Science.gov

Sample records for myocardial ischemia

  1. Myocardial Ischemia

    MedlinePlus

    ... pectoris: Chest pain caused by myocardial ischemia. www.uptodate.com/home. Accessed June 1, 2015. Deedwania PC. Silent myocardial ischemia: Epidemiology and pathogenesis. www.uptodate.com/home. Accessed June 1, 2015. Mann DL, ...

  2. Severe Hypokalemia Masquerading Myocardial Ischemia

    PubMed Central

    Petrov, Daniel Bogdanov; Sardovski, Svetlozar Ivanov; Milanova, Maria Hristova

    2012-01-01

    An advanced degree of body potassium deficit may produce striking changes in the electrocardiogram (ECG). These changes can result in incidental findings on the 12-lead ECG or precipitate potentially life-threatening dysrhythmias. Although usually readily recognized, at times these abnormalities may be confused with myocardial ischemia. The object was to report a case of severe hypokalemia mimicking myocardial ischemia. A 33-year-old, previously healthy man, presented to the Emergency Department (ED) with a progressive weakness and chest discomfort. The electrocardiogram showed a marked ST-segment depression in leads II, III, aVF, V1-V6. The initial diagnosis was non ST-elevation myocardial infarction. Echocardiography was normal and troponin levels were within normal limits. A more detailed history revealed that the patient had an episode of acute gastroenteritis with diarrhea and vomiting. Serum chemistries were notable for a potassium concentration of 1,8 mmol per liter. With aggressive electrolyte correction, the ECG abnormalities reverted as potassium levels normalized. Hypokalemia induced ST-segment depression may simulate myocardial ischemia. The differential diagnosis might be difficult, especially in the cases when ST changes are accompanied with chest discomfort.

  3. Functional tests for myocardial ischemia

    SciTech Connect

    Levinson, J.R.; Guiney, T.E.; Boucher, C.A. )

    1991-01-01

    Functional tests for myocardial ischemia are numerous. Most depend upon a combination of either exercise or pharmacologic intervention with analysis of the electrocardiogram, of regional perfusion with radionuclide imaging, or of regional wall motion with radionuclide imaging or echocardiography. While each test has unique features, especially at the research level, they are generally quite similar in clinical practice, so the clinician is advised to concentrate on one or two in which local expertise is high.22 references.

  4. Experimental myocardial ischemia. Pt. 2

    SciTech Connect

    Serur, J.R.; Als, A.V.; Paulin, S.

    1982-01-01

    The comparative effects of meglumine sodium diatrizoate (MSD), sodium meglumine calcium metrizoate (SMCM), and metrizamide (M) were studied in an isolated canine heart preparation. The parameters observed were coronary blood flow (CBF), myocardial contractile force (MCF), positive and negative dF/dt, and perfusion pressure during normal and ischemic perfusion conditions. MSD had an initial negative inotropic effect but baseline MCF returned in 1 min during normal perfusion and 2 min under ischemic conditions. SMCM and M had only a positive inotropic effect under normal perfusion. However, during ischemia, the positive effect of SMCM was followed by a decrease in contractile force. M showed only a positive effect on force during ischemia. Our results indicate that calcium additive may increase the risk of coronary arteriography in patients with severe coronary artery disease.

  5. [Myocardial ischemia and ventricular arrhythmia].

    PubMed

    Vester, E G

    1998-01-01

    A relation between myocardial ischemia and induction of ventricular arrhythmias can be demonstrated in patients with coronary heart disease--in contrast to patients with primary non ischemic cardiac diseases--using a combined metabolic-electrophysiological investigation protocol consisting of programmed atrial and ventricular stimulation with simultaneous measurement of the arterio/coronary venous difference for lactate, pyruvate, free fatty acids and amino acids. There are significant metabolic distinctions between both ischemic and non ischemic heart disease under pacing stress conditions as well as at rest. Areas of "hibernating myocardium" resp. "mismatch" zones in the myocardium showing reduced or abolished perfusion and preserved metabolism during scintographic SPECT/PET studies, may be found more often in patients with ventricular tachycardias (VT) or ventricular fibrillation (VF) in the chronic post myocardial infarction state than in patients without VT/VF. The proof of such zones may be considered a possible risk factor for arrhythmic events and sudden cardiac death after myocardial infarction. Hereby the concept of an interaction between acute and chronic ischemia triggering the onset of polymorphic VT or VF gaines increasing acceptance. In contrast, monomorphic reentrant VT are usually generated in the border zone of scarred areas where islands of vital fibers are surrounded by fibrotic tissue. These arrhythmogenic origin regions are characterized by a "match" pattern presenting a comparably severe reduction of perfusion and metabolism. Under those circumstances a control resp. suppression of the VT focus can only be provided by interventional techniques like catheter ablation, antitachycardiac surgery or implantation of a cardioverter/defibrillator beyond antiarrhythmic drug therapy. An antiischemic causal treatment (bypass surgery or angioplasty) represents for maximal 40% of patients with ischemically induced ventricular arrhythmias an adequate and

  6. Ethanol-induced myocardial ischemia: close relation between blood acetaldehyde level and myocardial ischemia.

    PubMed

    Ando, H; Abe, H; Hisanou, R

    1993-05-01

    A patient with vasospastic angina who developed myocardial ischemia following ethanol ingestion but not after exercise was described. Myocardial ischemia was evidenced by electrocardiograms (ECGs) and thallium-201 scintigrams. The blood acetaldehyde level after ethanol ingestion was abnormally high. The time course and severity of myocardial ischemia coincided with those of the blood ethanol and acetaldehyde level. Coronary arteriography showed ergonovine maleate-induced coronary vasospasm at the left anterior descending coronary artery. ECG changes similar to those induced by ethanol ingestion were observed at the same time. These findings suggest that the high blood acetaldehyde level might be responsible for the development of coronary vasospasm and myocardial ischemia in this patient.

  7. Controversies in cardiovascular care: silent myocardial ischemia

    NASA Technical Reports Server (NTRS)

    Hollenberg, N. K.

    1987-01-01

    The objective evidence of silent myocardial ischemia--ischemia in the absence of classical chest pain--includes ST-segment shifts (usually depression), momentary left ventricular failure, and perfusion defects on scintigraphic studies. Assessment of angina patients with 24-hour ambulatory monitoring may uncover episodes of silent ischemia, the existence of which may give important information regarding prognosis and may help structure a more effective therapeutic regimen. The emerging recognition of silent ischemia as a significant clinical entity may eventually result in an expansion of current therapy--not only to ameliorate chest pain, but to minimize or eliminate ischemia in the absence of chest pain.

  8. Controversies in cardiovascular care: silent myocardial ischemia

    NASA Technical Reports Server (NTRS)

    Hollenberg, N. K.

    1987-01-01

    The objective evidence of silent myocardial ischemia--ischemia in the absence of classical chest pain--includes ST-segment shifts (usually depression), momentary left ventricular failure, and perfusion defects on scintigraphic studies. Assessment of angina patients with 24-hour ambulatory monitoring may uncover episodes of silent ischemia, the existence of which may give important information regarding prognosis and may help structure a more effective therapeutic regimen. The emerging recognition of silent ischemia as a significant clinical entity may eventually result in an expansion of current therapy--not only to ameliorate chest pain, but to minimize or eliminate ischemia in the absence of chest pain.

  9. The ubiquitin proteasome system and myocardial ischemia

    PubMed Central

    Calise, Justine

    2013-01-01

    The ubiquitin proteasome system (UPS) has been the subject of intensive research over the past 20 years to define its role in normal physiology and in pathophysiology. Many of these studies have focused in on the cardiovascular system and have determined that the UPS becomes dysfunctional in several pathologies such as familial and idiopathic cardiomyopathies, atherosclerosis, and myocardial ischemia. This review presents a synopsis of the literature as it relates to the role of the UPS in myocardial ischemia. Studies have shown that the UPS is dysfunctional during myocardial ischemia, and recent studies have shed some light on possible mechanisms. Other studies have defined a role for the UPS in ischemic preconditioning which is best associated with myocardial ischemia and is thus presented here. Very recent studies have started to define roles for specific proteasome subunits and components of the ubiquitination machinery in various aspects of myocardial ischemia. Lastly, despite the evidence linking myocardial ischemia and proteasome dysfunction, there are continuing suggestions that proteasome inhibitors may be useful to mitigate ischemic injury. This review presents the rationale behind this and discusses both supportive and nonsupportive studies and presents possible future directions that may help in clarifying this controversy. PMID:23220331

  10. Protective approaches against myocardial ischemia reperfusion injury

    PubMed Central

    Li, Xianchi; Liu, Min; Sun, Rongrong; Zeng, Yi; Chen, Shuang; Zhang, Peiying

    2016-01-01

    Myocardial ischemia-reperfusion is the leading cause for the events of cardiovascular disease, and is considered as a major contributor to the morbidity and mortality associated with coronary occlusion. The myocardial damage caused by ischemia-reperfusion injury constitutes the primary pathological manifestation of coronary artery disease. It results from the interaction between the substances that accumulate during ischemia and those that are delivered on reperfusion. The level of this damage can range from a small insult resulting in limited myocardial damage to a large injury culminating in myocyte death. Importantly, major ischemia-reperfusion injury to the heart can result in permanent disability or death. Given the worldwide prevalence of coronary artery disease, developing a strategy to provide cardioprotection against ischemia-reperfusion-induced damage is of great importance. Currently, the treatment of reperfusion injury following ischemia is primarily supportive, since no specific target-oriented therapy has been validated thus far. Nevertheless, therapeutic approaches to protect against myocardial ischemia-reperfusion injury remain an active area of investigation given the detrimental effects of this phenomenon. PMID:28101167

  11. Echocardiographic assessment of myocardial ischemia

    PubMed Central

    Dworrak, Birgit; Sanchis-Gomar, Fabian; Lucia, Alejandro; Buck, Thomas; Erbel, Raimund

    2016-01-01

    Over the last 60 years, echocardiography has emerged as a dominant and indispensable technique for the detection and assessment of coronary heart disease (CHD). In this review, we will describe and discuss this powerful tool of cardiology, especially in the hands of an experienced user, with a focus on myocardial ischemia. Technical development is still on-going, and various new ultrasound techniques have been established in the field of echocardiography in the last several years, including tissue Doppler imaging (TDI), contrast echocardiography, three-dimensional echocardiography (3DE), and speckle tracking echocardiography (i.e., strain/strain rate-echocardiography). High-end equipment with harmonic imaging, high frame rates and the opportunity to adjust mechanical indices has improved imaging quality. Like all new techniques, these techniques must first be subjected to comprehensive scientific assessment, and appropriate training that accounts for physical and physiological limits should be provided. These limits will constantly be redefined as echocardiographic techniques continue to change, which will present new challenges for the further development of ultrasound technology. PMID:27500160

  12. Myocardial Ischemia Caused by Subepicardial Hematoma

    PubMed Central

    Grieshaber, Philippe; Nef, Holger; Böning, Andreas; Niemann, Bernd

    2017-01-01

    Background Bleeding from bypass anastomosis leakage occurs early after coronary artery bypass grafting. Later, once the anastomosis is covered by intima, spontaneous bleeding is unlikely. Case Description A 63-year-old male patient developed a pseudoaneurysm-like, subepicardial late-term bleeding resulting in a hematoma that compromised coronary artery flow by increasing extracoronary pressure. This resulted in severe angina pectoris (Canadian Cardiovascular Society IV) and myocardial ischemia within the affected area. After surgical removal of the hematoma and repair of the anastomosis, the patient's symptoms disappeared and no signs of myocardial ischemia were present. Conclusion Surgical removal is an efficient therapy for subepicardial hematoma inducing myocardial ischemia. PMID:28352501

  13. Myocardial Ischemia Caused by a Coronary Anomaly

    PubMed Central

    Aydin, Mustafa; Ozeren, Ali; Peksoy, Irfan; Cabuk, Mehmet; Bilge, Mehmet; Dursun, Aydin; Elbey, Mehmet Ali

    2004-01-01

    We present the case of a patient in whom a previously undetected anomalous origin of the circumflex coronary artery caused myocardial ischemia and led to positive myocardial scintigraphic results. Subsequent coronary angiography showed that the left circumflex coronary artery arose from the right coronary ostium—an anomaly that has been associated with chest discomfort—without atherosclerotic lesions. The peripheral distribution of the left circumflex artery was normal. We describe the clinical and angiographic findings in our patient and discuss the relationship between coronary artery anomalies and ischemia. PMID:15562848

  14. Myocardial perfusion imaging for detection of silent myocardial ischemia

    SciTech Connect

    Beller, G.A.

    1988-04-21

    Despite the widespread use of the exercise stress test in diagnosing asymptomatic myocardial ischemia, exercise radionuclide imaging remains useful for detecting silent ischemia in numerous patient populations, including those who are totally asymptomatic, those who have chronic stable angina, those who have recovered from an episode of unstable angina or an uncomplicated myocardial infarction, and those who have undergone angioplasty or received thrombolytic therapy. Studies show that thallium scintigraphy is more sensitive than exercise electrocardiography in detecting ischemia, i.e., in part, because perfusion defects occur more frequently than ST depression and before angina in the ischemic cascade. Thallium-201 scintigraphy can be performed to differentiate a true- from a false-positive exercise electrocardiographic test in patients with exercise-induced ST depression and no angina. The development of technetium-labeled isonitriles may improve the accuracy of myocardial perfusion imaging. 11 references.

  15. Steroid-induced recurrent myocardial ischemia.

    PubMed

    Yildirim, Ufuk; Gulel, Okan; Soylu, Korhan; Yuksel, Serkan; Sahin, Mahmut

    2014-01-01

    We report the case of a female patient under oral prednisolone therapy due to a diagnosis of idiopathic intracranial hypertension with papilledema. Unfortunately, short-term treatment with prednisolone caused an unusual complication in the patient, i.e., recurrent myocardial ischemia. Possible mechanisms leading to this complication were evaluated in the light of current knowledge. Copyright © 2013 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  16. [Myocardial ischemia-reperfusion injury and melatonin].

    PubMed

    Sahna, Engin; Deniz, Esra; Aksulu, Hakki Engin

    2006-06-01

    It is believed that myocardial ischemia-reperfusion injury is related to increased free radical generated and intracellular calcium overload especially during the period of reperfusion. The pineal secretory product, melatonin, is known to be a potent free radical scavenger, antioxidant and can inhibit the intracellular calcium overload. In this review, we have summarized the fundamental of cardiac ischemia-reperfusion injury and the effects of melatonin on myocardial damage that related to cardiac ischemia-reperfusion injury. The total antioxidant capacity of human serum is related to melatonin levels. Incidence of sudden cardiac death is high in the morning hours. It has been shown that melatonin levels are significantly low at these times and patients with coronary heart disease have lower than normal individuals. These findings thought that melatonin would be valuable to test in clinical trials for prevention of possible ischemia-reperfusion-induced injury, especially life threatening arrhythmias and infarct size, effecting life quality, associated with thrombolysis, angioplasty, coronary artery spasm or coronary bypass surgery.

  17. Thallium-201 myocardial scintigraphy in acute myocardial infarction and ischemia

    SciTech Connect

    Wackers, F.J.

    1982-04-01

    Thallium-201 scintigraphy provides a sensitive and reliable method of detecting acute myocardial infarction and ischemia when imaging is performed with understanding of the temporal characteristics and accuracy of the technique. The results of scintigraphy are related to the time interval between onset of symptoms and time of imaging. During the first 6 hr after chest pain almost all patients with acute myocardial infarction and approximately 50% of the patients with unstable angina will demonstrate /sup 201/TI pefusion defects. Delayed imaging at 2-4 hr will permit distinction between ischemia and infarction. In patients with acute myocardial infarction, the size of the perfusion defect accurately reflects the extent of the infarcted and/or jeopardized myocardium, which may be used for prognostic stratification. In view of the characteristics of /sup 201/TI scintigraphy, the most practical application of this technique is in patients in whom myocardial infarction has to be ruled out, and for early recognition of patients at high risk for complications.

  18. Caffeine reduces dipyridamole-induced myocardial ischemia

    SciTech Connect

    Smits, P.; Aengevaeren, W.R.; Corstens, F.H.; Thien, T. )

    1989-10-01

    The mechanism of action of coronary vasodilation after dipyridamole may be based on inhibition of cellular uptake of circulating endogenous adenosine. Since caffeine has been reported to be a competitive antagonist of adenosine we studied the effect of caffeine on the outcome of dipiridamole-{sup 201}Tl cardiac imaging in one patient. During caffeine abstinence dipyridamole induced myocardial ischemia with down-slope ST depressions on the ECG, and reversible perfusion defects on the scintigrams. When the test was repeated 1 wk later on similar conditions, but now shortly after infusion of caffeine (4 mg/kg), the ECG showed nodepressions, and the scintigrams only slight signs of ischemia. We conclude that when caffeine abstinence is not sufficient, the widespread use of coffee and related products may be responsible for false-negative findings in dipyridamole-201Tl cardiac imaging.

  19. Myocardial ischemia reperfusion injury: from basic science to clinical bedside.

    PubMed

    Frank, Anja; Bonney, Megan; Bonney, Stephanie; Weitzel, Lindsay; Koeppen, Michael; Eckle, Tobias

    2012-09-01

    Myocardial ischemia reperfusion injury contributes to adverse cardiovascular outcomes after myocardial ischemia, cardiac surgery or circulatory arrest. Primarily, no blood flow to the heart causes an imbalance between oxygen demand and supply, named ischemia (from the Greek isch, restriction; and haema, blood), resulting in damage or dysfunction of the cardiac tissue. Instinctively, early and fast restoration of blood flow has been established to be the treatment of choice to prevent further tissue injury. Indeed, the use of thrombolytic therapy or primary percutaneous coronary intervention is the most effective strategy for reducing the size of a myocardial infarct and improving the clinical outcome. Unfortunately, restoring blood flow to the ischemic myocardium, named reperfusion, can also induce injury. This phenomenon was therefore termed myocardial ischemia reperfusion injury. Subsequent studies in animal models of acute myocardial infarction suggest that myocardial ischemia reperfusion injury accounts for up to 50% of the final size of a myocardial infarct. Consequently, many researchers aim to understand the underlying molecular mechanism of myocardial ischemia reperfusion injury to find therapeutic strategies ultimately reducing the final infarct size. Despite the identification of numerous therapeutic strategies at the bench, many of them are just in the process of being translated to bedside. The current review discusses the most striking basic science findings made during the past decades that are currently under clinical evaluation, with the ultimate goal to treat patients who are suffering from myocardial ischemia reperfusion-associated tissue injury.

  20. Myocardial ischemia and ventricular fibrillation: pathophysiology and clinical implications.

    PubMed

    Luqman, Nazar; Sung, Ruey J; Wang, Chun-Li; Kuo, Chi-Tai

    2007-07-31

    Ventricular fibrillation (VF) and myocardial ischemia are inseparable. The first clinical manifestation of myocardial ischemia or infarction may be sudden cardiac death in 20-25% of patients. The occurrence of potentially lethal arrhythmia is the end result of a cascade of pathophysiological abnormalities that result from complex interactions between coronary vascular events, myocardial injury, and changes in autonomic tone, metabolic conditions and ionic state of the myocardium. It is also related to the time from the onset of ischemia. Within the first few minutes there is abundant ventricular arrhythmogenesis usually lasting for 30 min. Triggers for ischemic VF occur at the border zone or regionally ischemic heart. The border zone of ischemia is the predominant site of fragmentation. Acute ischemia opens K(ATP) channels and causes acidosis and hypoxia of myocardial cells leading to a large dispersion in repolarization across the border zone. Abnormalities of intracellular Ca2+ handling also occur in the first few minutes of acute myocardial ischemia and may be an important cause of arrhythmias in human coronary artery disease. Substrate on the other hand transforms triggers into VF and serves to maintain it through fragmentation of waves in the ischemic zone. Thrombin levels, stretch, catecholamine, genetic predisposition, etc. are some of these factors. Reentry models described are spiral wave reentry, 3 dimensional rotors, reentry around 'M' cells and figure-of-eight reentry. Continuing efforts to better understand these arrhythmias will help identify patients of myocardial ischemia prone to arrhythmias.

  1. Effects of carbon monoxide on myocardial ischemia

    SciTech Connect

    Allred, E.N.; Pagano, M. ); Bleecker, E.R.; Walden, S.M. ); Chaitman, B.R.; Dahms, T.E. ); Hackney, J.D.; Selvester, R.H. ); Warren, J. ); Gottlieb, S.O.

    1991-02-01

    The purpose of this study was to determine whether low doses of carbon monoxide (CO) exacerbate myocardial ischemia during a progressive exercise test. The effect of CO exposure was evaluated using the objective measure of time to development of electrocardiographic changes indicative of ischemia and the subjective measure of time to onset of angina. Sixty-three male subjects (41-75 years) with well-documented coronary artery disease, who had exertional angina pectoris and ischemic ST-segment changes in their electrocardiograms, were studied. Results from three randomized, double-blind test visits (room air, low and high CO) were compared. The effect of CO exposure was determined from the percent difference in the end points obtained on exercise tests performed before and after a 1-hr exposure to room air or CO. A significant dose-response relationship was found for the individual differences in the time to ST end point and angina for the pre-versus postexposure exercise test at the three carboxyhemoglobin levels. These findings demonstrate that low doses of CO produce significant effects on cardiac function during exercise in subjects with coronary artery disease.

  2. Met-enkephalin levels during PTCA-induced myocardial ischemia.

    PubMed

    Parlapiano, C; Borgia, M C; Tonnarini, G; Giancaspro, G; Pizzuto, F; Campana, E; Giovanniello, T; Pantone, P; Vincentelli, G M; Alegiani, F; Negri, M

    2001-07-01

    Met-enkephalin (Met-enk) has been demonstrated to modulate myocardial-ischemia mechanisms via the opioid receptors, but no studies are now available on Met-enk levels in the coronary circulation. In this experience Met-enk levels were evaluated in aortic root and in coronary sinus at baseline (T0), during PTCA induced transient ischemia (T1) and during reperfusion (T2). No significant differences were found at any time. Thus, it appears that there is no Met-enk extraction from the coronary circulation during provoked myocardial ischemia and no Met-enk release from the ischemic heart.

  3. Exercise-induced Myocardial Ischemia Detected by Cardiopulmonary Exercise Testing

    PubMed Central

    Chaudhry, Sundeep; Arena, Ross; Wasserman, Karlman; Hansen, James E.; Lewis, Gregory D.; Myers, Jonathan; Chronos, Nicolas; Boden, William E.

    2010-01-01

    Cardiopulmonary exercise testing (CPET) is a well-accepted physiologic evaluation technique in patients diagnosed with heart failure and in individuals presenting with unexplained dyspnea on exertion. Several variables obtained during CPET, including oxygen consumption relative to heart rate (VO2/HR or O2-pulse) and work rate (VO2/Watt) provide consistent, quantitative patterns of abnormal physiologic responses to graded exercise when left ventricular dysfunction is caused by myocardial ischemia. This concept paper describes both the methodology and clinical application of CPET associated with myocardial ischemia. Initial evidence indicates left ventricular dysfunction induced by myocardial ischemia may be accurately detected by an abnormal CPET response. CPET testing may complement current non-invasive testing modalities that elicit inducible ischemia. It provides a physiologic quantification of the work rate, heart rate and O2 uptake at which myocardial ischemia develops. In conclusion, the potential value of adding CPET with gas exchange measurements is likely to be of great value in diagnosing and quantifying both overt and occult myocardial ischemia and its reversibility with treatment. PMID:19231322

  4. Effects of carbon monoxide on myocardial ischemia.

    PubMed Central

    Allred, E N; Bleecker, E R; Chaitman, B R; Dahms, T E; Gottlieb, S O; Hackney, J D; Pagano, M; Selvester, R H; Walden, S M; Warren, J

    1991-01-01

    The purpose of this study was to determine whether low doses of carbon monoxide (CO) exacerbate myocardial ischemia during a progressive exercise test. The effect of CO exposure was evaluated using the objective measure of time to development of electrocardiographic changes indicative of ischemia and the subjective measure of time to onset of angina. Sixty-three male subjects (41-75 years) with well-documented coronary artery disease, who had exertional angina pectoris and ischemic ST-segment changes in their electrocardiograms, were studied. Results from three randomized, double-blind test visits (room air, low and high CO) were compared. The effect of CO exposure was determined from the percent difference in the end points obtained on exercise tests performed before and after a 1-hr exposure to room air or CO. The exposures resulted in postexercise carboxyhemoglobin (COHb) levels of 0.6% +/- 0.3%, 2.0% +/- 0.1%, and 3.9% +/- 0.1%. The results obtained on the 2%-COHb day and 3.9%-COHb day were compared to those on the room air day. There were 5.1% (p = 0.01) and 12.1% (p less than or equal to 0.0001) decreases in the time to development of ischemic ST-segment changes after exposures producing 2.0 and 3.9% COHb, respectively, compared to the control day. In addition, there were 4.2% (p = 0.027) and 7.1% (p = 0.002) decreases in time to the onset of angina after exposures producing 2.0 and 3.9% COHb, respectively, compared to the control day. A significant dose-response relationship was found for the individual differences in the time to ST end point and angina for the pre- versus postexposure exercise tests at the three carboxyhemoglobin levels. These findings demonstrate that low doses of CO produce significant effects on cardiac function during exercise in subjects with coronary artery disease. PMID:2040254

  5. Relation between quantitative coronary CTA and myocardial ischemia by adenosine stress myocardial CT perfusion.

    PubMed

    van Rosendael, Alexander R; Kroft, Lucia J; Broersen, Alexander; Dijkstra, Jouke; van den Hoogen, Inge J; van Zwet, Erik W; Bax, Jeroen J; de Graaf, Michiel A; Scholte, Arthur J

    2016-02-09

    Coronary-computed tomography angiography (CTA) has limited accuracy to predict myocardial ischemia. Besides luminal area stenosis, other coronary plaque morphology and composition parameters may help to assess ischemia. With the integration of coronary CTA and adenosine stress CT myocardial perfusion (CTP), reliable information regarding coronary anatomy and function can be derived in one procedure. This analysis aimed to investigate the association between coronary stenosis severity, plaque composition and morphology and the presence of ischemia measured with adenosine stress myocardial CTP. 84 patients (age, 62 ± 10 years; 48% men) who underwent sequential coronary CTA and adenosine stress myocardial CT perfusion were analyzed. Automated quantification was performed in all coronary lesions (quantitative CTA). Downstream myocardial ischemia was assessed by visual analysis of the rest and stress CTP images and defined as a summed difference score of ≥1. One or more coronary plaques were present in 146 coronary arteries of which 31 (21%) were ischemia-related. Of the lesions with a stenosis percentage <50%, 50%-70%, and >70%, respectively, 9% (6/67), 18% (9/51), and 57% (16/28) demonstrated downstream ischemia. Furthermore, mean plaque burden, plaque volume, lesion length, maximal plaque thickness, and dense calcium volume were significantly higher in ischemia-related lesions, but only stenosis severity (%) (OR 1.06; 95% CI 1.02-1.10; P = .006) and lesion length (mm) (OR 1.26; 95% CI 1.02-1.55; P = .029) were independent correlates. Increasing stenosis percentage by quantitative CTA is positively correlated to myocardial ischemia measured with adenosine stress myocardial CTP. However, stenosis percentage remains a moderate determinant. Lumen area stenosis and lesion length were independently associated with ischemia, adjusted for coronary plaque volume, mean plaque burden, maximal lesion thickness, and dense calcium volume.

  6. Association between Anger and Mental Stress-Induced Myocardial Ischemia

    PubMed Central

    Pimple, Pratik; Shah, Amit; Rooks, Cherie; Bremner, J. Douglas; Nye, Jonathon; Ibeanu, Ijeoma; Murrah, Nancy; Shallenberger, Lucy; Kelley, Mary; Raggi, Paolo; Vaccarino, Viola

    2014-01-01

    Background Mental stress-induced myocardial ischemia is associated with adverse prognosis in coronary artery disease patients. Anger is thought to be a trigger of acute coronary syndromes and is associated with increased cardiovascular risk; however, little direct evidence exists for a link between anger and myocardial ischemia. Methods [99mTc]sestamibi single-photon emission tomography was performed at rest, after mental stress (a social stressor with a speech task), and after exercise/pharmacological stress. Summed scores of perfusion abnormalities were obtained by observer-independent software. A summed difference score, the difference between stress and rest scores, was used to quantify myocardial ischemia under both stress conditions. The Spielberger's State-Trait Anger Expression Inventory was used to assess different anger dimensions. Results The mean age was 50 years, 50% were female and 60% were non-white. After adjusting for demographic factors, smoking, coronary artery disease severity, depressive and anxiety symptoms, each interquartile range increment in state-anger score was associated with 0.36 units adjusted increase in ischemia as measured by the summed difference score (95% CI: 0.14-0.59); the corresponding association for trait-anger was 0.95 (95% CI: 0.21-1.69). Anger expression scales were not associated ischemia. None of the anger dimensions were related to ischemia during exercise/pharmacological stress. Conclusion Anger, both as an emotional state and as a personality trait, is significantly associated with propensity to develop myocardial ischemia during mental stress, but not during exercise/pharmacological stress. Patients with this psychological profile may be at increased risk for silent ischemia induced by emotional stress and this may translate into worse prognosis. PMID:25497256

  7. Panic attack triggering myocardial ischemia documented by myocardial perfusion imaging study. A case report

    PubMed Central

    2012-01-01

    Background Chest pain, a key element in the investigation of coronary artery disease is often regarded as a benign prognosis when present in panic attacks. However, panic disorder has been suggested as an independent risk factor for long-term prognosis of cardiovascular diseases and a trigger of acute myocardial infarction. Objective Faced with the extreme importance in differentiate from ischemic to non-ischemic chest pain, we report a case of panic attack induced by inhalation of 35% carbon dioxide triggering myocardial ischemia, documented by myocardial perfusion imaging study. Discussion Panic attack is undoubtedly a strong component of mental stress. Patients with coronary artery disease may present myocardial ischemia in mental stress response by two ways: an increase in coronary vasomotor tone or a sympathetic hyperactivity leading to a rise in myocardial oxygen consumption. Coronary artery spasm was presumed to be present in cases of cardiac ischemia linked to panic disorder. Possibly the carbon dioxide challenge test could trigger myocardial ischemia by the same mechanisms. Conclusion The use of mental stress has been suggested as an alternative method for myocardial ischemia investigation. Based on translational medicine objectives the use of CO2 challenge followed by Sestamibi SPECT could be a useful method to allow improved application of research-based knowledge to the medical field, specifically at the interface of PD and cardiovascular disease. PMID:22999016

  8. Purkinje fibers after myocardial ischemia-reperfusion.

    PubMed

    García Gómez-Heras, Soledad; Álvarez-Ayuso, Lourdes; Torralba Arranz, Amalia; Fernández-García, Héctor

    2015-07-01

    The purpose of this study was to evaluate the effects of ischemia-reperfusion on Purkinje fibers, comparing them with the adjacent cardiomyocytes. In a model of heterotopic heart transplantation in pigs, the donor heart was subjected to 2 hours of ischemia (n=9), preserved in cold saline, and subjected to 24 hours of ischemia with preservation in Wisconsin solution, alone (n=6), or with an additive consisting of calcium (n=4), Nicorandil (n=6) or Trolox (n=7). After 2 hours of reperfusion, we evaluated the recovery of cardiac electrical activity and took samples of ventricular myocardium for morphological study. The prolonged ischemia significantly affected atrial automaticity and A-V conduction in all the groups subjected to 24 hours of ischemia, as compared to 2 hours. There were no significant differences among the groups that underwent prolonged ischemia. Changes in the electrical activity did not correlate with the morphological changes. In the Purkinje fibers, ischemia-reperfusion produced a marked decrease in the glycogen content in all the groups. In the gap junctions the immunolabeling of connexin-43 decreased significantly, adopting a dispersed distribution, and staining the sarcolemma adjacent to the connective tissue. These changes were less marked in the group preserved exclusively with Wisconsin solution, despite the prolonged ischemia. The addition of other substances did not improve the altered morphology. In all the groups, the injury appeared to be more prominent in the Purkinje fibers than in the neighboring cardiomyocytes, indicating the greater susceptibility of the former to ischemia-reperfusion injury.

  9. Assessment of Myocardial Ischemia with Cardiovascular Magnetic Resonance

    PubMed Central

    Heydari, Bobak; Jerosch-Herold, Michael; Kwong, Raymond Y.

    2014-01-01

    Assessment of myocardial ischemia in symptomatic patients remains a common and challenging clinical situation faced by physicians. Risk stratification by presence of ischemia provides important utility for both prognostic assessment and management. Unfortunately, current noninvasive modalities possess numerous limitations and have limited prognostic capacity. More recently, ischemia assessment by cardiovascular magnetic resonance (CMR) has been shown to be a safe, available, and potentially cost-effective alternative with both high diagnostic and prognostic accuracy. Cardiovascular magnetic resonance has numerous advantages over other noninvasive methods, including high temporal and spatial resolution, relatively few contraindications, and absence of ionizing radiation. Furthermore, studies assessing the clinical utility and cost effectiveness of CMR in the short-term setting for patients without evidence of an acute myocardial infarction have also demonstrated favorable results. This review will cover techniques of ischemia assessment with CMR by both stress-induced wall motion abnormalities as well as myocardial perfusion imaging. The diagnostic and prognostic performance studies will also be reviewed, and the use of CMR for ischemia assessment will be compared with other commonly used noninvasive modalities. PMID:22014487

  10. Energy Drinks and Myocardial Ischemia: A Review of Case Reports.

    PubMed

    Lippi, Giuseppe; Cervellin, Gianfranco; Sanchis-Gomar, Fabian

    2016-07-01

    The use and abuse of energy drinks (EDs) is constantly increasing worldwide. We performed a systematic search in Medline, Scopus and Web of Science to identify evidence about the potential link between these beverages and myocardial ischemia. Overall, 8 case reports could be detected, all of which described a realistic association between large intake of EDs and episodes of myocardial ischemia. Interestingly, no additional triggers of myocardial ischemia other than energy drinks could be identified in the vast majority of cases. Some plausible explanations can be brought in support of this association. Most of the biological effects of EDs are seemingly mediated by a positive inotropic effect on cardiac function, which entails increase in heart rate, cardiac output and contractility, stroke volume and arterial blood pressure. Additional biological abnormalities reported after EDs intake include increased platelet aggregation, endothelial dysfunction, hyperglycemia as well as an increase in total cholesterol, triglycerides and low-density lipoprotein cholesterol. Although a causal relationship between large consumption of EDs and myocardial ischemia cannot be definitely established so far, concerns about the cardiovascular risk of excessive consumption of these beverages are seemingly justified.

  11. Decreased myocardial glucose uptake during ischemia in diabetic swine.

    PubMed

    Stanley, W C; Hall, J L; Hacker, T A; Hernandez, L A; Whitesell, L F

    1997-02-01

    The purpose of the study was to assess myocardial glucose uptake in nondiabetic (n = 5) and streptozotocin-diabetic (n = 6) Yucatan miniature swine under matched hyperglycemic and hypoinsulinemic conditions. Fasting conscious diabetic swine had significantly higher plasma glucose levels (20.9 +/- 2.6 v 5.2 +/- 0.3 mmol/L) and lower insulin levels (6 +/- 1 v 14 +/- 4 microU/mL) than nondiabetic animals. Myocardial glucose uptake was measured in open-chest anesthetized animals under aerobic and ischemic conditions 12 weeks after streptozotocin treatment. Coronary blood flow was controlled by an extracorporeal perfusion circuit. Ischemia was induced by reducing left anterior descending (LAD) coronary artery blood flow by 60% for 40 minutes. Animals were treated with somatostatin to suppress insulin secretion, and nondiabetic swine received intravenous (IV) glucose to match the hyperglycemia in the diabetic animals. The rate of glucose uptake by the myocardium was not statistically different under aerobic conditions, but was significantly lower in diabetic swine during ischemia (0.20 +/- 0.08 v 0.63 +/- 0.14 micromol x g(-1) x min(-1), P < .01). Myocardial glucose transporter (GLUT4) protein concentration was decreased by 31% in diabetic swine. In conclusion, 12 weeks of streptozotocin diabetes in swine caused a significant decrease in myocardial GLUT4 protein and a decrease in myocardial glucose uptake during ischemia.

  12. Iloprost reduces myocardial edema in a rat model of myocardial ischemia reperfusion.

    PubMed

    Caliskan, A; Yavuz, C; Karahan, O; Yazici, S; Guclu, O; Demirtas, S; Mavitas, B

    2014-05-01

    Myocardial ischemia severely reduces myocyte longevity and function. Extensive interstitial edema and cell damage occur as a result of myocardial reperfusion injury. Current therapies are directed at prevention of ischemia-induced damage to cardiac tissue. Iloprost is a novel pharmaceutical agent for the treatment of ischemia. Twenty rats were segregated into four experimental groups. The procedure control group consisted of four rats undergoing a sham operation. The remaining 16 rats were divided into two equal groups. The first group (control group) received a continuous intravenous infusion of physiological serum immediately prior to the procedure. Iloprost was administered by a continuous intravenous infusion into the right jugular vein at an infusion rate of 100 ng/kg/min for 30 minutes prior to reperfusion in the experimental group (study group). Following the infusion treatments, ligation of the left coronary artery was conducted for 30 minutes to induce myocardial ischemia. The rats were euthanized 24 hours after reperfusion and cardiac tissue was harvested from all specimens for analysis. Histological examination revealed three myocardial tissue specimens with grade II damage and five myocardial tissue specimens with grade III reperfusion injury in the control group. However, the study group consisted of two grade III myocardial tissue specimens, five grade II myocardial tissue specimens and one grade I myocardial tissue specimen. Moreover, a statistically significant reduction in myocardial edema was observed in the study group (p=0.022). Our results support the hypothesis that iloprost enhances protection against cardiac ischemia reperfusion injury. This protective effect may be associated with vasodilation, antioxidant or anti-edema mechanisms.

  13. Angina and Mental Stress-Induced Myocardial Ischemia

    PubMed Central

    Pimple, Pratik; Shah, Amit J.; Rooks, Cherie; Bremner, J. Douglas; Nye, Jonathon; Ibeanu, Ijeoma; Raggi, Paolo; Vaccarino, Viola

    2015-01-01

    Objective Mental stress-induced myocardial ischemia is a common phenomenon in patients with coronary artery disease (CAD) and an emerging prognostic factor. Mental stress ischemia is correlated with ambulatory ischemia. However, whether it is related to angina symptoms during daily life has not been examined. Methods We assessed angina-frequency (past month) in 98 post-myocardial infarction (MI) subjects (age 18-60 years) using the Seattle Angina Questionnaire. Patients underwent [99mTc]sestamibi SPECT perfusion imaging at rest, after mental stress, and after exercise/pharmacological stress. Summed scores of perfusion abnormalities were obtained by observer-independent software. A summed-difference score (SDS), the difference between stress and rest scores, was used to quantify myocardial ischemia under both stress conditions. Results The mean age was 50 years, 50% were female and 60% were non-white. After adjustment for age, sex, smoking, CAD-severity, depressive, anger and anxiety symptoms, each 1-point increase in mental-stress SDS was associated with 1.73-unit increase in the angina-frequency score (95% CI: 0.09-3.37) and 17% higher odds of being in a higher angina-frequency category (OR: 1.17, 95% CI: 1.00-1.38). Depressive symptoms were associated with 12% higher odds of being in a higher angina-frequency category (OR: 1.12, 95% CI: 1.03-1.21). In contrast, exercise/pharmacological stress-induced SDS was not associated with angina-frequency. Conclusion Among young and middle-aged post-MI patients, myocardial ischemia induced by mental stress in the lab, but not by exercise/pharmacological stress, is associated with higher frequency of retrospectively reported angina during the day. Psychosocial stressors related to mental stress ischemia may be important contributory factor to daily angina. PMID:25727240

  14. Incidence of acute myocardial infarction in patients with exercise-induced silent myocardial ischemia

    SciTech Connect

    Assey, M.E.; Walters, G.L.; Hendrix, G.H.; Carabello, B.A.; Usher, B.W.; Spann, J.F. Jr.

    1987-03-01

    Fifty-five patients with angiographically proved coronary artery disease (CAD) underwent Bruce protocol exercise stress testing with thallium-201 imaging. Twenty-seven patients (group I) showed myocardial hypoperfusion without angina pectoris during stress, which normalized at rest, and 28 patients (group II) had a similar pattern of reversible myocardial hypoperfusion but also had angina during stress. Patients were followed for at least 30 months. Six patients in group I had an acute myocardial infarction (AMI), 3 of whom died, and only 1 patient in group II had an AMI (p = 0.05), and did not die. Silent myocardial ischemia uncovered during exercise stress thallium testing may predispose to subsequent AMI. The presence of silent myocardial ischemia identified in this manner is of prognostic value, independent of angiographic variables such as extent of CAD and left ventricular ejection fraction.

  15. In vivo characterization of acute myocardial ischemia using photoacoustic imaging with a focused transducer

    NASA Astrophysics Data System (ADS)

    Li, Zhifang; Chen, Haiyu; Xie, Wengming; Li, Hui

    2011-03-01

    We explore the feasibility of using photoacoustic imaging based on a focused transducer to characterizing acute myocardial ischemia at different stage. In this study, we blocked rat left anterior coronary descending artery (LAD) to induce the acute myocardial ischemia. The results show that the intensity and areas of photoacoustic images of myocardial decrease with the LAD time increasing, which suggests that photoacoustic imaging has a potential for diagnosis of acute myocardial ischemia.

  16. Depressive symptoms are associated with mental stress-induced myocardial ischemia after acute myocardial infarction.

    PubMed

    Wei, Jingkai; Pimple, Pratik; Shah, Amit J; Rooks, Cherie; Bremner, J Douglas; Nye, Jonathon A; Ibeanu, Ijeoma; Murrah, Nancy; Shallenberger, Lucy; Raggi, Paolo; Vaccarino, Viola

    2014-01-01

    Depression is an adverse prognostic factor after an acute myocardial infarction (MI), and an increased propensity toward emotionally-driven myocardial ischemia may play a role. We aimed to examine the association between depressive symptoms and mental stress-induced myocardial ischemia in young survivors of an MI. We studied 98 patients (49 women and 49 men) age 38-60 years who were hospitalized for acute MI in the previous 6 months. Patients underwent myocardial perfusion imaging at rest, after mental stress (speech task), and after exercise or pharmacological stress. A summed difference score (SDS), obtained with observer-independent software, was used to quantify myocardial ischemia under both stress conditions. The Beck Depression Inventory-II (BDI-II) was used to measure depressive symptoms, which were analyzed as overall score, and as separate somatic and cognitive depressive symptom scores. There was a significant positive association between depressive symptoms and SDS with mental stress, denoting more ischemia. After adjustment for demographic and lifestyle factors, disease severity and medications, each incremental depressive symptom was associated with 0.14 points higher SDS. When somatic and cognitive depressive symptoms were examined separately, both somatic [β = 0.17, 95% CI: (0.04, 0.30), p = 0.01] and cognitive symptoms [β = 0.31, 95% CI: (0.07, 0.56), p = 0.01] were significantly associated with mental stress-induced ischemia. Depressive symptoms were not associated with ischemia induced by exercise or pharmacological stress. Among young post-MI patients, higher levels of both cognitive and somatic depressive symptoms are associated with a higher propensity to develop myocardial ischemia with mental stress, but not with physical (exercise or pharmacological) stress.

  17. Depressive Symptoms Are Associated with Mental Stress-Induced Myocardial Ischemia after Acute Myocardial Infarction

    PubMed Central

    Wei, Jingkai; Pimple, Pratik; Shah, Amit J.; Rooks, Cherie; Bremner, J. Douglas; Nye, Jonathon A.; Ibeanu, Ijeoma; Murrah, Nancy; Shallenberger, Lucy; Raggi, Paolo; Vaccarino, Viola

    2014-01-01

    Objectives Depression is an adverse prognostic factor after an acute myocardial infarction (MI), and an increased propensity toward emotionally-driven myocardial ischemia may play a role. We aimed to examine the association between depressive symptoms and mental stress-induced myocardial ischemia in young survivors of an MI. Methods We studied 98 patients (49 women and 49 men) age 38–60 years who were hospitalized for acute MI in the previous 6 months. Patients underwent myocardial perfusion imaging at rest, after mental stress (speech task), and after exercise or pharmacological stress. A summed difference score (SDS), obtained with observer-independent software, was used to quantify myocardial ischemia under both stress conditions. The Beck Depression Inventory-II (BDI-II) was used to measure depressive symptoms, which were analyzed as overall score, and as separate somatic and cognitive depressive symptom scores. Results There was a significant positive association between depressive symptoms and SDS with mental stress, denoting more ischemia. After adjustment for demographic and lifestyle factors, disease severity and medications, each incremental depressive symptom was associated with 0.14 points higher SDS. When somatic and cognitive depressive symptoms were examined separately, both somatic [β = 0.17, 95% CI: (0.04, 0.30), p = 0.01] and cognitive symptoms [β = 0.31, 95% CI: (0.07, 0.56), p = 0.01] were significantly associated with mental stress-induced ischemia. Depressive symptoms were not associated with ischemia induced by exercise or pharmacological stress. Conclusion Among young post-MI patients, higher levels of both cognitive and somatic depressive symptoms are associated with a higher propensity to develop myocardial ischemia with mental stress, but not with physical (exercise or pharmacological) stress. PMID:25061993

  18. Myocardial ischemia and angiotensin-converting enzyme inhibition: comparison of ischemia during mental and physical stress.

    PubMed

    Ramadan, Ronnie; Quyyumi, Arshed A; Zafari, A Maziar; Binongo, Jose N; Sheps, David S

    2013-01-01

    Mental stress provokes myocardial ischemia in many patients with stable coronary artery disease (CAD). Mental stress-induced myocardial ischemia (MSIMI) portends a worse prognosis, independent of standard cardiac risk factors or outcome of traditional physical stress testing. Angiotensin II plays a significant role in the physiological response to stress, but its role in MSIMI remains unknown. Our aim was to evaluate whether the use of angiotensin-converting enzyme inhibitors (ACEIs) is associated with a differential effect on the incidence of MSIMI compared with ischemia during physical stress. Retrospective analysis of 218 patients with stable CAD, including 110 on ACEI, was performed. 99m-Tc-sestamibi myocardial perfusion imaging was used to define ischemia during mental stress, induced by a standardized public speaking task, and during physical stress, induced by either exercise or adenosine. Overall, 40 patients (18%) developed MSIMI and 80 patients (37%) developed ischemia during physical stress. MSIMI occurred less frequently in patients receiving ACEIs (13%) compared with those not on ACEIs (24%; p = .030, adjusted odds ratio = 0.42, 95% confidence interval = 0.19-0.91). In contrast, the frequency of myocardial ischemia during physical stress testing was similar in both groups (39% versus 35% in those on and not on ACEIs, respectively); adjusted odds ratio = 0.91, 95% confidence interval = 0.48-1.73). In this retrospective study, patients using ACEI therapy displayed less than half the risk of developing ischemia during mental stress but not physical stress. This possible beneficial effect of ACEIs on MSIMI may be contributing to their salutary effects in CAD.

  19. Lidocaine Enhances Contractile Function of Ischemic Myocardial Regions in Mouse Model of Sustained Myocardial Ischemia

    PubMed Central

    Kania, Gabriela; Osto, Elena; Jakob, Philipp; Krasniqi, Nazmi; Beck-Schimmer, Beatrice; Blyszczuk, Przemyslaw; Eriksson, Urs

    2016-01-01

    Rationale Perioperative myocardial ischemia is common in high-risk patients. The use of interventional revascularisation or even thrombolysis is limited in this patient subset due to exceedingly high bleeding risks. Blockade of voltage-gated sodium channels (VGSC) with lidocaine had been suggested to reduce infarct size and cardiomyocyte cell death in ischemia/reperfusion models. However, the impact of lidocaine on cardiac function during sustained ischemia still remains unclear. Methods Sustained myocardial ischemia was induced by ligation of the left anterior descending artery in 12–16 weeks old male BALB/c mice. Subcutaneous lidocaine (30 mg/kg) was used to block VGSC. Cardiac function was quantified at baseline and at 72h by conventional and speckle-tracking based echocardiography to allow high-sensitivity in vivo phenotyping. Infarct size and cardiomyocyte cell death were assessed post mortem histologically and indirectly using troponin measurements. Results Ischemia strongly impaired both, global systolic and diastolic function, which were partially rescued in lidocaine treated in mice. No differences regarding infarct size and cardiomyocyte cell death were observed. Mechanistically, and as shown with speckle-tracking analysis, lidocaine specifically improves residual contractility in the ischemic but not in the remote, non-ischemic myocardium. Conclusion VGSC blockade with lidocaine rescues function of ischemic myocardium as a potential bridging to revascularisation in the setting of perioperative myocardial ischemia. PMID:27140425

  20. Asymptomatic myocardial ischemia following cold provocation

    SciTech Connect

    Shea, M.J.; Deanfield, J.E.; deLandsheere, C.M.; Wilson, R.A.; Kensett, M.; Selwyn, A.P.

    1987-09-01

    Cold is thought to provoke angina in patients with coronary disease either by an increase in myocardial demand or an increase in coronary vascular resistance. We investigated and compared the effects of cold pressor stimulation and symptom-limited supine bicycle exercise on regional myocardial perfusion in 35 patients with stable angina and coronary disease and in 10 normal subjects. Regional myocardial perfusion was assessed with positron emission tomography and rubidium-82. Following cold pressor stimulation 24 of 35 patients demonstrated significant abnormalities of regional myocardial perfusion with reduced cation uptake in affected regions of myocardium: 52 +/- 9 to 43 +/- 9 (p less than 0.001 vs normal subjects). Among these 24 patients only nine developed ST depression and only seven had angina. In contrast, 29 of 35 patients underwent supine exercise, and abnormal regional myocardial perfusion occurred in all 29, with a reduction in cation intake from 48 +/- 10 to 43 +/- 14 (p less than 0.001 vs normal subjects). Angina was present in 27 of 29 and ST depression in 25 of 29. Although the absolute decrease in cation uptake was somewhat greater following cold as opposed to exercise, the peak heart rate after cold was significantly lower than that after exercise (82 +/- 12 vs 108 +/- 16 bpm, p less than 0.05). Peak systolic blood pressures after cold and exercise were similar (159 +/- 24 vs 158 +/- 28). Thus, cold produces much more frequent asymptomatic disturbances of regional myocardial perfusion in patients with stable angina and coronary disease than is suggested by pain or ECG changes.

  1. In vivo study of myocardial elastography under graded ischemia conditions

    NASA Astrophysics Data System (ADS)

    Lee, Wei-Ning; Provost, Jean; Fujikura, Kana; Wang, Jie; Konofagou, Elisa E.

    2011-02-01

    The capability of currently available echocardiography-based strain estimation techniques to fully map myocardial abnormality at early stages of myocardial ischemia is yet to be investigated. In this study, myocardial elastography (ME), a radio-frequency (RF)-based strain imaging technique that maps the full 2D transmural angle-independent strain tensor in standard echocardiographic views at both high spatial and temporal resolution is presented. The objectives were to (1) evaluate the performance of ME on mapping the onset, extent and progression of myocardial ischemia at graded coronary constriction levels (from partial to complete coronary flow reduction), and (2) validate the accuracy of the strain estimates against sonomicrometry (SM) measurements. A non-survival canine ischemic model (n = 5) was performed by gradually constricting the left anterior descending (LAD) coronary blood flow from 0% (baseline blood flow) to 100% (zero blood flow) at 20% increments. An open-architecture ultrasound system was used to acquire RF echocardiograms in a standard full short-axis view at the frame rate of 211 fps, at least twice higher than what is typically used in conventional echocardiographic systems, using a previously developed, fully automated composite technique. Myocardial deformation was estimated by ME and validated against sonomicrometry. ME estimates and maps transmural (1) 2D displacements using RF cross-correlation and recorrelation; and (2) 2D polar (radial and circumferential) strains, derived from 2D (i.e. both lateral and axial) displacement components, at high accuracy. Full-view strain images were shown and found to reliably depict decreased myocardial function in the region at risk at increased levels of coronary flow reduction. The ME radial strain was deemed to be a more sensitive, quantitative, regional measure of myocardial ischemia as a result of coronary flow reduction when compared to the conventional wall motion score index and ejection fraction

  2. Acute Myocardial Ischemia: Cellular Mechanisms Underlying ST Segment Elevation

    PubMed Central

    Di Diego, José M.; Antzelevitch, Charles

    2014-01-01

    The electrocardiogram (ECG) is an essential tool for the diagnosis of acute myocardial ischemia in the emergency department, as well as for that of an evolving acute myocardial infarction (AMI). Changes in the surface ECG in leads whose positive poles face the ischemic region are known to be related to injury currents flowing across the boundaries between the ischemic and the surrounding normal myocardium. Although experimental studies have also shown an endocardium to epicardium differential sensitivity to the effect of acute ischemia, the important contribution of this transmural heterogeneous response to the changes observed in the surface ECG are less appreciated by the clinical cardiologist. This review briefly discusses our current knowledge regarding the electrophysiology of the ischemic myocardium focusing primarily on the electrophysiologic changes underlying the ECG alterations observed at the onset of a transmural AMI. PMID:24742586

  3. Regional Myocardial Blood Flow and Ultrastructure Following Acute Temporary Ischemia.

    DTIC Science & Technology

    1982-01-01

    kidneys of dogs and cats , and suggest some element present in whole blood, but not present in filtered blood may serve to further damage ischemic...minutes of myocardial ischemia in the dog as Krug et al. (66) has reported in the cat . Finally, in this experiment the relationship of inhibited reflow...transient inhibition of flow. One has to wonder if their 6 cats with smaller areas of risk are more like the dogs in this study and may also have had

  4. Direct Evidence that Myocardial Insulin Resistance following Myocardial Ischemia Contributes to Post-Ischemic Heart Failure

    PubMed Central

    Fu, Feng; Zhao, Kun; Li, Jia; Xu, Jie; Zhang, Yuan; Liu, Chengfeng; Yang, Weidong; Gao, Chao; Li, Jun; Zhang, Haifeng; Li, Yan; Cui, Qin; Wang, Haichang; Tao, Ling; Wang, Jing; Quon, Michael J; Gao, Feng

    2015-01-01

    A close link between heart failure (HF) and systemic insulin resistance has been well documented, whereas myocardial insulin resistance and its association with HF are inadequately investigated. This study aims to determine the role of myocardial insulin resistance in ischemic HF and its underlying mechanisms. Male Sprague-Dawley rats subjected to myocardial infarction (MI) developed progressive left ventricular dilation with dysfunction and HF at 4 wk post-MI. Of note, myocardial insulin sensitivity was decreased as early as 1 wk after MI, which was accompanied by increased production of myocardial TNF-α. Overexpression of TNF-α in heart mimicked impaired insulin signaling and cardiac dysfunction leading to HF observed after MI. Treatment of rats with a specific TNF-α inhibitor improved myocardial insulin signaling post-MI. Insulin treatment given immediately following MI suppressed myocardial TNF-α production and improved cardiac insulin sensitivity and opposed cardiac dysfunction/remodeling. Moreover, tamoxifen-induced cardiomyocyte-specific insulin receptor knockout mice exhibited aggravated post-ischemic ventricular remodeling and dysfunction compared with controls. In conclusion, MI induces myocardial insulin resistance (without systemic insulin resistance) mediated partly by ischemia-induced myocardial TNF-α overproduction and promotes the development of HF. Our findings underscore the direct and essential role of myocardial insulin signaling in protection against post-ischemic HF. PMID:26659007

  5. Coronary vasodilator reserve persists despite tachycardia and myocardial ischemia

    SciTech Connect

    Bristow, J.D.; McFalls, E.O.; Anselone, C.G.; Pantely, G.A. )

    1987-08-01

    During myocardial ischemia, the authors tested whether coronary blood flow measured with radioactive microspheres labeled with {sup 141}Ce, {sup 51}Cr, {sup 103}Ru, and {sup 95}Nb would increase in response to tachycardia thereby employing known coronary flow reserve. The authors instrumented the left anterior descending (LAD) coronary circulation in anesthetized pigs and performed three sets of experiments while coronary pressure was controlled and several heart rate increases were produced. (1) Pacing-induced tachycardia at normal LAD pressure was characterized by increased LAD flow and myocardial oxygen consumption, without production of lactate. (2) Tachycardia at a mean LAD pressure of 38 mmHg was associated with a lower, fixed coronary flow and oxygen consumption. Lactate was produced at all rates and local myocardial function declined progressively. (3) Coronary flow at low LAD pressure doubled during tachycardia when intracoronary adenosine was added. The increase to the subepicardium was >100%, whereas subendocardial flow changed little. There is persistent coronary flow reserve during moderately severe myocardial ischemia, even when metabolic demand is increased by tachycardia. This reserve, however, is predominantly subepicardial.

  6. Neuroprotective Antioxidant STAZN Protects Against Myocardial Ischemia/Reperfusion Injury

    PubMed Central

    Ley, James J.; Prado, Ricardo; Wei, Jian Qin; Bishopric, Nanette H.; Becker, David A.; Ginsberg, Myron D.

    2009-01-01

    Background Protecting the myocardium from ischemia-reperfusion injury has significant potential to reduce the complications of myocardial infarction and interventional revascularization procedures. Reperfusion damage is thought to result, in part, from oxidative stress. Here we use a novel method of percutaneous coronary occlusion to show that the potent antioxidant and neuroprotective free-radical scavenger, stilbazulenyl nitrone (STAZN), confers marked cardioprotection when given immediately prior to reperfusion. Methods and Results Physiologically controlled male Sprague-Dawley rats were anesthetized with isoflurane, paralyzed with pancuronium and mechanically ventilated. A guide wire was introduced via the femoral artery and advanced retrogradely via the aorta into the left coronary artery under fluoroscopic guidance. Rats with established coronary ischemia (85 min after occlusion) were given STAZN 3.5 mg/kg or its vehicle 5 minutes before and 2 hours after reperfusion, and were subjected to functional and histopathologic studies at 3 days. Ischemia-associated Q wave amplitude was reduced by 73% in STAZN-treated rats (P=0.01), while infarct-related ejection fraction, fractional shortening and severe regional wall-motion impairments were reduced by 48%, 54% and 37%, respectively, relative to vehicle-treated controls (P=0.05). Total myocardial infarct volume in STAZN-treated rats was correspondingly reduced by 43% (P<0.05), representing a sparing of 14% of the total left ventricular myocardium. Conclusions STAZN, a second-generation azulenyl nitrone with potent neuroprotective efficacy in brain ischemia, is also a rapidly acting and highly effective cardioprotective agent in acute coronary ischemia. Our results suggest the potential for clinical benefit in the setting of acute coronary syndromes. PMID:17936251

  7. Association between aortic valve calcification and myocardial ischemia, especially in asymptomatic patients.

    PubMed

    Yamazato, Ryo; Yamamoto, Hideya; Tadehara, Futoshi; Teragawa, Hiroki; Kurisu, Satoshi; Dohi, Yoshihiro; Ishibashi, Ken; Kunita, Eiji; Utsunomiya, Hiroto; Oka, Toshiharu; Kihara, Yasuki

    2012-08-01

    Aortic valve calcification (AVC) is recognized as a manifestation of systemic arteriosclerosis. However, it is unclear whether AVC is associated with myocardial ischemia. Stress myocardial perfusion SPECT (MPS) is widely used for the diagnosis of myocardial ischemia. However, routine MPS is not recommended, particularly in asymptomatic patients. Accordingly, we investigated the hypothesis that the presence of AVC is strongly associated with inducible myocardial ischemia, even among asymptomatic patients. We investigated 669 consecutive patients who underwent both adenosine stress (201)Tl MPS and echocardiography. We evaluated the extent and severity of myocardial ischemia by the summed difference score (SDS). We defined the presence of myocardial ischemia as SDS ≥ 3 and moderate to severe ischemia as SDS ≥ 8. We classified the severity of AVC according to the number of affected aortic leaflets. We also compared the mean SDS and the prevalence of SDS ≥ 3 and SDS ≥ 8 among patients stratified by the severity of AVC. The presence of AVC was significantly associated with myocardial ischemia (odds ratio [OR], 1.56; 95% confidence interval [CI], 1.10-2.23; P = 0.013) and moderate to severe ischemia (OR, 2.16; 95% CI, 1.26-3.80; P = 0.0061). In 311 asymptomatic patients, AVC was strongly associated with moderate to severe ischemia (OR, 4.31; 95% CI, 1.67-12.8; P = 0.0043). However, the SDS value and the prevalence of SDS ≥ 3 and SDS ≥ 8 did not increase with increasing number of affected aortic leaflets. The presence of AVC may be associated with the presence of myocardial ischemia, particularly in asymptomatic patients. However, we found no association between the extent of AVC and inducible myocardial ischemia. The presence of AVC may be a useful anatomic marker to help identify patients at high risk of myocardial ischemia, particularly asymptomatic patients.

  8. Stable angina pectoris: the medical management of symptomatic myocardial ischemia.

    PubMed

    Parker, John D; Parker, John O

    2012-01-01

    Coronary artery disease (CAD) remains an important cause of morbidity and mortality and is a serious public health problem. Over the last 4 decades there have been dramatic advances in the both the prevention and treatment of CAD. The management of CAD was revolutionized by the development of effective surgical and percutaneous revascularization techniques. In this review we discuss the importance of the medical management of symptomatic, stable angina. Medical management approaches to both the treatment and prevention of symptomatic myocardial ischemia are summarized. In Canada, organic nitrates, β-adrenergic blocking agents, and calcium channel antagonists have been available for the therapy of angina for more than 25 years. All 3 classes are of proven benefit in the improvement of symptoms and exercise capacity in patients with stable angina. Although there is no clear first choice within these classes of anti-anginal agents, the presence of prior or concurrent conditions (for example, prior myocardial infarction and/or hypertension) plays an important role in the choice of anti-anginal class in individual patients. For some patients, combinations of different anti-anginal agents can be effective; however it is recommended that this approach be individualized. Although not currently available in Canada, other classes of anti-anginal agents have been developed; their mechanism of action and clinical efficacy is discussed. Patients with stable angina have an excellent prognosis. Patients in this category who obtain relief from symptomatic myocardial ischemia may do well without invasive intervention.

  9. Constrictive pericarditis causing a positive TI-201 SPECT stress test for myocardial ischemia

    SciTech Connect

    Matthews, R.J.; Lightfoote, J.; Grusd, R.S. )

    1990-08-01

    A case of constritive pericarditis was demonstrated by a positive thallium SPECT stress test for myocardial ischemia. After pericardiectomy, the repeat thallium stress test was normal. The disappearance of the criteria for a positive test suggests that constrictive pericarditis can cause myocardial ischemia, which can be demonstrated by thallium SPECT stress testing.

  10. [Pharmacological properties of phosphorylacetohydrazides in experimental myocardial ischemia].

    PubMed

    Balashov, V P; Al'miasheva, M I; Tarasova, R I; Rusina, I F; Kul'kova, N P; Kurmysheva, T V; Voskresenskaia, O V

    2007-01-01

    It is shown that 2-chloroethoxy-para-N-dimethylphosphorylacetohydrazide and N-acethylhydrazide-para-dimethylaminophenyl-2-chloroethoxyphosphorylacetic acid reliably reduce ischemia-induced depression of inotropic functions of the left ventricle in cats with experimental myocardial infarction model. The effect of both compounds can be explained by the maintenance of viability of the injured myocardium via a delay of the development of acidosis and the support of oxygen recycling in the ischemized zone. Both compounds show pronounced antiradical properties with a non-standard mechanism of action.

  11. Silent myocardial ischemia: Current perspectives and future directions

    PubMed Central

    Ahmed, Amany H; Shankar, KJ; Eftekhari, Hossein; Munir, MS; Robertson, Jillian; Brewer, Alan; Stupin, Igor V; Casscells, S Ward

    2007-01-01

    Silent myocardial ischemia (SMI) is increasingly being recognized as part of the spectrum of ischemic heart disease. The spectrum of SMI ranges from asymptomatic coronary artery disease to critical illness necessitating intensive care. Although many diagnostic tools have been used to identify low- and high-risk subgroups, their use is limited by modest sensitivities and specificities. The present review identifies current concepts in the management of SMI in various clinical settings, as well as emerging technologies that may simplify the diagnosis and treatment of this condition. PMID:18651003

  12. CMR First-Pass Perfusion for Suspected Inducible Myocardial Ischemia.

    PubMed

    Hendel, Robert C; Friedrich, Matthias G; Schulz-Menger, Jeanette; Zemmrich, Claudia; Bengel, Frank; Berman, Daniel S; Camici, Paolo G; Flamm, Scott D; Le Guludec, Dominique; Kim, Raymond; Lombardi, Massimo; Mahmarian, John; Sechtem, Udo; Nagel, Eike

    2016-11-01

    Cardiovascular magnetic resonance (CMR) has evolved from a pioneering research tool to an established noninvasive imaging method for detecting inducible myocardial perfusion deficits. In this consensus document, experts of different imaging techniques summarize the existing body of evidence regarding CMR perfusion as a viable complement to other established noninvasive tools for the assessment of perfusion and discuss the advantages and pitfalls of the technique. A rapid, standardized CMR perfusion protocol is described, which is safe, clinically feasible, and cost-effective for centers with contemporary magnetic resonance equipment. CMR perfusion can be recommended as a routine diagnostic tool to identify inducible myocardial ischemia. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  13. Exercise-induced silent myocardial ischemia: Evaluation by thallium-201 emission computed tomography

    SciTech Connect

    Kurata, C.; Sakata, K.; Taguchi, T.; Kobayashi, A.; Yamazaki, N. )

    1990-03-01

    Factors associated with silent myocardial ischemia (SMI) during exercise testing were studied by means of thallium-201 emission computed tomography (ECT) in 471 patients. Coronary angiography was done in 290, of whom 167 were found to have significant coronary artery disease (CAD). Exercise-induced ischemia and its severity were defined with ECT. During exercise 108 (62%) of 173 patients with ischemia and 57 (50%) of 115 with ischemia and angiographically documented CAD had no chest pain. One third of the patients showed an inconsistency between scintigraphic ischemia and ischemia ST depression. Age, sex, prior myocardial infarction, and diabetes mellitus were not related to SMI. Patients with SMI had less severe ischemia despite a higher peak double product compared to those with painful ischemia. Among 91 with prior myocardial infarction and exercise-induced ischemia, 51 with periinfarction ischemia had a higher frequency of SMI than did 14 with ischemia remote from the prior infarct zone despite similarities in the severity of ischemia. In conclusion, factors localized within ischemic myocardium such as less severe ischemia or adjacency to a prior infarct made SMI more prevalent.

  14. Calpain system and its involvement in myocardial ischemia and reperfusion injury

    PubMed Central

    Neuhof, Christiane; Neuhof, Heinz

    2014-01-01

    Calpains are ubiquitous non-lysosomal Ca2+-dependent cysteine proteases also present in myocardial cytosol and mitochondria. Numerous experimental studies reveal an essential role of the calpain system in myocardial injury during ischemia, reperfusion and postischemic structural remodelling. The increasing Ca2+-content and Ca2+-overload in myocardial cytosol and mitochondria during ischemia and reperfusion causes an activation of calpains. Upon activation they are able to injure the contractile apparatus and impair the energy production by cleaving structural and functional proteins of myocytes and mitochondria. Besides their causal involvement in acute myocardial dysfunction they are also involved in structural remodelling after myocardial infarction by the generation and release of proapoptotic factors from mitochondria. Calpain inhibition can prevent or attenuate myocardial injury during ischemia, reperfusion, and in later stages of myocardial infarction. PMID:25068024

  15. [Painless myocardial ischemia in patient with extensive constrictive atherosclerosis of coronary arteries].

    PubMed

    Oshchepkova, E V; Lazareva, N V

    2012-01-01

    We describe in this article a clinical case of a patient with arterial hypertension, painless myocardial ischemia and extensive constrictive atherosclerosis of coronary arteries. Coronary heart disease (painless ischemia) was suspected basing on results of transesophageal electrostimulation coupled with stress echocardiography and was confirmed by coronary angiography. This description is followed by discussion of possibilities of different instrumental methods in diagnostics of painless ischemia, classification of painless ischemia, treatment, and prognosis.

  16. Sum of effects of myocardial ischemia followed by electrically induced tachycardia on myocardial function

    PubMed Central

    Díez, José Luis; Hernándiz, Amparo; Cosín-Aguilar, Juan; Aguilar, Amparo; Portolés, Manuel

    2013-01-01

    Background The alteration of contractile function after tachyarrhythmia ceases is influenced by the type of prior ischemia (acute coronary syndrome or ischemia inherent in a coronary revascularization procedure). We aimed to analyze cardiac dysfunction in an acute experimental model of supraphysiological heart rate preceded by different durations and types of ischemia. Material/Methods Twenty-four pigs were included in: (S1) series of ventricular pacing; (S2, A and B) series with 10 or 20 min, respectively, of coronary occlusion previous to ventricular pacing; S3 with 20 brief, repeated ischemia/reperfusion processes prior to ventricular pacing and; (S4) control series. Overall cardiac function parameters and regional myocardial contractility at the apex and base of the left ventricle were recorded, as were oxidative stress markers (glutathione and lipid peroxide serum levels). Left ventricular pacing at 60% over baseline heart rate was performed for 2 h followed by 1 h of recovery. Results High ventricular pacing rates preceded by short, repeated periods of coronary ischemia/reperfusion resulted in worse impairment of overall cardiac and regional function that continued to be altered 1 h after tachycardia ceased. There was significant reduction of stroke volume (26.9±5.3 basal vs. 16±6.2 ml; p<0.05), LVP; dP/dt and LAD flow (13.1±1.5 basal vs. 8.4±1.6 ml/min; p<0.05); the base contractility remained altered when recovering compared to baseline (base SF: 5.6±2.8 vs. 2.2±0.7%; p<0.05); and LPO levels were higher than less aggressive series at the end of recovery. Conclusions Ischemia and tachycardia accumulate their effects, with increased cardiac involvement depending on the type of ischemia. PMID:23722244

  17. Ablation of cereblon attenuates myocardial ischemia-reperfusion injury.

    PubMed

    Kim, Jooyeon; Lee, Kwang Min; Park, Chul-Seung; Park, Woo Jin

    2014-05-16

    Cereblon (CRBN) was originally identified as a target protein for a mild type of mental retardation in humans. However, recent studies showed that CRBN acts as a negative regulator of AMP-activated protein kinase (AMPK) by binding directly to the AMPK catalytic subunit. Because AMPK is implicated in myocardial ischemia-reperfusion (I-R) injury, we reasoned that CRBN might play a role in the pathology of myocardial I-R through regulation of AMPK activity. To test this hypothesis, wild-type (WT) and crbn knockout (KO) mice were subjected to I-R (complete ligation of the coronary artery for 30 min followed by 24h of reperfusion). We found significantly smaller infarct sizes and less fibrosis in the hearts of KO mice than in those of WT mice. Apoptosis was also significantly reduced in the KO mice compared with that in WT mice, as shown by the reduced numbers of TUNEL-positive cells. In parallel, AMPK activity remained at normal levels in KO mice undergoing I-R, whereas it was significantly reduced in WT mice under the same conditions. In rat neonatal cardiomyocytes, overexpression of CRBN significantly reduced AMPK activity, as demonstrated by reductions in both phosphorylation levels of AMPK and the expression of its downstream target genes. Collectively, these data demonstrate that CRBN plays an important role in myocardial I-R injury through modulation of AMPK activity.

  18. Angina and exertional myocardial ischemia in diabetic and nondiabetic patients: assessment by exercise thallium scintigraphy

    SciTech Connect

    Nesto, R.W.; Phillips, R.T.; Kett, K.G.; Hill, T.; Perper, E.; Young, E.; Leland, O.S. Jr.

    1988-02-01

    Patients with diabetes mellitus and coronary artery disease are thought to have painless myocardial ischemia more often than patients without diabetes. We studied 50 consecutive patients with diabetes and 50 consecutive patients without diabetes, all with ischemia, on exercise thallium scintigraphy to show the reliability of angina as a marker for exertional ischemia. The two groups had similar clinical characteristics, treadmill test results, and extent of infarction and ischemia, but only 7 patients with diabetes compared with 17 patients without diabetes had angina during exertional ischemia. In diabetic patients the extent of retinopathy, nephropathy, or peripheral neuropathy was similar in patients with and without angina. Angina is an unreliable index of myocardial ischemia in diabetic patients with coronary artery disease. Given the increased cardiac morbidity and mortality in such patients, periodic objective assessments of the extent of ischemia are warranted.

  19. [Value of the exercise test in asymptomatic myocardial ischemia].

    PubMed

    Iturralde, P; Hernández, D; de Micheli, A; Colín, L; Romero, L; Villarreal, A; Férez, S; Miguel Casanova, J; Barrera, M; González-Hermosillo, J A

    1990-01-01

    To evaluate the predictive value of ischemic ST segment depression without associated chest pain during exercise testing, data were analyzed from 7305 studies. Two hundred thirty six patients were included in this study and were separated in 2 groups. Group A consisted of 169 patients without chest pain who, during exercise testing, showed a positive ST segment response (at least 1.5 mm of horizontal or downward ST segment depression for at least 0.08 second, compared with the resting baseline value), and Group B consisted of 67 patients who had both chest pain and a positive ST segment response. Selective coronary angiogram was performed on all patients. Each Group was separated into 3 sub-group according to the Cohn criteria: sub-group I (asymptomatic persons 8.3 vs 19.4%); sub-group II (patients with history of Myocardial Infarction 36.7% vs 19.4%); sub-group III (patients with chronic angina 55% vs 61.2%). The clinical characteristics, coronary risk factors, distribution of coronary artery disease, and exercise test response were similar in both groups. During treadmill exercise, the mean heart rate was 140.6 +/- 22 in group A versus 127.1 +/- 23 in the group B. The pressure-rate product was 2.4 +/- 0.8 versus 1.9 +/- 0.5, respectively (P less than or equal to 0.05). The predictive value for severe coronary artery disease of an exercise test in patients with asymptomatic ischemia was 77.5% as compared with 89.6% in the group with angina. This study confirms the high frequency of asymptomatic myocardial ischemia during exercise testing, compared with patients who had angina during exercise testing, with high percentage of prediction (77.5%) for coronary artery disease.

  20. Ilexsaponin A attenuates ischemia-reperfusion-induced myocardial injury through anti-apoptotic pathway

    PubMed Central

    Wang, Fang; Qiang, Jiao; Liu, Pan; Zhang, Jun; Xu, Jin-Wen

    2017-01-01

    The protective effects of ilexsaponin A on ischemia-reperfusion-induced myocardial injury were investigated. Myocardial ischemia/reperfusion model was established in male Sprague–Dawley rats. Myocardial injury was evaluated by TTC staining and myocardial marker enzyme leakage. The in vitro protective potential of Ilexsaponin A was assessed on hypoxia/reoxygenation cellular model in neonatal rat cardiomyocytes. Cellular viability and apoptosis were evaluated by MTT and TUNEL assay. Caspase-3, cleaved caspase-3, bax, bcl-2, p-Akt and Akt protein expression levels were detected by western-blot. Ilexsaponin A treatment was able to attenuate the myocardial injury in ischemia/reperfusion model by reducing myocardial infarct size and lower the serum levels of LDH, AST and CK-MB. The in vitro study also showed that ilexsaponin A treatment could increase cellular viability and inhibit apoptosis in hypoxia/reoxygenation cardiomyocytes. Proapoptotic proteins including caspase-3, cleaved caspase-3 and bax were significantly reduced and anti-apoptotic protein bcl-2 was significantly increased by ilexsaponin A treatment in hypoxia/reoxygenation cardiomyocytes. Moreover, Ilexsaponin A treatment was able to increase the expression levels of p-Akt in hypoxia/reoxygenation cellular model and myocardial ischemia/reperfusion animal model. Coupled results from both in vivo and in vitro experiments indicate that Ilexsaponin A attenuates ischemia-reperfusion-induced myocardial injury through anti-apoptotic pathway. PMID:28182689

  1. Imaging of cocaine-induced global and regional myocardial ischemia

    SciTech Connect

    Oster, Z.H.; Som, P.; Wang, G.J.; Weber, D.A. )

    1991-08-01

    Severe and often fatal cardiac complications have been reported in cocaine users with narrowed coronary arteries caused by atherosclerosis as well as in young adults with normal coronaries. The authors have found that in normal dogs cocaine induces severe temporary hypoperfusion of the left ventricle as indicated by a significantly lower 201Tl concentration compared to the baseline state. The most significant decrease in uptake occurred 5 min after injection and was more pronounced in the septal and apical segments. Following intravenous administration of cocaine, instead of gradual disappearance of 201Tl from the left ventricle, there was continuous increase in 201Tl concentration in the left ventricle. These imaging experiments indicate that the deleterious effects of cocaine on the heart are probably due to spasm of the coronaries and decreased myocardial perfusion. Since spasm of the large subpericardial vessels does not seem to explain the magnitude of the increased coronary resistance and decreased coronary flow after cocaine as described in the literature, it is suggested that microvascular spasm of smaller vessels plays a major role in the temporary decrease in perfusion. The data may also suggest that severe temporary myocardial ischemia is probably the initiating factor for the cardiac complications induced by cocaine.

  2. Vitexin exerts cardioprotective effect on chronic myocardial ischemia/reperfusion injury in rats via inhibiting myocardial apoptosis and lipid peroxidation

    PubMed Central

    Che, Xia; Wang, Xin; Zhang, Junyan; Peng, Chengfeng; Zhen, Yilan; Shao, Xu; Zhang, Gongliang; Dong, Liuyi

    2016-01-01

    Purpose: The aim of this study was to explore the cardioprotective effect of vitexin on chronic myocardial ischemia/reperfusion injury in rats and potential mechanisms. Methods: A chronic myocardial ischemia/reperfusion injury model was established by ligating left anterior descending coronary for 60 minutes, and followed by reperfusion for 14 days. After 2 weeks ischemia/reperfusion, cardiac function was measured to assess myocardial injury. The level of ST segment was recorded in different periods by electrocardiograph. The change of left ventricular function and myocardial reaction degree of fibrosis of heart was investigated by hematoxylin and eosin (HE) staining and Sirius red staining. Endothelium-dependent relaxations due to acetylcholine were observed in isolated rat thoracic aortic ring preparation. The blood samples were collected to measure the levels of MDA, the activities of SOD and NADPH in serum. Epac1, Rap1, Bax and Bcl-2 were examined by using Western Blotting. Results: Vitexin exerted significant protective effect on chronic myocardial ischemia/reperfusion injury, improved obviously left ventricular diastolic function and reduced myocardial reactive fibrosis degree in rats of myocardial ischemia. Medium and high-dose vitexin groups presented a significant decrease in Bax, Epac1 and Rap1 production and increase in Bcl-2 compared to the I/R group. It may be related to preventing myocardial cells from apoptosis, improving myocardial diastolic function and inhibiting lipid peroxidation. Conclusions: Vitexin is a cardioprotective herb, which may be a promising useful complementary and alternative medicine for patients with coronary heart disease. PMID:27648122

  3. Ultrasound imaging of propagation of myocardial contraction for non-invasive identification of myocardial ischemia

    NASA Astrophysics Data System (ADS)

    Matsuno, Yuya; Taki, Hirofumi; Yamamoto, Hiroaki; Hirano, Michinori; Morosawa, Susumu; Shimokawa, Hiroaki; Kanai, Hiroshi

    2017-07-01

    Non-invasive identification of ischemic regions is important for diagnosis and treatment of myocardial infarction. In the present study, ultrasound measurement was applied to the interventricular septum of three open-chest swine hearts. The properties of the myocardial contraction response of the septum were compared between normal and acute ischemic conditions, where the acute ischemic condition of the septum originated from direct avascularization of the left anterior descending (LAD) coronary artery. The result showed that the contraction response propagated from the basal side to the apical side along the septum. The estimated propagation velocities in the normal and acute ischemic conditions were 3.6 and 1.9 m/s, respectively. This finding indicates that acute ischemia which occurred 5 s after the avascularization of the LAD promptly suppressed the propagation velocity through the ventricular septum to about half the normal velocity. It was suggested that the myocardial ischemic region could be identified using the difference in the propagation velocity of the myocardial response to contraction.

  4. Effect of NO synthase inhibition on myocardial metabolism during moderate ischemia.

    PubMed

    Martin, Claus; Schulz, Rainer; Post, Heiner; Gres, Petra; Heusch, Gerd

    2003-06-01

    Nitric oxide (NO) is involved in the control of myocardial metabolism. In normoperfused myocardium, NO synthase inhibition shifts myocardial metabolism from free fatty acid (FFA) toward carbohydrate utilization. Ischemic myocardium is characterized by a similar shift toward preferential carbohydrate utilization, although NO synthesis is increased. The importance of NO for myocardial metabolism during ischemia has not been analyzed in detail. We therefore assessed the influence of NO synthase inhibition with N(G)-nitro-l-arginine (l-NNA) on myocardial metabolism during moderate ischemia in anesthetized pigs. In control animals, the increase in left ventricular pressure with l-NNA was mimicked by aortic constriction. Before ischemia, l-NNA decreased myocardial FFA consumption (MV(FFA); P < 0.05), while consumption of carbohydrate and O(2) (MVo(2)) remained constant. ATP equivalents [calculated with the assumption of complete oxidative substrate decomposition (ATP(eq))] decreased with l-NNA (P < 0.05), associated with a decrease of regional myocardial function (P < 0.05). In contrast, aortic constriction had no effect on MV(FFA), while MVo(2) increased (P < 0.05) and ATP(eq) and regional myocardial function remained constant. During ischemia, alterations in myocardial metabolism were similar in control and l-NNA-treated animals: MV(FFA) decreased (P < 0.05) and net lactate consumption was reversed to net lactate production (P < 0.05). Regional myocardial function was decreased (P < 0.05), although more markedly in animals receiving l-NNA (P < 0.05). We conclude that the efficiency of oxidative metabolism was impaired by l-NNA per se, paralleled by impaired regional myocardial function. During ischemia, l-NNA had no effect on myocardial substrate consumption, indicating that NO synthases were no longer effectively involved in the control of myocardial metabolism.

  5. [The adrenergic mechanisms are involved in the pulmonary hemodynamics changes following experimental myocardial ischemia in rabbits].

