Science.gov

Sample records for myocardial metabolic derangement

  1. Diabetes, perioperative ischaemia and volatile anaesthetics: consequences of derangements in myocardial substrate metabolism

    PubMed Central

    2013-01-01

    Volatile anaesthetics exert protective effects on the heart against perioperative ischaemic injury. However, there is growing evidence that these cardioprotective properties are reduced in case of type 2 diabetes mellitus. A strong predictor of postoperative cardiac function is myocardial substrate metabolism. In the type 2 diabetic heart, substrate metabolism is shifted from glucose utilisation to fatty acid oxidation, resulting in metabolic inflexibility and cardiac dysfunction. The ischaemic heart also loses its metabolic flexibility and can switch to glucose or fatty acid oxidation as its preferential state, which may deteriorate cardiac function even further in case of type 2 diabetes mellitus. Recent experimental studies suggest that the cardioprotective properties of volatile anaesthetics partly rely on changing myocardial substrate metabolism. Interventions that target at restoration of metabolic derangements, like lifestyle and pharmacological interventions, may therefore be an interesting candidate to reduce perioperative complications. This review will focus on the current knowledge regarding myocardial substrate metabolism during volatile anaesthesia in the obese and type 2 diabetic heart during perioperative ischaemia. PMID:23452502

  2. Metabolic Derangements in Lichen Planus - A Case Control Study

    PubMed Central

    Kar, Bikash Ranjan; Panda, Maitreyee

    2016-01-01

    Introduction An association between psoriasis and metabolic syndrome has been established in previous studies. Lichen Planus (LP) is also a chronic inflammatory disease morphologically related to psoriasis and few studies have shown association of metabolic derangements in LP. Aim To study the association of metabolic derangements in LP. Materials and Methods A prospective case control study was undertaken for a period of one year. Age and sex matched patients of LP and other non-inflammatory diseases were taken as cases and controls respectively. Data on height, weight, lipid profile and fasting blood glucose levels were collected for all the patients. Body Mass Index (BMI) was calculated. Results A total of 80 patients were recruited, 40 cases and 40 controls. The mean values for all the lipid and glucose parameters were high in cases as compared to controls with significant p-values. Conclusion In the present study metabolic derangements were seen in patients with LP. PMID:28050485

  3. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements.

    PubMed

    Swithers, Susan E

    2013-09-01

    The negative impact of consuming sugar-sweetened beverages on weight and other health outcomes has been increasingly recognized; therefore, many people have turned to high-intensity sweeteners like aspartame, sucralose, and saccharin as a way to reduce the risk of these consequences. However, accumulating evidence suggests that frequent consumers of these sugar substitutes may also be at increased risk of excessive weight gain, metabolic syndrome, type 2 diabetes, and cardiovascular disease. This paper discusses these findings and considers the hypothesis that consuming sweet-tasting but noncaloric or reduced-calorie food and beverages interferes with learned responses that normally contribute to glucose and energy homeostasis. Because of this interference, frequent consumption of high-intensity sweeteners may have the counterintuitive effect of inducing metabolic derangements.

  4. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements

    PubMed Central

    Swithers, Susan E.

    2013-01-01

    The negative impact of consuming sugar-sweetened beverages on weight and other health outcomes has been increasingly recognized; therefore, many people have turned to high-intensity sweeteners like aspartame, sucralose, and saccharin as a way to reduce the risk of these consequences. However, accumulating evidence suggests that frequent consumers of these sugar substitutes may also be at increased risk of excessive weight gain, metabolic syndrome, type 2 diabetes, and cardiovascular disease. This paper discusses these findings and considers the hypothesis that consuming sweet-tasting but noncaloric or reduced-calorie food and beverages interferes with learned responses that normally contribute to glucose and energy homeostasis. Because of this interference, frequent consumption of high-intensity sweeteners may have the counterintuitive effect of inducing metabolic derangements. PMID:23850261

  5. Prenatal androgen excess programs metabolic derangements in pubertal female rats.

    PubMed

    Yan, Xiaonan; Dai, Xiaonan; Wang, Jing; Zhao, Nannan; Cui, Yugui; Liu, Jiayin

    2013-04-01

    Owing to the heterogeneity in the clinical symptoms of polycystic ovary syndrome (PCOS), the early pathophysiological mechanisms of PCOS remain unclear. Clinical, experimental, and genetic evidence supports an interaction between genetic susceptibility and the influence of maternal environment in the pathogenesis of PCOS. To determine whether prenatal androgen exposure induced PCOS-related metabolic derangements during pubertal development, we administrated 5α-dihydrotestosterone (DHT) in pregnant rats and observed their female offspring from postnatal 4 to 8 weeks. The prenatally androgenized (PNA) rats exhibited more numerous total follicles, cystic follicles, and atretic follicles than the controls. Fasting glucose, insulin, leptin levels, and homeostatic model assessment for insulin resistance were elevated in the PNA rats at the age of 5-8 weeks. Following intraperitoneal glucose tolerance tests, glucose and insulin levels did not differ between two groups; however, the PNA rats showed significantly higher 30- and 60-min glucose levels than the controls after insulin stimulation during 5-8 weeks. In addition, prenatal DHT treatment significantly decreased insulin-stimulated phosphorylation of AKT in the skeletal muscles of 6-week-old PNA rats. The abundance of IR substrate 1 (IRS1) and IRS2 was decreased in the skeletal muscles and liver after stimulation with insulin in the PNA group, whereas phosphorylation of insulin-signaling proteins was unaltered in the adipose tissue. These findings validate the contribution of prenatal androgen excess to metabolic derangements in pubertal female rats, and the impaired insulin signaling through IRS and AKT may result in the peripheral insulin resistance during pubertal development.

  6. Synthetic cannabinoids: the multi-organ failure and metabolic derangements associated with getting high

    PubMed Central

    Sherpa, Dolkar; Paudel, Bishow M.; Subedi, Bishnu H.; Chow, Robert Dobbin

    2015-01-01

    Synthetic cannabinoids (SC), though not detected with routine urine toxicology screening, can cause severe metabolic derangements and widespread deleterious effects in multiple organ systems. The diversity of effects is related to the wide distribution of cannabinoid receptors in multiple organ systems. Both cannabinoid-receptor-mediated and non-receptor-mediated effects can result in severe cardiovascular, renal, and neurologic manifestations. We report the case of a 45-year-old African American male with ST-elevation myocardial infarction, subarachnoid hemorrhage, reversible cardiomyopathy, acute rhabdomyolysis, and severe metabolic derangement associated with the use of K2, an SC. Though each of these complications has been independently associated with SCs, the combination of these effects in a single patient has not been heretofore reported. This case demonstrates the range and severity of complications associated with the recreational use of SCs. Though now banned in the United States, use of systemic cannabinoids is still prevalent, especially among adolescents. Clinicians should be aware of their continued use and the potential for harm. To prevent delay in diagnosis, tests to screen for these substances should be made more readily available. PMID:26333853

  7. Metabolic and Hormonal Derangements in Pulmonary Hypertension: From Mouse to Man

    PubMed Central

    Pugh, Meredith E.; Hemnes, Anna R.

    2010-01-01

    Summary Pulmonary arterial hypertension (PAH) is a complex disease with significant morbidity and mortality. Recent animal and human studies have highlighted abnormalities in regulation and metabolism of insulin, sex hormones, adipokines, and lipids that may play a role in disease development. Mouse studies suggest features of the metabolic syndrome including insulin resistance, deficiencies in PPARγ and apolipoprotein E, and low adiponectin are linked to development of PAH. In humans, insulin resistance, the metabolic syndrome, and low levels of high-density lipoprotein have been associated with PAH. In addition, abnormal metabolism of estrogens has been demonstrated in human and animal models of PAH, suggesting an important relationship of sex hormones and pulmonary vascular disease. Improved understanding of how metabolic and hormonal derangements relate to development and progression of pulmonary hypertension may lead to better disease therapies and understanding of potential risk factors. This review will focus on the animal and human data regarding metabolic and sex hormone derangements in PAH. PMID:20939841

  8. [Overview: derangement of bone metabolism in diabetes mellitus].

    PubMed

    Takeuchi, Yasuhiro

    2009-09-01

    Since it is well known that insulin actions have direct and indirect effects on bone metabolism, bone metabolism and bone fragility in patients with diabetes mellitus is a clinically important issue to be addressed. As in glucose metabolism, an involvement of insulin deficiency and insulin resistance should be discussed independently in bone metabolism. Impaired bone formation is primarily involved in bone loss in patients with type 1 diabetes who are lack in insulin secretion. In contrast, bone fragility due to poor bone quality is a major problem in patients with type 2 diabetes who are resistant to insulin actions. Through clinical investigations, it has been established that elderly women with diabetes are at high risk in fracture. Taken together, one should be aware of bone integrity in patients with diabetes, especially in elderly women.

  9. Aging signaling pathways and circadian clock-dependent metabolic derangements

    PubMed Central

    Tevy, Maria Florencia; Giebultowicz, Jadwiga; Pincus, Zachary; Mazzoccoli, Gianluigi; Vinciguerra, Manlio

    2013-01-01

    The circadian clock machinery orchestrates organism metabolism in order to ensure that development, survival and reproduction are attuned to diurnal environmental variations. For unknown reasons, there is a decline in circadian rhythms with age, concomitant with declines in the overall metabolic tissues homeostasis and changes in the feeding behavior of aged organisms. This disruption of the relationship between the clock and the nutrient sensing networks might underlie age-related diseases; overall, greater knowledge of the molecular mediators of and variations in clock networks during lifespan may shed light on the aging process and how it may be delayed. In this review we address the complex links between the circadian clock, metabolic (dys)functions and aging in different model organisms. PMID:23299029

  10. Nutritional and Metabolic Derangements in Pancreatic Cancer and Pancreatic Resection

    PubMed Central

    Gilliland, Taylor M.; Villafane-Ferriol, Nicole; Shah, Kevin P.; Shah, Rohan M.; Tran Cao, Hop S.; Massarweh, Nader N.; Silberfein, Eric J.; Choi, Eugene A.; Hsu, Cary; McElhany, Amy L.; Barakat, Omar; Fisher, William; Van Buren, George

    2017-01-01

    Pancreatic cancer is an aggressive malignancy with a poor prognosis. The disease and its treatment can cause significant nutritional impairments that often adversely impact patient quality of life (QOL). The pancreas has both exocrine and endocrine functions and, in the setting of cancer, both systems may be affected. Pancreatic exocrine insufficiency (PEI) manifests as weight loss and steatorrhea, while endocrine insufficiency may result in diabetes mellitus. Surgical resection, a central component of pancreatic cancer treatment, may induce or exacerbate these dysfunctions. Nutritional and metabolic dysfunctions in patients with pancreatic cancer lack characterization, and few guidelines exist for nutritional support in patients after surgical resection. We reviewed publications from the past two decades (1995–2016) addressing the nutritional and metabolic status of patients with pancreatic cancer, grouping them into status at the time of diagnosis, status at the time of resection, and status of nutritional support throughout the diagnosis and treatment of pancreatic cancer. Here, we summarize the results of these investigations and evaluate the effectiveness of various types of nutritional support in patients after pancreatectomy for pancreatic adenocarcinoma (PDAC). We outline the following conservative perioperative strategies to optimize patient outcomes and guide the care of these patients: (1) patients with albumin < 2.5 mg/dL or weight loss > 10% should postpone surgery and begin aggressive nutrition supplementation; (2) patients with albumin < 3 mg/dL or weight loss between 5% and 10% should have nutrition supplementation prior to surgery; (3) enteral nutrition (EN) should be preferred as a nutritional intervention over total parenteral nutrition (TPN) postoperatively; and, (4) a multidisciplinary approach should be used to allow for early detection of symptoms of endocrine and exocrine pancreatic insufficiency alongside implementation of appropriate

  11. Diurnal variations in myocardial metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The heart is challenged by a plethora of extracellular stimuli over the course of a normal day, each of which distinctly influences myocardial contractile function. It is therefore not surprising that myocardial metabolism also oscillates in a time-of-day dependent manner. What is becoming increasin...

  12. FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity.

    PubMed

    Xiong, Xiao-Qing; Chen, Dan; Sun, Hai-Jian; Ding, Lei; Wang, Jue-Jin; Chen, Qi; Li, Yue-Hua; Zhou, Ye-Bo; Han, Ying; Zhang, Feng; Gao, Xing-Ya; Kang, Yu-Ming; Zhu, Guo-Qing

    2015-09-01

    Irisin is a cleaved and secreted fragment of fibronectin type III domain containing 5 (FNDC5), and contributes to the beneficial effects of exercise on metabolism. Here we report the therapeutical effects of FNDC5/irisin on metabolic derangements and insulin resistance in obesity, and show the lipolysis effect of irisin and its signal molecular mechanism. In obese mice, lentivirus mediated-FNDC5 overexpression enhanced energy expenditure, lipolysis and insulin sensitivity, and reduced hyperlipidemia, hyperglycemia, hyperinsulinism, blood pressure and norepinephrine levels; it increased hormone-sensitive lipase (HSL) expression and phosphorylation, and reduced perilipin level and adipocyte diameter in adipose tissues. Subcutaneous perfusion of irisin reduced hyperlipidemia and hyperglycemia, and improved insulin resistance. Either FNDC5 overexpression or irisin perfusion only induced a tendency toward a slight decrease in body weight in obese mice. In 3T3-L1 adipocytes, irisin enhanced basal lipolysis rather than isoproterenol-induced lipolysis, which were prevented by inhibition of adenylate cyclase or PKA; irisin increased the HSL and perilipin phosphorylation; it increased PKA activity, and cAMP and HSL mRNA levels, but reduced perilipin expression. These results indicate that FNDC5/irisin ameliorates glucose/lipid metabolic derangements and insulin resistance in obese mice, and enhances lipolysis via cAMP-PKA-HSL/perilipin pathway. FNDC5 or irisin can be taken as an effective therapeutic strategy for metabolic disorders.

  13. Deranged Exams

    ERIC Educational Resources Information Center

    Spivey, Michael Z.

    2010-01-01

    This article discusses a triangle of numbers that are related to the derangement numbers. These numbers satisfy a Pascal-like recurrence relation with subtraction instead of addition. We describe how they relate to numbers studied by other authors and use them to generalize Euler's famous recurrence relation for the derangement numbers.

  14. Diabetes: insulin resistance and derangements in lipid metabolism. Cure through intervention in fat transport and storage.

    PubMed

    Raz, Itamar; Eldor, Roi; Cernea, Simona; Shafrir, Eleazar

    2005-01-01

    We present multiple findings on derangements in lipid metabolism in type 2 diabetes. The increase in the intracellular deposition of triglycerides (TG) in muscles, liver and pancreas in subjects prone to diabetes is well documented and demonstrated to attenuate glucose metabolism by interfering with insulin signaling and insulin secretion. The obesity often associated with type 2 diabetes is mainly central, resulting in the overload of abdominal adipocytes with TG and reducing fat depot capacity to protect other tissues from utilizing a large proportion of dietary fat. In contrast to subcutaneous adipocytes, the central adipocytes exhibit a high rate of basal lipolysis and are highly sensitive to fat mobilizing hormones, but respond poorly to lipolysis restraining insulin. The enlarged visceral adipocytes are flooding the portal circulation with free fatty acids (FFA) at metabolically inappropriate time, when FFA should be oxidized, thus exposing nonadipose tissues to fat excess. This leads to ectopic TG accumulation in muscles, liver and pancreatic beta-cells, resulting in insulin resistance and beta-cell dysfunction. This situation, based on a large number of observations in humans and experimental animals, confirms that peripheral adipose tissue is closely regulated, performing a vital role of buffering fluxes of FFA in the circulation. The central adipose tissues tend to upset this balance by releasing large amounts of FFA. To reduce the excessive fat outflow from the abdominal depots and prevent the ectopic fat deposition it is important to decrease the volume of central fat stores or increase the peripheral fat stores. One possibility is to downregulate the activity of lipoprotein lipase, which is overexpressed in abdominal relatively to subcutaneous fat stores. This can be achieved by gastrointestinal bypass or gastroplasty, which decrease dietary fat absorption, or by direct means that include surgical removal of mesenteric fat. Indirect treatment consists

  15. Proteasome inhibition in skeletal muscle cells unmasks metabolic derangements in type 2 diabetes.

    PubMed

    Al-Khalili, Lubna; de Castro Barbosa, Thais; Ostling, Jörgen; Massart, Julie; Cuesta, Pablo Garrido; Osler, Megan E; Katayama, Mutsumi; Nyström, Ann-Christin; Oscarsson, Jan; Zierath, Juleen R

    2014-11-01

    Two-dimensional difference gel electrophoresis (2-D DIGE)-based proteome analysis has revealed intrinsic insulin resistance in myotubes derived from type 2 diabetic patients. Using 2-D DIGE-based proteome analysis, we identified a subset of insulin-resistant proteins involved in protein turnover in skeletal muscle of type 2 diabetic patients, suggesting aberrant regulation of the protein homeostasis maintenance system underlying metabolic disease. We then validated the role of the ubiquitin-proteasome system (UPS) in myotubes to investigate whether impaired proteasome function may lead to metabolic arrest or insulin resistance. Myotubes derived from muscle biopsies obtained from people with normal glucose tolerance (NGT) or type 2 diabetes were exposed to the proteasome inhibitor bortezomib (BZ; Velcade) without or with insulin. BZ exposure increased protein carbonylation and lactate production yet impaired protein synthesis and UPS function in myotubes from type 2 diabetic patients, marking the existence of an insulin-resistant signature that was retained in cultured myotubes. In conclusion, BZ treatment further exacerbates insulin resistance and unmasks intrinsic features of metabolic disease in myotubes derived from type 2 diabetic patients. Our results highlight the existence of a confounding inherent abnormality in cellular protein dynamics in metabolic disease, which is uncovered through concurrent inhibition of the proteasome system.

  16. Systemic Metabolic Derangement, Pulmonary Effects, and Insulin Insufficiency following subchronic ozone exposure in rats

    EPA Science Inventory

    Acute ozone exposure induces a classical stress response with elevated circulating stress hormones along with changes in glucose, protein and lipid metabolism in rats, with similar alterations in ozone-exposed humans. These stress-mediated changes over time have been linked to in...

  17. Systemic metabolic derangement, pulmonary effects, and insulin insufficiency following subchronic ozone exposure in rats.

    PubMed

    Miller, Desinia B; Snow, Samantha J; Henriquez, Andres; Schladweiler, Mette C; Ledbetter, Allen D; Richards, Judy E; Andrews, Debora L; Kodavanti, Urmila P

    2016-09-01

    Acute ozone exposure induces a classical stress response with elevated circulating stress hormones along with changes in glucose, protein and lipid metabolism in rats, with similar alterations in ozone-exposed humans. These stress-mediated changes over time have been linked to insulin resistance. We hypothesized that acute ozone-induced stress response and metabolic impairment would persist during subchronic episodic exposure and induce peripheral insulin resistance. Male Wistar Kyoto rats were exposed to air or 0.25ppm or 1.00ppm ozone, 5h/day, 3 consecutive days/week (wk) for 13wks. Pulmonary, metabolic, insulin signaling and stress endpoints were determined immediately after 13wk or following a 1wk recovery period (13wk+1wk recovery). We show that episodic ozone exposure is associated with persistent pulmonary injury and inflammation, fasting hyperglycemia, glucose intolerance, as well as, elevated circulating adrenaline and cholesterol when measured at 13wk, however, these responses were largely reversible following a 1wk recovery. Moreover, the increases noted acutely after ozone exposure in non-esterified fatty acids and branched chain amino acid levels were not apparent following a subchronic exposure. Neither peripheral or tissue specific insulin resistance nor increased hepatic gluconeogenesis were present after subchronic ozone exposure. Instead, long-term ozone exposure lowered circulating insulin and severely impaired glucose-stimulated beta-cell insulin secretion. Thus, our findings in young-adult rats provide potential insights into epidemiological studies that show a positive association between ozone exposures and type 1 diabetes. Ozone-induced beta-cell dysfunction may secondarily contribute to other tissue-specific metabolic alterations following chronic exposure due to impaired regulation of glucose, lipid, and protein metabolism.

  18. Sustained kidney biochemical derangement in treated experimental diabetes: a clue to metabolic memory

    PubMed Central

    de Oliveira, Antonio Anax F.; de Oliveira, Tiago F.; Bobadilla, Larissa L.; Garcia, Camila C. M.; Berra, Carolina Maria; de Souza-Pinto, Nadja C.; Medeiros, Marisa H. G.; Di Mascio, Paolo; Zatz, Roberto; de M. Loureiro, Ana Paula

    2017-01-01

    The occurrence of biochemical alterations that last for a long period of time in diabetic individuals even after adequate handling of glycemia is an intriguing phenomenon named metabolic memory. In this study, we show that a kidney pathway is gradually altered during the course of diabetes and remains persistently changed after late glycemic control in streptozotocin-induced diabetic rats. This pathway comprises an early decline of uric acid clearance and pAMPK expression followed by fumarate accumulation, increased TGF-β expression, reduced PGC-1α expression, and downregulation of methylation and hydroxymethylation of mitochondrial DNA. The sustained decrease of uric acid clearance in treated diabetes may support the prolonged kidney biochemical alterations observed after tight glycemic control, and this regulation is likely mediated by the sustained decrease of AMPK activity and the induction of inflammation. This manuscript proposes the first consideration of the possible role of hyperuricemia and the underlying biochemical changes as part of metabolic memory in diabetic nephropathy development after glycemic control. PMID:28079150

  19. Evidence for Intramyocardial Disruption of Lipid Metabolism and Increased Myocardial Ketone Utilization in Advanced Human Heart Failure

    PubMed Central

    Bedi, Kenneth C.; Snyder, Nathaniel W; Brandimarto, Jeffrey; Aziz, Moez; Mesaros, Clementina; Worth, Andrew J.; Wang, Linda L.; Javaheri, Ali; Blair, Ian A.; Margulies, Kenneth; Rame, J. Eduardo

    2016-01-01

    Background The failing human heart is characterized by metabolic abnormalities, but these defects remains incompletely understood. In animal models of HF there is a switch from a predominance of fatty acid utilization to the more oxygen-sparing carbohydrate metabolism. Recent studies have reported decreases in myocardial lipid content, but inclusion of diabetics and nondiabetics obscures the distinction of adapations to metabolic derangements from adaptations to heart failure per se. Methods and Results We performed both unbiased and targeted myocardial lipid surveys using liquid chromatography-mass spectroscopy in non-diabetic, lean, predominantly non-ischemic advanced HF patients at the time of heart transplantation or LVAD implantation. We identified significantly decreased concentrations of the majority of myocardial lipid intermediates, including long-chain acylcarnitines, the primary subset of energetic lipid substrate for mitochondrial fatty acid oxidation. We report for the first time significantly reduced levels of intermediate and anaplerotic acyl-CoA species incorporated into Krebs cycle, while the myocardial concentration of acetyl-CoA was significantly increased in end-stage heart failure. In contrast, we observed an increased abundance of ketogenic β-hydroxybutyryl CoA, in association with increased myocardial utilization of β-hydroxybutyrate. We observed a significant increase in the expression of the gene encoding succinyl-CoA: 3oxoacid-CoA transferase (SCOT), the rate limiting enzyme for myocardial oxidation of βOHB and acetoacetate. Conclusions These findings indicate increased ketone utilization in the severely failing human heart independent of diabetes, support the role of ketone bodies as an alternative fuel and myocardial ketone oxidation as a key metabolic adaptation in the failing human heart. PMID:26819374

  20. Role of cardiomyocyte circadian clock in myocardial metabolic adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marked circadian rhythmicities in cardiovascular physiology and pathophysiology exist. The cardiomyocyte circadian clock has recently been linked to circadian rhythms in myocardial gene expression, metabolism, and contractile function. For instance, the cardiomyocyte circadian clock is essential f...

  1. Relation between the kinetics of thallium-201 in myocardial scintigraphy and myocardial metabolism in patients with acute myocardial infarction

    PubMed Central

    Yamagishi, H; Akioka, K; Takagi, M; Tanaka, A; Takeuchi, K; Yoshikawa, J; Ochi, H

    1998-01-01

    Objective—To investigate the relations between myocardial metabolism and the kinetics of thallium-201 in myocardial scintigraphy.
Methods—46 patients within six weeks after the onset of acute myocardial infarction underwent resting myocardial dual isotope, single acquisition, single photon emission computed tomography (SPECT) using radioiodinated 15-iodophenyl 3-methyl pentadecaenoic acid (BMIPP) and thallium-201, exercise thallium-201 SPECT, and positron emission tomography (PET) using nitrogen-13 ammonia (NH3) and [F18]fluorodeoxyglucose (FDG) under fasting conditions. The left ventricle was divided into nine segments, and the severity of defects was assessed visually.
Results—In the resting SPECT, less BMIPP uptake than thallium-201 uptake was observed in all of 40 segments with reverse redistribution of thallium-201, and in 21 of 88 segments with a fixed defect of thallium-201 (p < 0.0001); and more FDG uptake than NH3 uptake (NH3-FDG mismatch) was observed in 35 of 40 segments with reverse redistribution and in 38 of 88 segments with fixed defect (p < 0.0001). Less BMIPP uptake in the resting SPECT was observed in 49 of 54 segments with slow stress redistribution in exercise SPECT, and in nine of 17 segments with rapid stress redistribution (p < 0.0005); NH3-FDG mismatch was observed in 42 of 54 segments with slow stress redistribution and in five of 17 segments with rapid stress redistribution (p < 0.0005).
Conclusions—Thallium-201 myocardial scintigraphy provides information about not only myocardial perfusion and viability but also about myocardial metabolism in patients with acute myocardial infarction.

 Keywords: thallium-201 SPECT;  BMIPP SPECT;  FDG PET;  myocardial infarction;  redistribution PMID:9764055

  2. Effects of activation of endocannabinoid system on myocardial metabolism.

    PubMed

    Polak, Agnieszka; Harasim, Ewa; Chabowski, Adrian

    2016-05-21

    Endocannabinoids exert their effect on the regulation of energy homeostasis via activation of specific receptors. They control food intake, secretion of insulin, lipids and glucose metabolism, lipid storage. Long chain fatty acids are the main myocardial energy substrate. However, the heart exerts enormous metabolic flexibility emphasized by its ability to utilzation not only fatty acids, but also glucose, lactate and ketone bodies. Endocannabinoids can directly act on the cardiomyocytes through the CB1 and CB2 receptors present in cardiomyocytes. It appears that direct activation of CB1 receptors promotes increased lipogenesis, pericardial steatosis and bioelectrical dysfunction of the heart. In contrast, stimulation of CB2 receptors exhibits cardioprotective properties, helping to maintain appropriate amount of ATP in cardiomyocytes. Furthermore, the effects of endocannabinoids at both the central nervous system and peripheral tissues, such as liver, pancreas, or adipose tissue, resulting indirectly in plasma availability of energy substrates and affects myocardial metabolism. To date, there is little evidence that describes effects of activation of the endocannabinoid system in the cardiovascular system under physiological conditions. In the present paper the impact of metabolic diseases, i. e. obesity and diabetes, as well as the cardiovascular diseases - hypertension, myocardial ischemia and myocardial infarction on the deregulation of the endocannabinoid system and its effect on the metabolism are described.

  3. Circadian rhythms in myocardial metabolism and function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Circadian rhythms in myocardial function and dysfunction are firmly established in both animal models and humans. For example, the incidence of arrhythmias and sudden cardiac death increases when organisms awaken. Such observations have classically been explained by circadian rhythms in neurohumoral...

  4. Ventricular Assist Device Implantation Corrects Myocardial Lipotoxicity, Reverses Insulin Resistance and Normalizes Cardiac Metabolism in Patients with Advanced Heart Failure

    PubMed Central

    Chokshi, Aalap; Drosatos, Konstantinos; Cheema, Faisal H.; Ji, Ruiping; Khawaja, Tuba; Yu, Shuiqing; Kato, Tomoko; Khan, Raffay; Takayama, Hiroo; Knöll, Ralph; Milting, Hendrik; Chung, Christine S.; Jorde, Ulrich; Naka, Yoshifumi; Mancini, Donna M.; Goldberg, Ira J.; Schulze, P. Christian

    2012-01-01

    Background Heart failure is associated with impaired myocardial metabolism with a shift from fatty acids to glucose utilization for ATP generation. We hypothesized that cardiac accumulation of toxic lipid intermediates inhibits insulin signaling in advanced heart failure and that mechanical unloading of the failing myocardium corrects impaired cardiac metabolism. Methods and Results We analyzed myocardium and serum of 61 patients with heart failure (BMI 26.5±5.1 kg/m2, age 51±12 years) obtained during left ventricular assist device (LVAD) implantation and at explantation (mean duration 185±156 days) and from 9 controls. Systemic insulin resistance in heart failure was accompanied by decreased myocardial triglyceride and overall fatty acid content but increased toxic lipid intermediates, diacylglycerol and ceramide. Increased membrane localization of protein kinase C isoforms, inhibitors of insulin signaling, and decreased activity of insulin signaling molecules Akt and FOXO, were detectable in heart failure compared to controls. LVAD implantation improved whole body insulin resistance (HOMA-IR: 4.5±0.6 to 3.2±0.5; p<0.05) and decreased myocardial levels of diacylglycerol and ceramide while triglyceride and fatty acid content remained unchanged. Improved activation of the insulin/PI3kinase/Akt signaling cascade after LVAD implantation was confirmed by increased phosphorylation of Akt and FOXO, which was accompanied by decreased membrane localization of protein kinase C isoforms after LVAD implantation. Conclusions Mechanical unloading after LVAD implantation corrects systemic and local metabolic derangements in advanced heart failure leading to reduced myocardial levels of toxic lipid intermediates and improved cardiac insulin signaling. PMID:22586279

  5. Augmented expression and secretion of adipose-derived pigment epithelium-derived factor does not alter local angiogenesis or contribute to the development of systemic metabolic derangements.

    PubMed

    Lakeland, Thomas V; Borg, Melissa L; Matzaris, Maria; Abdelkader, Amany; Evans, Roger G; Watt, Matthew J

    2014-06-15

    Impaired coupling of adipose tissue expansion and vascularization is proposed to lead to adipocyte hypoxia and inflammation, which in turn contributes to systemic metabolic derangements. Pigment epithelium-derived factor (PEDF) is a powerful antiangiogenic factor that is secreted by adipocytes, elevated in obesity, and implicated in the development of insulin resistance. We explored the angiogenic and metabolic role of adipose-derived PEDF through in vivo studies of mice with overexpression of PEDF in adipocytes (PEDF-aP2). PEDF expression in white adipocytes and PEDF secretion from adipose tissue was increased in transgenic mice, but circulating levels of PEDF were not increased. Overexpression of PEDF did not alter vascularization, the partial pressure of O2, cellular hypoxia, or gene expression of inflammatory markers in adipose tissue. Energy expenditure and metabolic substrate utilization, body mass, and adiposity were not altered in PEDF-aP2 mice. Whole body glycemic control was normal as assessed by glucose and insulin tolerance tests, and adipocyte-specific glucose uptake was unaffected by PEDF overexpression. Adipocyte lipolysis was increased in PEDF-aP2 mice and associated with increased adipose triglyceride lipase and decreased perilipin 1 expression. Experiments conducted in mice rendered obese by high-fat feeding showed no differences between PEDF-aP2 and wild-type mice for body mass, adiposity, whole body energy expenditure, glucose tolerance, or adipose tissue oxygenation. Together, these data indicate that adipocyte-generated PEDF enhances lipolysis but question the role of PEDF as a major antiangiogenic or proinflammatory mediator in adipose tissue in vivo.

  6. Loss of Toll-Like Receptor 4 Function Partially Protects against Peripheral and Cardiac Glucose Metabolic Derangements During a Long-Term High-Fat Diet

    PubMed Central

    Jackson, Ellen E.; Rendina-Ruedy, Elisabeth; Smith, Brenda J.; Lacombe, Veronique A.

    2015-01-01

    Diabetes is a chronic inflammatory disease that carries a high risk of cardiovascular disease. However, the pathophysiological link between these disorders is not well known. We hypothesize that TLR4 signaling mediates high fat diet (HFD)-induced peripheral and cardiac glucose metabolic derangements. Mice with a loss-of-function mutation in TLR4 (C3H/HeJ) and age-matched control (C57BL/6) mice were fed either a high-fat diet or normal diet for 16 weeks. Glucose tolerance and plasma insulin were measured. Protein expression of glucose transporters (GLUT), AKT (phosphorylated and total), and proinflammatory cytokines (IL-6, TNF-α and SOCS-3) were quantified in the heart using Western Blotting. Both groups fed a long-term HFD had increased body weight, blood glucose and insulin levels, as well as impaired glucose tolerance compared to mice fed a normal diet. TLR4-mutant mice were partially protected against long-term HFD-induced insulin resistance. In control mice, feeding a HFD decreased cardiac crude membrane GLUT4 protein content, which was partially rescued in TLR4-mutant mice. TLR4-mutant mice fed a HFD also had increased expression of GLUT8, a novel isoform, compared to mice fed a normal diet. GLUT8 content was positively correlated with SOCS-3 and IL-6 expression in the heart. No significant differences in cytokine expression were observed between groups, suggesting a lack of inflammation in the heart following a HFD. Loss of TLR4 function partially restored a healthy metabolic phenotype, suggesting that TLR4 signaling is a key mechanism in HFD-induced peripheral and cardiac insulin resistance. Our data further suggest that TLR4 exerts its detrimental metabolic effects in the myocardium through a cytokine-independent pathway. PMID:26539824

  7. Extracellular brain pH with or without hypoxia is a marker of profound metabolic derangement and increased mortality after traumatic brain injury.

    PubMed

    Timofeev, Ivan; Nortje, Jurgens; Al-Rawi, Pippa G; Hutchinson, Peter J A; Gupta, Arun K

    2013-03-01

    Cerebral hypoxia and acidosis can follow traumatic brain injury (TBI) and are associated with increased mortality. This study aimed to evaluate a relationship between reduced pH(bt) and disturbances of cerebral metabolism. Prospective data from 56 patients with TBI, receiving microdialysis and Neurotrend monitoring, were analyzed. Four tissue states were defined based on pH(bt) and P(bt)O(2): 1--low P(bt)O(2)/pH(bt), 2--low pH(bt)/normal P(bt)O(2), 3--normal pH(bt)/low P(bt)O(2), and 4--normal pH(bt)/P(bt)O(2)). Microdialysis values were compared between the groups. The relationship between P(bt)O(2) and lactate/pyruvate (LP) ratio was evaluated at different pH(bt) levels. Proportional contribution of each state was evaluated against mortality. As compared with the state 4, the state 3 was not different, the state 2 exhibited higher levels of lactate, LP, and glucose and the state 1--higher LP and reduced glucose (P<0.001). A significant negative correlation between LP and P(bt)O(2) (rho=-0.159, P<0.001) was stronger at low pH(bt) (rho=-0.201, P<0.001) and nonsignificant at normal pH(bt) (P=0.993). The state 2 was a significant discriminator of mortality categories (P=0.031). Decreased pH(bt) is associated with impaired metabolism. Measuring pH(bt) with P(bt)O(2) is a more robust way of detecting metabolic derangements.

  8. Loss of Toll-Like Receptor 4 Function Partially Protects against Peripheral and Cardiac Glucose Metabolic Derangements During a Long-Term High-Fat Diet.

    PubMed

    Jackson, Ellen E; Rendina-Ruedy, Elisabeth; Smith, Brenda J; Lacombe, Veronique A

    2015-01-01

    Diabetes is a chronic inflammatory disease that carries a high risk of cardiovascular disease. However, the pathophysiological link between these disorders is not well known. We hypothesize that TLR4 signaling mediates high fat diet (HFD)-induced peripheral and cardiac glucose metabolic derangements. Mice with a loss-of-function mutation in TLR4 (C3H/HeJ) and age-matched control (C57BL/6) mice were fed either a high-fat diet or normal diet for 16 weeks. Glucose tolerance and plasma insulin were measured. Protein expression of glucose transporters (GLUT), AKT (phosphorylated and total), and proinflammatory cytokines (IL-6, TNF-α and SOCS-3) were quantified in the heart using Western Blotting. Both groups fed a long-term HFD had increased body weight, blood glucose and insulin levels, as well as impaired glucose tolerance compared to mice fed a normal diet. TLR4-mutant mice were partially protected against long-term HFD-induced insulin resistance. In control mice, feeding a HFD decreased cardiac crude membrane GLUT4 protein content, which was partially rescued in TLR4-mutant mice. TLR4-mutant mice fed a HFD also had increased expression of GLUT8, a novel isoform, compared to mice fed a normal diet. GLUT8 content was positively correlated with SOCS-3 and IL-6 expression in the heart. No significant differences in cytokine expression were observed between groups, suggesting a lack of inflammation in the heart following a HFD. Loss of TLR4 function partially restored a healthy metabolic phenotype, suggesting that TLR4 signaling is a key mechanism in HFD-induced peripheral and cardiac insulin resistance. Our data further suggest that TLR4 exerts its detrimental metabolic effects in the myocardium through a cytokine-independent pathway.

  9. Extracellular brain pH with or without hypoxia is a marker of profound metabolic derangement and increased mortality after traumatic brain injury

    PubMed Central

    Timofeev, Ivan; Nortje, Jurgens; Al-Rawi, Pippa G; Hutchinson, Peter JA; Gupta, Arun K

    2013-01-01

    Cerebral hypoxia and acidosis can follow traumatic brain injury (TBI) and are associated with increased mortality. This study aimed to evaluate a relationship between reduced pHbt and disturbances of cerebral metabolism. Prospective data from 56 patients with TBI, receiving microdialysis and Neurotrend monitoring, were analyzed. Four tissue states were defined based on pHbt and PbtO2: 1—low PbtO2/pHbt, 2—low pHbt/normal PbtO2, 3—normal pHbt/low PbtO2, and 4—normal pHbt/PbtO2). Microdialysis values were compared between the groups. The relationship between PbtO2 and lactate/pyruvate (LP) ratio was evaluated at different pHbt levels. Proportional contribution of each state was evaluated against mortality. As compared with the state 4, the state 3 was not different, the state 2 exhibited higher levels of lactate, LP, and glucose and the state 1—higher LP and reduced glucose (P<0.001). A significant negative correlation between LP and PbtO2 (rho=−0.159, P<0.001) was stronger at low pHbt (rho=−0.201, P<0.001) and nonsignificant at normal pHbt (P=0.993). The state 2 was a significant discriminator of mortality categories (P=0.031). Decreased pHbt is associated with impaired metabolism. Measuring pHbt with PbtO2 is a more robust way of detecting metabolic derangements. PMID:23232949

  10. Systemic metabolic derangement, pulmonary effects, and insulin insufficiency following subchronic ozone exposure in rats☆,☆☆

    PubMed Central

    Miller, Desinia B.; Snow, Samantha J.; Henriquez, Andres; Schladweiler, Mette C.; Ledbetter, Allen D.; Richards, Judy E.; Andrews, Debora L.; Kodavanti, Urmila P.

    2017-01-01

    Acute ozone exposure induces a classical stress response with elevated circulating stress hormones along with changes in glucose, protein and lipid metabolism in rats, with similar alterations in ozone-exposed humans. These stress-mediated changes over time have been linked to insulin resistance. We hypothesized that acute ozone-induced stress response and metabolic impairment would persist during subchronic episodic exposure and induce peripheral insulin resistance. Male Wistar Kyoto rats were exposed to air or 0.25 ppm or 1.00 ppm ozone, 5 h/day, 3 consecutive days/week (wk) for 13 wks. Pulmonary, metabolic, insulin signaling and stress endpoints were determined immediately after 13 wk or following a 1 wk recovery period (13 wk + 1 wk recovery). We show that episodic ozone exposure is associated with persistent pulmonary injury and inflammation, fasting hyperglycemia, glucose intolerance, as well as, elevated circulating adrenaline and cholesterol when measured at 13 wk, however, these responses were largely reversible following a 1 wk recovery. Moreover, the increases noted acutely after ozone exposure in non-esterified fatty acids and branched chain amino acid levels were not apparent following a subchronic exposure. Neither peripheral or tissue specific insulin resistance nor increased hepatic gluconeogenesis were present after subchronic ozone exposure. Instead, long-term ozone exposure lowered circulating insulin and severely impaired glucose-stimulated beta-cell insulin secretion. Thus, our findings in young-adult rats provide potential insights into epidemiological studies that show a positive association between ozone exposures and type 1 diabetes. Ozone-induced beta-cell dysfunction may secondarily contribute to other tissue-specific metabolic alterations following chronic exposure due to impaired regulation of glucose, lipid, and protein metabolism. PMID:27368153

  11. Fatty liver associated with metabolic derangement in patients with chronic kidney disease: A controlled attenuation parameter study

    PubMed Central

    Yoon, Chang-Yun; Lee, Misol; Kim, Seung Up; Lim, Hyunsun; Chang, Tae Ik; Kee, Youn Kyung; Han, Seung Gyu; Han, In Mee; Kwon, Young Eun; Park, Kyoung Sook; Lee, Mi Jung; Park, Jung Tak; Han, Seung Hyeok; Ahn, Sang Hoon; Kang, Shin-Wook; Yoo, Tae-Hyun

    2017-01-01

    Background Hepatic steatosis measured with controlled attenuation parameter (CAP) using transient elastography predicts metabolic syndrome in the general population. We investigated whether CAP predicted metabolic syndrome in chronic kidney disease patients. Methods CAP was measured with transient elastography in 465 predialysis chronic kidney disease patients (mean age, 57.5 years). Results The median CAP value was 239 (202–274) dB/m. In 195 (41.9%) patients with metabolic syndrome, diabetes mellitus was more prevalent (105 [53.8%] vs. 71 [26.3%], P < 0.001), with significantly increased urine albumin-to-creatinine ratio (184 [38–706] vs. 56 [16–408] mg/g Cr, P = 0.003), high sensitivity C-reactive protein levels (5.4 [1.4–28.2] vs. 1.7 [0.6–9.9] mg/L, P < 0.001), and CAP (248 [210–302] vs. 226 [196–259] dB/m, P < 0.001). In multiple linear regression analysis, CAP was independently related to body mass index (β = 0.742, P < 0.001), triglyceride levels (β = 2.034, P < 0.001), estimated glomerular filtration rate (β = 0.316, P = 0.001), serum albumin (β = 1.386, P < 0.001), alanine aminotransferase (β = 0.064, P = 0.029), and total bilirubin (β = −0.881, P = 0.009). In multiple logistic regression analysis, increased CAP was independently associated with increased metabolic syndrome risk (per 10 dB/m increase; odds ratio, 1.093; 95% confidence interval, 1.009–1.183; P = 0.029) even after adjusting for multiple confounding factors. Conclusion Increased CAP measured with transient elastography significantly correlated with and could predict increased metabolic syndrome risk in chronic kidney disease patients. PMID:28392997

  12. Inflammasome, mTORC1 activation, and metabolic derangement contribute to the susceptibility of diabetics to infections.

    PubMed

    Krakauer, Teresa

    2015-12-01

    The mechanisms leading to higher risks of infection in diabetics remain unknown despite recent advances in the understanding of associated immunological and metabolic aberrations. Hyperglycemia and hyperlipidemia in diabetics not only contribute to altered metabolism but glucose and free fatty acids can directly activate inflammation and the production of the proinflammatory cytokine interleukin 1β (IL-1β). Long-chain saturated fatty acids activate toll-like receptor 4 (TLR4), generating diacylglycerol and activating protein kinase C to upregulate the Akt/mammalian target of rapamycin complex 1 (mTORC1) pathway. High glucose uptake switches cell metabolism from oxidative phosphorylation to glycolysis and deactivates AMP-activated protein kinase (AMPK), a critical sensor of nutrient and cellular energy, leading to mTORC1 activation. A deleterious consequence of mTORC1 activation is the suppression of autophagy which is a catabolic process for the lysosomal degradation of damaged organelles, protein aggregates and intracellular pathogens. In addition, high glucose concentration and fatty acids independently activate inflammasome, an intracellular multi-protein complex that promotes the proteolytic activation of caspase 1, leading to the processing and secretion of IL-1β. Other caspases induced by inflammasome can trigger apoptotic cell death. A common upstream signal for the activation of inflammasome and mTORC1 is oxidative stress, which generates reactive oxygen species (ROS) from dysregulated mitochondria. Increased flux of glucose and lipids activates stress kinases, enhances electron transport, and generates ROS in mitochondria. Mitochondrial stress arising from increased mitochondrial respiration and permeability damages mitochondria, activates caspases, which then induce apoptosis via the intrinsic cell death pathway releasing mitochondrial DNA. Normally apoptosis is down-regulated by autophagy as autophagy removes damaged organelles as a result of danger

  13. Dietary zinc mediates inflammation and protects against wasting and metabolic derangement caused by sustained cigarette smoke exposure in mice.

    PubMed

    Lang, Carol J; Hansen, Michelle; Roscioli, Eugene; Jones, Jessica; Murgia, Chiara; Leigh Ackland, Margaret; Zalewski, Peter; Anderson, Gary; Ruffin, Richard

    2011-02-01

    In mouse asthma models, inflammation can be modulated by zinc (Zn). Given that appetite loss, muscle wasting and poor nutrition are features of chronic obstructive pulmonary disease (COPD) and that poor dietary Zn intake is in itself accompanied by growth retardation and appetite loss, we hypothesised that dietary Zn limitation would not only worsen airway inflammation but also exaggerate metabolic effects of cigarette smoke (CS) exposure in mice. Conversely, Zn supplementation would lessen inflammation. Mice were exposed to CS [2× 2RF, 3×/day; 15 min/cigarette] and fed diets containing 2, 20 or 140 mg/kg Zn ad libitum. Airway cells were collected by bronchoalveolar lavage (BAL). Plasma Zn was measured by fluorometric assay. Inflammatory, metabolic and Zn transport markers were measured by real-time RT-PCR. Mice fed low Zn diets had less plasma labile zinc (0-0.18 μM) than mice fed moderate (0.61-0.98 μM) or high (0.77-1.1 μM) Zn diets (SDs 0.1-0.4, n = 8-10). Smoke exposure increased plasma and BAL labile Zn (1.5-2.5 fold, P < 0.001), bronchoalveolar macrophages (2.0 fold, P < 0.0001) and MT-1 (1.5 fold), MIP-2 (2.3 fold) and MMP-12 (3.5 fold) mRNA. Zn supplementation reduced alveolar macrophage numbers by 62 and 52% in sham and smoke-exposed mice, respectively (Zn effect: P = 0.011). Gastrocnemius, soleus and tibialis anterior muscle mass were affected by both smoke and dietary Zn in the order of 3-7%. The 50-60% reduction in alveolar macrophages in Zn-supplemented mice supports our evolving hypothesis that Zn is an important anti-inflammatory mediator of airway inflammation. Restoring airway Zn levels through dietary supplementation may lessen the severity of lung inflammation when Zn intake is low.

  14. PGC-1α Deficiency Causes Multi-System Energy Metabolic Derangements: Muscle Dysfunction, Abnormal Weight Control and Hepatic Steatosis

    PubMed Central

    Leone, Teresa C; Lehman, John J; Finck, Brian N; Schaeffer, Paul J; Wende, Adam R; Boudina, Sihem; Courtois, Michael; Wozniak, David F; Sambandam, Nandakumar; Bernal-Mizrachi, Carlos; Chen, Zhouji; O. Holloszy, John; Medeiros, Denis M; Schmidt, Robert E; Saffitz, Jeffrey E; Abel, E. Dale; Semenkovich, Clay F

    2005-01-01

    The gene encoding the transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) was targeted in mice. PGC-1α null (PGC-1α−/−) mice were viable. However, extensive phenotyping revealed multi-system abnormalities indicative of an abnormal energy metabolic phenotype. The postnatal growth of heart and slow-twitch skeletal muscle, organs with high mitochondrial energy demands, is blunted in PGC-1α−/− mice. With age, the PGC-1α−/− mice develop abnormally increased body fat, a phenotype that is more severe in females. Mitochondrial number and respiratory capacity is diminished in slow-twitch skeletal muscle of PGC-1α−/− mice, leading to reduced muscle performance and exercise capacity. PGC-1α−/− mice exhibit a modest diminution in cardiac function related largely to abnormal control of heart rate. The PGC-1α−/− mice were unable to maintain core body temperature following exposure to cold, consistent with an altered thermogenic response. Following short-term starvation, PGC-1α−/− mice develop hepatic steatosis due to a combination of reduced mitochondrial respiratory capacity and an increased expression of lipogenic genes. Surprisingly, PGC-1α−/− mice were less susceptible to diet-induced insulin resistance than wild-type controls. Lastly, vacuolar lesions were detected in the central nervous system of PGC-1α−/− mice. These results demonstrate that PGC-1α is necessary for appropriate adaptation to the metabolic and physiologic stressors of postnatal life. PMID:15760270

  15. Carnitine supplementation alleviates lipid metabolism derangements and protects against oxidative stress in non-obese hereditary hypertriglyceridemic rats.

    PubMed

    Cahova, Monika; Chrastina, Petr; Hansikova, Hana; Drahota, Zdenek; Trnovska, Jaroslava; Skop, Vojtech; Spacilova, Jana; Malinska, Hana; Oliyarnyk, Olena; Papackova, Zuzana; Palenickova, Eliska; Kazdova, Ludmila

    2015-03-01

    The aim of this study was to estimate the effect of carnitine supplementation on lipid disorders and peripheral tissue insulin sensitivity in a non-obese animal model of insulin resistance, the hereditary hypertriglyceridemic (HHTg) rat. Male HHTg rats were fed a standard diet, and half of them received daily doses of carnitine (500 mg·kg(-1) body weight) for 8 weeks. Rats of the original Wistar strain were used for comparison. HHTg rats exhibited increased urinary excretion of free carnitine and reduced carnitine content in the liver and blood. Carnitine supplementation compensated for this shortage and promoted urinary excretion of acetylcarnitine without any signs of (acyl)carnitine accumulation in skeletal muscle. Compared with their untreated littermates, carnitine-treated HHTg rats exhibited lower weight gain, reduced liver steatosis, lower fasting triglyceridemia, and greater reduction of serum free fatty acid content after glucose load. Carnitine treatment was associated with increased mitochondrial biogenesis and oxidative capacity for fatty acids, amelioration of oxidative stress, and restored substrate switching in the liver. In skeletal muscle (diaphragm), carnitine supplementation was associated with significantly higher palmitate oxidation and a more favorable complete to incomplete oxidation products ratio. Carnitine supplementation further enhanced insulin sensitivity ex vivo. No effects on whole-body glucose tolerance were observed. Our data suggest that some metabolic syndrome-related disorders, particularly fatty acid oxidation, steatosis, and oxidative stress in the liver, could be attenuated by carnitine supplementation. The effect of carnitine could be explained, at least partly, by enhanced substrate oxidation and increased fatty acid transport from tissues in the form of short-chain acylcarnitines.

  16. Altered phosphate metabolism in myocardial infarction: P-31 MR spectroscopy

    SciTech Connect

    Bottomley, P.A.; Herfkens, R.J.; Smith, L.S.; Bashore, T.M.

    1987-12-01

    The high-energy myocardial phosphate metabolism of four patients with acute anterior myocardial infarction after coronary angioplasty and drug therapy was evaluated with cardiac-gated phosphorus magnetic resonance (MR) depth-resolved surface coil spectroscopy (DRESS) 5-9 days after the onset of symptoms. Significant reductions (about threefold) in the phosphocreatine (PCr) to inorganic phosphate (Pi) ratio and elevations in the Pi to adenosine triphosphate (ATP) ratio were observed in endocardially or transmurally derived MR spectra when compared with values from epicardially displaced spectra and values from seven healthy volunteers (P less than .05). High-energy phosphate metabolites and Pi ratios did not vary significantly during the cardiac cycle in healthy volunteers. However, contamination of Pi resonances by phosphomonoester components, including blood 2,3-diphosphoglycerate, precluded accurate spectral quantification of Pi and pH. The results indicate that localized P-31 MR spectroscopy may be used to directly assess cellular energy reserve in clinical myocardial infarction and to evaluate metabolic response to interventions.

  17. Adaptation of myocardial substrate metabolism to a ketogenic nutrient environment.

    PubMed

    Wentz, Anna E; d'Avignon, D André; Weber, Mary L; Cotter, David G; Doherty, Jason M; Kerns, Robnet; Nagarajan, Rakesh; Reddy, Naveen; Sambandam, Nandakumar; Crawford, Peter A

    2010-08-06

    Heart muscle is metabolically versatile, converting energy stored in fatty acids, glucose, lactate, amino acids, and ketone bodies. Here, we use mouse models in ketotic nutritional states (24 h of fasting and a very low carbohydrate ketogenic diet) to demonstrate that heart muscle engages a metabolic response that limits ketone body utilization. Pathway reconstruction from microarray data sets, gene expression analysis, protein immunoblotting, and immunohistochemical analysis of myocardial tissue from nutritionally modified mouse models reveal that ketotic states promote transcriptional suppression of the key ketolytic enzyme, succinyl-CoA:3-oxoacid CoA transferase (SCOT; encoded by Oxct1), as well as peroxisome proliferator-activated receptor alpha-dependent induction of the key ketogenic enzyme HMGCS2. Consistent with reduction of SCOT, NMR profiling demonstrates that maintenance on a ketogenic diet causes a 25% reduction of myocardial (13)C enrichment of glutamate when (13)C-labeled ketone bodies are delivered in vivo or ex vivo, indicating reduced procession of ketones through oxidative metabolism. Accordingly, unmetabolized substrate concentrations are higher within the hearts of ketogenic diet-fed mice challenged with ketones compared with those of chow-fed controls. Furthermore, reduced ketone body oxidation correlates with failure of ketone bodies to inhibit fatty acid oxidation. These results indicate that ketotic nutrient environments engage mechanisms that curtail ketolytic capacity, controlling the utilization of ketone bodies in ketotic states.

  18. Derangements of potassium.

    PubMed

    Medford-Davis, Laura; Rafique, Zubaid

    2014-05-01

    Changes in potassium elimination, primarily due to the renal and GI systems, and shifting potassium between the intracellular and extracellular spaces cause potassium derangement. Symptoms are vague, but can be cardiac, musculoskeletal, or gastrointestinal. There are no absolute guidelines for when to treat, but it is generally recommended when the patient is symptomatic or has ECG changes. Treatment of hyperkalemia includes cardiac membrane stabilization with IV calcium, insulin and beta-antagonists to push potassium intracellularly, and dialysis. Neither sodium bicarbonate nor kayexelate are recommended. Treatment of symptomatic hypokalemia consists of PO or IV repletion with potassium chloride and magnesium sulfate.

  19. Noninvasive measurement of regional myocardial glucose metabolism by positron emission computed tomography. [Dogs

    SciTech Connect

    Schelbert, H.R.; Phelps, M.E.

    1980-06-01

    While the results of regional myocardial glucose metabolism measurements using positron emission computed tomography (/sup 13/N-ammonia) are promising, their utility and value remains to be determined in man. If this technique can be applied to patients with acute myocardial ischemia or infarction it may permit delineation of regional myocardial segments with altered, yet still active metabolism. Further, it may become possible to evaluate the effects of interventions designed to salvage reversibly injured myocardium by this technique.

  20. Urinary metabolic fingerprinting of mice with diet-induced metabolic derangements by parallel dual secondary column-dual detection two-dimensional comprehensive gas chromatography.

    PubMed

    Bressanello, Davide; Liberto, Erica; Collino, Massimo; Reichenbach, Stephen E; Benetti, Elisa; Chiazza, Fausto; Bicchi, Carlo; Cordero, Chiara

    2014-09-26

    This study investigates the potential of a parallel dual secondary column-dual detection two-dimensional comprehensive GC platform (GC×2GC-MS/FID) for metabolic profiling and fingerprinting of mouse urine. Samples were obtained from a murine model that mimics a typical unhealthy Western diet featuring both high fat and sugar (HFHS) intake, which induces obesity, dyslipidemia, and insulin resistance. Urines collected at different steps of the study were used to obtain pivotal and comparative data on the presence and relative distributions of early markers of metabolic disease. The data elaboration and interpretation work-flow includes an advanced untargeted fingerprinting approach, with peak-region features to locate relevant features to be quantified by external standard calibration. The reliability of untargeted fingerprinting is confirmed by quantitative results on selected relevant features that showed percentages of variations consistent with those observed by comparing raw data quantitative descriptors (2D peak-region volumes and percent of response). Analytes that were up-regulated with % of variation ranging from 30 to 1000, included pyruvic acid, glycerol, fructose, galactose, glucose, lactic acid, mannitol and valine. Down-regulation was evidenced for malonic acid, succinic acid, alanine, glycine, and creatinine. Advanced fingerprinting also is demonstrated for effectively evaluating individual variations during experiments, thus representing a promising tool for personalized intervention studies. In this context, it is interesting to observe that informative features that were not discriminant for the entire population may be relevant for individuals.

  1. The effect of nifedipine on myocardial perfusion and metabolism in systemic sclerosis. A positron emission tomographic study

    SciTech Connect

    Duboc, D.; Kahan, A.; Maziere, B.; Loc'h, C.; Crouzel, C.; Menkes, C.J.; Amor, B.; Strauch, G.; Guerin, F.; Syrota, A. )

    1991-02-01

    We assessed the effect of nifedipine on myocardial perfusion and metabolism in 9 patients with systemic sclerosis, using positron emission tomography with a perfusion tracer (potassium-38) and a metabolic tracer (18F-fluorodeoxyglucose (18FDG)). Nifedipine, 20 mg 3 times daily for 1 week, induced a significant increase in 38K myocardial uptake, a significant decrease in 18FDG myocardial uptake, and a significant increase in the myocardial 38K: 18FDG ratio. These results indicate that the increase in myocardial perfusion is associated with modifications in myocardial energy metabolism, which probably result from a beneficial anti-ischemic effect of nifedipine in patients with systemic sclerosis.

  2. Myocardial Function and Lipid Metabolism in the Chronic Alcoholic Animal

    PubMed Central

    Regan, Timothy J.; Khan, Mohammad I.; Ettinger, Philip O.; Haider, Bunyad; Lyons, Michael M.; Oldewurtel, Henry A.; Weber, Marilyn

    1974-01-01

    In view of the variables that obscure the pathogenesis of cardiomyopathy, a study was undertaken in mongrel dogs fed ethanol as 36% of calories for up to 22 mo. Both the experimental and control groups maintained body weight, hematocrit, plasma vitamin, and protein levels. Left ventricular function was evaluated in the intact anesthetized dog using indicator dilution for end-diastolic and stroke volume determinations. During increased afterload with angiotensin, the ethanol group exhibited a larger rise of end-diastolic pressure (P<0.01), whereas end-diastolic and stroke volume responses were significantly less than in controls. Preload increments with saline elicited a significantly higher end-diastolic pressure rise in the ethanol group (P<0.01). No hypertrophy, inflammation, or fibrosis was present and it was postulated that the enhanced diastolic stiffness was related to accumulation of Alcian Blue-positive material in the ventricular interstitium. To evaluate myocardial lipid metabolism, [1-14C]oleic acid was infused systemically. Plasma specific activity and myocardial lipid uptake were similar in both groups. There was a significantly increased incorporation of label into triglyceride, associated with a reduced 14CO2 production, considered the basis for a twofold increment of triglyceride content. In addition, diminished incorporation of [14C]oleic acid into phospholipid was observed accompanied by morphologic abnormalities of cardiac cell membranes. Potassium loss and sodium gain, like the lipid alteration, was more prominent in the subendocardium. Thus, chronic ethanol ingestion in this animal model is associated with abnormalities of ventricular function without evident malnutrition, analogous to the preclinical malfunction described in the human alcoholic. Images PMID:4368946

  3. Myocardial imaging and metabolic studies with (17-/sup 123/I)iodoheptadecanoic acid

    SciTech Connect

    Freundlieb, C.; Hoeck, A.; Vyska, K.; Feinendegen, L.E.; Machulla, H.J.; Stoecklin, G.

    1980-11-01

    After intravenous administration of the stearic acid analogue (17-/sup 123/I)iodoheptadecanoic acid (I-123 HA), myocardial metabolism was studied in ten normal individuals, eight patients with coronary artery disease and three patients with congestive heart failure. High-quality images were obtained in sequential scintigraphy of I-123 metabolically bound in myocardial tissue. Infarcted zones as well as ischemic regions are indicated by reduced tracer uptake. Iodine-123 in the blood pool and interstitial space consists mainly of radioiodide that is liberated by fatty-acid metabolism and was corrected for. Using the proposed correction not only are the images improved but the uptake and elimination of the I-123 in the myocardial cells can be followed. The average disappearance half-time of I-123 HA from the myocardium of normal persons was 24 +- 4.7 min. In patients with coronary artery disease significant differences between myocardial regions were observed.

  4. Myocardial Energy Substrate Metabolism in Heart Failure : from Pathways to Therapeutic Targets.

    PubMed

    Fukushima, Arata; Milner, Kenneth; Gupta, Abhishek; Lopaschuk, Gary D

    2015-01-01

    Despite recent advances in therapy, heart failure remains a major cause of mortality and morbidity and is a growing healthcare burden worldwide. Alterations in myocardial energy substrate metabolism are a hallmark of heart failure, and are associated with an energy deficit in the failing heart. Previous studies have shown that a metabolic shift from mitochondrial oxidative metabolism to glycolysis, as well as an uncoupling between glycolysis and glucose oxidation, plays a crucial role in the development of cardiac inefficiency and functional impairment in heart failure. Therefore, optimizing energy substrate utilization, particularly by increasing mitochondrial glucose oxidation, can be a potentially promising approach to decrease the severity of heart failure by improving mechanical cardiac efficiency. One approach to stimulating myocardial glucose oxidation is to inhibit fatty acid oxidation. This review will overview the physiological regulation of both myocardial fatty acid and glucose oxidation in the heart, and will discuss what alterations in myocardial energy substrate metabolism occur in the failing heart. Furthermore, lysine acetylation has been recently identified as a novel post-translational pathway by which mitochondrial enzymes involved in all aspects of cardiac energy metabolism can be regulated. Thus, we will also discuss the effect of acetylation of metabolic enzymes on myocardial energy substrate preference in the settings of heart failure. Finally, we will focus on pharmacological interventions that target enzymes involved in fatty acid uptake, fatty acid oxidation, transcriptional regulation of fatty acid oxidation, and glucose oxidation to treat heart failure.

  5. [The influence of halogenated anesthetic agents on the hemodynamics and myocardial metabolism in ischemic heart disease].

    PubMed

    Vasil'ev, A V; Nesterova, Iu V; Brand, Ia B

    2007-01-01

    The authors studied the effects of anesthesia with equipotential concentrations of halothane, enflurane, and isoflurane plus 33% O2 on central hemodynamics, coronary flow, and myocardial metabolism in 60 patients undergoing myocardial revascularization surgery. The study found that halothane and isoflurane with 33% O2 caused dose-dependent and well-controlled arterial hypotension and decreased left ventricular (LV) stroke work index, myocardial consumption of O2 MCO2), total peripheral vascular resistance, and coronary vascular resistance (CVR), which increased coronary volume flow. Monoanesthesia with enflurane lowered myocardial contractility and did not change LV work; MCO2 decreased, while coronary sinus flow increased due to a decrease in CVR. Thus, the comparison of hemodynamic and myocardial effects of the three potent inhaled anesthetics--halothane, enflurane, and isoflurane - demonstrated their positive effects on myocardial oxygen balance in a form of dosed and controlled decrease in its work in cardiological patients with preserved LV contractility. The imported anesthetics enflurane and isoflurane do not have any significant advantage over the Russian-made halothane in this category of patients. At the same time, halothane vs. enflurane has a more noticeable "unloading" effect on afterload and does not cause convulsive episodes and periods of cerebral activity depression; in contrast to isoflurane, halothane dose not cause metabolic disturbances in a compromised myocardium; halothane is used in lower inhaled concentrations to achieve the same degree of myocardial work decrease without a substantial decrease in cardiac efficiency. These facts suggest that halothane has a practical advantage over the other anesthetics.

  6. Alteration in metabolic signature and lipid metabolism in patients with angina pectoris and myocardial infarction.

    PubMed

    Park, Ju Yeon; Lee, Sang-Hak; Shin, Min-Jeong; Hwang, Geum-Sook

    2015-01-01

    Lipid metabolites are indispensable regulators of physiological and pathological processes, including atherosclerosis and coronary artery disease (CAD). However, the complex changes in lipid metabolites and metabolism that occur in patients with these conditions are incompletely understood. We performed lipid profiling to identify alterations in lipid metabolism in patients with angina and myocardial infarction (MI). Global lipid profiling was applied to serum samples from patients with CAD (angina and MI) and age-, sex-, and body mass index-matched healthy subjects using ultra-performance liquid chromatography/quadruple time-of-flight mass spectrometry and multivariate statistical analysis. A multivariate analysis showed a clear separation between the patients with CAD and normal controls. Lysophosphatidylcholine (lysoPC) and lysophosphatidylethanolamine (lysoPE) species containing unsaturated fatty acids and free fatty acids were associated with an increased risk of CAD, whereas species of lysoPC and lyso-alkyl PC containing saturated fatty acids were associated with a decreased risk. Additionally, PC species containing palmitic acid, diacylglycerol, sphingomyelin, and ceramide were associated with an increased risk of MI, whereas PE-plasmalogen and phosphatidylinositol species were associated with a decreased risk. In MI patients, we found strong positive correlation between lipid metabolites related to the sphingolipid pathway, sphingomyelin, and ceramide and acute inflammatory markers (high-sensitivity C-reactive protein). The results of this study demonstrate altered signatures in lipid metabolism in patients with angina or MI. Lipidomic profiling could provide the information to identity the specific lipid metabolites under the presence of disturbed metabolic pathways in patients with CAD.

  7. Positron emission tomography detects tissue metabolic activity in myocardial segments with persistent thallium perfusion defects

    SciTech Connect

    Brunken, R.; Schwaiger, M.; Grover-McKay, M.; Phelps, M.E.; Tillisch, J.; Schelbert, H.R.

    1987-09-01

    Positron emission tomography with /sup 13/N-ammonia and /sup 18/F-2-deoxyglucose was used to assess myocardial perfusion and glucose utilization in 51 myocardial segments with a stress thallium defect in 12 patients. Myocardial infarction was defined by a concordant reduction in segmental perfusion and glucose utilization, and myocardial ischemia was identified by preservation of glucose utilization in segments with rest hypoperfusion. Of the 51 segments studied, 36 had a fixed thallium defect, 11 had a partially reversible defect and 4 had a completely reversible defect. Only 15 (42%) of the 36 segments with a fixed defect and 4 (36%) of the 11 segments with a partially reversible defect exhibited myocardial infarction on study with positron tomography. In contrast, residual myocardial glucose utilization was identified in the majority of segments with a fixed (58%) or a partially reversible (64%) thallium defect. All of the segments with a completely reversible defect appeared normal on positron tomography. Apparent improvement in the thallium defect on delayed images did not distinguish segments with ischemia from infarction. Thus, positron emission tomography reveals evidence of persistent tissue metabolism in the majority of segments with a fixed or partially resolving stress thallium defect, implying that markers of perfusion alone may underestimate the extent of viable tissue in hypoperfused myocardial segments.

  8. Circadian rhythms in myocardial metabolism and contractile function; influence of workload and oleate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiple extra-cardiac stimuli, such as workload and circulating nutrients (e.g., fatty acids), known to influence myocardial metabolism and contractile function exhibit marked circadian rhythms. The aim of the present study was to investigate whether the rat heart exhibits circadian rhythms in its ...

  9. Impaired contractile recovery after low-flow myocardial ischemia in a porcine model of metabolic syndrome.

    PubMed

    Huang, Janice V; Lu, Li; Ye, Shuyu; Bergman, Bryan C; Sparagna, Genevieve C; Sarraf, Mohammad; Reusch, Jane E B; Greyson, Clifford R; Schwartz, Gregory G

    2013-03-15

    Clinical metabolic syndrome conveys a poor prognosis in patients with acute coronary syndrome, not fully accounted for by the extent of coronary atherosclerosis. To explain this observation, we determined whether postischemic myocardial contractile and metabolic function are impaired in a porcine dietary model of metabolic syndrome without atherosclerosis. Micropigs (n = 28) were assigned to a control diet (low fat, no added sugars) or an intervention diet (high saturated fat and simple sugars, no added cholesterol) for 7 mo. The intervention diet produced obesity, hypertension, dyslipidemia, and impaired glucose tolerance, but not atherosclerosis. Under open-chest, anesthetized conditions, pigs underwent 45 min of low-flow myocardial ischemia and 120 min of reperfusion. In both diet groups, contractile function was similar at baseline and declined similarly during ischemia. However, after 120 min of reperfusion, regional work recovered to 21 ± 12% of baseline in metabolic syndrome pigs compared with 61 ± 13% in control pigs (P = 0.01). Ischemia-reperfusion caused a progressive decline in mechanical/metabolic efficiency (regional work/O2 consumption) in metabolic syndrome hearts, but not in control hearts. Metabolic syndrome hearts demonstrated altered fatty acyl composition of cardiolipin and increased Akt phosphorylation in both ischemic and nonischemic regions, suggesting tonic activation. Metabolic syndrome hearts used more fatty acid than control hearts (P = 0.03). When fatty acid availability was restricted by prior insulin exposure, differences between groups in postischemic contractile recovery and mechanical/metabolic efficiency were eliminated. In conclusion, pigs with characteristics of metabolic syndrome demonstrate impaired contractile and metabolic recovery after low-flow myocardial ischemia. Contributory mechanisms may include remodeling of cardiolipin, abnormal activation of Akt, and excessive utilization of fatty acid substrates.

  10. Impaired contractile recovery after low-flow myocardial ischemia in a porcine model of metabolic syndrome

    PubMed Central

    Huang, Janice V.; Lu, Li; Ye, Shuyu; Bergman, Bryan C.; Sparagna, Genevieve C.; Sarraf, Mohammad; Reusch, Jane E. B.; Greyson, Clifford R.

    2013-01-01

    Clinical metabolic syndrome conveys a poor prognosis in patients with acute coronary syndrome, not fully accounted for by the extent of coronary atherosclerosis. To explain this observation, we determined whether postischemic myocardial contractile and metabolic function are impaired in a porcine dietary model of metabolic syndrome without atherosclerosis. Micropigs (n = 28) were assigned to a control diet (low fat, no added sugars) or an intervention diet (high saturated fat and simple sugars, no added cholesterol) for 7 mo. The intervention diet produced obesity, hypertension, dyslipidemia, and impaired glucose tolerance, but not atherosclerosis. Under open-chest, anesthetized conditions, pigs underwent 45 min of low-flow myocardial ischemia and 120 min of reperfusion. In both diet groups, contractile function was similar at baseline and declined similarly during ischemia. However, after 120 min of reperfusion, regional work recovered to 21 ± 12% of baseline in metabolic syndrome pigs compared with 61 ± 13% in control pigs (P = 0.01). Ischemia-reperfusion caused a progressive decline in mechanical/metabolic efficiency (regional work/O2 consumption) in metabolic syndrome hearts, but not in control hearts. Metabolic syndrome hearts demonstrated altered fatty acyl composition of cardiolipin and increased Akt phosphorylation in both ischemic and nonischemic regions, suggesting tonic activation. Metabolic syndrome hearts used more fatty acid than control hearts (P = 0.03). When fatty acid availability was restricted by prior insulin exposure, differences between groups in postischemic contractile recovery and mechanical/metabolic efficiency were eliminated. In conclusion, pigs with characteristics of metabolic syndrome demonstrate impaired contractile and metabolic recovery after low-flow myocardial ischemia. Contributory mechanisms may include remodeling of cardiolipin, abnormal activation of Akt, and excessive utilization of fatty acid substrates. PMID:23335793

  11. Myocardial citrate metabolism in control subjects and patients with coronary artery disease.

    PubMed

    Nielsen, T T; Henningsen, P; Bagger, J P; Thomsen, P E; Eyjolfsson, K

    1980-10-01

    A significant release of citrate across the myocardium was demonstrated in twenty-two patients with coronary artery disease (CAD) and in ten control subjects in fasting resting state. In both groups, increasingly negative arterio-coronary sinus (A-Cs) plasma citrate differences correlated positively to arterial plasma free fatty acid (FFA)concentrations and negatively to (A-Cs) differences of plasma glucose. This supports the hypothesis that a citrate inhibition of glycolysis at the site of phosphofructokinase is of regulatory importance for myocardial glucose metabolism, and suggests that FFA supress glucose utilization by the heart in many by this mechanism. The capacity of plasma FFA to increase myocardial citrate release was significantly higher in controls than in patients with CAD, and was found to be positively related to myocardial capacity of oxygen consumption as estimated from the product of heart rate and systolic blood pressure during an exercise tolerance test.

  12. JAK-STAT signaling and myocardial glucose metabolism

    PubMed Central

    Frias, Miguel A; Montessuit, Christophe

    2013-01-01

    JAK-STAT signaling occurs in virtually every tissue of the body, and so does glucose metabolism. In this review, we summarize the regulation of glucose metabolism in the myocardium and ponder whether JAK-STAT signaling participates in this regulation. Despite a paucity of data directly pertaining to cardiac myocytes, we conclude that JAK-STAT signaling may contribute to the development of insulin resistance in the myocardium in response to various hormones and cytokines. PMID:24416656

  13. Myocardial metabolic, hemodynamic, and electrocardiographic significance of reversible thallium-201 abnormalities in hypertrophic cardiomyopathy

    SciTech Connect

    Cannon, R.O. 3d.; Dilsizian, V.; O'Gara, P.T.; Udelson, J.E.; Schenke, W.H.; Quyyumi, A.; Fananapazir, L.; Bonow, R.O. )

    1991-05-01

    Exercise-induced abnormalities during thallium-201 scintigraphy that normalize at rest frequently occur in patients with hypertrophic cardiomyopathy. However, it is not known whether these abnormalities are indicative of myocardial ischemia. Fifty patients with hypertrophic cardiomyopathy underwent exercise {sup 201}Tl scintigraphy and, during the same week, measurement of myocardial lactate metabolism and hemodynamics during pacing stress. Thirty-seven patients (74%) had one or more {sup 201}Tl abnormalities that completely normalized after 3 hours of rest; 26 had regional myocardial {sup 201}Tl defects, and 26 had apparent left ventricular cavity dilatation with exercise, with 15 having coexistence of these abnormal findings. Of the 37 patients with reversible {sup 201}Tl abnormalities, 27 (73%) had metabolic evidence of myocardial ischemia during rapid atrial pacing compared with four of 13 patients (31%) with normal {sup 201}Tl scans (p less than 0.01). Eleven patients had apparent cavity dilatation as their only {sup 201}Tl abnormality; their mean postpacing left ventricular end-diastolic pressure was significantly higher than that of the 13 patients with normal {sup 201}Tl studies (33 +/- 5 versus 21 +/- 10 mm Hg, p less than 0.001). There was no correlation between the angiographic presence of systolic septal or epicardial coronary arterial compression and the presence or distribution of {sup 201}Tl abnormalities. Patients with ischemic ST segment responses to exercise had an 80% prevalence rate of reversible {sup 201}Tl abnormalities and a 70% prevalence rate of pacing-induced ischemia. However, 69% of patients with nonischemic ST segment responses had reversible {sup 201}Tl abnormalities, and 55% had pacing-induced ischemia. Reversible {sup 201}Tl abnormalities during exercise stress are markers of myocardial ischemia in hypertrophic cardiomyopathy and most likely identify relatively underperfused myocardium.

  14. Flux balance analysis of myocardial mitochondrial metabolic network

    NASA Astrophysics Data System (ADS)

    Luo, Ruoyu; Liao, Sha; Liu, Bifeng; Liu, Manxi; Zhang, Hongming; Luo, Qingming

    2005-03-01

    A large number of biological information has been available from genome sequencing and bioinformatics. To further understand the qualities of the biological networks (such as metabolic network) in the complex biological system, representations of integrated function in silico have been widely investigated, and various modeling approaches have been designed, most of which are based on detailed kinetic information except flux balance analysis (FBA). FBA, just based on stoichimetrical information of reactions, is a suitable method for the study of metabolic pathways, and it analyzes the behaviors of the network from the viewpoint of the whole system. Herein, this modeling approach has been utilized to reconstruct the mitochondrial metabolic network to integrate and analyze its capability of producing energy. Besides, extreme pathways analysis (EPA) and shadow prices analysis have also been integrated to study the interior characters of the network. Our modeling results have indicated for the first time that the covalent regulative property of pyruvate dehydrogenase is restrained by the feedback of acetyl-CoA. Combined with the biological experiments, these simulations in silico could be pretty useful for the further understanding of functions and characters of the biological network as a complex system.

  15. Myocardial VHL-HIF Signaling Controls an Embryonic Metabolic Switch Essential for Cardiac Maturation.

    PubMed

    Menendez-Montes, Ivan; Escobar, Beatriz; Palacios, Beatriz; Gómez, Manuel Jose; Izquierdo-Garcia, Jose Luis; Flores, Lorena; Jiménez-Borreguero, Luis Jesus; Aragones, Julian; Ruiz-Cabello, Jesus; Torres, Miguel; Martin-Puig, Silvia

    2016-12-19

    While gene regulatory networks involved in cardiogenesis have been characterized, the role of bioenergetics remains less studied. Here we show that until midgestation, myocardial metabolism is compartmentalized, with a glycolytic signature restricted to compact myocardium contrasting with increased mitochondrial oxidative activity in the trabeculae. HIF1α regulation mirrors this pattern, with expression predominating in compact myocardium and scarce in trabeculae. By midgestation, the compact myocardium downregulates HIF1α and switches toward oxidative metabolism. Deletion of the E3 ubiquitin ligase Vhl results in HIF1α hyperactivation, blocking the midgestational metabolic shift and impairing cardiac maturation and function. Moreover, the altered glycolytic signature induced by HIF1 trabecular activation precludes regulation of genes essential for establishment of the cardiac conduction system. Our findings reveal VHL-HIF-mediated metabolic compartmentalization in the developing heart and the connection between metabolism and myocardial differentiation. These results highlight the importance of bioenergetics in ventricular myocardium specialization and its potential relevance to congenital heart disease.

  16. [Modifications in myocardial energy metabolism in diabetic patients

    NASA Technical Reports Server (NTRS)

    Grynberg, A.

