of AMI and with LV ejection fraction ≤40% were followed during 3.9 years (2.1 to 5.9). From them, 217 patients (47.5%) died. The frontal QRS-T angle was higher in patients who died (116.6±52.8 vs 77.9±55.1, respectively, p<0.001). The QRS-T angle value of 90° was the most accurate to predict all-cause cardiac death. After multivariate analysis, frontal QRS-T angle remained as an excellent predictor of all-cause and cardiac deaths, increasing the mortality 6% per each 10°. For the global mortality, the hazard ratio for a QRS-T angle>90° was 2.180 (1.558 to 3.050), and for the combined end point of cardiac death and appropriate implantable cardioverter defribrillator therapy, it was 2.385 (1.570 to 3.623). This independent predictive value was maintained even after adjusting by bundle brunch block, ST-elevation AMI, and its localization. In conclusion, a wide automatic frontal QRS-T angle (>90°) is a good discriminator of long-term mortality in patients with LV systolic dysfunction after an AMI. The ability to easily measure it from a standard 12-lead electrocardiogram together with its prognostic value makes the frontal QRS-T angle an attractive tool to help clinicians to improve risk stratification of those patients.

  1. Parametric display of myocardial function.

    PubMed

    Eusemann, C D; Ritman, E L; Bellemann, M E; Robb, R A

    2001-01-01

    Quantitative assessment of regional heart motion has significant potential to provide more specific diagnosis of cardiac disease and cardiac malfunction than currently possible. Local heart motion may be captured from various medical imaging scanners. In this study, 3-D reconstructions of pre-infarct and post-infarct hearts were obtained from the Dynamic Spatial Reconstructor (DSR)[Ritman EL, Robb RA, Harris LD. Imaging physiological functions: experience with DSR. Philadelphia: Praeger, 1985; Robb RA, Lent AH, Gilbert BK, Chu A. The dynamic spatial reconstructor: a computed tomography system for high-speed simultaneous scanning of multiple cross sections of the heart. J Med Syst 1980;4(2):253-88; Jorgensen SM, Whitlock SV, Thomas PJ, Roessler RW, Ritman EL. The dynamic spatial reconstructor: a high speed, stop action, 3-D, digital radiographic imager of moving internal organs and blood. Proceedings of SPIE, Ultrahigh- and High-speed Photography, Videography, Photonics, and Velocimetry 1990;1346:180-91.] (DSR). Using functional parametric mapping of disturbances in regional contractility and relaxation, regional myocardial motion during a cardiac cycle is color mapped onto a deformable heart model to facilitate appreciation of the structure-to-function relationships in the myocardium, such as occurs in regional patterns of akinesis or dyskinesis associated with myocardial ischemia or infarction resulting from coronary artery occlusion.

  2. Characteristics of nobiletin-induced effects on jejunal contractility.

    PubMed

    Xiong, Yong-Jian; Chen, Da-Peng; Lv, Bo-Chao; Liu, Fang-Fei; Wang, Li; Lin, Yuan

    2014-04-01

    Nobiletin, a citrus polymethoxylated flavone, exhibits multiple biological properties including anti-inflammatory, anti-carcinogenic, and anti-insulin resistance effects. The present study found that nobiletin exerted significant stimulatory effects on the contractility of isolated rat jejunal segments in all 6 different low contractile states, and meanwhile significant inhibitory effects in all 6 different high contractile states, showing characteristics of bidirectional regulation (BR). Nobiletin-exerted BR on jejunal contractility was abolished in the presence of c-kit receptor tyrosine kinase inhibitor imatinib or Ca(2+) channel blocker verapamil. In the presence of neuroxin tetrodotoxin, nobiletin only exerted stimulatory effects on jejunal contractility in both low and high contractile states. Hemicholinium-3 and atropine partially blocked nobiletin-exerted stimulatory effects on jejunal contractility in low-Ca(2+)-induced low contractile state. Phentolamine or propranolol or l-NG-nitro-arginine significantly blocked nobiletin-exerted inhibitory effects on jejunal contractility in high-Ca(2+)-induced high contractile state respectively. The effects of nobiletin on myosin light chain kinase (MLCK) mRNA expression, MLCK protein content, and myosin light chain phosphorylation extent were also bidirectional. In summary, nobiletin-exerted BR depends on the contractile states of rat jejunal segments. Nobiletin-exerted BR requires the enteric nervous system, interstitial cell of Cajal, Ca(2+), and myosin phosphorylation-related mechanisms.

  3. Enkephalin inhibits vagal control of heart rate, contractile force and coronary blood flow in the canine heart in vivo.

    PubMed

    Caffrey, J L

    1999-05-28

    The following studies were conducted to determine if the ability of the intrinsic cardiac opioid, met-enkephalin-arg-phe to interrupt vagal bradycardia can be generalized to include the disruption of vagal effects on atrial contraction and coronary blood flow. Anesthetized dogs were instrumented to measure heart rate and left atrial contractile force or heart rate and coronary blood flow. The response of each variable was recorded at rest and during vagal stimulation. During the evaluation of vagal effects on contractile activity and coronary blood flow, heart rate was maintained constant by electrically pacing the hearts above their resting heart rate. In the first protocol, vagal stimulation reduced both heart rate and atrial contractile force in a frequency dependent fashion. When met-enkephalin-arg-phe (MEAP) was infused systemically for three min at 3 nmol min(-1) kg(-1), there were no observed changes in resting heart rate or atrial contraction. However, when the vagal stimuli were reapplied during the peptide infusion, the previously observed vagal effects on rate and contractile force were reduced in magnitude by one-half to two-thirds. The ability of MEAP to interrupt the vagal control of heart rate and contractile activity involves opiate receptors since the effect was eliminated in both cases by prior opiate receptor blockade with the high affinity antagonist, diprenorphine. In the second protocol, vagal stimulation produced a transient increase in coronary blood flow and an accompanying increase in myocardial oxygen consumption. These effects were reduced by approximately 80% during the systemic infusion of MEAP. A similar increase in coronary blood flow mediated by the direct acting muscarinic agonist, methacholine, was unaltered by the infusion of peptide. In summary, these data suggest that the intrinsic cardiac enkephalin, MEAP, is capable of inhibiting the vagal control of heart rate, contractile force and coronary blood flow and probably does so

  4. Dual Role for Microtubules in Regulating Cortical Contractility during Cytokinesis

    PubMed Central

    Murthy, Kausalya; Wadsworth, Patricia

    2008-01-01

    Microtubules stimulate contractile ring formation in the equatorial cortex and simultaneously suppress contractility in the polar cortex; how they accomplish these differing activities is incompletely understood. We measured the behavior of GFP-actin in mammalian cells treated with nocodazole under conditions that either completely eliminate microtubules or selectively disassemble astral microtubules. Selective disassembly of astral microtubules resulted functional contractile rings that were wider than controls and had altered dynamic activity, as measured by FRAP. Complete microtubule disassembly or selective loss of astral microtubules resulted in wave-like contractile behavior of actin in the non-equatorial cortex and mislocalization of myosin II and Rho. FRAP experiments showed that both contractility and actin polymerization contributed to the wave-like behavior of actin. Wave-like, contractile behavior in anaphase cells was Rho-dependent. We conclude that dynamic astral microtubules function to suppress Rho activation in the nonequatorial cortex, limiting the contractile activity of the polar cortex. PMID:18559890

  5. Spontaneous actin dynamics in contractile rings

    NASA Astrophysics Data System (ADS)

    Kruse, Karsten; Wollrab, Viktoria; Thiagarajan, Raghavan; Wald, Anne; Riveline, Daniel

    Networks of polymerizing actin filaments are known to be capable to self-organize into a variety of structures. For example, spontaneous actin polymerization waves have been observed in living cells in a number of circumstances, notably, in crawling neutrophils and slime molds. During later stages of cell division, they can also spontaneously form a contractile ring that will eventually cleave the cell into two daughter cells. We present a framework for describing networks of polymerizing actin filaments, where assembly is regulated by various proteins. It can also include the effects of molecular motors. We show that the molecular processes driven by these proteins can generate various structures that have been observed in contractile rings of fission yeast and mammalian cells. We discuss a possible functional role of each of these patterns. The work was supported by Agence Nationale de la Recherche, France, (ANR-10-LABX-0030-INRT) and by Deutsche Forschungsgemeinschaft through SFB1027.

  6. [The anatomical substrate of muscle contractility].

    PubMed

    Rigoard, P; Bauche, S; Buffenoir, K; Giot, J-P; Faure, J-P; Scepi, M; Richer, J-P; Lapierre, F; Wager, M

    2009-03-01

    Muscle fiber action participates in a true contractile machinery associated with noncontractile components providing mechanical stability. The myofibril, the muscle fiber subentity, has an extremely consistent architecture, composed of longitudinal cylindrical units called sarcomeres, the skeletal muscle length functional unit, a highly important place in the transduction of chemical signal into mechanical contractile energy, for the most part mediated by calcium. The sarcoplasmic reticulum is the other major component of muscle fiber and is dedicated to calcium storage, liberation and distribution to the fiber, under the influence of action potential propagation. This phenomenon is called excitation-contraction coupling. This paper explores muscle anatomy from its main embryologic stages of development to its histochemical specificity, including its molecular constitution, and details the main morphofunctional relations supporting muscle contraction.

  7. Actomyosin contractility rotates the cell nucleus

    PubMed Central

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G. V.

    2014-01-01

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells. PMID:24445418

  8. Actomyosin contractility rotates the cell nucleus.

    PubMed

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G V

    2014-01-21

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells.

  9. Disappearing signs of acute myocardial infarction in a patient with viral myocarditis

    PubMed Central

    Bullón, F. Sarnago; Falzgraf, Sharon; Pedrero, Agustin Camacho; Jimenez, Manuel Abeytua

    1980-01-01

    A case of acute viral myocarditis with the rapid appearance and disappearance of clinical, laboratory, electrocardiographic, and vectorcardiographic signs of acute myocardial infarction is described in this report. Although segmentary alterations in contractility were demonstrated by ventriculography, coronary angiography revealed normal coronary arteries. Images PMID:15216283

  10. Contractile reserve and intracellular calcium regulation in mouse myocytes from normal and hypertrophied failing hearts

    NASA Technical Reports Server (NTRS)

    Ito, K.; Yan, X.; Tajima, M.; Su, Z.; Barry, W. H.; Lorell, B. H.; Schneider, M. (Principal Investigator)

    2000-01-01

    Mouse myocyte contractility and the changes induced by pressure overload are not fully understood. We studied contractile reserve in isolated left ventricular myocytes from mice with ascending aortic stenosis (AS) during compensatory hypertrophy (4-week AS) and the later stage of early failure (7-week AS) and from control mice. Myocyte contraction and [Ca(2+)](i) transients with fluo-3 were measured simultaneously. At baseline (0.5 Hz, 1.5 mmol/L [Ca(2+)](o), 25 degrees C), the amplitude of myocyte shortening and peak-systolic [Ca(2+)](i) in 7-week AS were not different from those of controls, whereas contraction, relaxation, and the decline of [Ca(2+)](i) transients were slower. In response to the challenge of high [Ca(2+)](o), fractional cell shortening was severely depressed with reduced peak-systolic [Ca(2+)](i) in 7-week AS compared with controls. In response to rapid pacing stimulation, cell shortening and peak-systolic [Ca(2+)](i) increased in controls, but this response was depressed in 7-week AS. In contrast, the responses to both challenge with high [Ca(2+)](o) and rapid pacing in 4-week AS were similar to those of controls. Although protein levels of Na(+)-Ca(2+) exchanger were increased in both 4-week and 7-week AS, the ratio of SR Ca(2+)-ATPase to phospholamban protein levels was depressed in 7-week AS compared with controls but not in 4-week AS. This was associated with an impaired capacity to increase sarcoplasmic reticulum Ca(2+) load during high work states in 7-week AS myocytes. In hypertrophied failing mouse myocytes, depressed contractile reserve is related to an impaired augmentation of systolic [Ca(2+)](i) and SR Ca(2+) load and simulates findings in human failing myocytes.

  11. Contractile reserve and intracellular calcium regulation in mouse myocytes from normal and hypertrophied failing hearts

    NASA Technical Reports Server (NTRS)

    Ito, K.; Yan, X.; Tajima, M.; Su, Z.; Barry, W. H.; Lorell, B. H.; Schneider, M. (Principal Investigator)

    2000-01-01

    Mouse myocyte contractility and the changes induced by pressure overload are not fully understood. We studied contractile reserve in isolated left ventricular myocytes from mice with ascending aortic stenosis (AS) during compensatory hypertrophy (4-week AS) and the later stage of early failure (7-week AS) and from control mice. Myocyte contraction and [Ca(2+)](i) transients with fluo-3 were measured simultaneously. At baseline (0.5 Hz, 1.5 mmol/L [Ca(2+)](o), 25 degrees C), the amplitude of myocyte shortening and peak-systolic [Ca(2+)](i) in 7-week AS were not different from those of controls, whereas contraction, relaxation, and the decline of [Ca(2+)](i) transients were slower. In response to the challenge of high [Ca(2+)](o), fractional cell shortening was severely depressed with reduced peak-systolic [Ca(2+)](i) in 7-week AS compared with controls. In response to rapid pacing stimulation, cell shortening and peak-systolic [Ca(2+)](i) increased in controls, but this response was depressed in 7-week AS. In contrast, the responses to both challenge with high [Ca(2+)](o) and rapid pacing in 4-week AS were similar to those of controls. Although protein levels of Na(+)-Ca(2+) exchanger were increased in both 4-week and 7-week AS, the ratio of SR Ca(2+)-ATPase to phospholamban protein levels was depressed in 7-week AS compared with controls but not in 4-week AS. This was associated with an impaired capacity to increase sarcoplasmic reticulum Ca(2+) load during high work states in 7-week AS myocytes. In hypertrophied failing mouse myocytes, depressed contractile reserve is related to an impaired augmentation of systolic [Ca(2+)](i) and SR Ca(2+) load and simulates findings in human failing myocytes.

  12. Muscle Contractile Properties in Severely Burned Rats

    DTIC Science & Technology

    2010-01-01

    the groups. This study demonstrates dynamics of muscle atrophy and muscle contractile properties after severe burn; this understanding will aid in the...muscle loss on muscle function, as well as the ability to develop strategies to reduce early muscle wasting following burn would be aided by a...G, Ward PS. Changes in rodent muscle fibre types during post-natal growth, undernutrition and exercise. J Physiol 1979;296(November):453–69. [25

  13. Muscle Contractile Properties in Severely Burned Rats

    PubMed Central

    Wu, Xiaowu; Wolf, Steven E.; Walters, Thomas J.

    2010-01-01

    Burn induces a sustained catabolic response which causes massive loss of muscle mass after injury. A better understanding of the dynamics of muscle wasting and its impact on muscle function is necessary for the development of effective treatments. Male Sprague-Dawley rats underwent either a 40% total body surface area (TBSA) scald burn or sham burn, and were further assigned to subgroups at four time points after injury (days 3, 7, 14 and 21). In situ isometric contractile properties were measured including twitch tension (Pt), tetanic tension (Po) and fatigue properties. Body weight decreased in burn and sham groups through day 3, however, body weight in the sham groups recovered and increased over time compared to burned groups, which progressively decreased until day 21 after injury. Significant differences in muscle wet weight and protein weight were found between sham and burn. Significant differences in muscle contractile properties were found at day 14 with lower absolute Po as well as specific Po in burned rats compared to sham. After burn, the muscle twitch tension was significantly higher than the sham at day 21. No significant difference in fatigue properties was found between the groups. This study demonstrates dynamics of muscle atrophy and muscle contractile properties after severe burn; this understanding will aid in the development of approaches designed to reduce the rate and extent of burn induced muscle loss and function. PMID:20381255

  14. Elastomeric contractile actuators for hand rehabilitation splints

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Mannini, Andrea; De Rossi, Danilo

    2008-03-01

    The significant electromechanical performances typically shown by dielectric elastomer actuators make this polymer technology particularly attractive for possible active orthoses for rehabilitation. Folded contractile actuators made of dielectric elastomers were recently described as a simple configuration, suitable to easily implement linear contractile devices. This paper describes an application of folded actuators for so-called hand splints: they consist of orthotic systems for hand rehabilitation. The dynamic versions of the state-of-the-art splints typically include elastic bands, which exert a passive elastic resistance to voluntary elongations of one or more fingers. In order to provide such splints with the possibility of electrically modulating the compliance of the resistive elements, the substitution of the passive elastic bands with the contractile actuators is here described. The electrical activation of the actuators is used to vary the compliance of the system; this enables modulations of the force that acts as an antagonist to voluntary finger movements, according to programmable rehabilitation exercises. The paper reports results obtained from the first prototype implementations of such a type of system.

  15. Impact of RyR2 potentiation on myocardial function.

    PubMed

    Lascano, E; Negroni, J; Vila Petroff, M; Mattiazzi, A

    2017-06-01

    This perspective attempts to shed light on an old and not yet solved controversy in cardiac physiology, i.e., the impact of increasing ryanodine receptor (RyR)2 open probability on myocardial function. Based on an already proven myocyte model, it was shown that increasing RyR2 open probability results in a purely short-lived increase in Ca(2+) transient amplitude, and, therefore, it does not increase cardiac contractility. However, potentiation of RyR2 activity permanently enhances fractional Ca(2+) release, shifting the intracellular Ca(2+) transient versus sarcoplasmic reticulum (SR) Ca(2+) content curve to a new state of higher efficiency. This would allow the heart to maintain a given contractility despite a decrease in SR Ca(2+) content, to enhance contractility if SR Ca(2+) content is simultaneously preserved or to successfully counteract the effects of a negative inotropic intervention.NEW & NOTEWORTHY Increasing ryanodine receptor (RyR)2 open probability does not increase cardiac contractility. However, RyR2 potentiation shifts the intracellular Ca(2+) transient-sarcoplasmic reticulum (SR) Ca(2+) content relationship toward an enhanced efficiency state, which may contribute to a positive inotropic effect, preserve contractility despite decreased SR Ca(2+) content, or successfully counteract the effects of a negative inotropic action. Copyright © 2017 the American Physiological Society.

  16. Cardiac myofibrillar contractile properties during the progression from hypertension to decompensated heart failure.

    PubMed

    Hanft, Laurin M; Emter, Craig A; McDonald, Kerry S

    2017-07-01

    Heart failure arises, in part, from a constellation of changes in cardiac myocytes including remodeling, energetics, Ca(2+) handling, and myofibrillar function. However, little is known about the changes in myofibrillar contractile properties during the progression from hypertension to decompensated heart failure. The aim of the present study was to provide a comprehensive assessment of myofibrillar functional properties from health to heart disease. A rodent model of uncontrolled hypertension was used to test the hypothesis that myocytes in compensated hearts exhibit increased force, higher rates of force development, faster loaded shortening, and greater power output; however, with progression to overt heart failure, we predicted marked depression in these contractile properties. We assessed contractile properties in skinned cardiac myocyte preparations from left ventricles of Wistar-Kyoto control rats and spontaneous hypertensive heart failure (SHHF) rats at ~3, ~12, and >20 mo of age to evaluate the time course of myofilament properties associated with normal aging processes compared with myofilaments from rats with a predisposition to heart failure. In control rats, the myofilament contractile properties were virtually unchanged throughout the aging process. Conversely, in SHHF rats, the rate of force development, loaded shortening velocity, and power all increased at ~12 mo and then significantly fell at the >20-mo time point, which coincided with a decrease in left ventricular fractional shortening. Furthermore, these changes occurred independent of changes in β-myosin heavy chain but were associated with depressed phosphorylation of myofibrillar proteins, and the fall in loaded shortening and peak power output corresponded with the onset of clinical signs of heart failure.NEW & NOTEWORTHY This novel study systematically examined the power-generating capacity of cardiac myofilaments during the progression from hypertension to heart disease. Previously

  17. [Assessment of myocardial vitality with dobutamine echocardiography: current review].

    PubMed

    Völler, H; Nixdorff, U; Flachskampf, F A

    2000-10-01

    Myocardial stunning (contractile dysfunction in the presence of normalized perfusion) and myocardial hibernation (contractile dysfunction matching reduced perfusion) have represented separate concepts of viable, but dyssynergic myocardium in the past. However, in vivo experimental and clinical work suggests that repetitive ischemia due to coronary artery disease may induce a gradual transition between stunned and hibernating myocardium. Myocardial hibernation itself can result from a spectrum of ischemic conditions ranging from impaired myocardial blood flow reserve to frank hypoperfusion. With increasing severity and duration of ischemia, degeneration of cardiac myocytes, accumulation of glycogen and cell death ensue. Additionally, there is an increase of extracellular matrix protein content leading to reparative fibrosis, which in turn limits functional recovery. In the light of these structural features, the available methods for detection of viable myocardium, in particular dobutamine echocardiography and nuclear imaging techniques, offer complementary rather than contradictory information. Dobutamine echo has satisfactory sensitivity, excellent specificity, and high diagnostic accuracy for the detection of viable dyssynergic myocardium. While in the past only its predictive accuracy for segmental recovery has been validated, newer data show an improved survival after revascularization if at least four viable dyssynergic left ventricular segments in a 16 segment model can be identified by dobutamine echocardiography. The complete (low and high dose) dobutamine protocol can elicit several types of contractile responses (sustained improvement in contraction or monophasic response, biphasic response, new wall motion abnormality) which should be interpreted in view of other clinical data including a previous infarction. The test protocol can be used safely at the end of the first week after myocardial infarction. If ischemia or viability is documented

  18. AMP-activated protein kinase deficiency rescues paraquat-induced cardiac contractile dysfunction through an autophagy-dependent mechanism.