    PubMed

    Evlakhov, V I; Poiasov, I Z

    2012-05-01

    In acute experiments in anesthetized rabbits the changes of the pulmonary hemodynamics following myocardial ischemia in the region of the descendent left coronary artery were studied in control animals and after the blockade of alpha-adrenoreceptors by phentolamine or N-cholinoreceptors of autonomic ganglia by hexamethonium. Following myocardial ischemia in control animals the pulmonary artery pressure and flow decreased, the pulmonary vascular resistance was elevated not significantly, the cardiac output decreased more than pulmonary artery flow. Following myocardial ischemia after the blockade of alpha-adrenoreceptors the pulmonary artery flow and cardiac output decreased in the same level and the pulmonary vascular resistance was decreased. In these conditions the pulmonary artery pressure decreased more than in control animals, meanwhile the pulmonary artery flow was decreased in the same level as in the last case. Following myocardial ischemia after the blockade of N-cholinoreceptors the pulmonary hemodynamics changes were the same as they were following myocardial ischemia in the control rabbits, the cardiac output decreased more than pulmonary artery flow. The disbalance of the cardiac output and pulmonary artery flow changes in the case of myocardial ischemia was caused by the pulmonary vessel reactions following activations of the humoral adrenergic mechanisms.

  6. [The pulmonary hemodynamic changes under experimental myocardial ischemia in rabbits following beta-adrenoreceptors blockade].

    PubMed

    Evlakhov, V I; Poiasov, I Z

    2011-08-01

    In acute experiments in anesthetized rabbits, changes of the pulmonary hemodynamics following myocardial ischemia in the region of the descendent left coronary artery were studied as well as in control animals and after the blockade of beta-adrenoreceptors. The myocardial ischemia decreased the left ventricular myocardial contractility, cardiac output and arterial pressure, decreased the pulmonary artery pressure and flow. Following myocardial ischemia, the pulmonary artery pressure decreased less than pulmonary artery blood flow as the result of elevating of the left atrial pressure, meanwhile pulmonary vascular resistance was not changed. Following myocardial ischemia in animals after the blockade of the beta-adrenoreceptors, the pulmonary flow decreased the same as in control animals. However, the pulmonary artery pressure was decreased twofold more significantly than in control animals, and its diminishing was in the same degree as the pulmonary artery flow. Following myocardial ischemia after the blockade of the beta-adrenoreceptors, the pulmonary vascular resistance decreased whereas the left atrial pressure did not change significantly because the myocardial contractility decreased less than in control animals.

  7. Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage

    NASA Astrophysics Data System (ADS)

    Webb, Andrew; Bond, Richard; McLean, Peter; Uppal, Rakesh; Benjamin, Nigel; Ahluwalia, Amrita

    2004-09-01

    Nitric oxide (NO) is thought to protect against the damaging effects of myocardial ischemia-reperfusion injury, whereas xanthine oxidoreductase (XOR) normally causes damage through the generation of reactive oxygen species. In the heart, inorganic nitrite has the potential to act as an endogenous store of NO, liberated specifically during ischemia. Using a detection method that we developed, we report that under ischemic conditions both rat and human homogenized myocardium and the isolated perfused rat heart (Langendorff preparation) generate NO from in a reaction that depends on XOR activity. Functional studies of rat hearts in the Langendorff apparatus showed that nitrite (10 and 100 µM) reduced infarct size from 47.3 ± 2.8% (mean percent of control ± SEM) to 17.9 ± 4.2% and 17.4 ± 1.0%, respectively (P < 0.001), and was associated with comparable improvements in recovery of left ventricular function. This protective effect was completely blocked by the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazole-1-oxyl 3-oxide (carboxy-PTIO). In summary, the generation of NO from •, rather than damaging.

  8. Investigation of ischemia modified albumin, oxidant and antioxidant markers in acute myocardial infarction

    PubMed Central

    Hazini, Ahmet; Işıldak, İbrahim; Alpdağtaş, Saadet; Önül, Abdullah; Şenel, Ünal; Kocaman, Tuba; Dur, Ali; Iraz, Mustafa; Uyarel, Hüseyin

    2015-01-01

    Introduction Acute myocardial infarction (AMI) is still one of the most common causes of death worldwide. In recent years, for diagnosis of myocardial ischemia, a new parameter, called ischemia modified albumin (IMA), which is thought to be more advantageous than common methods, has been researched. Aim In this study, systematic analysis of parameters considered to be related to myocardial ischemia has been performed, comparing between control and myocardial ischemia groups. Material and methods We selected 40 patients with AMI and 25 healthy controls for this study. Ischemia modified albumin levels, glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) antioxidant enzyme activities and non-enzymatic antioxidants such as retinol, α-tocopherol, β-carotene and ascorbic acid levels were investigated in both groups. Glutathione (GSH) and malondialdehyde (MDA) levels, which are indicators of oxidative stress, were compared between patient and control groups. Results Ischemia modified albumin levels were found significantly higher in the AMI diagnosed group when compared with controls. The MDA level was elevated in the patient group, whereas the GSH level was decreased. SOD, GPx and CAT enzyme levels were decreased in the patient group, where it could be presumed that oxidative stress causes the cardiovascular diseases. Conclusions Due to the increased oxidative stress, non-enzymatic and enzymatic antioxidant capacity was affected. Systematic investigation of parameters related to myocardial infarction has been performed, and it is believed that such parameters can contribute to protection and early diagnosis of AMI and understanding the mechanism of development of the disease. PMID:26677379

  9. Relaxin protects against myocardial injury caused by ischemia and reperfusion in rat heart.

    PubMed Central

    Bani, D.; Masini, E.; Bello, M. G.; Bigazzi, M.; Sacchi, T. B.

    1998-01-01

    Myocardial injury caused by ischemia and reperfusion comes from multiple pathogenic events, including endothelial damage, neutrophil extravasation into tissue, platelet and mast cell activation, and peroxidation of cell membrane lipids, which are followed by myocardial cell alterations resulting eventually in cell necrosis. The current study was designed to test the possible cardioprotective effect of the hormone relaxin, which has been found to cause coronary vessel dilation and to inhibit platelet and mast cell activation. Ischemia (for 30 minutes) was induced in rat hearts in vivo by ligature of the left anterior descending coronary artery; reperfusion (for 60 minutes or less if the rats died before this predetermined time) was induced by removal of the ligature. Relaxin (100 ng) was given intravenously 30 minutes before ischemia. The results obtained showed that relaxin strongly reduces 1) the extension of the myocardial areas affected by ischemia-reperfusion-induced damage, 2) ventricular arrhythmias, 3) mortality, 4) myocardial neutrophil number, 5) myeloperoxidase activity, a marker of neutrophil accumulation, 6) production of malonyldialdehyde, an end product of lipid peroxidation, 7) mast cell granule release, 8) calcium overload, and 9) morphological signs of myocardial cell injury. This study shows that relaxin can be regarded as an agent with a marked cardioprotective action against ischemia-reperfusion-induced myocardial injury. Images Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:9588905

  10. Myocardial Ischemia Induces SDF-1α Release in Cardiac Surgery Patients.

    PubMed

    Kim, Bong-Sung; Jacobs, Denise; Emontzpohl, Christoph; Goetzenich, Andreas; Soppert, Josefin; Jarchow, Mareike; Schindler, Lisa; Averdunk, Luisa; Kraemer, Sandra; Marx, Gernot; Bernhagen, Jürgen; Pallua, Norbert; Schlemmer, Heinz-Peter; Simons, David; Stoppe, Christian

    2016-06-01

    In the present observational study, we measured serum levels of the chemokine stromal cell-derived factor-1α (SDF-1α) in 100 patients undergoing cardiac surgery with cardiopulmonary bypass at seven distinct time points including preoperative values, myocardial ischemia, reperfusion, and the postoperative course. Myocardial ischemia triggered a marked increase of SDF-1α serum levels whereas cardiac reperfusion had no significant influence. Perioperative SDF-1α serum levels were influenced by patients' characteristics (e.g., age, gender, aspirin intake). In an explorative analysis, we observed an inverse association between SDF-1α serum levels and the incidence of organ dysfunction. In conclusion, time of myocardial ischemia was identified as the key stimulus for a significant upregulation of SDF-1α, indicating its role as a marker of myocardial injury. The inverse association between SDF-1α levels and organ dysfunction association encourages further studies to evaluate its organoprotective properties in cardiac surgery patients.

  11. Global and regional left ventricular ejection fraction abnormalities during exercise in patients with silent myocardial ischemia

    SciTech Connect

    Cohn, P.F.; Brown, E.J. Jr.; Wynne, J.; Holman, B.L.; Atkins, H.L.

    1983-03-01

    Sixteen asymptomatic patients with coronary artery disease and silent myocardial ischemia were studied with exercise radionuclide ventriculography. Radionuclide ventriculograms were analyzed for changes in ejection fraction globally and in three regions. Results were compared with radionuclide ventriculograms in 24 symptomatic patients. Both groups (silent myocardial ischemia and angina) were similar in prevalence of multivessel disease and previous myocardial infarction, as well as in age and sex. Global ejection fraction decreased by 0.06 in both groups during exercise; regional ejection fraction also decreased by similar amounts in the two groups. Furthermore, the percent of regions with normal ejection fraction at rest that demonstrated a decrease during exercise was identical: 19 (60%) of 33 versus 26 (60%) of 46. These exercise radionuclide ventriculographic results suggest that abnormalities in regional and global left ventricular wall motion are similar in patients with coronary artery disease with and without silent myocardial ischemia.

  12. Myocardial ischemia is a key factor in the management of stable coronary artery disease

    PubMed Central

    Iwasaki, Kohichiro

    2014-01-01

    Previous studies demonstrated that coronary revascularization, especially percutaneous coronary intervention (PCI), does not significantly decrease the incidence of cardiac death or myocardial infarction in patients with stable coronary artery disease. Many studies using myocardial perfusion imaging (MPI) showed that, for patients with moderate to severe ischemia, revascularization is the preferred therapy for survival benefit, whereas for patients with no to mild ischemia, medical therapy is the main choice, and revascularization is associated with increased mortality. There is some evidence that revascularization in patients with no or mild ischemia is likely to result in worsened ischemia, which is associated with increased mortality. Studies using fractional flow reserve (FFR) demonstrate that ischemia-guided PCI is superior to angiography-guided PCI, and the presence of ischemia is the key to decision-making for PCI. Complementary use of noninvasive MPI and invasive FFR would be important to compensate for each method’s limitations. Recent studies of appropriateness criteria showed that, although PCI in the acute setting and coronary bypass surgery are properly performed in most patients, PCI in the non-acute setting is often inappropriate, and stress testing to identify myocardial ischemia is performed in less than half of patients. Also, some studies suggested that revascularization in an inappropriate setting is not associated with improved prognosis. Taken together, the presence and the extent of myocardial ischemia is a key factor in the management of patients with stable coronary artery disease, and coronary revascularization in the absence of myocardial ischemia is associated with worsened prognosis. PMID:24772253

  13. Pulse wave velocity is increased in patients with transient myocardial ischemia.

    PubMed

    Baulmann, Johannes; Homsi, Rami; Uen, Sakir; Düsing, Rainer; Fimmers, Rolf; Vetter, Hans; Mengden, Thomas

    2006-10-01

    We have recently shown that mean pulse pressure is higher in patients with transient myocardial ischemia. Pulse pressure elevation might be an important consequence of increased arterial stiffness. The aim of this study was to prove if arterial stiffness is changed in patients with transient myocardial ischemia who bear a high cardiovascular risk. Additionally we investigated whether arterial stiffness or wave reflection is the best indicator for transient myocardial ischemia. Aortic pulse wave velocity (PWV) is a measure of arterial stiffness, and augmentation index (AIx) an indication of arterial wave reflection. Both are indicators for cardiovascular risk. PWV (carotid-femoral) and AIx (SphygmoCor) were assessed in 74 hypertensive patients. Transient myocardial ischemia was detected using an ST-triggered 24-h ambulatory blood pressure monitoring device. ST-segment depressions were recorded in 30 of 74 patients. There were no significant differences with regard to age, mean arterial pressure, systolic blood pressure, diastolic blood pressure or heart rate. PWV was seen to be higher in patients with transient myocardial ischemia (10.6 versus 9.5 m/s, P = 0.036). There was no significant difference in AIx between the two groups. PWV (r = 0.36, P = 0.002) but not AIx correlated with pulse pressure. PWV is higher in hypertensive individuals (age > 60 years) with transient myocardial ischemia, suggesting that PWV is an indicator of increased cardiovascular risk. Although AIx is known to be associated with several cardiovascular diseases, it was not seen to be associated with silent myocardial ischemia. Our results suggest that the clinical significance of parameters of arterial stiffness and arterial wave reflection change with age, with a higher clinical importance of PWV indicated in patients over the age of 60.

  14. Qishen Yiqi Drop Pill improves cardiac function after myocardial ischemia

    PubMed Central

    JianXin, Chen; Xue, Xu; ZhongFeng, Li; Kuo, Gao; FeiLong, Zhang; ZhiHong, Li; Xian, Wang; HongCai, Shang

    2016-01-01

    Myocardial ischemia (MI) is one of the leading causes of death, while Qishen Yiqi Drop Pill (QYDP) is a representative traditional Chinese medicine to treat this disease. Unveiling the pharmacological mechanism of QYDP will provide a great opportunity to promote the development of novel drugs to treat MI. 64 male Sprague-Dawley (SD) rats were divided into four groups: MI model group, sham operation group, QYDP treatment group and Fosinopril treatment group. Echocardiography results showed that QYDP exhibited significantly larger LV end-diastolic dimension (LVEDd) and LV end-systolic dimension (LVEDs), compared with the MI model group, indicating the improved cardiac function by QYDP. 1H-NMR based metabonomics further identify 9 significantly changed metabolites in the QYDP treatment group, and the QYDP-related proteins based on the protein-metabolite interaction networks and the corresponding pathways were explored, involving the pyruvate metabolism pathway, the retinol metabolism pathway, the tyrosine metabolism pathway and the purine metabolism pathway, suggesting that QYDP was closely associated with blood circulation. ELISA tests were further employed to identify NO synthase (iNOS) and cathepsin K (CTSK) in the networks. For the first time, our work combined experimental and computational methods to study the mechanism of the formula of traditional Chinese medicine. PMID:27075394

  15. Humanized cobra venom factor decreases myocardial ischemia-reperfusion injury.

    PubMed

    Gorsuch, W Brian; Guikema, Benjamin J; Fritzinger, David C; Vogel, Carl-Wilhelm; Stahl, Gregory L

    2009-12-01

    Cobra venom factor (CVF) is a complement activating protein in cobra venom, which functionally resembles C3b, and has been used for decades for decomplementation of serum to investigate the role of complement in many model systems of disease. The use of CVF for clinical practice is considered impractical because of immunogenicity issues. Humanization of CVF was recently demonstrated to yield a potent CVF-like molecule. In the present study, we demonstrate that mice treated with recombinant humanized CVF (HC3-1496) are protected from myocardial ischemia-reperfusion (MI/R) injuries with resultant preservation of cardiac function. Also, C3 deposition in the myocardium following MI/R was not observed following treatment with HC3-1496. HC3-1496 led to complement activation and depletion of C3, but preserved C5 titers. These data suggest, unlike CVF, HC3-1496 does not form a C5 convertase in the mouse, similar to recent studies in human sera/plasma. These results suggest that humanized CVF (HC3-1496) protects the ischemic myocardium from reperfusion injuries induced by complement activation and represents a novel anti-complement therapy for potential clinical use.

  16. Impact of an Interleukin-1 Receptor Antagonist and Erythropoietin on Experimental Myocardial Ischemia/Reperfusion Injury

    PubMed Central

    Grothusen, Christina; Hagemann, Angelika; Attmann, Tim; Braesen, Jan; Broch, Ole; Cremer, Jochen; Schoettler, Jan

    2012-01-01

    Background. Revascularization of infarcted myocardium results in release of inflammatory cytokines mediating myocardial reperfusion injury and heart failure. Blockage of inflammatory pathways dampens myocardial injury and reduces infarct size. We compared the impact of the interleukin-1 receptor antagonist Anakinra and erythropoietin on myocardial ischemia/reperfusion injury. In contrast to others, we hypothesized that drug administration prior to reperfusion reduces myocardial damage. Methods and Results. 12–15 week-old Lewis rats were subjected to myocardial ischemia by a 1 hr occlusion of the left anterior descending coronary artery. After 15 min of ischemia, a single shot of Anakinra (2 mg/kg body weight (bw)) or erythropoietin (5000 IE/kg bw) was administered intravenously. In contrast to erythropoietin, Anakinra decreased infarct size (P < 0.05, N = 4/group) and troponin T levels (P < 0.05, N = 4/group). Conclusion. One-time intravenous administration of Anakinra prior to myocardial reperfusion reduces infarct size in experimental ischemia/reperfusion injury. Thus, Anakinra may represent a treatment option in myocardial infarction prior to revascularization. PMID:22649318

  17. Effect of eating on thallium-201 myocardial redistribution after myocardial ischemia

    SciTech Connect

    Angello, D.A.; Wilson, R.A.; Palac, R.T.

    1987-09-01

    To determine whether eating a high-carbohydrate meal between initial and delayed postexercise thallium-201 (Tl-201) imaging affects detection of Tl-201 redistribution during exercise stress testing, 16 patients with stable angina performed 2 Tl-201 treadmill exercise stress tests within a 14-day interval. Immediately after initial postexercise imaging, patients either drank a commercially available instant breakfast preparation for the intervention test or drank an equivalent volume of water for the control test. Comparable exercise workloads were achieved by exercising patients to the same heart rate for both tests. The order of the 2 (intervention and control) tests were randomized. All patients had at least 1 region of Tl-201 myocardial redistribution on either their eating or control test scans, although only 7 of the 16 had positive treadmill exercise test responses. Forty-six regions showing Tl-201 myocardial redistribution were identified in all 144 regions examined. Significantly more of these regions were identified on control test scans than on eating test scans: 11 of 46 on both test scans, 6 of 46 only on eating test scans and 29 of 46 only on control scans (p less than 0.001). Consistent with results of the quantitative regional analysis, the percentage of Tl-201 clearance over 4 hours in the 46 Tl-201 myocardial redistribution regions was 39 +/- 8% for the eating tests and 29 +/- 8% for control tests (mean +/- standard deviation, p less than 0.003). In 4 patients diagnosis of transient ischemia would have been missed because their 14 Tl-201 myocardial redistribution regions were detected only on the control test scans.

  18. [Pulmonary hemodynamics following experimental myocardial ischemia after the blockade of adrenergic receptors].

    PubMed

    Evlakhov, V I; Poiasov, I Z

    2015-01-01

    In acute experiments in anesthetized rabbits the changes of the pulmonary hemodynamics following 60 s myocardial ischemia in the region of the descendent left coronary artery were studied in control animals and after the blockade of α-adrenoreceptors by phentolamine or β-adrenoreceptors by propranolol. Following myocardial ischemia in control animals the pulmonary artery pressure and flow decreased, the pulmonary vascular resistance did not change, the left atrial pressure elevated; the cardiac output decreased more than pulmonary artery flow. Following myocardial ischemia after the blockade of β-adrenoreceptors the pulmonary artery pressure decreased more than in control animals, the pulmonary artery flow was decreased in the same level as in the last case. The pulmonary vascular resistance was diminished, the left atrial pressure increased; the pulmonary artery flow and cardiac output decreased in the same level. Following myocardial ischemia after the blockade of β-adrenoreceptors the pulmonary artery pressure and pulmonary vascular resistance decreased more than after the blockade of α-adrenoreceptors, the left atrial pressure did not change. In both cases the pulmonary artery flow decreased in the same level and its changes were correlated with venous return shifts. The differences of the pulmonary artery changes following myocardial ischemia after the blockade of α- and β-adrenoreceptors are caused not only the different pulmonary vascular resistance changes, but also the left atrial pressure.

  19. Immunohistochemical expression of HIF-1alpha in response to early myocardial ischemia.

    PubMed

    Blanco Pampín, José; García Rivero, Sonia Aranzazu; Otero Cepeda, Xosé Luis; Vázquez Boquete, Angel; Forteza Vila, Jerónimo; Hinojal Fonseca, Rafael

    2006-01-01

    This study aims to evaluate the effects of ischemia on the myocardial fibers and the expression of the transcriptional factor for angiogenesis hypoxia-inducible factor-1 alpha (HIF-1alpha) in human heart specimens. We have prospectively analyzed the HIF-1alpha expression in human ischemic hearts with the ABC-inmunohistochemistry technique and amplification by biotinylated tyramide. The relationship between the expression of HIF-1alpha and the temporal evolution of ischemia has also been evaluated. As pathomorphological diagnosis of early myocardial ischemia has many problems in human autopsy material with less than 4 to 6 h after clinical onset, we suggest that HIF-1alpha is helpful in the early acute myocardial infarction diagnosis, so it stains necrotic areas within the first 2 h. The amplification procedure provides a higher intensity of the final staining without losing specificity. It is concluded that in normal cardiac fibers, basal expression of HIF-1alpha is not appreciable, but it steadily increases after ischemia. With regard to the practical applicability in forensic field, our observations suggest that positive immunohistochemical expression of HIF-1alpha on heart samples may be used as a reliable indicator of myocardial damage in cases without cardiac lesion evidence, using conventional microscopy. This method is especially useful and may provide definitive proof of myocardial ischemia in unexpected deaths without previous symptoms, or in forensic cases with a short period of clinical manifestations. In addition, it may have been involved in possible future cardiovascular therapies.

  20. Effect of hydrogen sulfide on inflammatory cytokines in acute myocardial ischemia injury in rats

    PubMed Central

    LIU, FANG; LIU, GUANG-JIE; LIU, NA; ZHANG, GANG; ZHANG, JIAN-XIN; LI, LAN-FANG

    2015-01-01

    Hydrogen sulfide (H2S) is believed to be involved in numerous physiological and pathophysiological processes, and now it is recognized as the third endogenous signaling gasotransmitter, following nitric oxide and carbon monoxide; however, the effects of H2S on inflammatory factors in acute myocardial ischemia injury in rats have not been clarified. In the present study, sodium hydrosulfide (NaHS) was used as the H2S donor. Thirty-six male Sprague Dawley rats were randomly divided into five groups: Sham, ischemia, ischemia + low-dose (0.78 mg/kg) NaHS, ischemia + medium-dose (1.56 mg/kg) NaHS, ischemia + high-dose (3.12 mg/kg) NaHS and ischemia + propargylglycine (PPG) (30 mg/kg). The rats in each group were sacrificed 6 h after the surgery for sample collection. Compared with the ischemia group, the cardiac damage in the rats in the ischemia + NaHS groups was significantly reduced, particularly in the high-dose group; in the ischemia + PPG group, the myocardial injury was aggravated compared with that in the ischemia group. Compared with the ischemia group, the levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) in the serum of rats in the ischemia + medium- and high-dose NaHS groups were significantly reduced, and the expression of intercellular adhesion molecule-1 (ICAM-1) mRNA and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) protein in the myocardial tissues of rats was significantly reduced. In the ischemia + PPG group, the TNF-α, IL-1β and IL-6 levels in the serum were significantly increased, the expression of ICAM-1 mRNA was increased, although without a significant difference, and the expression of NF-κB was increased. The findings of the present study provide novel evidence for the dual effects of H2S on acute myocardial ischemia injury via the modulation of inflammatory factors. PMID:25667680

  1. Tachycardic vs. pharmacologic stress myocardial perfusion imaging: differential implications in multi-vessel ischemia

    PubMed Central

    Nguyen, Thanh H; Horowitz, John D; Unger, Steven A

    2012-01-01

    Background In patients unable to exercise, potential methods of induction of reversible myocardial ischemia include physiological heart rate acceleration via pacing or dobutamine infusion and asymmetric coronary vasodilatation using dipyridamole. Although their bases for induction of ischemia are widely disparate, no direct comparison of these techniques has previously been reported. Methods We performed a randomised, paired comparison of dipyridamole and pacing myocardial perfusion imaging (MPI) in 28 patients in whom exercise stress imaging was precluded, comparing the detection, localisation and quantitation of ischemia. Results Reversible myocardial ischemia was detected in 21 patients, concordantly in 13 (p = 0.042). There was a high degree of concordance (p < 0.0001) regarding locations of sites of ischemia. While there was a good correlation (r = 0.74, p < 0.0001) between size of total ischemic zones with dipyridamole and pacing, the magnitude of ischemia tended to be greater with dipyridamole (mean percentage of left ventricular myocardium ± SD, 9.4 ± 11.0% vs. 7.0 ± 9.0%, p = 0.091). Furthermore, this difference resulted from accentuation of the primary ischemic zone with dipyridamole in patients with multi-vessel ischemia (mean ± SD, 28.1 ± 21.1% vs. 18.7 ± 16.1%, p = 0.046). Conclusions Despite major differences in mechanism(s) of induction of ischemia, dipyridamole and pacing produce similar results regarding detection, localisation and severity of ischemia. However, dipyridamole accentuates ischemia in primary (vs. secondary) ischemic zones, consistent with known induction of coronary “steal". This should be taken into account in interpretation of scan results. PMID:22254212

  2. Sudden Cardiac Death After Myocardial Infarction in Type 2 Diabetic Patients With No Residual Myocardial Ischemia

    PubMed Central

    Yeung, Chun-Yip; Lam, Karen Siu-Ling; Li, Sheung-Wai; Lam, Kwok-Fai; Tse, Hung-Fat; Siu, Chung-Wah

    2012-01-01

    OBJECTIVE Diabetes mellitus (DM) is a well-established risk factor for coronary artery disease. Nonetheless, it remains unclear whether DM contributes to sudden cardiac death in patients who survive myocardial infarction (MI). The objective of this study was to compare the incidence of sudden cardiac death post-MI in diabetic and nondiabetic patients with no residual myocardial ischemia. RESEARCH DESIGN AND METHODS A total of 610 consecutive post-MI patients referred to a cardiac rehabilitation program with negative exercise stress test were studied. RESULTS Of these, 236 patients had DM at baseline. Over a mean follow-up of 5 years, 67 patients with DM (28.4%) and 76 of 374 patients without DM (20.2%) had died with a hazard ratio (HR) of 1.74 (95% CI: 1.28–2.56; P < 0.001). Patients with DM also had a higher incidence of cardiac death (1.84 [1.16–3.21]; P = 0.01), principally due to a higher incidence of sudden cardiac death (2.14 [1.22–4.23]; P < 0.001). Multiple Cox regression analysis revealed that only DM (adjusted HR: 1.9 [95% CI: 1.04–3.40]; P = 0.04), left ventricular ejection fraction (LVEF) ≤30% (3.6 [1.46–8.75]; P < 0.01), and New York Heart Association functional class >II (4.2 [1.87–9.45]; P < 0.01) were independent predictors for sudden cardiac death. Among patients with DM, the 5-year sudden cardiac death rate did not differ significantly among those with LVEF ≤30%, LVEF 31–50%, or LVEF >50% (8.8 vs. 7.8 vs. 6.8%, respectively; P = 0.83). CONCLUSIONS Post-MI patients with DM, even in the absence of residual myocardial ischemia clinically, were at higher risk of sudden cardiac death than their non-DM counterparts. PMID:22875229

  3. Angina pectoris during daily activities and exercise stress testing: The role of inducible myocardial ischemia and psychological distress.

    PubMed

    Sullivan, Mark D; Ciechanowski, Paul S; Russo, Joan E; Spertus, John A; Soine, Laurie A; Jordan-Keith, Kier; Caldwell, James H

    2008-10-31

    Physicians often consider angina pectoris to be synonymous with myocardial ischemia. However, the relationship between angina and myocardial ischemia is highly variable and we have little insight into the sources of this variability. We investigated the relationship of inducible myocardial ischemia on SPECT stress perfusion imaging to angina reported with routine daily activities during the previous four weeks (N=788) and to angina reported during an exercise stress test (N=371) in individuals with confirmed or suspected coronary disease referred for clinical testing. We found that angina experienced during daily life is more strongly and consistently associated with psychological distress and the personal threat associated with angina than with inducible myocardial ischemia. In multivariable models, the presence of any angina during routine activities over the prior month was significantly associated with age, perceived risk of myocardial infarction, and anxiety when compared to those with no reported angina in the past month. Angina during daily life was not significantly associated with inducible myocardial ischemia on stress perfusion imaging in bivariate or multivariable models. In contrast, angina experienced during exercise stress testing was significantly related to image and ECG ischemia, though it was also significantly associated with anxiety. These results suggest that angina frequency over the previous four weeks is more strongly associated with personal threat and psychosocial distress than with inducible myocardial ischemia. These results lend support to angina treatment strategies that aim to reduce threat and distress as well as to reduce myocardial ischemia.

  4. Effect of regional myocardial ischemia on sympathetic nervous system as assessed by fluorine-18-metaraminol

    SciTech Connect

    Schwaiger, M.; Guibourg, H.; Rosenspire, K.; McClanahan, T.; Gallagher, K.; Hutchins, G.; Wieland, D.M. )

    1990-08-01

    With the introduction of radiolabeled catecholamine analogues, the noninvasive evaluation of the cardiac sympathetic nervous system has become possible. This study evaluated the effect of regional ischemia on myocardial retention of the new norepinephrine analogue 6-({sup 18}F) fluorometaraminol (FMR) in the open chest dog model. Six dogs were injected intravenously with FMR following 30-min occlusion of the left anterior descending artery. Six sham animals served as control group. Regional myocardial blood flow as determined by microspheres decreased 87% during ischemia (p less than 0.01), but was not significantly different from control myocardium following reperfusion. Regional myocardial 18F activity as determined postmortem was significantly reduced in reperfused myocardium (-34%), which paralleled an 18% reduction of tissue norepinephrine concentration. Thus, short time periods of coronary occlusion affect neuronal function indicating the sensitivity of the sympathetic nerve terminals to ischemia. FMR provides a new tracer approach for the characterization of neuronal integrity in postischemic myocardium.

  5. The role of met-enkephalin in silent myocardial ischemia in diabetic patients.

    PubMed

    Parlapiano, C; Borgia, M C; Tonnarini, G; Campana, E; Giancaspro, G; Pantone, P; Giovanniello, T; Cardarelli, G; Vincentelli, G M; Alegiani, F; Negri, M

    2001-01-01

    Met-enkephalin plasma levels were evaluated in 20 cardioischemic diabetic patients. All the patients had ECG ischemic signs. Ten patients with diabetic autonomic neuropathy, experienced no pain during myocarial ischemia. Met-enkephalin levels in the diabetic patients with silent myiocardial ischemia were significantly lower compared to those in the symptomatic patients. This demonstrates that the absence of myocardial ischemic pain in neuropathic diabetic patients is not accounted for by met-enkephalin action.

  6. Grade III ischemia on presentation with acute myocardial infarction predicts rapid progression of necrosis and less myocardial salvage with thrombolysis.

    PubMed

    Birnbaum, Yochai; Mahaffey, Kenneth W; Criger, Douglas A; Gates, Kathy B; Barbash, Gabriel I; Barbagelata, Alejandro; Clemmensen, Peter; Sgarbossa, Elena B; Gibbons, Raymond J; Rahman, M Atiar; Califf, Robert M; Granger, Chistopher B; Wagner, Galen S

    2002-01-01

    We assessed the relation between baseline electrocardiographic ischemia grades and initial myocardial area at risk (AR) and final infarct size (IS) in 49 patients who had undergone (99m)Tc sestamibi single-photon emission computed tomography before and 6 +/- 1 days after thrombolysis. Patients were classed as having grade III ischemia (ST segment elevation with terminal QRS distortion, n = 19) or grade II ischemia (ST elevation but no terminal QRS distortion, n = 30). We compared AR and IS by baseline ischemia grade and treatment (adenosine vs. placebo) and assessed relations of infarction index (IS/AR ratio x100) to time to thrombolysis, baseline ischemia grade, and adenosine therapy. Time to thrombolysis was similar for grade II and grade III. For placebo- treated patients, the median AR did not differ significantly between grade II (38%) and grade III patients (46%, p = 0.47), nor did median IS (16 vs. 40%, p = 0.096), but the median infarction index was 66 vs. 90% (p = 0.006). For adenosine-treated patients, median AR (21 vs. 26%, p = 0.44), median IS (5 vs. 17%, p = 0.15), and their ratio (31 vs. 67%, p = 0.23) did not differ significantly between grade II and grade III patients. The infarction index independently related to grade III ischemia (p = 0.0121) and adenosine therapy (p = 0.045). Infarct size related to baseline ischemia grade and was reduced by adenosine treatment. Necrosis progressed slowlier with baseline grade II versus III ischemia, which could offer more time for myocardial salvage with reperfusion. Copyright 2002 S. Karger AG, Basel

  7. Molecular Characterization of Reactive Oxygen Species in Myocardial Ischemia-Reperfusion Injury.

    PubMed

    Zhou, Tingyang; Chuang, Chia-Chen; Zuo, Li

    2015-01-01

    Myocardial ischemia-reperfusion (I/R) injury is experienced by individuals suffering from cardiovascular diseases such as coronary heart diseases and subsequently undergoing reperfusion treatments in order to manage the conditions. The occlusion of blood flow to the tissue, termed ischemia, can be especially detrimental to the heart due to its high energy demand. Several cellular alterations have been observed upon the onset of ischemia. The danger created by cardiac ischemia is somewhat paradoxical in that a return of blood to the tissue can result in further damage. Reactive oxygen species (ROS) have been studied intensively to reveal their role in myocardial I/R injury. Under normal conditions, ROS function as a mediator in many cell signaling pathways. However, stressful environments significantly induce the generation of ROS which causes the level to exceed body's antioxidant defense system. Such altered redox homeostasis is implicated in myocardial I/R injury. Despite the detrimental effects from ROS, low levels of ROS have been shown to exert a protective effect in the ischemic preconditioning. In this review, we will summarize the detrimental role of ROS in myocardial I/R injury, the protective mechanism induced by ROS, and potential treatments for ROS-related myocardial injury.

  8. Myocardial ischemia-reperfusion injury: a neglected therapeutic target

    PubMed Central

    Hausenloy, Derek J.; Yellon, Derek M.

    2013-01-01

    Acute myocardial infarction (MI) is a major cause of death and disability worldwide. In patients with MI, the treatment of choice for reducing acute myocardial ischemic injury and limiting MI size is timely and effective myocardial reperfusion using either thombolytic therapy or primary percutaneous coronary intervention (PPCI). However, the process of reperfusion can itself induce cardiomyocyte death, known as myocardial reperfusion injury, for which there is still no effective therapy. A number of new therapeutic strategies currently under investigation for preventing myocardial reperfusion injury have the potential to improve clinical outcomes in patients with acute MI treated with PPCI. PMID:23281415

  9. Effects of a 1-year exercise training program on myocardial ischemia in patients after myocardial infarction.

    PubMed

    Ridocci, F; Velasco, J A; Echánove, I; Soriano, G; Cruz Torregrosa, M; Payá, R; Quesada, A

    1992-01-01

    To determine the effects of exercise training on exercise-induced ischemia in patients following myocardial infarction, the experience of 13 patients with exercise-induced ST depression, who were moderate-to-high intensity trained for 1 year, has evaluated. After training, the maximum ST depression was significantly less (1.9 +/- 0.8 vs. 1.1 +/- 0.8 mm; p < 0.01), despite an increased maximal rate-pressure product (RPP; heart rate x blood pressure/100; 241.3 +/- 44 vs. 262.0 +/- 58; p < 0.01). For the onset of 0.1 mV of ST depression, we found a significant increase in RPP from 204.1 +/- 34.7 to 234.1 +/- 49.4 (p < 0.01) and also in heart rate (117.1 +/- 15.1 vs. 125.1 +/- 21.7 b.p.m.; p < 0.05), blood pressure (167.6 +/- 18 vs. 180.3 +/- 18 mm Hg; p < 0.01) and workload (93.8 +/- 17.4 vs. 121.1 +/- 23.2 W; p < 0.01). The relationship between ST depression and RPP (RPP/STmax) was favorably modified after training. The ratio RPP/STmax improved significantly from 143.6 +/- 49.4 to 209.1 +/- 69.5 (p < 0.0001). These findings support the hypothesis that a 1-year moderate-to-high training program in some patients following myocardial infarction can elicit adaptations that may well be attributed, at least in part, to an improvement in coronary blood flow.

  10. Sevoflurane postconditioning improves myocardial mitochondrial respiratory function and reduces myocardial ischemia-reperfusion injury by up-regulating HIF-1

    PubMed Central

    Yang, Long; Xie, Peng; Wu, Jianjiang; Yu, Jin; Yu, Tian; Wang, Haiying; Wang, Jiang; Xia, Zhengyuan; Zheng, Hong

    2016-01-01

    Background: Sevoflurane postconditioning (SPostC) can exert myocardial protective effects similar to ischemic preconditioning. However, the exact myocardial protection mechanism by SPostC is unclear. Studies indicate that hypoxia-inducible factor-1 (HIF-1) maintains cellular respiration homeostasis by regulating mitochondrial respiratory chain enzyme activity under hypoxic conditions. This study investigated whether SPostC could regulate the expression of myocardial HIF-1α and to improve mitochondrial respiratory function, thereby relieving myocardial ischemia-reperfusion injury in rats. Methods: The myocardial ischemia-reperfusion rat model was established using the Langendorff isolated heart perfusion apparatus. Additionally, postconditioning was performed using sevoflurane alone or in combination with the HIF-1α inhibitor 2-methoxyestradiol (2ME2). The changes in hemodynamic parameters, HIF-1α protein expression levels, mitochondrial respiratory function and enzyme activity, mitochondrial reactive oxygen species (ROS) production rates, and mitochondrial ultrastructure were measured or observed. Results: Compared to the ischemia-reperfusion (I/R) group, HIF-1α expression in the SPostC group was significantly up-regulated. Additionally, cardiac function indicators, mitochondrial state 3 respiratory rate, respiratory control ratio (RCR), cytochrome C oxidase (CcO), NADH oxidase (NADHO), and succinate oxidase (SUCO) activities, mitochondrial ROS production rate, and mitochondrial ultrastructure were significantly better than those in the I/R group. However, these advantages were completely reversed by the HIF-1α specific inhibitor 2ME2 (P<0.05). Conclusion: The myocardial protective function of SPostC might be associated with the improvement of mitochondrial respiratory function after up-regulation of HIF-1α expression. PMID:27830025

  11. Inducible Myocardial Ischemia and Outcomes in Patients with Coronary Artery Disease and Left Ventricular Dysfunction

    PubMed Central

    Panza, Julio A.; Holly, Thomas A.; Asch, Federico M.; She, Lilin; Pellikka, Patricia A.; Velazquez, Eric J.; Lee, Kerry L.; Borges-Neto, Salvador; Farsky, Pedro S.; Jones, Robert H.; Berman, Daniel S.; Bonow, Robert O.

    2013-01-01

    Objectives To test the hypotheses that ischemia during stress testing has prognostic value and that it identifies those coronary artery disease (CAD) patients with left ventricular (LV) dysfunction who derive the greatest benefit from coronary artery bypass graft surgery (CABG) compared to medical therapy. Background The clinical significance of stress-induced ischemia in patients with CAD and moderately to severely reduced LV ejection fraction (EF) is largely unknown. Methods The Surgical Treatment of IsChemic Heart failure (STICH) trial randomized patients with CAD and EF ≤35% to CABG or medical therapy. In this study, we assessed the outcomes of those STICH patients who underwent either a radionuclide (RN) stress test or a dobutamine stress echocardiogram (DSE). A test was considered positive for ischemia by RN if the summed difference score (difference in tracer activity between stress and rest) was ≥4 or if ≥2 of 16 segments were ischemic during DSE. Clinical endpoints were assessed by intention-to-treat during a median follow-up of 56 months. Results Of the 399 study patients (51 women, mean EF 26±8%), 197 were randomized to CABG and 202 to medical therapy. Myocardial ischemia was induced during stress testing in 256 patients (64% of the study population). Patients with and without ischemia were similar in age, multi-vessel CAD, previous myocardial infarction, LV EF, LV volumes, and treatment allocation (all p=NS). There was no difference between patients with vs. those without ischemia in all-cause mortality (hazard ratio: 1.08; 95% CI: 0.77–1.50; p=0.66), cardiovascular mortality, or all-cause mortality plus cardiovascular hospitalization. There was no interaction between ischemia and treatment for any clinical endpoint. Conclusions In CAD with severe LV dysfunction, inducible myocardial ischemia does not identify patients with worse prognosis or those with greater benefit from CABG over optimal medical therapy. Clinical Trial ID: Clinical

  12. Real time measurement of myocardial oxygen dynamics during cardiac ischemia-reperfusion of rats.

    PubMed

    Lee, Gi-Ja; Kim, Seung Ki; Kang, Sung Wook; Kim, Ok-Kyun; Chae, Su-Jin; Choi, Samjin; Shin, Jae Ho; Park, Hun-Kuk; Chung, Joo-Ho

    2012-11-21

    Because oxygen plays a critical role in the pathophysiology of myocardial injury during subsequent reperfusion, as well as ischemia, the accurate measurement of myocardial oxygen tension is crucial for the assessment of myocardial viability by ischemia-reperfusion (IR) injury. Therefore, we utilized a sol-gel derived electrochemical oxygen microsensor to monitor changes in oxygen tension during myocardial ischemia-reperfusion. We also analyzed differences in oxygen tension recovery in post-ischemic myocardium depending on ischemic time to investigate the correlation between recovery parameters for oxygen tension and the severity of IR injury. An oxygen sensor was built using a xerogel-modified platinum microsensor and a coiled Ag/AgCl reference electrode. Rat hearts were randomly divided into 5 groups: control (0 min ischemia), I-10 (10 min ischemia), I-20 (20 min ischemia), I-30 (30 min ischemia), and I-40 (40 min ischemia) groups (n = 3 per group, respectively). After the induction of ischemia, reperfusion was performed for 60 min. As soon as the ischemia was initiated, oxygen tension rapidly declined to near zero levels. When reperfusion was initiated, the changes in oxygen tension depended on ischemic time. The normalized peak level of oxygen tension during the reperfusion episode was 188 ± 27 in group I-10, 120 ± 24 in group I-20, 12.5 ± 10.6 in group I-30, and 1.24 ± 1.09 in group I-40 (p < 0.001, n = 3, respectively). After 60 min of reperfusion, the normalized restoration level was 129 ± 30 in group I-10, 88 ± 4 in group I-20, 3.40 ± 4.82 in group I-30, and 0.99 ± 0.94 in group I-40 (p < 0.001, n = 3, respectively). The maximum and restoration values of oxygen tension in groups I-30 and I-40 after reperfusion were lower than pre-ischemic values. In particular, oxygen tension in the I-40 group was not recovered at all. These results were also demonstrated by TTC staining. We suggest that these recovery parameters could be utilized as an index of

  13. The contrast of immunohistochemical studies of myocardial fibrinogen and myoglobin in early myocardial ischemia in rats.

    PubMed

    Xiaohong, Zhao; Xiaorui, Chen; Jun, Hu; Qisheng, Qin

    2002-03-01

    In this study, an animal model of early myocardial ischemia (EMI) was established by ligating the left anterior descending coronary artery of rats. The experimental animals were divided into five groups according to different intervals of MI (15, 30min, 1, 2, and 3h) and one control group. Tissues from the apex of the myocardium and the adjacent myocardium were taken for paraffin sections, followed by hematoxylin-eosin and streptavidin-biotin-peroxidase complex (SABC) staining. Results showed that the myoglobin (Mb) depletion and the fibrinogen (Fg) staining increase were detected in the 30min MI group. The wavy-like increasing extension of the size and the intensity of the Mb depletion and the Fg staining intensification from the subendocardial to the subepicardial cells were observed along with the prolongation of the ischemic period. Both changes had similar patterns and sensitivity, except Fg was less reliable than Mb as it is more easily contaminated by blood. After overcoming blood contamination, the SABC-Fg technique will provide a new method for the diagnosis of EMI.

  14. Relation between the electrocardiographic stress test and degree and location of myocardial ischemia.

    PubMed

    Tavel, M E; Shaar, C

    1999-07-15

    Factors that influence frequency and location of stress-induced electrocardiographic (ECG) ST depression and the development of chest pain are incompletely understood. We studied 331 patients with ischemic myocardial nuclear defects in response to routine clinical treadmill testing with simultaneous ECG recording. Nuclear defects were analyzed for location and extent of myocardium involved. Exercise-induced ischemic ST changes were demonstrated in 59% of patients (196 of 331). Subjects with stress-induced ECG changes and/or chest pain had more extensive nuclear perfusion defects. Diabetic patients were significantly less likely to experience chest pain (24%) versus nondiabetics (41%) during testing (p = 0.04). Larger perfusion defects were associated with greater magnitude, lead distribution, and incidence of ECG changes. The number of ECG lead zones (anterior, lateral, and inferior) responding positively were related to both magnitude of ST depression and severity of ischemia, but not to location of ischemic defects. Regardless of location of ischemia, ST depression occurred with similar frequency. Thus, exercise-induced ECG ST depression remains a valuable indicator of the severity of myocardial ischemia. Greater ST depression involving multiple leads usually signified extensive myocardial ischemia, but provided no information regarding its location. Anginal-type chest pain induced by exercise testing also denoted more extensive ischemia.

  15. [Protective effects of SMT on myocardial ultrastructure of ischemia reperfusion injury in heart of rat].

    PubMed

    Zheng, H Z; Cai, B; Feng, Y H; Sun, H; Cai, K R

    2000-11-01

    To Investigate the myocardial ultrastructure effects of SMT on the ischemia reperfusion injury (IRI) in the rat heart. Eighteen Spraqua-Dawley rats were randomly divided into three groups: ischemia reperfusion group (IR), subjected to 60 min of o-cclusion and 20 min of reperfusion of the anterior descending branch of left coronary artery; IR + SMT group (SMT), given the selective iNOS inhibitor S-methylisothiourea sulfate (SMT, 5 mg/kg, i.v.) before reperfusion; control group (C), didn't occlude coronary artery after exposing heart and observed 80 min. Electrocardiogram (ECG) was recorded. Nitrite and nitrate content were measured in myocardium and blood serum. The changes of myocardial ultrastructure were observed with electron microscope. Ischemia reperfusion induced ST segment elevation and T waves inversion or tallness in ECG, damaged myocardial ultrastructure, increased nitrite and nitrate content in myocardium and blood serum after IR compared with before IR(P < 0.01). Administration of SMT improved the changes of ECG and the injury of myocardial ultrastructure. Nitrite and nitrate content of myocardium were lower than IR group (P < 0.05). The change of nitrite and nitrate level of blood serum in SMT group was nearly in C group. SMT can prevent myocardium injury from reperfusion following ischemia.

  16. [Antioxidant and cardioprotective effects of N-tyrosol in myocardial ischemia with reperfusion in rats].

    PubMed

    Smol'iakova, V I; Chernyshova, G A; Plotnikov, M B; Aliev, O I; Krasnov, E A

    2010-01-01

    We demonstrated in experiments on rats with left coronary artery occlusion that intravenous administration of 20 mg/kg n-tyrosol during ischemia limited manifestations of oxidative stress in myocardial tissue during early post reperfusion period: content of diene and triene conjugates lowered 16 and 20%, respectively. This was associated with higher preservation of cardiomyocytes and reduction of the infarction zone.

  17. Direct imaging of myocardial ischemia: a potential new paradigm in nuclear cardiovascular imaging.

    PubMed

    Jain, Diwakar; He, Zuo-Xiang

    2008-01-01

    Myocardial perfusion imaging has been in clinical use for over 30 years, serving as an effective, reliable, and relatively simple tool for diagnosis, risk stratification, and long-term follow-up of patients with suspected or known coronary artery disease. However, a unique strength of nuclear imaging is its ability to provide tools for imaging biochemical and metabolic processes and receptor and transporter functions at molecular and cellular levels in intact organisms under a wide variety of physiologic conditions. Despite their high resolution and technical sophistication, other imaging modalities currently do not have this capability. Metabolic imaging techniques using radiolabeled free fatty acid and glucose analogs provide a unique ability to image myocardial ischemia directly in patients with known or suspected coronary artery disease. These techniques can potentially overcome some of the limitations of currently used stress-rest perfusion imaging and also provide a unique opportunity to detect and image an episode of ischemia in the preceding hours even in the absence of other markers of ongoing myocardial ischemia. We describe recent studies using fluorine 18-labeled deoxyglucose and iodine 123 beta-methyl-p-iodophenyl-pentadecanoic acid for imaging myocardial ischemia.

  18. Three-Dimensional Visualization of Myocardial Ischemia Based on the Standard Twelve-Lead Electrocardiogram

    PubMed Central

    Ruixia, Tian; Xun, Chen

    2016-01-01

    A novel method was proposed for transforming the ischemic information in the 12-lead electrocardiogram (ECG) into the pseudo-color pattern displayed on a 3D heart model based on the projection of a ST injury vector in this study. The projection of the ST injury vector at a point on the heart surface was used for identifying the presence of myocardial ischemia by the difference between the projection value and the detection threshold. Supposing that myocardial ischemia was uniform and continuous, the location and range of myocardial ischemia could be accurately calculated and visually displayed in a color-encoding way. The diagnoses of the same patient were highly consistent (kappa coefficient k = 0.9030) between the proposed method used by ordinary people lacking medical knowledge and the standard 12-lead ECG used by experienced cardiologists. In addition, the diagnostic accuracy of the proposed method was further confirmed by the coronary angiography. The results of this study provide a new way to promote the development of the 3D visualization of the standard 12-lead ECG, which has a great help for inexperienced doctors or ordinary family members in their diagnosis of patients with myocardial ischemia. PMID:27433278

  19. Induced coronary spasm without electrocardiographic signs or symptoms of myocardial ischemia

    SciTech Connect

    Cipriano, P.R.

    1983-03-01

    Angiographic studies have shown that coronary artery spasm can be induced with ergonovine maleate. Coronary artery spasm induced by ergonovine maleate in these studies was nearly always accompanied by chest pain and electrocardiographic changes of myocardial ischemia. This report demonstrates that coronary artery spasm induced by ergonovine maleate may be diagnosed by angiography in the absence of these signs or symptoms.

  20. Multiple coronary arterial loops as a cause of myocardial ischemia

    NASA Technical Reports Server (NTRS)

    Bashour, Tali T.; Mansour, Nagi N.; Lee, Damon

    1993-01-01

    A case of long-standing angina with ischemia documented by exercise testing and thallium scintigraphy in a patient who had multiple proximal loops in all three major coronary arteries in the absence of luminal stenosis, is reported.

  1. Endotoxin pretreatment increases endogenous myocardial catalase activity and decreases ischemia-reperfusion injury of isolated rat hearts.

    PubMed Central

    Brown, J M; Grosso, M A; Terada, L S; Whitman, G J; Banerjee, A; White, C W; Harken, A H; Repine, J E

    1989-01-01

    Hearts isolated from rats pretreated 24 hr before with endotoxin had increased myocardial catalase activity, but the same superoxide dismutase, glutathione peroxidase, glutathione reductase, and glucose-6-phosphate dehydrogenase activities, as hearts from untreated rats. Hearts isolated from rats pretreated with endotoxin 24 hr before also had increased myocardial function (decreased injury) after ischemia and reperfusion (Langendorff apparatus, 37 degrees C), as assessed by measurement of ventricular developed pressure, contractility (+dP/dt), and relaxation rate (-dP/dt), compared to control hearts. In contrast, hearts isolated from rats pretreated with endotoxin 1 hr before isolation or hearts perfused with endotoxin did not have increased catalase activity or decreased injury following ischemia and reperfusion. Aminotriazole pretreatment prevented increases in myocardial catalase activity and myocardial function after ischemia-reperfusion in hearts from endotoxin-pretreated rats. The results suggest that endotoxin pretreatment decreases cardiac ischemia-reperfusion injury and that increases in endogenous myocardial catalase activity contribute to protection. PMID:2648406

  2. Acute Myocardial Ischemia in Adults Secondary to Missed Kawasaki Disease in Childhood

    PubMed Central

    Rizk, Sherif RY; El Said, Galal; Daniels, Lori B; Burns, Jane C; El Said, Howaida; Sorour, Khaled A; Gharib, Soliman; Gordon, John B

    2015-01-01

    Coronary artery aneurysms that occur in 25% of untreated Kawasaki disease (KD) patients may remain clinically silent for decades and then thrombose resulting in myocardial infarction. Although KD is now the most common cause of acquired heart disease in children in Asia, the United States, and Western Europe, the incidence of KD in Egypt is unknown. We tested the hypothesis that young adults in Egypt presenting with acute myocardial ischemia may have coronary artery lesions due Kawasaki disease (KD) in childhood. We reviewed a total of 580 angiograms of patients ≤ 40 years of age presenting with symptoms of myocardial ischemia. Coronary artery aneurysms were noted in 46 patients (7.9 %) of whom nine presented with myocardial infarction. The likelihood of antecedent KD as the cause of the aneurysms was classified as definite (n=10), probable (n=29), or equivocal (n=7). Compared to the definite and probable groups, the equivocal group had more traditional cardiovascular risk factors, smaller sized aneurysms, and fewer coronary arteries affected. In conclusion, in a major metropolitan center in Egypt, 6.7% of adults age 40 years or younger undergoing angiography for evaluation of possible myocardial ischemia had lesions consistent with antecedent KD. Because of the unique therapeutic challenges associated with these lesions, adult cardiologists should be aware that coronary artery aneurysms in young adults may be due to missed KD in childhood. PMID:25555655

  3. Attenuation of interleukin-8 expression in C6-deficient rabbits after myocardial ischemia/reperfusion.

    PubMed

    Kilgore, K S; Park, J L; Tanhehco, E J; Booth, E A; Marks, R M; Lucchesi, B R

    1998-01-01

    Neutrophil accumulation and activation of the complement system with subsequent deposition of the cytolytic membrane attack complex (MAC) have been implicated in the pathogenesis of myocardial ischemia/reperfusion injury. The MAC, when present in high concentrations, promotes target cell lysis. However, relatively little is known about the potential modulatory role of sublytic concentrations of the MAC on nucleated cell function in vivo. In vitro studies demonstrated that the MAC regulates cell function by promoting the expression of pro-inflammatory mediators, including adhesion molecules and pro-inflammatory cytokines. We examined, using C6-deficient and C6-sufficient rabbits, the regulatory role of the MAC in mediating IL-8 expression and subsequent neutrophil recruitment in the setting of myocardial ischemia/reperfusion injury. C6-deficient and C6-sufficient rabbits were subjected to 30 min of regional myocardial ischemia followed by a period of reperfusion. In addition to a significant reduction in myocardial infarct size in C6-deficient animals, analysis of myocardial tissue demonstrated a decrease in neutrophil influx into the infarcted region. The reduction in neutrophil influx correlated with the decreased expression of the neutrophil chemotactic cytokine IL-8, as determined by ELISA and immunohistochemical analysis. The results derived from this study provide evidence that the MAC has an important function in mediating the recruitment of neutrophils to the reperfused myocardium through the local induction of IL-8.

  4. Acute myocardial ischemia in adults secondary to missed Kawasaki disease in childhood.

    PubMed

    Rizk, Sherif R Y; El Said, Galal; Daniels, Lori B; Burns, Jane C; El Said, Howaida; Sorour, Khaled A; Gharib, Soliman; Gordon, John B

    2015-02-15

    Coronary artery aneurysms that occur in 25% of untreated Kawasaki disease (KD) patients may remain clinically silent for decades and then thrombose resulting in myocardial infarction. Although KD is now the most common cause of acquired heart disease in children in Asia, the United States, and Western Europe, the incidence of KD in Egypt is unknown. We tested the hypothesis that young adults in Egypt presenting with acute myocardial ischemia may have coronary artery lesions because of KD in childhood. We reviewed a total of 580 angiograms of patients ≤40 years presenting with symptoms of myocardial ischemia. Coronary artery aneurysms were noted in 46 patients (7.9%), of whom 9 presented with myocardial infarction. The likelihood of antecedent KD as the cause of the aneurysms was classified as definite (n = 10), probable (n = 29), or equivocal (n = 7). Compared with the definite and probable groups, the equivocal group had more traditional cardiovascular risk factors, smaller sized aneurysms, and fewer coronary arteries affected. In conclusion, in a major metropolitan center in Egypt, 6.7% of adults aged ≤40 years who underwent angiography for evaluation of possible myocardial ischemia had lesions consistent with antecedent KD. Because of the unique therapeutic challenges associated with these lesions, adult cardiologists should be aware that coronary artery aneurysms in young adults may be because of missed KD in childhood.

  5. [Cardiovascular adaptability to acute hypercalcemia in the dog. The role of peroperative myocardial ischemia].

    PubMed

    Dumont, L; Stanley, P; Chartrand, C

    1985-01-01

    Since the hemodynamic consequences of acute hypercalcemia are altered by numerous interferences we have evaluated the role of peroperative myocardial ischemia on the adaptability to rapid calcium increment. Twenty-two dogs served as control and 16 were submitted to 1 hour of myocardial ischemia along with topical myocardial cooling. Each animal was equipped with blood flow transducer positioned around the ascending aorta and with central venous and aortic catheters. During each study 0.90 mEq of calcium was rapidly injected and hemodynamic data were recorded until base-line resetting. This experimental protocol was carried out 3 hours postoperatively and then daily during one month. Base-line hemodynamic data indicated the presence of myocardial failure in the experimental group in the immediate postoperative period only. Rapid calcium administration elicited transient positive inotropic response, widening of the arterial pulse pressure, reflex bradycardia and no evidence of peripheral vasoconstriction. In the early postoperative period (3 hours after surgery) the failing myocardium is more sensitive to the inotropic effect of hypercalcemia. Twenty-four hours after surgery both groups of animals have the same hemodynamic response to this stress; thereafter for both groups this response gradually decreased and finally stabilized by the 6th to 10th day after surgery. Acute hypercalcemia bears hemodynamic consequences that are amplified early after peroperative myocardial ischemia. However in long term this surgical component widely used clinically does not interfered with the cardiovascular adaptability to this pharmacological stress.

  6. Availability of a baseline Electrocardiogram changes the application of the Sclarovsky-Birnbaum Myocardial Ischemia Grade.

    PubMed

    Carlsen, Esben A; Bang, Lia E; Køber, Lars; Strauss, David G; Amaral, Matias; Barbagelata, Alejandro; Warren, Stafford; Wagner, Galen S

    2014-01-01

    The electrocardiogram (ECG) based Sclarovsky-Birnbaum Ischemia Grade may be used to determine the prognosis of patients with ST-elevation myocardial infarction (STEMI). However, application of the method is based on assumption of the baseline QRS morphology. Thus, the aims of this study were to determine if the baseline QRS morphology was correctly assumed based on an ECG recorded during induced ischemia, and if reference to the baseline ECG altered the designated Ischemia Grade. Sixty-three patients with chronic ischemic heart disease that underwent elective percutaneous transluminal coronary angioplasty were included. Baseline ECG and ECG during the procedure were recorded. In the latter, Ischemia Grade was classified according to assumed baseline QRS morphology. Then the baseline ECG was used as reference and Ischemia Grade was determined based on change from the baseline ECG. In 66.6% (42/63) of patients the criteria for STEMI were fulfilled; the incidence was similar between left anterior descending (LAD) and right coronary artery (RCA) occlusion. In LAD patients who fulfilled STEMI criteria, assumption of baseline QRS morphology in involved leads was accurate in only 35% (7/20) and this altered the Ischemia Grade in 10% (2/20) of patients. In RCA patients who fulfilled STEMI criteria, assumption of baseline QRS morphology in involved leads was accurate in 77.3% (17/22) and this altered the Ischemia Grade in 9.1% (2/22) of patients. Application of the Sclarovsky-Birnbaum Ischemia Grade with reference to a baseline ECG altered Ischemia Grade in approximately 10% of patients. All patients that were reclassified were assigned a higher Ischemia Grade. Future research is needed to determine the impact of availability of the baseline ECG on the clinical diagnostic and prognostic performances of the Sclarovsky-Birnbaum Ischemia Grade. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Effect on prognosis of abolition of exercise-induced painless myocardial ischemia by medical therapy.

    PubMed

    Lim, R; Dyke, L; Dymond, D S

    1992-03-15

    During exercise radionuclide ventriculography, many patients with coronary artery disease exhibit painless myocardial ischemia defined as an abnormal left ventricular ejection fraction response without accompanying angina. To see if complete suppression of such exercise-induced painless ischemia by anti-ischemic medication implies a better prognosis in medically treated coronary artery disease, 34 patients underwent repeat testing at 4 weeks receiving regular conventional therapy that rendered angina no worse than class I. With such therapy, painless ischemia was abolished in 12 patients (group I) and persisted in 22 (65%, group II). Both groups were similar in age, number of diseased vessels, proportion with previous myocardial infarction, exercise ejection fraction, and degree of exercise-induced painless ischemia at baseline. At 9 months, adverse events had occurred in 11 patients (2 patients with myocardial infarction, 4 with unstable angina, 2 with angioplasty and 3 with bypass surgery). Only 1 of 12 patients (8%) in group I had experienced events compared with 10 of 22 (45%) in group II (chi-square, 5.4; p less than 0.025; 95% confidence interval, 12 to 61%). Thus, the relative risk of adverse events in patients whose painless ischemia was abolished was only 18% of that in patients in whom it was persistent. These results suggest that (1) the abolition of exercise-induced painless ischemia by conventional symptom-dictated medical therapy confers a better short-term prognosis in medically treated coronary artery disease, and (2) therapeutic efficacy may need to be assessed by titration against ischemia and not against angina.

  8. Relationship Between Coronary Contrast-Flow Quantitative Flow Ratio and Myocardial Ischemia Assessed by SPECT MPI.

    PubMed

    Smit, Jeff M; Koning, Gerhard; van Rosendael, Alexander R; Dibbets-Schneider, Petra; Mertens, Bart J; Jukema, J Wouter; Delgado, Victoria; Reiber, Johan H C; Bax, Jeroen J; Scholte, Arthur J

    2017-07-06

    A new method has been developed to calculate fractional flow reserve (FFR) from invasive coronary angiography, the so-called "contrast-flow quantitative flow ratio (cQFR)". Recently, cQFR was compared to invasive FFR in intermediate coronary lesions showing an overall diagnostic accuracy of 85%. The purpose of this study was to investigate the relationship between cQFR and myocardial ischemia assessed by single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI). Patients who underwent SPECT MPI and coronary angiography within 3 months were included. The cQFR computation was performed offline, using dedicated software. The cQFR computation was based on 3-dimensional quantitative coronary angiography (QCA) and computational fluid dynamics. The standard 17-segment model was used to determine the vascular territories. Myocardial ischemia was defined as a summed difference score ≥2 in a vascular territory. A cQFR of ≤0.80 was considered abnormal. Two hundred and twenty-four coronary arteries were analysed in 85 patients. Overall accuracy of cQFR to detect ischemia on SPECT MPI was 90%. In multivariable analysis, cQFR was independently associated with ischemia on SPECT MPI (OR per 0.01 decrease of cQFR: 1.10; 95% CI 1.04-1.18, p = 0.002), whereas clinical and QCA parameters were not. Furthermore, cQFR showed incremental value for the detection of ischemia compared to clinical and QCA parameters (global chi square 48.7 to 62.6; p <0.001). A good relationship between cQFR and SPECT MPI was found. cQFR was independently associated with ischemia on SPECT MPI and showed incremental value to detect ischemia compared to clinical and QCA parameters.

  9. The production of hydrogen sulfide limits myocardial ischemia and reperfusion injury and contributes to the cardioprotective effects of preconditioning with endotoxin, but not ischemia in the rat.

    PubMed

    Sivarajah, A; McDonald, M C; Thiemermann, C

    2006-08-01

    We investigated whether (endogenous) hydrogen sulfide (H2S) protects the heart against myocardial ischemia and reperfusion injury. Furthermore, we investigated whether endogenous H2S is involved in the protection afforded by (1) ischemic preconditioning and (2) the second window of protection caused by endotoxin. The involvement of one of the potential (end) effectors of the cardioprotection afforded by H2S was investigated using the mitochondrial KATP channel blocker, 5-hydroxydecanoate (5-HD; 5 mg/kg). Animals were subjected to 25 min regional myocardial ischemia followed by reperfusion (2 h) and were pretreated with the H2S donor, sodium hydrosulfide (3 mg/kg i.v.). Animals were also subjected to shorter periods of myocardial ischemia (15 min) and reperfusion (2 h) and pretreated with an irreversible inhibitor of cystathionine-gamma-lyase, dl-propargylglycine (PAG; 50 mg/kg i.v.). Animals were also pretreated with PAG (50 mg/kg) and subjected to either (1) ischemic preconditioning or (2) endotoxin (1 mg/kg i.p.) 16 h before myocardial ischemia. Myocardial infarct size was determined by p-nitroblue tetrazolium staining. Administration of sodium hydrosulfide significantly reduced myocardial infarct size, and this effect was abolished by 5-HD. Administration of PAG (50 mg/kg) or 5-HD significantly increased infarct size caused by 15 min of myocardial ischemia. The delayed cardioprotection afforded by endotoxin was abolished by 5-HD or PAG. In contrast, PAG (50 mg/kg) did not affect the cardioprotective effects of ischemic preconditioning. These findings suggest that (1) endogenous H2S is produced by myocardial ischemia in sufficient amounts to limit myocardial injury and (2) the synthesis or formation of H2S by cystathionine-gamma-lyase may contribute to the second window of protection caused by endotoxin.

  10. Clinical characteristics of silent myocardial ischemia diagnosed with adenosine stress 99mTc-tetrofosmin myocardial scintigraphy in Japanese patients with acute cerebral infarction.

    PubMed

    Nomura, Tetsuya; Kusaba, Tetsuro; Kodama, Naotoshi; Terada, Kensuke; Urakabe, Yota; Nishikawa, Susumu; Keira, Natsuya; Matsubara, Hiroaki; Tatsumi, Tetsuya

    2013-01-01

    It is well known that silent myocardial ischemia (SMI) often complicates patients with cerebral infarction and that stroke patients often die of ischemic heart disease. Therefore, it is considered important to treat myocardial ischemia in stroke patients. This study investigated SMI complicating Japanese patients with fresh stroke, using (99m)Tc-tetrofosmin myocardial scintigraphy with pharmacologic stress testing to elucidate their clinical manifestations. This study included 41 patients (26 men, mean age 76.0 ± 10.7 years) with acute cerebral infarction and no history of coronary artery disease. All patients underwent (99m)Tc-tetrofosmin myocardial scintigraphy with intravenous administration of adenosine to diagnose SMI. Of the 41 patients, myocardial ischemia was confirmed in 17 patients (41.5%). Atherosclerotic etiology was the major cause of stroke in the ischemia(+) group and embolic origin was the major cause in the ischemia(-) group. Patients with myocardial ischemia had a higher incidence of diabetes mellitus (52.9 vs 20.8%; P = 0.0323) and more than two conventional cardiovascular risk factors (64.7 vs 25.0%; P = 0.0110) compared with the nonischemic patients. Infarction subtype of atherosclerotic origin was an independent positive predictor of asymptomatic myocardial ischemia in patients with stroke. These findings indicate that the prevalence of asymptomatic myocardial ischemia is relatively high, especially in patients with stroke of atherosclerotic origin. Therefore, it is beneficial for us to narrow the target population who are at the highest risk when screening for SMI in Japanese patients with acute cerebral infarction.

  11. Protective Effects of L-Malate against Myocardial Ischemia/Reperfusion Injury in Rats

    PubMed Central

    Ding, Shiao; Yang, Yang; Mei, Ju

    2016-01-01

    Objective. To investigate the protective effects of L-malate against myocardial ischemia/reperfusion (I/R) injury in rats. Methods. Male Sprague-Dawley rats were randomly assigned to the following groups: sham (sham), an ischemia/reperfusion (I/R) model group (model), an DMF pretreated group (DMF), and 5 L-malate pretreated groups (15, 60, 120, 240, or 480 mg/kg, gavage) before inducing myocardial ischemia. Plasma LDH, cTn-I, TNF-α, hs-CRP, SOD, and GSH-PX were measured 3 h later I/R. Areas of myocardial infarction were measured; hemodynamic parameters during I/R were recorded. Hearts were harvested and Western blot was used to quantify Nrf2, Keap1, HO-1, and NQO-1 expression in the myocardium. Results. L-malate significantly reduced LDH and cTn-I release, reduced myocardial infarct size, inhibited expression of inflammatory cytokines, and partially preserved heart function, as well as increasing antioxidant activity after myocardial I/R injury. Western blot confirmed that L-malate reduced Kelch-like ECH-associated protein 1 in ischemic myocardial tissue, upregulated expression of Nrf2 and Nrf2 nuclear translocation, and increased expression of heme oxygenase-1 and NAD(P)H:quinone oxidoreductase 1, which are major targets of Nrf2. Conclusions. L-malate may protect against myocardial I/R injury in rats and this may be associated with activation of the Nrf2/Keap1 antioxidant pathway. PMID:26941825

  12. Perflubron emulsion prevents PMN activation and improves myocardial functional recovery after cold ischemia and reperfusion.

    PubMed

    Gale, Stephen C; Gorman, Grace D; Copeland, Jack G; McDonagh, Paul F

    2007-03-01

    In cardiopulmonary bypass, extracorporeal circulation activates neutrophils, which contribute to ischemia reperfusion injury and postoperative myocardial dysfunction. Perfluorocarbons (PFCs) are compounds that dissolve oxygen and have anti-inflammatory and neutrophil-stabilizing properties. We hypothesized that perflubron emulsion (PFE), a PFC, would attenuate neutrophil activation during simulated extracorporeal circulation (SECC) and would preserve myocardial functional recovery during reperfusion after cold ischemia. In a SECC, diluted blood was circulated for 120 min and subsequently used to reperfuse isolated rat hearts after 2 h of cold (12 degrees C) ischemia. Three groups were studied: noncirculated control; SECC/no additive; and SECC/PFE added. In control and SECC/no additive groups, whole blood was diluted 1:1 with plasmalyte. SECC/PFE blood was diluted 1:1 with plasmalyte and PFE (0.075 mL/mL diluted whole blood). Blood counts and neutrophil activation experiments were performed before and after 120 min of SECC. Reperfusion was accomplished using a modified Langendorff preparation. Left ventricular developed pressure, dP/dt, and coronary flow were measured at 10, 15, and 20 min of reperfusion. After 120 min SECC, neutrophil activation was significantly reduced in the SECC/PFE group compared to the SECC/no additive group (38.1 +/- 2.3% versus 51.7 +/- 1.0%, P < 0.05). Compared to cold ischemic hearts reperfused with fresh, non-recirculated blood, left ventricular developed pressure and dP/dt were significantly impaired in the cold ischemic hearts reperfused with SECC/no additive blood (P < 0.05). In contrast, myocardial functional recovery was not impaired in the hearts reperfused with SECC/PFE blood. SECC-induced neutrophil activation was attenuated with Perflubron treatment. In addition, the progressive impairment in myocardial functional recovery after cold ischemia was significantly improved with treatment. PFE has clinical potential to limit

  13. Acute myocardial ischemia causes a transmural gradient in glucose extraction but not glucose uptake.

    PubMed

    Stanley, W C; Hall, J L; Stone, C K; Hacker, T A

    1992-01-01

    We assessed the relationship between myocardial glucose metabolism and blood flow during ischemia in eight open-chest swine. Coronary flow was controlled by an extracorporeal perfusion circuit. Left anterior descending coronary arterial (LAD) flow was reduced by 60%, while left circumflex flow was normally perfused. The rate of glucose uptake (Rg) was measured with a coronary infusion of 2-deoxy-D-[14C]glucose and myocardial blood flow with radiolabeled microspheres. Myocardial biopsies were taken after 50 min of ischemia. Regional arterial-venous glucose difference was calculated as Rg per myocardial blood flow. Subendocardial blood flow decreased from 1.27 +/- 0.19 to 0.25 +/- 0.11 ml.g-1.min-1 (P less than 0.0001). The subendocardial arterial-venous glucose difference was greater in the LAD bed (1.38 +/- 0.35 mumol/ml) than the left circumflex coronary arterial perfusion bed (0.10 +/- 03; P less than 0.01); however, there was no statistically significant difference in the rate of glucose uptake between the two beds. Subendocardial glycogen concentration in the LAD perfusion bed was reduced to 26% of circumflex bed values. In conclusion, acute ischemia stimulated a dramatic increase in glucose extraction; however, this did not compensate for the decrease in blood flow, and thus the rate of glucose uptake did not increase significantly. The high rate of glycolysis is primarily supported by accelerated net glycogen breakdown rather than increased glucose uptake.

  14. Effects of rosuvastatin and pitavastatin on ischemia-induced myocardial stunning in dogs.

    PubMed

    Satoh, Kumi; Takaguri, Akira; Itagaki, Mai; Kano, Seiichiro; Ichihara, Kazuo

    2008-04-01

    Incomplete recovery of myocardial contraction after reperfusion following brief ischemia is called the "stunning phenomenon" in an animal experiment. A hydrophilic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor (statin) does not affect this phenomenon, but lipophilic statins further reduce the contraction during reperfusion. The effects of novel hydrophilic rosuvastatin and lipophilic pitavastatin on myocardial stunning in dogs were examined. In a preliminary experiment in vitro, pitavastatin reduced L6 cell viability at 10(-6) M and higher, whereas rosuvastatin and pravastatin up to 10(-5) M did not show such effects. An empty capsule or a capsule filled with rosuvastatin (2 mg/kg per day) or pitavastatin (0.4 mg/kg per day) was orally administered to dogs. After 3 weeks, both statins lowered the serum cholesterol level to the same extent. Under pentobarbital anesthesia, dogs were subjected to 15-min ischemia followed by 120-min reperfusion. Ischemia arrested the myocardial contraction in the ischemic area, and reperfusion recovered it but incompletely, showing the stunning phenomenon. Rosuvastatin did not modify the stunning phenomenon, while pitavastatin further deteriorated the myocardial contraction during reperfusion.

  15. Dorsal spinal cord stimulation obtunds the capacity of intrathoracic extracardiac neurons to transduce myocardial ischemia

    PubMed Central

    Ardell, Jeffrey L.; Cardinal, René; Vermeulen, Michel; Armour, J. Andrew

    2009-01-01

    Populations of intrathoracic extracardiac neurons transduce myocardial ischemia, thereby contributing to sympathetic control of regional cardiac indices during such pathology. Our objective was to determine whether electrical neuromodulation using spinal cord stimulation (SCS) modulates such local reflex control. In 10 anesthetized canines, middle cervical ganglion neurons were identified that transduce the ventricular milieu. Their capacity to transduce a global (rapid ventricular pacing) vs. regional (transient regional ischemia) ventricular stress was tested before and during SCS (50 Hz, 0.2 ms duration at 90% MT) applied to the dorsal aspect of the T1 to T4 spinal cord. Rapid ventricular pacing and transient myocardial ischemia both activated cardiac-related middle cervical ganglion neurons. SCS obtunded their capacity to reflexly respond to the regional ventricular ischemia, but not rapid ventricular pacing. In conclusion, spinal cord inputs to the intrathoracic extracardiac nervous system obtund the latter's capacity to transduce regional ventricular ischemia, but not global cardiac stress. Given the substantial body of literature indicating the adverse consequences of excessive adrenergic neuronal excitation on cardiac function, these data delineate the intrathoracic extracardiac nervous system as a potential target for neuromodulation therapy in minimizing such effects. PMID:19515981

  16. Nonuniform loss of regional flow reserve during myocardial ischemia in dogs.

    PubMed

    Coggins, D L; Flynn, A E; Austin, R E; Aldea, G S; Muehrcke, D; Goto, M; Hoffman, J I

    1990-08-01

    To determine whether coronary vasodilator reserve that persists during myocardial ischemia is present in all left ventricular regions, we measured regional blood flow in 192 left ventricular pieces (mean weight, 201 mg) in each of eight dogs by using radioactive microspheres while perfusing the left main coronary artery at 70, 50, 40, and 30 mm Hg. Flows were measured before and during adenosine infusion to determine flow reserve. Perfusion at 40 and 30 mm Hg produced ischemia in all dogs. At 70 mm Hg, 100% of left ventricular regions had significant flow reserve, compared with 92%, 55%, and 8% during perfusion at 50, 40, and 30 mm Hg, respectively. A greater amount of flow reserve and a greater number of regions responded to adenosine in the subepicardium than in the subendocardium at 50, 40, and 30 mm Hg. We conclude that coronary flow reserve persists in only a subset of left ventricular regions during ischemia and that the number of regions with persistent flow reserve decreases with perfusion pressure. These findings may best be explained by a model in which regional ischemia is a maximal coronary vasodilator and persistent pharmacological vasodilator reserve seen when global markers indicate ischemia simply reflects persistent endogenous flow reserve in myocardial regions not yet ischemic.

  17. Evaluation of TRPM (transient receptor potential melastatin) genes expressions in myocardial ischemia and reperfusion.

    PubMed

    Demir, Tuncer; Yumrutas, Onder; Cengiz, Beyhan; Demiryurek, Seniz; Unverdi, Hatice; Kaplan, Davut Sinan; Bayraktar, Recep; Ozkul, Nadide; Bagcı, Cahit

    2014-05-01

    In the present study, the expression levels of TRPM1, TRPM2, TRPM3, TRPM4, TRPM5, TRPM6, TRPM7, and TRPM8 genes were evaluated in heart tissues after ischemia/reperfusion (IR). For this study, 30 albino male Wistar rats were equally divided into three groups as follows: Group 1: control group (n:10), Group II: ischemia group (ischemia for 60 min) (n:10) and Group III: IR (reperfusion 48 h after ischemia for 60 min and reperfusion for 48 h). The expression levels of the TRPM genes were analyzed by semi-quantitative reverse transcriptase-PCR. When compared to the ischemia control, the expression levels of TRPM2, TRPM4, and TRPM6 did not change, whereas that of TRPM7 increased. However, TRPM1, TRPM3, TRPM5, and TRPM8 were not expressed in heart tissue. Histopathological analysis of the myocardial tissues showed that the structures that were most damaged were those exposed to IR. The findings showed that there is a positive relationship between TRPM7 expression and myocardial IR injury.

  18. Impact of acute propranolol administration on dobutamine-induced myocardial ischemia as evaluated by myocardial perfusion imaging and echocardiography.

    PubMed

    Shehata, A R; Gillam, L D; Mascitelli, V A; Herman, S D; Ahlberg, A W; White, M P; Chen, C; Waters, D D; Heller, G V

    1997-08-01

    Beta-blocker therapy may delay or completely prevent myocardial ischemia during exercise testing, as assessed by ST-segment shifts, myocardial perfusion defects, or echocardiographic wall motion abnormalities. However, the impact of beta-blocker therapy on these end points during dobutamine stress testing has not been well established. The purpose of this study was to determine the impact of propranolol on dobutamine stress testing with ST-segment monitoring, technetium-99m (Tc-99m) sestamibi single-photon emission computed tomography (SPECT) imaging, and echocardiography. In 17 patients with known reversible perfusion defects, dobutamine stress tests with and without propranolol were performed in randomized order and on separate days, following discontinuation of oral beta blockers and calcium antagonists. Propronolol was administered intravenously to a cumulative dose of 8 mg or to a maximum heart rate reduction of 25% and dobutamine was infused in graded doses in 3 minute stages until a standard clinical end point or the maximum dose of 40 microg/kg/min was achieved. The dobutamine stress test after propranolol was associated with a lower maximum heart rate (83 +/- 18 vs 125 +/- 17, p <0.001) and rate pressure product (14,169 +/- 4,248 vs 19,894 +/- 3,985, p <0.001) despite a higher infusion dose. The SPECT myocardial ischemia score was also lower (6.9 +/- 5.8 vs 10.1 +/- 7.1, p = 0.047) and fewer echocardiographic segments were abnormal (3.4 +/- 3.0 vs 4.6 +/- 3.4, p = 0.042). In 4 of 17 patients, reversible perfusion defects and echocardiographic wall motion abnormalities were detected during the control but not during the propranolol test. Thus, during dobutamine stress testing, beta-blocker therapy attenuates, and in some cases eliminates, evidence of myocardial ischemia.

  19. Functional, Cellular, and Molecular Characterization of the Angiogenic Response to Chronic Myocardial Ischemia in Diabetes

    PubMed Central

    Boodhwani, Munir; Sodha, Neel R.; Mieno, Shigetoshi; Xu, Shu-Hua; Feng, Jun; Ramlawi, Basel; Clements, Richard T.; Sellke, Frank W.

    2009-01-01

    Background Ischemic heart disease is the most common cause of mortality in diabetic patients. Although therapeutic angiogenesis is an attractive option for these patients, they appear to have reduced collateral formation in response to myocardial ischemia. The aims of this study were to establish a large animal model of diabetes and chronic myocardial ischemia, evaluate the effects of diabetes on the angiogenic response, and elucidate the molecular pathways involved. Methods and Results Diabetes was induced in male Yucatan miniswine using a pancreatic β-cell specific toxin, alloxan (150 mg/kg; n=8). Age-matched swine served as controls (n=8). Eight weeks after induction, chronic ischemia was induced by ameroid constrictor placement around the circumflex coronary artery. Myocardial perfusion and function were assessed at 3 and 7 weeks after ameroid placement using isotope-labeled microspheres. Endothelial cell density and myocardial expression of angiogenic mediators was evaluated. Diabetic animals exhibited significant endothelial dysfunction. Collateral dependent perfusion and LV function were significantly impaired in diabetic animals. Diabetic animals also demonstrated reduced endothelial cell density (173±14 versus 234±23 cells/hpf, P=0.03). Expression of VEGF, Ang-1, and Tie-2 was reduced, whereas antiangiogenic proteins, angiostatin (4.4±0.9-fold increase, P<0.001), and endostatin (2.9±0.4-fold increase, P=0.03) were significantly elevated in the diabetic myocardium. Conclusions Diabetes results in a profound impairment in the myocardial angiogenic response to chronic ischemia. Pro-and antiangiogenic mediators identified in this study offer novel targets for the modulation of the angiogenic response in diabetes. PMID:17846323

  20. Myocardial Blood Flow Distribution during Ischemia-Induced Coronary Vasodilation in the Unanesthetized Dog

    PubMed Central

    Bache, Robert J.; Cobb, Frederick R.; Greenfield, Joseph C.