    2001-01-01

    The capacity of cardiac myocyte to regulate ATP production to face any change in energy demand is a major determinant of cardiac function. Because FA is the main heart fuel (although the most expensive one in oxygen, and prompt to induce deleterious effects), this process is based on a balanced fatty acid (FA) metabolism. Several pathological situations are associated with an accumulation of FA or derivatives, or with an excessive b-oxidation. The diabetic cardiomyocyte is characterised by an over consumption of FA. The control of the FA/glucose balance clearly appears as a new strategy for cytoprotection, particularly in diabetes and requires a reduced FA contribution to ATP production. Cardiac myocytes can control FA mitochondrial entry, but display weak ability to control FA uptake, thus the fate of non beta-oxidized FA appear as a new impairment for the cell. Both the trigger and the regulation of cardiac contraction result from membrane activity, and the other major FA function in the myocardium is their role in membrane homeostasis, through the phospholipid synthesis and remodeling pathways. Sudden death, hypercatecholaminemia, diabetes and heart failure have been associated with an altered PUFA content in cardiac membranes. Experimental data suggest that the 2 metabolic pathways involved in membrane homeostasis may represent therapeutic targets for cytoprotection. The drugs that increase cardiac phospholipid turnover (trimetazidine, ranolazine,...) display anti-ischemic non hemodynamic effect. This effect is based on a redirection of FA utilization towards phospholipid synthesis, which decrease their availability for energy production. A nutritional approach gave also promising results. Besides its anti-arrhythmic effect, the dietary docosahexaenoic acid is able to reduce FA energy consumption and hence oxygen demand. The cardiac metabolic pathways involving FA should be considered as a whole, precariously balanced. The diabetic heart being characterised by

  17. Deranged sodium to sudden death

    PubMed Central

    Clancy, Colleen E; Chen-Izu, Ye; Bers, Donald M; Belardinelli, Luiz; Boyden, Penelope A; Csernoch, Laszlo; Despa, Sanda; Fermini, Bernard; Hool, Livia C; Izu, Leighton; Kass, Robert S; Lederer, W Jonathan; Louch, William E; Maack, Christoph; Matiazzi, Alicia; Qu, Zhilin; Rajamani, Sridharan; Rippinger, Crystal M; Sejersted, Ole M; O'Rourke, Brian; Weiss, James N; Varró, András; Zaza, Antonio

    2015-01-01

    In February 2014, a group of scientists convened as part of the University of California Davis Cardiovascular Symposium to bring together experimental and mathematical modelling perspectives and discuss points of consensus and controversy on the topic of sodium in the heart. This paper summarizes the topics of presentation and discussion from the symposium, with a focus on the role of aberrant sodium channels and abnormal sodium homeostasis in cardiac arrhythmias and pharmacotherapy from the subcellular scale to the whole heart. Two following papers focus on Na+ channel structure, function and regulation, and Na+/Ca2+ exchange and Na+/K+ ATPase. The UC Davis Cardiovascular Symposium is a biannual event that aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The focus on Na+ in the 2014 symposium stemmed from the multitude of recent studies that point to the importance of maintaining Na+ homeostasis in the heart, as disruption of homeostatic processes are increasingly identified in cardiac disease states. Understanding how disruption in cardiac Na+-based processes leads to derangement in multiple cardiac components at the level of the cell and to then connect these perturbations to emergent behaviour in the heart to cause disease is a critical area of research. The ubiquity of disruption of Na+ channels and Na+ homeostasis in cardiac disorders of excitability and mechanics emphasizes the importance of a fundamental understanding of the associated mechanisms and disease processes to ultimately reveal new targets for human therapy. PMID:25772289

  18. Myocardial Reloading After Extracorporeal Membrane Oxygenation Alters Substrate Metabolism While Promoting Protein Synthesis

    PubMed Central

    Kajimoto, Masaki; O'Kelly Priddy, Colleen M.; Ledee, Dolena R.; Xu, Chun; Isern, Nancy; Olson, Aaron K.; Rosiers, Christine Des; Portman, Michael A.

    2013-01-01

    Background Extracorporeal membrane oxygenation (ECMO) unloads the heart, providing a bridge to recovery in children after myocardial stunning. ECMO also induces stress which can adversely affect the ability to reload or wean the heart from the circuit. Metabolic impairments induced by altered loading and/or stress conditions may impact weaning. However, cardiac substrate and amino acid requirements upon weaning are unknown. We assessed the hypothesis that ventricular reloading with ECMO modulates both substrate entry into the citric acid cycle (CAC) and myocardial protein synthesis. Methods and Results Sixteen immature piglets (7.8 to 15.6 kg) were separated into 2 groups based on ventricular loading status: 8‐hour ECMO (UNLOAD) and postwean from ECMO (RELOAD). We infused into the coronary artery [2‐13C]‐pyruvate as an oxidative substrate and [13C6]‐L‐leucine as an indicator for amino acid oxidation and protein synthesis. Upon RELOAD, each functional parameter, which were decreased substantially by ECMO, recovered to near‐baseline level with the exclusion of minimum dP/dt. Accordingly, myocardial oxygen consumption was also increased, indicating that overall mitochondrial metabolism was reestablished. At the metabolic level, when compared to UNLOAD, RELOAD altered the contribution of various substrates/pathways to tissue pyruvate formation, favoring exogenous pyruvate versus glycolysis, and acetyl‐CoA formation, shifting away from pyruvate decarboxylation to endogenous substrate, presumably fatty acids. Furthermore, there was also a significant increase of tissue concentrations for all CAC intermediates (≈80%), suggesting enhanced anaplerosis, and of fractional protein synthesis rates (>70%). Conclusions RELOAD alters both cytosolic and mitochondrial energy substrate metabolism, while favoring leucine incorporation into protein synthesis rather than oxidation in the CAC. Improved understanding of factors governing these metabolic perturbations may

  19. Myocardial Oxidative Metabolism and Protein Synthesis during Mechanical Circulatory Support by Extracorporeal Membrane Oxygenation

    SciTech Connect

    Priddy, MD, Colleen M.; Kajimoto, Masaki; Ledee, Dolena; Bouchard, Bertrand; Isern, Nancy G.; Olson, Aaron; Des Rosiers, Christine; Portman, Michael A.

    2013-02-01

    Extracorporeal membrane oxygenation (ECMO) provides mechanical circulatory support essential for survival in infants and children with acute cardiac decompensation. However, ECMO also causes metabolic disturbances, which contribute to total body wasting and protein loss. Cardiac stunning can also occur which prevents ECMO weaning, and contributes to high mortality. The heart may specifically undergo metabolic impairments, which influence functional recovery. We tested the hypothesis that ECMO alters oxidative. We focused on the amino acid leucine, and integration with myocardial protein synthesis. We used a translational immature swine model in which we assessed in heart (i) the fractional contribution of leucine (FcLeucine) and pyruvate (FCpyruvate) to mitochondrial acetyl-CoA formation by nuclear magnetic resonance and (ii) global protein fractional synthesis (FSR) by gas chromatography-mass spectrometry. Immature mixed breed Yorkshire male piglets (n = 22) were divided into four groups based on loading status (8 hours of normal circulation or ECMO) and intracoronary infusion [13C6,15N]-L-leucine (3.7 mM) alone or with [2-13C]-pyruvate (7.4 mM). ECMO decreased pulse pressure and correspondingly lowered myocardial oxygen consumption (~ 40%, n = 5), indicating decreased overall mitochondrial oxidative metabolism. However, FcLeucine was maintained and myocardial protein FSR was marginally increased. Pyruvate addition decreased tissue leucine enrichment, FcLeucine, and Fc for endogenous substrates as well as protein FSR. Conclusion: The heart under ECMO shows reduced oxidative metabolism of substrates, including amino acids, while maintaining (i) metabolic flexibility indicated by ability to respond to pyruvate, and (ii) a normal or increased capacity for global protein synthesis, suggesting an improved protein balance.

  20. Assessment of myocardial oxidative metabolic reserve with positron emission tomography and carbon-11 acetate

    SciTech Connect

    Henes, C.G.; Bergmann, S.R.; Walsh, M.N.; Sobel, B.E.; Geltman, E.M. )

    1989-09-01

    We have previously demonstrated that positron emission tomography (PET) with ({sup 11}C)acetate allows noninvasive regional quantification of myocardial oxidative metabolism. To assess the metabolic response of normal myocardium to increased work (oxidative metabolic reserve), clearance of myocardial {sup 11}C activity after administration of ({sup 11}C)acetate i.v. was measured with PET in seven normal subjects at rest and during dobutamine infusion. At rest, clearance of {sup 11}C was monoexponential and homogeneous. The rate constant of the first phase of {sup 11}C clearance, k1, averaged 0.054 {plus minus} 0.014 min-1 at a rate-pressure produce (RPP) of 7329 {plus minus} 1445 mmHg X bpm. During dobutamine infusion, RPP increased by an average of 141% to 17,493 {plus minus} 3582 mm Hg Z bpm. Clearance of 11C became biexponential and remained homogeneous. k1 averaged 0.198 {plus minus} 0.043 min-1 with a mean coefficient of variation of 16%.. k1 and RPP correlated closely (r = 0.91; p less than 0.001), and the slope of the k1/RPP relation remained consistent in all subjects (1.48 {plus minus} 0.42). These findings suggest that PET with ({sup 11}C)acetate and dobutamine stress may provide a promising approach for evaluation of regional myocardial oxidative metabolic reserve in patients with cardiac diseases of diverse etiologies and for assessment of the efficacy of interventions designed to enhance the recovery of metabolically comprised myocardium.

  1. Use of the metabolic tracer carbon-11-acetate for evaluation of regional myocardial perfusion

    SciTech Connect

    Chan, S.Y.; Brunken, R.C.; Phelps, M.E.; Schelbert, H.R. )

    1991-04-01

    The high first-pass myocardial extraction fraction of carbon-11-acetate suggests that its initial uptake depends on blood flow. Accordingly, regional uptake of {sup 11}C-acetate at 4 min was compared to regional perfusion determined with nitrogen-13-ammonia in 119 segments in 15 patients with stable coronary artery disease by two methods. A close correlation was observed between initial relative myocardial concentrations (segmental activity normalized to maximal activity) of both tracers (11C-acetate = 0.88; 13N-ammonia + 0.079; s.e.e. = 0.064, r = 0.94, p less than 0.001). Furthermore, segmental net extractions (E.F), as calculated from the input function and segmental activities, of the two tracers correlated closely by E.FC-11 = 0.55E.FN-13 + 0.080 (s.e.e. = 0.045, r = 0.87, p less than 0.001). These relationships indicate that initial regional myocardial uptake of {sup 11}C-acetate reflects perfusion and that {sup 11}C-acetate permits near simultaneous evaluation of regional oxidative metabolism and of regional myocardial perfusion.

  2. Myocardial Reloading after Extracorporeal Membrane Oxygenation Alters Substrate Metabolism While Promoting Protein Synthesis

    SciTech Connect

    Kajimoto, Masaki; Priddy, Colleen M.; Ledee, Dolena; Xu, Chun; Isern, Nancy G.; Olson, Aaron; Des Rosiers, Christine; Portman, Michael A.

    2013-08-19

    Extracorporeal membrane oxygenation (ECMO) unloads the heart providing a bridge to recovery in children after myocardial stunning. Mortality after ECMO remains high.Cardiac substrate and amino acid requirements upon weaning are unknown and may impact recovery. We assessed the hypothesis that ventricular reloading modulates both substrate entry into the citric acid cycle (CAC) and myocardial protein synthesis. Fourteen immature piglets (7.8-15.6 kg) were separated into 2 groups based on ventricular loading status: 8 hour-ECMO (UNLOAD) and post-wean from ECMO (RELOAD). We infused [2-13C]-pyruvate as an oxidative substrate and [13C6]-L-leucine, as a tracer of amino acid oxidation and protein synthesis into the coronary artery. RELOAD showed marked elevations in myocardial oxygen consumption above baseline and UNLOAD. Pyruvate uptake was markedly increased though RELOAD decreased pyruvate contribution to oxidative CAC metabolism.RELOAD also increased absolute concentrations of all CAC intermediates, while maintaining or increasing 13C-molar percent enrichment. RELOAD also significantly increased cardiac fractional protein synthesis rates by >70% over UNLOAD. Conclusions: RELOAD produced high energy metabolic requirement and rebound protein synthesis. Relative pyruvate decarboxylation decreased with RELOAD while promoting anaplerotic pyruvate carboxylation and amino acid incorporation into protein rather than to the CAC for oxidation. These perturbations may serve as therapeutic targets to improve contractile function after ECMO.

  3. Compound danshen dripping pills modulate the perturbed energy metabolism in a rat model of acute myocardial ischemia.

    PubMed

    Guo, Jiahua; Yong, Yonghong; Aa, Jiye; Cao, Bei; Sun, Runbin; Yu, Xiaoyi; Huang, Jingqiu; Yang, Na; Yan, Lulu; Li, Xinxin; Cao, Jing; Aa, Nan; Yang, Zhijian; Kong, Xiangqing; Wang, Liansheng; Zhu, Xuanxuan; Ma, Xiaohui; Guo, Zhixin; Zhou, Shuiping; Sun, He; Wang, Guangji

    2016-12-01

    The continuous administration of compound danshen dripping pills (CDDP) showed good efficacy in relieving myocardial ischemia clinically. To probe the underlying mechanism, metabolic features were evaluated in a rat model of acute myocardial ischemia induced by isoproterenol (ISO) and administrated with CDDP using a metabolomics platform. Our data revealed that the ISO-induced animal model showed obvious myocardial injury, decreased energy production, and a marked change in metabolomic patterns in plasma and heart tissue. CDDP pretreatment increased energy production, ameliorated biochemical indices, modulated the changes and metabolomic pattern induced by ISO, especially in heart tissue. For the first time, we found that ISO induced myocardial ischemia was accomplished with a reduced fatty acids metabolism and an elevated glycolysis for energy supply upon the ischemic stress; while CDDP pretreatment prevented the tendency induced by ISO and enhanced a metabolic shift towards fatty acids metabolism that conventionally dominates energy supply to cardiac muscle cells. These data suggested that the underlying mechanism of CDDP involved regulating the dominant energy production mode and enhancing a metabolic shift toward fatty acids metabolism in ischemic heart. It was further indicated that CDDP had the potential to prevent myocardial ischemia in clinic.

  4. Compound danshen dripping pills modulate the perturbed energy metabolism in a rat model of acute myocardial ischemia

    PubMed Central

    Guo, Jiahua; Yong, Yonghong; Aa, Jiye; Cao, Bei; Sun, Runbin; Yu, Xiaoyi; Huang, Jingqiu; Yang, Na; Yan, Lulu; Li, Xinxin; Cao, Jing; Aa, Nan; Yang, Zhijian; Kong, Xiangqing; Wang, Liansheng; Zhu, Xuanxuan; Ma, Xiaohui; Guo, Zhixin; Zhou, Shuiping; Sun, He; Wang, Guangji

    2016-01-01

    The continuous administration of compound danshen dripping pills (CDDP) showed good efficacy in relieving myocardial ischemia clinically. To probe the underlying mechanism, metabolic features were evaluated in a rat model of acute myocardial ischemia induced by isoproterenol (ISO) and administrated with CDDP using a metabolomics platform. Our data revealed that the ISO-induced animal model showed obvious myocardial injury, decreased energy production, and a marked change in metabolomic patterns in plasma and heart tissue. CDDP pretreatment increased energy production, ameliorated biochemical indices, modulated the changes and metabolomic pattern induced by ISO, especially in heart tissue. For the first time, we found that ISO induced myocardial ischemia was accomplished with a reduced fatty acids metabolism and an elevated glycolysis for energy supply upon the ischemic stress; while CDDP pretreatment prevented the tendency induced by ISO and enhanced a metabolic shift towards fatty acids metabolism that conventionally dominates energy supply to cardiac muscle cells. These data suggested that the underlying mechanism of CDDP involved regulating the dominant energy production mode and enhancing a metabolic shift toward fatty acids metabolism in ischemic heart. It was further indicated that CDDP had the potential to prevent myocardial ischemia in clinic. PMID:27905409

  5. Fractal regional myocardial blood flows pattern according to metabolism, not vascular anatomy.

    PubMed

    Yipintsoi, Tada; Kroll, Keith; Bassingthwaighte, James B

    2016-02-01

    Regional myocardial blood flows are markedly heterogeneous. Fractal analysis shows strong near-neighbor correlation. In experiments to distinguish control by vascular anatomy vs. local vasomotion, coronary flows were increased in open-chest dogs by stimulating myocardial metabolism (catecholamines + atropine) with and without adenosine. During control states mean left ventricular (LV) myocardial blood flows (microspheres) were 0.5-1 ml·g(-1)·min(-1) and increased to 2-3 ml·g(-1)·min(-1) with catecholamine infusion and to ∼4 ml·g(-1)·min(-1) with adenosine (Ado). Flow heterogeneity was similar in all states: relative dispersion (RD = SD/mean) was ∼25%, using LV pieces 0.1-0.2% of total. During catecholamine infusion local flows increased in proportion to the mean flows in 45% of the LV, "tracking" closely (increased proportionately to mean flow), while ∼40% trended toward the mean. Near-neighbor regional flows remained strongly spatially correlated, with fractal dimension D near 1.2 (Hurst coefficient 0.8). The spatial patterns remain similar at varied levels of metabolic stimulation inferring metabolic dominance. In contrast, adenosine vasodilation increased flows eightfold times control while destroying correlation with the control state. The Ado-induced spatial patterns differed from control but were self-consistent, inferring that with full vasodilation the relaxed arterial anatomy dominates the distribution. We conclude that vascular anatomy governs flow distributions during adenosine vasodilation but that metabolic vasoregulation dominates in normal physiological states.

  6. Effect of unsaturated fatty acids on myocardial performance, metabolism and morphology.

    PubMed

    Pinotti, M F; Silva, M D P; Sugizaki, M M; Diniz, Y S; Sant'Ana, L S; Aragon, F F; Padovani, C R; Novelli, E L B; Cicogna, A C

    2006-02-01

    Diets rich in saturated fatty acids are one of the most important causes of atherosclerosis in men, and have been replaced with diets rich in unsaturated fatty acids (UFA) for the prevention of this disorder. However, the effect of UFA on myocardial performance, metabolism and morphology has not been completely characterized. The objective of the present investigation was to evaluate the effects of a UFA-rich diet on cardiac muscle function, oxidative stress, and morphology. Sixty-day-old male Wistar rats were fed a control (N = 8) or a UFA-rich diet (N = 8) for 60 days. Myocardial performance was studied in isolated papillary muscle by isometric and isotonic contractions under basal conditions after calcium chloride (5.2 mM) and ss-adrenergic stimulation with 1.0 microM isoproterenol. Fragments of the left ventricle free wall were used to study oxidative stress and were analyzed by light microscopy, and the myocardial ultrastructure was examined in left ventricle papillary muscle. After 60 days the UFA-rich diet did not change myocardial function. However, it caused high lipid hydroperoxide (176 +/- 5 vs 158 +/- 5, P < 0.0005) and low catalase (7 +/- 1 vs 9 +/- 1, P < 0.005) and superoxide-dismutase (18 +/- 2 vs 27 +/- 5, P < 0.005) levels, and discrete morphological changes in UFA-rich diet hearts such as lipid deposits and mitochondrial membrane alterations compared to control rats. These data show that a UFA-rich diet caused myocardial oxidative stress and mild structural alterations, but did not change mechanical function.

  7. CD36 Protein Influences Myocardial Ca2+ Homeostasis and Phospholipid Metabolism

    PubMed Central

    Pietka, Terri A.; Sulkin, Matthew S.; Kuda, Ondrej; Wang, Wei; Zhou, Dequan; Yamada, Kathryn A.; Yang, Kui; Su, Xiong; Gross, Richard W.; Nerbonne, Jeanne M.; Efimov, Igor R.; Abumrad, Nada A.

    2012-01-01

    Sarcolemmal CD36 facilitates myocardial fatty acid (FA) uptake, which is markedly reduced in CD36-deficient rodents and humans. CD36 also mediates signal transduction events involving a number of cellular pathways. In taste cells and macrophages, CD36 signaling was recently shown to regulate store-responsive Ca2+ flux and activation of Ca2+-dependent phospholipases A2 that cycle polyunsaturated FA into phospholipids. It is unknown whether CD36 deficiency influences myocardial Ca2+ handling and phospholipid metabolism, which could compromise the heart, typically during stresses. Myocardial function was examined in fed or fasted (18–22 h) CD36−/− and WT mice. Echocardiography and telemetry identified conduction anomalies that were associated with the incidence of sudden death in fasted CD36−/− mice. No anomalies or death occurred in WT mice during fasting. Optical imaging of perfused hearts from fasted CD36−/− mice documented prolongation of Ca2+ transients. Consistent with this, knockdown of CD36 in cardiomyocytes delayed clearance of cytosolic Ca2+. Hearts of CD36−/− mice (fed or fasted) had 3-fold higher SERCA2a and 40% lower phospholamban levels. Phospholamban phosphorylation by protein kinase A (PKA) was enhanced after fasting reflecting increased PKA activity and cAMP levels in CD36−/− hearts. Abnormal Ca2+ homeostasis in the CD36−/− myocardium associated with increased lysophospholipid content and a higher proportion of 22:6 FA in phospholipids suggests altered phospholipase A2 activity and changes in membrane dynamics. The data support the role of CD36 in coordinating Ca2+ homeostasis and lipid metabolism and the importance of this role during myocardial adaptation to fasting. Potential relevance of the findings to CD36-deficient humans would need to be determined. PMID:23019328

  8. Effects of a N(6)-disubstituted adenosine derivative on myocardial metabolism and ischemic stress following coronary occlusion.

    PubMed

    Kahles, H; Junggeburth, J; Lick, T; Schäfer, W; Kochsiek, K

    1987-10-01

    The effect of N(6)-phenyl-N(6)-allyladenosine (PAA, BM 11.189) on myocardial ischemic stress was evaluated in six open-chest mongrel dogs during repeated coronary occlusions of 3 min. Whereas there was not significant change in hemodynamic parameters before and during coronary occlusions after treatment, PAA reduced significantly epicardial ST-segment elevations (-34%) during ischemia and myocardial release of lactate (-43%), phosphate (-44%), and potassium (-48%) in the early reperfusion period. PAA lowered significantly arterial non esterified fatty acids and converted oxidative myocardial metabolism from lipid to predominantly carbohydrate utilization, reflected by a shift of cardiac respiratory quotient from 0.81 to 1.01. The beneficial effects of PAA on myocardial ischemic injury could be explained by an improved economy of oxidative myocardial energy supply in the jeopardized border zone of the ischemic myocardium.

  9. Deoxyglucose method for the estimation of local myocardial glucose metabolism with positron computed tomography

    SciTech Connect

    Ratib, O.; Phelps, M.E.; Huang, S.C.; Henze, E.; Selin, C.E.; Schelbert, H.R.

    1981-01-01

    The deoxyglucose method originally developed for measurements of the local cerebral metabolic rate for glucose has been investigated in terms of its application to studies of the heart with positron computed tomography (PCT) and FDG. Studies were performed in dogs to measure the tissue kinetics of FDG with PCT and by direct arterial-venous sampling. The operational equation developed in our laboratory as an extension of the Sokoloff model was used to analyze the data. The FDG method accurately predicted the true MMRGlc even when the glucose metabolic rate was normal but myocardial blood flow (MBF) was elevated 5 times the control value or when metabolism was reduced to 10% of normal and MBF increased 5 times normal. Improvements in PCT resolution are required to improve the accuracy of the estimates of the rate constants and the MMRGlc.

  10. Atorvastatin Improves Ventricular Remodeling after Myocardial Infarction by Interfering with Collagen Metabolism

    PubMed Central

    Reichert, Karla; Pereira do Carmo, Helison Rafael; Galluce Torina, Anali; Diógenes de Carvalho, Daniela; Carvalho Sposito, Andrei; de Souza Vilarinho, Karlos Alexandre; da Mota Silveira-Filho, Lindemberg; Martins de Oliveira, Pedro Paulo

    2016-01-01

    Purpose Therapeutic strategies that modulate ventricular remodeling can be useful after acute myocardial infarction (MI). In particular, statins may exert effects on molecular pathways involved in collagen metabolism. The aim of this study was to determine whether treatment with atorvastatin for 4 weeks would lead to changes in collagen metabolism and ventricular remodeling in a rat model of MI. Methods Male Wistar rats were used in this study. MI was induced in rats by ligation of the left anterior descending coronary artery (LAD). Animals were randomized into three groups, according to treatment: sham surgery without LAD ligation (sham group, n = 14), LAD ligation followed by 10mg atorvastatin/kg/day for 4 weeks (atorvastatin group, n = 24), or LAD ligation followed by saline solution for 4 weeks (control group, n = 27). After 4 weeks, hemodynamic characteristics were obtained by a pressure-volume catheter. Hearts were removed, and the left ventricles were subjected to histologic analysis of the extents of fibrosis and collagen deposition, as well as the myocyte cross-sectional area. Expression levels of mediators involved in collagen metabolism and inflammation were also assessed. Results End-diastolic volume, fibrotic content, and myocyte cross-sectional area were significantly reduced in the atorvastatin compared to the control group. Atorvastatin modulated expression levels of proteins related to collagen metabolism, including MMP1, TIMP1, COL I, PCPE, and SPARC, in remote infarct regions. Atorvastatin had anti-inflammatory effects, as indicated by lower expression levels of TLR4, IL-1, and NF-kB p50. Conclusion Treatment with atorvastatin for 4 weeks was able to attenuate ventricular dysfunction, fibrosis, and left ventricular hypertrophy after MI in rats, perhaps in part through effects on collagen metabolism and inflammation. Atorvastatin may be useful for limiting ventricular remodeling after myocardial ischemic events. PMID:27880844

  11. Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation.

    PubMed

    Crawford, Peter A; Crowley, Jan R; Sambandam, Nandakumar; Muegge, Brian D; Costello, Elizabeth K; Hamady, Micah; Knight, Rob; Gordon, Jeffrey I

    2009-07-07

    Studies in mice indicate that the gut microbiota promotes energy harvest and storage from components of the diet when these components are plentiful. Here we examine how the microbiota shapes host metabolic and physiologic adaptations to periods of nutrient deprivation. Germ-free (GF) mice and mice who had received a gut microbiota transplant from conventionally raised donors were compared in the fed and fasted states by using functional genomic, biochemical, and physiologic assays. A 24-h fast produces a marked change in gut microbial ecology. Short-chain fatty acids generated from microbial fermentation of available glycans are maintained at higher levels compared with GF controls. During fasting, a microbiota-dependent, Ppar alpha-regulated increase in hepatic ketogenesis occurs, and myocardial metabolism is directed to ketone body utilization. Analyses of heart rate, hydraulic work, and output, mitochondrial morphology, number, and respiration, plus ketone body, fatty acid, and glucose oxidation in isolated perfused working hearts from GF and colonized animals (combined with in vivo assessments of myocardial physiology) revealed that the fasted GF heart is able to sustain its performance by increasing glucose utilization, but heart weight, measured echocardiographically or as wet mass and normalized to tibial length or lean body weight, is significantly reduced in both fasted and fed mice. This myocardial-mass phenotype is completely reversed in GF mice by consumption of a ketogenic diet. Together, these results illustrate benefits provided by the gut microbiota during periods of nutrient deprivation, and emphasize the importance of further exploring the relationship between gut microbes and cardiovascular health.

  12. Metformin improves cardiac function in mice with heart failure after myocardial infarction by regulating mitochondrial energy metabolism.

    PubMed

    Sun, Dan; Yang, Fei

    2017-03-14

    To investigate whether metformin can improve the cardiac function through improving the mitochondrial function in model of heart failure after myocardial infarction. Male C57/BL6 mice aged about 8 weeks were selected and the anterior descending branch was ligatured to establish the heart failure model after myocardial infarction. The cardiac function was evaluated via ultrasound after 3 days to determine the modeling was successful, and the mice were randomly divided into two groups. Saline group (Saline) received the intragastric administration of normal saline for 4 weeks, and metformin group (Met) received the intragastric administration of metformin for 4 weeks. At the same time, Shame group (Sham) was set up. Changes in cardiac function in mice were detected at 4 weeks after operation. Hearts were taken from mice after 4 weeks, and cell apoptosis in myocardial tissue was detected using TUNEL method; fresh mitochondria were taken and changes in oxygen consumption rate (OCR) and respiratory control rate (RCR) of mitochondria in each group were detected using bio-energy metabolism tester, and change in mitochondrial membrane potential (MMP) of myocardial tissue was detected via JC-1 staining; the expressions and changes in Bcl-2, Bax, Sirt3, PGC-1α and acetylated PGC-1α in myocardial tissue were detected by Western blot. RT-PCR was used to detect mRNA levels in Sirt3 in myocardial tissues. Metformin improved the systolic function of heart failure model rats after myocardial infarction and reduced the apoptosis of myocardial cells after myocardial infarction. Myocardial mitochondrial respiratory function and membrane potential were decreased after myocardial infarction, and metformin treatment significantly improved the mitochondrial respiratory function and mitochondrial membrane potential; Metformin up-regulated the expression of Sirt3 and the activity of PGC-1α in myocardial tissue of heart failure after myocardial infarction. Metformin decreases the

  13. Myocardial contractile and metabolic properties of familial hypertrophic cardiomyopathy caused by cardiac troponin I gene mutations: a simulation study.

    PubMed

    Wu, Bo; Wang, Longhui; Liu, Qian; Luo, Qingming

    2012-01-01

    Familial hypertrophic cardiomyopathy (FHC) is an inherited disease that is caused by sarcomeric protein gene mutations. The mechanism by which these mutant proteins cause disease is uncertain. Experimentally, cardiac troponin I (CTnI) gene mutations mainly alter myocardial performance via increases in the Ca(2+) sensitivity of cardiac contractility. In this study, we used an integrated simulation that links electrophysiology, contractile activity and energy metabolism of the myocardium to investigate alterations in myocardial contractile function and energy metabolism regulation as a result of increased Ca(2+) sensitivity in CTnI mutations. Simulation results reproduced the following typical features of FHC: (1) slower relaxation (diastolic dysfunction) caused by prolonged [Ca(2+)](i) and force transients; (2) higher energy consumption with the increase in Ca(2+) sensitivity; and (3) reduced fatty acid oxidation and enhanced glucose utilization in hypertrophied heart metabolism. Furthermore, the simulation indicated that in conditions of high energy consumption (that is, more than an 18.3% increase in total energy consumption), the myocardial energetic metabolic network switched from a net consumer to a net producer of lactate, resulting in a low coupling of glucose oxidation to glycolysis, which is a common feature of hypertrophied hearts. This study provides a novel systematic myocardial contractile and metabolic analysis to help elucidate the pathogenesis of FHC and suggests that the alterations in resting heart energy supply and demand could contribute to disease progression.

  14. Changes in myocardial substrate and energy metabolism by S-(4)-hydroxyphenylglycine and an N-(6)-derivative of adenosine.

    PubMed

    Kahles, H; Schäfer, W; Lick, T; Junggeburth, J; Kochsiek, K

    1986-01-01

    In 15 mongrel open chest dogs oxidative myocardial carbohydrate utilization was stimulated by activation of pyruvatedehydrogenase with S-(4)-hydroxyphenylglycine (HPG) or by inhibition of lipolysis with N(6)-allyl-N(6)-cyclohexyladenosine (PAA). HPG and PAA shifted cardiac respiratory quotients (RQ) from 0.83 to 0.89 and 0.99, respectively. Oxygen extraction ratio of lactate was significantly increased by both interventions. Arterial nonesterified fatty acids (NEFA) concentration decreased significantly only by PAA. The oxygen saving potency of both interventions was quantified over a wide hemodynamic range by comparing the directly measured myocardial oxygen consumption (MVO2) with the myocardial energy requirements calculated from its hemodynamic determinants according to the Bretschneider formula during base conditions and beta-stimulation. Inhibition of peripheral lipolysis with PAA reduced MVO2 by 14%, enzyme activation with HPG by 8%. The results show that the efficiency of the myocardial energy supply can be influenced by manipulation of the oxidative substrate metabolism.

  15. Fenofibrate Therapy Restores Antioxidant Protection and Improves Myocardial Insulin Resistance in a Rat Model of Metabolic Syndrome and Myocardial Ischemia: The Role of Angiotensin II.

    PubMed

    Ibarra-Lara, Luz; Sánchez-Aguilar, María; Sánchez-Mendoza, Alicia; Del Valle-Mondragón, Leonardo; Soria-Castro, Elizabeth; Carreón-Torres, Elizabeth; Díaz-Díaz, Eulises; Vázquez-Meza, Héctor; Guarner-Lans, Verónica; Rubio-Ruiz, María Esther

    2016-12-28

    Renin-angiotensin system (RAS) activation promotes oxidative stress which increases the risk of cardiac dysfunction in metabolic syndrome (MetS) and favors local insulin resistance. Fibrates regulate RAS improving MetS, type-2 diabetes and cardiovascular diseases. We studied the effect of fenofibrate treatment on the myocardic signaling pathway of Angiotensin II (Ang II)/Angiotensin II type 1 receptor (AT1) and its relationship with oxidative stress and myocardial insulin resistance in MetS rats under heart ischemia. Control and MetS rats were assigned to the following groups: (a) sham; (b) vehicle-treated myocardial infarction (MI) (MI-V); and (c) fenofibrate-treated myocardial infarction (MI-F). Treatment with fenofibrate significantly reduced triglycerides, non-high density lipoprotein cholesterol (non-HDL-C), insulin levels and insulin resistance index (HOMA-IR) in MetS animals. MetS and MI increased Ang II concentration and AT1 expression, favored myocardial oxidative stress (high levels of malondialdehyde, overexpression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4), decreased total antioxidant capacity and diminished expression of superoxide dismutase (SOD)1, SOD2 and catalase) and inhibited expression of the insulin signaling cascade: phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PkB, also known as Akt)/Glut-4/endothelial nitric oxide synthase (eNOS). In conclusion, fenofibrate treatment favors an antioxidant environment as a consequence of a reduction of the Ang II/AT1/NOX4 signaling pathway, reestablishing the cardiac insulin signaling pathway. This might optimize cardiac metabolism and improve the vasodilator function during myocardial ischemia.

  16. Depressive disorder and gastrointestinal dysfunction after myocardial infarct are associated with abnormal tryptophan-5-hydroxytryptamine metabolism in rats

    PubMed Central

    Liu, Chunyan; Wang, Yangang

    2017-01-01

    In this study, we investigated the relationship between tryptophan-5-hydroxytryptamine metabolism, depressive disorder, and gastrointestinal dysfunction in rats after myocardial infarction. Our goal was to elucidate the physiopathologic bases of somatic/psychiatric depression symptoms after myocardial infarction. A myocardial infarction model was established by permanent occlusion of the left anterior descending coronary artery. Depression-like behavior was evaluated using the sucrose preference test, open field test, and forced swim test. Gastric retention and intestinal transit were detected using the carbon powder labeling method. Immunohistochemical staining was used to detect indoleamine 2,3-dioxygenase expression in the hippocampus and ileum. High-performance liquid chromatography with fluorescence and ultraviolet detection determined the levels of 5-hydroxytryptamine, its precursor tryptophan, and its metabolite 5-hydroxyindoleacetic acid in the hippocampus, distal ileum, and peripheral blood. All data were analyzed using one-way analyses of variance. Three weeks after arterial occlusion, rats in the model group began to exhibit depression-like symptoms. For example, the rate of sucrose consumption was reduced, the total and central distance traveled in the open field test were reduced, and immobility time was increased, while swimming, struggling and latency to immobility were decreased in the forced swim test. Moreover, the gastric retention rate and gastrointestinal transit rate were increased in the model group. Expression of indoleamine 2,3-dioxygenase was increased in the hippocampus and ileum, whereas 5-hydroxytryptamine metabolism was decreased, resulting in lower 5-hydroxytryptamine and 5-hydroxyindoleacetic acid levels in the hippocampus and higher levels in the ileum. Depressive disorder and gastrointestinal dysfunction after myocardial infarction involve abnormal tryptophan-5-hydroxytryptamine metabolism, which may explain the somatic, cognitive

  17. The relationship between biventricular myocardial performance and metabolic parameters during incremental exercise and recovery in healthy adolescents.

    PubMed

    Pieles, Guido E; Gowing, Lucy; Forsey, Jonathan; Ramanujam, Paramanantham; Miller, Felicity; Stuart, A Graham; Williams, Craig A

    2015-12-15

    Background left ventricular (LV) and right ventricular (RV) myocardial reserve during exercise in adolescents has not been directly characterized. The aim of this study was to quantify myocardial performance response to exercise by using two-dimensional (2-D) speckle tracking echocardiography and describe the relationship between myocardial reserve, respiratory, and metabolic exercise parameters. A total of 23 healthy boys and girls (mean age 13.2 ± 2.7 yr; stature 159.1 ± 16.4 cm; body mass 49.5 ± 16.6 kg; BSA 1.47 ± 0.33 m(2)) completed an incremental cardiopulmonary exercise test (25 W · 3 min increments) with simultaneous acquisition of 2-D transthoracic echocardiography at rest, each exercise stage up to 100 W, and in recovery at 2 min and 10 min. Two-dimensional LV (LV Sl) and RV (RV Sl) longitudinal strain and LV circumferential strain (LV Sc) were analyzed to define the relationship between myocardial performance reserve and metabolic exercise parameters. Participants achieved a peak oxygen uptake (V̇o 2peak) of 40.6 ± 8.9 ml · kg(-1) · min(-1) and a work rate of 154 ± 42 W. LV Sl and LV Sc and RV Sl increased significantly across work rates (P < 0.05). LV Sl during exercise was significantly correlated to resting strain, V̇o 2peak, oxygen pulse, and work rate (0.530 ≤ r ≤ 0.784, P < 0.05). This study identifies a positive and moderate relationship between LV and RV myocardial performance and metabolic parameters during exercise by using a novel methodology. Relationships detected present novel data directly describing myocardial adaptation at different stages of exercise and recovery that in the future can help directly assess cardiac reserve in patients with cardiac pathology.

  18. A Comparative Metabolomics Approach Reveals Early Biomarkers for Metabolic Response to Acute Myocardial Infarction

    PubMed Central

    Ali, Sara E.; Farag, Mohamed A.; Holvoet, Paul; Hanafi, Rasha S.; Gad, Mohamed Z.

    2016-01-01

    Discovery of novel biomarkers is critical for early diagnosis of acute coronary syndrome (ACS). Serum metabolite profiling of ST-elevation myocardial infarction (STEMI), unstable angina (UA) and healthy controls was performed using gas chromatography mass spectrometry (GC/MS), solid-phase microextraction coupled to gas chromatography mass spectrometry (SPME-GC/MS) and nuclear magnetic resonance (1H-NMR). Multivariate data analysis revealed a metabolic signature that could robustly discriminate STEMI patients from both healthy controls and UA patients. This panel of biomarkers consisted of 19 metabolites identified in the serum of STEMI patients. One of the most intriguing biomarkers among these metabolites is hydrogen sulfide (H2S), an endogenous gasotransmitter with profound effect on the heart. Serum H2S absolute levels were further investigated using a quantitative double-antibody sandwich enzyme-linked immunosorbent assay (ELISA). This highly sensitive immunoassay confirmed the elevation of serum H2S in STEMI patients. H2S level discriminated between UA and STEMI groups, providing an initial insight into serum-free H2S bioavailability during ACS. In conclusion, the current study provides a detailed map illustrating the most predominant altered metabolic pathways and the biochemical linkages among the biomarker metabolites identified in STEMI patients. Metabolomics analysis may yield novel predictive biomarkers that will potentially allow for an earlier medical intervention. PMID:27821850

  19. Impairment of energy metabolism in intact residual myocardium of rat hearts with chronic myocardial infarction.

    PubMed Central

    Neubauer, S; Horn, M; Naumann, A; Tian, R; Hu, K; Laser, M; Friedrich, J; Gaudron, P; Schnackerz, K; Ingwall, J S

    1995-01-01

    The purpose of this study was to test the hypothesis that energy metabolism is impaired in residual intact myocardium of chronically infarcted rat heart, contributing to contractile dysfunction. Myocardial infarction (MI) was induced in rats by coronary artery ligation. Hearts were isolated 8 wk later and buffer-perfused isovolumically. MI hearts showed reduced left ventricular developed pressure, but oxygen consumption was unchanged. High-energy phosphate contents were measured chemically and by 31P-NMR spectroscopy. In residual intact left ventricular tissue, ATP was unchanged after MI, while creatine phosphate was reduced by 31%. Total creatine kinase (CK) activity was reduced by 17%, the fetal CK isoenzymes BB and MB increased, while the "adult" mitochondrial CK isoenzyme activity decreased by 44%. Total creatine content decreased by 35%. Phosphoryl exchange between ATP and creatine phosphate, measured by 31P-NMR magnetization transfer, fell by 50% in MI hearts. Thus, energy reserve is substantially impaired in residual intact myocardium of chronically infarcted rats. Because phosphoryl exchange was still five times higher than ATP synthesis rates calculated from oxygen consumption, phosphoryl transfer via CK may not limit baseline contractile performance 2 mo after MI. In contrast, when MI hearts were subjected to acute stress (hypoxia), mechanical recovery during reoxygenation was impaired, suggesting that reduced energy reserve contributes to increased susceptibility of MI hearts to acute metabolic stress. PMID:7883957

  20. Myocardial ischemic-reperfusion injury in a rat model of metabolic syndrome.

    PubMed

    Mozaffari, Mahmood S; Schaffer, Stephen W

    2008-10-01

    Hearts of NaCl-induced hypertensive-glucose intolerant (HGI) rats develop reduced infarcts after ischemia-reperfusion injury (IRI) than their hypertensive (H) counterparts. Because high intake of saturated fat is a major risk factor for ischemic heart disease, we tested the hypothesis that chronic (18 weeks) consumption of a high saturated fat diet increases susceptibility to IRI, an effect more marked in the HGI rats than in the H rats. The fat-fed H (HFAT) rat displayed significantly higher body weight and plasma leptin content compared to the H, HGI, or fat-fed HGI (HGIFAT) rats which all showed similar values. In contrast, plasma triglyceride concentration was significantly higher in the HGIFAT rat than in the other three groups. Plasma insulin concentration was similar in the two H groups but higher than that of the two HGI groups. Compared to the H rat, the HGI rat was markedly glucose intolerant, with fat feeding causing comparable worsening of glucose intolerance in each group. The HGIFAT rats displayed a reduction in baseline myocardial contractility and relaxation and a higher end-diastolic pressure compared to the other three groups. Infarct size was significantly lower in the HGI rats than in the H rats. Although fat feeding did not affect infarct size of the H rat, it worsened that of the HGIFAT rat thereby abrogating the differential that existed between the H and HGI rats. In conclusion, excess fat feeding impairs myocardial function of HGI rats and increases their susceptibility to IRI. These findings are of relevance to the metabolic syndrome that manifests as a cluster of insulin resistance, dyslipidemia, and systemic hypertension.

  1. [Effect of rehabilitation after myocardial infarction on muscular metabolism. Contribution of phosphorus 31 NMR spectroscopy].

    PubMed

    Cottin, Y; Marcer, I; Walker, P; Verges, B; Caillaux, B X; Louis, P; Didier, J P; Casillas, J M; Brunotte, F; Wolf, J E

    1994-06-01

    P 31 NMR spectroscopy is a recent technique which allows a non-invasive and direct analysis of oxidative metabolism and pH changes, an indicator of acidosis due to lactic acid accumulation in the skeletal muscles. The authors investigated oxidative muscular metabolism of the sural triceps in 10 patients after myocardial infarction by performing a study after the acute phase and repeating the study after a programme of physical training. At rest, there were no significant differences. On the other hand, for the same level of maximal effort, the depletion in phosphocreatinine (PCr) and the accumulation of inorganic phosphate (Pi) were significantly lower after physical training: the PCr/PCr + Pi increased from 0.467 +/- 0.179 to 0.538 +/- 0.20 (p < 0.02) and the Pi/PCr ratio decreased from 1.570 +/- 1.440 to 1.181 +/- 1.069 (p < 0.05). The pH at the same level of maximal exercise did not change significantly between the two periods: 6.85 +/- 0.16 vs 6.88 +/- 0.15 (NS). The peak oxygen consumption (VO2) measured during bicycle ergometry increased significantly from 23.4 +/- 10.5 to 28.3 +/- 12.14 ml/min/kg after exercise training (p < 0.01). In addition, a correlation was observed between the improvement of the peripheral parameters (PCr/PCr + Pi) and the increase in VO2 max (r = 0.757, p < 0.01). The authors results confirm the effects of physical training on oxidative metabolisms of the peripheral muscles and its influence on improvement of global performance of coronary patients.

  2. Qishen granules inhibit myocardial inflammation injury through regulating arachidonic acid metabolism

    PubMed Central

    Li, Chun; Wang, Jing; Wang, Qiyan; Zhang, Yi; Zhang, Na; Lu, Linghui; Wu, Yan; Zhang, Qian; Wang, Wei; Wang, Yong; Tu, Pengfei

    2016-01-01

    Qishen granules (QSG), a traditional Chinese medicine, have been prescribed widely in the treatment of coronary heart diseases. Previous studies demonstrated that QSG had anti-inflammatory and cardio-protective effects in mice with acute myocardial infarction (AMI). However, the mechanisms by which QSG attenuate inflammation and prevent post-AMI heart failure (HF) are still unclear. In this study, we explored the anti-inflammatory mechanisms of QSG by in vitro and in vivo experiments. A novel inflammatory injury model of H9C2 cells was induced by lipopolysaccharide (LPS)-stimulated macrophage-conditioned media (CM). An animal model of AMI was conducted by ligation of left anterior descending (LAD) coronary artery in mice. We found that QSG inhibited release of cytokines from LPS-stimulated RAW 264.7 macrophages and protected H9C2 cardiac cells against CM-induced injury. In vivo results showed that QSG administration could improve cardiac functions and alter pathological changes in model of AMI. QSG regulated multiple key molecules, including phospholipases A2 (PLA2), cyclooxygenases (COXs) and lipoxygenases (LOXs), in arachidonic acid metabolism pathway. Interestingly, QSG also targeted TNF-α-NF-κB and IL-6-JAK2-STAT3 signaling pathways. Taken together, QSG achieve synergistic effects in mitigating post-AMI HF by regulating multiple targets in inflammatory pathways. This study provides insights into anti-inflammatory therapeutics in managing HF after AMI. PMID:27833128

  3. Attenuation by creatine of myocardial metabolic stress in Brattleboro rats caused by chronic inhibition of nitric oxide synthase.

    PubMed Central

    Constantin-Teodosiu, D.; Greenhaff, P. L.; Gardiner, S. M.; Randall, M. D.; March, J. E.; Bennett, T.

    1995-01-01

    1. The present experiment was undertaken to investigate: (a) the effect of nitric oxide synthase (NOS) inhibition, mediated by oral supplementation of the NOS inhibitor, NG-nitro-L-arginine methyl ester (L-NAME), on measures of myocardial energy metabolism and function: (b) the effect of oral creatine supplementation on these variables, in the absence and presence of L-NAME. 2. In one series of experiments, 4 weeks oral administration of L-NAME (0.05 mg ml-1 day-1 in the drinking water) to Brattleboro rats caused significant reductions in myocardial ATP, creatine, and total creatine concentrations and an accumulation of tissue lactate when compared with control animals. Administration of creatine (0.63 mg ml-1 day-1 in the drinking water) for 4 weeks elevated myocardial creatine and total creatine concentrations and reduced lactate accumulation, but did not significantly affect ATP or phosphocreatine (PCr). Concurrent treatment with creatine and L-NAME prevented the reduction in creatine and total creatine concentrations, and significantly attenuated the accumulation of lactate and the reduction in ATP seen with L-NAME alone. 3. In a second series of experiments, 4 weeks treatment with L-NAME and creatine plus L-NAME increased mean arterial blood pressure in conscious Brattleboro rats. Hearts isolated from these animals showed decreased coronary flow and left ventricular developed pressure (LVDP), and total mechanical performance. Treatment with creatine alone had no measurable effect on either mean arterial blood pressure or coronary flow in isolated hearts. However, there was an increase in LVDP, but not in total mechanical performance, because there was a bradycardia. 4. These results indicate that creatine supplementation can attenuate the metabolic stress associated with L-NAME administration and that this effect occurs as a consequence of the action of creatine on myocardial energy metabolism. PMID:8719809

  4. Targeting Amino Acid Metabolism for Molecular Imaging of Inflammation Early After Myocardial Infarction

    PubMed Central

    Thackeray, James T.; Bankstahl, Jens P.; Wang, Yong; Wollert, Kai C.; Bengel, Frank M.

    2016-01-01

    Acute tissue inflammation after myocardial infarction influences healing and remodeling and has been identified as a target for novel therapies. Molecular imaging holds promise for guidance of such therapies. The amino acid 11C-methionine is a clinically approved agent which is thought to accumulate in macrophages, but not in healthy myocytes. We assessed the suitability of positron emission tomography (PET) with 11C-methionine for imaging post-MI inflammation, from cell to mouse to man. Uptake assays demonstrated 7-fold higher 11C-methionine uptake by polarized pro-inflammatory M1 macrophages over anti-inflammatory M2 subtypes (p<0.001). C57Bl/6 mice (n=27) underwent coronary artery ligation or no surgery. Serial 11C-methionine PET was performed 3, 5 and 7d later. MI mice exhibited a perfusion defect in 32-50% of the left ventricle (LV). PET detected increased 11C-methionine accumulation in the infarct territory at 3d (5.9±0.9%ID/g vs 4.7±0.9 in remote myocardium, and 2.6±0.5 in healthy mice; p<0.05 and <0.01 respectively), which declined by d7 post-MI (4.3±0.6 in infarct, 3.4±0.8 in remote; p=0.03 vs 3d, p=0.08 vs healthy). Increased 11C-methionine uptake was associated with macrophage infiltration of damaged myocardium. Treatment with anti-integrin antibodies (anti-CD11a, -CD11b, -CD49d; 100µg) lowered macrophage content by 56% and 11C-methionine uptake by 46% at 3d post-MI. A patient study at 3d after ST-elevation MI and early reperfusion confirmed elevated 11C-methionine uptake in the hypoperfused myocardial region. Targeting of elevated amino acid metabolism in pro-inflammatory M1 macrophages enables PET imaging-derived demarcation of tissue inflammation after MI. 11C-methionine-based molecular imaging may assist in the translation of novel image-guided, inflammation-targeted regenerative therapies. PMID:27570549

  5. The Relationship of Myocardial Collagen Metabolism and Reverse Remodeling after Cardiac Resynchronization Therapy

    PubMed Central

    Stankovic, Ivan; Milasinovic, Goran; Nikcevic, Gabrijela; Kircanski, Bratislav; Jovanovic, Velibor; Raspopovic, Srdjan; Radovanovic, Nikola; Pavlovic, Sinisa U.

    2016-01-01

    Summary Background In the majority of patients with a wide QRS complex and heart failure resistant to optimal medical therapy, cardiac resynchronization therapy (CRT) leads to reverse ventricular remodeling and possibly to changes in cardiac collagen synthesis and degradation. We investigated the relationship of biomarkers of myocardial collagen metabolism and volumetric response to CRT. Methods We prospectively studied 46 heart failure patients (mean age 61±9 years, 87% male) who underwent CRT implantation. Plasma concentrations of amino-terminal propeptide type I (PINP), a marker of collagen synthesis, and carboxy-terminal collagen telopeptide (CITP), a marker of collagen degradation, were measured before and 6 months after CRT. Response to CRT was defined as 15% or greater reduction in left ventricular end-systolic volume at 6-month follow-up. Results Baseline PINP levels showed a negative correlation with both left ventricular end-diastolic volume (r=-0.51; p=0.032), and end-systolic diameter (r=-0.47; p=0.049). After 6 months of device implantation, 28 patients (61%) responded to CRT. No significant differences in the baseline levels of PINP and CITP between responders and nonresponders were observed (p>0.05 for both). During follow-up, responders demonstrated a significant increase in serum PINP level from 31.37±18.40 to 39.2±19.19 μg/L (p=0.049), whereas in non-responders serum PINP levels did not significantly change (from 28.12±21.55 to 34.47± 18.64 μg/L; p=0.125). There were no significant changes in CITP levels in both responders and non-responders (p>0.05). Conclusions Left ventricular reverse remodeling induced by CRT is associated with an increased collagen synthesis in the first 6 months of CRT implantation.

  6. Myocardial oxidative stress, osteogenic phenotype, and energy metabolism are differentially involved in the initiation and early progression of δ-sarcoglycan-null cardiomyopathy

    PubMed Central

    Missihoun, Comlan; Zisa, David; Shabbir, Arsalan; Lin, Huey

    2009-01-01

    Dilated cardiomyopathy (DCM) is a common cause of heart failure, and identification of early pathogenic events occurring prior to the onset of cardiac dysfunction is of mechanistic, diagnostic, and therapeutic importance. The work characterized early biochemical pathogenesis in TO2 strain hamsters lacking δ-sarcoglycan. Although the TO2 hamster heart exhibits normal function at 1 month of age (presymptomatic stage), elevated levels of myeloperoxidase, monocyte chemotactic protein-1, malondialdehyde, osteopontin, and alkaline phosphatase were evident, indicating the presence of inflammation, oxidative stress, and osteogenic phenotype. These changes were localized primarily to the myocardium. Derangement in energy metabolism was identified at the symptomatic stage (4 month), and is marked by attenuated activity and expression of pyruvate dehydrogenase E1 subunit, which catalyzes the rate-limiting step in aerobic glucose metabolism. Thus, this study illustrates differential involvement of oxidative stress, osteogenic phenotype, and glucose metabolism in the initiation and early progression of δ-sarcoglycan-null DCM. PMID:18726675

  7. Ginsenoside Rb1 protects against ischemia/reperfusion-induced myocardial injury via energy metabolism regulation mediated by RhoA signaling pathway.

    PubMed

    Cui, Yuan-Chen; Pan, Chun-Shui; Yan, Li; Li, Lin; Hu, Bai-He; Chang, Xin; Liu, Yu-Ying; Fan, Jing-Yu; Sun, Kai; -Li, Quan; Han, Jing-Yan

    2017-03-22

    Cardiac ischemia and reperfusion (I/R) injury remains a challenge for clinicians. Ginsenoside Rb1 (Rb1) has been reported to have the ability to attenuate I/R injury, but its effect on energy metabolism during cardiac I/R and the underlying mechanism remain unknown. In this study, we detected the effect of Rb1 on rat myocardial blood flow, myocardial infarct size, cardiac function, velocity of venule red blood cell, myocardial structure and apoptosis, energy metabolism and change in RhoA signaling pathway during cardiac I/R injury. In addition, the binding affinity of RhoA to Rb1 was detected using surface plasmon resonance (SPR). Results showed that Rb1 treatment at 5 mg/kg/h protected all the cardiac injuries induced by I/R, including damaged myocardial structure, decrease in myocardial blood flow, impaired heart function and microcirculation, cardiomyocyte apoptosis, myocardial infarction and release of myocardial cTnI. Rb1 also inhibited the activation of RhoA signaling pathway and restored the production of ATP during cardiac I/R. Moreover, SPR assay showed that Rb1 was able to bind to RhoA in a dose-dependent manner. These results indicate that Rb1 may prevent I/R-induced cardiac injury by regulation of RhoA signaling pathway, and may serve as a potential regime to improve percutaneous coronary intervention outcome.

  8. Ginsenoside Rb1 protects against ischemia/reperfusion-induced myocardial injury via energy metabolism regulation mediated by RhoA signaling pathway

    PubMed Central

    Cui, Yuan-Chen; Pan, Chun-Shui; Yan, Li; Li, Lin; Hu, Bai-He; Chang, Xin; Liu, Yu-Ying; Fan, Jing-Yu; Sun, Kai; -Li, Quan; Han, Jing-Yan

    2017-01-01

    Cardiac ischemia and reperfusion (I/R) injury remains a challenge for clinicians. Ginsenoside Rb1 (Rb1) has been reported to have the ability to attenuate I/R injury, but its effect on energy metabolism during cardiac I/R and the underlying mechanism remain unknown. In this study, we detected the effect of Rb1 on rat myocardial blood flow, myocardial infarct size, cardiac function, velocity of venule red blood cell, myocardial structure and apoptosis, energy metabolism and change in RhoA signaling pathway during cardiac I/R injury. In addition, the binding affinity of RhoA to Rb1 was detected using surface plasmon resonance (SPR). Results showed that Rb1 treatment at 5 mg/kg/h protected all the cardiac injuries induced by I/R, including damaged myocardial structure, decrease in myocardial blood flow, impaired heart function and microcirculation, cardiomyocyte apoptosis, myocardial infarction and release of myocardial cTnI. Rb1 also inhibited the activation of RhoA signaling pathway and restored the production of ATP during cardiac I/R. Moreover, SPR assay showed that Rb1 was able to bind to RhoA in a dose-dependent manner. These results indicate that Rb1 may prevent I/R-induced cardiac injury by regulation of RhoA signaling pathway, and may serve as a potential regime to improve percutaneous coronary intervention outcome. PMID:28327605

  9. Validity of estimates of myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography despite altered patterns of substrate utilization

    SciTech Connect

    Brown, M.A.; Myears, D.W.; Bergmann, S.R.

    1989-02-01

    We recently demonstrated that the myocardial turnover rate constant (k) measured noninvasively with positron emission tomography (PET) after intravenous administration of (/sup 11/C)acetate provides a reliable index of myocardial oxidative metabolism (MVO/sub 2/) theoretically independent of the pattern of myocardial substrate use. However, because estimates of metabolism with other metabolic tracers are sensitive to substrate use, we measured k in 12 dogs during baseline conditions and again after infusion of either glucose (n = 8) or Intralipid (n = 4), interventions that raised arterial glucose or fatty acids by more than fivefold with concomitant changes in myocardial substrate use. Following glucose administration k increased, but no difference was detected after compensation for changes in hemodynamics and myocardial work induced by the infusion (0.18 +/- 0.03 min-1) (t1/2 = 3.9 min) at baseline compared with 0.22 +/- 0.06 min-1 (t1/2 = 3.2 min, p = N.S.). k was not affected by Intralipid infusion (k = 0.15 +/- 0.06 min-1 at baseline and 0.14 +/- 0.04 min-1 during infusion), and correlated closely with MVO/sub 2/ measured directly (n = 19 comparisons, r = 0.89). The results indicate that estimates of MVO/sub 2/ using (/sup 11/C)acetate and PET are valid despite changes in the pattern of myocardial substrate utilization.

  10. Quantitative proteomic changes during post myocardial infarction remodeling reveals altered cardiac metabolism and Desmin aggregation in the infarct region.

    PubMed

    Datta, Kaberi; Basak, Trayambak; Varshney, Swati; Sengupta, Shantanu; Sarkar, Sagartirtha

    2017-01-30

    Myocardial infarction is one of the leading causes of cardiac dysfunction, failure and sudden death. Post infarction cardiac remodeling presents a poor prognosis, with 30%-45% of patients developing heart failure, in a period of 5-25years. Oxidative stress has been labelled as the primary causative factor for cardiac damage during infarction, however, the impact it may have during the process of post infarction remodeling has not been well probed. In this study, we have implemented iTRAQ proteomics to catalogue proteins and functional processes, participating both temporally (early and late phases) and spatially (infarct and remote zones), during post myocardial infarction remodeling of the heart as functions of the differential oxidative stress manifest during the remodeling process. Cardiac metabolism was the dominant network to be affected during infarction and the remodeling time points considered in this study. A distinctive expression pattern of cytoskeletal proteins was also observed with increased remodeling time points. Further, it was found that the cytoskeletal protein Desmin, aggregated in the infarct zone during the remodeling process, mediated by the protease Calpain1. Taken together, all of these data in conjunction may lay the foundation to understand the effects of oxidative stress on the remodeling process and elaborate the mechanism behind the compromised cardiac function observed during post myocardial infarction remodeling.

  11. Impact of the Metabolic Syndrome on the Clinical Outcome of Patients with Acute ST-Elevation Myocardial Infarction

    PubMed Central

    Lee, Min Goo; Ahn, Youngkeun; Chae, Shung Chull; Hur, Seung Ho; Hong, Taek Jong; Kim, Young Jo; Seong, In Whan; Chae, Jei Keon; Rhew, Jay Young; Chae, In Ho; Cho, Myeong Chan; Bae, Jang Ho; Rha, Seung Woon; Kim, Chong Jin; Choi, Donghoon; Jang, Yang Soo; Yoon, Junghan; Chung, Wook Sung; Cho, Jeong Gwan; Seung, Ki Bae; Park, Seung Jung

    2010-01-01

    We sought to determine the prevalence of metabolic syndrome (MS) in patients with acute myocardial infarction and its effect on clinical outcomes. Employing data from the Korea Acute Myocardial Infarction Registry, a total of 1,990 patients suffered from acute ST-elevation myocardial infarction (STEMI) between November 2005 and December 2006 were categorized according to the National Cholesterol Education Program-Adult Treatment Panel III criteria of MS. Primary study outcomes included major adverse cardiac events (MACE) during one-year follow-up. Patients were grouped based on existence of MS: group I: MS (n=1,182, 777 men, 62.8±12.3 yr); group II: Non-MS (n=808, 675 men, 64.2±13.1 yr). Group I showed lower left ventricular ejection fraction (LVEF) (P=0.005). There were no differences between two groups in the coronary angiographic findings except for multivessel involvement (P=0.01). The incidence of in-hospital death was higher in group I than in group II (P=0.047), but the rates of composite MACE during one-year clinical follow-up showed no significant differences. Multivariate analysis showed that low LVEF, old age, MS, low high density lipoprotein cholesterol and multivessel involvement were associated with high in-hospital death rate. In conclusion, MS is an important predictor for in-hospital death in patients with STEMI. PMID:20890426

  12. Restoration of myocardial bioenergetic metabolism in swine after periods of ischemic ventricular fibrillation.

    PubMed

    Skinner, F P; Levitzky, M G; Scott, R F; Fricks, J

    1975-05-01

    Myocardial mitochondrial function and high energy phosphate levels were measured in normal swine, in swine after either 5 or 10 minutes of ischemic ventricular fibrillation (IVF) while on cardiopulmonary bypass, and in swine defibrillated after either 5 or 10 minutes of IVE. The damage to myocardial mitochondria induced by IVF, such as partial uncoupling, decreased oxygen uptake, and loss of cytochrome oxidase activity, was completely reversed almost instantly by coronary artery perfusion and the restoration of sinus rhythm. After either 5 or 10 minutes of IVF followed by coronary artery reperfusion and defibrillation, myocardial creatine phosphate (CP), adenosine monophosphate (AMP) and adenosine diphosphate (ADP) return to normal levels very rapidly. However, adenosine triphosphate (ATP) levels remain significantly lower than control levels. If the bioenergetic mechanisms of swine and human myocardium are similar, it appears that IVF at least for a 10 minute period produces no damage to myocardial mitochondria that is not corrected by perfusion of the coronary arteries and re-establishment of sinus rhythm. Furthermore, sinus rhythm can be re-established and maintained despite signficantly lower levels of myocardial ATP.

  13. Metabolic imaging of patients with cardiomyopathy

    SciTech Connect

    Geltman, E.M. )

    1991-09-01

    The cardiomyopathies comprise a diverse group of illnesses that can be characterized functionally by several techniques. However, the delineation of derangements of regional perfusion and metabolism have been accomplished only relatively recently with positron emission tomography (PET). Regional myocardial accumulation and clearance of 11C-palmitate, the primary myocardial substrate under most conditions, demonstrate marked spatial heterogeneity when studied under fasting conditions or with glucose loading. PET with 11C-palmitate permits the noninvasive differentiation of patients with nonischemic from ischemic dilated cardiomyopathy, since patients with ischemic cardiomyopathy demonstrate large zones of intensely depressed accumulation of 11C-palmitate, probably reflecting prior infarction. Patients with hypertrophic cardiomyopathy and Duchenne's muscular dystrophy demonstrate relatively unique patterns of myocardial abnormalities of perfusion and metabolism. The availability of new tracers and techniques for the evaluation of myocardial metabolism (11C-acetate), perfusion (H2(15)O), and autonomic tone (11-C-hydroxyephedrine) should facilitate further understanding of the pathogenesis of the cardiomyopathies.

  14. Alcoholic metabolic emergencies.

    PubMed

    Allison, Michael G; McCurdy, Michael T

    2014-05-01

    Ethanol intoxication and ethanol use are associated with a variety of metabolic derangements encountered in the Emergency Department. In this article, the authors discuss alcohol intoxication and its treatment, dispel the myth that alcohol intoxication is associated with hypoglycemia, comment on electrolyte derangements and their management, review alcoholic ketoacidosis, and end with a section on alcoholic encephalopathy.

  15. Protective Effect of Qiliqiangxin Capsule on Energy Metabolism and Myocardial Mitochondria in Pressure Overload Heart Failure Rats

    PubMed Central

    Zhang, Junfang; Wei, Cong; Wang, Hongtao; Tang, Siwen; Jia, Zhenhua; Wang, Lei; Xu, Dengfeng; Wu, Yiling

    2013-01-01

    Qiliqiangxin capsule (QL) was developed under the guidance of TCM theory of collateral disease and had been shown to be effective and safe for the treatment of heart failure. The present study explored the role of and mechanism by which the herbal compounds QL act on energy metabolism, in vivo, in pressure overload heart failure. SD rats received ascending aorta constriction (TAC) to establish a model of myocardial hypertrophy. The animals were treated orally for a period of six weeks. QL significantly inhibited cardiac hypertrophy due to ascending aortic constriction and improved hemodynamics. This effect was linked to the expression levels of the signaling factors in connection with upregulated energy and the regulation of glucose and lipid substrate metabolism and with a decrease in metabolic intermediate products and the protection of mitochondrial function. It is concluded that QL may regulate the glycolipid substrate metabolism by activating AMPK/PGC-1α axis and reduce the accumulation of free fatty acids and lactic acid, to protect cardiac myocytes and mitochondrial function. PMID:24078824

  16. Immunological Derangement in Hypocellular Myelodysplastic Syndromes

    PubMed Central

    Serio, B; Risitano, AM; Giudice, V; Montuori, N; Selleri, C

    2014-01-01

    Hypocellular or hypoplastic myelodysplastic syndromes (HMDS) are a distinct subgroup accounting for 10–15% of all MDS patients, that are characterized by the presence of bone marrow (BM) hypocellularity, various degree of dysmyelopoiesis and sometimes abnormal karyotype. Laboratory and clinical evidence suggest that HMDS share several immune-mediated pathogenic mechanisms with acquired idiopathic aplastic anemia (AA). Different immune-mediated mechanisms have been documented in the damage of marrow hematopoietic progenitors occurring in HMDS; they include oligoclonal expansion of cytotoxic T lymphocytes (CTLs), polyclonal expansion of various subtypes of T helper lymphocytes, overexpression of FAS-L and of the TNF–related apoptosis-inducing ligand (TRAIL), underexpression of Flice-like inhibitory protein long isoform (FLIPL) in marrow cells as well as higher release of Th1 cytokines, such as interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). It has also been documented that some HMDS patients have higher frequency of polymorphisms linked both to high production of proinflammatory cytokines such as TNF-α and transforming growth factor-β and to the inhibition of T-cell mediated immune responses such as interleukin-10, further suggesting that immune-mediated mechanisms similar to those seen in AA patients may also operate in HMDS. Clinically, the strongest evidence for immune–mediated hematopoietic suppression in some HMDS is the response to immunosuppression including mainly cyclosporine, anti-thymocyte globulin and/or cyclosporine, or alemtuzumab. Here we review all these immune mechanisms as well as the influence of this deranged cellular and humoral immunologic mileau on the initiation and possible progression of MDS. All these observations are pivotal not only for a better understanding of MDS pathophysiology, but also for their immediate clinical implications, eventually leading to the identification of MDS patients who may benefit from

  17. Abnormal myocardial fatty acid metabolism in dilated cardiomyopathy detected by iodine-123 phenylpentadecanoic acid and tomographic imaging

    SciTech Connect

    Ugolini, V.; Hansen, C.L.; Kulkarni, P.V.; Jansen, D.E.; Akers, M.S.; Corbett, J.R.

    1988-11-01

    The radioidinated synthetic fatty acid iodine-123 phenylpentadecanoic acid (IPPA) has proven useful in the identification of regional abnormalities of cardiac metabolism in patients with myocardial ischemia. The present study was performed to test the hypothesis that the myocardial distribution and turnover of fatty acids, assessed noninvasively with IPPA, are altered in patients with cardiomyopathy. Nine normal volunteers and 19 patients with dilated cardiomyopathy of various etiologies underwent cardiac imaging with single-photon emission computed tomography (SPECT) after intravenous injection of IPPA. Apical short-axis and basal short-axis sections were reconstructed and quantitatively analyzed for relative IPPA activity distribution and washout. Patients with congestive cardiomyopathy demonstrated significantly greater heterogeneity of IPPA uptake than normal subjects (maximal percent variation of activity 27 +/- 11 vs 18 +/- 4, p less than 0.01). They also demonstrated a more rapid percent washout rate than control subjects (24 +/- 8 vs 17 +/- 6 for the apical short-axis section, p less than 0.05; 26 +/- 7 vs 18 +/- 5 for the basal short-axis section, p less than 0.01). These abnormalities of fatty acid distribution and turnover were independent of the etiology of the cardiomyopathy. The degree of heterogeneity of IPPA uptake was significantly related to the patients' New York Heart Association functional class (r = 0.64, p less than 0.01). Thus, compared with normal myocardium, the myocardium of patients with congestive cardiomyopathy demonstrates a more heterogeneous distribution of fatty acid uptake, which parallels the clinical severity of the disease. Furthermore, patients with congestive cardiomyopathy demonstrate a more rapid myocardial clearance of the labeled fatty acid, as assessed with SPECT imaging.

  18. Differential effects of octanoate and heptanoate on myocardial metabolism during extracorporeal membrane oxygenation in an infant swine model

    PubMed Central

    Kajimoto, Masaki; Ledee, Dolena R.; Olson, Aaron K.; Isern, Nancy G.; Des Rosiers, Christine

    2015-01-01

    Nutritional energy support during extracorporeal membrane oxygenation (ECMO) should promote successful myocardial adaptation and eventual weaning from the ECMO circuit. Fatty acids (FAs) are a major myocardial energy source, and medium-chain FAs (MCFAs) are easily taken up by cell and mitochondria without membrane transporters. Odd-numbered MCFAs supply carbons to the citric acid cycle (CAC) via anaplerotic propionyl-CoA as well as acetyl-CoA, the predominant β-oxidation product for even-numbered MCFA. Theoretically, this anaplerotic pathway enhances carbon entry into the CAC, and provides superior energy state and preservation of protein synthesis. We tested this hypothesis in an immature swine model undergoing ECMO. Fifteen male Yorkshire pigs (26–45 days old) with 8-h ECMO received either normal saline, heptanoate (odd-numbered MCFA), or octanoate (even-numbered MCFA) at 2.3 μmol·kg body wt−1·min−1 as MCFAs systemically during ECMO (n = 5/group). The 13-carbon (13C)-labeled substrates ([2-13C]lactate, [5,6,7-13C3]heptanoate, and [U-13C6]leucine) were systemically infused as metabolic markers for the final 60 min before left ventricular tissue extraction. Extracted tissues were analyzed for the 13C-labeled and absolute concentrations of metabolites by nuclear magnetic resonance and gas chromatography-mass spectrometry. Octanoate produced markedly higher myocardial citrate concentration, and led to a higher [ATP]-to-[ADP] ratio compared with other groups. Unexpectedly, octanoate and heptanoate increased the flux of propionyl-CoA relative to acetyl-CoA into the CAC compared with control. MCFAs promoted increases in leucine oxidation, but were not associated with a difference in protein synthesis rate. In conclusion, octanoate provides energetic advantages to the heart over heptanoate. PMID:26232235

  19. Differential Effects Of Octanoate And Heptanoate On Myocardial Metabolism During Extracorporeal Membrane Oxygenation In An Infant Swine Model

    SciTech Connect

    Kajimoto, Masaki; Ledee, Dolena R.; Isern, Nancy G.; Olson, Aaron; Des Rosiers, Christine; Portman, Michael A.

    2015-10-01

    Background: Nutritional energy support during extracorporeal membrane oxygenation (ECMO) should promote successful myocardial adaptation and eventual weaning from the ECMO circuit. Fatty acids (FAs) are a major myocardial energy source, and medium-chain FAs (MCFAs) are easily taken up by cell and mitochondria without membrane transporters. Oddnumbered MCFAs supply carbons to the citric acid cycle (CAC) via anaplerotic propionyl-CoA as well as acetyl-CoA, the predominant betaoxidation product for even-numbered MCFA. Theoretically, this anaplerotic pathway enhances carbon entry into the CAC, and provides superior energy state and preservation of protein synthesis. We tested this hypothesis in an immature swine model undergoing ECMO. Methods: Fifteen male Yorkshire pigs (26-45 days old) with 8-hour ECMO were received either normal saline, heptanoate (odd-numbered MCFA) or octanoate (even-numbered MCFA) at 2.3 μmol/kg body wt/min as MCFAs systemically during ECMO (n = 5 per group). The 13-Carbon (13C)-labeled substrates ([2-13C]lactate, [5,6,7-13C3]heptanoate and [U-13C6]leucine) were systemically infused as metabolic markers for the final 60 minutes before left ventricular tissue extraction. Extracted tissues were analyzed for the 13C-labeled and absolute concentrations of metabolites by nuclear magnetic resonance and gas chromatography-mass spectrometry. Results: Octanoate produced markedly higher myocardial citrate concentration, and led to a higher [ATP]/[ADP] ratio compared with other http://mc.manuscriptcentral.com/jpen Journal of Parenteral and Enteral Nutrition For Peer Review groups. Unexpectedly, octanoate increased the flux of propionyl-CoA relative to acetyl-CoA into the CAC as well as heptanoate. MCFAs promoted increases in leucine oxidation, but were not associated with a difference in fractional protein synthesis rate. Conclusion: Octanoate provides energetic advantages to the heart over heptanoate, while preserving protein synthesis.

  20. Myocardial viability.

    PubMed Central

    Birnbaum, Y; Kloner, R A

    1996-01-01

    Left ventricular function is a major predictor of outcome in patients with coronary artery disease. Acute ischemia, postischemic dysfunction (stunning), myocardial hibernation, or a combination of these 3 are among the reversible forms of myocardial dysfunction. In myocardial stunning, dysfunction occurs despite normal myocardial perfusion, and function recovers spontaneously over time. In acute ischemia and hibernation, there is regional hypoperfusion. Function improves only after revascularization. Evidence of myocardial viability usually relies on the demonstration of uptake of various metabolic tracers, such as thallium (thallous chloride TI 201) or fludeoxyglucose F 18, by dysfunctional myocardium or by the demonstration of contractile reserve in a dysfunctional region. This can be shown as an augmentation of function during the infusion of various sympathomimetic agents. The response of ventricular segments to increasing doses of dobutamine may indicate the underlying mechanism of dysfunction. Stunned segments that have normal perfusion show dose-dependent augmentation of function. If perfusion is reduced as in hibernating myocardium, however, a biphasic response usually occurs: function improves at low doses of dobutamine, whereas higher doses may induce ischemia and, hence, dysfunction. But in patients with severely impaired perfusion, even low doses may cause ischemia. Myocardial regions with subendocardial infarction or diffuse scarring may also have augmented contractility during catecholamine infusion due to stimulation of the subepicardial layers. In these cases, augmentation of function after revascularization is not expected. Because the underlying mechanism, prognosis, and therapy may differ among these conditions, it is crucial to differentiate among dysfunctional myocardial segments that are nonviable and have no potential to regain function, hibernating or ischemic segments in which recovery of function occurs only after revascularization, and

  1. Direct regulation of myocardial triglyceride metabolism by the cardiomyocyte circadian clock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maintenance of circadian alignment between an organism and its environment is essential to ensure metabolic homeostasis. Synchrony is achieved by cell autonomous circadian clocks. Despite a growing appreciation of the integral relation between clocks and metabolism, little is known regarding the dir...

  2. Positron emission reconstruction tomography for the assessment of regional myocardial metabolism by the administration of substrates labeled with cyclotron produced radionuclides

    NASA Technical Reports Server (NTRS)

    Ter-Pogossian, M. M.; Hoffman, E. J.; Weiss, E. S.; Coleman, R. E.; Phelps, M. E.; Welch, M. J.; Sobel, B. E.

    1975-01-01

    A positron emission transverse tomograph device was developed which provides transaxial sectional images of the distribution of positron-emitting radionuclides in the heart. The images provide a quantitative three-dimensional map of the distribution of activity unencumbered by the superimposition of activity originating from regions overlying and underlying the plane of interest. PETT is used primarily with the cyclotron-produced radionuclides oxygen-15, nitrogen-13 and carbon-11. Because of the participation of these atoms in metabolism, they can be used to label metabolic substrates and intermediary molecules incorporated in myocardial metabolism.

  3. Effects of nicardipine on coronary blood flow, left ventricular inotropic state and myocardial metabolism in patients with angina pectoris.

    PubMed

    Rousseau, M F; Vincent, M F; Cheron, P; van den Berghe, G; Charlier, A A; Pouleur, H

    1985-01-01

    The effects of intravenous nicardipine (2.5 mg) on the left ventricular (LV) inotropic state, LV metabolism, and coronary haemodynamics were analysed in 22 patients with angina pectoris. Measurements were made at fixed heart rate (atrial pacing), under basal state, and during a cold pressor test. After nicardipine, coronary blood flow and oxygen content in the coronary sinus increased significantly. The indices of inotropic state increased slightly, and the rate of isovolumic LV pressure fall improved. Myocardial oxygen consumption was unchanged despite the significant reduction in pressure-rate product, but LV lactate uptake increased, particularly during the cold pressor test. When nicardipine was administered after propranolol, the indices of inotropic state were unaffected. The lack of direct effect of nicardipine on LV inotropic state was further confirmed by intracoronary injection of 0.1 and 0.2 mg in a separate group of 10 patients. It is concluded that the nicardipine-induced coronary dilatation seems to improve perfusion and aerobic metabolism in areas with chronic ischaemia, resulting in reduced lactate production and augmented oxygen consumption.

  4. Effects of nicardipine and nisoldipine on myocardial metabolism, coronary blood flow and oxygen supply in angina pectoris.

    PubMed

    Rousseau, M F; Vincent, M F; Van Hoof, F; Van den Berghe, G; Charlier, A A; Pouleur, H

    1984-12-01

    The effects of the calcium antagonists nicardipine and nisoldipine on left ventricular (LV) metabolism were analyzed in 32 patients with angina pectoris. Measurements were made at a fixed heart rate under the basal state and during a cold pressor test (CPT). After administration of the drugs, coronary blood flow increased significantly and the mean aortic pressure decreased by 10% (p less than 0.01) in the basal state and by 11% (p less than 0.01) during CPT. Despite the reduction in pressure-rate product, myocardial oxygen consumption was unchanged in the basal state (18 +/- 4 vs 19 +/- 4 ml/min, difference not significant) and during CPT (21 +/- 5 vs 21 +/- 5 ml/min, difference not significant); this discrepancy between a reduced pressure-rate product and an unchanged oxygen consumption was also noted when nicardipine was given after propranolol (0.1 mg/kg; 12 patients). Both agents also increased LV lactate uptake, particularly during CPT (+13 mumol/min, p less than 0.05 vs control CPT) and reduced LV glutamine production. In 10 patients in whom 14C-lactate was infused, the chemical LV lactate extraction ratio increased more than the 14C-lactate extraction ratio after administration of the drugs, indicating a reduction in LV lactate production. The data are consistent with the hypothesis that nicardipine and nisoldipine improve perfusion and aerobic metabolism in chronically ischemic areas, resulting in an augmented oxygen consumption and in a reduced lactate production.