    PubMed

    Wang, Qiurong; Yang, Lifang; Hua, Yinan; Nair, Sreejayan; Xu, Xihui; Ren, Jun

    2014-11-01

    Paraquat, a quaternary nitrogen herbicide, is a highly toxic prooxidant resulting in multi-organ failure including the heart although the underlying mechanism still remains elusive. This study was designed to examine the role of the cellular fuel sensor AMP-activated protein kinase (AMPK) in paraquat-induced cardiac contractile and mitochondrial injury. Wild-type and transgenic mice with overexpression of a mutant AMPK α2 subunit (kinase dead, KD), with reduced activity in both α1 and α2 subunits, were administered with paraquat (45 mg/kg) for 48 h. Paraquat elicited cardiac mechanical anomalies including compromised echocardiographic parameters (elevated left ventricular end-systolic diameter and reduced factional shortening), suppressed cardiomyocyte contractile function, intracellular Ca(2+) handling, reduced cell survival, and overt mitochondrial damage (loss in mitochondrial membrane potential). In addition, paraquat treatment promoted phosphorylation of AMPK and autophagy. Interestingly, deficiency in AMPK attenuated paraquat-induced cardiac contractile and intracellular Ca(2+) derangement. The beneficial effect of AMPK inhibition was associated with inhibition of the AMPK-TSC-mTOR-ULK1 signaling cascade. In vitro study revealed that inhibitors for AMPK and autophagy attenuated paraquat-induced cardiomyocyte contractile dysfunction. Taken together, our findings revealed that AMPK may mediate paraquat-induced myocardial anomalies possibly by regulating the AMPK/mTOR-dependent autophagy. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. AMP-Activated Protein Kinase Deficiency Rescues Paraquat-Induced Cardiac Contractile Dysfunction Through an Autophagy-Dependent Mechanism

    PubMed Central

    Wang, Qiurong; Yang, Lifang; Hua, Yinan; Nair, Sreejayan; Xu, Xihui; Ren, Jun

    2014-01-01

    Aim: Paraquat, a quaternary nitrogen herbicide, is a highly toxic prooxidant resulting in multi-organ failure including the heart although the underlying mechanism still remains elusive. This study was designed to examine the role of the cellular fuel sensor AMP-activated protein kinase (AMPK) in paraquat-induced cardiac contractile and mitochondrial injury. Results: Wild-type and transgenic mice with overexpression of a mutant AMPK α2 subunit (kinase dead, KD), with reduced activity in both α1 and α2 subunits, were administered with paraquat (45 mg/kg) for 48 h. Paraquat elicited cardiac mechanical anomalies including compromised echocardiographic parameters (elevated left ventricular end-systolic diameter and reduced factional shortening), suppressed cardiomyocyte contractile function, intracellular Ca2+ handling, reduced cell survival, and overt mitochondrial damage (loss in mitochondrial membrane potential). In addition, paraquat treatment promoted phosphorylation of AMPK and autophagy. Interestingly, deficiency in AMPK attenuated paraquat-induced cardiac contractile and intracellular Ca2+ derangement. The beneficial effect of AMPK inhibition was associated with inhibition of the AMPK-TSC-mTOR-ULK1 signaling cascade. In vitro study revealed that inhibitors for AMPK and autophagy attenuated paraquat-induced cardiomyocyte contractile dysfunction. Conclusion: Taken together, our findings revealed that AMPK may mediate paraquat-induced myocardial anomalies possibly by regulating the AMPK/mTOR-dependent autophagy. PMID:25092649

  20. Effects of Using Tricaine Methanesulfonate and Metomidate before Euthanasia on the Contractile Properties of Rainbow Trout (Oncorhynchus mykiss) Myocardium

    PubMed Central

    Roberts, Jordan C; Syme, Douglas A

    2016-01-01

    Because many anesthetics work through depressing cell excitability, unanesthetized euthanasia has become common for research involving excitable tissues (for example muscle and nerve) to avoid these depressive effects. However, anesthetic use during euthanasia may be indicated for studies involving isolated tissues if the potential depressive effects of brief anesthetic exposure dissipate after subsequent tissue isolation, washout, and saline perfusion. We explore this here by measuring whether, when applied prior to euthanasia, standard immersion doses of 2 fish anesthetics, tricaine methanesulfonate (TMS; 100 mg/L, n = 6) and methyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate (metomidate, 10 mg/L, n = 6), have residual effects on the contractile properties (force and work output) of isolated and saline-perfused ventricular compact myocardium from rainbow trout (Oncorhynchus mykiss). Results suggest that direct exposure of muscle to immersion doses of TMS—but not metomidate—impairs muscle contractile performance. However, brief exposure (2 to 3 min) to either anesthetic during euthanasia only—providing that the agent is washed out prior to tissue experimentation—does not have an effect on the contractile properties of the myocardium. Therefore, the use of TMS, metomidate, and perhaps other anesthetics that depress cell excitability during euthanasia may be indicated when conducting research on isolated and rinsed tissues. PMID:27657711

  1. Circumferential Strain Can Be Used to Detect Lipopolysaccharide-Induced Myocardial Dysfunction and Predict the Mortality of Severe Sepsis in Mice

    PubMed Central

    Chu, Ming; Gao, Yao; Zhou, Bin; Wu, Bingruo; Wang, Junhong; Xu, Di

    2016-01-01

    Background Sepsis-induced myocardial dysfunction is a common and severe complication of septic shock. However, conventional echocardiography often fails to reveal myocardial depression in severe sepsis. Recently, strain measurements based on speckle tracking echocardiography (STE) have been used to evaluate cardiac function. Aims To investigate the role of STE in detecting lipopolysaccharide (LPS)-induced cardiac dysfunction, M-mode and 2-D echocardiography were used in LPS-treated mice. Methods The mice were treated with a 10mg/kg (n = 10), 20mg/kg (n = 10) or 25mg/kg LPS (n = 30) to induce cardiac dysfunction. Subsequently, the ejection fraction (EF) and fractional shortening (FS) were measured with standard M-mode tracings, whereas the circumferential (Scirc) and radial strain (Srad) were measured with STE. Serum biochemical and cardiac histopathological examinations were performed to assess sepsis-induced myocardial injury. Results 20mg/kg LPS resulted in more deterioration, myocardial damage and cardiac contractile dysfunction based on serum biochemical and histological examinations. The mice that were subjected to 20mg/kg LPS exhibited reduced Scirc but no reduction in Srad, whereas on conventional echocardiography, the ejection fraction (EF) and fractional shortening (FS) were similar in the 10mg/kg and 20mg/kg groups. Moreover, Scirc was positively correlated with body temperature in the mice at 20 h after LPS injection (r = 0.746, p = 0.001), but no significant correlation was observed between Srad and body temperature (r = 0.356, p = 0.123). Moreover, the mice with high Scirc (-5.9% to -10.4%) exhibited reduced mortality following the administration of 25mg/kg LPS (p = 0.03) compared with the low-strain group (-2% to -5.9%). Conclusions Taken together, our findings indicate that circumferential strain is a specific and reliable indicator for evaluating LPS-induced cardiac dysfunction in mice. PMID:27177150

  2. Dietary Supplementation With Vitamin E Ameliorates Cardiac Failure in Type I Diabetic Cardiomyopathy by Suppressing Myocardial Generation of 8-iso-Prostaglandin F2α and Oxidized Glutathione

    PubMed Central

    HAMBLIN, MILTON; SMITH, HOLLY M.; HILL, MICHAEL F.

    2009-01-01

    Background Diabetic cardiomyopathy has been documented as an underlying etiology of heart failure (HF) in diabetic patients. Although oxidative stress has been implicated in diabetic cardiomyopathy, much of the current evidence lacks specificity. Furthermore, studies investigating antioxidant protection with vitamin E in this unique cardiac phenomenon have yet to be performed. In the present study, we sought to determine whether vitamin E supplementation can confer cardioprotective effects against diabetic cardiomyopathy in relation to specific and quantitative markers of myocardial oxidative stress. Methods and Results Diabetes was induced in rats by a single injection of streptozotocin (STZ). Animals were fed either a basal diet or a diet enriched with 2000 IU of vitamin E/kg beginning immediately after induction of diabetes and continued for 8 weeks. Rats were examined for diabetic cardiomyopathy by left ventricular (LV) hemodynamic analysis. Myocardial oxidative stress was assessed by measuring the formation of 8-iso-prostaglandin F2α (8-iso PGF2α) as well as oxidized glutathione (GSSG). In the un-supplemented STZ-diabetic rats, LV systolic pressure (LVSP), rate of pressure rise (+dP/dt), and rate of pressure decay (−dP/dt) were depressed while LV end-diastolic pressure (LVEDP) was increased, indicating reduced LV contractility and slowing of LV relaxation. These hemodynamic alterations were accompanied by increased myocardial formation of 8-iso PGF2α and GSSG. Vitamin E supplementation improved LV function and significantly attenuated myocardial 8-iso PGF2α and GSSG accumulation in STZ-diabetic rats. Conclusions These findings demonstrate the usefulness of vitamin E supplementation during the early phases of type I diabetes for the prophylaxis of cardiomyopathy and subsequent HF. PMID:18068623

  3. [Interrelation between cardiac pump function disturbances and cardiac contractility after beta-adrenergic hyperstimulation of the heart in rats].

    PubMed

    Kuz'menko, M O; Pavliuchenko, V B; Tumanovs'ka, L V; Dosenko, V Ie; Moĭbenko, O O

    2011-01-01

    The complex of structural and functional changes of myocardium was investigated in experiments with rats with chronic beta-adrenergic activation for 1 month. We observed substantial attenuation of myocardial pump function, particularly reduction of stroke volume by 38.50% (P < 0.01), cardiac output by 42.38% (P < 0.01), and ejection fraction by 35.61% (P < 0.01). Furthermore, 2-fold increase of end-diastolic left ventricular pressure (P < 0.01) and rise of active relaxation constant Tau by 12.91% (P < 0.05) were observed. This indicates on an impaired diastolic function of the heart that is associated with accumulation of connective tissue elements in myocardium and increase of its end-diastolic stiffness that finally leads to cardiac pump function disturbances. Surprisingly, myocardial contractility was considerably augmented not only after the treatment with beta-adrenergic agonist but also on the 26th day after drug cessation. This phenomenon is associated with elevation of dP/dt(max) by 49.9% (P < 0.01), 2.5-fold increase of end-systolic elastance (P < 0.01) as well as maximal myocardial elastance by 42.53% (P < 0.05). It can be explained by compensatory influence of increased contractility that nevertheless failed to maintain adequate cardiac pump function and furthermore it may result in depletion of cardiac energy resource.

  4. GRK2 blockade with βARKct is essential for cardiac β2-adrenergic receptor signaling towards increased contractility

    PubMed Central

    2013-01-01

    Background β1- and β2–adrenergic receptors (ARs) play distinct roles in the heart, e.g. β1AR is pro-contractile and pro-apoptotic but β2AR anti-apoptotic and only weakly pro-contractile. G protein coupled receptor kinase (GRK)-2 desensitizes and opposes βAR pro-contractile signaling by phosphorylating the receptor and inducing beta-arrestin (βarr) binding. We posited herein that GRK2 blockade might enhance the pro-contractile signaling of the β2AR subtype in the heart. We tested the effects of cardiac-targeted GRK2 inhibition in vivo exclusively on β2AR signaling under normal conditions and in heart failure (HF). Results We crossed β1AR knockout (B1KO) mice with cardiac-specific transgenic mice expressing the βARKct, a known GRK2 inhibitor, and studied the offspring under normal conditions and in post-myocardial infarction (MI). βARKct expression in vivo proved essential for β2AR-dependent contractile function, as β2AR stimulation with isoproterenol fails to increase contractility in either healthy or post-MI B1KO mice and it only does so in the presence of βARKct. The main underlying mechanism for this is blockade of the interaction of phosphodiesterase (PDE) type 4D with the cardiac β2AR, which is normally mediated by the actions of GRK2 and βarrs on the receptor. The molecular “brake” that PDE4D poses on β2AR signaling to contractility stimulation is thus “released”. Regarding the other beneficial functions of cardiac β2AR, βARKct increased overall survival of the post-MI B1KO mice progressing to HF, via a decrease in cardiac apoptosis and an increase in wound healing-associated inflammation early (at 24 hrs) post-MI. However, these effects disappear by 4 weeks post-MI, and, in their place, upregulation of the other major GRK in the heart, GRK5, is observed. Conclusions GRK2 inhibition in vivo with βARKct is absolutely essential for cardiac β2AR pro-contractile signaling and function. In addition, β2AR anti-apoptotic signaling in

  5. GRK2 blockade with βARKct is essential for cardiac β2-adrenergic receptor signaling towards increased contractility.

    PubMed

    Salazar, Norma C; Vallejos, Ximena; Siryk, Ashley; Rengo, Giuseppe; Cannavo, Alessandro; Liccardo, Daniela; De Lucia, Claudio; Gao, Erhe; Leosco, Dario; Koch, Walter J; Lymperopoulos, Anastasios

    2013-08-28

    β1- and β2-adrenergic receptors (ARs) play distinct roles in the heart, e.g. β1AR is pro-contractile and pro-apoptotic but β2AR anti-apoptotic and only weakly pro-contractile. G protein coupled receptor kinase (GRK)-2 desensitizes and opposes βAR pro-contractile signaling by phosphorylating the receptor and inducing beta-arrestin (βarr) binding. We posited herein that GRK2 blockade might enhance the pro-contractile signaling of the β2AR subtype in the heart. We tested the effects of cardiac-targeted GRK2 inhibition in vivo exclusively on β2AR signaling under normal conditions and in heart failure (HF). We crossed β1AR knockout (B1KO) mice with cardiac-specific transgenic mice expressing the βARKct, a known GRK2 inhibitor, and studied the offspring under normal conditions and in post-myocardial infarction (MI). βARKct expression in vivo proved essential for β2AR-dependent contractile function, as β2AR stimulation with isoproterenol fails to increase contractility in either healthy or post-MI B1KO mice and it only does so in the presence of βARKct. The main underlying mechanism for this is blockade of the interaction of phosphodiesterase (PDE) type 4D with the cardiac β2AR, which is normally mediated by the actions of GRK2 and βarrs on the receptor. The molecular "brake" that PDE4D poses on β2AR signaling to contractility stimulation is thus "released". Regarding the other beneficial functions of cardiac β2AR, βARKct increased overall survival of the post-MI B1KO mice progressing to HF, via a decrease in cardiac apoptosis and an increase in wound healing-associated inflammation early (at 24 hrs) post-MI. However, these effects disappear by 4 weeks post-MI, and, in their place, upregulation of the other major GRK in the heart, GRK5, is observed. GRK2 inhibition in vivo with βARKct is absolutely essential for cardiac β2AR pro-contractile signaling and function. In addition, β2AR anti-apoptotic signaling in post-MI HF is augmented by

  6. 3D cardiac wall thickening assessment for acute myocardial infarction

    NASA Astrophysics Data System (ADS)

    Khalid, A.; Chan, B. T.; Lim, E.; Liew, Y. M.

    2017-06-01

    Acute myocardial infarction (AMI) is the most severe form of coronary artery disease leading to localized myocardial injury and therefore irregularities in the cardiac wall contractility. Studies have found very limited differences in global indices (such as ejection fraction, myocardial mass and volume) between healthy subjects and AMI patients, and therefore suggested regional assessment. Regional index, specifically cardiac wall thickness (WT) and thickening is closely related to cardiac function and could reveal regional abnormality due to AMI. In this study, we developed a 3D wall thickening assessment method to identify regional wall contractility dysfunction due to localized myocardial injury from infarction. Wall thickness and thickening were assessed from 3D personalized cardiac models reconstructed from cine MRI images by fitting inscribed sphere between endocardial and epicardial wall. The thickening analysis was performed in 5 patients and 3 healthy subjects and the results were compared against the gold standard 2D late-gadolinium-enhanced (LGE) images for infarct localization. The notable finding of this study is the highly accurate estimation and visual representation of the infarct size and location in 3D. This study provides clinicians with an intuitive way to visually and qualitatively assess regional cardiac wall dysfunction due to infarction in AMI patients.

  7. Cell stiffness, contractile stress and the role of extracellular matrix

    SciTech Connect

    An, Steven S.; Kim, Jina; Ahn, Kwangmi; Trepat, Xavier; Drake, Kenneth J.; Kumar, Sarvesh; Ling, Guoyu; Purington, Carolyn; Rangasamy, Tirumalai; Kensler, Thomas W.; Mitzner, Wayne; Fredberg, Jeffrey J.; Biswal, Shyam

    2009-05-15

    Here we have assessed the effects of extracellular matrix (ECM) composition and rigidity on mechanical properties of the human airway smooth muscle (ASM) cell. Cell stiffness and contractile stress showed appreciable changes from the most relaxed state to the most contracted state: we refer to the maximal range of these changes as the cell contractile scope. The contractile scope was least when the cell was adherent upon collagen V, followed by collagen IV, laminin, and collagen I, and greatest for fibronectin. Regardless of ECM composition, upon adherence to increasingly rigid substrates, the ASM cell positively regulated expression of antioxidant genes in the glutathione pathway and heme oxygenase, and disruption of a redox-sensitive transcription factor, nuclear erythroid 2 p45-related factor (Nrf2), culminated in greater contractile scope. These findings provide biophysical evidence that ECM differentially modulates muscle contractility and, for the first time, demonstrate a link between muscle contractility and Nrf2-directed responses.

  8. Age-dependent changes in contractile function and passive elastic properties of myocardium from mice lacking muscle LIM protein (MLP).

    PubMed

    Unsöld, Bernhard; Schotola, Hanna; Jacobshagen, Claudius; Seidler, Tim; Sossalla, Samuel; Emons, Julius; Klede, Stefanie; Knöll, Ralph; Guan, Kaomei; El-Armouche, Ali; Linke, Wolfgang A; Kögler, Harald; Hasenfuss, Gerd

    2012-04-01

    Muscle LIM protein (MLP) null mice are often used as a model for human dilated cardiomyopathy. So far, little is known about the time course and pathomechanisms leading to the development of the adult phenotype. We systematically analysed the contractile phenotype, myofilament calcium (Ca(2)(+)) responsiveness, passive myocardial mechanics, histology, and mRNA expression in mice aged 4 and 12 weeks. In 4-week-old animals, there was no significant difference in the force-frequency relationship (FFR) and catecholamine response of intact isolated papillary muscles between wild-type (WT) and MLP null myocardium. In 12-week-old animals, WT myocardium exhibited a significantly positive FFR, while that of MLP null mice was significantly negative, and the inotropic response to catecholamines was significantly reduced in MLP null mice. This time course of decline in contractile function was confirmed in vivo by echocardiography. Whereas at 4 weeks of age MLP null mice and WT littermates showed similar levels of SERCA2a (sarcoplasmic reticulum Ca(2+) ATPase) expression, the expression was significantly lower in 12-week-old MLP null mice compared with littermate controls. Myofilament Ca(2)(+) responsiveness was not affected by the lack of MLP, irrespective of age. Whereas in 4-week-old animals MLP null myocardium showed a trend to an increased compliance compared with the WT, myocardium of 12-week-old MLP null mice was significantly less compliant than WT myocardium. Parallel to the decrease in compliance there was an increase in fibrosis in the MLP null animals. Our data suggest that MLP deficiency does not primarily influence myocardial contractility. A lack of MLP leads to an age-dependent impairment of excitation-contraction coupling with resulting contractile dysfunction and secondary fibrosis.

  9. Transthoracic sensor for noninvasive assessment of left ventricular contractility: validation in a minipig model of chronic heart failure.

    PubMed

    Gemignani, Vincenzo; Bianchini, Elisabetta; Faita, Francesco; Lionetti, Vincenzo; Campan, Manuela; Recchia, Fabio Anastasio; Picano, Eugenio; Bombardini, Tonino

    2010-07-01

    Invasively measured left ventricular (LV) dP/dt is the accepted standard for measuring acute and chronic directional changes in LV contractility. Recently, we developed a noninvasive force sensor based on an accelerometer positioned on the chest, which measures the vibrations generated by isovolumic myocardial contraction. The aim of this paper was to compare noninvasive (accelerometer) versus invasive (LV dP/dt) indices of myocardial contractility in a chronic minipig model of pacing-induced heart failure (HF). Comparative assessment was performed both at rest and following dobutamine infusion. In adult male minipigs (n = 6), LV contractility was simultaneously assessed both invasively (LV dP/dt, Millar catheter) and noninvasively (accelerometer) at rest and following dobutamine (up to 7.5 mcg/kg/min), both before and after development of HF by pacing the LV at 180 beats/min for 3 weeks. Invasive and noninvasive assessments were obtained in 24 conditions (12 at rest and 12 after dobutamine infusion). Sensor-based cardiac force changes were significantly related to positive peak LV dP/dt(max) changes following dobutamine infusion both in normal (r = 0.88, P < 0.001) and failing heart (r = 0.89, P < 0.001). The force-frequency relation showed a tight correlation between invasive and noninvasive assessment (r = 0.68, P = 0.02). The force-frequency relation can be assessed noninvasively by a transthoracic sensor based on an accelerometer. The method can efficiently detect the development of resting dysfunction and the contractile reserve at different HF steps, with potential for wearable HF monitoring.

  10. R4496C RyR2 mutation impairs atrial and ventricular contractility

    PubMed Central

    Coppini, Raffaele; Scellini, Beatrice; Ferrara, Claudia; Pioner, Josè Manuel; Mazzoni, Luca; Priori, Silvia; Cerbai, Elisabetta; Tesi, Chiara; Poggesi, Corrado

    2016-01-01

    Ryanodine receptor (RyR2) is the major Ca2+ channel of the cardiac sarcoplasmic reticulum (SR) and plays a crucial role in the generation of myocardial force. Changes in RyR2 gating properties and resulting increases in its open probability (Po) are associated with Ca2+ leakage from the SR and arrhythmias; however, the effects of RyR2 dysfunction on myocardial contractility are unknown. Here, we investigated the possibility that a RyR2 mutation associated with catecholaminergic polymorphic ventricular tachycardia, R4496C, affects the contractile function of atrial and ventricular myocardium. We measured isometric twitch tension in left ventricular and atrial trabeculae from wild-type mice and heterozygous transgenic mice carrying the R4496C RyR2 mutation and found that twitch force was comparable under baseline conditions (30°C, 2 mM [Ca2+]o, 1 Hz). However, the positive inotropic responses to high stimulation frequency, 0.1 µM isoproterenol, and 5 mM [Ca2+]o were decreased in R4496C trabeculae, as was post-rest potentiation. We investigated the mechanisms underlying inotropic insufficiency in R4496C muscles in single ventricular myocytes. Under baseline conditions, the amplitude of the Ca2+ transient was normal, despite the reduced SR Ca2+ content. Under inotropic challenge, however, R4496C myocytes were unable to boost the amplitude of Ca2+ transients because they are incapable of properly increasing the amount of Ca2+ stored in the SR because of a larger SR Ca2+ leakage. Recovery of force in response to premature stimuli was faster in R4496C myocardium, despite the unchanged rates of recovery of L-type Ca2+ channel current (ICa-L) and SR Ca2+ content in single myocytes. A faster recovery from inactivation of the mutant R4496C channels could explain this behavior. In conclusion, changes in RyR2 channel gating associated with the R4496C mutation could be directly responsible for the alterations in both ventricular and atrial contractility. The increased RyR2 Po

  11. Effects of glycine supplementation on myocardial damage and cardiac function after severe burn.

    PubMed

    Zhang, Yong; Lv, Shang-jun; Yan, Hong; Wang, Lin; Liang, Guang-ping; Wan, Qian-xue; Peng, Xi

    2013-06-01

    Glycine has been shown to participate in protection from hypoxia/reoxygenation injury. However, the cardioprotective effect of glycine after burn remains unclear. This study aimed to explore the protective effect of glycine on myocardial damage in severely burned rats. Seventy-two Wistar rats were randomly divided into three groups: normal controls (C), burned controls (B), and glycine-treated (G). Groups B and G were given a 30% total body surface area full-thickness burn. Group G was administered 1.5 g/(kg d) glycine and group B was given the same dose of alanine via intragastric administration for 3d. Serum creatine kinase (CK), lactate dehydrogenase (LDH), aspartate transaminase (AST), and blood lactate, as well as myocardial ATP and glutathione (GSH) content, were measured. Cardiac contractile function and histopathological changes were analyzed at 12, 24, 48, and 72 hours. Serum CK, LDH, AST, and blood lactate increased, while myocardial ATP and GSH content decreased in both burned groups. Compared with group B, the levels of CK, LDH, and AST significantly decreased, whereas blood lactate as well as myocardial ATP and GSH content increased in group G. Moreover, cardiac contractile function inhibition and myocardial histopathological damage in group G significantly decreased compared with group B. Myocardial histological structure and function were damaged significantly after burn. Glycine is beneficial to myocardial preservation by improving cardiomyocyte energy metabolism and increasing ATP and GSH abundance. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  12. [The pulmonary hemodynamic changes under experimental myocardial ischemia in rabbits following beta-adrenoreceptors blockade].