    1974-01-01

    This study was designed to determine whether coronary vasodilation distal to a flow-limiting coronary artery stenosis could result in redistribution of myocardial blood flow to produce subendocardial underperfusion. Studies were performed in 10 awake dogs chronically prepared with electromagnetic flow-meters and hydraulic occluders on the left circumflex coronary artery. Regional myocardial blood flow was measured using radionuclide-labeled microspheres, 7-10 μm in diameter, injected into the left atrium. A 5-s coronary artery occlusion was followed by reactive hyperemia with excess inflow of arterial blood effecting 375±20% repayment of the blood flow debt incurred during occlusion. When, after a 5-s occlusion, the occluder was only partially released to hold arterial inflow to the preocclusion level for 20 s before complete release, the delayed reactive hyperemia was augmented (mean blood flow repayment = 610±45%, P < 0.01). This augmentation of the reactive hyperemia suggested that ischemia was continuing during the interval of coronary vasodilation when coronary inflow was at the preocclusion level. Measurements of regional myocardial blood flow demonstrated that endocardial flow slightly exceeded epicardial flow during control conditions. When arterial inflow was limited to the preocclusion rate during vasodilation after a 5-s total coronary artery occlusion, however, flow to the subepicardial myocardium was increased at the expense of underperfusion of the subendocardial myocardium. Thus, in the presence of a flow-limiting proximal coronary artery stenosis, ischemia-induced coronary vasodilation resulted in redistribution of myocardial blood flow with production of subendocardial ischemia in the presence of a net volume of arterial inflow which, if properly distributed, would have been adequate to prevent myocardial ischemia. Images PMID:4279928

  1. Clinical Effect of Cardiac Shock Wave Therapy on Myocardial Ischemia in Patients With Ischemic Heart Failure.

    PubMed

    Wang, Wenxia; Liu, Hua; Song, Mengxian; Fang, Weiyi; Yuan, Fang

    2016-07-01

    Cardiac shock wave therapy (CSWT) can improve myocardial ischemia and cardiac function in patients with coronary artery disease and refractory angina. The aim of the study was to test its potential role to relieve symptoms in patients with ischemic heart failure (HF) and to identify CSWT-affected genes. Cardiac shock wave therapy was performed on 23 patients (mean age: 67 ± 6 years) with ischemic HF 3 times per week for 3 weeks. Clinical assessment parameters were measured for all patients, and peripheral blood mononuclear cells (PBMCs) were isolated from whole blood of all patients 3 days before CSWT and 1 week after the 3-week CSWT schedule. RNA sequencing of PBMCs collected from 3 patients before and after CSWT was performed on the Illumina Genome Analyzer. Gene expression was determined by quantitative reverse transcription-polymerase chain reaction. Cardiac shock wave therapy significantly attenuated myocardial ischemia and severity of angina, health-related quality of life, and myocardial blood flow as estimated by New York Heart Association class, Canadian Cardiovascular Society classification, Seattle Angina Questionnaire, and single photon emission computed tomography images, respectively. We then tried to investigate how CSWT improved myocardial ischemia by RNA sequencing on PBMCs. Gene set enrichment analysis on the sequencing data revealed that CSWT treatment was positively correlated with cytokine and cytokine receptor interaction and chemokine signaling pathway. Furthermore, we demonstrated that CSWT resulted in a significant increase in the expression of promoters of neovascularization (vascular endothelial growth factor A [VEGF-A], VEGF-B, chemokine (C-X-C motif) ligand 1 [CXCL1], CXCL2, CXCL3 and TNFRSF12A) and a notable decrease in the expression of a mediator of cell apoptosis (mitogen-activated protein kinase 9). Cardiac shock wave therapy can improve myocardial ischemia and represents as a treatment option for patients with ischemic HF through

  2. c-Cbl Inhibition Improves Cardiac function and Survival in Response to Myocardial Ischemia

    PubMed Central

    Rafiq, Khadija; Kolpakov, Mikhail A; Seqqat, Rachid; Guo, Jianfen; Guo, Xinji; Qi, Zhao; Yu, Daohai; Mohapatra, Bhopal; Zutshi, Neha; An, Wei; Band, Hamid; Sanjay, Archana; Houser, Steven R; Sabri, Abdelkarim

    2014-01-01

    Background The proto-oncogene Casitas b-lineage lymphoma (c-Cbl) is an adaptor protein with an intrinsic E3 ubiquitin ligase activity that targets receptor and non-receptor tyrosine kinases, resulting in their ubiquitination and down-regulation. However, the function of c-Cbl in the control of cardiac function is currently unknown. In this study, we examined the role of c-Cbl in myocyte death and cardiac function after myocardial ischemia. Methods and Results We show increased c-Cbl expression in human ischemic and dilated cardiomyopathy hearts and in response to pathological stress stimuli in mice. c-Cbl deficient mice demonstrated a more robust functional recovery after myocardial ischemia reperfusion injury, as well as significantly reduced myocyte apoptosis and improved cardiac function. Ubiquitination and downregulation of key survival c-Cbl targets, epidermal growth factor receptors and focal adhesion kinase, were significantly reduced in c-Cbl knockout mice. Inhibition of c-Cbl expression or its ubiquitin ligase activity in cardiac myocytes offered protection against H2O2 stress. Interestingly, c-Cbl deletion reduced the risk of death and increased cardiac functional recovery after chronic myocardial ischemia. This beneficial effect of c-Cbl deletion was associated with enhanced neoangiogenesis and increased expression of vascular endothelial growth factor (VEGF)-a and VEGF receptor type 2 in the infarcted region. Conclusions c-Cbl activation promotes myocyte apoptosis, inhibits angiogenesis and causes adverse cardiac remodeling after myocardial infarction. These findings point to c-Cbl as a potential therapeutic target for the maintenance of cardiac function and remodeling after myocardial ischemia. PMID:24583314

  3. Glaucocalyxin A Ameliorates Myocardial Ischemia-Reperfusion Injury in Mice by Suppression of Microvascular Thrombosis

    PubMed Central

    Liu, Xiaohui; Xu, Dongzhou; Wang, Yuxin; Chen, Ting; Wang, Qi; Zhang, Jian; You, Tao; Zhu, Li

    2016-01-01

    Background The aim of this study was to evaluate the cardio-protective roles of glaucocalyxin A (GLA) in myocardial ischemia-reperfusion injury and to explore the underlying mechanism. Material/Methods Myocardial ischemia-reperfusion in wild-type C57BL/6J mice was induced by transient ligation of the left anterior descending artery. GLA or vehicle (solvent) was administrated intraperitoneally to the mice before reperfusion started. After 24 h of myocardial reperfusion, ischemic size was revealed by Evans blue/TTC staining. Cardiac function was evaluated by echocardiography and microvascular thrombosis was assessed by immunofluorescence staining of affected heart tissue. We also measured the phosphorylation of AKT, ERK, P-GSK-3β, and cleaved caspase 3 in the myocardium. Results Compared to the solvent-treated control group, GLA administration significantly reduced infarct size (GLA 13.85±2.08% vs. Control 18.95±0.97%, p<0.05) and improved left ventricular ejection fraction (LVEF) (GLA 53.13±1.11% vs. Control 49.99±1.25%, p<0.05) and left ventricular fractional shortening (LVFS) (28.34±0.71% vs. Control 25.11±0.74%, p<0.05) in mice subjected to myocardial ischemia-reperfusion. GLA also attenuated microvascular thrombosis (P<0.05) and increased the phosphorylation of pro-survival kinase AKT (P<0.05) and GSK-3β (P<0.05) in the myocardium upon reperfusion injury. Conclusions Administration of GLA before reperfusion ameliorates myocardial ischemia-reperfusion injury in mice. The cardio-protective roles of GLA may be mediated through the attenuation of microvascular thrombosis. PMID:27716735

  4. Delivery of Hydrogen Sulfide by Ultrasound Targeted Microbubble Destruction Attenuates Myocardial Ischemia-reperfusion Injury.

    PubMed

    Chen, Gangbin; Yang, Li; Zhong, Lintao; Kutty, Shelby; Wang, Yuegang; Cui, Kai; Xiu, Jiancheng; Cao, Shiping; Huang, Qiaobing; Liao, Wangjun; Liao, Yulin; Wu, Juefei; Zhang, Wenzhu; Bin, Jianping

    2016-07-29

    Hydrogen sulfide (H2S) is an attractive agent for myocardial ischemia-reperfusion injury, however, systemic delivery of H2S may cause unwanted side effects. Ultrasound targeted microbubble destruction has become a promising tool for organ specific delivery of bioactive substance. We hypothesized that delivery of H2S by ultrasound targeted microbubble destruction attenuates myocardial ischemia-reperfusion injury and could avoid unwanted side effects. We prepared microbubbles carrying hydrogen sulfide (hs-MB) with different H2S/C3F8 ratios (4/0, 3/1, 2/2, 1/3, 0/4) and determined the optimal ratio. Release of H2S triggered by ultrasound was investigated. The cardioprotective effect of ultrasound targeted hs-MB destruction was investigated in a rodent model of myocardial ischemia-reperfusion injury. The H2S/C3F8 ratio of 2/2 was found to be an optimal ratio to prepare stable hs-MB with higher H2S loading capability. Ultrasound targeted hs-MB destruction triggered H2S release and increased the concentration of H2S in the myocardium and lung. Ultrasound targeted hs-MB destruction limited myocardial infarct size, preserved left ventricular function and had no influence on haemodynamics and respiratory. This cardioprotective effect was associated with alleviation of apoptosis and oxidative stress. Delivery of H2S to the myocardium by ultrasound targeted hs-MB destruction attenuates myocardial ischemia-reperfusion injury and may avoid unwanted side effects.

  5. Delivery of Hydrogen Sulfide by Ultrasound Targeted Microbubble Destruction Attenuates Myocardial Ischemia-reperfusion Injury

    PubMed Central

    Chen, Gangbin; Yang, Li; Zhong, Lintao; Kutty, Shelby; Wang, Yuegang; Cui, Kai; Xiu, Jiancheng; Cao, Shiping; Huang, Qiaobing; Liao, Wangjun; Liao, Yulin; Wu, Juefei; Zhang, Wenzhu; Bin, Jianping

    2016-01-01

    Hydrogen sulfide (H2S) is an attractive agent for myocardial ischemia-reperfusion injury, however, systemic delivery of H2S may cause unwanted side effects. Ultrasound targeted microbubble destruction has become a promising tool for organ specific delivery of bioactive substance. We hypothesized that delivery of H2S by ultrasound targeted microbubble destruction attenuates myocardial ischemia-reperfusion injury and could avoid unwanted side effects. We prepared microbubbles carrying hydrogen sulfide (hs-MB) with different H2S/C3F8 ratios (4/0, 3/1, 2/2, 1/3, 0/4) and determined the optimal ratio. Release of H2S triggered by ultrasound was investigated. The cardioprotective effect of ultrasound targeted hs-MB destruction was investigated in a rodent model of myocardial ischemia-reperfusion injury. The H2S/C3F8 ratio of 2/2 was found to be an optimal ratio to prepare stable hs-MB with higher H2S loading capability. Ultrasound targeted hs-MB destruction triggered H2S release and increased the concentration of H2S in the myocardium and lung. Ultrasound targeted hs-MB destruction limited myocardial infarct size, preserved left ventricular function and had no influence on haemodynamics and respiratory. This cardioprotective effect was associated with alleviation of apoptosis and oxidative stress. Delivery of H2S to the myocardium by ultrasound targeted hs-MB destruction attenuates myocardial ischemia-reperfusion injury and may avoid unwanted side effects. PMID:27469291

  6. The influence of hypertonic mannitol on regional myocardial blood flow during acute and chronic myocardial ischemia in anesthetized and awake intact dogs.

    PubMed Central

    Willerson, J T; Watson, J T; Hutton, I; Fixler, D E; Curry, G C; Templeton, G H

    1975-01-01

    The influence of hypertonic mannitol on regional myocardial blood flow and ventricular performance was studied during acute myocardial ischemia in awake, unsedated and in anesthesized dogs and after myocardial infarction in awake unsedated dogs. Regional myocardial blood flow was measured with radioactive microspheres. Generalized increases in regional myocardial blood flow occurred after mannitol in all of the different animal models studied. The increases in coronary blood flow after mannitol were just as impressive in the nonischemic regions as in the ischemic portion of the left ventricle in all of the different models that were examined in this study. Improvement in regional myocardial blood flow to the ischemic area of the left ventricle after mannitol was associated with a reduction in ST segment elevation during acute myocardial ischemia in anesthetized dogs. The increases in regional myocardial flow after mannitol were also associated with increases in contractility, but the increases in flow appeared to be more impressive than the changes in contractility. The data obtained demonstrate that mannitol increases regional coronary blood flow to both ischemic and nonischemic myocardium in both anesthetized and awake, unsedated, intact dogs with acute and chronic myocardial ischemia and that mannitol reduces ST segment elevation during acute myocardial ischemia in anesthetized dogs. Thus the results suggest that under these circumstances the increases in regional myocardial blood flow after mannitol are of physiological importance in reducing the extent of myocardial injury. Since coronary blood flow increased to nonischemic regions the increases in regional myocardial flow demonstrated in this study after mannitol cannot be entirely explained by the mechanism of reduction in ischemic cell swelling. PMID:1123427

  7. Amifostine Pretreatment Attenuates Myocardial Ischemia/Reperfusion Injury by Inhibiting Apoptosis and Oxidative Stress

    PubMed Central

    Wu, Shao-ze; Tao, Lu-yuan; Wang, Jiao-ni; Xu, Zhi-qiang; Wang, Jie; Xue, Yang-jing; Huang, Kai-yu; Lin, Jia-feng; Li, Lei

    2017-01-01

    The present study was aimed at investigating the effect of amifostine on myocardial ischemia/reperfusion (I/R) injury of mice and H9c2 cells cultured with TBHP (tert-butyl hydroperoxide). The results showed that pretreatment with amifostine significantly attenuated cell apoptosis and death, accompanied by decreased reactive oxygen species (ROS) production and lower mitochondrial potential (ΔΨm). In vivo, amifostine pretreatment alleviated I/R injury and decreased myocardial apoptosis and infarct area, which was paralleled by increased superoxide dismutase (SOD) and reduced malondialdehyde (MDA) in myocardial tissues, increased Bcl2 expression, decreased Bax expression, lower cleaved caspase-3 level, fewer TUNEL positive cells, and fewer DHE-positive cells in heart. Our results indicate that amifostine pretreatment has a protective effect against myocardial I/R injury via scavenging ROS. PMID:28392886

  8. Arginase as a target for treatment of myocardial ischemia-reperfusion injury.

    PubMed

    Tratsiakovich, Yahor; Yang, Jiangning; Gonon, Adrian Thomas; Sjöquist, Per-Ove; Pernow, John

    2013-11-15

    Two distinct enzymes of arginase (1 and 2) are critically regulating nitric oxide (NO) bioavailability by competing with NO synthase for their common substrate l-arginine. Increased expression and activity of arginase is observed in atherosclerosis and myocardial ischemia-reperfusion (I/R). Several studies have demonstrated a key pathophysiological role of increased activity of arginase during I/R. Pharmacological inhibition of arginase results in restoration of NO availability and salvage of myocardium during I/R. Arginase inhibition might be a promising therapeutic strategy for the limitation of myocardial injury in acute myocardial infarction. Current understanding of the role of arginase and efficacy of arginase inhibition during myocardial I/R is reviewed in the present article.

  9. Stress Perfusion Cardiovascular Magnetic Resonance Imaging Effectively Risk Stratifies Diabetic Patients With Suspected Myocardial Ischemia

    PubMed Central

    Heydari, Bobak; Juan, Yu-Hsiang; Liu, Hui; Abbasi, Siddique; Shah, Ravi; Blankstein, Ron; Steigner, Michael; Jerosch-Herold, Michael; Kwong, Raymond Y.

    2016-01-01

    Background Diabetics remain at high risk of cardiovascular disease and mortality despite advancements in medical therapy. Noninvasive cardiac risk profiling is often more difficult in diabetics owing to the prevalence of silent ischemia with unrecognized myocardial infarction (MI), reduced exercise capacity, non-diagnostic electrocardiographic changes, and balanced ischemia from diffuse epicardial coronary atherosclerosis and microvascular dysfunction. Methods and Results A consecutive cohort of 173 diabetic patients (mean age 61.7±11.9, 37% female) with suspected myocardial ischemia underwent stress perfusion CMR. Patients were evaluated for adverse cardiac events following CMR with mean follow-up time of 2.9 ± 2.5 years. Mean HbA1C for the population was 7.9±1.8%. Primary endpoint was a composite of cardiac death and nonfatal MI. Diabetics with no inducible ischemia (n=94) experienced an annualized event rate of 1.4% compared to 8.2% (P=0.0003) in those with inducible ischemia (n=79). Diabetics without late gadolinium enhancement or inducible ischemia had a very low annual cardiac event rate (0.5%/year). Presence of inducible ischemia was the strongest unadjusted predictor (HR 4.86, P<0.01) for cardiac death and nonfatal MI. This association remained robust in adjusted stepwise multivariable Cox regression analysis (HR 4.28, P=0.02). In addition, categorical net reclassification index (NRI) using 5-year risk cutoffs of 5% and 10% resulted in reclassification of 43.4% of the diabetic cohort with NRI of 0.38 (95% CI 0.20–0.56, P<0.0001). Conclusions Stress perfusion CMR provided independent prognostic utility and effectively reclassified risk in diabetic patients referred for ischemic assessment. Further evaluation is required to determine if a noninvasive imaging strategy with CMR can favorably impact downstream outcomes and improve cost-effectiveness of care in diabetics. PMID:27059504

  10. A segmentation method for myocardial ischemia/infarction applicable in heart photos.

    PubMed

    Baracho, Salety Ferreira; Pinheiro, Daniel José Lins Leal; Godoy, Carlos Marcelo Gurjão de; Coelho, Regina Célia

    2017-08-01

    The myocardial infarction, known as heart attack, is the ultimate result of a prolonged/untreated cardiac ischemia. The accurate segmentation of the myocardial infarction or ischemia in images obtained from diversified sources, such as Magnetic Resonance Images or Echocardiograph, is worthwhile for the medical area or the animal experimentation. An alternative image source for ischemia/infarction segmentation is the photo, which can depict the actual heart image. This work presents a method for ischemia segmentation in rat heart photos. The method applicability was tested in pictures of human hearts available in public databases from the Internet. At first, heart images were separated from the background using GrabCut method. Secondly, the segmentation of the cardiac ischemia region was performed by using Fuzzy Clustering method. Finally, a sequence of image processing (including morphological operations to remove small components and to fill the holes) was performed to obtain the final segmentation image. All resulting images were compared with the corresponding images containing contours of cardiac ischemia drawn manually by specialists. The mean accuracy was 83.24% ± 04.16%. As for the intrinsically human errors (tracing error between two specialists: 18.94% ± 05.30%), the average accuracy is within the inter-operator variability. As for the human heart pictures obtained from public libraries, the algorithm segmented the infarction areas correctly. The results show that the algorithm effectively helps the visualization of the cardiac ischemia/infarction region and has the potential to be applied to heart images of animals or humans, representing a versatile tool to assist advances in cardiomyopathology studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Exercise stress tests for detecting myocardial ischemia in asymptomatic patients with diabetes mellitus.

    PubMed

    Hage, Fadi G; Lusa, Lara; Dondi, Maurizio; Giubbini, Raffaele; Iskandrian, Ami E

    2013-07-01

    The predominant cause of death in diabetes mellitus (DM) is coronary artery disease (CAD). Little is known about prevalence of silent ischemia in developing nations. We compared prevalence of silent ischemia in DM to a control group by exercise myocardial perfusion imaging (MPI) and electrocardiogram (ECG) in developing nations. The prospective multinational Ischemia Assessment with Exercise imaging in Asymptomatic Diabetes study recruited participants at 12 sites in Asia, Africa, and Latin America. DM participants were age- and gender-matched 2:1 to non-DM individuals with ≥1 CAD risk factor. Subjects underwent exercise tests that were interpreted in core labs in blinded fashion. The study included 392 DM and 205 control participants. Among participants with diagnostic ECGs, a similar proportion of DM and controls had ischemic ECG (15% vs 12%, p = 0.5). A significantly higher proportion of DM group had MPI abnormalities compared with controls (26% vs 14%, p <0.001). In participants with ischemia on MPI, only 17% had ischemic ECG, whereas in those without ischemia on MPI, 10% had ischemic ECG. In a multivariable model, DM was independently associated with abnormal MPI (odds ratio 2.1, 95% confidence interval 1.3-3.5, p = 0.004). Women were less likely to have ischemia by MPI than men (10% vs 30%, p <0.001) and concordance between ECG and MPI was much worse in women. In conclusion, in this large prospective study, asymptomatic DM participants had (1) more ischemia by exercise MPI than ECG, (2) more ischemia by MPI but not ECG than control group, and (3) ischemia by MPI was less in women than men. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Dictionary-driven Ischemia Detection from Cardiac Phase-Resolved Myocardial BOLD MRI at Rest

    PubMed Central

    Bevilacqua, Marco; Dharmakumar, Rohan; Tsaftaris, Sotirios A.

    2016-01-01

    Cardiac Phase-resolved Blood-Oxygen-Level Dependent (CP–BOLD) MRI provides a unique opportunity to image an ongoing ischemia at rest. However, it requires post-processing to evaluate the extent of ischemia. To address this, here we propose an unsupervised ischemia detection (UID) method which relies on the inherent spatio-temporal correlation between oxygenation and wall motion to formalize a joint learning and detection problem based on dictionary decomposition. Considering input data of a single subject, it treats ischemia as an anomaly and iteratively learns dictionaries to represent only normal observations (corresponding to myocardial territories remote to ischemia). Anomaly detection is based on a modified version of One-class Support Vector Machines (OCSVM) to regulate directly the margins by incorporating the dictionary-based representation errors. A measure of ischemic extent (IE) is estimated, reflecting the relative portion of the myocardium affected by ischemia. For visualization purposes an ischemia likelihood map is created by estimating posterior probabilities from the OCSVM outputs, thus obtaining how likely the classification is correct. UID is evaluated on synthetic data and in a 2D CP–BOLD data set from a canine experimental model emulating acute coronary syndromes. Comparing early ischemic territories identified with UID against infarct territories (after several hours of ischemia), we find that IE, as measured by UID, is highly correlated (Pearson’s r = 0.84) w.r.t. infarct size. When advances in automated registration and segmentation of CP–BOLD images and full coverage 3D acquisitions become available, we hope that this method can enable pixel-level assessment of ischemia with this truly non-invasive imaging technique. PMID:26292338

  13. Myocardial glucose transporters and glycolytic metabolism during ischemia in hyperglycemic diabetic swine.

    PubMed

    Stanley, W C; Hall, J L; Smith, K R; Cartee, G D; Hacker, T A; Wisneski, J A

    1994-01-01

    We assessed the effects of 4 weeks of streptozocin-induced diabetes on regional myocardial glycolytic metabolism during ischemia in anesthetized open-chest domestic swine. Diabetic animals were hyperglycemic (12.0 +/- 2.1 v 6.6 +/- .5 mmol/L), and had lower fasting insulin levels (27 +/- 8 v 79 +/- 19 pmol/L). Myocardial glycolytic metabolism was studied with coronary flow controlled by an extracorporeal perfusion circuit. Left anterior descending coronary artery (LAD) flow was decreased by 50% for 45 minutes and left circumflex (CFX) flow was constant. Myocardial glucose uptake and extraction were measured with D-[6-3H]-2-deoxyglucose (DG) and myocardial blood flow was measured with microspheres. The rate of glucose conversion to lactate and lactate uptake and output were assessed with a continuous infusion of [6-14C]glucose and [U-13C]lactate into the coronary perfusion circuit. Both diabetic and nondiabetic animals had sharp decreases in subendocardial blood flow during ischemia (from 1.21 +/- .10 to 0.43 +/- .08 mL.g-1.min-1 in the nondiabetic group, and from 1.30 +/- .15 to 0.55 +/- .11 in the diabetic group). Diabetes had no significant effect on myocardial glucose uptake or glucose conversion to lactate under either well-perfused or ischemic conditions. Forty-five minutes of ischemia resulted in significant glycogen depletion in the subendocardium in both nondiabetic and diabetic animals, with no differences between the two groups. Glycolytic metabolism is not impaired in hyperglycemic diabetic swine after 1 month of the disease when compared with that in normoglycemic nondiabetic animals. The myocardial content of the insulin-regulatable glucose transporter (GLUT 4) was measured in left ventricular biopsies.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Transient mitral regurgitation: An adjunctive sign of myocardial ischemia during dipyridamole-thallium imaging

    SciTech Connect

    Lette, J.; Gagnon, A.; Lapointe, J.; Cerino, M.

    1989-07-01

    A patient developed transient exacerbation of a mitral insufficiency murmur and a reversible posterior wall perfusion defect during dipyridamole-thallium imaging. Coronary angiography showed significant stenoses of both the right and the circumflex coronary arteries that supply the posterior papillary muscle. Cardiac auscultation for transient mitral incompetence, a sign of reversible papillary muscle dysfunction, is a simple and practical adjunctive test for myocardial ischemia during dipyridamole-thallium imaging. It may confirm that an isolated reversible posterior wall myocardial perfusion defect is truly ischemic in nature as opposed to an artifact resulting from attenuation by the diaphragm.

  15. Intravenous Sphingosylphosphorylcholine Protects Ischemic and Postischemic Myocardial Tissue in a Mouse Model of Myocardial Ischemia/Reperfusion Injury

    PubMed Central

    Herzog, Christine; Schmitz, Martina; Levkau, Bodo; Herrgott, Ilka; Mersmann, Jan; Larmann, Jan; Johanning, Kai; Winterhalter, Michael; Chun, Jerold; Müller, Frank Ulrich; Echtermeyer, Frank; Hildebrand, Reinhard; Theilmeier, Gregor

    2010-01-01

    HDL, through sphingosine-1-phosphate (S1P), exerts direct cardioprotective effects on ischemic myocardium. It remains unclear whether other HDL-associated sphingophospholipids have similar effects. We therefore examined if HDL-associated sphingosylphosphorylcholine (SPC) reduces infarct size in a mouse model of transient myocardial ischemia/reperfusion. Intravenously administered SPC dose-dependently reduced infarct size after 30 minutes of myocardial ischemia and 24 hours reperfusion compared to controls. Infarct size was also reduced by postischemic, therapeutical administration of SPC. Immunohistochemistry revealed reduced polymorphonuclear neutrophil recruitment to the infarcted area after SPC treatment, and apoptosis was attenuated as measured by TUNEL. In vitro, SPC inhibited leukocyte adhesion to TNFα-activated endothelial cells and protected rat neonatal cardiomyocytes from apoptosis. S1P3 was identified as the lysophospholipid receptor mediating the cardioprotection by SPC, since its effect was completely absent in S1P3-deficient mice. We conclude that HDL-associated SPC directly protects against myocardial reperfusion injury in vivo via the S1P3 receptor. PMID:21274265

  16. Prevalence and Clinical Characteristics of Mental Stress–Induced Myocardial Ischemia in Patients With Coronary Heart Disease

    PubMed Central

    Jiang, Wei; Samad, Zainab; Boyle, Stephen; Becker, Richard C.; Williams, Redford; Kuhn, Cynthia; Ortel, Thomas L.; Rogers, Joseph; Kuchibhatla, Maragatha; O’Connor, Christopher; Velazquez, Eric J.

    2014-01-01

    Objectives The goal of this study was to evaluate the prevalence and clinical characteristics of mental stress–induced myocardial ischemia. Background Mental stress–induced myocardial ischemia is prevalent and a risk factor for poor prognosis in patients with coronary heart disease, but past studies mainly studied patients with exercise-induced myocardial ischemia. Methods Eligible patients with clinically stable coronary heart disease, regardless of exercise stress testing status, underwent a battery of 3 mental stress tests followed by a treadmill test. Stress-induced ischemia, assessed by echocardiography and electrocardiography, was defined as: 1) development or worsening of regional wall motion abnormality; 2) left ventricular ejection fraction reduction ≥8%; and/or 3) horizontal or downsloping ST-segment depression ≥1 mm in 2 or more leads lasting for ≥3 consecutive beats during at least 1 mental test or during the exercise test. Results Mental stress–induced ischemia occurred in 43.45%, whereas exercise-induced ischemia occurred in 33.79% (p = 0.002) of the study population (N = 310). Women (odds ratio [OR]: 1.88), patients who were not married (OR: 1.99), and patients who lived alone (OR: 2.24) were more likely to have mental stress–induced ischemia (all p < 0.05). Multivariate analysis showed that compared with married men or men living with someone, unmarried men (OR: 2.57) and married women (OR: 3.18), or living alone (male OR: 2.25 and female OR: 2.72, respectively) had higher risk for mental stress-induced ischemia (all p < 0.05). Conclusions Mental stress-induced ischemia is more common than exercise-induced ischemia in patients with clinically stable coronary heart disease. Women, unmarried men, and individuals living alone are at higher risk for mental stress-induced ischemia. (Responses of Myocardial Ischemia to Escitalopram Treatment [REMIT]; NCT00574847) PMID:23410543

  17. Experimental Study of Thallium 201 Redistribution in Transient Myocardial Ischemia

    PubMed Central

    Tanaka, Toshiyuki; Mandal, Ashis K.; Wong, Dennis Q.

    1982-01-01

    The influence of differential washout on the redistribution phenomenon of thallium 201 chloride deposited in ischemic myocardium was investigated. Two groups of dogs had serial scintigraphic images and tissue counting performed. The first group had ischemia produced prior to the injection of the thallium and, following the control image after production of ischemia, the occlusion was released and serial images obtained over a three-hour period. The second group received thallium initially and after a control scintigraph was taken, ischemia was created and maintained for three hours via transthoracic ligature. Activity distribution was followed by serial images. Thallium content of ischemic areas was compared to the normal area by computer assisted data analysis. Tissues from the ischemic and normal areas from both groups were obtained after the serial images and counted. In the first group, prompt redistribution of activity into the ischemic areas was seen within 30 minutes of releasing the occlusion and was verified by tissue counting. Neither scintigraphic image changes nor tissue uptake differences were observed in the second group. The restoration of blood flow and consequently increased avidity for thallium probably accounted for the redistribution seen in the first group as there appeared to be no differential washout of activity in the second group from either the ischemic or normal areas to contribute to the redistribution phenomenon. ImagesFigure 1Figure 2 PMID:7120444

  18. Effects of Propranolol on Regional Myocardial Function, Electrograms, and Blood Flow in Conscious Dogs with Myocardial Ischemia

    PubMed Central

    Vatner, Stephen F.; Baig, Hank; Manders, W. Thomas; Ochs, Hermann; Pagani, Massimo

    1977-01-01

    The effects of coronary occlusion and of subsequent propranolol administration were examined in 18 conscious dogs. Overall left ventricular (LV) function was assessed by measurements of LV pressure and dP/dt, and regional myocardial function was assessed by measurements of segment length (SL), velocity of SL shortening and regional myocardial “work”, i.e., pressure-length loops in normal, moderately, and severely ischemic zones. Regional intra-myocardial electrograms were measured from the same sites along with regional myocardial blood flow as determined by the radioactive microsphere technique. Coronary occlusion resulted in graded loss of function from the normal to severely ischemic zones with graded flow reduction and graded elevation of the ST segment. Propranolol depressed overall LV function, function in the normal zone (work fell by 17±4%), and in the majority of moderately ischemic segments (work fell by 7±3%). In severely ischemic segments the extent of paradoxical motion and post-systolic shortening was reduced by propranolol. After propranolol regional myocardial blood flow fell in the normal zone (11±2%) and rose in the moderately (15±4%) and severely (63±10%) ischemic zones. Thus, in the conscious dog with regional myocardial ischemia, propranolol induces a redistribution of myocardial blood flow, with flow falling in normal zones and rising in moderately and severely ischemic zones. The improvement in perfusion of ischemic tissue was associated with slight but significant depression of shortening, velocity, and work in the moderately ischemic zones and of paradoxical bulging and post-systolic shortening in the severely ischemic zone. PMID:874096

  19. Phellinus linteus Mycelium Alleviates Myocardial Ischemia-Reperfusion Injury through Autophagic Regulation.

    PubMed

    Su, Hsing-Hui; Chu, Ya-Chun; Liao, Jiuan-Miaw; Wang, Yi-Hsin; Jan, Ming-Shiou; Lin, Chia-Wei; Wu, Chiu-Yeh; Tseng, Chin-Yin; Yen, Jiin-Cherng; Huang, Shiang-Suo

    2017-01-01

    The incidence of myocardial ischemia-reperfusion (IR) injury is rapidly increasing around the world and this disease is a major contributor to global morbidity and mortality. It is known that regulation of programmed cell death including apoptosis and autophagy reduces the impact of myocardial IR injury. In this study, the cardioprotective effects and underlying mechanisms of Phellinus linteus (Berk. and Curt.) Teng, Hymenochaetaceae (PL), a type of medicinal mushroom, were examined in rats subjected to myocardial IR injury. The left main coronary artery of rats was ligated for 1 h and reperfused for 3 h. The arrhythmia levels were monitored during the entire process and the infarct size was evaluated after myocardial IR injury. Furthermore, the expression levels of proteins in apoptotic and autophagic pathways were observed. Pretreatment with PL mycelium (PLM) significantly reduced ventricular arrhythmia and mortality due to myocardial IR injury. PLM also significantly decreased myocardial infarct size and plasma lactate dehydrogenase level after myocardial IR injury. Moreover, PLM administration resulted in decreased caspase 3 and caspase 9 activation and increased Bcl-2/Bax ratio. Phosphorylation level of AMPK was elevated while mTOR level was reduced. Becline-1 and p62 levels decreased. These findings suggest that PLM is effective in protecting the myocardium against IR injury. The mechanism involves mediation through suppressed pro-apoptotic signaling and regulation of autophagic signaling, including stimulation of AMPK-dependent pathway and inhibition of beclin-1-dependent pathway, resulting in enhancement of protective autophagy and inhibition of excessive autophagy.

  20. Phellinus linteus Mycelium Alleviates Myocardial Ischemia-Reperfusion Injury through Autophagic Regulation

    PubMed Central

    Su, Hsing-Hui; Chu, Ya-Chun; Liao, Jiuan-Miaw; Wang, Yi-Hsin; Jan, Ming-Shiou; Lin, Chia-Wei; Wu, Chiu-Yeh; Tseng, Chin-Yin; Yen, Jiin-Cherng; Huang, Shiang-Suo

    2017-01-01

    The incidence of myocardial ischemia-reperfusion (IR) injury is rapidly increasing around the world and this disease is a major contributor to global morbidity and mortality. It is known that regulation of programmed cell death including apoptosis and autophagy reduces the impact of myocardial IR injury. In this study, the cardioprotective effects and underlying mechanisms of Phellinus linteus (Berk. and Curt.) Teng, Hymenochaetaceae (PL), a type of medicinal mushroom, were examined in rats subjected to myocardial IR injury. The left main coronary artery of rats was ligated for 1 h and reperfused for 3 h. The arrhythmia levels were monitored during the entire process and the infarct size was evaluated after myocardial IR injury. Furthermore, the expression levels of proteins in apoptotic and autophagic pathways were observed. Pretreatment with PL mycelium (PLM) significantly reduced ventricular arrhythmia and mortality due to myocardial IR injury. PLM also significantly decreased myocardial infarct size and plasma lactate dehydrogenase level after myocardial IR injury. Moreover, PLM administration resulted in decreased caspase 3 and caspase 9 activation and increased Bcl-2/Bax ratio. Phosphorylation level of AMPK was elevated while mTOR level was reduced. Becline-1 and p62 levels decreased. These findings suggest that PLM is effective in protecting the myocardium against IR injury. The mechanism involves mediation through suppressed pro-apoptotic signaling and regulation of autophagic signaling, including stimulation of AMPK-dependent pathway and inhibition of beclin-1-dependent pathway, resulting in enhancement of protective autophagy and inhibition of excessive autophagy. PMID:28420993

  1. Stress Perfusion Cardiac Magnetic Resonance Imaging Effectively Risk Stratifies Diabetic Patients With Suspected Myocardial Ischemia.

    PubMed

    Heydari, Bobak; Juan, Yu-Hsiang; Liu, Hui; Abbasi, Siddique; Shah, Ravi; Blankstein, Ron; Steigner, Michael; Jerosch-Herold, Michael; Kwong, Raymond Y

    2016-04-01

    Diabetics remain at high risk of cardiovascular disease and mortality despite advancements in medical therapy. Noninvasive cardiac risk profiling is often more difficult in diabetics owing to the prevalence of silent ischemia with unrecognized myocardial infarction, reduced exercise capacity, nondiagnostic electrocardiographic changes, and balanced ischemia from diffuse epicardial coronary atherosclerosis and microvascular dysfunction. A consecutive cohort of 173 patients with diabetes mellitus (mean age, 61.7±11.9 years; 37% women) with suspected myocardial ischemia underwent stress perfusion cardiac magnetic resonance imaging. Patients were evaluated for adverse cardiac events after cardiac magnetic resonance imaging with mean follow-up time of 2.9±2.5 years. Mean hemoglobin A1c for the population was 7.9±1.8%. Primary end point was a composite of cardiac death and nonfatal myocardial infarction. Diabetics with no inducible ischemia (n=94) experienced an annualized event rate of 1.4% compared with 8.2% (P=0.0003) in those with inducible ischemia (n=79). Diabetics without late gadolinium enhancement or inducible ischemia had a low annual cardiac event rate (0.5% per year). The presence of inducible ischemia was the strongest unadjusted predictor (hazard ratio, 4.86; P<0.01) for cardiac death and nonfatal myocardial infarction. This association remained robust in adjusted stepwise multivariable Cox regression analysis (hazard ratio, 4.28; P=0.02). In addition, categorical net reclassification index using 5-year risk cutoffs of 5% and 10% resulted in reclassification of 43.4% of the diabetic cohort with net reclassification index of 0.38 (95% confidence interval, 0.20-0.56; P<0.0001). Stress perfusion cardiac magnetic resonance imaging provided independent prognostic utility and effectively reclassified risk in patients with diabetes mellitus referred for ischemic assessment. Further evaluation is required to determine whether a noninvasive imaging strategy with

  2. Intra-QRS Spectral Changes Accompany ST Segment Changes During Episodes of Myocardial Ischemia

    PubMed Central

    Gramatikov, Boris; Iyer, Vivek

    2014-01-01

    Background Coronary artery disease and myocardial ischemia cause substantial morbidity and mortality. While ischemia is traditionally diagnosed on the 12-lead electrocardiogram (ECG) by shifts in the ST segment, electrical changes are also produced within the QRS complex during depolarization of ischemic ventricular tissue, though these are often of small amplitude and can be missed in traditional ECG analysis. We explore the utility of an easily implemented spectral analysis method for detecting intra-QRS changes during episodes of myocardial ischemia, using Holter recordings from the European ST-T database. Methods Time-frequency distributions of QRS complexes from each recording were computed using the continuous wavelet transform. Indices corresponding to frequency content of four overlapping frequency bands were computed: F1 (24–35 Hz), F2 (30–45 Hz), F3 (40–60 Hz), and F4 (50–80 Hz). Values of these indices were compared during annotated episodes of ST change and during a baseline during the recording. Results Marked changes in intra-QRS frequency content were identified during ischemia, grouped by ECG lead analyzed. In lead III, a pronounced and statistically significant increase in the highest frequency sub-bands (F3 and F4) was consistently observed. Analysis of anterior precordial leads also showed significant increases in F4. Conclusions Intra-QRS time-frequency analysis using the continuous wavelet transform can identify a spectral signature corresponding to myocardial ischemia in the range 24–80 Hz. Intra-QRS spectral analysis has the potential for many clinical applications. PMID:25266140

  3. Temporal trends in the frequency of inducible myocardial ischemia during cardiac stress testing: 1991 to 2009.

    PubMed

    Rozanski, Alan; Gransar, Heidi; Hayes, Sean W; Min, James; Friedman, John D; Thomson, Louise E J; Berman, Daniel S

    2013-03-12

    This study sought to assess whether the frequency of inducible myocardial ischemia during stress-rest single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) has changed over time. The prevalence of cardiac death and other clinical cardiac events have declined in recent decades, but heretofore no study has examined if there has been a temporal change in the frequency of inducible myocardial ischemia during cardiac stress testing. We assessed 39,515 diagnostic patients undergoing stress-rest MPI between 1991 and 2009. Patients were assessed for change in demographics, clinical symptoms, risk factors, and frequency of abnormal and ischemic SPECT-MPI. There was a marked progressive decline in the prevalence of abnormal SPECT studies, from 40.9% in 1991 to 8.7% in 2009 (p < 0.001). Similarly, the prevalence of ischemic SPECT-MPI declined, from 29.6% to 5.0% (p < 0.001), as did the prevalence of severe ischemia. The decline of SPECT-MPI abnormality occurred among all age and symptom subgroups, falling to only 2.9% among recent exercising patients without typical angina. We also noted a progressive trend toward performing more pharmacological rather than exercise stress in all age and weight groups, and pharmacological stress was more likely than exercise to be associated with SPECT-MPI abnormality (odds ratio: 1.43, 95% confidence interval: 1.3 to 1.5; p < 0.001). Over the past 2 decades, the frequency and severity of abnormal stress SPECT-MPI studies has progressively decreased. Notably, the frequency of abnormal SPECT-MPI is now very low among exercising patients without typical angina. These findings suggest the need for developing more cost-effective strategies for the initial work-up of patients who are presently at low risk for manifesting inducible myocardial ischemia during cardiac imaging procedures. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  4. Increased myocardial ischemia during nitrate therapy: caused by multiple coronary artery-left ventricle fistulae?

    PubMed

    Heper, Gulumser; Kose, Sedat

    2005-01-01

    We present the case of a 54-year-old man who had crescendo angina during nitrate therapy. Selective coronary angiograms showed no atherosclerotic lesions, but did show plexuses of intramural vessels that connected the distal thirds of the left and right coronary systems with the left ventricle. The cause of our patient's increased myocardial ischemia during nitrate therapy may have been the coronary "steal" phenomenon.

  5. Sex differences in mental stress-induced myocardial ischemia in young survivors of an acute myocardial infarction.

    PubMed

    Vaccarino, Viola; Shah, Amit J; Rooks, Cherie; Ibeanu, Ijeoma; Nye, Jonathon A; Pimple, Pratik; Salerno, Amy; D'Marco, Luis; Karohl, Cristina; Bremner, James Douglas; Raggi, Paolo

    2014-04-01

    Emotional stress may disproportionally affect young women with ischemic heart disease. We sought to examine whether mental stress-induced myocardial ischemia (MSIMI), but not exercise-induced ischemia, is more common in young women with previous myocardial infarction (MI) than in men. We studied 98 post-MI patients (49 women and 49 men) aged 38 to 60 years. Women and men were matched for age, MI type, and months since MI. Patients underwent technetium-99m sestamibi perfusion imaging at rest, after mental stress, and after exercise/pharmacological stress. Perfusion defect scores were obtained with observer-independent software. A summed difference score (SDS), the difference between stress and rest scores, was used to quantify ischemia under both stress conditions. Women 50 years or younger, but not older women, showed a more adverse psychosocial profile than did age-matched men but did not differ for conventional risk factors and tended to have less angiographic coronary artery disease. Compared with age-matched men, women 50 years or younger exhibited a higher SDS with mental stress (3.1 versus 1.5, p = .029) and had twice the rate of MSIMI (SDS ≥ 3; 52% versus 25%), whereas ischemia with physical stress did not differ (36% versus 25%). In older patients, there were no sex differences in MSIMI. The higher prevalence of MSIMI in young women persisted when adjusting for sociodemographic and life-style factors, coronary artery disease severity, and depression. MSIMI post-MI is more common in women 50 years or younger compared with age-matched men. These sex differences are not observed in post-MI patients who are older than 50 years.

  6. Sex Differences in Mental Stress-Induced Myocardial Ischemia in Young Survivors of an Acute Myocardial Infarction

    PubMed Central

    Vaccarino, Viola; Shah, Amit J.; Rooks, Cherie; Ibeanu, Ijeoma; Nye, Jonathon A.; Pimple, Pratik; Salerno, Amy; D'Marco, Luis; Karohl, Cristina; Bremner, J. Douglas; Raggi, Paolo

    2014-01-01

    Objectives Emotional stress may disproportionally affect young women with ischemic heart disease. We sought to examine whether mental stress-induced myocardial ischemia (MSIMI), but not exercise-induced ischemia, is more common in young women with previous myocardial infarction (MI) than men. Methods We studied 98 post-MI patients (49 women and 49 men) aged 38-60 years. Women and men were matched for age, MI type, and months since MI. Patients underwent [99mTc]sestamibi perfusion imaging at rest, after mental stress, and after exercise/pharmacological stress. Perfusion defect scores were obtained with observer-independent software. A summed difference score (SDS), the difference between stress and rest scores, was used to quantify ischemia under both stress conditions. Results Women aged 50 or younger, but not older women, showed a more adverse psychosocial profile than age-matched men, but did not differ for conventional risk factors and tended to have less angiographic coronary artery disease (CAD). Compared with age-matched men, women aged 50 or younger exhibited a higher SDS with mental stress (3.1 vs. 1.5, p=0.029) and had twice the rate of MSIMI (SDS ≥3), 52% vs. 25%, while ischemia with physical stress did not differ (36% vs 25%). In older patients there were no sex differences in MSIMI. The higher prevalence of MSIMI in young women persisted when adjusting for sociodemographic and lifestyle factors, CAD severity and depression. Conclusions MSIMI post-MI is more common in women aged 50 or younger compared to age-matched men. These sex differences are not observed in post-MI patients who are older than 50 years. PMID:24608039

  7. Reduction of myocardial infarct size after ischemia and reperfusion by the glycosaminoglycan pentosan polysulfate.

    PubMed

    Tanhehco, E J; Kilgore, K S; Naylor, K B; Park, J L; Booth, E A; Lucchesi, B R

    1999-07-01

    Activation of the complement system contributes to the tissue destruction associated with myocardial ischemia/reperfusion. Pentosan polysulfate (PPS), a negatively charged sulfated glycosaminoglycan (GAG) and an effective inhibitor of complement activation, was studied for its potential to decrease infarct size in an experimental model of myocardial ischemia/reperfusion injury. Open-chest rabbits were subjected to 30-min occlusion of the left coronary artery followed by 5 h of reperfusion. Vehicle (saline) or PPS (30 mg/kg/h) was administered intravenously immediately before the onset of reperfusion and every hour during the reperfusion period. Treatment with PPS significantly (p < 0.05) reduced infarct size as compared with vehicle-treated animals (27.5+/-2.9% vs. 13.34+/-2.6%). Analysis of tissue demonstrated decreased deposition of membrane-attack complex and neutrophil accumulation in the area at risk. The results indicate that, like heparin and related GAGs, PPS possesses the ability to decrease infarct size after an acute period of myocardial ischemia and reperfusion. The observations are consistent with the suggestion that PPS may mediate its cytoprotective effect through modulation of the complement cascade.

  8. Exercise-induced silent myocardial ischemia in patients with vasospastic angina

    SciTech Connect

    Aoki, M.; Koyanagi, S.; Sakai, K.; Irie, T.; Takeshita, A.; Nakamura, M.; Nakagaki, O. )

    1990-03-01

    To clarify the incidence and clinical characteristics of exercise-induced myocardial ischemia in patients with vasospastic angina, we performed exercise thallium computed tomography in 25 patients who had no significant coronary artery stenosis greater than 70%. Coronary artery spasm was documented by coronary angiography in all patients. Eleven patients (44%) developed exercise-induced perfusion defects, but only four of them had anginal pain (36%). Diltiazem (90 mg, administered orally) prevented the development of exercise-induced perfusion defects in all patients. Multivessel coronary spasm was documented by coronary angiography in 11 patients, and nine of them (82%) showed exercise-induced perfusion defects (p less than 0.05). From this study it can be concluded: (1) Exercise-induced myocardial ischemia was demonstrated in 44% of patients who had vasospastic angina without fixed coronary stenosis, and 64% of them were asymptomatic. (2) Patients with multivessel spasm had a greater prevalence of exercise-induced myocardial ischemia than those with single-vessel spasm.

  9. Neural control hierarchy of the heart has not evolved to deal with myocardial ischemia.

    PubMed

    Kember, G; Armour, J A; Zamir, M

    2013-08-01

    The consequences of myocardial ischemia are examined from the standpoint of the neural control system of the heart, a hierarchy of three neuronal centers residing in central command, intrathoracic ganglia, and intrinsic cardiac ganglia. The basis of the investigation is the premise that while this hierarchical control system has evolved to deal with "normal" physiological circumstances, its response in the event of myocardial ischemia is unpredictable because the singular circumstances of this event are as yet not part of its evolutionary repertoire. The results indicate that the harmonious relationship between the three levels of control breaks down, because of a conflict between the priorities that they have evolved to deal with. Essentially, while the main priority in central command is blood demand, the priority at the intrathoracic and cardiac levels is heart rate. As a result of this breakdown, heart rate becomes less predictable and therefore less reliable as a diagnostic guide as to the traumatic state of the heart, which it is commonly used as such following an ischemic event. On the basis of these results it is proposed that under the singular conditions of myocardial ischemia a determination of neural control indexes in addition to cardiovascular indexes has the potential of enhancing clinical outcome.

  10. Signal Quality Analysis of Ambulatory Electrocardiograms to Gate False Myocardial Ischemia Alarms.

    PubMed

    Abdelazez, Mohamed; Quesnel, Patrick X; Chan, Adrian D C; Yang, Homer

    2017-06-01

    The objective of this study is to propose and validate an alarm gating system for a myocardial ischemia monitoring system that uses ambulatory electrocardiogram. The PeriOperative ISchemic Evaluation study recommended the selective administration of β blockers to patients at risk of cardiac events following noncardiac surgery. Patients at risk are identified by monitoring ST segment deviations in the electrocardiogram (ECG); however, patients are encouraged to ambulate to improve recovery, which deteriorates the signal quality of the ECG leading to false alarms. The proposed alarm gating system computes a signal quality index (SQI) to quantify the ECG signal quality and rejects alarms with a low SQI. The system was validated by artificially contaminating ECG records with motion artifact records obtained from the long-term ST database and MIT-BIH noise stress test database, respectively. Without alarm gating, the myocardial ischemia monitoring system attained a Precision of 0.31 and a Recall of 0.78. The alarm gating improved the Precision to 0.58 with a reduction of Recall to 0.77. The proposed system successfully gated false alarms with future work exploring the misidentification of fiducial points by myocardial ischemia monitoring systems. The reduction of false alarms due to the proposed system will decrease the incidence of the alarm fatigue condition typically found in clinicians. Alarm fatigue condition was rated as the top patient safety hazard from 2012 to 2015 by the Emergency Care Research Institute.

  11. Protective effect of lidocaine during regional myocardial ischemia: an altered pathophysiologic response assessed by NADH fluorescence

    SciTech Connect

    Baron, D.W.; Walls, J.T.; Anderson, R.E.; Harrison, C.E. Jr.

    1982-07-01

    Studies were undertaken to determine the effects of lidocaine on ischemic myocardium, which was induced by coronary artery constriction in open-chested dogs. A real-time epicardial fluorescent technique to detect in vivo-reduced nicotinamide adenine dinucleotide (NADH) during 60 seconds of ischemia was used. Blood flow of ischemic myocardium was measured by using radioactive microspheres of 9 +/- 1 micrometers (mean +/- SE) and was compared with that of normal myocardium, shown by injection of alpha-zurine blue dye. Lidocaine effectively reduced peak NADH fluorescence by 18.6%, from 93.9 +/- 7.2 to 76.4 +/-4.1 mV (p less than 0.005). Lidocaine delayed the onset of fluorescence (2.2 +/- 0.2 versus 1.3 +/- 0.1 s p less than 0.002) and facilitated the recovery from ischemia (38.4 +/- 2.9 versus 54.8 +/- 2.9 s p less than 0.001). Increase in NADH concentration during ischemia correlated (r.0.76, p less than 0.006) with ischemic fluorescence. These findings were independent of altered hemodynamics or change in myocardial blood flow. Results indicate that lidocaine provides myocardial cellular protection during transient ischemia; there is an altered NADH fluorescent response to coronary artery occlusion.

  12. Comparative antiapoptotic effects of KB-R7943 and ischemic postconditioning during myocardial ischemia reperfusion.

    PubMed

    Ren, Yongkui; Cai, Yunfei; Jia, Dalin

    2012-11-01

    We examined whether KB-R7943 reduced infarct size by attenuating apoptosis during reperfusion and also compared antiapoptotic effects of KB-R7943 and IPost. For this purpose, isolated rat hearts underwent 30-min global ischemia and 120-min reperfusion. Ischemic postconditioning (IPost) (n = 15; three cycles of 10-s reperfusion/10-s ischemia or three cycles of 30-s reperfusion/30-s ischemia) and KB-R7943 (n = 15; 1 μM KB-R at the onset of reperfusion or before ischemia) were compared with controls (n = 12; ischemia-reperfusion only). Myocardial injury was determined by TTC staining, TUNEL assay and caspase-3 activity. AKT and eNOS phosphorylation were measured by immunoblotting. We found that IPost (10 s), Pre KB-R, and Reperf KB-R reduced infarct size (29 ± 4.1, 35 ± 5.0, 28.6 ± 3.4 %, respectively, vs. controls 46 ± 8.7 %; P < 0.05) and attenuated cell apoptosis (TUNEL-positive cardiomyocyte nuclei) in the myocardium (P < 0.01). Moreover, IPost (10 s), Pre KB-R and Reperf KB-R significantly decreased caspase-3 activation caused by myocardial ischemia-reperfusion. However, IPost (30 s) did not show any effect on necrosis and apoptosis. Akt, eNOS phosphorylation, at 30 min of reperfusion/IPost-10 s was significantly higher than other groups. In conclusion, KB-R7943 was as effective as IPost in reducing necrosis and inhibiting apoptosis and it might be an ideal pharmacological agent to provide a more amenable approach to cardioprotection.

  13. Incomplete Relaxation between Beats after Myocardial Hypoxia and Ischemia

    PubMed Central

    Weisfeldt, Myron L.; Armstrong, Paul; Scully, Hugh E.; Sanders, Charles A.; Daggett, Willard M.

    1974-01-01

    Recovery from hypoxia has been shown to prolong cardiac muscle contraction, particularly the relaxation phase. The present studies were designed to examine whether incomplete relaxation between beats can result from this prolongation of contraction and relaxation in isolated muscle after hypoxia and in the canine heart after both hypoxia and acute ischemia. The relationship between heart rate and the extent of incomplete relaxation is emphasized in view of the known enhancement of the velocity of contraction caused by increasing heart rate. The extent of incomplete relaxation during 10-s periods of pacing at increasing rates was examined before and after hypoxia in isometric cat right ventricular papillary muscle (12-120 beats/min) and in the canine isovolumic left ventricle (120-180 beats/min). Incomplete relaxation was quantified by measuring the difference between the lowest diastolic tension or pressure during pacing and the true resting tension or pressure determined by interruption of pacing at each rate. In eight cat papillary muscles (29°C), there was significantly greater incomplete relaxation 5 min after hypoxia at rates of 96 and 120 beats/min (P < 0.02 vs. before hypoxia). In seven canine isovolumic left ventricles, recovery from hypoxia and higher heart rates also resulted in incomplete relaxation. Incomplete relaxation before hypoxia at a rate of 180 beats/min was 0.8±0.5 cm H2O and at 5 min of recovery from hypoxia was 12.6±3.5 cm H2O (P < 0.01). 12 hearts were subjected to a 1.5-3-min period of acute ischemia and fibrillation. There was significant incomplete relaxation at a rate of 140 beats/min for 5 min after defibrillation and reperfusion. These data indicate that incomplete relaxation is an important determinant of diastolic hemodynamics during recovery from ischemia or hypoxia. The extent of incomplete relaxation appears to be a function of the rate of normalization of the velocity of relaxation and tension development after ischemia or

  14. Pyrroloquinoline quinone (PQQ) decreases myocardial infarct size and improves cardiac function in rat models of ischemia and ischemia/reperfusion.

    PubMed

    Zhu, Bo-Qing; Zhou, Hui-Zhong; Teerlink, John R; Karliner, Joel S

    2004-11-01

    As pyrroloquinoline quinone (PQQ) is a redox cofactor in mammals, we asked if it is cardioprotective. Rats were subjected to 2 h of left anterior descending (LAD) coronary artery ligation without reperfusion (model 1, ischemia). In model 2 (ischemia/reperfusion), rats were subjected to 17 or 30 min of LAD occlusion and 2 h of reperfusion. PQQ (15-20 mg/kg) was given i.p., either 30 min before LAD occlusion (Pretreatment) or i.v. at the onset of reperfusion (Treatment). In model 1, PQQ reduced infarct size (10.0 +/- 1.5 vs 19.1 +/- 2.1%, P < 0.01). In model 2, either PQQ Pretreatment or Treatment also reduced infarct size (18.4 +/- 2.3 and 25.6 +/- 3.5% vs 38.1 +/- 2.6%, P < 0.01). PQQ resulted in higher LV developed pressure and LV (+)dP/dt after 1-2 h of reperfusion (P < 0.05), and fewer ventricular fibrillation episodes. PQQ dose (5-20 mg/kg) was inversely related to infarct size. PQQ reduced myocardial tissue levels of malondialdehyde (MDA), an indicator of lipid peroxidation (316 +/- 88 vs 99 +/- 14 nmol/g, P < 0.01). PQQ given either as Pretreatment or as Treatment at the onset of reperfusion is highly effective in reducing infarct size and improving cardiac function in a dose-related manner in rat models of ischemia and ischemia/reperfusion. The optimal dose in this study, which exhibited neither renal nor hepatic toxicity, was 15 mg/kg, but lower doses may also be efficacious. We conclude that PQQ, which appears to act as a free radical scavenger in ischemic myocardium, is a highly effective cardioprotective agent.

  15. Thallium-201 myocardial SPECT in left bundle branch block: diagnosis of myocardial ischemia with a disease-specific reference database.

    PubMed

    Zupán, Kristóf; Kári, Béla; Fontos, Géza; Dékány, Péter; Pártos, Oszkár

    2006-07-01

    The aim of this study was to assess the value of a myocardial perfusion single photon emission computed tomography (SPECT) reference file for patients with left bundle branch block (LBBB). Tl-201 stress-redistribution myocardial perfusion SPECT studies of patients with complete, permanent LBBB were reviewed retrospectively. To develop a reference database, 18 patients with a low likelihood of coronary artery disease (CAD) were selected. Left ventricular regional average and standard deviation (SD) values of the reference file images were calculated. The diagnostic performance was tested on perfusion images of 49 patients with LBBB, undergoing both scintigraphic and coronary angiographic evaluation, and was compared with a commercial quantitative analysis system using a general reference database. The LBBB reference file performed significantly better in detecting epicardial CAD than did the general reference database (receiver operating characteristic area under the curve 0.835 +/- 0.06 vs 0.580 +/- 0.08, p < .01). Disease localization also was improved significantly in the territory of the left anterior descending and of the right coronary arteries. The use of a reference file of patients with LBBB and a low likelihood of CAD aids the detection and the localization of myocardial ischemia on Tl-201 myocardial SPECT images of this patient group.

  16. The Antioxidant, N-(2-mercaptopropionyl)-glycine (MPG), Does Not Reduce Myocardial Infarct Size in an Acute Canine Model of Myocardial Ischemia and Reperfusion.

    PubMed

    Venturini; Flickinger; Womack; Smith; McMahon

    1998-05-01

    Oxygen radical generation can be measured when blood flow is restored to previously ischemic tissue. Although several studies have suggested oxygen radicals contribute to lethal injury of myocardium after ischemia, other studies have failed to confirm this implication. Antioxidants, such as N-(2-mercaptoptopionyl)-glycine (MPG) and superoxide dismutase, have had inconsistent effects on lethal myocardial injury in animal models of ischemia and reperfusion. Many variables influence lethal myocardial injury in these models: time of ischemia, time of reperfusion, dose of antioxidant, myocardial oxygen demand, area at risk, collateral blood flow, and body core temperature. The purpose of this study is to test the effects of infusion of MPG on lethal reperfusion injury in a canine model of ischemia and reperfusion with these variables tightly controlled. The left anterior descending coronary artery of anesthetized dogs was ligated for 90 minutes and reperfused for 4 hours. MPG was infused (100 mg/kg/h) 15 minutes before the end of ischemia and throughout reperfusion. Core body temperature was closely monitored, and infarct size was adjusted to transmural myocardial blood flow during ischemia. MPG had no effect on infarct size or infarct size adjusted for changes in collateral blood flow. These data reinforce a general difficulty in demonstrating the effects of antioxidant therapies on lethal injury, even when closely monitoring covariates known to impact infarct size.

  17. Chest pain with myocardial ischemia in a child: should we think about coronary slow flow phenomenon?

    PubMed

    Kocabaş, Abdullah; Kardelen, Fırat; Akçurin, Gayaz; Ertuğ, Halil

    2013-10-01

    The coronary slow flow phenomenon (CSFP) is an angiographic finding characterized by delayed opacification of epicardial coronary arteries in the absence of stenotic lesion. Herein, we present a 13-year-old boy with recurrent chest pain who was diagnosed with acute ST-segment elevation myocardial infarction associated with CSFP, which has not been reported previously in the pediatric age group. Coronary angiography revealed only the presence of slow flow in the left anterior descending (LAD) coronary artery. Myocardial perfusion scintigraphy revealed a reversible perfusion defect in the LAD territory, which regressed partially at rest and showed complete improvement after dipyridamole infusion. All the symptoms, electrocardiogram abnormalities and cardiac markers returned to normal after dipyridamole treatment during the follow-up. We conclude that CSFP should be kept in mind in the differential diagnosis of chest pain with myocardial ischemia in the pediatric age group.

  18. Effects and Mechanisms of Chinese Herbal Medicine in Ameliorating Myocardial Ischemia-Reperfusion Injury

    PubMed Central

    Liu, Qing; Li, Jiqiang; Wang, Jing; Li, Jianping; Janicki, Joseph S.

    2013-01-01

    Myocardial ischemia-reperfusion (MIR) injury is a major contributor to the morbidity and mortality associated with coronary artery disease, which accounts for approximately 450,000 deaths a year in the United States alone. Chinese herbal medicine, especially combined herbal formulations, has been widely used in traditional Chinese medicine for the treatment of myocardial infarction for hundreds of years. While the efficacy of Chinese herbal medicine is well documented, the underlying molecular mechanisms remain elusive. In this review, we highlight recent studies which are focused on elucidating the cellular and molecular mechanisms using extracted compounds, single herbs, or herbal formulations in experimental settings. These studies represent recent efforts to bridge the gap between the enigma of ancient Chinese herbal medicine and the concepts of modern cell and molecular biology in the treatment of myocardial infarction. PMID:24288571

  19. Exogenous NAD+ administration significantly protects against myocardial ischemia/reperfusion injury in rat model

    PubMed Central

    Zhang, Youjun; Wang, Ban; Fu, Xingli; Guan, Shaofeng; Han, Wenzheng; Zhang, Jie; Gan, Qian; Fang, Weiyi; Ying, Weihai; Qu, Xinkai

    2016-01-01

    Acute myocardial infarction is one of the leading causes for death around the world. Although essential for successful interventional therapy, it is inevitably complicated by reperfusion injury. Thus effective approaches to reduce ischemia/reperfusion (I/R) injury are still critically needed. To test our hypothesis that intravenous administration of NAD+ can attenuate I/R injury by reducing apoptotic damage and enhancing antioxidant capacity, we used a rat mode of myocardial I/R. Our study found that administration of 10-20 mg/kg NAD+ can dose dependently reduce myocardial infarct induced by I/R, with an approximately 85% reduction of the infarct at the dosage of 20 mg/kg NAD+. We further found that the injection of NAD+ can significantly decrease I/R-induced apoptotic damage in the heart: NAD+ administration can both decrease the TUNEL signals, Bax, cleaved caspase-3 levels and increase the Bcl-XL levels in the rats that are subjected to myocardial I/R injury. NAD+ administration can also significantly attenuate I/R-induced decreases in SOD activity and SOD-2 protein levels in the hearts. NAD+ can profoundly decrease myocardial I/R injury at least partially by attenuating apoptotic damage and enhancing the antioxidant capacity, thus suggesting that NAD+ may become a promising therapeutic agent for myocardial I/R injury. PMID:27648125

  20. Ginsenoside Rg3 Improves Cardiac Function after Myocardial Ischemia/Reperfusion via Attenuating Apoptosis and Inflammation

    PubMed Central

    Zhang, Li-ping; Jiang, Yi-chuan; Yu, Xiao-feng; Xu, Hua-li; Li, Min

    2016-01-01

    Objectives. Ginsenoside Rg3 is one of the ginsenosides which are the main constituents isolated from Panax ginseng. Previous study demonstrated that ginsenoside Rg3 had a protective effect against myocardial ischemia/reperfusion- (I/R-) induced injury. Objective. This study was designed to evaluate the effect of ginsenoside Rg3 on cardiac function impairment induced by myocardial I/R in rats. Methods. Sprague-Dawley rats were subjected to myocardial I/R. Echocardiographic and hemodynamic parameters and histopathological examination were carried out. The expressions of P53, Bcl-2, Bax, and cleaved caspase-3 and the levels of TNF-α and IL-1β in the left ventricles were measured. Results. Ginsenoside Rg3 increased a left ventricular fractional shortening and left ventricular ejection fraction. Treatment with ginsenoside Rg3 also alleviated increases of left ventricular end diastolic pressure and decreases of left ventricular systolic pressure and ±dp/dt in myocardial I/R-rats. Ginsenoside Rg3 decreased apoptosis cells through inhibiting the activation of caspase-3. Ginsenoside Rg3 also caused significant reductions of the contents of TNF-α and IL-1β in left ventricles of myocardial I/R-rats. Conclusion. The findings suggested that ginsenoside Rg3 possessed the effect of improving myocardial I/R-induced cardiac function impairment and that the mechanism of pharmacological action of ginsenoside Rg3 was related to its properties of antiapoptosis and anti-inflammation. PMID:28105061

  1. Cardioprotective activity of chalcones in ischemia/reperfusion-induced myocardial infarction in albino rats

    PubMed Central

    Annapurna, Akula; Mudagal, Manjunatha P; Ansari, Asif; Rao A, Srinivasa

    2012-01-01

    BACKGROUND: There is a comprehensive body of experimental and clinical evidence suggesting that exogenous supplementation of natural antioxidants or augmentation of endogenous antioxidants attenuates the damage caused by myocardial infarction. OBJECTIVE: To evaluate the cardioprotective effects of Cl-chalcone and F-chalcone against ischemia/reperfusion (I/R)-induced myocardial infarction in rats. METHODS: Myocardial infarct size was measured using the staining agent 2,3,5-triphenyltetrazolium chloride. Malondialdehyde was measured in serum and heart tissue, and superoxide dismutase and catalase in heart tissue were measured spectrophotometrically. RESULTS: I/R resulted in significant cardiac necrosis, indicated by a rise in the end products of myocardial lipid peroxidation (malondialdehydes). A loss of antioxidative enzymes (superoxide dismutase and catalase) in heart tissue was also observed in animals subjected to in vivo myocardial I/R injury. DISCUSSION: The present study demonstrated that treatment with Cl-chalcone and F-chalcone significantly limited infarct size, partially but significantly attenuated the level of lipid peroxidation and moderated the loss of antioxidant reserves in rats subjected to 30 min coronary artery occlusion followed by a 4 h reperfusion in comparison with I/R groups. CONCLUSIONS: The results of the present study suggest that chalcones have cardioprotective activity against I/R-induced myocardial infarction in rats. PMID:23620697

  2. Cardioprotective activity of chalcones in ischemia/reperfusion-induced myocardial infarction in albino rats.

    PubMed

    Annapurna, Akula; Mudagal, Manjunatha P; Ansari, Asif; Rao A, Srinivasa

    2012-09-01

    There is a comprehensive body of experimental and clinical evidence suggesting that exogenous supplementation of natural antioxidants or augmentation of endogenous antioxidants attenuates the damage caused by myocardial infarction. To evaluate the cardioprotective effects of Cl-chalcone and F-chalcone against ischemia/reperfusion (I/R)-induced myocardial infarction in rats. Myocardial infarct size was measured using the staining agent 2,3,5-triphenyltetrazolium chloride. Malondialdehyde was measured in serum and heart tissue, and superoxide dismutase and catalase in heart tissue were measured spectrophotometrically. I/R resulted in significant cardiac necrosis, indicated by a rise in the end products of myocardial lipid peroxidation (malondialdehydes). A loss of antioxidative enzymes (superoxide dismutase and catalase) in heart tissue was also observed in animals subjected to in vivo myocardial I/R injury. The present study demonstrated that treatment with Cl-chalcone and F-chalcone significantly limited infarct size, partially but significantly attenuated the level of lipid peroxidation and moderated the loss of antioxidant reserves in rats subjected to 30 min coronary artery occlusion followed by a 4 h reperfusion in comparison with I/R groups. The results of the present study suggest that chalcones have cardioprotective activity against I/R-induced myocardial infarction in rats.

  3. A possible relationship between gluconeogenesis and glycogen metabolism in rabbits during myocardial ischemia.

    PubMed

    Aguiar, Raquel R DE; Vale, Daniela F; Silva, Renato M DA; Muniz, Yolanda P; Antunes, Fernanda; Logullo, Carlos; Oliveira, André L A; Almeida, Adriana J DE

    2017-01-01

    Ischemia is responsible for many metabolic abnormalities in the heart, causing changes in organ function. One of modifications occurring in the ischemic cell is changing from aerobic to anaerobic metabolism. This change causes the predominance of the use of carbohydrates as an energy substrate instead of lipids. In this case, the glycogen is essential to the maintenance of heart energy intake, being an important reserve to resist the stress caused by hypoxia, using glycolysis and lactic acid fermentation. In order to study the glucose anaerobic pathways utilization and understand the metabolic adaptations, New Zealand white rabbits were subjected to ischemia caused by Inflow occlusion technique. The animals were monitored during surgery by pH and lactate levels. Transcription analysis of the pyruvate kinase, lactate dehydrogenase and phosphoenolpyruvate carboxykinase enzymes were performed by qRT-PCR, and glycogen quantification was determined enzymatically. Pyruvate kinase transcription increased during ischemia, followed by glycogen consumption content. The gluconeogenesis increased in control and ischemia moments, suggesting a relationship between gluconeogenesis and glycogen metabolism. This result shows the significant contribution of these substrates in the organ energy supply and demonstrates the capacity of the heart to adapt the metabolism after this injury, sustaining the homeostasis during short-term myocardial ischemia.

  4. Prevalence of Ischemia on Myocardial Perfusion Scintigraphy of Pre- and Postmenopausal Women

    PubMed Central

    dos Santos, Daniel Augusto Message; Navarro, Wendy Yasdin Sierraalta; Alexandre, Leonardo Machado; Cestari, Priscila Feitosa; Smanio, Paola Emanuela Poggio

    2013-01-01

    Background In postmenopausal women, the presence of risk factors for coronary artery disease (CAD) increases. However, the difference in prevalence of ischemia between pre- and postmenopausal women with multiple risk factors for CAD has not been well established. Objectives To compare the prevalence of ischemia on Tc99m-sestamibi myocardial perfusion scintigraphy (MPS) in pre-and postmenopausal women, and to evaluate whether menopause can be considered an independent risk predictor of ischemia in women with multiple risk factors for CAD. Methods This study retrospectively assessed 500 MPS of pre- and postmenopausal women with multiple risk factors for CAD. Statistical analysis was performed by using Fisher exact test and univariate and multivariate analysis, a p value ≤ 0.05 being considered significant. Results Postmenopausal women represented 55.9% of the sample; 83.3% were hypertensive; 28.9%, diabetic; 32.1%, smokers; 25%, obese; 61.2% had high cholesterol levels; and 34.3% had known CAD. Postmenopausal women were more often hypertensive, diabetic and dyslipidemic, and had lower functional capacity on exercise testing (p = < 0.005). The presence of ischemia on MPS did not significantly differ between the pre- and postmenopausal groups (p = 0.395). The only variable associated with ischemia on MPS was known CAD (p = 0.004). Conclusion The results suggest that, in women with multiple risk factors for CAD, menopause was not an independent predictor of ischemia on MPS. Those data support the idea that the investigation of ischemia via MPS in women with multiple risk factors for CAD should begin prior to menopause. PMID:24217403

  5. Impaired contractile recovery after low-flow myocardial ischemia in a porcine model of metabolic syndrome.

    PubMed

    Huang, Janice V; Lu, Li; Ye, Shuyu; Bergman, Bryan C; Sparagna, Genevieve C; Sarraf, Mohammad; Reusch, Jane E B; Greyson, Clifford R; Schwartz, Gregory G

    2013-03-15

    Clinical metabolic syndrome conveys a poor prognosis in patients with acute coronary syndrome, not fully accounted for by the extent of coronary atherosclerosis. To explain this observation, we determined whether postischemic myocardial contractile and metabolic function are impaired in a porcine dietary model of metabolic syndrome without atherosclerosis. Micropigs (n = 28) were assigned to a control diet (low fat, no added sugars) or an intervention diet (high saturated fat and simple sugars, no added cholesterol) for 7 mo. The intervention diet produced obesity, hypertension, dyslipidemia, and impaired glucose tolerance, but not atherosclerosis. Under open-chest, anesthetized conditions, pigs underwent 45 min of low-flow myocardial ischemia and 120 min of reperfusion. In both diet groups, contractile function was similar at baseline and declined similarly during ischemia. However, after 120 min of reperfusion, regional work recovered to 21 ± 12% of baseline in metabolic syndrome pigs compared with 61 ± 13% in control pigs (P = 0.01). Ischemia-reperfusion caused a progressive decline in mechanical/metabolic efficiency (regional work/O2 consumption) in metabolic syndrome hearts, but not in control hearts. Metabolic syndrome hearts demonstrated altered fatty acyl composition of cardiolipin and increased Akt phosphorylation in both ischemic and nonischemic regions, suggesting tonic activation. Metabolic syndrome hearts used more fatty acid than control hearts (P = 0.03). When fatty acid availability was restricted by prior insulin exposure, differences between groups in postischemic contractile recovery and mechanical/metabolic efficiency were eliminated. In conclusion, pigs with characteristics of metabolic syndrome demonstrate impaired contractile and metabolic recovery after low-flow myocardial ischemia. Contributory mechanisms may include remodeling of cardiolipin, abnormal activation of Akt, and excessive utilization of fatty acid substrates.

  6. Prevention of ischemia-induced myocardial platelet deposition by exogenous prostacyclin

    SciTech Connect

    Aherne, T.; Price, D.C.; Yee, E.S.; Hsieh, W.R.; Ebert, P.A.

    1986-07-01

    The antithrombotic effects of prostacyclin infusion on myocardial platelet deposition were studied in a canine model during and after global ischemia. Eleven isolated heart preparations were subjected to 1 hour of cardioplegic arrest under moderate hypothermia (27 to 28/sup 0/C), including a control group (n = 7) and a prostacyclin-treated group (n = 4). The hearts of four other dogs were continuously perfused for 180 minutes. Platelet deposition was measured at 15 minute intervals throughout the 3 hour study. Serial full-thickness myocardial biopsy specimens were analyzed for activity of /sup 111/In-labeled platelets with /sup 99m/Tc-labeled erythrocyte correction for tissue blood content. The pattern of platelet distribution was determined by scintiscans of each heart, taken with a gamma camera at the end of the 60 minute reperfusion period. Substantial myocardial platelet deposition was found in the control hearts after ischemia but not in the prostacyclin-treated group (p less than 0.05). Furthermore, prostacyclin infusion had a significant disaggregatory effect on intracoronary platelet deposits when the precardioplegic and postcardioplegic biopsy specimens were analyzed (p less than 0.05). Three hours of continuous perfusion did not increase tissue /sup 111/In-labeled platelet activity. Ex vivo images showed platelet deposition to be a diffuse patchy process with significantly more /sup 111/In activity in the endocardium than in the epicardium after global ischemia (p less than 0.05). These data show the potent antithrombotic properties of prostacyclin in preventing and disaggregating ischemia-induced intracoronary platelet deposition during and after cardioplegic arrest.

  7. Impaired contractile recovery after low-flow myocardial ischemia in a porcine model of metabolic syndrome

    PubMed Central

    Huang, Janice V.; Lu, Li; Ye, Shuyu; Bergman, Bryan C.; Sparagna, Genevieve C.; Sarraf, Mohammad; Reusch, Jane E. B.; Greyson, Clifford R.

    2013-01-01

    Clinical metabolic syndrome conveys a poor prognosis in patients with acute coronary syndrome, not fully accounted for by the extent of coronary atherosclerosis. To explain this observation, we determined whether postischemic myocardial contractile and metabolic function are impaired in a porcine dietary model of metabolic syndrome without atherosclerosis. Micropigs (n = 28) were assigned to a control diet (low fat, no added sugars) or an intervention diet (high saturated fat and simple sugars, no added cholesterol) for 7 mo. The intervention diet produced obesity, hypertension, dyslipidemia, and impaired glucose tolerance, but not atherosclerosis. Under open-chest, anesthetized conditions, pigs underwent 45 min of low-flow myocardial ischemia and 120 min of reperfusion. In both diet groups, contractile function was similar at baseline and declined similarly during ischemia. However, after 120 min of reperfusion, regional work recovered to 21 ± 12% of baseline in metabolic syndrome pigs compared with 61 ± 13% in control pigs (P = 0.01). Ischemia-reperfusion caused a progressive decline in mechanical/metabolic efficiency (regional work/O2 consumption) in metabolic syndrome hearts, but not in control hearts. Metabolic syndrome hearts demonstrated altered fatty acyl composition of cardiolipin and increased Akt phosphorylation in both ischemic and nonischemic regions, suggesting tonic activation. Metabolic syndrome hearts used more fatty acid than control hearts (P = 0.03). When fatty acid availability was restricted by prior insulin exposure, differences between groups in postischemic contractile recovery and mechanical/metabolic efficiency were eliminated. In conclusion, pigs with characteristics of metabolic syndrome demonstrate impaired contractile and metabolic recovery after low-flow myocardial ischemia. Contributory mechanisms may include remodeling of cardiolipin, abnormal activation of Akt, and excessive utilization of fatty acid substrates. PMID:23335793

  8. Protection against myocardial ischemia-reperfusion injury in clinical practice.

    PubMed

    Garcia-Dorado, David; Rodríguez-Sinovas, Antonio; Ruiz-Meana, Marisol; Inserte, Javier

    2014-05-01

    Even when reperfusion therapy is applied as early as possible, survival and quality of life are compromised in a considerable number of patients with ST-segment elevation acute myocardial infarction. Some cell death following transient coronary occlusion occurs during reperfusion, due to poor handling of calcium in the sarcoplasmic reticulum-mitochondria system, calpain activation, oxidative stress, and mitochondrial failure, all promoted by rapid normalization of intracellular pH. Various clinical trials have shown that infarct size can be limited by nonpharmacological strategies--such as ischemic postconditioning and remote ischemic conditioning--or by drugs--such as cyclosporine, insulin, glucagon-like peptide-1 agonists, beta-blockers, or stimulation of cyclic guanosine monophosphate synthesis. However, some clinical studies have yielded negative results, largely due to a lack of consistent preclinical data or a poor design, especially delayed administration. Large-scale clinical trials are therefore necessary, particularly those with primary clinical variables and combined therapies that consider age, sex, and comorbidities, to convert protection against reperfusion injury into a standard treatment for patients with ST-segment elevation acute myocardial infarction.

  9. Is there any cardioprotective role of Taurine during cold ischemic period following global myocardial ischemia?

    PubMed Central

    2011-01-01

    Background The aim of the present study was to investigate the cardioprotective effect of Taurine on the donor hearts during cold ischemic period. Methods 32 rats were divided into four groups (sham, taurine, ischemia, treatment group, 8 rats in each). All rats were fed with rat food for three weeks. Taurine and treatment groups were given a 200 mg/kg/day dose of Taurine by oral gavage besides rat feed. Cardiectomy was performed in all rats after three weeks. In ischemia and treatment groups, harvested hearts were kept in 0.9% sodium chloride at +4 degrees C for 5 hours. Tissue samples were taken from left ventricle in all groups. These samples were evaluated by histopathologic and biochemical examination. Results In the present study results of the biochemical and histopathological examination reveals the protective effects of Taurine. As a marker of lipid peroxidation, Malondialdehyde (MDA) levels in ischemia group were significantly higher than both Sham and Taurine groups. MDA values were recorded; 3.62 ± 0.197 in the sham group, 2.07 ± 0.751 in the Taurine group, 9.71 ± 1.439 in the ischemia group and 7.68 ± 1.365 in the treatment group. MDA levels decreased in treatment group. (p < 0.05) In accordance with MDA findings, while superoxide dismutase and glutathione peroxidase levels decreased in ischemia group, they increased in treatment group. (p < 0.05) There was no differences in Catalase (CAT) enzyme level between treatment and ischemia group (p = 1.000). CAT level results were recorded; 7.08 ± 0.609 in the sham group, 6.15 ± 0.119 in the Taurine group, 5.02 ± 0.62 in the ischemia group, and 5.36 ± 0.384 in the treatment group. Less intracellular edema and inflammatory cell reaction were observed in histologic examination in favor of treatment group. (p < 0.01) Conclusion Taurine decreased myocardial damage during cold ischemic period following global myocardial ischemia. PMID:21418563

  10. Effects of L-propionylcarnitine on ischemia-induced myocardial dysfunction in men with angina pectoris.

    PubMed

    Bartels, G L; Remme, W J; Pillay, M; Schönfeld, D H; Kruijssen, D A

    1994-07-15

    To identify the effect of L-propionylcarnitine (LPC) on ischemia, 31 fasting, untreated male patients with left coronary artery disease were studied during 2 identical pacing stress tests 45 minutes before (atrial pacing test I [APST I]) and 15 minutes after (APST II) administration of 15 mg/kg of LPC or placebo. Hemodynamic, metabolic, and nuclear angiographic variables were studied before, during, and for 10 minutes after pacing. After LPC administration, arterial total carnitine levels increased from 47 +/- 1.7 mumol/liter (control) to 730 +/- 30 mumol/liter. Hemodynamic and metabolic variables were comparable in LPC and placebo during APSI I, and reproducible in placebo during both tests. Although LPC did not affect myocardial oxygen demand and supply, it diminished myocardial ischemia, indicated by a significant 12% and 50% reduction in ST-segment depression and left ventricular end-diastolic pressure, respectively, during APST II. Moreover, during APST II, left ventricular ejection fraction increased by 18% (p < 0.05 vs APST I). Furthermore, LPC improved recovery of myocardial function after pacing, with a reduction in the time to peak filling and a 21% increase in both peak ejection and filling rates 10 minutes after pacing (all p < 0.05). Thus, LPC prevents ischemia-induced ventricular dysfunction, not by affecting the myocardial oxygen supply-demand ratio but as a result of its intrinsic metabolic actions, increasing pyruvate dehydrogenase activity and flux through the citric acid cycle. Because it is well tolerated, it may be a valuable alternative or addition to available antiischemic therapy.

  11. Differential effects of heptanoate and hexanoate on myocardial citric acid cycle intermediates following ischemia-reperfusion.