  5. Cardiac Per2 Functions as Novel Link between Fatty Acid Metabolism and Myocardial Inflammation during Ischemia and Reperfusion Injury of the Heart

    PubMed Central

    Bonney, Stephanie; Kominsky, Doug; Brodsky, Kelley; Eltzschig, Holger; Walker, Lori; Eckle, Tobias

    2013-01-01

    Disruption of peripheral circadian rhyme pathways dominantly leads to metabolic disorders. Studies on circadian rhythm proteins in the heart indicated a role for Clock or Per2 in cardiac metabolism. In contrast to Clock−/−, Per2−/− mice have larger infarct sizes with deficient lactate production during myocardial ischemia. To test the hypothesis that cardiac Per2 represents an important regulator of cardiac metabolism during myocardial ischemia, we measured lactate during reperfusion in Per1−/−, Per2−/− or wildtype mice. As lactate measurements in whole blood indicated an exclusive role of Per2 in controlling lactate production during myocardial ischemia, we next performed gene array studies using various ischemia-reperfusion protocols comparing wildtype and Per2−/− mice. Surprisingly, high-throughput gene array analysis revealed dominantly lipid metabolism as the differentially regulated pathway in wildtype mice when compared to Per2−/−. In all ischemia-reperfusion protocols used, the enzyme enoyl-CoA hydratase, which is essential in fatty acid beta-oxidation, was regulated in wildtype animals only. Studies using nuclear magnet resonance imaging (NMRI) confirmed altered fatty acid populations with higher mono-unsaturated fatty acid levels in hearts from Per2−/− mice. Unexpectedly, studies on gene regulation during reperfusion revealed solely pro inflammatory genes as differentially regulated ‘Per2-genes’. Subsequent studies on inflammatory markers showed increasing IL-6 or TNFα levels during reperfusion in Per2−/− mice. In summary, these studies reveal an important role of cardiac Per2 for fatty acid metabolism and inflammation during myocardial ischemia and reperfusion, respectively. PMID:23977055

  6. Functional, metabolic and ultrastructure evidence for improved myocardial protection during severe ischaemic stress with MBS, a new crystalloid cardioplegic solution.

    PubMed

    Choong, Y S; Gavin, J B

    1996-06-01

    The duration of aortic clamping and the temperature of the arrested heart are two important factors in the overall strategy of myocardial protection with cardioplegic solutions. The isolated working rat heart was used to compare the cardioprotection effects (function, metabolism and ultrastructure) of the new "extracellular" crystalloid solution, MBS (containing glucose, aspartate and lactobionate) and St. Thomas' Hospital No. 2 (STH) during prolonged moderate hypothermic ischaemia (30 degrees C, 2 hours and 4 hours) with multidose reinfusion (2 min every 30 min interval). All MBS treated hearts (n = 9 per group) rapidly resumed spontaneous regular sinus rhythm (0.8 +/- 0.2 min) and had similar high degree of functional recovery (cardiac output: 90.2 +/- 4.5% & 80.9 +/- 3.5%, stroke volume: 89.1 +/- 4.7% & 81.9 +/- 3.4% and aortic pressure: 102.0 +/- 4.0% & 100.0 +/- 7.3% of pre-arrest values for 2 hours and 4 hours groups, respectively) during 30 min post-ischaemic reperfusion. In contrast, hearts protected with STH showed significantly (p<0.01) less recovery of left ventricular function (cardiac output: 64.3 +/- 2.9% & 5.5 +/- 3.9%, respectively) with two of the nine hearts failing to regain any cardiac pump function after 4 hours. MBS increased lactate efflux (glycolysis) and completely abolished the progressive increase in the coronary vascular resistance during 4 hours ischaemic arrest. These improvements were directly related to the significantly (p<0.01) reduced depletion of the myocardial adenosine triphosphate (13.32 +/- 1.65 vs 2.42 +/- 0.09 micromol/g dry wt) and guanosine triphosphate (1.56 +/- 0.08 vs 0.74 +/- 0.04 micromol/g dry wt) during arrest; to their enhanced repletion after reperfusion (ATP: 96% vs 36%, TAN: 90% vs 40% and GTP: 69% vs 48%); and to the absence of ultrastructural injury to cardiac myocytes and the microvasculature. We conclude that the new crystalloid cardioplegic solution MBS provides markedly improved myocardial protection

  7. Total Mechanical Unloading Minimizes Metabolic Demand of Left Ventricle and Dramatically Reduces Infarct Size in Myocardial Infarction

    PubMed Central

    Kakino, Takamori; Arimura, Takahiro; Sakamoto, Takafumi; Nishikawa, Takuya; Sakamoto, Kazuo; Ikeda, Masataka; Kishi, Takuya; Ide, Tomomi; Sunagawa, Kenji

    2016-01-01

    Background Left ventricular assist device (LVAD) mechanically unloads the left ventricle (LV). Theoretical analysis indicates that partial LVAD support (p-LVAD), where LV remains ejecting, reduces LV preload while increases afterload resulting from the elevation of total cardiac output and mean aortic pressure, and consequently does not markedly decrease myocardial oxygen consumption (MVO2). In contrast, total LVAD support (t-LVAD), where LV no longer ejects, markedly decreases LV preload volume and afterload pressure, thereby strikingly reduces MVO2. Since an imbalance in oxygen supply and demand is the fundamental pathophysiology of myocardial infarction (MI), we hypothesized that t-LVAD minimizes MVO2 and reduces infarct size in MI. The purpose of this study was to evaluate the differential impact of the support level of LVAD on MVO2 and infarct size in a canine model of ischemia-reperfusion. Methods In 5 normal mongrel dogs, we examined the impact of LVAD on MVO2 at 3 support levels: Control (no LVAD support), p-LVAD and t-LVAD. In another 16 dogs, ischemia was induced by occluding major branches of the left anterior descending coronary artery (90 min) followed by reperfusion (300 min). We activated LVAD from the beginning of ischemia until 300 min of reperfusion, and compared the infarct size among 3 different levels of LVAD support. Results t-LVAD markedly reduced MVO2 (% reduction against Control: -56 ± 9%, p<0.01) whereas p-LVAD did less (-21 ± 14%, p<0.05). t-LVAD markedly reduced infarct size compared to p-LVAD (infarct area/area at risk: Control; 41.8 ± 6.4, p-LVAD; 29.1 ± 5.6 and t-LVAD; 5.0 ± 3.1%, p<0.01). Changes in creatine kinase-MB paralleled those in infarct size. Conclusions Total LVAD support that minimizes metabolic demand maximizes the benefit of LVAD in the treatment of acute myocardial infarction. PMID:27124411

  8. Calcium-linked adjustment of myocardial metabolism to changing mechanical demands in the isolated rat heart.

    PubMed

    Rubányi, G; Kovách, A G

    1980-01-01

    Isolated rat hearts perfused by the modified Langendorff technique were used to study the effects of changes in perfusate calcium concentration (Cap2+) on left ventricular mechanical performance, O2-consumption, NADH-fluorescence and lactate release in the presence of glucose or pyruvate as the sole exogenous substrate. Stepwise elevation of Ca2+ from 0.31 to 7.8 mM resulted in a continuous increase of contractile activity and O2-consumption independent of the substrate present. Redox changes similar to State 3 to 4 transition (NAD+ reduction) were observed when mechanical activity was reduced by perfusing the hearts with 0.65 or 0.31 mM Cap2+, which was also substrate independent. At high Cap2+ (2.6--7.8 mM) increase of contractile activity and O2-consumption was accompanied by Cap2+ dependent NAD+ reduction in the presence of glucose. Inhibition of glycolisis by pyruvate reversed the direction of NADH response (NADH oxidation following Cap2+ elevation). Myocardial lactate relealse was increased by elevation of Cap2+ from 1.3 to 5.2 mM in the presence of glucose, but this effect was significantly inhibited in the pyruvate perfused hearts. It is concluded that NADH signal originates from both the cytosolic and mitochondrial NADH compartment. The direction of NAD+/NADH redox state changes following Cap2+ elevation is grately influenced by the substrate preferentially consumed by the heart. The data suggest that calcium increases the availability of reducing equivalents to the respiratory chain thereby ensuring adequate supply of ATP when myocardial mechanical demands are changing.

  9. Myocardial metabolism of fluorodeoxyglucose compared to cell membrane integrity for the potassium analogue rubidium-82 for assessing infarct size in man by PET

    SciTech Connect

    Gould, K.L.; Yoshida, K.; Hess, M.J.; Haynie, M.; Mullani, N.; Smalling, R.W. )

    1991-01-01

    Potassium loss from damaged myocardial cells is linearly related to CPK enzyme loss reflecting extent of necrosis. The potassium analog, rubidium-82 (82Rb), is extracted after i.v. injection and retained in viable myocardium but is not trapped or washed out of necrotic regions. To compare myocardial cell metabolism with membrane dysfunction as indicators of necrosis/viability, 43 patients with evolving myocardial infarction and coronary arteriography had positron emission tomography using fluorodeoxyglucose (FDG) and the potassium analog 82Rb. Percent of heart showing FDG defects and 82Rb washout on sequential images indicating failure to retain the potassium analogue were visually assessed and quantified by automated software. Infarct size based on rubidium kinetics correlated closely with size and location on FDG images (visual r = 0.93, automated r = 0.82), suggesting that loss of cell membrane integrity for trapping the potassium analog 82Rb parallels loss of intracellular glucose metabolism, both comparable quantitative markers of myocardial necrosis/viability.

  10. Myocardial metabolism, perfusion, wall motion and electrical activity in Duchenne muscular dystrophy

    SciTech Connect

    Perloff, J.K.; Henze, E.; Schelbert, H.R.

    1982-01-01

    The cardiomyopathy of Duchenne's muscular dystrophy originates in the posterobasal left ventricle and extends chiefly to the contiguous lateral wall. Ultrastructural abnormalities in these regions precede connective tissue replacement. We postulated that a metabolic fault coincided with or antedated the subcellular abnormality. Accordingly, regional left ventricular metabolism, perfusion and wall motion were studied using positron computed tomography and metabolic isotopes supplemented by thallium perfusion scans, equilibrium radionuclide angiography and M-mode and two-dimensional echocardiography. To complete the assessment, electrocardiograms, vectorcardiograms, 24 hour taped electrocardiograms and chest x-rays were analyzed. Positron computed tomography utilizing F-18 2-fluoro 2-deoxyglucose (FDG) provided the first conclusive evidence supporting the hypothesis of a premorphologic regional metabolic fault. Thus, cardiac involvement in duchenne dystrophy emerges as a unique form of heart disease, genetically targeting specific regions of ventricular myocardium for initial metabolic and subcellular changes. Reported ultrastructural abnormalities of the impulse and conduction systems provide, at least in part, a basis for the clinically observed sinus node, intraatrial, internodal, AV nodal and infranodal disorders.

  11. Myocardial mechanical dysfunction following endotoxemia: role of changes in energy substrate metabolism.

    PubMed

    Soraya, Hamid; Masoud, Waleed G T; Gandhi, Manoj; Garjani, Alireza; Clanachan, Alexander S

    2016-03-01

    Cardiovascular depression due to endotoxemia remains a major cause of mortality in intensive care patients. To determine whether drug-induced alterations in cardiac metabolism may be a viable strategy to reduce endotoxemia-mediated cardiac dysfunction, we assessed endotoxemia-induced changes in glucose and fatty acid metabolism under aerobic and post-ischemic conditions. Endotoxemia was induced in male Sprague-Dawley rats by lipopolysaccharide (Escherichia coli 0111:B4c, 4 mg/kg, i.p.) 6 h prior to heart removal for ex vivo assessment of left ventricular (LV) work and rates of glucose metabolism (glucose uptake, glycogen synthesis, glycolysis and glucose oxidation) and palmitate oxidation. Under aerobic conditions, endotoxemic hearts had impaired LV function as judged by echocardiography in vivo (% ejection fraction, 66.0 ± 3.2 vs 78.0 ± 2.1, p < 0.05) or by LV work ex vivo (2.14 ± 0.16 vs 3.28 ± 0.16, Joules min(-1) g dry wt(-1), p < 0.05). However, rates of glucose uptake, glycogen synthesis, glycolysis, and glucose oxidation were not altered. Palmitate oxidation was lower in endotoxemic hearts in proportion to the decreased workload, thus metabolic efficiency was unaffected. In hearts reperfused following global ischemia, untreated hearts had impaired recovery of LV work (52.3 ± 9.4 %) whereas endotoxemic hearts had significantly higher recovery (105.6 ± 11.3 %, p < 0.05). During reperfusion, fatty acid oxidation, acetyl CoA production and metabolic efficiency were similar in both groups. As impaired cardiac function appeared unrelated to depression of energy substrate oxidation, it is unlikely that drug-induced acceleration of fatty acid oxidation will improve mechanical function. The beneficial repartitioning of glucose metabolism in reperfused endotoxemic hearts may contribute to the cardioprotected phenotype.

  12. Septal and anterior reverse mismatch of myocardial perfusion and metabolism in patients with coronary artery disease and left bundle branch block.

    PubMed

    Wang, Jian-Guang; Fang, Wei; Yang, Min-Fu; Tian, Yue-Qin; Zhang, Xiao-Li; Shen, Rui; Sun, Xiao-Xin; Guo, Feng; Wang, Dao-Yu; He, Zuo-Xiang

    2015-05-01

    The effects of left bundle branch block (LBBB) on left ventricular myocardial metabolism have not been well investigated. This study evaluated these effects in patients with coronary artery disease (CAD).Sixty-five CAD patients with complete LBBB (mean age, 61.8 ± 9.7 years) and 65 without LBBB (mean age, 59.9 ± 8.4 years) underwent single photon emission computed tomography, positron emission tomography, and contrast coronary angiography. The relationship between myocardial perfusion and metabolism and reverse mismatch score, and that between QRS length and reverse mismatch score and wall motion score were evaluated.The incidence of left ventricular septum and anterior wall reverse mismatching between the two groups was significantly different (P < 0.001 and P = 0.002, respectively). The incidences of normal myocardial perfusion and metabolism in the left ventricular lateral and inferior walls were also significantly different between the two groups (P < 0.001 and P < 0.001, respectively). The incidence of septal reverse mismatching in patients with mild to moderate perfusion was significantly higher among those with LBBB than among those without LBBB (P < 0.001). In CAD patients with LBBB, septal reverse mismatching was significantly more common among those with mild to moderate perfusion than among those with severe perfusion defects (P = 0.002). The correlation between the septal reverse mismatch score and QRS length was significant (P = 0.026).In patients with CAD and LBBB, septal and anterior reverse mismatching of myocardial perfusion and metabolism was frequently present; the septal reverse mismatch score negatively correlated with the QRS interval.

  13. Sodium permeability and myocardial resistance to cell swelling during metabolic blockade.

    PubMed

    Pine, M B; Kahne, D; Jaski, B; Apstein, C S; Thorp, K; Abelmann, W H

    1980-07-01

    The role of cell membrane permeability to sodium in cell volume regulation during inhibition of the sodium-potassium exchange pump with ouabain and during total metabolic blockade was evaluated in sections of guinea pig renal cortex, ventricle, and atrium incubated in Krebs-Henseleit solution. In all tissues, 2 and 3 h of ouabain and metabolic blockade resulted in similar marked losses of potassium and parallel continuous reductions in resting membrane potentials. Only metabolic blockade of renal cortex increased cell water, chloride, and total monovalent cations (potassium plus sodium) significantly. Compared to ouabain, metabolic blockade markedly increased the rate of cellular washout of 24Na+ from renal cortex (t 1/2 reduced by 47%), which was significantly greater than reductions in t 1/2 from ventricle (16%) and atrium (15%). Thus, inhibition of sodium-potassium exchange pump activity was not sufficient to produce cell swelling unless associated with marked increases in cell membrane permeability to sodium, in which case sodium influx exceeded potassium loss and substantial increases in monovalent cations, chloride, and water occurred.

  14. Phosphorus-31 nuclear magnetic resonance analysis of transient changes of canine myocardial metabolism in vivo.

    PubMed Central

    Heineman, F W; Balaban, R S

    1990-01-01

    The time course of the relative myocardial phosphocreatine and adenosine triphosphate contents (PCr/ATP) during step changes in heart rate in vivo was studied in 14 dogs using 31P nuclear magnetic resonance (NMR) to determine if transient changes in the high energy phosphates occur with changes in cardiac work. Coronary sinus blood flow (CF), oxygen consumption (MVO2), and NMR data were simultaneously measured during brief (approximately 3 min), paced increases in heart rate in these open chest animals. 31P spectra were collected with a time resolution of 15-16 s (PCr signal to noise 22-41:1). Paced tachycardia associated with increased CF and MVO2 had no significant transient or sustained effect on PCr/ATP. Higher heart rates, associated with decreased CF and blood pressure, caused rapid decreases of PCr/ATP that were reversible upon return to control rates. These data indicate that there are no transient changes in 31P metabolites (on a 15-16-s time base) during step changes in cardiac work associated with increased CF. This lack of change demonstrates that ATP hydrolysis and production are closely matched and that the feedback mechanism linking these processes occurs rapidly with no detectable transient change in the phosphate metabolites. In contrast, when the CF response to tachycardia is insufficient PCr is quickly depleted. This latter result suggests that the PCr/ATP ratio may be a sensitive, rapidly responding indicator of coronary supply/demand mismatching in vivo. Images PMID:2312728

  15. [Quantitative analysis of myocardial glucose metabolism by using dynamic FDG-PET acquisition].

    PubMed

    Sciumbata, Martina; Critello, Salvatore; Galea, Domenico

    2012-11-01

    In today's diagnostic imaging the heart with Pet 18F - FDG finds its highest expression in' identify the extent, severity, and the possibility of recovery of dysfunctional myocardium. Aim of this study was to extract some parameters "unique" as the regional metabolic rate, the speed of fractional irreversible binding of the tracer to the receptor sites in order to obtain a quantization of a possible damage of the tissue under examination. We used a dedicated software, the PMOD, implemented with compartmental models and graphical analysis methods in order to obtain absolute and repeatable results. In our results these parameters can give a qualitative data integration and definition to which, as is known, do not allow the identification of objective criteria to identify a possible ischemic damage and, most important, a possible recovery of dysfunctional myocardium.

  16. Cardioselective Dominant-negative Thyroid Hormone Receptor (Δ337T) Modulates Myocardial Metabolism and Contractile Dfficiency

    SciTech Connect

    Hyyti, Outi M.; Olson, Aaron; Ge, Ming; Ning, Xue-Han; Buroker, Norman E.; Chung, Youngran; Jue, Thomas; Portman, Michael A.

    2008-06-03

    Dominant- negative thyroid hormone receptors (TRs) show elevated expression relative to ligand-binding TRs during cardiac hypertrophy. We tested the hypothesis that overexpression of a dominant-negative TR alters cardiac metabolism and contractile efficiency (CE). We used mice expressing the cardioselective dominant-negative TRβ1 mutation Δ337T. Isolated working Δ337T hearts and nontransgenic control (Con) hearts were perfused with 13C-labeled free fatty acids (FFA), acetoacetate (ACAC), lactate, and glucose at physiological concentrations for 30 min. 13C NMR spectroscopy and isotopomer analyses were used to determine substrate flux and fractional contributions (Fc) of acetyl-CoA to the citric acid cycle (CAC). Δ337T hearts exhibited rate depression but higher developed pressure and CE, defined as work per oxygen consumption (MV˙ O2). Unlabeled substrate Fc from endogenous sources was higher in Δ337T, but ACAC Fc was lower. Fluxes through CAC, lactate, ACAC, and FFA were reduced in Δ337T. CE and Fc differences were reversed by pacing Δ337T to Con rates, accompanied by an increase in FFA Fc. Δ337T hearts lacked the ability to increase MV˙ O2. Decreases in protein expression for glucose transporter-4 and hexokinase-2 and increases in pyruvate dehydrogenase kinase-2 and -4 suggest that these hearts are unable to increase carbohydrate oxidation in response to stress. These data show that Δ337T alters the metabolic phenotype in murine heart by reducing substrate flux for multiple pathways. Some of these changes are heart rate dependent, indicating that the substrate shift may represent an accommodation to altered contractile protein kinetics, which can be disrupted by pacing stress.

  17. Effects of substitution of Cx43 by Cx32 on myocardial energy metabolism, tolerance to ischaemia and preconditioning protection

    PubMed Central

    Rodríguez-Sinovas, Antonio; Sánchez, Jose A; González-Loyola, Alejandra; Barba, Ignasi; Morente, Miriam; Aguilar, Rio; Agulló, Esperanza; Miró-Casas, Elisatet; Esquerda, Neus; Ruiz-Meana, Marisol; García-Dorado, David

    2010-01-01

    Connexin 43 (Cx43) plays an important role in cardioprotective signalling by mechanisms at least in part independent of gap junctional communication. To investigate whether this role is related to specific properties of this connexin isoform, we used a knock-in mouse model in which the coding region of Cx43 is replaced by that of Cx32. Homozygous Cx43KI32 mice showed reduced cell-to-cell Lucifer Yellow transfer (P < 0.01), but QRS duration and left ventricular fractional shortening (echocardiography) were similar to those in wild-type animals. NMR spectroscopy detected reduced ATP and increased lactate content in myocardium from homozygous Cx43KI32 animals (P < 0.05). Despite this, isolated homozygous Cx43KI32 hearts showed smaller infarcts after ischaemia–reperfusion (40 min/60 min) as compared to hearts from heterozygous and wild-type animals (13 and 31% reduction, respectively, P < 0.05). Cardiac myocytes isolated from Cx43KI32 mouse hearts also showed a reduced rate of cell death after simulated ischaemia–reperfusion. In a separate series of experiments, both ischaemic (4 cycles of 3.5 min of ischaemia and 5 min of reperfusion) and pharmacological (50 μmol l−1 diazoxide, 10 min) preconditioning reduced infarct size in hearts from wild-type mice (by 24.84 and 26.63%, respectively, P < 0.05), but only ischaemic preconditioning was effective in hearts from heterozygous animals and both preconditioning strategies failed to protect Cx43KI32 homozygous hearts. These results demonstrate that Cx43 has an important and previously unknown modulatory effect in myocardial energy metabolism and tolerance to ischaemia, and plays a critical role in preconditioning protection, by mechanisms that are specific for this connexin isoform. PMID:20156849

  18. Aging Impairs Myocardial Fatty Acid and Ketone Oxidation and Modifies Cardiac Functional and Metabolic Responses to Insulin in Mice

    SciTech Connect

    Hyyti, Outi M.; Ledee, Dolena; Ning, Xue-Han; Ge, Ming; Portman, Michael A.

    2010-07-02

    Aging presumably initiates shifts in substrate oxidation mediated in part by changes in insulin sensitivity. Similar shifts occur with cardiac hypertrophy and may contribute to contractile dysfunction. We tested the hypothesis that aging modifies substrate utilization and alters insulin sensitivity in mouse heart when provided multiple substrates. In vivo cardiac function was measured with microtipped pressure transducers in the left ventricle from control (4–6 mo) and aged (22–24 mo) mice. Cardiac function was also measured in isolated working hearts along with substrate and anaplerotic fractional contributions to the citric acid cycle (CAC) by using perfusate containing 13C-labeled free fatty acids (FFA), acetoacetate, lactate, and unlabeled glucose. Stroke volume and cardiac output were diminished in aged mice in vivo, but pressure development was preserved. Systolic and diastolic functions were maintained in aged isolated hearts. Insulin prompted an increase in systolic function in aged hearts, resulting in an increase in cardiac efficiency. FFA and ketone flux were present but were markedly impaired in aged hearts. These changes in myocardial substrate utilization corresponded to alterations in circulating lipids, thyroid hormone, and reductions in protein expression for peroxisome proliferator-activated receptor (PPAR)α and pyruvate dehydrogenase kinase (PDK)4. Insulin further suppressed FFA oxidation in the aged. Insulin stimulation of anaplerosis in control hearts was absent in the aged. The aged heart shows metabolic plasticity by accessing multiple substrates to maintain function. However, fatty acid oxidation capacity is limited. Impaired insulin-stimulated anaplerosis may contribute to elevated cardiac efficiency, but may also limit response to acute stress through depletion of CAC intermediates.

  19. Myocardial metabolism of free fatty acids. Studies with 14C-labeled substrates in humans.

    PubMed Central

    Wisneski, J A; Gertz, E W; Neese, R A; Mayr, M

    1987-01-01

    Free fatty acids are considered to be the major energy source for the myocardium. To investigate the metabolic fate of this substrate in humans, 24 subjects underwent coronary sinus and arterial catheterization. 13 subjects were healthy volunteers and 11 subjects had symptoms of ischemic heart disease. [1-14C]oleate or [1-14C]palmitate bound to albumin was infused at a constant rate of 25 microCi/h. Oxidation was determined by measuring the 14CO2 production. The data demonstrated that a high percentage (84 +/- 17%) of the palmitate and oleate extracted by the myocardium underwent rapid oxidation. A highly significant correlation was present between the arterial level and the amount oxidized (r = 0.82, P less than 0.001 for palmitate; r = 0.77, P less than 0.001 for oleate). The isotope extraction ratio was greater than the chemical extraction ratio. This difference of 6 +/- 2 nmol/ml of blood in the young normal subjects was significantly less than the 12 +/- 4 nmol/ml observed in the ischemic heart disease patients (P less than 0.001). PMID:3805273

  20. Standardized Chinese Formula Xin-Ke-Shu inhibits the myocardium Ca2+ overloading and metabolic alternations in isoproterenol-induced myocardial infarction rats

    PubMed Central

    Liu, Yue-Tao; Zhou, Chao; Jia, Hong-Mei; Chang, Xing; Zou, Zhong-Mei

    2016-01-01

    Xin-Ke-Shu (XKS) is a traditional Chinese patent medicine used for treatment of coronary heart diseases in China. However, its mechanism of action is still unclear. In this paper, the mediation of XKS on the isoproterenol (ISO)-induced myocardial infarction (MI) rat were evaluated based on a tissue-targeted metabonomics in vitro/vivo. The result indicated that twelve metabolic pathways were involved in the therapeutic effect of XKS in vivo, where seven pathways were associated with the Ca2+ overloading mechanism. In agreement with regulation on metabolic variations, XKS markedly reversed the over-expressions of three involved proteins including phospholipase A2 IIA (PLA2 IIA), calcium/calmodulin-dependent protein kinase II (CaMK II) and Pro-Caspase-3. The metabolic regulations of XKS on H9c2 cell also partially confirmed its metabolic effect. These metabolic characteristics in vitro/vivo and western blotting analysis suggested that XKS protected from MI metabolic perturbation major via inhibition of Ca2+ overloading mechanism. Furthermore, 11 active ingredients of XKS exerted steady affinity with the three proteins through the molecular docking study. Our findings indicate that the metabonomics in vitro/vivo combined with western blotting analysis offers the opportunity to gain insight into the comprehensive efficacy of TCMs on the whole metabolic network. PMID:27457884

  1. Transcriptional Changes Associated with Long-Term Left Ventricle Volume Overload in Rats: Impact on Enzymes Related to Myocardial Energy Metabolism

    PubMed Central

    Roussel, Elise; Drolet, Marie-Claude; Walsh-Wilkinson, Elisabeth; Dhahri, Wahiba; Lachance, Dominic; Gascon, Suzanne; Sarrhini, Otman; Rousseau, Jacques A.; Lecomte, Roger; Couet, Jacques; Arsenault, Marie

    2015-01-01

    Patients with left ventricle (LV) volume overload (VO) remain in a compensated state for many years although severe dilation is present. The myocardial capacity to fulfill its energetic demand may delay decompensation. We performed a gene expression profile, a model of chronic VO in rat LV with severe aortic valve regurgitation (AR) for 9 months, and focused on the study of genes associated with myocardial energetics. Methods. LV gene expression profile was performed in rats after 9 months of AR and compared to sham-operated controls. LV glucose and fatty acid (FA) uptake was also evaluated in vivo by positron emission tomography in 8-week AR rats treated or not with fenofibrate, an activator of FA oxidation (FAO). Results. Many LV genes associated with mitochondrial function and metabolism were downregulated in AR rats. FA β-oxidation capacity was significantly impaired as early as two weeks after AR. Treatment with fenofibrate, a PPARα agonist, normalized both FA and glucose uptake while reducing LV dilation caused by AR. Conclusion. Myocardial energy substrate preference is affected early in the evolution of LV-VO cardiomyopathy. Maintaining a relatively normal FA utilization in the myocardium could translate into less glucose uptake and possibly lesser LV remodeling. PMID:26583150

  2. Pathology of acute ischemic myocardium. Special references to (I) evaluation of morphological methods for detection of early myocardial infarcts, and (II) lipid metabolism in infarcted myocardium.

    PubMed

    Sakurai, I

    1977-09-01

    Morphological changes of early myocardial infarction within 24 hours after the onset of the acute attack were described together with a review of the literatures. For the practical purpose in detecting very early infarcts, enzymatic histochemistry is the most reliable method. Other methods previously reported such as wavy pattern of the muscle fibers and fuchsinophilia are still controvertial. Lipid metabolism in the infarcted myocardium of dogs was studied both morphologically and biochemically. Up to 3 hours, after the coronary ligation, the tissue lipids accumulated in the necrotic areas with a rise of triglyceride, but later than 6 hours the lipids decreased and were lost from the necrotic tissue, while the surrounding living cells were accumulated with neutral lipids. Serum free fatty acids were elevated in the coronary sinus blood in 6 hours after the ligation. Linolic acids were contained in high proportion in both coronary venous blood after 6 hours, and normal myocardial phospholipid. These results may lead to another possible factor in addition to catecholamine activity to elevate serum FFA in acute myocardial infarction that fatty acids may be released partly from tissue phospholipid and once ever accumulated triglyceride.

  3. N-Acetylcysteine Administration Prevents Nonthyroidal Illness Syndrome in Patients With Acute Myocardial Infarction: A Randomized Clinical Trial

    PubMed Central

    Vidart, Josi; Wajner, Simone Magagnin; Leite, Rogério Sarmento; Manica, André; Schaan, Beatriz D.; Larsen, P. Reed

    2014-01-01

    Context: The acute phase of the nonthyroidal illness syndrome (NTIS) is characterized by low T3 and high rT3 levels, affecting up to 75% of critically ill patients. Oxidative stress has been implicated as a causative factor of the disturbed peripheral thyroid hormone metabolism. Objective: The objective of the study was to investigate whether N-acetylcysteine (NAC), a potent intracellular antioxidant, can prevent NTIS in patients with acute myocardial infarction. Design: This was a randomized, multicenter clinical trial. Settings: Consecutive patients admitted to the emergency and intensive care units of two tertiary hospitals in southern Brazil were recruited. Patients and intervention included 67 patients were randomized to receive NAC or placebo during 48 hours. Baseline characteristics and blood samples for thyroid hormones and oxidative parameters were collected. Main Outcome: Variation of serum T3 and rT3 levels was measured. Results: Baseline characteristics were similar between groups (all P > .05). T3 levels decreased in the placebo group at 12 hours of follow-up (P = .002) but not in NAC-treated patients (P = .10). Baseline rT3 levels were elevated in both groups and decreased over the initial 48 hours in the NAC-treated patients (P = .003) but not in the control group (P = .75). The free T4 and TSH levels were virtually identical between the groups throughout the study period (P > .05). Measurement of total antioxidant status and total carbonyl content demonstrated that oxidative balance was deranged in acute myocardial infarction patients, whereas NAC corrected these alterations (P < .001). Conclusions: NAC administration prevents the derangement in thyroid hormone concentrations commonly occurring in the acute phase of acute myocardial infarction, indicating that oxidative stress is involved in the NTIS pathophysiology. PMID:25148231

  4. Trenbolone Improves Cardiometabolic Risk Factors and Myocardial Tolerance to Ischemia-Reperfusion in Male Rats With Testosterone-Deficient Metabolic Syndrome.

    PubMed

    Donner, Daniel G; Elliott, Grace E; Beck, Belinda R; Bulmer, Andrew C; Lam, Alfred K; Headrick, John P; Du Toit, Eugene F

    2016-01-01

    The increasing prevalence of obesity adds another dimension to the pathophysiology of testosterone (TEST) deficiency (TD) and potentially impairs the therapeutic efficacy of classical TEST replacement therapy. We investigated the therapeutic effects of selective androgen receptor modulation with trenbolone (TREN) in a model of TD with the metabolic syndrome (MetS). Male Wistar rats (n=50) were fed either a control standard rat chow (CTRL) or a high-fat/high-sucrose (HF/HS) diet. After 8 weeks of feeding, rats underwent sham surgery or an orchiectomy (ORX). Alzet miniosmotic pumps containing either vehicle, 2-mg/kg·d TEST or 2-mg/kg·d TREN were implanted in HF/HS+ORX rats. Body composition, fat distribution, lipid profile, and insulin sensitivity were assessed. Infarct size was quantified to assess myocardial damage after in vivo ischaemia reperfusion, before cardiac and prostate histology was performed. The HF/HS+ORX animals had increased sc and visceral adiposity; circulating triglycerides, cholesterol, and insulin; and myocardial damage, with low circulating TEST compared with CTRLs. Both TEST and TREN protected HF/HS+ORX animals against sc fat accumulation, hypercholesterolaemia, and myocardial damage. However, only TREN protected against visceral fat accumulation, hypertriglyceridaemia, and hyperinsulinaemia and reduced myocardial damage relative to CTRLs. TEST caused widespread cardiac fibrosis and prostate hyperplasia, which were less pronounced with TREN. We propose that TEST replacement therapy may have contraindications for males with TD and obesity-related MetS. TREN treatment may be more effective in restoring androgen status and reducing cardiovascular risk in males with TD and MetS.

  5. Metabolomic profiling reveals distinct patterns of myocardial substrate utilization in humans with coronary artery disease or left ventricular dysfunction during surgical ischemia-reperfusion

    PubMed Central

    Turer, Aslan T.; Stevens, Robert D.; Bain, James R.; Muehlbauer, Michael J.; van der Westhuizen, Johannes; Mathew, Joseph P.; Schwinn, Debra A.; Glower, Donald D.; Newgard, Christopher B.; Podgoreanu, Mihai V.

    2009-01-01

    Background Human myocardial metabolism has been incompletely characterized in the setting of surgical cardioplegic arrest and ischemia/reperfusion. Furthermore, the effect of pre-existing ventricular state on ischemia-induced metabolic derangements has not been established. Methods and Results We applied a mass spectrometry-based platform to profile 63 intermediary metabolites in serial paired peripheral arterial and coronary sinus blood effluents obtained from 37 patients undergoing cardiac surgery, stratified by presence of coronary artery disease (CAD) and left ventricular dysfunction (LVD). The myocardium was a net user of a number of fuel substrates before ischemia, with significant differences between patients with or without CAD. Following reperfusion, there were significantly lower extraction ratios of most substrates and significant release of two specific acylcarnitine species, acetyl-carnitine and 3-hydroxybutyryl-carnitine. These changes were especially evident in patients with impaired ventricular function, who exhibited profound limitations in extraction of all forms of metabolic fuels. Principal component analysis highlighted several metabolic groupings as potentially important in post-operative clinical course. Conclusions The pre-existing ventricular state is associated with significant differences in myocardial fuel uptake at baseline and following I/R. The dysfunctional ventricle is associated with global suppression of metabolic fuel uptake, and limited myocardial metabolic reserve and flexibility following global I/R stress associated with cardiac surgery. Altered metabolic profiles following I/R are associated with post-operative hemodynamic course, and suggest a role for perioperative metabolic monitoring and targeted optimization in cardiac surgical patients. PMID:19307475

  6. Sequential changes of energy metabolism and mitochondrial function in myocardial infarction induced by isoproterenol in rats: a long-term and integrative study.

    PubMed

    Chagoya de Sánchez, V; Hernández-Muñoz, R; López-Barrera, F; Yañez, L; Vidrio, S; Suárez, J; Cota-Garza, M D; Aranda-Fraustro, A; Cruz, D

    1997-12-01

    Acute myocardial infarction is the second cause of mortality in most countries, therefore, it is important to know the evolution and sequence of the physiological and biochemical changes involved in this pathology. This study attempts to integrate these changes and to correlate them in a long-term model (96 h) of isoproterenol-induced myocardial cell damage in the rat. We achieved an infarct-like damage in the apex region of the left ventricle, occurring 12-24 h after isoproterenol administration. The lesion was defined by histological criteria, continuous telemetric ECG recordings, and the increase in serum marker enzymes, specific for myocardial damage. A distinction is made among preinfarction, infarction, and postinfarction. Three minutes after drug administration, there was a 60% increase in heart rate and a lowering of blood pressure, resulting possibly in a functional ischemia. Ultrastructural changes and mitochondrial swelling were evident from the first hour of treatment, but functional alterations in isolated mitochondria, such as decreases in oxygen consumption, respiratory quotient, ATP synthesis, and membrane potential, were noticed only 6 h after drug administration and lasted until 72 h later. Mitochondrial proteins decreased after 3 h of treatment, reaching almost a 50% diminution, which was maintained during the whole study. An energy imbalance, reflected by a decrease in energy charge and in the creatine phosphate/creatine ratio, was observed after 30 min of treatment; however, ATP and total adenine nucleotides diminished clearly only after 3 h of treatment. All these alterations reached a maximum at the onset of infarction and were accompanied by damage to the myocardial function, drastically decreasing left ventricular pressure and shortening the atrioventricular interval. During postinfarction, a partial recovery of energy charge, creatine phosphate/creatine ratio, membrane potential, and myocardial function occurred, but not of mitochondrial

  7. Alterations in myocardial metabolism and function at rest in stable angina pectoris: relations with the amount of exercise-induced thallium-201 perfusion defect

    SciTech Connect

    De Kock, M.; Melin, J.A.; Pouleur, H.; Rousseau, M.F.

    1986-01-01

    The relation between the amount of exercise-induced ischemia and alterations in left ventricular (LV) function and metabolism at rest was studied in 18 coronary patients with stable angina pectoris. An ischemic defect area score was computed from quantitative exercise thallium-201 (Tl-201) scintigraphy; this estimation of the amount of ischemic myocardium was used to classify the patients in group I (n = 8; score less than 15%, mean 6.7 +/- 2.5%) and II (n = 10; score greater than 15%; mean 27.2 +/- 8.9%). Hemodynamics and metabolism were studied in basal state. No patient had anginal pain during the study, and the extent of angiographic coronary artery disease (CAD) was comparable in the two groups. Heart rate, aortic pressure, coronary blood flow, and myocardial oxygen uptake were also similar in both groups. However, ejection fraction was reduced in group II (51 +/- 13 vs 63 +/- 5%; p less than 0.01) and LV relaxation was impaired as shown by the increase in time-constant of isovolumic pressure fall (55 +/- 16 vs 44 +/- 6 ms in group I; p less than 0.05); the LV end-diastolic pressure was also increased in group II (19 +/- 8 vs 10 +/- 4 mmHg in group l; p less than 0.05). Furthermore, in group II, myocardial lactate uptake was reduced (4 +/- 19 vs 30 +/- 29 mumole/min in group I; p less than 0.01) and the productions of alanine and glutamine were augmented (-7.5 +/- 4.4 vs -4.6 +/- 1.6 mumole/min in group I; p less than 0.05).

  8. ["Persistent" angina: rationale for a metabolic approach].

    PubMed

    Marzilli, Mario

    2004-03-01

    Despite increasing pharmacological and mechanical treatment options, ischemic heart disease continues to be associated with considerable patient mortality and morbidity. The estimates of the direct and indirect costs associated with chronic stable angina amount to billions of dollars. Given the epidemiological and economic magnitude of the problem, the need for more effective therapies is self-evident. Based on current guidelines, the management of ischemic heart disease has progressively broadened to include risk factor modification, patient education, and pharmacological therapy. The latter includes i) classic antianginal agents such as beta-blockers, calcium antagonists, and nitrates, and ii) drugs for secondary prevention, such as aspirin, clopidogrel, statins, and angiotensin-converting enzyme inhibitors. Tailoring therapy to individual needs has become even more challenging because of the marked changes in the clinical profile of patients with chronic ischemic heart disease. Compared with the past, today's patients tend to be older, to have undergone revascularization procedures, and to frequently have associated illnesses, including heart failure and diabetes. Significant progress has been made in recent years in understanding the role of cardiac energy metabolism in the pathogenesis of myocardial ischemia. A better understanding of metabolic derangements associated with ischemia and reperfusion is translating into innovative therapeutic approaches. Optimization of cardiac energy metabolism is based on promoting cardiac glucose oxidation. This has been proved to enhance cardiac function and protect myocardial tissue against ischemia-reperfusion injury. A new class of metabolic agents, known as the 3-ketoacyl coenzyme A thiolase inhibitors (trimetazidine), is able to elicit an increase in glucose and lactate combustion secondary to partial inhibition of fatty acid oxidation, producing clinical benefits in patients with ischemic heart disease.

  9. Myocardial imaging and metabolic studies with (/sup 17 -123/I)iodoheptadecanoic acid in patients with idiopathic congestive cardiomyopathy

    SciTech Connect

    Hoeck, A.; Freundlieb, C.; Vyska, K.; Loesse, B.; Erbel, R.; Feinendegen, L.E.

    1983-01-01

    In twenty patients with primary congestive cardiomyopathy (COCM) the patterns of accumulation and washout of the fatty acid analogue (/sup 17 -123/I)iodoheptadecanoic acid (I-123 HA) were studied. In contrast to patients with ischemic heart disease, where reduced I-123 HA accumulation was correlated with stenosis of the main coronary arteries, thus usually involving larger wall segments, the patients with COCM concentrated I-123 HA heterogeneously in small spotty segments throughout the entire left-ventricular myocardium. The regional washout half-times varied between 15.1 and 116.2 min. It seems that in patients with severe COCM the elimination half-times are more prolonged than in early stages of the disease. There was no correlation between the regional uptake and the elimination half-times. Sequential myocardial imaging with I-123 HA appears useful for noninvasively diagnosis of COCM.

  10. Pharmacokinetic characterization of amrubicin cardiac safety in an ex vivo human myocardial strip model. II. Amrubicin shows metabolic advantages over doxorubicin and epirubicin.

    PubMed

    Salvatorelli, Emanuela; Menna, Pierantonio; Gonzalez Paz, Odalys; Surapaneni, Sekhar; Aukerman, Sharon L; Chello, Massimo; Covino, Elvio; Sung, Victoria; Minotti, Giorgio

    2012-05-01

    Anthracycline-related cardiotoxicity correlates with cardiac anthracycline accumulation and bioactivation to secondary alcohol metabolites or reactive oxygen species (ROS), such as superoxide anion (O₂·⁻) and hydrogen peroxide H₂O₂). We reported that in an ex vivo human myocardial strip model, 3 or 10 μM amrubicin [(7S,9S)-9-acetyl-9-amino-7-[(2-deoxy-β-D-erythro-pentopyranosyl)oxy]-7,8,9,10-tetrahydro-6,11-dihydroxy-5,12-napthacenedione hydrochloride] accumulated to a lower level compared with equimolar doxorubicin or epirubicin (J Pharmacol Exp Ther 341:464-473, 2012). We have characterized how amrubicin converted to ROS or secondary alcohol metabolite in comparison with doxorubicin (that formed both toxic species) or epirubicin (that lacked ROS formation and showed an impaired conversion to alcohol metabolite). Amrubicin and doxorubicin partitioned to mitochondria and caused similar elevations of H₂O₂, but the mechanisms of H₂O₂ formation were different. Amrubicin produced H₂O₂ by enzymatic reduction-oxidation of its quinone moiety, whereas doxorubicin acted by inducing mitochondrial uncoupling. Moreover, mitochondrial aconitase assays showed that 3 μM amrubicin caused an O₂·⁻-dependent reversible inactivation, whereas doxorubicin always caused an irreversible inactivation. Low concentrations of amrubicin therefore proved similar to epirubicin in sparing mitochondrial aconitase from irreversible inactivation. The soluble fraction of human myocardial strips converted doxorubicin and epirubicin to secondary alcohol metabolites that irreversibly inactivated cytoplasmic aconitase; in contrast, strips exposed to amrubicin failed to generate its secondary alcohol metabolite, amrubicinol, and only occasionally exhibited an irreversible inactivation of cytoplasmic aconitase. This was caused by competing pathways that favored formation and complete or near-to-complete elimination of 9-deaminoamrubicinol. These results characterize amrubicin

  11. Clinical Disorders of Phosphorus Metabolism

    PubMed Central

    Yu, George C.; Lee, David B. N.

    1987-01-01

    Deranged phosphorus metabolism is commonly encountered in clinical medicine. Disturbances in phosphate intake, excretion and transcellular shift account for the abnormal serum levels. As a result of the essential role played by phosphate in intracellular metabolism, the clinical manifestations of hypophosphatemia and hyperphosphatemia are extensive. An understanding of the pathophysiology of various phosphate disorders is helpful in guiding therapeutic decisions. Images PMID:3321712

  12. Chronic melatonin consumption prevents obesity-related metabolic abnormalities and protects the heart against myocardial ischemia and reperfusion injury in a prediabetic model of diet-induced obesity.

    PubMed

    Nduhirabandi, Frederic; Du Toit, Eugene F; Blackhurst, Dee; Marais, David; Lochner, Amanda

    2011-03-01

    Obesity, a major risk factor for ischemic heart disease, is associated with increased oxidative stress and reduced antioxidant status. Melatonin, a potent free radical scavenger and antioxidant, has powerful cardioprotective effects in lean animals but its efficacy in obesity is unknown. We investigated the effects of chronic melatonin administration on the development of the metabolic syndrome as well as ischemia-reperfusion injury in a rat model of diet-induced obesity (DIO). Male Wistar rats received a control diet, a control diet with melatonin, a high-calorie diet, or a high-calorie diet with melatonin (DM). Melatonin (4 mg/kg/day) was administered in the drinking water. After 16 wk, biometric and blood metabolic parameters were measured. Hearts were perfused ex vivo for the evaluation of myocardial function, infarct size (IFS) and biochemical changes [activation of PKB/Akt, ERK, p38 MAPK, AMPK, and glucose transporter (GLUT)-4 expression). The high-calorie diet caused increases in body weight (BW), visceral adiposity, serum insulin and triglycerides (TRIG), with no change in glucose levels. Melatonin treatment reduced the BW gain, visceral adiposity, blood TRIG, serum insulin, homeostatic model assessment index and thiobarbituric acid reactive substances in the DIO group. Melatonin reduced IFS in DIO and control groups and increased percentage recovery of functional performance of DIO hearts. During reperfusion, hearts from melatonin-treated rats had increased activation of PKB/Akt, ERK42/44 and reduced p38 MAPK activation. Chronic melatonin treatment prevented the metabolic abnormalities induced by DIO and protected the heart against ischemia-reperfusion injury. These beneficial effects were associated with activation of the reperfusion injury salvage kinases pathway.

  13. Effect of Salvianolic Acid b and Paeonol on Blood Lipid Metabolism and Hemorrheology in Myocardial Ischemia Rabbits Induced by Pituitruin

    PubMed Central

    Yang, Qian; Wang, Siwang; Xie, Yanhua; Wang, Jianbo; Li, Hua; Zhou, Xuanxuan; Liu, Wenbo

    2010-01-01

    The purpose of this study was to determine the therapeutic effect of salvianolic acid b and paeonol on coronary disease. The ischemia myocardial animal model is induced by administering pituitrin (20 μg·kg−1) intravenously via the abdominal vein. A combination of salvianolic acid b and paeonol (CSAP) (5, 10 and 15 mg/kg BW) was administrated to experimental rabbits. Biochemical indices were evaluated during six weeks of intervention. We found that the compound of salvianolic acid b and paeonol (5, 10 and 15 mg/kg BW) can markedly and dose-dependently reduce fibrinogen and malonaldehyde levels, increase the HDL level, improve blood viscosity and plasma viscosity in rabbits. In addition, the medicine can still reduce the ratio of NO/ET and the contents of lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) in a dose-dependent manner. This study demonstrates that compound of salvianolic acid b and paeonol (5, 10 and 15 mg/kg BW) can improve the blood hemorrheology, decrease oxidative injury and repair the function of blood vessel endothelium, and subsequently prevent the development of Coronary disease. PMID:21152295

  14. Comparative studies of high performance swimming in sharks II. Metabolic biochemistry of locomotor and myocardial muscle in endothermic and ectothermic sharks.

    PubMed

    Bernal, D; Smith, D; Lopez, G; Weitz, D; Grimminger, T; Dickson, K; Graham, J B

    2003-08-01

    Metabolic enzyme activities in red (RM) and white (WM) myotomal muscle and in the heart ventricle (HV) were compared in two lamnid sharks (shortfin mako and salmon shark), the common thresher shark and several other actively swimming shark species. The metabolic enzymes measured were citrate synthase (CS), an index of aerobic capacity, and lactate dehydrogenase (LDH), an index of anaerobic capacity. WM creatine phosphokinase (CPK) activity, an index of rapid ATP production during burst swimming, was also quantified. Enzyme activities in RM, WM and HV were similar in the two lamnid species. Interspecific comparisons of enzyme activities at a common reference temperature (20 degrees C) show no significant differences in RM CS activity but higher CS activity in the WM and HV of the lamnid sharks compared with the other species. For the other enzymes, activities in lamnids overlapped with those of other shark species. Comparison of the HV spongy and compact myocardial layers in mako, salmon and thresher sharks reveals a significantly greater spongy CS activity in all three species but no differences in LDH activity. Adjustment of enzyme activities to in vivo RM and WM temperatures in the endothermic lamnids elevates CS and LDH in both tissues relative to the ectothermic sharks. Thus, through its enhancement of both RM and WM enzyme activity, endothermy may be an important determinant of energy supply for sustained and burst swimming in the lamnids. Although lamnid WM is differentially warmed as a result of RM endothermy, regional differences in WM CS and LDH activities and thermal sensitivities (Q(10) values) were not found. The general pattern of the endothermic myotomal and ectothermic HV muscle metabolic enzyme activities in the endothermic lamnids relative to other active, ectothermic sharks parallels the general pattern demonstrated for the endothermic tunas relative to their ectothermic sister species. However, the activities of all enzymes measured are lower in

  15. Assessment of myocardial metabolic rate of glucose by means of Bayesian ICA and Markov Chain Monte Carlo methods in small animal PET imaging

    NASA Astrophysics Data System (ADS)

    Berradja, Khadidja; Boughanmi, Nabil

    2016-09-01

    In dynamic cardiac PET FDG studies the assessment of myocardial metabolic rate of glucose (MMRG) requires the knowledge of the blood input function (IF). IF can be obtained by manual or automatic blood sampling and cross calibrated with PET. These procedures are cumbersome, invasive and generate uncertainties. The IF is contaminated by spillover of radioactivity from the adjacent myocardium and this could cause important error in the estimated MMRG. In this study, we show that the IF can be extracted from the images in a rat heart study with 18F-fluorodeoxyglucose (18F-FDG) by means of Independent Component Analysis (ICA) based on Bayesian theory and Markov Chain Monte Carlo (MCMC) sampling method (BICA). Images of the heart from rats were acquired with the Sherbrooke small animal PET scanner. A region of interest (ROI) was drawn around the rat image and decomposed into blood and tissue using BICA. The Statistical study showed that there is a significant difference (p < 0.05) between MMRG obtained with IF extracted by BICA with respect to IF extracted from measured images corrupted with spillover.

  16. Activation of DOR Attenuates Anoxic K+ Derangement via Inhibition of Na+ Entry in Mouse Cortex

    PubMed Central

    Chao, Dongman; Bazzy-Asaad, Alia; Balboni, Gianfranco; Salvadori, Severo

    2008-01-01

    We have recently found that in the mouse cortex, activation of δ-opioid receptor (DOR) attenuates the disruption of K+ homeostasis induced by hypoxia or oxygen–glucose deprivation. This novel observation suggests that DOR may protect neurons from hypoxic/ischemic insults via the regulation of K+ homeostasis because the disruption of K+ homeostasis plays a critical role in neuronal injury under hypoxic/ischemic stress. The present study was performed to explore the ionic mechanism underlying the DOR-induced neuroprotection. Because anoxia causes Na+ influx and thus stimulates K+ leakage, we investigated whether DOR protects the cortex from anoxic K+ derangement by targeting the Na+-based K+ leakage. By using K+-sensitive microelectrodes in mouse cortical slices, we showed that 1) lowering Na+ concentration and substituting with impermeable N-methyl-D-glucamine caused a concentration-dependent attenuation of anoxic K+ derangement; 2) lowering Na+ concentration by substituting with permeable Li+ tended to potentiate the anoxic K+ derangement; and 3) the DOR-induced protection against the anoxic K+ responses was largely abolished by low-Na+ perfusion irrespective of the substituted cation. We conclude that external Na+ concentration greatly influences anoxic K+ derangement and that DOR activation likely attenuates anoxic K+ derangement induced by the Na+-activated mechanisms in the cortex. PMID:18203692

  17. Microbiological investigation of retrodiscal tissues from patients with advanced internal derangement of the temporomandibular joint.

    PubMed

    McIntosh, M; Dimitroulis, G

    2012-03-01

    The aim of this study was to investigate the presence of bacteria in samples of retrodiscal tissues taken from patients suffering from advanced internal derangement of the temporomandibular joint (TMJ). 12 fresh retrodiscal tissue samples were taken from 12 consecutive patients who underwent unilateral TMJ discectomy for advanced TMJ internal derangement (Wilkes stage IV). The retrodiscal tissue samples were stained and cultured for the presence of micro-organisms in microbiology laboratories. No evidence of bacteria or other micro-organisms was found in any of the tissue specimens procured from the TMJ. This study failed to identify the presence of bacteria or other micro-organisms in fresh retrodiscal tissue specimens of the TMJ in patients with advanced TMJ internal derangement.

  18. Myocardial Noncompaction Presenting With Myocardial Bridge

    PubMed Central

    Shen, Yuechun; Li, Xinchun; Lu, Dongfeng; Xiao, Aiyi; Li, Jun

    2015-01-01

    Abstract Myocardial noncompaction, namly isolated noncompaction of the left ventricular myocardium (NVM), is a rare congenital disease. It can be either seen in the absence of other cardiac anomalies, or associated with other congenital cardiac defects, mostly stenotic lesions of the left ventricular outflow tract. A myocardial bridge (MB) is thought being associated with coronary heart disease, such as coronary spasm, arrhythmia, and so on. The significance of MB in association with other congenital cardiac conditions is unknown. We report a novel case who was presented NVM and MB. A 34-year-old man complained of chest prickling-like pain and dizzy for 1 year. His blood pressure was 110/70 mm Hg. Echocardiograph revealed increased trabeculations below the level of papillary muscle of left ventricle (LV); deep intertrabecular recesses in the endocardial wall of LV particularly in apex free wall; and LV ejection fraction of 57%. A coronary computerized tomography scan showed that part, 38.9 cm, of left descending artery tunnel was surrounding by cardiac muscles rather than resting on top of the myocardium. The therapeutics interventions included lifestyle cares, agents of anti-ischemia and improvement myocardial cell metabolism. The patient was followed up for 2.6 years, and his general condition was stable. This case indicates that NVM can be developed with MB, and the complete diagnosis of NVM and MB should be made by different image studies. PMID:26356695

  19. Myocardial Ischemia

    MedlinePlus

    ... typically on the left side of the body (angina pectoris). Other signs and symptoms — which might be experienced ... ed. Philadelphia, Pa.: Saunders Elsevier; 2014. Podrid PJ. Angina pectoris: Chest pain caused by myocardial ischemia. www.uptodate. ...

  20. CRYAB and HSPB2 deficiency alters cardiac metabolism and paradoxically confers protection against myocardial ischemia in aging mice

    PubMed Central

    Benjamin, Ivor J.; Guo, Yiru; Srinivasan, Sathyanarayanan; Boudina, Sihem; Taylor, Ryan P.; Rajasekaran, Namakkal S.; Gottlieb, Roberta; Wawrousek, Eric F.; Abel, E. Dale; Bolli, Roberto

    2013-01-01

    The abundantly expressed small molecular weight proteins, CRYAB and HSPB2, have been implicated in cardioprotection ex vivo. However, the biological roles of CRYAB/HSPB2 coexpression for either ischemic preconditioning and/or protection in situ remain poorly defined. Wild-type (WT) and age-matched (~5–9 mo) CRYAB/HSPB2 double knockout (DKO) mice were subjected either to 30 min of coronary occlusion and 24 h of reperfusion in situ or preconditioned with a 4-min coronary occlusion/4-min reperfusion × 6, before similar ischemic challenge (ischemic preconditioning). Additionally, WT and DKO mice were subjected to 30 min of global ischemia in isolated hearts ex vivo. All experimental groups were assessed for area at risk and infarct size. Mitochondrial respiration was analyzed in isolated permeabilized cardiac skinned fibers. As a result, DKO mice modestly altered heat shock protein expression. Surprisingly, infarct size in situ was reduced by 35% in hearts of DKO compared with WT mice (38.8 ± 17.9 vs. 59.8 ± 10.6% area at risk, P < 0.05). In DKO mice, ischemic preconditioning was additive to its infarct-sparing phenotype. Similarly, infarct size after ischemia and reperfusion ex vivo was decreased and the production of superoxide and creatine kinase release was decreased in DKO compared with WT mice (P < 0.05). In permeabilized fibers, ADP-stimulated respiration rates were modestly reduced and calcium-dependent ATP synthesis was abrogated in DKO compared with WT mice. In conclusion, contrary to expectation, our findings demonstrate that CRYAB and HSPB2 deficiency induces profound adaptations that are related to 1) a reduction in calcium-dependent metabolism/respiration, including ATP production, and 2) decreased superoxide production during reperfusion. We discuss the implications of these disparate results in the context of phenotypic responses reported for CRYAB/HSPB2-deficient mice to different ischemic challenges. PMID:17873008

  1. [Severe metabolic acidosis in an alcoholic].

    PubMed

    Sonne, Morten Egede; Rudolph, Søren Finnemann; Pott, Frank Christian

    2008-09-29

    Severe metabolic acidosis is associated with poor prognosis. We present a patient with profound alcohol and starvation-related combined lactic and keto acidosis (lactate = 29 mM; pH = 6.83) who made a good recovery following 18 hours of intensive care therapy. A brief summary of the proposed mechanism by which these metabolic derangements develop is presented.

  2. Metabolism

    MedlinePlus

    Metabolism refers to all the physical and chemical processes in the body that convert or use energy, ... Tortora GJ, Derrickson BH. Metabolism. In: Tortora GJ, Derrickson ... Physiology . 14th ed. Hoboken, NJ: John Wiley & Sons; 2014:chap ...

  3. Metabolism

    MedlinePlus

    ... El metabolismo Metabolism Basics Our bodies get the energy they need from food through metabolism, the chemical ... that convert the fuel from food into the energy needed to do everything from moving to thinking ...

  4. West African and Amerindian ancestry and risk of myocardial infarction and metabolic syndrome in the Central Valley population of Costa Rica.

    PubMed

    Ruiz-Narváez, Edward A; Bare, Lance; Arellano, Andre; Catanese, Joseph; Campos, Hannia

    2010-06-01

    Genetic ancestry and environmental factors may contribute to the ethnic differences in risk of coronary heart disease (CHD), metabolic syndrome (MS) or its individual components. The population of the Central Valley of Costa Rica offers a unique opportunity to assess the role of genetic ancestry in these chronic diseases because it derived from the admixture of a relatively small number of founders of Southern European, Amerindian, and West African origin. We aimed to determine whether genetic ancestry is associated with risk of myocardial infarction (MI), MS and its individual components in the Central Valley of Costa Rica. We genotyped 39 ancestral informative markers in cases (n = 1,998) with a first non-fatal acute MI and population-based controls (n = 1,998) matched for age, sex, and area of residence, to estimate individual ancestry proportions. Odds ratios (ORs) and 95% confidence intervals (95% CI) were estimated using conditional (MI) and unconditional (MS and its components) logistic regression adjusting for relevant confounders. Mean individual ancestry proportions in cases and controls were 57.5 versus 57.8% for the Southern European, 38.4 versus 38.3% for the Amerindian and 4.1 versus 3.8% for the West African ancestry. Compared with Southern European ancestry, each 10% increase in West African ancestry was associated with a 29% increase in MI, OR (95% CI) = 1.29 (1.07, 1.56), and with a 30% increase on the risk of hypertension, OR (95% CI) = 1.30 (1.00, 1.70). Each 10% increase in Amerindian ancestry was associated with a 14% increase on the risk of MS, OR (95% CI) = 1.14 (1.00, 1.30), and 20% increase on the risk of impaired fasting glucose, OR (95% CI) = 1.20 (1.01, 1.42). These results show that the high variability of admixture proportions in the Central Valley population offers a unique opportunity to uncover the genetic basis of ethnic differences on the risk of disease.

  5. Differential effects of heptanoate and hexanoate on myocardial citric acid cycle intermediates following ischemia-reperfusion.

    PubMed

    Okere, Isidore C; McElfresh, Tracy A; Brunengraber, Daniel Z; Martini, Wenjun; Sterk, Joseph P; Huang, Hazel; Chandler, Margaret P; Brunengraber, Henri; Stanley, William C

    2006-01-01

    In the normal heart, there is loss of citric acid cycle (CAC) intermediates that is matched by the entry of intermediates from outside the cycle, a process termed anaplerosis. Previous in vitro studies suggest that supplementation with anaplerotic substrates improves cardiac function during myocardial ischemia and/or reperfusion. The present investigation assessed whether treatment with the anaplerotic medium-chain fatty acid heptanoate improves contractile function during ischemia and reperfusion. The left anterior descending coronary artery of anesthetized pigs was subjected to 60 min of 60% flow reduction and 30 min of reperfusion. Three treatment groups were studied: saline control, heptanoate (0.4 mM), or hexanoate as a negative control (0.4 mM). Treatment was initiated after 30 min of ischemia and continued through reperfusion. Myocardial CAC intermediate content was not affected by ischemia-reperfusion; however, treatment with heptanoate resulted in a more than twofold increase in fumarate and malate, with no change in citrate and succinate, while treatment with hexanoate did not increase fumarate or malate but increased succinate by 1.8-fold. There were no differences among groups in lactate exchange, glucose oxidation, oxygen consumption, and contractile power. In conclusion, despite a significant increase in the content of carbon-4 CAC intermediates, treatment with heptanoate did not result in improved mechanical function of the heart in this model of reversible ischemia-reperfusion. This suggests that reduced anaplerosis and CAC dysfunction do not play a major role in contractile and metabolic derangements observed with a 60% decrease in coronary flow followed by reperfusion.

  6. Bone mineral measurement from Apollo experiment M-078. [derangement of bone mineral metabolism in spacecrews

    NASA Technical Reports Server (NTRS)

    Vogel, J. M.; Rambaut, P. C.; Smith, M. C., Jr.

    1974-01-01

    Loss of mineral from bone during periods of immobilization, recumbency, or weightlessness is examined. This report describes the instrumentation, technique, and bone mineral changes observed preflight and postflight for the Apollo 14, 15, and 16 missions. The bone mineral changes documented during the Apollo Program are reviewed, and their relevance to future missions is discussed.

  7. Supportive Management of Mucositis and Metabolic Derangements in Head and Neck Cancer Patients

    PubMed Central

    Bonomi, Marcelo; Batt, Katharine

    2015-01-01

    Oral mucositis (OM) is among the most undesirable, painful, and expensive toxicities of cytotoxic cancer therapy, and is disheartening for patients and frustrating for caregivers. Accurate assessment of the incidence of OM has been elusive, but accumulating data suggests that reported OM frequency is significantly less than its actual occurrence. It has been suggested that over 90% of head and neck cancer (HNC) patients receiving radiotherapy (RT) with concurrent cisplatin experience severe OM with symptoms of extreme pain, mucosal ulceration and consequent limitations in swallowing and achieving adequate nutritional intake. This panoply of symptoms inevitably impacts a patients’ quality of life and their willingness to continue treatment. In spite of all the advances made in understanding the pathophysiology of OM, there is still no prophylactic therapy with proven efficacy. Strategies to limit the extent of OM and to manage its symptomatology include basic oral care, supportive medications, nutritional support and targeting aggressive treatments to high-risk patients. This review focuses on OM recognition, preventive measurements, and symptom-management strategies. PMID:26404378

  8. Suicide as a derangement of the self-sacrificial aspect of eusociality.

    PubMed

    Joiner, Thomas E; Hom, Melanie A; Hagan, Christopher R; Silva, Caroline

    2016-04-01

    Building upon the idea that humans may be a eusocial species (i.e., rely on multigenerational and cooperative care of young, utilize division of labor for successful survival), we conjecture that suicide among humans represents a derangement of the self-sacrificial aspect of eusociality. In this article, we outline the characteristics of eusociality, particularly the self-sacrificial behavior seen among other eusocial species (e.g., insects, shrimp, mole rats). We then discuss parallels between eusocial self-sacrificial behavior in nonhumans and suicide in humans, particularly with regard to overarousal states, withdrawal phenomena, and perceptions of burdensomeness. In so doing, we make the argument that death by suicide among humans is an exemplar of psychopathology and is due to a derangement of the self-sacrificial behavioral suite found among eusocial species. Implications and future directions for research are also presented.

  9. Internal derangements of the temporomandibular joint: findings in the pediatric age group

    SciTech Connect

    Katzberg, R.W.; Tallents, R.H.; Hayakawa, K.; Miller, T.L.; Goske, M.J.; Wood, B.P.

    1985-01-01

    Findings in 31 pediatric patients with pain and dysfunction of the temporomandibular joint (TMJ) are reported. The average age was 14 years and the average duration of symptoms was 21.4 months. Internal derangements were found in 29 patients (94%) and degenerative arthritis in 13 (42%). In 12 patients (39%), the problem could be traced to an injury to the jaw. Secondary condylar hypoplasia was associated with the meniscal abnormality in 3 patients (10%). Further awareness of internal derangements of the TMJ in the pediatric population should permit greater recognition of their etiology. It is important that threatment be initiated as soon as possible, not only to minimize the development of osseous disease in young adults but also to prevent facial growth deformities.

  10. Internal derangements of the temporomandibular joint: A review of the anatomy, diagnosis, and management

    PubMed Central

    Young, Andrew L.

    2015-01-01

    Internal derangements of the temporomandibular joint are conditions in which the articular disc has become displaced from its original position the condylar head. Relevant anatomic structures and their functional relationships are briefly discussed. The displacement of the disc can result in numerous presentations, with the most common being disc displacement with reduction (with or without intermittent locking), and disc displacement without reduction (with or without limited opening). These are described in this article according to the standardized Diagnostic Criteria for Temporomandibular Disorders, as well as the less common posterior disc displacement. Appropriate management usually ranges from patient education and monitoring to splints, physical therapy, and medications. In rare and select cases, surgery may be necessary. However, in for the majority of internal derangements, the prognosis is good, particularly with conservative care. PMID:26929478

  11. Metabolism

    MedlinePlus

    ... and intestines. Several of the hormones of the endocrine system are involved in controlling the rate and direction ... For Kids For Parents MORE ON THIS TOPIC Endocrine System What Can I Do About My High Metabolism? ...

  12. Metabolism

    MedlinePlus

    ... symptoms. Metabolic diseases and conditions include: Hyperthyroidism (pronounced: hi-per-THIGH-roy-dih-zum). Hyperthyroidism is caused ... or through surgery or radiation treatments. Hypothyroidism (pronounced: hi-po-THIGH-roy-dih-zum). Hypothyroidism is caused ...

  13. Mechanisms of Sudden Cardiac Death: Oxidants and Metabolism

    PubMed Central

    Yang, Kai-Chien; Kyle, John W.; Makielski, Jonathan C.; Dudley, Samuel C.

    2015-01-01

    Ventricular arrhythmia is the leading cause of sudden cardiac death (SCD). Deranged cardiac metabolism and abnormal redox state during cardiac diseases foment arrhythmogenic substrates through direct or indirect modulation of cardiac ion channel/transporter function. This review presents current evidence on the mechanisms linking metabolic derangement and excessive oxidative stress to ion channel/transporter dysfunction that predisposes to ventricular arrhythmias and SCD. As conventional anti-arrhythmic agents aiming at ion channels have proven challenging to use, targeting arrhythmogenic metabolic changes and redox imbalance may provide novel therapeutics to treat or prevent life-threatening arrhythmias and SCD. PMID:26044249

  14. Drug-Induced Metabolic Acidosis

    PubMed Central

    Pham, Amy Quynh Trang; Xu, Li Hao Richie; Moe, Orson W.

    2015-01-01

    Metabolic acidosis could emerge from diseases disrupting acid-base equilibrium or from drugs that induce similar derangements. Occurrences are usually accompanied by comorbid conditions of drug-induced metabolic acidosis, and clinical outcomes may range from mild to fatal. It is imperative that clinicians not only are fully aware of the list of drugs that may lead to metabolic acidosis but also understand the underlying pathogenic mechanisms. In this review, we categorized drug-induced metabolic acidosis in terms of pathophysiological mechanisms, as well as individual drugs’ characteristics. PMID:26918138

  15. Derangement, osteoarthritis, and rheumatoid arthritis of the temporomandibular joint: implications, diagnosis, and management.

    PubMed

    Broussard, Jack S

    2005-04-01

    Temporomandibular joint (TMJ) dysfunction is often believed to bea young person's malady. However, geriatric patients also present with clinical findings of TMJ clicking, locking, crepitation, limited opening, and pain. With our aging population and the high prevalence of rheumatic and musculoskeletal diseases in the elderly, it is important to understand the etiopathogenesis, clinical presentation, and management of derangement, rheumatoid arthritis, and osteoarthritis of the TMJ. Although arthritis of the TMJ usually causes only mild-to-moderate dysfunction in older patients, they present challenges related to medication use and comorbidity. This article presents the most recent understanding and therapeutic protocols for patient diagnosis and management.

  16. Exercise Training Prevents Cardiovascular Derangements Induced by Fructose Overload in Developing Rats.

    PubMed

    Farah, Daniela; Nunes, Jonas; Sartori, Michelle; Dias, Danielle da Silva; Sirvente, Raquel; Silva, Maikon B; Fiorino, Patrícia; Morris, Mariana; Llesuy, Susana; Farah, Vera; Irigoyen, Maria-Cláudia; De Angelis, Kátia

    2016-01-01

    The risks of chronic diseases associated with the increasing consumption of fructose-laden foods are amplified by the lack of regular physical activity and have become a serious public health issue worldwide. Moreover, childhood eating habits are strongly related to metabolic syndrome in adults. Thus, we aimed to investigate the preventive role of exercise training undertaken concurrently with a high fructose diet on cardiac function, hemodynamics, cardiovascular autonomic modulation and oxidative stress in male rats after weaning. Male Wistar rats were divided into 4 groups (n = 8/group): Sedentary control (SC), Trained control (TC), Sedentary Fructose (SF) and Trained Fructose (TF). Training was performed on a treadmill (8 weeks, 40-60% of maximum exercise test). Evaluations of cardiac function, hemodynamics, cardiovascular autonomic modulation and oxidative stress in plasma and in left ventricle (LV) were performed. Chronic fructose overload induced glucose intolerance and an increase in white adipose tissue (WAT) weight, in myocardial performance index (MPI) (SF:0.42±0.04 vs. SC:0.24±0.05) and in arterial pressure (SF:122±3 vs. SC:113±1 mmHg) associated with increased cardiac and vascular sympathetic modulation. Fructose also induced unfavorable changes in oxidative stress profile (plasmatic protein oxidation- SF:3.30±0.09 vs. SC:1.45±0.08 nmol/mg prot; and LV total antioxidant capacity (TRAP)- SF: 2.5±0.5 vs. SC:12.7±1.7 uM trolox). The TF group showed reduced WAT, glucose intolerance, MPI (0.35±0.04), arterial pressure (118±2mmHg), sympathetic modulation, plasmatic protein oxidation and increased TRAP when compared to SF group. Therefore, our findings indicate that cardiometabolic dysfunctions induced by fructose overload early in life may be prevented by moderate aerobic exercise training.

  17. Exercise Training Prevents Cardiovascular Derangements Induced by Fructose Overload in Developing Rats

    PubMed Central

    Farah, Daniela; Nunes, Jonas; Sartori, Michelle; Dias, Danielle da Silva; Sirvente, Raquel; Silva, Maikon B.; Fiorino, Patrícia; Morris, Mariana; Llesuy, Susana; Farah, Vera; Irigoyen, Maria-Cláudia; De Angelis, Kátia

    2016-01-01

    The risks of chronic diseases associated with the increasing consumption of fructose-laden foods are amplified by the lack of regular physical activity and have become a serious public health issue worldwide. Moreover, childhood eating habits are strongly related to metabolic syndrome in adults. Thus, we aimed to investigate the preventive role of exercise training undertaken concurrently with a high fructose diet on cardiac function, hemodynamics, cardiovascular autonomic modulation and oxidative stress in male rats after weaning. Male Wistar rats were divided into 4 groups (n = 8/group): Sedentary control (SC), Trained control (TC), Sedentary Fructose (SF) and Trained Fructose (TF). Training was performed on a treadmill (8 weeks, 40–60% of maximum exercise test). Evaluations of cardiac function, hemodynamics, cardiovascular autonomic modulation and oxidative stress in plasma and in left ventricle (LV) were performed. Chronic fructose overload induced glucose intolerance and an increase in white adipose tissue (WAT) weight, in myocardial performance index (MPI) (SF:0.42±0.04 vs. SC:0.24±0.05) and in arterial pressure (SF:122±3 vs. SC:113±1 mmHg) associated with increased cardiac and vascular sympathetic modulation. Fructose also induced unfavorable changes in oxidative stress profile (plasmatic protein oxidation- SF:3.30±0.09 vs. SC:1.45±0.08 nmol/mg prot; and LV total antioxidant capacity (TRAP)- SF: 2.5±0.5 vs. SC:12.7±1.7 uM trolox). The TF group showed reduced WAT, glucose intolerance, MPI (0.35±0.04), arterial pressure (118±2mmHg), sympathetic modulation, plasmatic protein oxidation and increased TRAP when compared to SF group. Therefore, our findings indicate that cardiometabolic dysfunctions induced by fructose overload early in life may be prevented by moderate aerobic exercise training. PMID:27930685

  18. Efficacy of arthroscopic surgery and midlaser treatments for chronic temporomandibular joint articular disc derangement following motor vehicle accident.

    PubMed

    McNamara, D C; Rosenberg, I; Jackson, P A; Hogben, J

    1996-12-01

    As a result of motor vehicle accident soft-tissue injury, temporomandibular joint articular disc derangement may develop and persist despite symptomatic treatment and medication. This study reports the effectiveness of management directed at controlling the TMJ and masticatory neuromuscular pain dysfunction with a TMJ/interocclusal stabilization appliance, specific biofeedback and ultrasound therapy. Following these conservative measures residual articular disc derangement was present in some subjects who were offered arthroscopic surgery and infrared midlaser with TMJ/occlusal stabilization. Twenty subjects with residual disc derangement were randomly selected into two groups with and without arthroscopic surgery, and analyses of variance made before treatment, 12 months after conservative procedures, 3 months following arthroscopic surgery and midlaser therapy and 3 years since commencement of management. Dependent variables compared were pain-discomfort, Clinical Dysfunction Index, articular disc derangement and maximal voluntary jaw opening. Conservative management alone provided significant reduction of pain-discomfort and clinical dysfunction, while arthroscopic surgery resulted in significant reduction in articular disc derangement. The midlaser with TMJ/occlusal stabilization maintained significant improvement in the variables (p < 0.01) for both groups. The common articular deviations in form found at arthroscopy were soft tissue alteration with hyperaemia, synovitis, synovial membrane and posterior attachment folding with connective tissue hyperplasia, and disc displacement with fibrous adhesions. The Global Status Score of pain behaviour compared with residual function, confirmed the presence of greater pain before treatment commenced.

  19. Myocardial Bridge

    MedlinePlus

    ... Kawasaki Disease Long Q-T Syndrome Marfan Syndrome Metabolic Syndrome Mitral Valve Prolapse Myocarditis Obstructive Sleep Apnea Pericarditis Peripheral Vascular Disease Rheumatic Fever Sick Sinus Syndrome Silent Ischemia Stroke Sudden ...

  20. Acute myocardial infarction in a young woman on isotretinoin treatment.

    PubMed

    Lorenzo, Natalia; Antuña, Paula; Dominguez, Lourdes; Rivero, Fernando; Bastante, Teresa; Alfonso, Fernando

    2015-02-15

    The use of isotretinoin has been associated with mild changes in the metabolic profile of adolescents. In very rare cases, a possible association with myocardial infarction, stroke and thromboembolic events has been reported. In this report we describe the potential association of isotretinoin with the occurrence of an acute myocardial infarction in a very young girl. OCT provided unique visualization of the culprit lesion.

  1. Lubricin in synovial fluid of mild and severe temporomandibular joint internal derangements

    PubMed Central

    Perrotta, Rosario E.; Almeida, Luis-Eduardo; Loreto, Carla; Musumeci, Giuseppe

    2016-01-01

    Background To understand the molecular basis of temporomandibular joint (TMJ) pathologies, we aimed to investigate the lubricin levels in the TMJ synovial fluid (SF) of patients with mild to severe internal derangements (IDs). Material and Methods A total, 34 joints were the study group. Only patients, with a Wilkes stage of III, IV and V were included, in this sample. Control group consisted of SF from eight joints, from patients undergoing to orthognatic surgery. Concentrations of lubricin in the SF from both samples were measured using ELISA system. Results The mean lubricin concentration was 7.029 ± 0.21 µg/mL in stage III patients; 5.64 ± 0.10 µg/mL in stage IV patients, and 4.78 ± 0.11 µg/mL in stage V patients. The lubricin levels from stage IV and stage V patients differed significantly (P ≤ 0.001) from those of control subjects. Lubricin levels were inversely correlated with age and to VAS score. Conclusions The results of this cross-sectional study highlight the relationship between disease severity and the levels of lubricin in TMJ SF. Our findings suggest that novel biotherapeutic approaches, including the administration of recombinant lubricin in the joint cavity, for the treatment of TMJ diseases can be developed. Key words:Lubricin, TMJ, derangements, synovial fluid. PMID:27694778

  2. Impaired cognitive performance in neuronal nitric oxide synthase knockout mice is associated with hippocampal protein derangements.

    PubMed

    Kirchner, Liselotte; Weitzdoerfer, Rachel; Hoeger, Harald; Url, Angelika; Schmidt, Peter; Engelmann, Mario; Villar, Santiago Rosell; Fountoulakis, Michael; Lubec, Gert; Lubec, Barbara

    2004-12-01

    Nitric oxide is implicated in modulation of memory and pharmacological as well as genetic inhibition of neuronal nitric oxide synthase (nNOS) leads to impaired cognitive function. We therefore decided to study learning and memory functions and cognitive flexibility in the Morris water maze (MWM) in 1-month-old male mice lacking nNOS (nNOS KO). Hippocampal protein profiling was carried out to possibly link protein derangement to impaired cognitive function. Two-dimensional gel electrophoresis with in-gel digestion of spots and subsequent MALDI-TOF identification of proteins and quantification of proteins using specific software was applied. In the memory as well as in the relearning task of the MWM, most of the nNOS KO failed to find the submerged platform within a given time. Proteomic evaluation of hippocampus, the main anatomical structure computing cognitive functions, revealed aberrant expression of a synaptosomal associated protein of the exocytotic machinery (NSF), glycolytic enzymes, chaperones 78 kDa glucose-regulated protein, T-complex protein 1; the signaling structure guanine nucleotide-binding protein G(I)/G(S)/G(T) and heterogeneous nuclear ribonucleoprotein H of the splicing machinery. We conclude that nNOS knockout mice show impaired spatial performance in the MWM, a finding that may be either linked to direct effects of nNOS/NO and/or to specific hippocampal protein derangements.