    PubMed

    Evlakhov, V I; Poiasov, I Z

    2011-08-01

    In acute experiments in anesthetized rabbits, changes of the pulmonary hemodynamics following myocardial ischemia in the region of the descendent left coronary artery were studied as well as in control animals and after the blockade of beta-adrenoreceptors. The myocardial ischemia decreased the left ventricular myocardial contractility, cardiac output and arterial pressure, decreased the pulmonary artery pressure and flow. Following myocardial ischemia, the pulmonary artery pressure decreased less than pulmonary artery blood flow as the result of elevating of the left atrial pressure, meanwhile pulmonary vascular resistance was not changed. Following myocardial ischemia in animals after the blockade of the beta-adrenoreceptors, the pulmonary flow decreased the same as in control animals. However, the pulmonary artery pressure was decreased twofold more significantly than in control animals, and its diminishing was in the same degree as the pulmonary artery flow. Following myocardial ischemia after the blockade of the beta-adrenoreceptors, the pulmonary vascular resistance decreased whereas the left atrial pressure did not change significantly because the myocardial contractility decreased less than in control animals.

  13. Left ventricle contractile function in trained dogs with cardial hypertrophy.

    PubMed

    Riedhammer, H H; Rafflenbeul, W; Weihe, W H; Krayenbühl, H P

    1976-01-01

    Eight mongrel dogs exercised for 8 weeks by treadmill running at 20 per cent incline 20 to 25 minutes twice daily, 4-5 days/week. Another eight dogs which were kept in the cages for a similar period served as controls. The exercise program was effective in inducing myocardial hypertrophy since the ratio left ventricular weight/body weight was significantly (P less than 0.001) higher in the trained dogs (5.04 g/kg) than in the sedentary animals (3.83 g/kg). In morphine-chloralose anesthesia the dogs were studied by left heart catherization and cineangiography at spontaneous heart rate (run I), at paced heart rate (run II), at paced heart rate following cardiac autonomic nervous blockade by bilateral vagotomy and the administration of propranolol (run III) and during acute pressure loading with methoxzmine at constant heart rate (run IV). Intergroup comparison yielded no significant difference in any hemodynamic or volumetric parameter throughout the entire study. However, with intragroup comparisons between run III and run IV a less significant increase in left ventricular end-diastolic pressure (from 5 to 15 mm Hg; P less than 0.05) was observed in the trained animals than in the control dogs (from 6 to 25 mm Hg; P less than 0.001). Left ventricular end-diastolic volume increased significantly only in the control dogs during acute pressure loading. Mean aortic pressure and left ventricular peak dP/dt increased to a similar extent in both groups. Since in the trained dogs the left ventricle encroaches less on the Frank-Starling mechanism than in normal animals for overcoming an acute pressure burden it is concluded that the development of hypertrophy concomitant with chronic exercise represents an adaptive mechanism with evidence of beneficial consequences for the intrinsic contractile function of the myocardium.

  14. Dual effect of GABA on the contractile activity of the guinea-pig isolated urinary bladder.

    PubMed

    Maggi, C A; Santicioli, P; Meli, A

    1985-06-01

    The effects of GABA and related substances were examined in isolated detrusor strips from the dome of the guinea-pig urinary bladder. GABA (0.01-1 mM) produced concentration-related phasic contractions of isolated strips from the guinea-pig urinary bladder dome. This effect of GABA was mimicked by homotaurine and muscimol, selective GABAA receptor agonists but not by (+/-)-baclofen, a selective GABAB receptor agonist. A specific cross desensitization was observed between GABA, homotaurine and muscimol but not between (+/-)-baclofen and GABA. GABA (1 mM)-induced contractions were antagonized by picrotoxin, a selective GABAA receptor antagonist. GABA-induced contractions were almost abolished by tetrodotoxin (0.5 microM, TTX) thus indicating their neurogenic origin. In addition GABA-induced contractions were partially antagonized by atropine (to about the same extent as those produced by dimethylphenylpiperazinium (DMPP), a ganglionic stimulant), but were unaffected by hexamethonium (10 microM), phentolamine (0.2 microM) or indomethacin (5 microM). In the presence of GABA the contractile effect of both DMPP (TTX-sensitive) and acetylcholine (ACh, TTX-insensitive) were significantly reduced. Similar findings were obtained with DMPP, i.e. in preparations exposed to this ganglionic stimulant both GABA- and ACh-induced contractions were depressed. Homotaurine but not (+/-)-baclofen mimicked the depressant effect of GABA on DMPP-induced contractions. The depressant effect of GABA on ACh-induced contractions of the guinea-pig urinary bladder was neurogenic in origin, i.e., was not observed in preparations exposed to TTX. These experiments indicate that GABA has a dual effect on the contractile behaviour of the guinea-pig isolated urinary bladder. Recently it has been proposed that endogenous GABA plays a neuromodulatory role in this organ. Our data suggest that in the early phase of neurogenic activation of detrusor muscle (micturition reflex) GABA might transiently

  15. Ischemic left ventricular dysfunction assessed on ECG-gated thallium-201 myocardial perfusion images.

    PubMed

    Hurwitz, G A; Laurin, N R; Powe, J E; Driedger, A A; MacDonald, A C

    1990-05-01

    Ischemic dysfunction of the left ventricle can be suggested by ancillary data derived from thallium-201 myocardial perfusion images. In this study, qualitative and quantitative assessments of global and segmental contraction derived from ECG-gated left anterior oblique images were analyzed to define more precisely transient ischemic hypokinesis. Immediate (4 mins post stress) and delayed (2 to 4 h) images were compared in 200 patients; 165 had coronary angiography and 35 had a low probability of coronary artery disease based on pretest and test outcome variables. For both immediate and delayed images, a quantitative index of left ventricular contraction (derived from the time-activity curve of the left ventricular cavity and validated in a previous study), correlated well with contrast ventriculography scores. The index derived from the immediate image also was related to the severity/extent of coronary artery lesions and to thallium-201 lung uptake. The ratio of indices (immediate/delayed) was depressed (P less than 0.001) in patients with two or three critically diseased vessels, and reflected the qualitative assessment of stress-induced dysfunction on cinematic images. These data suggest that the quantitative index derived from ECG-gated perfusion scans may be a valuable indicator of stress-induced ventricular contractile dysfunction.

  16. Cytoskeletal Role in the Contractile Dysfunction of Hypertrophied Myocardium

    NASA Astrophysics Data System (ADS)

    Tsutsui, Hiroyuki; Ishihara, Kazuaki; Cooper, George

    1993-04-01

    Cardiac hypertrophy in response to systolic pressure loading frequently results in contractile dysfunction of unknown cause. In the present study, pressure loading increased the microtubule component of the cardiac muscle cell cytoskeleton, which was responsible for the cellular contractile dysfunction observed. The linked microtubule and contractile abnormalities were persistent and thus may have significance for the deterioration of initially compensatory cardiac hypertrophy into congestive heart failure.

  17. Serratus anterior in vivo contractile force study.

    PubMed

    Lifchez, Scott D; Gasparri, Mario G; Sanger, James R; LoGiudice, John A; Godat, David M; Tisol, William B; Matloub, Hani S

    2005-09-01

    A major limitation of functional muscle transfer for facial and intrinsic hand reanimation is the inability to predict the force that will be generated by the transplanted muscle. The authors studied the contractile force of the slips of the serratus anterior in situ in 10 patients and tested the gracilis muscle in four subjects as a control. Mean contractile force generated by each serratus slip was 0.178 pound (range, 0.019 to 0.797 pound). This compares favorably with the maximum force generated by smiling (0.307 pound). Muscle strength correlated strongly with age (r = -0.805, p = 0.005). The lowest slip generated less force than those above it (0.133 pound versus 0.191 pound); this difference did not reach statistical significance. When the strength of the lowest slip is compared with the more superior slips as a percentage of total force generated by the slips (to compensate for the effect of age on muscle strength), the lowest slip was significantly weaker (18.6 percent of total force versus 25.5 percent of total force, p = 0.013). Mean contractile force generated by the gracilis was 0.963 pound, significantly different from that generated by a serratus anterior slip (p = 0.009). Each serratus slip could potentially be used to generate a separate force vector for facial reanimation. Further separation of the flap along preexisting fascial planes may allow generation of up to 10 independent force vectors, making the serratus anterior muscle flap an attractive option for facial reanimation and possibly intrinsic hand muscle reconstruction.

  18. Prognostic value of depressed midwall systolic function in cardiac light-chain amyloidosis.

    PubMed

    Perlini, Stefano; Salinaro, Francesco; Musca, Francesco; Mussinelli, Roberta; Boldrini, Michele; Raimondi, Ambra; Milani, Paolo; Foli, Andrea; Cappelli, Francesco; Perfetto, Federico; Palladini, Giovanni; Rapezzi, Claudio; Merlini, Giampaolo

    2014-05-01

    Cardiac amyloidosis represents an archetypal form of restrictive heart disease, characterized by profound diastolic dysfunction. As ejection fraction is preserved until the late stage of the disease, the majority of patients do fulfill the definition of diastolic heart failure, that is, heart failure with preserved ejection fraction (HFpEF). In another clinical model of HFpEF, that is, pressure-overload hypertrophy, depressed midwall fractional shortening (mFS) has been shown to be a powerful prognostic factor. To assess the potential prognostic role of mFS in cardiac light-chain amyloidosis with preserved ejection fraction, we enrolled 221 consecutive untreated patients, in whom a first diagnosis of cardiac light-chain amyloidosis was concluded between 2008 and 2010. HFpEF was present in 181 patients. Patients in whom cardiac involvement was excluded served as controls (n = 121). Prognosis was assessed after a median follow-up of 561 days. When compared with light-chain amyloidosis patients without myocardial involvement, cardiac light-chain amyloidosis was characterized by increased wall thickness (P <0.001), reduced end-diastolic left ventricular volumes (P <0.001), and diastolic dysfunction (P <0.001). In patients with preserved ejection fraction, mFS was markedly depressed [10.6% (8.7-13.5) vs. 17.8% (15.9-19.5) P <0.001]. At multivariable analysis, mFS, troponin I, and NT-pro-brain natriuretic peptide were the only significant prognostic determinants (P <0.001), whereas other indices of diastolic (E/E' ratio, transmitral and pulmonary vein flow velocities) and systolic function (tissue Doppler systolic indices, ejection fraction), or the presence/absence of congestive heart failure did not enter the model. In cardiac light-chain amyloidosis with normal ejection fraction, depressed circumferential mFS, a marker of myocardial contractile dysfunction, is a powerful predictor of survival.

  19. Modulation of Myocardial Mitochondrial Mechanisms during Severe Polymicrobial Sepsis in the Rat

    PubMed Central

    Chopra, Mani; Golden, Honey B.; Mullapudi, Srinivas; Dowhan, William; Dostal, David E.; Sharma, Avadhesh C.

    2011-01-01

    Background We tested the hypothesis that 5-Hydroxydecanoic acid (5HD), a putative mitoKATP channel blocker, will reverse sepsis-induced cardiodynamic and adult rat ventricular myocyte (ARVM) contractile dysfunction, restore mitochondrial membrane permeability alterations and improve survival. Methodology/Principal Findings Male Sprague-Dawley rats (350–400 g) were made septic using 400 mg/kg cecal inoculum, ip. Sham animals received 5% dextrose water, ip. The Voltage Dependent Anion Channels (VDAC1), Bax and cytochrome C levels were determined in isolated single ARVMs obtained from sham and septic rat heart. Mitochondria and cytosolic fractions were isolated from ARVMs treated with norepinephrine (NE, 10 µmoles) in the presence/absence of 5HD (100 µmoles). A continuous infusion of 5HD using an Alzet pump reversed sepsis-induced mortality when administered at the time of induction of sepsis (−40%) and at 6 hr post-sepsis (−20%). Electrocardiography revealed that 5HD reversed sepsis-induced decrease in the average ejection fraction, Simpsons+m Mode (53.5±2.5 in sepsis and 69.2±1.2 at 24 hr in sepsis+5HD vs. 79.9±1.5 basal group) and cardiac output (63.3±1.2 mL/min sepsis and 79.3±3.9 mL/min at 24 hr in sepsis+5HD vs. 85.8±1.5 mL/min basal group). The treatment of ARVMs with 5HD also reversed sepsis-induced depressed contractility in both the vehicle and NE-treated groups. Sepsis produced a significant downregulation of VDAC1, and upregulation of Bax levels, along with mitochondrial membrane potential collapse in ARVMs. Pretreatment of septic ARVMs with 5HD blocked a NE-induced decrease in the VDAC1 and release of cytochrome C. Conclusion The data suggest that Bax activation is an upstream event that may precede the opening of the mitoKATP channels in sepsis. We concluded that mitoKATP channel inhibition via decreased mitochondrial membrane potential and reduced release of cytochrome C provided protection against sepsis-induced ARVM and myocardial

  20. Exercise training prior to myocardial infarction attenuates cardiac deterioration and cardiomyocyte dysfunction in rats

    PubMed Central

    Bozi, Luiz Henrique Marchesi; dos Santos Costa Maldonado, Izabel Regina; Baldo, Marcelo Perim; da Silva, Márcia Ferreira; Moreira, José Bianco Nascimento; Novaes, Rômulo Dias; Ramos, Regiane Maria Soares; Mill, José Geraldo; Brum, Patricia Chakur; Felix, Leonardo Bonato; Gomes, Thales Nicolau Prímola; Natali, Antônio José

    2013-01-01

    OBJECTIVES: The present study was performed to investigate 1) whether aerobic exercise training prior to myocardial infarction would prevent cardiac dysfunction and structural deterioration and 2) whether the potential cardiac benefits of aerobic exercise training would be associated with preserved morphological and contractile properties of cardiomyocytes in post-infarct remodeled myocardium. METHODS: Male Wistar rats underwent an aerobic exercise training protocol for eight weeks. The rats were then assigned to sham surgery (SHAM), sedentary lifestyle and myocardial infarction or exercise training and myocardial infarction groups and were evaluated 15 days after the surgery. Left ventricular tissue was analyzed histologically, and the contractile function of isolated myocytes was measured. Student's t-test was used to analyze infarct size and ventricular wall thickness, and the other parameters were analyzed by the Kruskal-Wallis test followed by Dunn's test or a one-way analysis of variance followed by Tukey's test (p<0.05). RESULTS: Myocardial infarctions in exercise-trained animals resulted in a smaller myocardial infarction extension, a thicker infarcted wall and less collagen accumulation as compared to myocardial infarctions in sedentary animals. Myocardial infarction-induced left ventricular dilation and cardiac dysfunction, as evaluated by +dP/dt and -dP/dt, were both prevented by previous aerobic exercise training. Moreover, aerobic exercise training preserved cardiac myocyte shortening, improved the maximum shortening and relengthening velocities in infarcted hearts and enhanced responsiveness to calcium. CONCLUSION: Previous aerobic exercise training attenuated the cardiac dysfunction and structural deterioration promoted by myocardial infarction, and such benefits were associated with preserved cardiomyocyte morphological and contractile properties. PMID:23778353

  1. Exercise training prior to myocardial infarction attenuates cardiac deterioration and cardiomyocyte dysfunction in rats.

    PubMed

    Bozi, Luiz Henrique Marchesi; Maldonado, Izabel Regina dos Santos Costa; Baldo, Marcelo Perim; Silva, Márcia Ferreira da; Moreira, José Bianco Nascimento; Novaes, Rômulo Dias; Ramos, Regiane Maria Soares; Mill, José Geraldo; Brum, Patricia Chakur; Felix, Leonardo Bonato; Gomes, Thales Nicolau Prímola; Natali, Antônio José

    2013-04-01

    The present study was performed to investigate 1) whether aerobic exercise training prior to myocardial infarction would prevent cardiac dysfunction and structural deterioration and 2) whether the potential cardiac benefits of aerobic exercise training would be associated with preserved morphological and contractile properties of cardiomyocytes in post-infarct remodeled myocardium. Male Wistar rats underwent an aerobic exercise training protocol for eight weeks. The rats were then assigned to sham surgery (SHAM), sedentary lifestyle and myocardial infarction or exercise training and myocardial infarction groups and were evaluated 15 days after the surgery. Left ventricular tissue was analyzed histologically, and the contractile function of isolated myocytes was measured. Student's t-test was used to analyze infarct size and ventricular wall thickness, and the other parameters were analyzed by the Kruskal-Wallis test followed by Dunn's test or a one-way analysis of variance followed by Tukey's test (p<0.05). Myocardial infarctions in exercise-trained animals resulted in a smaller myocardial infarction extension, a thicker infarcted wall and less collagen accumulation as compared to myocardial infarctions in sedentary animals. Myocardial infarction-induced left ventricular dilation and cardiac dysfunction, as evaluated by +dP/dt and -dP/dt, were both prevented by previous aerobic exercise training. Moreover, aerobic exercise training preserved cardiac myocyte shortening, improved the maximum shortening and relengthening velocities in infarcted hearts and enhanced responsiveness to calcium. Previous aerobic exercise training attenuated the cardiac dysfunction and structural deterioration promoted by myocardial infarction, and such benefits were associated with preserved cardiomyocyte morphological and contractile properties.

  2. Cadmium translocation by contractile roots differs from that in regular, non-contractile roots

    PubMed Central

    Lux, Alexander; Lackovič, Andrej; Van Staden, Johannes; Lišková, Desana; Kohanová, Jana; Martinka, Michal

    2015-01-01

    Background and Aims Contractile roots are known and studied mainly in connection with the process of shrinkage of their basal parts, which acts to pull the shoot of the plant deeper into the ground. Previous studies have shown that the specific structure of these roots results in more intensive water uptake at the base, which is in contrast to regular root types. The purpose of this study was to find out whether the basal parts of contractile roots are also more active in translocation of cadmium to the shoot. Methods Plants of the South African ornamental species Tritonia gladiolaris were cultivated in vitro for 2 months, at which point they possessed well-developed contractile roots. They were then transferred to Petri dishes with horizontally separated compartments of agar containing 50 µmol Cd(NO3)2 in the region of the root base or the root apex. Seedlings of 4-d-old maize (Zea mays) plants, which do not possess contractile roots, were also transferred to similar Petri dishes. The concentrations of Cd in the leaves of the plants were compared after 10 d of cultivation. Anatomical analyses of Tritonia roots were performed using appropriately stained freehand cross-sections. Key Results The process of contraction required specific anatomical adaptation of the root base in Tritonia, with less lignified and less suberized tissues in comparison with the subapical part of the root. These unusual developmental characteristics were accompanied by more intensive translocation of Cd ions from the basal part of contractile roots to the leaves than from the apical–subapical root parts. The opposite effects were seen in the non-contractile roots of maize, with higher uptake and transport by the apical parts of the root and lower uptake and transport by the basal part. Conclusions The specific characteristics of contractile roots may have a significant impact on the uptake of ions, including toxic metals from the soil surface layers. This may be important for plant

  3. Mitochondrial fusion dynamics is robust in the heart and depends on calcium oscillations and contractile activity

    PubMed Central

    Eisner, Verónica; Gao, Erhe; Csordás, György; Slovinsky, William S.; Paillard, Melanie; Cheng, Lan; Ibetti, Jessica; Chen, S. R. Wayne; Chuprun, J. Kurt; Hoek, Jan B.; Koch, Walter J.; Hajnóczky, György

    2017-01-01

    Mitochondrial fusion is thought to be important for supporting cardiac contractility, but is hardly detectable in cultured cardiomyocytes and is difficult to directly evaluate in the heart. We overcame this obstacle through in vivo adenoviral transduction with matrix-targeted photoactivatable GFP and confocal microscopy. Imaging in whole rat hearts indicated mitochondrial network formation and fusion activity in ventricular cardiomyocytes. Promptly after isolation, cardiomyocytes showed extensive mitochondrial connectivity and fusion, which decayed in culture (at 24–48 h). Fusion manifested both as rapid content mixing events between adjacent organelles and slower events between both neighboring and distant mitochondria. Loss of fusion in culture likely results from the decline in calcium oscillations/contractile activity and mitofusin 1 (Mfn1), because (i) verapamil suppressed both contraction and mitochondrial fusion, (ii) after spontaneous contraction or short-term field stimulation fusion activity increased in cardiomyocytes, and (iii) ryanodine receptor-2–mediated calcium oscillations increased fusion activity in HEK293 cells and complementing changes occurred in Mfn1. Weakened cardiac contractility in vivo in alcoholic animals is also associated with depressed mitochondrial fusion. Thus, attenuated mitochondrial fusion might contribute to the pathogenesis of cardiomyopathy. PMID:28096338

  4. Mitochondrial fusion dynamics is robust in the heart and depends on calcium oscillations and contractile activity.

    PubMed

    Eisner, Verónica; Cupo, Ryan R; Gao, Erhe; Csordás, György; Slovinsky, William S; Paillard, Melanie; Cheng, Lan; Ibetti, Jessica; Chen, S R Wayne; Chuprun, J Kurt; Hoek, Jan B; Koch, Walter J; Hajnóczky, György

    2017-01-31

    Mitochondrial fusion is thought to be important for supporting cardiac contractility, but is hardly detectable in cultured cardiomyocytes and is difficult to directly evaluate in the heart. We overcame this obstacle through in vivo adenoviral transduction with matrix-targeted photoactivatable GFP and confocal microscopy. Imaging in whole rat hearts indicated mitochondrial network formation and fusion activity in ventricular cardiomyocytes. Promptly after isolation, cardiomyocytes showed extensive mitochondrial connectivity and fusion, which decayed in culture (at 24-48 h). Fusion manifested both as rapid content mixing events between adjacent organelles and slower events between both neighboring and distant mitochondria. Loss of fusion in culture likely results from the decline in calcium oscillations/contractile activity and mitofusin 1 (Mfn1), because (i) verapamil suppressed both contraction and mitochondrial fusion, (ii) after spontaneous contraction or short-term field stimulation fusion activity increased in cardiomyocytes, and (iii) ryanodine receptor-2-mediated calcium oscillations increased fusion activity in HEK293 cells and complementing changes occurred in Mfn1. Weakened cardiac contractility in vivo in alcoholic animals is also associated with depressed mitochondrial fusion. Thus, attenuated mitochondrial fusion might contribute to the pathogenesis of cardiomyopathy.