    PubMed

    Okere, Isidore C; McElfresh, Tracy A; Brunengraber, Daniel Z; Martini, Wenjun; Sterk, Joseph P; Huang, Hazel; Chandler, Margaret P; Brunengraber, Henri; Stanley, William C

    2006-01-01

    In the normal heart, there is loss of citric acid cycle (CAC) intermediates that is matched by the entry of intermediates from outside the cycle, a process termed anaplerosis. Previous in vitro studies suggest that supplementation with anaplerotic substrates improves cardiac function during myocardial ischemia and/or reperfusion. The present investigation assessed whether treatment with the anaplerotic medium-chain fatty acid heptanoate improves contractile function during ischemia and reperfusion. The left anterior descending coronary artery of anesthetized pigs was subjected to 60 min of 60% flow reduction and 30 min of reperfusion. Three treatment groups were studied: saline control, heptanoate (0.4 mM), or hexanoate as a negative control (0.4 mM). Treatment was initiated after 30 min of ischemia and continued through reperfusion. Myocardial CAC intermediate content was not affected by ischemia-reperfusion; however, treatment with heptanoate resulted in a more than twofold increase in fumarate and malate, with no change in citrate and succinate, while treatment with hexanoate did not increase fumarate or malate but increased succinate by 1.8-fold. There were no differences among groups in lactate exchange, glucose oxidation, oxygen consumption, and contractile power. In conclusion, despite a significant increase in the content of carbon-4 CAC intermediates, treatment with heptanoate did not result in improved mechanical function of the heart in this model of reversible ischemia-reperfusion. This suggests that reduced anaplerosis and CAC dysfunction do not play a major role in contractile and metabolic derangements observed with a 60% decrease in coronary flow followed by reperfusion.

  12. Prevalence of and variables associated with silent myocardial ischemia on exercise thallium-201 stress testing

    SciTech Connect

    Gasperetti, C.M.; Burwell, L.R.; Beller, G.A. )

    1990-07-01

    The prevalence of silent myocardial ischemia was prospectively assessed in a group of 103 consecutive patients (mean age 59 +/- 10 years, 79% male) undergoing symptom-limited exercise thallium-201 scintigraphy. Variables that best correlated with the occurrence of painless ischemia by quantitative scintigraphic criteria were examined. Fifty-nine patients (57%) had no angina on exercise testing. A significantly greater percent of patients with silent ischemia than of patients with angina had a recent myocardial infarction (31% versus 7%, p less than 0.01), had no prior angina (91% versus 64%, p less than 0.01), had dyspnea as an exercise test end point (56% versus 35%, p less than 0.05) and exhibited redistribution defects in the supply regions of the right and circumflex coronary arteries (50% versus 35%, p less than 0.05). The group with exercise angina had more ST depression (64% versus 41%, p less than 0.05) and more patients with four or more redistribution defects. However, there was no difference between the two groups with respect to mean total thallium-201 perfusion score, number of redistribution defects per patient, multi-vessel thallium redistribution pattern or extent of angiographic coronary artery disease. There was also no difference between the silent ischemia and angina groups with respect to antianginal drug usage, prevalence of diabetes mellitus, exercise duration, peak exercise heart rate, peak work load, peak double (rate-pressure) product and percent of patients achieving greater than or equal to 85% of maximal predicted heart rate for age. Thus, in this study group, there was a rather high prevalence rate of silent ischemia (57%) by exercise thallium-201 criteria.

  13. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury.

    PubMed

    Kawaguchi, Masanori; Takahashi, Masafumi; Hata, Takeki; Kashima, Yuichiro; Usui, Fumitake; Morimoto, Hajime; Izawa, Atsushi; Takahashi, Yasuko; Masumoto, Junya; Koyama, Jun; Hongo, Minoru; Noda, Tetsuo; Nakayama, Jun; Sagara, Junji; Taniguchi, Shun'ichiro; Ikeda, Uichi

    2011-02-15

    Background- Inflammation plays a key role in the pathophysiology of myocardial ischemia/reperfusion (I/R) injury; however, the mechanism by which myocardial I/R induces inflammation remains unclear. Recent evidence indicates that a sterile inflammatory response triggered by tissue damage is mediated through a multiple-protein complex called the inflammasome. Therefore, we hypothesized that the inflammasome is an initial sensor for danger signal(s) in myocardial I/R injury. Methods and Results- We demonstrate that inflammasome activation in cardiac fibroblasts, but not in cardiomyocytes, is crucially involved in the initial inflammatory response after myocardial I/R injury. We found that inflammasomes are formed by I/R and that its subsequent activation of inflammasomes leads to interleukin-1β production, resulting in inflammatory responses such as inflammatory cell infiltration and cytokine expression in the heart. In mice deficient for apoptosis-associated speck-like adaptor protein and caspase-1, these inflammatory responses and subsequent injuries, including infarct development and myocardial fibrosis and dysfunction, were markedly diminished. Bone marrow transplantation experiments with apoptosis-associated speck-like adaptor protein-deficient mice revealed that inflammasome activation in bone marrow cells and myocardial resident cells such as cardiomyocytes or cardiac fibroblasts plays an important role in myocardial I/R injury. In vitro experiments revealed that hypoxia/reoxygenation stimulated inflammasome activation in cardiac fibroblasts, but not in cardiomyocytes, and that hypoxia/reoxygenation-induced activation was mediated through reactive oxygen species production and potassium efflux. Conclusions- Our results demonstrate the molecular basis for the initial inflammatory response after I/R and suggest that the inflammasome is a potential novel therapeutic target for preventing myocardial I/R injury.

  14. Surgical procedure affects physiological parameters in rat myocardial ischemia: need for mechanical ventilation.

    PubMed

    Horstick, G; Berg, O; Heimann, A; Darius, H; Lehr, H A; Bhakdi, S; Kempski, O; Meyer, J

    1999-02-01

    Several surgical approaches are being used to induce myocardial ischemia in rats. The present study investigated two different operative procedures in spontaneously breathing and mechanically ventilated rats under sham conditions. A snare around the left coronary artery (LCA) was achieved without occlusion. Left lateral thoracotomy was performed in spontaneously breathing and mechanically ventilated rats (tidal volume 8 ml/kg) with a respiratory rate of 90 strokes/min at different levels of O2 supplementation (room air and 30, 40, and 90% O2). All animals were observed for 60 min after thoracotomy. Rats operated with exteriorization of the heart through left lateral thoracotomy while breathing spontaneously developed severe hypoxia and hypercapnia despite an intrathoracic operation time of <1 min. Arterial O2 content decreased from 18.7 +/- 0.5 to 3.3 +/- 0.9 vol%. Lactate increased from 1.2 +/- 0.1 to 5.2 +/- 0.3 mmol/l. Significant signs of ischemia were seen in the electrocardiogram up to 60 min. Mechanically ventilated animals exhibited a spectrum ranging from hypoxia (room air) to hyperoxia (90% O2). In order not to jeopardize findings in experimental myocardial ischemia-reperfusion injury models, stable physiological parameters can be achieved in mechanically ventilated rats at an O2 application of 30-40% at 90 strokes/min.

  15. The CD133+ cell as advanced medicinal product for myocardial and limb ischemia.

    PubMed

    Bongiovanni, Dario; Bassetti, Beatrice; Gambini, Elisa; Gaipa, Giuseppe; Frati, Giacomo; Achilli, Felice; Scacciatella, Paolo; Carbucicchio, Corrado; Pompilio, Giulio

    2014-10-15

    Ischemic diseases are the major cause of death and morbidity in Western countries. In the last decade, cell therapy has been suggested to be a promising treatment both in acute/chronic myocardial and peripheral ischemia. Different cell lineages have been tested, including endothelial progenitor cells. A subpopulation of bone marrow-derived immature ECPs, expressing the highly conserved stem cell glycoprotein antigen prominin-1 or CD133 marker, was shown to possess pro-angiogenic and antiapoptotic effects on ischemic tissues. The mechanisms implicated in CD133+ cells ability to contribute to neovascularization processes have been attributed to their ability to directly differentiate into newly forming vessels and to indirectly activate pro-angiogenic signaling by paracrine mechanisms. A large body of in vivo experimental evidences has demonstrated the potential of CD133+ cells to reverse ischemia. Moreover, several clinical trials have reported promising beneficial effects after infusion of autologous CD133+ into ischemic heart and limbs exploiting various delivery strategies. These trials have contributed to characterize the CD133+ manufacturing process as an advanced cell product (AMP). The aim of this review is to summarize available experimental and clinical data on CD133+ cells in the context of myocardial and peripheral ischemia, and to focus on the development of the CD133+ cell as an anti-ischemic AMP.

  16. Leukocyte CD11a expression and granulocyte activation during experimental myocardial ischemia and long lasting reperfusion

    PubMed Central

    Lantos, János; Grama, László; Orosz, Tamás; Temes, Gyula; Rőth, Elizabeth

    2001-01-01

    BACKGROUND: Myocardial ischemia and reperfusion are accompanied by leukocyte activation and expression of surface adhesion molecules, which induce pathological interactions between endothelial cells and circulating neutrophils, leading to tissue damage. While the dynamics of these processes have been well defined during acute reperfusion, there is very little information regarding long lasting reperfusion. OBJECTIVES: To investigate neutrophil granulocyte (PMN) activation and the CD11a expression of leukocytes during myocardial ischemia and reperfusion for four weeks. ANIMALS AND METHODS: The left anterior descending coronary artery was occluded for 1 h in six dogs, followed by reperfusion for four weeks. Peripheral blood samples were collected before the operation, at the end of ischemia, at 5 and 60 min of reperfusion, and on postoperative days 1, 2, 3, 7, 14, 21 and 28. Sham operation on four dogs served as control. Leukocyte expression of CD11a was measured by flow cytometry. Superoxide radical production of isolated PMNs was determined spectrophotometrically. RESULTS: Granulocyte CD11a expression increased while the superoxide radical-producing capacity decreased significantly by the third postoperative day. Sham operation produced similar alterations in these parameters during the first postoperative week. From the second postoperative week, however, granulocyte radical production and adhesion molecule expression were higher in the ischemic animals. CONCLUSIONS: The exhaustion of PMN radical production and maximal CD11a expression during the first postoperative week are probably due to the surgical trauma caused by thoracotomy, but increased granulocyte function during later reperfusion indicates prolonged healing of injured myocardium. PMID:20428266

  17. Left ventricular energy model predicts adverse events in women with suspected myocardial ischemia: results from the NHLBI-sponsored women’s ischemia syndrome evaluation (WISE) study

    PubMed Central

    Weinberg, Nicole; Pohost, Gerald M.; Bairey Merz, C. Noel; Shaw, Leslee J.; Sopko, George; Fuisz, Anthon; Rogers, William J.; Walsh, Edward G.; Johnson, B. Delia; Sharaf, Barry L.; Pepine, Carl J.; Mankad, Sunil; Reis, Steven E.; Rayarao, Geetha; Vido, Diane A.; Bittner, Vera; Tauxe, Lindsey; Olson, Marian B.; Kelsey, Sheryl F.; Biederman, Robert WW

    2013-01-01

    Objectives To assess the prognostic value of a left ventricular energy-model in women with suspected myocardial ischemia. Background The prognostic value of internal energy utilization (IEU) of the left ventricle in women with suspected myocardial ischemia is unknown. Methods Women [n=227, mean age 59±12 years (range, 31-86 years)], with symptoms of myocardial ischemia, underwent myocardial perfusion imaging (MPI) assessment for regional perfusion defects along with measurement of ventricular volumes separately by gated Single Photon Emission Computed Tomography (SPECT) (n=207) and magnetic resonance imaging (MRI) (n=203). During follow-up (40±17 months), time to first major adverse cardiovascular event (MACE, death, myocardial infarction or hospitalization for congestive heart failure) was analyzed using MRI and gated SPECT variables. Results Adverse events occurred in 31 (14%). Multivariable Cox models were formed for each modality: IEU and wall thickness by MRI (Chi-squared 34, P<0.005) and IEU and systolic blood pressure by gated SEPCT (Chi-squared 34, P<0.005). The models remained predictive after adjustment for age, disease history and Framingham risk score. For each Cox model, patients were categorized as high-risk if the model hazard was positive and not high-risk otherwise. Kaplan-Meier analysis of time to MACE was performed for high-risk vs. not high-risk for MR (log rank 25.3, P<0.001) and gated SEPCT (log rank 18.2, P<0.001) models. Conclusions Among women with suspected myocardial ischemia a high internal energy utilization has higher prognostic value than either a low EF or the presence of a myocardial perfusion defect assessed using two independent modalities of MR or gated SPECT. PMID:24015377

  18. Ischemia/Reperfusion Injury following Acute Myocardial Infarction: A Critical Issue for Clinicians and Forensic Pathologists

    PubMed Central

    Neri, Margherita; Pascale, Natascha; Pomara, Cristoforo

    2017-01-01

    Acute myocardial infarction (AMI) is a leading cause of morbidity and mortality. Reperfusion strategies are the current standard therapy for AMI. However, they may result in paradoxical cardiomyocyte dysfunction, known as ischemic reperfusion injury (IRI). Different forms of IRI are recognized, of which only the first two are reversible: reperfusion-induced arrhythmias, myocardial stunning, microvascular obstruction, and lethal myocardial reperfusion injury. Sudden death is the most common pattern for ischemia-induced lethal ventricular arrhythmias during AMI. The exact mechanisms of IRI are not fully known. Molecular, cellular, and tissue alterations such as cell death, inflammation, neurohumoral activation, and oxidative stress are considered to be of paramount importance in IRI. However, comprehension of the exact pathophysiological mechanisms remains a challenge for clinicians. Furthermore, myocardial IRI is a critical issue also for forensic pathologists since sudden death may occur despite timely reperfusion following AMI, that is one of the most frequently litigated areas of cardiology practice. In this paper we explore the literature regarding the pathophysiology of myocardial IRI, focusing on the possible role of the calpain system, oxidative-nitrosative stress, and matrix metalloproteinases and aiming to foster knowledge of IRI pathophysiology also in terms of medicolegal understanding of sudden deaths following AMI. PMID:28286377

  19. Do antioxidant vitamins reduce infarct size following acute myocardial ischemia/reperfusion?

    PubMed

    Bellows, S D; Hale, S L; Simkhovich, B Z; Kay, G L; Kloner, R A

    1995-02-01

    There is controversy concerning the ability of antioxidant vitamins to reduce myocardial infarct size. We sought to determine whether a brief prophylactic treatment of vitamin C or vitamin C plus Trolox (a water-soluble form of vitamin E) could reduce myocardial infarct size in an experimental model. We used an anesthetized open-chest rabbit model in which a branch of the circumflex coronary artery was ligated for 30 minutes followed by 4 hours of reperfusion. Experiments were performed in a randomized and blinded fashion. An IV injection of normal saline pH balanced to 7.4 (control group n = 15), vitamin C (150 mg/kg, n = 14), or vitamin C plus Trolox (150 mg/kg plus 100 mg/kg, respectively, n = 15) was administered prior to coronary occlusion. Collateral blood flow during coronary occlusion was measured by radioactive microspheres, myocardial risk zone (AR) was assessed by blue dye injection, and myocardial infarct size (AN) was assessed by triphenyltetrazolium chloride staining. All rabbits received comparable ischemic insult: Collateral blood flow and AR were similar among all three groups. Infarct size, measured as a percent of AR, did not differ significantly among the controls (21%), vitamin C (29%), or the vitamin C plus Trolox (18%) groups. Therefore, in this ischemia/reperfusion model, antioxidant vitamins did not alter myocardial infarct size.

  20. Intravenous Administration of Lycopene, a Tomato Extract, Protects against Myocardial Ischemia-Reperfusion Injury

    PubMed Central

    Tong, Chao; Peng, Chuan; Wang, Lianlian; Zhang, Li; Yang, Xiaotao; Xu, Ping; Li, Jinjin; Delplancke, Thibaut; Zhang, Hua; Qi, Hongbo

    2016-01-01

    Background: Oral uptake of lycopene has been shown to be beneficial for preventing myocardial ischemia-reperfusion (I/R) injury. However, the strong first-pass metabolism of lycopene influences its bioavailability and impedes its clinic application. In this study, we determined an intravenous (IV) administration dose of lycopene protects against myocardial infarction (MI) in a mouse model, and investigated the effects of acute lycopene administration on reactive oxygen species (ROS) production and related signaling pathways during myocardial I/R. Methods: In this study, we established both in vitro hypoxia/reoxygenation (H/R) cell model and in vivo regional myocardial I/R mouse model by ligating left anterior artery descending. TTC dual staining was used to assess I/R induced MI in the absence and presence of acute lycopene administration via tail vein injection. Results: Lycopene treatment (1 μM) before reoxygenation significantly reduced cardiomyocyte death induced by H/R. Intravenous administration of lycopene to achieve 1 μM concentration in circulating blood significantly suppressed MI, ROS production, and JNK phosphorylation in the cardiac tissue of mice during in vivo regional I/R. Conclusion: Elevating circulating lycopene to 1 μM via IV injection protects against myocardial I/R injury through inhibition of ROS accumulation and consequent inflammation in mice. PMID:26950150

  1. Usefulness of ambulatory radionuclide monitoring of left ventricular function early after acute myocardial infarction for predicting residual myocardial ischemia

    SciTech Connect

    Breisblatt, W.M.; Weiland, F.L.; McLain, J.R.; Tomlinson, G.C.; Burns, M.J.; Spaccavento, L.J.

    1988-11-15

    Ambulatory radionuclide monitoring of left ventricular function was performed with the nuclear Vest device in 35 patients early after acute myocardial infarction. Patients were evaluated during post-infarction treadmill, other activities that included mental stress and cold pressor challenge, and with stress thallium imaging and cardiac catheterization. Of the 35 patients evaluated, 14 had ischemic responses on treadmill testing and 21 had negative responses. By contrast, 20 had redistribution by thallium imaging suggesting ischemia. Vest studies demonstrated 56 responses suggestive of ischemia in 23 patients. Twenty-two occurred during exercise and 13 with mental stress. Seventy-five percent were silent and only 39% had associated electrocardiographic changes. Vest responses were compared in patients whose thallium scan was indicative of ischemia (thallium-positive) and those without ischemia (thallium-negative). Ejection fraction was higher in the thallium-positive group (0.52 +/- 0.11), as compared with thallium-negative patients (0.44 +/- 0.1). With exercise, ejection fraction decreased for the thallium-positive patients from 0.52 +/- 0.11 to 0.40 +/- 0.09 at peak exercise. For thallium-negative patients, ejection fraction changes were not significant. During mental stress, ejection fraction decreased from 0.51 +/- 0.11 to 0.45 +/- 0.12 for thallium-positive patients while thallium-negative patients were unchanged. Vest-measured decreases in ejection fraction of greater than or equal to 5 units during exercise were highly sensitive (90%), specific (73%) and predictive (82%) of a positive thallium scan. The same response for mental stress was specific (87%) and predictive (85%) of a positive scan result.

  2. Effects of intracoronary melatonin on ischemia-reperfusion injury in ST-elevation myocardial infarction.

    PubMed

    Ekeløf, Sarah V; Halladin, Natalie L; Jensen, Svend E; Zaremba, Tomas; Aarøe, Jens; Kjærgaard, Benedict; Simonsen, Carsten W; Rosenberg, Jacob; Gögenur, Ismail

    2016-01-01

    Acute coronary occlusion is effectively treated by primary percutaneous coronary intervention. However, myocardial ischemia-reperfusion injury is at the moment an unavoidable consequence of the procedure. Oxidative stress is central in the development of ischemia-reperfusion injury. Melatonin, an endogenous hormone, acts through antioxidant mechanisms and could potentially minimize the myocardial injury. The aim of the experimental study was to examine the cardioprotective effects of melatonin in a porcine closed-chest reperfused infarction model. A total of 20 landrace pigs were randomized to a dosage of 200 mg (0.4 mg/mL) melatonin or placebo (saline). The intervention was administered intracoronary and intravenous. Infarct size, area at risk and microvascular obstruction were determined ex vivo by cardiovascular magnetic resonance imaging. Myocardial salvage index was calculated. The plasma levels of high-sensitive troponin T were assessed repeatedly. The experimenters were blinded with regard to treatment regimen. Melatonin did not significantly increase myocardial salvage index compared with placebo [melatonin 21.8% (16.1; 24.8) vs. placebo 20.2% (16.9; 27.0), p = 1.00]. The extent of microvascular obstruction was similar between the groups [melatonin 3.8% (2.7; 7.1) vs. placebo 3.7% (1.3; 7.7), p = 0.96]. The area under the curve for high-sensitive troponin T release was insignificantly reduced by 32% in the melatonin group [AUC melatonin 12,343.9 (6,889.2; 20,147.4) ng h/L vs. AUC placebo 18,285.3 (5,180.4; 23,716.8) ng h/L, p = 0.82]. Combined intracoronary and intravenous treatment with melatonin did not reduce myocardial reperfusion injury. The lack of a positive effect could be due to an ineffective dose of melatonin, a type II error or the timing of administration.

  3. Silent myocardial ischemia in patients with symptomatic intracranial atherosclerosis: associated factors.

    PubMed

    Arenillas, Juan F; Candell-Riera, Jaume; Romero-Farina, Guillermo; Molina, Carlos A; Chacón, Pilar; Aguadé-Bruix, Santiago; Montaner, Joan; de León, Gustavo; Castell-Conesa, Joan; Alvarez-Sabín, José

    2005-06-01

    Optimization of coronary risk evaluation in stroke patients has been encouraged. The relationship between symptomatic intracranial atherosclerosis and occult coronary artery disease (CAD) has not been evaluated sufficiently. We aimed to investigate the prevalence of silent myocardial ischemia in patients with symptomatic intracranial atherosclerosis and to identify factors associated with its presence. From 186 first-ever transient ischemic attack or ischemic stroke patients with intracranial stenoses, 65 fulfilled selection criteria, including angiographic confirmation of a symptomatic atherosclerotic stenosis and absence of known CAD. All patients underwent a maximal-stress myocardial perfusion single-photon emission computed tomography (SPECT). Lipoprotein(a) [Lp(a)], C-reactive protein, and homocysteine (Hcy) levels were determined before SPECT. Stress-rest SPECT detected reversible myocardial perfusion defects in 34 (52%) patients. Vascular risk factors associated with a pathologic SPECT were hypercholesterolemia (P=0.045), presence of >2 risk factors (P=0.004) and high Lp(a) (P=0.023) and Hcy levels (P=0.018). Ninety percent of patients with high Lp(a) and Hcy levels had a positive SPECT. Existence of a stenosed intracranial internal carotid artery (ICA; odds ratio [OR], 7.22, 2.07 to 25.23; P=0.002) and location of the symptomatic stenosis in vertebrobasilar arteries (OR, 4.89, 1.19 to 20.12; P=0.027) were independently associated with silent myocardial ischemia after adjustment by age, sex, and risk factors. More than 50% of the patients with symptomatic intracranial atherosclerosis and not overt CAD show myocardial perfusion defects on stress-rest SPECT. Stenosed intracranial ICA, symptomatic vertebrobasilar stenosis and presence of high Lp(a) and Hcy levels may characterize the patients at a higher risk for occult CAD.

  4. Anti-myocardial Ischemia Effect and Components of Litchi Pericarp Extracts.

    PubMed

    Chen, Yanfen; Li, Huanqing; Zhang, Shu; Yang, Chaoyan; Mai, Ziying; Hu, Xueyan; Gao, Zhenhu; Deng, Hong

    2017-09-01

    Litchi (Litchi chinensis Sonn.) is a famous fruit in south China, and it is also effective for chest tightness or chest pain, irritability, flatulence, epigastric pain and neuralgic pain, hernia pain and testicular swelling, cough, etc. It is valued because a great amount of polyphenol was found in litchi pericarp. In this paper, we got litchi pericarp pure extract by a simple purification method, then evaluated its activity to clear oxygen free radicals in vitro, and evaluated its myocardial protection effect in vivo through acute myocardial ischemia rat model. The results showed that the pure extract had protective effect on myocardial ischemia injury in a certain dose-effect relationship, which reflected in the electrocardiogram, myocardial pathological morphology and other indicators such as cardiac function enzymes, serum and myocardial antioxidant capacity, and eNOS, Bcl-2 and Bax gene expression. Furthermore, we analyzed the components of pure extract by UPLC-MS, ESI-MS and NMR. The main components of PLPE were procyanidin which were identified as procyanidin B2(1), (-)-epicatechin(2), epicatechin-(4β → 8,2β → O → 7)-epicatechin-(4β → 8)-epicatechin(3), A-type procyanidin trimer(4), B-type procyanidin dimer(5) and procyanidin A2(6).This study proved that litchi pericarp extract may have antioxidant activity and cardioprotection effect. It suggested that litchi pericarp may be good for cardiovascular disease. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Resveratrol modifies risk factors for coronary artery disease in swine with metabolic syndrome and myocardial ischemia.

    PubMed

    Robich, Michael P; Osipov, Robert M; Chu, Louis M; Han, Yuchi; Feng, Jun; Nezafat, Reza; Clements, Richard T; Manning, Warren J; Sellke, Frank W

    2011-08-16

    Resveratrol has been purported to modify risk factors for obesity and cardiovascular disease. We sought to examine the effects of resveratrol in a porcine model of metabolic syndrome and chronic myocardial ischemia. Yorkshire swine were fed either a normal diet (control), a high cholesterol diet (HCD), or a high cholesterol diet with supplemental resveratrol (HCD-R; 100mg/kg/day) for 11 weeks. After 4 weeks of diet modification a baseline cardiovascular MRI was performed and an ameroid constrictor was placed on the left circumflex coronary artery of each animal to induce chronic myocardial ischemia. At 7 weeks, a second cardiovascular MRI was performed and swine were sacrificed and myocardial tissue harvested. Resveratrol supplementation resulted in lower body mass indices, serum cholesterol, and C-reactive protein levels, improved glucose tolerance and endothelial function, and favorably augmented signaling pathways associated with myocardial metabolism. Interestingly, serum tumor necrosis factor-α levels were not influenced by resveratrol treatment. Immunoblotting for markers of metabolism demonstrated that insulin receptor substrate-1, glucose transporters 1 and 4, and phospho-AMPK were increased in the HCD-R group. Peroxisome proliferator-activated receptor γ and retinol binding protein 4 were downregulated in the HCD-R group as compared to the HCD group. Myocardial perfusion and function at rest as assessed with magnetic resonance imaging were not different between groups. By favorably influencing risk factors, resveratrol may decrease the burden of chronic metabolic disease and improve cardiovascular health. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Prognostic importance of silent myocardial ischemia detected by intravenous dipyridamole thallium myocardial imaging in asymptomatic patients with coronary artery disease

    SciTech Connect

    Younis, L.T.; Byers, S.; Shaw, L.; Barth, G.; Goodgold, H.; Chaitman, B.R. )

    1989-12-01

    One hundred seven asymptomatic patients who underwent intravenous dipyridamole thallium imaging were evaluated to determine prognostic indicators of subsequent cardiac events over an average follow-up period of 14 +/- 10 months. Univariate analysis of 18 clinical, scintigraphic and angiographic variables revealed that a reversible thallium defect, a combined fixed and reversible thallium defect, number of segmental thallium defects and extent of coronary artery disease were significant predictors of subsequent cardiac events. Of the 13 patients who died or had a nonfatal infarction, 12 had a reversible thallium defect. Stepwise logistic regression analysis selected a reversible thallium defect as the only significant predictor of cardiac events. When death or myocardial infarction was the outcome variable, a combined fixed and reversible thallium defect was the only predictor of outcome. In patients without previous myocardial infarction, the cardiac event rate was significantly greater in those with an abnormal versus normal thallium scan (55% versus 12%, p less than 0.001). Thus, intravenous dipyridamole thallium scintigraphy is a useful noninvasive test to risk stratify asymptomatic patients with coronary artery disease. A reversible thallium defect most likely indicates silent myocardial ischemia in a sizable fraction of patients in this clinical subset and is associated with an unfavorable prognosis.

  7. Hypercholesterolemia aggravates myocardial ischemia reperfusion injury via activating endoplasmic reticulum stress-mediated apoptosis.

    PubMed

    Wu, Nan; Zhang, Xiaowen; Jia, Pengyu; Jia, Dalin

    2015-12-01

    The effect of hypercholesterolemia on myocardial ischemia reperfusion injury (MIRI) is in controversy and the underlying mechanism is still not well understood. In the present study, we firstly detected the effects of hypercholesterolemia on MIRI and the role of endoplasmic reticulum (ER) stress-mediated apoptosis pathway in this process. The infarct size was determined by TTC staining, and apoptosis was measured by the TUNEL method. The marker proteins of ER stress response and ER stress-mediated apoptosis pathway were detected by Western blot. The results showed that high cholesterol diet-induced hypercholesterolemia significantly increased the myocardial infarct size, the release of myocardium enzyme and the ratio of apoptosis, but did not affect the recovery of cardiac function. Moreover, hypercholesterolemia also remarkably up-regulated the expressions of ER stress markers (glucose-regulated protein 78 and calreticulin) and critical molecules in ER stress-mediated apoptosis pathway (CHOP, caspase 12, phospho-JNK). In conclusion, our study demonstrated that hypercholesterolemia enhanced myocardial vulnerability/sensitivity to ischemia reperfusion injury involved in aggravation the ER stress and activation of ER stress-mediated apoptosis pathway and it gave us a new insight into the underlying mechanisms associated with hypercholesterolemia-induced exaggerated MIRI and also provided a novel target for preventing MIRI in the presence of hypercholesterolemia. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Rho-Kinase Activation in Leukocytes Plays a Pivotal Role in Myocardial Ischemia/Reperfusion Injury

    PubMed Central

    Kitano, Katsunori; Usui, Soichiro; Ootsuji, Hiroshi; Takashima, Shin-ichiro; Kobayashi, Daisuke; Murai, Hisayoshi; Furusho, Hiroshi; Nomura, Ayano; Kaneko, Shuichi; Takamura, Masayuki

    2014-01-01

    The Rho/Rho-kinase pathway plays an important role in many cardiovascular diseases such as hypertension, atherosclerosis, heart failure, and myocardial infarction. Although previous studies have shown that Rho-kinase inhibitors reduce ischemia/reperfusion (I/R) injury and cytokine production, the role of Rho-kinase in leukocytes during I/R injury is not well understood. Mice were subjected to 30-min ischemia and reperfusion. Rho-kinase activity was significantly greater in leukocytes subjected to myocardial I/R compared to the sham-operated mice. Administration of fasudil, a Rho-kinase inhibitor, significantly reduced the I/R-induced expression of the proinflammatory cytokines interleukin (IL)-6, C-C motif chemoattractant ligand 2 (CCL2), and tumor necrosis factor (TNF)-α, in leukocytes, compared with saline as the vehicle. Furthermore, fasudil decreased I/R-induced myocardial infarction/area at risk (IA) and I/R-induced leukocyte infiltration in the myocardium. Interestingly, IA in fasudil-administered mice with leukocyte depletion was similar to that in fasudil-administered mice. I/R also resulted in remarkable increases in the mRNA expression levels of the proinflammatory cytokines TNF-α, IL-6, and CCL2 in the heart. Inhibition of Rho-kinase activation in leukocytes has an important role in fasudil-induced cardioprotective effects. Hence, inhibition of Rho-kinase may be an additional therapeutic intervention for the treatment of acute coronary syndrome. PMID:24638037

  9. Metabonomic analysis of Allium macrostemon Bunge as a treatment for acute myocardial ischemia in rats.

    PubMed

    Li, Fang; Xu, Qian; Zheng, Ting; Huang, Fang; Han, Lintao

    2014-01-01

    Myocardial ischemia (MI) refers to a pathological state of the heart caused by reduced cardiac blood perfusion, which leads to a decreased oxygen supply in the heart and an abnormal myocardial energy metabolism. Acute myocardial ischemia (AMI) has posed a significant health risk for humans. Allium macrostemon Bunge (AMB), a popular traditional Chinese medicine, is used for MI treatment. The therapeutic effects of AMB were assessed and the detailed mechanisms of AMB for AMI treatment were investigated. We characterized the metabonomic variations in rats from the sham surgery, AMI, and AMB-pretreated AMI groups through a combination of nuclear magnetic resonance (NMR) spectroscopy and multivariate statistical analysis. Thirty-five metabolites including carbohydrates, a range of amino acids, and organic acids were detected. The (1)H NMR spectra of the rat serum were analyzed using the principal component analysis (PCA) and orthogonal projection to latent structures discriminate analysis (OPLS-DA). Results showed that AMI induced some physiological changes in rats and also led to metabolic disorders related to glycolysis promotion, amino acid metabolism disruption, and other metabolite metabolism perturbation. AMB pretreatment reduced the AMI injury and maintained metabolic balance, possibly by limiting the change in energy metabolism and regulating amino acid metabolism. These findings provide a comprehensive insight on the metabolic response of AMI rats to AMB pretreatment and are important for the use of AMB for AMI therapy.

  10. Ginsenoside Rd mitigates myocardial ischemia-reperfusion injury via Nrf2/HO-1 signaling pathway

    PubMed Central

    Zeng, Xiaofeng; Li, Juan; Li, Zhen

    2015-01-01

    Ginsenoside Rd (GsRd) reportedly protects the heart against ischemia-reperfusion (I/R) injury. Nrf2/HO-1 signaling plays a key role in attenuating oxidative stress. However, it remains unclear whether GsRd protects against myocardial I/R injury via Nrf2/HO-1 signaling. This study aimed to investigate the role of Nrf2/HO-1 signaling in the cardioprotective effect of GsRd. Rats received 30 min ischemia followed by 2 h reperfusion. Cardiac function, infarct size and serum CK, LDH, cTnI levels were detected. The expression of Nrf2 and HO-1 was detected by western blot. The results suggested that GsRd attenuated myocardial I/R injury as evidenced by improved cardiac function, decreased infarct size and decreased levels of serum CK, LDH and cTnI. In addition, GsRd administration enhanced the expression of Nrf2 and HO-1. In conclusion, the present study shows that GsRd protects against myocardial I/R injury via Nrf2/HO-1 signaling. PMID:26550440

  11. Myocardial Perfusion Imaging and Fractional Flow Reserve-Therapeutic Strategy Based on Myocardial Ischemia Evaluation in Patients with Coronary Artery Disease.

    PubMed

    Kawasaki, Tomohiro

    2016-01-01

    Indications for percutaneous coronary intervention (PCI) among patients with stable coronary artery disease (CAD) have historically been decided after morphological evaluation using coronary angiography (CAG). Recently, the importance of physiological evaluation has been recognized using either myocardial perfusion imaging (MPI) or fractional flow reserve (FFR). The results of the recent COURAGE trial showed that PCI did not improve mortality rates in medically optimized patients with stable CAD. However, a nuclear sub-study of that trial in which participants underwent MPI before and after PCI+ optimal medical therapy (OMT), found a greater reduction in ischemia compared with OMT alone. Moreover, the unadjusted risk for death or myocardial infarction in patients with ischemia reduction was lower. In contrast, the FAME study indicated that FFR-guided PCI improved the outcomes of patients with multi-vessel CAD compared with angiography-guided PCI. The FAME II study also indicated the validity of FFR-guided PCI. Thus, FFR evaluation of ischemia is becoming more popular worldwide from the viewpoint of intervention. Both MPI and FFR reflect physiological ischemia, but their findings do not necessarily match up. One reason is that MPI reflects myocardial ischemia whereas FFR reflects coronary artery ischemia. Thus, cardiologists regard the findings of these modalities conflicting when considering practicality and diagnostic accuracy. This article compares the features of MPI and FFR and discusses an appropriate strategy with which to evaluate CAD.

  12. Increased Pericardial Fat Volume Measured From Noncontrast CT Predicts Myocardial Ischemia by SPECT

    PubMed Central

    Tamarappoo, Balaji; Dey, Damini; Shmilovich, Haim; Nakazato, Ryo; Gransar, Heidi; Cheng, Victor Y.; Friedman, John D.; Hayes, Sean W.; Thomson, Louise EJ; Slomka, Piotr J.; Rozanski, Alan; Berman, Daniel S.

    2010-01-01

    OBJECTIVES We evaluated the association between pericardial fat and myocardial ischemia for risk stratification. BACK GROUND Pericardial fat volume (PFV) and thoracic fat volume (TFV) measured from noncontrast computed tomography (CT) performed for calculating coronary calcium score (CCS) are associated with increased CCS and risk for major adverse cardiovascular events. METHODS From a cohort of 1,777 consecutive patients without previously known coronary artery disease (CAD) with noncontrast CT performed within 6 months of single photon emission computed tomography (SPECT), we compared 73 patients with ischemia by SPECT (cases) with 146 patients with normal SPECT (controls) matched by age, gender, CCS category, and symptoms and risk factors for CAD. TFV was automatically measured. Pericardial contours were manually defined within which fat voxels were automatically identified to compute PFV. Computer-assisted visual interpretation of SPECT was performed using standard 17-segment and 5-point score model; perfusion defect was quantified as summed stress score (SSS) and summed rest score (SRS). Ischemia was defined by: SSS – SRS ≥4. Independent relationships of PFV and TFV to ischemia were examined. RESULTS Cases had higher mean PFV (99.1 ± 42.9 cm3 vs. 80.1 ± 31.8 cm3, p = 0.0003) and TFV (196.1 ± 82.7 cm3 vs. 160.8 ± 72.1 cm3, p = 0.001) and higher frequencies of PFV >125 cm3 (22% vs. 8%, p = 0.004) and TFV >200 cm3 (40% vs. 19%, p = 0.001) than controls. After adjustment for CCS, PFV and TFV remained the strongest predictors of ischemia (odds ratio [OR]: 2.91, 95% confidence interval [CI]: 1.53 to 5.52, p = 0.001 for each doubling of PFV; OR: 2.64, 95% CI: 1.48 to 4.72, p = 0.001 for TFV. Receiver operating characteristic analysis showed that prediction of ischemia, as indicated by receiver-operator characteristic area under the curve, improved significantly when PFV or TFV was added to CCS (0.75 vs. 0.68, p = 0.04 for both). CONCLUSIONS Pericardial fat

  13. Right Ventricular Myocardial Ischemia with Arrhythmia in an Asphyxiated Newborn

    PubMed Central

    Solevåg, Anne Lee; Schmölzer, Georg M.; Cheung, Po-Yin

    2016-01-01

    Background Infant and neonatal myocardial infarction (MI) has been described in association with congenital heart disease, coronary artery abnormalities, myocarditis, and tumors. MI in the perinatal period in a structurally normal heart and with ventricular arrhythmia as a presenting feature has not been thoroughly described. Published case reports describe treatment methods extrapolated from adult MI. However, due to the rare occurrence, the most appropriate acute treatment for both MI and ventricular arrhythmia in newborn infants remains unknown. Case A male term infant with perinatal asphyxia and need for extensive cardiopulmonary resuscitation at birth had ventricular tachyarrhythmia and ST-elevations on electrocardiogram. Four hours after birth, he died from cardiogenic failure. A thrombus at the right coronary artery was found on autopsy. Conclusion MI in the perinatal period in a structurally normal heart is very rare and mortality is high. Although acute treatments extrapolated from adult MI has been described to result in favorable outcomes in newborn infants, guidelines are lacking on how to manage acute MI and associated ventricular arrhythmia. PMID:27280062

  14. The role of PPAR in myocardial response to ischemia in normal and diseased heart.

    PubMed

    Ravingerova, Tana; Adameova, Adriana; Carnicka, Slavka; Nemcekova, Martina; Kelly, Tara; Matejikova, Jana; Galatou, Eleftheria; Barlaka, Eleftheria; Lazou, Antigone

    2011-12-01

    Peroxisome proliferator-activated receptors (PPAR), ligand-activated transcription factors, belong to the nuclear hormone receptor superfamily regulating expression of genes involved in different aspects of lipid metabolism, inflammation and cardiac energy production. Activation of PPAR-α isoform by its natural ligands, fatty acids (FA) and eicosanoids, promotes mitochondrial FA oxidation as the primary ATP-generating pathway. On the other hand, PPAR-γ regulates lipid anabolism or storage, while, until recently, the function of PPAR-β/δ has been less explored. Under conditions associated with acute or chronic oxygen deprivation, PPAR-α modulates expression of genes that determine substrate switch (FA vs. glucose) aimed at maintenance of basic cardiac function. Although PPAR-α and PPAR-γ synthetic agonists, hypolipidemic and antidiabetic drugs, have been reported to protect the heart against ischemia/reperfusion injury, it is still a matter of debate whether PPAR activation plays a beneficial or detrimental role in myocardial response to ischemia, in particular, in pathological conditions. This article reviews some findings demonstrating the impact of PPAR activation on cardiac resistance to ischemia in normal and pathologically altered heart. Specifically, it addresses the issue of susceptibility to ischemia in the diabetic myocardium, with particular regards to the role of PPAR. Finally, involvement of PPAR in the mechanisms of lipid-independent cardioprotective effects of some hypolipidemic drugs is also discussed.

  15. Plasma catecholamine concentrations at onset of myocardial ischemia during supine bicycle exercise

    SciTech Connect

    Sung, B.H.; Robinson, C.; Thadani, U.; Lee, R.; Wilson, M.F.

    1986-03-01

    To assess plasma norepinephrine (NE) and epinephrine (E) concentrations at onset of exercise induced myocardial ischemia the authors studied 10 male patients (PTS), age = 56 +/- 8, with angiographically proven coronary disease during multistage supine bicycle exercise (BEX). All drugs were stopped 7 days before study. Data were obtained at rest and each BEX stage. End points were angina or fatigue. Plasma NE and E were measured by radioenzymatic assay and hemodynamic responses and left ventricular ejection fraction (LVEF) were measured by quantitative cardiac blood pool scintigraphy. Ischemia was defined by 1 mm ST depression ( ) and/or less than 5% increase of LVEF. Seven had ST, 9 abnormal LVEF response and 6 angina. Changes from rest to onset of ischemia for individual PTS ranged from 18 to 122% for NE, 10 to 118% for E. Conclusion: Plasma NE and E levels at onset of exercise induced ischemia were, 1) mildly elevated thus can be reached with mild to moderate stress in daily activity, 2) varied widely from patient to patient, and 3) reflected cardiac workload more than contractability.

  16. Toll-Like Receptor 9-Activation during Onset of Myocardial Ischemia Does Not Influence Infarct Extension

    PubMed Central

    Ohm, Ingrid Kristine; Gao, Erhe; Belland Olsen, Maria; Alfsnes, Katrine; Bliksøen, Marte; Øgaard, Jonas; Ranheim, Trine; Nymo, Ståle Haugset; Holmen, Yangchen Dhondup; Aukrust, Pål; Yndestad, Arne; Vinge, Leif Erik

    2014-01-01

    Aim Myocardial infarction (MI) remains a major cause of death and disability worldwide, despite available reperfusion therapies. Inflammatory signaling is considered nodal in defining final infarct size. Activation of the innate immune receptor toll-like receptors (TLR) 9 prior to ischemia and reperfusion (I/R) reduces infarct size, but the consequence of TLR9 activation timed to the onset of ischemia is not known. Methods and Results The TLR9-agonist; CpG B was injected i.p. in C57BL/6 mice immediately after induction of ischemia (30 minutes). Final infarct size, as well as area-at-risk, was measured after 24 hours of reperfusion. CpG B injection resulted in a significant increase in circulating granulocytes and monocytes both in sham and I/R mice. Paradoxically, clear evidence of reduced cardiac infiltration of both monocytes and granulocytes could be demonstrated in I/R mice treated with CpG B (immunocytochemistry, myeloperoxidase activity and mRNA expression patterns). In addition, systemic TLR9 activation elicited significant alterations of cardiac inflammatory genes. Despite these biochemical and cellular changes, there was no difference in infarct size between vehicle and CpG B treated I/R mice. Conclusion Systemic TLR9-stimulation upon onset of ischemia and subsequent reperfusion does not alter final infarct size despite causing clear alterations of both systemic and cardiac inflammatory parameters. Our results question the clinical usefulness of TLR9 activation during cardiac I/R. PMID:25126943

  17. Toll-like receptor 9-activation during onset of myocardial ischemia does not influence infarct extension.

    PubMed

    Ohm, Ingrid Kristine; Gao, Erhe; Belland Olsen, Maria; Alfsnes, Katrine; Bliksøen, Marte; Øgaard, Jonas; Ranheim, Trine; Nymo, Ståle Haugset; Holmen, Yangchen Dhondup; Aukrust, Pål; Yndestad, Arne; Vinge, Leif Erik

    2014-01-01

    Myocardial infarction (MI) remains a major cause of death and disability worldwide, despite available reperfusion therapies. Inflammatory signaling is considered nodal in defining final infarct size. Activation of the innate immune receptor toll-like receptors (TLR) 9 prior to ischemia and reperfusion (I/R) reduces infarct size, but the consequence of TLR9 activation timed to the onset of ischemia is not known. The TLR9-agonist; CpG B was injected i.p. in C57BL/6 mice immediately after induction of ischemia (30 minutes). Final infarct size, as well as area-at-risk, was measured after 24 hours of reperfusion. CpG B injection resulted in a significant increase in circulating granulocytes and monocytes both in sham and I/R mice. Paradoxically, clear evidence of reduced cardiac infiltration of both monocytes and granulocytes could be demonstrated in I/R mice treated with CpG B (immunocytochemistry, myeloperoxidase activity and mRNA expression patterns). In addition, systemic TLR9 activation elicited significant alterations of cardiac inflammatory genes. Despite these biochemical and cellular changes, there was no difference in infarct size between vehicle and CpG B treated I/R mice. Systemic TLR9-stimulation upon onset of ischemia and subsequent reperfusion does not alter final infarct size despite causing clear alterations of both systemic and cardiac inflammatory parameters. Our results question the clinical usefulness of TLR9 activation during cardiac I/R.

  18. Ischemia-induced alterations in myocardial (Na+ + K+)-ATPase and cardiac glycoside binding.

    PubMed Central

    Beller, G A; Conroy, J; Smith, T W

    1976-01-01

    The effects of ischemia on the canine myocardial (Na+ + K+)-ATPase complex were examined in terms of alterations in cardiac glycoside binding and enzymatic activity. Ability of the myocardial cell to bind tritiated ouabain in vivo was assessed after 1, 2, and 6 h of coronary occlusion followed by 45 min of reperfusion, and correlated with measurements of in vitro (Na+ + K+)-ATPase activity and in vitro [3H]ouabain binding after similar periods of ischemia. Regional blood flow alterations during occlusion and reperfusion were simultaneously determined utilizing 15 mum radioactive microspheres to determine the degree to which altered binding of ouabain might be flow related. Anterior wall infarction was produced in 34 dogs by snaring of confluent branches of the left coronary system. Epicardial electrograms delineated ischemic and border zone areas. Coronary reperfusion after 2 and 6 h of occlusion was associated with impaired reflow of blood and markedly impaired uptake of [3H]ouabain in ischemic myocardium. In both groups, in vivo [3H]ouabain binding by ischemic tissue was reduced out of proportion to the reduction in flow. Despite near-complete restoration of flow in seven dogs occluded for 1 h and reperfused, [3H]ouabain remained significantly reduced to 58 +/- 9% of nonischemic uptake in subendocardial layers of the central zone of ischemia. Thus, when coronary flow was restored to areas of myocardium rendered acutely ischemia for 1 or more hours, ischemic zones demonstrated progressively diminished ability to bind ouabain. To determine whether ischemia-induced alteration in myocardial (Na+ + K+)-ATPase might underlie these changes, (Na+ + K+)-ATPase activity and [3H]ouabain binding were measured in microsomal fractions from ischemic myocardium after 1, 2, and 6 h of coronary occlusion. In animals occluded for 6 h, (Na+ + K+)-ATPase activity was significantly reduced by 40% in epicardial and by 35% in endocardial layers compared with nonischemic myocardium

  19. [Efficiency of mildronate in rats of different age with experimental-induced myocardial ischemia].

    PubMed

    Kukes, V G; Zhernakova, N I; Gorbach, T V; Romashchenko, O V; Rumbesht, V V

    2013-01-01

    Under experimental myocardial ischemia in rats of 10 months treatment with mildronate resulted in essential changes in metabolism of cardiomyocites. This includes stimulation of aerobic and anaerobic ways of power supply of heart cells: activation of glycolysis, oxidative phosphorylation and oxidative pyruvate decarboxylation with restoration of adenosine triphosphate pool to intact rats level in myocardium, serum and erythrocytes with signs of stabilization of cardiomyocytes membranes and essential decrease of tissue hypoxia. Introduction of mildronate to old rats (24 months) with an experimental myocardium ischemia was accompanied by lesser expressed changes of metabolism: activation of glycolysis and oxidative pyruvate decarboxylation without stimulation of Crebs' cycle enzymes. This became sufficient for restoration of adenosine triphosphate pool in myocardium without change of its quantity in serum and erythrocytes with signs of stabilization of cardiomyocytes membranes and moderate reduction of tissue hypoxia degree.

  20. [Effectiveness of various dopamine doses in acute myocardial ischemia complicated by cardiogenic shock (an experimental study)].

    PubMed

    Kipshidze, N N; Korotkov, A A; Marsagishvili, L A; Prigolashvili, T Sh; Bokhua, M R

    1981-06-01

    The effect of various doses of dopamine on the values of cardiac contractile and hemodynamic function under conditions of acute two-hour ischemia complicated by cardiogenic shock was studied in 27 experiments on dogs. In a dose of 5 microgram/kg/min dopamine caused an optimum increase in cardiac productive capacity, reduction of peripheral resistance, adequate increase in coronary circulation and decrease in ST segment depression on the ECG. Infusion of 10 microgram/kg/min dopamine usually caused myocardial hyperfunction with an increase in total peripheral resistance and cardiac performance. Maximum dopamine doses (10 microgram/kg/min and more) were effective in the areactive form of cardiogenic shock. In longterm dopamine infusion it is necessary to establish continuous control over the hemodynamic parameters and the ECG to prevent aggravation of ischemia and for stage-by-stage reduction of the drug concentration and determination of the minimum maintenance dose.

  1. Microdialysis-based analysis of interstitial NO in situ: NO synthase-independent NO formation during myocardial ischemia.

    PubMed

    Martin, Claus; Schulz, Rainer; Post, Heiner; Boengler, Kerstin; Kelm, Malte; Kleinbongard, Petra; Gres, Petra; Skyschally, Andreas; Konietzka, Ina; Heusch, Gerd

    2007-04-01

    Nitric oxide (NO) synthesis by NO synthases (NOS) requires oxygen. However, although counterintuitive, NO synthesis is increased in ischemic myocardium. Accordingly, mechanisms independent of the NOS pathway have been suggested to contribute to NO synthesis during ischemia. NO initiates detrimental as well as protective mechanisms in a concentration-dependent manner, thus aggravating or improving the outcome of ischemia. The aim of this study was to measure in situ interstitial NO concentrations in parallel to infarct size in anaesthetized pigs subjected to myocardial ischemia/reperfusion. The contribution of NOS-independent pathways to NO synthesis was studied using NOS blockade. Interstitial NO measurements, based on microdialysis combined with the oxyhemoglobin method, were made during 90 min of moderate or severe ischemia and subsequent reperfusion. To examine the effect of NOS inhibition, an initial 30-min ischemic period was followed 60 min later by a second 30-min ischemic period with intracoronary infusion of S-ethyl-isothiourea. During ischemia, the interstitial NO concentration increased for about 30 min and then remained constant at this elevated level. The increase in NO concentration by 253+/-82 nmol/L during moderate and 565+/-169 nmol/L during severe ischemia correlated inversely with subendocardial blood flow (r=-0.76). NOS inhibition increased coronary arterial pressure and decreased the interstitial basal NO concentration and tissue nitrite content. However, it did not diminish the increase in interstitial NO concentration during ischemia. NOS-independent pathways are significantly involved in NO synthesis during myocardial ischemia.

  2. Joint analysis of left ventricular expression and circulating plasma levels of Omentin after myocardial ischemia.

    PubMed

    Saddic, Louis A; Nicoloro, Sarah M; Gupta, Olga T; Czech, Michael P; Gorham, Joshua; Shernan, Stanton K; Seidman, Christine E; Seidman, Jon G; Aranki, Sary F; Body, Simon C; Fitzgibbons, Timothy P; Muehlschlegel, Jochen D

    2017-07-07

    Omentin-1, also known as Intelectin-1 (ITLN1), is an adipokine with plasma levels associated with diabetes, obesity, and coronary artery disease. Recent studies suggest that ITLN1 can mitigate myocardial ischemic injury but the expression of ITLN1 in the heart itself has not been well characterized. The purpose of this study is to discern the relationship between the expression pattern of ITLN1 RNA in the human heart and the level of circulating ITLN1 protein in plasma from the same patients following myocardial ischemia. A large cohort of patients (n = 140) undergoing elective cardiac surgery for aortic valve replacement were enrolled in this study. Plasma and left ventricular biopsy samples were taken at the beginning of cardiopulmonary bypass and after an average of 82 min of ischemic cross clamp time. The localization of ITLN1 in epicardial adipose tissue (EAT) was also further characterized with immunoassays and cell fate transition studies. mRNA expression of ITLN1 decreases in left ventricular tissue after acute ischemia in human patients (mean difference 280.48, p = 0.001) whereas plasma protein levels of ITLN1 increase (mean difference 5.24, p < 0.001). Immunohistochemistry localized ITLN1 to the mesothelium or visceral pericardium of EAT. Epithelial to mesenchymal transition in mesothelial cells leads to a downregulation of ITLN1 expression. Myocardial injury leads to a decrease in ITLN1 expression in the heart and a corresponding increase in plasma levels. These changes may in part be due to an epithelial to mesenchymal transition of the cells that express ITLN1 following ischemia. Trial Registration Clinicaltrials.gov ID: NCT00985049.

  3. [Ventricular function in patients with silent myocardial ischemia before and following aortocoronary bypass operation].

    PubMed

    Brugger, P

    1987-10-23

    In 12 patients with silent myocardial ischemia (fall of the ejection fraction (EF) greater than or equal to 5%, without angina pectoris) and in 15 symptomatic patients with coronary heart disease (fall of the EF during exercise EF greater than or equal to 5%, with angina pectoris), the left ventricular ejection fraction and the diastolic function (Peak Filling Rate, PFR; Time to Peak Filling Rate, TPFR) were evaluated before coronary artery bypass surgery and afterwards by the aid of the Nuclear Stethoscope. Our results showed a slight insignificant improvement in the EF from 60 +/- 8.3 per cent at rest to 66 +/- 7.9 per cent vs. 57 +/- 12 per cent to 62.6 +/- 9 per cent in patients with silent ischemia and in patients with angina pectoris after surgery. In contrast to this the EF increased significantly during exercise both in patients with silent ischemia from 52.0 +/- 15.2 per cent to 70.1 +/- 7.9 per cent and in symptomatic patients after revascularisation from, 49 +/- 11.7 per cent on to 64.2 +/- 8.4 per cent (both p less than 0.0001). There was also a similar significant improvement in the diastolic function, whereby the PFR was enhanced from 2.52 +/- 0.54 EDV/sec to 3.31 +/- 0.87 EDV/sec (p less than 0.02) in patients with silent myocardial ischemia and from 2.55 +/- 0.86 EDV/sec to 3.40 +/- 0.98 EDV/sec (p less than 0.02) in symptomatic patients. The TPFR showed a similar improvement.

  4. Internal countershock produces myocardial damage and lactate production without myocardial ischemia in anesthetized dogs

    SciTech Connect

    Gaba, D.M.; Maxwell, M.S.; Merlone, S.; Smith, C.

    1987-04-01

    The global myocardial extraction of lactate was measured in 13 halothane anesthetized dogs to assess the effect of electric countershock applied directly to the heart. Seven animals received two countershocks of 30 delivered joules each, while six animals were not shocked but were atrially paced to a rate of 190-200, both with and without occlusion of the vena cava to produce a mean arterial pressure of 40-50 mmHg. All animals had substantially positive lactate extraction in the baseline state (36 +/- 10% for countershock group vs. 41 +/- 3% for pacing group). Myocardial lactate extraction reached a markedly negative nadir 2.5 min after countershock (-19 +/- 15%), but returned toward normal by 6 min (10 +/- 6%). Lactate extraction was not significantly changed from baseline in the pacing group. The relationship between changes in regional myocardial blood flow (radiolabeled microspheres) and post-countershock myocardial damage (technetium pyrophosphate uptake) was assessed in six dogs shocked as above. Mean myocardial blood flow was increased minimally immediately after countershock (0.78 +/- 0.08 ml X min-1 X g-1 vs. 1.16 +/- 0.3), but there was no difference in blood flow between damaged and undamaged tissue at either time point. The epicardial-to-endocardial ratio of blood flow was unchanged after countershock (0.97 +/- 0.05 vs. 0.99 +/- 0.08). There was no relationship between myocardial damage and either the absolute amount of blood flow after countershock (r = -0.03) or the change in blood flow compared with the pre-shock period (r = 0.01).

  5. Ranolazine improves angina in women with evidence of myocardial ischemia but no obstructive coronary artery disease.

    PubMed

    Mehta, Puja K; Goykhman, Pavel; Thomson, Louise E J; Shufelt, Chrisandra; Wei, Janet; Yang, Yuching; Gill, Edward; Minissian, Margo; Shaw, Leslee J; Slomka, Piotr J; Slivka, Melissa; Berman, Daniel S; Bairey Merz, C Noel

    2011-05-01

    We conducted a pilot study for a large definitive clinical trial evaluating the impact of ranolazine in women with angina, evidence of myocardial ischemia, and no obstructive coronary artery disease (CAD). Women with angina, evidence of myocardial ischemia, but no obstructive CAD frequently have microvascular coronary dysfunction. The impact of ranolazine in this patient group is unknown. A pilot randomized, double-blind, placebo-controlled, crossover trial was conducted in 20 women with angina, no obstructive CAD, and ≥ 10% ischemic myocardium on adenosine stress cardiac magnetic resonance (CMR) imaging. Participants were assigned to ranolazine or placebo for 4 weeks separated by a 2-week washout. The Seattle Angina Questionnaire and CMR were evaluated after each treatment. Invasive coronary flow reserve (CFR) was available in patients who underwent clinically indicated coronary reactivity testing. CMR data analysis included the percentage of ischemic myocardium and quantitative myocardial perfusion reserve index (MPRI). The mean age of subjects was 57 ± 11 years. Compared with placebo, patients on ranolazine had significantly higher (better) Seattle Angina Questionnaire scores, including physical functioning (p = 0.046), angina stability (p = 0.008), and quality of life (p = 0.021). There was a trend toward a higher (better) CMR mid-ventricular MPRI (2.4 [2.0 minimum, 2.8 maximum] vs. 2.1 [1.7 minimum, 2.5 maximum], p = 0.074) on ranolazine. Among women with coronary reactivity testing (n = 13), those with CFR ≤ 3.0 had a significantly improved MPRI on ranolazine versus placebo compared to women with CFR > 3.0 (Δ in MPRI 0.48 vs. -0.82, p = 0.04). In women with angina, evidence of ischemia, and no obstructive CAD, this pilot randomized, controlled trial revealed that ranolazine improves angina. Myocardial ischemia may also improve, particularly among women with low CFR. These data document approach feasibility and provide outcome variability estimates for

  6. [Effects of DSF on the NO system level in experimental rats of myocardial ischemia].

    PubMed

    Tan, Rui; Gu, Jian; Liu, Ru; Long, Shao-jiang

    2006-09-01

    To observe the effect of DSF on NO System in experimental myocardial ischemia model by ligating the cornary descending branch. Wistar mice were divided into control group, model group, Danshen group and DSF group to observe the effect of DSF on variations of the NO system. Compared with model group, content of NO, NOS and cNOS in serum and muscle in DSF group were significantly increased (P < 0.05 [Chinese character: see text] P < 0.01). But there was no statisical difference on the content of iNOS (P > 0.05) compared with model group. The expression of cNOS mRNA was increased (P < 0.05). The mechanism of DSF in treating coronary is realized by improving the content of NO, the activity of NOS and expression of cNOS mRNA in myocardial tissue.

  7. The Role of Oxidative Stress in Myocardial Ischemia and Reperfusion Injury and Remodeling: Revisited

    PubMed Central

    Kurian, Gino A.; Rajagopal, Rashmi; Vedantham, Srinivasan; Rajesh, Mohanraj

    2016-01-01

    Oxidative and reductive stress are dual dynamic phases experienced by the cells undergoing adaptation towards endogenous or exogenous noxious stimulus. The former arises due to the imbalance between the reactive oxygen species production and antioxidant defenses, while the latter is due to the aberrant increase in the reducing equivalents. Mitochondrial malfunction is the common denominator arising from the aberrant functioning of the rheostat that maintains the homeostasis between oxidative and reductive stress. Recent experimental evidences suggest that the maladaptation during oxidative stress could play a pivotal role in the pathophysiology of major cardiovascular diseases such as myocardial infraction, atherosclerosis, and diabetic cardiovascular complications. In this review we have discussed the role of oxidative and reductive stress pathways in the pathogenesis of myocardial ischemia/reperfusion injury and diabetic cardiomyopathy (DCM). Furthermore, we have provided impetus for the development of subcellular organelle targeted antioxidant drug therapy for thwarting the deterioration of the failing myocardium in the aforementioned cardiovascular conditions. PMID:27313825

  8. Diagnostic and Prognostic Value of Lead aVR During Exercise Testing in Patients Suspected of Having Myocardial Ischemia.

    PubMed

    Wagener, Max; Abächerli, Roger; Honegger, Ursina; Schaerli, Nicolas; Prêtre, Gil; Twerenbold, Raphael; Puelacher, Christian; Sunier, Germaine; Reddiess, Philipp; Rubini Gimenez, Maria; Wildi, Karin; Boeddinghaus, Jasper; Nestelberger, Thomas; Badertscher, Patrick; Sabti, Zaid; Schmid, Ramun; Leber, Remo; Widmer, Dayana Flores; Shrestha, Samyut; Strebel, Ivo; Wild, Damian; Osswald, Stefan; Zellweger, Michael; Mueller, Christian; Reichlin, Tobias

    2017-01-05

    We aimed to assess the diagnostic and prognostic value of ST-segment deviation in aVR, a lead often ignored in clinical practice, during exercise testing and to compare it to the most widely used criterion of ST-segment depression in V5. We enrolled 1,596 patients with suspected myocardial ischemia referred for nuclear perfusion imaging undergoing bicycle stress testing. ST-segment amplitudes in leads aVR and V5 were automatically measured. The presence of inducible myocardial ischemia was the diagnostic end point and adjudicated based on nuclear perfusion imaging and coronary angiography. Major adverse cardiac events (MACE) during 2 years of follow-up including death, acute myocardial infarction, and coronary revascularization were the prognostic end point. Exercise-induced myocardial ischemia was detected in 470 patients (29%). Median ST amplitudes for leads aVR and V5 differed significantly among patients with and without ischemia (p <0.01). The diagnostic accuracy of ST changes for myocardial ischemia as quantified by the area under the receiver operating characteristic curve was highest 2 minutes into recovery and similar in aVR and V5 (0.62, 95% confidence interval CI 0.60 to 0.65 vs 0.60, 95% confidence interval 0.58 to 0.63, p = 0.08 for comparison). In multivariate analysis, ST changes in lead aVR, but not lead V5, contributed independent diagnostic information on top of clinical parameters and manual electrocardiographic interpretation. Within 2 years of follow-up, MACE occurred in 33% of patients with ST elevations in aVR and in 16% without (p <0.001). In conclusion, ST elevation in lead aVR during exercise testing indicates inducible myocardial ischemia independently of ST depressions in lead V5 and clinical factors and also predicts MACE during follow-up.

  9. Myocardial ischemia evaluation with dual-source computed tomography: comparison with magnetic resonance imaging.

    PubMed

    Delgado, Carlos; Vázquez, María; Oca, Roque; Vilar, Manuel; Trinidad, Carmen; Sanmartin, Marcelo

    2013-11-01

    Computed tomography does not accurately determine which coronary lesions lead to myocardial ischemia and consequently further tests are required to evaluate ischemia induction. The aim of this study was to compare diagnostic accuracy between dual-energy computed tomography and magnetic resonance imaging in the assessment of myocardial perfusion and viability in patients suspected of coronary artery disease. A prospective study was performed in 56 consecutive patients (39 men [69.6%]; mean age [standard deviation], 63 [10]; range, 23-81). Computed tomography was performed with the following protocol: 1, adenosine stress perfusion; 2, coronary angiography; and 3, delayed enhancement. Magnetic resonance imaging for the evaluation of stress perfusion and delayed enhancement was performed within 30 days. Two observers in consensus analyzed the perfusion and delayed enhancement images. We studied 952 myocardial segments and 168 vascular territories. In a per-segment analysis, the sensitivity, specificity, and positive and negative predictive values of computed tomography compared with magnetic resonance were 76%, 99%, 89%, and 98% for perfusion defects, and 64%, 99%, 82%, and 99% for delayed enhancement, respectively. In a per-vascular territory analysis, the same measures were 78%, 97%, 86%, and 95% for perfusion defects, and 72%, 99%, 93%, and 97% for delayed enhancement, respectively. The mean radiation dose was 8.2 (2) mSv. Dual-source computed tomography may allow accurate and concomitant evaluation of perfusion defects and myocardial viability and analysis of coronary anatomy. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  10. Peptide-loaded nanoparticles and radionuclide imaging for individualized treatment of myocardial ischemia.

    PubMed

    Hwang, Hyosook; Kwon, Jeongll; Oh, Phil-Sun; Lee, Tai-Kyoung; Na, Kyung-Suk; Lee, Chang-Moon; Jeong, Hwan-Seok; Lim, Seok Tae; Sohn, Myung-Hee; Jeong, Hwan-Jeong

    2014-10-01

    To determine whether chitosan hydrogel nanoparticles loaded with vascular endothelial growth factor (VEGF) peptides (81-91 fragments) capable of targeting the ischemic myocardium enhance angiogenesis and promote therapeutic effects and whether radionuclide image-guided dosage control is feasible. Experimental procedures and protocols were approved by the Institutional Animal Care and Use Committee. Rats (n = 32, eight per group) were subjected to myocardial ischemia (control group) and received chitosan hydrogel nanoparticles with VEGF165 proteins (chitosan VEGF) or VEGF81-91 peptides (chitosan peptides) via apical puncture. Ischemic hearts receiving chitosan without angiogenic factors served as the chitosan control. Myocardial perfusion was examined 7 days after surgery by using technetium 99m ((99m)Tc) tetrofosmin (37 MBq) autoradiography, and changes in vascular density with immunohistochemical staining were reviewed. Kruskal-Wallis test and Bonferroni corrected Mann-Whitney U test were used for multiple comparisons. Wilcoxon signed rank test was used to compare myocardial retention of (99m)Tc chitosan. Thirty minutes of myocardial ischemia resulted in perfusion defects (median, 54%; interquartile range [IQR], 41%-62%). Chitosan VEGF decreased perfusion defect extent (median, 68%; IQR, 63%-73%; P = .006 vs control) and increased vascular density (median, 81 vessels per high-power field; IQR, 72-100; P = .009 vs control). Administration of chitosan peptides reduced the degree of perfusion defects (median, 66%; IQR, 62%-73%; P = .006 vs control) and increased vascular density (median, 82 vessels; IQR, 78-92; P = .006 vs control). The effects of chitosan peptides on perfusion and vascular density were comparable to those seen with chitosan VEGF proteins (P = .713 and P = .833, respectively). Chitosan radiolabeled with (99m)Tc was administered twice at reperfusion with a 1-hour interval to determine whether image-guided dosage control is feasible. The hearts

  11. Silent myocardial ischemia and infarction in diabetics with peripheral vascular disease: Assessment by dipyridamole thallium-201 scintigraphy

    SciTech Connect

    Nesto, R.W.; Watson, F.S.; Kowalchuk, G.J.; Zarich, S.W.; Hill, T.; Lewis, S.M.; Lane, S.E. )

    1990-11-01

    We investigated the incidence of silent myocardial ischemia and infarction as assessed by dipyridamole thallium scintigraphy in 30 diabetic patients with peripheral vascular disease and without clinical suspicion of coronary artery disease. Seventeen patients (57%) had thallium abnormalities, with reversible thallium defects compatible with ischemia in 14 patients (47%) and evidence of prior, clinically silent myocardial infarction in 11 patients (37%). Thallium abnormalities were most frequent in patients with concomitant hypertension and cigarette smoking (p = 0.001). These results suggest that unsuspected coronary artery disease is common in this particular group of patients with diabetes mellitus.

  12. Pramipexole pretreatment attenuates myocardial ischemia/reperfusion injury through upregulation of autophagy.

    PubMed

    Mo, Yingli; Tang, Lu; Ma, Yi; Wu, Saizhu

    2016-05-13

    This article investigated the effects of pramipexole on myocardial ischemia reperfusion (I/R) injury and its underlying mechanisms. We utilized an in vivo mouse model of myocardial I/R injury and an in vitro H9c2 cell model of hypoxia/reoxygenation (H/R) injury. Pramipexole pretreatment in male C57BL/6 mice significantly reduced the myocardial infarction size, decreased the CK and LDH activities at the serum level and enhanced autophagy. In the in vitro study, the pramipexole treatment significantly elevated the survival rate, decreased the LDH activity, reduced ROS generation and restored the ΔΨm in H9C2 cells during H/R. Additionally, its use could increase the autophagy flux level in H9c2 cells. The underlying mechanisms were determined by measuring the expression of the autophagic protein levels. These results further indicated that pramipexole treatment modulated H/R-induced autophagy via an AMPK-dependent pathway. All of these data indicate that pramipexole exerted protective effects against myocardial I/R injury and enhanced autophagy in part through the AMPK-mediated pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. N-Acetylcysteine Attenuates Diabetic Myocardial Ischemia Reperfusion Injury through Inhibiting Excessive Autophagy

    PubMed Central

    Wang, Sheng; Yan, Fuxia; Wang, Tingting; He, Yi

    2017-01-01

    Background. Excessive autophagy is a major mechanism of myocardial ischemia reperfusion injury (I/RI) in diabetes with enhanced oxidative stress. Antioxidant N-acetylcysteine (NAC) reduces myocardial I/RI. It is unknown if inhibition of autophagy may represent a mechanism whereby NAC confers cardioprotection in diabetes. Methods and Results. Diabetes was induced in Sprague-Dawley rats with streptozotocin and they were treated without or with NAC (1.5 g/kg/day) for four weeks before being subjected to 30-minute coronary occlusion and 2-hour reperfusion. The results showed that cardiac levels of 15-F2t-Isoprostane were increased and that autophagy was evidenced as increases in ratio of LC3 II/I and protein P62 and AMPK and mTOR expressions were significantly increased in diabetic compared to nondiabetic rats, concomitant with increased postischemic myocardial infarct size and CK-MB release but decreased Akt and eNOS activation. Diabetes was also associated with increased postischemic apoptotic cell death manifested as increases in TUNEL positive cells, cleaved-caspase-3, and ratio of Bax/Bcl-2 protein expression. NAC significantly attenuated I/RI-induced increases in oxidative stress and cardiac apoptosis, prevented postischemic autophagy formation in diabetes, and reduced postischemic myocardial infarction (all p < 0.05). Conclusions. NAC confers cardioprotection against diabetic heart I/RI primarily through inhibiting excessive autophagy which might be a major mechanism why diabetic hearts are less tolerant to I/RI. PMID:28265179

  14. Clinical Significance of Ischemia-Modified Albumin in the Diagnosis of Doxorubicin-Induced Myocardial Injury in Breast Cancer Patients

    PubMed Central

    Ma, Yinghuan; Kang, Wanjun; Bao, Yongxin; Jiao, Fubin; Ma, Yiran

    2013-01-01

    Background Ischemia-modified albumin is an altered serum albumin that forms under conditions of oxidative stress, a state also associated with doxorubicin-induced myocardial injury. Objective The aim of this study was to better assess diagnostic and prognostic significance of ischemia-modified albumin in patients with breast cancer undergoing doxorubicin chemotherapy. Methods Blood samples were collected from 152 breast cancer patients before and after each cycle of doxorubicin chemotherapy to measure the serum levels of ischemia-modified albumin, cardiac troponin T and creatine kinase-MB. We also monitored cardiac function during a 12 month follow-up. Results There was a significant difference in ischemia-modified albumin levels before and after each cycle of chemotherapy and the ischemia-modified albumin concentration positively correlated with the cumulative dose of doxorubicin (r = 0.212, P < 0.05). The combination of ischemia-modified albumin with cardiac troponin T and creatine kinase-MB increased the sensitivity to 0.920 and the specificity to 0.830 in the diagnosis of doxorubicin-induced myocardial injury. The optimal cutoff for ischemia-modified albumin concentration was 112.09 U/ml. The rate of change for ischemia-modified albumin levels correlated negatively with the rate of change for left ventricular ejection fraction at one year (r = –0.221, P < 0.05). Conclusion Ischemia-modified albumin may be a clinically potential new marker for diagnosing doxorubicin-induced myocardial injury, and is helpful to predict long-term impairment of cardiac function. PMID:24223946

  15. Ginkgolide B Reduces the Degradation of Membrane Phospholipids to Prevent Ischemia/Reperfusion Myocardial Injury in Rats.

    PubMed

    Pei, Hong-Xia; Hua, Rong; Guan, Cha-Xiang; Fang, Xiang

    2015-01-01

    Platelet-activating factor (PAF), a bioactive phospholipid, plays an important role in the integrity of the cellular membrane structure, and is involved in the pathogenesis of myocardial ischemia/reperfusion (IR) injuries. In this study, we tested the hypothesis that blockage of PAF receptor by BN 52021 (Ginkgolide B) can prevent IR-induced degradation of the myocardial membrane phospholipid, and deterioration of the cardiac function. Rat hearts in situ were subjected to 5 min ischemia and followed by 10 min reperfusion. Cardiac performances during periods of ischemia and reperfusion were monitored, and the amount of membrane phospholipids was analyzed. Myocardial total phospholipids, phosphatidylcholine, and phosphatidylethanolamine were decreased significantly in ischemia-reperfusion rat hearts compared with those of sham-operated rat hearts. Degradation of the membrane phospholipid was accompanied by the deterioration of cardiac functions and increase in serum lactate dehydrogenase (LDH) activity. BN 52021 (15 mg/kg), given by intravenous infusion 10 min prior to the left anterior descending coronary artery occlusion, reduced IR-related degradation of the myocardial phospholipids, the activity of serum LDH, and was concomitant with improvement of cardiac function. Furthermore, we demonstrated that the production of PAF was increased and BN 52021 decreased cellular damage in cultured anoxic cardiomyocytes. These results indicated that PAF antagonist BN 52021 has a protective effect against IR-induced myocardial dysfunction and degradation of the membrane phospholipids. © 2015 S. Karger AG, Basel.

  16. Plasma nociceptin/orphanin FQ levels rise after spontaneous episodes of angina, but not during induced myocardial ischemia.

    PubMed

    Fontana, Fiorella; Bernardi, Pasquale; Pizzi, Carmine; Spampinato, Santi; Bedini, Andrea; Pich, Emilio Merlo

    2009-09-01

    The aim of our study was to evaluate the effects of repeated episodes of angina and induced myocardial ischemia on plasma nociceptin/orphanin FQ (N/OFQ) levels. Patients with unstable angina (23 with new onset severe angina or accelerated angina and 18 with subacute angina at rest) who had had repeated spontaneous episodes of chest pain in the last week before the study underwent myocardial perfusion single-photon emission computed tomography using adenosine infusion. Twenty subjects without clinical symptoms of angina matched for age, sex and cardiac risk factors served as a control group. N/OFQ levels were significantly (P<0.01) higher in the patients (15.2+/-2.1 pg/ml) than in the control group (8.5+/-2.6 pg/ml). Blood pressure and heart rate did not significantly differ. All patients showed transient adenosine infusion myocardial ischemia that did not induce chest pain or significantly modify plasma N/OFQ levels or hemodynamic parameters. Our findings show that unstable angina is associated with a significant increase in circulating N/OFQ levels unrelated to intervening transient myocardial ischemia or hemodynamic changes. This increase is probably related to the chest pain repeatedly occurring in the course of coronary artery disease, but absent during transient adenosine-induced myocardial ischemia.

  17. Compound danshen dripping pills modulate the perturbed energy metabolism in a rat model of acute myocardial ischemia

    PubMed Central

    Guo, Jiahua; Yong, Yonghong; Aa, Jiye; Cao, Bei; Sun, Runbin; Yu, Xiaoyi; Huang, Jingqiu; Yang, Na; Yan, Lulu; Li, Xinxin; Cao, Jing; Aa, Nan; Yang, Zhijian; Kong, Xiangqing; Wang, Liansheng; Zhu, Xuanxuan; Ma, Xiaohui; Guo, Zhixin; Zhou, Shuiping; Sun, He; Wang, Guangji

    2016-01-01

    The continuous administration of compound danshen dripping pills (CDDP) showed good efficacy in relieving myocardial ischemia clinically. To probe the underlying mechanism, metabolic features were evaluated in a rat model of acute myocardial ischemia induced by isoproterenol (ISO) and administrated with CDDP using a metabolomics platform. Our data revealed that the ISO-induced animal model showed obvious myocardial injury, decreased energy production, and a marked change in metabolomic patterns in plasma and heart tissue. CDDP pretreatment increased energy production, ameliorated biochemical indices, modulated the changes and metabolomic pattern induced by ISO, especially in heart tissue. For the first time, we found that ISO induced myocardial ischemia was accomplished with a reduced fatty acids metabolism and an elevated glycolysis for energy supply upon the ischemic stress; while CDDP pretreatment prevented the tendency induced by ISO and enhanced a metabolic shift towards fatty acids metabolism that conventionally dominates energy supply to cardiac muscle cells. These data suggested that the underlying mechanism of CDDP involved regulating the dominant energy production mode and enhancing a metabolic shift toward fatty acids metabolism in ischemic heart. It was further indicated that CDDP had the potential to prevent myocardial ischemia in clinic. PMID:27905409

  18. Compound danshen dripping pills modulate the perturbed energy metabolism in a rat model of acute myocardial ischemia.

    PubMed

    Guo, Jiahua; Yong, Yonghong; Aa, Jiye; Cao, Bei; Sun, Runbin; Yu, Xiaoyi; Huang, Jingqiu; Yang, Na; Yan, Lulu; Li, Xinxin; Cao, Jing; Aa, Nan; Yang, Zhijian; Kong, Xiangqing; Wang, Liansheng; Zhu, Xuanxuan; Ma, Xiaohui; Guo, Zhixin; Zhou, Shuiping; Sun, He; Wang, Guangji

    2016-12-01

    The continuous administration of compound danshen dripping pills (CDDP) showed good efficacy in relieving myocardial ischemia clinically. To probe the underlying mechanism, metabolic features were evaluated in a rat model of acute myocardial ischemia induced by isoproterenol (ISO) and administrated with CDDP using a metabolomics platform. Our data revealed that the ISO-induced animal model showed obvious myocardial injury, decreased energy production, and a marked change in metabolomic patterns in plasma and heart tissue. CDDP pretreatment increased energy production, ameliorated biochemical indices, modulated the changes and metabolomic pattern induced by ISO, especially in heart tissue. For the first time, we found that ISO induced myocardial ischemia was accomplished with a reduced fatty acids metabolism and an elevated glycolysis for energy supply upon the ischemic stress; while CDDP pretreatment prevented the tendency induced by ISO and enhanced a metabolic shift towards fatty acids metabolism that conventionally dominates energy supply to cardiac muscle cells. These data suggested that the underlying mechanism of CDDP involved regulating the dominant energy production mode and enhancing a metabolic shift toward fatty acids metabolism in ischemic heart. It was further indicated that CDDP had the potential to prevent myocardial ischemia in clinic.

  19. Kaempferol Attenuates Myocardial Ischemic Injury via Inhibition of MAPK Signaling Pathway in Experimental Model of Myocardial Ischemia-Reperfusion Injury

    PubMed Central

    Suchal, Kapil; Malik, Salma; Gamad, Nanda; Malhotra, Rajiv Kumar; Goyal, Sameer N.; Chaudhary, Uma; Bhatia, Jagriti; Ojha, Shreesh; Arya, Dharamvir Singh

    2016-01-01

    Kaempferol (KMP), a dietary flavonoid, has antioxidant, anti-inflammatory, and antiapoptotic effects. Hence, we investigated the effect of KMP in ischemia-reperfusion (IR) model of myocardial injury in rats. We studied male albino Wistar rats that were divided into sham, IR-control, KMP-20 + IR, and KMP 20 per se groups. KMP (20 mg/kg; i.p.) was administered daily to rats for the period of 15 days, and, on the 15th day, ischemia was produced by one-stage ligation of left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. After completion of surgery, rats were sacrificed; heart was removed and processed for biochemical, morphological, and molecular studies. KMP pretreatment significantly ameliorated IR injury by maintaining cardiac function, normalizing oxidative stress, and preserving morphological alterations. Furthermore, there was a decrease in the level of inflammatory markers (TNF-α, IL-6, and NFκB), inhibition of active JNK and p38 proteins, and activation of ERK1/ERK2, a prosurvival kinase. Additionally, it also attenuated apoptosis by reducing the expression of proapoptotic proteins (Bax and Caspase-3), TUNEL positive cells, and increased level of antiapoptotic proteins (Bcl-2). In conclusion, KMP protected against IR injury by attenuating inflammation and apoptosis through the modulation of MAPK pathway. PMID:27087891

  20. Febuxostat pretreatment attenuates myocardial ischemia/reperfusion injury via mitochondrial apoptosis.

    PubMed

    Wang, Shulin; Li, Yunpeng; Song, Xudong; Wang, Xianbao; Zhao, Cong; Chen, Aihua; Yang, Pingzhen

    2015-07-02

    Febuxostat is a selective inhibitor of xanthine oxidase (XO). XO is a critical source of reactive oxygen species (ROS) during myocardial ischemia/reperfusion (I/R) injury. Inhibition of XO is therapeutically effective in I/R injury. Evidence suggests that febuxostat exerts antioxidant effects by directly scavenging ROS. The present study was performed to investigate the effects of febuxostat on myocardial I/R injury and its underlying mechanisms. We utilized an in vivo mouse model of myocardial I/R injury and an in vitro neonatal rat cardiomyocyte (NRC) model of hypoxia/reoxygenation (H/R) injury. Mice were randomized into five groups: Sham, I/R (I/R + Vehicle), I/R + FEB (I/R + febuxostat), AL + I/R (I/R + allopurinol) and FEB (febuxostat), respectively. The I/R + FEB mice were pretreated with febuxostat (5 mg/kg; i.p.) 24 and 1 h prior to I/R. NRCs received febuxostat (1 and 10 µM) at 24 and 1 h before exposure to hypoxia for 3 h followed by reoxygenation for 3 h. Cardiac function, myocardial infarct size, serum levels of creatine kinase (CK) and lactate dehydrogenase (LDH), and myocardial apoptotic index (AI) were measured in order to ascertain the effects of febuxostat on myocardial I/R injury. Hypoxia/reperfusion (H/R) injury in NRCs was examined using MTT, LDH leakage assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The underlying mechanisms were determined by measuring ROS production, mitochondrial membrane potential (ΔΨm), and expression of cytochrome c, cleaved caspases as well as Bcl-2 protein levels. Myocardial I/R led to an elevation in the myocardial infarct size, serum levels of CK and LDH, cell death and AI. Furthermore, I/R reduced cardiac function. These changes were significantly attenuated by pretreatment with febuxostat and allopurinol, especially by febuxostat. Febuxostat also protected the mitochondrial structure following myocardial I/R, inhibited H/R-induced ROS generation, stabilized the

  1. The PPAR-α activator fenofibrate fails to provide myocardial protection in ischemia and reperfusion in pigs

    PubMed Central

    Xu, Ya; Lu, Li; Greyson, Clifford; Rizeq, Mona; Nunley, Karin; Wyatt, Beata; Bristow, Michael R.; Long, Carlin S.; Schwartz, Gregory G.