  3. Mentha piperita in nephrotoxicity – a possible intervention to ameliorate renal derangements associated with gentamicin

    PubMed Central

    Ullah, Naveed; Khan, Mir Azam; Khan, Taous; Asif, Afzal Haq; Ahmad, Waqar

    2014-01-01

    Objective: Free radical generation has a strong role in the pathogenesis of renal damage associated with the use of gentamicin. Therefore, the present study was carried out to evaluate the renoprotective effect of Mentha piperita against gentamicin induced nephrotoxicity. Materials and Methods: A total of 24 male rabbits were divided into 4 groups receiving normal saline, gentamicin, M. piperita extract and co-therapy of extract and gentamicin respectively. Gentamicin was provided as 80 mg/kg/day intramuscularly and extract was given 200 mg/kg/day orally for a period of 21 days. Serum and urinary biochemical parameters and histological changes were studied for each group. The impact of the extract on the antibacterial action of gentamicin was also evaluated. Results: Animals treated with gentamicin showed derangements in serum and urinary biochemical parameters. These alterations were reversed by treatment with M. piperita extract. The histological changes showed in gentamicin group were also reverted by treatment with the extract. Further the plant did not influence the efficacy of gentamicin with respect to its antimicrobial properties. Conclusion: Co-therapy of M. piperita with gentamicin successfully attenuated biochemical kidney functioning derangements and morphological changes associated with gentamicin. PMID:24741187

  4. Clinical evaluation of physical therapy in the management of internal derangement of the temporomandibular joint.

    PubMed

    Kirk, W S; Calabrese, D K

    1989-02-01

    This clinical cross-sectional study examines the favorable functional improvement in patients undergoing physical therapy for mild to moderate internal disc derangements of the temporomandibular joint. Sixty-eight patients with internal derangements were treated with physical therapeutic modalities as described by Rocabado. A success rate of 86% was achieved in patients with early- to mid-opening and late- to mid-closing clicks of the temporomandibular joint. Approximately one third of these patients required short-term occlusal bite appliances to assist in their management. A success rate of 7% was achieved in patients with late-opening and late-closing clicks. No patient with clicking on mediolateral movement was successfully managed with physical therapy. Likewise, patients with nonreducing anteriorly displaced discs of the temporomandibular joint did not respond well to physical therapy. Pain management was evaluated separately and showed subjective improvement in 82% of patients with mild to moderate disc dysfunction and pain. Only 29% of patients with late-opening clicking or locked joints experienced pain relief. When patients were classified according to occurrence of the clicking phenomenon, interesting trends relating to duration of symptoms were found. Twenty-two patients who did not respond favorably to physical therapy underwent surgical procedures. Findings in these patients offer suggestions about why nonsurgical therapy is not successful in certain cases.

  5. Metabolic endotoxemia with obesity: Is it real and is it relevant?

    PubMed

    Boutagy, Nabil E; McMillan, Ryan P; Frisard, Madlyn I; Hulver, Matthew W

    2016-05-01

    Obesity is associated with metabolic derangements in multiple tissues, which contribute to the progression of insulin resistance and the metabolic syndrome. The underlying stimulus for these metabolic derangements in obesity are not fully elucidated, however recent evidence in rodents and humans suggests that systemic, low level elevations of gut derived endotoxin (lipopolysaccharide, LPS) may play an important role in obesity related, whole-body and tissue specific metabolic perturbations. LPS initiates a well-characterized signaling cascade that elicits many pro- and anti-inflammatory pathways when bound to its receptor, Toll-Like Receptor 4 (TLR4). Low-grade elevation in plasma LPS has been termed "metabolic endotoxemia" and this state is associated with a heightened pro-inflammatory and oxidant environment often observed in obesity. Given the role of inflammatory and oxidative stress in the etiology of obesity related cardio-metabolic disease risk, it has been suggested that metabolic endotoxemia may serve a key mediator of metabolic derangements observed in obesity. This review provides supporting evidence of mechanistic associations with cell and animal models, and provides complimentary evidence of the clinical relevance of metabolic endotoxemia in obesity as it relates to inflammation and metabolic derangements in humans. Discrepancies with endotoxin detection are considered, and an alternate method of reporting metabolic endotoxemia is recommended until a standardized measurement protocol is set forth.

  6. One-year outcomes of out-of-hospital administration of intravenous glucose, insulin, and potassium (GIK) in patients with suspected acute coronary syndromes (from the IMMEDIATE [Immediate Myocardial Metabolic Enhancement During Initial Assessment and Treatment in Emergency Care] Trial).

    PubMed

    Selker, Harry P; Udelson, James E; Massaro, Joseph M; Ruthazer, Robin; D'Agostino, Ralph B; Griffith, John L; Sheehan, Patricia R; Desvigne-Nickens, Patrice; Rosenberg, Yves; Tian, Xin; Vickery, Ellen M; Atkins, James M; Aufderheide, Tom P; Sayah, Assaad J; Pirrallo, Ronald G; Levy, Michael K; Richards, Michael E; Braude, Darren A; Doyle, Delanor D; Frascone, Ralph J; Kosiak, Donald J; Leaming, James M; Van Gelder, Carin M; Walter, Gert-Paul; Wayne, Marvin A; Woolard, Robert H; Beshansky, Joni R

    2014-05-15

    The Immediate Myocardial Metabolic Enhancement During Initial Assessment and Treatment in Emergency care Trial of very early intravenous glucose-insulin-potassium (GIK) for acute coronary syndromes (ACS) in out-of-hospital emergency medical service (EMS) settings showed 80% reduction in infarct size at 30 days, suggesting potential longer-term benefits. Here we report 1-year outcomes. Prespecified 1-year end points of this randomized, placebo-controlled, double-blind, effectiveness trial included all-cause mortality and composites including cardiac arrest, mortality, or hospitalization for heart failure (HF). Of 871 participants randomized to GIK versus placebo, death occurred within 1 year in 11.6% versus 13.5%, respectively (unadjusted hazard ratio [HR] 0.83, 95% confidence interval [CI] 0.57 to 1.23, p = 0.36). The composite of cardiac arrest or 1-year mortality was 12.8% versus 17.0% (HR 0.71, 95% CI 0.50 to 1.02, p = 0.06). The composite of hospitalization for HF or mortality within 1 year was 17.2% versus 17.2% (HR 0.98, 95% CI 0.70 to 1.37, p = 0.92). The composite of mortality, cardiac arrest, or HF hospitalization within 1 year was 18.1% versus 20.4% (HR 0.85, 95% CI 0.62 to 1.16, p = 0.30). In patients presenting with suspected ST elevation myocardial infarction, HRs for 1-year mortality and the 3 composites were, respectively, 0.65 (95% CI 0.33 to 1.27, p = 0.21), 0.52 (95% CI 0.30 to 0.92, p = 0.03), 0.63 (95% CI 0.35 to 1.16, p = 0.14), and 0.51 (95% CI 0.30 to 0.87, p = 0.01). In patients with suspected acute coronary syndromes, serious end points generally were lower with GIK than placebo, but the differences were not statistically significant. However, in those with ST elevation myocardial infarction, the composites of cardiac arrest or 1-year mortality, and of cardiac arrest, mortality, or HF hospitalization within 1 year, were significantly reduced.

  7. A derangement of the brain wound healing process may cause some cases of Alzheimer's disease.

    PubMed

    Lehrer, Steven; Rheinstein, Peter H

    2016-08-01

    A derangement of brain wound healing may cause some cases of Alzheimer's disease. Wound healing, a highly complex process, has four stages: hemostasis, inflammation, repair, and remodeling. Hemostasis and the initial phases of inflammation in brain tissue are typical of all vascularized tissue, such as skin. However, distinct differences arise in brain tissue during the later stages of inflammation, repair, and remodeling, and closely parallel the changes of Alzheimer's disease. Our hypothesis -- Alzheimer's disease is brain wound healing gone awry at least in some cases -- could be tested by measuring progression with biomarkers for the four stages of wound healing in humans or appropriate animal models. Autopsy studies might be done. Chronic traumatic encephalopathy might also result from the brain wound healing process.

  8. Histologic appearance of the bilaminar zone in internal derangement of the temporomandibular joint.

    PubMed

    Hall, M B; Brown, R W; Baughman, R A

    1984-10-01

    Light microscopy was used to examine twenty-six specimens of bilaminar zone tissue excised during surgery for correction of internal derangement of the temporamandibular joint. Each of the specimens was examined for the presence of inflammation, amount of vascularity, arterial wall thickness, presence of fat, appearance of collagen, and amount of elastin present. Wide variation in the histologic appearance was noted among the specimens, although no significant inflammation was observed in any of them. Some indications that this tissue is undergoing adaptive changes include the presence of thickened arterial walls suggesting a decreased blood flow and the tendency for decreased amounts of elastin to be associated with denser-appearing collagen. There is also a tendency for patients with complete dislocation to exhibit less elastin than those with partial dislocation of the meniscus.

  9. Reactive arthritis in relation to internal derangements of the temporomandibular joint: a case control study.

    PubMed

    Lund, Bodil; Holmlund, Anders; Wretlind, Bengt; Jalal, Shah; Rosén, Annika

    2015-09-01

    The aim of this study was to find out if reactive arthritis was involved in the aetiology of chronic closed lock of the temporomandibular joint (TMJ) by looking for bacterial antigens in the synovial membrane of the TMJ, and by studying the antibody serology and carriage of human leucocyte antigen (HLA) B27 in patients with chronic closed lock. Patients with reciprocal clicking and healthy subjects acted as controls. We studied a total of 43 consecutive patients, 15 with chronic closed lock, 13 with reciprocal clicking, and 15 healthy controls with no internal derangements of the TMJ. Venous blood samples were collected from all subjects for measurement of concentrations of HLA tissue antigen and serology against Chlamydia trachomatis, Yersinia enterocolitica, Salmonella spp., Campylobacter jejuni, and Mycoplasma pneumoniae. Samples of synovial tissue from patients with closed lock and reciprocal clicking were obtained during discectomy and divided into two pieces, the first of which was tested by strand displacement amplification for the presence of C trachomatis, and the second of which was analysed for the presence of species-specific bacterial DNA using 16s rRNA pan-polymerase chain reaction (PCR). There were no significant differences between the groups in the incidence of antibodies against M pneumoniae, Salmonella spp. or Y enterocolitica. No patient had antibodies towards C trachomatis or C jejuni. We found no bacterial DNA in the synovial fluid from any patient. The HLA B27 antigen was present in 2/15 subjects in both the closed lock and control groups, and none in the reciprocal clicking group. In conclusion, reactive arthritis does not seem to be the mechanism of internal derangement of the TMJ.

  10. The Diagnostic Validity of Clinical Tests in Temporomandibular Internal Derangement: A Systematic Review and Meta-analysis.

    PubMed

    Chaput, Eve; Gross, Anita; Stewart, Ryan; Nadeau, Gordon; Goldsmith, Charlie H

    2012-01-01

    Purpose: To assess the diagnostic validity of clinical tests for temporomandibular internal derangement relative to magnetic resonance imaging (MRI). Methods: MEDLINE and Embase were searched from 1994 through 2009. Independent reviewers conducted study selection; risk of bias was assessed using Quality Assessment of studies of Diagnostic Accuracy included in Systematic reviews (QUADAS); ≥9/14) and data abstraction. Overall quality of evidence was profiled using Grading of Recommendations Assessment, Development, and Evaluation (GRADE). Agreement was measured using quadratic weighted kappa (κw). Positive (+) or negative (−) likelihood ratios (LR) with 95% CIs were calculated and pooled using the DerSimonian–Laird method and a random-effects model when homogeneous (I(2)≥0.40, Q-test p≤0.10). Results: We selected 8 of 36 studies identified. There is very low quality evidence that deflection (+LR: 6.37 [95% CI, 2.13–19.03]) and crepitation (LR:5.88 [95% CI, 1.95–17.76]) as single tests and crepitation, deflection, pain, and limited mouth opening as a cluster of tests are the most valuable for ruling in internal derangement without reduction (+LR:6.37 [95% CI, 2.13–19.03]), (−LR:0.27 [95% CI, 0.11–0.64]) while the test cluster click, deviation, and pain rules out internal derangement with reduction (−LR: 0.09 [95% CI, 0.01–0.72]). No single test or cluster of tests was conclusive and of significant value for ruling in internal derangement with reduction. Conclusions: Findings of this review will assist clinicians in deciding which diagnostic tests to use when internal derangement is suspected. The literature search revealed a lack of high-quality studies; further research with adequate description of patient populations, blinded assessments, and both sagittal and coronal MRI planes is therefore recommended.

  11. Myocardial imaging. Coxsackie myocarditis

    SciTech Connect

    Wells, R.G.; Ruskin, J.A.; Sty, J.R.

    1986-09-01

    A 3-week-old male neonate with heart failure associated with Coxsackie virus infection was imaged with Tc-99m PYP and TI-201. The abnormal imaging pattern suggested myocardial infarction. Autopsy findings indicated that the cause was myocardial necrosis secondary to an acute inflammatory process. Causes of abnormal myocardial uptake of Tc-99m PYP in pediatrics include infarction, myocarditis, cardiomyopathy, bacterial endocarditis, and trauma. Myocardial imaging cannot provide a specific cause diagnosis. Causes of myocardial infarction in pediatrics are listed in Table 1.

  12. Deranged iron status in psoriasis: the impact of low body mass

    PubMed Central

    Ponikowska, Malgorzata; Tupikowska, Malgorzata; Kasztura, Monika; Jankowska, Ewa A; Szepietowski, Jacek C

    2015-01-01

    Background Iron deficiency (ID) frequently complicates inflammatory-mediated chronic disorders, irrespective of anaemia. Psoriasis is a chronic, immune-mediated skin disease with systemic pro-inflammatory activation; thus, these patients may be prone to develop ID. ID adversely affects immune cells function, which can further contribute to disease progression. This study investigates iron status in psoriasis. Methods Serum concentrations of ferritin, transferrin saturation (Tsat), soluble transferrin receptor (sTfR), and hepcidin were assessed as the biomarkers of iron status in 39 patients with psoriasis (17 men, age: 47 ± 10 years) and 44 healthy subjects (30 men, age: 53 ± 6 years). Results Compared with healthy controls, patients with psoriasis demonstrated similar haematologic status but deranged iron status as evidenced by decreased Tsat and elevated sTfR (negative tissue iron balance) and low levels of hepcidin (depleted iron stores) (all P < 0.05 vs. controls). In patients, the levels of interleukin-6 (level of pro-inflammatory activation) significantly correlated with hepcidin (R = 0.54), but not with ferritin, Tsat, and sTfR. Biomarkers reflecting ID were not associated with the severity of the disease (assessed with the Psoriasis Area and Severity Index) but significantly correlated low body mass index (BMI). Patients with BMI < 24 kg/m2 compared with those with BMI ≥ 24 kg/m2 demonstrated lower levels of ferritin (40 ± 30 vs. 186 ± 128 ng/mL, P < 0.001) and hepcidin (4.9 ± 2.3 vs. 10.7 ± 6.7 ng/mL, P = 0.03). Conclusion Psoriasis is associated with deranged iron status characterized by depleted iron stores with concomitant unmet cellular iron requirements. The magnitude of these abnormalities is particularly strong in patients with low body mass index. Whether iron deficiency may become a therapeutic target in psoriasis needs to be investigated. PMID:26673741

  13. Metabolic adaptation to a disruption in oxygen supply during myocardial ischemia and reperfusion is underpinned by temporal and quantitative changes in the cardiac proteome.

    PubMed

    Li, Xin; Arslan, Fatih; Ren, Yan; Adav, Sunil S; Poh, Kian Keong; Sorokin, Vitaly; Lee, Chuen Neng; de Kleijn, Dominique; Lim, Sai Kiang; Sze, Siu Kwan

    2012-04-06

    Despite decades of intensive research, there is still no effective treatment for ischemia/reperfusion (I/R) injury, an important corollary in the treatment of ischemic disease. I/R injury is initiated when the altered biochemistry of cells after ischemia is no longer compatible with oxygenated microenvironment (or reperfusion). To better understand the molecular basis of this alteration and subsequent incompatibility, we assessed the temporal and quantitative alterations in the cardiac proteome of a mouse cardiac I/R model by an iTRAQ approach at 30 min of ischemia, and at 60 or 120 min reperfusion after the ischemia using sham-operated mouse heart as the baseline control. Of the 509 quantified proteins identified, 121 proteins exhibited significant changes (p-value<0.05) over time and were mostly clustered in eight functional groups: Fatty acid oxidation, Glycolysis, TCA cycle, ETC (electron transport chain), Redox Homeostasis, Glutathione S-transferase, Apoptosis related, and Heat Shock proteins. The first four groups are intimately involved in ATP production and the last four groups are known to be important in cellular antioxidant activity. During ischemia and reperfusion, the short supply of oxygen precipitates a pivotal metabolic switch from aerobic metabolism involving fatty acid oxidation, TCA, and phosphorylation to anaerobic metabolism for ATP production and this, in turn, increases reactive oxygen species (ROS) formation. Therefore the implication of these 8 functional groups suggested that ischemia-reperfusion injury is underpinned in part by proteomic alterations. Reversion of these alterations to preischemia levels took at least 60 min, suggesting a refractory period in which the ischemic cells cannot adjust to the presence of oxygen. Therefore, therapeutics that could compensate for these proteomic alterations during this interim refractory period could alleviate ischemia-reperfusion injury to enhance cellular recovery from an ischemic to a normoxic

  14. ADAM10 localization in temporomandibular joint disk with internal derangement: an ex vivo immunohistochemical study.

    PubMed

    Loreto, Carla; Chiarenza, Giovanni Paolo Salvatore; Musumeci, Giuseppe; Castrogiovanni, Paola; Imbesi, Rosa; Ruggeri, Alessandra; Almeida, Luis Edoardo; Leonardi, Rosalia

    2016-04-01

    The purpose of this study was to determine the presence of ADAM10 in temporomandibular joint disk with internal derangement. Twenty-five paraffin blocks of displaced temporomandibular joint (TMJ) disk specimens from earlier investigations were retrieved from the archives of the University of Catania. Of these 16 had been removed from females and 9 from males; 11 with anterior disk displacement with reduction (ADDwR) and 14 with anterior disk displacement without reduction (ADDwoR). The sections were dehydrated, embedded in paraffin and cut. Then they were incubated in 0.3% H2O2/methanol and half of sections from each sample were incubated in diluted rabbit polyclonal anti-ADAM10 antibody. Then biotinylated anti-mouse/anti-rabbit IgG was applied to the sections, followed by avidin-biotin-perioxidase complex. The results were analyzed and the results were that ADAM10 was overexpressed in the posterior band of sections from patients with ADDwR compared to the other bands of both ADDwR and ADDwoR sections. Overexpression correlated with severe histopathological degeneration. We believe these results have the potential to provide insights into the pathogenesis of TMJ disk degeneration and to help design new therapeutic approaches targeting the proteolytic events that lead to tissue degeneration. Early therapeutic block of ADAM10 activity could succeed in limiting aggrecan-rich matrix breakdown without affecting normal physiology.

  15. METABOLIC ASTHMA: IS THERE A LINK BETWEEN OBESITY, DIABETES AND ASTHMA?

    PubMed Central

    Perez, Miriam K.; Piedimonte, Giovanni

    2014-01-01

    SYNOPSIS Childhood asthma and obesity have reached epidemic proportions worldwide, and the latter is also contributing to increasing rates of related metabolic disorders like diabetes. Yet, the relationship between asthma, obesity, and abnormal metabolism is not well understood, nor has it been adequately explored in children. This article discusses the concept of “metabolic asthma” and the recent hypothesis that early derangement in lipid and glucose metabolism is independently associated to increased risk for asthma. PMID:25282290

  16. Peripheral Disc Margin Shape and Internal Disc Derangement: Imaging Correlation in Significantly Painful Discs Identified at Provocation Lumbar Discography

    PubMed Central

    Bartynski, W.S.; Rothfus, W.E.

    2012-01-01

    Summary Annular margin shape is used to characterize lumbar disc abnormality on CT/MR imaging studies. Abnormal discs also have internal derangement including annular degeneration and radial defects. The purpose of this study was to evaluate potential correlation between disc-margin shape and annular internal derangement on post-discogram CT in significantly painful discs encountered at provocation lumbar discography (PLD). Significantly painful discs were encountered at 126 levels in 86 patients (47 male, 39 female) studied by PLD where no prior surgery had been performed and response to intradiscal lidocaine after provocation resulted in either substantial/total relief or no improvement after lidocaine administration. Post-discogram CT and discogram imaging was evaluated for disc-margin characteristics (bulge/protrusion), features of disc internal derangement (radial annular defect [RD: radial tear/fissure/annular gap], annular degeneration) and presence/absence of discographic contrast leakage. In discs with focal protrusion, 50 of 63 (79%) demonstrated Grade 3 RD with 13 (21%) demonstrating severe degenerative change only. In discs with generalized-bulge-only, 48 of 63 (76%) demonstrated degenerative change only (primarily Dallas Grade 3) with 15 of 63 (24%) demonstrating a RD (Dallas Grade 3). Differences were highly statistically significant (p<0.001). Pain elimination with intra-discal lidocaine correlated with discographic contrast leakage (p<0.001). Disc-margin shape correlates with features of internal derangement in significantly painful discs encountered at PLD. Discs with focal protrusion typically demonstrate RD while generalized bulging discs typically demonstrated degenerative changes only (p<0.001). Disc-margin shape may provide an important imaging clue to the cause of chronic discogenic low back pain. PMID:22681741

  17. Perturbed Energy Metabolism and Neuronal Circuit Dysfunction in Cognitive Impairment

    PubMed Central

    Kapogiannis, Dimitrios; Mattson, Mark P.

    2010-01-01

    Summary Epidemiological, neuropathological and functional neuroimaging evidence implicates global and regional derangements in brain metabolism and energetics in the pathogenesis of cognitive impairment. Nerve cell microcircuits are modified adaptively by excitatory and inhibitory synaptic activity and neurotrophic factors. Aging and Alzheimer’s disease (AD) cause perturbations in cellular energy metabolism, level of excitation/inhibition and neurotrophic factor release that overwhelm compensatory mechanisms and result in neuronal microcircuit and brain network dysfunction. A prolonged positive energy balance impairs the ability of neurons to respond adaptively to oxidative and metabolic stress. Experimental studies in animals demonstrate how derangements related to chronic positive energy balance, such as diabetes, set the stage for accelerated cognitive aging and AD. Therapeutic interventions to allay cognitive dysfunction that target energy metabolism and adaptive stress responses (such as neurotrophin signaling) have shown efficacy in animal models and preliminary studies in humans. PMID:21147038

  18. Optimization of myocardial function.

    PubMed

    Alpert, N R; Mulieri, L A; Hasenfuss, G; Holubarsch, C

    1993-01-01

    Under normal conditions the cardiac output is designed to meet the metabolic needs of the organism. Thus, the demands imposed on the heart muscle can range from low values at rest to an order of magnitude greater values during exercise. The heart uses a number of strategies to meet the short- and long-term changes in demand. These strategies are of general biological interest and employ similar mechanisms to those responsible for the differences in muscle performance seen between muscle from various species and diverse muscle types within a given animal. This review deals with the heart's utilization of these strategies to meet a broad range of requirements. Tortoise (TM) and rat soleus (RS) muscles are slow, have high economy and develop low power. In contrast (FM) and rat extensor digitorum longus (REDL) are fast, have low economy and have a high power output. These differences are explainable in terms of the characteristics of the myosin head cross-bridge cycle (Cross-bridge tension-time integral: FM/FT = 0.024; REDL/RS = 0.16. Myosin ATPase activity: FM/TM = 15; RDEL/RS = 2.3) and excitation contraction coupling system (time to peak tension: FM/TM = 0.2; REDL/RS = 0.4). Heart muscle employs similar strategies (cross-bridge cycle; excitation contraction coupling) to meet short (catecholamine) and long (hypertrophy secondary to pressure overload or thyrotoxicosis) term changes in demand. In the presence of catecholamine power is increased while economy is decreased. This difference between control (C) and isoproterenol treated hearts (I) is explainable in terms of the contractile and excitation contraction coupling systems (Cross-bridge tension-time integral: I/C = 0.4. Tension independent heat: I/C = 2.0. Tension independent heat rate: I/C = 2.5). A persistent increase in the demand on the heart results in myocardial hypertrophy that is associated with intracellular reorganization. Hyperthyroidism (T) and pressure overload (PO) were used to produce myocardial

  19. Neonatal Thymulin Gene Therapy Prevents Ovarian Dysgenesis and Attenuates Reproductive Derangements in Nude Female Mice

    PubMed Central

    Reggiani, Paula C.; Barbeito, Claudio G.; Zuccolilli, Gustavo O.; Cónsole, Gloria M.; Flamini, Alicia M.; Dardenne, Mireille

    2012-01-01

    Congenitally athymic (nude) female mice show severe ovarian dysgenesis after puberty, which seems to be consequential to a number of neuroendocrine derangements described in these mutants. Thus, considerable evidence suggests that thymulin, a thymic peptide, may be involved in thymus-pituitary communication. In order to clarify the relevance of thymulin for the maturation of the female reproductive system, we assessed at hypothalamic, pituitary, ovarian, and uterine level the preventive action of neonatal thymulin gene therapy (NTGT) on the changes that typically occur after puberty in congenitally athymic female mice. We injected (im) an adenoviral vector harboring a synthetic DNA sequence encoding a biologically active analog of thymulin, methionine-serum thymic factor, in newborn nude mice (which are thymulin deficient) and killed the animals at 70–71 d of age. NTGT in the athymic mice restored the serum thymulin levels. Morphometric analysis revealed that athymic nudes have reduced numbers of brain GnRH neurons and pituitary gonadotropic cells as compared with heterozygous controls. NTGT prevented these changes and also rescued the premature ovarian failure phenotype typically observed in athymic nude mice (marked reduction in the number of antral follicles and corpora lutea, increase in atretic follicles). Serum estrogen, but not progesterone, levels were low in athymic nudes, a reduction that was partially prevented by NTGT. Little to no morphological changes were observed in the endometrium of female nudes. The delay in the age of vaginal opening that occurs in athymic nudes was significantly prevented by NTGT. Our results suggest that thymulin plays a relevant physiologic role in the thymus-hypothalamo-pituitary-gonadal axis. PMID:22700775

  20. Neonatal thymulin gene therapy prevents ovarian dysgenesis and attenuates reproductive derangements in nude female mice.

    PubMed

    Reggiani, Paula C; Barbeito, Claudio G; Zuccolilli, Gustavo O; Cónsole, Gloria M; Flamini, Alicia M; Dardenne, Mireille; Goya, Rodolfo G

    2012-08-01

    Congenitally athymic (nude) female mice show severe ovarian dysgenesis after puberty, which seems to be consequential to a number of neuroendocrine derangements described in these mutants. Thus, considerable evidence suggests that thymulin, a thymic peptide, may be involved in thymus-pituitary communication. In order to clarify the relevance of thymulin for the maturation of the female reproductive system, we assessed at hypothalamic, pituitary, ovarian, and uterine level the preventive action of neonatal thymulin gene therapy (NTGT) on the changes that typically occur after puberty in congenitally athymic female mice. We injected (im) an adenoviral vector harboring a synthetic DNA sequence encoding a biologically active analog of thymulin, methionine-serum thymic factor, in newborn nude mice (which are thymulin deficient) and killed the animals at 70-71 d of age. NTGT in the athymic mice restored the serum thymulin levels. Morphometric analysis revealed that athymic nudes have reduced numbers of brain GnRH neurons and pituitary gonadotropic cells as compared with heterozygous controls. NTGT prevented these changes and also rescued the premature ovarian failure phenotype typically observed in athymic nude mice (marked reduction in the number of antral follicles and corpora lutea, increase in atretic follicles). Serum estrogen, but not progesterone, levels were low in athymic nudes, a reduction that was partially prevented by NTGT. Little to no morphological changes were observed in the endometrium of female nudes. The delay in the age of vaginal opening that occurs in athymic nudes was significantly prevented by NTGT. Our results suggest that thymulin plays a relevant physiologic role in the thymus-hypothalamo-pituitary-gonadal axis.

  1. Metabolic mechanisms in heart failure.

    PubMed

    Ashrafian, Houman; Frenneaux, Michael P; Opie, Lionel H

    2007-07-24

    Although neurohumoral antagonism has successfully reduced heart failure morbidity and mortality, the residual disability and death rate remains unacceptably high. Though abnormalities of myocardial metabolism are associated with heart failure, recent data suggest that heart failure may itself promote metabolic changes such as insulin resistance, in part through neurohumoral activation. A detrimental self-perpetuating cycle (heart failure --> altered metabolism --> heart failure) that promotes the progression of heart failure may thus be postulated. Accordingly, we review the cellular mechanisms and pathophysiology of altered metabolism and insulin resistance in heart failure. It is hypothesized that the ensuing detrimental myocardial energetic perturbations result from neurohumoral activation, increased adverse free fatty acid metabolism, decreased protective glucose metabolism, and in some cases insulin resistance. The result is depletion of myocardial ATP, phosphocreatine, and creatine kinase with decreased efficiency of mechanical work. On the basis of the mechanisms outlined, appropriate therapies to mitigate aberrant metabolism include intense neurohumoral antagonism, limitation of diuretics, correction of hypokalemia, exercise, and diet. We also discuss more novel mechanistic-based therapies to ameliorate metabolism and insulin resistance in heart failure. For example, metabolic modulators may optimize myocardial substrate utilization to improve cardiac function and exercise performance beyond standard care. The ultimate success of metabolic-based therapy will be manifest by its capacity further to lessen the residual mortality in heart failure.

  2. Feasibility of voxel-based statistical analysis method for myocardial PET

    NASA Astrophysics Data System (ADS)

    Ram Yu, A.; Kim, Jin Su; Paik, Chang H.; Kim, Kyeong Min; Moo Lim, Sang

    2014-09-01

    Although statistical parametric mapping (SPM) analysis is widely used in neuroimaging studies, to our best knowledge, there was no application to myocardial PET data analysis. In this study, we developed the voxel based statistical analysis method for myocardial PET which provides statistical comparison results between groups in image space. PET Emission data of normal and myocardial infarction rats were acquired For the SPM analysis, a rat heart template was created. In addition, individual PET data was spatially normalized and smoothed. Two sample t-tests were performed to identify the myocardial infarct region. This developed SPM method was compared with conventional ROI methods. Myocardial glucose metabolism was decreased in the lateral wall of the left ventricle. In the result of ROI analysis, the mean value of the lateral wall was 29% decreased. The newly developed SPM method for myocardial PET could provide quantitative information in myocardial PET study.

  3. The Role of Docosahexaenoic Acid (DHA) in the Control of Obesity and Metabolic Derangements in Breast Cancer.

    PubMed

    Molfino, Alessio; Amabile, Maria Ida; Monti, Massimo; Arcieri, Stefano; Rossi Fanelli, Filippo; Muscaritoli, Maurizio

    2016-04-05

    Obesity represents a major under-recognized preventable risk factor for cancer development and recurrence, including breast cancer (BC). Healthy diet and correct lifestyle play crucial role for the treatment of obesity and for the prevention of BC. Obesity is significantly prevalent in western countries and it contributes to almost 50% of BC in older women. Mechanisms underlying obesity, such as inflammation and insulin resistance, are also involved in BC development. Fatty acids are among the most extensively studied dietary factors, whose changes appear to be closely related with BC risk. Alterations of specific ω-3 polyunsaturated fatty acids (PUFAs), particularly low basal docosahexaenoic acid (DHA) levels, appear to be important in increasing cancer risk and its relapse, influencing its progression and prognosis and affecting the response to treatments. On the other hand, DHA supplementation increases the response to anticancer therapies and reduces the undesired side effects of anticancer therapies. Experimental and clinical evidence shows that higher fish consumption or intake of DHA reduces BC cell growth and its relapse risk. Controversy exists on the potential anticancer effects of marine ω-3 PUFAs and especially DHA, and larger clinical trials appear mandatory to clarify these aspects. The present review article is aimed at exploring the capacity of DHA in controlling obesity-related inflammation and in reducing insulin resistance in BC development, progression, and response to therapies.

  4. Mechanisms of cell survival in myocardial hibernation.

    PubMed

    Depre, Christophe; Vatner, Stephen F

    2005-04-01

    Myocardial hibernation represents a condition of regional ventricular dysfunction in patients with chronic coronary artery disease, which reverses gradually after revascularization. The precise mechanism mediating the regional dysfunction is still debated. One hypothesis suggests that chronic hypoperfusion results in a self-protecting downregulation in myocardial function and metabolism to match the decreased oxygen supply. An alternative hypothesis suggests that the myocardium is subject to repetitive episodes of ischemic dysfunction resulting from an imbalance between myocardial metabolic demand and supply that eventually creates a sustained depression of contractility. It is generally agreed that hibernating myocardium is submitted repeatedly to ischemic stress, and therefore one question persists: how do myocytes survive in the setting of chronic ischemia? The hallmark of hibernating myocardium is a maintained viability of the dysfunctional myocardium which relies on an increased uptake of glucose. We propose that, in addition to this metabolic adjustment, there must be molecular switches that confer resistance to ischemia in hibernating myocardium. Such mechanisms include the activation of a genomic program of cell survival as well as autophagy. These protective mechanisms are induced by ischemia and remain activated chronically as long as either sustained or intermittent ischemia persists.

  5. Periodontitis and myocardial hypertrophy.

    PubMed

    Suzuki, Jun-Ichi; Sato, Hiroki; Kaneko, Makoto; Yoshida, Asuka; Aoyama, Norio; Akimoto, Shouta; Wakayama, Kouji; Kumagai, Hidetoshi; Ikeda, Yuichi; Akazawa, Hiroshi; Izumi, Yuichi; Isobe, Mitsuaki; Komuro, Issei

    2017-04-01

    There is a deep relationship between cardiovascular disease and periodontitis. It has been reported that myocardial hypertrophy may be affected by periodontitis in clinical settings. Although these clinical observations had some study limitations, they strongly suggest a direct association between severity of periodontitis and left ventricular hypertrophy. However, the detailed mechanisms between myocardial hypertrophy and periodontitis have not yet been elucidated. Recently, we demonstrated that periodontal bacteria infection is closely related to myocardial hypertrophy. In murine transverse aortic constriction models, a periodontal pathogen, Aggregatibacter actinomycetemcomitans markedly enhanced cardiac hypertrophy with matrix metalloproteinase-2 activation, while another pathogen Porphyromonas gingivalis (P.g.) did not accelerate these pathological changes. In the isoproterenol-induced myocardial hypertrophy model, P.g. induced myocardial hypertrophy through Toll-like receptor-2 signaling. From our results and other reports, regulation of chronic inflammation induced by periodontitis may have a key role in the treatment of myocardial hypertrophy. In this article, we review the pathophysiological mechanism between myocardial hypertrophy and periodontitis.

  6. Severe metabolic alkalosis due to baking soda ingestion: case reports of two patients with unsuspected antacid overdose.

    PubMed

    Fitzgibbons, L J; Snoey, E R

    1999-01-01

    Oral ingestion of baking soda (sodium bicarbonate) has been used for decades as a home remedy for acid indigestion. Excessive bicarbonate ingestion places patients at risk for a variety of metabolic derangements including metabolic alkalosis, hypokalemia, hypernatremia, and even hypoxia. The clinical presentation is highly variable but can include seizures, dysrhythmias, and cardiopulmonary arrest. We present two cases of severe metabolic alkalosis in patients with unsuspected antacid overdose. The presentation and pathophysiology of antacid-related metabolic alkalosis is reviewed.

  7. Crucial Role for Neuronal Nitric Oxide Synthase in Early Microcirculatory Derangement and Recipient Survival following Murine Pancreas Transplantation

    PubMed Central

    Cardini, Benno; Watschinger, Katrin; Hermann, Martin; Obrist, Peter; Oberhuber, Rupert; Brandacher, Gerald; Chuaiphichai, Surawee; Channon, Keith M.; Pratschke, Johann; Maglione, Manuel; Werner, Ernst R.

    2014-01-01

    Objective Aim of this study was to identify the nitric oxide synthase (NOS) isoform involved in early microcirculatory derangements following solid organ transplantation. Background Tetrahydrobiopterin donor treatment has been shown to specifically attenuate these derangements following pancreas transplantation, and tetrahydrobiopterin-mediated protective effects to rely on its NOS-cofactor activity, rather than on its antioxidant capacity. However, the NOS-isoform mainly involved in this process has still to be defined. Methods Using a murine pancreas transplantation model, grafts lacking one of the three NOS-isoforms were compared to grafts from wild-type controls. Donors were treated with either tetrahydrobiopterin or remained untreated. All grafts were subjected to 16 h cold ischemia time and transplanted into wild-type recipients. Following 4 h graft reperfusion, microcirculation was analysed by confocal intravital fluorescence microscopy. Recipient survival was monitored for 50 days. Results Transplantation of the pancreas from untreated wild-type donor mice resulted in microcirculatory damage of the transplanted graft and no recipient survived more than 72 h. Transplanting grafts from untreated donor mice lacking either endothelial or inducible NOS led to similar outcomes. In contrast, donor treatment with tetrahydrobiopterin prevented microcirculatory breakdown enabling long-term survival. Sole exception was transplantation of grafts from untreated donor mice lacking neuronal NOS. It resulted in intact microvascular structure and long-term recipient survival, either if donor mice were untreated or treated with tetrahydrobiopterin. Conclusion We demonstrate for the first time the crucial involvement of neuronal NOS in early microcirculatory derangements following solid organ transplantation. In this model, protective effects of tetrahydrobiopterin are mediated by targeting this isoform. PMID:25389974

  8. Amelioration of pancreatic and renal derangements in streptozotocin-induced diabetic rats by polyphenol extracts of Ginger (Zingiber officinale) rhizome.

    PubMed

    Kazeem, Mutiu Idowu; Akanji, Musbau Adewunmi; Yakubu, Musa Toyin

    2015-12-01

    Free and bound polyphenol extracts of Zingiber officinale rhizome were investigated for their antidiabetic potential in the pancreatic and renal tissues of diabetic rats at a dose of 500mg/kg body weight. Forty Wistar rats were completely randomized into five groups: A-E consisting of eight animals each. Group A (control) comprises normal healthy animals and were orally administered 1.0mL distilled water on a daily basis for 42 days while group B-E were made up of 50mg/kg streptozotocin (STZ)-induced diabetic rats. Group C and D received 1.0mL 500mg/kg body weight free and bound polyphenol extracts respectively while group E received 1.0mL 0.6mg/kg of glibenclamide. Administration of the extracts to the diabetic rats significantly reduced (p<0.05) serum glucose and urea concentrations, increased (p<0.05) serum insulin and Homeostatic Model Assessment for β-cell dysfunction (HOMA-β) while the level of creatinine and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were not affected. Histological examination of the pancreas and kidney revealed restoration of the structural derangements caused by streptozotocin in the polyphenol extracts treated diabetic rats compared to the control groups. Therefore, polyphenols from Zingiber officinale could ameliorate diabetes-induced pancreatic and renal derangements in rats.

  9. Donizetti and the music of mental derangement: Anna Bolena, Lucia di Lammermoor, and the composer's neurobiological illness.

    PubMed Central

    Peschel, E.; Peschel, R.

    1992-01-01

    The composer Gaetano Donizetti, who died in a state of mental derangement due to neurosyphilis, created some of opera's greatest scenes of psychosis. His letters reveal the clinical progression of his neurobiological illness, which was confirmed by autopsy. One can hypothesize that the composer's brain disease, which led to his psychosis and death, may have had an influence on his ability to create the powerful and unforgettable scenes of psychosis in his operas. In Anna Bolena, he captured in musical and dramatic terms Anne Boleyn's historically corroborated mental disorder during her imprisonment in the Tower of London. Sixteen years after having composed Anna Bolena, Donizetti himself would be locked up, against his will, in a mental institution. In Lucia di Lammermoor, Donizetti portrayed a girl given to hallucinations who, in her unforgettable "mad" scene, comes on stage, a pathetic embodiment of a human being in the throes of psychosis. Thirteen years after Lucia's première, Donizetti would die, psychotic and paralyzed, of untreated neurosyphilis. Studying Donizetti's neurosyphilis and the portrayals of psychosis in his operas can help one to appreciate the pain of human beings trapped in the prison of a brain subjected to the devastation of mental derangement. PMID:1285447

  10. [Clinical significance of myocardial 123I-BMIPP imaging in patients with myocardial infarction].

    PubMed

    Narita, M; Kurihara, T; Shindoh, T; Honda, M

    1997-03-01

    In order to clarify the characteristics of fatty acid metabolism in patients with myocardial infarction (MI), we performed myocardial imaging with 123I-beta-methyl-p-iodophenylpentadecanoic acid (BMIPP) and we compared these findings with exercise stress (Ex) and resting myocardial perfusion imaging with 99mTc-methoxyisobutylisonitrile (MIBI) and left ventricular wall motion index (WMI) which were obtained by left ventriculography. We studied 55 patients with MI, 14 patients with recent MI (RMI) and 41 patients with old MI (OMI), and myocardial images were divided into 17 segments and myocardial uptake of the radionuclide was graded from 0 (normal) to 3 (maximal abnormality). In 28 patients we compared segmental defect score (SDS) with WMI which were obtained by centerline method at the corresponded segments. As a whole, the mean total defect scores (TDSs) of BMIPP and Ex were similar and they were greater than the mean TDS of resting perfusion. In 30 patient (55%) TDS of BMIPP was greater than that of TDS of resting perfusion. In 24 patients perfusion abnormality developed by Ex and the location of BMIPP abnormality coincided with the abnormality of Ex. But in the other 6 patients Ex did not induce any abnormality and they were all RMI and infarcted coronary artery was patent. However in the group with TDS of BMIPP identical to TDS of resting perfusion (25 patients), 92% did not show myocardial perfusion abnormality after Ex. In the comparison of SDS and WMI, myocardial segments were divided into 3 groups; both SDSs of BMIPP and resting perfusion were normal or borderline abnormality (Group 1, 82 segments), SDS of resting perfusion was normal or borderline and SDS of BMIPP was definitely abnormal (Group 2, 10 segments) and both SDSs of BMIPP and resting perfusion were definitely abnormal (Group 3, 48 segments). In Group 1, WMS (-0.41 +/- 0.77) was significantly (p < 0.001) greater than those of Group 2 (-2.14 +/- 0.50) and Group 3 (-2.32 +/- 0.67). But there was

  11. Quantitative myocardial perfusion SPECT.

    PubMed

    Tsui, B M; Frey, E C; LaCroix, K J; Lalush, D S; McCartney, W H; King, M A; Gullberg, G T

    1998-01-01

    In recent years, there has been much interest in the clinical application of attenuation compensation to myocardial perfusion single photon emission computed tomography (SPECT) with the promise that accurate quantitative images can be obtained to improve clinical diagnoses. The different attenuation compensation methods that are available create confusion and some misconceptions. Also, attenuation-compensated images reveal other image-degrading effects including collimator-detector blurring and scatter that are not apparent in uncompensated images. This article presents basic concepts of the major factors that degrade the quality and quantitative accuracy of myocardial perfusion SPECT images, and includes a discussion of the various image reconstruction and compensation methods and misconceptions and pitfalls in implementation. The differences between the various compensation methods and their performance are demonstrated. Particular emphasis is directed to an approach that promises to provide quantitative myocardial perfusion SPECT images by accurately compensating for the 3-dimensional (3-D) attenuation, collimator-detector response, and scatter effects. With advances in the computer hardware and optimized implementation techniques, quantitatively accurate and high-quality myocardial perfusion SPECT images can be obtained in clinically acceptable processing time. Examples from simulation, phantom, and patient studies are used to demonstrate the various aspects of the investigation. We conclude that quantitative myocardial perfusion SPECT, which holds great promise to improve clinical diagnosis, is an achievable goal in the near future.

  12. Myocardial Lineage Development

    PubMed Central

    Evans, Sylvia M.; Yelon, Deborah; Conlon, Frank L.; Kirby, Margaret L.

    2010-01-01

    The myocardium of the heart is composed of multiple highly specialized myocardial lineages, including those of the ventricular and atrial myocardium, and the specialized conduction system. Specification and maturation of each of these lineages during heart development is a highly ordered, ongoing process involving multiple signaling pathways and their intersection with transcriptional regulatory networks. Here, we attempt to summarize and compare much of what we know about specification and maturation of myocardial lineages from studies in several different vertebrate model systems. To date, most research has focused on early specification, and while there is still more to learn, less is known about factors that promote subsequent maturation of myocardial lineages required to build the functioning adult heart. PMID:21148449

  13. [Relationship between the mandibular hypoplasia and temporomandibular joint internal derangement in adolescents with skeletal class Ⅱ malocclusion].

    PubMed

    Fang, B

    2017-03-09

    Mandibular hypoplasia is very common clinically. Studies have reported that temporomandibular joint internal derangement (TMJID) might manifest as mandibular retrusion, and whether there is a direct correlation between them remains controversial in academia. On the other hand, for adolescent patients with skeletal class Ⅱ malocclusion, the growth of mandible could be motivated by orthopedic force, and then the mandibular retrusion corrected. However, if TMJID is the direct cause of mandibular retrusion, orthopedic treatment will not have a significant effect on it. Base on literature review and analysis as well as our own research, this article will review the distribution of structural abnormalities of the temporomandibular joint in adolescents with mandibular hypoplasia and its association with skeletal class Ⅱ malocclusion, as well as the effect of TMJID on the treatment of skeletal class Ⅱ malocclusion in adolescents.

  14. A Derangement of the Brain Wound Healing Process May Cause Some Cases of Alzheimer’s Disease

    PubMed Central

    Lehrer, Steven; Rheinstein, Peter H.

    2016-01-01

    A derangement of brain wound healing may cause some cases of Alzheimer’s disease. Wound healing, a highly complex process, has four stages: hemostasis, inflammation, repair, and remodeling. Hemostasis and the initial phases of inflammation in brain tissue are typical of all vascularized tissue, such as skin. However, distinct differences arise in brain tissue during the later stages of inflammation, repair, and remodeling, and closely parallel the changes of Alzheimer’s disease. Our hypothesis – Alzheimer’s disease is brain wound healing gone awry at least in some cases – could be tested by measuring progression with biomarkers for the four stages of wound healing in humans or appropriate animal models. Autopsy studies might be done. Chronic traumatic encephalopathy might also result from the brain wound healing process. PMID:27585229

  15. Recognition of Fibrotic Infarct Density by the Pattern of Local Systolic-Diastolic Myocardial Electrical Impedance

    PubMed Central

    Amorós-Figueras, Gerard; Jorge, Esther; García-Sánchez, Tomás; Bragós, Ramón; Rosell-Ferrer, Javier; Cinca, Juan

    2016-01-01

    Myocardial electrical impedance is a biophysical property of the heart that is influenced by the intrinsic structural characteristics of the tissue. Therefore, the structural derangements elicited in a chronic myocardial infarction should cause specific changes in the local systolic-diastolic myocardial impedance, but this is not known. This study aimed to characterize the local changes of systolic-diastolic myocardial impedance in a healed myocardial infarction model. Six pigs were successfully submitted to 150 min of left anterior descending (LAD) coronary artery occlusion followed by reperfusion. 4 weeks later, myocardial impedance spectroscopy (1–1000 kHz) was measured at different infarction sites. The electrocardiogram, left ventricular (LV) pressure, LV dP/dt, and aortic blood flow (ABF) were also recorded. A total of 59 LV tissue samples were obtained and histopathological studies were performed to quantify the percentage of fibrosis. Samples were categorized as normal myocardium (<10% fibrosis), heterogeneous scar (10–50%) and dense scar (>50%). Resistivity of normal myocardium depicted phasic changes during the cardiac cycle and its amplitude markedly decreased in dense scar (18 ± 2 Ω·cm vs. 10 ± 1 Ω·cm, at 41 kHz; P < 0.001, respectively). The mean phasic resistivity decreased progressively from normal to heterogeneous and dense scar regions (285 ± 10 Ω·cm, 225 ± 25 Ω·cm, and 162 ± 6 Ω·cm, at 41 kHz; P < 0.001 respectively). Moreover, myocardial resistivity and phase angle correlated significantly with the degree of local fibrosis (resistivity: r = 0.86 at 1 kHz, P < 0.001; phase angle: r = 0.84 at 41 kHz, P < 0.001). Myocardial infarcted regions with greater fibrotic content show lower mean impedance values and more depressed systolic-diastolic dynamic impedance changes. In conclusion, this study reveals that differences in the degree of myocardial fibrosis can be detected in vivo by local measurement of phasic systolic

  16. Myocardial diseases of animals.

    PubMed Central

    Van Vleet, J. F.; Ferrans, V. J.

    1986-01-01

    In this review we have attempted a comprehensive compilation of the cardiac morphologic changes that occur in spontaneous and experimental myocardial diseases of animals. Our coverage addresses diseases of mammals and birds and includes these diseases found in both domesticated and wild animals. A similar review of the myocardial diseases in this broad range of animal species has not been attempted previously. We have summarized and illustrated the gross, microscopic, and ultrastructural alterations for these myocardial diseases; and, whenever possible, we have reviewed their biochemical pathogenesis. We have arranged the myocardial diseases for presentation and discussion according to an etiologic classification with seven categories. These include a group of idiopathic or primary cardiomyopathies recognized in man (hypertrophic, dilated, and restrictive types) and a large group of secondary cardiomyopathies with known causes, such as inherited tendency; nutritional deficiency; toxicity; physical injury and shock; endocrine disorders, and myocarditides of viral, bacterial, and protozoal causation. Considerable overlap exists between each of the etiologic groups in the spectrum of pathologic alterations seen in the myocardium. These include various degenerative changes, myocyte necrosis, and inflammatory lesions. However, some diseases show rather characteristic myocardial alterations such as vacuolar degeneration in anthracycline cardiotoxicity, myofibrillar lysis in furazolidone cardiotoxicity, calcification in calcinosis of mice, glycogen accumulation in the glycogenoses, lipofuscinosis in cattle, fatty degeneration in erucic acid cardiotoxicity, myofiber disarray in hypertrophic cardiomyopathy, and lymphocytic inflammation with inclusion bodies in canine parvoviral myocarditis. The myocardial diseases represent the largest group in the spectrum of spontaneous cardiac diseases of animals. Pericardial and endocardial diseases and congential cardiac diseases are

  17. Myocardial ischemia and ventricular fibrillation: pathophysiology and clinical implications.

    PubMed

    Luqman, Nazar; Sung, Ruey J; Wang, Chun-Li; Kuo, Chi-Tai

    2007-07-31

    Ventricular fibrillation (VF) and myocardial ischemia are inseparable. The first clinical manifestation of myocardial ischemia or infarction may be sudden cardiac death in 20-25% of patients. The occurrence of potentially lethal arrhythmia is the end result of a cascade of pathophysiological abnormalities that result from complex interactions between coronary vascular events, myocardial injury, and changes in autonomic tone, metabolic conditions and ionic state of the myocardium. It is also related to the time from the onset of ischemia. Within the first few minutes there is abundant ventricular arrhythmogenesis usually lasting for 30 min. Triggers for ischemic VF occur at the border zone or regionally ischemic heart. The border zone of ischemia is the predominant site of fragmentation. Acute ischemia opens K(ATP) channels and causes acidosis and hypoxia of myocardial cells leading to a large dispersion in repolarization across the border zone. Abnormalities of intracellular Ca2+ handling also occur in the first few minutes of acute myocardial ischemia and may be an important cause of arrhythmias in human coronary artery disease. Substrate on the other hand transforms triggers into VF and serves to maintain it through fragmentation of waves in the ischemic zone. Thrombin levels, stretch, catecholamine, genetic predisposition, etc. are some of these factors. Reentry models described are spiral wave reentry, 3 dimensional rotors, reentry around 'M' cells and figure-of-eight reentry. Continuing efforts to better understand these arrhythmias will help identify patients of myocardial ischemia prone to arrhythmias.

  18. [Menopause and metabolic syndrome].

    PubMed

    Meirelles, Ricardo M R

    2014-03-01

    The incidence of cardiovascular disease increases considerably after the menopause. One reason for the increased cardiovascular risk seems to be determined by metabolic syndrome, in which all components (visceral obesity, dyslipidemia, hypertension, and glucose metabolism disorder) are associated with higher incidence of coronary artery disease. After menopause, metabolic syndrome is more prevalent than in premenopausal women, and may plays an important role in the occurrence of myocardial infarction and other atherosclerotic and cardiovascular morbidities. Obesity, an essential component of the metabolic syndrome, is also associated with increased incidence of breast, endometrial, bowel, esophagus, and kidney cancer. The treatment of metabolic syndrome is based on the change in lifestyle and, when necessary, the use of medication directed to its components. In the presence of symptoms of the climacteric syndrome, hormonal therapy, when indicated, will also contribute to the improvement of the metabolic syndrome.

  19. Myocardial Perfusion and Function Are Distinctly Altered by Sevoflurane Anesthesia in Diet-Induced Prediabetic Rats.

    PubMed

    van den Brom, Charissa E; Boly, Chantal A; Bulte, Carolien S E; van den Akker, Rob F P; Kwekkeboom, Rick F J; Loer, Stephan A; Boer, Christa; Bouwman, R Arthur

    2016-01-01

    Preservation of myocardial perfusion during surgery is particularly important in patients with increased risk for perioperative complications, such as diabetes. Volatile anesthetics, like sevoflurane, have cardiodepressive effects and may aggravate cardiovascular complications. We investigated the effect of sevoflurane on myocardial perfusion and function in prediabetic rats. Rats were fed a western diet (WD; n = 18) or control diet (CD; n = 18) for 8 weeks and underwent (contrast) echocardiography to determine perfusion and function during baseline and sevoflurane exposure. Myocardial perfusion was estimated based on the product of microvascular filling velocity and blood volume. WD-feeding resulted in a prediabetic phenotype characterized by obesity, hyperinsulinemia, hyperlipidemia, glucose intolerance, and hyperglycemia. At baseline, WD-feeding impaired myocardial perfusion and systolic function compared to CD-feeding. Exposure of healthy rats to sevoflurane increased the microvascular filling velocity without altering myocardial perfusion but impaired systolic function. In prediabetic rats, sevoflurane did also not affect myocardial perfusion; however, it further impaired systolic function. Diet-induced prediabetes is associated with impaired myocardial perfusion and function in rats. While sevoflurane further impaired systolic function, it did not affect myocardial perfusion in prediabetic rats. Our findings suggest that sevoflurane anesthesia leads to uncoupling of myocardial perfusion and function, irrespective of the metabolic state.

  20. Myocardial Perfusion and Function Are Distinctly Altered by Sevoflurane Anesthesia in Diet-Induced Prediabetic Rats

    PubMed Central

    van den Brom, Charissa E.; Boly, Chantal A.; Bulte, Carolien S. E.; van den Akker, Rob F. P.; Kwekkeboom, Rick F. J.; Loer, Stephan A.; Boer, Christa; Bouwman, R. Arthur

    2016-01-01

    Preservation of myocardial perfusion during surgery is particularly important in patients with increased risk for perioperative complications, such as diabetes. Volatile anesthetics, like sevoflurane, have cardiodepressive effects and may aggravate cardiovascular complications. We investigated the effect of sevoflurane on myocardial perfusion and function in prediabetic rats. Rats were fed a western diet (WD; n = 18) or control diet (CD; n = 18) for 8 weeks and underwent (contrast) echocardiography to determine perfusion and function during baseline and sevoflurane exposure. Myocardial perfusion was estimated based on the product of microvascular filling velocity and blood volume. WD-feeding resulted in a prediabetic phenotype characterized by obesity, hyperinsulinemia, hyperlipidemia, glucose intolerance, and hyperglycemia. At baseline, WD-feeding impaired myocardial perfusion and systolic function compared to CD-feeding. Exposure of healthy rats to sevoflurane increased the microvascular filling velocity without altering myocardial perfusion but impaired systolic function. In prediabetic rats, sevoflurane did also not affect myocardial perfusion; however, it further impaired systolic function. Diet-induced prediabetes is associated with impaired myocardial perfusion and function in rats. While sevoflurane further impaired systolic function, it did not affect myocardial perfusion in prediabetic rats. Our findings suggest that sevoflurane anesthesia leads to uncoupling of myocardial perfusion and function, irrespective of the metabolic state. PMID:26824042

  1. Myocardial gene therapy

    NASA Astrophysics Data System (ADS)

    Isner, Jeffrey M.

    2002-01-01

    Gene therapy is proving likely to be a viable alternative to conventional therapies in coronary artery disease and heart failure. Phase 1 clinical trials indicate high levels of safety and clinical benefits with gene therapy using angiogenic growth factors in myocardial ischaemia. Although gene therapy for heart failure is still at the pre-clinical stage, experimental data indicate that therapeutic angiogenesis using short-term gene expression may elicit functional improvement in affected individuals.

  2. Amphetamine Containing Dietary Supplements and Acute Myocardial Infarction

    PubMed Central

    Hritani, Abdulwahab; Antoun, Patrick

    2016-01-01

    Weight loss is one of the most researched and marketed topics in American society. Dietary regimens, medications that claim to boost the metabolism, and the constant pressure to fit into society all play a role in our patient's choices regarding new dietary products. One of the products that are well known to suppress appetite and cause weight loss is amphetamines. While these medications suppress appetite, most people are not aware of the detrimental side effects of amphetamines, including hypertension, tachycardia, arrhythmias, and in certain instances acute myocardial infarction. Here we present the uncommon entity of an acute myocardial infarction due to chronic use of an amphetamine containing dietary supplement in conjunction with an exercise regimen. Our case brings to light further awareness regarding use of amphetamines. Clinicians should have a high index of suspicion of use of these substances when young patients with no risk factors for coronary artery disease present with acute arrhythmias, heart failure, and myocardial infarctions. PMID:27516911

  3. Myocardial Tagging With SSFP

    PubMed Central

    Herzka, Daniel A.; Guttman, Michael A.; McVeigh, Elliot R.

    2007-01-01

    This work presents the first implementation of myocardial tagging with refocused steady-state free precession (SSFP) and magnetization preparation. The combination of myocardial tagging (a noninvasive method for quantitative measurement of regional and global cardiac function) with the high tissue signal-to-noise ratio (SNR) obtained with SSFP is shown to yield improvements in terms of the myocardium–tag contrast-to-noise ratio (CNR) and tag persistence when compared to the current standard fast gradient-echo (FGRE) tagging protocol. Myocardium–tag CNR and tag persistence were studied using numerical simulations as well as phantom and human experiments. Both quantities were found to decrease with increasing imaging flip angle (α) due to an increased tag decay rate and a decrease in myocardial steady-state signal. However, higher α yielded better blood–myocardium contrast, indicating that optimal α is dependent on the application: higher α for better blood–myocardium boundary visualization, and lower α for better tag persistence. SSFP tagging provided the same myocardium–tag CNR as FGRE tagging when acquired at four times the bandwidth and better tag– and blood–myocardium CNRs than FGRE tagging when acquired at equal or twice the receiver bandwidth (RBW). The increased acquisition efficiency of SSFP allowed decreases in breath-hold duration, or increases in temporal resolution, as compared to FGRE. PMID:12541254

  4. Myocardial accumulation of a dopamine D2 receptor-binding radioligand, 2'-iodospiperone.

    PubMed

    Saji, H; Yonekura, Y; Tanahashi, K; Iida, Y; Iwasaki, Y; Magata, Y; Konishi, J; Yokoyama, A

    1993-08-01

    125I-2'-iodospiperone (2'-ISP), which has a high and selective affinity for dopamine D2 receptors, produced a high myocardial accumulation of radioactivity in the early phase after intravenous injection into mice. A human scintigraphic study also showed that the myocardium was clearly visualized soon after intravenous injection of the tracer. Analysis of the myocardial homogenate obtained from mice showed that 125I-2'-ISP was metabolically stable and was taken up the myocardium in its intact form. Administration of spiperone significantly reduced the myocardial uptake of 125I-2'-ISP in mice. Treatment with haloperidol and (+) butaclamol, which have a high affinity for dopamine D2 receptors, also tended to reduce the myocardial uptake of radioactivity, while (-)-butaclamol, which has no affinity for dopamine D2 receptors, caused no change in uptake. These findings suggest that the myocardial accumulation of 2'-ISP occurred in association with dopamine D2 (DA2) receptors.

  5. Derangements in bone mineral parameters and bone mineral density in south Indian subjects on antiepileptic medications

    PubMed Central

    Koshy, George; Varghese, Ron Thomas; Naik, Dukhabandhu; Asha, Hesargatta Shyamsunder; Thomas, Nihal; Seshadri, Mandalam Subramaniam; Alexander, Mathew; Thomas, Maya; Aaron, Sanjith; Paul, Thomas Vizhalil

    2014-01-01

    Background: Although there are reports describing the association of alternations of bone and mineral metabolism in epileptic patients with long-term anticonvulsant therapy, there are only limited Indian studies which have looked at this aspect. Objectives: This study was done to compare the prevalence of changes in bone mineral parameters and bone mineral density (BMD) in ambulant individuals on long-term anticonvulsant therapy with age- and body mass index (BMI)-matched healthy controls. Materials and Methods: There were 55 men (on medications for more than 6 months) and age- and BMI-matched 53 controls. Drug history, dietary calcium intake (DCI), and duration of sunlight exposure were recorded. Bone mineral parameters and BMD were measured. Results: The control group had a significantly higher daily DCI with mean ± SD of 396 ± 91 mg versus 326 ± 101 mg (P = 0.007) and more sunlight exposure of 234 ± 81 vs 167 ± 69 min (P = 0.05). BMD at the femoral neck was significantly lower in cases (0.783 ± 0.105 g/cm2) when compared to controls (0.819 ± 0.114 g/cm2). Majority of the patients (61%) had low femoral neck BMD (P = 0.04). There was no significant difference in the proportion of subjects with vitamin D deficiency (<20 ng/mL) between cases (n = 32) and controls (n = 37) (P = 0.234). Conclusions: Vitamin D deficiency was seen in both the groups in equal proportions, highlighting the existence of a high prevalence of this problem in India. Low femoral neck BMD found in cases may stress the need for supplementing calcium and treating vitamin D deficiency in this specific group. However, the benefit of such intervention has to be studied in a larger proportion of epileptic patients. PMID:25221394

  6. Seasonal Temperature Changes Do Not Affect Cardiac Glucose Metabolism

    PubMed Central

    Schildt, Jukka; Loimaala, Antti; Hippeläinen, Eero; Nikkinen, Päivi; Ahonen, Aapo

    2015-01-01

    FDG-PET/CT is widely used to diagnose cardiac inflammation such as cardiac sarcoidosis. Physiological myocardial FDG uptake often creates a problem when assessing the possible pathological glucose metabolism of the heart. Several factors, such as fasting, blood glucose, and hormone levels, influence normal myocardial glucose metabolism. The effect of outdoor temperature on myocardial FDG uptake has not been reported before. We retrospectively reviewed 29 cancer patients who underwent PET scans in warm summer months and again in cold winter months. We obtained myocardial, liver, and mediastinal standardized uptake values (SUVs) as well as quantitative cardiac heterogeneity and the myocardial FDG uptake pattern. We also compared age and body mass index to other variables. The mean myocardial FDG uptake showed no significant difference between summer and winter months. Average outdoor temperature did not correlate significantly with myocardial SUVmax in either summer or winter. The heterogeneity of myocardial FDG uptake did not differ significantly between seasons. Outdoor temperature seems to have no significant effect on myocardial FDG uptake or heterogeneity. Therefore, warming the patients prior to attending cardiac PET studies in order to reduce physiological myocardial FDG uptake seems to be unnecessary. PMID:26858844

  7. Perioperative myocardial infarction in patients undergoing myocardial revascularization surgery

    PubMed Central

    Pretto, Pericles; Martins, Gerez Fernandes; Biscaro, Andressa; Kruczan, Dany David; Jessen, Barbara

    2015-01-01

    Introduction Perioperative myocardial infarction adversely affects the prognosis of patients undergoing coronary artery bypass graft and its diagnosis was hampered by numerous difficulties, because the pathophysiology is different from the traditional instability atherosclerotic and the clinical difficulty to be characterized. Objective To identify the frequency of perioperative myocardial infarction and its outcome in patients undergoing coronary artery bypass graft. Methods Retrospective cohort study performed in a tertiary hospital specialized in cardiology, from May 01, 2011 to April 30, 2012, which included all records containing coronary artery bypass graft records. To confirm the diagnosis of perioperative myocardial infarction criteria, the Third Universal Definition of Myocardial Infarction was used. Results We analyzed 116 cases. Perioperative myocardial infarction was diagnosed in 28 patients (24.1%). Number of grafts and use and cardiopulmonary bypass time were associated with this diagnosis and the mean age was significantly higher in this group. The diagnostic criteria elevated troponin I, which was positive in 99.1% of cases regardless of diagnosis of perioperative myocardial infarction. No significant difference was found between length of hospital stay and intensive care unit in patients with and without this complication, however patients with perioperative myocardial infarction progressed with worse left ventricular function and more death cases. Conclusion The frequency of perioperative myocardial infarction found in this study was considered high and as a consequence the same observed average higher troponin I, more cases of worsening left ventricular function and death. PMID:25859867

  8. A cross-sectional study of the relationship between serum sexual hormone levels and internal derangement of temporomandibular joint.

    PubMed

    Madani, A S; Shamsian, A A; Hedayati-Moghaddam, M R; Fathi-Moghadam, F; Sabooni, M R; Mirmortazavi, A; Golmohamadi, M

    2013-08-01

    Temporomandibular disorders (TMD) are defined as clinical conditions that involve the masticatory muscles, temporomandibular joint (TMJ) or both. The aim of this study was to evaluate serum 17β-oestradiol and progesterone levels in menstruating women affected by internal derangement of the TMJ. A total of 142 women (mean age 30·2 ± 6·7) who referred to medical diagnostic laboratory of Iranian Academic Centre for Education, Culture and Research (ACECR), Mashhad Branch, were enrolled during 2007 and 2008. Forty-seven individuals had disc displacement with reduction (Group IIa) according to Research Diagnostic Criteria (RDC)/TMD Axis I diagnosis. Radioimmunoassay was used for the detection of serum 17β-oestradiol and progesterone levels in all 142 subjects. The mean progesterone level was significantly higher in control group (11·6 ± 10·4 ng mL(-1) ) compared to women with TMD (8·4 ± 6·8 ng mL(-1) , P = 0·03). No significant difference was found in two groups regarding 17β-oestradiol level. Lower progesterone level in women with TMD can suggest the more important role of this hormone in the development of the disorder.

  9. An Ex Vivo Study on Immunohistochemical Localization of MMP-7 and MMP-9 in Temporomandibular Joint Discs with Internal Derangement

    PubMed Central

    Loreto, C.; Leonardi, R.; Musumeci, G.; Pannone, G.; Castorina, S.

    2013-01-01

    Internal derangement (ID) is among the most common disorders of the temporomandibular joint (TMJ). Previous research by our group highlighted a correlation between apoptosis and TMJ ID. Metalloproteinases (MMP)-7 and -9 have been shown to play an important role in extracellular matrix ECM) homeostasis and, through it, in joint disc remodelling. The immunohistochemical expression of MMP-7 and -9 was investigated in discs from patients with TMJ ID and from healthy donors and compared with the degree of histological tissue degeneration. The collagen fibre arrangement in pathological discs exhibited varying degrees of disruption. New vessels were consistently detected; endothelial cells from these vessels were immunolabelled with both MMP-7 and MMP-9. More or less intense MMP-7 and MMP-9 immunolabelling was detected in the cytoplasm of disc cells from all patients. MMP-7 and MMP-9 immunostaining was significantly different between pathological and normal discs and correlated with the extent of histopathological degeneration. MMP-7 and MMP-9 upregulation in discs from patients with TMJ ID demonstrates their involvement in disc damage in this disorder. A greater understanding of these processes could help identify ways to curb MMP overproduction without affecting their tissue remodelling action. The design of specific inhibitors for these MMPs would not only help to gain insights into the biological roles of MMPs, but would also aid in developing therapeutic interventions for diseases associated with abnormal ECM degradation. PMID:23807291

  10. Nuclear cardiac imaging for the assessment of myocardial viability

    PubMed Central

    Slart, R.H.J.A.; Bax, J.J.; van der Wall, E.E.; van Veldhuisen, D.J.; Jager, P.L.; Dierckx, R.A.

    2005-01-01

    An important aspect of the diagnostic and prognostic work-up of patients with ischaemic cardiomyopathy is the assessment of myocardial viability. Patients with left ventricular dysfunction who have viable myocardium are the patients at highest risk because of the potential for ischaemia but at the same time benefit most from revascularisation. It is important to identify viable myocardium in these patients, and radionuclide myocardial scintigraphy is an excellent tool for this. Single-photon emission computed tomography perfusion scintigraphy (SPECT), whether using 201thallium, 99mTc-sestamibi, or 99mTc- tetrofosmin, in stress and/or rest protocols, has consistently been shown to be an effective modality for identifying myocardial viability and guiding appropriate management. Metabolic and perfusion imaging with positron emission tomography radiotracers frequently adds additional information and is a powerful tool for predicting which patients will have an improved outcome from revascularisation. New techniques in the nuclear cardiology field, such as attenuation corrected SPECT, dual isotope simultaneous acquisition (DISA) SPECT and gated FDG PET are promising and will further improve the detection of myocardial viability. Also the combination of multislice computed tomography scanners with PET opens possibilities of adding coronary calcium scoring and noninvasive coronary angiography to myocardial perfusion imaging and quantification. ImagesFigure 1Figure 2Figure 3 PMID:25696432

  11. Nitroglycerin Use in Myocardial Infarction Patients: Risks and Benefits

    PubMed Central

    Ferreira, Julio C.B.; Mochly-Rosen, Daria

    2012-01-01

    Acute myocardial infarction and its sequelae are leading causes of morbidity and mortality worldwide. Nitroglycerin remains a first-line treatment for angina pectoris and acute myocardial infarction. Nitroglycerin achieves its benefit by giving rise to nitric oxide, which causes vasodilation and increases blood flow to the myocardium. However, continuous delivery of nitroglycerin results in tolerance, limiting the use of this drug. Nitroglycerin tolerance is due, at least in part, to inactivation of aldehyde dehydrogenase 2 (ALDH2), an enzyme that converts nitroglycerin to the vasodilator, nitric oxide. We have recently found that, in addition to nitroglycerin’s effect on the vasculature, sustained treatment with nitroglycerin negatively affects cardiomyocyte viability following ischemia, thus resulting in increased infarct size in a myocardial infarction model in animals. Co-administration of Alda-1, an activator of ALDH2, with nitroglycerin improves metabolism of reactive aldehyde adducts and prevents the nitroglycerin-induced increase in cardiac dysfunction following myocardial infarction. In this review, we describe the molecular mechanisms associated with the benefits and risks of nitroglycerin administration in myocardial infarction. (167 of 200). PMID:22040938

  12. Detection and Assessment Using Positron Emission Tomography of Genetically Determined Defects in Myocardial Fatty Acid Utilization. Final report, 8/1/93-6/30/97

    SciTech Connect

    Bergmann, Steven R.

    2000-04-09

    An approach using positron emission tomography (PET) was developed, validated and used to measure myocardial fatty acid metabolism in patients with inherited forms of heart failure. Abnormalities were correlated with the severity of the clinical illness. The approach developed was also shown to identify abnormalities in myocardial fatty acid metabolism in some patients with acquired forms of heart failure. The PET technique thus permits identification of abnormal fatty acid metabolism and provides an approach to evaluate the efficacy of interventional strategies.

  13. Detection of Phosphomonoester Signals in Proton-Decoupled 31P NMR Spectra of the Myocardium of Patients with Myocardial Hypertrophy

    NASA Astrophysics Data System (ADS)

    Jung, Wulf-Ingo; Sieverding, Ludger; Breuer, Johannes; Schmidt, Oliver; Widmaier, Stefan; Bunse, Michael; van Erckelens, Franz; Apitz, Jürgen; Dietze, Guenther J.; Lutz, Otto

    1998-07-01

    Proton-decoupled31P NMR spectroscopy at 1.5 T of the anterior left ventricular myocardium was used to monitor myocardial phosphate metabolism in asymptomatic patients with hypertrophic cardiomyopathy (HCM,n= 14) and aortic stenosis (AS,n= 12). In addition to the well-known phosphorus signals a phosphomonoester (PME) signal was detected at about 6.9 ppm in 7 HCM and 2 AS patients. This signal was not observed in the spectra of normal controls (n= 11). We suggest that in spectra of patients with myocardial hypertrophy the presence of a PME signal reflects alterations in myocardial glucose metabolism.

  14. Noninvasive estimation of regional myocardial oxygen consumption by positron emission tomography with carbon-11 acetate in patients with myocardial infarction

    SciTech Connect

    Walsh, M.N.; Geltman, E.M.; Brown, M.A.; Henes, C.G.; Weinheimer, C.J.; Sobel, B.E.; Bergmann, S.R. )

    1989-11-01

    We previously demonstrated in experimental studies that myocardial oxygen consumption (MVO2) can be estimated noninvasively with positron emission tomography (PET) from analysis of the myocardial turnover rate constant (k) after administration of carbon-11 (11C) acetate. To determine regional k in healthy human subjects and to estimate alterations in MVO2 accompanying myocardial ischemia, we administered (11C)acetate to five healthy human volunteers and to six patients with myocardial infarction. Extraction of (11C)acetate by the myocardium was avid and clearance from the blood-pool rapid yielding myocardial images of excellent quality. Regional k was homogeneous in myocardium of healthy volunteers (coefficient variation = 11%). In patients, k in regions remote from the area of infarction was not different from values in myocardium of healthy human volunteers (0.061 +/- 0.025 compared with 0.057 +/- 0.008 min-1). In contrast, MVO2 in the center of the infarct region was only 6% of that in remote regions (p less than 0.01). In four patients studied within 48 hr of infarction and again more than seven days after the acute event, regional k and MVO2 did not change. The approach developed should facilitate evaluation of the efficacy of interventions designed to enhance recovery of jeopardized myocardium and permit estimation of regional MVO2 and metabolic reserve underlying cardiac disease of diverse etiologies.

  15. Oncogenic K-ras expression is associated with derangement of the cAMP/PKA pathway and forskolin-reversible alterations of mitochondrial dynamics and respiration.

    PubMed

    Palorini, R; De Rasmo, D; Gaviraghi, M; Sala Danna, L; Signorile, A; Cirulli, C; Chiaradonna, F; Alberghina, L; Papa, S

    2013-01-17

    The Warburg effect in cancer cells has been proposed to involve several mechanisms, including adaptation to hypoxia, oncogenes activation or loss of oncosuppressors and impaired mitochondrial function. In previous papers, it has been shown that K-ras transformed mouse cells are much more sensitive as compared with normal cells to glucose withdrawal (undergoing apoptosis) and present a high glycolytic rate and a strong reduction of mitochondrial complex I. Recent observations suggest that transformed cells have a derangement in the cyclic adenosine monophosphate/cAMP-dependent protein kinase (cAMP/PKA) pathway, which is known to regulate several mitochondrial functions. Herein, the derangement of the cAMP/PKA pathway and its impact on transformation-linked changes of mitochondrial functions is investigated. Exogenous stimulation of PKA activity, achieved by forskolin treatment, protected K-ras-transformed cells from apoptosis induced by glucose deprivation, enhanced complex I activity, intracellular adenosine triphosphate (ATP) levels, mitochondrial fusion and decreased intracellular reactive oxygen species (ROS) levels. Several of these effects were almost completely prevented by inhibiting the PKA activity. Short-time treatment with compounds favoring mitochondrial fusion strongly decreased the cellular ROS levels especially in transformed cells. These findings support the notion that glucose shortage-induced apoptosis, specific of K-ras-transformed cells, is associated to a derangement of PKA signaling that leads to mitochondrial complex I decrease, reduction of ATP formation, prevalence of mitochondrial fission over fusion, and thereby opening new approaches for development of anticancer drugs.

  16. Myocardial revascularisation after acute myocardial infarction.

    PubMed

    Bana, A; Yadava, O P; Ghadiok, R; Selot, N

    1999-05-15

    One hundred and twenty-three patients had coronary artery bypass grafting (CABG) within 30 days of acute myocardial infarction (AMI) from May 1992 to November 1997. Commonest infarct was anterior transmural (61.8%) and commonest indication of surgery was post-infarct persistent or recurrent angina (69.1%). Ten patients were operated within 48 h and 36 between 48 h to 2 weeks of having MI. Out of these, nine patients were having infarct extension and cardiogenic shock at the time of surgery. Pre-operatively fourteen patients were on inotropes of which six also had intra-aortic balloon pump (IABP) support. All patients had complete revascularisation with 3.8+/-1.2 distal anastomoses per patient. By multivariate analysis, we found that independent predictors of post-operative morbidity [inotropes >48 h, use of IABP, ventilation >24 h, ICU stay >5 days] and complications [re-exploration, arrhythmias, pulmonary complications, wound infection, cerebrovascular accident (CVA)] were left ventricular ejection fraction (LVEF) <30%, Q-wave MI, surgery <48 h after AMI, presence of pre-operative cardiogenic shock and age >60 years (P < or = 0.01). Mortality at 30 days was 3.3%. LVEF <30%, Q-wave MI, surgery <48 h after AMI, presence of pre-operative cardiogenic shock and age >60 years were found to be independent predictors of 30 days mortality (P < or = 0.01). Ninety patients were followed up for a mean duration of 33 months (1 to 65 months). There were three late deaths and five patients developed recurrence of angina. To conclude, CABG can be carried out with low risk following AMI in stable patients for post-infarct angina. Patients who undergo urgent or emergent surgery and who have pre-operative cardiogenic shock, IABP, poor left ventricular functions, age >60 years and Q-wave MI are at increased risk.

  17. Leucine metabolism in patients with Hepatic Encephalopathy

    SciTech Connect

    McGhee, A.S.; Kassouny, M.E.; Matthews, D.E.; Millikan, W.

    1986-03-01

    A primed continuous infusion of (/sup 15/N, 1-/sup 13/C)leucine was used to determine whether increased oxidation and/or protein synthesis of leucine occurs in patients with cirrhosis. Five controls and patients were equilibrated on a metabolic balance diet (0.6 g protein per kg ideal body weight (IBW)). An additional four patients were equilibrated in the same manner with the same type of diet with a protein level of 0.75 g per kg IBW. Plasma leucine and breath CO/sub 2/ enrichments were measured by mass spectrometry. Protein synthesis and leucine metabolism were identical in controls and patients when both were fed a diet with 0.6 g protein/kg IBW. Results indicate that systemic derangements of leucine metabolism are not the cause of Hepatic Encephalopathy.