  5. Cistus incanus and Cistus monspeliensis inhibit the contractile response in isolated rat smooth muscle.

    PubMed

    Attaguile, G; Perticone, G; Mania, G; Savoca, F; Pennisi, G; Salomone, S

    2004-06-01

    The lyophilized aqueous extracts from Cistus incanus L. (CI) and Cistus monspeliensis L. (CM) collected in Sicily were studied in order to evaluate their myorelaxant activity by using isolated smooth muscle of rat ileum and rat aorta. Both CI and CM extracts concentration-dependently inhibited the contractile response to acetylcholine (ACh), phenylephrine (PE) and to 100 mM KCl. The concentration-contraction curves to ACh in ileum and to PE in aorta, were displaced to the right by Cistus extracts in a non-competitive manner, with a depression of the maximum contractile response. The EC50 (microg/ml) of CM and CI were: ileum/KCl, CM 457+/-99, CI 681+/-80; ileum/ACh 100 microM, CM 297+/-66, CI 335+/-41; aorta/KCl, CM 360+/-21, CI 843+/-36; and aorta/PE 10 microM, CM 287+/-33, CI 451+/-58. The two extracts resulted almost equi-active in ileum, whereas CM was more active than CI in aorta. These data indicate that Cistus extracts act as spasmolytic on intestinal and vascular smooth muscle. The antagonism they exert on ACh-, PE- and KCl-evoked contractions seems to be functional, because it is not specifically directed toward any particular receptor; furthermore, a calcium-antagonist activity seems unlikely, since the extracts are capable of completely block the contractile response to agonists.

  6. Massage and stretching reduce spinal reflex excitability without affecting twitch contractile properties.

    PubMed

    Behm, David G; Peach, Ashley; Maddigan, Meaghan; Aboodarda, Saied Jalal; DiSanto, Mario C; Button, Duane C; Maffiuletti, Nicola A

    2013-10-01

    Both stretching and massage can increase range of motion. Whereas the stretching-induced increases in ROM have been attributed to changes in neural and muscle responses, there is no literature investigating the ROM mechanisms underlying the interaction of stretch and massage. The objective of this paper was to evaluate changes in neural and evoked muscle responses with two types of massage and static stretching. With this repeated measures design, 30s of plantar flexors musculotendinous junction (MTJ) and tapotement (TAP) massage were implemented either with or without 1min of concurrent stretching as well as a control condition. Measures included the soleus maximum H-reflex/M-wave (H/M) ratio, as well as electromechanical delay (EMD), and evoked contractile properties of the triceps surae. With the exception of EMD, massage and stretch did not significantly alter triceps surae evoked contractile properties. Massage with and without stretching decreased the soleus H/M ratio. Both TAP conditions provided greater H/M ratio depression than MTJ massage while the addition of stretch provided the greatest inhibition. Both massage types when combined with stretching increased the duration of the EMD. In conclusion, MTJ and TAP massage as well as stretching decreased spinal reflex excitability, with TAP providing the strongest suppression. While static stretching prolongs EMD, massage did not affect contractile properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Tension generation by threads of contractile proteins

    PubMed Central

    1977-01-01

    Threads of contractile proteins were formed via extrusion and their isometric tensions and isotonic contraction velocities were measured. We obtained reproducible data by using a new and sensitive tensiometer. The force-velocity curves of actomyosin threads were similar to those of muscle, with isometric tensions of the order of 10g/cm2 and maximum contraction velocites of the order of 10(-2) lengths/s. The data could be fitted by Hill's equation. Addition of tropomyosin and troponin to the threads increased isometric tension and maximum contraction velocity. Threads which contained troponin and tropomyosin required Ca++ for contraction and the dependence of their isometric tension on the level of free Ca++ was like that of muscle. The dependence of tension or of contraction velocity upon temperature or upon ionic strength is similar for actomyosin threads and muscle fibers. In contrast, the dependence of most parameters which are characteristic of the actomyosin interaction in solution (or suspension) upon these variables is not similar to the dependence of the muscle fiber parameters. The conclusion we have drawn from these results is that the mechanism of tension generation in the threads is similar to the mechanism that exists in muscle. Because the protein composition of the thread system can be manipulated readily and because the tensions and velocities of the threads can be related directly to the physiological parameters of muscle fibers, the threads provide a powerful method for studying contractile proteins. PMID:137958

  8. Effect of eating on thallium myocardial imaging

    SciTech Connect

    Wilson, R.A.; Sullivan, P.J.; Okada, R.D.; Boucher, C.A.; Morris, C.; Pohost, G.M.; Strauss, H.W.

    1986-02-01

    To determine if eating between initial and delayed thallium images alters the appearance of the delayed thallium scan, a prospective study was performed; 184 subjects sent for routine thallium imaging were randomized into two groups, those who ate a meal high in carbohydrates between initial and delayed thallium myocardial images (n = 106), and those who fasted (n = 78). The /sup 201/Tl images were interpreted in blinded fashion for global myocardial and pulmonary clearance of /sup 201/Tl myocardial defects. The eating group had a significantly lower incidence of transient myocardial defects compared to the noneating group (7 percent vs 18 percent, respectively; p less than 0.05). The time between initial and delayed images and the incidence of exercise-induced ischemic ST-segment depression or pathologic Q waves on the electrocardiogram were not significantly different between the two groups. These data suggest that eating a high-carbohydrate meal between initial and delayed /sup 201/Tl images causes increased /sup 201/Tl myocardial clearance rates and may alter /sup 201/Tl myocardial redistribution over time.

  9. Myocardial infarction-induced N-terminal fragment of cardiac myosin-binding protein C (cMyBP-C) impairs myofilament function in human myocardium.

    PubMed

    Witayavanitkul, Namthip; Ait Mou, Younss; Kuster, Diederik W D; Khairallah, Ramzi J; Sarkey, Jason; Govindan, Suresh; Chen, Xin; Ge, Ying; Rajan, Sudarsan; Wieczorek, David F; Irving, Thomas; Westfall, Margaret V; de Tombe, Pieter P; Sadayappan, Sakthivel

    2014-03-28

    Myocardial infarction (MI) is associated with depressed cardiac contractile function and progression to heart failure. Cardiac myosin-binding protein C, a cardiac-specific myofilament protein, is proteolyzed post-MI in humans, which results in an N-terminal fragment, C0-C1f. The presence of C0-C1f in cultured cardiomyocytes results in decreased Ca(2+) transients and cell shortening, abnormalities sufficient for the induction of heart failure in a mouse model. However, the underlying mechanisms remain unclear. Here, we investigate the association between C0-C1f and altered contractility in human cardiac myofilaments in vitro. To accomplish this, we generated recombinant human C0-C1f (hC0C1f) and incorporated it into permeabilized human left ventricular myocardium. Mechanical properties were studied at short (2 μm) and long (2.3 μm) sarcomere length (SL). Our data demonstrate that the presence of hC0C1f in the sarcomere had the greatest effect at short, but not long, SL, decreasing maximal force and myofilament Ca(2+) sensitivity. Moreover, hC0C1f led to increased cooperative activation, cross-bridge cycling kinetics, and tension cost, with greater effects at short SL. We further established that the effects of hC0C1f occur through direct interaction with actin and α-tropomyosin. Our data demonstrate that the presence of hC0C1f in the sarcomere is sufficient to induce depressed myofilament function and Ca(2+) sensitivity in otherwise healthy human donor myocardium. Decreased cardiac function post-MI may result, in part, from the ability of hC0C1f to bind actin and α-tropomyosin, suggesting that cleaved C0-C1f could act as a poison polypeptide and disrupt the interaction of native cardiac myosin-binding protein C with the thin filament.

  10. Cell-based delivery of dATP via gap junctions enhances cardiac contractility.

    PubMed

    Lundy, Scott D; Murphy, Sean A; Dupras, Sarah K; Dai, Jin; Murry, Charles E; Laflamme, Michael A; Regnier, Michael

    2014-07-01

    The transplantation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is a promising strategy to treat myocardial infarction and reverse heart failure, but to date the contractile benefit in most studies remains modest. We have previously shown that the nucleotide 2-deoxyadenosine triphosphate (dATP) can substitute for ATP as the energy substrate for cardiac myosin, and increasing cellular dATP content by globally overexpressing ribonucleotide reductase (R1R2) can dramatically enhance cardiac contractility. Because dATP is a small molecule, we hypothesized that it would diffuse readily between cells via gap junctions and enhance the contractility of neighboring coupled wild type cells. To test this hypothesis, we performed studies with the goals of (1) validating gap junction-mediated dATP transfer in vitro and (2) investigating the use of R1R2-overexpressing hPSC-CMs in vivo as a novel strategy to increase cardiac function. We first performed intracellular dye transfer studies using dATP conjugated to fluorescein and demonstrated rapid gap junction-mediated transfer between cardiomyocytes. We then cocultured wild type cardiomyocytes with either cardiomyocytes or fibroblasts overexpressing R1R2 and saw more than a twofold increase in the extent and rate of contraction of wild type cardiomyocytes. Finally, we transplanted hPSC-CMs overexpressing R1R2 into healthy uninjured rat hearts and noted an increase in fractional shortening from 41±4% to 53±5% just five days after cell transplantation. These findings demonstrate that dATP is an inotropic factor that spreads between cells via gap junctions. Our data suggest that transplantation of dATP-producing hPSC-CMs could significantly increase the effectiveness of cardiac cell therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Experimental and Computational Insight Into Human Mesenchymal Stem Cell Paracrine Signaling and Heterocellular Coupling Effects on Cardiac Contractility and Arrhythmogenicity.

    PubMed

    Mayourian, Joshua; Cashman, Timothy J; Ceholski, Delaine K; Johnson, Bryce V; Sachs, David; Kaji, Deepak A; Sahoo, Susmita; Hare, Joshua M; Hajjar, Roger J; Sobie, Eric A; Costa, Kevin D

    2017-08-04

    Myocardial delivery of human mesenchymal stem cells (hMSCs) is an emerging therapy for treating the failing heart. However, the relative effects of hMSC-mediated heterocellular coupling (HC) and paracrine signaling (PS) on human cardiac contractility and arrhythmogenicity remain unresolved. The objective is to better understand hMSC PS and HC effects on human cardiac contractility and arrhythmogenicity by integrating experimental and computational approaches. Extending our previous hMSC-cardiomyocyte HC computational model, we incorporated experimentally calibrated hMSC PS effects on cardiomyocyte L-type calcium channel/sarcoendoplasmic reticulum calcium-ATPase activity and cardiac tissue fibrosis. Excitation-contraction simulations of hMSC PS-only and combined HC+PS effects on human cardiomyocytes were representative of human engineered cardiac tissue (hECT) contractile function measurements under matched experimental treatments. Model simulations and hECTs both demonstrated that hMSC-mediated effects were most pronounced under PS-only conditions, where developed force increased ≈4-fold compared with non-hMSC-supplemented controls during physiological 1-Hz pacing. Simulations predicted contractility of isolated healthy and ischemic adult human cardiomyocytes would be minimally sensitive to hMSC HC, driven primarily by PS. Dominance of hMSC PS was also revealed in simulations of fibrotic cardiac tissue, where hMSC PS protected from potential proarrhythmic effects of HC at various levels of engraftment. Finally, to study the nature of the hMSC paracrine effects on contractility, proteomic analysis of hECT/hMSC conditioned media predicted activation of PI3K/Akt signaling, a recognized target of both soluble and exosomal fractions of the hMSC secretome. Treating hECTs with exosome-enriched, but not exosome-depleted, fractions of the hMSC secretome recapitulated the effects observed with hMSC conditioned media on hECT-developed force and expression of calcium

  12. The mechanism of action of calcium antagonists on arrhythmias in early myocardial ischaemia: studies with nifedipine and DHM9.

    PubMed Central

    Curtis, M. J.; Walker, M. J.

    1988-01-01

    1. Nifedipine and DHM9 (carboxymethyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate) were studied for their effects on arrhythmias resulting from regional myocardial ischaemia in conscious rats, and for their effects on left ventricular developed pressure in vitro. 2. Nifedipine possessed antiarrhythmic activity at a high dose of 10 mg kg-1 i.v., but not at 0.5 or 2 mg kg-1. Ventricular fibrillation (VF), tachycardia (VT), and ventricular premature beats (VPB) were all attenuated to a similar degree; nifedipine did not have a selectivity of action for high frequency arrhythmias. 3. Before coronary occlusion, the three doses of nifedipine reduced arterial blood pressure by a similar magnitude, indicating a similar (maximal) degree of systemic vasodilatation. The reductions in blood pressure were accompanied by reflex tachycardia. Heart rate and blood pressure did not correlate with the incidence or severity of arrhythmias. 4. DHM9 had no influence on arrhythmias, haemodynamic variables or the ECG, even at 20 mg kg-1 i.v. 5. Nifedipine concentration-dependently reduced contractility in perfused paced (5 Hz) rat ventricles in vitro. Raising the concentration of K+ in the perfusion fluid from 3 to 10 mequiv.l-1 increased the potency (-log10 EC50) of nifedipine up to four fold, and caused a significant depression in excitability. 6. DHM9 at up to 3 x 10(-5) M had no significant influence on ventricular contractility in vitro. 7. The results provided indirect evidence in support of the hypothesis that calcium antagonists inhibit ischaemia-induced arrhythmias by virtue of inhibition of the slow inward current (Isi) in the ischaemic ventricular myocardium. PMID:3207985

  13. Emerging trends in the pathophysiology of lymphatic contractile function

    PubMed Central

    Chakraborty, Sanjukta; Davis, Michael J.; Muthuchamy, Mariappan

    2015-01-01

    Lymphatic contractile dysfunction is central to a number of pathologies that affect millions of people worldwide. Due to its critical role in the process of inflammation, a dysfunctional lymphatic system also compromises the immune response, further exacerbating a number of inflammation related diseases. Despite the critical physiological functions accomplished by the transport of lymph, a complete understanding of the contractile machinery of the lymphatic system lags far behind that of the blood vasculature. However, there has been a surge of recent research focusing on different mechanisms that underlie both physiological and pathophysiological aspects of lymphatic contractile function. This review summarizes those emerging paradigms that shed some novel insights into the contractile physiology of the lymphatics in normal as well as different disease states. In addition, this review emphasizes the recent progress made in our understanding of various contractile parameters and regulatory elements that contribute to the normal functioning of the lymphatics. PMID:25617600

  14. Considerations For Contractile Electroactive Materials and Actuators

    SciTech Connect

    Lenore Rasmussen, Lewis D. Meixler and Charles A. Gentile

    2012-02-29

    Electroactive polymers (EAPs) that bend, swell, ripple (first generation materials), and now contract with low electric input (new development) have been produced. The mechanism of contraction is not well understood. Radionuclide-labeled experiments, molecular modeling, electrolyte experiments, pH experiments, and an ionic concentration experiment were used to determine the chain of events that occur during contraction and, reciprocally, expansion when the polarity is reversed, in these ionic EAPs. Plasma treatment of the electrodes, along with other strategies, allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface, analogous to nerves and tendons moving with muscles during movement. Challenges involved with prototyping actuation using contractile EAPs are also discussed.

  15. Considerations for Contractile Electroactive Materials and Actuators

    SciTech Connect

    Lenore Rasmussen, David Schramm, Paul Rasmussen, Kevin Mullaly, Ras Labs, LLC, Intelligent Materials for Prosthetics & Automation, Lewis D. Meixler, Daniel Pearlman and Alice Kirk

    2011-05-23

    Ras Labs produces contractile electroactive polymer (EAP) based materials and actuators that bend, swell, ripple, and contract (new development) with low electric input. In addition, Ras Labs produces EAP materials that quickly contract and expand, repeatedly, by reversing the polarity of the electric input, which can be cycled. This phenomenon was explored using molecular modeling, followed by experimentation. Applied voltage step functions were also investigated. High voltage steps followed by low voltage steps produced a larger contraction followed by a smaller contraction. Actuator control by simply adjusting the electric input is extremely useful for biomimetic applications. Muscles are able to partially contract. If muscles could only completely contract, nobody could hold an egg, for example, without breaking it. A combination of high and low voltage step functions could produce gross motor function and fine manipulation within the same actuator unit. Plasma treated electrodes with various geometries were investigated as a means of providing for more durable actuation.

  16. Considerations for contractile electroactive materials and actuators

    NASA Astrophysics Data System (ADS)

    Rasmussen, Lenore; Schramm, David; Rasmussen, Paul; Mullally, Kevin; Meixler, Lewis D.; Pearlman, Daniel; Kirk, Alice

    2011-04-01

    Ras Labs produces contractile electroactive polymer (EAP) based materials and actuators that bend, swell, ripple, and contract (new development) with low electric input. In addition, Ras Labs produces EAP materials that quickly contract and expand, repeatedly, by reversing the polarity of the electric input, which can be cycled. This phenomenon was explored using molecular modeling, followed by experimentation. Applied voltage step functions were also investigated. High voltage steps followed by low voltage steps produced a larger contraction followed by a smaller contraction. Actuator control by simply adjusting the electric input is extremely useful for biomimetic applications. Muscles are able to partially contract. If muscles could only completely contract, nobody could hold an egg, for example, without breaking it. A combination of high and low voltage step functions could produce gross motor function and fine manipulation within the same actuator unit. Plasma treated electrodes with various geometries were investigated as a means of providing for more durable actuation.

  17. Spiral waves on a contractile tissue

    NASA Astrophysics Data System (ADS)

    Mesin, L.; Ambrosi, D.

    2011-02-01

    In a healthy cardiac tissue, electric waves propagate in the form of a travelling pulse, from the apex to the base, and activate the contraction of the heart. Defects in the propagation can destabilize travelling fronts and originate possible new periodic solutions, as spiral waves. Spiral waves are quite stable, but the interplay between currents and strain can distort the periodic pattern, provided the coupling is strong enough. In this paper we investigate the stability of spiral waves on a contractile medium in a non-standard framework, in which the electrical potential dictates the active strain (not stress) of the muscle. The role of conducting and contracting fibers is included in the model and periodic boundary conditions are adopted. A correlation analysis allows to evaluate numerically the range of stability of the parameters for the spiral waves, depending on the strain of the contracted fibers and on the magnitude of the stretch activated current.

  18. Considerations for contractile electroactive materials and actuators

    NASA Astrophysics Data System (ADS)

    Rasmussen, Lenore; Meixler, Lewis D.; Gentile, Charles A.

    2012-04-01

    Electroactive polymers (EAPs) that bend, swell, ripple (first generation materials), and now contract with low electric input (new development) have been produced. The mechanism of contraction is not well understood. Radionuclide-labeled experiments, molecular modeling, electrolyte experiments, pH experiments, and an ionic concentration experiment were used to determine the chain of events that occur during contraction and, reciprocally, expansion when the polarity is reversed, in these ionic EAPs. Plasma treatment of the electrodes, along with other strategies, allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface, analogous to nerves and tendons moving with muscles during movement. Challenges involved with prototyping actuation using contractile EAPs are also discussed.

  19. Active Elasticity of Gels with Contractile Cells

    NASA Astrophysics Data System (ADS)

    Zemel, A.; Bischofs, I. B.; Safran, S. A.

    2006-09-01

    Cells play an active role in the maintenance of mechanical homeostasis within tissues and their response to elastic forces is important for tissue engineering. We predict the collective response of an ensemble of contractile cells in a three-dimensional elastic medium to externally applied strain fields. Motivated by experiment, we model the cells as polarizable force dipoles that change their orientation in response to the local elastic strain. The analogy between the mechanical response of these systems and the dielectric response of polar molecules is used to calculate the elastic response function. We use this analogy to evaluate the average cell orientation, the mean polarization stress, and the effective elastic constants of the material, as a function of the cell concentration and matrix properties.

  20. Depression in Coronary Artery Disease

    PubMed Central

    Safaie, Nasser; Jodati, Ahmad Reza; Raoofi, Mohammad; Khalili, Majid

    2012-01-01

    Introduction Depression is one of the Common psychological disorders. From the cognitive point of view, the unhealthy attitudes increase the severity of the depression. The aim of this study was to investigate depression and unhealthy attitudes in coronary patients hospitalized at Tabriz Shahid Madani Heart Center. Methods One hundred twenty eight hospitalized patients having myocardial Infarctions were studied regarding unhealthy attitudes, severity of depression and demographic data. Results The study showed a significant relation between unhealthy attitudes, BDI (Beck Depression Inventory) and severe depression. Moreover, a significant relation existed between gender and depression (P=0.0001). In addition, the level of education increased the intensity of unhealthy attitudes (P=0.0001). Several researches in both outside and inside Iran support the idea. Conclusion Based on present study and more other investigations, it can be suggested to provide the necessary elements and parameters such as antidepressant medication, psychologists, complementary treatment for coping with negative mood and its unwanted consequences. PMID:24250990

  1. Alteration of Contractile Function and Calcium Ion Movements in Vascular Smooth Muscle by Gentamicin and Other Aminoglycoside Antibiotics

    PubMed Central

    Adams, H. Richard; Goodman, Frank R.; Weiss, George B.

    1974-01-01

    Experiments were conducted to examine the effects of certain aminoglycoside antibiotics on contractile responses and related calcium ion (Ca2+) movements in isolated vascular smooth muscle. Gentamicin, kanamycin, and streptomycin decreased contractile responses produced by norepinephrine, histamine, and high K+ in rabbit aortic strips. The inhibitory action of these antibiotics on mechanical function was more pronounced when the Ca2+ concentration of the bathing solution was decreased from 1.5 mM (normal Ca2+ solution) to 0.05 mM (low Ca2+ solution). The uptake of radiocalcium (45Ca) into the isolated media-intimal layer of rabbit aortae was decreased in a maintained manner by each antibiotic. With gentamicin, the inhibitory effect on 45Ca uptake was shown to be dependent upon the concentration of gentamicin employed and to be more evident in a 0.1 mM Ca2+ solution than in a normal Ca2+ solution. In addition, the rate of 45Ca efflux from the rabbit aortic media-intimal layer was increased in a sustained manner by gentamicin, streptomycin, and kanamycin. Furthermore, contractile responses induced by high K+ and norepinephrine in canine carotid arterial strips were inhibited by gentamicin. Present findings indicate that aminoglycoside antibiotics interfere with Ca2+-linked events leading to activation of the contractile mechanism of vascular smooth muscle. These in vitro findings may partially explain the occurrence of in vivo cardiovascular depression that has occasionally been observed after the administration of chemically related antimicrobial agents. PMID:15825418

  2. Action of acetylstrophanthidin on experimental myocardial infarction.

    NASA Technical Reports Server (NTRS)

    Nola, G. T.; Pope, S. E.; Harrison, D. C.