    2010-01-01

    Rodent studies suggest that peroxisome proliferator-activated receptor-α (PPAR-α) activation reduces myocardial ischemia-reperfusion (I/R) injury and infarct size; however, effects of PPAR-α activation in large animal models of myocardial I/R are unknown. We determined whether chronic treatment with the PPAR-α activator fenofibrate affects myocardial I/R injury in pigs. Domestic farm pigs were assigned to treatment with fenofibrate 50 mg·kg−1 ·day−1 orally or no drug treatment, and either a low-fat (4% by weight) or a high-fat (20% by weight) diet. After 4 wk, 66 pigs underwent 90 min low-flow regional myocardial ischemia and 120 min reperfusion under anesthetized open-chest conditions, resulting in myocardial stunning. The high-fat group received an infusion of triglyceride emulsion and heparin during this terminal experiment to maintain elevated arterial free fatty acid (FFA) levels. An additional 21 pigs underwent 60 min no-flow ischemia and 180 min reperfusion, resulting in myocardial infarction. Plasma concentration of fenofibric acid was similar to the EC50 for activation of PPAR-α in vitro and to maximal concentrations achieved in clinical use. Myocardial expression of PPAR-α mRNA was prominent but unaffected by fenofibrate treatment. Fenofibrate increased expression of carnitine palmitoyltransferase (CPT)-I mRNA in liver and decreased arterial FFA and lactate concentrations (each P < 0.01). However, fenofibrate did not affect myocardial CPT-I expression, substrate uptake, lipid accumulation, or contractile function during low-flow I/R in either the low- or high-fat group, nor did it affect myocardial infarct size. Despite expression of PPAR-α in porcine myocardium and effects of fenofibrate on systemic metabolism, treatment with this PPAR-α activator does not alter myocardial metabolic or contractile responses to I/R in pigs. PMID:16339839

  2. Ischemia-modified albumin (IMA) is not useful for detecting myocardial ischemia during symptom-limited exercise stress tests.

    PubMed

    Kim, June Hong; Choi, Jae Hoon; Lee, Hyun-Kook; Bae, Woo Hyung; Chun, Kook-Jin; Kim, Yun Seong; Lee, Sang Kwon; Kim, Hyung Hoi; Hong, Taek Jong; Shin, Yong Woo

    2008-09-01

    We examined the ischemia-modified albumin (IMA) level during exercise in patients with coronary artery disease (CAD). Forty patients with a history of chest pain underwent both symptom-limited treadmill exercise stress testing and coronary angiography within one week. During the treadmill tests, blood samples were obtained at baseline and 5 min after exercise to measure the serum IMA level. Of the 40 patients, fourteen (35%, CAD group) had significant coronary artery stenosis, while the other 26 (65%, non-CAD group) did not. The baseline and post-exercise IMA levels in the two groups did not differ significantly (105.2+/-7.2 vs. 107.7+/-6.7 U/mL at baseline and 93.1+/-10.1 vs. 94.8+/-5.7 U/mL at post-exercise in the CAD and non-CAD groups, p=0.29 and 0.57, respectively). The changes in IMA after exercise did not differ either (-10.4+/-7.5 vs. -14.0+/-7.6 U/mL in the CAD and non-CAD groups, respectively, p=0.10). Similarly, the change in IMA between the exercise ECG test positive (TMT positive, n=9) and negative (TMT negative, n=20) groups did not differ (-14.63+/-5.19, vs -8.50+/-9.01 U/mL, p=0.15, in the TMT positive and negative groups, respectively). Our results suggest that IMA has limitation in detecting myocardial ischemia during symptom-limited exercise stress tests.

  3. Ischemia-modified albumin (IMA) is not useful for detecting myocardial ischemia during symptom-limited exercise stress tests

    PubMed Central

    Kim, June Hong; Choi, Jae Hoon; Lee, Hyun-Kook; Bae, Woo Hyung; Chun, Kook-Jin; Kim, Yun Seong; Lee, Sang Kwon; Hong, Taek Jong; Shin, Yong Woo

    2008-01-01

    Background/Aims We examined the ischemia-modified albumin (IMA) level during exercise in patients with coronary artery disease (CAD). Methods Forty patients with a history of chest pain underwent both symptom-limited treadmill exercise stress testing and coronary angiography within one week. During the treadmill tests, blood samples were obtained at baseline and 5 min after exercise to measure the serum IMA level. Results Of the 40 patients, fourteen (35%, CAD group) had significant coronary artery stenosis, while the other 26 (65%, non-CAD group) did not. The baseline and post-exercise IMA levels in the two groups did not differ significantly (105.2±7.2 vs. 107.7±6.7 U/mL at baseline and 93.1±10.1 vs. 94.8±5.7 U/mL at post-exercise in the CAD and non-CAD groups, p=0.29 and 0.57, respectively). The changes in IMA after exercise did not differ either (-10.4±7.5 vs. -14.0±7.6 U/mL in the CAD and non-CAD groups, respectively, p=0.10). Similarly, the change in IMA between the exercise ECG test positive (TMT positive, n=9) and negative (TMT negative, n=20) groups did not differ (-14.63±5.19, vs -8.50±9.01 U/mL, p=0.15, in the TMT positive and negative groups, respectively). Conclusions Our results suggest that IMA has limitation in detecting myocardial ischemia during symptom-limited exercise stress tests. PMID:18787364

  4. Protective effect of active perfusion in porcine models of acute myocardial ischemia.

    PubMed

    Feng, Zanxiang; Mao, Zhifu; Dong, Shengjun; Liu, Baohui

    2016-10-01

    Mortality rates associated with off‑pump coronary artery bypass (CAB) are relatively high, as the majority of patients requiring CAB are at a high risk for cardiac events. The present study aimed to establish porcine models of acute myocardial ischemia, and evaluate the protective role of shunt and active perfusion. A total of 30 pigs were randomly assigned to five groups, as follows: i) Sham (control); ii) A1 (shunt; stenosis rate, 55%); iii) A2 (shunt; stenosis rate, 75%); iv) B1 (active perfusion; stenosis rate, 55%); and v) B2 (active perfusion; stenosis rate, 75%) groups. Aortic pressure (P0), left anterior descending coronary pressure (P1), and coronary effective perfusion pressure (P1/P0) were measured. The expression levels of tumor necrosis factor‑α (TNF‑α), cardiac troponin (cTnI), creatine kinase‑myocardial band (CK‑MB), interleukin (IL)‑6, IL‑10, B‑cell lymphoma 2 (Bcl‑2), and caspase‑3 were detected using enzyme‑linked immunosorbent assay or western blotting. The myocardial apoptosis rate was determined using the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Ischemia models with stenosis rates of 55 and 75% were successfully constructed following suturing of the descending artery. Compared with the control, the 55 and 75% stenosis groups demonstrated significantly decreased P1/P0, increased expression levels of TNF‑α, cTnI, CK‑MB, IL‑6, IL‑10 and caspase‑3, an increased rate of myocardial apoptosis, and a decreased expression level of anti‑apoptotic protein, Bcl‑2. At 30 min following successful establishment of the model (ST segment elevation to 1 mm), group B demonstrated significantly increased P1/P0, decreased expression levels of TNF‑α, cTnI, CK‑MB, IL‑6, IL‑10 and caspase‑3, a decreased rate of myocardial apoptosis, and an increased expression level of anti-apoptotic protein, Bcl‑2. Furthermore, the current study indicated that active perfusion was more efficacious

  5. Myocardial contrast echocardiography to assess perfusion in a mouse model of ischemia/reperfusion injury

    NASA Astrophysics Data System (ADS)

    Hossack, John A.; Li, Yinbo; Christensen, Jonathan P.; Yang, Zequan; French, Brent A.

    2004-04-01

    Noninvasive approaches for measuring anatomical and physiological changes resulting from myocardial ischemia / reperfusion injury in the mouse heart have significant value since the mouse provides a practical, low-cost model for modeling human heart disease. In this work, perfusion was assessed before, during and after an induced closed- chest, coronary ischemic event. Ultrasound contrast agent, similar to MP1950, in a saline suspension, was injected via cannulated carotid artery as a bolus and imaged using a Siemens Sequoia 512 scanner and a 15L8 intraoperative transducer operating in second harmonic imaging mode. Image sequences were transferred from the scanner to a PC for analysis. Regions of interest were defined in septal and anterior segments of the myocardium. During the ischemic event, when perfusion was diminished in the anterior segment, mean video intensity in the affected segment was reduced by one half. Furthermore, following reperfusion, hyperemia (enhanced blood flow) was observed in the anterior segment. Specifically, the mean video intensity in the affected segment was increased by approximately 50% over the original baseline level prior to ischemia. Following the approach of Kaul et al., [1], gamma variate curves were fitted to the time varying level of mean video intensity. This foundation suggests the possibility of quantifying myocardial blood flow in ischemic regions of a mouse heart using automated analysis of contrast image data sets. An improved approach to perfusion assessment using the destruction-reperfusion approach [2] is also presented.

  6. A METHOD OF CORONARY RETROPERFUSION FOR THE TREATMENT OF ACUTE MYOCARDIAL ISCHEMIA.

    PubMed

    Feola, Mario; Wiener, Leslie

    1978-09-01

    A method of retrograde perfusion of the myocardium has been developed in dogs. It consists of a double lumen balloon-tipped catheter inserted transvenously into the coronary sinus, with one lumen connected to a roller pump, the other to a helium counterpulsing pump. Oxygenated heparinized blood is obtained from the femoral artery and pumped continuously into the coronary sinus at a pressure of 50-75 mm Hg. The balloon is inflated during diastole, sealing the coronary sinus and promoting retrograde flow, and is deflated during systole, allowing blood drainage into the right atrium and preventing venous congestion. Thirteen anesthetized open-chest dogs were subjected to 15 minutes of proximal LAD artery occlusion and 30 minutes of diastolic coronary sinus perfusion (DCSP). The area of ischemia was mapped by means of platinum electrodes capable of simultaneously measuring myocardial tissue oxygen tension M(p)O(2)) and electrograms. Reduction of M(p)O(2) with simultaneous elevation of the ST segment on the corresponding electrogram was considered an indication of ischemia. Diastolic coronary sinus perfusion improved myocardial oxygen tension in the ischemic myocardium, reduced ST segment elevation, and tended to restore arterial blood pressure. Histologically, there was no intramyocardial hemorrhage.

  7. Safety of intramyocardial injection of autologous bone marrow cells to treat myocardial ischemia in pigs.

    PubMed

    Goodchild, Traci; Pang, Wenxin; Tondato, Fernando; Cui, Jianhua; Otsuka, Yoritaka; Frowein, Steve; Ungs, Mark; Robinson, Keith; Poznansky, Mark; Chronos, Nicolas

    2006-01-01

    The purpose of this study is to determine the potential adverse consequences of intracardiac injections of bone marrow mononuclear cells (BMCs) to facilitate the revascularization of ischemic myocardium. Bone marrow mononuclear cells are used to treat heart failure, though there are few studies that evaluated the safety of BMC transplantation for chronic myocardial ischemia. The pigs received coronary ameroid constrictors to induce chronic myocardial ischemia and left ventricular dysfunction. At 4 weeks, autologous BMCs were injected intramyocardially by Boston Scientific Stiletto catheter with low-dose (10(7) cells) or high-dose BMC (10(8)). Control animals received saline. Blood samples were collected for hematological and chemical indices, including cardiac enzyme levels at regular time intervals postinfarction. At 7 weeks, animals underwent electrophysiological study to evaluate the arrhythmic potential of transplanted BMC, followed by necropsy and histopathology. No mortalities were associated with intramyocardial delivery of BMC or saline. At Day 0, the total creatine phosphokinase (CPK) was in the normal range in all groups. All groups had significant elevations in CPK after ameroid placement, with no significant differences between groups. At 7 weeks, CPK in all groups had returned to pretreatment levels. Electrophysiological assessment revealed that one control animal had an inducible arrhythmia. No arrhythmias were induced in low- or high-dose BMC-treated pigs. There were no histopathological changes associated with BMC injection. This study showed, in a clinically relevant large-animal model, that catheter-based intramyocardial injection of autologous BMC into ischemic myocardium is safe.

  8. Regional myocardial downregulation of the inhibitory guanosine triphosphate-binding protein (Gi alpha 2) and beta-adrenergic receptors in a porcine model of chronic episodic myocardial ischemia.

    PubMed Central

    Hammond, H K; Roth, D A; McKirnan, M D; Ping, P

    1993-01-01

    Regional myocardial ischemia is associated with increased levels of adenosine and norepinephrine, factors that may alter activation of the beta-adrenergic receptor (beta AR)-G protein-adenylyl cyclase pathway in the heart. We have used the ameroid constrictor model to determine whether alterations in myocardial signal transduction through the beta AR-G protein-adenylyl cyclase pathway occur in the setting of chronic episodes of reversible ischemia. Pigs were instrumented with ameroid occluders placed around the left circumflex coronary artery. 5 wk later, after ameroid closure, flow and function were normal in the ischemic bed, but flow (P = 0.001) and function (P < 0.03) were abnormal when metabolic demands were increased. The ischemic bed showed a reduction in myocardial beta AR number (P < 0.005). Despite regional downregulation of myocardial beta AR number, adenylyl cyclase activity was similar in the ischemic and control beds. Quantitative immunoblotting showed that the cardiac inhibitory GTP-binding protein, Gi alpha 2, was decreased in the ischemic bed (P = 0.02). In contrast, the cardiac stimulatory GTP-binding protein, Gs alpha, was increased in endocardial sections from the ischemic bed (P = < 0.05). Decreased Gi alpha 2 content was associated with decreased inhibition of adenylyl cyclase. Reduced Gi alpha 2 content, in conjunction with increased Gs alpha content in the endocardium, may provide a means by which adrenergic activation is maintained in the setting of chronic episodic myocardial ischemia. Images PMID:8254020

  9. Assessment of Myocardial Ischemia in Obese Individuals Undergoing Physical Stress Echocardiography (PSE)

    PubMed Central

    Silveira, Mara Graziele Maciel; Sousa, Antônio Carlos Sobral; Santos, Marcos Antônio Almeida; Tavares, Irlaneide da Silva; Andrade, Stephanie Macedo; Melo, Luiza Dantas; de Andrade, Loren Suyane Oliveira; Santos, Emmanuel Lima Almeida; Oliveira, Joselina Luzia Menezes

    2015-01-01

    Background Physical stress echocardiography is an established methodology for diagnosis and risk stratification of coronary artery disease in patients with physical capacity. In obese (body mass index ≥ 30 kg/m2) the usefulness of pharmacological stress echocardiography has been demonstrated; however, has not been reported the use of physical stress echocardiography in this growing population group. Objective To assess the frequency of myocardial ischemia in obese and non-obese patients undergoing physical stress echocardiography and compare their clinical and echocardiographic differences. Methods 4,050 patients who underwent treadmill physical stress echocardiography were studied according to the Bruce protocol, divided into two groups: obese (n = 945; 23.3%) and non-obese (n = 3,105; 76.6%). Results There was no difference regarding gender. Obese patients were younger (55.4 ± 10.9 vs. 57.56 ± 11.67) and had a higher frequency of hypertension (75.2% vs. 57, 2%; p < 0.0001), diabetis mellitus (15.2% vs. 10.9%; p < 0.0001), dyslipidemia (59.5% vs 51.9%; p < 0.0001), family history of coronary artery disease (59.3% vs. 55.1%; p = 0.023) and physical inactivity (71.4% vs. 52.9%, p < 0.0001). The obese had greater aortic dimensions (3.27 vs. 3.14 cm; p < 0.0001), left atrium (3.97 vs. 3.72 cm; p < 0.0001) and the relative thickness of the ventricule (33.7 vs. 32.8 cm; p < 0.0001). Regarding the presence of myocardial ischemia, there was no difference between groups (19% vs. 17.9%; p = 0.41). In adjusted logistic regression, the presence of myocardial ischemia remained independently associated with age, female gender, diabetes and hypertension. Conclusion Obesity did not behave as a predictor of the presence of ischemia and the physical stress echocardiography. The application of this assessment tool in large scale sample demonstrates the feasibility of the methodology, also in obese. PMID:25714197

  10. Salidroside attenuates myocardial ischemia-reperfusion injury via PI3K/Akt signaling pathway.

    PubMed

    Xu, Mao-Chun; Shi, Hai-Ming; Gao, Xiu-Fang; Wang, Hao

    2013-01-01

    To investigate the cardioprotective effects of salidroside on myocardial ischemia-reperfusion injury (IRI) in rabbits and the underlying action mechanisms in PI3K/Akt signaling pathway, a rabbit ischemia/reperfusion model was created by ligating the left anterior descending coronary arterial branch for 30 min and by releasing the ligature to allow reperfusion for 120 min. Salidroside or salidroside+PI3K inhibitor (LY294002) was administered via intracoronary injections at the onset of reperfusion. Apoptosis of cardiomyocytes was assessed by terminal dUTP nick-end labeling assay, and the expression of apoptosis-related proteins was observed by immunohistochemistry. The expressions of total Akt and phosphorylated Akt (p-Akt) were detected by western blot analysis. The results showed that intracoronary injection of salidroside at the onset of reperfusion markedly reduced the apoptosis of cardiomyocytes, significantly increasing Bcl-2 and p-Akt proteins expressions and decreasing Bax and caspase-3 expressions in the hearts subjected to ischemia followed by 120-min reperfusion. However, the anti-apoptotic effect induced by salidroside was inhibited by LY294002, which blocked the activation of Akt. These results suggested that intracoronary administration of salidroside at the onset of reperfusion could significantly reduce the IRI-induced apoptosis of cardiomyocytes, and this protective mechanism seemed to be mediated by the PI3K-Akt signaling pathway.

  11. In Silico Investigation into Cellular Mechanisms of Cardiac Alternans in Myocardial Ischemia

    PubMed Central

    Liu, Jiaqi; Zhao, Xiaopeng

    2016-01-01

    Myocardial ischemia is associated with pathophysiological conditions such as hyperkalemia, acidosis, and hypoxia. These physiological disorders may lead to changes on the functions of ionic channels, which in turn form the basis for cardiac alternans. In this paper, we investigated the roles of hyperkalemia and calcium handling components played in the genesis of alternans in ischemia at the cellular level by using computational simulations. The results show that hyperkalemic reduced cell excitability and delayed recovery from inactivation of depolarization currents. The inactivation time constant τf of L-type calcium current (ICaL) increased obviously in hyperkalemia. One cycle length was not enough for ICaL to recover completely. Alternans developed as a result of ICaL responding to stimulation every other beat. Sarcoplasmic reticulum calcium-ATPase (SERCA2a) function decreased in ischemia. This change resulted in intracellular Ca (Cai) alternans of small magnitude. A strong Na+-Ca2+ exchange current (INCX) increased the magnitude of Cai alternans, leading to APD alternans through excitation-contraction coupling. Some alternated repolarization currents contributed to this repolarization alternans. PMID:28070211

  12. Tramadol alleviates myocardial injury induced by acute hindlimb ischemia reperfusion in rats.

    PubMed

    Takhtfooladi, Hamed Ashrafzadeh; Asl, Adel Haghighi Khiabanian; Shahzamani, Mehran; Takhtfooladi, Mohammad Ashrafzadeh; Allahverdi, Amin; Khansari, Mohammadreza

    2015-08-01

    Organ injury occurs not only during periods of ischemia but also during reperfusion. It is known that ischemia reperfusion (IR) causes both remote organ and local injuries. This study evaluated the effects of tramadol on the heart as a remote organ after acute hindlimb IR. Thirty healthy mature male Wistar rats were allocated randomly into three groups: Group I (sham), Group II (IR), and Group III (IR + tramadol). Ischemia was induced in anesthetized rats by left femoral artery clamping for 3 h, followed by 3 h of reperfusion. Tramadol (20 mg/kg, intravenous) was administered immediately prior to reperfusion. At the end of the reperfusion, animals were euthanized, and hearts were harvested for histological and biochemical examination. The levels of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were higher in Groups I and III than those in Group II (p < 0.05). In comparison with other groups, tissue malondialdehyde (MDA) levels in Group II were significantly increased (p < 0.05), and this increase was prevented by tramadol. Histopathological changes, including microscopic bleeding, edema, neutrophil infiltration, and necrosis, were scored. The total injuryscore in Group III was significantly decreased (p < 0.05) compared with Group II. From the histological and biochemical perspectives, treatment with tramadol alleviated the myocardial injuries induced by skeletal muscle IR in this experimental model.

  13. Genetic Deficiency of Glutathione S-Transferase P Increases Myocardial Sensitivity to Ischemia-Reperfusion Injury

    PubMed Central

    Conklin, Daniel J.; Guo, Yiru; Jagatheesan, Ganapathy; Kilfoil, Peter; Haberzettl, Petra; Hill, Bradford G.; Baba, Shahid P.; Guo, Luping; Wetzelberger, Karin; Obal, Detlef; Rokosh, D. Gregg; Prough, Russell A.; Prabhu, Sumanth D.; Velayutham, Murugesan; Zweier, Jay L.; Hoetker, David; Riggs, Daniel W.; Srivastava, Sanjay; Bolli, Roberto; Bhatnagar, Aruni

    2016-01-01

    Rationale Myocardial ischemia-reperfusion (I/R) results in the generation of oxygen-derived free radicals and the accumulation of lipid peroxidation-derived unsaturated aldehydes. However, the contribution of aldehydes to myocardial I/R injury has not been assessed. Objective We tested the hypothesis that removal of aldehydes by glutathione S-transferase P (GSTP) diminishes I/R injury. Methods and Results In adult male C57BL/6 mouse hearts, Gstp1/2 was the most abundant GST transcript followed by Gsta4 and Gstm4.1, and GSTP activity was a significant fraction of the total GST activity. mGstp1/2 deletion reduced total GST activity, but no compensatory increase in GSTA and GSTM or major antioxidant enzymes was observed. Genetic deficiency of GSTP did not alter cardiac function, but in comparison with hearts from wild-type (WT) mice, the hearts isolated from GSTP-null mice were more sensitive to I/R injury. Disruption of the GSTP gene also increased infarct size after coronary occlusion in situ. Ischemia significantly increased acrolein in hearts, and GSTP deficiency induced significant deficits in the metabolism of the unsaturated aldehyde, acrolein, but not in the metabolism 4-hydroxy-trans-2-nonenal (HNE) or trans-2-hexanal; and, upon ischemia, the GSTP-null hearts accumulated more acrolein-modified proteins than WT hearts. GSTP-deficiency did not affect I/R-induced free radical generation, JNK activation or depletion of reduced glutathione. Acrolein-exposure induced a hyperpolarizing shift in INa, and acrolein-induced cell death was delayed by SN-6, a Na+/Ca++ exchange inhibitor. Cardiomyocytes isolated from GSTP-null hearts were more sensitive than WT myocytes to acrolein-induced protein crosslinking and cell death. Conclusions GSTP protects the heart from I/R injury by facilitating the detoxification of cytotoxic aldehydes such as acrolein. PMID:26169370

  14. Niacin-bound chromium enhances myocardial protection from ischemia-reperfusion injury.

    PubMed

    Thirunavukkarasu, Mahesh; Penumathsa, Suresh Varma; Juhasz, Bela; Zhan, Lijun; Cordis, Gerald; Altaf, Elham; Bagchi, Manashi; Bagchi, Debasis; Maulik, Nilanjana

    2006-08-01

    A novel niacin-bound, chromium-based energy formula (EF; InterHealth Nutraceuticals, Benicia, CA) has been developed in conjunction with D-ribose, caffeine, ashwagandha extract (containing 5% withanolides), and selected amino acids. We have assessed the efficacy of oral administration of EF (40 mg x kg body wt(-1) x day(-1)) in male and female rats over a period of 90 consecutive days on the cardiovascular and pathophysiological functions in an isolated rat heart model. After 30, 60, and 90 days of treatment with EF, the hearts of male and female rats were subjected to 30 min of global ischemia followed by 2 h of reperfusion and were measured for myocardial ATP, creatine phosphate (CP), phosphorylated AMP kinase (p-AMPK), and heat shock proteins. Myocardial ATP and CP levels were increased in both male and female rats after EF treatment compared with the controls. Western blot analyses were performed to quantify the expression of stress-related proteins such as heat shock proteins (HSP-70, -32, and -25) and are found to be increased in both male and female rats after EF treatment. The p-AMPK level, which is a sensor for the energy state in various cell types, was also found to be increased after treatment with EF in both male and female rats. Aortic flow, maximum first derivative of developed pressure, left ventricular developed pressure, and infarct size were observed after ischemia-reperfusion and found to be significantly improved in EF-treated rats compared with control animals. Thus EF demonstrated long-term safety as well as exhibiting significant cardioprotective ability during ischemia and reperfusion injury by increased energy production, improved cardiac function, and reduced infarct size.

  15. The protective effects of dexmedetomidine on liver injury-induced myocardial ischemia reperfusion.

    PubMed

    Erer, D; Ozer, A; Arslan, M; Oktar, G L; Iriz, E; Elmas, C; Zor, M H; Tatar, T; Goktas, G

    2014-01-01

    The aim of this study was to evaluate the effect of dexmedetomidine (100 µg/kg-ip) on liver injury-induced myocardial ischemia and reperfusion (IR) in rats. Twenty-four Wistar Albino rats were separated into four groups. There were four experimental groups (Group C (Control; n = 6), Group IR (ischemia-reperfusion, n = 6), Group D (Dexmedetomidine; n = 6) that underwent left thoracotomy and received ip dexmedetomidine without IR administered via 100 µg/kg ip route 30 minutes before ligating the left coronary artery, and Group IR-D (IR-Dexmedetomidine; n = 6). A small plastic snare was threaded through the ligature and placed in contact with the heart. To produce IR, a branch of the left coronary artery was occluded for 30 min followed by two hours of reperfusion. However, after the above procedure, the coronary artery was not occluded or reperfused in the control rats. At the end of the study, liver tissue was obtained for histochemical and immunohistochemical determination.Some part of tissue samples were stained with Masson-trichrome for the evaluation of ultrastructural changes and inducible nitric oxide synthase (iNOS) expression was evaluated in other part of samples for immunohistochemical examination. Histopathological changes were detected in Group IR when compared with Group C. iNOS expression was found to be increased and stronger particularly in the vascular wall, perisinusoidal space and hepatocytes around vena centralis in this group compared to the control group. Perivascular oedema was detected to be decreased in Group IR-D compared to Group IR. It was also observed that the impairment in the radial arrangement of hepatocytes significantly recovered in Group IR-D. The immunoreactivity was found to be significantly decreased in the assessment of iNOS expression in the same group when compared with Group IR. Administration of dexmedetomidine ameliorates liver injury induced by myocardial ischemia and reperfusion (Fig. 8, Ref. 33).

  16. Relation between regional myocardial uptake of /sup 82/Rb and perfusion: absolute reduction of cation uptake in ischemia

    SciTech Connect

    Selwyn, A.P.; Allan, R.M.; L'Abbate, A.; Horlock, P.; Camici, P.; Clark, J.; O'Brien, H.A.; Grant, P.M.

    1982-07-01

    Experiments were undertaken using /sup 82/Rb and position tomography to examine the relation between myocardial perfusion and cation uptake during acute ischemia. /sup 82/Rb was repeatedly eluted from a /sup 82/Sr-/sup 82/Rb generator. In six dogs emission tomograms were used to measure the delivered arterial and myocardial concentrations at rest and after coronary stenosis, stress and ischemia. There was a poor overall relation between regional myocardial uptake and flow measured by microspheres and a large individual variability. Extraction of /sup 82/Rb was inversely related to flow. Significant regional reduction of cation uptake was detected in the tomograms when regional flow decreased by more than 35 percent. This reduction was significantly greater when ischemia was present. A small but significantly greater when ischemia was present. A small but significant decrease (33.0 +/- 9.1 percent, mean +/- standard deviation) in the myocardial uptake of /sup 82/Rb was detected only when flow was increased by more than 120 percent in relation to a control area after administration of dypiridamole. The technique using /sup 82/Rb and tomography was applied in five volunteers and five patients with angina pectoris and coronary artery disease. Myocardial tomograms recorded at rest and after exercise in the volunteers showed homogeneous uptake of cation in reproducible and repeatable scans. In contrast, the patients with coronary artery disease showed an absolute mean decrease of 36 +/- 14 percent in regional myocardial uptake of /sup 82/Rb after exercise. These abnormalities persisted in serial tomograms for more than 20 minutes after the symptoms and electrocardiographic signs of ischemia.

  17. Effect of flaxseed supplementation and exercise training on lipid profile, oxidative stress and inflammation in rats with myocardial ischemia.

    PubMed

    Nounou, Howaida A; Deif, Maha M; Shalaby, Manal A

    2012-10-05

    Flaxseed has recently gained attention in the area of cardiovascular disease primarily because of its rich contents of α-linolenic acid (ALA), lignans, and fiber. Although the benefits of exercise on any single risk factor are unquestionable, the effect of exercise on overall cardiovascular risk, when combined with other lifestyle modifications such as proper nutrition, can be dramatic.This study was carried out to evaluate the protective role of flaxseed and exercise on cardiac markers, lipids profile and inflammatory markers in isoproterenol (ISO)-induced myocardial ischemia in rats. The research was conducted on 40 male albino rats, divided into 4 groups (n=10): group I served as control, group II has acute myocardial ischemia induced by isoproterenol, groups III and IV have acute myocardial ischemia induced by isoproterenol pretreated with flaxseed supplementation orally for 6 weeks, additionally group IV practiced muscular exercise through swimming. Alterations of lipid profile, cardiac and inflammatory markers (Il-1β, PTX 3 and TNF- α) were observed in myocardial ischemia group. Flaxseed supplementation combined with exercise training showed significant increase of HDL and PON 1, on the other hand cardiac troponin, Il- 1β and TNF- α levels significantly decreased as compared to myocardial ischemic group. Receiver Operating Characteristics (ROC) analysis of cTnI, PTX 3, Il-1β and TNF- α revealed a satisfactory level of sensitivity and specificity. Regular exercise enhances the improvement in plasma lipoprotein levels and cardiovascular protection that results from flaxseed supplementation by mitigating the pathophysiology of atherosclerosis. Elevation of HDL, the antioxidant PON 1 and the cardioprotective marker PTX 3 emphasizes the protective effects of flaxseed and muscular exercise mutually against the harmful effects of acute myocardial ischemia.

  18. Myocardial ischemia as a result of severe benzodiazepine and opioid withdrawal.

    PubMed

    Biswas, Abhik K; Feldman, Brian L; Davis, Daniela H; Zintz, Eric A

    2005-01-01

    Long-term infusion of benzodiazepines and opioids is strongly associated with dependence and withdrawal syndromes. We report the first case of severe benzodiazepine and opioid withdrawal resulting in transient myocardial ischemia. A 6-month-old female born at 25 weeks gestation with severe opioid and benzodiazepine dependence resulting from multiple operative procedures and chronic ventilatory support was receiving continuous intravenous infusion of fentanyl and midazolam after trials of enteral methadone and diazepam had been unsuccessful due to gastric intolerance. On postoperative day 5 following Nissen fundoplication and gastrostomy tube placement, she acutely developed tachycardia, hypertension, agitation, loose stools, and yawning. Attempts to provide boluses of benzodiazepines and opioids revealed a very sluggish port in her subclavian central venous catheter. Prompt replacement of the catheter occurred without complication. After resuming infusions and providing additional sedatives and opioids, the loose stools, yawning, and agitation resolved. However, the tachycardia persisted. A 12-lead ECG was notable for significant ST depression in anterior leads. Laboratory studies revealed significantly elevated cardiac enzymes. The patient was transfused with packed red blood cells to optimize oxygen-carrying capacity. Echocardiography demonstrated a small region of dyskinetic apical endocardium. Cardiac enzymes normalized within 48 h. The ECG and echocardiographic findings fully resolved after approximately 70 h. We believe that the sluggish central venous catheter port limited delivery of the midazolam and fentanyl to our patient. The resultant tachycardia and hypertension limited diastolic filling of the coronary arteries, resulting in myocardial ischemia. As the withdrawal was treated, heart rate and blood pressure returned to baseline, myocardial perfusion normalized, and the ST depression and the cardiac enzyme values normalized. This report underscores the

  19. Acupuncture promotes angiogenesis after myocardial ischemia through H3K9 acetylation regulation at VEGF gene.

    PubMed

    Fu, Shu-Ping; He, Su-Yun; Xu, Bin; Hu, Chen-Jun; Lu, Sheng-Feng; Shen, Wei-Xing; Huang, Yan; Hong, Hao; Li, Qian; Wang, Ning; Liu, Xuan-Liang; Liang, Fanrong; Zhu, Bing-Mei

    2014-01-01

    Acupuncture exerts cardioprotective effects on several types of cardiac injuries, especially myocardial ischemia (MI), but the mechanisms have not yet been well elucidated. Angiogenesis mediated by VEGF gene expression and its modification through histone acetylation has been considered a target in treating myocardial ischemia. This study aims to exam whether modulation of angiogenesis through H3K9 acetylation regulation at VEGF gene is one possible cardioprotective mechanism of acupuncture. We generated rat MI models by ligating the left anterior descending coronary artery and applied electroacupuncture (EA) treatment at the Neiguan (PC6) acupoint. Our results showed that acupuncture reversed the S-T segment change, reduced Q-wave area, decreased CK, CK-MB, LDH levels, mitigated myocardial remodeling, and promoted microvessel formation in the MI heart. RNA-seq analysis showed that VEGF-induced angiogenesis signaling was involved in the modulation of EA. Western blot results verified that the protein expressions of VEGF, Ras, phospho-p44/42 MAPK, phospho-p38 MAPK, phospho-SAPK/JNK and Akt, were all elevated significantly by EA treatment in the MI heart. Furthermore, increased H3K9 acetylation was also observed according with the VEGF. ChIP assay confirmed that EA treatment could notably stimulate the recruitment of H3K9ace at the VEGF promoter. Our study demonstrates for the first time that acupuncture can effectively up-regulate VEGF expression through H3K9 acetylation modification directly at the VEGF promoter and hence activate VEGF-induced angiogenesis in rat MI models. We employed high throughput sequencing in this study and, for the first time, generated genome-wide gene expression profiles both in the rat MI model and in acupuncture treatment.

  20. Dang Gui Bu Xue Tang ameliorates coronary artery ligation-induced myocardial ischemia in rats.

    PubMed

    Chunhua, Ma; Hongyan, Long; Weina, Zhu; Xiaoli, He; Yajie, Zhang; Jie, Ruan

    2017-04-01

    Dang The present study was designed to investigate cardioprotective effects of Dang Gui Bu Xue Tang (DGBUT) on coronary artery ligation-induced myocardial ischemia. Myocardial ischemia (MI) model was induced in SD rats by surgical ligation of the left anterior descending coronary artery. ST segment elevation of Electrocardiograph (ECG) infarct size, levels of lactate dehydrogenase (LDH), creatine kinase (CK), glutathione (GSH) and catalase (CAT), catalase (SOD), malondialdehyde (MDA), and inflammatory cytokines and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38, c-Jun NH2 terminal kinases (JNK), nuclear factor (NF)-κBp65, inhibitory kappa B (IκB) α, IκB kinase (IKK) α and IKKβ were evaluated in rats treated with or without DGBUT. DGBUT treatment significantly reduced the elevation of the ST segment of ECG, the myocardial infarct size of MI. The level of LDH, CK and MDA were suppressed, the contents of SOD, GSH and CAT were enhanced with DGBUT. The elevated concentration of inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and IL-6 in MI rats were effectively reversed by the DGBUT administration. Also, highly expressed p-JNK, p-ERK, p-p38, p-NF-κBp65, p-IκBα, p-IKKα and p-IKKβ in MI rats were restored respectively by DGBUT treatment. The protective effect of DGBUT against MI injury might be associated with MAPK/NF-кB pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Myocardial ischemia, reperfusion, and infarction in chronically instrumented, intact, conscious, and unrestrained mice

    PubMed Central

    Lujan, Heidi L.; Janbaih, Hussein; Feng, Han-Zhong; Jin, Jian-Ping

    2012-01-01

    In the United States alone, the National Heart, Lung, and Blood Institute (NHLBI) has invested several hundred million dollars in pursuit of myocardial infarct-sparing therapies. However, due largely to methodological limitations, this investment has not produced any notable clinical application or cardioprotective therapy. Among the major methodological limitations is the reliance on animal models that do not mimic the clinical situation. In this context, the limited use of conscious animal models is of major concern. In fact, whenever possible, studies of cardiovascular physiology and pathophysiology should be conducted in conscious, complex models to avoid the complications associated with the use of anesthesia and surgical trauma. The mouse has significant advantages over other experimental models for the investigation of infarct-sparing therapies. The mouse is inexpensive, has a high throughput, and presents the ability of one to create genetically modified models. However, successful infarct-sparing therapies in anesthetized mice or isolated mouse hearts may not be successful in more complex models, including conscious mice. Accordingly, a conscious mouse model of myocardial ischemia and reperfusion has the potential to be of major importance for advancing the concepts and methods that drive the development of infarct-sparing therapies. Therefore, we describe, for the first time, the use of an intact, conscious, and unrestrained mouse model of myocardial ischemia-reperfusion and infarction. The conscious mouse model permits occlusion and reperfusion of the left anterior descending coronary artery in an intact, complex model free of the confounding influences of anesthetics and surgical trauma. This methodology may be adopted for advancing the concepts and ideas that drive cardiovascular research. PMID:22538514

  2. Myocardial ischemia, reperfusion, and infarction in chronically instrumented, intact, conscious, and unrestrained mice.

    PubMed

    Lujan, Heidi L; Janbaih, Hussein; Feng, Han-Zhong; Jin, Jian-Ping; DiCarlo, Stephen E

    2012-06-15

    In the United States alone, the National Heart, Lung, and Blood Institute (NHLBI) has invested several hundred million dollars in pursuit of myocardial infarct-sparing therapies. However, due largely to methodological limitations, this investment has not produced any notable clinical application or cardioprotective therapy. Among the major methodological limitations is the reliance on animal models that do not mimic the clinical situation. In this context, the limited use of conscious animal models is of major concern. In fact, whenever possible, studies of cardiovascular physiology and pathophysiology should be conducted in conscious, complex models to avoid the complications associated with the use of anesthesia and surgical trauma. The mouse has significant advantages over other experimental models for the investigation of infarct-sparing therapies. The mouse is inexpensive, has a high throughput, and presents the ability of one to create genetically modified models. However, successful infarct-sparing therapies in anesthetized mice or isolated mouse hearts may not be successful in more complex models, including conscious mice. Accordingly, a conscious mouse model of myocardial ischemia and reperfusion has the potential to be of major importance for advancing the concepts and methods that drive the development of infarct-sparing therapies. Therefore, we describe, for the first time, the use of an intact, conscious, and unrestrained mouse model of myocardial ischemia-reperfusion and infarction. The conscious mouse model permits occlusion and reperfusion of the left anterior descending coronary artery in an intact, complex model free of the confounding influences of anesthetics and surgical trauma. This methodology may be adopted for advancing the concepts and ideas that drive cardiovascular research.

  3. Myocardial Ischemia During Mental Stress: Role of Coronary Artery Disease Burden and Vasomotion

    PubMed Central

    Ramadan, Ronnie; Sheps, David; Esteves, Fabio; Maziar Zafari, A.; Douglas Bremner, J.; Vaccarino, Viola; Quyyumi, Arshed A.

    2013-01-01

    Background Mental stress–induced myocardial ischemia (MSIMI) is associated with adverse prognosis in patients with coronary artery disease (CAD), yet the mechanisms underlying this phenomenon remain unclear. We hypothesized that compared with exercise/pharmacological stress–induced myocardial ischemia (PSIMI) that is secondary to the atherosclerotic burden of CAD, MSIMI is primarily due to vasomotor changes. Methods and Results Patients with angiographically documented CAD underwent 99mTc‐sestamibi myocardial perfusion imaging at rest and following both mental and physical stress testing, performed on separate days. The severity and extent of CAD were quantified using the Gensini and Sullivan scores. Peripheral arterial tonometry (Itamar Inc) was used to assess the digital microvascular tone during mental stress as a ratio of pulse wave amplitude during speech compared with baseline. Measurements were made in a discovery sample (n=225) and verified in a replication sample (n=159). In the pooled (n=384) sample, CAD severity and extent scores were not significantly different between those with and without MSIMI, whereas they were greater in those with compared with those without PSIMI (P<0.04 for all). The peripheral arterial tonometry ratio was lower in those with compared with those without MSIMI (0.55±0.36 versus 0.76±0.52, P=0.009). In a multivariable analysis, the peripheral arterial tonometry ratio was the only independent predictor of MSIMI (P=0.009), whereas angiographic severity and extent of CAD independently predicted PSIMI. Conclusions The degree of digital microvascular constriction, and not the angiographic burden of CAD, is associated with MSIMI. Varying causes of MSIMI compared with PSIMI may require different therapeutic interventions that require further study. PMID:24145741

  4. A practical approach to remote ischemic preconditioning and ischemic preconditioning against myocardial ischemia/reperfusion injury

    PubMed Central

    Totzeck, Matthias; Hendgen-Cotta, Ulrike B.; French, Brent A.; Rassaf, Tienush

    2016-01-01

    Although urgently needed in clinical practice, a cardioprotective therapeutic approach against myocardial ischemia/ reperfusion injury remains to be established. Remote ischemic preconditioning (rIPC) and ischemic preconditioning (IPC) represent promising tools comprising three entities: the generation of a protective signal, the transfer of the signal to the target organ, and the response to the transferred signal resulting in cardioprotection. However, in light of recent scientific advances, many controversies arise regarding the efficacy of the underlying signaling. We here show methods for the generation of the signaling cascade by rIPC as well as IPC in a mouse model for in vivo myocardial ischemia/ reperfusion injury using highly reproducible approaches. This is accomplished by taking advantage of easily applicable preconditioning strategies compatible with the clinical setting. We describe methods for using laser Doppler perfusion imaging to monitor the cessation and recovery of perfusion in real time. The effects of preconditioning on cardiac function can also be assessed using ultrasound or magnetic resonance imaging approaches. On a cellular level, we confirm how tissue injury can be monitored using histological assessment of infarct size in conjunction with immunohistochemistry to assess both aspects in a single specimen. Finally, we outline, how the rIPC-associated signaling can be transferred to the target cell via conservation of the signal in the humoral (blood) compartment. This compilation of experimental protocols including a conditioning regimen comparable to the clinical setting should proof useful to both beginners and experts in the field of myocardial infarction, supplying information for the detailed procedures as well as troubleshooting guides. PMID:28066791

  5. Analysis of region specific gene expression patterns in the heart and systemic responses after experimental myocardial ischemia.

    PubMed

    Zimmermann, Matthias; Beer, Lucian; Ullrich, Robert; Lukovic, Dominika; Simader, Elisabeth; Traxler, Denise; Wagner, Tanja; Nemec, Lucas; Altenburger, Lukas; Zuckermann, Andreas; Gyöngyösi, Mariann; Ankersmit, Hendrik Jan; Mildner, Michael

    2017-09-22

    Ischemic myocardial injury leads to the activation of inflammatory mechanisms and results in ventricular remodeling. Although great efforts have been made to unravel the molecular and cellular processes taking place in the ischemic myocardium, little is known about the effects on the surrounding tissue and other organs. The aim of this study was to determine region specific differences in the myocardium and in distant organs after experimental myocardial infarction by using a bioinformatics approach. A porcine closed chest reperfused acute myocardial infarction model and mRNA microarrays have been used to evaluate gene expression changes. Myocardial infarction changed the expression of 8903 genes in myocardial-, 856 in hepatic- and 338 in splenic tissue. Identification of myocardial region specific differences as well as expression profiling of distant organs revealed clear gene-regulation patterns within the first 24 hours after ischemia. Transcription factor binding site analysis suggested a strong role for Kruppel like factor 4 (Klf4) in the regulation of gene expression following myocardial infarction, and was therefore investigated further by immunohistochemistry. Strong nuclear Klf4 expression with clear region specific differences was detectable in porcine and human heart samples after myocardial infarction. Apart from presenting a post myocardial infarction gene expression database and specific response pathways, the key message of this work is that myocardial ischemia does not end at the injured myocardium. The present results have enlarged the spectrum of organs affected, and suggest that a variety of organ systems are involved in the co-ordination of the organism´s response to myocardial infarction.

  6. Cardiac Microvascular Barrier Function Mediates the Protection of Tongxinluo against Myocardial Ischemia/Reperfusion Injury

    PubMed Central

    Qi, Kang; Li, Lujin; Li, Xiangdong; Zhao, Jinglin; Wang, Yang; You, Shijie; Hu, Fenghuan; Zhang, Haitao; Cheng, Yutong; Kang, Sheng; Cui, Hehe; Duan, Lian; Jin, Chen; Zheng, Qingshan; Yang, Yuejin

    2015-01-01

    Objective Tongxinluo (TXL) has been shown to decrease myocardial necrosis after ischemia/reperfusion (I/R) by simulating ischemia preconditioning (IPC). However, the core mechanism of TXL remains unclear. This study was designed to investigate the key targets of TXL against I/R injury (IRI) among the cardiac structure-function network. Materials and Methods To evaluate the severity of lethal IRI, a mathematical model was established according to the relationship between myocardial no-reflow size and necrosis size. A total of 168 mini-swine were employed in myocardial I/R experiment. IRI severity among different interventions was compared and IPC and CCB groups were identified as the mildest and severest groups, respectively. Principal component analysis was applied to further determine 9 key targets of IPC in cardioprotection. Then, the key targets of TXL in cardioprotection were confirmed. Results Necrosis size and no-reflow size fit well with the Sigmoid Emax model. Necrosis reduction space (NRS) positively correlates with I/R injury severity and necrosis size (R2=0.92, R2=0.57, P<0.01, respectively). Functional and structural indices correlate positively with NRS (R2=0.64, R2=0.62, P<0.01, respectively). TXL recovers SUR2, iNOS activity, eNOS activity, VE-cadherin, β-catenin, γ-catenin and P-selectin with a trend toward the sham group. Moreover, TXL increases PKA activity and eNOS expression with a trend away from the sham group. Among the above nine indices, eNOS activity, eNOS, VE-cadherin, β-catenin and γ-catenin expression were significantly up-regulated by TXL compared with IPC (P>0.05) or CCB (P<0.05) and these five microvascular barrier-related indices may be the key targets of TXL in minimizing IRI. Conclusions Our study underlines the lethal IRI as one of the causes of myocardial necrosis. Pretreatment with TXL ameliorates myocardial IRI through promoting cardiac microvascular endothelial barrier function by simulating IPC. PMID:25781461

  7. Force Relaxation and Thin Filament Protein Phosphorylation during Acute Myocardial Ischemia

    PubMed Central

    Han, Young Soo; Ogut, Ozgur

    2010-01-01

    Ischemia impairs myocardial function and may contribute to the progression of heart failure. In this study, rats subjected to acute ischemia demonstrated reduced Ca2+ activated force as well as a decrease in myosin binding protein-C, titin and Ser23/24 phosphorylation of troponin I (TnI). All three proteins have been demonstrated to be downstream targets of β-adrenergic receptor activation (β-AR), leading to the hypothesis that decreased β-AR during ischemia leads to reduced protein phosphorylation and reduced rate constants of force relaxation. To test this hypothesis, force relaxation transients were recorded from permeabilized perfused and ischemic rat heart fibers following photolysis of the caged chelator diazo-2. Relaxation transients were best fit by double exponential functions whereby the majority (>70%) of the force decline was described by the fast rate constant, which was ~5 times faster than the slow rate constant. However, rate constants of relaxation between perfused and ischemic fibers were not different, despite significant decreases in sarcomeric protein phosphorylation in ischemic fibers. Treatment of perfused fibers with a cAMP analog increased Ser23/24 phosphorylation of TnI, yet the rate constants of relaxation remained unchanged. Interestingly, similar treatment of ischemic fibers did not impact TnI phosphorylation or force relaxation transients. Therefore, acute ischemia does not influence the rate constants of relaxation of permeabilized fibers. These results also suggest that the physiological level of sarcomeric protein phosphorylation is unlikely to be the primary driver of relaxation kinetics in permeabilized cardiac muscle fibers. PMID:20925105

  8. Critical finger ischemia and myocardial fibrosis development after sudden interruption of sildenafil treatment in a systemic sclerosis patient.

    PubMed

    Bruni, C; Bellando-Randone, S; Gargani, L; Picano, E; Pingitore, A; Matucci-Cerinic, M; Guiducci, S

    2016-09-09

    Systemic sclerosis (SSc) is a connective tissue disease frequently associated with Raynaud's Phenomenon (RP). Among possible pharmacological treatments, phosphodiesterase 5 inhibitors are considered in cases of severe non -responsive RP. We present the case of a male SSc patient wh presented with critical finger ischemia and concomitant appearance of myocardial fibrosis after sudden interruption of sildenafil treatment.

  9. Cardioprotective Effects of Astragalin against Myocardial Ischemia/Reperfusion Injury in Isolated Rat Heart

    PubMed Central

    Qu, Daoxu; Ren, Huanhuan; Yang, Wenxiao; Zhang, Xinjie; Zheng, Qiusheng; Wang, Dong

    2016-01-01

    This study aims to evaluate the cardioprotective effects of astragalin against myocardial ischemia/reperfusion (I/R) injury in isolated rat heart. The cardioprotective effects of astragalin on myocardial I/R injury were investigated on Langendorff apparatus. Adult male Sprague-Dawley rats were randomly divided into five groups. The results showed that astragalin pretreatment improved myocardial function. Compared with I/R group, lactate dehydrogenase (LDH) and creatine kinase (CK) activities in coronary flow decreased in astragalin pretreatment groups, whereas superoxide dismutase (SOD) activity and glutathione/glutathione disulfide (GSH/GSSG) ratio significantly increased. The levels of malondialdehyde (MDA), intracellular reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) decreased in astragalin-treated groups. The infarct size (IS) and apoptosis rate in hearts from astragalin-treated groups were lower than those in hearts from the I/R group. Western blot analysis also revealed that astragalin preconditioning significantly reduced Bax level, whereas Bcl-2 was increased in the myocardium. Therefore, astragalin exhibited cardioprotective effects via its antioxidative, antiapoptotic, and anti-inflammatory activities. PMID:26788251

  10. Myocardial ischemia/reperfusion impairs neurogenesis and hippocampal-dependent learning and memory.

    PubMed

    Evonuk, Kirsten S; Prabhu, Sumanth D; Young, Martin E; DeSilva, Tara M

    2017-03-01

    The incidence of cognitive impairment in cardiovascular disease (CVD) patients has increased, adversely impacting quality of life and imposing a significant economic burden. Brain imaging of CVD patients has detected changes in the hippocampus, a brain region critical for normal learning and memory. However, it is not clear whether adverse cardiac events or other associated co-morbidities impair cognition. Here, using a murine model of acute myocardial ischemia/reperfusion (I/R), where the coronary artery was occluded for 30min followed by reperfusion, we tested the hypothesis that acute myocardial infarction triggers impairment in cognitive function. Two months following cardiac I/R, behavioral assessments specific for hippocampal cognitive function were performed. Mice subjected to cardiac I/R performed worse in the fear-conditioning paradigm as well as the object location memory behavioral test compared to sham-operated mice. Reactive gliosis was apparent in the hippocampal subregions CA1, CA3, and dentate gyrus 72h post-cardiac I/R as compared with sham, which was sustained two months post-cardiac I/R. Consistent with the inflammatory response, the abundance of doublecortin positive newborn neurons was decreased in the dentate gyrus 72h and 2months post-cardiac I/R as compared with sham. Therefore, we conclude that following acute myocardial infarction, rapid inflammatory responses negatively affect neurogenesis, which may underlie long-term changes in learning and memory.

  11. Barbaloin pretreatment attenuates myocardial ischemia-reperfusion injury via activation of AMPK.

    PubMed

    Zhang, Peiyong; Liu, Xiaochen; Huang, Guotao; Bai, Caiyan; Zhang, Zhenling; Li, Hongjun

    2017-09-02

    Myocardial ischemia/reperfusion (MI/R) injury is a major cause of cardiac dysfunction during cardiovascular surgery and heart transplantation and characterized by hyperactive oxidative stress and inflammatory response. Barbaloin (BAR) is the main medicinal composition of the Chinese traditional medicine aloe vera. BAR has strong anti-oxidant, anti-inflammatory and anti-tumor properties. However, the effect of BAR on MI/R-induced myocardial injury is not explored. This study aims to investigate whether BAR provides cardio-protection against MI/R injury and the underlying mechanisms. BAR (20 mg/kg/d) or vehicle was intragastrically administered to Sprague-Dawley rats for 5 days before MI/R operation. BAR pretreatment conferred cardio-protective effects against MI/R injury by improving hemodynamic function and limiting infarction size. Moreover, BAR pretreatment effectively inhibited I/R-induced myocardial oxidative stress and inflammatory response. Furthermore, BAR pretreatment activated adenosine monophosphate-activated protein kinase (AMPK) signaling in MI/R hearts. AMPK inhibitor compound C inhibited BAR-induced AMPK activation, and blunted BAR-mediated anti-oxidative, anti-inflammatory effects and cardio-protection. Taken together our study has identified a novel function of BAR and provided a molecular basis for BAR potential applications in the treatment of MI/R injury and other ischemic disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Blockage of transient receptor potential vanilloid 4 alleviates myocardial ischemia/reperfusion injury in mice

    PubMed Central

    Dong, Qian; Li, Jing; Wu, Qiong-feng; Zhao, Ning; Qian, Cheng; Ding, Dan; Wang, Bin-bin; Chen, Lei; Guo, Ke-Fang; Fu, Dehao; Han, Bing; Liao, Yu-Hua; Du, Yi-Mei

    2017-01-01

    Transient receptor potential vanilloid 4 (TRPV4) is a Ca2+-permeable nonselective cation channel and can be activated during ischemia/reperfusion (I/R). This study tested whether blockade of TRPV4 can alleviate myocardial I/R injury in mice. TRPV4 expression began to increase at 1 h, reached statistically at 4 h, and peaked at 24–72 h. Treatment with the selective TRPV4 antagonist HC-067047 or TRPV4 knockout markedly ameliorated myocardial I/R injury as demonstrated by reduced infarct size, decreased troponin T levels and improved cardiac function at 24 h after reperfusion. Importantly, the therapeutic window for HC-067047 lasts for at least 12 h following reperfusion. Furthermore, treatment with HC-067047 reduced apoptosis, as evidenced by the decrease in TUNEL-positive myocytes, Bax/Bcl-2 ratio, and caspase-3 activation. Meanwhile, treatment with HC-067047 attenuated the decrease in the activation of reperfusion injury salvage kinase (RISK) pathway (phosphorylation of Akt, ERK1/2, and GSK-3β), while the activation of survival activating factor enhancement (SAFE) pathway (phosphorylation of STAT3) remained unchanged. In addition, the anti-apoptotic effects of HC-067047 were abolished by the RISK pathway inhibitors. We conclude that blockade of TRPV4 reduces apoptosis via the activation of RISK pathway, and therefore might be a promising strategy to prevent myocardial I/R injury. PMID:28205608

  13. Taxol prevents myocardial ischemia-reperfusion injury by inducing JNK-mediated HO-1 expression.

    PubMed

    Cao, Huaming; Wang, Yiping; Wang, Qiang; Wang, Ruxing; Guo, Suxia; Zhao, Xiaoxi; Zhang, Yu; Tong, Debing; Yang, Zhenyu

    2016-01-01

    Ischemia/hypoxia and reperfusion impair mitochondria and produce a large amount of reactive oxygen species (ROS), which lead to mitochondrial and brain damage. Furthermore, heme oxygenase-1 (HO-1) as a cytoprotective gene protects cells against ROS-induced cell death in ischemia-reperfusion injury. Induction of HO-1 is involved in cytoprotective effects of taxol. We hypothesize that taxol protects cardiac myocytes possibly by preserving myocardial mitochondrial function and inducing HO-1 expression through the JNK pathway. In this project, the perfused Langendorff hearts isolated from rats were randomly divided into five groups: control, ischemic, ischemic + taxol (0.1 μM), ischemic + taxol (0.3 μM), and ischemic + taxol (1 μM). Briefly, following a 15 min equilibration period, the control group was subject to normoxic perfusion for 120 min; the ischemia group, normoxic reperfusion for 120 min after 30 min ischemia; the taxol groups, normoxic reperfusion for 120 min after 30-min ischemia with taxol (0.1, 0.3, or 1 μM). The microtubule disruption score, ROS levels, and the activity of mitochondrial electron transport chain complexes I and III were examined by using immunohistochemical methods and free radical detection kits. Western blot assay was employed to study the underlying mechanisms. After Taxol treatment (0.1 µM), the ischemic microtubule disruption score was reduced to 9.8 ± 1.9%. The study revealed that 0.1, 0.3, and 1 μM taxol reduced the level of ROS by 33, 46 and 51%, respectively (p < 0.05). In additional, 0.3 and 1 μM taxol dramatically increased the activity of mitochondrial electron transport chain complex I (99.11 ± 2.59, 103.49 ± 3.89) and mitochondrial electron transport chain complex III (877.82 ± 12.08; 907.42 ± 16.21; 914.73 ± 19.39, *p < 0.05). Additionally, phosphorylation levels of JNK1 were significantly increased in the taxol group. Furthermore, the

  14. Pharmacodynamic interaction of green tea extract with hydrochlorothiazide against ischemia-reperfusion injury-induced myocardial infarction.

    PubMed

    Chakraborty, Manodeep; Kamath, Jagadish Vasudev

    2014-07-01

    Globally, the rate of development of myocardial diseases and hypertension is very common, which is responsible for incremental morbidity and mortality statistics. Treatment of ischemic hypertensive patients with diuretics such as hydrochlorothiazide (HCTZ) can precipitate myocardial infarction due to hypokalemia. This study was undertaken to evaluate the pharmacodynamic interaction of green tea extract (GTE) with HCTZ against ischemia-reperfusion induced myocardial toxicity. Wistar albino rats of either sex were taken and pretreated with high (500 mg/kg, p.o.) and low (100 mg/kg, p.o.) dose of GTE for 30 days. Standard, high and low dose of interactive groups received HCTZ (10 mg/kg, p.o.) for last 7 days. Ischemia-reperfusion injury was induced by modified Lagendorff apparatus, and the effect of different treatments was evaluated by percentage recovery in terms of heart rate and developed tension, serum biomarkers, and heart tissue antioxidant levels. Prophylactic treatment groups, such as high and low dose of GTE and their interactive groups with HCTZ, exhibited significant percentage recovery in terms of heart rate and developed tension. Apart from that, significant increase in superoxide dismutase and catalase, decrease in thiobarbituric acid reactive species in heart tissue, as well as significant decrease in serum lactate dehydrogenase, creatinine phosphokinase-MB and N-acetylcysteine levels have also been documented. The present findings clearly suggest that GTE dose-dependently reduces myocardial toxicity due to ischemia, and combination with HCTZ can reduce the associated side-effects and exhibits myocardial protection.

  15. Sevoflurane preconditioning during myocardial ischemia-reperfusion reduces infarct size and preserves autonomic control of circulation in rats.

    PubMed

    Pasqualin, Rubens Campana; Mostarda, Cristiano Teixeira; Souza, Leandro Ezequiel de; Vane, Matheus Fachini; Sirvente, Raquel; Otsuki, Denise Aya; Torres, Marcelo Luís Abramides; Irigoyen, Maria Cláudia Costa; Auler, José Otávio Costa

    2016-05-01

    To investigate the myocardial ischemia-reperfusion with sevoflurane anesthetic preconditioning (APC) would present beneficial effects on autonomic and cardiac function indexes after the acute phase of a myocardial ischemia-reperfusion. Twenty Wistar rats were allocated in three groups: control (CON, n=10), myocardial infarction with sevoflurane (SEV, n=5) and infarcted without sevoflurane (INF, n=5). Myocardial ischemia (60 min) and reperfusion were performed by temporary coronary occlusion. Twenty-one days later, the systolic and diastolic function were evaluated by echocardiography; spectral analysis of the systolic arterial pressure (SAPV) and heart rate variability (HRV) were assessed. After the recording period, the infarct size (IS) was evaluated. The INF group presented greater cardiac dysfunction and increased sympathetic modulation of the SAPV, as well as decreased alpha index and worse vagal modulation of the HRV. The SEV group exhibited attenuation of the systolic and diastolic dysfunction and preserved vagal modulation (square root of the mean squared differences of successive R-R intervals and high frequency) of HRV, as well as a smaller IS. Sevoflurane preconditioning better preserved the cardiac function and autonomic modulation of the heart in post-acute myocardial infarction period.

  16. The Diagnostic Value of Tc-99m MIBI Gated Myocardial Perfusion SPECT in Detection of Silent Myocardial Ischemia in Asymptomatic Patients with Type 2 Diabetes Mellitus

    PubMed Central

    Ak, Coskun; Sahin, Ali; Capoglu, Ilyas

    2008-01-01

    Objective: In this study, we aimed to evaluate the diagnostic value of Technetium-99m methoxyisobutylisonitrile (Tc-99m MIBI) gated myocardial perfusion SPECT (MPS) in the detection of coronary artery disease (CAD) and silent myocardial ischemia (SMI) in patients with asymptomatic type 2 diabetes mellitus (DM). Materials and Methods: For this purpose, 35 patients with type 2 DM and 15 volunteers with no cardiac symptoms (control group) were included in this study. Exercise tolerance tests (ETT), echocardiography and Tc-99m MIBI gated MPS were performed in patients and volunteers. Computed tomography coronary angiography (CTCA) was performed in patients with coronary ischemia or infarct detected by Tc-99m MIBI gated MPS. The results were analyzed and compared visually and statistically. Results: The present study revealed a high rate of silent myocardial ischemia (25.71%, N=9) in 35 patients with type 2 DM. Severe CAD in CTCA was detected in four of nine patients with ischemia or infarct by Tc-99m MIBI gated MPS (44.4%). Left ventricular diastolic dysfunction, ischemic pattern and high risk of CAD were detected in the same four patients by echocardiography, ETT and biochemical analysis, respectively. At the end of the statistical evaluation, we found that Tc-99m MIBI gated MPS showed significant correlations with CTCA, echocardiography, ETT, Hba1c level, risk of CAD and diabetic age in diabetic patients with CAD. Conclusion: We propose that Tc-99m MIBI gated MPS is a reliable and non-invasive method that can be used to detect silent myocardial ischemia and CAD in patients with type 2 DM. PMID:25610029

  17. Importance of compensatory heart rate increase during myocardial ischemia to preserve appropriate oxygen kinetics.

    PubMed

    Yoshida, Sadamitsu; Adachi, Hitoshi; Murata, Makoto; Tomono, Junichi; Oshima, Shigeru; Kurabayashi, Masahiko

    2017-09-01

    Myocardial ischemia induces cardiac dysfunction, resulting in insufficient oxygen supply to peripheral tissues and mismatched energy production during exercise. To relieve the insufficient oxygen supply, heart rate (HR) response is augmented; however, beta-adrenergic receptor blockers (BB) restrict HR response. Although BB are essential drugs for angina pectoris, the effect of BB on exercise tolerance in patients with angina has not been studied. The aim of this study was to clarify the importance of HR augmentation to preserve exercise tolerance in patients with angina pectoris. Forty-two subjects who underwent cardiopulmonary exercise testing (CPX) to detect myocardial ischemia were enrolled. CPX was performed until exhaustion or onset of significant myocardial ischemia using a ramp protocol. Subjects were assigned to three groups (Group A: with ST depression during CPX with significant coronary stenosis and taking BB; Group B: with ST depression and not taking BB; Group C: without ST depression and not taking BB). HR response to exercise was evaluated during the following two periods: below and above ischemic threshold (IT). In Group C, it was evaluated during the first 2min and the last 2min of a ramp exercise. No significant differences were observed among the three groups with regard to patients' basic characteristics. Below IT, there were no differences in oxygen pulse/watt (O2 pulse increasing rate), HR/watt (ΔHR/ΔWR), and ΔV˙O2/ΔWR. Above IT, O2 pulse increasing rate was greater in Group A than in Group B. ΔHR/ΔWR was smaller in Group A than in Group B. ΔV˙O2/ΔWR became smaller in Group A than in Group B. There was no difference in anaerobic threshold, and peak V˙O2 was smaller in Group A than in Group B. Restriction of HR response by a BB is shown to be one of the important factors in diminished exercise tolerance. Copyright © 2016 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  18. Effects of Nitrate Intake on Myocardial Ischemia-Reperfusion Injury in Diabetic Rats.

    PubMed

    Jeddi, Sajad; Khalifi, Saeedeh; Ghanbari, Mahboubeh; Bageripour, Fatemeh; Ghasemi, Asghar

    2016-10-01

    Coronary artery disease is 2-3 times more common in diabetic individuals. Dietary nitrate/nitrite has beneficial effects in both diabetes and cardiovascular disease. It also has protective effects against myocardial ischemia-reperfusion (IR) injury in healthy animals. However, the effects of nitrate on myocardial IR injury in diabetic rats have not yet been investigated. We examined the effects of dietary nitrate on myocardial IR injury in streptozotocin-nicotinamide-induced diabetic rats. Rats were divided into four groups (n=7 in each group): control, control+nitrate, diabetes, and diabetes+nitrate. Type 2 diabetes was induced by injection of streptozotocin and nicotinamide. Nitrate (sodium nitrate) was added to drinking water (100 mg/L) for 2 months. The hearts were perfused in a Langendorff apparatus at 2 months and assessed before (baseline) and after myocardial IR for the following parameters: left ventricular developed pressure (LVDP), minimum and maximum rates of pressure change in the left ventricle (±dP/dt), endothelial nitric oxide (NO) synthase (eNOS) and inducible NO synthase (iNOS) mRNA expression, and levels of malondialdehyde (MDA) and NO metabolites (NOx). Recovery of LVDP and ±dP/dt was lower in diabetic rats versus controls, but almost normalized after nitrate intake. Diabetic rats had lower eNOS and higher iNOS expression both at baseline and after IR, and dietary nitrate restored these parameters to normal values after IR. Compared with controls, heart NOx level was lower in diabetic rats at baseline but was higher after IR. Diabetic rats had higher MDA levels both at baseline and after IR, which along with heart NOx levels decreased following nitrate intake. Dietary nitrate in diabetic rats provides cardioprotection against IR injury by regulating eNOS and iNOS expression and inhibiting lipid peroxidation in the heart.

  19. Effects of Nitrate Intake on Myocardial Ischemia-Reperfusion Injury in Diabetic Rats

    PubMed Central

    Jeddi, Sajad; Khalifi, Saeedeh; Ghanbari, Mahboubeh; Bageripour, Fatemeh; Ghasemi, Asghar

    2016-01-01

    Background Coronary artery disease is 2-3 times more common in diabetic individuals. Dietary nitrate/nitrite has beneficial effects in both diabetes and cardiovascular disease. It also has protective effects against myocardial ischemia-reperfusion (IR) injury in healthy animals. However, the effects of nitrate on myocardial IR injury in diabetic rats have not yet been investigated. Objective We examined the effects of dietary nitrate on myocardial IR injury in streptozotocin-nicotinamide-induced diabetic rats. Method Rats were divided into four groups (n=7 in each group): control, control+nitrate, diabetes, and diabetes+nitrate. Type 2 diabetes was induced by injection of streptozotocin and nicotinamide. Nitrate (sodium nitrate) was added to drinking water (100 mg/L) for 2 months. The hearts were perfused in a Langendorff apparatus at 2 months and assessed before (baseline) and after myocardial IR for the following parameters: left ventricular developed pressure (LVDP), minimum and maximum rates of pressure change in the left ventricle (±dP/dt), endothelial nitric oxide (NO) synthase (eNOS) and inducible NO synthase (iNOS) mRNA expression, and levels of malondialdehyde (MDA) and NO metabolites (NOx). Results Recovery of LVDP and ±dP/dt was lower in diabetic rats versus controls, but almost normalized after nitrate intake. Diabetic rats had lower eNOS and higher iNOS expression both at baseline and after IR, and dietary nitrate restored these parameters to normal values after IR. Compared with controls, heart NOx level was lower in diabetic rats at baseline but was higher after IR. Diabetic rats had higher MDA levels both at baseline and after IR, which along with heart NOx levels decreased following nitrate intake. Conclusion Dietary nitrate in diabetic rats provides cardioprotection against IR injury by regulating eNOS and iNOS expression and inhibiting lipid peroxidation in the heart. PMID:27849257

  20. All-Trans Retinoic Acid Ameliorates Myocardial Ischemia/Reperfusion Injury by Reducing Cardiomyocyte Apoptosis.

    PubMed

    Zhu, Zhengbin; Zhu, Jinzhou; Zhao, Xiaoran; Yang, Ke; Lu, Lin; Zhang, Fengru; Shen, Weifeng; Zhang, Ruiyan

    2015-01-01

    Myocardial ischemia/reperfusion (I/R) injury interferes with the restoration of blood flow to ischemic myocardium. Oxidative stress-elicited apoptosis has been reported to contribute to I/R injury. All-trans retinoic acid (ATRA) has anti-apoptotic activity as previously reported. Here, we investigated the effects and the mechanism of action of ATRA on myocardial I/R injury both in vivo and in vitro. In vivo, ATRA reduced the size of the infarcted area (17.81±1.05% vs. 24.41±1.03%, P<0.05) and rescued cardiac function loss (ejection fraction 46.42±6.76% vs. 37.18±4.63%, P<0.05) after I/R injury. Flow-cytometric analysis and TUNEL assay demonstrated that the protective role of ATRA on myocardial I/R injury was related to its anti-apoptotic effects. The anti-apoptotic effects of ATRA were associated with partial inhibition of reactive oxygen species (ROS) production and significantly less phosphorylation of mitogen-activated protein kinases (MAPKs) including p38, JNK, and ERK. Western blot analysis also revealed that ATRA pre-treatment increased a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) expression (0.65 ± 0.20 vs. 0.41±0.02 in vivo) and reduced the level of receptor for advanced glycation end-products (RAGE) (0.38 ± 0.17 vs. 0.52 ± 0.11 in vivo). Concomitantly, the protective role of ATRA on I/R injury was not observed in RAGE-KO mice. The current results indicated that ATRA could prevent myocardial injury and reduced cardiomyocyte apoptosis after I/R effectively. One possible mechanism underlying these effects is that ATRA could increase ADAM10 expression and thus cleave RAGE, which is the main receptor up-stream of MAPKs in myocardial I/R injury, resulting in the down-regulation of MAPK signaling and protective role on myocardial I/R injury.

  1. Platelet Aggregation and Mental Stress Induced Myocardial Ischemia: Results from the REMIT Study

    PubMed Central

    Jiang, Wei; Boyle, Stephen H.; Ortel, Thomas L.; Samad, Zainab; Velazquez, Eric J.; Harrison, Robert W.; Wilson, Jennifer; Kuhn, Cynthia; Williams, Redford B.; O’Connor, Christopher M.; Becker, Richard C.

    2015-01-01

    BACKGROUND Mental stress-induced myocardial ischemia (MSIMI) is common in patients with ischemic heart disease (IHD) and associated with a poorer cardiovascular prognosis. Platelet hyperactivity is an important factor in acute coronary syndrome. This study examined associations between MSIMI and resting and mental stress-induced platelet activity. METHODS Eligible patients with clinically stable IHD underwent a battery of 3 mental stress tests during the recruitment phase of REMIT (Responses of Myocardial Ischemia to Escitalopram Treatment) study. MSIMI was assessed by echocardiography and electrocardiography. Ex vivo platelet aggregation in response to ADP, epinephrine, collagen, serotonin, and combinations of serotonin plus ADP, epinephrine, and collagen were evaluated as was platelet serotonin transporter expression. RESULTS Of the 270 participants who completed mental stress testing, and had both resting and post-stress platelet aggregation evaluation, 43.33% (N=117) met criteria for MSIMI and 18.15% (N=49) had normal left ventricular response to stress (NLVR). The MSIMI group, relative to the NLVR groups, demonstrated heightened mental stress-induced aggregation responses, as measured by area under the curve, to collagen 10 μM (6.95[5.54] vs. −14.23[8.75].; p=0.045), epinephrine 10 μM (12.84[4.84] vs. −6.40[7.61].; p=0.037) and to serotonin 10 μM plus ADP 1 μM (6.64[5.29] vs. −27.34[8.34]; p < .001). The resting platelet aggregation and serotonin transporter expression, however, were not different between the two groups. CONCLUSIONS These findings suggest that the dynamic change of platelet aggregation caused by mental stress may underlie MSIMI. While the importance of these findings requires additional investigation, they raise concern given the recognized relationship between mental stress-induced platelet hyperactivity and cardiovascular events in patients with IHD. PMID:25819856

  2. Effects of propofol on myocardial ischemia-reperfusion injury in rats with type-2 diabetes mellitus

    PubMed Central

    Wang, Ying; Qi, Xiuru; Wang, Chunliang; Zhao, Danning; Wang, Hongjie; Zhang, Jianxin

    2017-01-01

    The current study aimed to examine the effects of propofol on myocardial ischemia-reperfusion injury (MIRI) in rats with type-2 diabetes mellitus (T2DM) and to assess the role of inflammatory mediators. Fifty healthy male adult Sprague-Dawley rats were randomly divided into the sham, ischemia-reperfusion (IR), IR plus low, middle and high-dose (6, 12 and 24 mg/kg/h, intravenous) propofol groups. The rats of all the groups were fed a high-sugar and high-fat diet for 8 weeks and streptozotocin (30 mg/kg, intraperitoneally) was used to establish the T2DM model. Apart from the sham group rats, MIRI was induced by ligating the left anterior descending coronary artery for 30 min, followed by reperfusion for 2 h. Heart rate (HR), left ventricular systolic pressure (LVSP), and the rate of left ventricular pressure increase in early systole (± dp/dtmax) were recorded. Levels of cardiac troponin T (cTnT), nitric oxide (NO), endothelin-1 (ET-1), interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were also measured. Myocardial lesions were observed under light microscopy and scanning electron microscopy. Compared with levels prior to arterial occlusion, HR, LVSP, and ± dp/dtmax were significantly reduced (P<0.05) following occlusion for 30 min and reperfusion for 2 h. The administration of propofol ameliorated the cardiac function of rats as reflected by the increase in HR, LVSP and ± dp/dtmax. In addition, the administration of propofol increased the serum NO concentration, and reduced ET-1 and cTnT levels, as well as levels of inflammatory mediators including IL-1β, IL-6 and TNF-α. Thus, propofol exerts protective effects against MIRI in T2DM rats by increasing NO and reducing ET-1 and the inflammatory mediators. PMID:28123710

  3. Effects of propofol on myocardial ischemia-reperfusion injury in rats with type-2 diabetes mellitus.

    PubMed

    Wang, Ying; Qi, Xiuru; Wang, Chunliang; Zhao, Danning; Wang, Hongjie; Zhang, Jianxin

    2017-01-01

    The current study aimed to examine the effects of propofol on myocardial ischemia-reperfusion injury (MIRI) in rats with type-2 diabetes mellitus (T2DM) and to assess the role of inflammatory mediators. Fifty healthy male adult Sprague-Dawley rats were randomly divided into the sham, ischemia-reperfusion (IR), IR plus low, middle and high-dose (6, 12 and 24 mg/kg/h, intravenous) propofol groups. The rats of all the groups were fed a high-sugar and high-fat diet for 8 weeks and streptozotocin (30 mg/kg, intraperitoneally) was used to establish the T2DM model. Apart from the sham group rats, MIRI was induced by ligating the left anterior descending coronary artery for 30 min, followed by reperfusion for 2 h. Heart rate (HR), left ventricular systolic pressure (LVSP), and the rate of left ventricular pressure increase in early systole (± dp/dtmax) were recorded. Levels of cardiac troponin T (cTnT), nitric oxide (NO), endothelin-1 (ET-1), interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were also measured. Myocardial lesions were observed under light microscopy and scanning electron microscopy. Compared with levels prior to arterial occlusion, HR, LVSP, and ± dp/dtmax were significantly reduced (P<0.05) following occlusion for 30 min and reperfusion for 2 h. The administration of propofol ameliorated the cardiac function of rats as reflected by the increase in HR, LVSP and ± dp/dtmax. In addition, the administration of propofol increased the serum NO concentration, and reduced ET-1 and cTnT levels, as well as levels of inflammatory mediators including IL-1β, IL-6 and TNF-α. Thus, propofol exerts protective effects against MIRI in T2DM rats by increasing NO and reducing ET-1 and the inflammatory mediators.

  4. Risk factors for silent myocardial ischemia in patients with well-controlled essential hypertension.

    PubMed

    Rendina, Domenico; Ippolito, Renato; De Filippo, Gianpaolo; Muscariello, Riccardo; De Palma, Daniela; De Bonis, Silvana; Schiano di Cola, Michele; Benvenuto, Domenico; Galderisi, Maurizio; Strazzullo, Pasquale; Galletti, Ferruccio

    2017-03-01

    Silent myocardial ischemia (SMI) is frequently observed in patients with essential hypertension (EH). The major risk factor for SMI is uncontrolled blood pressure (BP), but SMI is also observed in patients with well-controlled BP. To evaluate the prevalence of SMI and the factors associated with SMI in EH patients with well-controlled BP. The medical records of 859 EH patients who underwent simultaneous 24-h ambulatory blood pressure monitoring (ABPM) and 24-h ambulatory electrocardiogram recording (AECG) were retrospectively evaluated. Each SMI episode was characterized by: (a) ST segment depression ≥0.5 mm; (b) duration of ST segment depression >60 s; and (c) reversibility of the ST segment depression. Overall 126 EH patients (14.7 %) had at least one episode of SMI. The SMI events were more frequent among patients with poorly controlled compared to those with well-controlled BP [86/479 (17.95 %) vs. 40/380 (10.52 %), p < 0.01]. Among EH patients with well-controlled BP, current and past smoking as well as the presence of an additional metabolic syndrome (MetS) constitutive element (obesity, impaired fasting glucose level or dyslipidemia) were significantly associated with the occurrence of SMI. In all EH patients with well-controlled BP and AECG evidence of SMI, there were one or more coronary artery stenotic lesions greater than 50 % found at coronary angiography. In EH patients who are current smokers, or have one or more additional components of a MetS there is markedly reduced benefit associated with good BP control with regard to the occurrence of myocardial ischemia: in this patient category, an AECG may help detect this condition.

  5. Noninvasive Imaging of Hypoxia-Inducible Factor-1α Gene Therapy for Myocardial Ischemia

    PubMed Central

    Chen, Ian Y.; Gheysens, Olivier; Li, Zongjin; Rasooly, Julia A.; Wang, Qian; Paulmurugan, Ramasamy; Rosenberg, Jarrett; Rodriguez-Porcel, Martin; Willmann, Juergen K.; Wang, David S.; Contag, Christopher H.; Robbins, Robert C.; Wu, Joseph C.