  18. Early Cellular Changes in the Ascending Aorta and Myocardium in a Swine Model of Metabolic Syndrome

    PubMed Central

    Mahmood, Feroze; Owais, Khurram; Bardia, Amit; Khabbaz, Kamal R.; Liu, David; Senthilnathan, Venkatachalam; Lassaletta, Antonio D.; Sellke, Frank; Matyal, Robina

    2016-01-01

    Background Metabolic syndrome is associated with pathological remodeling of the heart and adjacent vessels. The early biochemical and cellular changes underlying the vascular damage are not fully understood. In this study, we sought to establish the nature, extent, and initial timeline of cytochemical derangements underlying reduced ventriculo-arterial compliance in a swine model of metabolic syndrome. Methods Yorkshire swine (n = 8 per group) were fed a normal diet (ND) or a high-cholesterol (HCD) for 12 weeks. Myocardial function and blood flow was assessed before harvesting the heart. Immuno-blotting and immuno-histochemical staining were used to assess the cellular changes in the myocardium, ascending aorta and left anterior descending artery (LAD). Results There was significant increase in body mass index, blood glucose and mean arterial pressures (p = 0.002, p = 0.001 and p = 0.024 respectively) in HCD group. At the cellular level there was significant increase in anti-apoptotic factors p-Akt (p = 0.007 and p = 0.002) and Bcl-xL (p = 0.05 and p = 0.01) in the HCD aorta and myocardium, respectively. Pro-fibrotic markers TGF-β (p = 0.01), pSmad1/5 (p = 0.03) and MMP-9 (p = 0.005) were significantly increased in the HCD aorta. The levels of pro-apoptotic p38MAPK, Apaf-1 and cleaved Caspase3 were significantly increased in aorta of HCD (p = 0.03, p = 0.04 and p = 0.007 respectively). Similar changes in coronary arteries were not observed in either group. Functionally, the high cholesterol diet resulted in significant increase in ventricular end systolic pressure and–dp/dt (p = 0.05 and p = 0.007 respectively) in the HCD group. Conclusion Preclinical metabolic syndrome initiates pro-apoptosis and pro-fibrosis pathways in the heart and ascending aorta, while sparing coronary arteries at this early stage of dietary modification. PMID:26766185

  19. N-acetylcysteine prevents low T3 syndrome and attenuates cardiac dysfunction in a male rat model of myocardial infarction.

    PubMed

    Lehnen, Tatiana Ederich; Santos, Marcus Vinicius; Lima, Adrio; Maia, Ana Luiza; Wajner, Simone Magagnin

    2017-02-17

    Nonthyroidal illness syndrome (NTIS) affects patients with myocardial infarction (MI). Oxidative stress has been implicated as a causative factor of NTIS, and reversed via N-acetylcysteine (NAC). Male Wistar rats submitted to left anterior coronary artery occlusion received NAC or placebo. Decreases in T3 levels were noted in MI-placebo at 10 and 28 days post-MI, but not in MI-NAC. Groups exhibited similar infarct areas whereas MI-NAC exhibited higher ejection fraction (EF) than MI-placebo. Left ventricular systolic (LVSd) and diastolic (LVDd) diameters were also preserved in MI-NAC, but not in MI-placebo. EF was positively correlated with T3 levels. Oxidative balance was deranged only in MI-placebo animals. Increased D3 expression was detected in the cardiomyocytes of MI-placebo compared with normal heart tissue. NAC was shown to diminish D3 expression and activity in MI-NAC. These results show that restoring redox balance by NAC treatment prevents NTIS- related thyroid hormone derangement and preserve heart function in rats subjected to MI.

  20. Myocardial triglyceride content in patients with left ventricular hypertrophy: comparison between hypertensive heart disease and hypertrophic cardiomyopathy.

    PubMed

    Sai, Eiryu; Shimada, Kazunori; Yokoyama, Takayuki; Hiki, Makoto; Sato, Shuji; Hamasaki, Nozomi; Maruyama, Masaki; Morimoto, Ryoko; Miyazaki, Tetsuro; Fujimoto, Shinichiro; Tamura, Yoshifumi; Aoki, Shigeki; Watada, Hirotaka; Kawamori, Ryuzo; Daida, Hiroyuki

    2017-02-01

    Proton magnetic resonance spectroscopy ((1)H-MRS) enables the assessment of myocardial triglyceride (TG) content, which is reported to be associated with cardiac dysfunction and morphology accompanied by metabolic disorder and cardiac hemodynamic status. The clinical usefulness of myocardial TG content measurements in patients with left ventricular hypertrophy (LVH) has not been fully investigated. We examined whether myocardial TG content assessed by (1)H-MRS was useful for diagnosis in patients with LVH. To quantify myocardial TG content, we conducted (1)H-MRS in 35 subjects with LVH. Left ventricular function was measured by cardiac magnetic resonance imaging. Patients were assigned to a hypertensive heart disease (HHD, n = 10) or hypertrophic cardiomyopathy (HCM, n = 25) group based on the histology and/or late gadolinium enhancement pattern. The myocardial TG content was significantly higher in the HHD group than in the HCM group (2.14 ± 1.29 vs. 1.09 ± 0.72 %, P < 0.001). Myocardial TG content were significantly and negatively correlated with LV mass (r = -0.41, P < 0.04) and stroke volume (r = -0.64, P < 0.05) in the HCM group and HHD group, respectively. In a multivariate analysis, LV mass volume and diagnosis of HCM or HHD were independent factors of the myocardial TG content. The results suggest that myocardial metabolism may differ between HCM and HHD patients and that measurement of myocardial TG content by (1)H-MRS may be useful for evaluating the myocardial metabolic features of LVH.

  1. Metabonomic analysis of Allium macrostemon Bunge as a treatment for acute myocardial ischemia in rats.

    PubMed

    Li, Fang; Xu, Qian; Zheng, Ting; Huang, Fang; Han, Lintao

    2014-01-01

    Myocardial ischemia (MI) refers to a pathological state of the heart caused by reduced cardiac blood perfusion, which leads to a decreased oxygen supply in the heart and an abnormal myocardial energy metabolism. Acute myocardial ischemia (AMI) has posed a significant health risk for humans. Allium macrostemon Bunge (AMB), a popular traditional Chinese medicine, is used for MI treatment. The therapeutic effects of AMB were assessed and the detailed mechanisms of AMB for AMI treatment were investigated. We characterized the metabonomic variations in rats from the sham surgery, AMI, and AMB-pretreated AMI groups through a combination of nuclear magnetic resonance (NMR) spectroscopy and multivariate statistical analysis. Thirty-five metabolites including carbohydrates, a range of amino acids, and organic acids were detected. The (1)H NMR spectra of the rat serum were analyzed using the principal component analysis (PCA) and orthogonal projection to latent structures discriminate analysis (OPLS-DA). Results showed that AMI induced some physiological changes in rats and also led to metabolic disorders related to glycolysis promotion, amino acid metabolism disruption, and other metabolite metabolism perturbation. AMB pretreatment reduced the AMI injury and maintained metabolic balance, possibly by limiting the change in energy metabolism and regulating amino acid metabolism. These findings provide a comprehensive insight on the metabolic response of AMI rats to AMB pretreatment and are important for the use of AMB for AMI therapy.

  2. PPARs: Protectors or Opponents of Myocardial Function?

    PubMed Central

    Pol, Christine J.; Lieu, Melissa; Drosatos, Konstantinos

    2015-01-01

    Over 5 million people in the United States suffer from the complications of heart failure (HF), which is a rapidly expanding health complication. Disorders that contribute to HF include ischemic cardiac disease, cardiomyopathies, and hypertension. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family. There are three PPAR isoforms: PPARα, PPARγ, and PPARδ. They can be activated by endogenous ligands, such as fatty acids, as well as by pharmacologic agents. Activators of PPARs are used for treating several metabolic complications, such as diabetes and hyperlipidemia that are directly or indirectly associated with HF. However, some of these drugs have adverse effects that compromise cardiac function. This review article aims to summarize the current basic and clinical research findings of the beneficial or detrimental effects of PPAR biology on myocardial function. PMID:26713088

  3. Myocardial Fibrosis as an Early Manifestation of Hypertrophic Cardiomyopathy

    PubMed Central

    Ho, Carolyn Y.; López, Begoña; Coelho-Filho, Otavio R.; Lakdawala, Neal K.; Cirino, Allison L.; Jarolim, Petr; Kwong, Raymond; González, Arantxa; Colan, Steven D.; Seidman, J.G.; Díez, Javier; Seidman, Christine E.

    2011-01-01

    BACKGROUND Myocardial fibrosis is a hallmark of hypertrophic cardiomyopathy and a proposed substrate for arrhythmias and heart failure. In animal models, profibrotic genetic pathways are activated early, before hypertrophic remodeling. Data showing early profibrotic responses to sarcomere-gene mutations in patients with hypertrophic cardiomyopathy are lacking. METHODS We used echocardiography, cardiac magnetic resonance imaging (MRI), and serum biomarkers of collagen metabolism, hemodynamic stress, and myocardial injury to evaluate subjects with hypertrophic cardiomyopathy and a confirmed genotype. RESULTS The study involved 38 subjects with pathogenic sarcomere mutations and overt hypertrophic cardiomyopathy, 39 subjects with mutations but no left ventricular hypertrophy, and 30 controls who did not have mutations. Levels of serum C-terminal propeptide of type I procollagen (PICP) were significantly higher in mutation carriers without left ventricular hypertrophy and in subjects with overt hypertrophic cardiomyopathy than in controls (31% and 69% higher, respectively; P<0.001). The ratio of PICP to C-terminal telopeptide of type I collagen was increased only in subjects with overt hypertrophic cardiomyopathy, suggesting that collagen synthesis exceeds degradation. Cardiac MRI studies showed late gadolinium enhancement, indicating myocardial fibrosis, in 71% of subjects with overt hypertrophic cardiomyopathy but in none of the mutation carriers without left ventricular hypertrophy. CONCLUSIONS Elevated levels of serum PICP indicated increased myocardial collagen synthesis in sarcomere-mutation carriers without overt disease. This profibrotic state preceded the development of left ventricular hypertrophy or fibrosis visible on MRI. (Funded by the National Institutes of Health and others.) PMID:20818890

  4. Characterization of nontransmural myocardial infarction by positron-emission tomography

    SciTech Connect

    Geltman, E.M.; Biello, D.; Welch, M.J.; Ter-Pogossian, M.M.; Roberts, R.; Sobel, B.E.

    1982-04-01

    The present study was performed to determine whether positron emission tomography (PET) performed after i.v. 11C-palmitate permits detection and characterization of nontransmural myocardial infarction. PET was performed after the i.v. injection of 11C-palmitate in 10 normal subjects, 24 patients with initial nontransmural myocardial infarction (defined electrocardiographically), and 22 patients with transmural infarction. Depressed accumulation of 11C-palmitate was detected with sagittal, coronal and transverse reconstructions, and quantified based on 14 contiguous transaxial reconstructions. Defects with homogeneously intense depression of accumulation of tracer were detected in all 22 patients with transmural infarction (100%). Abnormalities of the distribution of 11C-palmitate in the myocardium were detected in 23 patients with nontransmural infarction (96%). Thallium scintigrams were abnormal in only 11 of 18 patients with nontransmural infarction (61%). Tomographically estimated infarct size was greater among patients with transmural infarction (50.4 +/- 7.8 PET-g-Eq/m2 (+/- SEM SEM)) compared with those with nontransmural infarction (19 +/- 4 PET-g-Eq, p less than 0.01). Residual accumulation of 11C-palmitate within regions of infarction was more intensely depressed among patients with transmural compared to nontransmural infarction (33 +/- 1 vs 39 +/- 1% maximal myocardial radioactivity, p less than 0.01). Thus, PET and metabolic imaging with 11C-palmitate is a sensitive means of detecting, quantifying and characterizing nontransmural and transmural myocardial infarction.

  5. Coronary vasodilator reserve persists despite tachycardia and myocardial ischemia

    SciTech Connect

    Bristow, J.D.; McFalls, E.O.; Anselone, C.G.; Pantely, G.A. )

    1987-08-01

    During myocardial ischemia, the authors tested whether coronary blood flow measured with radioactive microspheres labeled with {sup 141}Ce, {sup 51}Cr, {sup 103}Ru, and {sup 95}Nb would increase in response to tachycardia thereby employing known coronary flow reserve. The authors instrumented the left anterior descending (LAD) coronary circulation in anesthetized pigs and performed three sets of experiments while coronary pressure was controlled and several heart rate increases were produced. (1) Pacing-induced tachycardia at normal LAD pressure was characterized by increased LAD flow and myocardial oxygen consumption, without production of lactate. (2) Tachycardia at a mean LAD pressure of 38 mmHg was associated with a lower, fixed coronary flow and oxygen consumption. Lactate was produced at all rates and local myocardial function declined progressively. (3) Coronary flow at low LAD pressure doubled during tachycardia when intracoronary adenosine was added. The increase to the subepicardium was >100%, whereas subendocardial flow changed little. There is persistent coronary flow reserve during moderately severe myocardial ischemia, even when metabolic demand is increased by tachycardia. This reserve, however, is predominantly subepicardial.

  6. Non-ischemic diabetic cardiomyopathy may initially exhibit a transient subclinical phase of hyperdynamic myocardial performance.

    PubMed

    Hensel, Kai O

    2016-09-01

    Cardiovascular complications are the key cause for mortality in diabetes mellitus. Besides ischemia-related cardiac malfunction there is growing evidence for non-ischemic diabetes-associated heart failure in both type 1 and type 2 diabetes mellitus. The underlying pathophysiology of non-ischemic diabetic cardiomyopathy (NIDC) is poorly understood and data on myocardial mechanics in early stages of the disease are rare. However, several studies in both human and experimental animal settings have reported prima facie unexplained features indicating myocardial hyperdynamics early in the course of the disease. The new hypothesis is that - other than previously thought - NIDC may be non-linear and initially feature an asymptomatic subclinical phase of myocardial hypercontractility that precedes the long-term development of diabetes-associated cardiac dysfunction and ultimately heart failure. Diabetes-induced metabolic imbalances may lead to a paradoxic inotropic increase and inefficient myocardial mechanics that finally result in a gradual deterioration of myocardial performance. In conclusion, diabetic patients should be screened regularly and early in the course of the disease utilizing ultra-sensitive myocardial deformation imaging in order to identify patients at risk for diabetes-associated heart failure. Moreover, hyperdynamic myocardial deformation might help distinguish non-ischemic from ischemic diabetic cardiomyopathy. Further studies are needed to illuminate the underlying pathophysiological mechanisms, the exact spatiotemporal evolvement of diabetic cardiomyopathy and its long-term relation to clinical outcome parameters.

  7. Myocardial steatosis as a possible mechanistic link between diastolic dysfunction and coronary microvascular dysfunction in women.

    PubMed

    Wei, Janet; Nelson, Michael D; Szczepaniak, Edward W; Smith, Laura; Mehta, Puja K; Thomson, Louise E J; Berman, Daniel S; Li, Debiao; Bairey Merz, C Noel; Szczepaniak, Lidia S

    2016-01-01

    Women with coronary microvascular dysfunction (CMD) and no obstructive coronary artery disease (CAD) have increased rates of heart failure with preserved ejection fraction (HFpEF). The mechanisms of HFpEF are not well understood. Ectopic fat deposition in the myocardium, termed myocardial steatosis, is frequently associated with diastolic dysfunction in other metabolic diseases. We investigated the prevalence of myocardial steatosis and diastolic dysfunction in women with CMD and subclinical HFpEF. In 13 women, including eight reference controls and five women with CMD and evidence of subclinical HFpEF (left ventricular end-diastolic pressure >12 mmHg), we measured myocardial triglyceride content (TG) and diastolic function, by proton magnetic resonance spectroscopy and magnetic resonance tissue tagging, respectively. When compared with reference controls, women with CMD had higher myocardial TG content (0.83 ± 0.12% vs. 0.43 ± 0.06%; P = 0.025) and lower diastolic circumferential strain rate (168 ± 12 vs. 217 ± 15%/s; P = 0.012), with myocardial TG content correlating inversely with diastolic circumferential strain rate (r = -0.779; P = 0.002). This study provides proof-of-concept that myocardial steatosis may play an important mechanistic role in the development of diastolic dysfunction in women with CMD and no obstructive CAD. Detailed longitudinal studies are warranted to explore specific treatment strategies targeting myocardial steatosis and its effect on diastolic function.

  8. Myocardial steatosis as a possible mechanistic link between diastolic dysfunction and coronary microvascular dysfunction in women

    PubMed Central

    Nelson, Michael D.; Szczepaniak, Edward W.; Smith, Laura; Mehta, Puja K.; Thomson, Louise E. J.; Berman, Daniel S.; Li, Debiao; Bairey Merz, C. Noel; Szczepaniak, Lidia S.

    2015-01-01

    Women with coronary microvascular dysfunction (CMD) and no obstructive coronary artery disease (CAD) have increased rates of heart failure with preserved ejection fraction (HFpEF). The mechanisms of HFpEF are not well understood. Ectopic fat deposition in the myocardium, termed myocardial steatosis, is frequently associated with diastolic dysfunction in other metabolic diseases. We investigated the prevalence of myocardial steatosis and diastolic dysfunction in women with CMD and subclinical HFpEF. In 13 women, including eight reference controls and five women with CMD and evidence of subclinical HFpEF (left ventricular end-diastolic pressure >12 mmHg), we measured myocardial triglyceride content (TG) and diastolic function, by proton magnetic resonance spectroscopy and magnetic resonance tissue tagging, respectively. When compared with reference controls, women with CMD had higher myocardial TG content (0.83 ± 0.12% vs. 0.43 ± 0.06%; P = 0.025) and lower diastolic circumferential strain rate (168 ± 12 vs. 217 ± 15%/s; P = 0.012), with myocardial TG content correlating inversely with diastolic circumferential strain rate (r = −0.779; P = 0.002). This study provides proof-of-concept that myocardial steatosis may play an important mechanistic role in the development of diastolic dysfunction in women with CMD and no obstructive CAD. Detailed longitudinal studies are warranted to explore specific treatment strategies targeting myocardial steatosis and its effect on diastolic function. PMID:26519031

  9. Respiratory muscle endurance is limited by lower ventilatory efficiency in post-myocardial infarction patients

    PubMed Central

    Neves, Laura M. T.; Karsten, Marlus; Neves, Victor R.; Beltrame, Thomas; Borghi-Silva, Audrey; Catai, Aparecida M.

    2014-01-01

    Background Reduced respiratory muscle endurance (RME) contributes to increased dyspnea upon exertion in patients with cardiovascular disease. Objective The objective was to characterize ventilatory and metabolic responses during RME tests in post-myocardial infarction patients without respiratory muscle weakness. Method Twenty-nine subjects were allocated into three groups: recent myocardial infarction group (RG, n=9), less-recent myocardial infarction group (LRG, n=10), and control group (CG, n=10). They underwent two RME tests (incremental and constant pressure) with ventilatory and metabolic analyses. One-way ANOVA and repeated measures one-way ANOVA, both with Tukey post-hoc, were used between groups and within subjects, respectively. Results Patients from the RG and LRG presented lower metabolic equivalent and ventilatory efficiency than the CG on the second (50± 06, 50± 5 vs. 42± 4) and third part (50± 11, 51± 10 vs. 43± 3) of the constant pressure RME test and lower metabolic equivalent during the incremental pressure RME test. Additionally, at the peak of the incremental RME test, RG patients had lower oxygen uptake than the CG. Conclusions Post-myocardial infarction patients present lower ventilatory efficiency during respiratory muscle endurance tests, which appears to explain their inferior performance in these tests even in the presence of lower pressure overload and lower metabolic equivalent. PMID:24675907

  10. Myocardial performance and perfusion during exercise in patients with coronary artery disease caused by Kawasaki disease

    SciTech Connect

    Paridon, S.M.; Ross, R.D.; Kuhns, L.R.; Pinsky, W.W. )

    1990-01-01

    For a study of the natural history of coronary artery lesions after Kawasaki disease and their effect on myocardial blood flow reserve with exercise, five such patients underwent exercise testing on a bicycle. Oxygen consumption, carbon dioxide production, minute ventilation, and electrocardiograms were monitored continuously. Thallium-201 scintigraphy was performed for all patients. One patient stopped exercise before exhaustion of cardiovascular reserve but had no evidence of myocardial perfusion abnormalities. Four patients terminated exercise because of exhaustion of cardiovascular reserve; one had normal cardiovascular reserve and thallium scintiscans, but the remaining patients had diminished cardiovascular reserve. Thallium scintigrams showed myocardial ischemia in two and infarction in one. No patient had exercise-induced electrocardiographic changes. These results indicate that patients with residual coronary artery lesions after Kawasaki disease frequently have reduced cardiovascular reserve during exercise. The addition of thallium scintigraphy and metabolic measurements to exercise testing improved the detection of exercise-induced abnormalities of myocardial perfusion.

  11. Wave propagation of myocardial stretch: correlation with myocardial stiffness.

    PubMed

    Pislaru, Cristina; Pellikka, Patricia A; Pislaru, Sorin V

    2014-01-01

    The mechanism of flow propagation during diastole in the left ventricle (LV) has been well described. Little is known about the associated waves propagating along the heart walls. These waves may have a mechanism similar to pulse wave propagation in arteries. The major goal of the study was to evaluate the effect of myocardial stiffness and preload on this wave transmission. Longitudinal late diastolic deformation and wave speed (Vp) of myocardial stretch in the anterior LV wall were measured using sonomicrometry in 16 pigs. Animals with normal and altered myocardial stiffness (acute myocardial infarction) were studied with and without preload alterations. Elastic modulus estimated from Vp (E VP; Moens-Korteweg equation) was compared to incremental elastic modulus obtained from exponential end-diastolic stress-strain relation (E SS). Myocardial distensibility and α- and β-coefficients of stress-strain relations were calculated. Vp was higher at reperfusion compared to baseline (2.6 ± 1.3 vs. 1.3 ± 0.4 m/s; p = 0.005) and best correlated with E SS (r2 = 0.80, p < 0.0001), β-coefficient (r2 = 0.78, p < 0.0001), distensibility (r2 = 0.47, p = 0.005), and wall thickness/diameter ratio (r2 = 0.42, p = 0.009). Elastic moduli (E VP and E SS) were strongly correlated (r2 = 0.83, p < 0.0001). Increasing preload increased Vp and E VP and decreased distensibility. At multivariate analysis, E SS, wall thickness, and end-diastolic and systolic LV pressures were independent predictors of Vp (r2 model = 0.83, p < 0.0001). In conclusion, the main determinants of wave propagation of longitudinal myocardial stretch were myocardial stiffness and LV geometry and pressure. This local wave speed could potentially be measured noninvasively by echocardiography.

  12. Myocardial Salvaging Effects of Berberine in Experimental Diabetes Co-Existing with Myocardial Infarction

    PubMed Central

    Borde, Manjusha K.; Mohanty, Ipseeta Ray; Maheshwari, Ujwala; Deshmukh, Y.A.

    2016-01-01

    Introduction Berberine, an isoquinoline alkaloid isolated from the Berberis aristata, has been shown to display a wide array of pharmacological activities (hypoglycaemic and hypolipidemic). Aim The present study was designed to investigate whether these pharmacological properties translate into the cardioprotective effects of Berberine in the setting of diabetes mellitus. Materials and Methods Necessary approval from the Institutional Animal Ethics Committee was taken for the study. Experimental diabetes was produced with single dose of Streptozotocin (STZ): 45mg/kg ip and myocardial infarction was induced by administering Isoproterenol (ISP): 85mg/kg, sc to rats on 35th & 36th day. After the confirmation of diabetes on 7th day (>200mg/dl), Berberine (100 mg/kg) was administered orally to experimental rats from day 8 and continued for 30 days thereafter. Various anti-diabetic (Glucose, HbA1c), cardioprotective (CPK-MB), metabolic (lipid profile), safety {liver function (SGPT, kidney function (Creatinine)} and histopathological indices of injury were evaluated in Healthy Control, Diabetic Control and Berberine treated groups. Results Administration of STZ-ISP resulted in a significant decrease in body weight (p<0.001), diabetic changes (increase in blood glucose, HbA1c), cardiac injury (leakage of myocardial CPK-MB), altered lipid profile, SGPT, creatinine levels (p<0.001) in the diabetic control group rats as compared to healthy control. Berberine treatment demonstrated significant antidiabetic as well as myocardial salvaging effects as indicated by restoration of blood glucose, HbA1c and CPK-MB levels (p<0.001) compared to diabetic control group. In addition, Berberine favourably modulated the lipid parameters (total cholesterol, triglycerides, HDL, LDL). Subsequent to ISP challenge, histopathological assessment of heart, pancreas and biochemical indices of injury confirmed the cardioprotective effects of Berberine in setting of diabetes. In addition, Berberine

  13. [Autism and metabolic disorders-a rational approach].

    PubMed

    Hahn, Andreas; Neubauer, Bernd A

    2005-10-01

    The causes of autism are heterogeneous and predominantly genetically determined. An exact aetiology is found in less than 10% of affected patients. The disappointment about low rates of success in identifying a definite pathology, numerous reports about the association of autism and "metabolic derangements", and rumours of "miraculous cures" after application of various drugs and dietary regimes have resulted in substantial confusion about meaningful diagnostic procedures and rational therapies for subjects with autism. The aim of this report is to give an overview about rare, genetically determined neurometabolic disorders (inborn errors of metabolism) that are evidently (e.g. Smith-Lemli-Opitz Syndrome) or allegedly (e.g. succinate semialdehyde dehydrogenase deficiency) associated with autism-specific symptoms. Affected patients usually display additional neurological symptoms. Procedures required to establish the diagnosis and eventual therapeutic consequences derived from a specific metabolic defect are presented. In addition to these well-defined neurometabolic disorders for which there are rational therapeutic strategies, hypotheses about the association of autism with "metabolic derangements" that could not be confirmed or were clearly falsified are discussed.

  14. Myocardial uptake of cocaine and effects of cocaine on myocardial substrate utilization and perfusion in hypertensive rats

    SciTech Connect

    Som, P.; Wang, G.J.; Oster, Z.H.; Knapp, F.F. Jr.; Yonekura, Y.; Fujibayashi, Y.; Yamamoto, K.; Kubota, K.

    1992-12-31

    Cocaine abuse is a problem causing world-wide concern and the number of deaths following cocaine use is increasing. Cardiovascular complications following cocaine include severe tachyarrythmias, pulmonary edema, myocardial infarction, and acute renal failure, which are major problems confronting emergency facilities. While the studies of cocaine effects on the brain have been given the most attention, it is clear that the effects of cocaine on the cardiovascular system are of great importance, given the increasing number of reports on sudden death and myocardial infarctions in young adults related to cocaine use. The precise mechanisms of cardiotoxic actions of cocaine are unclear. We investigated the whole-body distribution of C-14-labeled cocaine to determine the cocaine-binding sites, including blocking experiments to determine the nature of regional binding sites, and differential response of the normal vs. diseased heart (hypertensive cardiomyopathy) in an animal model to mimic a potentially high risk population. We investigated the acute effects of cocaine on myocardial metabolism using two myocardial energy substrate analogs, fatty acid and glucose with comparison with regional perfusion.

  15. Myocardial uptake of cocaine and effects of cocaine on myocardial substrate utilization and perfusion in hypertensive rats

    SciTech Connect

    Som, P.; Wang, G.J. ); Oster, Z.H. ); Knapp, F.F. Jr. ); Yonekura, Y. . Faculty of Medicine); Fujibayashi, Y. . Hospital); Yamamoto, K. . Medical School); Kubota, K. (Tohoku Univ., Sendai

    1992-01-01

    Cocaine abuse is a problem causing world-wide concern and the number of deaths following cocaine use is increasing. Cardiovascular complications following cocaine include severe tachyarrythmias, pulmonary edema, myocardial infarction, and acute renal failure, which are major problems confronting emergency facilities. While the studies of cocaine effects on the brain have been given the most attention, it is clear that the effects of cocaine on the cardiovascular system are of great importance, given the increasing number of reports on sudden death and myocardial infarctions in young adults related to cocaine use. The precise mechanisms of cardiotoxic actions of cocaine are unclear. We investigated the whole-body distribution of C-14-labeled cocaine to determine the cocaine-binding sites, including blocking experiments to determine the nature of regional binding sites, and differential response of the normal vs. diseased heart (hypertensive cardiomyopathy) in an animal model to mimic a potentially high risk population. We investigated the acute effects of cocaine on myocardial metabolism using two myocardial energy substrate analogs, fatty acid and glucose with comparison with regional perfusion.

  16. Human recombinant relaxin reduces heart injury and improves ventricular performance in a swine model of acute myocardial infarction.

    PubMed

    Perna, Avio-Maria; Masini, Emanuela; Nistri, Silvia; Bani Sacchi, Tatiana; Bigazzi, Mario; Bani, Daniele

    2005-05-01

    This study shows that relaxin can be effective in the treatment of acute myocardial infarction. In a swine model of heart ischemia-reperfusion currently used to test cardiotropic drugs because of its similarities with human myocardial infarction, human recombinant relaxin (2.5 and 5 microg/kg body weight), given at reperfusion after a 30-min ischemia, markedly reduced the main serum markers of myocardial damage (myoglobin, CK-MB, and troponin T) and the metabolic and histopathologic parameters of myocardial inflammation and cardiomyocyte injury, resulting in overall improvement of ventricular performance (increased cardiac index) compared to the controls. These results provide a background for future clinical trials with human relaxin as adjunctive therapy to catheter-based coronary angioplasty in patients with acute myocardial infarction.

  17. CAD of myocardial perfusion

    NASA Astrophysics Data System (ADS)

    Storm, Corstiaan J.; Slump, Cornelis H.

    2007-03-01

    Our purpose is in the automated evaluation of the physiological relevance of lesions in coronary angiograms. We aim to extract as much as possible quantitative information about the physiological condition of the heart from standard angiographic image sequences. Coronary angiography is still the gold standard for evaluating and diagnosing coronary abnormalities as it is able to locate precisely the coronary artery lesions. The dimensions of the stenosis can be assessed nowadays successfully with image processing based Quantitative Coronary Angiography (QCA) techniques. Our purpose is to assess the clinical relevance of the pertinent stenosis. We therefore analyze the myocardial perfusion as revealed in standard angiographic image sequences. In a Region-of-Interest (ROI) on the angiogram (without an overlaying major blood vessel) the contrast is measured as a function of time (the so-called time-density curve). The required hyperemic state of exercise is induced artificially by the injection of a vasodilator drug e.g. papaverine. In order to minimize motion artifacts we select based on the recorded ECG signal end-diastolic images in both a basal and a hyperemic run in the same projection to position the ROI. We present the development of the algorithms together with results of a small study of 20 patients which have been catheterized following the standard protocol.

  18. Myocardial mechanics in cardiomyopathies.

    PubMed

    Modesto, Karen; Sengupta, Partho P

    2014-01-01

    Cardiomyopathies are a heterogeneous group of diseases that can be phenotypically recognized by specific patterns of ventricular morphology and function. The authors summarize recent clinical observations that mechanistically link the multidirectional components of left ventricular (LV) deformation with morphological phenotypes of cardiomyopathies for offering key insights into the transmural heterogeneity of myocardial function. Subendocardial dysfunction predominantly alters LV longitudinal shortening, lengthening and suction performance and contributes to the phenotypic patterns of heart failure (HF) with preserved ejection fraction (EF) seen with hypertrophic and restrictive patterns of cardiomyopathy. On the other hand, a more progressive transmural disease results in reduction of LV circumferential and twist mechanics leading to the phenotypic pattern of dilated cardiomyopathy and the clinical syndrome of HF with reduced (EF). A proper characterization of LV transmural mechanics, energetics, and space-time distributions of pressure and shear stress may allow recognition of early functional changes that can forecast progression or reversal of LV remodeling. Furthermore, the interactions between LV muscle and fluid mechanics hold the promise for offering newer mechanistic insights and tracking impact of novel therapies.

  19. Myocardial perfusion imaging for detection of silent myocardial ischemia

    SciTech Connect

    Beller, G.A.

    1988-04-21

    Despite the widespread use of the exercise stress test in diagnosing asymptomatic myocardial ischemia, exercise radionuclide imaging remains useful for detecting silent ischemia in numerous patient populations, including those who are totally asymptomatic, those who have chronic stable angina, those who have recovered from an episode of unstable angina or an uncomplicated myocardial infarction, and those who have undergone angioplasty or received thrombolytic therapy. Studies show that thallium scintigraphy is more sensitive than exercise electrocardiography in detecting ischemia, i.e., in part, because perfusion defects occur more frequently than ST depression and before angina in the ischemic cascade. Thallium-201 scintigraphy can be performed to differentiate a true- from a false-positive exercise electrocardiographic test in patients with exercise-induced ST depression and no angina. The development of technetium-labeled isonitriles may improve the accuracy of myocardial perfusion imaging. 11 references.

  20. MYOCARDIAL AKT: THE OMNIPRESENT NEXUS

    PubMed Central

    Sussman, Mark A.; Völkers, Mirko; Fischer, Kimberlee; Bailey, Brandi; Cottage, Christopher T.; Din, Shabana; Gude, Natalie; Avitabile, Daniele; Alvarez, Roberto; Sundararaman, Balaji; Quijada, Pearl; Mason, Matt; Konstandin, Mathias H.; Malhowski, Amy; Cheng, Zhaokang; Khan, Mohsin; McGregor, Michael

    2013-01-01

    One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses. PMID:21742795

  1. How reliable is myocardial imaging in the diagnosis of acute myocardial infarction

    SciTech Connect

    Willerson, J.T.

    1983-01-01

    Myocardial scintigraphic techniques available presently allow a sensitive and relatively specific diagnosis of acute myocardial infarction when they are used correctly, although every technique has definite limitations. Small myocardial infarcts (less than 3 gm.) may be missed, and there are temporal limitations in the usefulness of the scintigraphic techniques. The development of tomographic methodology that may be used with single-photon radionuclide emitters (including technetium and /sup 201/Tl will allow the detection of relatively small abnormalities in myocardial perfusion and regions of myocardial infarction and will help to provide a more objective interpretation of the myocardial scintigrams. The use of overlay techniques allowing simultaneous assessment of myocardial perfusion, infarct-avid imaging, and radionuclide ventriculograms will provide insight into the relevant aspects of the extent of myocardial damage, the relationship of damage to myocardial perfusion, and the functional impact of myocardial infarction on ventricular performance.

  2. Morphological aspects of myocardial bridges.

    PubMed

    Lujinović, Almira; Kulenović, Amela; Kapur, Eldan; Gojak, Refet

    2013-11-01

    Although some myocardial bridges can be asymptomatic, their presence often causes coronary disease either through direct compression of the "tunnel" segment or through stimulation and accelerated development of atherosclerosis in the segment proximally to the myocardial bridge. The studied material contained 30 human hearts received from the Department of Anatomy. The hearts were preserved 3 to 5 days in 10% formalin solution. Thereafter, the fatty tissue was removed and arterial blood vessels prepared by careful dissection with special reference to the presence of the myocardial bridges. Length and thickness of the bridges were measured by the precise electronic caliper. The angle between the myocardial bridge fibre axis and other axis of the crossed blood vessel was measured by a goniometer. The presence of the bridges was confirmed in 53.33% of the researched material, most frequently (43.33%) above the anterior interventricular branch. The mean length of the bridges was 14.64 ± 9.03 mm and the mean thickness was 1.23 ± 1.32 mm. Myocardial bridge fibres pass over the descending blood vessel at the angle of 10-90 degrees. The results obtained on a limited sample suggest that the muscular index of myocardial bridge is the highest for bridges located on RIA, but that the difference is not significant in relation to bridges located on other branches. The results obtained suggest that bridges located on other branches, not only those on RIA, could have a great contractive power and, consequently, a great compressive force, which would be exerted on the wall of a crossed blood vessel.

  3. Ketone body metabolism and cardiovascular disease

    PubMed Central

    Cotter, David G.; Schugar, Rebecca C.

    2013-01-01

    Ketone bodies are metabolized through evolutionarily conserved pathways that support bioenergetic homeostasis, particularly in brain, heart, and skeletal muscle when carbohydrates are in short supply. The metabolism of ketone bodies interfaces with the tricarboxylic acid cycle, β-oxidation of fatty acids, de novo lipogenesis, sterol biosynthesis, glucose metabolism, the mitochondrial electron transport chain, hormonal signaling, intracellular signal transduction pathways, and the microbiome. Here we review the mechanisms through which ketone bodies are metabolized and how their signals are transmitted. We focus on the roles this metabolic pathway may play in cardiovascular disease states, the bioenergetic benefits of myocardial ketone body oxidation, and prospective interactions among ketone body metabolism, obesity, metabolic syndrome, and atherosclerosis. Ketone body metabolism is noninvasively quantifiable in humans and is responsive to nutritional interventions. Therefore, further investigation of this pathway in disease models and in humans may ultimately yield tailored diagnostic strategies and therapies for specific pathological states. PMID:23396451

  4. Paraganglioma causing a myocardial infarction

    PubMed Central

    DeMers, Gerard; Portouw, Steve

    2012-01-01

    Paragangliomas, extra-adrenal pheochromocytomas, are rare and classically associated with sustained or paroxysmal hypertension, headache, perspiration, palpitations, and anxiety. A 49-year-old male, parachute instructor, likely developed a hypertensive emergency when deploying his parachute leading to a myocardial infarction. A para-aortic tumor was incidentally discovered during the patient's emergency department work-up and was eventually surgically resected. He had no evidence of coronary disease during his evaluation. This case shows that a myocardial infarction may be the initial manifestation of these neuroendocrine tumors. Hypertensive emergency, much less elevated blood pressure may not be present at time of presentation. PMID:22787353

  5. Thallium-201 myocardial scintigraphy in acute myocardial infarction and ischemia

    SciTech Connect

    Wackers, F.J.

    1982-04-01

    Thallium-201 scintigraphy provides a sensitive and reliable method of detecting acute myocardial infarction and ischemia when imaging is performed with understanding of the temporal characteristics and accuracy of the technique. The results of scintigraphy are related to the time interval between onset of symptoms and time of imaging. During the first 6 hr after chest pain almost all patients with acute myocardial infarction and approximately 50% of the patients with unstable angina will demonstrate /sup 201/TI pefusion defects. Delayed imaging at 2-4 hr will permit distinction between ischemia and infarction. In patients with acute myocardial infarction, the size of the perfusion defect accurately reflects the extent of the infarcted and/or jeopardized myocardium, which may be used for prognostic stratification. In view of the characteristics of /sup 201/TI scintigraphy, the most practical application of this technique is in patients in whom myocardial infarction has to be ruled out, and for early recognition of patients at high risk for complications.

  6. Effects of glucosamine-chondroitin combination on synovial fluid IL-1β, IL-6, TNF-α and PGE2 levels in internal derangements of temporomandibular joint

    PubMed Central

    Esen, Emin; Tatli, Ufuk

    2015-01-01

    Background The aim of the present study was to evaluate the effects of glucosamine-chondroitin sulphate combination on internal derangements of temporomandibular joint in clinical and biochemical manners. Material and Methods This randomized clinical study included 31 cases reporting joint tenderness, in which disc displacement was detected on MR imaging. In all patients, synovial fluid sampling was performed under local anesthesia. In the study group, the patients were prescribed a combination of 1500 mg glucosamine and 1200 mg chondroitin sulphate, while patients in the control group were only prescribed 50 mg tramadol HCl (twice daily) for pain control. After 8 weeks, synovial fluid sampling was repeated in the same manner. The levels of pain, maximum mouth opening (MMO), synovial fluid IL-1ß, IL-6, TNF-α and PGE2 measured before and after pharmacological intervention were compared. Results The reduction in pain levels was significant in both groups. There was no significant difference between two groups in terms of pain reduction. The improvement in MMO was significant in the study group but it was not in the control group. The MMO improvement was significantly higher in the study group compared to the control group. In the study group, significant decrease was observed in PGE2 level, while the decreases in IL-1β, IL-6 and TNF-α levels were not significant. In the control group, no significant decrease was observed in any of the inflammatory cytokines after 8 weeks, moreover IL-1ß and IL-6 levels were increased. Alterations of IL-1ß and IL-6 levels were significant in study group while TNF-α and PGE2 levels were not, compared to control group. Conclusions In conclusion, these results might suggest that glucosamine-chondroitin combination significantly increases the MMO and decreases the synovial fluid IL1β and IL6 levels in internal derangements of TMJ compared to tramadol. The modifications of synovial fluid TNF-α and PGE2 levels do not reach

  7. Imaging techniques for myocardial inflammation

    SciTech Connect

    O'Connell, J.B.; Henkin, R.E.; Robinson, J.A.

    1986-03-01

    Dilated cardiomyopathy (DC) represents a heterogeneous group of disorders which results in morbidity and mortality in young individuals. Recent evidence suggests that a subset of these patients have histologic evidence of myocarditis which is potentially treatable with immunosuppression. The identification of myocardial inflammation may therefore lead to development of therapeutic regimens designed to treat the cause rather than the effect of the myocardial disease. Ultimately, this may result in improvement in the abysmal prognosis of DC. The currently accepted technique for identification of active myocardial inflammation is endomyocardial biopsy. This technique is not perfect, however, since pathologic standards for the diagnosis of myocarditis have not been established. Furthermore, focal inflammation may give rise to sampling error. The inflammation-avid radioisotope gallium-67 citrate has been used as an adjunct to biopsy improving the yield of myocarditis from 7 percent to 36 percent. Serial imaging correlates well to biopsy results. Future studies are designed to study the applicability of lymphocyte labelling techniques to myocardial inflammatory disease.

  8. Spousal Adjustment to Myocardial Infarction.

    ERIC Educational Resources Information Center

    Ziglar, Elisa J.

    This paper reviews the literature on the stresses and coping strategies of spouses of patients with myocardial infarction (MI). It attempts to identify specific problem areas of adjustment for the spouse and to explore the effects of spousal adjustment on patient recovery. Chapter one provides an overview of the importance in examining the…

  9. Severe Hypokalemia Masquerading Myocardial Ischemia

    PubMed Central

    Petrov, Daniel Bogdanov; Sardovski, Svetlozar Ivanov; Milanova, Maria Hristova

    2012-01-01

    An advanced degree of body potassium deficit may produce striking changes in the electrocardiogram (ECG). These changes can result in incidental findings on the 12-lead ECG or precipitate potentially life-threatening dysrhythmias. Although usually readily recognized, at times these abnormalities may be confused with myocardial ischemia. The object was to report a case of severe hypokalemia mimicking myocardial ischemia. A 33-year-old, previously healthy man, presented to the Emergency Department (ED) with a progressive weakness and chest discomfort. The electrocardiogram showed a marked ST-segment depression in leads II, III, aVF, V1-V6. The initial diagnosis was non ST-elevation myocardial infarction. Echocardiography was normal and troponin levels were within normal limits. A more detailed history revealed that the patient had an episode of acute gastroenteritis with diarrhea and vomiting. Serum chemistries were notable for a potassium concentration of 1,8 mmol per liter. With aggressive electrolyte correction, the ECG abnormalities reverted as potassium levels normalized. Hypokalemia induced ST-segment depression may simulate myocardial ischemia. The differential diagnosis might be difficult, especially in the cases when ST changes are accompanied with chest discomfort.

  10. Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction.

    PubMed

    Wang, Wei; Zhang, Fuyang; Xia, Yunlong; Zhao, Shihao; Yan, Wenjun; Wang, Helin; Lee, Yan; Li, Congye; Zhang, Ling; Lian, Kun; Gao, Erhe; Cheng, Hexiang; Tao, Ling

    2016-11-01

    Cardiac metabolic remodeling is a central event during heart failure (HF) development following myocardial infarction (MI). It is well known that myocardial glucose and fatty acid dysmetabolism contribute to post-MI cardiac dysfunction and remodeling. However, the role of amino acid metabolism in post-MI HF remains elusive. Branched chain amino acids (BCAAs) are an important group of essential amino acids and function as crucial nutrient signaling in mammalian animals. The present study aimed to determine the role of cardiac BCAA metabolism in post-MI HF progression. Utilizing coronary artery ligation-induced murine MI models, we found that myocardial BCAA catabolism was significantly impaired in response to permanent MI, therefore leading to an obvious elevation of myocardial BCAA abundance. In MI-operated mice, oral BCAA administration further increased cardiac BCAA levels, activated the mammalian target of rapamycin (mTOR) signaling, and exacerbated cardiac dysfunction and remodeling. These data demonstrate that BCAAs act as a direct contributor to post-MI cardiac pathologies. Furthermore, these BCAA-mediated deleterious effects were improved by rapamycin cotreatment, revealing an indispensable role of mTOR in BCAA-mediated adverse effects on cardiac function/structure post-MI. Of note, pharmacological inhibition of branched chain ketoacid dehydrogenase kinase (BDK), a negative regulator of myocardial BCAA catabolism, significantly improved cardiac BCAA catabolic disorders, reduced myocardial BCAA levels, and ameliorated post-MI cardiac dysfunction and remodeling. In conclusion, our data provide the evidence that impaired cardiac BCAA catabolism directly contributes to post-MI cardiac dysfunction and remodeling. Moreover, improving cardiac BCAA catabolic defects may be a promising therapeutic strategy against post-MI HF.

  11. Lack of Chemokine Signaling through CXCR5 Causes Increased Mortality, Ventricular Dilatation and Deranged Matrix during Cardiac Pressure Overload

    PubMed Central

    Waehre, Anne; Husberg, Cathrine; Sjaastad, Ivar; Nygård, Ståle; Dahl, Christen P.; Ahmed, M. Shakil; Finsen, Alexandra V.; Reims, Henrik; Louch, William E.; Hilfiker-Kleiner, Denise; Vinge, Leif E.; Roald, Borghild; Attramadal, Håvard; Lipp, Martin; Gullestad, Lars; Aukrust, Pål; Christensen, Geir

    2011-01-01

    Rationale Inflammatory mechanisms have been suggested to play a role in the development of heart failure (HF), but a role for chemokines is largely unknown. Based on their role in inflammation and matrix remodeling in other tissues, we hypothesized that CXCL13 and CXCR5 could be involved in cardiac remodeling during HF. Objective We sought to analyze the role of the chemokine CXCL13 and its receptor CXCR5 in cardiac pathophysiology leading to HF. Methods and Results Mice harboring a systemic knockout of the CXCR5 (CXCR5−/−) displayed increased mortality during a follow-up of 80 days after aortic banding (AB). Following three weeks of AB, CXCR5−/− developed significant left ventricular (LV) dilatation compared to wild type (WT) mice. Microarray analysis revealed altered expression of several small leucine-rich proteoglycans (SLRPs) that bind to collagen and modulate fibril assembly. Protein levels of fibromodulin, decorin and lumican (all SLRPs) were significantly reduced in AB CXCR5−/− compared to AB WT mice. Electron microscopy revealed loosely packed extracellular matrix with individual collagen fibers and small networks of proteoglycans in AB CXCR5−/− mice. Addition of CXCL13 to cultured cardiac fibroblasts enhanced the expression of SLRPs. In patients with HF, we observed increased myocardial levels of CXCR5 and SLRPs, which was reversed following LV assist device treatment. Conclusions Lack of CXCR5 leads to LV dilatation and increased mortality during pressure overload, possibly via lack of an increase in SLRPs. This study demonstrates a critical role of the chemokine CXCL13 and CXCR5 in survival and maintaining of cardiac structure upon pressure overload, by regulating proteoglycans essential for correct collagen assembly. PMID:21533157

  12. Myocardial disarray. A critical review.

    PubMed Central

    Becker, A E; Caruso, G

    1982-01-01

    Myocardial disarray or disorganisation is at present a contentious topic, not least because its value as a clinical marker for hypertrophic cardiomyopathy has changed considerably over the years. Initially observed as one of the features of asymmetric septal hypertrophy, disarray has since been promoted as its pathognomonic histological feature, regarded by some observers as the morphological manifestation of a genetically transmitted myocardial defect. Recently, however, it has become evident that myocardial disarray is not limited to hypertrophic cardiomyopathy, but is encountered in hearts with both congenital and acquired conditions, and is also observed in normal hearts. The specificity of disarray for hypertrophic cardiomyopathy is thus seriously questioned. Latterly, it has been suggested that disarray, judged from through-and-through sections of the ventricular midseptum is a highly specific and sensitive marker of hypertrophic cardiomyopathy when considered in quantitative rather than qualitative fashion. The present study sets out to answer the question whether disarray could be the histological expression of the normal but intricate fibre architecture of the heart, a consideration also initiated by debatable definitions of normality and abnormality of myocardial histology. Gross fibre dissections in five normal hearts showed that many sites occurred in which disarray was a natural phenomenon. In five more hearts it was found that the plane of section of a tissue block might profoundly influence the histology. In fact, tissue cubicles sampled from different faces showed a change in histology in the vast majority. Thus the diagnostic significance of myocardial disarray as a marker of hypertrophic cardiomyopathy in the clinical setting almost vanishes; a change in orientation of a tissue section may actually turn "normality" into "disarray". Images PMID:7044398

  13. Circadian Disruption and Metabolic Disease: Findings from Animal Models

    PubMed Central

    Arble, Deanna Marie; Ramsey, Kathryn Moynihan; Bass, Joseph

    2010-01-01

    Social opportunities and work demands have caused humans to become increasingly active during the late evening hours, leading to a shift from the predominantly diurnal lifestyle of our ancestors to a more nocturnal one. This voluntarily decision to stay awake long into the evening hours leads to circadian disruption at the system, tissue, and cellular levels. These derangements are in turn associated with clinical impairments in metabolic processes and physiology. The use of animal models for circadian disruption provides an important opportunity to determine mechanisms by which disorganization in the circadian system can lead to metabolic dysfunction in response to genetic, environmental, and behavioral perturbations. Here we review recent key animal studies involving circadian disruption and discuss the possible translational implications of these studies for human health and particularly for the development of metabolic disease. PMID:21112026

  14. Circadian disruption and metabolic disease: findings from animal models.

    PubMed

    Arble, Deanna Marie; Ramsey, Kathryn Moynihan; Bass, Joseph; Turek, Fred W

    2010-10-01

    Social opportunities and work demands have caused humans to become increasingly active during the late evening hours, leading to a shift from the predominantly diurnal lifestyle of our ancestors to a more nocturnal one. This voluntarily decision to stay awake long into the evening hours leads to circadian disruption at the system, tissue, and cellular levels. These derangements are in turn associated with clinical impairments in metabolic processes and physiology. The use of animal models for circadian disruption provides an important opportunity to determine mechanisms by which disorganization in the circadian system can lead to metabolic dysfunction in response to genetic, environmental, and behavioral perturbations. Here we review recent key animal studies involving circadian disruption and discuss the possible translational implications of these studies for human health and particularly for the development of metabolic disease.

  15. Regional myocardial downregulation of the inhibitory guanosine triphosphate-binding protein (Gi alpha 2) and beta-adrenergic receptors in a porcine model of chronic episodic myocardial ischemia.

    PubMed Central

    Hammond, H K; Roth, D A; McKirnan, M D; Ping, P

    1993-01-01

    Regional myocardial ischemia is associated with increased levels of adenosine and norepinephrine, factors that may alter activation of the beta-adrenergic receptor (beta AR)-G protein-adenylyl cyclase pathway in the heart. We have used the ameroid constrictor model to determine whether alterations in myocardial signal transduction through the beta AR-G protein-adenylyl cyclase pathway occur in the setting of chronic episodes of reversible ischemia. Pigs were instrumented with ameroid occluders placed around the left circumflex coronary artery. 5 wk later, after ameroid closure, flow and function were normal in the ischemic bed, but flow (P = 0.001) and function (P < 0.03) were abnormal when metabolic demands were increased. The ischemic bed showed a reduction in myocardial beta AR number (P < 0.005). Despite regional downregulation of myocardial beta AR number, adenylyl cyclase activity was similar in the ischemic and control beds. Quantitative immunoblotting showed that the cardiac inhibitory GTP-binding protein, Gi alpha 2, was decreased in the ischemic bed (P = 0.02). In contrast, the cardiac stimulatory GTP-binding protein, Gs alpha, was increased in endocardial sections from the ischemic bed (P = < 0.05). Decreased Gi alpha 2 content was associated with decreased inhibition of adenylyl cyclase. Reduced Gi alpha 2 content, in conjunction with increased Gs alpha content in the endocardium, may provide a means by which adrenergic activation is maintained in the setting of chronic episodic myocardial ischemia. Images PMID:8254020

  16. Metabolic Adaptation to Muscle Ischemia

    NASA Technical Reports Server (NTRS)

    Cabrera, Marco E.; Coon, Jennifer E.; Kalhan, Satish C.; Radhakrishnan, Krishnan; Saidel, Gerald M.; Stanley, William C.

    2000-01-01

    Although all tissues in the body can adapt to varying physiological/pathological conditions, muscle is the most adaptable. To understand the significance of cellular events and their role in controlling metabolic adaptations in complex physiological systems, it is necessary to link cellular and system levels by means of mechanistic computational models. The main objective of this work is to improve understanding of the regulation of energy metabolism during skeletal/cardiac muscle ischemia by combining in vivo experiments and quantitative models of metabolism. Our main focus is to investigate factors affecting lactate metabolism (e.g., NADH/NAD) and the inter-regulation between carbohydrate and fatty acid metabolism during a reduction in regional blood flow. A mechanistic mathematical model of energy metabolism has been developed to link cellular metabolic processes and their control mechanisms to tissue (skeletal muscle) and organ (heart) physiological responses. We applied this model to simulate the relationship between tissue oxygenation, redox state, and lactate metabolism in skeletal muscle. The model was validated using human data from published occlusion studies. Currently, we are investigating the difference in the responses to sudden vs. gradual onset ischemia in swine by combining in vivo experimental studies with computational models of myocardial energy metabolism during normal and ischemic conditions.

  17. Results of the modified Sauvé-Kapandji procedure in the treatment of chronic posttraumatic derangement of the distal radioulnar joint.

    PubMed

    Lamey, D M; Fernandez, D L

    1998-12-01

    We reviewed the results of a modified Sauvé-Kapandji procedure with tenodesis of the flexor carpi ulnaris to the carpus in eighteen patients who had chronic derangement of the distal radioulnar joint. There were fourteen men and four women. The mean supination of the forearm had improved from 16 degrees (range, 0 to 75 degrees) preoperatively to 76 degrees (range, 40 to 90 degrees) at the time of the latest follow-up, and the mean pronation had improved from 42 degrees (range, 0 to 80 degrees) preoperatively to 81 degrees (range, 60 to 90 degrees) at the time of follow-up. Pain relief was satisfactory, and the mean grip strength had improved from 36 percent of that on the unaffected side preoperatively to 73 percent at the time of follow-up. One patient had moderate pain over the ulnar stump associated with residual volar instability of the proximal ulnar segment, and he had a tenodesis of the extensor carpi ulnaris as a second procedure. Another patient had mild instability of the stump only after he had a second operation, which was an excision of a bone mass (ossification) in the resected area. The ulnar stump was stable in sixteen patients. Eight of the eleven patients who had performed heavy manual labor before the injury were able to return to work full-time without restrictions. According to a modification of the wrist-scoring system of the Mayo Clinic, at a mean of four years and two months (range, two years to eight years and four months), six patients had an excellent result; seven, a good result; four, a fair result; and one, a poor result. On the basis of our findings, we believe that the index operation is an excellent salvage procedure for the treatment of chronic posttraumatic derangement of the distal radioulnar joint, especially when nonoperative treatment has been unsuccessful and rotation of the forearm is severely limited.

  18. [Relationship between hydrogen sulfide and myocardial damage in endotoxemic rats].

    PubMed

    Xian, Xiao-Hui; Huang, Xin-Li; Zhou, Xiao-Hong; Zhang, Jing-Kun; Ling, Yi-Ling

    2007-06-25

    To investigate the changes and role of hydrogen sulfide (H2S) in myocardial damage in endotoxemic rats, a rat model of endotoxemia induced by injection of lipopolysaccharide (LPS) was developed. Male Wistar rats were divided into four groups: control group, LPS group, LPS + propargylglycine (PPG, a metabolic enzyme inhibitor of H2S) group and LPS + NaHS (H2S donor) group. The mean arterial pressure (MAP) of rats within 4 h was observed, TNF-alpha and H2S contents in plasma, TNF-alpha and H2S contents, lactate dehydrogenase (LDH) and myeloperoxidase (MPO) activity in cardiac muscles were determined. The morphological structure of cardiac muscle was observed. Administration of LPS caused a sustained fall in MAP within 4 h, and significant increases in TNF-alpha and H2S contents in plasma (P<0.05). Plasmic H2S content was negatively correlated with MAP (r = -0.936, -0.913 and -0.908 at 1, 2 and 4 h, respectively, P<0.05). LPS also induced increases in TNF-alpha and H2S contents, LDH and MPO activity in cardiac muscles and myocardial damage. Treatment with PPG reduced the increases in TNF-alpha and H2S contents in plasma, TNF-alpha and H2S contents, LDH and MPO activity in cardiac muscles, ameliorated the hypotensive effect and myocardial damage caused by LPS administration (P<0.05). However, treatment with NaHS increased TNF-alpha and H2S contents in plasma, TNF-alpha and H2S contents, LDH and MPO activity in cardiac muscles, and aggravated the hypotensive action and tissue injuries caused by LPS administration (P<0.05). It is suggested that hypotension and myocardial damage in endotoxemic rats are partly induced by increase in H2S content.

  19. To Assess the Association between Glucose Metabolism and Ectopic Lipid Content in Different Clinical Classifications of PCOS

    PubMed Central

    Göbl, Christian S.; Ott, Johannes; Bozkurt, Latife; Feichtinger, Michael; Rehmann, Victoria; Cserjan, Anna; Heinisch, Maike; Steinbrecher, Helmut; JustKukurova, Ivica; Tuskova, Radka; Leutner, Michael; Vytiska-Binstorfer, Elisabeth; Kurz, Christine; Weghofer, Andrea; Tura, Andrea; Egarter, Christian; Kautzky-Willer, Alexandra

    2016-01-01

    Aims There are emerging data indicating an association between PCOS (polycystic ovary syndrome) and metabolic derangements with potential impact on its clinical presentation. This study aims to evaluate the pathophysiological processes beyond PCOS with particular focus on carbohydrate metabolism, ectopic lipids and their possible interaction. Differences between the two established classifications of the disease should be additionally evaluated. Methods A metabolic characterization was performed in 53 untreated PCOS patients as well as 20 controls including an extended oral glucose tolerance test (OGTT, to assess insulin sensitivity, secretion and ß-cell function) in addition to a detailed examination of ectopic lipid content in muscle and liver by nuclear magnetic resonance spectroscopy. Results Women with PCOS classified by the original NIH 1990 definition showed a more adverse metabolic risk profile compared to women characterized by the additional Rotterdam 2003 phenotypes. Subtle metabolic derangements were observed in both subgroups, including altered shapes of OGTT curves, impaired insulin action and hyperinsulinemia due to increased secretion and attenuated hepatic extraction. No differences were observed for ectopic lipids between the groups. However, particularly hepatocellular lipid content was significantly related to clinical parameters of PCOS like whole body insulin sensitivity, dyslipidemia and free androgen index. Conclusions Subtle alterations in carbohydrate metabolism are present in both PCOS classifications, but more profound in subjects meeting the NIH 1990 criteria. Females with PCOS and controls did not differ in ectopic lipids, however, liver fat was tightly related to hyperandrogenism and an adverse metabolic risk profile. PMID:27505055

  20. Functional tests for myocardial ischemia

    SciTech Connect

    Levinson, J.R.; Guiney, T.E.; Boucher, C.A. )

    1991-01-01

    Functional tests for myocardial ischemia are numerous. Most depend upon a combination of either exercise or pharmacologic intervention with analysis of the electrocardiogram, of regional perfusion with radionuclide imaging, or of regional wall motion with radionuclide imaging or echocardiography. While each test has unique features, especially at the research level, they are generally quite similar in clinical practice, so the clinician is advised to concentrate on one or two in which local expertise is high.22 references.

  1. Tachyarrhythmias in acute myocardial infarction.

    PubMed

    McLean, K H; Bett, J N; Saltups, A

    1975-02-01

    In 1505 patients with acute myocardial infarction (MI) serious ventricular arrhythmias were commoner in those with transmural ECG changes, and were associated with an increase in mortality and in the incidence of left ventricular failure (LVF) as well as higher peak serum lactic dehydrogenase (LDH) levels. Atrial fibrillation (AF) occurred more often in older patients and in those with LVF and clinical evidence of pericarditis.

  2. Myocardial structure and matrix metalloproteinases.

    PubMed

    Aggeli, C; Pietri, P; Felekos, I; Rautopoulos, L; Toutouzas, K; Tsiamis, E; Stefanadis, C

    2012-01-01

    Metalloproteinases (MMPs) are enzymes which enhance proteolysis of extracellular matrix proteins. The pathophysiologic and prognostic role of MMPs has been demonstrated in numerous studies. The present review covers a wide a range of topics with regards to MMPs structural and functional properties, as well as their role in myocardial remodeling in several cardiovascular diseases. Moreover, the clinical and therapeutic implications from their assessment are highlighted.

  3. [Premonitory sign of myocardial rupture].

    PubMed

    Lauten, A; Dittrich, P

    1975-10-01

    It is reported on 14 cases in which a rupture of the myocardium occurred following a myocardial infarction. The moment of the appearance as well as anamnestic and clinical peculiarities are examined. As the only usable symptom of the rupture the symptomatology of the electromechanic dissociation must be taken into consideration. Finally it is referred to the on principle possible operative consequences of the rupture of the myocardium (oversewing or infarctetomy).

  4. Multimodality imaging for assessment of myocardial viability: nuclear, echocardiography, MR, and CT.

    PubMed

    Arrighi, James A; Dilsizian, Vasken

    2012-04-01

    The assessment of myocardial viability may be an important component of the evaluation of patients with coronary artery disease and left ventricular dysfunction. The primary goal of viability assessment in such patients is to guide therapeutic decisions by determining which patients would most likely benefit from revascularization. In patients with chronic coronary artery disease, left ventricular dysfunction may be a consequence of prior myocardium infarction, which is an irreversible condition, or reversible ischemic states such as stunning and hibernation. Imaging techniques utilize several methods to assess myocardial viability: left ventricular function, morphology, perfusion, and metabolism. Each technique (echocardiography, nuclear imaging, magnetic resonance imaging, and x-ray computed tomography) has the ability to assess one or more of these parameters. This article describes how each of these imaging modalities can be used to assess myocardial viability, and reviews the relative strengths and limitations of each technique.

  5. Myocardialization of the cardiac outflow tract

    NASA Technical Reports Server (NTRS)

    van den Hoff, M. J.; Moorman, A. F.; Ruijter, J. M.; Lamers, W. H.; Bennington, R. W.; Markwald, R. R.; Wessels, A.

    1999-01-01

    During development, the single-circuited cardiac tube transforms into a double-circuited four-chambered heart by a complex process of remodeling, differential growth, and septation. In this process the endocardial cushion tissues of the atrioventricular junction and outflow tract (OFT) play a crucial role as they contribute to the mesenchymal components of the developing septa and valves in the developing heart. After fusion, the endocardial ridges in the proximal portion of the OFT initially form a mesenchymal outlet septum. In the adult heart, however, this outlet septum is basically a muscular structure. Hence, the mesenchyme of the proximal outlet septum has to be replaced by cardiomyocytes. We have dubbed this process "myocardialization." Our immunohistochemical analysis of staged chicken hearts demonstrates that myocardialization takes place by ingrowth of existing myocardium into the mesenchymal outlet septum. Compared to other events in cardiac septation, it is a relatively late process, being initialized around stage H/H28 and being basically completed around stage H/H38. To unravel the molecular mechanisms that are responsible for the induction and regulation of myocardialization, an in vitro culture system in which myocardialization could be mimicked and manipulated was developed. Using this in vitro myocardialization assay it was observed that under the standard culture conditions (i) whole OFT explants from stage H/H20 and younger did not spontaneously myocardialize the collagen matrix, (ii) explants from stage H/H21 and older spontaneously formed extensive myocardial networks, (iii) the myocardium of the OFT could be induced to myocardialize and was therefore "myocardialization-competent" at all stages tested (H/H16-30), (iv) myocardialization was induced by factors produced by, most likely, the nonmyocardial component of the outflow tract, (v) at none of the embryonic stages analyzed was ventricular myocardium myocardialization-competent, and finally

  6. Myocardial Infarction in the Elderly

    PubMed Central

    Carro, Amelia; Kaski, Juan Carlos

    2011-01-01

    Advances in pharmacological treatment and effective early myocardial revascularization have –in recent years- led to improved clinical outcomes in patients with acute myocardial infarction (AMI). However, it has been suggested that compared to younger subjects, elderly AMI patients are less likely to receive evidence-based treatment, including myocardial revascularization therapy. Several reasons have been postulated to explain this trend, including uncertainty regarding the true benefits of the interventions commonly used in this setting as well as increased risk mainly associated with comorbidities. The diagnosis, management, and post-hospitalization care of elderly patients presenting with an acute coronary syndrome pose many difficulties at present. A complex interplay of variables such as comorbidities, functional and socioeconomic status, side effects associated with multiple drug administration, and individual biologic variability, all contribute to creating a complex clinical scenario. In this complex setting, clinicians are often required to extrapolate evidence-based results obtained in cardiovascular trials from which older patients are often, implicitly or explicitly, excluded. This article reviews current recommendations regarding management of AMI in the elderly. PMID:22396870

  7. Skeletal muscle dysfunction is associated with derangements in mitochondrial bioenergetics (but not UCP3) in a rodent model of sepsis.

    PubMed

    Zolfaghari, Parjam S; Carré, Jane E; Parker, Nadeene; Curtin, Nancy A; Duchen, Michael R; Singer, Mervyn

    2015-05-01

    Muscle dysfunction is a common feature of severe sepsis and multiorgan failure. Recent evidence implicates bioenergetic dysfunction and oxidative damage as important underlying pathophysiological mechanisms. Increased abundance of uncoupling protein-3 (UCP3) in sepsis suggests increased mitochondrial proton leak, which may reduce mitochondrial coupling efficiency but limit reactive oxygen species (ROS) production. Using a murine model, we examined metabolic, cardiovascular, and skeletal muscle contractile changes following induction of peritoneal sepsis in wild-type and Ucp3(-/-) mice. Mitochondrial membrane potential (Δψm) was measured using two-photon microscopy in living diaphragm, and contractile function was measured in diaphragm muscle strips. The kinetic relationship between membrane potential and oxygen consumption was determined using a modular kinetic approach in isolated mitochondria. Sepsis was associated with significant whole body metabolic suppression, hypothermia, and cardiovascular dysfunction. Maximal force generation was reduced and fatigue accelerated in ex vivo diaphragm muscle strips from septic mice. Δψm was lower in the isolated diaphragm from septic mice despite normal substrate oxidation kinetics and proton leak in skeletal muscle mitochondria. Even though wild-type mice exhibited an absolute 26 ± 6% higher UCP3 protein abundance at 24 h, no differences were seen in whole animal or diaphragm physiology, nor in survival rates, between wild-type and Ucp3(-/-) mice. In conclusion, this murine sepsis model shows a hypometabolic phenotype with evidence of significant cardiovascular and muscle dysfunction. This was associated with lower Δψm and alterations in mitochondrial ATP turnover and the phosphorylation pathway. However, UCP3 does not play an important functional role, despite its upregulation.

  8. Imaging of myocardial perfusion with magnetic resonance.

    PubMed

    Barkhausen, Jörg; Hunold, Peter; Jochims, Markus; Debatin, Jörg F

    2004-06-01

    Coronary artery disease (CAD) is currently the leading cause of death in developed nations. Reflecting the complexity of cardiac function and morphology, noninvasive diagnosis of CAD represents a major challenge for medical imaging. Although coronary artery stenoses can be depicted with magnetic resonance (MR) and computed tomography (CT) techniques, its functional or hemodynamic impact frequently remains elusive. Therefore, there is growing interest in other, target organ-specific parameters such as myocardial function at stress and first-pass myocardial perfusion imaging to assess myocardial blood flow. This review explores the pathophysiologic background, recent technical developments, and current clinical status of first-pass MR imaging (MRI) of myocardial perfusion.

  9. Radioiodinated carnitine and acylcarnitine analogs as potential myocardial imaging agents

    SciTech Connect

    McConnell, D.S.

    1991-01-01

    R-carnitine is extremely important in mammalian energy metabolism. Gamma-butyrobetaine, the immediate biosynthetic precursor to R-carnitine, is synthesized in many organs. However, only liver can hydroxylate gamma-butyrobetaine to carnitine. Thus the transport of carnitine from its site of synthesis to the site of utilization is of utmost importance. Carnitine is found in highest concentration in cardiac and skeletal muscle, where it is required for the transport of fatty acids into the mitochondria. Before fatty acids are utilized as fuel for the myocyte by beta-oxidation, they are bound to carnitine as an acylcarnitine ester at the 3-hydroxyl, and transported across the micochondrial membranes. R,S-Carnitine has been shown to be taken up by myocytes. The author has begun a study on the use of carnitine derivatives as potential carriers for the site-specific delivery of radioiodine to bidning sites in the myocardium. Such agents labeled with a gamma-emitting nuclide such as iodine-123 would be useful for the noninvasive imaging of these tissues. The aim was to synthesize a variety of radiolabeled analogs of carnitine and acylcarnitine to address questions of transport, binding and availability for myocardial metabolism. These analogs consist of N-alkylated derivatives of carnitine, acylcarnitine esters as well as carnitine amides and ethers. One C-alkylated derivative showed interesting biodistribution, elevated myocardial uptake and competition with carnitine for binding in the myocardium.

  10. L-carnitine for the treatment of acute myocardial infarction.

    PubMed

    Dinicolantonio, James J; Niazi, Asfandyar K; McCarty, Mark F; Lavie, Carl J; Liberopoulos, Evangelos; O'Keefe, James H

    2014-01-01

    Although the therapeutic strategies available for treating acute myocardial infarction (AMI) have evolved dramatically in recent decades, coronary artery disease remains the leading cause of death in our society, and the rates of recurrent myocardial infarction and mortality are still unacceptably high. Therefore, exploration of alternative therapeutic strategies for AMI is of utmost importance. One such strategy is to target metabolic pathways via L-carnitine supplementation. L-carnitine is a physiologically essential metabolic cofactor that has been shown to provide a plethora of benefits when administered after AMI. L-carnitine has been shown to lessen infarct size, to reduce ventricular arrhythmias, left ventricular dilation, and heart failure incidence, as well as improve survival. These benefits may, in part, be related to its ability to boost glucose oxidation in ischemic tissues, while moderating increases in fatty acyl-coenzyme A levels that can impair mitochondrial efficiency and promote oxidative stress and inflammation. This article summarizes the evidence pertinent to the therapeutic use of L-carnitine for AMI.

  11. Myocardial perfusion scintigraphy: the evidence

    PubMed Central

    Anagnostopoulos, C.; Cerqueira, M.; Ell, P. J.; Flint, E. J.; Harbinson, M.; Kelion, A. D.; Al-Mohammad, A.; Prvulovich, E. M.; Shaw, L. J.; Tweddel, A. C.

    2003-01-01

    This review summarises the evidence for the role of myocardial perfusion scintigraphy (MPS) in patients with known or suspected coronary artery disease. It is the product of a consensus conference organised by the British Cardiac Society, the British Nuclear Cardiology Society and the British Nuclear Medicine Society and is endorsed by the Royal College of Physicians of London and the Royal College of Radiologists. It was used to inform the UK National Institute of Clinical Excellence in their appraisal of MPS in patients with chest pain and myocardial infarction. MPS is a well-established, non-invasive imaging technique with a large body of evidence to support its effectiveness in the diagnosis and management of angina and myocardial infarction. It is more accurate than the exercise ECG in detecting myocardial ischaemia and it is the single most powerful technique for predicting future coronary events. The high diagnostic accuracy of MPS allows reliable risk stratification and guides the selection of patients for further interventions, such as revascularisation. This in turn allows more appropriate utilisation of resources, with the potential for both improved clinical outcomes and greater cost-effectiveness. Evidence from modelling and observational studies supports the enhanced cost-effectiveness associated with MPS use. In patients presenting with stable or acute chest pain, strategies of investigation involving MPS are more cost-effective than those not using the technique. MPS also has particular advantages over alternative techniques in the management of a number of patient subgroups, including women, the elderly and those with diabetes, and its use will have a favourable impact on cost-effectiveness in these groups. MPS is already an integral part of many clinical guidelines for the investigation and management of angina and myocardial infarction. However, the technique is underutilised in the UK, as judged by the inappropriately long waiting times and by

  12. Intravenous Administration of Lycopene, a Tomato Extract, Protects against Myocardial Ischemia-Reperfusion Injury

    PubMed Central

    Tong, Chao; Peng, Chuan; Wang, Lianlian; Zhang, Li; Yang, Xiaotao; Xu, Ping; Li, Jinjin; Delplancke, Thibaut; Zhang, Hua; Qi, Hongbo

    2016-01-01

    Background: Oral uptake of lycopene has been shown to be beneficial for preventing myocardial ischemia-reperfusion (I/R) injury. However, the strong first-pass metabolism of lycopene influences its bioavailability and impedes its clinic application. In this study, we determined an intravenous (IV) administration dose of lycopene protects against myocardial infarction (MI) in a mouse model, and investigated the effects of acute lycopene administration on reactive oxygen species (ROS) production and related signaling pathways during myocardial I/R. Methods: In this study, we established both in vitro hypoxia/reoxygenation (H/R) cell model and in vivo regional myocardial I/R mouse model by ligating left anterior artery descending. TTC dual staining was used to assess I/R induced MI in the absence and presence of acute lycopene administration via tail vein injection. Results: Lycopene treatment (1 μM) before reoxygenation significantly reduced cardiomyocyte death induced by H/R. Intravenous administration of lycopene to achieve 1 μM concentration in circulating blood significantly suppressed MI, ROS production, and JNK phosphorylation in the cardiac tissue of mice during in vivo regional I/R. Conclusion: Elevating circulating lycopene to 1 μM via IV injection protects against myocardial I/R injury through inhibition of ROS accumulation and consequent inflammation in mice. PMID:26950150

  13. Linking the cardiomyocyte circadian clock to myocardial metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The energetic demands imposed upon the heart vary dramatically over the course of the day. In the face of equally commanding oscillations in the neurohumoral mileu, the heart must respond both rapidly and appropriately to its diurnal environment, for the survival of the organism. A major response of...

  14. Automated laser spectrofluorimeter for monitoring of myocardial metabolism

    NASA Astrophysics Data System (ADS)

    Popov, A. Yu.; Salmin, V. V.; Fursov, A. A.; Stepanenko, A. V.; Sokolovich, A. G.; Salmina, A. B.; Rebenkova, A. A.; Makarov, R. A.; Provorov, A. S.

    2006-09-01

    Methods of optical biopsy have a series of advantages before other methods of clinical diagnostics. The high accuracy of received results enables registration even small change of concentration of substances, and the opportunity of remote registration makes methods optical biopsy by an optimum means for noninvasive methods of diagnostics in medicine. The method of the fluorescent analysis allows to investigate dynamics of changes of a functional condition of organs and tissue in norm and pathologies, called by the various factors (an inflammation, ischemia, degenerative changes). Bring the results of development of expiremental setup for the laser fluorescent analysis of physiological and functional condition of various organs and tissue of organism. In expiremental setup was used pulse UF nitric laser with length of wave generation = 337 nm. For delivery of radiation to tissue, and, also, collection of a radiation of fluorescence were used various optic fiber scheme. The expiremental setup includes automated tunable monochromator and ADC, receiving a signal from photomultiplier tube. Driving of all blocks and processing of results is realize on IBM-compatible computer with the appropriate software. Was used the synchronous detecting for reducing of a background signal. Myocard at surgical introoperation by an accompanied condition of sharp ischemia was researches on these expiremental setup. Spectrofluorimetric criteria of an estimation of a condition of viscus at peritonitis were development.

  15. EVALUATION AND TREATMENT OF A PATIENT DIAGNOSED WITH ADHESIVE CAPSULITIS CLASSIFIED AS A DERANGEMENT USING THE MCKENZIE METHOD: A CASE REPORT

    PubMed Central

    Swanson, Brian T.

    2016-01-01

    ABSTRACT Background/Purpose The McKenzie Method of mechanical diagnosis and therapy (MDT) is supported in the literature as a valid and reliable approach to the management of spine injuries. It can also be applied to the peripheral joints, but has not been explored through research to the same extent. This method sub-classifies an injury based on tissue response to mechanical loading and repeated motion testing, with directional preferences identified in the exam used to guide treatment. The purpose of this case report is to demonstrate the assessment, intervention, and clinical outcomes of a subject classified as having a shoulder derangement syndrome using MDT methodology. Case Description The subject was a 52-year-old female with a four-week history of insidious onset left shoulder pain, referred to physical therapy with a medical diagnosis of adhesive capsulitis. She presented with pain (4-7/10 on the visual analog scale [VAS]) and decreased shoulder range of motion that limited her activities of daily living and work capabilities (Upper Extremity Functional Index (UEFI) score: 55/80). Active and passive ranges of motion (A/PROM) were limited in all planes. Repeated motion testing was performed, with an immediate reduction in pain and increased shoulder motion in all planes following repeated shoulder extension. As a result, her MDT classification was determined to be derangement syndrome. Treatment involved specific exercises, primarily repeated motions, identified as symptom alleviating during the evaluation process. Outcomes The subject demonstrated significant improvements in the UEFI (66/80), VAS (0-2/10), and ROM within six visits over eight weeks. At the conclusion of treatment, A/PROM was observed to be equal to the R shoulder without pain. Discussion This subject demonstrated improved symptoms and functional abilities following evaluation and treatment using MDT methodology. While a cause-effect relationship cannot be determined with a single case, MDT

  16. Direct imaging of myocardial ischemia: a potential new paradigm in nuclear cardiovascular imaging.

    PubMed

    Jain, Diwakar; He, Zuo-Xiang

    2008-01-01

    Myocardial perfusion imaging has been in clinical use for over 30 years, serving as an effective, reliable, and relatively simple tool for diagnosis, risk stratification, and long-term follow-up of patients with suspected or known coronary artery disease. However, a unique strength of nuclear imaging is its ability to provide tools for imaging biochemical and metabolic processes and receptor and transporter functions at molecular and cellular levels in intact organisms under a wide variety of physiologic conditions. Despite their high resolution and technical sophistication, other imaging modalities currently do not have this capability. Metabolic imaging techniques using radiolabeled free fatty acid and glucose analogs provide a unique ability to image myocardial ischemia directly in patients with known or suspected coronary artery disease. These techniques can potentially overcome some of the limitations of currently used stress-rest perfusion imaging and also provide a unique opportunity to detect and image an episode of ischemia in the preceding hours even in the absence of other markers of ongoing myocardial ischemia. We describe recent studies using fluorine 18-labeled deoxyglucose and iodine 123 beta-methyl-p-iodophenyl-pentadecanoic acid for imaging myocardial ischemia.