    1972-01-01

    An experimental animal model with acute myocardial infarction of a size insufficient to produce profound heart failure or shock was used to study the effects of acute infarction on digitalis tolerance and the hemodynamic changes produced by moderate and large doses of acetylstrophanthidin. With acute myocardial infarction, digitalis toxic arrhythmias could be precipitated with significantly lower doses of digitalis than in animals without myocardial infarction. There was no precise correlation between the size of infarction and the toxic dose of glycoside. Coronary artery ligation produced a stable but relatively depressed circulatory state, as evidenced by lowered cardiac output and stroke volume and elevated systemic vascular resistance and left atrial mean pressure. When digitalis was infused, the following significant changes were observed at nontoxic doses: (1) elevation of aortic and left ventricular pressures; (2) further decline in cardiac output; and (3) decreased left atrial mean pressure.

  3. Action of acetylstrophanthidin on experimental myocardial infarction.

    NASA Technical Reports Server (NTRS)

    Nola, G. T.; Pope, S. E.; Harrison, D. C.

    1972-01-01

    An experimental animal model with acute myocardial infarction of a size insufficient to produce profound heart failure or shock was used to study the effects of acute infarction on digitalis tolerance and the hemodynamic changes produced by moderate and large doses of acetylstrophanthidin. With acute myocardial infarction, digitalis toxic arrhythmias could be precipitated with significantly lower doses of digitalis than in animals without myocardial infarction. There was no precise correlation between the size of infarction and the toxic dose of glycoside. Coronary artery ligation produced a stable but relatively depressed circulatory state, as evidenced by lowered cardiac output and stroke volume and elevated systemic vascular resistance and left atrial mean pressure. When digitalis was infused, the following significant changes were observed at nontoxic doses: (1) elevation of aortic and left ventricular pressures; (2) further decline in cardiac output; and (3) decreased left atrial mean pressure.

  4. Myocardial imaging. Coxsackie myocarditis

    SciTech Connect

    Wells, R.G.; Ruskin, J.A.; Sty, J.R.

    1986-09-01

    A 3-week-old male neonate with heart failure associated with Coxsackie virus infection was imaged with Tc-99m PYP and TI-201. The abnormal imaging pattern suggested myocardial infarction. Autopsy findings indicated that the cause was myocardial necrosis secondary to an acute inflammatory process. Causes of abnormal myocardial uptake of Tc-99m PYP in pediatrics include infarction, myocarditis, cardiomyopathy, bacterial endocarditis, and trauma. Myocardial imaging cannot provide a specific cause diagnosis. Causes of myocardial infarction in pediatrics are listed in Table 1.

  5. Increased longitudinal contractility and diastolic function at rest in well-trained amateur Marathon runners: a speckle tracking echocardiography study

    PubMed Central

    2014-01-01

    Background Regular physical activity reduces cardiovascular risk. There is concern that Marathon running might acutely damage the heart. It is unknown to what extent intensive physical endurance activity influences the cardiac mechanics at resting condition. Methods Eighty-four amateur marathon runners (43 women and 41 men) from Berlin-Brandenburg area who had completed at least one marathon previously underwent clinical examination and echocardiography at least 10 days before the Berlin Marathon at rest. Standard transthoracic echocardiography and 2D strain and strain rate analysis were performed. The 2D Strain and strain rate values were compared to previous published data of healthy untrained individuals. Results The average global longitudinal peak systolic strain of the left ventricle was -23 +/- 2% with peak systolic strain rate -1.39 +/- 0.21/s, early diastolic strain rate 2.0 +/- 0.40/s and late diastolic strain rate 1.21 +/- 0.31/s. These values are significantly higher compared to the previous published values of normal age-adjusted individuals. In addition, no age-related decline of longitudinal contractility in well-trained athletes was observed. Conclusions There is increased overall longitudinal myocardial contractility at rest in experienced endurance athletes compared to the published normal values in the literature indicating a preserved and even supra-normal contractility in the athletes. There is no age dependent decline of the longitudinal 2D Strain values. This underlines the beneficial effects of regular physical exercise even in advanced age. PMID:24571726

  6. Cardiac-specific elevations in thyroid hormone enhance contractility and prevent pressure overload-induced cardiac dysfunction

    PubMed Central

    Trivieri, Maria Giovanna; Oudit, Gavin Y.; Sah, Rajan; Kerfant, Benoit-Gilles; Sun, Hui; Gramolini, Anthony O.; Pan, Yan; Wickenden, Alan D.; Croteau, Walburga; Morreale de Escobar, Gabriella; Pekhletski, Roman; St. Germain, Donald; MacLennan, David H.; Backx, Peter H.

    2006-01-01

    Thyroid hormone (TH) is critical for cardiac development and heart function. In heart disease, TH metabolism is abnormal, and many biochemical and functional alterations mirror hypothyroidism. Although TH therapy has been advocated for treating heart disease, a clear benefit of TH has yet to be established, possibly because of peripheral actions of TH. To assess the potential efficacy of TH in treating heart disease, type 2 deiodinase (D2), which converts the prohormone thyroxine to active triiodothyronine (T3), was expressed transiently in mouse hearts by using the tetracycline transactivator system. Increased cardiac D2 activity led to elevated cardiac T3 levels and to enhanced myocardial contractility, accompanied by increased Ca2+ transients and sarcoplasmic reticulum (SR) Ca2+ uptake. These phenotypic changes were associated with up-regulation of sarco(endo)plasmic reticulum calcium ATPase (SERCA) 2a expression as well as decreased Na+/Ca2+ exchanger, β-myosin heavy chain, and sarcolipin (SLN) expression. In pressure overload, targeted increases in D2 activity could not block hypertrophy but could completely prevent impaired contractility and SR Ca2+ cycling as well as altered expression patterns of SERCA2a, SLN, and other markers of pathological hypertrophy. Our results establish that elevated D2 activity in the heart increases T3 levels and enhances cardiac contractile function while preventing deterioration of cardiac function and altered gene expression after pressure overload. PMID:16595628

  7. Asymptomatic myocardial ischemia following cold provocation

    SciTech Connect

    Shea, M.J.; Deanfield, J.E.; deLandsheere, C.M.; Wilson, R.A.; Kensett, M.; Selwyn, A.P.

    1987-09-01

    Cold is thought to provoke angina in patients with coronary disease either by an increase in myocardial demand or an increase in coronary vascular resistance. We investigated and compared the effects of cold pressor stimulation and symptom-limited supine bicycle exercise on regional myocardial perfusion in 35 patients with stable angina and coronary disease and in 10 normal subjects. Regional myocardial perfusion was assessed with positron emission tomography and rubidium-82. Following cold pressor stimulation 24 of 35 patients demonstrated significant abnormalities of regional myocardial perfusion with reduced cation uptake in affected regions of myocardium: 52 +/- 9 to 43 +/- 9 (p less than 0.001 vs normal subjects). Among these 24 patients only nine developed ST depression and only seven had angina. In contrast, 29 of 35 patients underwent supine exercise, and abnormal regional myocardial perfusion occurred in all 29, with a reduction in cation intake from 48 +/- 10 to 43 +/- 14 (p less than 0.001 vs normal subjects). Angina was present in 27 of 29 and ST depression in 25 of 29. Although the absolute decrease in cation uptake was somewhat greater following cold as opposed to exercise, the peak heart rate after cold was significantly lower than that after exercise (82 +/- 12 vs 108 +/- 16 bpm, p less than 0.05). Peak systolic blood pressures after cold and exercise were similar (159 +/- 24 vs 158 +/- 28). Thus, cold produces much more frequent asymptomatic disturbances of regional myocardial perfusion in patients with stable angina and coronary disease than is suggested by pain or ECG changes.

  8. Early changes in contractility indices and fibrosis in two minimally invasive congestive heart failure models.

    PubMed

    de Souza Vilarinho, Karlos Alexandre; Petrucci, Orlando; Baker, R Scott; Vassallo, José; Schenka, André Almeida; Duffy, Jodie Y; de Oliveira, Pedro Paulo Martins; Vieira, Reinaldo Wilson

    2010-02-01

    Heart failure is a common and often fatal disease. Numerous animal models are used to study its aetiology, progression and treatment. This article aims to demonstrate two minimally invasive models of congestive heart failure in a rabbit model and a precise method to assess cardiac performance. Fifty New Zealand White rabbits underwent cervicotomy incision and were then divided into three groups. Aortic regurgitation (AR group) was induced in 17 animals by catheter lesion through the right carotid artery, proximal aortic constriction (AC group) was created in 17 animals by metallic clip placement in the ascending aorta through a neck incision, while 16 animals served as controls (CO group). Eight weeks later, myocardial function and contractility indices were assessed by sonomicrometry crystals. Hearts were then collected for morphometric measurements and left ventricular tissues were subjected to immunohistochemical analysis of fibrosis, necrosis and apoptosis. Statistical analysis was by analysis of variance (ANOVA) with a Dunnett's post hoc test or by Kruskal-Wallis test with Dunn's post hoc test as appropriate, with significance at p< or =0.05. The model of aortic regurgitation indicated early stages of heart failure by volume overload with increased end-diastolic and end-systolic volumes, stroke volume, cardiac output and pressure-volume loop areas. The elastance was higher in the control group compared with that in the AC and AR groups (131.00+/-51.27 vs 88.77+/-40.11 vs 75.29+/-50.70; p=0.01). The preload recruitable stroke work was higher in the control group compared with that in the AC and AR groups (47.70+/-14.19 vs 33.87+/-7.46 vs 38.58+/-9.45; p=0.01). Aortic constriction produced left ventricular concentric hypertrophy. Fibrosis appeared in both heart failure models and was elevated by aortic constriction when compared with that in controls. Necrosis and apoptosis indices were very low in all the groups. Clinical signs of congestive heart failure were

  9. Contractile dysfunction of the shoulder (rotator cuff tendinopathy): an overview.

    PubMed

    Littlewood, Chris

    2012-11-01

    It is now over a decade since the features defining a contractile dysfunction of the shoulder were first reported. Since this time, some progress has been made to better understand this mechanical syndrome. In response to these developments, this narrative review will explore current understanding in relation to pathology, diagnosis, treatment, and prognosis of this syndrome with reference to literature specifically relating to contractile dysfunction but also literature relating to rotator cuff tendinopathy where necessary. The review not only identifies the strengths of the mechanical diagnosis and therapy approach with reference to a contractile dysfunction of the shoulder but also identifies where further progress needs to be made.

  10. Depression - resources

    MedlinePlus

    Resources - depression ... Depression is a medical condition. If you think you may be depressed, see a health care provider. ... following organizations are good sources of information on depression : American Psychological Association -- www.apa.org/topics/depress/ ...

  11. Histopathological study on myocardial hypertrophy associated with ischemic heart disease.

    PubMed

    Ishijima, M

    1990-06-01

    The mode and causes of myocardial hypertrophy occurring in association with ischemic heart disease were studied. The investigation involved autopsied hearts (15 cases of subendocardial infarction, 27 of transmural infarction, 20 of non-infarcted three vessel disease and 17 controls) and biopsied materials obtained during coronary-aorta bypass graft surgery (23 patients with angina pectoris and 46 with myocardial infarction). The subendocardial infarction group showed most marked myocardial hypertrophy that reflected extensive infarction and fibrosis, dilatation of the left ventricular cavity and the loss of myocytes. Despite a marked decrease in the number of myocyte layers, the residual myocardium of the left ventricle was uniformly hypertrophic, accompanied by an increase in the heart weight. The larger the area of fibrosis, the more marked was myocardial hypertrophy irrespective of the luminal diameter of the responsible coronary artery. These findings indicate that myocardial hypertrophy associated with ischemic heart disease is enhanced by the compensatory mechanisms for a decrease in the contractile myocardium due to fibrosis.

  12. Improved cardiac contractile functions in hypoxia-reoxygenation in rats treated with low concentration Co(2+).

    PubMed

    Endoh, H; Kaneko, T; Nakamura, H; Doi, K; Takahashi, E

    2000-12-01

    An intracellular mechanism that senses decreases in tissue oxygen level and stimulates hypoxia-related gene expression has been reported in various cell types including the cardiac cell. The mechanism can also be activated by Co(2+) in normoxia. Thus we investigated the effects of prior chronic oral CoCl(2) on mechanical functions of isolated, perfused rat hearts in hypoxia-reoxygenation. In normoxic rats, 43 days of Co(2+) administration increased hematocrit from 45 +/- 0.3% (control, n = 18) to 51 +/- 0.6% (n = 19). In hypoxia and reoxygenation, Co(2+)-pretreated hearts exhibited a significantly higher rate-pressure product (267 and 163%, respectively) and coronary flow (127 and 118%, respectively) and lower end-diastolic pressure (72 and 60%, respectively) compared with the control hearts. Although the oral Co(2+) administration significantly raised myocardial Co(2+) concentration, it did not affect mitochondrial respiration, tissue glycogen concentration, or myocardial tissue histology. The levels of vascular endothelial growth factor, aldolase-A, and glucose transporter-1 mRNA were significantly elevated in the Co(2+)-treated myocardium. We conclude that cardiac contractile functions would gain hypoxic tolerance when the endogenous cellular oxygen-sensing mechanism is activated.

  13. Glycolytic pathway (GP), kreb's cycle (KC), and hexose monophosphate shunt (HMS) activity in myocardial subcellular fractions exposed to cannabinoids

    SciTech Connect

    Watson, A.T.; Manno, B.R.; King, J.W.; Fowler, M.R.; Dempsey, C.A.; Manno, J.E.

    1986-03-05

    Delta-9-tetrahydrocannabinol (..delta../sup 9/-THC), the primary psychoactive component of marihuana, and its active metabolite 11-hydroxy-..delta../sup 9/-tetrahydrocannabinol (11-OH-..delta../sup 9/-THC) have been reported to produce a direct cardiac depressant effect. Studies in isolated perfused rat hearts have indicated a decreased force of contraction (inotropic response) when ..delta../sup 9/-THC or 11-OH-..delta../sup 9/-THC was administered in microgram amounts. The mechanism and site of action have not been explained or correlated with associated metabolic pathways. The purpose of this study was to investigate the effects of cannabinoids on major myocardial energy producing pathways, GP and KC, and a non-energy producing pathway, HMS. Cardiac ventricular tissue from male Sprague-Dawley rats (250-300 g) was excised and homogenized for subcellular fractionation. KC, GP and HMS activity was assayed in the appropriate fractions by measuring /sup 14/CO/sub 2/ generation from /sup 14/C-2-pyruvate, /sup 14/C-6-glucose and /sup 14/C-1-glucose respectively. Duplicate assays (n=8) were performed on tissue exposed to saline (control), empty liposomes (vehicle) and four doses each of ..delta../sup 9/-THC and 11-OH-..delta../sup 9/-THC. Changes in metabolic activity and decreases in cardiac contractile performance may be associated.

  14. Cardiac dilatation and pump dysfunction without intrinsic myocardial systolic failure following chronic beta-adrenoreceptor activation.

    PubMed

    Osadchii, Oleg E; Norton, Gavin R; McKechnie, Richard; Deftereos, Dawn; Woodiwiss, Angela J

    2007-04-01

    There is no direct evidence to indicate that pump dysfunction in a dilated chamber reflects the impact of chamber dilatation rather than the degree of intrinsic systolic failure resulting from myocardial damage. In the present study, we explored the relative roles of intrinsic myocardial systolic dysfunction and chamber dilatation as mediators of left ventricular (LV) pump dysfunction. Administration of isoproterenol, a beta-adrenoreceptor agonist, for 3 mo to rats (0.1 mg.kg(-1).day(-1)) resulted in LV pump dysfunction as evidenced by a reduced LV endocardial fractional shortening (echocardiography) and a decrease in the slope of the LV systolic pressure-volume relation (isolated heart preparations). Although chronic beta-adrenoreceptor activation induced cardiomyocyte damage (deoxynucleotidyl transferase-mediated dUTP nick-end labeling) as well as beta(1)- and beta(2)-adrenoreceptor inotropic downregulation (attenuated contractile responses to dobutamine and salbutamol), these changes failed to translate into alterations in intrinsic myocardial contractility. Indeed, LV midwall fractional shortening (echocardiography) and the slope of the LV systolic stress-strain relation (isolated heart preparations) were unchanged. A normal intrinsic myocardial systolic function, despite the presence of cardiomyocyte damage and beta-adrenoreceptor inotropic downregulation, was ascribed to marked increases in myocardial norepinephrine release, to upregulation of alpha-adrenoreceptor-mediated contractile effects as determined by phenylephrine responsiveness, and to compensatory LV hypertrophy. LV pump failure was attributed to LV dilatation, as evidenced by increased LV internal dimensions (echocardiography), and a right shift and increased volume intercept of the LV diastolic pressure-volume relation. In conclusion, chronic sympathetic stimulation, despite reducing beta-adrenoreceptor-mediated inotropic responses and promoting myocyte apoptosis, may nevertheless induce pump

  15. Considerations for Contractile Electroactive Materials and Actuators

    SciTech Connect

    Rasmussen, Lenore; Erickson, Carl J.; Meixler, Lewis D.; Ascione, George; Gentile, Charles A.; Tilson, Carl; Bernasek, Stephen L.; Abelev, Esta

    2010-02-19

    Ras Labs produces electroactive polymer (EAP) based materials and actuators that bend, swell, ripple and now contract (new development) with low electric input. This is an important attribute because of the ability of contraction to produce life-like motion. The mechanism of contraction is not well understood. Radionuclide-labeled experiments were conducted to follow the movement of electrolytes and water in these EAPs when activated. Extreme temperature experiments were performed on the contractile EAPs with very favorable results. One of the biggest challenges in developing these actuators, however, is the electrode-EAP interface because of the pronounced movement of the EAP. Plasma treatments of metallic electrodes were investigated in order to improve the attachment of the embedded electrodes to the EAP material. Surface analysis, adhesive testing, and mechanical testing were conducted to test metal surfaces and metal-polymer interfaces. The nitrogen plasma treatment of titanium produced a strong metal-polymer interface; however, oxygen plasma treatment of both stainless steel and titanium produced even stronger metal-polymer interfaces. Plasma treatment of the electrodes allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface.

  16. Renovation of the injured heart with myocardial tissue engineering.

    PubMed

    Leor, Jonathan; Landa, Natali; Cohen, Smadar

    2006-03-01

    Tissue engineering aims to create, repair and/or replace tissues and organs by using cells, scaffolds, biologically active molecules and physiologic signals. It is an interdisciplinary field that integrates aspects of engineering, chemistry, biology and medicine. One of the most challenging goals in the field of cardiovascular tissue engineering is the creation of a heart muscle patch. This review describes the principles, achievements and challenges of achieving this ambitious goal of creating contractile heart muscle. In addition, the new strategy of in situ and injectable tissue engineering for myocardial repair and regeneration is presented.

  17. Optimum periodicity of repeated contractile actions applied in mass transport

    PubMed Central

    Ahn, Sungsook; Lee, Sang Joon

    2015-01-01

    Dynamically repeated periodic patterns are abundant in natural and artificial systems, such as tides, heart beats, stock prices, and the like. The characteristic repeatability and periodicity are expected to be optimized in effective system-specific functions. In this study, such optimum periodicity is experimentally evaluated in terms of effective mass transport using one-valve and multi-valve systems working in contractile fluid flows. A set of nanoscale gating functions is utilized, operating in nanocomposite networks through which permeates selectively pass under characteristic contractile actions. Optimized contractile periodicity exists for effective energy impartment to flow in a one-valve system. In the sequential contractile actions for a multi-valve system, synchronization with the fluid flow is critical for effective mass transport. This study provides fundamental understanding on the various repeated periodic patterns and dynamic repeatability occurring in nature and mechanical systems, which are useful for broad applications. PMID:25622949

  18. Geometrical Origins of Contractility in Disordered Actomyosin Networks

    NASA Astrophysics Data System (ADS)

    Lenz, Martin

    2014-10-01

    Movement within eukaryotic cells largely originates from localized forces exerted by myosin motors on scaffolds of actin filaments. Although individual motors locally exert both contractile and extensile forces, large actomyosin structures at the cellular scale are overwhelmingly contractile, suggesting that the scaffold serves to favor contraction over extension. While this mechanism is well understood in highly organized striated muscle, its origin in disordered networks such as the cell cortex is unknown. Here, we develop a mathematical model of the actin scaffold's local two- or three-dimensional mechanics and identify four competing contraction mechanisms. We predict that one mechanism dominates, whereby local deformations of the actin break the balance between contraction and extension. In this mechanism, contractile forces result mostly from motors plucking the filaments transversely rather than buckling them longitudinally. These findings shed light on recent in vitro experiments and provide a new geometrical understanding of contractility in the myriad of disordered actomyosin systems found in vivo.

  19. A Rho GTPase signal treadmill backs a contractile array

    PubMed Central

    Burkel, Brian M.; Benink, Helene A.; Vaughan, Emily M.; von Dassow, George; Bement, William M.

    2012-01-01

    Contractile arrays of actin filaments (F-actin) and myosin-2 power diverse biological processes. Contractile array formation is stimulated by the Rho GTPases Rho and Cdc42; after assembly, array movement is thought to result from contraction itself. Contractile array movement and GTPase activity were analyzed during cellular wound repair, in which arrays close in association with zones of Rho and Cdc42 activity. Remarkably, contraction suppression prevents translocation of F-actin and myosin-2 without preventing array or zone closure. Closure is driven by an underlying “signal treadmill” in which the GTPases are preferentially activated at the leading edges and preferentially lost from the trailing edges of their zones. Treadmill organization requires myosin-2 powered contraction and F-actin turnover. Thus, directional gradients in Rho GTPase turnover impart directional information to contractile arrays and proper functioning of these gradients is dependent on both contraction and F-actin turnover. PMID:22819338

  20. Optimum periodicity of repeated contractile actions applied in mass transport

    NASA Astrophysics Data System (ADS)

    Ahn, Sungsook; Lee, Sang Joon

    2015-01-01

    Dynamically repeated periodic patterns are abundant in natural and artificial systems, such as tides, heart beats, stock prices, and the like. The characteristic repeatability and periodicity are expected to be optimized in effective system-specific functions. In this study, such optimum periodicity is experimentally evaluated in terms of effective mass transport using one-valve and multi-valve systems working in contractile fluid flows. A set of nanoscale gating functions is utilized, operating in nanocomposite networks through which permeates selectively pass under characteristic contractile actions. Optimized contractile periodicity exists for effective energy impartment to flow in a one-valve system. In the sequential contractile actions for a multi-valve system, synchronization with the fluid flow is critical for effective mass transport. This study provides fundamental understanding on the various repeated periodic patterns and dynamic repeatability occurring in nature and mechanical systems, which are useful for broad applications.

  1. Mechanisms of Contractile-Ring Assembly in Fission Yeast and Beyond

    PubMed Central

    Laporte, Damien; Zhao, Ran; Wu, Jian-Qiu

    2010-01-01

    Most eukaryotes including fungi, amoebas, and animal cells assemble an actin/myosin-based contractile ring during cytokinesis. The majority of proteins implied in ring formation, maturation, and constriction are evolutionarily conserved, suggesting that common mechanisms exist among these divergent eukaryotes. Here, we review the recent advances in positioning and assembly of the actomyosin ring in the fission yeast Schizosaccharomyces pombe, the budding yeast Saccharomyces cerevisiae, and animal cells. In particular, major findings have been made recently in understanding ring formation in genetically tractable S. pombe, revealing a dynamic and robust search, capture, pull, and release mechanism. PMID:20708088

  2. Prevalence and clinical significance of painless ST segment depression during early postinfarction exercise testing

    SciTech Connect

    Gibson, R.S.; Beller, G.A.; Kaiser, D.L.