    2013-01-01

    Abstract Hypoxia-inducible factor-1 alpha (HIF-1α) gene therapy holds great promise for the treatment of myocardial ischemia. Both preclinical and clinical evaluations of this therapy are underway and can benefit from a vector strategy that allows noninvasive assessment of HIF-1α expression as an objective measure of gene delivery. We have developed a novel bidirectional plasmid vector (pcTnT-HIF-1α-VP2-TSTA-fluc), which employs the cardiac troponin T (cTnT) promoter in conjunction with a two-step transcriptional amplification (TSTA) system to drive the linked expression of a recombinant HIF-1α gene (HIF-1α-VP2) and the firefly luciferase gene (fluc). The firefly luciferase (FLuc) activity serves as a surrogate for HIF-1α-VP2 expression, and can be noninvasively assessed in mice using bioluminescence imaging after vector delivery. Transfection of cultured HL-1 cardiomyocytes with pcTnT-HIF-1α-VP2-TSTA-fluc led to a strong correlation between FLuc and HIF-1α-dependent vascular endothelial growth factor expression (r2=0.88). Intramyocardial delivery of pcTnT-HIF-1α-VP2-TSTA-fluc into infarcted mouse myocardium led to persistent HIF-1α-VP2 expression for 4 weeks, even though it improved neither CD31+ microvessel density nor echocardiographically determined left ventricular systolic function. These results lend support to recent findings of suboptimal efficacy associated with plasmid-mediated HIF-1α therapy. The imaging techniques developed herein should be useful for further optimizing HIF-1α-VP2 therapy in preclinical models of myocardial ischemia. PMID:23937265

  6. Thioredoxin-interacting protein and myocardial mitochondrial function in ischemia-reperfusion injury.

    PubMed

    Yoshioka, Jun; Lee, Richard T

    2014-02-01

    Cellular metabolism and reactive oxygen species (ROS) formation are interrelated processes in mitochondria and are implicated in a variety of human diseases including ischemic heart disease. During ischemia, mitochondrial respiration rates fall. Though seemingly paradoxical, reduced respiration has been observed to be cardioprotective due in part to reduced generation of ROS. Enhanced myocardial glucose uptake is considered beneficial for the myocardium under stress, as glucose is the primary substrate to support anaerobic metabolism. Thus, inhibition of mitochondrial respiration and uncoupling oxidative phosphorylation can protect the myocardium from irreversible ischemic damage. Growing evidence now positions the TXNIP/thioredoxin system at a nodal point linking pathways of antioxidant defense, cell survival, and energy metabolism. This emerging picture reveals TXNIP's function as a regulator of glucose homeostasis and may prove central to regulation of mitochondrial function during ischemia. In this review, we summarize how TXNIP and its binding partner thioredoxin act as regulators of mitochondrial metabolism. While the precise mechanism remains incompletely defined, the TXNIP-thioredoxin interaction has the potential to affect signaling that regulates mitochondrial bioenergetics and respiratory function with potential cardioprotection against ischemic injury. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Activity Exerted by a Testosterone Derivative on Myocardial Injury Using an Ischemia/Reperfusion Model

    PubMed Central

    Lauro, Figueroa-Valverde; Francisco, Díaz-Cedillo; Elodia, García-Cervera; Eduardo, Pool-Gómez; Maria, López-Ramos; Marcela, Rosas-Nexticapa; Lenin, Hau-Heredia; Betty, Sarabia-Alcocer; Monica, Velázquez-Sarabia Betty

    2014-01-01

    Some reports indicate that several steroid derivatives have activity at cardiovascular level; nevertheless, there is scarce information about the activity exerted by the testosterone derivatives on cardiac injury caused by ischemia/reperfusion (I/R). Analyzing these data, in this study, a new testosterone derivative was synthetized with the objective of evaluating its effect on myocardial injury using an ischemia/reperfusion model. In addition, perfusion pressure and coronary resistance were evaluated in isolated rat hearts using the Langendorff technique. Additionally, molecular mechanism involved in the activity exerted by the testosterone derivative on perfusion pressure and coronary resistance was evaluated by measuring left ventricular pressure in the absence or presence of the following compounds: flutamide, prazosin, metoprolol, nifedipine, indomethacin, and PINANE TXA2. The results showed that the testosterone derivative significantly increases (P = 0.05) the perfusion pressure and coronary resistance in isolated heart. Other data indicate that the testosterone derivative increases left ventricular pressure in a dose-dependent manner (0.001–100 nM); however, this phenomenon was significantly inhibited (P = 0.06) by indomethacin and PINANE-TXA2  (P = 0.05) at a dose of 1 nM. In conclusion, these data suggest that testosterone derivative induces changes in the left ventricular pressure levels through thromboxane receptor activation. PMID:24839599

  8. Novel technique for ST-T interval characterization in patients with acute myocardial ischemia.

    PubMed

    Correa, Raúl; Arini, Pedro David; Correa, Lorena Sabrina; Valentinuzzi, Max; Laciar, Eric

    2014-07-01

    The novel signal processing techniques have allowed and improved the use of vectorcardiography (VCG) to diagnose and characterize myocardial ischemia. Herein, we studied vectorcardiographic dynamic changes of ventricular repolarization in 80 patients before (control) and during Percutaneous Transluminal Coronary Angioplasty (PTCA). We propose four vectorcardiographic ST-T parameters, i.e., (a) ST Vector Magnitude Area (aSTVM); (b) T-wave Vector Magnitude Area (aTVM); (c) ST-T Vector Magnitude Difference (ST-TVD), and (d) T-wave Vector Magnitude Difference (TVD). For comparison, the conventional ST-Change Vector Magnitude (STCVM) and Spatial Ventricular Gradient (SVG) were also calculated. Our results indicate that several vectorcardiographic parameters show significant differences (p-value<0.05) before starting and during PTCA. Statistical minute-by-minute PTCA comparison against the control situation showed that ischemic monitoring reached a sensitivity=90.5% and a specificity=92.6% at the 5th minute of the PTCA, when aSTVM and ST-TVD were used as classifiers. We conclude that the sensitivity and specificity for acute ischemia monitoring could be increased with the use of only two vectorcardiographic parameters. Hence, the proposed technique based on vectorcardiography could be used in addition to the conventional ST-T analysis for better monitoring of ischemic patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Beat-to-beat QT interval variability associated with acute myocardial ischemia.

    PubMed

    Murabayashi, Taizo; Fetics, Barry; Kass, David; Nevo, Erez; Gramatikov, Boris; Berger, Ronald D

    2002-01-01

    Beat-to-beat QT interval variability (QTV) quantifies lability in ventricular repolarization. We hypothesized that myocardial ischemia destabilizes ventricular repolarization and increases QTV. We analyzed 2-hour 2-lead digitized electrocardiogram records of 68 patients in the European ST-T Database. All patients had ischemic episodes during the 2-hour record, annotated by the developers of the database. We determined the normalized QTV (QTVnorm), QT variability index (QTVI), and normalized heart rate variability (HRVnorm) for each 5-minute epoch by automated analysis. QTVnorm was greater during ischemic episodes than during nonischemic episodes (1.41 +/- 0.77 vs. 0.88 +/- 0.23, P <.0001). There was no significant difference in HRVnorm between ischemic and nonischemic episodes (1.22 +/- 0.63 vs. 0.94 +/- 0.18, not significant). The QTVI was higher during ischemic episodes than during nonischemic episodes (0.14 +/- 0.31 vs. -0.051 +/- 0.12, P <.0001). Acute ischemia is associated with labile ventricular repolarization, which manifests as enhanced beat-to-beat QT interval variability. The association between ischemic repolarization liability and arrhythmic risk deserves further study.

  10. Activity exerted by a testosterone derivative on myocardial injury using an ischemia/reperfusion model.

    PubMed

    Lauro, Figueroa-Valverde; Francisco, Díaz-Cedillo; Elodia, García-Cervera; Eduardo, Pool-Gómez; Maria, López-Ramos; Marcela, Rosas-Nexticapa; Lenin, Hau-Heredia; Betty, Sarabia-Alcocer; Monica, Velázquez-Sarabia Betty

    2014-01-01

    Some reports indicate that several steroid derivatives have activity at cardiovascular level; nevertheless, there is scarce information about the activity exerted by the testosterone derivatives on cardiac injury caused by ischemia/reperfusion (I/R). Analyzing these data, in this study, a new testosterone derivative was synthetized with the objective of evaluating its effect on myocardial injury using an ischemia/reperfusion model. In addition, perfusion pressure and coronary resistance were evaluated in isolated rat hearts using the Langendorff technique. Additionally, molecular mechanism involved in the activity exerted by the testosterone derivative on perfusion pressure and coronary resistance was evaluated by measuring left ventricular pressure in the absence or presence of the following compounds: flutamide, prazosin, metoprolol, nifedipine, indomethacin, and PINANE TXA2. The results showed that the testosterone derivative significantly increases (P = 0.05) the perfusion pressure and coronary resistance in isolated heart. Other data indicate that the testosterone derivative increases left ventricular pressure in a dose-dependent manner (0.001-100 nM); however, this phenomenon was significantly inhibited (P = 0.06) by indomethacin and PINANE-TXA2  (P = 0.05) at a dose of 1 nM. In conclusion, these data suggest that testosterone derivative induces changes in the left ventricular pressure levels through thromboxane receptor activation.

  11. Improvement of pacing induced regional myocardial ischemia by Solcoseryl in conscious dogs with coronary stenosis.

    PubMed

    Shimada, T; Sasayama, S; Takahashi, M; Osakada, G; Kawai, C

    1984-02-01

    The effects of Solcoseryl on regional myocardial function were studied in 5 conscious dogs with partial coronary constriction, in which temporary ischemia was induced by rapid cardiac pacing. During the coronary artery constriction, the percent shortening of the ischemic segment decreased by 9%. When the heart rate was increased by pacing, the percent shortening of the ischemic segments was further reduced by 57%. On cessation of cardiac pacing, the early potentiation of dP/dt and of control segment shortening became evident and was followed by exponential decay in the subsequent several beats. In the ischemic segment, the percent shortening was significantly improved in the first post-pacing beat but was more severely depressed at five seconds. Thirty minutes after administration of Solcoseryl, the cardiac pacing was repeated in the same manner but the pacing-induced hypokinesia of the ischemic segment were less marked, the percent shortening being at an average of 9.1% during control pacing and 12.7% during the second pacing after Solcoseryl (p less than 0.05). Postpacing deterioration of the ischemic segment shortening was also significantly improved from 9.8 to 11.8% at 5 seconds (p less than 0.05). These findings indicate that Solcoseryl exerts protective effects on the ischemic myocardium by promoting a rapid recovery from ischemia, probably due to the improvement of oxygen utility through activated cellular respiration.

  12. Depressive Symptoms and Mental Stress Induced Myocardial Ischemia in Patients with Coronary Heart Disease

    PubMed Central

    Boyle, Stephen; Samad, Zainab; Becker, Richard C.; Williams, Redford; Kuhn, Cynthia; Ortel, Thomas L.; Kuchibhatla, Maragatha; Prybol, Kevin; Rogers, Joseph; O’Connor, Christopher; Velazquez, Eric J.; Jiang, Wei

    2015-01-01

    Objectives The primary focus of this study was to examine associations between depressive symptoms and mental stress induced myocardial ischemia (MSIMI) in patients with coronary heart disease (CHD). Methods Adult patients with documented CHD were recruited for baseline mental stress and exercise stress screening testing as a part of the enrollment process of the REMIT trial. Patients were administered the Beck Depression Inventory II (BDI-II) and the Center for Epidemiologic Studies Depression Scale (CESD). Following a 24-48-hour Beta-blocker withdrawal, consented patients completed three mental stress tests followed by a treadmill exercise test. Ischemia was defined as 1) any development or worsening of any wall motion abnormality (WMA), 2) reduction of left ventricular ejection fraction (LVEF) ≥ 8% by transthoracic echocardiography, and/or ischemic ST-segment change by electrocardiography during stress testing. MSIMI was considered present when ischemia occurred in at least one mental test. Data were analyzed using logistic regression adjusting for age, gender, and resting left ventricular ejection fraction. Results One hundred twenty five (44.2 %) of 283 patients were found to have MSIMI and 93 (32.9%) had ESIMI. Unadjusted analysis showed that BDI-II scores were positively associated with the probability of MSIMI (OR = .1.30: 95% CI 1.06 – 1.60, p = .013) and number of MSIMI positive tasks (all p < .005). These associations were still significant after adjustment for covariates (ps ≤ .05). Conclusions In CHD patients, depressive symptoms were associated with a higher probability of MSIMI. These observations may enhance our understanding of the mechanisms contributing to the association of depressive symptoms to future cardiovascular events. PMID:24163385

  13. Biphasic modulation of the mitochondrial electron transport chain in myocardial ischemia and reperfusion.

    PubMed

    Lee, Hsin-Ling; Chen, Chwen-Lih; Yeh, Steve T; Zweier, Jay L; Chen, Yeong-Renn

    2012-04-01

    Mitochondrial electron transport chain (ETC) is the major source of reactive oxygen species during myocardial ischemia-reperfusion (I/R) injury. Ischemic defect and reperfusion-induced injury to ETC are critical in the disease pathogenesis of postischemic heart. The properties of ETC were investigated in an isolated heart model of global I/R. Rat hearts were subjected to ischemia for 30 min followed by reperfusion for 1 h. Studies of mitochondrial function indicated a biphasic modulation of electron transfer activity (ETA) and ETC protein expression during I/R. Analysis of ETAs in the isolated mitochondria indicated that complexes I, II, III, and IV activities were diminished after 30 min of ischemia but increased upon restoration of flow. Immunoblotting analysis and ultrastructural analysis with transmission electron microscopy further revealed marked downregulation of ETC in the ischemic heart and then upregulation of ETC upon reperfusion. No significant difference in the mRNA expression level of ETC was detected between ischemic and postischemic hearts. However, reperfusion-induced ETC biosynthesis in myocardium can be inhibited by cycloheximide, indicating the involvement of translational control. Immunoblotting analysis of tissue homogenates revealed a similar profile in peroxisome proliferator-activated receptor-γ coactivator-1α expression, suggesting its essential role as an upstream regulator in controlling ETC biosynthesis during I/R. Significant impairment caused by ischemic and postischemic injury was observed in the complexes I- III. Analysis of NADH ferricyanide reductase activity indicated that injury of flavoprotein subcomplex accounts for 50% decline of intact complex I activity from ischemic heart. Taken together, our findings provide a new insight into the molecular mechanism of I/R-induced mitochondrial dysfunction.

  14. Effect of Ischemia Duration and Protective Interventions on the Temporal Dynamics of Tissue Composition After Myocardial Infarction

    PubMed Central

    Fernández-Jiménez, Rodrigo; Galán-Arriola, Carlos; Sánchez-González, Javier; Agüero, Jaume; López-Martín, Gonzalo J.; Gomez-Talavera, Sandra; Garcia-Prieto, Jaime; Benn, Austin; Molina-Iracheta, Antonio; Barreiro-Pérez, Manuel; Martin-García, Ana; García-Lunar, Inés; Pizarro, Gonzalo; Sanz, Javier; Sánchez, Pedro L.; Fuster, Valentin

    2017-01-01

    Rationale: The impact of cardioprotective strategies and ischemia duration on postischemia/reperfusion (I/R) myocardial tissue composition (edema, myocardium at risk, infarct size, salvage, intramyocardial hemorrhage, and microvascular obstruction) is not well understood. Objective: To study the effect of ischemia duration and protective interventions on the temporal dynamics of myocardial tissue composition in a translational animal model of I/R by the use of state-of-the-art imaging technology. Methods and Results: Four 5-pig groups underwent different I/R protocols: 40-minute I/R (prolonged ischemia, controls), 20-minute I/R (short-duration ischemia), prolonged ischemia preceded by preconditioning, or prolonged ischemia followed by postconditioning. Serial cardiac magnetic resonance (CMR)-based tissue characterization was done in all pigs at baseline and at 120 minutes, day 1, day 4, and day 7 after I/R. Reference myocardium at risk was assessed by multidetector computed tomography during the index coronary occlusion. After the final CMR, hearts were excised and processed for water content quantification and histology. Five additional healthy pigs were euthanized after baseline CMR as reference. Edema formation followed a bimodal pattern in all 40-minute I/R pigs, regardless of cardioprotective strategy and the degree of intramyocardial hemorrhage or microvascular obstruction. The hyperacute edematous wave was ameliorated only in pigs showing cardioprotection (ie, those undergoing short-duration ischemia or preconditioning). In all groups, CMR-measured edema was barely detectable at 24 hours postreperfusion. The deferred healing-related edematous wave was blunted or absent in pigs undergoing preconditioning or short-duration ischemia, respectively. CMR-measured infarct size declined progressively after reperfusion in all groups. CMR-measured myocardial salvage, and the extent of intramyocardial hemorrhage and microvascular obstruction varied dramatically

  15. Comparison of myocardial imaging with iodine-123-iodophenyl-9-methyl pentadecanoic acid and thallium-201-chloride for assessment of patients with exercise-induced myocardial ischemia

    SciTech Connect

    Chouraqui, P.; Maddahi, J.; Henkin, R.; Karesh, S.M.; Galie, E.; Berman, D.S. )

    1991-03-01

    Iodine-123-iodophenyl-9-methyl-pentadecanoic acid (({sup 123}I)MPDA) and thallium-201 ({sup 201}Tl) were sequentially injected in 11 patients during exercise-induced myocardial ischemia. Simultaneous dual-energy planar images were obtained at 5 min, 3 and 5 hr. All studies were concordantly either positive (8/11) or negative (3/11) by both radionuclides. Exact agreement for segmental uptake was 93%, 94% and 94% for 5-min, 3- and 5-hr images, respectively. Exact agreement for defect reversibility by 3 and 5 hr were 95% and 92%. The initial defect contrasts and myocardial-to-lung ratios were similar by both agents but myocardial-to-liver ratio was lower by ({sup 123}I)MPDA at 5 min, which became similar to {sup 201}Tl at 5 hr. Normal percent myocardial clearances of both agents were comparable and significantly higher than those in defect zones. Thus ({sup 123}I)MPDA is suitable for myocardial imaging and correlates closely with {sup 201}Tl for initial postexercise myocardial uptake and defect reversibility. Defect reversibility appears to result from differential myocardial clearance from normal and ischemic regions.

  16. Medullary ventrolateral nitric oxide mediates the cardiac effect of electroacupuncture at "Neiguan" acupoint on acute myocardial ischemia in rats.

    PubMed

    Lu, Juan-Xiu; Zhou, Pei-Hua; Wang, Jin; Li, Xia; Cao, Yin-Xiang; Zhou, Xu; Zhu, Da-Nian

    2004-08-25

    Experiments were performed on male Sprague-Dawley (SD) rats anesthetized with a mixture of urethane and chloralose. A rat model of acute myocardial ischemia (AMI) was made by ligation of the left anterior descending branch of the coronary artery (LAD). After the LAD ligation, the ischemia area of the left ventricular wall became somewhat pale immediately. Under a light microscope, the pathological examination revealed that all the cells were swollen and in red color when the cardiac section was stained with hematoxylin basic fuchsin picric acid (HBFP), which indicated a typical change in the myocardial ischemia. In the AMI model, it was found that cardiac functions were markedly attenuated, such as decreases in the heart rate (HR), mean arterial pressure (MAP), left ventricular systolic pressure (LVSP), maximal rate for left ventricular pressure rising and declining (+/-dp/dt(max)), velocity of contractile element (V(CE)) and total area of cardiac force loop (L(0)), and an increase in the left ventricular end diastolic pressure (LVEDP). In such AMI rats, application of electroacupuncture (EA) at "Neiguan" acupoints (Pe 6) for 20 min could obviously improve the above-mentioned cardiac functions. After microinjection of nitro-L-arginine (L-NNA), an inhibitor of nitric oxide synthase (NOS), was made into the rostral ventrolateral medulla (RVLM), the curative effect of EA on myocardial ischemia was reduced significantly or abolished, while after microinjection of normal saline of the same volume was made into the RVLM, the improving effect of EA remained. These results suggest that the effect of EA on myocardial ischemia is possibly mediated by the nitric oxide (NO) in the RVLM.

  17. c-Jun DNAzymes inhibit myocardial inflammation, ROS generation, infarct size, and improve cardiac function after ischemia-reperfusion injury.

    PubMed

    Luo, Xiao; Cai, Hong; Ni, Jun; Bhindi, Ravinay; Lowe, Harry C; Chesterman, Colin N; Khachigian, Levon M

    2009-11-01

    Coronary reperfusion has been the mainstay therapy for reduced infarct size after a heart attack. However, this intervention also results in myocardial injury by initiating a marked inflammatory reaction, and new treatments are keenly sought. The basic-region leucine zipper protein, c-Jun is poorly expressed in the normal myocardium and is induced within 24 hours after myocardial ischemia-reperfusion injury. Synthetic catalytic DNA molecules (DNAzymes) targeting c-Jun (Dz13) reduce infarct size in the area-at-risk (AAR) regardless of whether it is delivered intramyocardially at the initiation of ischemia or at the time of reperfusion. Dz13 attenuates neutrophil infiltration, c-Jun and ICAM-1 expression in vascular endothelium, cardiomyocyte apoptosis, and the generation of reactive oxygen species in the reperfused myocardium. It inhibits infiltration into the AAR of complement 3 (C3), C3a receptor (C3aR), membrane attack complex-1 (Mac-1), or matrix metalloproteinase-2 (MMP-2) positive inflammatory cells. Dz13 also improves cardiac function without influencing myocardial vascularity or fibrosis. These findings demonstrate the regulatory role of c-Jun in the pathogenesis of myocardial inflammation and infarction following ischemia-reperfusion injury, and inhibition of this process using catalytic DNA.

  18. The cardioprotective effects of citric Acid and L-malic Acid on myocardial ischemia/reperfusion injury.

    PubMed

    Tang, Xilan; Liu, Jianxun; Dong, Wei; Li, Peng; Li, Lei; Lin, Chengren; Zheng, Yongqiu; Hou, Jincai; Li, Dan

    2013-01-01

    Organic acids in Chinese herbs, the long-neglected components, have been reported to possess antioxidant, anti-inflammatory, and antiplatelet aggregation activities; thus they may have potentially protective effect on ischemic heart disease. Therefore, this study aims to investigate the protective effects of two organic acids, that is, citric acid and L-malic acid, which are the main components of Fructus Choerospondiatis, on myocardial ischemia/reperfusion injury and the underlying mechanisms. In in vivo rat model of myocardial ischemia/reperfusion injury, we found that treatments with citric acid and L-malic acid significantly reduced myocardial infarct size, serum levels of TNF-α, and platelet aggregation. In vitro experiments revealed that both citric acid and L-malic acid significantly reduced LDH release, decreased apoptotic rate, downregulated the expression of cleaved caspase-3, and upregulated the expression of phosphorylated Akt in primary neonatal rat cardiomyocytes subjected to hypoxia/reoxygenation injury. These results suggest that both citric acid and L-malic acid have protective effects on myocardial ischemia/reperfusion injury; the underlying mechanism may be related to their anti-inflammatory, antiplatelet aggregation and direct cardiomyocyte protective effects. These results also demonstrate that organic acids, besides flavonoids, may also be the major active ingredient of Fructus Choerospondiatis responsible for its cardioprotective effects and should be attached great importance in the therapy of ischemic heart disease.

  19. Cardioprotective Effects of Salvianolic Acid A on Myocardial Ischemia-Reperfusion Injury In Vivo and In Vitro

    PubMed Central

    Fan, Huaying; Yang, Liu; Fu, Fenghua; Xu, Hui; Meng, Qinggang; Zhu, Haibo; Teng, Lirong; Yang, Mingyan; Zhang, Leiming; Zhang, Ziliang; Liu, Ke

    2012-01-01

    Salvianolic acid A (SAA), one of the major active components of Danshen that is a traditional Chinese medicine, has been reported to possess protective effect in cardiac diseases and antioxidative activity. This study aims to investigate the cardioprotection of SAA in vivo and in vitro using the model of myocardial ischemia-reperfusion in rat and hydrogen peroxide (H2O2)-induced H9c2 rat cardiomyoblasts apoptosis. It was found that SAA significantly limited infarct size of ischemic myocardium when given immediately prior to reperfusion. SAA also significantly suppressed cellular injury and apoptotic cell death. Additionally, the results of western blot and phospho-specific antibody microarray analysis showed that SAA could up-regulate Bcl-2 expression and increase the phosphorylation of proteins such as Akt, p42/p44 extracellular signal-related kinases (Erk1/2), and their related effectors. The phosphorylation of those points was related to suppress apoptosis. In summary, SAA possesses marked protective effect on myocardial ischemia-reperfusion injury, which is related to its ability to reduce myocardial cell apoptosis and damage induced by oxidative stress. The protection is achieved via up-regulation of Bcl-2 expression and affecting protein phosphorylation. These findings indicate that SAA may be of value in cardioprotection during myocardial ischemia-reperfusion injury, which provide pharmacological evidence for clinical application. PMID:21789047

  20. Geranylgeranylacetone protects against myocardial ischemia and reperfusion injury by inhibiting high-mobility group box 1 protein in rats.

    PubMed

    Wang, Neng; Min, Xinwen; Li, Dongfeng; He, Peigen; Zhao, Libin

    2012-02-01

    The high mobility group box 1 (HMGB1) protein plays an important role in myocardial ischemia and reperfusion (I/R) injury. Geranylgeranylacetone (GGA), a heat shock protein 72 inducer, has been reported to reduce myocardial I/R injury. The aim of this study was to investigate the cardioprotective mechanism of GGA during myocardial I/R injury in rats. Anesthetized male rats were treated once with GGA (200 mg/kg, p.o.) 24 h before ischemia, and subjected to ischemia for 30 min, followed by reperfusion for 4 h. Lactate dehydrogenase (LDH), creatine kinase (CK), malondialdehyde (MDA), superoxide dismutase (SOD) activity and infarct size were measured. HMGB1 expression was assessed by immunoblotting. The results showed that pre-treatment with GGA (200 mg/kg) significantly reduced the infarct size and the levels of LDH and CK after 4 h of reperfusion (all P<0.05). GGA also significantly inhibited the increase in MDA levels and the decrease in SOD levels (both P<0.05). Meanwhile, GGA considerably suppressed the expression of HMGB1 induced by I/R. The present study suggests that GGA is capable of attenuating myocardial I/R injury by inhibiting HMGB1 expression.

  1. Reduction of myocardial ischemia reperfusion injury with regular consumption of grapes.

    PubMed

    Cui, Jianhua; Cordis, Gerald A; Tosaki, Arpad; Maulik, Nilanjana; Das, Dipak K

    2002-05-01

    Recently several polyphenolic antioxidants derived from grape seeds and skins have been implicated in cardioprotection. This study was undertaken to determine if the grapes were equally cardioprotective. Sprague Dawley male rats were given (orally) standardized grape extract (SGE) for a period of three weeks. Time-matched control experiments were performed by feeding the animals 45 microg/100 of glucose plus 45 microg/100 g fructose per day for three weeks. After 30 days, rats were sacrificed, hearts excised and perfused via working-mode. Hearts were made ischemic for 30 min followed by two hours of reperfusion. At 100 mg/kg and at 200 mg/kg, SGE provided significant cardioprotection as evidenced by improved post-ischemic ventricular recovery and reduced amount of myocardial infarction. No cardioprotection was apparent when rats were given grape samples at a dose of 50 mg/100 g/day. In vitro studies demonstrated that the SGE could directly scavenge superoxide and hydroxyl radicals which are formed in the ischemic reperfused myocardium. The results demonstrate that the heats of the rats fed SGE reduced myocardial ischemia reperfusion injury by functioning as in vivo antioxidant.

  2. Coronary arterial BK channel dysfunction exacerbates ischemia/reperfusion-induced myocardial injury in diabetic mice.

    PubMed

    Lu, Tong; Jiang, Bin; Wang, Xiao-Li; Lee, Hon-Chi

    2016-09-01

    The large conductance Ca(2+)-activated K(+) (BK) channels, abundantly expressed in coronary artery smooth muscle cells (SMCs), play a pivotal role in regulating coronary circulation. A large body of evidence indicates that coronary arterial BK channel function is diminished in both type 1 and type 2 diabetes. However, the consequence of coronary BK channel dysfunction in diabetes is not clear. We hypothesized that impaired coronary BK channel function exacerbates myocardial ischemia/reperfusion (I/R) injury in streptozotocin-induced diabetic mice. Combining patch-clamp techniques and cellular biological approaches, we found that diabetes facilitated the colocalization of angiotensin II (Ang II) type 1 receptors and BK channel α-subunits (BK-α), but not BK channel β1-subunits (BK-β1), in the caveolae of coronary SMCs. This caveolar compartmentation in vascular SMCs not only enhanced Ang II-mediated inhibition of BK-α but also produced a physical disassociation between BK-α and BK-β1, leading to increased infarct size in diabetic hearts. Most importantly, genetic ablation of caveolae integrity or pharmacological activation of coronary BK channels protected the cardiac function of diabetic mice from experimental I/R injury in both in vivo and ex vivo preparations. Our results demonstrate a vascular ionic mechanism underlying the poor outcome of myocardial injury in diabetes. Hence, activation of coronary BK channels may serve as a therapeutic target for cardiovascular complications of diabetes.

  3. Polymeric electrospun scaffolds: neuregulin encapsulation and biocompatibility studies in a model of myocardial ischemia.

    PubMed

    Simón-Yarza, Teresa; Rossi, Angela; Heffels, Karl-Heinz; Prósper, Felipe; Groll, Jürgen; Blanco-Prieto, Maria J

    2015-05-01

    Cardiovascular disease represents one of the major health challenges in modern times and is the number one cause of death globally. Thus, numerous studies are under way to identify effective cell- and/or growth factor (GF)-based therapies for repairing damaged cardiac tissue. In this regard, improving the engraftment or survival of regenerative cells and prolonging GF exposure have become fundamental goals in advancing these therapeutic approaches. Biomaterials have emerged as innovative scaffolds for the delivery of both cells and proteins in tissue engineering applications. In the present study, electrospinning was used to generate smooth homogenous polymeric fibers, which consisted of a poly(lactic-co-glycolic acid) (PLGA)/NCO-sP(EO-stat-PO) polymer blend encapsulating the cardioactive GF, Neuregulin-1 (Nrg). We evaluated the biocompatibility and degradation of this Nrg-containing biomaterial in a rat model of myocardial ischemia. Histological analysis revealed the presence of an initial acute inflammatory response after implantation, which was followed by a chronic inflammatory phase, characterized by the presence of giant cells. Notably, the scaffold remained in the heart after 3 months. Furthermore, an increase in the M2:M1 macrophage ratio following implantation suggested the induction of constructive tissue remodeling. Taken together, the combination of Nrg-encapsulating scaffolds with cells capable of inducing cardiac regeneration could represent an ambitious and promising therapeutic strategy for repairing diseased or damaged myocardial tissue.

  4. Apelin/APJ System: A Novel Therapeutic Target for Myocardial Ischemia/Reperfusion Injury.

    PubMed

    Chen, Zhe; Wu, Di; Li, Lanfang; Chen, Linxi

    2016-12-01

    Apelin is the endogenous ligand of the G protein-coupled receptor, APJ. Recently, researches indicate that the apelin/APJ system involves in myocardial ischemia-reperfusion injury (MIRI), which is a common pathophysiological process in patients with heart diseases and therapies. The reperfusion induces the expression of apelin and APJ receptor, which play an important role in cardioprotection of MIRI. The apelin/APJ system alleviates MIRI mainly by decreasing mitochondrial reactive oxygen species and delaying the opening of mitochondrial permeability transition pores, which induce the initiation of mitophagy. Besides, the apelin/APJ system prevents mitochondrial oxygen damage and lipid peroxidation through nitric oxide formation. The apelin/APJ system also improves MIRI through other pathways, including promoting metabolic and functional recovery, significantly increasing myocardial capillary density and arteriole formation, inhibiting endoplasmic reticulum stress-induced cell apoptosis, and maintaining integrity of cell membranes. In this review, we discuss how the mechanisms of the apelin/APJ system reverse MIRI in detail and elaborate on APJ agonists, which may be used for therapy of MIRI.

  5. Resveratrol improves myocardial ischemia and ischemic heart failure in mice by antagonizing the detrimental effects of fractalkine*.

    PubMed

    Xuan, Wanling; Wu, Bing; Chen, Ci; Chen, Baihe; Zhang, Wenqing; Xu, Dingli; Bin, Jianping; Liao, Yulin

    2012-11-01

    To test the hypothesis that resveratrol would improve cardiac remodeling by inhibiting the detrimental effects of fractalkine. We previously reported that fractalkine exacerbates heart failure. Furthermore, this study sought to determine whether resveratrol targets fractalkine to improve myocardial ischemia and cardiac remodeling. Randomized and controlled laboratory investigation. Research laboratory. Neonatal rat cardiac cells and C57BL/6 mice. Cardiac cells were treated with recombinant mouse soluble fractalkine for 24 hrs or pretreated with 25 µM resveratrol. Cardiomyocytes were exposed to anoxia/reoxygenation, H2O2, or pretreatment with resveratrol. Ex vivo murine hearts were perfusioned with soluble fractalkine or pretreated with resveratrol after global ischemia. Mice were subjected to the left coronary artery ligation to induce myocardial infarction and randomized to treatment with resveratrol or vehicle alone for 42 days. In a murine myocardial infarction model, we found that resveratrol increased survival and delayed the progression of cardiac remodeling evaluated by serial echocardiography. At 6 wks, the heart weight/body weight ratio, lung weight/body weight ratio, and old infarct size were significantly smaller in resveratrol-treated mice than in untreated myocardial infarction mice. In cultures of neonatal rat cells, exposure to soluble fractalkine increased the atrial natriuretic peptide expression by cardiomyocytes, matrix metalloproteinase-9 and procollagen expression by fibroblasts, and intercellular adhesion molecule-1 expression by microvascular endothelial cells, while it decreased autophagy in cardiomyocytes. All these effects were blocked by coculture with resveratrol. The methyl thiazolyl tetrazolium assay showed that soluble fractalkine reduced the viability of cultured cardiomyocytes during exposure to anoxia/reoxygenation or H2O2, while pretreatment with resveratrol blocked this effect. Perfusion of ex vivo murine hearts with soluble

  6. Iloprost and vitamin C attenuates acute myocardial injury induced by suprarenal aortic ischemia-reperfusion in rabbits.

    PubMed

    Iriz, E; Iriz, A; Take, G; Ozgul, H; Oktar, L; Demirtas, H; Helvacioglu, F; Arslan, M

    2015-01-01

    The aim of this study was to evaluate antioxidant and cytoprotective effects of iloprost and Vitamin C in a distant organ after abdominal aorta ischemia-reperfusion injury. Twenty-eight New Zealand rabbits weighing 2,400-2,800 g were used for this study. The rabbits were divided into four equal groups. These groups are control group, sham group, iloprost group, and iloprost+vitamin C group. Suprarenal aorta was occluded with a vascular clamp. Following 30 minutes of ischemia, the vascular clamp was removed. Rabbits in group 3 received 10 ng/kg/min iloprost and those in group 4 received 10 ng/kg/min iloprost and 10 mg/kg vitamin C. At the end of the reperfusion period, the rabbits were sacrificed by a high intraperitoneal dose of xylazine+ketamine injection. Myocardial tissue samples were taken for electron microscopic analysis. We evaluated SOD, MDA and catalase in myocardial tissue samples. Iloprost and iloprost+vitamin C groups significantly reduced the oxidative stress markers in tissue samples (p<0.05) and significantly decreased the myofibrillar injury and mitochondrial morphology changes in the myocardial tissue as shown with electron microscopy (p<0.05). Myocardial edema was significantly alleviated by iloprost and iloprost+vitamin C administration (p<0.05). This study clearly showed that myocardial injury and edema occurred after ischemia-reperfusion of abdominal aorta and that groups administered with iloprost and iloprost+vitamin C showed an attenuation of ischemia-reperfusion injury in distant organs (Tab. 3, Fig. 4, Ref. 30).

  7. Epicardial adipose tissue volume but not density is an independent predictor for myocardial ischemia.

    PubMed

    Hell, Michaela M; Ding, Xiaowei; Rubeaux, Mathieu; Slomka, Piotr; Gransar, Heidi; Terzopoulos, Demetri; Hayes, Sean; Marwan, Mohamed; Achenbach, Stephan; Berman, Daniel S; Dey, Damini

    2016-01-01

    Epicardial adipose tissue (EAT) volume is associated with plaque formation and cardiovascular event risk, its density may reflect tissue composition and metabolic activity. Global and regional associations between EAT volume and density, ischemia and coronary calcium were investigated using a novel automatic quantitative measurement software. 71 patients with an intermediate pre-test probability for coronary artery disease and inducible ischemia by SPECT were matched to two same-gender controls (total of 213 patients, 90% male, age 60 ± 10 years). Non-contrast CT for assessment of EAT volume, density (in Hounsfield Unit [HU]) and coronary calcium score (CCS) was performed. Global EAT volume was significantly increased in ischemic patients compared to controls (96 ± 49 vs. 82 ± 36 cm(3), p = 0.04), density showed no significant difference (-75.6 ± 4.3 vs. -75.1 ± 4.1HU, p = 0.63). EAT volume and density differed significantly between coronary territories (LAD: 37 ± 18 cm(3), -77.8 ± 4.5HU; LCx: 16 ± 9 cm(3), -73.9 ± 4.1HU; RCA: 36 ± 17 cm(3), -71.7 ± 4.8HU, p < 0.001). For regional ischemia, only LCx territory showed a significantly higher EAT volume (18 ± 8 vs. 16 ± 9 cm(3), p = 0.048). Multivariable logistic regression revealed a significant association with ischemia for EAT volume (OR 2.09 (1.0; 4.3), p = 0.049) and CCS (OR 1.43 (1.1; 1.9), p = 0.006). EAT volume significantly improved discrimination of ischemia over CCS (Integrated Discrimination Improvement: 3.5%, 95%CI: 1.1-6.1%, p = 0.004). Hypertension was the only risk factor significantly influencing EAT volume and density (98 ± 48 vs. 78 ± 31 cm(3), p = 0.002, -76.0 ± 4.1 vs. -74.5 ± 4.1 HU, p = 0.01). EAT volume is associated with myocardial ischemia and improves the discriminative power for independent ischemia prediction over CCS. In hypertensive patients, EAT is characterized by lower density and higher volumes. Copyright

  8. Study of baicalin on sympathoexcitation induced by myocardial ischemia via P2X3 receptor in superior cervical ganglia.

    PubMed

    Zhang, Jun; Liu, Shuangmei; Xu, Baohua; Li, Guodong; Li, Guilin; Huang, An; Wu, Bing; Peng, Lichao; Song, Miaomiao; Xie, Qiuyu; Lin, Weijian; Xie, Wei; Wen, Shiyao; Zhang, Zhedong; Xu, Xiaoling; Liang, Shangdong

    2015-05-01

    After the myocardial ischemia, injured myocardial tissues released large quantity of ATP, which activated P2X3 receptor in superior cervical ganglia and made the SCG postganglionic neurons excited. Excitatory of sympathetic postganglionic efferent neurons increased the blood pressure and heart rates, which aggravated the myocardial ischemic injury. Baicalin has anti-inflammatory and anti-oxidant properties. Our study showed that baicalin reduced the incremental concentration of serum CK-MB, cTn-T, epinephrine and ATP, decreased the up-regulated expression levels of P2X3 mRNA and protein in SCG after MI, and then inhibited the sympathetic excitatory activity triggered by MI injury. These results indicated that baicalin acted on P2X3 receptor was involved in the transmission of sympathetic excitation after the myocardial ischemic injury. Baicalin might decrease sympathetic activity via inhibiting P2X3 receptor in rat SCG to protect the myocardium.

  9. SIRT1 activation by curcumin pretreatment attenuates mitochondrial oxidative damage induced by myocardial ischemia reperfusion injury.

    PubMed

    Yang, Yang; Duan, Weixun; Lin, Yan; Yi, Wei; Liang, Zhenxing; Yan, Juanjuan; Wang, Ning; Deng, Chao; Zhang, Song; Li, Yue; Chen, Wensheng; Yu, Shiqiang; Yi, Dinghua; Jin, Zhenxiao

    2013-12-01

    Ischemia reperfusion (IR) injury (IRI) is harmful to the cardiovascular system and causes mitochondrial oxidative stress. Silent information regulator 1 (SIRT1), a type of histone deacetylase, contributes to IRI. Curcumin (Cur) is a strong natural antioxidant and is the active component in Curcuma longa; Cur has protective effects against IRI and may regulate the activity of SIRT1. This study was designed to investigate the protective effect of Cur pretreatment on myocardial IRI and to elucidate this potential mechanism. Isolated and in vivo rat hearts and cultured neonatal rat cardiomyocytes were subjected to IR. Prior to this procedure, the hearts or cardiomyocytes were exposed to Cur in the absence or presence of the SIRT1 inhibitor sirtinol or SIRT1 siRNA. Cur conferred a cardioprotective effect, as shown by improved postischemic cardiac function, decreased myocardial infarct size, decreased myocardial apoptotic index, and several biochemical parameters, including the up-regulation of the antiapoptotic protein Bcl2 and the down-regulation of the proapoptotic protein Bax. Sirtinol and SIRT1 siRNA each blocked the Cur-mediated cardioprotection by inhibiting SIRT1 signaling. Cur also resulted in a well-preserved mitochondrial redox potential, significantly elevated mitochondrial superoxide dismutase activity, and decreased formation of mitochondrial hydrogen peroxide and malondialdehyde. These observations indicated that the IR-induced mitochondrial oxidative damage was remarkably attenuated. However, this Cur-elevated mitochondrial function was reversed by sirtinol or SIRT1 siRNA treatment. In summary, our results demonstrate that Cur pretreatment attenuates IRI by reducing IR-induced mitochondrial oxidative damage through the activation of SIRT1 signaling.

  10. The nuclear melatonin receptor RORα is a novel endogenous defender against myocardial ischemia/reperfusion injury.

    PubMed

    He, Ben; Zhao, Yichao; Xu, Longwei; Gao, Lingchen; Su, Yuanyuan; Lin, Nan; Pu, Jun

    2016-04-01

    Circadian rhythm disruption or decrease in levels of circadian hormones such as melatonin increases ischemic heart disease risk. The nuclear melatonin receptors RORs are pivotally involved in circadian rhythm regulation and melatonin effects mediation. However, the functional roles of RORs in the heart have never been investigated and were therefore the subject of this study on myocardial ischemia/reperfusion (MI/R) injury pathogenesis. RORα and RORγ subtypes were detected in the adult mouse heart, and RORα but not RORγ was downregulated after MI/R. To determine the pathological consequence of MI/R-induced reduction of RORα, we subjected RORα-deficient staggerer mice and wild-type (WT) littermates to MI/R injury, resulting in significantly increased myocardial infarct size, myocardial apoptosis and exacerbated contractile dysfunction in the former. Mechanistically, RORα deficiency promoted MI/R-induced endoplasmic reticulum stress, mitochondrial impairments, and autophagy dysfunction. Moreover, RORα deficiency augmented MI/R-induced oxidative/nitrative stress. Given the emerging evidence of RORα as an essential melatonin effects mediator, we further investigated the RORα roles in melatonin-exerted cardioprotection, in particular against MI/R injury, which was significantly attenuated in RORα-deficient mice, but negligibly affected by cardiac-specific silencing of RORγ. Finally, to determine cell type-specific effects of RORα, we generated mice with cardiomyocyte-specific RORα overexpression and they were less vulnerable to MI/R injury. In summary, our study provides the first direct evidence that the nuclear melatonin receptor RORα is a novel endogenous protective receptor against MI/R injury and an important mediator of melatonin-exerted cardioprotection; melatonin-RORα axis signaling thus appears important in protection against ischemic heart injury. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Association Between High-Sensitivity Cardiac Troponin Levels and Myocardial Ischemia During Mental Stress and Conventional Stress.

    PubMed

    Hammadah, Muhammad; Al Mheid, Ibhar; Wilmot, Kobina; Ramadan, Ronnie; Alkhoder, Ayman; Obideen, Malik; Abdelhadi, Naser; Fang, Shuyang; Ibeanu, Ijeoma; Pimple, Pratik; Mohamed Kelli, Heval; Shah, Amit J; Pearce, Brad; Sun, Yan; Garcia, Ernest V; Kutner, Michael; Long, Qi; Ward, Laura; Bremner, J Douglas; Esteves, Fabio; Raggi, Paolo; Sheps, David; Vaccarino, Viola; Quyyumi, Arshed A

    2017-03-10

    This study sought to investigate whether patients with mental stress-induced myocardial ischemia will have high resting and post-mental stress high-sensitivity cardiac troponin I (hs-cTnI). Hs-cTnI is a marker of myocardial necrosis, and its elevated levels are associated with adverse outcomes. Hs-cTnI levels may increase with exercise in patients with coronary artery disease. Mental stress-induced myocardial ischemia is also linked to adverse outcomes. In this study, 587 patients with stable coronary artery disease underwent technetium Tc 99m sestamibi-single-photon emission tomography myocardial perfusion imaging during mental stress testing using a public speaking task and during conventional (pharmacologic/exercise) stress testing as a control condition. Ischemia was defined as new/worsening impairment in myocardial perfusion using a 17-segment model. The median hs-cTnI resting level was 4.3 (interquartile range [IQR]: 2.9 to 7.3) pg/ml. Overall, 16% and 34.8% of patients developed myocardial ischemia during mental and conventional stress, respectively. Compared with those without ischemia, median resting hs-cTnI levels were higher in patients who developed ischemia either during mental stress (5.9 [IQR: 3.9 to 8.3] vs. 4.1 [IQR: 2.7 to 7.0] pg/ml; p < 0.001) or during conventional stress (5.4 [IQR: 3.9 to 9.3] vs. 3.9 [IQR: 2.5 to 6.5] pg/ml; p < 0.001). Patients with high hs-cTnI (cutoff of 4.6 pg/ml for men and 3.9 pg/ml for women) had greater odds of developing mental (odds ratio [OR]: 2.4; 95% confidence interval [CI]: 1.5 to 3.9; p < 0.001) and conventional (OR: 2.4; 95% CI: 1.7 to 3.4; p < 0.001) stress-induced ischemia. Although there was a significant increase in 45-min post-treadmill exercise hs-cTnI levels in those who developed ischemia, there was no significant increase after mental or pharmacological stress test. In patients with coronary artery disease, myocardial ischemia during either mental stress or conventional stress is associated

  12. Validation of improved vessel-specific leads (VSLs) for detecting acute myocardial ischemia.

    PubMed

    Wang, John J; Title, Lawrence M; Martin, Thomas N; Wagner, Galen S; Warren, James W; Horáček, B Milan; Sapp, John L

    2015-01-01

    Existing criteria recommended by ACC/ESC for identifying patients with ST elevation myocardial infarction (STEMI) from the 12-lead ECG perform with high specificity (SP), but low sensitivity (SE). In our previous studies, we found that the SE of ischemia detection can be markedly improved without any loss of SP by calculating, from the 12-lead ECG, ST deviation in 3 "optimal" vessel-specific leads (VSLs). Our original VSLs, based on ΔST body-surface potential maps (BSPMs), have been modified by using the more appropriate J-point BSPMs at peak ischemia (without subtraction of pre-occlusion distributions). The aim of the present study was to compare the performance of these new VSLs with that achieved by the STEMI criteria used in current practice. Two independent datasets of 12-lead ECGs were used: the STAFF III dataset acquired during ischemic episodes caused by balloon inflation in LAD (n=35), RCA (n=47), and LCx (n=17) coronary arteries, and the Glasgow dataset comprising admission 12-lead ECGs of 116 patients who were hospitalized for chest pain and underwent contrast-enhanced cardiac MRI that confirmed AMI in 58 patients (50%). We found that, in the STAFF III dataset, the detection of ischemic state by the STEMI criteria attained SE/SP of 60/97%, whereas SE/SP values of VSLs were 72/98%. In the Glasgow dataset, STEMI criteria yielded SE/SP of 43/98%, whereas the VSLs improved SE/SP to 60/98%. The most significant increase in diagnostic performance appeared in patients with LCx coronary artery occlusion: in STAFF III data (n=17) SE achieved by STEMI criteria was improved by the VSLs from 35% to 71%; in Glasgow data (n=12) SE of 31% achieved by STEMI criteria was improved by the VSLs to 69%. In our study population, existing ACC/ESC STEMI criteria complemented by the new VSLs yielded much improved sensitivity of ischemia detection without any detrimental effect on specificity. This finding needs to be corroborated on a larger chest-pain patient population with

  13. Triggers of myocardial ischemia during daily life in patients with coronary artery disease: physical and mental activities, anger and smoking.

    PubMed

    Gabbay, F H; Krantz, D S; Kop, W J; Hedges, S M; Klein, J; Gottdiener, J S; Rozanski, A

    1996-03-01

    This study assessed the potency of physical and mental activities and emotions (anger and anxiety) and smoking and other substance use as proximate triggers of ischemia in patients with coronary artery disease during daily life. Myocardial ischemia occurs during a wide variety of activities in patients with coronary artery disease, but frequency and relative potency of physical and mental activities, smoking and use of caffeine and alcohol as triggers of ischemia during daily life have not been established. Patients (n = 63) with coronary artery disease and evidence of out-of-hospital ischemia kept a validated structured diary of physical and mental activities and psychologic states while undergoing ambulatory electrocardiographic monitoring for 24 to 48 h. Ischemia occurred most frequently during moderately intense physical and mental activities. Patients spent the largest proportion of time engaged in low intensity physical and mental activities (p < 0.05), but the likelihood of ischemia was greatest during intense physical (p < 0.0001) and stressful mental activities (p < 0.03). The percentage of time in ischemia was elevated and approximately equivalent for high intensity physical and high intensity mental activities (5%) compared with 0.2% when patients were engaged in low intensity activities. Strenuous physical activity (e.g., effortful walking, p < 0.05) and the experience of intense anger were potent ischemic triggers, and heart rates at onset of ischemia increased with the intensity of physical and mental activity and with anger. Among smokers, ischemia was more than five times as likely when patients smoked than when they did not (during 24% vs. 5% of diary entries, p < 0.0001). Coffee and alcohol consumption were also related to ischemia (p < 0.05), but this association disappeared after controlling for concurrent cigarette smoking. Triggers of ischemia in patients with coronary artery disease during daily life include not only strenuous exercise, but

  14. Different preservation of myocardial capillary endothelial cells and cardiomyocytes during and after cardioplegic ischemia (25 degrees C) of canine hearts.

    PubMed

    Schmiedl, A; Richter, J; Schnabel, Ph A

    2002-01-01

    Complete resumption of cardiac function after cardioplegic arrest presupposes a well-preserved myocardial ultrastructure during and after ischemia. Therefore, we determined ischemia-induced ultrastructural alterations in the myocardium during and after reversible cardioplegic ischemia using stereological methods. Cardiac arrest was induced with St. Thomas' Hospital- or Custodiol (HTK) solution. Reperfusion with Tyrode's solution followed after reversible cardioplegic ischemia in situ. Samples were taken 1) from beating hearts, 2) from cardioplegically arrested hearts immediately after the end of coronary perfusion, 3) from ischemic hearts incubated in the cardioplegic solution at 25 degrees C, and 4) from reperfused beating hearts after ischemia in situ at 22 degrees C. Cellular swelling was determined as the barrier thickness of capillary endothelium and as the sum of cardiomyocyte volume fractions of free sarcoplasm and mitochondria. In St. Thomas'-arrested hearts, intraischemic volume increase was significantly more pronounced in endothelial cells than in cardiomyocytes. Reperfusion at the intraischemic practical limit of resuscitability (ATP levels of 4 micromol/gww) significantly reduced intraischemic swelling of cardiomyocytes, but not of capillary endothelial cells. Mitochondrial damage was more pronounced in capillary endothelial cells during ischemia and after reperfusion. Thus, after reversible cardioplegic arrest, structural recovery of cardiomyocytes is better than that of capillary endothelial cells. An incomplete structural protection of capillary endothelial cells may predominantly contribute to postischemic dysfunction in the reperfused heart.

  15. The Myocardial Ischemia Reduction with Acute Cholesterol Lowering trial: MIRACuLous or not, it's time to change current practice

    PubMed Central

    Aronow, Herbert D

    2002-01-01

    The Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering (MIRACL) study was the first trial to assess whether statins might be of clinical benefit in those with recently unstable coronary disease. MIRACL found that high-dose atorvastatin was safe and reduced the incidence of the composite endpoint, death, non-fatal myocardial infarction, resuscitated sudden cardiac death or emergent rehospitalization for recurrent ischemia at 16 weeks when compared with placebo. Despite a number of important study limitations, MIRACL's findings and the prior observation that inpatient initiation of lipid-lowering therapy is associated with higher rates of subsequent utilization, suggest that it is prudent to begin statin therapy when patients present with an acute coronary syndrome. PMID:11985777

  16. Evolution of myocardial ischemia and left ventricular function in patients with angina pectoris without myocardial infarction and total occlusion of the left anterior descending coronary artery and collaterals from other coronary arteries

    SciTech Connect

    Juilliere, Y.; Marie, P.Y.; Danchin, N.; Karcher, G.; Bertrand, A.; Cherrier, F. )

    1991-07-01

    Repeated episodes of myocardial ischemia might lead to progressive impairment of left ventricular (LV) function. This radionuclide study assessed myocardial ischemia and LV function several years after documented coronary occlusion without myocardial infarction. Over 5 years, 24 consecutive patients, who underwent cardiac catheterization for angina pectoris without myocardial infarction, had isolated total occlusion of the left anterior descending coronary artery with well-developed collateral vessels. Five patients were successfully treated by coronary bypass grafting and 3 by coronary angioplasty. Among the 16 medically treated patients, 1 was lost to follow-up and 1 died (extracardiac death). The mean (+/- standard deviation) follow-up (14 patients) was 48 +/- 15 months. At follow-up, 8 patients still had clinical chest pain, 11 received antianginal therapy, 4 patients had no stress ischemia and the other 10 had greater than or equal to 1 sign of stress ischemia. All patients had a normal LV ejection fraction at rest (mean 60 +/- 3%; range 55 to 65%). Collateral circulation preserves LV function at the time of occlusion and, in some cases, prevents the development of myocardial ischemia; in patients with persisting myocardial ischemia after well-collateralized coronary occlusion, LV function is not impaired at long-term follow-up.

  17. Concomitant Phosphodiesterase 5 Inhibition Enhances Myocardial Protection by Inhaled Nitric Oxide in Ischemia-Reperfusion Injury.

    PubMed

    Lux, Arpad; Pokreisz, Peter; Swinnen, Melissa; Caluwe, Ellen; Gillijns, Hilde; Szelid, Zsolt; Merkely, Bela; Janssens, Stefan P

    2016-02-01

    Enhanced cyclic guanosine monophosphate (cGMP) signaling may attenuate myocardial ischemia-reperfusion injury (I/R) and improve left ventricular (LV) functional recovery after myocardial infarction (MI). We investigated the cardioprotection afforded by inhaled NO (iNO), the phosphodiesterase 5 (PDE5)-specific inhibitor tadalafil (TAD), or their combination (iNO+TAD) in C57Bl6J mice subjected to 6-minute left anterior descending artery ligation followed by reperfusion. We measured plasma and cardiac concentrations of cGMP during early reperfusion, quantified myocardial necrosis and inflammation by serial troponin-I (TnI) and myeloperoxidase-positive cell infiltration at day 3, and evaluated LV function and remodeling after 4 weeks using echocardiography and pressure-conductance catheterization. Administration of iNO, TAD, or both during I/R was safe and hemodynamically well tolerated. Compared with untreated mice (CON), only iNO+TAD increased plasma and cardiac-cGMP levels during early reperfusion (80 ± 12 versus 36 ± 6 pmol/ml and 0.15 ± 0.02 versus 0.05 ± 0.01 pmol/mg protein, P < 0.05 for both). Moreover, iNO+TAD reduced TnI at 4 hours to a greater extent (P < 0.001 versus CON) than either alone (P < 0.05 versus CON) and was associated with significantly less myocardial inflammatory cell infiltration at day 3. After 4 weeks and compared with CON, iNO+TAD was associated with increased fractional shortening (43 ± 1 versus 33 ± 2%, P < 0.01), larger stroke volumes (14.9 ± 1.2 versus 10.2 ± 0.9 μl, P < 0.05), enhanced septal and posterior wall thickening (P < 0.05 and P < 0.001, respectively), and attenuated LV dilatation (P < 0.001), whereas iNO or TAD alone conferred less benefit. Thus, iNO+TAD has superior efficacy to limit early reperfusion injury and attenuate adverse LV remodeling. Combination of inhaled NO with a long-acting PDE5 inhibitor may represent a promising strategy to reduce ischemic damage following reperfusion and better preserve LV

  18. The Prognostic Significance of Resting Regional Left Ventricular Function in Patients With Varying Degrees of Myocardial Ischemia

    PubMed Central

    Kilcullen, Niamh M.; Uthamalingam, Shanmugan; Gurm, Gagandeep S; Gregory, Shawn A.; Picard, Michael H.

    2013-01-01

    Background Our aim was to determine whether regional left ventricular (LV) function on a resting transthoracic echo (TTE) provides prognostic information in patients with varying degrees of ischemia on myocardial perfusion imaging. Methods Between 2004 - 2009, we identified 503 patients (mean age 69 (SD 11); 79% male) with reversible ischemia on a myocardial SPECT scan who had a TTE within 30 days. We evaluated the rate of subsequent revascularization and death for all patients. Results Following the SPECT scan and TTE, 246/503(49%) patients underwent revascularization, 64/503 (13%) patients died, 369 (73%) patients had a normal left ventricular ejection fraction (LVEF), 242 (48%) patients had a resting wall motion abnormality (WMA), 21/261 (8%) with no WMA died compared to 43/242 (18%) in patients with a WMA. In patients with a WMA (n = 242) there was no significant difference in mortality when comparing patients with small (< 6 segments) and large (> 6 segments) WMA (P = 0.44). In patients with moderate/severe ischemia, the presence of a resting WMA was associated with a higher mortality rate (18% v 7%; P = 0.005). In a multivariable model, LVEF (< 50%) was associated with a hazard ratio of 2.2 (P = 0.002, 95% CI 1.34 - 3.68) however, WMA and number of abnormal segments did not reach statistical significance. Conclusion A resting wall motion abnormality in patients with moderate/severe ischemia is associated with a higher mortality compared to patients with mild ischemia on myocardial perfusion imaging. Regional left ventricular dysfunction unlike LVEF was not an independent predictor of mortality.

  19. Effects of central sympathetic activation on repolarization-dispersion during short-term myocardial ischemia in anesthetized rats.

    PubMed

    Kolettis, Theofilos M; La Rocca, Vassilios; Psychalakis, Nikolaos; Karampela, Eleftheria; Kontonika, Marianthi; Tourmousoglou, Christos; Baltogiannis, Giannis G; Papalois, Apostolos; Kyriakides, Zenon S

    2016-01-01

    Sympathetic activation during myocardial ischemia enhances arrhythmogenesis, but the underlying pathophysiologic mechanisms remain unclear. We investigated the central sympathetic effects on ventricular repolarization during the early-period post-coronary artery occlusion. We studied 12 Wistar rats (254±2 g) for 30 min following left coronary artery ligation, with (n=6) or without (n=6) pretreatment with the central sympatholytic agent clonidine. Mapping of left and right ventricular epicardial electrograms was performed with a 32-electrode array. As an index of sympathetic activation, heart rate variability in the frequency domain was calculated. Heart rate and repolarization duration were measured with a custom-made recording and analysis software, followed by calculation of intra- and inter-ventricular dispersion of repolarization. Heart rate and heart rate variability indicated lower sympathetic activation in clonidine-treated rats during ischemia. Repolarization duration in the left ventricle prolonged after clonidine at baseline, independently of heart rate, but no differences were present 30 min post-ligation. Dispersion of repolarization in the right ventricle remained stable during ischemia, whereas it increased in the left ventricle, equally in both groups. A similar trend was observed for inter-ventricular dispersion, without differences between groups. In addition to intra-ventricular repolarization-dispersion, anterior-wall myocardial ischemia may also increase inter-ventricular repolarization-dispersion. Progressive central sympathetic activation occurs during myocardial ischemia, but it does not affect intra- or inter-ventricular dispersion of ventricular repolarization during the early phase. Further research is warranted on the potential effects during subsequent time-periods. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Ischemia/reperfusion is an independent trigger for increasing myocardial content of mRNA B-type natriuretic peptide.

    PubMed

    Ramos, Lafayete William F; Murad, Neif; Goto, Eduardo; Antônio, Edinei L; Silva, José A; Tucci, Paulo F; Carvalho, Antônio C

    2009-11-01

    This study aims to determine whether a relation exists between ischemia/reperfusion and myocardial B-type natriuretic peptide (BNP) mRNA expression independent of variations in intracavitary diastolic volume and consequently, of cardiomyocyte stretching. Twenty-three rats were subjected to the following conditions: control (C), 15 min of ischemia (I15), or ischemia plus 15 (R15), 30 (R30), or 45 (R45) min of reperfusion in the in situ hearts. Isolated hearts of sixteen additional rats (sham, n = 8; occlusion, n = 8) were perfused for studies in the absence of ventricular distension. All hearts were divided in two segments (ischemic and nonischemic). Ventricular distension was avoided by excluding the atria and mitral valves. In both experiments, BNP mRNA was quantified by real-time polymerase chain reaction in both nonischemic and ischemic regions. In the in situ hearts, myocardial BNP mRNA values at R15 (4.24 +/- 0.75) in the ischemic region were higher than in other groups (C: 1.43 +/- 0.81, P = 0.044; I15: 3.05 +/- 0.62, P = 0.048; R30: 0.76 +/- 0.84, P = 0.001; R45: 1.47 +/- 0.60, P = 0.046, [analysis of variance]). In isolated hearts without ventricular distension, myocardial BNP mRNA (arbitrary units) content at R15 in ischemic regions (4.54 +/- 0.26) was greater than in nonischemic regions in both occlusion (3.51 +/- 0.20, P < 0.001) and sham (3.38 +/- 0.25, P = 0.0001 and 3.47 +/- 0.19, P = 0.0001) groups. The present data show that ischemia/reperfusion is responsible for increased BNP mRNA myocardial content independent of changes of ventricular cavity diastolic volume.

  1. Mild hypothermia preserves myocardial conduction during ischemia by maintaining gap junction intracellular communication and Na(+) channel function.

    PubMed

    Nassal, Michelle M J; Wan, Xiaoping; Dale, Zack; Deschênes, Isabelle; Wilson, Lance D; Piktel, Joseph S

    2017-05-01

    Acute cardiac ischemia induces conduction velocity (CV) slowing and conduction block, promoting reentrant arrhythmias leading to sudden cardiac arrest. Previously, we found that mild hypothermia (MH; 32°C) attenuates ischemia-induced conduction block and CV slowing in a canine model of early global ischemia. Acute ischemia impairs cellular excitability and the gap junction (GJ) protein connexin (Cx)43. We hypothesized that MH prevented ischemia-induced conduction block and CV slowing by preserving GJ expression and localization. Canine left ventricular preparations at control (36°C) or MH (32°C) were subjected to no-flow prolonged (30 min) ischemia. Optical action potentials were recorded from the transmural left ventricular wall, and CV was measured throughout ischemia. Cx43 and Na(+) channel (NaCh) remodeling was assessed using both confocal immunofluorescence (IF) and/or Western blot analysis. Cellular excitability was determined by microelectrode recordings of action potential upstroke velocity (dV/dtmax) and resting membrane potential (RMP). NaCh current was measured in isolated canine myocytes at 36 and 32°C. As expected, MH prevented conduction block and mitigated ischemia-induced CV slowing during 30 min of ischemia. MH maintained Cx43 at the intercalated disk (ID) and attenuated ischemia-induced Cx43 degradation by both IF and Western blot analysis. MH also preserved dV/dtmax and NaCh function without affecting RMP. No difference in NaCh expression was seen at the ID by IF or Western blot analysis. In conclusion, MH preserves myocardial conduction during prolonged ischemia by maintaining Cx43 expression at the ID and maintaining NaCh function. Hypothermic preservation of GJ coupling and NaCh may be novel antiarrhythmic strategies during resuscitation.NEW & NOTEWORTHY Therapeutic hypothermia is now a class I recommendation for resuscitation from cardiac arrest. This study determined that hypothermia preserves gap junction coupling as well as Na

  2. Can myocardial ischemia be recognized by the exercise electrocardiogram in coronary disease patients with abnormal resting Q waves

    SciTech Connect

    Ahnve, S.; Savvides, M.; Abouantoun, S.; Atwood, J.E.; Froelicher, V.

    1986-05-01

    This study was performed in order to determine whether exercise-induced myocardial ischemia demonstrated by thallium-201 imaging could be detected by ST segment shifts in patients with abnormal Q waves at rest. Fifty-four patients with coronary artery disease and exercise-induced thallium-201 defects were compared to 22 patients with similar Q wave patterns but without thallium-201 exercise defects and to 14 normal subjects. Exercise data were analyzed visually in the 12-lead ECG and for spatial ST vector shifts. Both ST segment depression observed on the 12-lead ECG and spatial criteria were reasonably sensitive and specific for ischemia when the resting ECG showed no Q waves or inferior Q waves (range 69% to 93%). However, when anterior Q waves were present, ST segment shifts could not distinguish patients with ischemia from those with normal perfusion as determined by thallium imaging.

  3. Both endogenous and exogenous testosterone decrease myocardial STAT3 activation and SOCS3 expression after acute ischemia and reperfusion.

    PubMed

    Wang, Meijing; Wang, Yue; Abarbanell, Aaron; Tan, Jiangjing; Weil, Brent; Herrmann, Jeremy; Meldrum, Daniel R

    2009-08-01

    Signal transducer and activator of transduction 3 (STAT3) pathway has been shown to be cardioprotective. We observed decreased STAT3/suppressor of cytokine signaling 3 (SOCS3) in male hearts, which was associated with worse postischemic myocardial function compared with females. However, it is unclear whether this downregulation of myocardial STAT3/SOCS3 is due to testosterone in males. We hypothesized that after ischemia/reperfusion (I/R), (1) endogenous testosterone decreases myocardial STAT3 and SOCS3 in males, and (2) administration of exogenous testosterone reduces myocardial STAT3/SOCS3 in female and castrated male hearts. To study this, hearts from I/R injury (Langendorff) were homogenized and assessed for phosphorylated-STAT3 (p-STAT3), total-STAT3 (T-STAT3), SOCS3, and GAPDH by Western blot. We grouped age-matched adult males, females, castrated males, males with androgen receptor blocker-flutamide implantation, females, and castrated males with chronic (3-week) 5alpha-dihydrotestosterone (DHT) release pellet implantation or acute (5-minute) testosterone infusion (ATI) before ischemia (n = 5-9 per group). Castration or flutamide treatment significantly increased SOCS3 expression in male hearts after I/R. However, only castration increased myocardial STAT3 activation. Notably, DHT replacement or ATI decreased markedly myocardial STAT3/SOCS3 in castrated males and females subjected to I/R. These results suggest that endogenous and exogenous testosterone decrease myocardial STAT3 activation and SOCS3 expression after I/R. This represents the initial demonstration of testosterone-downregulated STAT3/SOCS3 signaling in myocardium.

  4. Pre-hospital ECG manifestations of acute myocardial ischemia are an independent predictor of adverse hospital outcomes

    PubMed Central

    Hemsey, Jessica Zègre; Dracup, Kathleen; Fleischmann, Kirsten; Sommargren, Claire E.; Paul, Steven M.; Drew, Barbara J.

    2013-01-01

    Background Prehospital electrocardiography (PH ECG) is becoming the standard of care for patients activating emergency medical services (EMS) for symptoms of acute coronary syndrome (ACS). Little is known about the prognostic value of ischemia found on PH ECG. Study Objectives The purpose of this study was to determine whether manifestations of acute myocardial ischemia on PH ECG are predictive of adverse hospital outcomes. Methods The study was a retrospective analysis of all PH ECGs recorded in 630 patients who called “911” for symptoms of ACS and were enrolled in a prospective clinical trial. ST-segment monitoring software was added to the PH ECG device with automatic storage and transmission of ECGs to the destination emergency department (ED). Patients’ medical records were reviewed for adverse hospital outcomes. Results In 630 patients who called “911” for ACS symptoms, 270 (42.9%) had PH ECG evidence of ischemia. Overall, 37% of patients with PH ECG ischemia had adverse hospital outcomes compared to 27% of patients without PH ECG ischemia (p< .05). Those with PH ECG ischemia were 1.55 times more likely to have adverse hospital outcomes than those without PH ECG ischemia (CI 1.09–2.21, p<0.05), after controlling for other predictors of adverse hospital outcomes (i.e., age, gender, medical history). Conclusions Evidence of ischemia on PH ECG is an independent predictor of adverse hospital outcomes. ST segment monitoring in the prehospital setting may identify high-risk patients with symptoms of ACS and provide important prognostic information at presentation to the ED. PMID:23357378

  5. In-vivo determination of myocardial pH during regional ischemia using near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Songbiao; Soller, Babs R.

    1998-04-01

    pH electrodes have been used during open heart surgery to ensure adequate delivery of blood and oxygen to the myocardium during the surgical procedure. The electrodes are cumbersome and suffer from motion artifacts. Near infrared spectroscopy was evaluated as a noninvasive method of measuring myocardial pH during regional ischemia in seven beating dog hearts. Two pH microelectrodes were implanted in the distribution area of the left anterior descending (LAD) coronary artery. The LAD was occluded to stop the myocardial blood flow and to initialize regional ischemia. Ischemia was maintained for 20 minutes before the LAD was released to resume blood flow. A fiber-optic probe was used to collect the reflected NIR light over the spectral region of 575 nm to 1100 nm from the heart muscle. Partial least-squares multivariate calibration technique was applied to relate the myocardial pH changes to the NIR spectral changes in the region of 700 to 1100 nm. Calibration models based on data collected on each individual dog heart had an average of 7 factors with an R2 of 0.84. The standard error of prediction (SEP) averaged 0.09 pH units for a mean pH change of 0.73 pH units, adequate for monitoring pH changes during cardiac surgery.

  6. Pharmacological Inhibition of NLRP3 Inflammasome Attenuates Myocardial Ischemia/Reperfusion Injury by Activation of RISK and Mitochondrial Pathways

    PubMed Central

    Tullio, Francesca; Femminò, Saveria; Nigro, Debora; Chiazza, Fausto; Collotta, Debora; Cocco, Mattia; Bertinaria, Massimo; Aragno, Manuela

    2016-01-01

    Although the nucleotide-binding oligomerization domain- (NOD-) like receptor pyrin domain containing 3 (NLRP3) inflammasome has been recently detected in the heart, its role in cardiac ischemia/reperfusion (IR) is still controversial. Here, we investigate whether a pharmacological modulation of NLRP3 inflammasome exerted protective effects in an ex vivo model of IR injury. Isolated hearts from male Wistar rats (5-6 months old) underwent ischemia (30 min) followed by reperfusion (20 or 60 min) with and without pretreatment with the recently synthetized NLRP3 inflammasome inhibitor INF4E (50 μM, 20 min before ischemia). INF4E exerted protection against myocardial IR, shown by a significant reduction in infarct size and lactate dehydrogenase release and improvement in postischemic left ventricular pressure. The formation of the NLRP3 inflammasome complex was induced by myocardial IR and attenuated by INF4E in a time-dependent way. Interestingly, the hearts of the INF4E-pretreated animals displayed a marked improvement of the protective RISK pathway and this effect was associated increase in expression of markers of mitochondrial oxidative phosphorylation. Our results demonstrate for the first time that INF4E protected against the IR-induced myocardial injury and dysfunction, by a mechanism that involves inhibition of the NLRP3 inflammasome, resulting in the activation of the prosurvival RISK pathway and improvement in mitochondrial function. PMID:28053692

  7. [Evaluation of three-dimensional speckle tracking echocardiography to left ventricular rotation and twist in patients with silent myocardial ischemia].

    PubMed

    Zhang, Baixue; Zhang, Qi; Liu, Wengang; Zhu, Wenhui; Xiao, Jidong

    2016-07-01

    To analyze the characteristics of left ventricular rotation and twist in patients with silent myocardial ischemia (SMI) by three-dimensional speckle tracking echocardiography (3D-STE), and to explore the diagnostic value of this method for SMI.
 According to Gensini score, 66 patients with SMI were divided into 3 subgroups: a mild lesion group (n=16), a moderate lesion group (n=26) and a severe lesion group (n=24). Thirty patients with negative results in selective coronary angiography served as a control group. The parameters of wall motion score index (WMSI), left ventricular ejection fraction (LVEF), peak basal rotation (Ptw-B), peak apical rotation (Prot-A), left ventricular peak apical rotation (LVrot), left ventricular peak apical twist (LVtw) were measured.
 In the SMI group, with an increase in severity of myocardial ischemia, LVEF, Prot-A, Prot-B, LVrot, LVtw showed a decrease trend while WMSI exhibited an opposite phenomenon (P<0.05), and all of them displayed a significant corelation with Gensini score (P<0.05). In the diagnosis of SMI, all of the above-mentioned parameters were highly sensitive and specific. 3D-STE showed the highest diagnostic value for LVtw.
 Left ventricular rotation and twisting motion monitered by 3D-STE can evaluate the severity of myocardial ischemia in patients with SMI.

  8. Associations between positive emotional well-being and stress-induced myocardial ischemia: Well-being scores predict exercise-induced ischemia.

    PubMed

    Feigal, Jacob P; Boyle, Stephen H; Samad, Zainab; Velazquez, Eric J; Wilson, Jennifer L; Becker, Richard C; Williams, Redford B; Kuhn, Cynthia M; Ortel, Thomas L; Rogers, Joseph G; O'Connor, Christopher M; Jiang, Wei

    2017-02-01

    Depressive symptoms have been associated with myocardial ischemia induced by mental (MSIMI) and exercise (ESIMI) stress in clinically stable ischemic heart disease (IHD) patients, but the association between positive emotions and inducible ischemia is less well characterized. The objective of this study was to examine the associations between ratings of well-being and stress-induced ischemia. Subjects were adult patients with documented IHD underwent mental and exercise stress testing for the Responses of Myocardial Ischemia to Escitalopram Treatment (REMIT) trial. The General Well-Being Schedule (GWBS), with higher scores reflecting greater subjective well-being, and the Center for Epidemiologic Studies Depression Scale (CES-D) were obtained from the REMIT participants. Echocardiography was used to measure ischemic responses to mental stress and Bruce protocol treadmill exercise testing. Data were analyzed using logistic regression adjusting for age, sex, resting left-ventricular ejection fraction (LVEF), and resting wall motion score index, as well as health-related behaviors. GWBS scores were obtained for 210 individuals, with MSIMI present in 92 (43.8%) and ESIMI present in 64 (30.5%). There was a significant inverse correlation between GWBS-PE (Positive Emotion subscale) scores and probability of ESIMI (OR=0.55 (95%CI 0.36-0.83), p=0.005). This association persisted after additional control for CESD subscales measuring negative and positive emotions and for variables reflecting health-related behaviors. A similar inverse correlation between GWBS-PE and MSIMI was observed, but did not reach statistical significance (OR=0.81 (95%CI 0.54-1.20), p=0.28). This is, to our knowledge, the first study demonstrating that greater levels of self-reported positive emotions are associated with a lower likelihood of ESIMI among patients with known IHD. Our results highlight the important interface functions of the central nervous and cardiovascular systems and underscore

  9. Short- and long-term effects of (-)-epicatechin on myocardial ischemia-reperfusion injury.

    PubMed

    Yamazaki, Katrina Go; Romero-Perez, Diego; Barraza-Hidalgo, Maraliz; Cruz, Michelle; Rivas, Maria; Cortez-Gomez, Brenda; Ceballos, Guillermo; Villarreal, Francisco

    2008-08-01

    Epidemiological studies have shown a correlation between flavonoid-rich diets and improved cardiovascular prognosis. Cocoa contains large amounts of flavonoids, in particular flavanols (mostly catechins and epicatechins). Flavonoids possess pleiotropic properties that may confer protective effects to tissues during injury. We examined the ability of epicatechin to reduce short-and long-term ischemia-reperfusion (I/R) myocardial injury. Epicatechin (1 mg.kg(-1).day(-1)) pretreatment (Tx) was administered daily via oral gavage to male rats for 2 or 10 days. Controls received water. Ischemia was induced via a 45-min coronary occlusion. Reperfusion was allowed until 48 h or 3 wk while Tx continued. We measured infarct (MI) size (%), hemodynamics, myeloperoxidase activity, tissue oxidative stress, and matrix metalloproteinase-9 (MMP-9) activity in 48-h groups. Cardiac morphometry was also evaluated in 3-wk groups. With 2 days of Tx, no reductions in MI size occurred. After 10 days, a significant approximately 50% reduction in MI size occurred. Epicatechin rats demonstrated no significant changes in hemodynamics. Tissue oxidative stress was reduced significantly in the epicatechin group vs. controls. MMP-9 activity demonstrated limited increases in the infarct region with epicatechin. By 3 wk, a significant 32% reduction in infarct size was observed with Tx, accompanied with sustained hemodynamics and preserved chamber morphometry. In conclusion, epicatechin Tx confers cardioprotection in the setting of I/R injury. The effects are independent of changes in hemodynamics, are sustained over time, and are accompanied by reduced levels of indicators of tissue injury. Results warrant the evaluation of cocoa flavanols as possible therapeutic agents to limit ischemic injury.

  10. Short- and long-term effects of (−)-epicatechin on myocardial ischemia-reperfusion injury

    PubMed Central

    Yamazaki, Katrina Go; Romero-Perez, Diego; Barraza-Hidalgo, Maraliz; Cruz, Michelle; Rivas, Maria; Cortez-Gomez, Brenda; Ceballos, Guillermo; Villarreal, Francisco

    2008-01-01

    Epidemiological studies have shown a correlation between flavonoid-rich diets and improved cardiovascular prognosis. Cocoa contains large amounts of flavonoids, in particular flavanols (mostly catechins and epicatechins). Flavonoids possess pleiotropic properties that may confer protective effects to tissues during injury. We examined the ability of epicatechin to reduce short-and long-term ischemia-reperfusion (I/R) myocardial injury. Epicatechin (1 mg·kg−1·day−1) pretreatment (Tx) was administered daily via oral gavage to male rats for 2 or 10 days. Controls received water. Ischemia was induced via a 45-min coronary occlusion. Reperfusion was allowed until 48 h or 3 wk while Tx continued. We measured infarct (MI) size (%), hemodynamics, myeloperoxidase activity, tissue oxidative stress, and matrix metalloproteinase-9 (MMP-9) activity in 48-h groups. Cardiac morphometry was also evaluated in 3-wk groups. With 2 days of Tx, no reductions in MI size occurred. After 10 days, a significant ∼50% reduction in MI size occurred. Epicatechin rats demonstrated no significant changes in hemodynamics. Tissue oxidative stress was reduced significantly in the epicatechin group vs. controls. MMP-9 activity demonstrated limited increases in the infarct region with epicatechin. By 3 wk, a significant 32% reduction in infarct size was observed with Tx, accompanied with sustained hemodynamics and preserved chamber morphometry. In conclusion, epicatechin Tx confers cardioprotection in the setting of I/R injury. The effects are independent of changes in hemodynamics, are sustained over time, and are accompanied by reduced levels of indicators of tissue injury. Results warrant the evaluation of cocoa flavanols as possible therapeutic agents to limit ischemic injury. PMID:18567705

  11. Angiographic and functional comparison of patients with silent and symptomatic treadmill ischemia early after myocardial infarction

    SciTech Connect

    Ouyang, P.; Shapiro, E.P.; Chandra, N.C.; Gottlieb, S.H.; Chew, P.H.; Gottlieb, S.O.

    1987-04-01

    Sixty consecutive patients were studied who had positive responses to Naughton exercise treadmill testing (at least 1.5 mm of ST-segment shift in at least 2 leads or thallium reperfusion abnormalities) with or without symptoms of angina 11 +/- 1 days after acute myocardial infarction (AMI). All patients had undergone coronary angiography 24 +/- 4 days after infarction. Thirty-eight patients (63%) had no treadmill angina (silent ischemia, group I) and 22 patients had typical treadmill angina (symptomatic ischemia, group II). Use of beta-blocking drugs, calcium antagonists and nitrates at the time of exercise testing did not differ in the 2 groups. All 9 patients with diabetes mellitus were in the asymptomatic group (p less than 0.40) and group I had a greater proportion of inferior wall AMI (30 of 38) than group II (11 of 22, p = 0.02). Total exercise treadmill test duration (group I 422 +/- 31 seconds, group II 400 +/- 46 seconds) and rate-pressure product were not different in the 2 groups. The number of patients unable to exercise 5 minutes (12 in group I and 7 in group II), the number with diffuse electrocardiographic changes (9 in group I and 7 in group II), and the number with inadequate blood pressure response (8 in group I and 4 in group II) were also similar. At coronary arteriography the mean number of arteries with at least 70% diameter stenosis was 2.0 +/- 0.2 in group I and 2.2 +/- 0.2 in group II (difference not significant).

  12. Novel curcumin analogue 14p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity

    SciTech Connect

    Li, Weixin; Wu, Mingchai; Tang, Longguang; Pan, Yong; Liu, Zhiguo; Zeng, Chunlai; Wang, Jingying; Wei, Tiemin; Liang, Guang

    2015-01-15

    Background: Alleviating the oxidant stress associated with myocardial ischemia reperfusion has been demonstrated as a potential therapeutic approach to limit ischemia reperfusion (I/R)-induced cardiac damage. Curcumin, a natural compound with anti-oxidative activity, exerts beneficial effect against cardiac I/R injury, but poor chemical and metabolic stability. Previously, we have designed and synthesized a series of mono-carbonyl analogues of curcumin (MACs) with high stability. This study aims to find new anti-oxidant MACs and to demonstrate their effects and mechanisms against I/R-induced heart injury. Methods: H9c2 cells challenged with H{sub 2}O{sub 2} or TBHP were used for in vitro bio-screening and mechanistic studies. The MDA, H{sub 2}O{sub 2} and SOD levels in H9C2 cells were determined, and the cell viability was assessed by MTT assay. Myocardial I/R mouse models administrated with or without the compound were used for in vivo studies. Results: The in vitro cell-based screening showed that curcumin analogues 8d and 14p exhibited strong anti-oxidative effects. Pre-treatment of H9c2 cells with 14p activated Nrf2 signaling pathway, attenuated H{sub 2}O{sub 2}-increased MDA and SOD level, followed by the inhibition of TBHP-induced cell death and Bax/Bcl-2–caspase-3 pathway activation. Silencing Nrf2 significantly reversed the protective effects of 14p. In in vivo animal model of myocardial I/R, administration of low dose 14p (10 mg/kg) reduced infarct size and myocardial apoptosis to the same extent as the high dose curcumin (100 mg/kg). Conclusion: These data support the novel curcumin analogue 14p as a promising antioxidant to decrease oxidative stress and limit myocardial ischemia reperfusion injury via activating Nrf2. - Highlights: • Mono-carbonyl analogue of curcumin, 14p, exhibited better chemical stability. • Compound 14p inhibited TBHP-induced apoptosis through activating Nrf2 in vitro. • Compound 14p limited myocardial ischemia

  13. Alcohol and the Heart: A Proteomics Analysis of Pericardium and Myocardium in a Swine Model of Myocardial Ischemia.

    PubMed

    Elmadhun, Nassrene Y; Sadek, Ahmed A; Sabe, Ashraf A; Lassaletta, Antonio D; Sellke, Frank W

    2015-11-01

    Previous studies have demonstrated that moderate alcohol consumption is cardioprotective and reduces postoperative pericardial adhesions; however, the mechanism is not fully understood. Using proteomic analysis, we sought to objectively investigate the effects of daily moderate alcohol consumption in the pericardium and myocardium in a swine model of chronic myocardial ischemia. Fourteen swine underwent placement of an ameroid constrictor to induce chronic myocardial ischemia. Animals were supplemented with 90 mL of ethanol daily (ETOH) or 80 g of sucrose of equal caloric value (SUC). After 7 weeks, the ischemic myocardium and pericardium were harvested for proteomics analysis. Pericardial proteomics analysis yielded 397 proteins, of which 23 were unique to SUC and 52 were unique to ETOH. Of the 322 common proteins, 71 were statistically significant and 23 were characterized (p < 0.05). Alcohol supplementation increased structural proteins, and decreased immune protease inhibitors and coagulation proteins in the pericardium (p < 0.01). Myocardial proteomics analysis yielded 576 proteins, of which 32 were unique to SUC and 21 were unique to ETOH. Of the 523 common proteins, 85 were significant, and 32 were characterized (p < 0.05). Alcohol supplementation decreased cardiac remodeling proteins, cell death proteins and motor proteins, and increased metabolic proteins (p < 0.05). The results suggest that daily moderate alcohol consumption affects numerous pathways that contribute to cardioprotection, including cardiac remodeling, metabolism, and cell death. Our findings reveal the biosignature of myocardial and pericardial protein expression in the setting of chronic myocardial ischemia and daily moderate alcohol consumption. Copyright © 2015 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Protective Effects of Co-Administration of Gallic Acid and Cyclosporine on Rat Myocardial Morphology Against Ischemia/Reperfusion

    PubMed Central

    Dianat, Mahin; Sadeghi, Najmeh; Badavi, Mohammad; Panahi, Marziyeh; Taheri Moghadam, Mahin

    2014-01-01

    Background: Irreversible myocardial ischemic injury begins 20 minutes after the onset of coronary occlusion. Then the infarcted cells show signs of necrosis and death. Objectives: This study investigated the effects of co-administration of Gallic acid (antioxidant) with cyclosporine (mitochondrial permeability transition pore [mPTP] inhibitor) on myocardial morphology of rats during ischemia and reperfusion. Materials and Methods: Fifty-four male Wistar rats (250-300 g), were randomly divided into 9 groups: sham, control (Ca received saline, 1 mL/kg, Cb: perfused with cyclosporine CsA 0.2 µM), 3 groups pretreated with Gallic acid in saline (G1a:7.5, G2a:15, and G3a: 30 mg/kg/day, and gavage daily for 10 days, n = 6), and the other three groups were pretreated with Gallic acid then perfused using CsA, (G1b:7.5, G2b:15, and G3b: 30 mg/kg/day) at the first 13 minutes of reperfusion period. After 10 days pretreatment, the rat hearts were isolated and transferred to Langendorff apparatus and exposed to 30 minutes ischemia following 60 minutes reperfusion. Afterward, the hearts were preserved in 10% formalin for histological studies at the end of the experiment. Finally, hematoxylin and eosin and Masson’s trichrome staining techniques were used for evaluating the changes in myocardial architecture, degradation of myofibers, and collagen integrity. The differences were analyzed using Pearson test. Results: Cell degenerative changes, pyknotic nuclei, contraction bands, edema, and loosening of collagen in between muscle fibers were observed during ischemia-reperfusion. Myocardial architecture and cellular morphology were recovered in co-administration groups, especially in (Gallic acid 15 mg/kg + CsA, P < 0.001). Conclusions: The results suggest the important role of the antioxidant system potentiation in the prevention of myocardial damage. PMID:25625048

  15. Depression, dietary habits, and cardiovascular events among women with suspected myocardial ischemia.

    PubMed

    Rutledge, Thomas; Kenkre, Tanya S; Thompson, Diane V; Bittner, Vera A; Whittaker, Kerry; Eastwood, Jo-Ann; Eteiba, Wafia; Cornell, Carol E; Krantz, David S; Pepine, Carl J; Johnson, B Delia; Handberg, Eileen M; Bairey Merz, C Noel

    2014-09-01

    Dietary habits and depression are associated with cardiovascular disease risk. Patients with depression often report poor eating habits, and dietary factors may help explain commonly observed associations between depression and cardiovascular disease. From 1996 to 2000, 936 women were enrolled in the Women's Ischemia Syndrome Evaluation at 4 US academic medical centers at the time of clinically indicated coronary angiography and then assessed (median follow-up, 5.9 years) for adverse outcomes (cardiovascular disease death, heart failure, myocardial infarction, stroke). Participants completed a protocol including coronary angiography (coronary artery disease severity) and depression assessments (Beck Depression Inventory scores, antidepressant use, and depression treatment history). A subset of 201 women (mean age, 58.5 years; standard deviation, 11.4) further completed the Food Frequency Questionnaire for Adults (1998 Block). We extracted daily fiber intake and daily servings of fruit and vegetables as measures of dietary habits. In separate Cox regression models adjusted for age, smoking, and coronary artery disease severity, Beck Depression Inventory scores (hazard ratio [HR], 1.05; 95% confidence interval [CI], 1.01-1.10), antidepressant use (HR, 2.4; 95% CI, 1.01-5.9), and a history of treatment for depression (HR, 2.4; 95% CI, 1.1-5.3) were adversely associated with time to cardiovascular disease outcomes. Fiber intake (HR, 0.87; 95% CI, 0.78-0.97) and fruit and vegetable consumption (HR, 0.36; 95% CI, 0.19-0.70) were associated with a decreased time to cardiovascular disease event risk. In models including dietary habits and depression, fiber intake and fruit and vegetable consumption remained associated with time to cardiovascular disease outcomes, whereas depression relationships were reduced by 10% to 20% and nonsignificant. Among women with suspected myocardial ischemia, we observed consistent relationships among depression, dietary habits, and time to

  16. Ischemia

    NASA Astrophysics Data System (ADS)

    Byeon, Suk Ho; Kim, Min; Kwon, Oh Woong

    "Ischemia" implies a tissue damage derived from perfusion insufficiency, not just an inadequate blood supply. Mild thickening and increased reflectivity of inner retina and prominent inner part of synaptic portion of outer plexiform layer are "acute retinal ischemic changes" visible on OCT. Over time, retina becomes thinner, especially in the inner portion. Choroidal perfusion supplies the outer portion of retina; thus, choroidal ischemia causes predominant change in the corresponding tissue.