  17. Unmeasured anions in metabolic acidosis: unravelling the mystery.

    PubMed

    Forni, Lui G; McKinnon, William; Hilton, Philip J

    2006-01-01

    In the critically ill, metabolic acidosis is a common observation and, in clinical practice, the cause of this derangement is often multi-factorial. Various measures are often employed to try and characterise the aetiology of metabolic acidosis, the most popular of which is the anion gap. The purpose of the anion gap can be perceived as a means by which the physician is alerted to the presence of unmeasured anions in plasma that contribute to the observed acidosis. In many cases, the causative ion may be easily identified, such as lactate, but often the causative ion(s) remain unidentified, even after exclusion of the 'classic' causes. We describe here the various attempts in the literature that have been made to address this observation and highlight recent studies that reveal potential sources of such hitherto unmeasured anions.

  18. Glucose metabolism and cardiac hypertrophy

    PubMed Central

    Kolwicz, Stephen C.; Tian, Rong

    2011-01-01

    The most notable change in the metabolic profile of hypertrophied hearts is an increased reliance on glucose with an overall reduced oxidative metabolism, i.e. a reappearance of the foetal metabolic pattern. In animal models, this change is attributed to the down-regulation of the transcriptional cascades promoting gene expression for fatty acid oxidation and mitochondrial oxidative phosphorylation in adult hearts. Impaired myocardial energetics in cardiac hypertrophy also triggers AMP-activated protein kinase (AMPK), leading to increased glucose uptake and glycolysis. Aside from increased reliance on glucose as an energy source, changes in other glucose metabolism pathways, e.g. the pentose phosphate pathway, the glucosamine biosynthesis pathway, and anaplerosis, are also noted in the hypertrophied hearts. Studies using transgenic mouse models and pharmacological compounds to mimic or counter the switch of substrate preference in cardiac hypertrophy have demonstrated that increased glucose metabolism in adult heart is not harmful and can be beneficial when it provides sufficient fuel for oxidative metabolism. However, improvement in the oxidative capacity and efficiency rather than the selection of the substrate is likely the ultimate goal for metabolic therapies. PMID:21502371

  19. Technetium myocardial perfusion agents: an introduction

    SciTech Connect

    English, R.J.; Kozlowski, J.; Tumeh, S.S.; Holman, B.L.

    1987-09-01

    This is the third in a series of four Continuing Education articles on developing radiopharmaceuticals. After reading this article, the reader should be able to: 1) understand the basic concepts of myocardial perfusion imaging; and 2) discuss the advantages of the technetium myocardial perfusion complexes over thallium-201.

  20. Effects of intermittent fasting on metabolism in men.

    PubMed

    Azevedo, Fernanda Reis de; Ikeoka, Dimas; Caramelli, Bruno

    2013-01-01

    This review analyzes the available literature on the impact of intermittent fasting (IF), a nutritional intervention, on different aspects of metabolism. The epidemic of metabolic disturbances, such as obesity, metabolic syndrome (MS), and diabetes mellitus type 2 has led to an increase in the prevalence of cardiovascular diseases, and affected patients might significantly benefit from modifications in nutritional habits. Recent experimental studies have elucidated some of the metabolic mechanisms involved with IF. Animal models have shown positive changes in glucose (lower plasma glucose and insulin levels) and in lipid metabolism (reduced visceral fat tissue and increased plasma adiponectin level), and an increased resistance to stress. Despite the limited number of samples studied, positive results have been reported on the impact of IF for human health. IF is reported to improve the lipid profile; to decrease inflammatory responses, reflected by changes in serum adipokine levels; and to change the expression of genes related to inflammatory response and other factors. Studies on obese individuals have shown that patient compliance was greater for IF than other traditional nutritional approaches (calorie restriction), and IF was found to be associated with low oxidative stress. Recent reports suggest that IF exerts a positive impact on the metabolic derangements commonly associated with cardiovascular diseases, and that it may be a viable and accessible intervention for most individuals. Therefore, further clinical studies are essential to test the effectiveness of IF in preventing and controlling metabolic and cardiovascular diseases.

  1. Acute Myocardial Infarction Due to Coronary Artery Embolism in a 22-Year-Old Woman with Mitral Stenosis with Atrial Fibrillation Under Warfarinization: Successful Management with Anticoagulation.

    PubMed

    Sinha, Santosh Kumar; Jha, Mukesh Jitendra; Razi, Mahmadula; Chaturvedi, Vikash; Erappa, Yatish Besthenahalli; Singh, Shravan; Mishra, Vikas; Khanra, Dibbendhu; Singh, Karandeep

    2017-04-07

    BACKGROUND Coronary artery embolization is an exceedingly rare cause of myocardial infarction, but a few cases in association with prosthetic mechanical valves have been reported. We report a case of embolic myocardial infarction caused by a thrombus in the left atrium with deranged coagulation profile in a patient with critical mitral stenosis under warfarinization. CASE REPORT A 22-year-old woman was taken to the catheterization lab for early coronary intervention in lieu of non-ST elevation myocardial infarction. Electrocardiography showed T↓ in V1 to V4, and atrial fibrillation with controlled ventricular rate. Coronary angiography showed total occlusion of the mid-left anterior descending artery with thrombus. After upstream treatment with tirofiban, the apparent thrombus was dislodged distally while passing a BMW wire. No abnormalities were seen by intravascular ultrasound study. Echocardiography revealed critical mitral stenosis, and left atrial clot with mild left ventricular dysfunction. Coagulation profile revealed sub-therapeutic international normalized ratio levels. The sequential angiographic images, normal intravascular ultrasound study, and presence of atrial fibrillation are confirmatory of coronary embolism as the cause of myocardial infarction. Anticoagulation and treatment of acute coronary syndrome were initiated and she was referred for closed mitral valvulotomy. CONCLUSIONS Coronary artery thromboembolism as a nonatherosclerotic cause of acute coronary syndrome is rare. The treatment consists of aggressive anticoagulation, antiplatelet therapy, and interventional options, including simple wiring when possible. In this context, primary prevention in the form of patient education on optimal anticoagulation with oral vitamin K antagonist and medical advice about imminent thromboembolic risks are of extreme importance.

  2. Taxonomy of segmental myocardial systolic dysfunction

    PubMed Central

    McDiarmid, Adam K.; Pellicori, Pierpaolo; Cleland, John G.

    2017-01-01

    The terms used to describe different states of myocardial health and disease are poorly defined. Imprecision and inconsistency in nomenclature can lead to difficulty in interpreting and applying trial outcomes to clinical practice. In particular, the terms ‘viable’ and ‘hibernating’ are commonly applied interchangeably and incorrectly to myocardium that exhibits chronic contractile dysfunction in patients with ischaemic heart disease. The range of inherent differences amongst imaging modalities used to define myocardial health and disease add further challenges to consistent definitions. The results of several large trials have led to renewed discussion about the classification of dysfunctional myocardial segments. This article aims to describe the diverse myocardial pathologies that may affect the myocardium in ischaemic heart disease and cardiomyopathy, and how they may be assessed with non-invasive imaging techniques in order to provide a taxonomy of myocardial dysfunction. PMID:27147609

  3. Risk stratification after myocardial infarction. Clinical overview

    SciTech Connect

    O'Rourke, R.A. )

    1991-09-01

    Many patients with an acute myocardial infarction can be stratified into subgroups that are at high risk for morbidity and mortality on the basis of clinical characteristics that indicate recurrent myocardial ischemia, persistent left ventricular dysfunction, and/or recurrent cardiac arrhythmias. In patients with uncomplicated myocardial infarction the assessment of symptoms, physical findings, and ECG changes during predischarge exercise testing often identifies patients at increased risk for further cardiac events. Because of the suboptimum sensitivity and specificity of the exercise ECG for detecting myocardial ischemia, myocardial perfusion imaging with 201Tl and/or assessment of global and segmental ventricular function by two-dimensional echocardiography or radionuclide cineangiography during or immediately after exercise are often added to the predischarge risk stratification.

  4. [Cardiac rehabilitation after myocardial infarction].

    PubMed

    Ghannem, M; Ghannem, L; Ghannem, L

    2015-12-01

    Although the proofs of the benefits of cardiac rehabilitation accumulate, many patients are not sent to rehabilitation units, especially younger and very elderly patients. As the length of stay in acute care units decreases, rehabilitation offers more time to fully assess the patients' conditions and needs. Meta-analyses of randomised trials suggest that mortality can be improved by as much as 20-30%. In addition, rehabilitation helps managing risk factors, including hyperlipidemia, diabetes, smoking and sedentary behaviours. Physical training also helps improving exercise capacity. Because of all of these effects, cardiac rehabilitation for post-myocardial infarction patients has been given a class IA recommendation in current guidelines.

  5. Solar activity and myocardial infarction.

    PubMed

    Szczeklik, E; Mergentaler, J; Kotlarek-Haus, S; Kuliszkiewicz-Janus, M; Kucharczyk, J; Janus, W

    1983-01-01

    The correlation between the incidence of myocardial infarction, sudden cardiac death, the solar activity and geomagnetism in the period 1969-1976 was studied, basing on Wrocław hospitals material registered according to WHO standards; sudden death was assumed when a person died within 24 hours after the onset of the disease. The highest number of infarctions and sudden deaths was detected for 1975, which coincided with the lowest solar activity, and the lowest one for the years 1969-1970 coinciding with the highest solar activity. Such an inverse, statistically significant correlation was not found to exist between the studied biological phenomena and geomagnetism.

  6. Qishen Yiqi Drop Pill improves cardiac function after myocardial ischemia

    PubMed Central

    JianXin, Chen; Xue, Xu; ZhongFeng, Li; Kuo, Gao; FeiLong, Zhang; ZhiHong, Li; Xian, Wang; HongCai, Shang

    2016-01-01

    Myocardial ischemia (MI) is one of the leading causes of death, while Qishen Yiqi Drop Pill (QYDP) is a representative traditional Chinese medicine to treat this disease. Unveiling the pharmacological mechanism of QYDP will provide a great opportunity to promote the development of novel drugs to treat MI. 64 male Sprague-Dawley (SD) rats were divided into four groups: MI model group, sham operation group, QYDP treatment group and Fosinopril treatment group. Echocardiography results showed that QYDP exhibited significantly larger LV end-diastolic dimension (LVEDd) and LV end-systolic dimension (LVEDs), compared with the MI model group, indicating the improved cardiac function by QYDP. 1H-NMR based metabonomics further identify 9 significantly changed metabolites in the QYDP treatment group, and the QYDP-related proteins based on the protein-metabolite interaction networks and the corresponding pathways were explored, involving the pyruvate metabolism pathway, the retinol metabolism pathway, the tyrosine metabolism pathway and the purine metabolism pathway, suggesting that QYDP was closely associated with blood circulation. ELISA tests were further employed to identify NO synthase (iNOS) and cathepsin K (CTSK) in the networks. For the first time, our work combined experimental and computational methods to study the mechanism of the formula of traditional Chinese medicine. PMID:27075394

  7. A comparative study of fluoride ingestion levels, serum thyroid hormone & TSH level derangements, dental fluorosis status among school children from endemic and non-endemic fluorosis areas.

    PubMed

    Singh, Navneet; Verma, Kanika Gupta; Verma, Pradhuman; Sidhu, Gagandeep Kaur; Sachdeva, Suresh

    2014-01-03

    The study was undertaken to determine serum/urinary fluoride status and comparison of free T4, free T3 and thyroid stimulating hormone levels of 8 to 15 years old children with and without dental fluorosis living in an endemic and non-endemic fluorosis area. A sample group of 60 male and female school children, with or without dental fluorosis, consuming fluoride-contaminated water in endemic fluoride area of Udaipur district, Rajasthan were selected through a school dental fluorosis survey. The sample of 10 children of same age and socio-economic status residing in non endemic areas who did not have dental fluorosis form controls. Fluoride determination in drinking water, urine and blood was done with Ion 85 Ion Analyzer Radiometer with Hall et al. method. The thyroid gland functional test was done by Immonu Chemiluminiscence Micropartical Assay with Bayer Centaur Autoanalyzer. The significantly altered FT3, FT4 and TSH hormones level in both group1A and 1B school children were noted. The serum and urine fluoride levels were found to be increased in both the groups. A significant relationship of water fluoride to urine and serum fluoride concentration was seen. The serum fluoride concentration also had significant relationship with thyroid hormone (FT3/FT4) and TSH concentrations. The testing of drinking water and body fluids for fluoride content, along with FT3, FT4, and TSH in children with dental fluorosis is desirable for recognizing underlying thyroid derangements and its impact on fluorosis.

  8. Exotic Fruits as Therapeutic Complements for Diabetes, Obesity and Metabolic Syndrome

    PubMed Central

    Devalaraja, Samir; Jain, Shalini; Yadav, Hariom

    2011-01-01

    The prevalence and severity of obesity, type 2-diabetes, and the resultant metabolic syndrome are rapidly increasing. As successful preventive and therapeutic strategies for these life-threatening health ailments often come with adverse side effects, nutritional elements are widely used in many countries as preventive therapies to prevent or manage metabolic syndrome. Fruits are important dietary components, and contain various bioactive constituents. Many of these constituents have been proven to be useful to manage and treat various chronic diseases such as diabetes, obesity, cancer and cardiovascular diseases. Although exotic fruits are understudied throughout the world due to their limited regional presence, many studies reveal their potent ability to ameliorate metabolic derangements and the resultant conditions i.e. diabetes and obesity. The aim of this article is to review the role of exotic fruits and their constituents in the regulation of metabolic functions, which can beneficially alter diabetes and obesity pathophysiology. PMID:21857774

  9. Obstructive sleep apnea and metabolic bone disease: Insights in to the relationship between bone and sleep

    PubMed Central

    Swanson, Christine M.; Shea, Steven A.; Stone, Katie L.; Cauley, Jane A.; Rosen, Clifford J.; Redline, Susan; Karsenty, Gerard; Orwoll, Eric S.

    2015-01-01

    Obstructive sleep apnea (OSA) and low bone mass are two prevalent conditions, particularly among older adults, a section of the U.S. population that is expected to grow dramatically over the coming years. OSA, the most common form of sleep disordered breathing, has been linked to multiple cardiovascular, metabolic, hormonal and inflammatory derangements and may have adverse effects on bone. However, little is known about how OSA (including the associated hypoxia and sleep loss) affects bone metabolism. In order to gain insight into the relationship between sleep and bone, we review the growing information on OSA and metabolic bone disease and discuss the pathophysiological mechanisms by which OSA may affect bone metabolism/architecture. PMID:25639209

  10. Mechanics of the left ventricular myocardial interstitium: effects of acute and chronic myocardial edema.

    PubMed

    Desai, Ketaki V; Laine, Glen A; Stewart, Randolph H; Cox, Charles S; Quick, Christopher M; Allen, Steven J; Fischer, Uwe M

    2008-06-01

    Myocardial interstitial edema forms as a result of several disease states and clinical interventions. Acute myocardial interstitial edema is associated with compromised systolic and diastolic cardiac function and increased stiffness of the left ventricular chamber. Formation of chronic myocardial interstitial edema results in deposition of interstitial collagen, which causes interstitial fibrosis. To assess the effect of myocardial interstitial edema on the mechanical properties of the left ventricle and the myocardial interstitium, we induced acute and chronic interstitial edema in dogs. Acute myocardial edema was generated by coronary sinus pressure elevation, while chronic myocardial edema was generated by chronic pulmonary artery banding. The pressure-volume relationships of the left ventricular myocardial interstitium and left ventricular chamber for control animals were compared with acutely and chronically edematous animals. Collagen content of nonedematous and chronically edematous animals was also compared. Generating acute myocardial interstitial edema resulted in decreased left ventricular chamber compliance compared with nonedematous animals. With chronic edema, the primary form of collagen changed from type I to III. Left ventricular chamber compliance in animals made chronically edematous was significantly higher than nonedematous animals. The change in primary collagen type secondary to chronic left ventricular myocardial interstitial edema provides direct evidence for structural remodeling. The resulting functional adaptation allows the chronically edematous heart to maintain left ventricular chamber compliance when challenged with acute edema, thus preserving cardiac function over a wide range of interstitial fluid pressures.

  11. Manifestations of diabetes mellitus on mouse preimplantation development: effect of elevated concentration of metabolic intermediates.

    PubMed

    Moley, K H; Vaughn, W K; Diamond, M P

    1994-01-01

    The metabolic derangements of pregnancies complicated by diabetes mellitus, specifically hyperglycaemia and hyperketonaemia, are known to be teratogenic during the period of organogenesis in animals. We have shown previously that poorly controlled diabetes mellitus impairs in-vivo and in-vitro mouse preimplantation embryo growth, and that culturing embryos in elevated glucose concentrations only partially recreates this developmental delay. To extend this observation we examined the effect on mouse preimplantation embryo growth of elevated concentrations of other metabolic intermediates, which may be deranged in diabetes mellitus, namely lipids, lactate, glycerol, amino acids, and ketones. Two-cell embryos from ovulation-induced B6C3F1 mice were cultured for 72 h in the presence of added lipids (250 mg/dl), lactate (5 mM), glycerol (160 microM) or mixed amino acids (8.5% travasol, 7 mM) and showed no significant difference in growth over 72 h versus their control groups. However, growth of preimplantation embryos in acetoacetate (10 mM) or in the racemic mixture of DL-beta-hydroxybutyrate (16 and 32 mM) revealed marked retardation versus controls when assessed either by distribution of developmental stages over time (24, 48, 72 h, P < 0.001) or by the difference in the average rank of sums indicating a delay in maturation (P < 0.0001). We conclude that elevated ketone concentrations adversely affect preimplantation embryo development. These findings extend previous studies which correlate uncontrolled diabetes mellitus as well as hyperglycaemia with abnormal organogenesis, and demonstrate that exposure to metabolic derangements may also hinder reproductive performance at even earlier stages in gestation.

  12. Parametric display of myocardial function.

    PubMed

    Eusemann, C D; Ritman, E L; Bellemann, M E; Robb, R A

    2001-01-01

    Quantitative assessment of regional heart motion has significant potential to provide more specific diagnosis of cardiac disease and cardiac malfunction than currently possible. Local heart motion may be captured from various medical imaging scanners. In this study, 3-D reconstructions of pre-infarct and post-infarct hearts were obtained from the Dynamic Spatial Reconstructor (DSR)[Ritman EL, Robb RA, Harris LD. Imaging physiological functions: experience with DSR. Philadelphia: Praeger, 1985; Robb RA, Lent AH, Gilbert BK, Chu A. The dynamic spatial reconstructor: a computed tomography system for high-speed simultaneous scanning of multiple cross sections of the heart. J Med Syst 1980;4(2):253-88; Jorgensen SM, Whitlock SV, Thomas PJ, Roessler RW, Ritman EL. The dynamic spatial reconstructor: a high speed, stop action, 3-D, digital radiographic imager of moving internal organs and blood. Proceedings of SPIE, Ultrahigh- and High-speed Photography, Videography, Photonics, and Velocimetry 1990;1346:180-91.] (DSR). Using functional parametric mapping of disturbances in regional contractility and relaxation, regional myocardial motion during a cardiac cycle is color mapped onto a deformable heart model to facilitate appreciation of the structure-to-function relationships in the myocardium, such as occurs in regional patterns of akinesis or dyskinesis associated with myocardial ischemia or infarction resulting from coronary artery occlusion.

  13. The iron-regulatory peptide hepcidin is upregulated in the ischemic and in the remote myocardium after myocardial infarction.

    PubMed

    Simonis, Gregor; Mueller, Katrin; Schwarz, Peggy; Wiedemann, Stephan; Adler, Guido; Strasser, Ruth H; Kulaksiz, Hasan

    2010-09-01

    Recent evidence suggests that iron metabolism contributes to the ischemic damage after myocardial infarction. Hepcidin, a recently discovered peptide hormone, regulates iron uptake and metabolism, protecting the body from iron overload. In this study we analyzed the regulation of hepcidin in the heart and blood of rats after myocardial infarction. To induce a myocardial infarction in the rats, left anterior descending coronary artery ligation was performed. After 1-24h, biopsies from the ischemic and the non-ischemic myocardium were taken. In these biopsies, the mRNA levels and the protein expression of hepcidin were analyzed by quantitative RT-PCR and immunoblot analysis, respectively. In parallel, the serum levels of prohepcidin were measured by ELISA. Six hours after myocardial infarction, the hepcidin mRNA expression was temporally upregulated in the ischemic and in the non-ischemic myocardium. The upregulation was specific for hepcidin, since other iron-related genes (hemojuvelin, IREG-1) remained unchanged. Furthermore, the alteration of the hepcidin protein expression in the ischemic area was connected to the level of hepcidin in the serum of the infarcted rats, where hepcidin also raised up. Angiotensin receptor blockade with candesartan did not influence the mRNA regulation of hepcidin. Together, these data show a particular upregulation of the iron-regulatory peptide hepcidin in the ischemic and the non-ischemic myocardium after myocardial infarction. It is speculated that upregulation of hepcidin may reduce iron toxicity and thus infarct size expansion in an infarcted heart.

  14. Diagnosis of inborn errors of metabolism.

    PubMed

    Velázquez, A; Vela-Amieva, M; Cicerón-Arellano, I; Ibarra-González, I; Pérez-Andrade, M E; Olivares-Sandoval, Z; Jiménez-Sánchez, G

    2000-01-01

    Systematic detection of inborn errors of metabolism (IEM) has usually encountered difficulties in developing countries. We present our experience in a high-risk population in Mexico between 1973 and 1998 with particular reference to the last 10 years, during which time infrastructure and support were considerably improved. Only disorders of intermediary metabolism were sought. The total number of patients studied is not available, but in the last 10 years, patients numbered 5,186. Routine metabolic screening was performed on all patients, with additional tests according to the clinical picture and screening results. The referral criteria have increasingly diversified, one-third being neurological conditions. Of the referrals, 33.8% were from pediatricians (31.1% of whom were at critical medicine departments) and the remainder from specialists. The number of diagnosed patients has increased to 1 per 43.9 patients studied. Amino acid defects have been the most prevalent, the proportion of organic acid and carbohydrate disorders having increased in the last 10 years, associated with improved diagnostic facilities. The most frequently diagnosed diseases were PKU, type 1a glycogen storage, and maple syrup urine disease (MSUD), their frequency apparently varying among different regions of Mexico. Other results of our program include training of specialists and technicians, development of the Latin American Metabolic Information Network, a procedure to locally prepare a special food product low in phenylalanine for the treatment of PKU patients, and extension of approaches for these disorders to the investigation metabolic derangements of infant malnutrition. This work demonstrates that inherited metabolic diseases constitute a significant load in pediatric pathology and that their study can and should be pursued in developing nations.

  15. Magnetic resonance imaging for characterizing myocardial diseases.

    PubMed

    Saeed, Maythem; Liu, Hui; Liang, Chang-Hong; Wilson, Mark W

    2017-03-31

    The National Institute of Health defined cardiomyopathy as diseases of the heart muscle. These myocardial diseases have different etiology, structure and treatment. This review highlights the key imaging features of different myocardial diseases. It provides information on myocardial structure/orientation, perfusion, function and viability in diseases related to cardiomyopathy. The standard cardiac magnetic resonance imaging (MRI) sequences can reveal insight on left ventricular (LV) mass, volumes and regional contractile function in all types of cardiomyopathy diseases. Contrast enhanced MRI sequences allow visualization of different infarct patterns and sizes. Enhancement of myocardial inflammation and infarct (location, transmurality and pattern) on contrast enhanced MRI have been used to highlight the key differences in myocardial diseases, predict recovery of function and healing. The common feature in many forms of cardiomyopathy is the presence of diffuse-fibrosis. Currently, imaging sequences generating the most interest in cardiomyopathy include myocardial strain analysis, tissue mapping (T1, T2, T2*) and extracellular volume (ECV) estimation techniques. MRI sequences have the potential to decode the etiology by showing various patterns of infarct and diffuse fibrosis in myocarditis, amyloidosis, sarcoidosis, hypertrophic cardiomyopathy due to aortic stenosis, restrictive cardiomyopathy, arrythmogenic right ventricular dysplasia and hypertension. Integrated PET/MRI system may add in the future more information for the diagnosis and progression of cardiomyopathy diseases. With the promise of high spatial/temporal resolution and 3D coverage, MRI will be an indispensible tool in diagnosis and monitoring the benefits of new therapies designed to treat myocardial diseases.

  16. Use of thallium 201 myocardial imaging to exclude myocardial infarction after dissection in congenital coarctation of the aorta

    SciTech Connect

    Halon, D.A.; Weiss, A.T.; Tzivoni, D.; Atlan, H.; Gotsman, M.S.

    1981-10-01

    The use of a mobile gamma camera with thallium 201 myocardial imaging is described to exclude myocardial infarction in a patient admitted to the coronary care unit in shock and with clinical, enzyme, and ECG changes consistent with infarction. The patient suffered from acute aortic dissection associated with congenital coarctation of the aorta. The myocardial scan excluded transmural myocardial injury.

  17. Effects of acute hyperglycemia on myocardial glycolytic activity in humans.

    PubMed Central

    Wisneski, J A; Stanley, W C; Neese, R A; Gertz, E W

    1990-01-01

    The effects of hyperglycemia on myocardial glucose metabolism were investigated in seven healthy male subjects (age 24 +/- 4 yr). [6-14C]Glucose and [U-13C]lactate were infused as tracers. Circulating glucose was elevated to two hyperglycemic levels using a clamp technique for 1 h at each level. The mean arterial glucose concentration was 4.95 +/- 0.29 (control), 8.33 +/- 0.31 and 10.84 +/- 0.60 mumols/ml, respectively. Glucose extraction increased significantly from control (0.15 +/- 0.13 mumols/ml) during each level of the glucose clamp (0.28 +/- 0.12, P less than 0.02, and 0.54 +/- 0.14 mumols/ml, P less than 0.005, respectively). Myocardial production of 14CO2 showed that during control 9 +/- 10% of exogenous glucose was oxidized immediately upon extraction. Despite a significant increase in the amount of exogenous glucose oxidized with level II hyperglycemia, it represented only 32 +/- 10% of the glucose extracted. [13C]Lactate analysis showed that the myocardium was releasing lactate; during control 40 +/- 30% of this lactate was derived from exogenous glucose and during hyperglycemia this value increased to 97 +/- 37% (P less than 0.005). Thus, these data show that during short-term hyperglycemia, myocardial glucose extraction is enhanced. However, despite increases in exogenous glucose oxidation and the contribution of exogenous glucose to lactate release, the majority of the extracted glucose (i.e., 57%) is probably stored as glycogen. PMID:2185277

  18. Myocardial Fat Accumulation Is Independent of Measures of Insulin Sensitivity

    PubMed Central

    Noureldin, Radwa; Ouwerkerk, Ronald; Liu, Elizabeth Y.; Madan, Ritu; Abel, Brent S.; Mullins, Katherine; Walter, Mary F.; Skarulis, Monica C.; Gharib, Ahmed M.

    2015-01-01

    Background: Myocardial steatosis, an independent predictor of diastolic dysfunction, is frequently present in type 2 diabetes mellitus. High free fatty acid flux, hyperglycemia, and hyperinsulinemia may play a role in myocardial steatosis. There are no prior studies examining the relationship between insulin sensitivity (antilipolytic and glucose disposal actions of insulin) and cardiac steatosis. Objective: Using a cross-sectional study design of individuals with and without metabolic syndrome (MetSyn), we examined the relationships between cardiac steatosis and the sensitivity of the antilipolytic and glucose disposal actions of insulin. Methods: Pericardial fat (PF) volume, intramyocardial and hepatic fat (MF and HF) content, visceral fat (VF) and sc fat content were assessed by magnetic resonance imaging in 77 subjects (49 without MetSyn and 28 with MetSyn). In a subset of the larger cohort (n = 52), peripheral insulin sensitivity index (SI) and adipocyte insulin sensitivity (Adipo-SI) were determined from an insulin-modified frequently sampled iv glucose tolerance test. The Quantitative Insulin Sensitivity Check Index was used as a surrogate for hepatic insulin sensitivity. Results: Individuals with the MetSyn had significantly higher body mass index, total body fat, and MF, PF, HF, and VF content. HF and VF, but not MF, were negatively correlated with the Quantitative Insulin Sensitivity Check Index, Adipo-SI, and SI. Stepwise regression revealed that waist circumference and serum triglyceride levels independently predicted MF and PF, respectively. Adipo-SI and serum triglyceride levels independently predict HF. Conclusion: Myocardial steatosis is unrelated to hepatic, adipocyte, or peripheral insulin sensitivity. Although it is frequently observed in insulin-resistant subjects, further studies are necessary to identify and delineate pathogenic mechanisms that differentially affect cardiac and hepatic steatosis. PMID:26020762

  19. [Arterial hypertension and metabolic disorders].

    PubMed

    Dzherieva, I S; Volkova, N I

    2010-01-01

    Combination of arterial hypertension (AH) and metabolic disorders accelerates development of organic lesions in target organs. As shown in recent prospective studies, myocardial hypertrophy rate closely correlated with severity of metabolic disturbance. The thickness of interventricular septum and posterior wall show stronger dependence of severity of metabolic disorders than left ventricular density while left atrial enlargement is correlates with fasting glycemia and excess body mass. There is close relationship between microalbuminurea and hyperinsulinemia and the number of metabolic syndrome components is linearly correlated with glomerular filtration rate below 60 ml/min. It is shown that rigidity of arteries is a new independent risk factor of cardiovascular complications in obese patients. Moreover, metabolic disturbances cause affective disorders that impair quality of life and therapy motivation. Combination of AH, metabolic disturbances, and borderline psychic disorders dictated consideration of abnormal melatonin secretion as a condition developing as a consequence of disturbed adaptive circadian rhythms. This hypothesis was prompted by the discovery of the so-called "clock genes" in the central nervous system and practically all peripheral organs including heart, vessels, and adipose tissue.

  20. Dynamic genetic architecture of metabolic syndrome attributes in the rat.

    PubMed

    Seda, Ondrej; Liska, Frantisek; Krenova, Drahomira; Kazdova, Ludmila; Sedova, Lucie; Zima, Tomas; Peng, Junzheng; Pelinkova, Kveta; Tremblay, Johanne; Hamet, Pavel; Kren, Vladimir

    2005-04-14

    The polydactylous rat strain (PD/Cub) is a highly inbred (F > 90) genetic model of metabolic syndrome. The aim of this study was to analyze the genetic architecture of the metabolic derangements found in the PD/Cub strain and to assess its dynamics in time and in response to diet and medication. We derived a PD/Cub x BN/Cub (Brown Norway) F2 intercross population of 149 male rats and performed metabolic profiling and genotyping and multiple levels of genetic linkage and statistical analyses at five different stages of ontogenesis and after high-sucrose diet feeding and dexamethasone administration challenges. The interval mapping analysis of 83 metabolic and morphometric traits revealed over 50 regions genomewide with significant or suggestive linkage to one or more of the traits in the segregating PD/Cub x BN/Cub population. The multiple interval mapping showed that, in addition to "single" quantitative train loci, there are more than 30 pairs of loci across the whole genome significantly influencing the variation of particular traits in an epistatic fashion. This study represents the first whole genome analysis of metabolic syndrome in the PD/Cub model and reveals several new loci previously not connected to the genetics of insulin resistance and dyslipidemia. In addition, it attempts to present the concept of "dynamic genetic architecture" of metabolic syndrome attributes, evidenced by shifts in the genetic determination of syndrome features during ontogenesis and during adaptation to the dietary and pharmacological influences.

  1. Determination of the Role of Oxygen in Suspected Acute Myocardial Infarction by Biomarkers

    ClinicalTrials.gov

    2017-03-02

    Acute Myocardial Infarction (AMI); Acute Coronary Syndrome (ACS); ST Elevation (STEMI) Myocardial Infarction; Ischemic Reperfusion Injury; Non-ST Elevation (NSTEMI) Myocardial Infarction; Angina, Unstable

  2. Intestinal Microbial Metabolites Are Linked to Severity of Myocardial Infarction in Rats.

    PubMed

    Lam, Vy; Su, Jidong; Hsu, Anna; Gross, Garrett J; Salzman, Nita H; Baker, John E

    2016-01-01

    Intestinal microbiota determine severity of myocardial infarction in rats. We determined whether low molecular weight metabolites derived from intestinal microbiota and transported to the systemic circulation are linked to severity of myocardial infarction. Plasma from rats treated for seven days with the non-absorbed antibiotic vancomycin or a mixture of streptomycin, neomycin, polymyxin B and bacitracin was analyzed using mass spectrometry-based metabolite profiling platforms. Antibiotic-induced changes in the abundance of individual groups of intestinal microbiota dramatically altered the host's metabolism. Hierarchical clustering of dissimilarities separated the levels of 284 identified metabolites from treated vs. untreated rats; 193 were altered by the antibiotic treatments with a tendency towards decreased metabolite levels. Catabolism of the aromatic amino acids phenylalanine, tryptophan and tyrosine was the most affected pathway comprising 33 affected metabolites. Both antibiotic treatments decreased the severity of an induced myocardial infarction in vivo by 27% and 29%, respectively. We then determined whether microbial metabolites of the amino acids phenylalanine, tryptophan and tyrosine were linked to decreased severity of myocardial infarction. Vancomycin-treated rats were administered amino acid metabolites prior to ischemia/reperfusion studies. Oral or intravenous pretreatment of rats with these amino acid metabolites abolished the decrease in infarct size conferred by vancomycin. Inhibition of JAK-2 (AG-490, 10 μM), Src kinase (PP1, 20 μM), Akt/PI3 kinase (Wortmannin, 100 nM), p44/42 MAPK (PD98059, 10 μM), p38 MAPK (SB203580, 10 μM), or KATP channels (glibenclamide, 3 μM) abolished cardioprotection by vancomycin, indicating microbial metabolites are interacting with cell surface receptors to transduce their signals through Src kinase, cell survival pathways and KATP channels. These inhibitors have no effect on myocardial infarct size in

  3. Disorders of Carbohydrate Metabolism

    MedlinePlus

    ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism Carbohydrates are sugars. ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism NOTE: This is ...

  4. [Percutaneous myocardial laser revascularization (PMR)].

    PubMed

    Lauer, B; Stahl, F; Bratanow, S; Schuler, G

    2000-09-01

    In patients with severe angina pectoris due to coronary artery disease, who are not candidates for either percutaneous coronary angioplasty or coronary artery bypass surgery, transmyocardial laser revascularization (TMR) often leads to improvement of clinical symptoms and increased exercise capacity. One drawback of TMR is the need for surgical thoracotomy in order to gain access to the epicardial surface of the heart. Therefore, a catheter-based system has been developed, which allows creation of laser channels into the myocardium from the left ventricular cavity. Between January 1997 and November 1999, this "percutaneous myocardial laser revascularization" (PMR) has been performed in 101 patients at the Herzzentrum Leipzig. In 63 patients, only 1 region of the heart (anterior, lateral, inferior or septal) was treated with PMR, in 38 patients 2 or 3 regions were treated in 1 session. There were 12.3 +/- 4.5 (range 4 to 22) channels/region created into the myocardium. After 3 months, the majority of patients reported significant improvement of clinical symptoms (CCS class at baseline: 3.3 +/- 0.4, after 6 months: 1.6 +/- 0.8) (p < 0.001) and an increased exercise capacity (baseline: 397 +/- 125 s, after 6 months: 540 +/- 190 s) (p < 0.05). After 2 years, the majority of patients had experienced sustained clinical benefit after PMR, the CCS class after 2 years was 1.3 +/- 0.7, exercise capacity was 500 +/- 193 s. However, thallium scintigraphy failed to show increased perfusion in the PMR treated regions. The pathophysiologic mechanisms of myocardial laser revascularization is not yet understood. Most of the laser channels are found occluded after various time intervals after intervention. Other possible mechanisms include myocardial denervation or angioneogenesis after laser revascularization, however, unequivocal evidence for these theories is not yet available. In conclusion, PMR seems to be a safe and feasible new therapeutic option for patients with refractory

  5. Nanog expression in heart tissues induced by acute myocardial infarction.

    PubMed

    Luo, Huanhuan; Li, Qiong; Pramanik, Jogen; Luo, Jiankai; Guo, Zhikun

    2014-10-01

    Nanog is a potential stem cell marker and is considered a regeneration factor during tissue repair. In the present study, we investigated expression patterns of nanog in the rat heart after acute myocardial infarction by semi-quantitative RT-PCR, immunohistochemistry and Western blot analyses. Our results show that nanog at both mRNA and protein levels is positively expressed in myocardial cells, fibroblasts and small round cells in different myocardial zones at different stages after myocardial infarction, showing a spatio-temporal and dynamic change. After myocardial infarction, the nanog expression in fibroblasts and small round cells in the infarcted zone (IZ) is much stronger than that in the margin zone (MZ) and remote infarcted zone (RIZ). From day 7 after myocardial infarction, the fibroblasts and small cells strongly expressed nanog protein in the IZ, and a few myocardial cells in the MZ and the RIZ and the numbers of nanog-positive fibroblasts and small cells reached the highest peak at 21 days after myocardial infarction, but in this period the number of nanog-positive myocardial cells decreased gradually. At 28 days after myocardial infarction, the numbers of all nanog-positive cells decreased into a low level. Therefore, our data suggest that all myocardial cells, fibroblasts and small round cells are involved in myocardial reconstruction after cardiac infarction. The nanog-positive myocardial cells may respond to early myocardial repair, and the nanog-positive fibroblasts and small round cells are the main source for myocardial reconstruction after cardiac infarction.

  6. Ethanol-induced myocardial ischemia: close relation between blood acetaldehyde level and myocardial ischemia.

    PubMed

    Ando, H; Abe, H; Hisanou, R

    1993-05-01

    A patient with vasospastic angina who developed myocardial ischemia following ethanol ingestion but not after exercise was described. Myocardial ischemia was evidenced by electrocardiograms (ECGs) and thallium-201 scintigrams. The blood acetaldehyde level after ethanol ingestion was abnormally high. The time course and severity of myocardial ischemia coincided with those of the blood ethanol and acetaldehyde level. Coronary arteriography showed ergonovine maleate-induced coronary vasospasm at the left anterior descending coronary artery. ECG changes similar to those induced by ethanol ingestion were observed at the same time. These findings suggest that the high blood acetaldehyde level might be responsible for the development of coronary vasospasm and myocardial ischemia in this patient.

  7. Plin5 alleviates myocardial ischaemia/reperfusion injury by reducing oxidative stress through inhibiting the lipolysis of lipid droplets

    PubMed Central

    Zheng, Pengfei; Xie, Zhonglin; Yuan, Yuan; Sui, Wen; Wang, Chao; Gao, Xing; Zhao, Yuanlin; Zhang, Feng; Gu, Yu; Hu, Peizhen; Ye, Jing; Feng, Xuyang; Zhang, Lijun

    2017-01-01

    Myocardial ischaemia-reperfusion (I/R) injury is a complex pathophysiological process. Current research has suggested that energy metabolism disorders, of which the abnormal consumption of fatty acids is closely related, compose the main pathological basis for myocardial I/R injury. Lipid droplets (LD) are critical regulators of lipid metabolism by LD-associated proteins. Among the lipid droplet proteins, the perilipin family members regulate lipolysis and lipogenesis through different mechanisms. Plin5, an important perilipin protein, promotes LD generation and lowers fatty acid oxidation, thus protecting the myocardium from lipotoxicity. This study investigated the protective effects of Plin5 in I/R myocardium. Our results indicated that Plin5 deficiency exacerbated the myocardial infarct area, aggravated left ventricular systolic dysfunction, reduced lipid storage, and elevated free fatty acids. Plin5-deficient myocardium exhibited severely damaged mitochondria, elevated reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and decreased superoxide dismutase (SOD) activity. Furthermore, the decreased phosphorylation of PI3K/Akt in Plin5-null cardiomyocytes might contribute to I/R injury aggravation. In conclusion, Plin5, a new regulator of myocardial lipid metabolism, decreases free fatty acid peroxidation by inhibiting the lipolysis of intracellular lipid droplets, thus providing cardioprotection against I/R injury and shedding new light on therapeutic solutions for I/R diseases. PMID:28218306

  8. [Ventricular "remodeling" after myocardial infarction].

    PubMed

    Cohen-Solal, A; Himbert, D; Guéret, P; Gourgon, R

    1991-06-01

    Cardiac failure is the principal medium-term complication of myocardial infarction. Changes in left ventricular geometry are observed after infarction, called ventricular remodeling, which, though compensatory initially, cause ventricular failure in the long-term. Experimental and clinical studies suggest that early treatment by coronary recanalisation, trinitrin and angiotensin converting enzyme inhibitors may prevent or limit the expansion and left ventricular dilatation after infarction, so improving ventricular function, and, at least in the animal, reduce mortality. Large scale trials with converting enzyme inhibitors are currently under way to determine the effects of this new therapeutic option. It would seem possible at present, independently of any reduction in the size of the infarction, to reduce or delay left ventricular dysfunction by interfering with the natural process of dilatation and ventricular modeling after infarction.

  9. Impact of hepatitis B virus infection on hepatic metabolic signaling pathway.

    PubMed

    Shi, Yi-Xian; Huang, Chen-Jie; Yang, Zheng-Gang

    2016-09-28

    A growing body of epidemiologic research has demonstrated that metabolic derangement exists in patients with hepatitis B virus (HBV) infection, indicating that there are clinical associations between HBV infection and host metabolism. In order to understand the complex interplay between HBV and hepatic metabolism in greater depth, we systematically reviewed these alterations in different metabolic signaling pathways due to HBV infection. HBV infection interfered with most aspects of hepatic metabolic responses, including glucose, lipid, nucleic acid, bile acid and vitamin metabolism. Glucose and lipid metabolism is a particular focus due to the significant promotion of gluconeogenesis, glucose aerobic oxidation, the pentose phosphate pathway, fatty acid synthesis or oxidation, phospholipid and cholesterol biosynthesis affected by HBV. These altered metabolic pathways are involved in the pathological process of not only hepatitis B, but also metabolic disorders, increasing the occurrence of complications, such as hepatocellular carcinoma and liver steatosis. Thus, a clearer understanding of the hepatic metabolic pathways affected by HBV and its pathogenesis is necessary to develop more novel therapeutic strategies targeting viral eradication.

  10. Impact of hepatitis B virus infection on hepatic metabolic signaling pathway

    PubMed Central

    Shi, Yi-Xian; Huang, Chen-Jie; Yang, Zheng-Gang

    2016-01-01

    A growing body of epidemiologic research has demonstrated that metabolic derangement exists in patients with hepatitis B virus (HBV) infection, indicating that there are clinical associations between HBV infection and host metabolism. In order to understand the complex interplay between HBV and hepatic metabolism in greater depth, we systematically reviewed these alterations in different metabolic signaling pathways due to HBV infection. HBV infection interfered with most aspects of hepatic metabolic responses, including glucose, lipid, nucleic acid, bile acid and vitamin metabolism. Glucose and lipid metabolism is a particular focus due to the significant promotion of gluconeogenesis, glucose aerobic oxidation, the pentose phosphate pathway, fatty acid synthesis or oxidation, phospholipid and cholesterol biosynthesis affected by HBV. These altered metabolic pathways are involved in the pathological process of not only hepatitis B, but also metabolic disorders, increasing the occurrence of complications, such as hepatocellular carcinoma and liver steatosis. Thus, a clearer understanding of the hepatic metabolic pathways affected by HBV and its pathogenesis is necessary to develop more novel therapeutic strategies targeting viral eradication. PMID:27688657

  11. Physiology and pharmacology of myocardial preconditioning.

    PubMed

    Raphael, Jacob

    2010-03-01

    Perioperative myocardial ischemia and infarction are not only major sources of morbidity and mortality in patients undergoing surgery but also important causes of prolonged hospital stay and resource utilization. Ischemic and pharmacological preconditioning and postconditioning have been known for more than two decades to provide protection against myocardial ischemia and reperfusion and limit myocardial infarct size in many experimental animal models, as well as in clinical studies (1-3). This paper will review the physiology and pharmacology of ischemic and drug-induced preconditioning and postconditioning of the myocardium with special emphasis on the mechanisms by which volatile anesthetics provide myocardial protection. Insights gained from animal and clinical studies will be presented and reviewed and recommendations for the use of perioperative anesthetics and medications will be given.

  12. [The new universal definition of myocardial infarction].

    PubMed

    Hod, Hanoch; Halon, David; Hammerman, Haim; Hasdai, David; Zahger, Doron; Lewis, Basil; Mosseri, Morris; Atar, Shaul

    2009-01-01

    Given the considerable advances in recent years in myocardial infarction diagnosis and management, the European Society of Cardiology (ESC), the American College of Cardiology (ACC), the American Heart Association (AHA), together with the World Heart Federation [WHF] recently published an expert consensus document to establish a universal definition for myocardial infarction. The consensus document recognizes five separate myocardial infarction categories based on the differences in pathophysiology, and whether percutaneous coronary intervention (PCI) or coronary artery bypass graft (CABG) surgery is involved. The new consensus document expands the criteria for defining myocardial infarction by adding new ECG criteria and imaging modalities, and also includes patients who present with sudden death. The Israel Heart Society has adopted the new universal definition and recommends its use by clinicians, researchers and epidemiologists. .

  13. Myocardial damage after inhalation of chloramines.

    PubMed

    Gonzalez-Castro, Alejandro; Holanda, Maria Soledad; Canas, Borja S; Morlote, Jesús G; Minambres, Eduardo; Prieto Solis, José A

    2006-04-01

    The objective of this case report was to document a rare case of myocardial damage, in the context of an accidental inhalation of chloramines, demonstrated by electrocardiogram and myocardium-specific enzymes.

  14. Bone marrow cells and myocardial regeneration.

    PubMed

    Wang, Fu-Sheng; Trester, Cathy

    2004-05-01

    Hematopoietic stem cell (HSC) plasticity and its clinical application have been studied profoundly in the past few years. Recent investigations indicate that HSC and other bone marrow stem cells can develop into other tissues. Because of the high morbidity and mortality of myocardial infarction and other heart disorders, myocardial regeneration is a good example of the clinical application of HSC plasticity in regenerative medicine. Preclinical studies in animals suggest that the use of this kind of treatment can reconstruct heart blood vessels, muscle, and function. Some clinical study results have been reported in the past 2 years. In 2003, reports of myocardial regeneration treatment increased significantly. Other studies include observations on the cell surface markers of transplanted cells and treatment efficacy. Some investigations, such as HSC testing, have focused on clinical applications using HSC plasticity and bone marrow transplantation to treat different types of disorders. In this review, we focus on the clinical application of bone marrow cells for myocardial regeneration.

  15. Exosomes and cardiac repair after myocardial infarction.

    PubMed

    Sahoo, Susmita; Losordo, Douglas W

    2014-01-17

    Myocardial infarction is a leading cause of death among all cardiovascular diseases. The analysis of molecular mechanisms by which the ischemic myocardium initiates repair and remodeling indicates that secreted soluble factors are key players in communication to local and distant tissues, such as bone marrow. Recently, actively secreted membrane vesicles, including exosomes, are being recognized as new candidates with important roles in intercellular and tissue-level communication. In this review, we critically examine the emerging role of exosomes in local and distant microcommunication mechanisms after myocardial infarction. A comprehensive understanding of the role of exosomes in cardiac repair after myocardial infarction could bridge a major gap in knowledge of the repair mechanism after myocardial injury.

  16. [Stem cell perspectives in myocardial infarctions].

    PubMed

    Aceves, José Luis; Archundia, Abel; Díaz, Guillermo; Páez, Araceli; Masso, Felipe; Alvarado, Martha; López, Manuel; Aceves, Rocío; Ixcamparij, Carlos; Puente, Adriana; Vilchis, Rafael; Montaño, Luis Felipe

    2005-01-01

    Myocardial infarction is the leading cause of congestive heart failure and death in industrializated countries. The cellular cardiomyoplasty has emerged as an alternative treatment in the regeneration of infarted myocardial tissue. In animals' models, different cellular lines such as cardiomyocites, skeletal myoblasts, embryonic stem cells and adult mesenchymal stem cells have been used, resulting in an improvement in ventricular function and decrease in amount of infarcted tissue. The first three cells lines have disvantages as they are allogenics and are difficult to obtain. The adult mesenchymal stem cells are autologous and can be obtained throught the aspiration of bone marrow or from peripherical circulation, after stimulating with cytokines (G-CSF). The implantation in humans with recent and old myocardial infarction have shown improvements similar to those shown in animal models. These findings encourage the continued investigation in the mechanism of cellular differentiation and implantation methods in infarcted myocardial tissue.

  17. Improved exercise myocardial perfusion during lidoflazine therapy

    SciTech Connect

    Shapiro, W.; Narahara, K.A.; Park, J.

    1983-11-01

    Lidoflazine is a synthetic drug with calcium-channel blocking effects. In a study of 6 patients with severe classic angina pectoris, single-blind administration of lidoflazine was associated with improved myocardial perfusion during exercise as determined by thallium-201 stress scintigraphy. These studies demonstrate that lidoflazine therapy is associated with relief of angina, an increased physical work capacity, and improved regional myocardial perfusion during exercise.

  18. Novel adjunctive treatments of myocardial infarction

    PubMed Central

    Schmidt, Michael Rahbek; Pryds, Kasper; Bøtker, Hans Erik

    2014-01-01

    Myocardial infarction is a major cause of death and disability worldwide and myocardial infarct size is a major determinant of prognosis. Early and successful restoration of myocardial reperfusion following an ischemic event is the most effective strategy to reduce final infarct size and improve clinical outcome, but reperfusion may induce further myocardial damage itself. Development of adjunctive therapies to limit myocardial reperfusion injury beyond opening of the coronary artery gains increasing attention. A vast number of experimental studies have shown cardioprotective effects of ischemic and pharmacological conditioning, but despite decades of research, the translation into clinical effects has been challenging. Recently published clinical studies, however, prompt optimism as novel techniques allow for improved clinical applicability. Cyclosporine A, the GLP-1 analogue exenatide and rapid cooling by endovascular infusion of cold saline all reduce infarct size and may confer clinical benefit for patients admitted with acute myocardial infarcts. Equally promising, three follow-up studies of the effect of remote ischemic conditioning (RIC) show clinical prognostic benefit in patients undergoing coronary surgery and percutaneous coronary intervention. The discovery that RIC can be performed noninvasively using a blood pressure cuff on the upper arm to induce brief episodes of limb ischemia and reperfusion has facilitated the translation of RIC into the clinical arena. This review focus on novel advances in adjunctive therapies in relation to acute and elective coronary procedures. PMID:24976915

  19. Computational modeling of acute myocardial infarction

    PubMed Central

    Sáez, P.; Kuhl, E.

    2015-01-01

    Myocardial infarction, commonly known as heart attack, is caused by reduced blood supply and damages the heart muscle because of a lack of oxygen. Myocardial infarction initiates a cascade of biochemical and mechanical events. In the early stages, cardiomyocytes death, wall thinning, collagen degradation, and ventricular dilation are the immediate consequences of myocardial infarction. In the later stages, collagenous scar formation in the infarcted zone and hypertrophy of the non-infarcted zone are auto-regulatory mechanisms to partly correct for these events. Here we propose a computational model for the short-term adaptation after myocardial infarction using the continuum theory of multiplicative growth. Our model captures the effects of cell death initiating wall thinning, and collagen degradation initiating ventricular dilation. Our simulations agree well with clinical observations in early myocardial infarction. They represent a first step towards simulating the progression of myocardial infarction with the ultimate goal to predict the propensity toward heart failure as a function of infarct intensity, location, and size. PMID:26583449

  20. Computational modeling of acute myocardial infarction.

    PubMed

    Sáez, P; Kuhl, E

    2016-01-01

    Myocardial infarction, commonly known as heart attack, is caused by reduced blood supply and damages the heart muscle because of a lack of oxygen. Myocardial infarction initiates a cascade of biochemical and mechanical events. In the early stages, cardiomyocytes death, wall thinning, collagen degradation, and ventricular dilation are the immediate consequences of myocardial infarction. In the later stages, collagenous scar formation in the infarcted zone and hypertrophy of the non-infarcted zone are auto-regulatory mechanisms to partly correct for these events. Here we propose a computational model for the short-term adaptation after myocardial infarction using the continuum theory of multiplicative growth. Our model captures the effects of cell death initiating wall thinning, and collagen degradation initiating ventricular dilation. Our simulations agree well with clinical observations in early myocardial infarction. They represent a first step toward simulating the progression of myocardial infarction with the ultimate goal to predict the propensity toward heart failure as a function of infarct intensity, location, and size.

  1. Iodophenylpentadecanoic acid-myocardial blood flow relationship during maximal exercise with coronary occlusion

    SciTech Connect

    Caldwell, J.H.; Martin, G.V.; Link, J.M.; Krohn, K.A.; Bassingthwaighte, J.B. )

    1990-01-01

    Imaging {sup 123}I-labeled iodophenylpentadecanoic acid (IPPA) uptake and clearance from the myocardium following exercise has been advocated as a means of detecting myocardial ischemia because fatty acid deposition is enhanced and clearance prolonged in regions of low flow. However, normal regional myocardial blood flows are markedly heterogeneous, and it is not known how this heterogeneity affects regional metabolism or substrate uptake and thus image interpretation. In five instrumented dogs running at near maximal workload on a treadmill, {sup 131}I-labeled IPPA and 15-micron 46Sc microspheres were injected into the left atrium after 30 sec of circumflex coronary artery occlusion. Microsphere and IPPA activity were determined in 250 mapped pieces of myocardium of approximately 400 mg. Myocardial blood flows (from microspheres) ranged from 0.05 to 7.6 ml/min/g. Deposition of IPPA was proportional to regional flows (r = 0.83) with an average retention of 25%. The mean endocardial-epicardial ratio for IPPA (0.90 {plus minus} 0.43) was similar to that for microspheres (0.94 {plus minus} 0.47; p = 0.08). Thus, initial IPPA deposition during treadmill exercise increases in proportion to regional myocardial blood flow over a range of flows from very low to five times normal.

  2. The apoptotic effect and the plausible mechanism of microwave radiation on rat myocardial cells.

    PubMed

    Zhu, Wenhe; Cui, Yan; Feng, Xianmin; Li, Yan; Zhang, Wei; Xu, Junjie; Wang, Huiyan; Lv, Shijie

    2016-08-01

    Microwaves may exert adverse biological effects on the cardiovascular system at the integrated system and cellular levels. However, the mechanism underlying such effects remains poorly understood. Here, we report a previously uncharacterized mechanism through which microwaves damage myocardial cells. Rats were treated with 2450 MHz microwave radiation at 50, 100, 150, or 200 mW/cm(2) for 6 min. Microwave treatment significantly enhanced the levels of various enzymes in serum. In addition, it increased the malondialdehyde content while decreasing the levels of antioxidative stress enzymes, activities of enzyme complexes I-IV, and ATP in myocardial tissues. Notably, irradiated myocardial cells exhibited structural damage and underwent apoptosis. Furthermore, Western blot analysis revealed significant changes in expression levels of proteins involved in oxidative stress regulation and apoptotic signaling pathways, indicating that microwave irradiation could induce myocardial cell apoptosis by interfering with oxidative stress and cardiac energy metabolism. Our findings provide useful insights into the mechanism of microwave-induced damage to the cardiovascular system.

  3. The Subtle Balance between Lipolysis and Lipogenesis: A Critical Point in Metabolic Homeostasis

    PubMed Central

    Saponaro, Chiara; Gaggini, Melania; Carli, Fabrizia; Gastaldelli, Amalia

    2015-01-01

    Excessive accumulation of lipids can lead to lipotoxicity, cell dysfunction and alteration in metabolic pathways, both in adipose tissue and peripheral organs, like liver, heart, pancreas and muscle. This is now a recognized risk factor for the development of metabolic disorders, such as obesity, diabetes, fatty liver disease (NAFLD), cardiovascular diseases (CVD) and hepatocellular carcinoma (HCC). The causes for lipotoxicity are not only a high fat diet but also excessive lipolysis, adipogenesis and adipose tissue insulin resistance. The aims of this review are to investigate the subtle balances that underlie lipolytic, lipogenic and oxidative pathways, to evaluate critical points and the complexities of these processes and to better understand which are the metabolic derangements resulting from their imbalance, such as type 2 diabetes and non alcoholic fatty liver disease. PMID:26580649

  4. Medical Management of Metabolic Complications of Liver Transplant Recipients

    PubMed Central

    Barnard, Abbey; Konyn, Peter

    2016-01-01

    Improved short- and long-term survival of liver transplant recipients has led to increased focus on complications of both the early and late posttransplant periods. A variety of metabolic complications have been observed in the post–orthotopic liver transplant population, including hypertension, hyperlipidemia, obesity, diabetes mellitus, nonalcoholic fatty liver disease, and nonalcoholic steatohepatitis. Although only a small proportion of patients experience metabolic complications prior to transplantation, the prevalence of these complications posttransplantation reaches or exceeds that of the general population. This is of particular concern, as cardiovascular disease is the second leading cause of death in the late transplant period. A number of mechanisms mediate these metabolic complications, including reversal of cirrhosis pathophysiology, patient lifestyle factors, and immunosuppressive medications. Titration and modification of immunosuppression have been demonstrated to improve and sometimes even eliminate these conditions. Therefore, given the multiple etiologies contributing to the metabolic derangements, an effective management approach must incorporate lifestyle modifications, immunosuppression titration, and medical management. Best practices and understanding of the mechanisms underlying these complications allow for discussion of initial therapies and strategies; however, further study is necessary to determine the optimal management of metabolic complications over time. PMID:27917074

  5. Kinetic analysis of complex metabolic networks

    SciTech Connect

    Stephanopoulos, G.

    1996-12-31

    A new methodology is presented for the analysis of complex metabolic networks with the goal of metabolite overproduction. The objective is to locate a small number of reaction steps in a network that have maximum impact on network flux amplification and whose rate can also be increased without functional network derangement. This method extends the concepts of Metabolic Control Analysis to groups of reactions and offers the means for calculating group control coefficients as measures of the control exercised by groups of reactions on the overall network fluxes and intracellular metabolite pools. It is further demonstrated that the optimal strategy for the effective increase of network fluxes, while maintaining an uninterrupted supply of intermediate metabolites, is through the coordinated amplification of multiple (as opposed to a single) reaction steps. Satisfying this requirement invokes the concept of the concentration control to coefficient, which emerges as a critical parameter in the identification of feasible enzymatic modifications with maximal impact on the network flux. A case study of aromatic aminoacid production is provided to illustrate these concepts.

  6. DAAM1 and DAAM2 are co-required for myocardial maturation and sarcomere assembly

    PubMed Central

    Ajima, Rieko; Bisson, Joseph A; Helt, Jay-Christian; Nakaya, Masa-Aki; Habas, Raymond; Tessarollo, Lino; He, Xi; Morrisey, Edward E; Yamaguchi, Terry P.; Cohen, Ethan David

    2015-01-01

    Wnt ligands regulate heart morphogenesis but the underlying mechanisms remain unclear. Two Formin-related proteins, DAAM1 and 2, were previously found to bind the Wnt effector Disheveled. Here, since DAAM1 and 2 nucleate actin and mediate Wnt-induced cytoskeletal changes, a floxed-allele of Daam1 was used to disrupt its function specifically in the myocardium and investigate Wnt-associated pathways. Homozygous Daam1 conditional knockout (CKO) mice were viable but had misshapen hearts and poor cardiac function. The defects in Daam1 CKO mice were observed by mid-gestation and were associated with a loss of protrusions from cardiomyocytes invading the outflow tract. Further, these mice exhibited noncompaction cardiomyopathy (NCM) and deranged cardiomyocyte polarity. Interestingly, Daam1 CKO mice that were also homozygous for an insertion disrupting Daam2 (DKO) had stronger NCM, severely reduced cardiac function, disrupted sarcomere structure, and increased myocardial proliferation, suggesting that DAAM1 and DAAM2 have redundant functions. While RhoA was unaffected in the hearts of Daam1/2 DKO mice, AKT activity was lower than in controls, raising the issue of whether DAAM1/2 are only mediating Wnt signaling. Daam1-floxed mice were thus bred to Wnt5a null mice to identify genetic interactions. The hearts of Daam1 CKO mice that were also heterozygous for the null allele of Wnt5a had stronger NCM and more severe loss of cardiac function than Daam1 CKO mice, consistent with DAAM1 and Wnt5a acting in a common pathway. However, deleting Daam1 further disrupted Wnt5a homozygousnull hearts, suggesting that DAAM1 also has Wnt5a-independent roles in cardiac development. PMID:26526197

  7. Relevance of Sympathetic Nervous System Activation in Obesity and Metabolic Syndrome.

    PubMed

    Thorp, Alicia A; Schlaich, Markus P

    2015-01-01

    Sympathetic tone is well recognised as being implicit in cardiovascular control. It is less readily acknowledged that activation of the sympathetic nervous system is integral in energy homeostasis and can exert profound metabolic effects. Accumulating data from animal and human studies suggest that central sympathetic overactivity plays a pivotal role in the aetiology and complications of several metabolic conditions that can cluster to form the Metabolic Syndrome (MetS). Given the known augmented risk for type 2 diabetes, cardiovascular disease, and premature mortality associated with the MetS understanding the complex pathways underlying the metabolic derangements involved has become a priority. Many factors have been proposed to contribute to increased sympathetic nerve activity in metabolic abnormalities including obesity, impaired baroreflex sensitivity, hyperinsulinemia, and elevated adipokine levels. Furthermore there is mounting evidence to suggest that chronic sympathetic overactivity can potentiate two of the key metabolic alterations of the MetS, central obesity and insulin resistance. This review will discuss the regulatory role of the sympathetic nervous system in metabolic control and the proposed pathophysiology linking sympathetic overactivity to metabolic abnormalities. Pharmacological and device-based approaches that target central sympathetic drive will also be discussed as possible therapeutic options to improve metabolic control in at-risk patient cohorts.

  8. Relevance of Sympathetic Nervous System Activation in Obesity and Metabolic Syndrome

    PubMed Central

    Thorp, Alicia A.; Schlaich, Markus P.

    2015-01-01

    Sympathetic tone is well recognised as being implicit in cardiovascular control. It is less readily acknowledged that activation of the sympathetic nervous system is integral in energy homeostasis and can exert profound metabolic effects. Accumulating data from animal and human studies suggest that central sympathetic overactivity plays a pivotal role in the aetiology and complications of several metabolic conditions that can cluster to form the Metabolic Syndrome (MetS). Given the known augmented risk for type 2 diabetes, cardiovascular disease, and premature mortality associated with the MetS understanding the complex pathways underlying the metabolic derangements involved has become a priority. Many factors have been proposed to contribute to increased sympathetic nerve activity in metabolic abnormalities including obesity, impaired baroreflex sensitivity, hyperinsulinemia, and elevated adipokine levels. Furthermore there is mounting evidence to suggest that chronic sympathetic overactivity can potentiate two of the key metabolic alterations of the MetS, central obesity and insulin resistance. This review will discuss the regulatory role of the sympathetic nervous system in metabolic control and the proposed pathophysiology linking sympathetic overactivity to metabolic abnormalities. Pharmacological and device-based approaches that target central sympathetic drive will also be discussed as possible therapeutic options to improve metabolic control in at-risk patient cohorts. PMID:26064978

  9. Radionuclide imaging of myocardial perfusion and viability in assessment of acute myocardial infarction

    SciTech Connect

    Berman, D.S.; Kiat, H.; Maddahi, J.; Shah, P.K.

    1989-07-18

    Technical advances in radionuclide imaging have important implications for the management of patients with acute myocardial infarction. Single-photon emission computerized tomography with thallium 201 (TI-201) offers greater accuracy than planar imaging in detecting, localizing and sizing myocardial perfusion defects. Use of single-photon emission computerized tomography with TI-201 should allow for a more accurate assessment of prognosis after myocardial infarction. A new radiopharmaceutical, technetium 99-m methoxyisobutyl isonitrile, provides a number of advantages over TI-201, including higher quality images, lack of redistribution, and the ability to assess first-pass ventricular function. Applications of TI-201 and technetium 99-m methoxyisobutyl isonitrile include assessment of arterial patency and myocardial salvage immediately after thrombolytic therapy, detection of resting ischemia after thrombolytic therapy, targeting of subsets of patients for further intervention, and predischarge assessment to predict the future course of patients after an acute myocardial infarction.

  10. Incidence of acute myocardial infarction in patients with exercise-induced silent myocardial ischemia

    SciTech Connect

    Assey, M.E.; Walters, G.L.; Hendrix, G.H.; Carabello, B.A.; Usher, B.W.; Spann, J.F. Jr.

    1987-03-01

    Fifty-five patients with angiographically proved coronary artery disease (CAD) underwent Bruce protocol exercise stress testing with thallium-201 imaging. Twenty-seven patients (group I) showed myocardial hypoperfusion without angina pectoris during stress, which normalized at rest, and 28 patients (group II) had a similar pattern of reversible myocardial hypoperfusion but also had angina during stress. Patients were followed for at least 30 months. Six patients in group I had an acute myocardial infarction (AMI), 3 of whom died, and only 1 patient in group II had an AMI (p = 0.05), and did not die. Silent myocardial ischemia uncovered during exercise stress thallium testing may predispose to subsequent AMI. The presence of silent myocardial ischemia identified in this manner is of prognostic value, independent of angiographic variables such as extent of CAD and left ventricular ejection fraction.

  11. Rethinking cardiac metabolism: metabolic cycles to refuel and rebuild the failing heart

    PubMed Central

    Lubrano, Genna

    2014-01-01

    The heart is a self-renewing biological pump that converts chemical energy into mechanical energy. The entire process of energy conversion is subject to complex regulation at the transcriptional, translational and post-translational levels. Within this system, energy transfer occurs with high efficiency, facilitated by a series of compound-conserved cycles. At the same time, the constituent myocardial proteins themselves are continuously made and degraded in order to adjust to changes in energy demand and changes in the extracellular environment. We recently have identified signals arising from intermediary metabolism that regulate the cycle of myocardial protein turnover. Using a new conceptual framework, we discuss the principle of metabolic cycles and their importance for refueling and for rebuilding the failing heart. PMID:25374668

  12. High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction.

    PubMed

    Chalkiadaki, Angeliki; Guarente, Leonard

    2012-08-08

    Adipose tissue plays an important role in storing excess nutrients and preventing ectopic lipid accumulation in other organs. Obesity leads to excess lipid storage in adipocytes, resulting in the generation of stress signals and the derangement of metabolic functions. SIRT1 is an important regulatory sensor of nutrient availability in many metabolic tissues. Here we report that SIRT1 functions in adipose tissue to protect from inflammation and obesity under normal feeding conditions, and to forestall the progression to metabolic dysfunction under dietary stress and aging. Genetic ablation of SIRT1 in adipose tissue leads to gene expression changes that highly overlap with changes induced by high-fat diet in wild-type mice, suggesting that dietary stress signals inhibit the activity of SIRT1. Indeed, we show that high-fat diet induces the cleavage of SIRT1 protein in adipose tissue by the inflammation-activated caspase-1, providing a link between dietary stress and predisposition to metabolic dysfunction.

  13. Clinical Implications of Adipocytokines and Newly Emerging Metabolic Factors with Relation to Insulin Resistance and Cardiovascular Health

    PubMed Central

    Choi, Sung Hee; Hong, Eun Shil; Lim, Soo

    2013-01-01

    Adipose tissue is known to secrete hormones actively and produces many biologically active proteins called adipocytokines. Typically, obesity is followed by low-grade inflammation, which is characterized by increased circulating levels of pro-inflammatory cytokines. Macrophages play a role in the inflammatory process by secreting many cytokines such as tumor necrosis factor alpha, interleukin-6, resistin, and retinol binding protein-4. These cytokines and chemokines participate in low-grade pro-inflammatory processes leading to insulin resistance, metabolic impairment, and cardiovascular diseases. More metabolic regulators, such as fibroblast growth factor (FGF)21, FGF19, FGF1, vaspin, and visfatin have now been discovered but their exact roles in human diseases are still unclear. This review focuses on recent research regarding the role of adipokines and new metabolic factors in metabolic derangement or cardiovascular disease. PMID:23970879

  14. Echocardiographic assessment of myocardial ischemia

    PubMed Central

    Dworrak, Birgit; Sanchis-Gomar, Fabian; Lucia, Alejandro; Buck, Thomas; Erbel, Raimund

    2016-01-01

    Over the last 60 years, echocardiography has emerged as a dominant and indispensable technique for the detection and assessment of coronary heart disease (CHD). In this review, we will describe and discuss this powerful tool of cardiology, especially in the hands of an experienced user, with a focus on myocardial ischemia. Technical development is still on-going, and various new ultrasound techniques have been established in the field of echocardiography in the last several years, including tissue Doppler imaging (TDI), contrast echocardiography, three-dimensional echocardiography (3DE), and speckle tracking echocardiography (i.e., strain/strain rate-echocardiography). High-end equipment with harmonic imaging, high frame rates and the opportunity to adjust mechanical indices has improved imaging quality. Like all new techniques, these techniques must first be subjected to comprehensive scientific assessment, and appropriate training that accounts for physical and physiological limits should be provided. These limits will constantly be redefined as echocardiographic techniques continue to change, which will present new challenges for the further development of ultrasound technology. PMID:27500160

  15. Molecular genetics of myocardial infarction

    PubMed Central

    Ichihara, Sahoko; Nishida, Tamotsu

    2008-01-01

    Abstract Myocardial infarction (MI) is an important clinical problem because of its large contribution to mortality. The main causal and treatable risk factors for MI include hypertension, hypercholesterolemia or dyslipidemia, diabetes mellitus, and smoking. In addition to these risk factors, recent studies have shown the importance of genetic factors and interactions between multiple genes and environmental factors. Disease prevention is an important strategy for reducing the overall burden of MI, with the identification of markers for disease risk being key both for risk prediction and for potential intervention to lower the chance of future events. Although genetic linkage analyses of families and sib-pairs as well as candidate gene and genome-wide association studies have implicated several loci and candidate genes in predisposition to coronary heart disease (CHD) or MI, the genes that contribute to genetic susceptibility to these conditions remain to be identified definitively. In this review, we summarize both candidate loci for CHD or MI identified by linkage analyses and candidate genes examined by association studies. We also review in more detail studies that have revealed the association with MI or CHD of polymorphisms in MTHFR, LPL, and APOE by the candidate gene approach and those in LTA and at chromosomal region 9p21.3 by genome-wide scans. Such studies may provide insight into the function of implicated genes as well as into the role of genetic factors in the development of CHD and MI. PMID:18704761

  16. Neural tube defects: pathogenesis and folate metabolism.

    PubMed

    Pulikkunnel, Scaria T; Thomas, S V

    2005-02-01

    Neural tube defects (NTDs) are a group of congenital malformations with worldwide distribution and complex aetio-pathogenesis. Animal studies indicate that there may be four sites of initiation of neural tube closure (NTC). Selective involvement of these sites may lead to defects varying from anencephaly to spina bifida. The NTC involves formation of medial and dorsolateral hinge points, convergent extension and a zipper release process. Proliferation and migration of neuroectodermal cells and its morphological changes brought about by microfilaments and other cytoskeletal proteins mediate NTC. Genetic, nutritional and teratogenic mechanisms have been implicated in the pathogenesis of NTDs. Folate is an important component in one carbon metabolism that provides active moieties for synthesis of nucleic acids and proteins. Several gene defects affecting enzymes and proteins involved in transport and metabolism of folate have been associated with NTDs. It may be possible in future, to identify individuals at higher risk of NTDs by genetic studies. Epidemiological and clinical studies have shown that dietary supplementation or food fortification with folic acid would reduce the incidence of NTDs. The protective effect of folic acid may be by overcoming these metabolic blocks through unidentified mechanisms. Genetic and biochemical studies on foetal cells may supplement currently available prenatal tests to diagnose NTDs. Antiepileptic drugs (AEDs), particularly valproate and carbamazepine have been shown to increase the risk of NTDs by possibly increasing the oxidative stress and deranging the folate metabolism. Accordingly, it is recommended that all women taking AEDs may use 1-5 mg folic acid daily in the pre conception period and through pregnancy.

  17. Effects of glycyl-glutamine dipeptide supplementation on myocardial damage and cardiac function in rats after severe burn injury.

    PubMed

    Zhang, Yong; Yan, Hong; Lv, Shang-Gun; Wang, Lin; Liang, Guang-Ping; Wan, Qian-Xue; Peng, Xi

    2013-01-01

    Glutamine decreases myocardial damage in ischemia/reperfusion injury. However, the cardioprotective effect of glutamine after burn injury remains unclear. Present study was to explore the protective effect of glycyl-glutamine dipeptide on myocardial damage in severe burn rats. Seventy-two Wistar rats were randomly divided into three groups: normal control (C), burned control (B) and glycyl-glutamine dipeptide-treated (GG) groups. B and GG groups were inflicted with 30% total body surface area of full thickness burn. The GG group was given 1.5 g/kg glycyl-glutamine dipeptide per day and the B group was given the same dose of alanine via intraperitoneal injection for 3 days. The serum CK, LDH, AST, and, blood lactic acid levels, as well as the myocardium ATP and GSH contents, were measured. The indices of cardiac contractile function and histopathological change were analyzed at 12, 24, 48, and 72 post-burn hours (PBH). The serum CK, LDH, AST and blood lactic acid levels increased, and the myocardium ATP and GSH content decreased in both burned groups. Compared with B group, the CK, LDH, AST and blood lactic acid levels reduced, myocardium ATP and GSH content increased in GG group. Moreover, the inhibition of cardiac contractile function and myocardial histopathological damage were reduced significantly in GG group. We conclude that myocardial histological structure and function were damaged significantly after burn injury, glycyl-glutamine dipeptide supplementation is beneficial to myocardial preservation by improving cardiocyte energy metabolism, increasing ATP and glutathione synthesis.

  18. Nebivolol Improves Diastolic Dysfunction and Myocardial Remodeling through Reductions in Oxidative Stress in the Zucker Obese Rat

    PubMed Central

    Zhou, Xinli; Ma, Lixin; Habibi, Javad; Whaley-Connell, Adam; Hayden, Melvin R; Tilmon, Roger D; Brown, Ashley N; Kim, Jeong-a; DeMarco, Vincent G.; Sowers, James R

    2010-01-01

    Insulin resistance is associated with obesity and may be accompanied by left ventricular diastolic dysfunction and myocardial remodeling. Decreased insulin metabolic signaling and increased oxidative stress may promote these maladaptive changes. In this context, the β-blocker nebivolol has been reported to improve insulin sensitivity, increase eNOS activity, and reduce NADPH oxidase-induced superoxide generation. We hypothesized that nebivolol would attenuate diastolic dysfunction and myocardial remodeling by blunting myocardial oxidant stress and promoting insulin metabolic signaling in a rodent model of obesity, insulin resistance, and hypertension. Six week old male Zucker obese (ZO) and age-matched Zucker lean (ZL) rats were treated with nebivolol (10 mg·kg−1·day−1) for 21 days and myocardial function was assessed by cine magnetic resonance imaging. Compared to untreated ZL rats, untreated ZO rats exhibited prolonged diastolic relaxation time (27.7±2.5 vs 40.9±2.0 ms; P<0.05) and reduced initial diastolic filling rate (6.2±0.5 vs 2.8±0.6 μl/ms; P<0.05) in conjunction with increased HOMA-IR (7±2 vs 95±21; P<0.05), interstitial and pericapillary fibrosis, abnormal cardiomyocyte histoarchitecture, 3-nitrotyrosine, and NADPH oxidase-dependent superoxide. Nebivolol improved diastolic relaxation (32.8±0.7 ms; P<0.05 vs untreated ZO), reduced fibrosis and remodeling in ZO rats, in concert with reductions in nitrotyrosine, NADPH oxidase-dependent superoxide, and improvements in the insulin metabolic signaling, eNOS activation, and weight gain (381±7 vs 338±14 g; P<0.05). Results support the hypothesis that nebivolol reduces myocardial structural maladaptive changes and improves diastolic relaxation in concert with improvements in insulin sensitivity, and eNOS activation, concomitantly with reductions in oxidative stress. PMID:20176997

  19. Vane blood-bathed technique reveals the significance of adrenergic reaction in myocardial infarction.

    PubMed

    Herbaczyńska-Cedro, Krystyna; Ceremuzyński, Leszek

    2010-01-01

    Using the blood-bathed technique of Vane we induced acute coronary occlusion in the dog and subsequently detected adrenaline release into the circulatory system, determined the rate of release and documented its significance for induction of cardiac arrhythmias. In the intact anesthetized dog, adrenaline excess of the magnitude released after coronary occlusion was sufficient to injure the healthy myocardium and to induce unfavorable metabolic systemic alterations. Subsequently, clinical research has documented that a serious clinical course of acute myocardial infarction is associated not only with enhanced excretion of catecholamines but also with augmentation of plasma renin activity and aldosterone levels. The positive therapeutic effect of aldosterone antagonists in acute myocardial infarction has been documented. The clinical value of our results, which were obtained in experimental and clinical studies, was later confirmed in multi-center trials.

  20. Biochemical assessment of acute myocardial ischaemia.

    PubMed Central

    Perez-Cárceles, M D; Osuna, E; Vieira, D N; Martínez, A; Luna, A

    1995-01-01

    AIMS--To evaluate the efficacy of biochemical parameters in different fluids in the diagnosis of myocardial infarction of different causes, analysed after death. METHODS--The myoglobin concentration and total creatine kinase (CK) and creatine kinase MB isoenzyme (CK-MB) activities were measured in serum, pericardial fluid, and vitreous humour from seven diagnostic groups of cadavers classified according to the severity of myocardial ischaemia and cause of death. Lactate dehydrogenase (LDH) and myosin were measured only in serum and pericardial fluid, and cathepsin D only in pericardial fluid. Routine haematoxylin and eosin and acridine orange staining were used for microscopy studies of heart tissue. RESULTS--In pericardial fluid there were substantial differences between the different groups with respect to CK, CK-MB, and LDH activities and myosin concentrations. The highest values were found in cases with morphological evidence of myocardial ischaemia. CONCLUSIONS--Biochemical parameters, which reach the pericardial fluid via passive diffusion and ultrafiltration due to a pressure gradient, were thus detectable in this fluid earlier than in serum in cases with myocardial ischaemia. These biochemical parameters may be of use for ruling out myocardial ischaemia in those controversial cases in which reliable morphological findings are lacking. PMID:7745110

  1. Glucose-insulin-potassium correlates with hemodynamic improvement in patients with septic myocardial dysfunction

    PubMed Central

    Kim, Won-Young; Baek, Moon Seong; Kim, Young Shin; Seo, Jarim; Huh, Jin Won; Lim, Chae-Man; Koh, Younsuck

    2016-01-01

    Background Glucose-insulin-potassium (GIK) demonstrates a cardioprotective effect by providing metabolic support and anti-inflammatory action, and may be useful in septic myocardial depression. The aim of this study was to examine the relationship between GIK and hemodynamic outcomes in septic shock patients with myocardial depression. Methods Between October 2012 and March 2014, 45 patients in the intensive care unit who fulfilled the criteria for severe sepsis/septic shock and were treated with GIK were recruited. Patients were divided into two groups according to echocardiographic findings: hypodynamic (27%) and non-hypodynamic (36%). Results Baseline vasopressor requirements did not differ between both groups. In 12 patients with hypodynamic septic shock with myocardial depression, mean arterial pressure (MAP) increased with the median [interquartile range (IQR)] area under the curve of 16 (8 to 29) mmHg, and the heart rate (HR) decreased with the median (IQR) area under the curve of −9 (−20 to 2)/min during the first 72 h. The total insulin dose correlated with improvement in MAP (r=0.61, P=0.061) and the cardiovascular Sequential Organ Failure Assessment score (r=−0.64, P=0.045) at 72 h, although this phenomenon was not observed in patients with non-hypodynamic septic shock. Serum glucose and potassium levels were within the target ranges in both groups during the 72-h study period. Conclusions Short-term improvement in hemodynamics correlated with GIK administration in septic shock patients with myocardial depression. The use of GIK was well tolerated in all patients. Further studies are required to demonstrate the role of GIK in septic myocardial dysfunction. PMID:28149560

  2. Kinetics of /sup 13/N-ammonia uptake in myocardial single cells indicating potential limitations in its applicability as a marker of myocardial blood flow

    SciTech Connect

    Rauch, B.; Helus, F.; Grunze, M.; Braunwell, E.; Mall, G.; Hasselbach, W.; Kuebler, W.