    1987-03-01

    In a recent study of 190 survivors of acute myocardial infarction, the authors sought to determine whether exercise-induced painless ST segments depression indicates residual myocardial ischemia, as defined by /sup 201/Tl scintigraphic criteria. 2 weeks after uncomplicated myocardial infarction, and whether quantitative /sup 201/Tl imaging enhances the prognostic value of such an exercise electrocardiographic response.

  3. Origins of the vagal drive controlling left ventricular contractility

    PubMed Central

    Machhada, Asif; Marina, Nephtali; Korsak, Alla; Stuckey, Daniel J.; Lythgoe, Mark F.

    2016-01-01

    Key points The strength, functional significance and origins of parasympathetic innervation of the left ventricle remain controversial.This study tested the hypothesis that parasympathetic control of left ventricular contractility is provided by vagal preganglionic neurones of the dorsal motor nucleus (DVMN).Under β‐adrenoceptor blockade combined with spinal cord (C1) transection (to remove sympathetic influences), systemic administration of atropine increased left ventricular contractility in rats anaesthetized with urethane, confirming the existence of a tonic inhibitory muscarinic influence on cardiac inotropy.Increased left ventricular contractility in anaesthetized rats was observed when DVMN neurones were silenced.Functional neuroanatomical mapping revealed that vagal preganglionic neurones that have an impact on left ventricular contractility are located in the caudal region of the left DVMN.These neurones provide functionally significant parasympathetic control of left ventricular inotropy. Abstract The strength, functional significance and origins of direct parasympathetic innervation of the left ventricle (LV) remain controversial. In the present study we used an anaesthetized rat model to first confirm the presence of tonic inhibitory vagal influence on LV inotropy. Using genetic neuronal targeting and functional neuroanatomical mapping we tested the hypothesis that parasympathetic control of LV contractility is provided by vagal preganglionic neurones located in the dorsal motor nucleus (DVMN). It was found that under systemic β‐adrenoceptor blockade (atenolol) combined with spinal cord (C1) transection (to remove sympathetic influences), intravenous administration of atropine increases LV contractility in rats anaesthetized with urethane, but not in animals anaesthetized with pentobarbital. Increased LV contractility in rats anaesthetized with urethane was also observed when DVMN neurones targeted bilaterally to express an inhibitory Drosophila

  4. Structure and function of contractile proteins in muscle fibres.

    PubMed

    Barden, J A; Bennetts, B H; dos Remedios, C G; Hambly, B D; Miki, M; Phillips, L

    1988-01-01

    The structural unit of muscle has long been defined as the myofibril, a supramolecular assembly of a dozen or more proteins of which two, actin and myosin, comprise more than 75%. In the past 40 years since Albert Szent-Gyorgyi first described the contractile response from the complex of actin and myosin, knowledge of the structure and function of these contractile proteins has been substantially refined. This paper describes these new discoveries and identifies the problems which remain to be elucidated.

  5. Effects of regular exercise training on skeletal muscle contractile function

    NASA Technical Reports Server (NTRS)

    Fitts, Robert H.

    2003-01-01

    Skeletal muscle function is critical to movement and one's ability to perform daily tasks, such as eating and walking. One objective of this article is to review the contractile properties of fast and slow skeletal muscle and single fibers, with particular emphasis on the cellular events that control or rate limit the important mechanical properties. Another important goal of this article is to present the current understanding of how the contractile properties of limb skeletal muscle adapt to programs of regular exercise.

  6. Effects of regular exercise training on skeletal muscle contractile function

    NASA Technical Reports Server (NTRS)

    Fitts, Robert H.

    2003-01-01

    Skeletal muscle function is critical to movement and one's ability to perform daily tasks, such as eating and walking. One objective of this article is to review the contractile properties of fast and slow skeletal muscle and single fibers, with particular emphasis on the cellular events that control or rate limit the important mechanical properties. Another important goal of this article is to present the current understanding of how the contractile properties of limb skeletal muscle adapt to programs of regular exercise.

  7. Endotoxin pretreatment increases endogenous myocardial catalase activity and decreases ischemia-reperfusion injury of isolated rat hearts.

    PubMed Central

    Brown, J M; Grosso, M A; Terada, L S; Whitman, G J; Banerjee, A; White, C W; Harken, A H; Repine, J E

    1989-01-01

    Hearts isolated from rats pretreated 24 hr before with endotoxin had increased myocardial catalase activity, but the same superoxide dismutase, glutathione peroxidase, glutathione reductase, and glucose-6-phosphate dehydrogenase activities, as hearts from untreated rats. Hearts isolated from rats pretreated with endotoxin 24 hr before also had increased myocardial function (decreased injury) after ischemia and reperfusion (Langendorff apparatus, 37 degrees C), as assessed by measurement of ventricular developed pressure, contractility (+dP/dt), and relaxation rate (-dP/dt), compared to control hearts. In contrast, hearts isolated from rats pretreated with endotoxin 1 hr before isolation or hearts perfused with endotoxin did not have increased catalase activity or decreased injury following ischemia and reperfusion. Aminotriazole pretreatment prevented increases in myocardial catalase activity and myocardial function after ischemia-reperfusion in hearts from endotoxin-pretreated rats. The results suggest that endotoxin pretreatment decreases cardiac ischemia-reperfusion injury and that increases in endogenous myocardial catalase activity contribute to protection. PMID:2648406

  8. [Digitalization for acute myocardial infarction: haemodynamic changes in patients with heart failure at rest (author's transl)].

    PubMed

    Bachour, G; Hochrein, H

    1975-11-21

    Haemodynamic changes after intravenous administration of 0.4 mg beta-methyldigoxin or 0.4 mg digoxin daily were measured on the first to fourth day in 42 patients in heart failure after onset of transmural myocardial infarction. Regular reduction in filling pressure and increased stroke volume while arterial blood pressure remained unaltered pointed to improved contractility. Digitalization in the first few days after infarction achieved sustained tendency towards improved haemodynamics. It is concluded that early digitalization is indicated in patients with acute myocardial infarction if there are signs of heart failure.

  9. Caveolin-1 regulates contractility in differentiated vascular smooth muscle.

    PubMed

    Je, Hyun-Dong; Gallant, Cynthia; Leavis, Paul C; Morgan, Kathleen G

    2004-01-01

    Caveolin is a principal component of caveolar membranes. In the present study, we utilized a decoy peptide approach to define the degree of involvement of caveolin in PKC-dependent regulation of contractility of differentiated vascular smooth muscle. The primary isoform of caveolin in ferret aorta vascular smooth muscle is caveolin-1. Chemical loading of contractile vascular smooth muscle tissue with a synthetic caveolin-1 scaffolding domain peptide inhibited PKC-dependent increases in contractility induced by a phorbol ester or an alpha agonist. Peptide loading also resulted in a significant inhibition of phorbol ester-induced adducin Ser662 phosphorylation, an intracellular monitor of PKC kinase activity, ERK1/2 activation, and Ser789 phosphorylation of the actin binding protein caldesmon. alpha-Agonist-induced ERK1-1/2 activation was also inhibited by the caveolin-1 peptide. Scrambled peptide-loaded tissues or sham-loaded tissues were unaffected with respect to both contractility and signaling. Depolarization-induced activation of contraction was not affected by caveolin peptide loading. Similar results with respect to contractility and ERK1/2 activation during exposure to the phorbol ester or the alpha-agonist were obtained with the cholesterol-depleting agent methyl-beta-cyclodextrin. These results are consistent with a role for caveolin-1 in the coordination of signaling leading to the regulation of contractility of smooth muscle.

  10. [Usefulness of transesophageal echocardiography during myocardial revascularization surgery without extracorporeal circulation].

    PubMed

    Cabrera Schulmeyer, M C; Delgado Saavedra, P; de la Maza Calvert, J C; Vega Sepúlveda, R; Santelices Cuevas, E; Allamand, F; Hernández Viehmeister, R; de la Fuente, E U L

    2006-01-01

    Intraoperative transesophageal echocardiography can be a highly useful monitoring technique during myocardial revascularization surgery when extracorporeal circulation (ECC) is not being used. Transesophageal echocardiography provides real-time images on both volume status and segmental myocardial contractility without interfering with the surgical field. A total of 25 patients undergoing myocardial revascularization by sternotomy without ECC were monitored by transesophageal echocardiography during surgery. The 18 men and 7 women studied had a mean (SD) age of 71.3 (8) years. A third of them had hypertension and diabetes, 3 had suffered a cerebrovascular accident, and 2 had renal failure. Nine patients had a history of acute myocardial infarction and 3 had undergone angioplasty. Baseline echocardiograms on all patients established that 6 had a low ejection fraction (<30%). Twelve had altered segmental contractility, which was transient in 11 cases. Six patients had improved ejection fraction at the final assessment. Transesophageal electrocardiography also monitored volume status and the effects of inotropic drugs and beta-blockers in 83% of the patients. Transesophageal electrocardiography is a minimally invasive, safe, and precise way to directly monitor the beating heart in real time during myocardial revascularization without ECC. Image quality is good.

  11. Green tea extract protects rats against myocardial infarction associated with left anterior descending coronary artery ligation.

    PubMed

    Hsieh, Shih-Rong; Tsai, Dan-Chin; Chen, Jan-Yow; Tsai, Sen-Wei; Liou, Ying-Ming

    2009-08-01

    There is increasing evidence that green tea polyphenols can protect against myocardial damage. Recently, we showed that they bind to cardiac troponin C and alter myofilament Ca(2+) sensitivity in cardiac muscle. In the present study, we examined whether green tea extract (GTE) could prevent the progressive remodeling seen in ischemic myocardium and improve cardiac function by modulation of the contractile apparatus utilizing a myocardial infarction (MI) model in the rat involving ligation of the left anterior descending branch. Using this model, severe myocardial injury was found, including altered cardiac performance and the appearance of extensive fibrosis and left ventricular (LV) enlargement. Supplementation with 400 mg/kg/day of GTE for 4, 18, or 46 days had beneficial effects in preventing the hemodynamic changes. Histopathological studies showed that GTE attenuated the progressive remodeling seen after myocardial injury. Echocardiography confirmed that GTE prevented LV enlargement and improved LV performance in post-MI rats. In addition, we showed that GTE supplementation for 18 or 46 days increased the myofilament Ca(2+) sensitivity of the ischemic myocardium in post-MI rats. These results validate the novel action of green tea polyphenols in protecting against myocardial damage and enhancing cardiac contractility by modulating myofilament Ca(2+) sensitivity in post-MI rats.

  12. Bayesian motion recovery framework for myocardial phase-contrast velocity MRI.

    PubMed

    Huntbatch, Andrew; Lee, Su-Lin; Firmin, David; Yang, Guang-Zhong

    2008-01-01

    Detailed assessment of myocardial motion provides a key indicator of ventricular function, enabling the early detection and assessment of a range of cardiac abnormalities. Existing techniques for myocardial contractility analysis are complicated by a combination of factors including resolution, acquisition time, and consistency of quantification results. Phase-contrast velocity MRI is a technique that provides instantaneous, in vivo measurement of tissue velocity on a per-voxel basis. It allows for the direct derivation of contractile indices with minimal post-processing. For this method to be clinically useful, SNR and image artifacts need to be addressed. The purpose of this paper is to present a Maximum a posteriori (MAP) restoration technique for high quality myocardial motion recovery. It employs an accurate noise modeling scheme and a generalized Gaussian Markov random field prior tailored for the myocardial morphology. The quality of the proposed method is evaluated with both simulated myocardial velocity data with known ground truth and in vivo phase-contrast MR velocity acquisitions from a group of normal subjects.

  13. Exercise hemodynamics as a predictor of myocardial recovery in LVAD patients.

    PubMed

    Segan, Louise; Nanayakkara, Shane; Leet, Angeline; Vizi, Donna; Kaye, David M

    2016-12-02

    Mechanical circulatory support using left ventricular assist devices (LVADs) has been demonstrated to improve survival in patients with advanced heart failure. LVAD therapy also promotes reverse ventricular remodeling, which in some cases has led to sufficient myocardial recovery to allow LVAD removal. Identification of suitable patients for LVAD removal however remains challenging. We investigated the hypothesis that invasive assessment of exercise hemodynamics may provide additional information in relation to the assessment of contractile reserve in potential candidates for LVAD explant.

  14. Intracellular calcium and the relationship to contractility in an avian model of heart failure

    PubMed Central

    Kim, C. S.; Doye, A. A.; Davidoff, A. J.; Maki, T. M.

    2005-01-01

    Global contractile heart failure was induced in turkey poults by furazolidone feeding (700 ppm). Abnormal calcium regulation appears to be a key factor in the pathophysiology of heart failure, but the cellular mechanisms contributing to changes in calcium fluxes have not been clearly defined. Isolated ventricular myocytes from non-failing and failing hearts were therefore used to determine whether the whole heart and ventricular muscle contractile dysfunctions were realized at the single cell level. Whole cell current- and voltage-clamp techniques were used to evaluate action potential configurations and L-type calcium currents, respectively. Intracellular calcium transients were evaluated in isolated myocytes with fura-2 and in isolated left ventricular muscles using aequorin. Action potential durations were prolonged in failing myocytes, which correspond to slowed cytosolic calcium clearing. Calcium current-voltage relationships were normal in failing myocytes; preliminary evidence suggests that depressed transient outward potassium currents contribute to prolonged action potential durations. The number of calcium channels (as measured by radioligand binding) were also similar in non-failing and failing hearts. Isolated ventricular muscles from failing hearts had enhanced inotropic responses, in a dose-dependent fashion, to a calcium channel agonist (Bay K 8644). These data suggest that changes in intracellular calcium mobilization kinetics and longer calcium-myofilament interaction may be able to compensate for contractile failure. We conclude that the relationship between calcium current density and sarcoplasmic reticulum calcium release is a dynamic process that may be altered in the setting of heart failure at higher contraction rates. PMID:10935520

  15. The PPAR-α activator fenofibrate fails to provide myocardial protection in ischemia and reperfusion in pigs

    PubMed Central

    Xu, Ya; Lu, Li; Greyson, Clifford; Rizeq, Mona; Nunley, Karin; Wyatt, Beata; Bristow, Michael R.; Long, Carlin S.; Schwartz, Gregory G.

    2010-01-01

    Rodent studies suggest that peroxisome proliferator-activated receptor-α (PPAR-α) activation reduces myocardial ischemia-reperfusion (I/R) injury and infarct size; however, effects of PPAR-α activation in large animal models of myocardial I/R are unknown. We determined whether chronic treatment with the PPAR-α activator fenofibrate affects myocardial I/R injury in pigs. Domestic farm pigs were assigned to treatment with fenofibrate 50 mg·kg−1 ·day−1 orally or no drug treatment, and either a low-fat (4% by weight) or a high-fat (20% by weight) diet. After 4 wk, 66 pigs underwent 90 min low-flow regional myocardial ischemia and 120 min reperfusion under anesthetized open-chest conditions, resulting in myocardial stunning. The high-fat group received an infusion of triglyceride emulsion and heparin during this terminal experiment to maintain elevated arterial free fatty acid (FFA) levels. An additional 21 pigs underwent 60 min no-flow ischemia and 180 min reperfusion, resulting in myocardial infarction. Plasma concentration of fenofibric acid was similar to the EC50 for activation of PPAR-α in vitro and to maximal concentrations achieved in clinical use. Myocardial expression of PPAR-α mRNA was prominent but unaffected by fenofibrate treatment. Fenofibrate increased expression of carnitine palmitoyltransferase (CPT)-I mRNA in liver and decreased arterial FFA and lactate concentrations (each P < 0.01). However, fenofibrate did not affect myocardial CPT-I expression, substrate uptake, lipid accumulation, or contractile function during low-flow I/R in either the low- or high-fat group, nor did it affect myocardial infarct size. Despite expression of PPAR-α in porcine myocardium and effects of fenofibrate on systemic metabolism, treatment with this PPAR-α activator does not alter myocardial metabolic or contractile responses to I/R in pigs. PMID:16339839

  16. [Recovery of the dog myocardial contractile function in the diastolic period].

    PubMed

    Gur'ianov, M I

    2002-02-01

    Isolated canine heart has an expressed ability for autoregulation of mechanical restitution irrespective of the influence of neurohumoral factors and Frank-Starling law on the work of the heart. Mechanical restitution of canine heart in diastolic period starts after the end of mechanical refractory period of the heart and develops exponentially. The higher the heart rhythm the faster the speed of mechanical restitution. The higher the heart rhythm the shorter the mechanical refractory period. Mechanical refractory period of the heart is longer than bioelectrical refractory period.

  17. The intrinsic circadian clock within the cardiomyocyte directly regulates myocardial gene expression, metabolism, and contractile function

    USDA-ARS?s Scientific Manuscript database

    Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology remains unknown. We hypothesized that the circadian clock within the cardiomyocyte plays a role in regulating myo...

  18. The intrinsic circadian clock within the cardiomyocyte directly regulates myocardial gene expression, metabolism, and contractile function

    USDA-ARS?s Scientific Manuscript database

    Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology remains unknown. We hypothesized that circadian clock within the cardiomyocyte plays a role in regulating myocardia...

  19. Effects of selective phosphodiesterase-5-inhibition on myocardial contractility and reperfusion injury after heart transplantation.

    PubMed

    Loganathan, Sivakkanan; Radovits, Tamás; Hirschberg, Kristóf; Korkmaz, Sevil; Barnucz, Eniko; Karck, Matthias; Szabó, Gábor

    2008-11-27

    Recently, the infarct reducing and cardioprotective effects of phosphodiesterase-5-inhibitors were described. In this study, we investigated these effects on ischemia/reperfusion injury in a rat model of heart transplantation. Three groups were assigned for our study: a vardenafil preconditioning group, an ischemic control, and a nonischemic control. Hemodynamic parameters were significantly increased in the vardenafil group (Pmax: 82+/-4 vs. 110+/-12 vs. 127+/-13 mm Hg; dP/dtmax: 1740+/-116 vs. 3197+/-599 vs. 4397+/-602 mm Hg/sec; ischemic control vs. vardenafil vs. nonischemic control; P<0.05 vs. ischemic control). Furthermore, we recorded increased ATP levels and significantly less apoptosis in the treatment group after terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (apoptosis index: 27.23%+/-1.54% vs. 16.77%+/-1.42% vs. 18.86%+/-1.07%; ischemic control vs. vardenafil vs. nonischemic control; P<0.05 vs. ischemic control). Our current results support the concept that the cGMP-PKG-pathway plays an important role in ischemia/reperfusion injury. We could show that up-regulating this pathway has a preconditioning-like effect and can effectively reduce ischemia/reperfusion injury.

  20. Haemodynamic implications of exercise-induced myocardial ischaemia in patients with recent inferior myocardial infarction.

    PubMed

    De Vito, F; Giordano, A; Giannuzzi, P; Tavazzi, L

    1988-04-01

    Two hundred and forty patients with recent inferior myocardial infarction were studied by a symptom-limited ergometric test with haemodynamic monitoring (triple lumen tip-thermistor Swan-Ganz catheter) in order to investigate and quantify the haemodynamic effects of exercise-induced myocardial ischaemia in post-infarct patients and to assess whether the ST-segment changes give any indication of the degree of ventricular impairment. One hundred and thirteen patients showed no ST-segment changes during excercise; ST-segment elevation in leads with abnormal Q wave occurred in 14 patients, ST-segment depression was recorded in 88 subjects, and both ST-segment elevation and depression were found in 27 patients. In subjects with no ST-segment shift, as well as in those with exercise-induced ST-segment elevation, the resting and exertional haemodynamic patterns were normal or nearly normal. In subjects showing ST-segment depression or both ST-segment elevation and depression during exercise the mean pulmonary wedge pressure was abnormally elevated (at peak exercise 25 +/- 8 and 24 +/- 7 mm Hg, respectively). However, 31% of these showed a normal haemodynamic pattern either at rest or during exercise. The number of leads with ST-segment depression and the sum of ST-segment depressions in standard ECG does not reliably indicate the degree of ischaemia-dependent left ventricular impairment. In contrast, in patients grouped on the basis of time of ST depression appearance, the lower the ischaemic threshold the more severe was the left ventricular impairment. Finally, to assess the relative role of both scar and ischaemia in producing left ventricular dysfunction, the haemodynamic patterns of patients with and without exercise-induced ST-segment depression were compared in subsets with similar echocardiographic wall asynergy extent (inferior, infero-apical, infero-septo-apical). Among patients with small or medium-sized scar, the exertional left ventricular filling pressure

  1. The effects of housing conditions on baseline cardiovascular parameters and the sensitivity to detect changes in contractility in telemetry-implanted dogs.

    PubMed

    Sadekova, Nataliya; Boudreau, Ghislaine; Jalbert, Benoit; Norton, Kevin

    2016-01-01

    There is a growing weight of evidence to suggest that myocardial contractility is an important parameter to assess as part of IND enabling studies in addition to standard assessments as per the ICH S7A and S7B guidelines. Historically, assessments of contractility have been limited to snap-shot echocardiography or single housed telemetry assessments of left ventricular pressure. There is a growing number of studies showing that social housing conditions in large animals are beneficial, do not impact the integrity of the data collected and improve animal welfare. With current advances in cardiovascular technology it is now feasible to conduct cardiovascular assessments under group housing conditions. Therefore, the purpose of this study was to evaluate baseline hemodynamic parameters, within a group housed environment, and to demonstrate that the model retains the sensitivity of the traditional assessments. Four animals were instrumented with DSI HD-L21 implants for continuous 24-hour assessment of systemic arterial pressures, left ventricular pressures, heart rate and electrocardiogram intervals in group housed conditions. The animals were administered either Atenolol (0.3, 1 and 3mg/kg), a known negative inotrope, or Pimobendan (0.1, 0.3 and 1mg/kg), a known positive inotrope. The results showed that group housing had no influence on baseline hemodynamic assessments as compared to historical data from single housed animals. The administration of Atenolol and Pimobendan induced the expected changes in cardiovascular parameters. The baseline hemodynamic parameters remained within physiological ranges and were not influenced by group housing conditions. The model retained sensitivity to detect the expected changes in contractility in line with known effects of Atenolol and Pimobendan in dogs. In conclusion, the use of social housing conditions in dogs provides an enriched environment, compliant with animal welfare recommendations, and is in line with the ICH S7A

  2. Attenuation of cardiac contractility in Na,K-ATPase alpha1 isoform-deficient hearts under reduced calcium conditions.

    PubMed

    Moseley, Amy E; Cougnon, Marc H; Grupp, Ingrid L; El Schultz, Jo; Lingrel, Jerry B

    2004-11-01

    We have previously reported that genetic reduction of the Na,K-ATPase alpha1 isoform (alpha1(+/-)) results in a hypocontractile cardiac phenotype. This observation was surprising and unexpected. In order to determine if calcium overload contributes to the depressed phenotype, cardiac performance was examined by perfusing the hearts with buffer containing 2 or 1.5 mM calcium. At 2 mM calcium, +dP/dt for the alpha1(+/-) hearts (1374 +/- 180) was significantly less than that of wild-type (2656 +/- 75, P < 0.05). At 1.5 mM calcium, a larger decrease in +dP/dt occurred (vs. 2 mM calcium) for the alpha1(+/-) hearts (517 +/- 92) compared to wild-type (2238 +/- 157). At 2 mM calcium, -dP/dt was 50% lower in alpha1(+/-) hearts (-1903 +/- 141) than wild-type (-982 +/- 143). At 1.5 mM calcium relaxation was further reduced in alpha1(+/-) compared to wild-type (-443 +/- 56 vs. - 1691 +/- 109). We also tested whether the compensatory upregulation of the Na,K-ATPase alpha2 isoform in the alpha1(+/-) hearts contributes to the hypocontractile phenotype. At 8 x 10(-6) M ouabain, that would completely inhibit the alpha2 isoform, a 30% increase in contractility was obtained in alpha1(+/-) hearts compared to no ouabain treatment, while a 63% faster time-to-peak (TTP) and 67% faster half-time-to-relaxation (RT(1/2)) were observed in alpha1(+/-) hearts treated with ouabain. These results suggest that upregulation of the alpha2 isoform may play a role in slower TTP and RT(1/2) in the alpha1(+/-) hearts. Furthermore, lowering extracellular calcium in the perfusate did not alleviate the depressed contractile phenotype in the alpha1(+/-) hearts and resulted in further depressed cardiac contractility suggesting that these hearts are not calcium overloaded.