  17. Effect of Escitalopram on Mental Stress-Induced Myocardial Ischemia: The Results of the REMIT Trial

    PubMed Central

    Jiang, Wei; Velazquez, Eric J.; Kuchibhatla, Maragatha; Samad, Zainab; Boyle, Stephen H.; Kuhn, Cynthia; Becker, Richard C.; Ortel, Thomas L.; Williams, Redford B.; Rogers, Joseph G.; O’Connor, Christopher

    2015-01-01

    Importance Mental-stress-induced myocardial ischemia (MSIMI) is an intermediate surrogate endpoint representing the pathophysiological link between psychosocial risk factors and adverse outcomes of coronary heart disease (CHD). However, pharmacological interventions aimed at reducing MSIMI have not been well studied. Objective To examine the effects of 6 weeks of escitalopram treatment vs. placebo on MSIMI and other psychological stress-related biophysiological and emotional parameters. Design, Setting, and Participants The REMIT study is a randomized, double-blind, placebo-controlled trial of patients with clinically stable CHD and laboratory MSIMI. Enrollment occurred from 7/24/2007–8/24/2011 at a tertiary medical center. Interventions Eligible participants were randomized 1:1 to receive escitalopram (dose began at 5 mg with titration to 20 mg/day in 3 weeks) or placebo over 6 weeks. Main Outcome Measure Occurrence of MSIMI, defined as (1) development or worsening of regional wall motion abnormality; (2) left ventricular ejection fraction reduction ≥8%; and/or (3) horizontal or downsloping ST-segment depression ≥1mm in ≥2 leads lasting for ≥3 consecutive beats during ≥1 of 3 mental tasks. Results 127 participants were randomized to escitalopram (n=64) or placebo (n=63); 112 (96.1%) completed endpoint assessments (n=56 in each arm). At the end of 6 weeks, more patients taking escitalopram (34.2% [95% CI, 25.4 to 43.0]) had absence of MSIMI during the 3 mental stressors compared with patients taking placebo (17.5% [95% CI, 10.4 to 24.5]) based on unadjusted multiple imputation model for intention-to-treat analysis. A significant difference favoring escitalopram was observed (OR=2.62 [95% CI, 1.06 to 6.44]). Rates of exercise-induced ischemia were slightly lower at 6 weeks in the escitalopram group (45.8% [95% CI, 36.6 to 55.0]) than in patients receiving placebo (52.5% [95% CI, 43.3 to 61.7]), compared with baseline escitalopram (49.2% [95% CI, 39.9 to

  18. Calpain Inhibition Improves Collateral Dependent Perfusion in a Hypercholesterolemic Swine Model of Chronic Myocardial Ischemia

    PubMed Central

    Sabe, Ashraf A.; Potz, Brittany A.; Elmadhun, Nassrene Y.; Liu, Yuhong; Feng, Jun; Abid, M. Ruhul; Abbott, Jinnette D; Senger, Donald R; Sellke, Frank W.

    2015-01-01

    Background Calpain over-expression is implicated in aberrant angiogenesis. We hypothesized that calpain inhibition (CI, MDL28170) would improve collateral perfusion in a swine model with hypercholesterolemia and chronic myocardial ischemia. Methods and Results Yorkshire swine fed a high cholesterol diet for 4 weeks underwent surgical placement of an ameroid constrictor to their left circumflex coronary artery. Three weeks later, animals received either: no drug, high cholesterol control group (HCC; n= 8); low dose CI (0.12 mg/kg; LCI, n= 9); or high dose CI (0.25 mg/kg; HCI, n= 8). The heart was harvested after 5 weeks. There was a trend toward increased right to left collateral vessels on angiography with HCI. Myocardial perfusion in ischemic myocardium significantly improved with HCI at rest and with demand pacing (p = 0.016 and 0.011). Endothelium-dependent microvessel relaxation was significantly improved with LCI (p = 0.001). There was a significant increase in capillary density, with LCI and HCI (p= 0.01 and 0.01), and arteriolar density with LCI (p= 0.001). CI significantly increased several proangiogenic proteins including VEGF (p= 0.02), VEGFR1 (p= 0.003), VEGFR2 (p= 0.003) and talin, a microvascular structural protein (p= 0.0002). There was a slight increase in proteins implicated in endothelial-dependent (NO Mediated) relaxation including ERK, p-ERK and iNOS with CI. Conclusions In the setting of hypercholesterolemia, CI improved perfusion, with a trend toward increased collateralization on angiography and increased capillary and arteriolar densities in ischemic myocardium. CI also improved endothelium-dependent microvessel relaxation and increased expression of proteins implicated in angiogenesis and vasodilatation. PMID:26478238

  19. Hyperoxia Exacerbates Myocardial Ischemia in the Presence of Acute Coronary Artery Stenosis in Swine.

    PubMed

    Guensch, Dominik P; Fischer, Kady; Shie, Nancy; Lebel, Julie; Friedrich, Matthias G

    2015-10-01

    Current guidelines limit the use of high oxygen tension after return of spontaneous circulation after cardiac arrest, focusing on neurological outcome and mortality. Little is known about the impact of hyperoxia on the ischemic heart. Oxygen is frequently administered and is generally expected to be beneficial. This study seeks to assess the effects of hyperoxia on myocardia oxygenation in the presence of severe coronary artery stenosis in swine. In 22 healthy pigs, we surgically attached a magnetic resonance compatible flow probe to the left anterior descending coronary artery (LAD). In 11 pigs, a hydraulic occluder was inflated distal to the flow probe. After increasing PaO2 to >300 mm Hg, LAD flow decreased in all animals. In 8 stenosed animals with a mean fractional flow reserve of 0.64±0.02, hyperoxia resulted in a significant decrease of myocardial signal intensity in oxygenation-sensitive cardiovascular magnetic resonance images of the midapical segments of the LAD territory. This was not seen in remote myocardium or in the other 8 healthy animals. The decreased signal intensity was accompanied by a decrease in circumferential strain in the same segments. Furthermore, ejection fraction, cardiac output, and oxygen extraction ratio declined in these animals. Changing PaCO2 levels did not have a significant effect on any of the parameters; however, hypercapnia seemed to nonsignificantly attenuate the hyperoxia-induced changes. Ventilation-induced hyperoxia may decrease myocardial oxygenation and lead to ischemia in myocardium subject to severe coronary artery stenosis. © 2015 American Heart Association, Inc.

  20. The role and modulation of autophagy in experimental models of myocardial ischemia-reperfusion injury

    PubMed Central

    Chen-Scarabelli, Carol; Agrawal, Pratik R.; Saravolatz, Louis; Abuniat, Cadigia; Scarabelli, Gabriele; Stephanou, Anastasis; Loomba, Leena; Narula, Jagat; Scarabelli, Tiziano M.; Knight, Richard

    2014-01-01

    A physiological sequence called autophagy qualitatively determines cellular viability by removing protein aggregates and damaged cytoplasmic constituents, and contributes significantly to the degree of myocardial ischemia-reperfusion (I/R) injury. This tightly orchestrated catabolic cellular ‘housekeeping’ process provides cells with a new source of energy to adapt to stressful conditions. This process was first described as a pro-survival mechanism, but increasing evidence suggests that it can also lead to the demise of the cell. Autophagy has been implicated in the pathogenesis of multiple cardiac conditions including myocardial I/R injury. However, a debate persists as to whether autophagy acts as a protective mechanism or contributes to the injurious effects of I/R injury in the heart. This controversy may stem from several factors including the variability in the experimental models and species, and the methodology used to assess autophagy. This review provides updated knowledge on the modulation and role of autophagy in isolated cardiac cells subjected to I/R, and the growing interest towards manipulating autophagy to increase the survival of cardiac myocytes under conditions of stress-most notably being I/R injury. Perturbation of this evolutionarily conserved intracellular cleansing autophagy mechanism, by targeted modulation through, among others, mammalian target of rapamycin (mTOR) inhibitors, adenosine monophosphate-activated protein kinase (AMPK) modulators, calcium lowering agents, resveratrol, longevinex, sirtuin activators, the proapoptotic gene Bnip3, IP3 and lysosome inhibitors, may confer resistance to heart cells against I/R induced cell death. Thus, therapeutic manipulation of autophagy in the challenged myocardium may benefit post-infarction cardiac healing and remodeling. PMID:25593583

  1. Inhibition of Interleukin-6 Receptor in a Murine Model of Myocardial Ischemia-Reperfusion

    PubMed Central

    Vreeswijk-Baudoin, Inge; Groot, Hilde E.; van de Kolk, Kees W. A.; de Boer, Rudolf A.; Mateo Leach, Irene; Vliegenthart, Rozemarijn; Sillje, Herman H. W.; van der Harst, Pim

    2016-01-01

    Background Interleukin-6 (IL-6) levels are upregulated in myocardial infarction. Recent data suggest a causal role of the IL-6 receptor (IL-6R) in coronary heart disease. We evaluated if IL-6R blockade by a monoclonal antibody (MR16-1) prevents the heart from adverse left ventricular remodeling in a mouse model of ischemia-reperfusion (I/R). Methods CJ57/BL6 mice underwent I/R injury (left coronary artery ligation for 45 minutes) or sham surgery, and thereafter received MR16-1 (2mg/mouse) 5 minutes before reperfusion and 0.5mg/mouse weekly during four weeks, or control IgG treatment. Cardiac Magnetic Resonance Imaging (CMR) and hemodynamic measurements were performed to determine cardiac function after four weeks. Results I/R caused left ventricular dilatation and a decrease in left ventricular ejection fraction (LVEF). However, LVEF was significantly lower in the MR16-1 treatment group compared to the IgG group (28±4% vs. 35±6%, p = 0.02; sham 45±6% vs. 43±4%, respectively; p = NS). Cardiac relaxation (assessed by dP/dT) was not significantly different between the MR16-1 and IgG groups. Also, no differences were observed in histological myocardial fibrosis, infarct size and myocyte hypertrophy between the groups. Conclusion Blockade of the IL-6R receptor by the monoclonal MR16-1 antibody for four weeks started directly after I/R injury did not prevent the process of cardiac remodeling in mice, but rather associated with a deterioration in the process of adverse cardiac remodeling. PMID:27936014

  2. Intermedin protects against myocardial ischemia-reperfusion injury in diabetic rats

    PubMed Central

    2013-01-01

    Background Diabetic patients, through incompletely understood mechanisms, endure exacerbated ischemic heart injury compared to non-diabetic patients. Intermedin (IMD) is a novel calcitonin gene-related peptide (CGRP) superfamily member with established cardiovascular protective effects. However, whether IMD protects against diabetic myocardial ischemia/reperfusion (MI/R) injury is unknown. Methods Diabetes was induced by streptozotocin in Sprague–Dawley rats. Animals were subjected to MI via left circumflex artery ligation for 30 minutes followed by 2 hours R. IMD was administered formally 10 minutes before R. Outcome measures included left ventricular function, oxidative stress, cellular death, infarct size, and inflammation. Results IMD levels were significantly decreased in diabetic rats compared to control animals. After MI/R, diabetic rats manifested elevated intermedin levels, both in plasma (64.95 ± 4.84 pmol/L, p < 0.05) and myocardial tissue (9.8 ± 0.60 pmol/L, p < 0.01) compared to pre-MI control values (43.62 ± 3.47 pmol/L and 4.4 ± 0.41). IMD administration to diabetic rats subjected to MI/R decreased oxidative stress product generation, apoptosis, infarct size, and inflammatory cytokine release (p < 0.05 or p < 0.01). Conclusions By reducing oxidative stress, inflammation, and apoptosis, IMD may represent a promising novel therapeutic target mitigating diabetic ischemic heart injury. PMID:23777472

  3. Lysophosphatidic Acid Pretreatment Attenuates Myocardial Ischemia/Reperfusion Injury in the Immature Hearts of Rats

    PubMed Central

    Chen, Haibo; Liu, Si; Liu, Xuewen; Yang, Jinjing; Wang, Fang; Cong, Xiangfeng; Chen, Xi

    2017-01-01

    The cardioprotection of the immature heart during cardiac surgery remains controversial due to the differences between the adult heart and the newborn heart. Lysophosphatidic acid (LPA) is a small bioactive molecule with diverse functions including cell proliferation and survival via its receptor: LPA1–LPA6. We previously reported that the expressions of LPA1 and LPA3 in rat hearts were much higher in immature hearts and then declined rapidly with age. In this study, we aimed to investigate whether LPA signaling plays a potential protective role in immature hearts which had experienced ischemia/reperfusion (I/R) injury. The results showed that in Langendorff-perfused immature rat hearts (2 weeks), compared to I/R group, LPA pretreatment significantly enhanced the cardiac function, attenuated myocardial infarct size and CK-MB release, decreased myocardial apoptosis and increased the expression of pro-survival signaling molecules. All these effects could be abolished by Ki16425, an antagonist to LPA1 and LPA3. Similarly, LPA pretreatment protected H9C2 from hypoxia-reoxygenation (H/R) induced apoptosis and necrosis in vitro. The mechanisms underlying the anti-apoptosis effects were related to activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinas B (AKT) signaling pathways as well as phosphorylation of the downstream effector of AKT, glycogen synthase kinase 3 beta (GSK3β), through LPA1 and/or LPA3. What's more, we found that LPA preconditioning increased glucose uptake of H9C2 subjected to H/R by the activation of AMP-Activated Protein Kinase (AMPK) but not the translocation of GLUT4. In conclusion, our study indicates that LPA is a potent survival factor for immature hearts against I/R injuries and has the potential therapeutic function as a cardioplegia additive for infantile cardiac surgery. PMID:28377726

  4. Cardioprotection by a novel recombinant serine protease inhibitor in myocardial ischemia and reperfusion injury.

    PubMed

    Murohara, T; Guo, J P; Lefer, A M

    1995-09-01

    Polymorphonuclear neutrophils (PMN) play an important role in myocardial ischemia/reperfusion (MI/R) injury; however, the role of neutrophilic proteases is less understood. The effects of a novel serine protease inhibitor (serpin), LEX032, were investigated in a murine model of MI (20 min) and R (24 hr) injury in vivo. LEX032 is a recombinant human alpha 1-antichymotrypsin in which six amino acid residues were replaced around the active center with those of alpha-1 protease inhibitor. LEX032 has the ability to inhibit both neutrophil elastase and cathepsin G, two major neutral serine proteases in neutrophils, as well as superoxide generation. LEX032 (25 or 50 mg/kg) administered i.v. 1 min before reperfusion significantly attenuated myocardial necrotic injury evaluated by cardiac creatine kinase loss compared to MI/R rats receiving only vehicle (P < .001). Moreover, cardiac myeloperoxidase activity, an index of PMN accumulation, in the ischemic myocardium was significantly attenuated by LEX032 as compared with rats receiving vehicle (P < .001). LEX032 also moderately attenuated leukotriene B4-stimulated PMN adherence to rat superior mesenteric artery endothelium and markedly diminished superoxide radical release from LTB4-stimulated PMN in vitro. In a glycogen-induced rat peritonitis model, LEX032 (50 mg/kg) significantly attenuated PMN transmigration into the peritoneal cavity in vivo. In conclusion, the recombinant serine protease inhibitor, LEX032, appears to be an effective agent for attenuating MI/R injury by inhibiting neutrophil-accumulation into the ischemic-reperfused myocardium and by inactivating cytotoxic metabolites (proteases and superoxide radical) released from neutrophils.

  5. In vivo gene transfection with heat shock protein 70 enhances myocardial tolerance to ischemia-reperfusion injury in rat.

    PubMed Central

    Suzuki, K; Sawa, Y; Kaneda, Y; Ichikawa, H; Shirakura, R; Matsuda, H

    1997-01-01

    Heat shock protein 70 (HSP70) has been reported to be involved in the myocardial self-preservation system. To obtain the evidence that HSP70 plays a direct role in the protection from myocardial ischemia-reperfusion injury, rat hearts were transfected with human HSP70 gene by intracoronary infusion of hemagglutinating virus of Japan (HVJ)-liposome containing human HSP70 gene. The control hearts were infused with HVJ-liposome without the HSP70 gene. The hearts from whole-body heat-stressed or nontreated rats were also examined. Western blot and immunohistochemical analysis showed that apparent overexpression of HSP70 occurred in the gene transfected hearts and that gene transfection might be more effective for HSP70 induction than heat stress. In Langendorff perfusion, better functional recovery as well as less creatine phosphokinase leakage after ischemia were obtained in the gene transfected hearts with HSP70 than in the control or nontreated hearts. Furthermore, the gene transfected hearts showed better functional recovery than the heat-stressed hearts. These results indicated that overexpressed HSP70 plays a protective role in myocardial injury, suggesting the possibility that gene transfection with HSP70 may become a novel method for myocardial protection through enforcing the self-preservation systems. PMID:9120008

  6. Systemic Dosing of Thymosin Beta 4 before and after Ischemia Does Not Attenuate Global Myocardial Ischemia-Reperfusion Injury in Pigs

    PubMed Central

    Stark, Christoffer K.-J.; Tarkia, Miikka; Kentala, Rasmus; Malmberg, Markus; Vähäsilta, Tommi; Savo, Matti; Hynninen, Ville-Veikko; Helenius, Mikko; Ruohonen, Saku; Jalkanen, Juho; Taimen, Pekka; Alastalo, Tero-Pekka; Saraste, Antti; Knuuti, Juhani; Savunen, Timo; Koskenvuo, Juha

    2016-01-01

    The use of cardiopulmonary bypass (CPB) and aortic cross-clamping causes myocardial ischemia-reperfusion injury (I-RI) and can lead to reduced postoperative cardiac function. We investigated whether this injury could be attenuated by thymosin beta 4 (TB4), a peptide which has showed cardioprotective effects. Pigs received either TB4 or vehicle and underwent CPB and aortic cross-clamping for 60 min with cold intermittent blood-cardioplegia and were then followed for 30 h. Myocardial function and blood flow was studied by cardiac magnetic resonance and PET imaging. Tissue and plasma samples were analyzed to determine the amount of cardiomyocyte necrosis and apoptosis as well as pharmacokinetics of the peptide. In vitro studies were performed to assess its influence on blood coagulation and vasomotor tone. Serum levels of the peptide were increased after administration compared to control samples. TB4 did not decrease the amount of cell death. Cardiac function and global myocardial blood flow was similar between the study groups. At high doses a vasoconstrictor effect on mesentery arteries and a vasodilator effect on coronary arteries was observed and blood clot firmness was reduced when tested in the presence of an antiplatelet agent. Despite promising results in previous trials the cardioprotective effect of TB4 was not demonstrated in this model for global myocardial I-RI. PMID:27199757

  7. Relationship between myocardial metabolites and contractile abnormalities during graded regional ischemia. Phosphorus-31 nuclear magnetic resonance studies of porcine myocardium in vivo.

    PubMed Central

    Schaefer, S; Schwartz, G G; Gober, J R; Wong, A K; Camacho, S A; Massie, B; Weiner, M W

    1990-01-01

    The mechanisms responsible for changes in myocardial contractility during regional ischemia are unknown. Since changes in high-energy phosphates during ischemia are sensitive to reductions in myocardial blood flow, it was hypothesized that myocardial function under steady-state conditions of graded regional ischemia is closely related to changes in myocardial high-energy phosphates. Therefore, phosphorus-31 nuclear magnetic resonance spectroscopy was employed in an in vivo porcine model of graded coronary stenosis. Simultaneous measurements of regional subendocardial blood flow, high-energy phosphates, pH, and myocardial segment shortening were made during various degrees of regional ischemia in which subendocardial blood flow was reduced by 16-94%. During mild reductions in myocardial blood flow (subendocardial blood flow = 83% of nonischemic myocardium), only the ratio of phosphocreatine to inorganic phosphate (PCr/Pi), Pi, and [H+] were significantly changed from control. PCr, ATP, and PCr/ATP were not significantly reduced from control with mild reductions in blood flow. Changes in myocardial segment shortening were most closely associated with changes in PCr/Pi (r = 0.94). Pi and [H+] were negatively correlated with segment shortening (r = -0.64 and -0.58, respectively) and increased over twofold when blood flow was reduced by 62%. Thus, these data demonstrate that PCr/Pi is sensitive to reductions in myocardial blood flow and closely correlates with changes in myocardial function. These data are also consistent with a role for Pi or H+ as inhibitors of myocardial contractility during ischemia. Images PMID:2312722

  8. In vivo myocardial cell pH in the dog. Response to ischemia and infusion of alkali.

    PubMed Central

    Effros, R M; Haider, B; Ettinger, P O; Ahmed Sultan, S; Oldewurtel, H A; Marold, K; Regan, T J

    1975-01-01

    Myocardial cell pH has been measured with 5,5-dimethyl-2,4-oxazolidinedione (DMO) in intact anesthetized dogs by a transient indicator dilution technique. Bolus injections of labeled DMO, vascular, extracellular, and water indicators were made into the anterior descending coronary artery, and blood samples were collected from the great cardiac vein. The steady-state distribution of DMO between cells and plasma was calculated from the indicator mean transit times, and the plasma pH. Myocardial cell pH was determined from the distribution value and plasma pH. Normal myocardial cell pH averaged 6.94. Changes in myocardial cell pH after infusions of acid or alkali. Myocardial ischemia induced by inflation of a coronary artery balloon resulted in progressive decreases in cellular pH to average values of 6.83 within the initial 15 min and to 6.59 within the interval between 20 and 70 min. Infusions of Na2CO3 tended to diminish intracellular acidosis although these infusions had little effect on the difference in pH between the myocardial cell and extracellular fluid. Images PMID:235567

  9. Captopril Pretreatment Produces an Additive Cardioprotection to Isoflurane Preconditioning in Attenuating Myocardial Ischemia Reperfusion Injury in Rabbits and in Humans.

    PubMed

    Tian, Yi; Li, Haobo; Liu, Peiyu; Xu, Jun-mei; Irwin, Michael G; Xia, Zhengyuan; Tian, Guogang

    2015-01-01

    Pretreatment with the angiotensin-converting inhibitor captopril or volatile anesthetic isoflurane has, respectively, been shown to attenuate myocardial ischemia reperfusion (MI/R) injury in rodents and in patients. It is unknown whether or not captopril pretreatment and isoflurane preconditioning (Iso) may additively or synergistically attenuate MI/R injury. Patients selected for heart valve replacement surgery were randomly assigned to five groups: untreated control (Control), captopril pretreatment for 3 days (Cap3d), or single dose captopril (Cap1hr, 1 hour) before surgery with or without Iso (Cap3d+Iso and Cap1hr+Iso). Rabbit MI/R model was induced by occluding coronary artery for 30 min followed by 2-hour reperfusion. Rabbits were randomized to receive sham operation (Sham), MI/R (I/R), captopril (Cap, 24 hours before MI/R), Iso, or the combination of captopril and Iso (Iso+Cap). In patients, Cap3d+Iso but not Cap1hr+Iso additively reduced postischemic myocardial injury and attenuated postischemic myocardial inflammation. In rabbits, Cap or Iso significantly reduced postischemic myocardial infarction. Iso+Cap additively reduced cellular injury that was associated with improved postischemic myocardial functional recovery and reduced myocardial apoptosis and attenuated oxidative stress. A joint use of 3-day captopril treatment and isoflurane preconditioning additively attenuated MI/R by reducing oxidative stress and inflammation.

  10. Captopril Pretreatment Produces an Additive Cardioprotection to Isoflurane Preconditioning in Attenuating Myocardial Ischemia Reperfusion Injury in Rabbits and in Humans

    PubMed Central

    Tian, Yi; Liu, Peiyu; Xu, Jun-mei; Irwin, Michael G.; Xia, Zhengyuan; Tian, Guogang

    2015-01-01

    Background. Pretreatment with the angiotensin-converting inhibitor captopril or volatile anesthetic isoflurane has, respectively, been shown to attenuate myocardial ischemia reperfusion (MI/R) injury in rodents and in patients. It is unknown whether or not captopril pretreatment and isoflurane preconditioning (Iso) may additively or synergistically attenuate MI/R injury. Methods and Results. Patients selected for heart valve replacement surgery were randomly assigned to five groups: untreated control (Control), captopril pretreatment for 3 days (Cap3d), or single dose captopril (Cap1hr, 1 hour) before surgery with or without Iso (Cap3d+Iso and Cap1hr+Iso). Rabbit MI/R model was induced by occluding coronary artery for 30 min followed by 2-hour reperfusion. Rabbits were randomized to receive sham operation (Sham), MI/R (I/R), captopril (Cap, 24 hours before MI/R), Iso, or the combination of captopril and Iso (Iso+Cap). In patients, Cap3d+Iso but not Cap1hr+Iso additively reduced postischemic myocardial injury and attenuated postischemic myocardial inflammation. In rabbits, Cap or Iso significantly reduced postischemic myocardial infarction. Iso+Cap additively reduced cellular injury that was associated with improved postischemic myocardial functional recovery and reduced myocardial apoptosis and attenuated oxidative stress. Conclusion. A joint use of 3-day captopril treatment and isoflurane preconditioning additively attenuated MI/R by reducing oxidative stress and inflammation. PMID:26273143

  11. Cardioprotective Effect of Aloe vera Biomacromolecules Conjugated with Selenium Trace Element on Myocardial Ischemia-Reperfusion Injury in Rats.

    PubMed

    Yang, Yang; Yang, Ming; Ai, Fen; Huang, Congxin

    2017-06-01

    The present study was undertaken to evaluate the cardioprotection potential and underlying molecular mechanism afforded by a selenium (Se) polysaccharide (Se-AVP) from Aloe vera in the ischemia-reperfusion (I/R) model of rats in vivo. Myocardial I/R injury was induced by occluding the left anterior descending coronary artery (LAD) for 30 min followed by 2-h continuous reperfusion. Pretreatment with Se-AVP (100, 200, and 400 mg/kg) attenuated myocardial damage, as evidenced by reduction of the infarct sizes, increase in serum and myocardial endogenous antioxidants (superoxide dismutase (SOD), glutathione peroxidase (GSH), and catalase (CAT)), and decrease in the malondialdehyde (MDA) level in the rats suffering I/R injury. This cardioprotective activity afforded by Se-AVP is further supported by the decreased levels of cardiac marker enzymes creatine kinase (CK) and lactate dehydrogenase (LDH), as well as the rise of myocardial Na(+)-K(+)-ATPase and Ca(2+)-Mg(2+)-ATPase activities in I/R rats. Additionally, cardiomyocytic apoptosis was measured by terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) staining and the result showed that the percent of TUNEL-positive cells in myocardium of Se-AVP-treated groups was lower than I/R rats. In conclusion, we clearly demonstrated that Se-AVP had a protective effect against myocardial I/R injury in rats by augmenting endogenous antioxidants and protecting rat hearts from oxidative stress-induced myocardial apoptosis.

  12. Fenofibrate Therapy Restores Antioxidant Protection and Improves Myocardial Insulin Resistance in a Rat Model of Metabolic Syndrome and Myocardial Ischemia: The Role of Angiotensin II.

    PubMed

    Ibarra-Lara, Luz; Sánchez-Aguilar, María; Sánchez-Mendoza, Alicia; Del Valle-Mondragón, Leonardo; Soria-Castro, Elizabeth; Carreón-Torres, Elizabeth; Díaz-Díaz, Eulises; Vázquez-Meza, Héctor; Guarner-Lans, Verónica; Rubio-Ruiz, María Esther

    2016-12-28

    Renin-angiotensin system (RAS) activation promotes oxidative stress which increases the risk of cardiac dysfunction in metabolic syndrome (MetS) and favors local insulin resistance. Fibrates regulate RAS improving MetS, type-2 diabetes and cardiovascular diseases. We studied the effect of fenofibrate treatment on the myocardic signaling pathway of Angiotensin II (Ang II)/Angiotensin II type 1 receptor (AT1) and its relationship with oxidative stress and myocardial insulin resistance in MetS rats under heart ischemia. Control and MetS rats were assigned to the following groups: (a) sham; (b) vehicle-treated myocardial infarction (MI) (MI-V); and (c) fenofibrate-treated myocardial infarction (MI-F). Treatment with fenofibrate significantly reduced triglycerides, non-high density lipoprotein cholesterol (non-HDL-C), insulin levels and insulin resistance index (HOMA-IR) in MetS animals. MetS and MI increased Ang II concentration and AT1 expression, favored myocardial oxidative stress (high levels of malondialdehyde, overexpression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4), decreased total antioxidant capacity and diminished expression of superoxide dismutase (SOD)1, SOD2 and catalase) and inhibited expression of the insulin signaling cascade: phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PkB, also known as Akt)/Glut-4/endothelial nitric oxide synthase (eNOS). In conclusion, fenofibrate treatment favors an antioxidant environment as a consequence of a reduction of the Ang II/AT1/NOX4 signaling pathway, reestablishing the cardiac insulin signaling pathway. This might optimize cardiac metabolism and improve the vasodilator function during myocardial ischemia.

  13. The Frequency and Significance of Silent Myocardial Ischemia Due to Hyoscine Butylbromide Use in Peripheral Angiography

    SciTech Connect

    Maher, Richard; Phillips-Hughes, Jane; Banning, Adrian; Boardman, Philip

    1999-09-15

    Purpose: Hyoscine-N-butylbromide (HB) is an anticholinergic drug used in digital subtraction angiography of the aortoiliac region because it decreases bowel gas movement artifact. HB also causes an increase in heart rate. We investigated whether this could cause silent myocardial ischemia (SMI) in susceptible patients during peripheral angiography. Methods: Thirty-six patients undergoing peripheral angiography were randomized into two groups, with 17 patients receiving 20 mg HB intraarterially during the angiogram and 19 patients receiving no drug. All patients were fitted with a Holter monitor that recorded the electrocardiogram before, during, and after the angiogram. Heart rate trends and ST segments were then analyzed. Results: Patients given HB had a statistically significant rise in heart rate compared with the control group. Although the difference was not statistically significant, two (12%) patients receiving HB had procedural ST depression compared with none in the control group. Pre- and postprocedural episodes of ST depression were common, occurring in 41% of patients receiving HB and 37% of patients receiving no drug, and were associated with an increase in heart rate. Conclusion: The infrequent episodes of procedural SMI, potentially caused by the positive chronotropic effects of HB, are probably insignificant when compared with the high frequency of SMI episodes occurring outside the procedure.

  14. Design and fabrication of nanowire electrodes on a flexible substrate for detection of myocardial ischemia

    NASA Astrophysics Data System (ADS)

    Ramachandran, Vasuda; Yoon, Hargsoon; Varadan, Vijay K.

    2009-03-01

    According to a report by the American Heart Association, there are approximately 3-4 million Americans that may experience silent Myocardial Ischemia (MI). Silent MI is a serious heart condition that can progress to a severe heart attack without any warning and the consequences of such an event can turn fatal quickly. Therefore, there is a strong need for a sensor that can continuously monitor the onset of the condition to prevent high risk individuals from deadly heart attacks. An increase in extracellular potassium levels is the first sign of MI and timely sensing with an implantable potassium sensing biosensor could play a critical role in detecting and expediting care. There are challenges in the development of an implantable potassium sensing electrode one of which includes signal drift. The incorporation of novel nanostructures and smarter materials hold the potential to combat these problems. This paper presents a unique design for an all-solid-state potassium sensing device which offers miniaturization along with enhanced signal transduction. These characteristics are important when it comes to implantable devices and signal drift. Sensor design details along with fabrication processes and sensing results are discussed.

  15. Chronic Exercise Downregulates Myocardial Myoglobin and Attenuates Nitrite Reductase Capacity During Ischemia-Reperfusion

    PubMed Central

    Nicholson, Chad K.; Lambert, Jonathan P.; Chow, Chi-Wing; Lefer, David J.; Calvert, John W.

    2013-01-01

    Background The infarct sparing effects of exercise are evident following both long-term and short-term training regimens. Here we compared the infarct-lowering effects of nitrite therapy, voluntary exercise, and the combination of both following myocardial ischemia-reperfusion (MI/R) injury. We also compared the degree to which each strategy increased cardiac nitrite levels, as well as the effects of each strategy on the nitrite reductase activity of the heart. Methods and Results Mice subjected to voluntary wheel running (VE) for 4 weeks displayed an 18% reduction in infarct size when compared to sedentary mice, whereas mice administered nitrite therapy (25 mg/L in drinking water) showed a 53% decrease. However, the combination of VE and nitrite exhibited no further protection than VE alone. Although the VE and nitrite therapy mice showed similar nitrite levels in the heart, cardiac nitrite reductase activity was significantly reduced in the VE mice. Additionally, the cardiac protein expression of myoglobin, a known nitrite reductase, was also reduced after VE. Further studies revealed that cardiac NFAT activity was lower after VE due to a decrease in calcineurin activity and an increase in GSK3β activity. Conclusion These data suggest that VE downregulates cardiac myoglobin levels by inhibiting calcineurin/NFAT signaling. Additionally, these results suggest that the modest infarct sparing effects of VE are the result of a decrease in the hearts ability to reduce nitrite to nitric oxide during MI/R. PMID:23962643

  16. Myocardial strain may be useful in differentiating Takotsubo cardiomyopathy from left anterior descending coronary artery ischemia.

    PubMed

    Cai, LiYing; Addetia, Karima; Medvedofsky, Diego; Spencer, Kirk T

    2017-03-01

    Stress-induced cardiomyopathy (SCM) is characterized by transient apical wall motion abnormalities of the left ventricle (LV) in the absence of obstructive coronary artery disease. Although the echocardiographic findings of SCM mimic those of left anterior descending coronary artery ischemia or infarction (LAD), the regional LV wall motion pattern and degree of RV involvement may differ. We sought to systematically assess regional LV and RV function with myocardial strain imaging to assess if ventricular involvement may differ between SCM and LAD. This was a retrospective cohort study, with 3 groups: patients with SCM (n=55), patients with LAD (n=36), and 37 normal subjects. All the patients had a comprehensive transthoracic echocardiographic examination, including assessment of longitudinal strain (LS). Global LV longitudinal strain was markedly decreased in both the SCM and LAD groups. However, SCM patients differed by more severe involvement the mid-inferolateral, mid-inferior, apical-lateral, and apical-inferior segments. When compared to the LAD patients, SCM patients had significantly more RV involvement both visually and quantitatively (27-42% versus 0-25%). Predictors of SCM included visually reduced RV systolic function, abnormal TAPSE, RVS' and RV LS in the apical segment. Of the LV variables, regional LS in the mid-inferior and apical-inferior segments could differentiate the groups. Our results suggest that RV involvement and the pattern of LV regional LS abnormalities may help differentiate SCM from LAD disease during echocardiographic imaging. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. [Application of fuzzy reasoning to myocardial ischemia judgment based on electrocardiogram ST-T complex].

    PubMed

    Song, Jinzhong; Yan, Hong; Liu, Guizhi; Kuang, Hong

    2012-02-01

    Electrocardiogram (ECG) is a convenient, economic, and non-invasive detecting tool in myocardial ischemia (MI). Its clinical appearance is mainly exhibited by ST-T complex change. MI events are usually instantaneous and asymptomatic in some cases, which cannot be forecasted to have a precautionary measure in time by doctors. The automatic detection of MI by computer and a cued warning of danger in real time play an important role in diagnosing heart disease. With the help of the medical staff, some quantitative approbatory indicators, such as ST-segment deviation, the amplitude of T-wave peak and the rate of ST and heart rate (HR), were combined to judge MI using fuzzy reasoning. After MIT-BIH database and the long-term ST database (LTST) verification, sensitivity and positive predictive values reached 75% and 78% respectively, and specificity and negative predictive values were 85% and 87% respectively. In addition, the proposed method was close to human way of thinking and understanding, and easy to apply in clinical detection and engineering fields.

  18. Metabolomic profiles of myocardial ischemia under treatment with salvianolic acid B

    PubMed Central

    2012-01-01

    Background Radix Salvia miltiorrhiza (Danshen) has been used as a principal herb in treating cardiovascular diseases in Chinese medicine. Salvianolic acid B (SA-B), a water-soluble active component of Danshen, was found to have anti-myocardial ischemia (anti-MI) effect. This study aims to investigate mechanisms of SA-B on MI. Methods Five conventional Western medicines (isosorbide dinitrate, verapamil, propranolol, captopril and trimethazine) with different mechanisms for treating cardiovascular diseases were selected as positive references to compare with SA-B in changing of the metabolomic profiles in MI rats under treatment. Potential mechanisms of SA-B were further investigated in H9C2 cell line. Results The metabolomic profiles between SA-B- and propranolol-treated MI rats were similar, since there was a big overlap between the two groups in the PLS-DA score plot. Finally, it was demonstrated that SA-B exhibited a protective effect on MI mainly by decreasing the concentration of cyclic adenosine monophosphate (cAMP) and Ca2+ and inhibiting protein kinase A (PKA). Conclusion SA-B and propanolol exhibited similar metabolomic profiles, indicating that the two drugs might have a similar mechanism. PMID:22409910

  19. Comparison of Electric- and Magnetic-Cardiograms Produced by Myocardial Ischemia in Models of the Human Ventricle and Torso.

    PubMed

    Alday, Erick A Perez; Ni, Haibo; Zhang, Chen; Colman, Michael A; Gan, Zizhao; Zhang, Henggui

    2016-01-01

    Myocardial ventricular ischemia arises from a lack of blood supply to the heart, which may cause abnormal repolarization and excitation wave conduction patterns in the tissue, leading to cardiac arrhythmias and even sudden death. Current diagnosis of cardiac ischemia by the 12-lead electrocardiogram (ECG) has limitations as they are insensitive in many cases and may show unnoticeable differences to normal patterns. As the magnetic field provides extra information on cardiac excitation and is more sensitive to tangential currents to the surface of the chest, whereas the electric field is more sensitive to flux currents, it has been hypothesized that the magnetocardiogram (MCG) may provide a complementary method to the ECG in ischemic diagnosis. However, it is unclear yet about the differences in sensitivity regions of body surface ECG and MCG signals to ischemic conditions. The aim of this study was to investigate such differences by using 12-, 36- ECG and 36-MCG computed from multi-scale biophysically detailed computational models of the human ventricles and torso in both control and ischemic conditions. It was shown that ischemia produced changes in the ECG and MCG signals in the QRS complex, T-wave and ST-segment, with greater relative differences seen in the 36-lead ECG and MCG as compared to the 12-leads ECG (34% and 37% vs 26%, respectively). The 36-lead ECG showed more averaged sensitivity than the MCG in the change of T-wave due to ischemia (37% vs 32%, respectively), whereas the MCG showed greater sensitivity than the ECG in the change of the ST-segment (50% vs 40%, respectively). In addition, both MCG and ECG showed regional-dependent changes to ischemia, but with MCG showing a stronger correlation between ischemic region in the heart. In conclusion, MCG shows more sensitivity than ECG in response to ischemia, which may provide an alternative method for the diagnosis of ischemia.

  20. Comparison of Electric- and Magnetic-Cardiograms Produced by Myocardial Ischemia in Models of the Human Ventricle and Torso

    PubMed Central

    Alday, Erick A. Perez; Ni, Haibo; Zhang, Chen; Colman, Michael A.; Gan, Zizhao; Zhang, Henggui

    2016-01-01

    Myocardial ventricular ischemia arises from a lack of blood supply to the heart, which may cause abnormal repolarization and excitation wave conduction patterns in the tissue, leading to cardiac arrhythmias and even sudden death. Current diagnosis of cardiac ischemia by the 12-lead electrocardiogram (ECG) has limitations as they are insensitive in many cases and may show unnoticeable differences to normal patterns. As the magnetic field provides extra information on cardiac excitation and is more sensitive to tangential currents to the surface of the chest, whereas the electric field is more sensitive to flux currents, it has been hypothesized that the magnetocardiogram (MCG) may provide a complementary method to the ECG in ischemic diagnosis. However, it is unclear yet about the differences in sensitivity regions of body surface ECG and MCG signals to ischemic conditions. The aim of this study was to investigate such differences by using 12-, 36- ECG and 36-MCG computed from multi-scale biophysically detailed computational models of the human ventricles and torso in both control and ischemic conditions. It was shown that ischemia produced changes in the ECG and MCG signals in the QRS complex, T-wave and ST-segment, with greater relative differences seen in the 36-lead ECG and MCG as compared to the 12-leads ECG (34% and 37% vs 26%, respectively). The 36-lead ECG showed more averaged sensitivity than the MCG in the change of T-wave due to ischemia (37% vs 32%, respectively), whereas the MCG showed greater sensitivity than the ECG in the change of the ST-segment (50% vs 40%, respectively). In addition, both MCG and ECG showed regional-dependent changes to ischemia, but with MCG showing a stronger correlation between ischemic region in the heart. In conclusion, MCG shows more sensitivity than ECG in response to ischemia, which may provide an alternative method for the diagnosis of ischemia. PMID:27556808

  1. N-11C-Methyl-Dopamine PET Imaging of Sympathetic Nerve Injury in a Swine Model of Acute Myocardial Ischemia: A Comparison with 13N-Ammonia PET

    PubMed Central

    Zhou, Weina; Wang, Xiangcheng; He, Yulin; Nie, Yongzhen; Zhang, Guojian; Wang, Cheng; Wang, Chunmei; Wang, Xuemei

    2016-01-01

    Objective. Using a swine model of acute myocardial ischemia, we sought to validate N-11C-methyl-dopamine (11C-MDA) as an agent capable of imaging cardiac sympathetic nerve injury. Methods. Acute myocardial ischemia was surgically generated in Chinese minipigs. ECG and serum enzyme levels were used to detect the presence of myocardial ischemia. Paired 11C-MDA PET and 13N-ammonia PET scans were performed at baseline, 1 day, and 1, 3, and 6 months after surgery to relate cardiac sympathetic nerve injury to blood perfusion. Results. Seven survived the surgical procedure. The ECG-ST segment was depressed, and levels of the serum enzymes increased. Cardiac uptake of tracer was quantified as the defect volume. Both before and immediately after surgery, the images obtained with 11C-MDA and 13N-ammonia were similar. At 1 to 6 months after surgery, however, 11C-MDA postsurgical left ventricular myocardial defect volume was significantly greater compared to 13N-ammonia. Conclusions. In the Chinese minipig model of acute myocardial ischemia, the extent of the myocardial defect as visualized by 11C-MDA is much greater than would be suggested by blood perfusion images, and the recovery from myocardial sympathetic nerve injury is much slower than the restoration of blood perfusion. 11C-MDA PET may provide additional biological information during recovery from ischemic heart disease. PMID:27034950

  2. Combined morphine and limb remote ischemic perconditioning provides an enhanced protection against myocardial ischemia/reperfusion injury by antiapoptosis.

    PubMed

    Wang, Shi-Yu; Cui, Xin-Long; Xue, Fu-Shan; Duan, Ran; Li, Rui-Ping; Liu, Gao-Pu; Yang, Gui-Zhen; Sun, Chao

    2016-05-01

    Both morphine and limb remote ischemic perconditioning (RIPer) can protect against myocardial ischemia/reperfusion injury (IRI). This experiment was designed to assess whether combined morphine and limb RIPer could provide and enhanced protection against myocardial IRI in an in vivo rat model. One hundred male Sprague-Dawley rats were randomly allocated to six groups: sham, ischemia/reperfusion (IR), ischemic preconditioning, RIPer, morphine (M), and combined morphine and remote ischemic perconditioning (M + RIPer). Ventricular arrhythmias that occurred during ischemia and early reperfusion were scored, and serum creatine kinase isoenzyme and cardiac troponin I levels were assayed. The infarct size was determined by Evans blue and triphenyl tetrazolium chloride staining. The apoptosis in the myocardial ischemic core, ischemic border, and nonischemic areas was assessed through real-time polymerase chain reaction for Bax and Bcl-2 and with the transferase-mediated deoxyuridine triphosphate-biotin nick end labeling assay. The infarct size, serum cardiac troponin I level, incidence, and score of the arrhythmias during the initial reperfusion were significantly reduced in the M + RIPer group compared with the IR group but did not differ significantly between the ischemic preconditioning and M + RIPer groups. Transferase-mediated deoxyuridine triphosphate-biotin nick end labeling-positive cells were significantly decreased, and the Bcl-2/Bax ratio was significantly increased in the M + RIPer group compared with the IR group. This experiment demonstrates that combined morphine and limb RIPer provides an enhanced protection against myocardial IRI by the Bcl-2-linked apoptotic signaling pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Allele-specific expression in the human heart and its application to postoperative atrial fibrillation and myocardial ischemia.

    PubMed

    Sigurdsson, Martin I; Saddic, Louis; Heydarpour, Mahyar; Chang, Tzuu-Wang; Shekar, Prem; Aranki, Sary; Couper, Gregory S; Shernan, Stanton K; Seidman, Jon G; Body, Simon C; Muehlschlegel, Jochen D

    2016-12-06

    Allele-specific expression (ASE) is differential expression of each of the two chromosomal alleles of an autosomal gene. We assessed ASE patterns in the human left atrium (LA, n = 62) and paired samples from the left ventricle (LV, n = 76) before and after ischemia, and tested the utility of differential ASE to identify genes associated with postoperative atrial fibrillation (poAF) and myocardial ischemia. Following genotyping from whole blood and whole-genome sequencing of LA and LV samples, we called ASE using sequences overlapping heterozygous SNPs using rigorous quality control to minimize false ASE calling. ASE patterns were compared between cardiac chambers and with a validation cohort from cadaveric tissue. ASE patterns in the LA were compared between patients who had poAF and those who did not. Changes in ASE in the LV were compared between paired baseline and post-ischemia samples. ASE was found for 3404 (5.1%) and 8642 (4.0%) of SNPs analyzed in the LA and LV, respectively. Out of 6157 SNPs with ASE analyzed in both chambers, 2078 had evidence of ASE in both LA and LV (p < 0.0001). The SNP with the greatest ASE difference in the LA of patients with and without postoperative atrial fibrillation was within the gelsolin (GSN) gene, previously associated with atrial fibrillation in mice. The genes with differential ASE in poAF were enriched for myocardial structure genes, indicating the importance of atrial remodeling in the pathophysiology of AF. The greatest change in ASE between paired post-ischemic and baseline samples of the LV was in the zinc finger and homeodomain protein 2 (ZHX2) gene, a modulator of plasma lipids. Genes with differential ASE in ischemia were enriched in the ubiquitin ligase complex pathway associated with the ischemia-reperfusion response. Our results establish a pattern of ASE in the human heart, with a high degree of shared ASE between cardiac chambers as well as chamber-specific ASE. Furthermore, ASE analysis can be

  4. MiR-146b protects cardiomyocytes injury in myocardial ischemia/reperfusion by targeting Smad4

    PubMed Central

    Di, Yun-Feng; Li, De-Cai; Shen, Yan-Qing; Wang, Chun-Lei; Zhang, Da-Yong; Shang, An-Quan; Hu, Teng

    2017-01-01

    MicroRNAs, a class of small and non-encoding RNAs that transcriptionally or post-transcriptionally modulate the expression of their target genes, have been implicated as critical regulatory molecules in many cardiovascular diseases, including ischemia-/reperfusion-induced cardiac injury. In the present study, we report on the role of miR-146b in myocardial I/R injury and the underlying cardio-protective mechanism. Antagomir-146b was used to explore the effects of miR-146b on cardiac ischemia/reperfusion injury (30 min ischemia followed by 180 min reperfusion). As predicted, miR-146b overexpression significantly reduced the infarct size and cardiomyocytes apoptosis and release of creatine kinase and lactate dehydrogenase. In addition, miR-146b attenuated H9c2 cell apoptosis. Furthermore, Smad4 was predicted and verified as a potential miR-146b target using bioinformatics and luciferase assay. In summary, this study demonstrated that miR-146b plays a critical protective role in cardiac ischemic injury and may provide a new therapeutic approach for the treatment of myocardial I/R injury.

  5. Puerarin alleviates aggravated sympathoexcitatory response induced by myocardial ischemia via regulating P2X3 receptor in rat superior cervical ganglia.

    PubMed

    Liu, Shuangmei; Yu, Shicheng; Xu, Changshui; Peng, Lichao; Xu, Hong; Zhang, Chunping; Li, Guilin; Gao, Yun; Fan, Bo; Zhu, Qicheng; Zheng, Chaoran; Wu, Bing; Song, Miaomiao; Wu, Qin; Liang, Shangdong

    2014-05-01

    Myocardial ischemia elicits a sympathoexcitatory response characterized by increase in blood pressure and sympathetic nerve activity. Puerarin, a major active ingredient extracted from the traditional Chinese plant medicine Ge-gen, has been widely used in treatment of myocardial and cerebral ischemia. However, little is known about the mechanism. Our study was aimed to explore the effect of puerarin on sympathoexcitatory response induced by myocardial ischemic injury and possible relationship with P2X3 receptor. Our results showed that puerarin alleviated systolic blood pressure and heart rate, and decreased the up-regulated of P2X3 mRNA and protein in SCG of myocardial ischemic rats. The amplitude of ATP-activated currents of SCG neurons was much larger in myocardial ischemic group than that in control group. Puerarin reduced ATP-activated currents in myocardial ischemic group and control group, and the inhibiting effects of puerarin in myocardial ischemic group were stronger than those in control group. Puerarin also significantly inhibited ATP-activated currents in HEK293 cells transfected with P2X3 receptor. These results suggest that puerarin can depress up-sympathoexcitatory response induced by myocardial ischemia via acting on P2X3 receptor in rat SCG to protect myocardium.

  6. Adenosine stress high-pitch 128-slice dual-source myocardial computed tomography perfusion for imaging of reversible myocardial ischemia: comparison with magnetic resonance imaging.

    PubMed

    Feuchtner, Gudrun; Goetti, Robert; Plass, André; Wieser, Monika; Scheffel, Hans; Wyss, Christophe; Stolzmann, Paul; Donati, Olivio; Schnabl, Johannes; Falk, Volkmar; Alkadhi, Hatem; Leschka, Sebastian; Cury, Ricardo C

    2011-09-01

    Coronary computed tomography angiography (CTA) enables accurate anatomic evaluation of coronary artery stenosis but lacks information about hemodynamic significance. The aim of this study was to evaluate 128-slice myocardial CT perfusion (CTP) imaging with adenosine stress using a high-pitch mode, in comparison with cardiac MRI (CMR). Thirty-nine patients with intermediate to high coronary risk profile underwent adenosine stress 128-slice dual source CTP (128×0.6 mm, 0.28 seconds). Among those, 30 patients (64 ± 10 years, 6% women) also underwent adenosine stress CMR (1.5T). The 2-step CTP protocol consisted of (1) adenosine stress-CTP using a high-pitch factor (3.4) ECG-synchronized spiral mode and (2) rest-CTP/coronary-CTA using either high-pitch (heart rate <63 bpm) or prospective ECG-triggering (heart rate >63 bpm). Results were compared with CMR and with invasive angiography in 25 patients. The performance of stress-CTP for detection of myocardial perfusion defects compared with CMR was sensitivity, 96%; specificity, 88%; positive predictive value (PPV), 93%; negative predictive value (NPV), 94% (per vessel); and sensitivity, 78%; specificity, 87%; PPV, 83%; NPV, 84% (per segment). The accuracy of stress-CTP for imaging of reversible ischemia compared with CMR was sensitivity, 95%; specificity, 96%; PPV, 95%; and NPV, 96% (per vessel). In 25 patients who underwent invasive angiography, the accuracy of CTA for detection of stenosis >70% was (per segment): sensitivity, 96%; specificity, 88%; PPV, 67%; and NPV, 98.9%. The accuracy improved from 84% to 95% after adding stress CTP to CTA. Radiation exposure of the entire stress/rest CT protocol was only 2.5 mSv. Adenosine-induced stress 128-slice dual-source high-pitch myocardial CTP allows for simultaneously assessment of reversible myocardial ischemia and coronary stenosis, with good diagnostic accuracy as compared with CMR and invasive angiography, at a very low radiation exposure.

  7. Adora2b Signaling on Bone Marrow Derived Cells Dampens Myocardial Ischemia-Reperfusion Injury

    PubMed Central

    Koeppen, Michael; Harter, Patrick N.; Bonney, Stephanie; Bonney, Megan; Reithel, Susan; Zachskorn, Cornelia; Mittelbronn, Michel; Eckle, Tobias

    2012-01-01

    Background Cardiac ischemia-reperfusion injury (I/R) represents a major cause of cardiac tissue injury. Adenosine signaling dampens inflammation during cardiac I/R. Here, we investigated the role of the adenosine A2b-receptor (Adora2b) on inflammatory cells during cardiac I/R. Methods To study Adora2b signaling on inflammatory cells, we transplanted wild-type (WT) bone marrow (BM) into Adora2b−/− mice or Adora2b−/− BM into WT mice. To study the role of polymorphonuclear leukocytes (PMNs), neutrophil-depleted WT mice were treated with an Adora2b agonist. Following treatments, mice were exposed to 60 min of myocardial ischemia and 120 min of reperfusion. Infarct sizes and Troponin-I levels were determined by triphenyltetrazolium chloride staining and ELISA, respectively. Results Transplantation of WT-BM into Adora2b−/− mice decreased infarct sizes by 19 ± 4% and Troponin-I by 87.5 ± 25.3 ng/ml (mean ± SD, n = 6). Transplantation of Adora2b−/− BM into WT mice increased infarct sizes by 20 ±3% and Troponin-I levels by 69.7 ± 17.9 ng/ml (mean ± SD, n = 6). Studies on the reperfused myocardium revealed PMNs as dominant cell type. PMN-depletion or Adora2b agonist treatment reduced infarct sizes by 30 ± 11% or 26 ± 13% (mean ± SD, n = 4), however the combination of both did not reveal further cardioprotection. Cytokine profiling showed significantly higher cardiac tumor-necrosis-factor-α levels in Adora2b−/− compared to WT mice (39.3 ± 5.3 vs. 7.5 ± 1.0 pg/mg protein, mean ± SD, n = 4). Pharmacological studies on human activated PMNs revealed an Adora2b dependent tumor-necrosis-factor-α release. Conclusion Adora2b signaling on BM-derived cells such as PMNs represents an endogenous cardioprotective mechanism during cardiac I/R. Our findings suggest that Adora2b agonist treatment during cardiac I/R reduces tumor-necrosis-factor-α release of PMNs, thereby dampening tissue injury. PMID:22531331

  8. Activation of NOD1 by DAP contributes to myocardial ischemia/reperfusion injury via multiple signaling pathways.

    PubMed

    Yang, Hui; Li, Nan; Song, Li-Na; Wang, Lei; Tian, Cui; Tang, Chao-Shu; Du, Jie; Li, Hui-Hua; Yu, Xiao-Hong; Wang, Hong-Xia

    2015-04-01

    NOD1 is a member of nucleotide-binding oligomerization domain-like receptors family that participates in many inflammatory processes. Previous studies demonstrated that NOD1 plays an important role in inflammatory cardiovascular diseases. However, its role in myocardial ischemia/reperfusion (I/R) injury remains unknown. The present study investigate whether NOD1 is involved in the pathogenesis of mouse myocardial I/R injury and the underlying mechanisms. Administration of NOD1 ligand (DAP) significantly enhanced myocardial I/R injury, as demonstrated by increased infarct size, the number of TUNEL-positive nuclei, caspase-3 activity, the infiltration of Mac-2- and IL-6-positive cells as compared with untreated heart or cardiomyocytes after I/R injury. In contrast, knockdown of NOD1 by siRNA markedly attenuated mimetic I/R induced cardiomyocyte apoptosis in vitro, indicating that NOD1 enhanced myocardial I/R injury partially through direct heart effects. These effects were partially associated with activation of JNK, p38 MAPK and NF-κB signaling pathways. Taken together, these results provide the first evidence that activation of intracellular sensor NOD1 enhances myocardial I/R injury and may provide novel therapeutic target for ameliorating the ischemic heart diseases.

  9. Activation of Poly(ADP-Ribose) Polymerase by Myocardial Ischemia and Coronary Reperfusion in Human Circulating Leukocytes

    PubMed Central

    Tóth-Zsámboki, Emese; Horváth, Eszter; Vargova, Katarina; Pankotai, Eszter; Murthy, Kanneganti; Zsengellér, Zsuzsanna; Bárány, Tamás; Pék, Tamás; Fekete, Katalin; Kiss, Róbert Gábor; Préda, István; Lacza, Zsombor; Gerö, Domokos; Szabó, Csaba

    2006-01-01

    Reactive free radical and oxidant production leads to DNA damage during myocardial ischemia/reperfusion. Consequent overactivation of poly(ADP-ribose) polymerase (PARP) promotes cellular energy deficit and necrosis. We hypothesized that PARP is activated in circulating leukocytes in patients with myocardial infarction and reperfusion during primary percutaneous coronary intervention (PCI). In 15 patients with ST segment elevation acute myocardial infarction, before and after primary PCI and 24 and 96 h later, we determined serum hydrogen peroxide concentrations, plasma levels of the oxidative DNA adduct 8-hydroxy-2′-deoxyguanosine (8OHdG), tyrosine nitration, PARP activation, and translocation of apoptosis-inducing factor (AIF) in circulating leukocytes. Plasma 8OHdG levels and leukocyte tyrosine nitration were rapidly increased by PCI. Similarly, poly(ADP-ribose) content of the leukocytes increased in cells isolated just after PCI, indicating immediate PARP activation triggered by reperfusion of the myocardium. In contrast, serum hydrogen peroxide concentrations and the translocation of AIF gradually increased over time and were most pronounced at 96 h. Reperfusion-related oxidative/nitrosative stress triggers DNA damage, which leads to PARP activation in circulating leukocytes. Translocation of AIF and lipid peroxidation occurs at a later stage. These results represent the first direct demonstration of PARP activation in human myocardial infarction. Future work is required to test whether pharmacological inhibition of PARP may offer myocardial protection during primary PCI. PMID:17225870

  10. Activation of poly(ADP-ribose) polymerase by myocardial ischemia and coronary reperfusion in human circulating leukocytes.

    PubMed

    Tóth-Zsámboki, Emese; Horváth, Eszter; Vargova, Katarina; Pankotai, Eszter; Murthy, Kanneganti; Zsengellér, Zsuzsanna; Bárány, Tamás; Pék, Tamás; Fekete, Katalin; Kiss, Róbert Gábor; Préda, István; Lacza, Zsombor; Gerö, Domokos; Szabó, Csaba

    2006-01-01

    Reactive free radical and oxidant production leads to DNA damage during myocardial ischemia/reperfusion. Consequent overactivation of poly(ADP-ribose) polymerase (PARP) promotes cellular energy deficit and necrosis. We hypothesized that PARP is activated in circulating leukocytes in patients with myocardial infarction and reperfusion during primary percutaneous coronary intervention (PCI). In 15 patients with ST segment elevation acute myocardial infarction, before and after primary PCI and 24 and 96 h later, we determined serum hydrogen peroxide concentrations, plasma levels of the oxidative DNA adduct 8-hydroxy-2'-deoxyguanosine (8OHdG), tyrosine nitration, PARP activation, and translocation of apoptosis-inducing factor (AIF) in circulating leukocytes. Plasma 8OHdG levels and leukocyte tyrosine nitration were rapidly increased by PCI. Similarly, poly(ADP-ribose) content of the leukocytes increased in cells isolated just after PCI, indicating immediate PARP activation triggered by reperfusion of the myocardium. In contrast, serum hydrogen peroxide concentrations and the translocation of AIF gradually increased over time and were most pronounced at 96 h. Reperfusion-related oxidative/nitrosative stress triggers DNA damage, which leads to PARP activation in circulating leukocytes. Translocation of AIF and lipid peroxidation occurs at a later stage. These results represent the first direct demonstration of PARP activation in human myocardial infarction. Future work is required to test whether pharmacological inhibition of PARP may offer myocardial protection during primary PCI.

  11. Effect of cerebrolysin on oxidative stress-induced apoptosis in an experimental rat model of myocardial ischemia.

    PubMed

    Boshra, V; Atwa, A

    2016-09-01

    Apoptosis plays a role in the process of tissue damage after myocardial infarction (MI). This study was designed to investigate the possible effect of cerebrolysin against apoptosis triggered by oxidative cell stress in myocardial ischemia induced by isoproterenol in rat. Rats were pretreated with cerebrolysin 5 mL/kg intraperitoneally for 7 days and intoxicated with isoproterenol (ISO, 85 mg/kg, sc) on the last 2 days. Hearts were excised and stained to detect the infarction size. Serum levels of cardiotoxicity indices as creatine kinase isoenzyme (CK-MB) and troponin I (cTnI) as well as the cardiac oxidative stress parameters as thiobarbituric acid reactive substances and superoxide dismutase were estimated. The expression of prodeath gene p53 and antideath gene Bcl-2 was also assessed from the excised heart tissues. Leakage of cardiac enzymes, elevated oxidative stress markers, and apoptotic indices confirmed the MI occurring as a consequence of isoproterenol-induced ischemia. Cerebrolysin pretreatment caused significant attenuation of the oxidative stress-induced apoptosis in the ischemic myocardial tissue. These findings provided an evidence that cerebrolysin could protect rat myocardium against ischemic insult that was attributed to its antioxidant as well as its anti-apoptotic properties.

  12. Association between non-perfusion parameters and presence of ischemia in gated-SPECT myocardial perfusion imaging studies.

    PubMed

    Peix, Amalia; Cabrera, Lázaro O; Padrón, Kenia; Rodríguez, Lydia; Fernández, Jesús; López, Giselle; Carrillo, Regla; Mena, Erick; Fernández, Yoel; Dondi, Maurizio; Páez, Diana

    2016-11-17

    Combined assessment of perfusion and function improves diagnostic and prognostic power of gated-SPECT in patients with coronary artery disease. The aim of this study was to investigate whether the presence of stress-induced ischemia is associated with abnormal resting left ventricular (LV) function and intraventricular dyssynchrony. Gated-SPECT myocardial perfusion imaging (MPI) at rest and 15 min post-stress was performed in 101 patients, who were divided into three groups: those with stress-induced ischemia (Group 1, n = 58), those with normal scans (Group 2, n = 28), and those with scar but no ischemia (Group 3, n = 15). More extensive perfusion defects were found in patients of Groups 1 and 3 [Summed stress score (SSS): 13 ± 8 and 21 ± 9, respectively]. In Group 2, the mean SSS was 1.5. The mean change in LV ejection fraction (LVEF at stress - LVEF at rest) was higher in Group 1 v. Group 2 patients: -5.54% ± 6.24% vs -2.46% ± 5.56%, p = 0.02. Group 3 patients also had higher values, similar to Group 1: -6.47% ± 8.82%. Patients with ischemia had almost 50% higher end-diastolic volumes than patients with normal MPI. Similarly, end-systolic volumes were almost twice as high in this group (p < 0.0001). In addition, the histogram bandwidth, a measure of intraventricular dyssynchrony, was greater in Group 1. Baseline differences in left ventricular volumes and degree of dyssynchrony are associated with inducible ischemia on stress testing in a gated-SPECT MPI. Stress-induced ischemia increases the degree of intraventricular dyssynchrony.

  13. Quantitative myocardial perfusion imaging in a porcine ischemia model using a prototype spectral detector CT system.

    PubMed

    Fahmi, Rachid; Eck, Brendan L; Levi, Jacob; Fares, Anas; Dhanantwari, Amar; Vembar, Mani; Bezerra, Hiram G; Wilson, David L

    2016-03-21

    We optimized and evaluated dynamic myocardial CT perfusion (CTP) imaging on a prototype spectral detector CT (SDCT) scanner. Simultaneous acquisition of energy sensitive projections on the SDCT system enabled projection-based material decomposition, which typically performs better than image-based decomposition required by some other system designs. In addition to virtual monoenergetic, or keV images, the SDCT provided conventional (kVp) images, allowing us to compare and contrast results. Physical phantom measurements demonstrated linearity of keV images, a requirement for quantitative perfusion. Comparisons of kVp to keV images demonstrated very significant reductions in tell-tale beam hardening (BH) artifacts in both phantom and pig images. In phantom images, consideration of iodine contrast to noise ratio and small residual BH artifacts suggested optimum processing at 70 keV. The processing pipeline for dynamic CTP measurements included 4D image registration, spatio-temporal noise filtering, and model-independent singular value decomposition deconvolution, automatically regularized using the L-curve criterion. In normal pig CTP, 70 keV perfusion estimates were homogeneous throughout the myocardium. At 120 kVp, flow was reduced by more than 20% on the BH-hypo-enhanced myocardium, a range that might falsely indicate actionable ischemia, considering the 0.8 threshold for actionable FFR. With partial occlusion of the left anterior descending (LAD) artery (FFR < 0.8), perfusion defects at 70 keV were correctly identified in the LAD territory. At 120 kVp, BH affected the size and flow in the ischemic area; e.g. with FFR ≈ 0.65, the anterior-to-lateral flow ratio was 0.29 ± 0.01, over-estimating stenosis severity as compared to 0.42 ± 0.01 (p < 0.05) at 70 keV. On the non-ischemic inferior wall (not a LAD territory), the flow ratio was 0.50 ± 0.04 falsely indicating an actionable ischemic condition in a healthy territory. This ratio was 1.00 ± 0.08 at 70 ke

  14. Quantitative myocardial perfusion imaging in a porcine ischemia model using a prototype spectral detector CT system

    NASA Astrophysics Data System (ADS)

    Fahmi, Rachid; Eck, Brendan L.; Levi, Jacob; Fares, Anas; Dhanantwari, Amar; Vembar, Mani; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    We optimized and evaluated dynamic myocardial CT perfusion (CTP) imaging on a prototype spectral detector CT (SDCT) scanner. Simultaneous acquisition of energy sensitive projections on the SDCT system enabled projection-based material decomposition, which typically performs better than image-based decomposition required by some other system designs. In addition to virtual monoenergetic, or keV images, the SDCT provided conventional (kVp) images, allowing us to compare and contrast results. Physical phantom measurements demonstrated linearity of keV images, a requirement for quantitative perfusion. Comparisons of kVp to keV images demonstrated very significant reductions in tell-tale beam hardening (BH) artifacts in both phantom and pig images. In phantom images, consideration of iodine contrast to noise ratio and small residual BH artifacts suggested optimum processing at 70 keV. The processing pipeline for dynamic CTP measurements included 4D image registration, spatio-temporal noise filtering, and model-independent singular value decomposition deconvolution, automatically regularized using the L-curve criterion. In normal pig CTP, 70 keV perfusion estimates were homogeneous throughout the myocardium. At 120 kVp, flow was reduced by more than 20% on the BH-hypo-enhanced myocardium, a range that might falsely indicate actionable ischemia, considering the 0.8 threshold for actionable FFR. With partial occlusion of the left anterior descending (LAD) artery (FFR  <  0.8), perfusion defects at 70 keV were correctly identified in the LAD territory. At 120 kVp, BH affected the size and flow in the ischemic area; e.g. with FFR ≈ 0.65, the anterior-to-lateral flow ratio was 0.29  ±  0.01, over-estimating stenosis severity as compared to 0.42  ±  0.01 (p  <  0.05) at 70 keV. On the non-ischemic inferior wall (not a LAD territory), the flow ratio was 0.50  ±  0.04 falsely indicating an actionable ischemic condition in a healthy

  15. Selective Localization of a Novel Dendrimer Nanoparticle in Myocardial Ischemia-Reperfusion Injury.

    PubMed

    Magruder, J Trent; Crawford, Todd C; Lin, Yi-An; Zhang, Fan; Grimm, Joshua C; Kannan, Rangaramanujam M; Kannan, Sujatha; Sciortino, Christopher M

    2017-09-01

    Dendrimer nanoparticle therapies represent promising new approaches to drug delivery, particularly in diseases associated with inflammatory injury. However, their application has not been fully explored in models of acute myocardial ischemia (MI) and reperfusion injury. White male New Zealand rabbits underwent left thoracotomy with 30-minute temporary left anterior descending artery occlusion and MI confirmed by electrocardiography and histology (MI rabbits, n = 9), or left thoracotomy and pericardial opening for 30 minutes but no left anterior descending artery occlusion (control [C] rabbits, n = 9) rabbits. Following the 30-minute period, a dendrimer (generation 6 dendrimer conjugated to cyanine-5 fluorescent dye [G6-Cy5], 6.7 nm diameter) was administered intravenously and the chest closed in layers. Animals were sacrificed at 3 hours (3 MI, 3 C), 24 hours (3 MI, 3 C), or 48 hours (3 MI, 3 C) postsurgery. As compared to controls, MI rabbits had twofold G6-Cy5 uptake in the myocardial anterior wall as compared to the same region in nonischemic control rabbits at 24 hours postsurgery (6.01 ± 0.57 μg/g versus 2.85 ± 0.85 μg/g; p = 0.04). This trend was also present at 48 hours (6.38 ± 1.53 μg/g versus 3.95 ± 0.60 μg/g, p = 0.21) and was qualitatively evident on confocal microscopy. G6-Cy5 half-life in serum was approximately 12 hours, with 22% of the injected G6-Cy5 dose remaining at 48 hours. This study demonstrates for the first time that dendrimer nanodevices selectively localize in ischemic as compared to healthy myocardium. This indicates that dendrimer nanodevices are promising agents to deliver drugs specifically to the ischemic myocardium to attenuate the injury. Subsequent studies will assess the efficacy of a dendrimer-drug conjugate in ameliorating reperfusion injury following MI. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Structural Basis for Phosphorylation and Lysine Acetylation Cross-talk in a Kinase Motif Associated with Myocardial Ischemia and Cardioprotection*

    PubMed Central

    Parker, Benjamin L.; Shepherd, Nicholas E.; Trefely, Sophie; Hoffman, Nolan J.; White, Melanie Y.; Engholm-Keller, Kasper; Hambly, Brett D.; Larsen, Martin R.; James, David E.; Cordwell, Stuart J.

    2014-01-01

    Myocardial ischemia and cardioprotection by ischemic pre-conditioning induce signal networks aimed at survival or cell death if the ischemic period is prolonged. These pathways are mediated by protein post-translational modifications that are hypothesized to cross-talk with and regulate each other. Phosphopeptides and lysine-acetylated peptides were quantified in isolated rat hearts subjected to ischemia or ischemic pre-conditioning, with and without splitomicin inhibition of lysine deacetylation. We show lysine acetylation (acetyl-Lys)-dependent activation of AMP-activated protein kinase, AKT, and PKA kinases during ischemia. Phosphorylation and acetyl-Lys sites mapped onto tertiary structures were proximal in >50% of proteins investigated, yet they were mutually exclusive in 50 ischemic pre-conditioning- and/or ischemia-associated peptides containing the KXXS basophilic protein kinase consensus motif. Modifications in this motif were modeled in the C terminus of muscle-type creatine kinase. Acetyl-Lys increased proximal dephosphorylation by 10-fold. Structural analysis of modified muscle-type creatine kinase peptide variants by two-dimensional NMR revealed stabilization via a lysine-phosphate salt bridge, which was disrupted by acetyl-Lys resulting in backbone flexibility and increased phosphatase accessibility. PMID:25008320

  17. After Myocardial Ischemia-Reperfusion, miR-29a, and Let7 Could Affect Apoptosis through Regulating IGF-1

    PubMed Central

    Wang, Lei; Niu, Xuehong; Hu, Jihua; Xing, Haijian; Sun, Min; Wang, Juanli; Jian, Qiang; Yang, Hua

    2015-01-01

    Cardiovascular and cerebrovascular ischemic disease is a large class of diseases that is harmful to human health. The primary treatment for the ischemic disease is to recover the blood perfusion and relieve the tissue hypoxia and the shortage of the nutrients in the supply of nutrients. In recent years, investigations found that IGF-1 has a protective effect on cardiovascular disease, especially in myocardial ischemia-reperfusion injury. Investigation into molecular mechanism of ischemia-reperfusion injury may offer potential targets for the development of novel diagnostic strategies. In this study we defined IGF-1 was differentially expressed in the I/R model of the Mus musculus and IGF-1 was the target gene of miR-29a and Let7f. After ischemia-reperfusion, the expression of miR-29a and Let7f increased, while the expression of IGF-1 decreased significantly in the animal model assay. Further studies have found that IGF-1 could inhibit cell apoptosis signaling pathway, thus protecting the reperfusion injury. These results provide new understanding of ischemia-reperfusion injury, with the hope of offering theoretical support for future therapeutic studies. PMID:26844226

  18. Plasma Catestatin: A Useful Biomarker for Coronary Collateral Development with Chronic Myocardial Ischemia

    PubMed Central

    Xu, Weixian; Yu, Haiyi; Li, Weihong; Gao, Wei; Guo, Lijun; Wang, Guisong

    2016-01-01

    Backgrounds Catestatin is an endogenous multifunctional neuroendocrinepeptide. Recently, catestatin was discovered as a novel angiogenic cytokine. The study was to investigate the associations between endogenous catestatin and coronary collateral development among the patients with chronic myocardial ischemia. Methods Thirty-eight patients with coronary artery chronic total occlusions (CTO) (CTO group) and 38 patients with normal coronary arteries (normal group) were enrolled in the series. Among the patients with CTO, coronary collateral development was graded according to the Rentrop score method. Rentrop score 0–1 collateral development was regarded as poor collateral group and 2–3 collateral development was regarded as good collateral group. Plasma catestatin level and vascular endothelial growth factor (VEGF) were measured by ELISA kits. Results The plasma catestatin levels in CTO group were significantly higher than that in normal group (1.97±1.01 vs 1.36±0.97ng/ml, p = 0.009). In the CTO group, the patients with good collateral development had significantly higher catestatin and VEGF levels than those with poor collateral development (2.36±0.73 vs 1.61±1.12 ng/ml, p = 0.018; 425.23±140.10 vs 238.48±101.00pg/mL, p<0.001). There is a positive correlation between plasma catestatin levels and Rentrop scores (r = 0.40, p = 0.013) among the patients with CTO. However, there is no correlations between plasma catestatin levels and VEGF (r = -0.06, p = 0.744). In the multiple linear regression models, plasma catestatin level was one of the independent factors of coronary collateral development after adjustment for confounders. Conclusions Plasma catestatin was associated with coronary collateral developments. It may be a useful biomarker for coronary collateral development and potential target for therapeutic angiogenesis in patients with CTO. PMID:27304618

  19. Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion.

    PubMed

    Kubli, Dieter A; Quinsay, Melissa N; Huang, Chengqun; Lee, Youngil; Gustafsson, Asa B

    2008-11-01

    Bcl-2/adenovirus E1B 19-kDa protein-interacting protein 3 (Bnip3) is a member of the Bcl-2 homology domain 3-only subfamily of proapoptotic Bcl-2 proteins and is associated with cell death in the myocardium. In this study, we investigated the potential mechanism(s) by which Bnip3 activity is regulated. We found that Bnip3 forms a DTT-sensitive homodimer that increased after myocardial ischemia-reperfusion (I/R). The presence of the antioxidant N-acetylcysteine reduced I/R-induced homodimerization of Bnip3. Overexpression of Bnip3 in cells revealed that most of exogenous Bnip3 exists as a DTT-sensitive homodimer that correlated with increased cell death. In contrast, endogenous Bnip3 existed mainly as a monomer under normal conditions in the heart. Screening of the Bnip3 protein sequence revealed a single conserved cysteine residue at position 64. Mutation of this cysteine to alanine (Bnip3C64A) or deletion of the NH2-terminus (amino acids 1-64) resulted in reduced cell death activity of Bnip3. Moreover, mutation of a histidine residue in the COOH-terminal transmembrane domain to alanine (Bnip3H173A) almost completely inhibited the cell death activity of Bnip3. Bnip3C64A had a reduced ability to interact with Bnip3, whereas Bnip3H173A was completely unable to interact with Bnip3, suggesting that homodimerization is important for Bnip3 function. A consequence of I/R is the production of reactive oxygen species and oxidation of proteins, which promotes the formation of disulfide bonds between proteins. Thus, these experiments suggest that Bnip3 functions as a redox sensor where increased oxidative stress induces homodimerization and activation of Bnip3 via cooperation of the NH2-terminal cysteine residue and the COOH-terminal transmembrane domain.

  20. High-molecular-weight polyethylene glycol inhibits myocardial ischemia-reperfusion injury in vivo.

    PubMed

    Xu, Xianyao; Philip, Jennifer L; Razzaque, Md Abdur; Lloyd, James W; Muller, Charlie M; Akhter, Shahab A

    2015-02-01

    Cardiac ischemia-reperfusion (I-R) injury remains a significant problem as there are no therapies available to minimize the cell death that can lead to impaired function and heart failure. We have shown that high-molecular-weight polyethylene glycol (PEG) (15-20 kD) can protect cardiac myocytes in vitro from hypoxia-reoxygenation injury. In this study, we investigated the potential protective effects of PEG in vivo. Adult rats underwent left anterior descending artery occlusion for 60 minutes followed by 48 hours or 4 weeks of reperfusion. One milliliter of 10% PEG solution or phosphate-buffered saline (PBS) control (n = 10 per group) was administered intravenously (IV) immediately before reperfusion. Fluorescein-labeled PEG was robustly visualized in the myocardium 1 hour after IV delivery. The PEG group had significant recovery of left ventricular ejection fraction at 4 weeks versus a 25% decline in the PBS group (P < .01). There was 50% less LV fibrosis in the PEG group versus PBS with smaller peri-infarct and remote territory fibrosis (P < .01). Cell survival signaling was upregulated in the PEG group with increased Akt (3-fold, P < .01) and ERK (4-fold, P < .05) phosphorylation compared to PBS controls at 48 hours. PEG also inhibited apoptosis as measured by TUNEL-positive nuclei (56% decrease, P < .02) and caspase 3 activity (55% decrease, P < .05). High-molecular-weight PEG appears to have a significant protective effect from I-R injury in the heart when administered IV immediately before reperfusion. This may have important clinical translation in the setting of acute coronary revascularization and myocardial protection in cardiac surgery. Copyright © 2015 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  1. Therapeutic potential of sulindac against ischemia-reperfusion-induced myocardial infarction in diabetic and nondiabetic rats

    PubMed Central

    Annapurna, Akula; Challa, Siva Reddy; Prakash, Gomedhikam J; Viswanath, Routhu Kasi

    2008-01-01

    BACKGROUND Diabetes mellitus is an independent risk factor for cardiovascular disease and is also associated with increased susceptibility to cardiovascular complications. It has been suggested that alterations in glucose metabolism and glucose flux via the aldose reductase pathway make the diabetic heart more sensitive to ischemic-reperfusion injury. Previous studies have found sulindac to have inhibitory and anti-inflammatory effects on aldose reductase. The use of aldose reductase inhibitors for the protection of ischemic myocardium is still in an exploratory state. OBJECTIVES To evaluate the therapeutic potential of sulindac in an in vivo rat model of acute ischemia (30 min) and reperfusion (4 h) in diabetic and nondiabetic rats. METHODS Diabetes was induced in rats by administering streptozotocin (45 mg/kg, intravenously). Myocardial infarction was induced by occlusion of the left anterior descending coronary artery for 30 min followed by 4 h of reperfusion. Infarct size was measured using the staining agent 2,3,5-triphenyltetrazolium chloride. A lead II electrocardiogram was monitored at various intervals throughout the experiment. Sorbitol dehydrogenase levels in heart tissue, as well as lipid peroxide levels in serum and heart tissue, were estimated spectrophotometrically. RESULTS Infarct size was increased in diabetic rats in comparison with normal rats. Pretreatment with sulindac significantly reduced infarct size, lipid peroxidation and sorbitol dehydrogenase levels in both diabetic and nondiabetic rats. The degree of cardioprotection was greater in diabetic rats than in nondiabetic rats. CONCLUSIONS The present study indicates that the observed cardioprotection provided by sulindac in terms of reducing infarct size in normal rats may be due to its combined antioxidant and anti-inflammatory activities. The inhibition of aldose reductase may be responsible for the enhanced cardioprotection observed in diabetic rats treated with sulindac. PMID:19343118

  2. Therapeutic potential of sulindac against ischemia-reperfusion-induced myocardial infarction in diabetic and nondiabetic rats.