    1985-02-01

    To study kinetics and principles of cellular uptake of /sup 13/N-ammonia, a marker of coronary perfusion in myocardial scintigraphy, heart muscle cells of adult rats were isolated by perfusion with collagenase and hyaluronidase. Net uptake of /sup 13/N, measured by flow dialysis, reached equilibrium within 20 sec in the presence of sodium bicarbonate and carbon dioxide (pH 7.4, 37 degrees C). Total extraction, 80 sec after the reaction start, was 786 +/- 159 mumol/ml cell volume. Cells destroyed by calcium overload were unable to extract /sup 13/N-ammonia. Omission of bicarbonate and carbon dioxide reduced total extraction to 36% of control. /sup 13/N-Ammonia uptake could also be reduced by 50 muM 4,4' diisothiocyanostilbene 2,2' disulfonic acid, by 100 micrograms/ml 1-methionine sulfoximine, and by preincubation with 5 muM free oleic acid. These results indicate that in addition to metabolic trapping by glutamine synthetase, the extraction of /sup 13/N-ammonia by myocardial cells is influenced by cell membrane integrity, intracellular-extracellular pH gradient, and possibly an anion exchange system for bicarbonate. For this reason, the uptake of /sup 13/N-ammonia may not always provide a valid measurement of myocardial perfusion.

  3. Myocardial factor revisited: The importance of myocardial fibrosis in adults with congenital heart disease.

    PubMed

    Broberg, Craig S; Burchill, Luke J

    2015-06-15

    Pioneers in congenital heart surgery observed that exercise capacity did not return to normal levels despite successful surgical repair, leading some to cite a "myocardial factor" playing a role. They conjectured that residual alterations in myocardial function would be significant for patients' long-term outlook. In fulfillment of their early observations, today's adult congenital heart disease (ACHD) population shows well-recognized features of heart failure, even among patients without clear residual anatomic or hemodynamic abnormalities, demonstrating the vital role of the myocardium in their morbidity and mortality. Whereas the 'myocardial factor' was an elusive concept in the early history of congenital heart care, we now have imaging techniques to detect and quantify one such factor--myocardial fibrosis. Understanding the importance of myocardial fibrosis as a final common pathway in a variety of congenital lesions provides a framework for both the study and treatment of clinical heart failure in this context. While typical heart failure pharmacology should reduce or attenuate fibrogenesis, efforts to show meaningful improvements with standard pharmacotherapy in ACHD repeatedly fall short. This paper considers the importance of myocardial fibrosis and function, the current body of evidence for myocardial fibrosis in ACHD, and its implications for research and treatment.

  4. Panic attack triggering myocardial ischemia documented by myocardial perfusion imaging study. A case report

    PubMed Central

    2012-01-01

    Background Chest pain, a key element in the investigation of coronary artery disease is often regarded as a benign prognosis when present in panic attacks. However, panic disorder has been suggested as an independent risk factor for long-term prognosis of cardiovascular diseases and a trigger of acute myocardial infarction. Objective Faced with the extreme importance in differentiate from ischemic to non-ischemic chest pain, we report a case of panic attack induced by inhalation of 35% carbon dioxide triggering myocardial ischemia, documented by myocardial perfusion imaging study. Discussion Panic attack is undoubtedly a strong component of mental stress. Patients with coronary artery disease may present myocardial ischemia in mental stress response by two ways: an increase in coronary vasomotor tone or a sympathetic hyperactivity leading to a rise in myocardial oxygen consumption. Coronary artery spasm was presumed to be present in cases of cardiac ischemia linked to panic disorder. Possibly the carbon dioxide challenge test could trigger myocardial ischemia by the same mechanisms. Conclusion The use of mental stress has been suggested as an alternative method for myocardial ischemia investigation. Based on translational medicine objectives the use of CO2 challenge followed by Sestamibi SPECT could be a useful method to allow improved application of research-based knowledge to the medical field, specifically at the interface of PD and cardiovascular disease. PMID:22999016

  5. Spontaneous changes in /sup 201/Tl myocardial perfusion imaging after myocardial infarction

    SciTech Connect

    Buda, A.J.; Dubbin, J.D.; MacDonald, I.L.; Strauss, H.D.; Orr, S.A.; Meindok, H.

    1982-12-01

    To examine regional myocardial perfusion after myocardial infarction, 26 patients underwent exercise electrocardiographic testing with /sup 201/Tl myocardial perfusion imaging 3 weeks and 3 months after infarction. At 3 weeks, 9 of 26 patients (35%) had myocardial ischemia by exercise electrocardiographic testing, whereas 18 of 26 (69%) had ischemia by /sup 201/Tl imaging. The /sup 201/Tl scintigrams were scored by dividing each image, in 3 views, into 5 segments, using a 5-point scoring scheme. The exercise /sup 201/Tl score was 44.3 +/- 1.2 and increased to 47.3 +/- 1.2 in the redistribution study (p less than 0.001). Three months after infarction, although there was a significantly greater rate-pressure product which would predict a larger ischemic defect and a decrease in the stress /sup 201/Tl score, the stress score was improved (48.3 +/- 1.1, p less than 0.001). The redistribution score was similar, that is, 48.9 +/- 1.0. The improvement in /sup 201/Tl myocardial perfusion was associated with a loss of stress-induced ischemia in 8 patients (30%). These results indicate that spontaneous improvements in /sup 201/Tl myocardial perfusion imaging may occur after myocardial infarction.

  6. Role of myocardial perfusion imaging in evaluating thrombolytic therapy for acute myocardial infarction

    SciTech Connect

    Beller, G.A.

    1987-03-01

    Myocardial thallium-201 scintigraphy is being increasingly employed as a method for assessing the efficacy of coronary reperfusion in acute myocardial infarction. New thallium uptake after intracoronary tracer administration after successful recanalization indicates that nutrient blood flow has been successfully restored. One may also presume that some myocardial salvage occurred if thallium administered in this manner is transported intracellularly by myocytes with intact sarcolemmal membranes. However, if one injects thallium by way of the intracoronary route immediately after reperfusion, the initial uptake of thallium in reperfused myocardium may predominantly represent hyperemic flow and regional thallium counts measured may not be proportional to the mass of viable myocytes. When thallium is injected intravenously during the occlusion phase the degree of redistribution after thrombolysis is proportional to the degree of flow restoration and myocardial viability. When thallium is injected for the first time intravenously immediately after reperfusion, an overestimation of myocardial salvage may occur because of excess thallium uptake in the infarct zone consequent to significant hyperemia. Another approach to myocardial thallium scintigraphy in patients undergoing thrombolytic therapy is to administer two separate intravenous injections before and 24 hours or later after treatment. Finally, patients with acute myocardial infarction who receive intravenous thrombolytic therapy are candidates for predischarge exercise thallium-201 scintigraphy for risk stratification and detection of residual ischemia.

  7. Myocardial Factor Revisited: The Importance of Myocardial Fibrosis in Adults with Congenital Heart Disease

    PubMed Central

    Broberg, Craig S.; Burchill, Luke J.

    2015-01-01

    Pioneers in congenital heart surgery observed that exercise capacity did not return to normal levels despite successful surgical repair, leading some to cite a “myocardial factor” playing a role. They conjectured that residual alterations in myocardial function would be significant for patients’ long-term outlook. In fulfillment of their early observations, today’s adult congenital heart disease (ACHD) population shows well-recognized features of heart failure, even among patients without clear residual anatomic or hemodynamic abnormalities, demonstrating the vital role of the myocardium in their morbidity and mortality. Whereas the ‘myocardial factor’ was an elusive concept in the early history of congenital heart care, we now have imaging techniques to detect and quantify one such factor – myocardial fibrosis. Understanding the importance of myocardial fibrosis as a final common pathway in a variety of congenital lesions provides a framework for both the study and treatment of clinical heart failure in this context. While typical heart failure pharmacology should reduce or attenuate fibrogenesis, efforts to show meaningful improvements with standard pharmacotherapy in ACHD repeatedly fall short. This paper considers the importance of myocardial fibrosis and function, the current body of evidence for myocardial fibrosis in ACHD, and its implications for research and treatment. PMID:25897907

  8. Morphine Does Not Affect Myocardial Salvage in ST-Segment Elevation Myocardial Infarction

    PubMed Central

    Song, Young Bin; Kim, Eun Kyoung; Jang, Woo Jin; Yang, Jeong Hoon; Hahn, Joo-Yong; Choi, Seung-Hyuk; Choi, Jin-Ho; Lee, Sang Hoon; Choe, Yeon Hyeon; Ahn, Joonghyun; Carriere, Keumhee Chough; Gwon, Hyeon-Cheol

    2017-01-01

    Recent studies have proposed intravenous (IV) morphine is associated with delayed action of antiplatelet agents in acute myocardial infarction. However, it is unknown whether morphine results in increased myocardial damage in ST-segment elevation myocardial infarction (STEMI) patients undergoing primary percutaneous coronary intervention (PCI). We investigated myocardial salvage index (MSI) to determine whether IV morphine affects myocardial injury adversely in STEMI patients undergoing primary PCI. 299 STEMI patients underwent contrast-enhanced magnetic resonance imaging a median of 3 days after PCI. Infarct size was measured on delayed-enhancement imaging, and area at risk was quantified on T2-weighted imaging. MSI was calculated as ‘[area at risk–infarct size] X 100 / area at risk’. IV morphine was administrated in 32.1% of patients. Patients treated with morphine had shorter symptom to balloon time and higher prevalence of Thrombolysis in Myocardial Infarction flow grade 0 or 1. The morphine group showed a trend toward larger MSI and infarct size and significantly greater area at risk than the non-morphine group. After propensity score matching (90 pairs), MSI was similar between the morphine and non-morphine group (46.1% versus 43.5%, P = .11), and infarct size and area at risk showed no difference. In propensity score-matched analysis, IV morphine prior to primary PCI in STEMI patients did not cause adverse impacts on myocardial salvage. PMID:28081269

  9. Relationships between regional myocardial wall stress and bioenergetics in hearts with left ventricular hypertrophy

    PubMed Central

    Feygin, Julia; Hu, Qinsong; Swingen, Cory; Zhang, Jianyi

    2008-01-01

    This study utilized porcine models of postinfarction LV remodeling (MI: n=8) and concentric LVH secondary to aortic banding (AoB: n=8) to examine the relationships between regional myocardial contractile function (tagged MRI), wall stress (MRI and LV pressure), and bioenergetics (P-31 MR spectroscopy). Physiological assessments were conducted at a 4 week time point after myocardial infarction or aortic banding surgery. Comparisons were made with size matched normal animals (normal: n=8). Both myocardial infarction and aortic banding instigated significant LV hypertrophy. Ejection fraction was not significantly altered in the AoB group, but significantly decreased in the MI group (p<0.01 vs. normal and AoB). Systolic and diastolic wall stresses were approximately two times greater than normal in the infarct region and border zone. Wall stress in the AoB group was not significantly different from normal hearts. The infarct border zone demonstrated profound bioenergetic abnormalities, especially in the subendocardium, where the ratio of phosphocreatine to adenosine triphosphate (PCr/ATP) decreased from 1.98 ± 0.16 (normal) to 1.06 ± 0.30 (MI, p<0.01). The systolic radial thickening fraction and the circumferential shortening fraction in the anterior wall were severely reduced (MI, p<0.01 vs Normal). The radial thickening fraction and circumferential shortening fraction in the AoB group were not significantly different from normal. The severely elevated wall stress in the infarct border zone was associated with a significant increase in chemical energy demand and abnormal myocardial energy metabolism. Such severe metabolic perturbations cannot support normal cardiac function, which may explain the observed regional contractile abnormalities in the infarct border zone. PMID:18326803

  10. Metabolic myopathies

    NASA Technical Reports Server (NTRS)

    Martin, A.; Haller, R. G.; Barohn, R.; Blomqvist, C. G. (Principal Investigator)

    1994-01-01

    Metabolic myopathies are disorders of muscle energy production that result in skeletal muscle dysfunction. Cardiac and systemic metabolic dysfunction may coexist. Symptoms are often intermittent and provoked by exercise or changes in supply of lipid and carbohydrate fuels. Specific disorders of lipid and carbohydrate metabolism in muscle are reviewed. Evaluation often requires provocative exercise testing. These tests may include ischemic forearm exercise, aerobic cycle exercise, and 31P magnetic resonance spectroscopy with exercise.

  11. Metabolic and mitochondrial disorders associated with epilepsy in children with autism spectrum disorder.

    PubMed

    Frye, Richard E

    2015-06-01

    Autism spectrum disorder (ASD) affects a significant number of individuals in the United States, with the prevalence continuing to grow. A significant proportion of individuals with ASD have comorbid medical conditions such as epilepsy. In fact, treatment-resistant epilepsy appears to have a higher prevalence in children with ASD than in children without ASD, suggesting that current antiepileptic treatments may be suboptimal in controlling seizures in many individuals with ASD. Many individuals with ASD also appear to have underlying metabolic conditions. Metabolic conditions such as mitochondrial disease and dysfunction and abnormalities in cerebral folate metabolism may affect a substantial number of children with ASD, while other metabolic conditions that have been associated with ASD such as disorders of creatine, cholesterol, pyridoxine, biotin, carnitine, γ-aminobutyric acid, purine, pyrimidine, and amino acid metabolism and urea cycle disorders have also been associated with ASD without the prevalence clearly known. Interestingly, all of these metabolic conditions have been associated with epilepsy in children with ASD. The identification and treatment of these disorders could improve the underlying metabolic derangements and potentially improve behavior and seizure frequency and/or severity in these individuals. This paper provides an overview of these metabolic disorders in the context of ASD and discusses their characteristics, diagnostic testing, and treatment with concentration on mitochondrial disorders. To this end, this paper aims to help optimize the diagnosis and treatment of children with ASD and epilepsy. This article is part of a Special Issue entitled "Autism and Epilepsy".

  12. Myocardial Infarction: Symptoms and Treatments.

    PubMed

    Lu, Lei; Liu, Min; Sun, RongRong; Zheng, Yi; Zhang, Peiying

    2015-07-01

    Myocardial infarction (MI) is a term used for an event of heart attack which is due to formation of plaques in the interior walls of the arteries resulting in reduced blood flow to the heart and injuring heart muscles because of lack of oxygen supply. The symptoms of MI include chest pain, which travels from left arm to neck, shortness of breath, sweating, nausea, vomiting, abnormal heart beating, anxiety, fatigue, weakness, stress, depression, and other factors. The immediate treatment of MI include, taking aspirin, which prevents blood from clotting, and nitro-glycerin to treat chest pain and oxygen. The heart attack can be prevented by taking an earlier action to lower those risks by controlling diet, fat, cholesterol, salt, smoking, nicotine, alcohol, drugs, monitoring of blood pressure every week, doing exercise every day, and loosing body weight. The treatment of MI includes, aspirin tablets, and to dissolve arterial blockage injection of thrombolytic or clot dissolving drugs such as tissue plasminogen activator, streptokinase or urokinase in blood within 3 h of the onset of a heart attack. The painkillers such as morphine or meperidine can be administered to relieve pain. Nitroglycerin and antihypertensive drugs such as beta-blockers, ACE inhibitors or calcium channel blockers may also be used to lower blood pressure and to improve the oxygen demand of heart. The ECG, coronary angiography and X-ray of heart and blood vessels can be performed to observe the narrowing of coronary arteries. In this article the causes, symptoms and treatments of MI are described.

  13. Neuroendocrine activation after acute myocardial infarction.

    PubMed Central

    McAlpine, H M; Morton, J J; Leckie, B; Rumley, A; Gillen, G; Dargie, H J

    1988-01-01

    The extent of neuroendocrine activation, its time course, and relation to left ventricular dysfunction and arrhythmias were investigated in 78 consecutive patients with suspected acute myocardial infarction. High concentrations of arginine vasopressin were found within six hours of symptoms, even in the absence of myocardial infarction (n = 18). Plasma catecholamine concentrations also were highest on admission, whereas renin and angiotensin II concentrations rose progressively over the first three days, not only in those with heart failure but also in patients with no clinical complications. Heart failure, ventricular tachycardia, and deaths were associated with extensive myocardial infarction, low left ventricular ejection fraction, and persistently high concentrations of catecholamines, renin, and angiotensin II up to 10 days after admission, whereas in uncomplicated cases concentrations had already returned to normal. PMID:3415870

  14. Action of acetylstrophanthidin on experimental myocardial infarction.

    NASA Technical Reports Server (NTRS)

    Nola, G. T.; Pope, S. E.; Harrison, D. C.

    1972-01-01

    An experimental animal model with acute myocardial infarction of a size insufficient to produce profound heart failure or shock was used to study the effects of acute infarction on digitalis tolerance and the hemodynamic changes produced by moderate and large doses of acetylstrophanthidin. With acute myocardial infarction, digitalis toxic arrhythmias could be precipitated with significantly lower doses of digitalis than in animals without myocardial infarction. There was no precise correlation between the size of infarction and the toxic dose of glycoside. Coronary artery ligation produced a stable but relatively depressed circulatory state, as evidenced by lowered cardiac output and stroke volume and elevated systemic vascular resistance and left atrial mean pressure. When digitalis was infused, the following significant changes were observed at nontoxic doses: (1) elevation of aortic and left ventricular pressures; (2) further decline in cardiac output; and (3) decreased left atrial mean pressure.

  15. Myocardial Ischemia Caused by Subepicardial Hematoma

    PubMed Central

    Grieshaber, Philippe; Nef, Holger; Böning, Andreas; Niemann, Bernd

    2017-01-01

    Background Bleeding from bypass anastomosis leakage occurs early after coronary artery bypass grafting. Later, once the anastomosis is covered by intima, spontaneous bleeding is unlikely. Case Description A 63-year-old male patient developed a pseudoaneurysm-like, subepicardial late-term bleeding resulting in a hematoma that compromised coronary artery flow by increasing extracoronary pressure. This resulted in severe angina pectoris (Canadian Cardiovascular Society IV) and myocardial ischemia within the affected area. After surgical removal of the hematoma and repair of the anastomosis, the patient's symptoms disappeared and no signs of myocardial ischemia were present. Conclusion Surgical removal is an efficient therapy for subepicardial hematoma inducing myocardial ischemia. PMID:28352501

  16. Thyroid function in childhood obesity and metabolic comorbidity.

    PubMed

    Pacifico, Lucia; Anania, Caterina; Ferraro, Flavia; Andreoli, Gian Marco; Chiesa, Claudio

    2012-02-18

    Childhood obesity is a worldwide health problem and its prevalence is increasing steadily and dramatically all over the world. Obese subjects have a much greater likelihood than normal-weight children of acquiring dyslipidemia, elevated blood pressure, and impaired glucose metabolism, which significantly increase their risk of cardiovascular and metabolic diseases. Elevated TSH concentrations in association with normal or slightly elevated free T4 and/or free T3 levels have been consistently found in obese subjects, but the mechanisms underlying these thyroid hormonal changes are still unclear. Whether higher TSH in childhood obesity is adaptive, increasing metabolic rate in an attempt to reduce further weight gain, or indicates subclinical hypothyroidism or resistance and thereby contributes to lipid and/or glucose dysmetabolism, remains controversial. This review highlights current evidence on thyroid involvement in obese children and discusses the current controversy regarding the relationship between thyroid hormonal derangements and obesity-related metabolic changes (hypertension, dyslipidemia, hyperglycemia and insulin resistance, nonalcoholic fatty liver disease) in such population. Moreover, the possible mechanisms linking thyroid dysfunction and pediatric obesity are reviewed. Finally, the potential role of lifestyle intervention as well as of therapy with thyroid hormone in the treatment of thyroid abnormalities in childhood obesity is discussed.

  17. Positron Emission Tomography for the Assessment of Myocardial Viability

    PubMed Central

    2005-01-01

    ventricular (LV) viability is, therefore, critical in deciding whether a patient with coronary artery disease and severe LV dysfunction should undergo revascularization, receive a heart transplant, or remain on medical therapy. Assessment of Left Ventricular Viability Techniques for assessing myocardial viability depend on the measurement of a specific characteristic of viable myocytes such as cell membrane integrity, preserved metabolism, mitochondria integrity, and preserved contractile reserve. In Ontario, single photon emission computed tomography (SPECT) using radioactive 201thallium is the most commonly used technique followed by dobutamine echocardiography. Newer techniques include SPECT using technetium tracers, cardiac magnetic resonance imaging, and PET, the subject of this review. Positron Emission Tomography PET is a nuclear imaging technique based on the metabolism of radioactive analogs of normal substrates such as glucose and water. The radiopharmaceutical used most frequently in myocardial viability assessment is F18 fluorodeoxyglucose (FDG), a glucose analog. The procedure involves the intravenous administration of FDG under controlled glycemic conditions, and imaging with a PET scanner. The images are reconstructed using computer software and analyzed visually or semi-quantitatively, often in conjunction with perfusion images. Dysfunctional but stunned myocardium is characterized by normal perfusion and normal FDG uptake; hibernating myocardium exhibits reduced perfusion and normal/enhanced FDG uptake (perfusion/metabolism mismatch), whereas scar tissue is characterized by reduction in both perfusion and FDG uptake (perfusion/metabolism match). Review Strategy The Medical Advisory Secretariat used a search strategy similar to that used in the 2001 ICES review to identify English language reports of health technology assessments and primary studies in selected databases, published from January 1, 2001 to April 20, 2005. Patients of interest were those with

  18. Myocardial Integrated Backscatter in Obese Adolescents: Associations with Measures of Adiposity and Left Ventricular Deformation

    PubMed Central

    Cheung, Pik-to; Cheung, Yiu-fai

    2015-01-01

    Background Myocardial fibrosis has been proposed to play an important pathogenetic role in left ventricular (LV) dysfunction in obesity. This study tested the hypothesis that calibrated integrated backscatter (cIB) as a marker of myocardial fibrosis is altered in obese adolescents and explored its associations with adiposity, LV myocardial deformation, and metabolic parameters. Methods/Principal Findings Fifty-two obese adolescents and 38 non-obese controls were studied with conventional and speckle tracking echocardiography. The average cIB of ventricular septum and LV posterior wall was measured. In obese subjects, insulin resistance as estimated by homeostasis model assessment (HOMA-IR) and glucose tolerance were determined. Compared with controls, obese subjects had significantly greater cIB of ventricular septum (-16.8±7.8 dB vs -23.2±7.8 dB, p<0.001), LV posterior wall (-20.5±5.6 dBvs -25.0±5.1 dB, p<0.001) and their average (-18.7±5.7 dB vs -24.1±5.0 dB, p<0.001). For myocardial deformation, obese subjects had significantly reduced LV longitudinal systolic strain rate (SR) (p = 0.045) and early diastolic SR (p = 0.015), and LV circumferential systolic strain (p = 0.008), but greater LV longitudinal late diastolic SR (p<0.001), and radial early (p = 0.037) and late (p = 0.002) diastolic SR than controls. For the entire cohort, myocardial cIB correlated positively with body mass index (r = 0.45, p<0.001) and waist circumference (r = 0.45, p<0.001), but negatively with LV circumferential systolic strain (r = -0.23, p = 0.03) and systolic SR (r = -0.25, p = 0.016). Among obese subjects, cIB tended to correlate with HOMA-IR (r = 0.26, p = 0.07). Conclusion Obese adolescents already exhibit evidence of increased myocardial fibrosis, which is associated with measures of adiposity and impaired LV circumferential myocardial deformation. PMID:26492195

  19. Disappearance of myocardial bridging of the left anterior descending coronary artery after inferior myocardial infarction.

    PubMed

    Yıldız, Bekir Serhat; Esin, Fatma; Alihanoğlu, Yusuf Izzettin; Kılıç, Ismail Doğu; Evrengül, Harun

    2014-06-01

    Myocardial bridging (MB) is defined as the intramural course of a major epicardial coronary artery, and is mostly confined to the left ventricle and the left anterior descending coronary artery (LAD). MB is a common congenital abnormality of a coronary artery, and is usually thought to be a benign anatomical variant. Although rare, previous studies have reported that patients with MB may suffer from myocardial ischemia, myocardial infarction (MI), arrhythmias, and even sudden death. Therefore, the diagnosis and treatment of MB are both important. Since MB is congenital, its disappearance is unlikely. We here report a very rare case of disappearance of MB after inferior MI.

  20. Asymptomatic myocardial ischemia following cold provocation

    SciTech Connect

    Shea, M.J.; Deanfield, J.E.; deLandsheere, C.M.; Wilson, R.A.; Kensett, M.; Selwyn, A.P.

    1987-09-01

    Cold is thought to provoke angina in patients with coronary disease either by an increase in myocardial demand or an increase in coronary vascular resistance. We investigated and compared the effects of cold pressor stimulation and symptom-limited supine bicycle exercise on regional myocardial perfusion in 35 patients with stable angina and coronary disease and in 10 normal subjects. Regional myocardial perfusion was assessed with positron emission tomography and rubidium-82. Following cold pressor stimulation 24 of 35 patients demonstrated significant abnormalities of regional myocardial perfusion with reduced cation uptake in affected regions of myocardium: 52 +/- 9 to 43 +/- 9 (p less than 0.001 vs normal subjects). Among these 24 patients only nine developed ST depression and only seven had angina. In contrast, 29 of 35 patients underwent supine exercise, and abnormal regional myocardial perfusion occurred in all 29, with a reduction in cation intake from 48 +/- 10 to 43 +/- 14 (p less than 0.001 vs normal subjects). Angina was present in 27 of 29 and ST depression in 25 of 29. Although the absolute decrease in cation uptake was somewhat greater following cold as opposed to exercise, the peak heart rate after cold was significantly lower than that after exercise (82 +/- 12 vs 108 +/- 16 bpm, p less than 0.05). Peak systolic blood pressures after cold and exercise were similar (159 +/- 24 vs 158 +/- 28). Thus, cold produces much more frequent asymptomatic disturbances of regional myocardial perfusion in patients with stable angina and coronary disease than is suggested by pain or ECG changes.

  1. Thallium-201 myocardial perfusion imaging in myocarditis

    SciTech Connect

    Tamaki, N.; Yonekura, Y.; Kadota, K.; Kambara, H.; Torizuka, K.

    1985-08-01

    TI-201 myocardial perfusion imaging was performed in six patients with clinically documented myocarditis. Each case manifested electrocardiographic abnormalities with elevation of serum cardiac enzymes and no significant stenosis of the coronary arteries observed on angiogram. Resting TI-201 images were visually assessed by three observers. Focal perfusion defects were observed in three cases (50%), among which two showed multiple perfusion defects. Emission computed tomography using TI-201 clearly delineated multifocal lesions in the first case. On the other hand, no significant perfusion defects were noted in the remaining three cases. Thus, myocarditis should be considered as one of the disease entities that may produce perfusion defects on TI-201 myocardial imaging.

  2. Aspergillus coronary embolization causing acute myocardial infarction.

    PubMed

    Laszewski, M; Trigg, M; de Alarcon, P; Giller, R

    1988-05-01

    An increased frequency of disseminated aspergillosis has been observed in the last decade, mostly occurring in immunocompromised patients including the bone marrow transplant population. Cardiac involvement by Aspergillus remains rare. We report the clinical and postmortem findings of an unusual case of Aspergillus pancarditis in a 7-year-old bone marrow transplant patient with Aspergillus embolization to the coronary arteries leading to a massive acute myocardial infarction. This case suggests that myocardial injury secondary to disseminated aspergillosis should be included in the differential diagnosis of chest pain in the immunocompromised pediatric patient.

  3. Absolute quantification of myocardial blood flow.

    PubMed

    Yoshinaga, Keiichiro; Manabe, Osamu; Tamaki, Nagara

    2016-07-21

    With the increasing availability of positron emission tomography (PET) myocardial perfusion imaging, the absolute quantification of myocardial blood flow (MBF) has become popular in clinical settings. Quantitative MBF provides an important additional diagnostic or prognostic information over conventional visual assessment. The success of MBF quantification using PET/computed tomography (CT) has increased the demand for this quantitative diagnostic approach to be more accessible. In this regard, MBF quantification approaches have been developed using several other diagnostic imaging modalities including single-photon emission computed tomography, CT, and cardiac magnetic resonance. This review will address the clinical aspects of PET MBF quantification and the new approaches to MBF quantification.

  4. [Methylphenidate induced ST elevation acute myocardial infarction].

    PubMed

    Ruwald, Martin Huth; Ruwald, Anne-Christine Huth; Tønder, Niels

    2012-03-05

    Adult attention deficit and hyperkinetic disorder (ADHD) is increasingly diagnosed and treated with methylphenidate. We present the case of an 20 year-old man, who was diagnosed with ADHD and suffered a ST elevation acute myocardial infarction due to coronary vasospasm related to an overdose, and subsequent episodes of myocardial injury due to the use and misuse of methylphenidate over a period of two years. We recommend an increased attention to the subscription of methylphenidate to patients, who are at risk of misuse and patients, who have a cardiovascular history.

  5. Metabolic acidosis.

    PubMed

    Lim, Salim

    2007-01-01

    Acute metabolic acidosis is frequently encountered in critically ill patients. Metabolic acidosis can occur as a result of either the accumulation of endogenous acids that consumes bicarbonate (high anion gap metabolic acidosis) or loss of bicarbonate from the gastrointestinal tract or the kidney (hyperchloremic or normal anion gap metabolic acidosis). The cause of high anion gap metabolic acidosis includes lactic acidosis, ketoacidosis, renal failure and intoxication with ethylene glycol, methanol, salicylate and less commonly with pyroglutamic acid (5-oxoproline), propylene glycole or djenkol bean (gjenkolism). The most common causes of hyperchloremic metabolic acidosis are gastrointestinal bicarbonate loss, renal tubular acidosis, drugs-induced hyperkalemia, early renal failure and administration of acids. The appropriate treatment of acute metabolic acidosis, in particular organic form of acidosis such as lactic acidosis, has been very controversial. The only effective treatment for organic acidosis is cessation of acid production via improvement of tissue oxygenation. Treatment of acute organic acidosis with sodium bicarbonate failed to reduce the morbidity and mortality despite improvement in acid-base parameters. Further studies are required to determine the optimal treatment strategies for acute metabolic acidosis.

  6. Diagnostic approaches for diabetic cardiomyopathy and myocardial fibrosis

    PubMed Central

    Maya, Lisandro; Villarreal, Francisco J.

    2009-01-01

    In diabetes mellitus, alterations in cardiac structure/function in the absence of ischemic heart disease, hypertension or other cardiac pathologies is termed diabetic cardiomyopathy. In the United States, the prevalence of diabetes mellitus continues to rise and the disease currently affects about 8% of the general population. Hence, it is imperative the use of appropriate diagnostic strategies for diabetic cardiomyopathy, which may help correctly identify the disease at early stages and implement suitable corrective therapies. Currently, there is no single diagnostic method for the identification of diabetic cardiomyopathy. Diabetic cardiomyopathy is known to induce changes in cardiac structure such as, myocardial hypertrophy, fibrosis and fat droplet deposition. Early changes in cardiac function are typically manifested as abnormal diastolic function that with time leads to loss of contractile function. Echocardiography based methods currently stands as the preferred diagnostic approach for diabetic cardiomyopathy, due to its wide availability and economical use. In addition to conventional techniques, magnetic resonance imaging and spectroscopy along with contrast agents are now leading new approaches in the diagnosis of myocardial fibrosis, and cardiac and hepatic metabolic changes. These strategies can be complemented with serum biomarkers so they can offer a clear picture as to diabetes-induced changes in cardiac structure/function even at very early stages of the disease. This review article intends to provide a summary of experimental and routine tools currently available to diagnose diabetic cardiomyopathy induced changes in cardiac structure/function. These tools can be reliably used in either experimental models of diabetes or for clinical applications. PMID:19595694

  7. Myocardial ischemia-reperfusion injury: a neglected therapeutic target

    PubMed Central

    Hausenloy, Derek J.; Yellon, Derek M.

    2013-01-01

    Acute myocardial infarction (MI) is a major cause of death and disability worldwide. In patients with MI, the treatment of choice for reducing acute myocardial ischemic injury and limiting MI size is timely and effective myocardial reperfusion using either thombolytic therapy or primary percutaneous coronary intervention (PPCI). However, the process of reperfusion can itself induce cardiomyocyte death, known as myocardial reperfusion injury, for which there is still no effective therapy. A number of new therapeutic strategies currently under investigation for preventing myocardial reperfusion injury have the potential to improve clinical outcomes in patients with acute MI treated with PPCI. PMID:23281415

  8. Distinct Metabolic Profile of Inhaled Budesonide and Salbutamol in Asthmatic Children during Acute Exacerbation.

    PubMed

    Quan-Jun, Yang; Jian-Ping, Zhang; Jian-Hua, Zhang; Yong-Long, Han; Bo, Xin; Jing-Xian, Zhang; Bona, Dai; Yuan, Zhang; Cheng, Guo

    2017-03-01

    Inhaled budesonide and salbutamol represent the most important and frequently used drugs in asthmatic children during acute exacerbation. However, there is still no consensus about their resulting metabolic derangements; thus, this study was conducted to determine the distinct metabolic profiles of these two drugs. A total of 69 children with asthma during acute exacerbation were included, and their serum and urine were investigated using high-resolution nuclear magnetic resonance (NMR). A metabolomics analysis was performed using a principal component analysis and orthogonal signal correction-partial least squares using SIMCA-P. The different metabolites were identified, and the distinct metabolic profiles were analysed using MetPA. A high-resolution NMR-based serum and urine metabolomics approach was established to study the overall metabolic changes after inhaled budesonide and salbutamol in asthmatic children during acute exacerbation. The perturbed metabolites included 22 different metabolites in the serum and 21 metabolites in the urine. Based on an integrated analysis, the changed metabolites included the following: increased 4-hydroxybutyrate, lactate, cis-aconitate, 5-hydroxyindoleacetate, taurine, trans-4-hydroxy-l-proline, tiglylglycine, 3-hydroxybutyrate, 3-methylhistidine, glucose, cis-aconitate, 2-deoxyinosine and 2-aminoadipate; and decreased alanine, glycerol, arginine, glycylproline, 2-hydroxy-3-methylvalerate, creatine, citrulline, glutamate, asparagine, 2-hydroxyvalerate, citrate, homoserine, histamine, sn-glycero-3-phosphocholine, sarcosine, ornithine, creatinine, glycine, isoleucine and trimethylamine N-oxide. The MetPA analysis revealed seven involved metabolic pathways: arginine and proline metabolism; taurine and hypotaurine metabolism; glycine, serine and threonine metabolism; glyoxylate and dicarboxylate metabolism; methane metabolism; citrate cycle; and pyruvate metabolism. The perturbed metabolic profiles suggest potential metabolic

  9. Medical management of metabolic dysfunction in PCOS.

    PubMed

    Duleba, Antoni J

    2012-03-10

    Polycystic ovary syndrome (PCOS) is associated with metabolic derangements including insulin resistance, dyslipidemia, systemic inflammation and endothelial dysfunction. There is a growing need to develop pharmacologic interventions to improve metabolic function in women with PCOS. Medications that have been tested in patients with PCOS include metformin, thiazolidinediones, acarbose, naltrexone, orlistat, vitamin D and statins. Metformin decreases hepatic gluconeogenesis and free fatty acid oxidation while increasing peripheral glucose uptake. Early studies in PCOS suggested that metformin indirectly reduces insulin level, dyslipidemia and systemic inflammation; however, recent placebo-controlled trials failed to demonstrate significant metabolic benefit. Thiazolidinediones act primarily by increasing peripheral glucose uptake. Most studies in PCOS have demonstrated that thiazolidinediones reduce insulin resistance; however, effects on dyslipidemia were disappointing. Use of thiazolidinediones is associated with weight gain and major complications. Acarbose reduces digestion of polysaccharides. Studies in PCOS yielded inconsistent effects of acarbose on insulin sensitivity and no significant improvement of dyslipidemia. Naltrexone reduces appetite and modulates insulin release; its use in PCOS may reduce hyperinsulinemia. Orlistat decreases absorption of dietary fats; studies in PCOS suggest beneficial effects on insulin sensitivity. Vitamin D may improve insulin sensitivity but mixed results on lipid profile in PCOS have been reported. Statins are competitive inhibitors of the key enzyme regulating the mevalonate pathway; their effects are related to reduced cholesterol production as well as anti-inflammatory and anti-oxidant properties. In women with PCOS, statins reduce hyperandrogenism, improve lipid profile and reduce systemic inflammation while the effects on insulin sensitivity are variable. Use of statins is contraindicated in pregnancy.

  10. Role of lymphocytes in myocardial injury, healing, and remodeling after myocardial infarction.

    PubMed

    Hofmann, Ulrich; Frantz, Stefan

    2015-01-16

    A large body of evidence produced during decades of research indicates that myocardial injury activates innate immunity. On the one hand, innate immunity both aggravates ischemic injury and impedes remodeling after myocardial infarction (MI). On the other hand, innate immunity activation contributes to myocardial healing, as exemplified by monocytes' central role in the formation of a stable scar and protection against intraventricular thrombi after acute infarction. Although innate leukocytes can recognize a wide array of self-antigens via pattern recognition receptors, adaptive immunity activation requires highly specific cooperation between antigen-presenting cells and distinct antigen-specific receptors on lymphocytes. We have only recently begun to examine lymphocyte activation's relationship to adaptive immunity and significance in the context of ischemic myocardial injury. There is some experimental evidence that CD4(+) T-cells contribute to ischemia-reperfusion injury. Several studies have shown that CD4(+) T-cells, especially CD4(+) T-regulatory cells, improve wound healing after MI, whereas depleting B-cells is beneficial post MI. That T-cell activation after MI is induced by T-cell receptor signaling implicates autoantigens that have not yet been identified in this context. Also, the significance of lymphocytes in humans post MI remains unclear, primarily as a result of methodology. This review summarizes current experimental evidence of lymphocytes' activation, functional role, and crosstalk with innate leukocytes in myocardial ischemia-reperfusion injury, wound healing, and remodeling after myocardial infarction.

  11. Rat cardiac myocyte adenosine transport and metabolism

    SciTech Connect

    Ford, D.A.; Rovetto, M.J.

    1987-01-01

    Based on the importance of myocardial adenosine and adenine nucleotide metabolism, the adenosine salvage pathway in ventricular myocytes was studied. Accurate estimates of transport rates, separate from metabolic fllux, were determined. Adenosine influx was constant between 3 and 60 s. Adenosine metabolism maintained intracellular adenosine concentrations < 10% of the extracellular adenosine concentrations and thus unidirectional influx could be measured. Myocytes transported adenosine via saturable and nonsaturable processes. A minimum estimate of the V/sub max/ of myocytic adenosine kinase indicated the saturable component of adenosine influx was independent of adenosine kinase activity. Saturable transport was inhibited by nitrobenzylthioinosine and verapamil. Extracellular adenosine taken up myocytes was rapidly phosphorylated to adenine taken up by myocytes was rapidly phosphorylated to adenine nucleotides. Not all extracellular adenosine, though, was phosphorylated on entering myocytes, since free, as opposed to protein-bound, intracellular adenosine was detected after digitonin extraction of cells in the presence of 1 mM ethylene-diaminetetraacetic acid.

  12. Metabolic Shifts during Aging and Pathology

    PubMed Central

    Ma, Yina; Li, Ji

    2016-01-01

    The heart is a very special organ in the body and has a high requirement for metabolism due to its constant workload. As a consequence, to provide a consistent and sufficient energy a high steady-state demand of metabolism is required by the heart. When delicately balanced mechanisms are changed by physiological or pathophysiological conditions, the whole system’s homeostasis will be altered to a new balance, which contributes to the pathologic process. So it is no wonder that almost every heart disease is related to metabolic shift. Furthermore, aging is also found to be related to the reduction in mitochondrial function, insulin resistance, and dysregulated intracellular lipid metabolism. Adenosine monophosphate-activated protein kinase (AMPK) functions as an energy sensor to detect intracellular ATP/AMP ratio and plays a pivotal role in intracellular adaptation to energy stress. During different pathology (like myocardial ischemia and hypertension), the activation of cardiac AMPK appears to be essential for repairing cardiomyocyte’s function by accelerating ATP generation, attenuating ATP depletion, and protecting the myocardium against cardiac dysfunction and apoptosis. In this overview, we will talk about the normal heart’s metabolism, how metabolic shifts during aging and different pathologies, and how AMPK regulates metabolic changes during these conditions. PMID:25880509

  13. Myocardial ischemic protection in natural mammalian hibernation.

    PubMed

    Yan, Lin; Kudej, Raymond K; Vatner, Dorothy E; Vatner, Stephen F

    2015-03-01

    Hibernating myocardium is an important clinical syndrome protecting the heart with chronic myocardial ischemia, named for its assumed resemblance to hibernating mammals in winter. However, the effects of myocardial ischemic protection have never been studied in true mammalian hibernation, which is a unique strategy for surviving extreme winter environmental stress. The goal of this investigation was to test the hypothesis that ischemic stress may also be protected in woodchucks as they hibernate in winter. Myocardial infarction was induced by coronary occlusion followed by reperfusion in naturally hibernating woodchucks in winter with and without hibernation and in summer, when not hibernating. The ischemic area at risk was similar among groups. Myocardial infarction was significantly less in woodchucks in winter, whether hibernating or not, compared with summer, and was similar to that resulting after ischemic preconditioning. Whereas several genes were up or downregulated in both hibernating woodchuck and with ischemic preconditioning, one mechanism was unique to hibernation, i.e., activation of cAMP-response element binding protein (CREB). When CREB was upregulated in summer, it induced protection similar to that observed in the woodchuck heart in winter. The cardioprotection in hibernation was also mediated by endothelial nitric oxide synthase, rather than inducible nitric oxide synthase. Thus, the hibernating woodchuck heart is a novel model to study cardioprotection for two major reasons: (1) powerful cardioprotection occurs naturally in winter months in the absence of any preconditioning stimuli, and (2) it resembles ischemic preconditioning, but with novel mechanisms, making this model potentially useful for clinical translation.

  14. Protective approaches against myocardial ischemia reperfusion injury

    PubMed Central

    Li, Xianchi; Liu, Min; Sun, Rongrong; Zeng, Yi; Chen, Shuang; Zhang, Peiying

    2016-01-01

    Myocardial ischemia-reperfusion is the leading cause for the events of cardiovascular disease, and is considered as a major contributor to the morbidity and mortality associated with coronary occlusion. The myocardial damage caused by ischemia-reperfusion injury constitutes the primary pathological manifestation of coronary artery disease. It results from the interaction between the substances that accumulate during ischemia and those that are delivered on reperfusion. The level of this damage can range from a small insult resulting in limited myocardial damage to a large injury culminating in myocyte death. Importantly, major ischemia-reperfusion injury to the heart can result in permanent disability or death. Given the worldwide prevalence of coronary artery disease, developing a strategy to provide cardioprotection against ischemia-reperfusion-induced damage is of great importance. Currently, the treatment of reperfusion injury following ischemia is primarily supportive, since no specific target-oriented therapy has been validated thus far. Nevertheless, therapeutic approaches to protect against myocardial ischemia-reperfusion injury remain an active area of investigation given the detrimental effects of this phenomenon. PMID:28101167

  15. Myocardial ischemic protection in natural mammalian hibernation

    PubMed Central

    Yan, Lin; Kudej, Raymond K.; Vatner, Dorothy E.

    2015-01-01

    Hibernating myocardium is an important clinical syndrome protecting the heart with chronic myocardial ischemia, named for its assumed resemblance to hibernating mammals in winter. However, the effects of myocardial ischemic protection have never been studied in true mammalian hibernation, which is a unique strategy for surviving extreme winter environmental stress. The goal of this investigation was to test the hypothesis that ischemic stress may also be protected in woodchucks as they hibernate in winter. Myocardial infarction was induced by coronary occlusion followed by reperfusion in naturally hibernating woodchucks in winter with and without hibernation and in summer, when not hibernating. The ischemic area at risk was similar among groups. Myocardial infarction was significantly less in woodchucks in winter, whether hibernating or not, compared with summer, and was similar to that resulting after ischemic preconditioning. Whereas several genes were up or downregulated in both hibernating woodchuck and with ischemic preconditioning, one mechanism was unique to hibernation, i.e., activation of cAMP-response element binding protein (CREB). When CREB was upregulated in summer, it induced protection similar to that observed in the woodchuck heart in winter. The cardioprotection in hibernation was also mediated by endothelial nitric oxide synthase, rather than inducible nitric oxide synthase. Thus, the hibernating woodchuck heart is a novel model to study cardioprotection for two major reasons: (1) powerful cardioprotection occurs naturally in winter months in the absence of any preconditioning stimuli, and (2) it resembles ischemic preconditioning, but with novel mechanisms, making this model potentially useful for clinical translation. PMID:25613166

  16. Myocardial infarction. Considerations for geriatric patients.

    PubMed Central

    Sinclair, D.

    1994-01-01

    Myocardial infarction is common among the elderly. Presentation is often atypical, and symptoms include confusion, weakness, chest pain, dyspnea, and vomiting. Serial electrocardiograms and cardiac enzyme determination lead to diagnosis. Postmyocardial treatments include acetylsalicylic acid, beta-blockers, nitrates, and angiotensin-converting enzyme inhibitors. Thrombolytic agents are safe and useful. Angioplasty and cardiac surgery should be considered for certain patients. PMID:7912578

  17. [Myocardial depression in the burn patient].

    PubMed

    Carrillo-Esper, Raúl; Sánchez-Zúñiga, Martín de Jesús

    2006-01-01

    Myocardial depression and heart failure are frequent complications in critically ill burn patients. The physiopathology is complex and involves the activation of inflammatory pathways, ischemia-reperfusion, oxidative stress and endothelial lesion. Diagnosis should be made early by means of hemodynamic monitoring. Treatment is accomplished by inotropics that act on different pathways of the contractile function and immune response associated with antioxidants and allopurinol.

  18. Perceived Neighborhood Social Cohesion and Myocardial Infarction

    PubMed Central

    Kim, Eric S.; Hawes, Armani M.; Smith, Jacqui

    2015-01-01

    Background The main strategy for alleviating heart disease has been to target individuals and encourage them to change their health behaviors. Though important, emphasis on individuals has diverted focus and responsibility away from neighborhood characteristics, which also strongly influence people’s behaviors. Although a growing body of research has repeatedly demonstrated strong associations between neighborhood characteristics and cardiovascular health, it has typically focused on negative neighborhood characteristics. Only a few studies have examined the potential health enhancing effects of positive neighborhood characteristics, such as perceived neighborhood social cohesion. Methods Using multiple logistic regression models, we tested whether higher perceived neighborhood social cohesion was associated with lower incidence of myocardial infarction. Prospective data from the Health and Retirement Study—a nationally representative panel study of American adults over the age of 50—were used to analyze 5,276 participants with no history of heart disease. Respondents were tracked for four years and analyses adjusted for relevant sociodemographic, behavioral, biological, and psychosocial factors. Results In a model that adjusted for age, gender, race, marital status, education, and total wealth, each standard deviation increase in perceived neighborhood social cohesion was associated with a 22% reduced odds of myocardial infarction (OR = 0.78, 95% CI, 0.63–0.94. The association between perceived neighborhood social cohesion and myocardial infarction remained even after adjusting for behavioral, biological, and psychosocial covariates. Conclusions Higher perceived neighborhood social cohesion may have a protective effect against myocardial infarction. PMID:25135074

  19. Steroid-induced recurrent myocardial ischemia.

    PubMed

    Yildirim, Ufuk; Gulel, Okan; Soylu, Korhan; Yuksel, Serkan; Sahin, Mahmut

    2014-01-01

    We report the case of a female patient under oral prednisolone therapy due to a diagnosis of idiopathic intracranial hypertension with papilledema. Unfortunately, short-term treatment with prednisolone caused an unusual complication in the patient, i.e., recurrent myocardial ischemia. Possible mechanisms leading to this complication were evaluated in the light of current knowledge.

  20. Rehabilitation of Patients Following Myocardial Infarction.

    ERIC Educational Resources Information Center

    Blumenthal, James A.; Emery, Charles F.

    1988-01-01

    Examines three behavioral strategies in cardiac rehabilitation (CR) for formal treatment for physical and psychosocial sequelae of myocardial infarction (MI): exercise therapy, Type A modification, and nonspecific psychological therapies. Concludes CR improves the quality of life among post-MI patients, but does not prolong life or significantly…

  1. Decreased selenium levels in acute myocardial infarction

    SciTech Connect

    Kok, F.J.; Hofman, A.; Witteman, J.C.M.; de Bruijn, A.M.; Kruyssen, D.H.C.M.; de Bruin, M.; Valkenburg, H.A. )

    1989-02-24

    To study the association between selenium status and the risk of myocardial infarction, the authors compared plasma, erythrocyte, and toenail selenium levels and the activity of erythrocyte glutathione peroxidase among 84 patients with acute myocardial infarction and 84 population controls. Mean concentrations of all selenium measurements were lower in cases than controls. The differences were statistically significant, except for the plasma selenium level. A positive trend in the risk of acute myocardial infarction from high to low toenail selenium levels was observed, which persisted after adjustment for other risk factors for myocardial infarction. In contrast, erythrocyte glutathione peroxidase activity was significantly higher in cases than controls. Because toenail selenium level reflects blood levels up to one year before sampling, these findings suggest that a low selenium status was present before the infarction and, thus, may be of etiologic relevance. The higher glutathione peroxidase activity in the cases may be interpreted as a defense against increased oxidant stress either preceding or following the acute event.

  2. [Myocardial infarction after conduction electrical weapon shock].

    PubMed

    Ben Ahmed, H; Bouzouita, K; Selmi, K; Chelli, M; Mokaddem, A; Ben Ameur, Y; Boujnah, M R

    2013-04-01

    Controversy persists over the safety of conducted electrical weapons, which are increasingly used by law enforcement agencies around the world. We report a case of 33-year-old man who had an acute inferior myocardial infarction after he was shot in the chest with an electrical weapon.

  3. Systemic Atherosclerotic Inflammation Following Acute Myocardial Infarction: Myocardial Infarction Begets Myocardial Infarction

    PubMed Central

    Joshi, Nikhil V; Toor, Iqbal; Shah, Anoop S V; Carruthers, Kathryn; Vesey, Alex T; Alam, Shirjel R; Sills, Andrew; Hoo, Teng Y; Melville, Adam J; Langlands, Sarah P; Jenkins, William S A; Uren, Neal G; Mills, Nicholas L; Fletcher, Alison M; van Beek, Edwin J R; Rudd, James H F; Fox, Keith A A; Dweck, Marc R; Newby, David E

    2015-01-01

    Background Preclinical data suggest that an acute inflammatory response following myocardial infarction (MI) accelerates systemic atherosclerosis. Using combined positron emission and computed tomography, we investigated whether this phenomenon occurs in humans. Methods and Results Overall, 40 patients with MI and 40 with stable angina underwent thoracic 18F-fluorodeoxyglucose combined positron emission and computed tomography scan. Radiotracer uptake was measured in aortic atheroma and nonvascular tissue (paraspinal muscle). In 1003 patients enrolled in the Global Registry of Acute Coronary Events, we assessed whether infarct size predicted early (≤30 days) and late (>30 days) recurrent coronary events. Compared with patients with stable angina, patients with MI had higher aortic 18F-fluorodeoxyglucose uptake (tissue-to-background ratio 2.15±0.30 versus 1.84±0.18, P<0.0001) and plasma C-reactive protein concentrations (6.50 [2.00 to 12.75] versus 2.00 [0.50 to 4.00] mg/dL, P=0.0005) despite having similar aortic (P=0.12) and less coronary (P=0.006) atherosclerotic burden and similar paraspinal muscular 18F-fluorodeoxyglucose uptake (P=0.52). Patients with ST-segment elevation MI had larger infarcts (peak plasma troponin 32 300 [10 200 to >50 000] versus 3800 [1000 to 9200] ng/L, P<0.0001) and greater aortic 18F-fluorodeoxyglucose uptake (2.24±0.32 versus 2.02±0.21, P=0.03) than those with non–ST-segment elevation MI. Peak plasma troponin concentrations correlated with aortic 18F-fluorodeoxyglucose uptake (r=0.43, P=0.01) and, on multivariate analysis, independently predicted early (tertile 3 versus tertile 1: relative risk 4.40 [95% CI 1.90 to 10.19], P=0.001), but not late, recurrent MI. Conclusions The presence and extent of MI is associated with increased aortic atherosclerotic inflammation and early recurrent MI. This finding supports the hypothesis that acute MI exacerbates systemic atherosclerotic inflammation and remote plaque destabilization

  4. Metabolic neuropathies

    MedlinePlus

    ... Severe infection throughout the body ( sepsis ) Thyroid disease Vitamin deficiencies (including vitamins B12 , B6 , E , and B1 ) Some ... best treatment is to correct the metabolic problem. Vitamin deficiencies are treated with diet or with vitamins by ...

  5. Exercise preconditioning of myocardial infarct size in dogs is triggered by calcium.

    PubMed

    Parra, Víctor M; Macho, Pilar; Sánchez, Gina; Donoso, Paulina; Domenech, Raúl J

    2015-03-01

    We showed that exercise induces early and late myocardial preconditioning in dogs and that these effects are mediated through nicotinamide adenine dinucleotide phosphate reduced form (NADPH) oxidase activation. As the intracoronary administration of calcium induces preconditioning and exercise enhances the calcium inflow to the cell, we studied if this effect of exercise triggers exercise preconditioning independently of its hemodynamic effects. We analyzed in 81 dogs the effect of blocking sarcolemmal L-type Ca channels with a low dose of verapamil on early and late preconditioning by exercise, and in other 50 dogs, we studied the effect of verapamil on NADPH oxidase activation in early exercise preconditioning. Exercise reduced myocardial infarct size by 76% and 52% (early and late windows respectively; P < 0.001 both), and these effects were abolished by a single low dose of verapamil given before exercise. This dose of verapamil did not modify the effect of exercise on metabolic and hemodynamic parameters. In addition, verapamil blocked the activation of NADPH oxidase during early preconditioning. The protective effect of exercise preconditioning on myocardial infarct size is triggered, at least in part, by calcium inflow increase to the cell during exercise and, during the early window, is mediated by NADPH oxidase activation.

  6. Role of MIF in myocardial ischaemia and infarction: insight from recent clinical and experimental findings.

    PubMed

    Dayawansa, Nalin H; Gao, Xiao-Ming; White, David A; Dart, Anthony M; Du, Xiao-Jun

    2014-08-01

    First discovered in 1966 as an inflammatory cytokine, MIF (macrophage migration inhibitory factor) has been extensively studied for its pivotal role in a variety of inflammatory diseases, including rheumatoid arthritis and atherosclerosis. Although initial studies over a decade ago reported increases in circulating MIF levels following acute MI (myocardial infarction), the dynamic changes in MIF and its pathophysiological significance following MI have been unknown until recently. In the present review, we summarize recent experimental and clinical studies examining the diverse functions of MIF across the spectrum of acute MI from brief ischaemia to post-infarct healing. Following an acute ischaemic insult, MIF is rapidly released from jeopardized cardiomyocytes, followed by a persistent MIF production and release from activated immune cells, resulting in a sustained increase in circulating levels of MIF. Recent studies have documented two distinct actions of MIF following acute MI. In the supra-acute phase of ischaemia, MIF mediates cardioprotection via several distinct mechanisms, including metabolic activation, apoptosis suppression and antioxidative stress. In prolonged myocardial ischaemia, however, MIF promotes inflammatory responses with largely detrimental effects on cardiac function and remodelling. The pro-inflammatory properties of MIF are complex and involve MIF derived from cardiac and immune cells contributing sequentially to the innate immune response evoked by MI. Emerging evidence on the role of MIF in myocardial ischaemia and infarction highlights a significant potential for the clinical use of MIF agonists or antagonists and as a unique cardiac biomarker.

  7. 1-alkenyl-2-acyl glycerol is an intermediate in myocardial plasmenylcholine biosynthesis

    SciTech Connect

    Ford, D.; Gross, R.

    1987-05-01

    The present study was undertaken to identify the metabolic pathway(s) responsible for myocardial plasmenylcholine biosynthesis. Rabbit myocardium contained .46 +/- .09 nmol/g wet wight of 1-alkenyl-2-acyl glycerol (AAG) which predominantly consisted of 16:0 molecular species at the sn-1 position. Incubation of rabbit myocardial microsomes (RMM) with (/sup 14/C)CDP-choline (/sup 14/C-CDPC) resulted in the rapid incorporation of radiolabeled choline into the choline glycerophospholipid pool. RP-HPLC separation of molecular species demonstrated that nearly equal amounts of radiolabel were incorporated into plasmenylcholine and phosphatidylcholine subclasses despite the fact that RMM contained 21 times the mass of diacyl glycerol as compared to AAG. RMM incorporation of /sup 14/C-CDPC into choline glycerophospholipids was substantially greater than incorporation of (/sup 14/C) phosphorylcholine or (/sup 14/C) choline. RMM incorporation of /sup 14/C-CDPC into plasmalogen molecular species was stimulated two fold by 500 ..mu..M CMP. Taken together, these results demonstrate that rabbit myocardium contains substantial quantities of AAG and that endogenous AAG is an efficient precursor of myocardial plasmenylcholine.

  8. Type 2 myocardial infarction: the chimaera of cardiology?

    PubMed

    Collinson, Paul; Lindahl, Bertil

    2015-11-01

    The term type 2 myocardial infarction first appeared as part of the universal definition of myocardial infarction. It was introduced to cover a group of patients who had elevation of cardiac troponin but did not meet the traditional criteria for acute myocardial infarction although they were considered to have an underlying ischaemic aetiology for the myocardial damage observed. Since first inception, the term type 2 myocardial infarction has always been vague. Although attempts have been made to produce a systematic definition of what constitutes a type 2 myocardial infarction, it has been more often characterised by what it is not rather than what it is. Clinical studies that have used type 2 myocardial infarction as a diagnostic criterion have produced disparate incidence figures. The range of associated clinical conditions differs from study to study. Additionally, there are no agreed or evidence-based treatment strategies for type 2 myocardial infarction. The authors believe that the term type 2 myocardial infarction is confusing and not evidence-based. They consider that there is good reason to stop using this term and consider instead the concept of secondary myocardial injury that relates to the underlying pathophysiology of the primary clinical condition.

  9. Intestinal Microbial Metabolites Are Linked to Severity of Myocardial Infarction in Rats

    PubMed Central

    Lam, Vy; Su, Jidong; Hsu, Anna; Gross, Garrett J.; Salzman, Nita H.

    2016-01-01

    Intestinal microbiota determine severity of myocardial infarction in rats. We determined whether low molecular weight metabolites derived from intestinal microbiota and transported to the systemic circulation are linked to severity of myocardial infarction. Plasma from rats treated for seven days with the non-absorbed antibiotic vancomycin or a mixture of streptomycin, neomycin, polymyxin B and bacitracin was analyzed using mass spectrometry-based metabolite profiling platforms. Antibiotic-induced changes in the abundance of individual groups of intestinal microbiota dramatically altered the host’s metabolism. Hierarchical clustering of dissimilarities separated the levels of 284 identified metabolites from treated vs. untreated rats; 193 were altered by the antibiotic treatments with a tendency towards decreased metabolite levels. Catabolism of the aromatic amino acids phenylalanine, tryptophan and tyrosine was the most affected pathway comprising 33 affected metabolites. Both antibiotic treatments decreased the severity of an induced myocardial infarction in vivo by 27% and 29%, respectively. We then determined whether microbial metabolites of the amino acids phenylalanine, tryptophan and tyrosine were linked to decreased severity of myocardial infarction. Vancomycin-treated rats were administered amino acid metabolites prior to ischemia/reperfusion studies. Oral or intravenous pretreatment of rats with these amino acid metabolites abolished the decrease in infarct size conferred by vancomycin. Inhibition of JAK-2 (AG-490, 10 μM), Src kinase (PP1, 20 μM), Akt/PI3 kinase (Wortmannin, 100 nM), p44/42 MAPK (PD98059, 10 μM), p38 MAPK (SB203580, 10 μM), or KATP channels (glibenclamide, 3 μM) abolished cardioprotection by vancomycin, indicating microbial metabolites are interacting with cell surface receptors to transduce their signals through Src kinase, cell survival pathways and KATP channels. These inhibitors have no effect on myocardial infarct size in

  10. Free Triiodothyronine Level Correlates with Myocardial Injury and Prognosis in Idiopathic Dilated Cardiomyopathy: Evidence from Cardiac MRI and SPECT/PET Imaging

    PubMed Central

    Wang, Wenyao; Guan, Haixia; Fang, Wei; Zhang, Kuo; Gerdes, A. Martin; Iervasi, Giorgio; Tang, Yi-Da

    2016-01-01

    Thyroid dysfunction is associated with poor prognosis in heart failure, but theories of mechanisms are mainly based on animal experiments, not on human level. We aimed to explore the relation between thyroid function and myocardial injuries in idiopathic dilated cardiomyopathy (IDCM) using cardiac magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Myocardial fibrosis was detected by late gadolinium enhancement (LGE) MRI, and myocardial perfusion/metabolism was evaluated by 99mTc-MIBI SPECT /18F-FDG PET imaging. Across the quartiles of FT3, decreased percentage of segments with LGE and perfusion/metabolism abnormalities were found. As for FT4 and TSH levels, no significant distribution trend of myocardial injuries could be detected. In logistic analysis, FT3 was independently associated with the presence of LGE (OR: 0.140, 95% CI: 0.035–0.567), perfusion abnormalities (OR: 0.172, 95% CI: 0.040–0.738) and metabolism abnormalities (OR: 0.281, 95% CI: 0.081–0.971). After a median follow-up of 46 months, LGE-positive and FT3 < 2.77 pg/mL was identified as the strongest predictor of cardiac events (HR: 8.623, 95% CI: 3.626–16.438). Low FT3 level is associated with myocardial fibrosis and perfusion/metabolism abnormalities in patients with IDCM. The combination of FT3 level and LGE provides useful information for assessing the prognosis of IDCM. PMID:28004791

  11. Preventive role of exercise training in autonomic, hemodynamic, and metabolic parameters in rats under high risk of metabolic syndrome development.

    PubMed

    Moraes-Silva, Ivana Cinthya; Mostarda, Cristiano; Moreira, Edson Dias; Silva, Kleiton Augusto Santos; dos Santos, Fernando; de Angelis, Kátia; Farah, Vera de Moura Azevedo; Irigoyen, Maria Claudia

    2013-03-15

    High fructose consumption contributes to metabolic syndrome incidence, whereas exercise training promotes several beneficial adaptations. In this study, we demonstrated the preventive role of exercise training in the metabolic syndrome derangements in a rat model. Wistar rats receiving fructose overload in drinking water (100 g/l) were concomitantly trained on a treadmill (FT) or kept sedentary (F) for 10 wk. Control rats treated with normal water were also submitted to exercise training (CT) or sedentarism (C). Metabolic evaluations consisted of the Lee index and glycemia and insulin tolerance test (kITT). Blood pressure (BP) was directly measured, whereas heart rate (HR) and BP variabilities were evaluated in time and frequency domains. Renal sympathetic nerve activity was also recorded. F rats presented significant alterations compared with all the other groups in insulin resistance (in mg · dl(-1) · min(-1): F: 3.4 ± 0.2; C: 4.7 ± 0.2; CT: 5.0 ± 0.5 FT: 4.6 ± 0.4), mean BP (in mmHG: F: 117 ± 2; C: 100 ± 2; CT: 98 ± 2; FT: 105 ± 2), and Lee index (in g/mm: F = 0.31 ± 0.001; C = 0.29 ± 0.001; CT = 0.27 ± 0.002; FT = 0.28 ± 0.002), confirming the metabolic syndrome diagnosis. Exercise training blunted all these derangements. Additionally, FS group presented autonomic dysfunction in relation to the others, as seen by an ≈ 50% decrease in baroreflex sensitivity and 24% in HR variability, and increases in sympathovagal balance (140%) and in renal sympathetic nerve activity (45%). These impairments were not observed in FT group, as well as in C and CT. Correlation analysis showed that both Lee index and kITT were associated with vagal impairment caused by fructose. Therefore, exercise training plays a preventive role in both autonomic and hemodynamic alterations related to the excessive fructose consumption.

  12. [The changes of hemodynamic parameters, pathology and c-kit mRNA expression in myocardium after acute myocardial infarction in rats].

    PubMed

    Chen, Shiqian; Long, Weifu; Wu, Wenchao; Jiang, Congxun; Liu, Xiaojing; Li, Liang

    2009-06-01

    This study was aimed to investigate the changes of hemodynamic parameters, pathology and c kit mRNA expression in myocardium after acute myocardial infarctionin (AMI) in rats, and to elucidate the relationship between these three kinds of changes. Sixty six adult male SD rats were randomly divided into normal group, Sham groups and ligation groups. The rat model of AMI was set up by ligating the left anterior descending artery. Hemodynamic parameters, pathological changes and c kit mRNA expression in myocardiam were examined. The results revealed that there were no statistically significant differences in hemodynamic parameters between normal group and Sham groups. Compared with the normal group, all ligation groups exhibited significantly decreased left ventricular systolic pressure (LVSP) and +/-dp/dtmax (P<0.01), and increased left ventricular end diastolic pressure (LVEDP, P<0.01). In the other ligation groups, compared with 6th hour group after ligation, there appeared striking increase of LVSP, LVEDP and +/-dp/dtmax (P<0.05). HE staining in myocardiam showed that there are necrosis and derangement at 24th hour group after ligation ,and a great number of inflammatory cells infiltration around the infarct zone at 3rd day group after ligation, and granulation tissue infiltrated into the infarct zone at 14th day group after ligation. In all five time points groups after ligation, the levels of c-kit mRNA expression were 0.99 fold, 1.06 fold, 1.46 fold, 1.91 fold and 2.67 fold, respectively, compared with Sham groups. The results suggest that cardiac stem cells in myocardium might contribute to the role of regenerating myocardium via self proliferation after acute myocardial infarction, but further investigation is still needed.

  13. Regional left ventricular myocardial contractility and stress in a finite element model of posterobasal myocardial infarction.

    PubMed

    Wenk, Jonathan F; Sun, Kay; Zhang, Zhihong; Soleimani, Mehrdad; Ge, Liang; Saloner, David; Wallace, Arthur W; Ratcliffe, Mark B; Guccione, Julius M

    2011-04-01

    Recently, a noninvasive method for determining regional myocardial contractility, using an animal-specific finite element (FE) model-based optimization, was developed to study a sheep with anteroapical infarction (Sun et al., 2009, "A Computationally Efficient Formal Optimization of Regional Myocardial Contractility in a Sheep With Left Ventricular Aneurysm," ASME J. Biomech. Eng., 131(11), p. 111001). Using the methodology developed in the previous study (Sun et al., 2009, "A Computationally Efficient Formal Optimization of Regional Myocardial Contractility in a Sheep With Left Ventricular Aneurysm," ASME J. Biomech. Eng., 131(11), p. 111001), which incorporates tagged magnetic resonance images, three-dimensional myocardial strains, left ventricular (LV) volumes, and LV cardiac catheterization pressures, the regional myocardial contractility and stress distribution of a sheep with posterobasal infarction were investigated. Active material parameters in the noninfarcted border zone (BZ) myocardium adjacent to the infarct (T(max_B)), in the myocardium remote from the infarct (T(max_R)), and in the infarct (T(max_I)) were estimated by minimizing the errors between FE model-predicted and experimentally measured systolic strains and LV volumes using the previously developed optimization scheme. The optimized T(max_B) was found to be significantly depressed relative to T(max_R), while T(max_I) was found to be zero. The myofiber stress in the BZ was found to be elevated, relative to the remote region. This could cause further damage to the contracting myocytes, leading to heart failure.

  14. Effect of Wenxin Granule on Ventricular Remodeling and Myocardial Apoptosis in Rats with Myocardial Infarction

    PubMed Central

    Wu, Aiming; Zhai, Jianying; Zhang, Dongmei; Lou, Lixia; Zhu, Haiyan; Gao, Yonghong; Chai, Limin; Xing, Yanwei; Lv, Xiying; Zhu, Lingqun; Zhao, Mingjing; Wang, Shuoren

    2013-01-01

    Aim. To determine the effect of a Chinese herbal compound named Wenxin Granule on ventricular remodeling and myocardial apoptosis in rats with myocardial infarction (MI). Methods. Male Sprague-Dawley (SD) rats were randomly divided into four groups: the control group, the model group, the metoprolol group, and the Wenxin Granule group (WXKL group) with sample size (n) of 7 rats in each group. An MI model was established in all rats by occlusion of the left anterior descending coronary artery (the control group was without occlusion). Wenxin Granule (1.35 g/kg/day), metoprolol (12 mg/kg/day), and distilled water (5 mL/kg/day for the control and model groups) were administered orally for 4 weeks. Ultrasonic echocardiography was used to examine cardiac structural and functional parameters. Myocardial histopathological changes were observed using haematoxylin and eosin (H&E) dyeing. Myocardial apoptosis was detected by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) staining. Serum angiotensin II (Ang II) concentration was measured using the enzyme-linked immunosorbent assay (ELISA). Results. It was found that Wenxin Granule could partially reverse ventricular remodeling, improve heart function, alleviate the histopathological damage, inhibit myocardial apoptosis, and reduce Ang II concentration in rats with MI. Conclusions. The results of the current study suggest that Wenxin Granule may be a potential alternative and complementary medicine for the treatment of MI. PMID:23997803

  15. Immune system and glucose metabolism interaction in schizophrenia: a chicken-egg dilemma.

    PubMed

    Steiner, Johann; Bernstein, Hans-Gert; Schiltz, Kolja; Müller, Ulf J; Westphal, Sabine; Drexhage, Hemmo A; Bogerts, Bernhard

    2014-01-03

    Impaired glucose metabolism and the development of metabolic syndrome contribute to a reduction in the average life expectancy of individuals with schizophrenia. It is unclear whether this association simply reflects an unhealthy lifestyle or whether weight gain and impaired glucose tolerance in patients with schizophrenia are directly attributable to the side effects of atypical antipsychotic medications or disease-inherent derangements. In addition, numerous previous studies have highlighted alterations in the immune system of patients with schizophrenia. Increased concentrations of interleukin (IL)-1, IL-6, and transforming growth factor-beta (TGF-β) appear to be state markers, whereas IL-12, interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and soluble IL-2 receptor (sIL-2R) appear to be trait markers of schizophrenia. Moreover, the mononuclear phagocyte system (MPS) and microglial activation are involved in the early course of the disease. This review illustrates a "chicken-egg dilemma", as it is currently unclear whether impaired cerebral glucose utilization leads to secondary disturbances in peripheral glucose metabolism, an increased risk of cardiovascular complications, and accompanying pro-inflammatory changes in patients with schizophrenia or whether immune mechanisms may be involved in the initial pathogenesis of schizophrenia, which leads to disturbances in glucose metabolism such as metabolic syndrome. Alternatively, shared underlying factors may be responsible for the co-occurrence of immune system and glucose metabolism disturbances in schizophrenia.

  16. High-fat diet induces significant metabolic disorders in a mouse model of polycystic ovary syndrome.

    PubMed

    Lai, Hao; Jia, Xiao; Yu, Qiuxiao; Zhang, Chenglu; Qiao, Jie; Guan, Youfei; Kang, Jihong

    2014-11-01

    Polycystic ovary syndrome (PCOS) is the most common female endocrinopathy associated with both reproductive and metabolic disorders. Dehydroepiandrosterone (DHEA) is currently used to induce a PCOS mouse model. High-fat diet (HFD) has been shown to cause obesity and infertility in female mice. The possible effect of an HFD on the phenotype of DHEA-induced PCOS mice is unknown. The aim of the present study was to investigate both reproductive and metabolic features of DHEA-induced PCOS mice fed a normal chow or a 60% HFD. Prepubertal C57BL/6 mice (age 25 days) on the normal chow or an HFD were injected (s.c.) daily with the vehicle sesame oil or DHEA for 20 consecutive days. At the end of the experiment, both reproductive and metabolic characteristics were assessed. Our data show that an HFD did not affect the reproductive phenotype of DHEA-treated mice. The treatment of HFD, however, caused significant metabolic alterations in DHEA-treated mice, including obesity, glucose intolerance, dyslipidemia, and pronounced liver steatosis. These findings suggest that HFD induces distinct metabolic features in DHEA-induced PCOS mice. The combined DHEA and HFD treatment may thus serve as a means of studying the mechanisms involved in metabolic derangements of this syndrome, particularly in the high prevalence of hepatic steatosis in women with PCOS.

  17. The endocannabinoid system as a target for the treatment of visceral obesity and metabolic syndrome.

    PubMed

    Kyrou, Ioannis; Valsamakis, George; Tsigos, Constantine

    2006-11-01

    The endogenous cannabinoid system is a novel, remarkably elaborate physiological signaling system, comprising the recently identified endogenous cannabinoid ligands, their corresponding selective receptors, and the machinery of proteins and enzymes that is involved in their biosynthesis, release, transport, and degradation. This system extends widely in both the central nervous system (CNS) and the periphery and exhibits a variety of actions implicated in vital functions (e.g., behavioral, antinociceptive, neuroprotective, immunosuppressive, cardiovascular, and metabolic). Particular interest has been focused on the apparent participation of endocannabinoids in metabolic homeostasis by modulating the activity of CNS circuits that control food intake and energy expenditure, the neuroendocrine response of the stress system, and the metabolic functions of crucial peripheral tissues, such as the adipose tissue, the gastrointestinal tract, the liver, and the skeletal muscles. These effects are predominantly CB(1) receptor mediated and, thus, selective antagonists of this receptor subtype are being vigorously investigated as potential therapeutic agents for the treatment of various metabolic derangements (e.g., obesity, insulin resistance, dyslipidemia, and metabolic syndrome). The first selective CB(1) receptor antagonist, rimonabant, has already successfully completed phase III clinical trials as adjunctive obesity treatment, with significant improvements in several associated metabolic and cardiovascular risk factors that led to the recent approval of its clinical use by the Food and Drug Administration.

  18. Myocardial Tissue Characterization by Magnetic Resonance Imaging

    PubMed Central

    Ferreira, Vanessa M.; Piechnik, Stefan K.; Robson, Matthew D.; Neubauer, Stefan

    2014-01-01

    Cardiac magnetic resonance (CMR) imaging is a well-established noninvasive imaging modality in clinical cardiology. Its unsurpassed accuracy in defining cardiac morphology and function and its ability to provide tissue characterization make it well suited for the study of patients with cardiac diseases. Late gadolinium enhancement was a major advancement in the development of tissue characterization techniques, allowing the unique ability of CMR to differentiate ischemic heart disease from nonischemic cardiomyopathies. Using T2-weighted techniques, areas of edema and inflammation can be identified in the myocardium. A new generation of myocardial mapping techniques are emerging, enabling direct quantitative assessment of myocardial tissue properties in absolute terms. This review will summarize recent developments involving T1-mapping and T2-mapping techniques and focus on the clinical applications and future potential of these evolving CMR methodologies. PMID:24576837

  19. Myocardial tissue engineering using electrospun nanofiber composites.

    PubMed

    Kim, Pyung-Hwan; Cho, Je-Yoel

    2016-01-01

    Emerging trends for cardiac tissue engineering are focused on increasing the biocompatibility and tissue regeneration ability of artificial heart tissue by incorporating various cell sources and bioactive molecules. Although primary cardiomyocytes can be successfully implanted, clinical applications are restricted due to their low survival rates and poor proliferation. To develop successful cardiovascular tissue regeneration systems, new technologies must be introduced to improve myocardial regeneration. Electrospinning is a simple, versatile technique for fabricating nanofibers. Here, we discuss various biodegradable polymers (natural, synthetic, and combinatorial polymers) that can be used for fiber fabrication. We also describe a series of fiber modification methods that can increase cell survival, proliferation, and migration and provide supporting mechanical properties by mimicking micro-environment structures, such as the extracellular matrix (ECM). In addition, the applications and types of nanofiber-based scaffolds for myocardial regeneration are described. Finally, fusion research methods combined with stem cells and scaffolds to improve biocompatibility are discussed.

  20. Amphetamine Abuse Related Acute Myocardial Infarction

    PubMed Central

    Lewis, O'Dene; Kumar, Rajan; Yeruva, Sri Lakshmi Hyndavi; Curry, Bryan H.

    2016-01-01

    Amphetamine abuse is a global problem. The cardiotoxic manifestations like acute myocardial infarction (AMI), heart failure, or arrhythmia related to misuse of amphetamine and its synthetic derivatives have been documented but are rather rare. Amphetamine-related AMI is even rarer. We report two cases of men who came to emergency department (ED) with chest pain, palpitation, or seizure and were subsequently found to have myocardial infarction associated with the use of amphetamines. It is crucial that, with increase in amphetamine abuse, clinicians are aware of this potentially dire complication. Patients with low to intermediate risk for coronary artery disease with atypical presentation may benefit from obtaining detailed substance abuse history and urine drug screen if deemed necessary. PMID:26998366

  1. Painless acute myocardial infarction on Mount Kilimanjaro.

    PubMed

    Jamal, Nasiruddin; Rajhy, Mubina; Bapumia, Mustaafa

    2016-03-17

    An individual experiencing dyspnoea or syncope at high altitude is commonly diagnosed to have high-altitude pulmonary edema or cerebral edema. Acute myocardial infarction (AMI) is generally not considered in the differential diagnosis. There have been very rare cases of AMI reported only from Mount Everest. We report a case of painless ST segment elevation myocardial infarction (STEMI) that occurred while climbing Mount Kilimanjaro. A 51-year-old man suffered dyspnoea and loss of consciousness near the mountain peak, at about 5600 m. At a nearby hospital, he was treated as a case of high-altitude pulmonary edema. ECG was not obtained. Two days after the incident, he presented to our institution with continued symptoms of dyspnoea, light-headedness and weakness, but no pain. He was found to have inferior wall and right ventricular STEMI complicated by complete heart block. He was successfully managed with coronary angioplasty, with good recovery.