  3. Impaired isotonic contractility and structural abnormalities in the diaphragm of congestive heart failure rats.

    PubMed

    van Hees, Hieronymus W H; van der Heijden, Henricus F M; Hafmans, Theo; Ennen, Leo; Heunks, Leo M A; Verheugt, Freek W A; Dekhuijzen, P N Richard

    2008-08-29

    Metabolic alterations and decreased isometric force generation have been demonstrated in different animal models for congestive heart failure (CHF). However, as few morphological examinations have been performed on the CHF diaphragm, it is unknown if structural abnormalities comprise a substrate for diaphragm dysfunction in CHF. Therefore, we investigated CHF diaphragm isometric and isotonic contractility together with the presence of structural abnormalities. Isometric twitch (P(t)) and maximal (P(o)) force, shortening velocity and power generation were determined in diaphragm bundles from rats with CHF, induced by myocardial infarction, and sham-operated rats. Immunofluorescence staining of myosin and sarcolemmal components fibronectin, laminin and dystrophin was performed on diaphragm cryosections. Electron microscopy was used to study the ultrastructure of diaphragm fibres. P(t) and P(o) were respectively approximately 30% and approximately 20% lower in CHF diaphragm bundles than sham. Maximal shortening velocity was reduced by approximately 20% and maximal power generation by approximately 35%. Structural abnormalities were frequently observed in CHF diaphragm fibres and were mainly marked by focal degradation of sarcomeric constituents and expansion of intermyofibrillar spaces with swollen and degenerated mitochondria. Immunofluorescence microscopy showed reduced staining intensities of myosin in CHF diaphragm fibres compared to sham. No differences were found regarding the distribution of fibronectin, laminin and dystrophin, indicating an intact sarcolemma in both groups. This study demonstrates impaired isometric and isotonic contractility together with structural abnormalities in the CHF diaphragm. The sarcolemma of CHF diaphragm fibres appeared to be intact, excluding a role for sarcolemmal injuries in the development of CHF diaphragm dysfunction.

  4. Sum of effects of myocardial ischemia followed by electrically induced tachycardia on myocardial function

    PubMed Central

    Díez, José Luis; Hernándiz, Amparo; Cosín-Aguilar, Juan; Aguilar, Amparo; Portolés, Manuel

    2013-01-01

    Background The alteration of contractile function after tachyarrhythmia ceases is influenced by the type of prior ischemia (acute coronary syndrome or ischemia inherent in a coronary revascularization procedure). We aimed to analyze cardiac dysfunction in an acute experimental model of supraphysiological heart rate preceded by different durations and types of ischemia. Material/Methods Twenty-four pigs were included in: (S1) series of ventricular pacing; (S2, A and B) series with 10 or 20 min, respectively, of coronary occlusion previous to ventricular pacing; S3 with 20 brief, repeated ischemia/reperfusion processes prior to ventricular pacing and; (S4) control series. Overall cardiac function parameters and regional myocardial contractility at the apex and base of the left ventricle were recorded, as were oxidative stress markers (glutathione and lipid peroxide serum levels). Left ventricular pacing at 60% over baseline heart rate was performed for 2 h followed by 1 h of recovery. Results High ventricular pacing rates preceded by short, repeated periods of coronary ischemia/reperfusion resulted in worse impairment of overall cardiac and regional function that continued to be altered 1 h after tachycardia ceased. There was significant reduction of stroke volume (26.9±5.3 basal vs. 16±6.2 ml; p<0.05), LVP; dP/dt and LAD flow (13.1±1.5 basal vs. 8.4±1.6 ml/min; p<0.05); the base contractility remained altered when recovering compared to baseline (base SF: 5.6±2.8 vs. 2.2±0.7%; p<0.05); and LPO levels were higher than less aggressive series at the end of recovery. Conclusions Ischemia and tachycardia accumulate their effects, with increased cardiac involvement depending on the type of ischemia. PMID:23722244

  5. Matching coronary blood flow to myocardial oxygen consumption.

    PubMed

    Tune, Johnathan D; Gorman, Mark W; Feigl, Eric O

    2004-07-01

    At rest the myocardium extracts approximately 75% of the oxygen delivered by coronary blood flow. Thus there is little extraction reserve when myocardial oxygen consumption is augmented severalfold during exercise. There are local metabolic feedback and sympathetic feedforward control mechanisms that match coronary blood flow to myocardial oxygen consumption. Despite intensive research the local feedback control mechanism remains unknown. Physiological local metabolic control is not due to adenosine, ATP-dependent K(+) channels, nitric oxide, prostaglandins, or inhibition of endothelin. Adenosine and ATP-dependent K(+) channels are involved in pathophysiological ischemic or hypoxic coronary dilation and myocardial protection during ischemia. Sympathetic beta-adrenoceptor-mediated feedforward arteriolar vasodilation contributes approximately 25% of the increase in coronary blood flow during exercise. Sympathetic alpha-adrenoceptor-mediated vasoconstriction in medium and large coronary arteries during exercise helps maintain blood flow to the vulnerable subendocardium when cardiac contractility, heart rate, and myocardial oxygen consumption are high. In conclusion, several potential mediators of local metabolic control of the coronary circulation have been evaluated without success. More research is needed.

  6. Energy Drinks and Myocardial Ischemia: A Review of Case Reports.

    PubMed

    Lippi, Giuseppe; Cervellin, Gianfranco; Sanchis-Gomar, Fabian

    2016-07-01

    The use and abuse of energy drinks (EDs) is constantly increasing worldwide. We performed a systematic search in Medline, Scopus and Web of Science to identify evidence about the potential link between these beverages and myocardial ischemia. Overall, 8 case reports could be detected, all of which described a realistic association between large intake of EDs and episodes of myocardial ischemia. Interestingly, no additional triggers of myocardial ischemia other than energy drinks could be identified in the vast majority of cases. Some plausible explanations can be brought in support of this association. Most of the biological effects of EDs are seemingly mediated by a positive inotropic effect on cardiac function, which entails increase in heart rate, cardiac output and contractility, stroke volume and arterial blood pressure. Additional biological abnormalities reported after EDs intake include increased platelet aggregation, endothelial dysfunction, hyperglycemia as well as an increase in total cholesterol, triglycerides and low-density lipoprotein cholesterol. Although a causal relationship between large consumption of EDs and myocardial ischemia cannot be definitely established so far, concerns about the cardiovascular risk of excessive consumption of these beverages are seemingly justified.

  7. Combined renin-angiotensin system blockade and dietary sodium restriction impairs cardiomyocyte contractility.

    PubMed

    Trongtorsak, Petcharat; Morgan, Trefor O; Delbridge, Lea M D

    2003-12-01

    Blockade of the renin-angiotensin system (RAS) by combined angiotensin-converting enzyme inhibitor and angiotensin type 1 receptor (AT(1)) antagonist treatment with reduced dietary sodium intake produces suppression of cardiac growth and regression of cardiac hypertrophy. The purpose of this study was to investigate whether cardiac growth suppression by combined RAS blockade under conditions of dietary sodium restriction is associated with cardiomyocyte atrophy and contractile dysfunction and whether this intervention modifies cardiomyocyte inotropic responsiveness to angiotensin II (Ang II). Rats were fed a high (4% w/w) or low (0.2% w/w) NaCl diet for six days. Both groups were then given a combined intraperitoneal injection of perindopril (6 mg/kg/day) and losartan (10 mg/kg/day) with maintained dietary treatment for another seven days. At the end of the treatment period, animals were anaesthetised and their hearts were removed and weighed. Left ventricular cardiomyocytes were isolated by enzymatic dissociation and cell dimensions were evaluated. A line scan camera and digital imaging technique were used to assess cardiomyocyte contraction and inotropic responses to exogenous Ang II (10 to 10(-8) M). Dietary treatment alone had no effect on body growth, whereas combined RAS blockade suppressed somatic growth in the low sodium (LS) group, compared with the high sodium (HS) group. This growth suppression in the LS group was also evident in the heart at the organ and cellular level. Studies of cardiomyocyte contraction showed that myocytes from the LS group exhibited contractile instability and depression of contractile performance. Compared with the HS group, myocytes from the LS group showed a significant reduction in maximum cell shortening (6.40+0.17 vs. 7.32+0.16% resting length, p<0.05), and maximum rate of shortening (3.85+0.14 vs. 4.29+0.11 cell length/ms, p<0.05). Myocytes of the HS group exhibited negative inotropic responses to Ang II at all

  8. Micropost arrays for measuring stem cell-derived cardiomyocyte contractility

    PubMed Central

    Beussman, Kevin M.; Rodriguez, Marita L.; Leonard, Andrea; Taparia, Nikita; Thompson, Curtis R.; Sniadecki, Nathan J.

    2015-01-01

    Stem cell-derived cardiomyocytes have the potential to be used to study heart disease and maturation, screen drug treatments, and restore heart function. Here, we discuss the procedures involved in using micropost arrays to measure the contractile forces generated by stem cell-derived cardiomyocytes. Cardiomyocyte contractility is needed for the heart to pump blood, so measuring the contractile forces of cardiomyocytes is a straightforward way to assess their function. Microfabrication and soft lithography techniques are utilized to create identical arrays of flexible, silicone microposts from a common master. Micropost arrays are functionalized with extracellular matrix protein to allow cardiomyocytes to adhere to the tips of the microposts. Live imaging is used to capture videos of the deflection of microposts caused by the contraction of the cardiomyocytes. Image analysis code provides an accurate means to quantify these deflections. The contractile forces produced by a beating cardiomyocyte are calculated by modeling the microposts as cantilever beams. We have used this assay to assess techniques for improving the maturation and contractile function of stem cell-derived cardiomyocytes. PMID:26344757

  9. Effects of Hindlimb Unweighting on Arterial Contractile Responses in Mice

    NASA Technical Reports Server (NTRS)

    Ma, Jia; Ren, Xin-Ling; Purdy, Ralph E.

    2003-01-01

    The aim of this work was to determine if hindlimb unweighting in mice alters arterial contractile responses. Sixteen male C57B/6 mice and 16 male Chinese Kunming mice were divided into control and 3 weeks hindlimb unweighting groups, respectively. Using isolated arterial rings from different arteries of mouse, effects of 3 weeks hindlimb unweighting on arterial contractile responsiveness were examined in vitro. The results showed that, in arterial rings from both C57B/6 and Chinese Kunming mice, maximum isometric contractile tensions evoked by either KCl or phenylephrine were significantly lower in abdominal aortic, mesenteric arterial and femoral arterial rings from hindlimb unweighting, compared to control mice. However, the maximal contractile responses of common carotid rings to KCl and PE were not significantly different between control and hindlimb unweighting groups. The sensitivity (EC(sub 50)) of all arteries to KCl or PE showed no significant differences between control and hindlimb unweighting mice. These data indicated that 3 weeks hindlimb unweighting results in a reduced capacity of the arterial smooth muscle of the hindquarter to develop tension. In addition, the alterations in arterial contractile responses caused by hindlimb unweighting in mice are similar as those in rats. Our work suggested that hindlimb unweighting mouse model may be used as a model for the study of postflight cardiovascular deconditioning.

  10. Effects of Hindlimb Unweighting on Arterial Contractile Responses in Mice

    NASA Technical Reports Server (NTRS)

    Ma, Jia; Ren, Xin-Ling; Purdy, Ralph E.

    2003-01-01

    The aim of this work was to determine if hindlimb unweighting in mice alters arterial contractile responses. Sixteen male C57B/6 mice and 16 male Chinese Kunming mice were divided into control and 3 weeks hindlimb unweighting groups, respectively. Using isolated arterial rings from different arteries of mouse, effects of 3 weeks hindlimb unweighting on arterial contractile responsiveness were examined in vitro. The results showed that, in arterial rings from both C57B/6 and Chinese Kunming mice, maximum isometric contractile tensions evoked by either KCl or phenylephrine were significantly lower in abdominal aortic, mesenteric arterial and femoral arterial rings from hindlimb unweighting, compared to control mice. However, the maximal contractile responses of common carotid rings to KCl and PE were not significantly different between control and hindlimb unweighting groups. The sensitivity (EC(sub 50)) of all arteries to KCl or PE showed no significant differences between control and hindlimb unweighting mice. These data indicated that 3 weeks hindlimb unweighting results in a reduced capacity of the arterial smooth muscle of the hindquarter to develop tension. In addition, the alterations in arterial contractile responses caused by hindlimb unweighting in mice are similar as those in rats. Our work suggested that hindlimb unweighting mouse model may be used as a model for the study of postflight cardiovascular deconditioning.

  11. THE CONTRACTILE PROCESS IN THE CILIATE, STENTOR COERULEUS

    PubMed Central

    Huang, B.; Pitelka, D. R.

    1973-01-01

    The structural basis for the function of microtubules and filaments in cell body contractility in the ciliate Stentor coeruleus was investigated. Cells in the extended state were obtained for ultrastructural analysis by treatment before fixation with a solution containing 10 mM EGTA, 50–80 mM Tris, 3 mM MgSO4, 7.5 mM NH4Cl, 10 mM phosphate buffer (pH 7.1). The response of Stentor to changes in the divalent cation concentrations in this solution suggests that Ca+2 and Mg+2 are physiologically important in the regulation of ciliate contractility. The generation of motive force for changes in cell length in Stentor resides in two distinct longitudinal cortical fiber systems, the km fibers and myonemes. Cyclic changes in cell length are associated with (a) the relative sliding of parallel, overlapping microtubule ribbons in the km fibers, and (b) a distinct alteration in the structure of the contractile filaments constituting the myonemes. The microtubule and filament systems are distinguished functionally as antagonistic contractile elements. The development of motive force for cell extension is accomplished by active microtubule-to-microtubule sliding generated by specific intertubule bridges. Evidence is presented which suggests that active shortening of contractile filaments, reflected in a reversible structural transformation of dense 4-nm filaments to tubular 10–12-nm filaments, provides the basis for rapid cell contraction. PMID:4633444

  12. Contractile cell forces deform macroscopic cantilevers and quantify biomaterial performance.

    PubMed

    Allenstein, U; Mayr, S G; Zink, M

    2015-07-07

    Cells require adhesion to survive, proliferate and migrate, as well as for wound healing and many other functions. The strength of contractile cell forces on an underlying surface is a highly relevant quantity to measure the affinity of cells to a rigid surface with and without coating. Here we show with experimental and theoretical studies that these forces create surface stresses that are sufficient to induce measurable bending of macroscopic cantilevers. Since contractile forces are linked to the formation of focal contacts, results give information on adhesion promoting qualities and allow a comparison of very diverse materials. In exemplary studies, in vitro fibroblast adhesion on the magnetic shape memory alloy Fe-Pd and on the l-lysine derived plasma-functionalized polymer PPLL was determined. We show that cells on Fe-Pd are able to induce surface stresses three times as high as on pure titanium cantilevers. A further increase was observed for PPLL, where the contractile forces are four times higher than on the titanium reference. In addition, we performed finite element simulations on the beam bending to back up the calculation of contractile forces from cantilever bending under non-homogenous surface stress. Our findings consolidate the role of contractile forces as a meaningful measure of biomaterial performance.

  13. Asymptomatic myocardial infarction in Kawasaki disease: Long-term prognosis

    SciTech Connect

    Shiraishi, I.; Onouchi, Z.; Hayano, T.; Hamaoka, K.; Kiyosawa, N. )

    1991-04-01

    Eight patients with Kawasaki disease who had sustained asymptomatic myocardial infarction 8-15 years ago (mean, 13.1 years) were reexamined by various noninvasive cardiac function tests to assess long-term prognosis. At present, electrocardiograms (ECGs) are normal in six patients. However, all eight patients had a prolonged preejection period (PEP) to left ventricular ejection time (LVET) ratio 30 s after amylnitrate (AN) inhalation. Six patients had perfusion defects by exercise thallium-201 myocardial scintigraphy, and two patients developed ST segment depression in treadmill exercise testing. These patients are symptom-free even though their physical activity has not been restricted. Yet they proved to have serious abnormalities suggesting sequelae of myocardial infarction or existing myocardial ischemia. Judging from the results of noninvasive cardiac function tests and recently performed coronary angiography, five of the eight patients require coronary bypass surgery.

  14. Hemorrhage activates myocardial NFkappaB and increases TNF-alpha in the heart.

    PubMed

    Meldrum, D R; Shenkar, R; Sheridan, B C; Cain, B S; Abraham, E; Harken, A H

    1997-10-01

    The heart is a tumor necrosis factor (TNFalpha) producing organ. Locally (v systemically)-produced TNFalpha likely contributes to myocardial dysfunction via direct suppression of myocardial contractile function, the induction of myocardial apoptosis, and the genesis of cardiac hypertrophy. Although recent studies have demonstrated increased myocardial TNFalpha following endotoxemia, it remains unknown whether shock, in the absence of sepsis, activates myocardial nuclear factor kappa B (NFkappaB, a TNFalpha transcription factor) and/or increases TNFalpha in the heart. To study this, rats were hemorrhaged and resuscitated, after which hearts were harvested and analysed for evidence of NFkappaB activation (electrophoretic mobility shift assay) and assayed for TNFalpha levels. Hemorrhage and resuscitation activated NFkappaB and resulted in a dramatic increase in myocardial TNFalpha. This study constitutes the initial demonstration that hemorrhagic shock activates the signaling mechanisms which culminate in increased myocardial TNFalpha. Indeed, this may have important clinical implications, since hemorrhage is a frequent complication of both iatrogenic and accidental trauma, as well as a potent instigator of multiple organ failure.

  15. Contractile force and intracellular Ca2+ during relaxation of canine tracheal smooth muscle.

    PubMed

    Gunst, S J; Bandyopadhyay, S

    1989-08-01

    Muscle strips loaded with the Ca2+ indicator aequorin were studied in vitro to determine the effects of inhibitory stimuli on force and cytosolic free Ca2+. In muscles contracted isometrically with acetylcholine (ACh), 5-hydroxytryptamine (5-HT), carbachol, decreases in muscle force caused by isoproterenol (10(-5) M) or forskolin (10(-5) M) were accompanied by proportional decreases in aequorin luminescence. A similar relationship between decreases in muscle force and aequorin luminescence was observed when muscles were relaxed by stimulating Na+-K+-ATPase activity. These results suggest that the Ca2+ sensitivity of contractile proteins was not decreased during adenosine 3',5'-cyclic monophosphate (cAMP)-dependent relaxation. However, aequorin luminescence did not decrease when muscles contracted by K+ depolarization were relaxed with isoproterenol. Incubation of muscles in forskolin depressed increases in both force and aequorin luminescence in response to 5-HT or ACh. Incubation of muscles in isoproterenol had a similar effect on responses to 5-HT but depressed increases in force without depressing increases in luminescence in response to ACh. Results indicate that under most conditions the reduction of cytosolic Ca2+ plays an important role in the cAMP-dependent relaxation of canine tracheal smooth muscle.

  16. TIME COURSE OF MYOCARDIAL INTERSTITIAL EDEMA RESOLUTION AND ASSOCIATED LEFT VENTRICULAR DYSFUNCTION

    PubMed Central

    Dongaonkar, Ranjeet M.; Stewart, Randolph H.; Quick, Christopher M.; Uray, Karen L.; Cox, Charles S.; Laine, Glen A.

    2012-01-01

    Objective Although the causal relationship between acute myocardial edema and cardiac dysfunction has been established, resolution of myocardial edema and subsequent recovery of cardiac function have not. The time to resolve myocardial edema and the degree that cardiac function is depressed after edema resolves are not known. We therefore characterized temporal changes in cardiac function as acute myocardial edema formed and resolved. Methods Acute myocardial edema was induced in the canine model by elevating coronary sinus pressure for three hours. Myocardial water content and cardiac function were determined before and during coronary sinus pressure elevation, and after coronary sinus pressure restoration. Results Although no change in systolic properties was detected, accumulation of water in myocardial interstitium was associated with increased diastolic stiffness. When coronary sinus pressure was relieved, myocardial edema resolved within 180 min. Diastolic stiffness, however, remained significantly elevated compared to baseline values, and cardiac function remained compromised. Conclusions The present work suggests that the cardiac dysfunction caused by the formation of myocardial edema may persist after myocardial edema resolves. With the advent of new imaging techniques to quantify myocardial edema, this insight provides a new avenue for research to detect and treat a significant cause of cardiac dysfunction. PMID:22708850

  17. Myocyte repolarization modulates myocardial function in aging dogs.

    PubMed

    Sorrentino, Andrea; Signore, Sergio; Qanud, Khaled; Borghetti, Giulia; Meo, Marianna; Cannata, Antonio; Zhou, Yu; Wybieralska, Ewa; Luciani, Marco; Kannappan, Ramaswamy; Zhang, Eric; Matsuda, Alex; Webster, Andrew; Cimini, Maria; Kertowidjojo, Elizabeth; D'Alessandro, David A; Wunimenghe, Oriyanhan; Michler, Robert E; Royer, Christopher; Goichberg, Polina; Leri, Annarosa; Barrett, Edward G; Anversa, Piero; Hintze, Thomas H; Rota, Marcello

    2016-04-01

    Studies of myocardial aging are complex and the mechanisms involved in the deterioration of ventricular performance and decreased functional reserve of the old heart remain to be properly defined. We have studied a colony of beagle dogs from 3 to 14 yr of age kept under a highly regulated environment to define the effects of aging on the myocardium. Ventricular, myocardial, and myocyte function, together with anatomical and structural properties of the organ and cardiomyocytes, were evaluated. Ventricular hypertrophy was not observed with aging and the structural composition of the myocardium was modestly affected. Alterations in the myocyte compartment were identified in aged dogs, and these factors negatively interfere with the contractile reserve typical of the young heart. The duration of the action potential is prolonged in old cardiomyocytes contributing to the slower electrical recovery of the myocardium. Also, the remodeled repolarization of cardiomyocytes with aging provides inotropic support to the senescent muscle but compromises its contractile reserve, rendering the old heart ineffective under conditions of high hemodynamic demand. The defects in the electrical and mechanical properties of cardiomyocytes with aging suggest that this cell population is an important determinant of the cardiac senescent phenotype. Collectively, the delayed electrical repolarization of aging cardiomyocytes may be viewed as a critical variable of the aging myopathy and its propensity to evolve into ventricular decompensation under stressful conditions.