    PubMed

    Annapurna, Akula; Challa, Siva Reddy; Prakash, Gomedhikam J; Viswanath, Routhu Kasi

    2008-01-01

    Diabetes mellitus is an independent risk factor for cardiovascular disease and is also associated with increased susceptibility to cardiovascular complications. It has been suggested that alterations in glucose metabolism and glucose flux via the aldose reductase pathway make the diabetic heart more sensitive to ischemic-reperfusion injury. Previous studies have found sulindac to have inhibitory and anti-inflammatory effects on aldose reductase. The use of aldose reductase inhibitors for the protection of ischemic myocardium is still in an exploratory state. To evaluate the therapeutic potential of sulindac in an in vivo rat model of acute ischemia (30 min) and reperfusion (4 h) in diabetic and nondiabetic rats. Diabetes was induced in rats by administering streptozotocin (45 mg/kg, intravenously). Myocardial infarction was induced by occlusion of the left anterior descending coronary artery for 30 min followed by 4 h of reperfusion. Infarct size was measured using the staining agent 2,3,5-triphenyltetrazolium chloride. A lead II electrocardiogram was monitored at various intervals throughout the experiment. Sorbitol dehydrogenase levels in heart tissue, as well as lipid peroxide levels in serum and heart tissue, were estimated spectrophotometrically. Infarct size was increased in diabetic rats in comparison with normal rats. Pretreatment with sulindac significantly reduced infarct size, lipid peroxidation and sorbitol dehydrogenase levels in both diabetic and nondiabetic rats. The degree of cardioprotection was greater in diabetic rats than in nondiabetic rats. The present study indicates that the observed cardioprotection provided by sulindac in terms of reducing infarct size in normal rats may be due to its combined antioxidant and anti-inflammatory activities. The inhibition of aldose reductase may be responsible for the enhanced cardioprotection observed in diabetic rats treated with sulindac.

  3. Painless myocardial ischemia is associated with mortality in patients with chronic kidney disease

    PubMed Central

    Wetmore, James B.; Broce, Mike; Malas, Amer; Almehmi, Ammar

    2015-01-01

    Background Painless myocardial ischemia (PMI) is associated with poor outcomes in the general population. We hypothesized that presence of PMI is inversely related to level of kidney function and is associated with impaired survival in CKD. Methods A total of 356 patients who underwent percutaneous coronary intervention were assessed for PMI, defined as the absence of chest pain in response to balloon dilation of the affected vessel. Cox proportional hazards analysis was used to calculate 10-year all-cause mortality. Results There was an increase in PMI occurrence by strata of estimated glomerular filtration rate (eGFR), whereby PMI was present in only 20.6% of individuals with eGFR ≥ 90 ml/min/1.73m2 but was found in 50.0% of individuals with eGFR < 30 ml/min/1.73m2 (P = 0.004 for trend). Classification of individuals as having either CKD or PMI showed significant differences in adjusted mortality between groups (P < 0.001 for trend), with individuals having both CKD and PMI demonstrating the highest 10-year mortality. Compared to individuals with neither CKD nor PMI, individuals with CKD and no PMI had a hazard ratio (HR) for mortality of 1.64 (95% confidence intervals 1.03 – 2.63, P = 0.038), while individuals with both PMI and CKD had a HR of 2.08 (1.30 – 3.33, P = 0.002). Conclusion PMI is common in CKD population, is inversely related to the level of eGFR, and confers substantially increased risk in CKD. These findings may partially explain the high mortality traditionally attributed to cardiovascular disease in CKD patients. PMID:23466572

  4. Prognostic Value of Global Magnetic Resonance Myocardial Perfusion Imaging In Women With Suspected Myocardial Ischemia and No Obstructive Coronary Artery Disease: Results From The NHLBI-Sponsored Women’s Ischemia Syndrome Evaluation (WISE)

    PubMed Central

    Doyle, Mark; Weinberg, Nicole; Pohost, Gerald M; Merz, C Noel Bairey; Shaw, Leslee J; Sopko, George; Fuisz, Anthon; Rogers, William J; Walsh, Edward G.; Johnson, B. Delia; Sharaf, Barry L; Pepine, Carl J; Mankad, Sunil; Reis, Steven E; Vido, Diane A; Rayarao, Geetha; Bittner, Vera; Tauxe, Lindsey; Olson, Marian B; Kelsey, Sheryl F; Biederman, Robert WW

    2012-01-01

    Objectives To assess the prognostic value of global magnetic resonance (MR) myocardial perfusion imaging (MPI) in women with suspected myocardial ischemia and no obstructive (stenosis <50%) coronary artery disease (CAD). Background The prognostic value of global MR-MPI in women without obstructive CAD remains unknown. Methods Women (n=100, mean age 57±11 years, range 31–76), with symptoms of myocardial ischemia and with no obstructive CAD as assessed by coronary angiography, underwent MR-MPI and standard functional assessment. During follow-up (34±16 months), time to first adverse event (death, myocardial infarction or hospitalization for worsening anginal symptoms) was analyzed using global MPI and left ventricular ejection fraction (EF) data. Results Adverse events occurred in 23 (23%). By univariable Cox proportional hazards regression modeling, variables found to be predictive of adverse events were global MR-MPI average uptake slope (p<0.05), the ratio of MR-MPI peak signal amplitude to uptake slope (p<0.05), and ejection fraction (EF) (p<0.05). Two multivariable Cox models were formed, one using variables that are performance-site dependent: ratio of MR-MPI peak amplitude to uptake slope together with EF (Chi-squared 13, p<0.005), and a model using variables that are performance-site independent: MR-MPI slope and EF (Chi-squared 12, p<0.005). Each of the two multivariable models remained predictive of adverse events after adjustment for age, disease history and Framingham risk score. For each of the Cox models, patients were categorized as high-risk if they were in the upper quartile of the model and not high-risk otherwise. Kaplan-Meier analysis of time to event was performed for high-risk vs. not high-risk for site-dependent (log rank 15.2, p<0.001) and site-independent (log rank 13.0, p<001) models. Conclusions Among women with suspected myocardial ischemia and no obstructive CAD, MR-MPI determined global measurements of normalized uptake slope and

  5. Conditional deletion of cardiomyocyte peroxisome proliferator-activated receptor γ enhances myocardial ischemia-reperfusion injury in mice.

    PubMed

    Hobson, Michael J; Hake, Paul W; O'Connor, Michael; Schulte, Christine; Moore, Victoria; James, Jeanne M; Piraino, Giovanna; Zingarelli, Basilia

    2014-01-01

    The nuclear transcription factor peroxisome proliferator-activated receptor γ (PPARγ) is a key regulator of the inflammatory response to an array of biologic insults. We have previously demonstrated that PPARγ ligands reduce myocardial ischemia-reperfusion injury in rodents. In the current study, we directly determined the role of cardiomyocyte PPARγ in ischemia-reperfusion injury, using a model of conditional cardiomyocyte-specific deletion of PPARγ in vivo. In mice, α-myosin heavy chain-restricted Cre-mediated PPARγ deficiency was induced by tamoxifen treatment (30 mg/kg intraperitoneally) for 4 days (PPARγ mice), whereas controls included mice treated with the oil diluent vehicle (PPARγ mice). Western blot and histochemical analyses confirmed that expression of PPARγ protein was abolished in cardiomyocytes of mice treated with tamoxifen, but not with vehicle. After tamoxifen or vehicle treatment, animals were subjected to 30-min ligation of the left anterior descending coronary artery followed by 2-h reperfusion. In PPARγ mice, myocardial ischemia and reperfusion induced extensive myocardial damage, which was associated with elevated tissue activity of myeloperoxidase, indicating infiltration of neutrophils, and elevated plasma levels of troponin I when compared with PPARγ mice. Upon echocardiographic analysis, PPARγ mice also demonstrated ventricular dilatation and systolic dysfunction. Plasma levels of the proinflammatory cytokines interleukin 1β and interleukin 6 were higher in PPARγ mice when compared with PPARγ mice. These pathological events in PPARγ mice were associated with enhanced nuclear factor κB DNA binding in the infarcted hearts. Thus, our data suggest that cardiomyocyte PPARγ is a crucial protective receptor and may prevent reperfusion injury by modulating mechanisms of inflammation.

  6. Paradoxical resistance to myocardial ischemia and age-related cardiomyopathy in NHE1 transgenic mice: a role for ER stress?

    PubMed

    Cook, Alexandra R; Bardswell, Sonya C; Pretheshan, Subashini; Dighe, Kushal; Kanaganayagam, Gajen S; Jabr, Rita I; Merkle, Sabine; Marber, Michael S; Engelhardt, Stefan; Avkiran, Metin

    2009-02-01

    Sarcolemmal Na(+)/H(+) exchanger (NHE) activity, which is provided by the NHE isoform 1 (NHE1), has been implicated in ischemia/reperfusion-induced myocardial injury in animal models and humans, on the basis of studies with pharmacological NHE1 inhibitors. We generated a transgenic (TG) mouse model with cardiac-specific over-expression of NHE1 to determine whether this would be sufficient to increase myocardial susceptibility to ischemia/reperfusion-induced injury. TG mouse hearts exhibited increased sarcolemmal NHE activity and normal morphology and function. Surprisingly, they also showed reduced susceptibility to ischemia/reperfusion-induced injury, as reflected by improved functional recovery and smaller infarcts. Such protection was sustained in the presence of NHE1 inhibition with zoniporide, indicating a mechanism that is independent of sarcolemmal NHE activity. Immunoblot analysis revealed accumulation of immature NHE1 protein as well as marked upregulation of both cytoprotective (78/94 kDa glucose-regulated proteins, calreticulin, protein disulfide isomerase) and pro-apoptotic (C/EBP homologous protein) components of the endoplasmic reticulum (ER) stress response in TG myocardium. With increasing age, NHE1 TG mice exhibited increased myocyte apoptosis, developed left ventricular contractile dysfunction, underwent cardiac remodelling and died prematurely. Our findings indicate that: (1) Cardiac-specific NHE1 over-expression induces the ER stress response in mouse myocardium, which may afford protection against ischemia/reperfusion-induced injury despite increased NHE activity; (2) Ageing NHE1 TG mice exhibit myocyte apoptosis, cardiac remodelling and failure, likely as a result of sustained ER stress; (3) The pluripotent effects of the ER stress response may confound studies that are based on the chronic over-expression of complex proteins in myocardium.

  7. QRS-ST-T triangulation with repolarization shortening as a precursor of sustained ventricular tachycardia during acute myocardial ischemia.

    PubMed

    Batchvarov, Velislav N; Behr, Elijah R

    2015-04-01

    We present segments from a 24-hour 12-lead digital Holter recording in a 48-year-old man demonstrating transient ST elevations in the inferior leads that triggered sustained ventricular tachycardia/ventricular fibrillation (VT/VF) requiring cardioversion. The onset of VT was preceded by a gradual increase in the ST with marked QRS broadening that lacked distinction between the end of the QRS and the beginning of the ST (QRS-ST-T "triangulation"), and shortening of the QT interval not caused by an increased heart rate. This is a relatively rare documentation of the mechanisms immediately triggering sustained ventricular arrhythmias during acute myocardial ischemia obtained with 12-lead ECG.

  8. Radionuclide imaging of angiotensin II type 1 receptor upregulation after myocardial ischemia-reperfusion injury.

    PubMed

    Higuchi, Takahiro; Fukushima, Kenji; Xia, Jinsong; Mathews, William B; Lautamäki, Riikka; Bravo, Paco E; Javadi, Mehrbod S; Dannals, Robert F; Szabo, Zsolt; Bengel, Frank M

    2010-12-01

    The renin-angiotensin system (RAS) mediates proapoptotic, profibrotic, and proinflammatory processes in maladaptive conditions. Activation after myocardial infarction may initialize and promote cardiac remodeling. Using a novel positron-emitting ligand, we sought to determine the presence and time course of regional myocardial upregulation of the angiotensin II type 1 receptor (AT1R) and the blocking efficacy of various anti-RAS agents. In male Wistar rats (n = 31), ischemia-reperfusion damage was induced by 20- to 25-min ligation of the left coronary artery. The AT1R blocker (11)C-2-butyl-5-methoxymethyl-6-(1-oxopyridin-2-yl)-3-[[2-(1H-tetrazol-5-yl)biphenyl-4-yl]methyl]-3H-imidazo[4,5-b]pyridine ((11)C-KR31173) was injected intravenously at different times until 6 mo after surgery and sacrifice. Autoradiography, histology, and immunohistochemistry were performed for ex vivo validation. Additional in vivo PET was conducted in 3 animals. A second series of experiments (n = 16) compared untreated animals with animals treated with oral valsartan (50 mg/kg/d), oral enalapril (10 mg/kg/d), and complete intravenous blockage (SK-1080, 2 mg/kg, 10 min before imaging). Transient regional AT1R upregulation was detected in the infarct area, with a peak at 1-3 wk after surgery (autoradiographic infarct-to-remote ratio, 1.07 ± 0.09, 1.68 ± 0.34, 2.54 ± 0.40, 2.98 ± 0.70, 3.16 ± 0.57, 1.86 ± 0.65, and 1.28 ± 0.27 at control, day 1, day 3, week 1, week 3, month 3, and month 6, respectively). The elevated uptake of (11)C-KR31173 in the infarct area was detectable by small-animal PET in vivo, and it was blocked completely by intravenous SK-1080. Although oral treatment with enalapril did not reduce focal tracer uptake, oral valsartan resulted in partial blockade (infarct-to-remote ratio, 2.94 ± 0.52, 2.88 ± 0.60, 2.07 ± 0.25, and 1.26 ± 0.10 for no treatment, enalapril, valsartan, and SK-1080, respectively). After ischemic myocardial damage in a rat model, transient

  9. Heart rate recovery after exercise is a predictor of silent myocardial ischemia in patients with type 2 diabetes.

    PubMed

    Yamada, Tomohide; Yoshitama, Takashi; Makino, Kunihiko; Lee, Tetsuo; Saeki, Fumihiko

    2011-03-01

    Slow heart rate recovery (HRR) predicts all-cause mortality. This study investigated the relationship between silent myocardial ischemia (SMI) and HRR in type 2 diabetes. The study enrolled 87 consecutive patients with type 2 diabetes and no chest symptoms. They underwent treadmill exercise testing and single-photon emission computed tomography imaging with thallium scintigraphy. Patients with abnormal myocardial perfusion images also underwent coronary angiography. SMI was diagnosed in 41 patients (47%). The SMI group showed slower HRR than the non-SMI group (18 ± 6 vs. 30 ± 12 bpm; P < 0.0001). HRR was significantly associated with SMI (odds ratio 0.83 [95% CI 0.75-0.92]; P = 0.0006), even after adjustment for maximal exercise workload, resting heart rate, maximum heart rate, rate pressure product, HbA(1c), use of sulfonamides, and a history of cardiovascular disease. HRR can predict SMI in patients with type 2 diabetes.

  10. Relationships between the lung-heart ratio assessed from post-exercise thallium-201 myocardial tomograms, myocardial ischemia and the extent of coronary artery disease

    SciTech Connect

    Ilmer, B.; Reijs, A.E.; Reiber, J.H.; Bakker, W.; Fioretti, P. )

    1990-01-01

    Uptake of thallium (Tl)-201 in the lungs has been proposed as a measure of left ventricular dysfunction. In this study we were interested in pursuing two goals: (1) to assess possible relationships between the post-exercise Tl-201 lung-heart (LH)-ratio determined from the anterior view during SPECT-acquisition, myocardial ischemia and the extent of coronary artery disease; and (2) to explore the effects of coronary revascularisation procedures on the LH-ratio. The study group consisted of 145 patients with early and late postexercise Tl-201 tomograms, including 32 PTCA-patients with pre- and post-PTCA studies and 20 patients who underwent coronary artery bypass surgery (CABG) with corresponding pre- and post-CABG studies. Ischemia was defined as evoked angina during the exercise test in combination with greater than or equal to 1 mm horizontal or downsloping ST-depression on the ECG. The severity of coronary obstructions was assessed from coronary angiograms with a PC-based digital caliper technique; a stenosis was defined to be significant when its severity exceeded 50% diameter stenosis. The LH-ratio was defined by the ratio of the mean pulmonary counts and the mean myocardial counts assessed from corresponding regions of interest (ROI's) positioned over the left lung and the heart, respectively in the anterior view of a tomographic data acquisition procedure. Our results made clear that the LH-ratio was not significantly different between patients with and without ischemia during exercise, and between patients with single vs. multiple vessel disease.

  11. Myeloperoxidase Is Not Useful for Detecting Stress Inducible Myocardial Ischemia but May Be Indicative of the Severity of Coronary Artery Disease

    PubMed Central

    Schuhmann, Christoph G.; Hacker, Marcus; Jung, Philip; Krötz, Florian

    2014-01-01

    Background and Objectives Elevated levels of myeloperoxidase (MPO) have been found in patients in different stages of coronary artery disease (CAD). The aim of this study was to assess whether the MPO liberation is increased by stress inducible myocardial ischemia and could be used to improve the diagnostic accuracy of non-invasive evaluation for myocardial ischemia. Subjects and Methods Seventy-six patients with suspected myocardial ischemia who underwent stress myocardial perfusion scintigraphy (MPS) were enrolled. 59 patients with an acute coronary syndrome (ACS) who received a percutaneous coronary intervention along with 12 healthy volunteers were also included in the study. In every subject the MPO plasma levels were assessed by enzyme linked immunosorbent assay. In patients undergoing MPS, the MPO levels were measured serially before and after the stress testing. Results Of the 76 patients undergoing MPS, 38 were diagnosed with a stress inducible myocardial ischemia. The patients with a stress induced ischemia had significantly higher basal MPO levels than those without it (32±3 ng/mL vs. 24±4 ng/mL, p=0.03). However, there was no relevant change in the MPO levels after the stress test compared to the baseline. The patients with ACS showed significantly higher MPO levels than the patients undergoing MPS (131±14 ng/mL vs. 28±2 ng/mL, p<0.01) and the healthy subjects (131±14 ng/mL vs. 26±2 ng/mL, p<0.01). Conclusion Since the MPO plasma levels did not increase after the stress MPS, MPO appears not to be a useful biomarker for detecting a stress inducible myocardial ischemia. Yet, the MPO levels correlate with the different stages of CAD and may hold significance as an indicator for its clinical severity. PMID:24497884

  12. Evaluation of Silent Myocardial Ischemia with Single-Photon Emission Computed Tomography/Computed Tomography in Asymptomatic Subjects with Diabetes and Pre-Diabetes

    PubMed Central

    Özdemir, Elif; Burçak Polat, Şefika; Yıldırım, Nilüfer; Türkölmez, Şeyda; Ersoy, Reyhan; Durmaz, Tahir; Keleş, Telat; Bozkurt, Engin; Çakır, Bekir

    2016-01-01

    Objective: The aim of this study was to disclose the prevalence of myocardial ischemia, as detected by adenosine stress myocardial perfusion imaging (MPI) with hybrid single-photon emission computed tomography/computed tomography (SPECT/CT), in asymptomatic diabetic and pre-diabetic patients and to find out whether ischemia predicted the occurrence of adverse cardiac/cerebrovascular events (ACCE) at follow-up. Methods: Forty-three diabetic and thirty-five pre-diabetic asymptomatic patients without any history of coronary artery disease, underwent MPI and were followed-up for a 12.8±2.2 (8-19) months for the occurrence of ACCE. Baseline variables that would predict the presence of ischemia and the value of ischemia on MPI for predicting the occurrence of ACCE at follow-up were evaluated by logistic regression analysis. Results: Ischemia was detected in ten (23.3%) of the diabetic and in four (11.4%) of the pre-diabetic patients. The presence of diabetes was the only independent predictor of myocardial ischemia [odds ratio (OR): 12.31, 95% confidence interval (CI): 1.83-82.66; p<0.01]. During 12.8±2.2 (8-19) months of follow-up, ACCE was observed in five out of 78 (6.4%) patients. Patients with ischemia were significantly more likely to have ACCE during follow-up as compared to those with normal MPI scans (event rates: 21.4% vs. 3.1%, OR: 8.455 95% CI: 1.264-56.562, p=0.038). Conclusion: Myocardial ischemia as detected by adenosine stress SPECT/CT in a population of asymptomatic patients with diabetes mellitus or pre-diabetes appeared to predict the occurrence of ACCE at follow-up. PMID:27277323

  13. Protective effects of cinnamic acid and cinnamic aldehyde on isoproterenol-induced acute myocardial ischemia in rats.

    PubMed

    Song, Fan; Li, Hua; Sun, Jiyuan; Wang, Siwang

    2013-10-28

    Cinnamomum cassia is a well-known traditional Chinese herb that is widely used for the treatment of ischemic heart disease (IHD). It has favorable effects, but its mechanism is not clear. To investigate the effects of cinnamic aldehyde (CA) and cinnamic acid (CD) isolated from Cinnamomum cassia against myocardial ischemia produced in rats by isoproterenol (ISO). Ninety male Sprague-Dawley rats were randomized equally to nine groups: a control group, an untreated model group, CA (22.5, 45, 90 mg/kg) or CD (37.5, 75, 150 mg/kg) treatment, or propranolol (30 mg/kg). Rats were treated for 14 days and then given ISO, 4 mg/kg for 2 consecutive days by subcutaneous injection. ST-segment elevation was measured after the last administration. Serum levels of creatine kinase (CK), lactate dehydrogenase (LDH), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nitric oxide (NO), and blood rheology were measured after the rats were sacrificed. The hearts were excised for determining heart weight index, microscopic examination, superoxide dismutase (SOD) and malondialdehyde (MDA) measurements. CA and CD decreased the ST elevation induced by acute myocardial ischemia, decreased serum levels of CK-MB, LDH, TNF-α and IL-6, and increased serum NO activity. CA and CD increased SOD activity and decreased MDA content in myocardial tissue. CA and CD were cardioprotective in a rat model of ischemic myocardial injury. The protection was attributable to anti-oxidative and anti-inflammatory properties, as well as increased NO. The results support further study of CA and CD as potential treatments for ischemic heart disease. © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Protective effects of sitagliptin on myocardial injury and cardiac function in an ischemia/reperfusion rat model.

    PubMed

    Chang, Guanglei; Zhang, Peng; Ye, Lin; Lu, Kai; Wang, Ying; Duan, Qin; Zheng, Aihua; Qin, Shu; Zhang, Dongying

    2013-10-15

    The purpose of this study is to investigate the effects and the underlying mechanisms of sitagliptin pretreatment on myocardial injury and cardiac function in myocardial ischemia/reperfusion (I/R) rat model. The rat model of myocardial I/R was constructed by coronary occlusion. Rats were pretreated with sitagliptin (300 mg/kg/day) for 2 weeks, and then subjected to 30 min ischemia and 2h reperfusion. The release of lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB), cardiac function and cardiomyocyte apoptosis were evaluated. The levels of malondialdehyde (MDA), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in heart and glucagon-like peptide-1 (GLP-1) level in plasma were measured. Western blot analysis was performed to detect the target proteins of sitagliptin. Our results showed that sitagliptin pretreatment decreased LDH and CK-MB release, and MDA level in I/R rats. More importantly, we revealed for the first time that sitagliptin pretreatment decreased cardiomyocyte apoptosis while increased the levels of GSH-Px and SOD in heart. Sitagliptin also increased GLP-1 level and enhanced cardiac function in I/R rats. Furthermore, sitagliptin pretreatment up-regulated Akt(serine473) and Bad(serine136) phosphorylation, reduced the ratio of Bax/Bcl-2, and decreased expression levels of cleaved caspase-3 and caspase-3. Interestingly, the above observed effects of sitagliptin were all abolished when co-administered with GLP-1 receptor antagonist exendin-(9-39) or PI3K inhibitor LY294002. Taken together, our data indicate that sitagliptin pretreatment could reduce myocardial injury and improve cardiac function in I/R rats by reducing apoptosis and oxidative damage. The underlying mechanism might be the activation of PI3K/Akt signaling pathway by GLP-1/GLP-1 receptor. Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

  15. Activation of ALDH2 with Low Concentration of Ethanol Attenuates Myocardial Ischemia/Reperfusion Injury in Diabetes Rat Model

    PubMed Central

    Kang, Pin-Fang; Wu, Wen-Juan; Tang, Yang; Xuan, Ling; Guan, Su-Dong; Tang, Bi; Zhang, Heng

    2016-01-01

    The aim of this paper is to observe the change of mitochondrial aldehyde dehydrogenase 2 (ALDH2) when diabetes mellitus (DM) rat heart was subjected to ischemia/reperfusion (I/R) intervention and analyze its underlying mechanisms. DM rat hearts were subjected to 30 min regional ischemia and 120 min reperfusion in vitro and pretreated with ALDH2 activator ethanol (EtOH); cardiomyocyte in high glucose (HG) condition was pretreated with ALDH2 activator Alda-1. In control I/R group, myocardial tissue structure collapse appeared. Compared with control I/R group, left ventricular parameters, SOD activity, the level of Bcl-2/Bax mRNA, ALDH2 mRNA, and protein expressions were decreased and LDH and MDA contents were increased, meanwhile the aggravation of myocardial structure injury in DM I/R group. When DM I/R rats were pretreated with EtOH, left ventricular parameters, SOD, Bcl-2/Bax, and ALDH2 expression were increased; LDH, MDA, and myocardial structure injury were attenuated. Compared with DM + EtOH I/R group, cyanamide (ALDH2 nonspecific blocker), atractyloside (mitoPTP opener), and wortmannin (PI3K inhibitor) groups all decreased left ventricular parameters, SOD, Bcl-2/Bax, and ALDH2 and increased LDH, MDA, and myocardial injury. When cardiomyocyte was under HG condition, CCK-8 activity and ALDH2 protein expression were decreased. Alda-1 increased CCK-8 and ALDH2. Our findings suggested enhanced ALDH2 expression in diabetic I/R rats played the cardioprotective role, maybe through activating PI3K and inhibiting mitoPTP opening. PMID:27829984

  16. Activation of ALDH2 with Low Concentration of Ethanol Attenuates Myocardial Ischemia/Reperfusion Injury in Diabetes Rat Model.

    PubMed

    Kang, Pin-Fang; Wu, Wen-Juan; Tang, Yang; Xuan, Ling; Guan, Su-Dong; Tang, Bi; Zhang, Heng; Gao, Qin; Wang, Hong-Ju

    2016-01-01

    The aim of this paper is to observe the change of mitochondrial aldehyde dehydrogenase 2 (ALDH2) when diabetes mellitus (DM) rat heart was subjected to ischemia/reperfusion (I/R) intervention and analyze its underlying mechanisms. DM rat hearts were subjected to 30 min regional ischemia and 120 min reperfusion in vitro and pretreated with ALDH2 activator ethanol (EtOH); cardiomyocyte in high glucose (HG) condition was pretreated with ALDH2 activator Alda-1. In control I/R group, myocardial tissue structure collapse appeared. Compared with control I/R group, left ventricular parameters, SOD activity, the level of Bcl-2/Bax mRNA, ALDH2 mRNA, and protein expressions were decreased and LDH and MDA contents were increased, meanwhile the aggravation of myocardial structure injury in DM I/R group. When DM I/R rats were pretreated with EtOH, left ventricular parameters, SOD, Bcl-2/Bax, and ALDH2 expression were increased; LDH, MDA, and myocardial structure injury were attenuated. Compared with DM + EtOH I/R group, cyanamide (ALDH2 nonspecific blocker), atractyloside (mitoPTP opener), and wortmannin (PI3K inhibitor) groups all decreased left ventricular parameters, SOD, Bcl-2/Bax, and ALDH2 and increased LDH, MDA, and myocardial injury. When cardiomyocyte was under HG condition, CCK-8 activity and ALDH2 protein expression were decreased. Alda-1 increased CCK-8 and ALDH2. Our findings suggested enhanced ALDH2 expression in diabetic I/R rats played the cardioprotective role, maybe through activating PI3K and inhibiting mitoPTP opening.

  17. Postoperative myocardial infarction documented by technetium pyrophosphate scan using single-photon emission computed tomography: Significance of intraoperative myocardial ischemia and hemodynamic control

    SciTech Connect

    Cheng, D.C.; Chung, F.; Burns, R.J.; Houston, P.L.; Feindel, C.M. )

    1989-12-01

    The aim of this prospective study was to document postoperative myocardial infarction (PMI) by technetium pyrophosphate scan using single-photon emission computed tomography (TcPPi-SPECT) in 28 patients undergoing elective coronary bypass grafting (CABG). The relationships of intraoperative electrocardiographic myocardial ischemia, hemodynamic responses, and pharmacological requirements to this incidence of PMI were correlated. Radionuclide cardioangiography and TcPPi-SPECT were performed 24 h preoperatively and 48 h postoperatively. A standard high-dose fentanyl anesthetic protocol was used. Twenty-five percent of elective CABG patients were complicated with PMI, as documented by TcPPi-SPECT with an infarcted mass of 38.0 +/- 5.5 g. No significant difference in demographic, preoperative right and left ventricular function, number of coronary vessels grafted, or aortic cross-clamp time was observed between the PMI and non-PMI groups. The distribution of patients using preoperative beta-adrenergic blocking drugs or calcium channel blocking drugs was found to have no correlation with the outcome of PMI. As well, no significant differences in hemodynamic changes or pharmacological requirements were observed in the PMI and non-PMI groups during prebypass or postbypass periods, indicating careful intraoperative control of hemodynamic indices did not prevent the outcome of PMI in these patients. However, the incidence of prebypass ischemia was 39.3% and significantly correlated with the outcome of positive TcPPi-SPECT, denoting a 3.9-fold increased risk of developing PMI. Prebypass ischemic changes in leads II and V5 were shown to correlate with increased CPK-MB release (P less than 0.05) and tends to occur more frequently with lateral myocardial infarction.

  18. Myocardial ischemia detection with single-phase CT perfusion in symptomatic patients using high-pitch helical image acquisition technique.

    PubMed

    Bischoff, Bernhard; Deseive, Simon; Rampp, Martin; Todica, Andrei; Wermke, Marc; Martinoff, Stefan; Massberg, Steffen; Reiser, Maximilian F; Becker, Hans-Christoph; Hausleiter, Jörg

    2017-04-01

    Coronary CT angiography (CCTA) suffers from a reduced diagnostic accuracy in patients with heavily calcified coronary arteries or prior myocardial revascularisation due to artefacts caused by calcifications and stent material. CT myocardial perfusion imaging (CTMPI) yields high potential for the detection of myocardial ischemia and might help to overcome the above mentioned limitations. We analysed CT single-phase perfusion using high-pitch helical image acquisition technique in patients with prior myocardial revascularisation. Thirty-six patients with an indication for invasive coronary angiography (28 with coronary stents, 2 with coronary artery bypass grafts and 6 with both) were included in this prospective study at two study sites. All patients were examined on a 2nd generation dual-source CT system. Stress CT images were obtained using a prospectively ECG-triggered single-phase high-pitch helical image acquisition technique. During stress the tracer for myocardial perfusion (MP) SPECT imaging was administered. Rest CT images were acquired using prospectively ECG-triggered sequential CT. MP-SPECT imaging and invasive coronary angiography served as standard of reference. In this heavily diseased patient cohort CCTA alone showed a low overall diagnostic accuracy for detection of hemodynamically relevant coronary artery stenosis of only 31% on a per-patient base and 60% on a per-vessel base. Combining CCTA and CTMPI allowed for a significantly higher overall diagnostic accuracy of 78% on a per-patient base and 92% on a per-vessel base (p < 0.001). Mean radiation dose for stress CT scans was 0.9 mSv, mean radiation dose for rest CT scans was 5.0 mSv. In symptomatic patients with known coronary artery disease and prior myocardial revascularization combining CCTA and CTMPI showed significantly higher diagnostic accuracy in detection of hemodynamically significant coronary artery stenosis when compared to CCTA alone.

  19. The association of depressed angiogenic factors with reduced capillary density in the Rhesus monkey model of myocardial ischemia.

    PubMed

    Zhang, Wenjing; Zhao, Xinmei; Xiao, Ying; Chen, Jianmin; Han, Pengfei; Zhang, Jingyao; Fu, Haiying; James Kang, Y

    2016-07-13

    Depressed capillary density is associated with myocardial ischemic infarction, in which hypoxia-inducible factor 1α (HIF-1α) is increased. The present study was undertaken to examine changes in the angiogenic factors whose expression is regulated by HIF-1 and their relation to the depressed capillary density in the Rhesus monkey model of myocardial ischemic infarction. Male Rhesus monkeys 2-3 years old were subjected to myocardial ischemia by permanent ligation of left anterior descending (LAD) artery leading to the development of myocardial infarction. Eight weeks after LAD ligation, copper concentrations, myocardial histological changes and capillary density were examined, along with Western blot and immunohistochemical analysis of angiogenic factors and detection of HIF-1 activity. Capillary density was significantly decreased but the concentrations of HIF-1α and HIF-1β were significantly increased in the infarct area. However, the levels of mRNA and protein for VEGF and VEGFR1 were significantly decreased. Other HIF-1 regulated angiogenic factors, including Tie-2, Ang-1 and FGF-1, were also significantly depressed, but vascular destabilizing factor Ang-2 was significantly increased. Copper concentrations were depressed in the infarct area. Copper-independent HIF-1 activity was increased shown by the elevated mRNA level of IGF-2, a HIF-1 target gene. Removal of copper by a copper chelator, tetraethylenepentamine, from primary cultures of neonatal rat cardiomyocytes also suppressed the expression of HIF-1 regulated VEGF and BNIP3, but not IGF-2. The data suggest that under ischemic conditions, copper loss suppressed the expression of critical angiogenic genes regulated by HIF-1, but did not affect copper-independent HIF-1 activation of gene expression. This copper-dependent dysregulation of angiogenic gene expression would contribute to the pathogenesis of myocardial ischemic infarction.

  20. Enalapril protects against myocardial ischemia/reperfusion injury in a swine model of cardiac arrest and resuscitation

    PubMed Central

    Wang, Guoxing; Zhang, Qian; Yuan, Wei; Wu, Junyuan; Li, Chunsheng

    2016-01-01

    There is strong evidence to suggest that angiotensin-converting enzyme inhibitors (ACEIs) protect against local myocardial ischemia/reperfusion (I/R) injury. This study was designed to explore whether ACEIs exert cardioprotective effects in a swine model of cardiac arrest (CA) and resuscitation. Male pigs were randomly assigned to three groups: sham-operated group, saline treatment group and enalapril treatment group. Thirty minutes after drug infusion, the animals in the saline and enalapril groups were subjected to ventricular fibrillation (8 min) followed by cardiopulmonary resuscitation (up to 30 min). Cardiac function was monitored, and myocardial tissue and blood were collected for analysis. Enalapril pre-treatment did not improve cardiac function or the 6-h survival rate after CA and resuscitation; however, this intervention ameliorated myocardial ultrastructural damage, reduced the level of plasma cardiac troponin I and decreased myocardial apoptosis. Plasma angiotensin (Ang) II and Ang-(1–7) levels were enhanced in the model of CA and resuscitation. Enalapril reduced the plasma Ang II level at 4 and 6 h after the return of spontaneous circulation whereas enalapril did not affect the plasma Ang-(1–7) level. Enalapril pre-treatment decreased the myocardial mRNA and protein expression of angiotensin-converting enzyme (ACE). Enalapril treatment also reduced the myocardial ACE/ACE2 ratio, both at the mRNA and the protein level. Enalapril pre-treatment did not affect the upregulation of ACE2, Ang II type 1 receptor (AT1R) and MAS after CA and resuscitation. Taken together, these findings suggest that enalapril protects against ischemic injury through the attenuation of the ACE/Ang II/AT1R axis after CA and resuscitation in pigs. These results suggest the potential therapeutic value of ACEIs in patients with CA. PMID:27633002

  1. Erythropoietin pretreatment suppresses inflammation by activating the PI3K/Akt signaling pathway in myocardial ischemia-reperfusion injury

    PubMed Central

    RONG, REN; XIJUN, XIAO

    2015-01-01

    Erythropoietin (EPO), a glycoprotein originally known for its important role in the stimulation of erythropoiesis, has recently been shown to have significant protective effects in animal models of kidney and intestinal ischemia-reperfusion injury (IRI). However, the mechanism underlying these protective effects remains unclear. The aim of the current study was to evaluate the effects of EPO on myocardial IRI and to investigate the mechanism underlying these effects. A total of 18 male Sprague Dawley rats were randomly divided into three groups, namely the sham, IRI-saline and IRI-EPO groups. Rats in the IRI-EPO group were administered 5,000 U/kg EPO intraperitoneally 24 h prior to the induction of IRI. IRI was induced by ligating the left descending coronary artery for 30 min, followed by reperfusion for 3 h. Pathological changes in the myocardial tissue were observed and scored. The levels of the proinflammatory cytokines, interleukin (IL)-6, IL-1β and tumor necrosis factor (TNF)-α, were evaluated in the serum and myocardial tissue. Furthermore, the effects of EPO on phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling and EPO receptor (EPOR) phosphorylation were measured. Pathological changes in the myocardial tissue, increased expression levels of TNF-α, IL-6 and IL-1β in the myocardium, and increased serum levels of these mediators, as a result of IRI, were significantly decreased by EPO pretreatment. The effects of EPO were found to be associated with the activation of PI3K/Akt signaling, which suppressed the inflammatory responses, following the initiation of EPOR activation by EPO. Therefore, EPO pretreatment was demonstrated to decrease myocardial IRI, which was associated with activation of EPOR, subsequently increasing PI3K/Akt signaling to inhibit the production and release of inflammatory mediators. Thus, the results of the present study indicated that EPO may be useful for preventing myocardial IRI. PMID:26622330

  2. Frequency and Implications of Ischemia Prior to Ventricular Tachyarrhythmia in Patients Treated With a Wearable Cardioverter Defibrillator Following Myocardial Infarction.

    PubMed

    Kandzari, David E; Perumal, Ramu; Bhatt, Deepak L

    2016-07-01

    Autopsy studies imply that recurrent myocardial infarction (MI) accounts for the majority of sudden death early after acute MI, rather than primary arrhythmia. However, diagnosis of recurrent MI by autopsy is challenging and excludes electrocardiographic data to adjudicate arrhythmic causes. We examined the frequency of ischemia prior to treated ventricular tachycardia/fibrillation (VT/VF) and outcomes in patients using the wearable cardioverter defibrillator (WCD) following acute MI. Primary arrhythmia, rather than ischemia, is a frequent contributor to sudden death following MI. All patients treated for VT/VF over a 6-year period while wearing a WCD following acute MI with advanced left ventricular dysfunction (ejection fraction ≤35%) were included. Patients with ST-segment changes ≥0.1 mV before VT/VF were classified ischemic. Demographics and clinical outcomes were compared between those with ischemia-mediated vs primary arrhythmia. Among 273 patients fulfilling study criteria, 15.4% had ischemia prior to VT/VF. Clinical and WCD use characteristics did not significantly differ between ischemic and primary VT/VF groups. Termination of VT/VF by WCD treatment approximated 96% in both groups. Survival 24 hours post-treatment was 88% and 84% (P = 0.54) for patients with and without ischemic VT/VF, respectively. Furthermore, 30-day cumulative survival for those with and without ischemic VT/VF was 77% and 70%, respectively (P = 0.57). Ischemia is an infrequent cause of VT/VF following MI, contradicting previous study conclusions that recurrent MI is responsible for most post-MI sudden death. Etiology of VT/VF, however, did not influence defibrillation success or survival, which was high for both groups. © 2016 Wiley Periodicals, Inc.

  3. Novel polymer carriers and gene constructs for treatment of myocardial ischemia and infarction.

    PubMed

    Yockman, James W; Kastenmeier, Andrew; Erickson, Harold M; Brumbach, Jonathan G; Whitten, Matthew G; Albanil, Aida; Li, Dean Y; Kim, Sung Wan; Bull, David A

    2008-12-18

    -261]. This new breed of polymer(s) may allow for decreased doses and use of new molecular mechanisms not previously available due to low transfection efficiencies. Little development has been seen in the use of new gene agents for treatment of myocardial ischemia and infarction. Current treatment consists of using mitogenic factors, described decades earlier, alone or in combination to spur angiogenesis or modulating intracellular Ca2+ homeostasis through SERCA2a but to date, failed to demonstrate clinical efficacy. Recent data suggests that axonal guidance cues also act on vasculature neo-genesis and provide a new means of investigation for treatment.

  4. Core-shell hybrid liposomal vesicles loaded with panax notoginsenoside: preparation, characterization and protective effects on global cerebral ischemia/reperfusion injury and acute myocardial ischemia in rats

    PubMed Central

    Zhang, Jing; Han, Xizhen; Li, Xiang; Luo, Yun; Zhao, Haiping; Yang, Ming; Ni, Bin; Liao, Zhenggen

    2012-01-01

    Purpose: Novel panax notoginsenoside-loaded core-shell hybrid liposomal vesicles (PNS-HLV) were developed to resolve the restricted bioavailability of PNS and to enhance its protective effects in vivo on oral administration. Methods: Physicochemical characterizations of PNS-HLV included assessment of morphology, particle size and zeta potential, encapsulation efficiency (EE%), stability and in vitro release study. In addition, to evaluate its oral treatment potential, we compared the effect of PNS-HLV on global cerebral ischemia/reperfusion and acute myocardial ischemia injury with those of PNS solution, conventional PNS-loaded nanoparticles, and liposomes. Results: In comparison with PNS solution, conventional PNS-loaded nanoparticles and liposomes, PNS-HLV was stable for at least 12 months at 4°C. Satisfactory improvements in the EE% of notoginsenoside R1, ginsenoside Rb1, and ginsenoside Rg1 were shown with the differences in EE% shortened and the greater controlled drug release profiles were exhibited from PNS-HLV. The improvements in the physicochemical properties of HLV contributed to the results that PNS-HLV was able to significantly inhibit the edema of brain and reduce the infarct volume, while it could markedly inhibit H2O2, modified Dixon agar, and serum lactate dehydrogenase, and increase superoxide dismutase (P < 0.05). Conclusion: The results of the present study imply that HLV has promising prospects for improving free drug bioactivity on oral administration. PMID:22915851

  5. Cardiomyocyte-specific overexpression of an active form of Rac predisposes the heart to increased myocardial stunning and ischemia-reperfusion injury

    PubMed Central

    Talukder, M. A. Hassan; Elnakish, Mohammad T.; Yang, Fuchun; Nishijima, Yoshinori; Alhaj, Mazin A.; Velayutham, Murugesan; Hassanain, Hamdy H.

    2013-01-01

    The GTP-binding protein Rac regulates diverse cellular functions including activation of NADPH oxidase, a major source of superoxide production (O2·−). Rac1-mediated NADPH oxidase activation is increased after myocardial infarction (MI) and heart failure both in animals and humans; however, the impact of increased myocardial Rac on impending ischemia-reperfusion (I/R) is unknown. A novel transgenic mouse model with cardiac-specific overexpression of constitutively active mutant form of Zea maize Rac D (ZmRacD) gene has been reported with increased myocardial Rac-GTPase activity and O2·− generation. The goal of the present study was to determine signaling pathways related to increased myocardial ZmRacD and to what extent hearts with increased ZmRacD proteins are susceptible to I/R injury. The effect of myocardial I/R was examined in young adult wild-type (WT) and ZmRacD transgenic (TG) mice. In vitro reversible myocardial I/R for postischemic cardiac function and in vivo regional myocardial I/R for MI were performed. Following 20-min global ischemia and 45-min reperfusion, postischemic cardiac contractile function and heart rate were significantly reduced in TG hearts compared with WT hearts. Importantly, acute regional myocardial I/R (30-min ischemia and 24-h reperfusion) caused significantly larger MI in TG mice compared with WT mice. Western blot analysis of cardiac homogenates revealed that increased myocardial ZmRacD gene expression is associated with concomitant increased levels of NADPH oxidase subunit gp91phox, O2·−, and P21-activated kinase. Thus these findings provide direct evidence that increased levels of active myocardial Rac renders the heart susceptible to increased postischemic contractile dysfunction and MI following acute I/R. PMID:23161879

  6. Cardioprotective effect of total saponins from three medicinal species of Dioscorea against isoprenaline-induced myocardial ischemia.

    PubMed

    Tang, Yi-Na; He, Xi-Cheng; Ye, Min; Huang, Hao; Chen, Hong-Li; Peng, Wan-Ling; Zhao, Zhong-Zhen; Yi, Tao; Chen, Hu-Biao

    2015-12-04

    As folk medicines used in China since 1950s, Dioscorea nipponica Makino (DN), D. panthaica Prain et Burkill (DP), and D. zingiberensis C.H. Wright (DZ) are regarded as having more or less the same traditional therapeutic actions, such as activating blood, relieving pain, and dispersing swelling. It is noteworthy that, of the 49 species of the genus Dioscorea distributed in China, based on such traditional efficacies, only these three have been further developed as effective single-herb medicines for treating cardiovascular diseases by the modern pharmaceutical industry. In our previous study, it was found that the chemical compositions of DN and DP were similar, and both were distinct from that of DZ. Hence, whether their different chemical profiles support their anti-IHD (ischemic heart disease) activity in common still needs to be answered. So far it is still unknown whether the efficacies of these three herbs act via similar mechanism and whether they possess comparable therapeutic efficacy for experimental myocardial ischemia (MI). The present study aimed to further investigate the underlying mechanisms with respect to antioxidative stress activity by which these Dioscorea spp. attenuate MI, and to compare the therapeutic effect of total saponins from these three species on myocardial antioxidant levels and myocardial histology. The serum levels of creatine kinase (CK), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), total superoxide dismutases (SOD), catalase (CAT), glutathione peroxidase (GPx), the total antioxidant capacity (T-AOC), and malondialdehyde (MDA), as well as myocardial histology, were compared among rat groups administered with total saponins (TS) of DN, DP or DZ (abbreviated as DNTS, DPTS and DZTS, respectively). The rats experienced myocardial ischemia induced by isoprenaline (ISO) injection; the test solutions (DNTS, DPTS, DZTS) were administered either after the ISO injection, or both before and after. Compared with the model

  7. Protective effects of Ping-Lv-Mixture (PLM), a medicinal formula on arrhythmias induced by myocardial ischemia-reperfusion.

    PubMed

    An, Wei; Yang, Jing

    2006-11-03

    Ping-Lv-Mixture (PLM) is a Chinese medicinal formula. The present study aimed to determine the effects of PLM on myocardial ischemia-reperfusion (MI/R) induced arrhythmias in rats. Arrhythmia model was established by occlusion of the left arterial descending coronary artery and thereafter reperfusion. A lead II electrocardiogram was monitored throughout the experiment. The results showed that pretreatment of PLM to MI/R rats significantly reduced the incidence and duration of ventricular tachycardia and ventricular fibrillation. On induction of MI/R, the activities of creatine kinase and lactate dehydrogenase were increased in vehicle group. PLM (0.04-1.00 g/kg) administration prevented the increase of these enzymes. Moreover, a significant increase of myocardium superoxide dismutase and decrease of malondialdehyde contents were observed in rats of PLM groups. On the other hand, the expressions of platelet activating factor (PAF) receptor mRNA was down-regulated in a dose-dependent manner in the PLM-treated groups by RT-PCR. Thus, it can be concluded that pretreatment with PLM inhibited lipid peroxidation in rats through suppressing the expression of PAF receptor, which may contribute to its preventive effect on myocardial ischemia-reperfusion induced arrhythmias.

  8. Real-Time 12-Lead High-Frequency QRS Electrocardiography for Enhanced Detection of Myocardial Ischemia and Coronary Artery Disease

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Kulecz, Walter B.; DePalma, Jude L.; Feiveson, Alan H.; Wilson, John S.; Rahman, M. Atiar; Bungo, Michael W.

    2004-01-01

    Several studies have shown that diminution of the high-frequency (HF; 150-250 Hz) components present within the central portion of the QRS complex of an electrocardiogram (ECG) is a more sensitive indicator for the presence of myocardial ischemia than are changes in the ST segments of the conventional low-frequency ECG. However, until now, no device has been capable of displaying, in real time on a beat-to-beat basis, changes in these HF QRS ECG components in a continuously monitored patient. Although several software programs have been designed to acquire the HF components over the entire QRS interval, such programs have involved laborious off-line calculations and postprocessing, limiting their clinical utility. We describe a personal computer-based ECG software program developed recently at the National Aeronautics and Space Administration (NASA) that acquires, analyzes, and displays HF QRS components in each of the 12 conventional ECG leads in real time. The system also updates these signals and their related derived parameters in real time on a beat-to-beat basis for any chosen monitoring period and simultaneously displays the diagnostic information from the conventional (low-frequency) 12-lead ECG. The real-time NASA HF QRS ECG software is being evaluated currently in multiple clinical settings in North America. We describe its potential usefulness in the diagnosis of myocardial ischemia and coronary artery disease.

  9. Increased cardiac distribution of mono-PEGylated Radix Ophiopogonis polysaccharide in both myocardial infarction and ischemia/reperfusion rats

    PubMed Central

    Yao, ChunXia; Shi, XiaoLi; Lin, Xiao; Shen, Lan; Xu, DeSheng; Feng, Yi

    2015-01-01

    Although PEGylation plays an important role in drug delivery, knowledge about the distribution behavior of PEGylated drugs in ischemic myocardia is rather limited compared to nanoparticles. This work therefore aims to characterize the targeting behavior of the anti-myocardial ischemic mono-PEGylated conjugates of Radix Ophiopogonis polysaccharide (ROP) in two clinically relevant animal models, ie, the myocardial infarction (MI) model and the ischemia/reperfusion (IR) model. To determine the effect of the molecular size of conjugates, two representative conjugates (20- and 40-kDa polyethylene glycol mono-modified ROPs), with hydrodynamic size being approximately and somewhat beyond 10 nm, respectively, were studied in parallel at three time points postdose after a method for determining them quantitatively in biosamples was established. The results showed that the cardiac distribution of the two conjugates was significantly enhanced in both MI and IR rats due to the enhanced permeability and retention effect induced by ischemia. In general, the cardiac targeting efficacy of the conjugates in MI and IR rats was approximately 2; however, different changing in targeting efficacy with time was observed between MI and IR rats and also between the conjugates. Although the enhanced permeability and retention effect-based targeting efficacy for mono-PEGylated ROPs was not high, they, as dissolved macromolecules, are prone to diffusion in the cardiac interstitium space, and thus, facilitate the drug to reach perfusion-deficient and nonperfused areas. These findings are helpful in choosing the cardiac targeting strategy. PMID:25609953

  10. Increased cardiac distribution of mono-PEGylated Radix Ophiopogonis polysaccharide in both myocardial infarction and ischemia/reperfusion rats.

    PubMed

    Yao, ChunXia; Shi, XiaoLi; Lin, Xiao; Shen, Lan; Xu, DeSheng; Feng, Yi

    2015-01-01

    Although PEGylation plays an important role in drug delivery, knowledge about the distribution behavior of PEGylated drugs in ischemic myocardia is rather limited compared to nanoparticles. This work therefore aims to characterize the targeting behavior of the anti-myocardial ischemic mono-PEGylated conjugates of Radix Ophiopogonis polysaccharide (ROP) in two clinically relevant animal models, ie, the myocardial infarction (MI) model and the ischemia/reperfusion (IR) model. To determine the effect of the molecular size of conjugates, two representative conjugates (20- and 40-kDa polyethylene glycol mono-modified ROPs), with hydrodynamic size being approximately and somewhat beyond 10 nm, respectively, were studied in parallel at three time points postdose after a method for determining them quantitatively in biosamples was established. The results showed that the cardiac distribution of the two conjugates was significantly enhanced in both MI and IR rats due to the enhanced permeability and retention effect induced by ischemia. In general, the cardiac targeting efficacy of the conjugates in MI and IR rats was approximately 2; however, different changing in targeting efficacy with time was observed between MI and IR rats and also between the conjugates. Although the enhanced permeability and retention effect-based targeting efficacy for mono-PEGylated ROPs was not high, they, as dissolved macromolecules, are prone to diffusion in the cardiac interstitium space, and thus, facilitate the drug to reach perfusion-deficient and nonperfused areas. These findings are helpful in choosing the cardiac targeting strategy.

  11. Detection of pH change in cytoplasm of live myocardial ischemia cells via the ssDNA-SWCNTs nanoprobes.

    PubMed

    Liu, Ru; Liu, Li; Liang, Jian; Wang, Yaling; Wei, Yueteng; Gao, Fuping; Gao, Liang; Gao, Xueyun

    2014-03-18

    Myocardial ischemia is featured by a significant increase in the cytoplasm proton concentration, and such a proton change may be applied as an index for earlier ischemic heart disease diagnostics. But such a pH change in a live heart cell is difficult to monitor as a normal fluorescent probe cannot specifically transport into the cytoplasm of an ischemic cell. This is because the heart cell contains condensed myofibrils which are tight barriers for a normal probe to penetrate. We design fluorescent probes, single-strand DNA wrapped single-wall carbon nanotubes (ssDNA-SWCNTs), where the ssDNA is labeled by the dye molecule hexachloro-6-carboxyfluorescein (HEX). This nanoprobe could transport well into a live heart cell and locate in the cytoplasm to sensitively detect the intracellular pH change of myocardial ischemia. Briefly, protons neutralize the negative charges of nanoprobes in the cytoplasm. This will weaken the stability of nanoprobes and further tune their aggregation. Such aggregations induce the HEX of some nanoprobes condensed together and further result in their fluorescence quenching. The nanoprobes are advantaged in penetrating condensed myofibrils of the heart cell, and their fluorescence intensity is sensitive to the proton concentration change in the live cell cytoplasm. This new method may provide great assistance in earlier cardiopathy diagnosis in the future.

  12. Real-Time 12-Lead High-Frequency QRS Electrocardiography for Enhanced Detection of Myocardial Ischemia and Coronary Artery Disease

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Kulecz, Walter B.; DePalma, Jude L.; Feiveson, Alan H.; Wilson, John S.; Rahman, M. Atiar; Bungo, Michael W.

    2004-01-01

    Several studies have shown that diminution of the high-frequency (HF; 150-250 Hz) components present within the central portion of the QRS complex of an electrocardiogram (ECG) is a more sensitive indicator for the presence of myocardial ischemia than are changes in the ST segments of the conventional low-frequency ECG. However, until now, no device has been capable of displaying, in real time on a beat-to-beat basis, changes in these HF QRS ECG components in a continuously monitored patient. Although several software programs have been designed to acquire the HF components over the entire QRS interval, such programs have involved laborious off-line calculations and postprocessing, limiting their clinical utility. We describe a personal computer-based ECG software program developed recently at the National Aeronautics and Space Administration (NASA) that acquires, analyzes, and displays HF QRS components in each of the 12 conventional ECG leads in real time. The system also updates these signals and their related derived parameters in real time on a beat-to-beat basis for any chosen monitoring period and simultaneously displays the diagnostic information from the conventional (low-frequency) 12-lead ECG. The real-time NASA HF QRS ECG software is being evaluated currently in multiple clinical settings in North America. We describe its potential usefulness in the diagnosis of myocardial ischemia and coronary artery disease.

  13. Prevalence and risk factors accounting for true silent myocardial ischemia: a pilot case-control study comparing type 2 diabetic with non-diabetic control subjects

    PubMed Central

    2011-01-01

    Background Given the elevated risk of cardiovascular events and the higher prevalence of silent coronary artery disease (CAD) in diabetic versus non-diabetic patients, the need to screen asymptomatic diabetic patients for CAD assumes increasing importante. The aims of the study were to assess prospectively the prevalence and risk factor predictors of true silent myocardial ischemia (myocardial perfusion defects in the absence of both angina and ST-segment depression) in asymptomatic type 2 diabetic patients. Methods Stress myocardial perfusion gated SPECT (Single Photon Emission Computed Tomography) was carried out in 41 type 2 diabetic patients without history of cardiovascular disease (CVD) and 41 nondiabetic patients matched by age and gender. Results There were no significant differences between the two groups regarding either the classic CVD risk factors or left ventricular function. True silent ischemia was detected in 21.9% of diabetic patients but only in 2.4% of controls (p < 0.01). The presence of myocardial perfusion defects was independently associated with male gender and the presence of diabetic retinopathy (DR). The probability of having myocardial perfusion defects in an asymptomatic diabetic patient with DR in comparison with diabetic patients without DR was 11.7 [IC95%: 3.7-37]. Conclusions True silent myocardial ischemia is a high prevalent condition in asymptomatic type 2 diabetic patients. Male gender and the presence of DR are the risk factors related to its development. PMID:21255408

  14. Percutaneous coronary intervention outcomes in patients with stable obstructive coronary artery disease and myocardial ischemia: a collaborative meta-analysis of contemporary randomized clinical trials.

    PubMed

    Stergiopoulos, Kathleen; Boden, William E; Hartigan, Pamela; Möbius-Winkler, Sven; Hambrecht, Rainer; Hueb, Whady; Hardison, Regina M; Abbott, J Dawn; Brown, David L

    2014-02-01

    Myocardial ischemia in patients with stable coronary artery disease (CAD) has been repeatedly associated with impaired survival. However, it is unclear if revascularization with percutaneous coronary intervention (PCI) to relieve ischemia improves outcomes compared with medical therapy (MT). The objective of this study was to compare the effect of PCI and MT with MT alone exclusively in patients with stable CAD and objectively documented myocardial ischemia on clinical outcomes. MEDLINE, Cochrane, and PubMed databases from 1970 to November 2012. Unpublished data were obtained from investigators. Randomized clinical trials of PCI and MT vs MT alone for stable coronary artery disease in which stents and statins were used in more than 50% of patients. For studies in which myocardial ischemia diagnosed by stress testing or fractional flow reserve was required for enrollment, descriptive and quantitative data were extracted from the published report. For studies in which myocardial ischemia was not a requirement for enrollment, authors provided data for only those patients with ischemia determined by stress testing prior to randomization. The outcomes analyzed included death from any cause, nonfatal myocardial infarction (MI), unplanned revascularization, and angina. Summary odds ratios (ORs) were obtained using a random-effects model. Heterogeneity was assessed using the Q statistic and I2. In 5 trials enrolling 5286 patients, myocardial ischemia was diagnosed in 4064 patients by exercise stress testing, nuclear or echocardiographic stress imaging, or fractional flow reserve. Follow-up ranged from 231 days to 5 years (median, 5 years). The respective event rates for PCI with MT vs MT alone for death were 6.5% and 7.3% (OR, 0.90 [95% CI, 0.71-1.16); for nonfatal MI, 9.2% and 7.6% (OR, 1.24 [95% CI, 0.99-1.56]); for unplanned revascularization, 18.3% and 28.4% (OR, 0.64 [95% CI, 0.35-1.17); and for angina, 20.3% and 23.3% (OR, 0.91 [95% CI, 0.57-1.44]). In patients with

  15. Activation of Chymotrypsin-Like Activity of the Proteasome during Ischemia Induces Myocardial Dysfunction and Death.

    PubMed

    Sanchez, Gina; Berrios, Daniela; Olmedo, Ivonne; Pezoa, Javier; Riquelme, Jaime A; Montecinos, Luis; Pedrozo, Zully; Donoso, Paulina

    2016-01-01

    Inhibitors of the ubiquitin-proteasome system improve hemodynamic parameters and decrease the infarct size after ischemia reperfusion. The molecular basis of this protection is not fully understood since most available data report inhibition of the 26 proteasome after ischemia reperfusion. The decrease in cellular ATP levels during ischemia leads to the dissociation of the 26S proteasome into the 19S regulatory complex and the 20S catalytic core, which results in protein degradation independently of ubiquitination. There is scarce information on the activity of the 20S proteasome during cardiac ischemia. Accordingly, the aim of this work was to determine the effects of 30 minutes of ischemia, or 30 min of ischemia followed by 60 minutes of reperfusion on the three main peptidase activities of the 20S proteasome in Langendorff perfused rat hearts. We found that 30 min of ischemia produced a significant increase in the chymotrypsin-like activity of the proteasome, without changes in its caspase-like or trypsin-like activities. In contrast, all three activities were decreased upon reperfusion. Ixazomib, perfused before ischemia at a concentration that reduced the chymotrypsin-like activity to 50% of the control values, without affecting the other proteasomal activities, improved the hemodynamic parameters upon reperfusion and decreased the infarct size. Ixazomib also prevented the 50% reduction in RyR2 content observed after ischemia. The protection was lost, however, when simultaneous inhibition of chymotrypsin-like and caspase-like activities of the proteasome was achieved at higher concentration of ixazomib. Our results suggest that selective inhibition of chymotrypsin-like activity of the proteasome during ischemia preserves key proteins for cardiomyocyte function and exerts a positive impact on cardiac performance after reperfusion.

  16. Activation of Chymotrypsin-Like Activity of the Proteasome during Ischemia Induces Myocardial Dysfunction and Death

    PubMed Central

    Sanchez, Gina; Berrios, Daniela; Olmedo, Ivonne; Pezoa, Javier; Riquelme, Jaime A.; Montecinos, Luis; Pedrozo, Zully; Donoso, Paulina

    2016-01-01

    Inhibitors of the ubiquitin-proteasome system improve hemodynamic parameters and decrease the infarct size after ischemia reperfusion. The molecular basis of this protection is not fully understood since most available data report inhibition of the 26 proteasome after ischemia reperfusion. The decrease in cellular ATP levels during ischemia leads to the dissociation of the 26S proteasome into the 19S regulatory complex and the 20S catalytic core, which results in protein degradation independently of ubiquitination. There is scarce information on the activity of the 20S proteasome during cardiac ischemia. Accordingly, the aim of this work was to determine the effects of 30 minutes of ischemia, or 30 min of ischemia followed by 60 minutes of reperfusion on the three main peptidase activities of the 20S proteasome in Langendorff perfused rat hearts. We found that 30 min of ischemia produced a significant increase in the chymotrypsin-like activity of the proteasome, without changes in its caspase-like or trypsin-like activities. In contrast, all three activities were decreased upon reperfusion. Ixazomib, perfused before ischemia at a concentration that reduced the chymotrypsin-like activity to 50% of the control values, without affecting the other proteasomal activities, improved the hemodynamic parameters upon reperfusion and decreased the infarct size. Ixazomib also prevented the 50% reduction in RyR2 content observed after ischemia. The protection was lost, however, when simultaneous inhibition of chymotrypsin-like and caspase-like activities of the proteasome was achieved at higher concentration of ixazomib. Our results suggest that selective inhibition of chymotrypsin-like activity of the proteasome during ischemia preserves key proteins for cardiomyocyte function and exerts a positive impact on cardiac performance after reperfusion. PMID:27529620

  17. Cardioprotective effect of remote preconditioning of trauma and remote ischemia preconditioning in a rat model of myocardial ischemia/reperfusion injury.

    PubMed

    Chai, Qing; Liu, Jin; Hu, Yang

    2015-05-01

    Remote ischemia preconditioning (RIPC) and remote preconditioning of trauma (RPCT) are two methods used to induce a cardioprotective function against ischemia/reperfusion injury (IRI). However, the underlying mechanisms of these two methods differ. The aim of the present study was to investigate the cardioprotective function of the two methods, and also observe whether combining RIPC with RPCT enhanced the protective effect. In total, 70 male Sprague Dawley rats were randomly divided into five groups, which included the sham, control, RIPC + RPCT, RPCT and RIPC groups. With the exception of the sham group, all the rats were subjected to myocardial IRI through the application of 30 min occlusion of the left coronary artery and 180 min reperfusion. Serum cardiac troponin I (cTnI) levels, myocardial infarct size (IS) and the cardiomyocyte apoptotic index (AI) were assessed. The levels of serum cTnI were lower in the experimental groups when compared with the control group (control, 58.59±12.50 pg/ml; RIPC + RPCT, 46.05±8.62 pg/ml; RPCT, 45.98±11.24 pg/ml; RIPC, 43.46±5.05 pg/ml; P<0.05, vs. control), and similar results were observed for the myocardial IS (control, 48.34±6.79%; RIPC + RPCT, 29.64±4.51%; RPCT, 29.05±8.51%; RIPC, 27.72±6.27%; P<0.05, vs. control) and the AI (control, 31.75±10.65%; RIPC + RPCT, 18.32±9.30%; RPCT, 18.51±9.26%; RIPC, 20.41±3.86%; P<0.05, vs. control). However, no statistically significant differences were observed among the three experimental groups (P>0.05). Therefore, RIPC and RPCT exhibit cardioprotective effects when used alone or in combination. However, a combination of RIPC and RPCT does not enhance the cardioprotective effect observed with the application of either single method. Therefore, for patients undergoing major abdominal surgery, RIPC was considered to be unnecessary, while for patients undergoing other types of non-cardiac major surgery and minimally invasive interventional surgery, RIPC may be useful. In

  18. Delayed coronary reperfusion is ineffective at impeding the dynamic increase in cardiac efferent sympathetic nerve activity following myocardial ischemia.

    PubMed

    Hall, Timothy M; Gordon, Christina; Roy, Ranjan; Schwenke, Daryl O

    2016-05-01

    Acute myocardial infarction (MI) is associated with an adverse and sustained increase in cardiac sympathetic nerve activity (SNA), triggering potentially fatal ventricular arrhythmias. While myocardial reperfusion undoubtedly improves patient prognosis, it remains unknown whether reperfusion therapy also attenuates the dangerous increase in SNA. This study aimed to investigate the effect of time-dependent coronary reperfusion therapy on cardiac SNA following acute MI. Electrophysiological recordings of cardiac efferent SNA were performed in urethane-anaesthetized rats following ligation of the left anterior descending coronary artery (i.e., MI) for either 15 or 45 min, followed by 'early' or 'delayed' reperfusion, respectively. Another group of rats had permanent ischemia with no reperfusion. Forty-five minutes of ischemia induced a 55 % increase in efferent SNA. Subsequent 'delayed' reperfusion was ineffective at ameliorating further increases in SNA (maximal 153 % increase), so that MI-induced increases in SNA mirrored that observed in rats with permanent MI. Although SNA did not increase during 15 min of ischemia, it did significantly increase, albeit delayed, during the subsequent reperfusion period (max. 75 % increase). Importantly, however, this increase in SNA, which tended to be lower in the 'early'-reperfusion group, was matched with a lower incidence of arrhythmias and mortality rate, compared to the 'delayed'-reperfusion and permanent-MI groups. These results highlight that 'prompt' coronary reperfusion, before SNA becomes activated, may provide a crucial window of opportunity for improving outcome. Further research is essential to identify the mechanisms that underpin, not only sympathetic activation, but also importantly sympathetic deactivation as a potential therapeutic target for MI.

  19. Cardioprotective effects of Viscum album L. subsp. album (European misletoe) leaf extracts in myocardial ischemia and reperfusion.

    PubMed

    Suveren, Eylem; Baxter, Gary F; Iskit, Alper B; Turker, Arzu Ucar

    2017-09-14

    Viscum album L. (European mistletoe) is a hemiparasitic plant belonging to Loranthaceae family and has been used in Turkish traditional medicine for the treatment of cardiovascular disorders and heart diseases such as hypertension, tachycardia and angina pectoris. The present study investigated the cardioprotective effects of V. album leaf extracts in myocardial ischemia and reperfusion injury in rats. Lyophilized aqueous (AVa) and methanolic (MVa) extracts of V. album were prepared from dried leaf. The isolated hearts were perfused with V. album extracts prior to and during 35min of ischemia induced by coronary artery occlusion. After 120min of coronary reperfusion, infarct size was determined by triphenyltetrazolium staining. Both AVa and MVa extracts reduced the extent of infarction compared with untreated control hearts, but protective effect of MVa had more potential in low concentration; infarct size as proportion of ischemic risk zone: AVa 17.5±1.5%; Mva 20.3±2.5%, both P<0.01 versus control 38.1±1.4%. This protective effect was comparable to infarct limitation induced by ischemic preconditioning (21.5±2.4%). Inhibition of nitric oxide synthesis with L-N(G)-nitroarginine methyl ester completely abrogated the protection afforded by both extracts. ATP-sensitive K(+) channel blockade by glibenclamide abrogated the protection afforded by MVa while attenuating, but not abolishing, the protective action of Ava. This study provided the first experimental evidence that V. album leaf extracts can mediate nitric oxide-dependent cardioprotection against myocardial injury produced by ischemia/reperfusion insult. With this study, popular usage of V. album extracts in Turkish folk medicine as a remedy for cardiac diseases was justified. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  20. Ion-sensitive field effect transistors for pH and potassium ion concentration sensing: towards detection of myocardial ischemia

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Jung, Soyoun; Ji, Taeksoo; Varadan, Vijay K.

    2008-03-01

    Ion Sensitive Field Effect Transistors (ISFETs) for sensing change in ionic concentration in biological systems can be used for detecting critical conditions like Myocardial Ischemia. Having the ability to yield steady signal characteristics can be used to observe the ionic concentration gradients which mark the onset of ischemia. Two ionic concentrations, pH and [K +], have been considered as the indicator for Myocardial Ischemia in this study. The ISFETs in this study have an organic semi-conductor film as the electronically active component. Poly-3 hexylthiophene was chosen for its compatibility to the solution processing, which is a simple and economical method of thin film fabrication. The gate electrode, which regulates the current in the active layer, has been employed as the sensor element. The devices under study here were fabricated on a flexible substrate PEN. The pH sensor was designed with the Tantalum Oxide gate dielectric as the ion selective component. The charge accumulated on the surface of the metal oxide acts as the source of the effecter electric field. The device was tested for pH values between 6.5 and 7.5, which comprises the variation observed during ischemic attack. The potassium ion sensor has got a floating gate electrode which is functionalized to be selective to potassium ion. The device was tested for potassium ion concentration between 5 and 25 mM, which constitutes the variation in extra cellular potassium ion concentration during ischemic attack. The device incorporated a monolayer of Valinomycin, a potassium specific ionophore, on top of the gate electrode.

  1. Prognostic value of myocardial ischemia and necrosis in depressed left ventricular function: a multicenter stress cardiac magnetic resonance registry.

    PubMed

    Husser, Oliver; Monmeneu, Jose V; Bonanad, Clara; Lopez-Lereu, Maria P; Nuñez, Julio; Bosch, Maria J; Garcia, Carlos; Sanchis, Juan; Chorro, Francisco J; Bodi, Vicente

    2014-09-01

    The incremental prognostic value of inducible myocardial ischemia over necrosis derived by stress cardiac magnetic resonance in depressed left ventricular function is unknown. We determined the prognostic value of necrosis and ischemia in patients with depressed left ventricular function referred for dipyridamole stress perfusion magnetic resonance. In a multicenter registry using stress magnetic resonance, the presence (≥ 2 segments) of late enhancement and perfusion defects and their association with major events (cardiac death and nonfatal infarction) was determined. In 391 patients, perfusion defect or late enhancement were present in 224 (57%) and 237 (61%). During follow-up (median, 96 weeks), 47 major events (12%) occurred: 25 cardiac deaths and 22 myocardial infarctions. Patients with major events displayed a larger extent of perfusion defects (6 segments vs 3 segments; P <.001) but not late enhancement (5 segments vs 3 segments; P =.1). Major event rate was significantly higher in the presence of perfusion defects (17% vs 5%; P =.0005) but not of late enhancement (14% vs 9%; P =.1). Patients were categorized into 4 groups: absence of perfusion defect and absence of late enhancement (n = 124), presence of late enhancement and absence of perfusion defect (n = 43), presence of perfusion defect and presence of late enhancement (n = 195), absence of late enhancement and presence of perfusion defect (n = 29). Event rate was 5%, 7%, 16%, and 24%, respectively (P for trend = .003). In a multivariate regression model, only perfusion defect (hazard ratio = 2.86; 95% confidence interval, 1.37-5.95]; P = .002) but not late enhancement (hazard ratio = 1.70; 95% confidence interval, 0.90-3.22; P =.105) predicted events. In depressed left ventricular function, the presence of inducible ischemia is the strongest predictor of major events. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  2. Targeting TRAF3IP2 by Genetic and Interventional Approaches Inhibits Ischemia/Reperfusion-induced Myocardial Injury and Adverse Remodeling.

    PubMed

    Erikson, John M; Valente, Anthony J; Mummidi, Srinivas; Kandikattu, Hemanth Kumar; DeMarco, Vincent G; Bender, Shawn B; Fay, William P; Siebenlist, Ulrich; Chandrasekar, Bysani

    2017-02-10

    Re-establishing blood supply is the primary goal for reducing myocardial injury in subjects with ischemic heart disease. Paradoxically, reperfusion results in nitroxidative stress and a marked inflammatory response in the heart. TRAF3IP2 (TRAF3 Interacting Protein 2; previously known as CIKS or Act1) is an oxidative stress-responsive cytoplasmic adapter molecule that is an upstream regulator of both IκB kinase (IKK) and c-Jun N-terminal kinase (JNK), and an important mediator of autoimmune and inflammatory responses. Here we investigated the role of TRAF3IP2 in ischemia/reperfusion (I/R)-induced nitroxidative stress, inflammation, myocardial dysfunction, injury, and adverse remodeling. Our data show that I/R up-regulates TRAF3IP2 expression in the heart, and its gene deletion, in a conditional cardiomyocyte-specific manner, significantly attenuates I/R-induced nitroxidative stress, IKK/NF-κB and JNK/AP-1 activation, inflammatory cytokine, chemokine, and adhesion molecule expression, immune cell infiltration, myocardial injury, and contractile dysfunction. Furthermore, Traf3ip2 gene deletion blunts adverse remodeling 12 weeks post-I/R, as evidenced by reduced hypertrophy, fibrosis, and contractile dysfunction. Supporting the genetic approach, an interventional approach using ultrasound-targeted microbubble destruction-mediated delivery of phosphorothioated TRAF3IP2 antisense oligonucleotides into the LV in a clinically relevant time frame significantly inhibits TRAF3IP2 expression and myocardial injury in wild type mice post-I/R. Furthermore, ameliorating myocardial damage by targeting TRAF3IP2 appears to be more effective to inhibiting its downstream signaling intermediates NF-κB and JNK. Therefore, TRAF3IP2 could be a potential therapeutic target in ischemic heart disease.

  3. Seabuckthorn Pulp Oil Protects against Myocardial Ischemia-Reperfusion Injury in Rats through Activation of Akt/eNOS.

    PubMed

    Suchal, Kapil; Bhatia, Jagriti; Malik, Salma; Malhotra, Rajiv Kumar; Gamad, Nanda; Goyal, Sameer; Nag, Tapas C; Arya, Dharamvir S; Ojha, Shreesh

    2016-01-01

    Seabuckthorn (SBT) pulp oil obtained from the fruits of seabuckthorn [Hippophae rhamnoides L. (Elaeagnaceae)] has been used traditionally for its medicinal and nutritional properties. However, its role in ischemia-reperfusion (IR) injury of myocardium in rats has not been elucidated so far. The present study reports the cardioprotective effect of SBT pulp oil in IR-induced model of myocardial infarction in rats and underlying mechanism mediating activation of Akt/eNOS signaling pathway. Male albino Wistar rats were orally administered SBT pulp oil (5, 10, and 20 ml/kg/day) or saline for 30 days. On the day 31, ischemia was induced by one-stage ligation of left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. SBT pulp oil pretreatment at the dose of 20 ml/kg observed to stabilize cardiac function and myocardial antioxidants such as glutathione, superoxide dismutase, catalase, and inhibited lipid peroxidation evidenced by reduced malondialdehyde levels as compared to IR-control group. SBT pulp oil also improved hemodynamic and contractile function and decreased tumor necrosis factor and activities of myocyte injury marker enzymes; lactate dehydrogenase and creatine kinase-MB. Additionally, a remarkable rise in expression of pAkt-eNOS, Bcl-2 and decline in expression of IKKβ/NF-κB and Bax was observed in the myocardium. The histopathological and ultrastructural salvage of cardiomyocytes further supports the cardioprotective effect of SBT pulp oil. Based on findings, it can be concluded that SBT pulp oil protects against myocardial IR injury mediating favorable modulation of Akt-eNOS and IKKβ/NF-κB expression.

  4. Treatment with the C5a receptor antagonist ADC-1004 reduces myocardial infarction in a porcine ischemia-reperfusion model

    PubMed Central

    2010-01-01

    Background Polymorphonuclear neutrophils, stimulated by the activated complement factor C5a, have been implicated in cardiac ischemia/reperfusion injury. ADC-1004 is a competitive C5a receptor antagonist that has been shown to inhibit complement related neutrophil activation. ADC-1004 shields the neutrophils from C5a activation before they enter the reperfused area, which could be a mechanistic advantage compared to previous C5a directed reperfusion therapies. We investigated if treatment with ADC-1004, according to a clinically applicable protocol, would reduce infarct size and microvascular obstruction in a large animal myocardial infarct model. Methods In anesthetized pigs (42-53 kg), a percutaneous coronary intervention balloon was inflated in the left anterior descending artery for 40 minutes, followed by 4 hours of reperfusion. Twenty minutes after balloon inflation the pigs were randomized to an intravenous bolus administration of ADC-1004 (175 mg, n = 8) or saline (9 mg/ml, n = 8). Area at risk (AAR) was evaluated by ex vivo SPECT. Infarct size and microvascular obstruction were evaluated by ex vivo MRI. The observers were blinded to the treatment at randomization and analysis. Results ADC-1004 treatment reduced infarct size by 21% (ADC-1004: 58.3 ± 3.4 vs control: 74.1 ± 2.9%AAR, p = 0.007). Microvascular obstruction was similar between the groups (ADC-1004: 2.2 ± 1.2 vs control: 5.3 ± 2.5%AAR, p = 0.23). The mean plasma concentration of ADC-1004 was 83 ± 8 nM at sacrifice. There were no significant differences between the groups with respect to heart rate, mean arterial pressure, cardiac output and blood-gas data. Conclusions ADC-1004 treatment reduces myocardial ischemia-reperfusion injury and represents a novel treatment strategy of myocardial infarct with potential clinical applicability. PMID:20875134

  5. Prognosis in the thrombolysis in myocardial ischemia III registry according to the Braunwald unstable angina pectoris classification.

    PubMed

    Scirica, Benjamin M; Cannon, Christopher P; McCabe, Carolyn H; Murphy, Sabina A; Anderson, H Vernon; Rogers, William J; Stone, Peter H; Braunwald, Eugene

    2002-10-15

    The unstable angina pectoris (UAP) classification proposed by Braunwald in 1989, although often used, has never been validated in a large, prospective multicenter study in which all subgroups of patients were included. Patients with UAP or non-ST-elevation myocardial infarction (NSTEMI) were enrolled in the Thrombolysis In Myocardial Ischemia III Registry and classified according to the Braunwald classification for UAP. Clinical end points were compared at 6 weeks and 1 year. Of 3,318 patients, those with primary UAP had lower rates of recurrent myocardial infarction (MI) or death when compared with patients with secondary UAP and post-MI UAP at 6 weeks (4.1% vs 6.4% vs 13.4%, respectively; p <0.001) and 1 year (9.7% vs 16.7% vs 19.7%; p <0.001). Recurrent ischemia at 6 weeks followed the same gradient (13.2% vs 18.5% vs 20.8%; p <0.001). Patients with secondary UAP had similar extent of disease at angiography as primary UAP. Patients with nonresting UAP had lower rates of death or MI than patients with UAP at rest (3.0% vs 5.6%, p = 0.011 at 6 weeks, and 8.2% vs 12.5%, p = 0.004 at 1 year). Patients with ST-segment deviation and those who had received prior antianginal medical treatment also had worse outcomes. Thus, the Braunwald classification of UAP predicts prognosis with secondary UAP, post-MI UAP, and patients with pain at rest who have a higher risk for death or recurrent cardiac events. Given their high risk for adverse events, patients with secondary UAP should be treated aggressively.

  6. [The comparative efficacy of emoxipine and sodium oxybutyrate in experimental myocardial ischemia].

    PubMed

    Afanas'ev, S A; Alekseeva, E D; Bardamova, I B; Bogomaz, S A

    1994-01-01

    The efficacy of emoxypine (2-ethyl-6-methyl-3-hydroxypyridine chlorohydrate) versus sodium hydroxybutyrate in total and local ischemia followed by reperfusion was studied in the experiments on rat isolated hearts. Emoxypine in a dose of 1 nM in total ischemia was shown to have a protective action, by decreasing reperfusion contracture. In local ischemia, emoxypine, unlike sodium hydroxybutyrate, did not favour greater restoration of the amplitude of isolated heart contractions, but restored coronary flow and stabilized contraction frequency better than did sodium hydroxybutyrate.

  7. Nanoparticle-Mediated Delivery of Irbesartan Induces Cardioprotection from Myocardial Ischemia-Reperfusion Injury by Antagonizing Monocyte-Mediated Inflammation

    NASA Astrophysics Data System (ADS)

    Nakano, Yasuhiro; Matoba, Tetsuya; Tokutome, Masaki; Funamoto, Daiki; Katsuki, Shunsuke; Ikeda, Gentaro; Nagaoka, Kazuhiro; Ishikita, Ayako; Nakano, Kaku; Koga, Jun-Ichiro; Sunagawa, Kenji; Egashira, Kensuke

    2016-07-01

    Myocardial ischemia-reperfusion (IR) injury limits the therapeutic effect of early reperfusion therapy for acute myocardial infarction (AMI), in which the recruitment of inflammatory monocytes plays a causative role. Here we develop bioabsorbable poly-lactic/glycolic acid (PLGA) nanoparticles incorporating irbesartan, an angiotensin II type 1 receptor