  2. Myocardial fibrosis in an veteran endurance athlete

    PubMed Central

    Wilson, Mathew; O'Hanlon, Rory; Prasad, Sanjay; Basavarajaiah, Sandeep; Stephens, Nigel; Senior, Roxy; Shaw, Anthony; Sharma, Sanjay; Whyte, Gregory

    2009-01-01

    This study reports the cardiac structure and function of a lifelong male endurance athlete, who has run over 148 000 miles, who presented with symptoms of chest discomfort, dyspnoea and loss of competitive running performance. Importantly, the athlete documented several periods of regular intensive endurance activity while suffering with flu-like symptoms. Cardiovascular MRI demonstrated a pattern of late gadolinium enhancement, which indicated myocardial scarring as a result of previous myocarditis. Myocarditis is a non-ischaemic inflammatory disease of the myocardium associated with cardiac dysfunction and arrhythmogenic substrate. The clinical course of viral myocarditis is mostly insidious with limited cardiac inflammation and dysfunction. However, as in the present case, overwhelming inflammation may occur in a subset of patients leading to myocardial fibrosis due to recurrent inflammation. PMID:21847425

  3. Amphetamine Abuse Related Acute Myocardial Infarction.

    PubMed

    Sinha, Archana; Lewis, O'Dene; Kumar, Rajan; Yeruva, Sri Lakshmi Hyndavi; Curry, Bryan H

    2016-01-01

    Amphetamine abuse is a global problem. The cardiotoxic manifestations like acute myocardial infarction (AMI), heart failure, or arrhythmia related to misuse of amphetamine and its synthetic derivatives have been documented but are rather rare. Amphetamine-related AMI is even rarer. We report two cases of men who came to emergency department (ED) with chest pain, palpitation, or seizure and were subsequently found to have myocardial infarction associated with the use of amphetamines. It is crucial that, with increase in amphetamine abuse, clinicians are aware of this potentially dire complication. Patients with low to intermediate risk for coronary artery disease with atypical presentation may benefit from obtaining detailed substance abuse history and urine drug screen if deemed necessary.

  4. Thallium-201 myocardial imaging in children

    SciTech Connect

    Sty, J.R.; Starshak, R.J.

    1985-01-01

    The clinical applications of thallium-201 scintigraphy are less well defined in children than in adults. However, the published data indicate several potential applications including assessment of: 1) deficit in left ventricular myocardial perfusion, 2) early right ventricular volume or pressure overload, or both, and 3) the right ventricle in both cyanotic and acyanotic congenital heart disease. In this report, the applications of thallium imaging to pediatric diseases are described and the advantages and disadvantages of the procedure are enumerated.

  5. Recent developments and future prospects of SPECT myocardial perfusion imaging.

    PubMed

    Zaman, Maseeh Uz; Hashmi, Ibrahim; Fatima, Nosheen

    2010-10-01

    Myocardial perfusion SPECT imaging is the most commonly performed functional imaging for assessment of coronary artery disease. High diagnostic accuracy and incremental prognostic value are the major benefits while suboptimal spatial resolution and significant radiation exposure are the main limitations. Its ability to detect hemodynamic significance of lesions seen on multidetector CT angiogram (MDCTA) has paved the path for a successful marriage between anatomical and functional imaging modalities in the form of hybrid SPECT/MDCTA system. In recent years, there have been enormous efforts by industry and academia to develop new SPECT imaging systems with better sensitivity, resolution, compact design and new reconstruction algorithms with ability to improve image quality and resolution. Furthermore, expected arrival of Tc-99m-labeled deoxyglucose in next few years would further strengthen the role of SPECT in imaging hibernating myocardium. In view of these developments, it seems that SPECT would enjoy its pivotal role in spite of major threat to be replaced by fluorine-18-labeled positron emission tomography perfusion and glucose metabolism imaging agents.

  6. Galectin-3 and post-myocardial infarction cardiac remodeling.

    PubMed

    Meijers, Wouter C; van der Velde, A Rogier; Pascual-Figal, Domingo A; de Boer, Rudolf A

    2015-09-15

    This review summarizes the current literature regarding the involvement and the putative role(s) of galectin-3 in post-myocardial infarction cardiac remodeling. Post-myocardial infarction remodeling is characterized by acute loss of myocardium, which leads to structural and biomechanical changes in order to preserve cardiac function. A hallmark herein is fibrosis formation, both in the early and late phase following acute myocardial infarction. Galectin-3, a β-galactoside-binding lectin, which is a shared factor in fibrosis formation in multiple organs, has an established role in cardiac fibrosis in the setting of pressure overload, neuro-endocrine activation and hypertension, but its role in post- myocardial infarction remodeling has received less attention. However, accumulative experimental studies have shown that myocardial galectin-3 expression is upregulated after myocardial infarction, both on mRNA and protein level. This already occurs shortly after myocardial infarction in the infarcted and border zone area, and also at a later stage in the spared myocardium, contributing to tissue repair and fibrosis. This is associated with typical aspects of fibrosis formation, such as apposition of matricellular proteins and increased factors of collagen turnover. Interestingly, myocardial fibrosis in experimental post-myocardial infarction cardiac remodeling could be attenuated by galectin-3 inhibition. In clinical studies, circulating galectin-3 levels have been shown to identify patients at risk for new-onset heart failure and atrial fibrillation. Circulating galectin-3 levels also predict progressive left ventricular dilatation after myocardial infarction. From literature we conclude that galectin-3 is an active player in cardiac remodeling after myocardial infarction. Future studies should focus on the dynamics of galectin-3 activation after myocardial infarction, and study the possibilities to target galectin-3.

  7. [Efficiency of mildronate in rats of different age with experimental-induced myocardial ischemia].

    PubMed

    Kukes, V G; Zhernakova, N I; Gorbach, T V; Romashchenko, O V; Rumbesht, V V

    2013-01-01

    Under experimental myocardial ischemia in rats of 10 months treatment with mildronate resulted in essential changes in metabolism of cardiomyocites. This includes stimulation of aerobic and anaerobic ways of power supply of heart cells: activation of glycolysis, oxidative phosphorylation and oxidative pyruvate decarboxylation with restoration of adenosine triphosphate pool to intact rats level in myocardium, serum and erythrocytes with signs of stabilization of cardiomyocytes membranes and essential decrease of tissue hypoxia. Introduction of mildronate to old rats (24 months) with an experimental myocardium ischemia was accompanied by lesser expressed changes of metabolism: activation of glycolysis and oxidative pyruvate decarboxylation without stimulation of Crebs' cycle enzymes. This became sufficient for restoration of adenosine triphosphate pool in myocardium without change of its quantity in serum and erythrocytes with signs of stabilization of cardiomyocytes membranes and moderate reduction of tissue hypoxia degree.

  8. Concomitant aortic valve replacement and myocardial revascularization.

    PubMed Central

    Craver, J M; Jones, E L; Hatcher, C R; Farmer, J H

    1977-01-01

    Twenty-six consecutive patients underwent combined aortic valve replacement and myocardial revascularization at the Emory University Affiliated Hospitals between May, 1973 and March, 1976. Acute myocardial infarction resulted in two operative deaths (8%). There have been four late deaths, all Class IV preoperative. The age range was 37 to 79 years with an average age of 60. Preoperatively all patients were Class IV or late Class III. Twenty-three patients had symptoms of angina pectoris; congestive heart failure was evident in 56%. Postoperatively, 70% are now Class 1 or II. Single coronary bypass was performed in 16 patients, double in 6, and triple in three. Double bypass plus mitral valve replacement was required in two with aneurysmectomy in one. The rate of intraoperative infarction was 27% for the series but only 7% in the last year. The methods of intraoperative myocardial preservation and the technical approach for the operative procedures were variable. Results with each method are correlated, and currently preferred techniques are presented and discussed. Best results were obtained in patients who presented early in their symptomatic course with isolated proximal coronary lesions and good renoff vessels. Excellent results could be achieved despite advanced age of patients, requirement for multiple bypass grafts, and correction of other associated cardiac lesions. Poorest results were obtained when long-standing ventricular failure was combined with poor vessels distal to coronary stenoses. PMID:860881

  9. Coffee consumption and myocardial infarction in women.

    PubMed

    Palmer, J R; Rosenberg, L; Rao, R S; Shapiro, S

    1995-04-15

    Whether coffee consumption increases the risk of coronary heart disease has not yet been established. In a case-control study of nonfatal myocardial infarction among Massachusetts women aged 45-69 years in 1986-1990, 858 cases with first infarctions were compared with 858 community controls matched on age and town precinct. Detailed information on coffee drinking, cigarette smoking, and other factors was obtained by telephone interview. Relative risks (as estimated by odds ratios) and their 95% confidence intervals were computed from multiple logistic regression analyses that controlled for smoking and other risk factors. The risk of myocardial infarction increased with increasing number of cups per day among both drinkers of any type of coffee and drinkers of caffeine-containing coffee only: tests for trend, p = 0.002 and p = 0.0004, respectively. For consumption of caffeine-containing coffee alone, the relative risk estimates for 5-6 cups, 7-9 cups, and 10 or more cups per day relative to less than 1 cup per day were 1.4 (95% confidence interval (CI) 0.8-2.5), 2.1 (95% CI 0.9-4.9), and 2.5 (95% CI 1.0-6.5), respectively. No increase was observed for fewer than 5 cups per day. The positive association with heavy coffee drinking was present among nonsmokers as well as smokers. These findings and other recent studies suggest that heavy coffee consumption increases the risk of myocardial infarction.

  10. Myocardial perfusion echocardiography and coronary microvascular dysfunction

    PubMed Central

    Barletta, Giuseppe; Del Bene, Maria Riccarda

    2015-01-01

    Our understanding of coronary syndromes has evolved in the last two decades out of the obstructive atherosclerosis of epicardial coronary arteries paradigm to include anatomo-functional abnormalities of coronary microcirculation. No current diagnostic technique allows direct visualization of coronary microcirculation, but functional assessments of this circulation are possible. This represents a challenge in cardiology. Myocardial contrast echocardiography (MCE) was a breakthrough in echocardiography several years ago that claimed the capability to detect myocardial perfusion abnormalities and quantify coronary blood flow. Research demonstrated that the integration of quantitative MCE and fractional flow reserve improved the definition of ischemic burden and the relative contribution of collaterals in non-critical coronary stenosis. MCE identified no-reflow and low-flow within and around myocardial infarction, respectively, and predicted the potential functional recovery of stunned myocardium using appropriate interventions. MCE exhibited diagnostic performances that were comparable to positron emission tomography in microvascular reserve and microvascular dysfunction in angina patients. Overall, MCE improved echocardiographic evaluations of ischemic heart disease in daily clinical practice, but the approval of regulatory authorities is lacking. PMID:26730291

  11. Effects of switching from olanzapine to aripiprazole on the metabolic profiles of patients with schizophrenia and metabolic syndrome: a double-blind, randomized, open-label study

    PubMed Central

    Wani, Rayees Ahmad; Dar, Mansoor Ahmad; Chandel, Rajesh Kumar; Rather, Yasir Hassan; Haq, Inaamul; Hussain, Arshad; Malla, Altaf Ahmad

    2015-01-01

    Background Patients with schizophrenia suffer high rates of metabolic derangements on some antipsychotic medications that predispose them to cardiovascular diseases. Keeping this fact in mind, we planned this open-label study to see the effect on various metabolic parameters after switching stable schizophrenia subjects, who had developed metabolic syndrome on olanzapine, to aripiprazole. Methods Sixty-two patients with schizophrenia who were stable on olanzapine and were fulfilling modified National Cholesterol Education Program (NCEP) Adult Treatment Panel III (ATP-III) criteria for the presence of metabolic syndrome were enrolled on the study. Patients were randomly assigned either to switch to aripiprazole or to stay on olanzapine, on a 1:1 basis. Cross-tapering over a period of 1 month was done while switching patients to aripiprazole. Laboratory assessment for metabolic parameters was done at baseline, 8 weeks, and 24 weeks after enrollment; efficacy assessment was done using the Positive and Negative Syndrome Scale (PANSS) at baseline and 24 weeks, the Clinical Global Impressions severity subscale (CGI-S) at baseline, and the Clinical Global Impressions improvement subscale (CGI-I) at 24 weeks. Results All parameters of metabolic syndrome (waist circumference, blood pressure, triglyceride level, fasting blood glucose, and high-density lipoprotein cholesterol) kept deteriorating in the stay group, compared with a continuous improvement in the switch group over time. At the end of the study, 26 patients (100%) from the stay group and 15 patients (42.8%) from switch group met the modified NCEP ATP-III criteria for presence of metabolic syndrome (P<0.001). There were no statistically significant differences between groups in psychopathology changes as measured by the PANSS total score and CGI-I scores. Conclusion Clinically stable patients with schizophrenia who are taking olanzapine and who have evidence of metabolic syndrome can be successfully switched to

  12. A Novel Positron Emission Tomography (PET) Approach to Monitor Cardiac Metabolic Pathway Remodeling in Response to Sunitinib Malate

    PubMed Central

    Silvola, Johanna M. U.; Miller, Ian S.; Conroy, Emer; Hector, Suzanne; Cary, Maurice; Murray, David W.; Jarzabek, Monika A.; Maratha, Ashwini; Alamanou, Marina; Udupi, Girish Mallya; Shiels, Liam; Pallaud, Celine; Saraste, Antti; Liljenbäck, Heidi; Jauhiainen, Matti; Oikonen, Vesa; Ducret, Axel; Cutler, Paul; McAuliffe, Fionnuala M.; Rousseau, Jacques A.; Lecomte, Roger; Gascon, Suzanne; Arany, Zoltan; Ky, Bonnie; Force, Thomas; Knuuti, Juhani; Gallagher, William M.; Roivainen, Anne; Byrne, Annette T.

    2017-01-01

    Sunitinib is a tyrosine kinase inhibitor approved for the treatment of multiple solid tumors. However, cardiotoxicity is of increasing concern, with a need to develop rational mechanism driven approaches for the early detection of cardiac dysfunction. We sought to interrogate changes in cardiac energy substrate usage during sunitinib treatment, hypothesising that these changes could represent a strategy for the early detection of cardiotoxicity. Balb/CJ mice or Sprague-Dawley rats were treated orally for 4 weeks with 40 or 20 mg/kg/day sunitinib. Cardiac positron emission tomography (PET) was implemented to investigate alterations in myocardial glucose and oxidative metabolism. Following treatment, blood pressure increased, and left ventricular ejection fraction decreased. Cardiac [18F]-fluorodeoxyglucose (FDG)-PET revealed increased glucose uptake after 48 hours. [11C]Acetate-PET showed decreased myocardial perfusion following treatment. Electron microscopy revealed significant lipid accumulation in the myocardium. Proteomic analyses indicated that oxidative metabolism, fatty acid β-oxidation and mitochondrial dysfunction were among the top myocardial signalling pathways perturbed. Sunitinib treatment results in an increased reliance on glycolysis, increased myocardial lipid deposition and perturbed mitochondrial function, indicative of a fundamental energy crisis resulting in compromised myocardial energy metabolism and function. Our findings suggest that a cardiac PET strategy may represent a rational approach to non-invasively monitor metabolic pathway remodeling following sunitinib treatment. PMID:28129334

  13. Usefulness of myocardial strain imaging in Duchenne muscular dystrophy.

    PubMed

    Fayssoil, A

    2010-04-01

    Duchenne muscular dystrophy is an X-linked recessive disorder caused by the absence of dystrophin. Heart involvement is a classical complication in this disease and leads progressively to heart failure. Detecting latent myocardial involvement is essential in this disease because early use of drugs like angiotensin-converting enzyme inhibitors may delay the progression of heart disease. Myocardial strain imaging is an application of the tissue Doppler imaging. By assessing regional myocardial function, this tool might help clinicians to detect latent myocardial involvement in DMD patients.

  14. Combretastatin A4 disodium phosphate-induced myocardial injury

    PubMed Central

    Tochinai, Ryota; Nagata, Yuriko; Ando, Minoru; Hata, Chie; Suzuki, Tomo; Asakawa, Naoyuki; Yoshizawa, Kazuhiko; Uchida, Kazumi; Kado, Shoichi; Kobayashi, Toshihide; Kaneko, Kimiyuki; Kuwahara, Masayoshi

    2016-01-01

    Histopathological and electrocardiographic features of myocardial lesions induced by combretastatin A4 disodium phosphate (CA4DP) were evaluated, and the relation between myocardial lesions and vascular changes and the direct toxic effect of CA4DP on cardiomyocytes were discussed. We induced myocardial lesions by administration of CA4DP to rats and evaluated myocardial damage by histopathologic examination and electrocardiography. We evaluated blood pressure (BP) of CA4DP-treated rats and effects of CA4DP on cellular impedance-based contractility of human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs). The results revealed multifocal myocardial necrosis with a predilection for the interventricular septum and subendocardial regions of the apex of the left ventricular wall, injury of capillaries, morphological change of the ST junction, and QT interval prolongation. The histopathological profile of myocardial lesions suggested that CA4DP induced a lack of myocardial blood flow. CA4DP increased the diastolic BP and showed direct effects on hiPS-CMs. These results suggest that CA4DP induces dysfunction of small arteries and capillaries and has direct toxicity in cardiomyocytes. Therefore, it is thought that CA4DP induced capillary and myocardial injury due to collapse of the microcirculation in the myocardium. Moreover, the direct toxic effect of CA4DP on cardiomyocytes induced myocardial lesions in a coordinated manner. PMID:27559241

  15. Inferior ST-Elevation Myocardial Infarction Associated with Takotsubo Cardiomyopathy

    PubMed Central

    Koeth, Oliver; Zeymer, Uwe; Schiele, Rudolf; Zahn, Ralf

    2010-01-01

    Takotsubo cardiomyopathy (TCM) is usually characterized by transient left ventricular apical ballooning. Due to the clinical symptoms which include chest pain, electrocardiographic changes, and elevated myocardial markers, Takotsubo cardiomyopathy is frequently mimicking ST-elevation myocardial infarction in the absence of a significant coronary artery disease. Otherwise an acute occlusion of the left anterior descending coronary artery can produce a typical Takotsubo contraction pattern. ST-elevation myocardial infarction (STEMI) is frequently associated with emotional stress, but to date no cases of STEMI triggering TCM have been reported. We describe a case of a female patient with inferior ST-elevation myocardial infarction complicated by TCM. PMID:20811565

  16. Myocardial ischemia reperfusion injury: from basic science to clinical bedside.

    PubMed

    Frank, Anja; Bonney, Megan; Bonney, Stephanie; Weitzel, Lindsay; Koeppen, Michael; Eckle, Tobias

    2012-09-01

    Myocardial ischemia reperfusion injury contributes to adverse cardiovascular outcomes after myocardial ischemia, cardiac surgery or circulatory arrest. Primarily, no blood flow to the heart causes an imbalance between oxygen demand and supply, named ischemia (from the Greek isch, restriction; and haema, blood), resulting in damage or dysfunction of the cardiac tissue. Instinctively, early and fast restoration of blood flow has been established to be the treatment of choice to prevent further tissue injury. Indeed, the use of thrombolytic therapy or primary percutaneous coronary intervention is the most effective strategy for reducing the size of a myocardial infarct and improving the clinical outcome. Unfortunately, restoring blood flow to the ischemic myocardium, named reperfusion, can also induce injury. This phenomenon was therefore termed myocardial ischemia reperfusion injury. Subsequent studies in animal models of acute myocardial infarction suggest that myocardial ischemia reperfusion injury accounts for up to 50% of the final size of a myocardial infarct. Consequently, many researchers aim to understand the underlying molecular mechanism of myocardial ischemia reperfusion injury to find therapeutic strategies ultimately reducing the final infarct size. Despite the identification of numerous therapeutic strategies at the bench, many of them are just in the process of being translated to bedside. The current review discusses the most striking basic science findings made during the past decades that are currently under clinical evaluation, with the ultimate goal to treat patients who are suffering from myocardial ischemia reperfusion-associated tissue injury.

  17. Regional myocardial lidocaine concentration following continuous intravenous infusion early and later after myocardial infarction

    SciTech Connect

    Zito, R.A.; Caride, V.J.; Holford, T.; Zaret, B.L.

    1982-09-01

    The regional concentration of lidocaine using a double constant infusion technique (250 micrograms/kg/min x 15 minutes followed by 35 micrograms/kg/mg/min x 120 minutes) was studied immediately (2 hours) in seven dogs and 24 hours (six dogs) after myocardial infarction. Tissue levels were determined by gas chromatography and related to regional myocardial blood flow as determined by the radioactive microsphere technique in multiple samples. At 2 hours after infarction a significantly higher lidocaine concentration (4.1 +/- 0.42 micrograms/g) was found in zones with greatly reduced blood flow (regional myocardial blood flow less than 0.2 ml/min per g) when compared with that (2.6 +/- 0.19 micrograms/g) in zones with normal blood flow (regional myocardial blood flow greater than 0.8 ml/min per g) (p less than 0.01). In contrast, in the 24 hour model the opposite situation was observed. Although the concentration of lidocaine in the infarct zone was substantial, a significant decline in lidocaine tissue concentration was found in the zones of lowest blood flow (regional myocardial blood flow less than 0.2 ml/min per g) when compared with that in normal zones (1.76 +/- 0.21 versus 3.38 +/- 0.21 micrograms/g, p less than 0.001). In addition, no significant differences in lidocaine concentrations were found between endocardium and epicardium in any of the groups other than those related to regional myocardial blood flow. Thus, with the double constant infusion technique, lidocaine reached normal and ischemic myocardium in concentrations equivalent to therapeutic plasma concentrations, even in lower infarct blood flow zones, with no significant differences between endocardium and epicardium. Of perhaps greater significance, the age of the ischemic insult is an important determinant of lidocaine tissue distribution in infarcted myocardium.

  18. Depressive Symptoms Are Associated with Mental Stress-Induced Myocardial Ischemia after Acute Myocardial Infarction

    PubMed Central

    Wei, Jingkai; Pimple, Pratik; Shah, Amit J.; Rooks, Cherie; Bremner, J. Douglas; Nye, Jonathon A.; Ibeanu, Ijeoma; Murrah, Nancy; Shallenberger, Lucy; Raggi, Paolo; Vaccarino, Viola

    2014-01-01

    Objectives Depression is an adverse prognostic factor after an acute myocardial infarction (MI), and an increased propensity toward emotionally-driven myocardial ischemia may play a role. We aimed to examine the association between depressive symptoms and mental stress-induced myocardial ischemia in young survivors of an MI. Methods We studied 98 patients (49 women and 49 men) age 38–60 years who were hospitalized for acute MI in the previous 6 months. Patients underwent myocardial perfusion imaging at rest, after mental stress (speech task), and after exercise or pharmacological stress. A summed difference score (SDS), obtained with observer-independent software, was used to quantify myocardial ischemia under both stress conditions. The Beck Depression Inventory-II (BDI-II) was used to measure depressive symptoms, which were analyzed as overall score, and as separate somatic and cognitive depressive symptom scores. Results There was a significant positive association between depressive symptoms and SDS with mental stress, denoting more ischemia. After adjustment for demographic and lifestyle factors, disease severity and medications, each incremental depressive symptom was associated with 0.14 points higher SDS. When somatic and cognitive depressive symptoms were examined separately, both somatic [β = 0.17, 95% CI: (0.04, 0.30), p = 0.01] and cognitive symptoms [β = 0.31, 95% CI: (0.07, 0.56), p = 0.01] were significantly associated with mental stress-induced ischemia. Depressive symptoms were not associated with ischemia induced by exercise or pharmacological stress. Conclusion Among young post-MI patients, higher levels of both cognitive and somatic depressive symptoms are associated with a higher propensity to develop myocardial ischemia with mental stress, but not with physical (exercise or pharmacological) stress. PMID:25061993

  19. Ipratropium bromide-mediated myocardial injury in in vitro models of myocardial ischaemia/reperfusion.

    PubMed

    Harvey, Kate L; Hussain, Afthab; Maddock, Helen L

    2014-04-01

    Ipratropium bromide, a nonselective muscarinic antagonist, is widely prescribed for the treatment of chronic obstructive pulmonary disease (COPD). Analyses of COPD patients, with underlying ischaemic heart disease, receiving anticholinergics, have indicated increased risk of severity and occurrence of cardiovascular events (including myocardial infarction). The present study explored whether ipratropium bromide induces myocardial injury in nonclinical models of simulated myocardial ischaemia/reperfusion injury. Adult Sprague Dawley rat hearts/primary ventricular myocytes were exposed to simulated ischaemia/hypoxia prior to administration of ipratropium at the onset of reperfusion/reoxygenation. Infarct to risk ratio and cell viability was measured via triphenyl tetrazolium chloride staining and thiazolyl blue tetrazolium bromide (MTT) assay. The involvement of apoptosis and necrosis was evaluated by flow cytometry. Mitochondrial-associated responses were detected by tetramethylrhodamine methyl ester fluorescence and myocyte contracture. Ipratropium (1 × 10⁻¹¹ M - 1 × 10⁻⁴ M) significantly increased infarct/risk ratio and decreased cell viability in a dose-dependent manner. Increased levels of necrosis and apoptosis were observed via flow cytometry, accompanied by increased levels of cleaved caspase-3 following ipratropium treatment. Levels of endogenous myocardial acetylcholine were verified via use of an acetylcholine assay. In these experimental models, exogenous acetylcholine (1 × 10⁻⁷ M) showed protective properties, when administered alone, as well as abrogating the exacerbation of myocardial injury during ischaemia/reperfusion following ipratropium coadministration. In parallel experiments, under conditions of myocardial ischaemia/reperfusion, a similar injury was observed following atropine (1 × 10⁻⁷ M) administration. These data demonstrate for the first time in a nonclinical setting that ipratropium exacerbates ischaemia

  20. The Role of Uncoupling Protein 2 During Myocardial Dysfunction in a Canine Model of Endotoxin Shock.

    PubMed

    Wang, Xiaoting; Liu, Dawei; Chai, Wenzhao; Long, Yun; Su, Longxiang; Yang, Rongli

    2015-03-01

    To explore the role of uncoupling protein 2 (UCP2) during myocardial dysfunction in a canine model of endotoxin shock, 26 mongrel canines were randomly divided into the following four groups: A (control group; n = 6), B2 (shock after 2 h; n = 7), B4 (shock after 4 h; n = 7), and B6 (shock after 6 h; n = 6). Escherichia coli endotoxin was injected into the canines via the central vein, and hemodynamics were monitored. Energy metabolism, UCP2 mRNA and protein expression, and UCP2 localization were analyzed, and the correlation between energy metabolism changes, and UCP2 expression was determined. After the canine endotoxin shock model was successfully established, the expression of UCP2 mRNA and protein was found to increase, with later time points showing significant increases (P < 0.05). Immunofluorescence assays of UCP2 in heart tissue showed that UCP2 was localized in the cytoplasm, and its expression pattern was the same as that found in the mRNA and protein analyses. The energy metabolism results revealed that the ADP levels increased, but the ATP and phosphocreatine (PCr) levels and ATP/ADP and PCr/ATP ratios decreased in the model. In particular, the PCr/ATP ratio was significantly different from that of the control group 6 h after shock (P < 0.05). Furthermore, correlation analysis showed that the UCP2 protein and mRNA levels were negatively correlated with myocardial energy levels. In summary, decreased energy synthesis can occur in the myocardium during endotoxin shock, and UCP2 may play an important role in this process. The negative correlation between UCP2 expression and energy metabolism requires further study, as the results might contribute to the treatment of sepsis with heart failure.

  1. Mouse Sirt3 promotes autophagy in AngII-induced myocardial hypertrophy through the deacetylation of FoxO1

    PubMed Central

    Li, Jingyuan; Chen, Tongshuai; Xiao, Ming; Li, Na; Wang, Shujian; Su, Hongyan; Guo, Xiaobin; Liu, Hui; Yan, Fangying; Yang, Yi; Zhang, Yun; Bu, Peili

    2016-01-01

    Sirt3, a mitochondrial NAD+-dependent histone deacetylase, is the only member proven to promote longevity in mammalian Sirtuin family. The processed short form of Sirt3 has been demonstrated to target many mediators of energy metabolism and mitochondrial stress adaptive program. Autophagy serves as a dynamic recycling mechanism and provides energy or metabolic substrates. Among the mechanisms triggered by cardiac stress, opinions vary as to whether autophagy is a protective or detrimental response. Here, by inducing the Sirt3-knockout mice to myocardial hypertrophy with chronic angiotensin II infusion for four weeks, we determined the role of Sirt3 in myocardial hypertrophy and autophagy. In this study, the Sirt3-knockout mice developed deteriorated cardiac function and impaired autophagy compared to wild-type mice. What's more, the overexpression of Sirt3 by lentivirus transfection attenuated cardiomyocytes hypertrophy by promoting autophagy. We further demonstrated that Sirt3 could bind to FoxO1 and activate its deacetylation. Sequentially, deacetylated FoxO1 translocates to the nucleus where it facilitates downstream E3 ubiquitin ligases such as Muscle RING Finger 1 (MuRF1) and muscle atrophy F-box (MAFbx, Atrogin1). Altogether, these results revealed that Sirt3 activation is essential to improve autophagy flux by reducing the acetylation modification on FoxO1, which in turn alleviates myocardial hypertrophy. PMID:27880725

  2. Visualization of myocardial perfusion after percutaneous myocardial septal ablation for hypertrophic cardiomyopathy using superharmonic imaging.

    PubMed

    Ten Cate, Folkert J; Bouakaz, Ayache; Krenning, Boudewijn; Vletter, Wim; de Jong, Nico

    2003-04-01

    Harmonic imaging is used for detection of ultrasound contrast agents in myocardial perfusion studies. However, harmonic imaging has limitations because of the presence of tissue harmonics, which results in less specificity and sensitivity, thus, lower contrast-to-tissue ratio. We describe a clinical example using superharmonic imaging. This technique detects the third, fourth, and fifth harmonics. These harmonics are not created in tissue, resulting, hence, in a high contrast-to-tissue ratio. After myocardial alcohol ablation for hypertrophic cardiomyopathy areas of nontreated and treated myocardium, normal and low flow could be visualized with superharmonic imaging.

  3. Combined assessment of reflow and collateral blood flow by myocardial contrast echocardiography after acute reperfused myocardial infarction

    PubMed Central

    Leclercq, F; Messner-Pellenc, P; Descours, Q; Daures, J; Pasquie, J; Hager, F; Davy, J; Grolleau-Raoux, R

    1999-01-01

    OBJECTIVE—To evaluate the combined assessment of reflow and collateral blood flow by myocardial contrast echocardiography after myocardial infarction.
DESIGN—Myocardial contrast echocardiography was performed in patients with acute myocardial infarction shortly after successful coronary reperfusion (TIMI 3 patency) by direct angioplasty. Collateral flow was assessed before coronary angioplasty, and contrast reflow was evaluated 15 minutes after reperfusion. The presence of contractile reserve was assessed by low dose dobutamine echocardiography (5 to 15 µg/kg/min) at (mean (SD)) 3 (2) days after myocardial infarction. Recovery of segmental function (myocardial viability) was evaluated by resting echocardiography at a two month follow up. The study was prospective.
PATIENTS—35 consecutive patients referred for acute transmural myocardial infarction.
RESULTS—Contrast reflow was observed in 20 patients (57%) and collateral flow in 14 (40%). Contrast reflow and collateral contrast flow were both correlated with reversible dysfunction on initial dobutamine echocardiography and at follow up (p < 0.05). The presence of reflow or collateral flow on myocardial contrast echocardiography was a highly sensitive (100%) but weakly specific (60%) indicator of segmental dysfunction recovery. Simultaneous presence of contrast reflow and collateral flow was more specific of reversible dysfunction than reflow alone (90% v 60%).
CONCLUSIONS—Combined assessment of reflow and collateral blood flow enhanced the sensitivity of myocardial contrast echocardiography in predicting myocardial viability after acute, reperfused myocardial infarction. The simultaneous presence of reflow and collateral blood flow was highly specific of recovery of segmental dysfunction.


Keywords: contrast echocardiography; coronary reflow; collateral blood flow; dobutamine echocardiography; myocardial dysfunction PMID:10377311

  4. Metabolic implications of menstrual cycle length in non-hyperandrogenic women with polycystic ovarian morphology.

    PubMed

    Alebić, Miro Šimun; Stojanović, Nataša; Baldani, Dinka Pavičić; Duvnjak, Lea Smirčić

    2016-12-01

    -hyperandrogenic women with polycystic ovarian morphology. Menstrual cycle lenght cut-off value of 45 days was found to have the best capacity in discriminating non-hyperandrogenic women with polycystic ovarian morphology with and without metabolic derangement(s) corroborating in favor of the cardiometabolic risk factors screening and management in non-hyperandrogenic women with polycystic ovarian morphology with menstrual cycle lenght >45 days through strategies for prevention of cardiovascular disease.

  5. High prevalence of malnutrition and deranged relationship between energy demands and food intake in advanced non-small cell lung cancer.

    PubMed

    Mohan, A; Poulose, R; Kulshreshtha, I; Chautani, A M; Madan, K; Hadda, V; Guleria, R

    2016-04-21

    The relation between dietary intake and metabolic profile in non-small cell lung cancer (NSCLC) was evaluated. Patients with NSCLC were recruited and their caloric requirement and resting energy expenditure (REE) were calculated using the Harris-Benedict equation and Katch-McArdle formula respectively. Hypermetabolic state was defined as REE more than 10% above the basal metabolic rate (BMR). Body composition parameters were calculated by bioelectric impedance method. The 24-h dietary intake method and Malnutrition Universal Screening Tool assessed nutritional intake. One hundred and forty-eight subjects were included (87% males). Of these, 46.6% subjects were hypermetabolic and 31% cachexic, with lower calorie and protein intakes than recommended, although per cent of total energy derived from protein, fat and carbohydrates were similar. Hypermetabolic patients had lower BMI, though the per cent deficit in energy and protein consumption was similar. Cachexia was associated with lower BMR but not with deficit in energy or protein consumption. No correlation was seen between dietary intake and body composition parameters. The calorie and protein intake of NSCLC patients is lower than recommended. The discordance between elevated REE and dietary intake implies that the relationship between increased energy demands and food intake may be altered.

  6. Metabolic Analysis

    NASA Astrophysics Data System (ADS)

    Tolstikov, Vladimir V.

    Analysis of the metabolome with coverage of all of the possibly detectable components in the sample, rather than analysis of each individual metabolite at a given time, can be accomplished by metabolic analysis. Targeted and/or nontargeted approaches are applied as needed for particular experiments. Monitoring hundreds or more metabolites at a given time requires high-throughput and high-end techniques that enable screening for relative changes in, rather than absolute concentrations of, compounds within a wide dynamic range. Most of the analytical techniques useful for these purposes use GC or HPLC/UPLC separation modules coupled to a fast and accurate mass spectrometer. GC separations require chemical modification (derivatization) before analysis, and work efficiently for the small molecules. HPLC separations are better suited for the analysis of labile and nonvolatile polar and nonpolar compounds in their native form. Direct infusion and NMR-based techniques are mostly used for fingerprinting and snap phenotyping, where applicable. Discovery and validation of metabolic biomarkers are exciting and promising opportunities offered by metabolic analysis applied to biological and biomedical experiments. We have demonstrated that GC-TOF-MS, HPLC/UPLC-RP-MS and HILIC-LC-MS techniques used for metabolic analysis offer sufficient metabolome mapping providing researchers with confident data for subsequent multivariate analysis and data mining.

  7. Metabolic Disorders

    MedlinePlus

    ... affect the breakdown of amino acids, carbohydrates, or lipids. Another group, mitochondrial diseases, affects the parts of the cells that produce the energy. You can develop a metabolic disorder when some organs, such as your liver or pancreas, become diseased or do not function ...

  8. Metabolic Syndrome

    MedlinePlus

    Metabolic syndrome is a group of conditions that put you at risk for heart disease and diabetes. These conditions are High blood pressure High blood glucose, or blood sugar, levels High levels of triglycerides, a type of fat, in your blood Low levels ...

  9. Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*

    PubMed Central

    Carrer, Michele; Liu, Ning; Grueter, Chad E.; Williams, Andrew H.; Frisard, Madlyn I.; Hulver, Matthew W.; Bassel-Duby, Rhonda; Olson, Eric N.

    2012-01-01

    Obesity and metabolic syndrome are associated with mitochondrial dysfunction and deranged regulation of metabolic genes. Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β) is a transcriptional coactivator that regulates metabolism and mitochondrial biogenesis through stimulation of nuclear hormone receptors and other transcription factors. We report that the PGC-1β gene encodes two microRNAs (miRNAs), miR-378 and miR-378*, which counterbalance the metabolic actions of PGC-1β. Mice genetically lacking miR-378 and miR-378* are resistant to high-fat diet-induced obesity and exhibit enhanced mitochondrial fatty acid metabolism and elevated oxidative capacity of insulin-target tissues. Among the many targets of these miRNAs, carnitine O-acetyltransferase, a mitochondrial enzyme involved in fatty acid metabolism, and MED13, a component of the Mediator complex that controls nuclear hormone receptor activity, are repressed by miR-378 and miR-378*, respectively, and are elevated in the livers of miR-378/378* KO mice. Consistent with these targets as contributors to the metabolic actions of miR-378 and miR-378*, previous studies have implicated carnitine O-acetyltransferase and MED13 in metabolic syndrome and obesity. Our findings identify miR-378 and miR-378* as integral components of a regulatory circuit that functions under conditions of metabolic stress to control systemic energy homeostasis and the overall oxidative capacity of insulin target tissues. Thus, these miRNAs provide potential targets for pharmacologic intervention in obesity and metabolic syndrome. PMID:22949648

  10. Role of systemic arterial pressure, heart rate, and derived variables in prediction of severity of myocardial ischemia during acute coronary occlusion in anesthetized dogs.

    PubMed

    Moore, P G; Reitan, J A; Kien, N D; White, D A; Safwat, A M

    1992-09-01

    The present study examined the postulate that the quotient of mean systemic arterial pressure and heart rate predicts the severity of myocardial ischemia during occlusion of the left anterior descending coronary artery. Studies were performed in open-chest fentanyl-anesthetized dogs before and during halothane (n = 8) or isoflurane (n = 8) anesthesia. The pressure-rate quotient (PRQ) decreased significantly in both groups during incremental increases in halothane or isoflurane to 68% and 57% of control values at 0.5 MAC and to 41% and 38% at 1.5 MAC for halothane and isoflurane, respectively. Myocardial lactate production was unchanged from the ischemic region, and no correlation between the PRQ and myocardial lactate production was observed. In contrast, heart rate correlated significantly (r = 0.376; P less than 0.05) with lactate production. The product of systolic systemic arterial pressure and heart rate (rate-pressure product) correlated with blood flow (r = 0.493; P less than 0.001) and with oxygen consumption (r = 0.571; P less than 0.001) in the normal myocardium. A weak correlation (r = 0.330; P less than 0.05) of rate-pressure product with myocardial lactate production from the ischemic region was observed. There were no correlations between the PRQ and myocardial lactate production from the ischemic region or indices of blood flow distribution (i.e., inner/outer ratio in the ischemic region or ischemic/normal ratio). The relationship of hemodynamic variables to measurements of regional myocardial metabolism was independent of background anesthetic agent of depth of anesthesia. The current data suggest that heart rate changes are weakly predictive of severity of myocardial ischemia.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Taurine detected using high-resolution magic angle spinning 1H nuclear magnetic resonance: A potential indicator of early myocardial infarction

    PubMed Central

    YANG, YUNLONG; YANG, LIN; ZHANG, YUE; GU, XINGHUA; XU, DANLING; FANG, FANG; SUN, AIJUN; WANG, KEQIANG; YU, YIHUA; ZUO, JI; GE, JUNBO

    2013-01-01

    Magnetic resonance spectroscopy (MRS) is a unique non-invasive method for detecting cardiac metabolic changes. However, MRS in cardiac diagnosis is limited due to insensitivity and low efficiency. Taurine (Tau) is the most abundant free amino acid in the myocardium. We hypothesized that Tau levels may indicate myocardial ischemia and early infarction. Sprague-Dawley rats were divided into seven groups according to different time points during the course of myocardial ischemia, which was induced by left anterior descending coronary artery ligation. Infarcted myocardial tissue was obtained for high-resolution magic angle spinning 1H nuclear magnetic resonance (NMR) analysis. Results were validated via high-performance liquid chromatography. The Tau levels in the ischemic myocardial tissue were reduced significantly within 5 min compared with those in the control group (relative ratio from 20.27±6.48 to 8.81±0.04, P<0.05) and were maintained for 6 h post-ischemia. Tau levels declined more markedly (56.5%) than creatine levels (48.5%) at 5 min after ligation. This suggests that Tau may have potential as an indicator in the early detection of myocardial ischemia by 1H MRS. PMID:23408155

  12. Effect of additional treatment with EXenatide in patients with an Acute Myocardial Infarction (EXAMI): study protocol for a randomized controlled trial

    PubMed Central

    2011-01-01

    Background Myocardial infarction causes irreversible loss of cardiomyocytes and may lead to loss of ventricular function, morbidity and mortality. Infarct size is a major prognostic factor and reduction of infarct size has therefore been an important objective of strategies to improve outcomes. In experimental studies, glucagon-like peptide 1 and exenatide, a long acting glucagon-like peptide 1 receptor agonist, a novel drug introduced for the treatment of type 2 diabetes, reduced infarct size after myocardial infarction by activating pro-survival pathways and by increasing metabolic efficiency. Methods The EXAMI trial is a multi-center, prospective, randomized, placebo controlled trial, designed to evaluate clinical outcome of exenatide infusion on top of standard treatment, in patients with an acute myocardial infarction, successfully treated with primary percutaneous coronary intervention. A total of 108 patients will be randomized to exenatide (5 μg bolus in 30 minutes followed by continuous infusion of 20 μg/24 h for 72 h) or placebo treatment. The primary end point of the study is myocardial infarct size (measured using magnetic resonance imaging with delayed enhancement at 4 months) as a percentage of the area at risk (measured using T2 weighted images at 3-7 days). Discussion If the current study demonstrates cardioprotective effects, exenatide may constitute a novel therapeutic option to reduce infarct size and preserve cardiac function in adjunction to reperfusion therapy in patients with acute myocardial infarction. Trial registration ClinicalTrials.gov: NCT01254123 PMID:22067476

  13. Beyond anorexia -cachexia. Nutrition and modulation of cancer patients' metabolism: supplementary, complementary or alternative anti-neoplastic therapy?

    PubMed

    Laviano, Alessandro; Seelaender, Marilia; Sanchez-Lara, Karla; Gioulbasanis, Ioannis; Molfino, Alessio; Rossi Fanelli, Filippo

    2011-09-01

    Anorexia and muscle wasting are frequently observed in cancer patients and influence their clinical outcome. The better understanding of the mechanisms underlying behavioral changes and altered metabolism yielded to the development of specialized nutritional support, which enhances utilization of provided calories and proteins by counteracting some of the metabolic derangements occurring during tumor growth. Inflammation appears to be a key factor determining the cancer-associated biochemical abnormalities eventually leading to anorexia and cachexia. Interestingly, inflammation is also involved in carcinogenesis, cancer progression and metastasis by impairing immune surveillance, among other mechanisms. Therefore, nutritional interventions aiming at modulating inflammation to restore nutritional status may also result in improved response to pharmacological anti-cancer therapies. Recent clinical data show that supplementation with nutrients targeting inflammation and immune system increases response rate and survival in cancer patients. This suggests that nutrition therapy should be considered as an important adjuvant strategy in the multidimensional approach to cancer patients.

  14. MRS: a noninvasive window into cardiac metabolism.

    PubMed

    van Ewijk, Petronella A; Schrauwen-Hinderling, Vera B; Bekkers, Sebastiaan C A M; Glatz, Jan F C; Wildberger, Joachim E; Kooi, M Eline

    2015-07-01

    A well-functioning heart requires a constant supply of a balanced mixture of nutrients to be used for the production of adequate amounts of adenosine triphosphate, which is the main energy source for most cellular functions. Defects in cardiac energy metabolism are linked to several myocardial disorders. MRS can be used to study in vivo changes in cardiac metabolism noninvasively. MR techniques allow repeated measurements, so that disease progression and the response to treatment or to a lifestyle intervention can be monitored. It has also been shown that MRS can predict clinical heart failure and death. This article focuses on in vivo MRS to assess cardiac metabolism in humans and experimental animals, as experimental animals are often used to investigate the mechanisms underlying the development of metabolic diseases. Various MR techniques, such as cardiac (31) P-MRS, (1) H-MRS, hyperpolarized (13) C-MRS and Dixon MRI, are described. A short overview of current and emerging applications is given. Cardiac MRS is a promising technique for the investigation of the relationship between cardiac metabolism and cardiac disease. However, further optimization of scan time and signal-to-noise ratio is required before broad clinical application. In this respect, the ongoing development of advanced shimming algorithms, radiofrequency pulses, pulse sequences, (multichannel) detection coils, the use of hyperpolarized nuclei and scanning at higher magnetic field strengths offer future perspective for clinical applications of MRS.

  15. β-Amyloid is associated with aberrant metabolic connectivity in subjects with mild cognitive impairment

    PubMed Central

    Carbonell, Felix; Charil, Arnaud; Zijdenbos, Alex P; Evans, Alan C; Bedell, Barry J

    2014-01-01

    Positron emission tomography (PET) studies using [18F]2-fluoro-2-deoxyglucose (FDG) have identified a well-defined pattern of glucose hypometabolism in Alzheimer's disease (AD). The assessment of the metabolic relationship among brain regions has the potential to provide unique information regarding the disease process. Previous studies of metabolic correlation patterns have demonstrated alterations in AD subjects relative to age-matched, healthy control subjects. The objective of this study was to examine the associations between β-amyloid, apolipoprotein E ɛ4 (APOE ɛ4) genotype, and metabolic correlations patterns in subjects diagnosed with mild cognitive impairment (MCI). Mild cognitive impairment subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study were categorized into β-amyloid-low and β-amyloid-high groups, based on quantitative analysis of [18F]florbetapir PET scans, and APOE ɛ4 non-carriers and carriers based on genotyping. We generated voxel-wise metabolic correlation strength maps across the entire cerebral cortex for each group, and, subsequently, performed a seed-based analysis. We found that the APOE ɛ4 genotype was closely related to regional glucose hypometabolism, while elevated, fibrillar β-amyloid burden was associated with specific derangements of the metabolic correlation patterns. PMID:24736891

  16. Assessment of growth and metabolism characteristics in offspring of dehydroepiandrosterone-induced polycystic ovary syndrome adults

    PubMed Central

    Huang, Ying; Gao, Jiang-Man; Zhang, Chun-Mei; Zhao, Hong-Cui; Qiao, Jie

    2016-01-01

    Polycystic ovary syndrome (PCOS) is a common reproductive disorder that has many characteristic features including hyperandrogenemia, insulin resistance and obesity, which may have significant implications for pregnancy outcomes and long-term health of women. Daughters born to PCOS mothers constitute a high-risk group for metabolic and reproductive derangements, but no report has described potential growth and metabolic risk factors for such female offspring. Hence, we used a mouse model of dehydroepiandrosterone (DHEA)-induced PCOS to study the mechanisms underlying the pathology of PCOS by investigating the growth, developmental characteristics, metabolic indexes and expression profiles of key genes of offspring born to the models. We found that the average litter size was significantly smaller in the DHEA group, and female offspring had sustained higher body weight, increased body fat and triglyceride content in serum and liver; they also exhibited decreased energy expenditure, oxygen consumption and impaired glucose tolerance. Genes related to glucolipid metabolism such as Pparγ, Acot1/2, Fgf21, Pdk4 and Inhbb were upregulated in the liver of the offspring in DHEA group compared with those in controls, whereas Cyp17a1 expression was significantly decreased. However, the expression of these genes was not detected in male offspring. Our results show that female offspring in DHEA group exhibit perturbed growth and glucolipid metabolism that were not observed in male offspring. PMID:27798284

  17. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    PubMed Central

    Dzeja, Petras; Terzic, Andre

    2009-01-01

    Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7) are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network. PMID:19468337

  18. How Exercise May Amend Metabolic Disturbances in Diabetic Cardiomyopathy

    PubMed Central

    Hafstad, Anne D.; Boardman, Neoma

    2015-01-01

    Abstract Significance: Over-nutrition and sedentary lifestyle has led to a worldwide increase in obesity, insulin resistance, and type 2 diabetes (T2D) associated with an increased risk of development of cardiovascular disorders. Diabetic cardiomyopathy, independent of hypertension or coronary disease, is induced by a range of systemic changes and may through multiple processes result in functional and structural cardiac derangements. The pathogenesis of this cardiomyopathy is complex and multifactorial, and it will eventually lead to reduced cardiac working capacity and increased susceptibility to ischemic injury. Recent Advances: Metabolic disturbances such as altered lipid handling and substrate utilization, decreased mechanical efficiency, mitochondrial dysfunction, disturbances in nonoxidative glucose pathways, and increased oxidative stress are hallmarks of diabetic cardiomyopathy. Interestingly, several of these disturbances are found to precede the development of cardiac dysfunction. Critical Issues: Exercise training is effective in the prevention and treatment of obesity and T2D. In addition to its beneficial influence on diabetes/obesity-related systemic changes, it may also amend many of the metabolic disturbances characterizing the diabetic myocardium. These changes are due to both indirect effects, exercise-mediated systemic changes, and direct effects originating from the high contractile activity of the heart during physical training. Future Directions: Revealing the molecular mechanisms behind the beneficial effects of exercise training is of considerable scientific value to generate evidence-based therapy and in the development of new treatment strategies. Antioxid. Redox Signal. 22, 1587–1605. PMID:25738326

  19. Integrative neurobiology of metabolic diseases, neuroinflammation, and neurodegeneration

    PubMed Central

    van Dijk, Gertjan; van Heijningen, Steffen; Reijne, Aaffien C.; Nyakas, Csaba; van der Zee, Eddy A.; Eisel, Ulrich L. M.

    2015-01-01

    Alzheimer's disease (AD) is a complex, multifactorial disease with a number of leading mechanisms, including neuroinflammation, processing of amyloid precursor protein (APP) to amyloid β peptide, tau protein hyperphosphorylation, relocalization, and deposition. These mechanisms are propagated by obesity, the metabolic syndrome and type-2 diabetes mellitus. Stress, sedentariness, dietary overconsumption of saturated fat and refined sugars, and circadian derangements/disturbed sleep contribute to obesity and related metabolic diseases, but also accelerate age-related damage and senescence that all feed the risk of developing AD too. The complex and interacting mechanisms are not yet completely understood and will require further analysis. Instead of investigating AD as a mono- or oligocausal disease we should address the disease by understanding the multiple underlying mechanisms and how these interact. Future research therefore might concentrate on integrating these by “systems biology” approaches, but also to regard them from an evolutionary medicine point of view. The current review addresses several of these interacting mechanisms in animal models and compares them with clinical data giving an overview about our current knowledge and puts them into an integrated framework. PMID:26041981

  20. Acute Anterior Myocardial Infarction Accompanied by Acute Inferior Myocardial Infarction: A Very Rare Coronary Artery Anomaly.

    PubMed

    Alsancak, Y; Sezenöz, B; Duran, M; Unlu, S; Turkoglu, S; Yalcın, R

    2015-01-01

    Coronary artery anomalies are rare and mostly silent in clinical practice. First manifestation of this congenital abnormality can be devastating as syncope, acute coronary syndrome, and sudden cardiac death. Herein we report a case with coronary artery anomaly complicated with ST segment myocardial infarction in both inferior and anterior walls simultaneously diagnosed during primary percutaneous coronary intervention.

  1. Cardiac NO signalling in the metabolic syndrome

    PubMed Central

    Pechánová, O; Varga, Z V; Cebová, M; Giricz, Z; Pacher, P; Ferdinandy, P

    2015-01-01

    It is well documented that metabolic syndrome (i.e. a group of risk factors, such as abdominal obesity, elevated blood pressure, elevated fasting plasma glucose, high serum triglycerides and low cholesterol level in high-density lipoprotein), which raises the risk for heart disease and diabetes, is associated with increased reactive oxygen and nitrogen species (ROS/RNS) generation. ROS/RNS can modulate cardiac NO signalling and trigger various adaptive changes in NOS and antioxidant enzyme expressions/activities. While initially these changes may represent protective mechanisms in metabolic syndrome, later with more prolonged oxidative, nitrosative and nitrative stress, these are often exhausted, eventually favouring myocardial RNS generation and decreased NO bioavailability. The increased oxidative and nitrative stress also impairs the NO-soluble guanylate cyclase (sGC) signalling pathway, limiting the ability of NO to exert its fundamental signalling roles in the heart. Enhanced ROS/RNS generation in the presence of risk factors also facilitates activation of redox-dependent transcriptional factors such as NF-κB, promoting myocardial expression of various pro-inflammatory mediators, and eventually the development of cardiac dysfunction and remodelling. While the dysregulation of NO signalling may interfere with the therapeutic efficacy of conventional drugs used in the management of metabolic syndrome, the modulation of NO signalling may also be responsible for the therapeutic benefits of already proven or recently developed treatment approaches, such as ACE inhibitors, certain β-blockers, and sGC activators. Better understanding of the above-mentioned pathological processes may ultimately lead to more successful therapeutic approaches to overcome metabolic syndrome and its pathological consequences in cardiac NO signalling. Linked Articles This article is part of a themed section on Pharmacology of the Gasotransmitters. To view the other articles in this

  2. Hydrogen Sulfide Inhibits High-Salt Diet-Induced Myocardial Oxidative Stress and Myocardial Hypertrophy in Dahl Rats

    PubMed Central

    Huang, Pan; Shen, Zhizhou; Yu, Wen; Huang, Yaqian; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2017-01-01

    The study aimed to examine the protective effect of hydrogen sulfide (H2S) on high-salt-induced oxidative stress and myocardial hypertrophy in salt-sensitive (Dahl) rats. Thirty male Dahl rats and 40 SD rats were included in the study. They were randomly divided into Dahl control (Dahl + NS), Dahl high salt (Dahl + HS), Dahl + HS + NaHS, SD + NS, SD + HS, SD + HS + NaHS, and SD + HS + hydroxylamine (HA). Rats in Dahl + NS and SD + NS groups were given chow with 0.5% NaCl and 0.9% normal saline intraperitoneally daily. Myocardial structure, α-myosin heavy chain (α-MHC) and β-myosin heavy chain (β-MHC) expressions were determined. Endogenous myocardial H2S pathway and oxidative stress in myocardial tissues were tested. Myocardial H2S pathway was downregulated with myocardial hypertrophy featured by increased heart weight/body weight and cardiomyocytes cross-sectional area, decreased α-MHC and increased β-MHC expressions in Dahl rats with high-salt diet (all P < 0.01), and oxidative stress in myocardial tissues was significantly activated, demonstrated by the increased contents of hydroxyl radical, malondialdehyde and oxidized glutathione and decreased total antioxidant capacity, carbon monoxide, catalase, glutathione, glutathione peroxidase, superoxide dismutase (SOD) activities and decreased SOD1 and SOD2 protein expressions (P < 0.05, P < 0.01). However, H2S reduced myocardial hypertrophy with decreased heart weight/body weight and cardiomyocytes cross-sectional area, increased α-MHC, decreased β-MHC expressions and inhibited oxidative stress in myocardial tissues of Dahl rats with high-salt diet. However, no significant difference was found in H2S pathway, myocardial structure, α-MHC and β-MHC protein and oxidative status in myocardial tissues among SD + NS, SD + HS, and SD + HS + NaHS groups. HA, an inhibitor of cystathionine β-synthase, inhibited myocardial H2S pathway (P < 0.01), and stimulated myocardial hypertrophy and oxidative stress in SD rats

  3. Hydrogen Sulfide Inhibits High-Salt Diet-Induced Myocardial Oxidative Stress and Myocardial Hypertrophy in Dahl Rats.

    PubMed

    Huang, Pan; Shen, Zhizhou; Yu, Wen; Huang, Yaqian; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2017-01-01

    The study aimed to examine the protective effect of hydrogen sulfide (H2S) on high-salt-induced oxidative stress and myocardial hypertrophy in salt-sensitive (Dahl) rats. Thirty male Dahl rats and 40 SD rats were included in the study. They were randomly divided into Dahl control (Dahl + NS), Dahl high salt (Dahl + HS), Dahl + HS + NaHS, SD + NS, SD + HS, SD + HS + NaHS, and SD + HS + hydroxylamine (HA). Rats in Dahl + NS and SD + NS groups were given chow with 0.5% NaCl and 0.9% normal saline intraperitoneally daily. Myocardial structure, α-myosin heavy chain (α-MHC) and β-myosin heavy chain (β-MHC) expressions were determined. Endogenous myocardial H2S pathway and oxidative stress in myocardial tissues were tested. Myocardial H2S pathway was downregulated with myocardial hypertrophy featured by increased heart weight/body weight and cardiomyocytes cross-sectional area, decreased α-MHC and increased β-MHC expressions in Dahl rats with high-salt diet (all P < 0.01), and oxidative stress in myocardial tissues was significantly activated, demonstrated by the increased contents of hydroxyl radical, malondialdehyde and oxidized glutathione and decreased total antioxidant capacity, carbon monoxide, catalase, glutathione, glutathione peroxidase, superoxide dismutase (SOD) activities and decreased SOD1 and SOD2 protein expressions (P < 0.05, P < 0.01). However, H2S reduced myocardial hypertrophy with decreased heart weight/body weight and cardiomyocytes cross-sectional area, increased α-MHC, decreased β-MHC expressions and inhibited oxidative stress in myocardial tissues of Dahl rats with high-salt diet. However, no significant difference was found in H2S pathway, myocardial structure, α-MHC and β-MHC protein and oxidative status in myocardial tissues among SD + NS, SD + HS, and SD + HS + NaHS groups. HA, an inhibitor of cystathionine β-synthase, inhibited myocardial H2S pathway (P < 0.01), and stimulated myocardial hypertrophy and oxidative stress in SD rats

  4. [Homocysteine metabolism].

    PubMed

    Hashimoto, Takao; Shinohara, Yoshihiko; Hasegawa, Hiroshi

    2007-10-01

    Homocysteine, a sulfur amino acid, is an intermediate metabolite of methionine. In 1969, McCully reported autopsy evidence of extensive arterial thrombosis and atherosclerosis in children with elevated plasma homocysteine concentrations and homocystinuria. On the basis of this observation, he proposed that elevated plasma homocysteine (hyperhomocysteinemia) can cause atherosclerotic vascular disease. Hyperhomocysteinemia is now well established as an independent risk factor for atherosclerotic vascular disease. Mild hyperhomocysteinemia is quite prevalent in the general population. It can be caused by genetic defects in the enzymes involved in homocysteine metabolism or nutritional deficiencies in vitamin cofactors, certain medications or renal disease. An increase of 5 micromol per liter in the plasma homocysteine concentration raises the risk of coronary artery disease by as much as an increase of 20 mg per deciliter in the cholesterol concentration. In this article, we review the biochemical, experimental and clinical studies on hyperhomocysteinemia, with emphasis on the metabolism and pharmacokinetics of homocysteine.

  5. Low High-Density Lipoprotein and Risk of Myocardial Infarction.

    PubMed

    Ramirez, A; Hu, P P

    2015-01-01

    Low HDL is an independent risk factor for myocardial infarction. This paper reviews our current understanding of HDL, HDL structure and function, HDL subclasses, the relationship of low HDL with myocardial infarction, HDL targeted therapy, and clinical trials and studies. Furthermore potential new agents, such as alirocumab (praluent) and evolocumab (repatha) are discussed.

  6. [TIMI group study of thrombolysis in myocardial infarction].

    PubMed

    Braunwald, Eugene

    2009-01-01

    The article presents the history of development of various methods of reperfusion therapy in myocardial infarction. The method of intracoronary thrombolysis was developed and used in Russia in 1976. In 1984 the TIMI Study Group initiated large-scale long-term trial of thrombolytic therapy in myocardial infarction and unstable angina pectoris. Some basic results of the study are outlined.

  7. Prognostic value of radionuclide exercise testing after myocardial infarction

    SciTech Connect

    Schocken, D.D.

    1984-08-01

    Abnormal systolic ventricular function and persistent ischemia are sensitive indicators of poor prognosis following myocardial infarction. The use of exercise improves the utility of both radionuclide ventriculography and myocardial perfusion scintigraphy in the identification of postinfarction patients at high risk of subsequent cardiac events. 51 references.

  8. Predictors of Appraisal and Coping Dimensions in Myocardial Infarction Victims.

    ERIC Educational Resources Information Center

    Lee, Hyong Sil; Martin, Peter

    This study attempted to identify predictors of perception and coping after the occurrence of a myocardial infarction. Sixty males and 17 females who had suffered from a myocardial infarction within 3 months prior to the research were recruited from a hospital rehabilitation program. Subjects completed the Peri-Life Events Scale, the 16-PF…

  9. Disseminated intravascular coagulation and acute myocardial necrosis caused by lightning.

    PubMed

    Ekoé, J M; Cunningham, M; Jaques, O; Balague, F; Baumann, R P; Humair, L; de Torrenté, A

    1985-01-01

    A 24-year-old woman was struck by lightning and suffered 20% second degree burns. She was admitted after cardiac and respiratory arrest. Despite intensive supportive care she died 24 h later of cardiogenic shock complicated by disseminated intravascular coagulation. At autopsy there was myocardial necrosis. Disseminated intravascular coagulation and myocardial necrosis are only rarely described as complications of lightning.

  10. What is Metabolic Syndrome?

    MedlinePlus

    ... from the NHLBI on Twitter. What Is Metabolic Syndrome? Metabolic syndrome is the name for a group of ... that may play a role in causing metabolic syndrome. Outlook Metabolic syndrome is becoming more common due to a ...

  11. Improved Quantitative Myocardial T2 Mapping

    PubMed Central

    Akçakaya, Mehmet; Basha, Tamer A.; Weingärtner, Sebastian; Roujol, Sébastien; Berg, Sophie; Nezafat, Reza

    2014-01-01

    Purpose To develop an improved T2 prepared (T2prep) balanced steady-state free-precession (bSSFP) sequence and signal relaxation curve fitting method for myocardial T2 mapping. Methods Myocardial T2 mapping is commonly performed by acquisition of multiple T2prep bSSFP images and estimating the voxel-wise T2 values using a 2-parameter fit for relaxation. However, a 2-parameter fit model does not take into account the effect of imaging pulses in a bSSFP sequence or other imperfections in T2prep RF pulses, which may decrease the robustness of T2 mapping. Therefore, we propose a novel T2 mapping sequence that incorporates an additional image acquired with saturation preparation, simulating a very long T2prep echo time. This enables the robust estimation of T2 maps using a 3-parameter fit model, which captures the effect of imaging pulses and other imperfections. Phantom imaging is performed to compare the T2 maps generated using the proposed 3-parameter model to the conventional 2-parameter model, as well as a spin echo reference. In-vivo imaging is performed on eight healthy subjects to compare the different fitting models. Results Phantom and in-vivo data show that the T2 values generated by the proposed 3-parameter model fitting do not change with different choices of the T2prep echo times, and are not statistically different than the reference values for the phantom (P = 0.10 with three T2prep echoes). The 2-parameter model exhibits dependence on the choice of T2prep echo times and are significantly different than the reference values (P = 0.01 with three T2prep echoes). Conclusion The proposed imaging sequence in combination with a 3-parameter model allows accurate measurement of myocardial T2 values, which is independent of number and duration of T2prep echo times. PMID:25103908

  12. Abnormal 201Tl myocardial single photon emission computed tomography in energetic male patients with myocardial bridge.

    PubMed

    Huang, W S; Chang, H D; Yang, S P; Tsao, T P; Cheng, C Y; Cherng, S C

    2002-11-01

    Myocardial bridge is a relatively benign condition where a major coronary artery is bridged by a band of muscle and narrows during systole, particularly during rapid heart rates. Its clinical presentation and electrocardiogram (ECG) changes overlap with that of coronary artery disease. 201Tl myocardial perfusion imaging is thus frequently prescribed for further evaluation. This retrospective study was carried out to determine the 201Tl image patterns in patients with myocardial bridge. A total of 17 male patients (aged from 30 to 63 years) who had a positive exercise ECG and angiographic evidence of myocardial bridge in the mid-third of the left anterior descending coronary artery were recruited. Most of them were robust and received routine physical check-ups. They had no known heart disease or medication that affected cardiac function. The patients' clinical presentations, echocardiograph and exercise ECG findings were analysed. 201Tl single photon emission computed tomography (SPECT) was performed by intravenous injection of 201Tl (111 MBq) immediately following stress (treadmill or dipyridamole induced) and 4 h after stress, using a fixed, right angle camera equipped with a low energy, general purpose collimator. The images were interpreted independently by two experienced nuclear medicine physicians. Nine of the 17 patients had anterior chest pain during exercise. All patients had an abnormal ECG during exercise, including ST-T wave depression in leads II, III and aVF, and v4-6. Except for eight patients revealing reversible perfusion defect (R), 16 of the 17 patients also exhibited a partial reversible perfusion defect (PR) or a significant reverse redistribution (RR) scan pattern in the anterior or inferior walls of the left ventricle. Myocardial bridge should be taken into consideration in energetic male patients who had abnormal exercise ECGs and the corresponding patterns of Tl SPECT abnormalities including R, PR and RR.

  13. Complement component 3 is necessary to preserve myocardium and myocardial function in chronic myocardial infarction.

    PubMed

    Wysoczynski, Marcin; Solanki, Mitesh; Borkowska, Sylwia; van Hoose, Patrick; Brittian, Kenneth R; Prabhu, Sumanth D; Ratajczak, Mariusz Z; Rokosh, Gregg

    2014-09-01

    Activation of the complement cascade (CC) with myocardial infarction (MI) acutely initiates immune cell infiltration, membrane attack complex formation on injured myocytes, and exacerbates myocardial injury. Recent studies implicate the CC in mobilization of stem/progenitor cells and tissue regeneration. Its role in chronic MI is unknown. Here, we consider complement component C3, in the chronic response to MI. C3 knockout (KO) mice were studied after permanent coronary artery ligation. C3 deficiency exacerbated myocardial dysfunction 28 days after MI compared to WT with further impaired systolic function and LV dilation despite similar infarct size 24 hours post-MI. Morphometric analysis 28 days post-MI showed C3 KO mice had more scar tissue with less viable myocardium within the infarct zone which correlated with decreased c-kit(pos) cardiac stem/progenitor cells (CPSC), decreased proliferating Ki67(pos) CSPCs and decreased formation of new BrdU(pos) /α-sarcomeric actin(pos) myocytes, and increased apoptosis compared to WT. Decreased CSPCs and increased apoptosis were evident 7 days post-MI in C3 KO hearts. The inflammatory response with MI was attenuated in the C3 KO and was accompanied by attenuated hematopoietic, pluripotent, and cardiac stem/progenitor cell mobilization into the peripheral blood 72 hours post-MI. These results are the first to demonstrate that CC, through C3, contributes to myocardial preservation and regeneration in response to chronic MI. Responses in the C3 KO infer that C3 activation in response to MI expands the resident CSPC population, increases new myocyte formation, increases and preserves myocardium, inflammatory response, and bone marrow stem/progenitor cell mobilization to preserve myocardial function.

  14. Effect of hydroxy safflower yellow A on myocardial apoptosis after acute myocardial infarction in rats.

    PubMed

    Zhou, M X; Fu, J H; Zhang, Q; Wang, J Q

    2015-04-10

    This study aimed to investigate the effect of hydroxy safflower yellow A (HSYA) on myocardial apoptosis after acute myocardial infarction (AMI) in rats. We randomly divided 170 male Wistar rats into 6 groups (N = 23): normal control, sham, control, SY (90 mg/kg), HSYA high-dose (HSYA-H, 40 mg/kg), and HSYA low-dose groups (HSYA-L, 20 mg/kg). Myocardial ischemic injury was induced by ligating the anterior descending coronary artery, and the degree of myocardial ischemia was evaluated using electrocardiography and nitroblue tetrazolium staining. Bax and Bcl-2 expressions in the ischemic myocardium were determined using immunohistochemical analysis. Peroxisome proliferator-activated receptor-γ (PPAR-γ) expression in the myocardium of rats with AMI was determined using reverse transcription-polymerase chain reaction. Compared to rats in the control group, those in the HYSA-H, HSYA-L, and SY groups showed a decrease in the elevated ST segments and an increase in the infarct size. The rats in the drug-treated groups showed a significantly lower percentage of Bax-positive cells and a significantly higher percentage of Bcl-2-positive cells than those in the control group (P < 0.05). Moreover, mRNA expression of PPAR-γ in the ischemic myocardium of rats in the SY, HSYA-L, and HSYA-H groups was significantly lower than that in the control group (P < 0.05). Thus, HSYA and SY can attenuate myocardial ischemia in rats, possibly by increasing the level of Bcl-2/Bax, and PPAR-γ may be not a necessary link in this process.

  15. Interplay of vitamin D and metabolic syndrome: A review.

    PubMed

    Prasad, Priyanka; Kochhar, Anita

    2016-01-01

    Vitamin D deficiency is a worldwide public health problem. Vitamin D deficiency plays key role in the pathophysiology of risk factors of metabolic syndrome which affect cardiovascular system, increase insulin resistance and obesity, stimulate rennin-angiotensin-aldosterone system that cause hypertension. The discovery of vitamin D receptor expressed ubiquitously in almost all body cells such as immune, vascular and myocardial cells, pancreatic beta cells, neurons and osteoblasts suggests an involvement of vitamin D mediated effects on metabolic syndrome. Moreover vitamin D deficiency as well as cardiovascular diseases and related risk factors frequently co-occur. This underlines the importance of understanding the role of vitamin D in the context of metabolic syndrome. The paper provides an insight into the physiology of vitamin D and relationship of vitamin D deficiency with risk factors of metabolic syndrome through observational and supplementation studies.

  16. Systematic Review of Metabolic Syndrome Biomarkers: A Panel for Early Detection, Management, and Risk Stratification in the West Virginian Population

    PubMed Central

    Srikanthan, Krithika; Feyh, Andrew; Visweshwar, Haresh; Shapiro, Joseph I.; Sodhi, Komal

    2016-01-01

    Introduction: Metabolic syndrome represents a cluster of related metabolic abnormalities, including central obesity, hypertension, dyslipidemia, hyperglycemia, and insulin resistance, with central obesity and insulin resistance in particular recognized as causative factors. These metabolic derangements present significant risk factors for cardiovascular disease, which is commonly recognized as the primary clinical outcome, although other outcomes are possible. Metabolic syndrome is a progressive condition that encompasses a wide array of disorders with specific metabolic abnormalities presenting at different times. These abnormalities can be detected and monitored via serum biomarkers. This review will compile a list of promising biomarkers that are associated with metabolic syndrome and this panel can aid in early detection and management of metabolic syndrome in high risk populations, such as in West Virginia. Methods: A literature review was conducted using PubMed, Science Direct, and Google Scholar to search for markers related to metabolic syndrome. Biomarkers searched included adipokines (leptin, adiponectin), neuropeptides (ghrelin), pro-inflammatory cytokines (IL-6, TNF-α), anti-inflammatory cytokines (IL-10), markers of antioxidant status (OxLDL, PON-1, uric acid), and prothrombic factors (PAI-1). Results: According to the literature, the concentrations of pro-inflammatory cytokines (IL-6, TNF-α), markers of pro-oxidant status (OxLDL, uric acid), and prothrombic factors (PAI-1) were elevated in metabolic syndrome. Additionally, leptin concentrations were found to be elevated in metabolic syndrome as well, likely due to leptin resistance. In contrast, concentrations of anti-inflammatory cytokines (IL-10), ghrelin, adiponectin, and antioxidant factors (PON-1) were decreased in metabolic syndrome, and these decreases also correlated with specific disorders within the cluster. Conclusion: Based on the evidence presented within the literature, the

  17. Flow Mediated Dilatation, Carotid Intima Media Thickness, Ankle Brachial Pressure Index and Pulse Pressure in Young Male Post Myocardial Infarction Patients in India

    PubMed Central

    Giri, Subhash; Rathi, Vinita; Ranga, Gajender Singh

    2016-01-01

    Introduction Due to increase in Coronary Artery Disease (CAD) at a younger age, we should try to diagnose atherosclerotic process and population at risk, at the earliest. Flow Mediated Dilatation (FMD), Carotid Intima-Media Thickness (CIMT) and Ankle-Brachial Pressure Index (ABI) are probable markers for early atherosclerosis and may be useful in coronary risk stratification. Aim To compare and correlate the FMD, CIMT, ABI and Pulse Pressure (PP) in young male patients of Myocardial Infarction (MI) with age and sex matched healthy controls. Materials and Methods Eighty male patients of MI aged ≤45 years, who presented to the Cardiac Care Unit and Department of Medicine of Guru Teg Bahadur Hospital, Delhi, India, from November 2010 to April 2012 were recruited consecutively for this case control study and same number of age and sex matched healthy controls were also analyzed. Six weeks after MI, FMD of the brachial artery, intima media thickness of carotid artery, ABPI and PP were measured in the cases and compared with healthy controls. Results The FMD was lower among young patients of MI than controls (p<0.001). CIMT was higher among cases than controls (p=0.001). ABI was lower among cases than controls (p<0.001). Compared to controls, PP was higher among cases (p=0.001). In all subjects, a negative correlation between FMD and CIMT (r=–0.220, p=0.005) and a positive correlation between FMD and ABPI (r=0.304, p<0.001) was found. A statistically significant negative correlation was found between endothelial dependent FMD and PP among cases and control groups (r=–0.209, p=0.007). Conclusion Biophysical parameters were deranged in young post MI patients. Majority of our young male patients fell in low risk Framingham risk score but still they manifested with CAD. Despite six weeks of treatment among young male patients of MI, various biophysical parameters were still deranged. PMID:27891375

  18. Novel curcumin analogue 14p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity

    SciTech Connect

    Li, Weixin; Wu, Mingchai; Tang, Longguang; Pan, Yong; Liu, Zhiguo; Zeng, Chunlai; Wang, Jingying; Wei, Tiemin; Liang, Guang

    2015-01-15

    Background: Alleviating the oxidant stress associated with myocardial ischemia reperfusion has been demonstrated as a potential therapeutic approach to limit ischemia reperfusion (I/R)-induced cardiac damage. Curcumin, a natural compound with anti-oxidative activity, exerts beneficial effect against cardiac I/R injury, but poor chemical and metabolic stability. Previously, we have designed and synthesized a series of mono-carbonyl analogues of curcumin (MACs) with high stability. This study aims to find new anti-oxidant MACs and to demonstrate their effects and mechanisms against I/R-induced heart injury. Methods: H9c2 cells challenged with H{sub 2}O{sub 2} or TBHP were used for in vitro bio-screening and mechanistic studies. The MDA, H{sub 2}O{sub 2} and SOD levels in H9C2 cells were determined, and the cell viability was assessed by MTT assay. Myocardial I/R mouse models administrated with or without the compound were used for in vivo studies. Results: The in vitro cell-based screening showed that curcumin analogues 8d and 14p exhibited strong anti-oxidative effects. Pre-treatment of H9c2 cells with 14p activated Nrf2 signaling pathway, attenuated H{sub 2}O{sub 2}-increased MDA and SOD level, followed by the inhibition of TBHP-induced cell death and Bax/Bcl-2–caspase-3 pathway activation. Silencing Nrf2 significantly reversed the protective effects of 14p. In in vivo animal model of myocardial I/R, administration of low dose 14p (10 mg/kg) reduced infarct size and myocardial apoptosis to the same extent as the high dose curcumin (100 mg/kg). Conclusion: These data support the novel curcumin analogue 14p as a promising antioxidant to decrease oxidative stress and limit myocardial ischemia reperfusion injury via activating Nrf2. - Highlights: • Mono-carbonyl analogue of curcumin, 14p, exhibited better chemical stability. • Compound 14p inhibited TBHP-induced apoptosis through activating Nrf2 in vitro. • Compound 14p limited myocardial ischemia

  19. Metabolic markers in sports medicine.

    PubMed

    Banfi, Giuseppe; Colombini, Alessandra; Lombardi, Giovanni; Lubkowska, Anna

    2012-01-01

    Physical exercise induces adaptations in metabolism considered beneficial for health. Athletic performance is linked to adaptations, training, and correct nutrition in individuals with genetic traits that can facilitate such adaptations. Intense and continuous exercise, training, and competitions, however, can induce changes in the serum concentrations of numerous laboratory parameters. When these modifications, especially elevated laboratory levels, result outside the reference range, further examinations are ordered or participation in training and competition is discontinued or sports practice loses its appeal. In order to correctly interpret commonly used laboratory data, laboratory professionals and sport physicians need to know the behavior of laboratory parameters during and after practice and competition. We reviewed the literature on liver, kidney, muscle, heart, energy, and bone parameters in athletes with a view to increase the knowledge about clinical chemistry applied to sport and to stimulate studies in this field. In liver metabolism, the interpretation of serum aminotransferases concentration in athletes should consider the release of aspartate aminotransferase (AST) from muscle and of alanine aminotransferase (ALT) mainly from the liver, when bilirubin can be elevated because of continuous hemolysis, which is typical of exercise. Muscle metabolism parameters such as creatine kinase (CK) are typically increased after exercise. This parameter can be used to interpret the physiological release of CK from muscle, its altered release due to rhabdomyolysis, or incomplete recovery due to overreaching or trauma. Cardiac markers are released during exercise, and especially endurance training. Increases in these markers should not simply be interpreted as a signal of cardiac damage or wall stress but rather as a sign of regulation of myocardial adaptation. Renal function can be followed in athletes by measuring serum creatinine concentration, but it should

  20. Reducing myocardial infarct size: challenges and future opportunities.

    PubMed

    Bulluck, Heerajnarain; Yellon, Derek M; Hausenloy, Derek J

    2016-03-01

    Despite prompt reperfusion by primary percutaneous coronary intervention (PPCI), the mortality and morbidity of patients presenting with an acute ST-segment elevation myocardial infarction (STEMI) remain significant with 9% death and 10% heart failure at 1 year. In these patients, one important neglected therapeutic target is 'myocardial reperfusion injury', a term given to the cardiomyocyte death and microvascular dysfunction which occurs on reperfusing ischaemic myocardium. A number of cardioprotective therapies (both mechanical and pharmacological), which are known to target myocardial reperfusion injury, have been shown to reduce myocardial infarct (MI) size in small proof-of-concept clinical studies-however, being able to demonstrate improved clinical outcomes has been elusive. In this article, we review the challenges facing clinical cardioprotection research, and highlight future therapies for reducing MI size and preventing heart failure in patients presenting with STEMI at risk of myocardial reperfusion injury.