  18. The role of collateral circulation in preserving myocardial function.

    PubMed

    Hasanović, Aida; Kulenović, Amela; Sisić, Fuad

    2006-11-01

    The coronary collateral circulation is an alternative source of blood supply to the myocardium jeopardized by the failure of the original stenotic or occluded vessel to provide adequate blood flow to this region. One hundred coronary angiograms and left ventriculograms of patients with coronary artery disease from the Cardiology Department of University Clinics Centre in Sarajevo were reviewed. The role of collateral circulation in preserving myocardial function was assessed by comparing regional left ventricular contractility in 34 instances of total arterial occlusion and adequate colateral circulation with that in 34 instances of total arterial occlusion and inadequate collateral circulation. Among the group with adequate collaterals, regional left ventricular contraction was normal in 41%, hypokinetic in 53% and akinetic or dyskinetic in only 5%. Among the group with inadequate collaterals, regional contraction was normal in 9%, hypokinetic in 20 % and akinetic or dyskinetic in 70%. These data indicate that collateral circulation plays an important role in preserving myocardial contractility in patients with coronary artery disease.

  19. Myocyte repolarization modulates myocardial function in aging dogs

    PubMed Central

    Sorrentino, Andrea; Signore, Sergio; Borghetti, Giulia; Meo, Marianna; Cannata, Antonio; Zhou, Yu; Wybieralska, Ewa; Luciani, Marco; Kannappan, Ramaswamy; Zhang, Eric; Matsuda, Alex; Webster, Andrew; Cimini, Maria; Kertowidjojo, Elizabeth; D'Alessandro, David A.; Wunimenghe, Oriyanhan; Michler, Robert E.; Royer, Christopher; Goichberg, Polina; Leri, Annarosa; Barrett, Edward G.; Anversa, Piero; Hintze, Thomas H.

    2016-01-01

    Studies of myocardial aging are complex and the mechanisms involved in the deterioration of ventricular performance and decreased functional reserve of the old heart remain to be properly defined. We have studied a colony of beagle dogs from 3 to 14 yr of age kept under a highly regulated environment to define the effects of aging on the myocardium. Ventricular, myocardial, and myocyte function, together with anatomical and structural properties of the organ and cardiomyocytes, were evaluated. Ventricular hypertrophy was not observed with aging and the structural composition of the myocardium was modestly affected. Alterations in the myocyte compartment were identified in aged dogs, and these factors negatively interfere with the contractile reserve typical of the young heart. The duration of the action potential is prolonged in old cardiomyocytes contributing to the slower electrical recovery of the myocardium. Also, the remodeled repolarization of cardiomyocytes with aging provides inotropic support to the senescent muscle but compromises its contractile reserve, rendering the old heart ineffective under conditions of high hemodynamic demand. The defects in the electrical and mechanical properties of cardiomyocytes with aging suggest that this cell population is an important determinant of the cardiac senescent phenotype. Collectively, the delayed electrical repolarization of aging cardiomyocytes may be viewed as a critical variable of the aging myopathy and its propensity to evolve into ventricular decompensation under stressful conditions. PMID:26801307

  20. Use of cardiac magnetic resonance imaging to determine myocardial viability in an infant with in utero septal myocardial infarction and ventricular noncompaction.

    PubMed

    Whitham, Jennifer K E; Hasan, Babar S; Schamberger, Marcus S; Johnson, Tiffanie R

    2008-09-01

    We describe the use of cardiac magnetic resonance imaging (CMRI) to determine myocardial viability and subsequently clinical prognosis in a patient with in utero septal myocardial infarction (MI) and dilated cardiomyopathy. MI is most commonly associated with congenital heart disease. These lesions include aortic atresia and stenosis, interrupted aortic arch, hypoplastic left ventricle (LV), and total anomalous pulmonary venous return (TAPVR). Within the last decade, it has been clearly established that systolic dysfunction is not always a definitive status after MI. In the presence of residual viable myocardium and an adequate myocardial perfusion, contractility might normalize-this process being related to a remarkable prognostic benefit. Until the use of CMRI, myocardial viability has been poorly characterized by other imaging modalities, thus making prognosis difficult to predict. Using myocardial delayed-enhancement CMRI, this patient was shown to have a dilated left ventricle with noncompaction, longitudinal midwall hyperenhancement consistent with nonviable tissue, and severely diminished left ventricular function. In conclusion, CMRI is the only imaging modality that can define anatomy, function, and tissue characterization simultaneously. In the future, CMRI could circumvent the need for more invasive diagnostic procedures in determining the cause and prognosis of patients with dilated cardiomyopathy and myocardial infarction.

  1. Calcium-Responsive Contractility During Fertilization in Sea Urchin Eggs

    PubMed Central

    Stack, Christianna; Lucero, Amy J.; Shuster, Charles B.

    2008-01-01

    Fertilization triggers a reorganization of oocyte cytoskeleton, and in sea urchins there is a dramatic increase in cortical F-actin. However, the role that myosin II plays during fertilization remains largely unexplored. Myosin II is localized to the cortical cytoskeleton both prior to- and following fertilization, and to examine myosin II contractility in living cells, Lytechinus pictus eggs were observed by time-lapse microscopy. Upon sperm binding, a cell surface deflection traversed the egg that was followed- and dependent on the calcium wave. The calcium-dependence of surface contractility could be reproduced in unfertilized eggs, where mobilization of intracellular calcium in unfertilized eggs under compression resulted in a marked contractile response. Lastly, inhibition of myosin II delayed absorption of the fertilization cone, suggesting that myosin II not only responds to the same signals that activate eggs, but also participates in the remodeling of the cortical actomyosin cytoskeleton during the first zygotic cell cycle. PMID:16470603

  2. Periodontitis and myocardial hypertrophy.

    PubMed

    Suzuki, Jun-Ichi; Sato, Hiroki; Kaneko, Makoto; Yoshida, Asuka; Aoyama, Norio; Akimoto, Shouta; Wakayama, Kouji; Kumagai, Hidetoshi; Ikeda, Yuichi; Akazawa, Hiroshi; Izumi, Yuichi; Isobe, Mitsuaki; Komuro, Issei

    2017-04-01

    There is a deep relationship between cardiovascular disease and periodontitis. It has been reported that myocardial hypertrophy may be affected by periodontitis in clinical settings. Although these clinical observations had some study limitations, they strongly suggest a direct association between severity of periodontitis and left ventricular hypertrophy. However, the detailed mechanisms between myocardial hypertrophy and periodontitis have not yet been elucidated. Recently, we demonstrated that periodontal bacteria infection is closely related to myocardial hypertrophy. In murine transverse aortic constriction models, a periodontal pathogen, Aggregatibacter actinomycetemcomitans markedly enhanced cardiac hypertrophy with matrix metalloproteinase-2 activation, while another pathogen Porphyromonas gingivalis (P.g.) did not accelerate these pathological changes. In the isoproterenol-induced myocardial hypertrophy model, P.g. induced myocardial hypertrophy through Toll-like receptor-2 signaling. From our results and other reports, regulation of chronic inflammation induced by periodontitis may have a key role in the treatment of myocardial hypertrophy. In this article, we review the pathophysiological mechanism between myocardial hypertrophy and periodontitis.

  3. Contractile properties of thin (actin) filament-reconstituted muscle fibers.

    PubMed

    Ishiwata, S; Funatsu, T; Fujita, H

    1998-01-01

    Selective removal and reconstitution of the components of muscle fibers (fibrils) is a useful means of examining the molecular mechanism underlying the formation of the contractile apparatus. In addition, this approach is powerful for examining the structure-function relationship of a specific component of the contractile system. In previous studies, we have achieved the partial structural and functional reconstitution of thin filaments in the skeletal contractile apparatus and full reconstitution in the cardiac contractile apparatus. First, all thin filaments other than short fragments at the Z line were removed by treatment with plasma gelsolin, an actin filament-severing protein. Under these conditions, no active tension could be generated. By incorporating exogenous actin into these thin filament-free fibers, actin filaments were reconstituted by polymerization on the short actin fragments remaining at the Z line, and active tension, which was insensitive to Ca2+, was restored. The active tension after the reconstitution of thin filaments reached as high as 30% of the original level in skeletal muscle, while it reached 140% in cardiac muscle. The augmentation of tension in cardiac muscle is mainly attributable to the elongation of reconstituted filaments, longer than the average length of thin filaments in an intact muscle. These results indicate that a muscle contractile apparatus with a high order structure and function can be constructed by the self-assembly of constituent proteins. Recently, we applied this reconstitution system to the study of the mechanism of spontaneous oscillatory contraction (SPOC) in thin (actin) filament-reconstituted cardiac muscle fibers. As a result, we found that SPOC occurs even in regulatory protein-free actin filament-reconstituted fibers (Fujita & Ishiwata, manuscript submitted), although the SPOC conditions were slightly different from the standard SPOC conditions. This result strongly suggests that spontaneous oscillation

  4. Hemodynamic evaluation of exercise-induced ST-segment depression and elevation in ischemic heart disease. Left ventricular cineangiography during exercise.

    PubMed

    Bekki, H

    1983-09-01

    In order to elucidate the hemodynamic significance of exercise-induced ST-segment shifts in ischemic heart disease, left ventricular cineangiography was carried out in 41 patients at rest and during supine bicycle ergometer exercise. These patients were divided into 2 groups, that is, a normal coronary artery group (6 patients), having neither significant coronary artery stenosis nor exercise-induced ST-segment shifts, and a diseased group (35 patients) having significant coronary artery stenosis (inner-diameter stenosis greater than or equal to 75%). The latter was further divided into 3 subgroups according to exercise-induced ST-segment shifts: ST-unchanged group (17 patients), ST-depression group (11 patients) and ST-elevation group (7 patients). In the normal coronary artery and ST-unchanged groups, exercise produced an increase in left ventricular end-diastolic volume index (LVEDVI), a decrease in left ventricular end-systolic volume index (LVESVI) and increases in stroke index and ejection fraction. In the ST-depression group, the appearance or aggravation of left ventricular wall motion abnormality was induced at the site of coronary artery stenosis by exercise in 9 patients. Both LVEDVI and LVESVI increased, stroke index remained unchanged, and ejection fraction decreased during exercise. In the ST-elevation group, ST-segment elevation was induced in leads with abnormal Q waves. In 2 patients, exercise induced aggravation of wall motion abnormality at the infarctional segment. LVESVI increased, but LVEDVI showed little increase, and stroke index and ejection fraction tended to decrease during exercise. In the ST-depression group, exercise-induced left ventricular pump dysfunction was due to lowered contractility (increased LVESVI) caused by transient myocardial ischemia. In the ST-elevation group, exercise-induced pump dysfunction was mainly due to lowered contractility, and in some of them, the findings suggested that transient myocardial ischemia at or

  5. Combined calcium fluorescence recording with ionic currents in contractile cells.

    PubMed

    Rainbow, Richard D

    2013-01-01

    Measurement of calcium (Ca(2+)) fluorescence in conjunction with ionic currents is of particular importance in contractile cells, such as cardiac ventricular myocytes and vascular smooth muscle. The interplay between membrane potential and intracellular calcium ([Ca(2+)](i)) is fundamental to the regulation of contractile function and cell signalling. Here the loading of cells either with an esterified fluorescence indicator prior to patch clamp recording, or dye loading via the patch pipette with "free" indicator, is described to allow simultaneous measurement of fluorescence and electrical signals.

  6. Comparison of contractile and extensile pneumatic artificial muscles

    NASA Astrophysics Data System (ADS)

    Pillsbury, Thomas E.; Wereley, Norman M.; Guan, Qinghua

    2017-09-01

    Pneumatic artificial muscles (PAMs) are used in robotic and prosthetic applications due to their high power to weight ratio, controllable compliance, and simple design. Contractile PAMs are typically used in traditional hard robotics in place of heavy electric motors. As the field of soft robotics grows, extensile PAMs are beginning to have increased usage. This work experimentally tests, models, and compares contractile and extensile PAMs to demonstrate the advantages and disadvantages of each type of PAM and applications for which they are best suited.

  7. Ischemic event characteristics determine the extent of myocardial stunning in conscious dogs.

    PubMed

    Wouters, P F; Van de Velde, M; Van Aken, H; Flameng, W

    1996-01-01

    Both the severity and duration of postischemic myocardial dysfunction ("stunned" myocardium) are unpredictable and may vary considerably between subjects that underwent apparently similar ischemic insults. To explain this heterogeneous response of the heart to ischemia and reperfusion, we investigated the determinants of stunning in conscious dogs. Twenty-five dogs were chronically instrumented for measurement of global and regional myocardial performance (wall thickening) and myocardial perfusion (coloured microspheres). A hydraulic occluder was positioned around the LAD coronary artery. Conscious dogs were subjected to acute coronary artery occlusions of predetermined duration (2, 5 and 10 min), followed by complete reperfusion. Multiple regression analysis identified the following variables as determinants of postischemic contractile recovery: 1) the duration of ischemia (p < 0.01),2) the amount of collateral perfusion (p = 0.01) and 3) left ventricular end-diastolic pressure during ischemia (p < 0.01). Neither the severity of regional dyskinesia during ischemia nor indices of global systolic hemodynamic performance correlated with the rate of recovery. Our data confirm that myocardial stunning relates primarily to the intensity of preceding ischemia. Variations in the preexisting level of collateral perfusion may result in markedly different recovery profiles. Except for LV end-diastolic pressure during ischemia, indices of global and regional cardiac performance fail to predict the severity of postischemic contractile failure.

  8. Maternal age effects on myometrial expression of contractile proteins, uterine gene expression, and contractile activity during labor in the rat

    PubMed Central

    Elmes, Matthew; Szyszka, Alexandra; Pauliat, Caroline; Clifford, Bethan; Daniel, Zoe; Cheng, Zhangrui; Wathes, Claire; McMullen, Sarah

    2015-01-01

    Advanced maternal age of first time pregnant mothers is associated with prolonged and dysfunctional labor and significant risk of emergency cesarean section. We investigated the influence of maternal age on myometrial contractility, expression of contractile associated proteins (CAPs), and global gene expression in the parturient uterus. Female Wistar rats either 8 (YOUNG n = 10) or 24 (OLDER n = 10) weeks old were fed laboratory chow, mated, and killed during parturition. Myometrial strips were dissected to determine contractile activity, cholesterol (CHOL) and triglycerides (TAG) content, protein expression of connexin-43 (GJA1), prostaglandin-endoperoxide synthase 2 (PTGS2), and caveolin 1 (CAV-1). Maternal plasma concentrations of prostaglandins PGE2, PGF2α, and progesterone were determined by RIA. Global gene expression in uterine samples was compared using Affymetrix Genechip Gene 2.0 ST arrays and Ingenuity Pathway analysis (IPA). Spontaneous contractility in myometrium exhibited by YOUNG rats was threefold greater than OLDER animals (P < 0.027) but maternal age had no significant effect on myometrial CAP expression, lipid profiles, or pregnancy-related hormones. OLDER myometrium increased contractile activity in response to PGF2α, phenylephrine, and carbachol, a response absent in YOUNG rats (all P < 0.002). Microarray analysis identified that maternal age affected expression of genes related to immune and inflammatory responses, lipid transport and metabolism, steroid metabolism, tissue remodeling, and smooth muscle contraction. In conclusion YOUNG laboring rat myometrium seems primed to contract maximally, whereas activity is blunted in OLDER animals and requires stimulation to meet contractile potential. Further work investigating maternal age effects on myometrial function is required with focus on lipid metabolism and inflammatory pathways. PMID:25876907

  9. Maternal age effects on myometrial expression of contractile proteins, uterine gene expression, and contractile activity during labor in the rat.

    PubMed

    Elmes, Matthew; Szyszka, Alexandra; Pauliat, Caroline; Clifford, Bethan; Daniel, Zoe; Cheng, Zhangrui; Wathes, Claire; McMullen, Sarah

    2015-04-01

    Advanced maternal age of first time pregnant mothers is associated with prolonged and dysfunctional labor and significant risk of emergency cesarean section. We investigated the influence of maternal age on myometrial contractility, expression of contractile associated proteins (CAPs), and global gene expression in the parturient uterus. Female Wistar rats either 8 (YOUNG n = 10) or 24 (OLDER n = 10) weeks old were fed laboratory chow, mated, and killed during parturition. Myometrial strips were dissected to determine contractile activity, cholesterol (CHOL) and triglycerides (TAG) content, protein expression of connexin-43 (GJA1), prostaglandin-endoperoxide synthase 2 (PTGS2), and caveolin 1 (CAV-1). Maternal plasma concentrations of prostaglandins PGE2, PGF2α, and progesterone were determined by RIA. Global gene expression in uterine samples was compared using Affymetrix Genechip Gene 2.0 ST arrays and Ingenuity Pathway analysis (IPA). Spontaneous contractility in myometrium exhibited by YOUNG rats was threefold greater than OLDER animals (P < 0.027) but maternal age had no significant effect on myometrial CAP expression, lipid profiles, or pregnancy-related hormones. OLDER myometrium increased contractile activity in response to PGF2α, phenylephrine, and carbachol, a response absent in YOUNG rats (all P < 0.002). Microarray analysis identified that maternal age affected expression of genes related to immune and inflammatory responses, lipid transport and metabolism, steroid metabolism, tissue remodeling, and smooth muscle contraction. In conclusion YOUNG laboring rat myometrium seems primed to contract maximally, whereas activity is blunted in OLDER animals and requires stimulation to meet contractile potential. Further work investigating maternal age effects on myometrial function is required with focus on lipid metabolism and inflammatory pathways. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the

  10. Involvement of AMPK in Alcohol Dehydrogenase Accentuated Myocardial Dysfunction Following Acute Ethanol Challenge in Mice

    PubMed Central

    Guo, Rui; Scott, Glenda I.; Ren, Jun

    2010-01-01

    Objectives Binge alcohol drinking often triggers myocardial contractile dysfunction although the underlying mechanism is not fully clear. This study was designed to examine the impact of cardiac-specific overexpression of alcohol dehydrogenase (ADH) on ethanol-induced change in cardiac contractile function, intracellular Ca2+ homeostasis, insulin and AMP-dependent kinase (AMPK) signaling. Methods ADH transgenic and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3 days. Oral glucose tolerance test, cardiac AMP/ATP levels, cardiac contractile function, intracellular Ca2+ handling and AMPK signaling (including ACC and LKB1) were examined. Results Ethanol exposure led to glucose intolerance, elevated plasma insulin, compromised cardiac contractile and intracellular Ca2+ properties, downregulated protein phosphatase PP2A subunit and PPAR-γ, as well as phosphorylation of AMPK, ACC and LKB1, all of which except plasma insulin were overtly accentuated by ADH transgene. Interestingly, myocardium from ethanol-treated FVB mice displayed enhanced expression of PP2Cα and PGC-1α, decreased insulin receptor expression as well as unchanged expression of Glut4, the response of which was unaffected by ADH. Cardiac AMP-to-ATP ratio was significantly enhanced by ethanol exposure with a more pronounced increase in ADH mice. In addition, the AMPK inhibitor compound C (10 µM) abrogated acute ethanol exposure-elicited cardiomyocyte mechanical dysfunction. Conclusions In summary, these data suggest that the ADH transgene exacerbated acute ethanol toxicity-induced myocardial contractile dysfunction, intracellular Ca2+ mishandling and glucose intolerance, indicating a role of ADH in acute ethanol toxicity-induced cardiac dysfunction possibly related to altered cellular fuel AMPK signaling cascade. PMID:20585647

  11. Involvement of AMPK in alcohol dehydrogenase accentuated myocardial dysfunction following acute ethanol challenge in mice.

    PubMed

    Guo, Rui; Scott, Glenda I; Ren, Jun

    2010-06-23

    Binge alcohol drinking often triggers myocardial contractile dysfunction although the underlying mechanism is not fully clear. This study was designed to examine the impact of cardiac-specific overexpression of alcohol dehydrogenase (ADH) on ethanol-induced change in cardiac contractile function, intracellular Ca(2+) homeostasis, insulin and AMP-dependent kinase (AMPK) signaling. ADH transgenic and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3 days. Oral glucose tolerance test, cardiac AMP/ATP levels, cardiac contractile function, intracellular Ca(2+) handling and AMPK signaling (including ACC and LKB1) were examined. Ethanol exposure led to glucose intolerance, elevated plasma insulin, compromised cardiac contractile and intracellular Ca(2+) properties, downregulated protein phosphatase PP2A subunit and PPAR-gamma, as well as phosphorylation of AMPK, ACC and LKB1, all of which except plasma insulin were overtly accentuated by ADH transgene. Interestingly, myocardium from ethanol-treated FVB mice displayed enhanced expression of PP2Calpha and PGC-1alpha, decreased insulin receptor expression as well as unchanged expression of Glut4, the response of which was unaffected by ADH. Cardiac AMP-to-ATP ratio was significantly enhanced by ethanol exposure with a more pronounced increase in ADH mice. In addition, the AMPK inhibitor compound C (10 microM) abrogated acute ethanol exposure-elicited cardiomyocyte mechanical dysfunction. In summary, these data suggest that the ADH transgene exacerbated acute ethanol toxicity-induced myocardial contractile dysfunction, intracellular Ca(2+) mishandling and glucose intolerance, indicating a role of ADH in acute ethanol toxicity-induced cardiac dysfunction possibly related to altered cellular fuel AMPK signaling cascade.

  12. The Significance of Pore Microarchitecture in a Multi-Layered Elastomeric Scaffold for Contractile Cardiac Muscle Constructs

    PubMed Central

    Park, H.; Larson, B.L.; Guillemette, M.D.; Jain, S.R.; Hua, C.; Engelmayr, G.C.; Freed, L.E.

    2010-01-01

    Multi-layered poly(glycerol sebacate) (PGS) scaffolds with controlled pore microarchitectures were fabricated, combined with heart cells, and cultured with perfu